Science.gov

Sample records for quercetin attenuates hepatitis

  1. Quercetin Attenuates Chronic Ethanol-Induced Hepatic Mitochondrial Damage through Enhanced Mitophagy

    PubMed Central

    Yu, Xiao; Xu, Yanyan; Zhang, Shanshan; Sun, Jian; Liu, Peiyi; Xiao, Lin; Tang, Yuhan; Liu, Liegang; Yao, Ping

    2016-01-01

    Emerging evidence suggested mitophagy activation mitigates ethanol-induced liver injury. However, the effect of ethanol on mitophagy is inconsistent. Importantly, the understanding of mitophagy status after chronic ethanol consumption is limited. This study evaluated the effect of quercetin, a naturally-occurring flavonoid, on chronic ethanol-induced mitochondrial damage focused on mitophagy. An ethanol regime to mice for 15 weeks (accounting for 30% of total calories) led to significant mitochondrial damage as evidenced by changes of the mitochondrial ultrastructure, loss of mitochondrial membrane potential and remodeling of membrane lipid composition, which was greatly attenuated by quercetin (100 mg/kg.bw). Moreover, quercetin blocked chronic ethanol-induced mitophagy suppression as denoted by mitophagosomes-lysosome fusion and mitophagy-related regulator elements, including LC3II, Parkin, p62 and voltage-dependent anion channel 1 (VDAC1), paralleling with increased FoxO3a nuclear translocation. AMP-activated protein kinase (AMPK) and extracellular signal regulated kinase 2 (ERK2), instead of AKT and Sirtuin 1, were involved in quercetin-mediated mitophagy activation. Quercetin alleviated ethanol-elicited mitochondrial damage through enhancing mitophagy, highlighting a promising preventive strategy for alcoholic liver disease. PMID:26742072

  2. Quercetin Increases Hepatic Homocysteine Remethylation and Transsulfuration in Rats Fed a Methionine-Enriched Diet

    PubMed Central

    Meng, Bin; Gao, Weina; Wei, Jingyu; Pu, Lingling; Tang, Zhenchuang; Guo, Changjiang

    2015-01-01

    This study was aimed at investigating the effects of quercetin on mRNA expression and activity of critical enzymes in homocysteine metabolism in rats fed a methionine-enriched diet. Rats were fed for 6 weeks the following diets, that is, control, 0.5% quercetin, 1.0% methionine, and 1.0% methionine plus 0.5% quercetin diets. Serum homocysteine was significantly increased after methionine treatment and decreased after the addition of quercetin. The mRNA expression of methionine synthase was significantly increased after methionine or methionine plus quercetin supplementation, while its enzymatic activity was significantly increased after methionine plus quercetin supplementation. The mRNA expression and enzymatic activity of cystathionine β-synthase and cystathionine γ-lyase were upregulated after quercetin, methionine, or quercetin plus methionine treatment and a more significant increase was observed for hepatic cystathionine β-synthase in the methionine plus quercetin treated rats, suggesting an interaction between methionine and quercetin. Meanwhile, hepatic ratio of S-adenosylmethionine to S-adenosylhomocysteine was significantly decreased in response to methionine supplementation and normalized after the addition of quercetin. It is concluded that quercetin reduces serum homocysteine by increasing remethylation and transsulfuration of homocysteine in rats exposed to a methionine-enriched diet. PMID:26558284

  3. Quercetin attenuates doxorubicin cardiotoxicity by modulating Bmi-1 expression

    PubMed Central

    Dong, Qinghua; Chen, Long; Lu, Qunwei; Sharma, Sherven; Li, Lei; Morimoto, Sachio; Wang, Guanyu

    2014-01-01

    Background and Purpose Doxorubicin-based chemotherapy induces cardiotoxicity, which limits its clinical application. We previously reported the protective effects of quercetin against doxorubicin-induced hepatotoxicity. In this study, we tested the effects of quercetin on the expression of Bmi-1, a protein regulating mitochondrial function and ROS generation, as a mechanism underlying quercetin-mediated protection against doxorubicin-induced cardiotoxicity. Experimental Approach Effects of quercetin on doxorubicin-induced cardiotoxicity was evaluated using H9c2 cardiomyocytes and C57BL/6 mice. Changes in apoptosis, mitochondrial function, oxidative stress and related signalling were evaluated in H9c2 cells. Cardiac function, serum enzyme activity and reactive oxygen species (ROS) generation were measured in mice after a single injection of doxorubicin with or without quercetin pre-treatment. Key Results In H9c2 cells, quercetin reduced doxorubicin-induced apoptosis, mitochondrial dysfunction, ROS generation and DNA double-strand breaks. The quercetin-mediated protection against doxorubicin toxicity was characterized by decreased expression of Bid, p53 and oxidase (p47 and Nox1) and by increased expression of Bcl-2 and Bmi-1. Bmi-1 siRNA abolished the protective effect of quercetin against doxorubicin-induced toxicity in H9c2 cells. Furthermore, quercetin protected mice from doxorubicin-induced cardiac dysfunction that was accompanied by reduced ROS levels and lipid peroxidation, but enhanced the expression of Bmi-1 and anti-oxidative superoxide dismutase. Conclusions and Implications Our results demonstrate that quercetin decreased doxorubicin-induced cardiotoxicity in vitro and in vivo by reducing oxidative stress by up-regulation of Bmi-1 expression. The findings presented in this study have potential applications in preventing doxorubicin-induced cardiomyopathy. PMID:24902966

  4. Quercetin Induces Hepatic Lipid Omega-Oxidation and Lowers Serum Lipid Levels in Mice

    PubMed Central

    Hoek-van den Hil, Elise F.; Keijer, Jaap; Bunschoten, Annelies; Vervoort, Jacques J. M.; Stankova, Barbora; Bekkenkamp, Melissa; Herreman, Laure; Venema, Dini; Hollman, Peter C. H.; Tvrzicka, Eva; Rietjens, Ivonne M. C. M.; van Schothorst, Evert M.

    2013-01-01

    Elevated circulating lipid levels are known risk factors for cardiovascular diseases (CVD). In order to examine the effects of quercetin on lipid metabolism, mice received a mild-high-fat diet without (control) or with supplementation of 0.33% (w/w) quercetin for 12 weeks. Gas chromatography and 1H nuclear magnetic resonance were used to quantitatively measure serum lipid profiles. Whole genome microarray analysis of liver tissue was used to identify possible mechanisms underlying altered circulating lipid levels. Body weight, energy intake and hepatic lipid accumulation did not differ significantly between the quercetin and the control group. In serum of quercetin-fed mice, triglycerides (TG) were decreased with 14% (p<0.001) and total poly unsaturated fatty acids (PUFA) were increased with 13% (p<0.01). Palmitic acid, oleic acid, and linoleic acid were all decreased by 9–15% (p<0.05) in quercetin-fed mice. Both palmitic acid and oleic acid can be oxidized by omega (ω)-oxidation. Gene expression profiling showed that quercetin increased hepatic lipid metabolism, especially ω-oxidation. At the gene level, this was reflected by the up-regulation of cytochrome P450 (Cyp) 4a10, Cyp4a14, Cyp4a31 and Acyl-CoA thioesterase 3 (Acot3). Two relevant regulators, cytochrome P450 oxidoreductase (Por, rate limiting for cytochrome P450s) and the transcription factor constitutive androstane receptor (Car; official symbol Nr1i3) were also up-regulated in the quercetin-fed mice. We conclude that quercetin intake increased hepatic lipid ω-oxidation and lowered corresponding circulating lipid levels, which may contribute to potential beneficial effects on CVD. PMID:23359794

  5. Quercetin attenuates neuronal death against aluminum-induced neurodegeneration in the rat hippocampus.

    PubMed

    Sharma, D R; Wani, W Y; Sunkaria, A; Kandimalla, R J; Sharma, R K; Verma, D; Bal, A; Gill, K D

    2016-06-01

    Aluminum is a light weight and toxic metal present ubiquitously on earth, which has gained considerable attention due to its neurotoxic effects. It also has been linked ecologically and epidemiologically to several neurological disorders, including Alzheimer's disease (AD), Parkinson's disease (PD), Guamanian-Parkinsonian complex and Amyotrophic lateral sclerosis (ALS). The mechanism of aluminum neurotoxicity is poorly understood, but it is well documented that aluminum generates reactive oxygen species (ROS). Enhanced ROS production leads to disruption of cellular antioxidant defense systems and release of cytochrome c (cyt-c) from mitochondria to cytosol resulting in apoptotic cell death. Quercetin (a natural flavonoid) protects it from oxidative damage and has been shown to decrease mitochondrial damage in various animal models of oxidative stress. We hypothesized that if oxidative damage to mitochondria does play a significant role in aluminum-induced neurodegeneration, and then quercetin should ameliorate neuronal apoptosis. Administration of quercetin (10mg/kg body wt/day) reduced aluminum (10mg/kg body wt/day)-induced oxidative stress (decreased ROS production, increased mitochondrial superoxide dismutase (MnSOD) activity). In addition, quercetin also prevents aluminum-induced translocation of cyt-c, and up-regulates Bcl-2, down-regulates Bax, p53, caspase-3 activation and reduces DNA fragmentation. Quercetin also obstructs aluminum-induced neurodegenerative changes in aluminum-treated rats as seen by Hematoxylin and Eosin (H&E) staining. Further electron microscopic studies revealed that quercetin attenuates aluminum-induced mitochondrial swelling, loss of cristae and chromatin condensation. These results indicate that treatment with quercetin may represent a therapeutic strategy to attenuate the neuronal death against aluminum-induced neurodegeneration. PMID:26944603

  6. Effect of Quercetin on Hepatitis C Virus Life Cycle: From Viral to Host Targets.

    PubMed

    Rojas, Ángela; Del Campo, Jose A; Clement, Sophie; Lemasson, Matthieu; García-Valdecasas, Marta; Gil-Gómez, Antonio; Ranchal, Isidora; Bartosch, Birke; Bautista, Juan D; Rosenberg, Arielle R; Negro, Francesco; Romero-Gómez, Manuel

    2016-01-01

    Quercetin is a natural flavonoid, which has been shown to have anti hepatitis C virus (HCV) properties. However, the exact mechanisms whereby quercetin impacts the HCV life cycle are not fully understood. We assessed the effect of quercetin on different steps of the HCV life cycle in Huh-7.5 cells and primary human hepatocytes (PHH) infected with HCVcc. In both cell types, quercetin significantly decreased i) the viral genome replication; ii) the production of infectious HCV particles and iii) the specific infectivity of the newly produced viral particles (by 85% and 92%, Huh7.5 and PHH respectively). In addition, when applied directly on HCV particles, quercetin reduced their infectivity by 65%, suggesting that it affects the virion integrity. Interestingly, the HCV-induced up-regulation of diacylglycerol acyltransferase (DGAT) and the typical localization of the HCV core protein to the surface of lipid droplets, known to be mediated by DGAT, were both prevented by quercetin. In conclusion, quercetin appears to have direct and host-mediated antiviral effects against HCV. PMID:27546480

  7. Effect of Quercetin on Hepatitis C Virus Life Cycle: From Viral to Host Targets

    PubMed Central

    Rojas, Ángela; Del Campo, Jose A.; Clement, Sophie; Lemasson, Matthieu; García-Valdecasas, Marta; Gil-Gómez, Antonio; Ranchal, Isidora; Bartosch, Birke; Bautista, Juan D.; Rosenberg, Arielle R.; Negro, Francesco; Romero-Gómez, Manuel

    2016-01-01

    Quercetin is a natural flavonoid, which has been shown to have anti hepatitis C virus (HCV) properties. However, the exact mechanisms whereby quercetin impacts the HCV life cycle are not fully understood. We assessed the effect of quercetin on different steps of the HCV life cycle in Huh-7.5 cells and primary human hepatocytes (PHH) infected with HCVcc. In both cell types, quercetin significantly decreased i) the viral genome replication; ii) the production of infectious HCV particles and iii) the specific infectivity of the newly produced viral particles (by 85% and 92%, Huh7.5 and PHH respectively). In addition, when applied directly on HCV particles, quercetin reduced their infectivity by 65%, suggesting that it affects the virion integrity. Interestingly, the HCV-induced up-regulation of diacylglycerol acyltransferase (DGAT) and the typical localization of the HCV core protein to the surface of lipid droplets, known to be mediated by DGAT, were both prevented by quercetin. In conclusion, quercetin appears to have direct and host-mediated antiviral effects against HCV. PMID:27546480

  8. Quercetin regulates hepatic cholesterol metabolism by promoting cholesterol-to-bile acid conversion and cholesterol efflux in rats.

    PubMed

    Zhang, Min; Xie, Zongkai; Gao, Weina; Pu, Lingling; Wei, Jingyu; Guo, Changjiang

    2016-03-01

    Quercetin, a common member of the flavonoid family, is widely present in plant kingdom. Despite that quercetin is implicated in regulating cholesterol metabolism, the molecular mechanism is poorly understood. We hypothesized that quercetin regulates cholesterol homeostasis through regulating the key enzymes involved in hepatic cholesterol metabolism. To test this hypothesis, we compared the profile of key enzymes and transcription factors involved in the hepatic cholesterol metabolism in rats with or without quercetin supplementation. Twenty male Wistar rats were randomly divided into control and quercetin-supplemented groups. Serum total cholesterol, triglyceride, high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, and total bile acids in feces and bile were measured. Hepatic enzymatic activities were determined by activity assay kit and high-performance liquid chromatography-based analyses. The messenger RNA (mRNA) and protein expressions were determined by reverse transcriptase polymerase chain reaction and Western blot analyses, respectively. The results showed that the activity of hepatic cholesterol 7α-hydroxylase, a critical enzyme in the conversion of cholesterol to bile acids, was significantly elevated by quercetin. The expression of cholesterol 7α-hydroxylase, as well as liver X receptor α, an important transcription factor, was also increased at both mRNA and protein levels by quercetin. However, quercetin exposure had no impact on the activity of hepatic HMG-CoA reductase, a rate-limiting enzyme in the biosynthesis of cholesterol. We also found that quercetin treatment significantly increased ATP binding cassette transporter G1 mRNA and protein expression in the liver, suggesting that quercetin may increase hepatic cholesterol efflux. Collectively, the results presented here indicate that quercetin regulates hepatic cholesterol metabolism mainly through the pathways that promote cholesterol-to-bile acid conversion and

  9. Quercetin Supplementation Attenuates the Progression of Cancer Cachexia in ApcMin/+ Mice123

    PubMed Central

    Velázquez, Kandy T.; Enos, Reilly T.; Narsale, Aditi A.; Puppa, Melissa J.; Davis, J. Mark; Murphy, E. Angela; Carson, James A.

    2014-01-01

    Although there are currently no approved treatments for cancer cachexia, there is an intensified interest in developing therapies because of the high mortality index associated with muscle wasting diseases. Successful treatment of the cachectic patient focuses on improving or maintaining body weight and musculoskeletal function. Nutraceutical compounds, including the natural phytochemical quercetin, are being examined as potential treatments because of their anti-inflammatory, antioxidant, and anticarcinogenic properties. The purpose of this study was to determine the effect of quercetin supplementation on the progression of cachexia in the adenomatous polyposis coli (Apc)Min/+ mouse model of colorectal cancer. At 15 wk of age, C57BL/6 and male ApcMin/+ mice were supplemented with 25 mg/kg of quercetin or vehicle solution mix of Tang juice and water (V) daily for 3 wk. Body weight, strength, neuromuscular performance, and fatigue were assessed before and after quercetin or V interventions. Indicators of metabolic dysfunction and inflammatory signaling were also assessed. During the treatment period, the relative decrease in body weight in the ApcMin/+ mice gavaged with V (ApcMin/+V; −14% ± 2.3) was higher than in control mice gavaged with V (+0.6% ± 1.0), control mice gavaged with quercetin (−2% ± 1.0), and ApcMin/+ mice gavaged with quercetin (ApcMin/+Q; −9% ± 1.3). At 18 wk of age, the loss of grip strength and muscle mass shown in ApcMin/+V mice was significantly attenuated (P < 0.05) in ApcMin/+Q mice. Furthermore, ApcMin/+V mice had an induction of plasma interleukin-6 and muscle signal transducer and activator of transcription 3 phosphorylation, which were significantly (P < 0.05) mitigated in ApcMin/+Q mice, despite having a similar tumor burden. Quercetin treatment did not improve treadmill run-time-to-fatigue, hyperglycemia, or hyperlipidemia in cachectic ApcMin/+ mice. Overall, quercetin supplementation positively affected several aspects of

  10. Quercetin ameliorate insulin resistance and up-regulates cellular antioxidants during oleic acid induced hepatic steatosis in HepG2 cells.

    PubMed

    Vidyashankar, Satyakumar; Sandeep Varma, R; Patki, Pralhad Sadashiv

    2013-03-01

    Hepatic lipid accumulation and oxidative stress contribute to non-alcoholic fatty liver disease (NAFLD). Thus, we hypothesized that the hypolipidemic and antioxidant activity of quercetin would attenuate events leading to NAFLD. Addition of 2.0mM oleic acid (OA) into the culture media induced fatty liver condition in HepG2 cells by 24h. It was marked by significant accumulation of lipid droplets as determined by Oil-Red-O (ORO) based colorimetric assay, increased triacylglycerol (TAG) and increased lipid peroxidation. The inflammatory cytokines TNF-α and IL-8 levels were significantly increased with decreased antioxidant molecules. OA induced insulin resistance which was evident by inhibition of glucose uptake and cell proliferation. Quercetin (10 μM) increased cell proliferation by 3.05 folds with decreased TAG content (45%) and was effective in increasing insulin mediated glucose uptake by 2.65 folds. The intracellular glutathione content was increased by 2.0 folds without substantial increase in GSSG content. Quercetin (10 μM) decreased TNF-α and IL-8 by 59.74% and 41.11% respectively and inhibited generation of lipid peroxides by 50.5%. In addition, RT-PCR results confirmed quercetin (10 μM) inhibited TNF-alpha gene expression. Further, superoxide dismutase, catalase and glutathione peroxidase activities were increased by 1.68, 2.19 and 1.71 folds respectively. Albumin and urea content was increased while the alanine aminotransferase (ALAT) activity was significantly decreased by quercetin. Hence, quercetin effectively reversed NAFLD symptoms by decreased triacyl glycerol accumulation, insulin resistance, inflammatory cytokine secretion and increased cellular antioxidants in OA induced hepatic steatosis in HepG2 cells. PMID:23348005

  11. Quercetin induces hepatic γ-glutamyl hydrolase expression in rats by suppressing hepatic microRNA rno-miR-125b-3p.

    PubMed

    Wein, Silvia Anette; Laviano, Alessandro; Wolffram, Siegfried

    2015-12-01

    Exogenous factors such as food components including the flavonoid quercetin are suspected to influence micro RNA (miRNA) concentrations and thus possibly target enzymes involved in xenobiotic metabolism. This study therefore investigates the influence of orally administered quercetin on hepatic miRNA and the identification of enzyme target mRNAs relevant in drug metabolism. Male Wistar rats (n=16) were fed either a diet without (C) or with (Q) the addition of 100-ppm quercetin for 7 weeks and subsequently euthanized at the end of the dark phase. To avoid strong effects of food deprivation on hepatic metabolism, food was not removed until 5 h prior to the procedure. Liver was immediately dissected and snap-frozen in liquid nitrogen. Concentrations of 352 hepatic miRNA were measured in pool samples of each dietary group (n=8) using the RT(2) miRNA PCR Array System. Differential expression of miRNAs was assumed with fold changes ≥3. Target genes of differentially expressed miRNAs were identified using the database TargetScan. Because rno-miR-125b-3p showed the most prominent fold-change (-9) we further analyzed the expression of its top predicted target gene gamma-glutamyl hydrolase (GGH) by quantitative real-time PCR using hypoxanthine phosphoribosyltransferase 1 (hprt1) as endogenous control. Compared to controls, 23 miRNAs were differentially expressed in rats fed quercetin. A ninefold reduction in hepatic miRNA rno-miR-125b-3p was paralleled by significant induction of GGH mRNA in liver of quercetin fed rats. Because increased GGH expressions were repeatedly associated with resistance to methotrexate, concomitant intake with quercetin should be monitored carefully. PMID:26432773

  12. Iron-Mediated Lysosomal Membrane Permeabilization in Ethanol-Induced Hepatic Oxidative Damage and Apoptosis: Protective Effects of Quercetin

    PubMed Central

    Li, Yanyan; Chen, Man; Xu, Yanyan; Yu, Xiao; Xiong, Ting; Du, Min; Sun, Jian; Liu, Liegang; Tang, Yuhan; Yao, Ping

    2016-01-01

    Iron, in its free ferrous states, can catalyze Fenton reaction to produce OH∙, which is recognized as a crucial role in the pathogenesis of alcoholic liver diseases (ALD). As a result of continuous decomposition of iron-containing compounds, lysosomes contain a pool of redox-active iron. To investigate the important role of intralysosomal iron in alcoholic liver injury and the potential protection of quercetin, male C57BL/6J mice fed by Lieber De Carli diets containing ethanol (30% of total calories) were cotreated by quercetin or deferoxamine (DFO) for 15 weeks and ethanol-incubated mice primary hepatocytes were pretreated with FeCl3, DFO, and bafilomycin A1 at their optimal concentrations and exposure times. Chronic ethanol consumption caused an evident increase in lysosomal redox-active iron accompanying sustained oxidative damage. Iron-mediated ROS could trigger lysosomal membrane permeabilization (LMP) and subsequent mitochondria apoptosis. The hepatotoxicity was attenuated by reducing lysosomal iron while being exacerbated by escalating lysosomal iron. Quercetin substantially alleviated the alcoholic liver oxidative damage and apoptosis by decreasing lysosome iron and ameliorating iron-mediated LMP, which provided a new prospective of the use of quercetin against ALD. PMID:27057276

  13. PI-103 and Quercetin Attenuate PI3K-AKT Signaling Pathway in T- Cell Lymphoma Exposed to Hydrogen Peroxide

    PubMed Central

    Maurya, Akhilendra Kumar; Vinayak, Manjula

    2016-01-01

    Phosphatidylinositol 3 kinase—protein kinase B (PI3K-AKT) pathway has been considered as major drug target site due to its frequent activation in cancer. AKT regulates the activity of various targets to promote tumorigenesis and metastasis. Accumulation of reactive oxygen species (ROS) has been linked to oxidative stress and regulation of signaling pathways for metabolic adaptation of tumor microenvironment. Hydrogen peroxide (H2O2) in this context is used as ROS source for oxidative stress preconditioning. Antioxidants are commonly considered to be beneficial to reduce detrimental effects of ROS and are recommended as dietary supplements. Quercetin, a ubiquitous bioactive flavonoid is a dietary component which has attracted much of interest due to its potential health-promoting effects. Present study is aimed to analyze PI3K-AKT signaling pathway in H2O2 exposed Dalton’s lymphoma ascite (DLA) cells. Further, regulation of PI3K-AKT pathway by quercetin as well as PI-103, an inhibitor of PI3K was analyzed. Exposure of H2O2 (1mM H2O2 for 30min) to DLA cells caused ROS accumulation and resulted in increased phosphorylation of PI3K and downstream proteins PDK1 and AKT (Ser-473 and Thr-308), cell survival factors BAD and ERK1/2, as well as TNFR1. However, level of tumor suppressor PTEN was declined. Both PI-103 & quercetin suppressed the enhanced level of ROS and significantly down-regulated phosphorylation of AKT, PDK1, BAD and level of TNFR1 as well as increased the level of PTEN in H2O2 induced lymphoma cells. The overall result suggests that quercetin and PI3K inhibitor PI-103 attenuate PI3K-AKT pathway in a similar mechanism. PMID:27494022

  14. Myricetin and quercetin attenuate ischemic injury in glial cultures by different mechanisms

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We have demonstrated that polyphenols from cinnamon and green tea reduce cell swelling and mitochondrial dysfunction in C6 glial cultures following ischemic injury. We tested the protective effects of the flavonoid polyphenols, myricetin and quercetin, on key features of ischemic injury. C6 cultures...

  15. Quercetin, Inflammation and Immunity.

    PubMed

    Li, Yao; Yao, Jiaying; Han, Chunyan; Yang, Jiaxin; Chaudhry, Maria Tabassum; Wang, Shengnan; Liu, Hongnan; Yin, Yulong

    2016-03-01

    In vitro and some animal models have shown that quercetin, a polyphenol derived from plants, has a wide range of biological actions including anti-carcinogenic, anti-inflammatory and antiviral activities; as well as attenuating lipid peroxidation, platelet aggregation and capillary permeability. This review focuses on the physicochemical properties, dietary sources, absorption, bioavailability and metabolism of quercetin, especially main effects of quercetin on inflammation and immune function. According to the results obtained both in vitro and in vivo, good perspectives have been opened for quercetin. Nevertheless, further studies are needed to better characterize the mechanisms of action underlying the beneficial effects of quercetin on inflammation and immunity. PMID:26999194

  16. Quercetin, Inflammation and Immunity

    PubMed Central

    Li, Yao; Yao, Jiaying; Han, Chunyan; Yang, Jiaxin; Chaudhry, Maria Tabassum; Wang, Shengnan; Liu, Hongnan; Yin, Yulong

    2016-01-01

    In vitro and some animal models have shown that quercetin, a polyphenol derived from plants, has a wide range of biological actions including anti-carcinogenic, anti-inflammatory and antiviral activities; as well as attenuating lipid peroxidation, platelet aggregation and capillary permeability. This review focuses on the physicochemical properties, dietary sources, absorption, bioavailability and metabolism of quercetin, especially main effects of quercetin on inflammation and immune function. According to the results obtained both in vitro and in vivo, good perspectives have been opened for quercetin. Nevertheless, further studies are needed to better characterize the mechanisms of action underlying the beneficial effects of quercetin on inflammation and immunity. PMID:26999194

  17. (+)-Catechin attenuates activation of hepatic stellate cells.

    PubMed

    Bragança de Moraes, Cristina Machado; Bitencourt, Shanna; de Mesquita, Fernanda Cristina; Mello, Denizar; de Oliveira, Leticia Paranhos; da Silva, Gabriela Viegas; Lorini, Vinicius; Caberlon, Eduardo; de Souza Basso, Bruno; Schmid, Julia; Ferreira, Gabriela Acevedo; de Oliveira, Jarbas Rodrigues

    2014-04-01

    (+)-Catechin is a type of catechin present in large amounts in açaí fruits and cocoa seeds. Besides its antioxidant and anti-inflammatory activities, little is known about its effects in the liver, especially during hepatic fibrosis. We report here the effects of (+)-catechin on hepatic stellate cells. (+)-Catechin induced quiescent phenotype in GRX cells, along with an increase in lipid droplets. Proliferator-activated receptor γ mRNA expression was upregulated, whereas type I collagen mRNA expression was downregulated. Pro-inflammatory cytokines were not influenced by (+)-catechin, whereas the levels of interleukin 10 were significantly increased. The data provide evidence that (+)-catechin can reduce hepatic stellate cell activation. PMID:24353036

  18. Genotoxicity and apoptosis in Drosophila melanogaster exposed to benzene, toluene and xylene: Attenuation by quercetin and curcumin

    SciTech Connect

    Singh, Mahendra P.; Mishra, M.; Sharma, A.; Shukla, A.K.; Mudiam, M.K.R.; Patel, D.K.; Ram, K. Ravi; Chowdhuri, D. Kar

    2011-05-15

    Monocyclic aromatic hydrocarbons (MAHs) such as benzene, toluene and xylene are being extensively used for various industrial and household purposes. Exposure to these hydrocarbons, occupationally or non-occupationally, is harmful to organisms including human. Several studies tested for toxicity of benzene, toluene and xylene, and interestingly, only a few studies looked into the attenuation. We used Drosophila model to test the genotoxic and apoptotic potential of these compounds and subsequently evaluated the efficiency of two phytochemicals, namely, quercetin and curcumin in attenuating test chemical induced toxicity. We exposed third instar larvae of wild type Drosophila melanogaster (Oregon R{sup +}) to 1.0-100.0 mM benzene, toluene or xylene, individually, for 12, 24 and 48 h and examined their apoptotic and genotoxic potential. We observed significantly (P < 0.001) increased apoptotic markers and genotoxicity in a concentration- and time-dependent manner in organisms exposed to benzene, toluene or xylene. We also observed significantly (P < 0.001) increased cytochrome P450 activity in larvae exposed to test chemicals and this was significantly reduced in the presence of 3',4'-dimethoxyflavone, a known Aryl hydrocarbon receptor (AhR) blocker. Interestingly, we observed a significant reduction in cytochrome P450 activity, GST levels, oxidative stress parameters, genotoxic and apoptotic endpoints when organisms were exposed simultaneously to test chemical along with quercetin or curcumin. The study further suggests the suitability of D. melanogaster as an alternate animal model for toxicological studies involving benzene, toluene and xylene and its potential in studying the protective role(s) of phytochemicals.

  19. Catechin and quercetin attenuate adipose inflammation in fructose-fed rats and in 3T3-L1 adipocytes

    PubMed Central

    Vazquez Prieto, Marcela A.; Bettaieb, Ahmed; Rodriguez Lanzi, Cecilia; Soto, Verónica C.; Perdicaro, Diahann J.; Galmarini, Claudio R.; Haj, Fawaz G.; Miatello, Roberto M.; Oteiza, Patricia I.

    2015-01-01

    Scope This study evaluated the capacity of dietary catechin (C), quercetin (Q) and the combination of both (CQ), to attenuate adipose inflammation triggered by high fructose (HFr) consumption in rats and by tumor necrosis factor alpha (TNFα) in 3T3-L1 adipocytes. Methods and results In rats, HFr consumption for 6 wk caused dyslipidemia, insulin resistance, reduced plasma adiponectin, adiposity, and adipose tissue inflammation. Dietary supplementation with 20 mg/kg/d of C, Q and CQ improved all these parameters. In 3T3-L1 adipocytes, C and Q attenuated TNFα-induced elevated protein carbonyls, increased pro-inflammatory cytokine expression (MCP-1, resistin), and decreased adiponectin. The protective effects of C and Q on adipose inflammation are in part associated with their capacity to: i) decrease the activation of the mitogen activated kinases (MAPKs) JNK and p38; and ii) prevent the downregulation of PPARγ. In summary, C and Q, and to a larger extent the combination of both, attenuated adipose pro-inflammatory signaling cascades and regulated the balance of molecules that improve (adiponectin) or impair (TNFα, MCP-1, resistin) insulin sensitivity. Conclusion Together, these findings suggest that dietary Q and C may have potential benefits in mitigating MetS associated adipose inflammation, oxidative stress, and insulin resistance. PMID:25620282

  20. Hepatic Aryl Hydrocarbon Receptor Attenuates Fibroblast Growth Factor 21 Expression.

    PubMed

    Girer, Nathaniel G; Murray, Iain A; Omiecinski, Curtis J; Perdew, Gary H

    2016-07-15

    The Aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor involved in many physiological processes. Several studies indicate that AHR is also involved in energy homeostasis. Fibroblast growth factor 21 (FGF21) is an important regulator of the fasting and feeding responses. When administered to various genetic and diet-induced mouse models of obesity, FGF21 can attenuate obesity-associated morbidities. Here, we explore the role of AHR in hepatic Fgf21 expression through the use of a conditional, hepatocyte-targeted AHR knock-out mouse model (Cre(Alb)Ahr(Fx/Fx)). Compared with the congenic parental strain (Ahr(Fx/Fx)), non-fasted Cre(Alb)Ahr(Fx/Fx) mice exhibit a 4-fold increase in hepatic Fgf21 expression, as well as elevated expression of the FGF21-target gene Igfbp1 Furthermore, in vivo agonist activation of AHR reduces hepatic Fgf21 expression during a fast. The Fgf21 promoter contains several putative dioxin response elements (DREs). Using EMSA, we demonstrate that the AHR-ARNT heterodimer binds to a specific DRE that overlaps binding sequences for peroxisome proliferator-activated receptor α (PPARα), carbohydrate response element-binding protein (ChREBP), and cAMP response element-binding protein, hepatocyte specific (CREBH). In addition, we reveal that agonist-activated AHR impairs PPARα-, ChREBP-, and CREBH-mediated promoter activity in Hepa-1 cells. Accordingly, agonist treatment in Hepa-1 cells ablates potent ER stress-driven Fgf21 expression, and pre-treatment with AHR antagonist blocks this effect. Finally, we show that pre-treatment of primary human hepatocytes with AHR agonist diminishes PPARα-, glucose-, and ER stress-driven induction of FGF21 expression, indicating the effect is not mouse-specific. Together, our data show that AHR contributes to hepatic energy homeostasis, partly through the regulation of FGF21 expression and signaling. PMID:27226639

  1. Effect of quercetin against lindane induced alterations in the serum and hepatic tissue lipids in wistar rats

    PubMed Central

    Padma, Viswanadha Vijaya; Lalitha, Gurusamy; Shirony, Nicholson Puthanveedu; Baskaran, Rathinasamy

    2012-01-01

    Objective To assess the effect of quercetin (flavonoid) against lindane induced alterations in lipid profile of wistar rats. Methods Rats were administered orally with lindane (100 mg/kg body weight) and quercetin (10 mg/kg body weight) for 30 days. After the end of treatment period lipid profile was estimated in serum and tissue. Results Elevated levels of serum cholesterol, triglycerides, low density lipoprotein (LDL), very Low Density Lipoprotein (VLDL) and tissue triglycerides, cholesterol with concomitant decrease in serum HDL and tissue phospholipids were decreased in lindane treated rats were found to be significantly decreased in the quercetin and lindane co-treated rats. Conclusions Our study suggests that quercetin has hypolipidemic effect and offers protection against lindane induced toxicity in liver by restoring the altered levels of lipids. The quercetin cotreatment along with lindane for 30 days reversed these biochemical alterations in lipids induced by lindane. PMID:23569870

  2. Quercetin and hydroxytyrosol attenuates xanthine/xanthine oxidase-induced toxicity in H9c2 cardiomyocytes by regulation of oxidative stress and stress-sensitive signaling pathways.

    PubMed

    Ozbek, Namik; Bali, Elif B; Karasu, Cimen

    2015-10-01

    The increased activity of xanthine/xanthine oxidase (X/XO) has been suggested as a risk factor for heart disease and herbal polyphenols exhibits cardioprotection in vitro and in vivo. To understand the cardioprotective action mechanisms of polyphenol quercetin and hydroxytyrosol, the expression levels of stress-responsive proteins were studied in X/XO-induced toxicity model of H9c2 cardiomyocyocytes. Pretreatment with each polypenol (0.1-10 μg/ml; 24 h) enhanced viability (p < 0.01; MTT test) and inhibited reactive oxygen species (ROS) generation (p < 0.001; H2DCFDA assay) against 12 h exposure to a free radical generating system, X (0.5 mM) and XO (5 mU/ml). Western blotting experiments showed that X/XO increases the phosphorylation of downstream substrate of p38, MAPK-activated protein kinase 2 (MAPKAPK-2), p44/42-MAPK (Erk1/2) and cleaved caspase-3 (p < 0.001, vs. Control), however inhibits the levels of phosphorylated c-Jun and Hsp27 (p < 0.01, vs. Control). Pretreatment with quercetin or hydroxytyrosol attenuated the phosphorylation of MAPKAPK-2 and cleaved caspase-3 in X/XO-exposed cells (p < 0.01, vs. X/XO). Hydroxytyrosol enhanced the reduction of phosphorylation of a transcriptional target c-Jun and led to overphosphorylation in protective proteins, p44/42-MAPK and Hsp27 in X/XO-exposed cells (p < 0.01, vs. X/XO). Our data suggest that quercetin and hydroxytyrosol protects cardiomyocytes against X/XO-induced oxidative toxicity by diminishing intracellular ROS and the regulation of stress-sensitive protein kinase cascades and transcription factors. PMID:26374991

  3. Hepatic glutathione contributes to attenuation of thioacetamide-induced hepatic necrosis due to suppression of oxidative stress in diet-induced obese mice.

    PubMed

    Shirai, Makoto; Matsuoka, Miho; Makino, Toshihiko; Kai, Kiyonori; Teranishi, Munehiro; Takasaki, Wataru

    2015-08-01

    We previously reported that hepatic necrosis induced by thioacetamide (TA), a hepatotoxicant, was attenuated in mice fed a high-fat diet (HFD mice) in comparison with mice fed a normal rodent diet (ND mice). In this study, we focused on investigation of the mechanism of the attenuation. Hepatic content of thiobarbituric acid reactive substances (TBARS), an oxidative stress marker, significantly increased in ND mice at 24 and 48 hr after TA administration in comparison to that in vehicle-treated ND mice. At these time points, severe hepatic necrosis was observed in ND mice. Treatment with an established antioxidant, butylated hydroxyanisole, attenuated the TA-induced hepatic necrosis in ND mice. In contrast, in HFD mice, hepatic TBARS content did not increase, and hepatic necrosis was attenuated in comparison with ND mice at 24 and 48 hr after TA dosing. Metabolomics analysis regarding hepatic glutathione, a biological antioxidant, revealed decreased glutathione and changes in the amount of glutathione metabolism-related metabolites, such as increased ophtalmate and decreased cysteine, and this indicated activation of glutathione synthesis and usage in HFD mice. Finally, after treatment with L-buthionine-S,R-sulfoxinine, an inhibitor of glutathione synthesis, TA-induced hepatic necrosis was enhanced and hepatic TBARS contents increased after TA dosing in HFD mice. These results suggested that activated synthesis and usage of hepatic GSH, which suppresses hepatic oxidative stress, is one of the factors that attenuate TA-induced hepatic necrosis in HFD mice. PMID:26165648

  4. Preventive effect of the flavonoid, quercetin, on hepatic cancer in rats via oxidant/antioxidant activity: molecular and histological evidences

    PubMed Central

    Seufi, AlaaEddeen M; Ibrahim, Safinz S; Elmaghraby, Tarek K; Hafez, Elsayed E

    2009-01-01

    Background The incidence of hepatocellular carcinoma is increasing in many countries. The estimated number of new cases annually is over 500,000, and the yearly incidence comprises between 2.5 and 7% of patients with liver cirrhosis. The incidence varies between different geographic areas, being higher in developing areas; males are predominantly affected, with a 2:3 male/female ratio Methods Experiments were designed to examine the effect of N-Nitrosodiethylamine (NDEA) as cancer-inducer compound and to confirm the preventive effect of the flavonoid quercetin on hepatocellular carcinoma in rats. Briefly, thirty six male albino rats of Wistar strain were divided into 3 groups: the 1st group was administered NDEA alone (NDEA-treated), the 2nd group was treated simultaneously with NDEA and quercetin (NDEA+Q) and the 3rd group was used as control (CON). Randomly amplified polymorphic DNA polymerase chain reaction (RAPD-PCR) as well as p53-specifi PCR assays were employed to determine genomic difference between treated, and control animals. Histological confirmation as well as oxidant/antioxidant status of the liver tissue was done. Results RAPD analysis of liver samples generated 8 monomorphic bands and 22 polymorphic bands in a total of 30-banded RAPD patterns. Cluster analysis and statistical analyses of RAPD data resulted in grouping control and NDEA+Q samples in the same group with 80% similarity cut-off value. NDEA-treated samples were clustered in a separate group. Specific PCR assay for polymorphism of P53 gene revealed a uniform pattern of allele separation in both control and NDEA+Q samples. Quercetin anticancer effect was exhibited in significant decrease of oxidative stress and significant decrease of antioxidant activity. Histopathological studies showed normal liver histology of the NDEA+Q samples. Meanwhile, several cancer-induced features were clearly observable in NDEA-treated samples. Conclusion This paper demonstrated that preventive effect of

  5. 3,4-Dihydroxyphenylacetic acid, a microbiota-derived metabolite of quercetin, attenuates acetaminophen (APAP)-induced liver injury through activation of Nrf-2.

    PubMed

    Xue, Huiting; Xie, Wenyan; Jiang, Zhihui; Wang, Meng; Wang, Jian; Zhao, Hongqiong; Zhang, Xiaoying

    2016-10-01

    1. Acetaminophen (APAP) overdose leads to severe hepatotoxicity. 3,4-dihydroxyphenylacetic acid (DOPAC) is a scarcely studied microbiota-derived metabolite of quercetin. The aim of this study was to determine the protective effect of DOPAC against APAP-induced liver injury. 2. Mice were treated intragastrically with DOPAC (10, 20 or 50 mg/kg) for 3 days before APAP (300 mg/kg) injection. APAP alone caused increase in serum aminotransferase levels and changes in hepatic histopathology. APAP also promoted oxidative stress by increasing lipid peroxidation and decreasing anti-oxidant enzyme activities. These events led to hepatocellular necrosis and reduced liver function. DOPAC increased nuclear factor erythroid 2-related factor 2 (Nrf-2) translocation to the nucleus and enhanced the expression of phase II enzymes and anti-oxidant enzymes, and thereby reduced APAP hepatotoxicity and enhanced anti-oxidant ability. 3. Our data provide evidence that DOPAC protected the liver against APAP-induced injury, which is involved in Nrf-2 activation, implying that DOPAC can be considered as a potential natural hepatoprotective agent. PMID:26931552

  6. Differential Effects of Quercetin and Quercetin Glycosides on Human α7 Nicotinic Acetylcholine Receptor-Mediated Ion Currents.

    PubMed

    Lee, Byung-Hwan; Choi, Sun-Hye; Kim, Hyeon-Joong; Jung, Seok-Won; Hwang, Sung-Hee; Pyo, Mi-Kyung; Rhim, Hyewhon; Kim, Hyoung-Chun; Kim, Ho-Kyoung; Lee, Sang-Mok; Nah, Seung-Yeol

    2016-07-01

    Quercetin is a flavonoid usually found in fruits and vegetables. Aside from its antioxidative effects, quercetin, like other flavonoids, has a various neuropharmacological actions. Quercetin-3-O-rhamnoside (Rham1), quercetin-3-O-rutinoside (Rutin), and quercetin- 3-(2(G)-rhamnosylrutinoside (Rham2) are mono-, di-, and tri-glycosylated forms of quercetin, respectively. In a previous study, we showed that quercetin can enhance α7 nicotinic acetylcholine receptor (α7 nAChR)-mediated ion currents. However, the role of the carbohydrates attached to quercetin in the regulation of α7 nAChR channel activity has not been determined. In the present study, we investigated the effects of quercetin glycosides on the acetylcholine induced peak inward current (IACh) in Xenopus oocytes expressing the α7 nAChR. IACh was measured with a two-electrode voltage clamp technique. In oocytes injected with α7 nAChR copy RNA, quercetin enhanced IACh, whereas quercetin glycosides inhibited IACh. Quercetin glycosides mediated an inhibition of IACh, which increased when they were pre-applied and the inhibitory effects were concentration dependent. The order of IACh inhibition by quercetin glycosides was Rutin≥Rham1>Rham2. Quercetin glycosides-mediated IACh enhancement was not affected by ACh concentration and appeared voltage-independent. Furthermore, quercetin-mediated IACh inhibition can be attenuated when quercetin is co-applied with Rham1 and Rutin, indicating that quercetin glycosides could interfere with quercetin-mediated α7 nAChR regulation and that the number of carbohydrates in the quercetin glycoside plays a key role in the interruption of quercetin action. These results show that quercetin and quercetin glycosides regulate the α7 nAChR in a differential manner. PMID:27098860

  7. Differential Effects of Quercetin and Quercetin Glycosides on Human α7 Nicotinic Acetylcholine Receptor-Mediated Ion Currents

    PubMed Central

    Lee, Byung-Hwan; Choi, Sun-Hye; Kim, Hyeon-Joong; Jung, Seok-Won; Hwang, Sung-Hee; Pyo, Mi-Kyung; Rhim, Hyewhon; Kim, Hyoung-Chun; Kim, Ho-Kyoung; Lee, Sang-Mok; Nah, Seung-Yeol

    2016-01-01

    Quercetin is a flavonoid usually found in fruits and vegetables. Aside from its antioxidative effects, quercetin, like other flavonoids, has a various neuropharmacological actions. Quercetin-3-O-rhamnoside (Rham1), quercetin-3-O-rutinoside (Rutin), and quercetin-3-(2(G)-rhamnosylrutinoside (Rham2) are mono-, di-, and tri-glycosylated forms of quercetin, respectively. In a previous study, we showed that quercetin can enhance α7 nicotinic acetylcholine receptor (α7 nAChR)-mediated ion currents. However, the role of the carbohydrates attached to quercetin in the regulation of α7 nAChR channel activity has not been determined. In the present study, we investigated the effects of quercetin glycosides on the acetylcholine induced peak inward current (IACh) in Xenopus oocytes expressing the α7 nAChR. IACh was measured with a two-electrode voltage clamp technique. In oocytes injected with α7 nAChR copy RNA, quercetin enhanced IACh, whereas quercetin glycosides inhibited IACh. Quercetin glycosides mediated an inhibition of IACh, which increased when they were pre-applied and the inhibitory effects were concentration dependent. The order of IACh inhibition by quercetin glycosides was Rutin≥Rham1>Rham2. Quercetin glycosides-mediated IACh enhancement was not affected by ACh concentration and appeared voltage-independent. Furthermore, quercetin-mediated IACh inhibition can be attenuated when quercetin is co-applied with Rham1 and Rutin, indicating that quercetin glycosides could interfere with quercetin-mediated α7 nAChR regulation and that the number of carbohydrates in the quercetin glycoside plays a key role in the interruption of quercetin action. These results show that quercetin and quercetin glycosides regulate the α7 nAChR in a differential manner. PMID:27098860

  8. Quercetin attenuates cardiomyocyte apoptosis via inhibition of JNK and p38 mitogen-activated protein kinase signaling pathways.

    PubMed

    Li, Chengqiu; Wang, Ting; Zhang, Chunyuan; Xuan, Jichang; Su, Changjiang; Wang, Yuqi

    2016-02-15

    Quercetin (Que), a plant-derived flavonoid, possesses various biological functions. Moreover, Que exerts multiple beneficial actions in treatment of cardiovascular diseases and there are an inverse association between Que intakes and occurrence and development of various cardiovascular diseases. Some researchers have inferred that the mechanisms of Que to protect cardiomyocytes from ischemia/reperfusion (I/R) injury may be involved in modulation of intracellular signal pathways and regulation of proteins expression in vivo. The current study investigated whether Que has any protective effects on cardiomyocytes from hypoxia/reoxygenation (H/R) in vitro and its potential cardioprotective mechanisms. The cell viability of Que on H9c2 cardiomyoblast cells was assessed by MTT. Apoptosis was evaluated by both Hoechst33342 staining and Flow cytometric analysis (FACS). Furthermore, the effect of Que, SP600125 (JNK inhibitor) and SB203580 (p38 inhibitor) on mitogen-activated protein kinases (MAPKs) and the expression of apoptosis related proteins (Bcl-2, Bax and caspase-3) was determined by Western blotting. MTT assays showed that pretreatment with Que could increase the viability of H9c2 cardiomyocytes that suffered H/R. Both Hoechst33342 staining and FACS confirmed that Que could remarkably suppress the H/R-induced apoptotic cardiomyocytes. In addition, Que significantly alleviated H/R-induced the phosphorylation of JNK and p38, which further increased Bcl-2 expression and inhibited the activation of Bax and caspase-3 directly or indirectly. In summary, our results imply that Que can induce cardioprotection by inhibition of JNK and p38 mitogen-activated protein kinase signaling pathways and modulate the expression of Bcl-2 and Bax proteins that provides a new experimental foundation for myocardial ischemia disease therapy. PMID:26680104

  9. Quercetin attenuates the development of 7, 12-dimethyl benz (a) anthracene (DMBA) and croton oil-induced skin cancer in mice

    PubMed Central

    Ali, Huma; Dixit, Savita

    2015-01-01

    Abstract To evaluate the chemopreventive potential of quercetin in an experimental skin carcinogenesis mouse model. Skin tumor was induced by topical application of 7, 12-dimethyl Benz (a) anthracene (DMBA) and Croton oil in Swiss albino mouse. Quercetin was orally administered at a concentration of 200 mg/kg and 400 mg/kg body weight daily for 16 weeks in mouse to evaluate chemopreventive potential. Skin cancer was assessed by histopathological analysis. We found that quercetin reduced the tumor size and the cumulative number of papillomas. The mean latent period was significantly increased as compared to carcinogen treated controls. Quercetin significantly decreased the serum levels of glutamate oxalate transaminase, glutamate pyruvate transaminase, alkaline phosphatase and bilirubin. It significantly increased the levels of glutathione, superoxide dismutase and catalase. The elevated level of lipid peroxides in the control group was significantly inhibited by quercetin. Futhermore, DNA damage was significantly decreased in quercetin treated mice as compared to DMBA and croton oil treated mice. The results suggest that quercetin exerts chemopreventive effect on DMBA and croton oil induced skin cancer in mice by increasing antioxidant activities. PMID:25859269

  10. Ibuprofen administration attenuates serum TNF-{alpha} levels, hepatic glutathione depletion, hepatic apoptosis and mouse mortality after Fas stimulation

    SciTech Connect

    Cazanave, Sophie; Vadrot, Nathalie; Tinel, Marina; Berson, Alain; Letteron, Philippe; Larosche, Isabelle; Descatoire, Veronique; Feldmann, Gerard; Robin, Marie-Anne |; Pessayre, Dominique |

    2008-09-15

    Fas stimulation recruits neutrophils and activates macrophages that secrete tumor necrosis factor-{alpha} (TNF-{alpha}), which aggravates Fas-mediated liver injury. To determine whether nonsteroidal anti-inflammatory drugs modify these processes, we challenged 24-hour-fasted mice with the agonistic Jo2 anti-Fas antibody (4 {mu}g/mouse), and treated the animals 1 h later with saline or ibuprofen (250 mg/kg), a dual cyclooxygenase (COX)-1 and COX-2 inhibitor. Ibuprofen attenuated the Jo2-mediated recruitment/activation of myeloperoxidase-secreting neutrophils/macrophages in the liver, and attenuated the surge in serum TNF-{alpha}. Ibuprofen also minimized hepatic glutathione depletion, Bid truncation, caspase activation, outer mitochondrial membrane rupture, hepatocyte apoptosis and the increase in serum alanine aminotransferase (ALT) activity 5 h after Jo2 administration, to finally decrease mouse mortality at later times. The concomitant administration of pentoxifylline (decreasing TNF-{alpha} secretion) and infliximab (trapping TNF-{alpha}) likewise attenuated the Jo2-mediated increase in TNF-{alpha}, the decrease in hepatic glutathione, and the increase in serum ALT activity 5 h after Jo2 administration. The concomitant administration of the COX-1 inhibitor, SC-560 (10 mg/kg) and the COX-2 inhibitor, celecoxib (40 mg/kg) 1 h after Jo2 administration, also decreased liver injury 5 h after Jo2 administration. In contrast, SC-560 (10 mg/kg) or celecoxib (40 or 160 mg/kg) given alone had no significant protective effects. In conclusion, secondary TNF-{alpha} secretion plays an important role in Jo2-mediated glutathione depletion and liver injury. The combined inhibition of COX-1 and COX-2 by ibuprofen attenuates TNF-{alpha} secretion, glutathione depletion, mitochondrial alterations, hepatic apoptosis and mortality in Jo2-treated fasted mice.

  11. Possible Involvement of Hepatitis B Virus Infection of Hepatocytes in the Attenuation of Apoptosis in Hepatic Stellate Cells

    PubMed Central

    Sasaki, Reina; Kanda, Tatsuo; Nakamura, Masato; Nakamoto, Shingo; Haga, Yuki; Wu, Shuang; Shirasawa, Hiroshi; Yokosuka, Osamu

    2016-01-01

    Background The induction of apoptosis in hepatic stellate cells (HSCs) is a promising therapeutic strategy against hepatitis B virus (HBV)-related hepatic fibrosis. The underlying mechanisms of apoptosis in HSCs, however, are unknown under consideration of HBV infection. In this study, the effects of HBV on apoptosis and endoplasmic reticulum (ER) stress signaling in HSCs were examined. Methods The effects of conditioned media (CM) from HepG2.2.15 on apoptosis induced by the proteasome inhibitor MG132 in LX-2 and HHSteC were studied in regard to c-Jun. In combination with c-Fos, c-Jun forms the AP-1 early response transcription factor, leading to AP-1 activation, signal transduction, endoplasmic reticulum (ER) stress and apoptosis. Results In LX-2 cells, MG132 treatment was associated with the phosphorylation of c-Jun, activation of AP-1 and apoptosis. However, in the presence of CM from HepG2.2.15, these phenomena were attenuated. In HHSteC cells, similar results were observed. HBV genomic DNA is not involved in the process of HSC apoptosis. It is possible that HBeAg has an inhibitory effect on MG132-induced apoptosis in LX-2. We also observed the upregulation of several ER stress-associated genes, such as cAMP responsive element binding protein 3-like 3, inhibin-beta A and solute carrier family 17-member 2, in the presence of CM from HepG2.2.15, or CM from PXB cells infected with HBV. Conclusions HBV inhibits the activation of c-Jun/AP-1 in HSCs, contributing to the attenuation of apoptosis and resulting in hepatic fibrosis. HBV also up-regulated several ER stress genes associated with cell growth and fibrosis. These mechanistic insights might shed new light on a treatment strategy for HBV-associated hepatic fibrosis. PMID:26731332

  12. Quercetin Attenuates Inflammatory Responses in BV-2 Microglial Cells: Role of MAPKs on the Nrf2 Pathway and Induction of Heme Oxygenase-1

    PubMed Central

    Sun, Grace Y.; Chen, Zihong; Jasmer, Kimberly J.; Chuang, Dennis Y.; Gu, Zezong; Hannink, Mark; Simonyi, Agnes

    2015-01-01

    A large group of flavonoids found in fruits and vegetables have been suggested to elicit health benefits due mainly to their anti-oxidative and anti-inflammatory properties. Recent studies with immune cells have demonstrated inhibition of these inflammatory responses through down-regulation of the pro-inflammatory pathway involving NF-κB and up-regulation of the anti-oxidative pathway involving Nrf2. In the present study, the murine BV-2 microglial cells were used to compare anti-inflammatory activity of quercetin and cyanidin, two flavonoids differing by their alpha, beta keto carbonyl group. Quercetin was 10 folds more potent than cyanidin in inhibition of lipopolysaccharide (LPS)-induced NO production as well as stimulation of Nrf2-induced heme-oxygenase-1 (HO-1) protein expression. In addition, quercetin demonstrated enhanced ability to stimulate HO-1 protein expression when cells were treated with LPS. In an attempt to unveil mechanism(s) for quercetin to enhance Nrf2/HO-1 activity under endotoxic stress, results pointed to an increase in phospho-p38MAPK expression upon addition of quercetin to LPS. In addition, pharmacological inhibitors for phospho-p38MAPK and MEK1/2 for ERK1/2 further showed that these MAPKs target different sites of the Nrf2 pathway that regulates HO-1 expression. However, inhibition of LPS-induced NO by quercetin was not fully reversed by TinPPIX, a specific inhibitor for HO-1 activity. Taken together, results suggest an important role of quercetin to regulate inflammatory responses in microglial cells and its ability to upregulate HO-1 against endotoxic stress through involvement of MAPKs. PMID:26505893

  13. Attenuation of Experimental Autoimmune Hepatitis by Exogenous and Endogenous Cannabinoids: Involvement of Regulatory T Cells

    PubMed Central

    Hegde, Venkatesh L.; Hegde, Shweta; Cravatt, Benjamin F.; Hofseth, Lorne J.; Nagarkatti, Mitzi; Nagarkatti, Prakash S.

    2009-01-01

    Immune-mediated liver diseases including autoimmune and viral hepatitis are a major health problem worldwide. Natural cannabinoids such as Δ9-tetrahydrocannabinol (THC) effectively modulate immune cell function, and they have shown therapeutic potential in treating inflammatory diseases. We investigated the effects of THC in a murine model of concanavalin A (ConA)-induced hepatitis. Intraperitoneal administration of THC after ConA challenge inhibited hepatitis as shown by significant decrease in liver enzymes and reduced liver tissue injury. Furthermore, THC treatment resulted in significant suppression of crucial inflammatory cytokines in ConA-induced hepatitis. It is noteworthy that THC treatment in ConA-injected mice led to significant increase in absolute number of Forkhead helix transcription factor p3+ T regulatory cells in liver. We were surprised to find that select cannabinoid receptor (CB1 or CB2) agonists were not able to block hepatitis either independently or in combination. However, CB1/CB2 mixed agonists were able to efficiently attenuate hepatitis similar to THC. The modulatory effect of THC in ConA-induced hepatitis was reversed by both CB1 and CB2 antagonists. We also observed that endogenous cannabinoid anandamide was able to reduce hepatitis by suppressing cytokine levels. In addition, deficiency or inhibition of endocannabinoid hydrolyzing enzyme fatty acid amide hydrolase (FAAH), which leads to increased levels of endogenous cannabinoids, resulted in decreased liver injury upon ConA challenge. Our data demonstrate that targeting cannabinoid receptors using exogenous or endogenous cannabinoids and use of FAAH inhibitors may constitute novel therapeutic modalities to treat immune-mediated liver inflammation. PMID:18388242

  14. Petroselinum crispum extract attenuates hepatic steatosis in rats fed with fructose enriched diet.

    PubMed

    Nair, V Yuneesha; Balakrishanan, N; Antony Santiago, J Victor

    2015-01-01

    Non alcoholic fatty liver disease (NAFLD) is the most common chronic liver disease and ongoing research efforts are focused on understanding the underlying pathophysiology of hepatic steatosis with the anticipation that these efforts will identify novel therapeutic targets. This study investigated the Petroselinum crispum extract in hepatic steatosis in rats fed with fructose enriched diet. Rats were divided into the 4 groups: Group 1 rats received standard pellet diet with corn starch for the entire experimental period of 8 weeks. Group 2 rats received standard pellet diet and 2 gm/kg body weight crude Parsley leaf ethanol extract for the entire experimental period of 8 weeks. Group 3 rats received modified fructose diet. Group 4 rats received modified fructose diet and 2gm/kg crude Parsley leaf ethanol extract. Hepatic function and structure was evaluated in these rats. Modified fructose diet produced dyslipidemia, hepatic steatosis and infiltration of inflammatory cells in the liver and higher plasma hepatic markers. Petroselinum crispum extract reversed metabolic changes such as abnormal crispum extract attenuated chronic changes in modified fructose diet induced NAFLD (Tab. 2, Fig. 3, Ref. 43). PMID:26435020

  15. Development of a stabilizer for lyophilization of an attenuated duck viral hepatitis vaccine.

    PubMed

    Kang, M S; Jang, H; Kim, M C; Kim, M J; Joh, S J; Kwon, J H; Kwon, Y K

    2010-06-01

    The live attenuated vaccine against duck viral hepatitis currently available in Korea requires special freezers for storage and transportation with extra costs involved. The development of a lyophilization stabilizer for live attenuated duck viral hepatitis virus (DHV) vaccines, therefore, has been highly recommended for the wider application of the vaccines. Four conventional vaccine stabilizer formulations containing a disaccharide, such as lactose, trehalose, or sucrose, and new formulations containing sorbitol were tested for their efficacy in stabilizing a new attenuated DHV type 3 vaccine candidate under different storage temperatures, 4 and 37 degrees C. The vaccine virus and each stabilizer formulation were combined and submitted to lyophilization and the viability of the virus was measured in 7-d-old specific-pathogen-free chicken embryos by determining the 50% egg lethal dose. Stabilizer formulations containing 2, 4, or 8% sorbitol preserved the viability of the vaccine virus much better than the other stabilizer formulations and 2% sorbitol was the optimal concentration in a standard stabilizing buffer, phosphate glutamate gelatin (0.0038 M KH2PO4, 0.0071 M K2HPO4, 0.0049 M monosodium L-glutamate, and 0.5% gelatin). The results demonstrate that the stabilizer formulation containing 2% sorbitol and 0.5% gelatin can be used for convenient storage and transportation of live DHV vaccines. PMID:20460663

  16. Protein kinase C-β inhibitor treatment attenuates hepatic ischemia and reperfusion injury in diabetic rats

    PubMed Central

    MENG, GUANG-XING; YUAN, QIANG; WEI, LI-PING; MENG, HUA; WANG, YI-JUN

    2016-01-01

    Hepatic ischemia and reperfusion (I/R) injury plays an active role in hepatic resection and transplantation. While the effects of protein kinase C (PKC)-βII activation and the role of PKC-β inhibitors are well understood in myocardial I/R in diabetes, they remain unclear in liver I/R. The aim of this study was to explore the effect of PKC-β inhibition and the potential mechanism by which PKC-β inhibitor treatment protects against hepatic I/R injury in diabetic rats. Diabetic rats were established and randomized into two groups. These were an untreated group (n=10), which did not receive any treatment, and a treatment group (n=10), orally treated with ruboxistaurin at a dose of 5 mg/kg/day for 2 weeks. The rats from the two groups were subjected to hepatic I/R. Aspartate transaminase (AST) and lactate dehydrogenase (LDH) levels were measured by enzymatic methods at 1, 3 and 5 h after I/R. Tumor necrosis factor-α (TNF-α) and intercellular adhesion molecule 1 (ICAM-1) were examined by enzyme-linked immunosorbent assay at the same time-points. Nuclear factor-κB (NF-κB) p65 expression was analyzed by immunofluorescence and western blotting. Apoptosis of hepatic cells was examined by the western blot analysis of caspase 3 expression and by DNA ladder analysis. Pathological changes were examined using light and electron microscopy. Serum AST and LDH levels in the PKC-β inhibitor treatment group were diminished compared with those in the untreated group (P<0.01). Serum TNF-α and ICAM-1 (P<0.01) levels were also decreased at different time-points in the PKC-β inhibitor treatment group. The relative expression of NF-κB p65 and caspase 3 in the hepatic tissue was weakened in the PKC-β inhibitor treatment group compared with that in the untreated group (P<0.01). Pathological changes in hepatic tissue were attenuated by the PKC-β inhibitor. In conclusion, PKC-β inhibitor treatment protected against liver I/R injury in diabetic rats. The mechanisms probably

  17. Osthole attenuates hepatic injury in a rodent model of trauma-hemorrhage.

    PubMed

    Yu, Huang-Ping; Liu, Fu-Chao; Tsai, Yung-Fong; Hwang, Tsong-Long

    2013-01-01

    Recent evidences show that osthole possesses anti-inflammatory properties and protective effects following shock-like states, but the mechanism of these effects remains unknown. The p38 mitogen-activated protein kinase (p38 MAPK) pathway exerts anti-inflammatory effects in injury. The aim of this study was to investigate whether p38 MAPK plays any role in the osthole-mediated attenuation of hepatic injury after trauma-hemorrhage. Male Sprague-Dawley rats underwent trauma-hemorrhage (mean blood pressure maintained at approximately 35-40 mmHg for 90 minutes), followed by fluid resuscitation. During resuscitation, a single dose of osthole (3 mg/kg, intravenously) with and without a p38 MAPK inhibitor SB-203580 (2 mg/kg, intravenously), SB-203580 or vehicle was administered. Plasma alanine aminotransferase (ALT) with aspartate aminotransferase (AST) concentrations and various hepatic parameters were measured (n = 8 rats/group) at 24 hours after resuscitation. The results showed that trauma-hemorrhage increased hepatic myeloperoxidase activity, intercellular adhesion molecule-1 and interleukin-6 levels, and plasma ALT and AST concentrations. These parameters were significantly improved in the osthole-treated rats subjected to trauma-hemorrhage. Osthole treatment also increased hepatic phospho-p38 MAPK expression compared with vehicle-treated trauma-hemorrhaged rats. Co-administration of SB-203580 with osthole abolished the osthole-induced beneficial effects on the above parameters and hepatic injury. These results suggest that the protective effect of osthole administration on alleviation of hepatic injury after trauma-hemorrhage, which is, at least in part, through p38 MAPK-dependent pathway. PMID:23755293

  18. Dietary Supplementation of Blueberry Juice Enhances Hepatic Expression of Metallothionein and Attenuates Liver Fibrosis in Rats

    PubMed Central

    Wang, Yuping; Cheng, Mingliang; Zhang, Baofang; Nie, Fei; Jiang, Hongmei

    2013-01-01

    Aim To investigate the effect of blueberry juice intake on rat liver fibrosis and its influence on hepatic antioxidant defense. Methods Rabbiteye blueberry was used to prepare fresh juice to feed rats by daily gastric gavage. Dan-shao-hua-xian capsule (DSHX) was used as a positive control for liver fibrosis protection. Liver fibrosis was induced in male Sprague-Dawley rats by subcutaneous injection of CCl4 and feeding a high-lipid/low-protein diet for 8 weeks. Hepatic fibrosis was evaluated by Masson staining. The expression of α-smooth muscle actin (α-SMA) and collagen III (Col III) were determined by immunohistochemical techniques. The activities of superoxide dismutase (SOD) and malondialdehyde (MDA) in liver homogenates were determined. Metallothionein (MT) expression was detected by real-time RT-PCR and immunohistochemical techniques. Results Blueberry juice consumption significantly attenuates CCl4-induced rat hepatic fibrosis, which was associated with elevated expression of metallothionein (MT), increased SOD activity, reduced oxidative stress, and decreased levels of α-SMA and Col III in the liver. Conclusion Our study suggests that dietary supplementation of blueberry juice can augment antioxidative capability of the liver presumably via stimulating MT expression and SOD activity, which in turn promotes HSC inactivation and thus decreases extracellular matrix collagen accumulation in the liver, and thereby alleviating hepatic fibrosis. PMID:23554912

  19. Genistein Attenuates Nonalcoholic Steatohepatitis and Increases Hepatic PPARγ in a Rat Model

    PubMed Central

    Susutlertpanya, Warinda; Werawatganon, Duangporn; Siriviriyakul, Prasong; Klaikeaw, Naruemon

    2015-01-01

    Nonalcoholic steatohepatitis (NASH) has become a global chronic liver disease, but no effective medicine has been proven to cure it. This study investigated the protective effects of genistein, a phytoestrogen, on NASH and examined whether it has any effect on hepatic PPARγ. Male Sprague-Dawley rats were divided into four groups: control group fed ad libitum with standard rat diet, NASH group fed ad libitum with high-fat diet to induce NASH and NASH + Gen8 group and NASH + Gen16 group fed with high-fat diet plus intragastric administration of 8 or 16 mg/kg genistein once daily. After 6 weeks, liver samples were collected to determine MDA, TNF-α, PPARγ, and histopathology. The findings were that levels of hepatic MDA and TNF-α increased in NASH group, but 16 mg/kg genistein reduced these levels significantly. Downregulation of hepatic PPARγ was observed in NASH group, but genistein significantly upregulated the expression of PPARγ in both NASH + Gen groups. The histological appearance of liver in NASH group presented pathological features of steatohepatitis which were diminished in both NASH + Gen groups. The results suggest that genistein attenuates the liver histopathology of NASH with upregulation of hepatic PPARγ, reduction of oxidative stress, and inhibition of inflammatory cytokine. PMID:26246839

  20. Attenuated viral hepatitis in Trem1-/- mice is associated with reduced inflammatory activity of neutrophils.

    PubMed

    Kozik, Jan-Hendrik; Trautmann, Tanja; Carambia, Antonella; Preti, Max; Lütgehetmann, Marc; Krech, Till; Wiegard, Christiane; Heeren, Joerg; Herkel, Johannes

    2016-01-01

    TREM1 (Triggering Receptor Expressed on Myeloid Cells 1) is a pro-inflammatory receptor expressed by phagocytes, which can also be released as a soluble molecule (sTREM1). The roles of TREM1 and sTREM1 in liver infection and inflammation are not clear. Here we show that patients with hepatitis B virus (HBV) or hepatitis C virus (HCV) infection manifest elevated serum levels of sTREM1. In mice, experimental viral hepatitis induced by infection with Lymphocytic Choriomeningitis Virus (LCMV)-WE was likewise associated with increased sTREM1 in serum and urine, and with increased TREM1 and its associated adapter molecule DAP12 in the liver. Trem1-/- mice showed accelerated clearance of LCMV-WE and manifested attenuated liver inflammation and injury. TREM1 expression in the liver of wild-type mice was mostly confined to infiltrating neutrophils, which responded to LCMV by secretion of CCL2 and TNF-α, and release of sTREM1. Accordingly, the production of CCL2 and TNF-α was decreased in the livers of LCMV-infected Trem1-/- mice, as compared to LCMV-infected wildtype mice. These findings indicate that TREM1 plays a role in viral hepatitis, in which it seems to aggravate the immunopathology associated with viral clearance, mainly by increasing the inflammatory activity of neutrophils. PMID:27328755

  1. Oleoylethanolamide, an endogenous PPAR-α ligand, attenuates liver fibrosis targeting hepatic stellate cells

    PubMed Central

    Chen, Junde; Li, Lei; Zheng, Zihan; Ren, Jie; Qiu, Yan

    2015-01-01

    Oleoylethanolamide (OEA), an endocannabinoid-like molecule, was revealed to modulate lipid metabolism through a peroxisome proliferator-activated receptor-α (PPAR-α) mediated mechanism. In present study, we further investigated the activities and mechanisms of OEA in ameliorating hepatic fibrosis in Sv/129 mice induced by a methionine choline-deficient (MCD) diet or thioacetamide (TAA) treatment. Liver fibrosis development was assessed by Hematoxylin-eosin and Sirius red staining. Treatment with OEA (5 mg/kg/day, intraperitoneal injection, i.p.) significantly attenuated the progress of liver fibrosis in both two experimental animal models by blocking the activation of hepatic stellate cells (HSCs). Gene expression analysis of hepatic tissues indicated that OEA inhibited the expression of α-smooth muscle action (α-SMA) and collagen matrix, fibrosis markers, and genes involved in inflammation and extracellular matrix remodeling. In vitro studies showed that OEA inhibited transforming growth factor β1-stimulated HSCs activation through suppressing Smad2/3 phosphorylation, α-SMA expression and myofibroblast transformation. These improvements could not be observed in PPAR-α knockout mice models with OEA administration, which suggested all the anti-fibrotic effects of OEA in vivo and in vitro were mediated by PPAR-α activation. Collectively, our results suggested that OEA exerted a pharmacological effect on modulating hepatic fibrosis development through the inhibition of HSCs activation in liver and therefore may be a potential therapeutic agent for liver fibrosis. PMID:26729705

  2. Oleoylethanolamide, an endogenous PPAR-α ligand, attenuates liver fibrosis targeting hepatic stellate cells.

    PubMed

    Chen, Ling; Li, Long; Chen, Junde; Li, Lei; Zheng, Zihan; Ren, Jie; Qiu, Yan

    2015-12-15

    Oleoylethanolamide (OEA), an endocannabinoid-like molecule, was revealed to modulate lipid metabolism through a peroxisome proliferator-activated receptor-α (PPAR-α) mediated mechanism. In present study, we further investigated the activities and mechanisms of OEA in ameliorating hepatic fibrosis in Sv/129 mice induced by a methionine choline-deficient (MCD) diet or thioacetamide (TAA) treatment. Liver fibrosis development was assessed by Hematoxylin-eosin and Sirius red staining. Treatment with OEA (5 mg/kg/day, intraperitoneal injection, i.p.) significantly attenuated the progress of liver fibrosis in both two experimental animal models by blocking the activation of hepatic stellate cells (HSCs). Gene expression analysis of hepatic tissues indicated that OEA inhibited the expression of α-smooth muscle action (α-SMA) and collagen matrix, fibrosis markers, and genes involved in inflammation and extracellular matrix remodeling. In vitro studies showed that OEA inhibited transforming growth factor β1-stimulated HSCs activation through suppressing Smad2/3 phosphorylation, α-SMA expression and myofibroblast transformation. These improvements could not be observed in PPAR-α knockout mice models with OEA administration, which suggested all the anti-fibrotic effects of OEA in vivo and in vitro were mediated by PPAR-α activation. Collectively, our results suggested that OEA exerted a pharmacological effect on modulating hepatic fibrosis development through the inhibition of HSCs activation in liver and therefore may be a potential therapeutic agent for liver fibrosis. PMID:26729705

  3. Huperzine A attenuates hepatic ischemia reperfusion injury via anti-oxidative and anti-apoptotic pathways.

    PubMed

    Xu, Zhe; Wang, Yang

    2014-08-01

    Hepatic ischemia reperfusion (HI/R) injury may occur during liver transplantation and remains a serious concern in clinical practice. Huperzine A (HupA), an alkaloid isolated from the Chinese traditional medicine Huperzia serrata, has been demonstrated to possess anti‑oxidative and anti‑apoptotic properties. In the present study, a rat model of HI/R was established by clamping the hepatic artery, the hepatoportal vein and the bile duct with a vascular clamp for 30 min followed by reperfusion for 6 h under anesthesia. HupA was injected into the tail vein 5 min prior to the induction of HI/R at doses of 167 and 500 µg/kg. The histopathological assessment of the liver was performed using hematoxylin and eosin staining. Alanine aminotransferase (ALT) and aspartate aminotransferase (AST) were assayed in the serum samples. The tissue levels of superoxide dismutase (SOD), catalase (CAT), malondiadehyde (MDA) and glutathione (GSH) were also measured spectrophotometrically. Furthermore, the protein expression of caspase‑3, Bcl‑2 and Bax in hepatic tissues was detected via western blot analysis. Treatment of Wistar rats with HupA at doses of 167 and 500 µg/kg markedly attenuated HI/R injury as observed histologically. In addition, the significant reductions of serum ALT and AST were observed in HupA‑treated ischemic rats. Furthermore, HupA treatment enhanced the activity of hepatic tissue SOD, CAT and GSH, but decreased the MDA tissue content. Western blot analysis revealed elevated levels of Bcl‑2 expression but decreased Bax and caspase‑3 tissue expression at the protein level in the HupA‑treated group. The present data suggest that HupA attenuates the HI/R injury of rats through its anti‑oxidative and anti‑apoptotic signaling pathways. PMID:24888717

  4. Quercetin and vitamin E attenuate Bonny Light crude oil-induced alterations in testicular apoptosis, stress proteins and steroidogenic acute regulatory protein in Wistar rats.

    PubMed

    Ebokaiwe, Azubuike P; Mathur, Premendu P; Farombi, Ebenezer O

    2016-10-01

    Studies have shown the reproductive effects of Bonny Light crude oil (BLCO) via the mechanism of oxidative stress and testicular apoptosis. We investigated the protective role of quercetin and vitamin E on BLCO-induced testicular apoptosis. Experimental rats were divided into four groups of four each. Animals were orally administered 2 ml/kg corn oil (control: group 1), BLCO-800 mg/kg body weight + 10 mg/kg quercetin (group 2), BLCO-800 mg/kg body weight + 50 mg/kg vitamin E (group 3) and BLCO-800 mg/kg body weight only (group 4) for 7 d. Protein levels of caspase 3, FasL, NF-kB, steroidogenic acute regulatory protein and stress response proteins were determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Immunofluorescence staining was used to quantify the expression of caspase 3, FasL and NF-kB. Apoptosis was quantified by the terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling (TUNEL) assay. Administration of BLCO resulted in a significant increase in the levels of stress response proteins and apoptosis-related proteins by 50% and above after 7 d following BLCO exposure and a concomitant increase in expression of caspase 3, FasL and NF-kB expression by immunofluorescence staining. Apoptosis showed a significant increase in TUNEL positive cells. Co-administration with quercetin or vitamin E reversed BLCO-induced apoptosis and levels of stress protein, relative to control. These findings suggest that quercetin and vitamin E may confer protection against BLCO-induced testicular oxidative stress-related apoptosis. PMID:26821606

  5. Quercetin prevents ethanol-induced iron overload by regulating hepcidin through the BMP6/SMAD4 signaling pathway.

    PubMed

    Tang, Yuhan; Li, Yanyan; Yu, Haiyan; Gao, Chao; Liu, Liang; Chen, Shaodan; Xing, Mingyou; Liu, Liegang; Yao, Ping

    2014-06-01

    Emerging evidence has demonstrated that chronic ethanol exposure induces iron overload, enhancing ethanol-mediated liver damage. The purpose of this study was to explore the effects of the naturally occurring compound quercetin on ethanol-induced iron overload and liver damage, focusing on the signaling pathway of the iron regulatory hormone hepcidin. Adult male C57BL/6J mice were pair-fed with isocaloric-Lieber De Carli diets containing ethanol (accounting for 30% of total calories) and/or carbonyl iron (0.2%) and treated with quecertin (100 mg/kg body weight) for 15 weeks. Mouse primary hepatocytes were incubated with ethanol (100 mM) and quercetin (100 μM) for 24 h. Mice exposed to either ethanol or iron presented significant fatty infiltration and iron deposition in the liver; these symptoms were exacerbated in mice cotreated with ethanol and iron. Quercetin attenuated the abnormity induced by ethanol and/or iron. Ethanol suppressed BMP6 and intranuclear SMAD4 as well as decreased hepcidin expression. These effects were partially alleviated by quercetin supplementation in mice and hepatocytes. Importantly, ethanol caused suppression of SMAD4 binding to the HAMP promoter and of hepcidin messenger RNA expression. These effects were exacerbated by anti-BMP6 antibody and partially alleviated by quercetin or human recombinant BMP6 in cultured hepatocytes. In contrast, co-treatment with iron and ethanol, especially exposure of iron alone, activated BMP6/SMAD4 pathway and up-regulated hepcidin expression, which was also normalized by quercetin in vivo. Quercetin prevented ethanol-induced hepatic iron overload different from what carbonyl iron diet elicited in the mechanism, by regulating hepcidin expression via the BMP6/SMAD4 signaling pathway. PMID:24746831

  6. PPARδ agonist attenuates alcohol-induced hepatic insulin resistance and improves liver injury and repair

    PubMed Central

    Pang, Maoyin; de la Monte, Suzanne M.; Longato, Lisa; Tong, Ming; He, Jiman; Chaudhry, Rajeeve; Duan, Kevin; Ouh, Jiyun; Wands, Jack R.

    2009-01-01

    Background/Aims Chronic ethanol exposure impairs liver regeneration due to inhibition of insulin signaling and oxidative injury. PPAR agonists function as insulin sensitizers and anti-inflammatory agents. We investigated whether treatment with a PPARδ agonist could restore hepatic insulin sensitivity, survival signaling, and regenerative responses vis-a-vis chronic ethanol feeding. Methods Adult rats were fed isocaloric liquid diets containing 0% or 37% ethanol, and administered a PPARδ agonist by i.p. injection. We used liver tissue to examine histopathology, gene expression, oxidative stress, insulin signaling, and regenerative responses to 2/3 hepatectomy. Results Chronic ethanol feeding caused insulin resistance, increased oxidative stress, lipid peroxidation, DNA damage, and hepatocellular injury in liver. These effects were associated with reduced insulin receptor binding and affinity, impaired survival signaling through PI3K/Akt/GSK3β, and reduced expression of insulin responsive genes mediating energy metabolism and tissue remodeling. PPARδ agonist treatment reduced ethanol-mediated hepatic injury, oxidative stress, lipid peroxidation, and insulin resistance, increased signaling through PI3K/Akt/GSK3β, and enhanced the regenerative response to partial hepatectomy. Conclusions PPARδ agonist administration may attenuate the severity of chronic ethanol-induced liver injury and ethanol’s adverse effects on the hepatic repair by restoring insulin responsiveness, even in the context of continued high-level ethanol consumption. PMID:19398227

  7. Aloe vera attenuated liver injury in mice with acetaminophen-induced hepatitis

    PubMed Central

    2014-01-01

    that Aloe vera attenuate APAP-induced hepatitis through the improvement of liver histopathology by decreased oxidative stress, reduced liver injury, and restored hepatic GSH. PMID:25005608

  8. Protective effects of Quercetin and chronic moderate exercise (training) against oxidative stress in the liver tissue of streptozotocin-induced diabetic rats.

    PubMed

    Chiş, I C; Mureşan, A; Oros, A; Nagy, A L; Clichici, S

    2016-03-01

    Background To investigate the protective effects of Quercetin administration associated with chronic moderate exercise (training) on oxidative stress in the liver in streptozotocin-induced diabetic rats. Methods Diabetic rats that performed exercise training were subjected to a swimming training program (1 hour/day, 5 days/week, 4 weeks). The diabetic rats received natural antioxidant, Quercetin (20 mg/kg body weight/day) for 4 weeks. At the end of the study, all animals were sacrificed and liver samples were collected for estimation: some oxidative stress markers (malondialdehyde, MDA and protein carbonyls groups, PC), the activity of antioxidant enzymes (superoxide dismutase, SOD and catalase, CAT), reduced glutathione (GSH) level and reduced (GSH) and oxidized (GSSG) glutathione ratio. Results Diabetic rats submitted to exercise training showed significantly increased the oxidative stress markers (MDA and PC) and a reduction of antioxidant enzyme (SOD and CAT) activity, GSH level and GSH/ GSSG ratio in hepatic tissues. A decrease in the levels of oxidative stress markers associated with elevated activity of antioxidant enzymes, the GSH level and GSH/GSSG ratio in the hepatic tissue were observed in Quercetin-treated diabetic trained rats. Conclusions These findings suggest that Quercetin administration in association with chronic moderate exercise exerts a protective effect in diabetes by attenuating hyperglycemia-mediated oxidative stress in hepatic tissue. PMID:27030627

  9. Deletion of tumor progression locus 2 attenuates alcohol-induced hepatic inflammation

    PubMed Central

    Stice, Camilla P.; Hussain, Sajid; Liu, Chun; Ausman, Lynne M.

    2016-01-01

    Background The pathogenesis of alcoholic liver disease (ALD) involves the interaction of several inflammatory signaling pathways. Tumor progression locus 2 (TPL2), also known as Cancer Osaka Thyroid (COT) and MAP3K8, is a serine-threonine kinase that functions as a critical regulator of inflammatory pathways by up-regulating production of inflammatory cytokines. The present study aims to fill the gap in knowledge regarding the involvement of TPL2 in the mechanism of alcohol-induced hepatic inflammation. Methods Male TPL2−/− knockout (TPL2KO) mice and TPL2+/+ wild-type (WT) mice were group pair-fed with Lieber-DeCarli liquid ethanol diet (EtOH diet, 27% energy from EtOH) or control diet (ctrl diet) for 4 weeks. Both histological and molecular biomarkers involved in the induction of hepatic inflammation by alcohol consumption were examined. Results Consumption of the EtOH diet in WT mice lead to a significant induction of TPL2 mRNA expression as compared with WT mice fed ctrl diet. A significant induction in inflammatory foci and steatosis was also observed in WT mice fed EtOH diet. The deletion of TPL2 significantly reduced inflammatory foci in the liver of mice consuming both ctrl and EtOH diets as compared to their respective WT controls. This reduction was associated with suppression of hepatic inflammatory gene expression of interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), and interleukin-1β (IL-1β) and macrophage marker F4/80. In addition, histological analysis of livers revealed that TPL2 deletion resulted in reduced steatosis in both ctrl (significant) and EtOH (non-significant) diet-fed mice as compared to their respective WT controls. Conclusions The demonstration that TPL2 deletion attenuates alcohol-induced hepatic inflammation provides evidence of a novel role for TPL2 in the pathogenesis of ALD. PMID:26904554

  10. Wnt Agonist Attenuates Liver Injury and Improves Survival after Hepatic Ischemia/Reperfusion

    PubMed Central

    Kuncewitch, Michael; Yang, Weng-Lang; Molmenti, Ernesto; Nicastro, Jeffrey; Coppa, Gene F.; Wang, Ping

    2012-01-01

    The Wnt/β-catenin signaling pathway is well characterized in stem cell biology and plays a critical role in liver development, regeneration, and homeostasis. We hypothesized that pharmacological activation of Wnt signaling protects against hepatic ischemia/reperfusion (I/R) injury through its known proliferative and anti-apoptotic properties. Sprague-Dawley rats underwent 70% hepatic ischemia by microvascular clamping of the hilum of the left and median lobes of the liver for 90 min, followed by reperfusion. Wnt agonist (2-amino-4-[3,4-(methylenedioxy)benzylamino]-6-(3-methoxyphenyl)pyrimidine, 5 mg/kg BW) or vehicle (20% DMSO in saline) in 0.5 ml was injected intraperitoneally (i.p.) 1 h prior to ischemia or infused intravenously over 30 min right after ischemia. Blood and tissue samples from the pre-treated groups were collected 24 h after reperfusion, and a survival study was performed. Hepatic expression of β-catenin and its downstream target gene Axin2 were decreased after I/R while Wnt agonist restored their expression to sham levels. Wnt agonist blunted I/R-induced elevations of AST, ALT, and LDH and significantly improved the microarchitecture of the liver. The cell proliferation determined by Ki67 immunostaining significantly increased with Wnt agonist treatment and inflammatory cascades were dampened in Wnt agonist-treated animals, as demonstrated by attenuations in IL-6, myeloperoxdase, iNOS and nitrotyrosine. Wnt agonist also significantly decreased the amount of apoptosis, as evidenced by decreases in both TUNEL staining as well as caspase-3 activity levels. Finally, the 10-day survival rate was increased from 27% in the vehicle group to 73% in the pre-treated Wnt agonist group and 55% in the Wnt agonist post-ischemia treatment group. Thus, we propose that direct Wnt/β-catenin stimulation may represent a novel therapeutic approach in the treatment of hepatic I/R. PMID:23143067

  11. Activation of farnesoid X receptor attenuates hepatic injury in a murine model of alcoholic liver disease

    SciTech Connect

    Wu, Weibin; Zhu, Bo; Peng, Xiaomin; Zhou, Meiling; Jia, Dongwei; Gu, Jianxin

    2014-01-03

    Highlights: •FXR activity was impaired by chronic ethanol ingestion in a murine model of ALD. •Activation of FXR attenuated alcohol-induced liver injury and steatosis. •Activation of FXR attenuated cholestasis and oxidative stress in mouse liver. -- Abstract: Alcoholic liver disease (ALD) is a common cause of advanced liver disease, and considered as a major risk factor of morbidity and mortality worldwide. Hepatic cholestasis is a pathophysiological feature observed in all stages of ALD. The farnesoid X receptor (FXR) is a member of the nuclear hormone receptor superfamily, and plays an essential role in the regulation of bile acid, lipid and glucose homeostasis. However, the role of FXR in the pathogenesis and progression of ALD remains largely unknown. Mice were fed Lieber-DeCarli ethanol diet or an isocaloric control diet. We used a specific agonist of FXR WAY-362450 to study the effect of pharmacological activation of FXR in alcoholic liver disease. In this study, we demonstrated that FXR activity was impaired by chronic ethanol ingestion in a murine model of ALD. Activation of FXR by specific agonist WAY-362450 protected mice from the development of ALD. We also found that WAY-362450 treatment rescued FXR activity, suppressed ethanol-induced Cyp2e1 up-regulation and attenuated oxidative stress in liver. Our results highlight a key role of FXR in the modulation of ALD development, and propose specific FXR agonists for the treatment of ALD patients.

  12. The quercetin paradox

    SciTech Connect

    Boots, Agnes W. . E-mail: a.boots@farmaco.unimaas.nl; Li, Hui; Schins, Roel P.F.; Duffin, Rodger; Heemskerk, Johan W.M.; Bast, Aalt; Haenen, Guido R.M.M.

    2007-07-01

    Free radical scavenging antioxidants, such as quercetin, are chemically converted into oxidation products when they protect against free radicals. The main oxidation product of quercetin, however, displays a high reactivity towards thiols, which can lead to the loss of protein function. The quercetin paradox is that in the process of offering protection, quercetin is converted into a potential toxic product. In the present study, this paradox is evaluated using rat lung epithelial (RLE) cells. It was found that quercetin efficiently protects against H{sub 2}O{sub 2}-induced DNA damage in RLE cells, but this damage is swapped for a reduction in GSH level, an increase in LDH leakage as well as an increase of the cytosolic free calcium concentration. To our knowledge, this is the first study that indicates that the quercetin paradox, i.e. the exchange of damage caused by quercetin and its metabolites, also occurs in living lung cells. Following depletion of GSH in the cells by BSO pre-treatment, this quercetin paradox becomes more pronounced, confirming that the formation of thiol reactive quercetin metabolites is involved in the quercetin paradox. The quercetin paradox in living cells implies that the anti-oxidant directs oxidative damage selectively to thiol arylation. Apparently, the potential toxicity of metabolites formed during the actual antioxidant activity of free radical scavengers should be considered in antioxidant supplementation.

  13. Hepatoprotective Effect of Quercetin on Endoplasmic Reticulum Stress and Inflammation after Intense Exercise in Mice through Phosphoinositide 3-Kinase and Nuclear Factor-Kappa B

    PubMed Central

    Tang, Yuhan; Li, Juan; Gao, Chao; Xu, Yanyan; Li, Yanyan; Yu, Xiao; Wang, Jing; Liu, Liegang

    2016-01-01

    The mechanisms underlying intense exercise-induced liver damage and its potential treatments remain unclear. We explored the hepatoprotection and mechanisms of quercetin, a naturally occurring flavonoid, in strenuous exercise-derived endoplasmic reticulum stress (ERS) and inflammation. Intense exercise (28 m/min at a 5° slope for 90 min) resulted in the leakage of aminotransferases in the BALB/C mice. The hepatic ultrastructural malformations and oxidative stress levels were attenuated by quercetin (100 mg/kg·bw). Intense exercise and thapsigargin- (Tg-) induced ERS (glucose-regulated protein 78, GRP78) and inflammatory cytokines levels (IL-6 and TNF-α) were decreased with quercetin. Furthermore, quercetin resulted in phosphoinositide 3-kinase (PI3K) induction, Ca2+ restoration, and blockade of the activities of Jun N-terminal kinase (JNK), activating transcription factor 6 (ATF6) and especially NF-κB (p65 and p50 nuclear translocation). A PI3K inhibitor abrogated the protection of quercetin on ERS and inflammation of mouse hepatocytes. SP600125 (JNK inhibitor), AEBSF (ATF6 inhibitor), and especially PDTC (NF-κB inhibitor) enhanced the quercetin-induced protection against Tg stimulation. Collectively, intense exercise-induced ERS and inflammation were attenuated by quercetin. PI3K/Akt activation and JNK, ATF6, and especially NF-κB suppression were involved in the protection. Our results highlight a novel preventive strategy for treating ERS and inflammation-mediated liver damage induced by intense exercise using natural phytochemicals. PMID:27504150

  14. Hepatoprotective Effect of Quercetin on Endoplasmic Reticulum Stress and Inflammation after Intense Exercise in Mice through Phosphoinositide 3-Kinase and Nuclear Factor-Kappa B.

    PubMed

    Tang, Yuhan; Li, Juan; Gao, Chao; Xu, Yanyan; Li, Yanyan; Yu, Xiao; Wang, Jing; Liu, Liegang; Yao, Ping

    2016-01-01

    The mechanisms underlying intense exercise-induced liver damage and its potential treatments remain unclear. We explored the hepatoprotection and mechanisms of quercetin, a naturally occurring flavonoid, in strenuous exercise-derived endoplasmic reticulum stress (ERS) and inflammation. Intense exercise (28 m/min at a 5° slope for 90 min) resulted in the leakage of aminotransferases in the BALB/C mice. The hepatic ultrastructural malformations and oxidative stress levels were attenuated by quercetin (100 mg/kg·bw). Intense exercise and thapsigargin- (Tg-) induced ERS (glucose-regulated protein 78, GRP78) and inflammatory cytokines levels (IL-6 and TNF-α) were decreased with quercetin. Furthermore, quercetin resulted in phosphoinositide 3-kinase (PI3K) induction, Ca(2+) restoration, and blockade of the activities of Jun N-terminal kinase (JNK), activating transcription factor 6 (ATF6) and especially NF-κB (p65 and p50 nuclear translocation). A PI3K inhibitor abrogated the protection of quercetin on ERS and inflammation of mouse hepatocytes. SP600125 (JNK inhibitor), AEBSF (ATF6 inhibitor), and especially PDTC (NF-κB inhibitor) enhanced the quercetin-induced protection against Tg stimulation. Collectively, intense exercise-induced ERS and inflammation were attenuated by quercetin. PI3K/Akt activation and JNK, ATF6, and especially NF-κB suppression were involved in the protection. Our results highlight a novel preventive strategy for treating ERS and inflammation-mediated liver damage induced by intense exercise using natural phytochemicals. PMID:27504150

  15. Activation of α2 adrenoceptor attenuates lipopolysaccharide-induced hepatic injury

    PubMed Central

    Chen, Jing-Hui; Yu, Gao-Feng; Jin, Shang-Yi; Zhang, Wen-Hua; Lei, Dong-Xu; Zhou, Shao-Li; Song, Xing-Rong

    2015-01-01

    Sepsis induces hepatic injury but whether alpha-2 adrenoceptor (α2-AR) modulates the severity of sepsis-induced liver damage remains unclear. The present study used lipopolysaccharide (LPS) to induce hepatic injury and applied α2-AR agonist dexmedetomidine (DEX) and/or antagonist yohimbine to investigate the contribution of α2-AR in LPS-induced liver injury. Our results showed that LPS resulted in histological and functional abnormality of liver tissue (ALT and AST transaminases, lactate), higher mortality, an increase in proinflammatory cytokines (IL-1β, IL-6 & TNF-α), as well as a change in oxidative stress (MDA, SOD). Activation of α2-AR by dexmedetomidine (DEX) attenuated LPS-induced deleterious effects on the liver and block of α2-AR by yohimbine aggravated LPS-induced liver damage. Our data suggest that α2-AR plays an important role in sepsis-induced liver damage and activation of α2-AR with DEX could be a novel therapeutic avenue to protect the liver against sepsis-induced injury. PMID:26617786

  16. Sauchinone attenuates liver fibrosis and hepatic stellate cell activation through TGF-β/Smad signaling pathway.

    PubMed

    Lee, Ju-Hee; Jang, Eun Jeong; Seo, Hye Lim; Ku, Sae Kwang; Lee, Jong Rok; Shin, Soon Shik; Park, Sun-Dong; Kim, Sang Chan; Kim, Young Woo

    2014-10-16

    Hepatic stellate cells (HSCs) are key mediators of fibrogenesis, and the regulation of their activation is now viewed as an attractive target for the treatment of liver fibrosis. Here, the authors investigated the ability of sauchinone, an active lignan found in Saururus chinensis, to regulate the activation of HSCs, to prevent liver fibrosis, and to inhibit oxidative stress in vivo and in vitro. Blood biochemistry and histopathology were assessed in CCl4-induced mouse model of liver fibrosis to investigate the effects of sauchinone. In addition, transforming growth factor-β1 (TGF-β1)-activated LX-2 cells (a human HSC line) were used to investigate the in vitro effects of sauchinone. Sauchinone significantly inhibited liver fibrosis, as indicated by decreases in regions of hepatic degeneration, inflammatory cell infiltration, and the intensity of α-smooth muscle actin staining in mice. Sauchinone blocked the TGF-β1-induced phosphorylation of Smad 2/3 and the transcript levels of plasminogen activator inhibitor-1 and matrix metalloproteinase-2 as well as autophagy in HSCs. Furthermore, sauchinone inhibited oxidative stress, as assessed by stainings of 4-hydroxynonenal and nitrotyrosine: these events may have a role in its inhibitory effects on HSCs activation. Sauchinone attenuated CCl4-induced liver fibrosis and TGF-β1-induced HSCs activation, which might be, at least in part, mediated by suppressing autophagy and oxidative stress in HSCs. PMID:25451574

  17. Raspberry seed flour attenuates high-sucrose diet-mediated hepatic stress and adipose tissue inflammation.

    PubMed

    Kang, Inhae; Espín, Juan Carlos; Carr, Timothy P; Tomás-Barberán, Francisco A; Chung, Soonkyu

    2016-06-01

    Chronic intake of high sucrose (HS) diet exacerbates high-fat (HF) diet-induced obesity and its associated metabolic complications. Previously, we have demonstrated that ellagic acid (EA), an abundant polyphenol found in some fruits and nuts, exerts distinct lipid-lowering characteristics in hepatocytes and adipocytes. In this study, we hypothesized that EA supplementation inhibits HS diet-mediated hepatic toxicity and its accompanied metabolic dysregulation. To test this hypothesis, C57BL/6 male mice were randomly assigned to three isocaloric HF diets (41% calories from fat) containing either no-sucrose (HF), high-sucrose (HFHS), or high-sucrose plus EA (HFHS-R) from raspberry seed flour (RSF, equivalent to 0.03% of EA), and fed for 12weeks. The inclusion of EA from RSF significantly improved HFHS diet-mediated dyslipidemia and restored glucose homeostasis levels similar to the HF diet-fed mice. Despite marginal difference in hepatic triglyceride content, the addition of EA substantially reversed the activation of endoplasmic reticulum (ER) stress and oxidative damage triggered by HFHS diet in the liver. These effects of EA were further confirmed in human hepatoma cells by reducing ER stress and reactive oxygen species (ROS) production. Moreover, HFHS-R diet significantly decreased visceral adipocyte hypertrophy and adipose tissue inflammation evidenced by reduced proinflammatory gene expression and macrophage infiltration. In summary, EA supplementation from RSF was effective in reducing HFHS diet-mediated metabolic complication by attenuating hepatic ER and oxidative stresses as well as adipocyte inflammation. Our results suggest that the inclusion of EA in diets may normalize metabolic insults triggered by HS consumption. PMID:27142738

  18. PPARδ activation attenuates hepatic steatosis in Ldlr−/− mice by enhanced fat oxidation, reduced lipogenesis, and improved insulin sensitivity

    PubMed Central

    Bojic, Lazar A.; Telford, Dawn E.; Fullerton, Morgan D.; Ford, Rebecca J.; Sutherland, Brian G.; Edwards, Jane Y.; Sawyez, Cynthia G.; Gros, Robert; Kemp, Bruce E.; Steinberg, Gregory R.; Huff, Murray W.

    2014-01-01

    PPARδ regulates systemic lipid homeostasis and inflammation, but its role in hepatic lipid metabolism remains unclear. Here, we examine whether intervening with a selective PPARδ agonist corrects hepatic steatosis induced by a high-fat, cholesterol-containing (HFHC) diet. Ldlr−/− mice were fed a chow or HFHC diet (42% fat, 0.2% cholesterol) for 4 weeks. For an additional 8 weeks, the HFHC group was fed HFHC or HFHC plus GW1516 (3 mg/kg/day). GW1516-intervention significantly attenuated liver TG accumulation by induction of FA β-oxidation and attenuation of FA synthesis. In primary mouse hepatocytes, GW1516 treatment stimulated AMP-activated protein kinase (AMPK) and acetyl-CoA carboxylase (ACC) phosphorylation in WT hepatocytes, but not AMPKβ1−/− hepatocytes. However, FA oxidation was only partially reduced in AMPKβ1−/− hepatocytes, suggesting an AMPK-independent contribution to the GW1516 effect. Similarly, PPARδ-mediated attenuation of FA synthesis was partially due to AMPK activation, as GW1516 reduced lipogenesis in WT hepatocytes but not AMPKβ1−/− hepatocytes. HFHC-fed animals were hyperinsulinemic and exhibited selective hepatic insulin resistance, which contributed to elevated fasting FA synthesis and hyperglycemia. GW1516 intervention normalized fasting hyperinsulinemia and selective hepatic insulin resistance and attenuated fasting FA synthesis and hyperglycemia. The HFHC diet polarized the liver toward a proinflammatory M1 state, which was reversed by GW1516 intervention. Thus, PPARδ agonist treatment inhibits the progression of preestablished hepatic steatosis. PMID:24864274

  19. Opuntia ficus indica (nopal) attenuates hepatic steatosis and oxidative stress in obese Zucker (fa/fa) rats.

    PubMed

    Morán-Ramos, Sofía; Avila-Nava, Azalia; Tovar, Armando R; Pedraza-Chaverri, José; López-Romero, Patricia; Torres, Nimbe

    2012-11-01

    Nonalcoholic fatty liver disease (NAFLD) is associated with multiple factors such as obesity, insulin resistance, and oxidative stress. Nopal, a cactus plant widely consumed in the Mexican diet, is considered a functional food because of its antioxidant activity and ability to improve biomarkers of metabolic syndrome. The aim of this study was to assess the effect of nopal consumption on the development of hepatic steatosis and hepatic oxidative stress and on the regulation of genes involved in hepatic lipid metabolism. Obese Zucker (fa/fa) rats were fed a control diet or a diet containing 4% nopal for 7 wk. Rats fed the nopal-containing diet had ∼50% lower hepatic TG than the control group as well as a reduction in hepatomegaly and biomarkers of hepatocyte injury such as alanine and aspartate aminotransferases. Attenuation of hepatic steatosis by nopal consumption was accompanied by a higher serum concentration of adiponectin and a greater abundance of mRNA for genes involved in lipid oxidation and lipid export and production of carnitine palmitoyltransferase-1 and microsomal TG transfer proteins in liver. Hepatic reactive oxygen species and lipid peroxidation biomarkers were significantly lower in rats fed nopal compared with the control rats. Furthermore, rats fed the nopal diet had a lower postprandial serum insulin concentration and a greater liver phosphorylated protein kinase B (pAKT):AKT ratio in the postprandial state. This study suggests that nopal consumption attenuates hepatic steatosis by increasing fatty acid oxidation and VLDL synthesis, decreasing oxidative stress, and improving liver insulin signaling in obese Zucker (fa/fa) rats. PMID:23014486

  20. Controlled attenuation parameter for assessment of hepatic steatosis grades: a diagnostic meta-analysis

    PubMed Central

    Wang, Yuee; Fan, Qingqi; Wang, Ting; Wen, Jia; Wang, Hong; Zhang, Tiansong

    2015-01-01

    Aim: to evaluate the performance and accuracy of Controlled attenuation parameter CAP for hepatic steatosis detection. Methods: PubMed, EBSCO, Elsevier Science, Ovid, and Wiley were selected to search studies until August 31, 2014. Quality Assessment of Diagnostic Accuracy Studies checklist was used to assess the quality of included studies. Heterogeneity was evaluated using Q test. Sensitivity, specificity, diagnostic odds ratio (DOR), and the area under curve (AUC) with its 95% confidence intervals (CIs) were calculated to evaluate the accuracy of CAP for assessment of hepatic steatosis stage (≥ S1, ≥ S2 and ≥ S3). Results: Totally 11 studies (13 cohorts) with high methodological qualities were identified. The summary point estimations with 95% CIs of sensitivity, specificity, AUC and DORs were 0.78 (0.71, 0.84), 0.79 (0.70, 0.86), 0.86 (0.82, 0.88), and 14 (7, 27) for ≥ S1; 0.82 (0.74, 0.88), 0.79 (0.73, 0.85), 0.88 (0.85, 0.90) and 18 (10, 30) for ≥ S2; 0.86 (0.82, 0.89), 0.89 (0.86, 0.92), 0.94 (0.91, 0.96) and 51 (35, 76) for ≥ S3. Significant heterogeneity was found among the studies in ≥ S1 and ≥ S3. Threshold effect was existed in ≥ S3, but not in ≥ S1 and ≥ S2. Publication bias was not existed in ≥ S1 and ≥ S2 except ≥ S3. Conclusion: CAP provides good sensitivity and specificity for detection of ≥ S1, ≥ S2, and ≥ S3 steatosis. However, future studies with large samples are still necessary to confirm the clinical application. PMID:26770355

  1. Metformin attenuates olanzapine-induced hepatic, but not peripheral insulin resistance.

    PubMed

    Remington, Gary J; Teo, Celine; Wilson, Virginia; Chintoh, Araba; Guenette, Melanie; Ahsan, Zohra; Giacca, Adria; Hahn, Margaret K

    2015-11-01

    Antipsychotics (APs) are linked to diabetes, even without weight gain. Whether anti-diabetic drugs are efficacious in reversing the direct effects of APs on glucose pathways is largely undetermined. We tested two metformin (Met) doses to prevent impairments seen following a dose of olanzapine (Ola) (3 mg/kg); glucokinetics were measured using the hyperinsulinemic-euglycemic clamp (HIEC). Met (150 mg/kg; n=13, or 400 mg/kg; n=11) or vehicle (Veh) (n=11) was administered through gavage preceding an overnight fast, followed by a second dose prior to the HIEC. Eleven additional animals were gavaged with Veh and received a Veh injection during the HIEC (Veh/Veh); all others received Ola. Basal glucose was similar across treatment groups. The Met 400 group had significantly greater glucose appearance (Ra) in the basal period (i.e., before Ola, or hyperinsulinemia) vs other groups. During hyperinsulinemia, glucose infusion rate (GINF) to maintain euglycemia (reflective of whole-body insulin sensitivity) was higher in Veh/Veh vs other groups. Met 150/Ola animals demonstrated increased GINF relative to Veh/Ola during early time points of the HIEC. Glucose utilization during hyperinsulinemia, relative to basal conditions, was significantly higher in Veh/Veh vs other groups. The change in hepatic glucose production (HGP) from basal to hyperinsulinemia demonstrated significantly greater decreases in Veh/Veh and Met 150/Ola groups vs Veh/Ola. Given the increase in basal Ra with Met 400, we measured serum lactate (substrate for HGP), finding increased levels in Met 400 vs Veh and Met 150. In conclusion, Met attenuates hepatic insulin resistance observed with acute Ola administration, but fails to improve peripheral insulin resistance. Use of supra-therapeutic doses of Met may mask metabolic benefits by increasing lactate. PMID:26330531

  2. Hepatitis C Virus Attenuates Mitochondrial Lipid β-Oxidation by Downregulating Mitochondrial Trifunctional-Protein Expression

    PubMed Central

    Munakata, Tsubasa; Kohara, Michinori; Siddiqui, Aleem; Peers, Chris

    2015-01-01

    ABSTRACT The course of hepatitis C virus (HCV) infection and disease progression involves alterations in lipid metabolism, leading to symptoms such as hypocholesterolemia and steatosis. Steatosis can be induced by multiple mechanisms, including increases in lipid biosynthesis and uptake, impaired lipoprotein secretion, and/or attenuation of lipid β-oxidation. However, little is known about the effects of HCV on lipid β-oxidation. A previous proteomics study revealed that HCV interacted with both the α- and β-subunits of the mitochondrial trifunctional protein (MTP), an enzyme complex which catalyzes the last 3 steps of mitochondrial lipid β-oxidation for cellular energy production. Here we show that in HCV-infected Huh7.5 cells, lipid β-oxidation was significantly attenuated. Consistently with this, MTP protein and mRNA levels were suppressed by HCV infection. A loss-of-function study showed that MTP depletion rendered cells less responsive to alpha interferon (IFN-α) treatment by impairing IFN-stimulated gene expression. These aspects of host-virus interaction explain how HCV alters host energy homeostasis and how it may also contribute to the establishment of persistent infection in the liver. IMPORTANCE HCV infection triggers metabolic alterations, which lead to significant disease outcomes, such as fatty liver (steatosis). This study revealed that HCV impairs mitochondrial lipid β-oxidation, which results in low lipid combustion. On the other hand, the HCV-induced defects in metabolic status played an important role in the control of the type I interferon system. Under the conditions of impaired lipid β-oxidation, host cells were less responsive to the ability of exogenously added IFN-α to suppress HCV replication. This suggests that interference with lipid β-oxidation may assist the virus in the establishment of a long-term, persistent infection. Further understanding of this aspect of virus-host interaction may lead to improvements in the current

  3. Bitter melon extract attenuating hepatic steatosis may be mediated by FGF21 and AMPK/Sirt1 signaling in mice

    PubMed Central

    Yu, Yongmei; Zhang, Xian H.; Ebersole, Blake; Ribnicky, David; Wang, Zhong Q.

    2013-01-01

    We sought to evaluate the effects of Momordica charantia (bitter melon, BM) extract on insulin sensitivity, NAFLD, hepatic FGF21 and AMPK signaling in mice fed a high-fat diet. Male C57/B6 mice were randomly divided into HFD and HFD supplementation with BM for 12 week. Body weight, plasma glucose, FGF21 and insulin levels, hepatic FGF21 and AMPK signaling proteins were measured. The results showed that plasma FGF21 and insulin concentrations were significantly decreased and hepatic FGF21 content was significantly down-regulated, while FGF receptors 1, 3 and 4 (FGFR1, FGFR3 and FGFR4) were greatly up-regulated in BM group compared to the HFD group (P < 0.05 and P < 0.01). BM also significantly increased hepatic AMPK p, AMPK α1 AMPK α2 and Sirt1 content compared to the HFD mice. We, for the first time, demonstrated that BM extract attenuated hepatic steatosis in mice by enhancing hepatic FGF21 and AMPK/Sirt1 signaling. PMID:24189525

  4. Platycodin D attenuates bile duct ligation-induced hepatic injury and fibrosis in mice.

    PubMed

    Kim, Tae-Won; Lee, Hong-Ki; Song, In-Bae; Lim, Jong-Hwan; Cho, Eun-Sang; Son, Hwa-Young; Jung, Ju-Young; Yun, Hyo-In

    2013-01-01

    Platycodin D (PD) is the major triterpene saponin in the root of Platycodon grandiflorum. The aim of the present study was to evaluate the protective effects of PD on bile duct ligation (BDL)-induced cholestasis in mice. Mice were allocated to five groups: sham, BDL alone, and BDL with PD treatment at 1, 2, and 4mg/kg. PD was administered to the mice for 28 consecutive days after the BDL operation. PD treatment of BDL-operated mice decreased serum alanine aminotransferase, serum aspartate aminotransferase, and total bilirubin levels by up to 37%, 31%, and 41%, respectively, in comparison with the levels in mice that underwent BDL alone. PD treatment attenuated oxidative stress, as evidenced by an increase in anti-oxidative enzyme levels glutathione and superoxide dismutase together with a decrease in lipid peroxidation and oxidative stress indices levels of malondialdehyde and nitric oxide. Histopathological studies further confirmed the protective effects of PD on cholestasis-induced hepatic injury and liver fibrosis in mice. In addition, nuclear factor-kappa B and inducible nitric oxide synthase levels significantly decreased after PD treatment, as did the levels of hepatocyte apoptosis. Taken together, these results suggest that PD treatment might be beneficial in cholestasis-induced hepatotoxicity. PMID:23116642

  5. Activation of farnesoid X receptor attenuates hepatic injury in a murine model of alcoholic liver disease.

    PubMed

    Wu, Weibin; Zhu, Bo; Peng, Xiaomin; Zhou, Meiling; Jia, Dongwei; Gu, Jianxin

    2014-01-01

    Alcoholic liver disease (ALD) is a common cause of advanced liver disease, and considered as a major risk factor of morbidity and mortality worldwide. Hepatic cholestasis is a pathophysiological feature observed in all stages of ALD. The farnesoid X receptor (FXR) is a member of the nuclear hormone receptor superfamily, and plays an essential role in the regulation of bile acid, lipid and glucose homeostasis. However, the role of FXR in the pathogenesis and progression of ALD remains largely unknown. Mice were fed Lieber-DeCarli ethanol diet or an isocaloric control diet. We used a specific agonist of FXR WAY-362450 to study the effect of pharmacological activation of FXR in alcoholic liver disease. In this study, we demonstrated that FXR activity was impaired by chronic ethanol ingestion in a murine model of ALD. Activation of FXR by specific agonist WAY-362450 protected mice from the development of ALD. We also found that WAY-362450 treatment rescued FXR activity, suppressed ethanol-induced Cyp2e1 up-regulation and attenuated oxidative stress in liver. Our results highlight a key role of FXR in the modulation of ALD development, and propose specific FXR agonists for the treatment of ALD patients. PMID:24269813

  6. Geranylgeranylacetone attenuates hepatic fibrosis by increasing the expression of heat shock protein 70.

    PubMed

    He, Wei; Zhuang, Yun; Wang, Liangzhi; Qi, Lei; Chen, Binfang; Wang, Mei; Shao, Dong; Chen, Jianping

    2015-10-01

    Increasing evidence has demonstrated that the heat shock protein 70 (HSP70) gene may be closely associated with tissue fibrosis; however, the association between HSP70 and liver fibrosis remains to be fully elucidated. The present study hypothesized that geranylgeranylacetone (GGA) exerts beneficial effects on liver fibrosis though upregulation of the expression of HSP70. Liver fibrosis was induced in rats using carbon tetrachloride (CCl4). The rats were subsequently divided into three groups: Control group, CCl4 model group and CCl4 model + GGA group. Liver fibrosis in the rats was evaluated using hematoxylin and eosin staining, Masson's trichrome staining and Sirius red staining. The levels of serum alanine aminotransferase, aspartate aminotransferase and total bilirubin were determined using an automated biochemistry analyzer. The levels of total hepatic hydroxyproline were also determined. The expression levels of α‑smooth muscle actin (α‑SMA) and transforming growth factor‑β1 (TGF‑β1) were determined using immunofluorescence staining and western blotting, and the protein expression levels of HSP70 were determined using western blotting. The CCl4‑induced rats exhibited liver fibrosis, increased hydroxyproline content, impaired liver function, upregulated expression levels of the α‑SMA and TGF‑β1 pro‑fibrogenic proteins, and increased expression of HSP70, compared with the control group. These changes were attenuated by treatment with GGA. These results demonstrated that GGA exerted beneficial effects in CCl4‑induced liver fibrosis via upregulating the expression of HSP70. PMID:26165998

  7. Hepatitis

    MedlinePlus

    ... Got Homework? Here's Help White House Lunch Recipes Hepatitis KidsHealth > For Kids > Hepatitis Print A A A ... an important digestive liquid called bile . What Is Hepatitis? Hepatitis is an inflammation (say: in-fluh-MAY- ...

  8. Artemisia annua Leaf Extract Attenuates Hepatic Steatosis and Inflammation in High-Fat Diet-Fed Mice

    PubMed Central

    Kim, Kyung Eun; Ko, Keon-Hee; Heo, Rok Won; Yi, Chin-ok; Shin, Hyun Joo; Kim, Jun Young; Park, Jae-Ho; Nam, Sanghae; Kim, Hwajin

    2016-01-01

    Abstract Artemisia annua L. (AA) is a well-known source of the antimalarial drug artemisinin. AA also has an antibacterial and antioxidant activity. However, the effect of AA extract on hepatic steatosis induced by obesity is unclear. We investigated whether AA extract prevents obesity-induced insulin resistance and hepatic steatosis in high-fat diet (HFD)-fed mice. Mice were randomly divided into groups that received a normal chow diet or HFD with or without AA for 12 weeks. We found that AA extract reduced insulin resistance and hepatic steatosis in HFD-fed mice. Western blot analysis showed that HFD-induced expression of nuclear sterol regulatory element-binding protein 1 and carbohydrate-responsive element-binding protein in the livers was decreased by AA extract. In particular, dietary administration of AA extract decreased hepatic high-mobility group box 1 and cyclooxygenase-2 expression in HFD-fed mice. AA extract also attenuated HFD-induced collagen deposition and fibrosis-related transforming growth factor-β1 and connective tissue growth factor. These data indicate that dietary AA extract has beneficial effects on hepatic steatosis and inflammation in HFD-fed mice. PMID:26741655

  9. Hepatic ATF6 Increases Fatty Acid Oxidation to Attenuate Hepatic Steatosis in Mice Through Peroxisome Proliferator-Activated Receptor α.

    PubMed

    Chen, Xuqing; Zhang, Feifei; Gong, Qi; Cui, Aoyuan; Zhuo, Shu; Hu, Zhimin; Han, Yamei; Gao, Jing; Sun, Yixuan; Liu, Zhengshuai; Yang, Zhongnan; Le, Yingying; Gao, Xianfu; Dong, Lily Q; Gao, Xin; Li, Yu

    2016-07-01

    The endoplasmic reticulum quality control protein activating transcription factor 6 (ATF6) has emerged as a novel metabolic regulator. Here, we show that adenovirus-mediated overexpression of the dominant-negative form of ATF6 (dnATF6) increases susceptibility to develop hepatic steatosis in diet-induced insulin-resistant mice and fasted mice. Overexpression of dnATF6 or small interfering RNA-mediated knockdown of ATF6 decreases the transcriptional activity of peroxisome proliferator-activated receptor α (PPARα)/retinoid X receptor complex, and inhibits oxygen consumption rates in hepatocytes, possibly through inhibition of the binding of PPARα to the promoter of its target gene. Intriguingly, ATF6 physically interacts with PPARα, enhances the transcriptional activity of PPARα, and triggers activation of PPARα downstream targets, such as CPT1α and MCAD, in hepatocytes. Furthermore, hepatic overexpression of the active form of ATF6 promotes hepatic fatty acid oxidation and protects against hepatic steatosis in diet-induced insulin-resistant mice. These data delineate the mechanism by which ATF6 controls the activity of PPARα and hepatic mitochondria fatty acid oxidation. Therefore, strategies to activate ATF6 could be used as an alternative avenue to improve liver function and treat hepatic steatosis in obesity. PMID:27207533

  10. Vitamin d deficiency attenuates high-fat diet-induced hyperinsulinemia and hepatic lipid accumulation in male mice.

    PubMed

    Liu, Xiao-Jing; Wang, Bi-Wei; Zhang, Cheng; Xia, Mi-Zhen; Chen, Yuan-Hua; Hu, Chun-Qiu; Wang, Hua; Chen, Xi; Xu, De-Xiang

    2015-06-01

    It is increasingly recognized that vitamin D deficiency is associated with increased risks of metabolic disorders among overweight children. A recent study showed that vitamin D deficiency exacerbated inflammation in nonalcoholic fatty liver disease through activating toll-like receptor 4 in a high-fat diet (HFD) rat model. The present study aimed to further investigate the effects of vitamin D deficiency on HFD-induced insulin resistance and hepatic lipid accumulation. Male ICR mice (35 d old) were randomly assigned into 4 groups as follows. In control diet and vitamin D deficiency diet (VDD) groups, mice were fed with purified diets. In HFD and VDD+HFD groups, mice were fed with HFD. In VDD and VDD+HFD groups, vitamin D in feed was depleted. Feeding mice with vitamin D deficiency diet did not induce obesity, insulin resistance, and hepatic lipid accumulation. By contrary, vitamin D deficiency markedly alleviated HFD-induced overweight, hyperinsulinemia, and hepatic lipid accumulation. Moreover, vitamin D deficiency significantly attenuated HFD-induced up-regulation of hepatic peroxisome proliferator-activated receptor γ, which promoted hepatic lipid uptake and lipid droplet formation, and its target gene cluster of differentiation 36. In addition, vitamin D deficiency up-regulated carnitine palmitoyltrans 2, the key enzyme for fatty acid β-oxidation, and uncoupling protein 3, which separated oxidative phosphorylation from ATP production, in adipose tissue. These data suggest that vitamin D deficiency is not a direct risk factor for obesity, insulin resistance, and hepatic lipid accumulation. Vitamin D deficiency alleviates HFD-induced overweight, hyperinsulinemia, and hepatic lipid accumulation through promoting fatty acid β-oxidation and elevating energy expenditure in adipose tissue. PMID:25774554

  11. Docosahexaenoic acid attenuates Western diet-induced hepatic fibrosis in Ldlr-/- mice by targeting the TGFβ-Smad3 pathway.

    PubMed

    Lytle, Kelli A; Depner, Christopher M; Wong, Carmen P; Jump, Donald B

    2015-10-01

    DHA (22:6,ω3), but not EPA (20:5,ω3), attenuates Western diet (WD)-induced hepatic fibrosis in a Ldlr(-/-) mouse model of nonalcoholic steatohepatitis. We examined the molecular basis for the differential effect of dietary EPA and DHA on WD-induced hepatic fibrosis. DHA was more effective than EPA at preventing WD-induced effects on hepatic transcripts linked to fibrosis, including collagen 1A1 (Col1A1), transforming growth factor-β (TGFβ) signaling and proteins involved in remodeling the extracellular matrix, including metalloproteases, tissue inhibitors of metalloproteases, and lysyl oxidase subtypes. Examination of the TGFβ pathway showed that mice fed the WD supplemented with either olive oil or EPA had a significant (≥2.5-fold) increase in hepatic nuclear abundance of phospho-mothers against decapentaplegic homolog (Smad)3 when compared with mice fed the reference diet (RD); Smad3 is a key regulator of Col1A1 expression in stellate cells. In contrast, mice fed the WD supplemented with DHA had no increase in phospho-Smad3 when compared with mice fed the RD. Changes in hepatic phospho-Smad3 nuclear content correlated with proCol1A1 mRNA and protein abundance. Pretreatment of human LX2 stellate cells with DHA, but not other unsaturated fatty acids, blocked TGFβ1-mediated induction of Col1A1. In conclusion, DHA attenuates WD-induced fibrosis by targeting the TGFβ-Smad3-Col1A1 pathway in stellate cells. PMID:26315048

  12. HUMAN ADRENOMEDULLIN AND ITS BINDING PROTEIN ATTENUATE ORGAN INJURY AND REDUCE MORTALITY AFTER HEPATIC ISCHEMIA-REPERFUSION

    PubMed Central

    Yang, Juntao; Wu, Rongqian; Qiang, Xiaoling; Zhou, Mian; Dong, Weifeng; Ji, Youxin; Marini, Corrado P.; Ravikumar, Thanjavur S.; Wang, Ping

    2009-01-01

    AM/AMBP-1 may be a novel treatment to attenuate tissue injury after an episode of hepatic ischemia. PMID:19212187

  13. Comparison of the bioavailability of quercetin and catechin in rats.

    PubMed

    Manach, C; Texier, O; Morand, C; Crespy, V; Régérat, F; Demigné, C; Rémésy, C

    1999-12-01

    Quercetin and catechin are present in noticeable amounts in human diet and these polyphenolic compounds are supposed to exert beneficial effects on human health. However, their metabolic fates in the organism have never been compared. In the present study, rats were fed a 0.25% quercetin or a 0.25% catechin diet. Quercetin and catechin metabolites were analyzed in plasma and liver samples by high-performance liquid chromatography coupled to an ultraviolet or a multielectrode coulometric detection. All plasma metabolites were present as conjugated forms, but catechin metabolites were mainly constituted by glucuronidated derivatives, whereas quercetin metabolites were sulfo- and glucurono-sulfo conjugates. Quercetin was more intensively methylated than catechin in plasma. The plasma quercetin metabolites are well maintained during the postabsorptive period (approximately 50 microM), whereas the concentration of catechin metabolites dropped dramatically between 12- and 24-h after an experimental meal (from 38.0 to 4.5 microM). In the liver, the concentrations of quercetin and catechin derivatives were lower than in plasma, and no accumulation was observed when the rats were adapted for 14 d to the supplemented diets. The hepatic metabolites were intensively methylated (90-95%), but in contrast to plasma, some free aglycones could be detected. Thus, it clearly appears that studies dealing with the biological impact of these polyphenols should take into account the feature of their bioavailability, particularly the fact that their circulating metabolites are conjugated derivatives. PMID:10641719

  14. Epigallocatechin-3-gallate attenuates apoptosis and autophagy in concanavalin A-induced hepatitis by inhibiting BNIP3

    PubMed Central

    Li, Sainan; Xia, Yujing; Chen, Kan; Li, Jingjing; Liu, Tong; Wang, Fan; Lu, Jie; Zhou, Yingqun; Guo, Chuanyong

    2016-01-01

    Background Epigallocatechin-3-gallate (EGCG) is the most effective compound in green tea, and possesses a wide range of beneficial effects, including anti-inflammatory, antioxidant, antiobesity, and anticancer effects. In this study, we investigated the protective effects of EGCG in concanavalin A (ConA)-induced hepatitis in mice and explored the possible mechanisms involved in these effects. Methods Balb/C mice were injected with ConA (25 mg/kg) to induce acute autoimmune hepatitis, and EGCG (10 or 30 mg/kg) was administered orally twice daily for 10 days before ConA injection. Serum liver enzymes, proinflammatory cytokines, and other marker proteins were determined 2, 8, and 24 hours after the ConA administration. Results BNIP3 mediated cell apoptosis and autophagy in ConA-induced hepatitis. EGCG decreased the immunoreaction and pathological damage by reducing inflammatory factors, such as TNF-α, IL-6, IFN-γ, and IL-1β. EGCG also exhibited an antiapoptotic and antiautophagic effect by inhibiting BNIP3 via the IL-6/JAKs/STAT3 pathway. Conclusion EGCG attenuated liver injury in ConA-induced hepatitis by downregulating IL-6/JAKs/STAT3/BNIP3-mediated apoptosis and autophagy. PMID:26929598

  15. Relationship between Controlled Attenuation Parameter and Hepatic Steatosis as Assessed by Ultrasound in Alcoholic or Nonalcoholic Fatty Liver Disease

    PubMed Central

    Ahn, Jem Ma; Paik, Yong-Han; Min, Sin Yeong; Cho, Ju Yeon; Sohn, Won; Sinn, Dong Hyun; Gwak, Geum-Youn; Choi, Moon Seok; Lee, Joon Hyeok; Koh, Kwang Cheol; Paik, Seung Woon; Yoo, Byung Chul

    2016-01-01

    Background/Aims The aim of this study was to evaluate the relationship between controlled attenuation parameter (CAP) and hepatic steatosis, as assessed by ultrasound (US) in patients with alcoholic liver disease (ALD) or non-alcoholic fatty liver disease (NAFLD). Methods Patients with either ALD or NAFLD who were diagnosed with fatty liver with US and whose CAP scores were measured, were retrospectively enrolled in this study. The degree of hepatic steatosis assessed by US was categorized into mild (S1), moderate (S2), and severe (S3). Results A total of 186 patients were included: 106 with NAFLD and 80 with ALD. Regarding hepatic steatosis, the CAP score was significantly correlated with US (ρ=0.580, p<0.001), and there was no significant difference between the NAFLD and ALD groups (ρ=0.569, p<0.001; ρ=0.519, p<0.001; p=0.635). Using CAP, area under receiver operating characteristic curves for ≥S2 and ≥S3 steatosis were excellent (0.789 and 0.843, respectively). For sensitivity ≥90%, CAP cutoffs for the detection of ≥S2 and ≥S3 steastosis were separated with a gap of approximately 35 dB/m in all patients and in each of the NAFLD and ALD groups. Conclusions The CAP score is well correlated with hepatic steatosis, as assessed by US, in both ALD and NAFLD. PMID:26347511

  16. Attenuated viral hepatitis in Trem1−/− mice is associated with reduced inflammatory activity of neutrophils

    PubMed Central

    Kozik, Jan-Hendrik; Trautmann, Tanja; Carambia, Antonella; Preti, Max; Lütgehetmann, Marc; Krech, Till; Wiegard, Christiane; Heeren, Joerg; Herkel, Johannes

    2016-01-01

    TREM1 (Triggering Receptor Expressed on Myeloid Cells 1) is a pro-inflammatory receptor expressed by phagocytes, which can also be released as a soluble molecule (sTREM1). The roles of TREM1 and sTREM1 in liver infection and inflammation are not clear. Here we show that patients with hepatitis B virus (HBV) or hepatitis C virus (HCV) infection manifest elevated serum levels of sTREM1. In mice, experimental viral hepatitis induced by infection with Lymphocytic Choriomeningitis Virus (LCMV)-WE was likewise associated with increased sTREM1 in serum and urine, and with increased TREM1 and its associated adapter molecule DAP12 in the liver. Trem1−/− mice showed accelerated clearance of LCMV-WE and manifested attenuated liver inflammation and injury. TREM1 expression in the liver of wild-type mice was mostly confined to infiltrating neutrophils, which responded to LCMV by secretion of CCL2 and TNF-α, and release of sTREM1. Accordingly, the production of CCL2 and TNF-α was decreased in the livers of LCMV-infected Trem1−/− mice, as compared to LCMV-infected wildtype mice. These findings indicate that TREM1 plays a role in viral hepatitis, in which it seems to aggravate the immunopathology associated with viral clearance, mainly by increasing the inflammatory activity of neutrophils. PMID:27328755

  17. A Novel Small-molecule Tumor Necrosis Factor α Inhibitor Attenuates Inflammation in a Hepatitis Mouse Model*

    PubMed Central

    Ma, Li; Gong, Haiyan; Zhu, Haiyan; Ji, Qing; Su, Pei; Liu, Peng; Cao, Shannan; Yao, Jianfeng; Jiang, Linlin; Han, Mingzhe; Ma, Xiaotong; Xiong, Dongsheng; Luo, Hongbo R.; Wang, Fei; Zhou, Jiaxi; Xu, Yuanfu

    2014-01-01

    Overexpression of tumor necrosis factor α (TNFα) is a hallmark of many inflammatory diseases, including rheumatoid arthritis, inflammatory bowel disease, and septic shock and hepatitis, making it a potential therapeutic target for clinical interventions. To explore chemical inhibitors against TNFα activity, we applied computer-aided drug design combined with in vitro and cell-based assays and identified a lead chemical compound, (E)-4-(2-(4-chloro-3-nitrophenyl) (named as C87 thereafter), which directly binds to TNFα, potently inhibits TNFα-induced cytotoxicity (IC50 = 8.73 μm) and effectively blocks TNFα-triggered signaling activities. Furthermore, by using a murine acute hepatitis model, we showed that C87 attenuates TNFα-induced inflammation, thereby markedly reducing injuries to the liver and improving animal survival. Thus, our results lead to a novel and highly specific small-molecule TNFα inhibitor, which can be potentially used to treat TNFα-mediated inflammatory diseases. PMID:24634219

  18. Adenosine preconditioning attenuates hepatic reperfusion injury in the rat by preventing the down-regulation of endothelial nitric oxide synthase

    PubMed Central

    Serracino-Inglott, Ferdinand; Virlos, Ioannis T; Habib, Nagy A; Williamson, Robin CN; Mathie, Robert T

    2002-01-01

    Background Previous work has suggested that in the liver, adenosine preconditioning is mediated by nitric oxide. Whether the endothelial isoform of nitric oxide synthase plays a part in this mechanism has however not yet been investigated. Methods Wistar rats were used (6 in each group) – Groups: (1) sham, (2) ischemia-reperfusion, (3) adenosine + ischemia-reperfusion, (4) endothelial isoform inhibitor + adenosine + ischemia-reperfusion. Results Using immunohistochemistry, this study has revealed a decrease in the expression of endothelial nitric oxide synthase following hepatic ischemia-reperfusion. This was prevented by adenosine pre-treatment. When an inhibitor of endothelial nitric oxide synthase was administered prior to adenosine pre-treatment, pre-conditioning did not occur despite normal expression of endothelial nitric oxide synthase. Conclusions These findings suggest that adenosine attenuates hepatic injury by preventing the downregulation of endothelial nitric oxide synthase that occurs during ischemia-reperfusion. PMID:12241560

  19. Interferon-β Mediates Signaling Pathways Uniquely Regulated in Hepatic Stellate Cells and Attenuates the Progression of Hepatic Fibrosis in a Dietary Mouse Model

    PubMed Central

    Nishimura, Kazumi; Akiyama, Hideo; Funamoto, Saeko; Izawa, Akiko; Sai, Takafumi; Kunita, Kana; Kainoh, Mie; Suzuki, Tomohiko; Kawada, Norifumi

    2015-01-01

    The results of clinical and experimental studies suggest that type I interferons (IFNs) may have direct antifibrotic activity in addition to their antiviral properties. However, the mechanisms are still unclear; in particular, little is known about the antifibrotic activity of IFN-β and how its activity is distinct from that of IFN-α. Using DNA microarrays, we demonstrated that gene expression in TWNT-4 cells, an activated human hepatic stellate cell line, was remarkably altered by IFN-β more than by IFN-α. Integrated pathway enrichment analyses revealed that a variety of IFN-β–mediated signaling pathways are uniquely regulated in TWNT-4 cells, including those related to cell cycle and Toll-like receptor 4 (TLR4) signaling. To investigate the antifibrotic activity of IFN-β and the involvement of TLR4 signaling in vivo, we used mice fed a choline-deficient l-amino acid-defined diet as a model of nonalcoholic steatohepatitis-related hepatic fibrosis. In this model, the administration of IFN-β significantly attenuated augmentation of the area of liver fibrosis, with accompanying transcriptional downregulation of the TLR4 adaptor molecule MyD88. Our results provide important clues for understanding the mechanisms of the preferential antifibrotic activity of IFN-β and suggest that IFN-β itself, as well as being a modulator of its unique signaling pathway, may be a potential treatment for patients with hepatic fibrosis in a pathogenesis-independent manner. PMID:25715168

  20. Activation of PPARγ is required for hydroxysafflor yellow A of Carthamus tinctorius to attenuate hepatic fibrosis induced by oxidative stress.

    PubMed

    Wang, C Y; Liu, Q; Huang, Q X; Liu, J T; He, Y H; Lu, J J; Bai, X Y

    2013-05-15

    Oxidative stress caused hepatic fibrosis by activating hepatic stellate cells (HSCs), which were implemented by depressing PPARγ activation. Hydroxysafflor yellow A (HSYA) as a nature active ingredient with antioxidant capacity was able to effectively attenuate oxidative stress mediated injury. So it will be very interesting to study effect of HSYA on HSCs activation and liver fibrosis, and reveal the role of PPARγ·CCl4 and H2O2 were used to mimic oxidative stress mediated hepatic injury in vitro and in vivo respectively. The anti-fibrosis effects of HSYA were evaluated and its mechanisms were disclosed by applying western blot, histopathological analysis, flow cytometry, RT-PCR and ELISA. Our results showed that HSCs activation and proliferation could be induced by oxidative stress, and the expressive levels of TGF-β1 and TIMP-1, the serum levels of ALT, AST, HA, LN, III-C and IV-C were also enhanced by oxidative stress, which is correlated with liver fibrosis (p<0.05 or p<0.01). HSYA was able to effectively inhibit oxidative stress mediated hepatic injury by increasing the activities of antioxidant enzymes, up regulating the expression of PPARγ and MMP-2, and down regulating the expression of TGF-β1 and TIMP-1, and reducing α-SMA level. The protective effect of HSYA can be significantly attenuated by GW9662 via blocking PPARγ (p<0.05 or p<0.01). Taken together, these results demonstrate that HSYA is able to significantly protect the liver from oxidative stress, which requires for HSYA to stimulate PPARγ activity, reduce cell proliferation and suppress ECM synthesis. PMID:23523101

  1. Short-Term Hypocaloric High-Fiber and High-Protein Diet Improves Hepatic Steatosis Assessed by Controlled Attenuation Parameter

    PubMed Central

    Arslanow, Anita; Teutsch, Melanie; Walle, Hardy; Grünhage, Frank; Lammert, Frank; Stokes, Caroline S

    2016-01-01

    OBJECTIVES: Non-alcoholic fatty liver disease is one of the most prevalent liver diseases and increases the risk of fibrosis and cirrhosis. Current standard treatment focuses on lifestyle interventions. The primary aim of this study was to assess the effects of a short-term low-calorie diet on hepatic steatosis, using the controlled attenuation parameter (CAP) as quantitative tool. METHODS: In this prospective observational study, 60 patients with hepatic steatosis were monitored during a hypocaloric high-fiber, high-protein diet containing 1,000 kcal/day. At baseline and after 14 days, we measured hepatic fat contents using CAP during transient elastography, body composition with bioelectrical impedance analysis, and serum liver function tests and lipid profiles using standard clinical–chemical assays. RESULTS: The median age was 56 years (25–78 years); 51.7% were women and median body mass index was 31.9 kg/m2 (22.4–44.8 kg/m2). After 14 days, a significant CAP reduction (14.0% P<0.001) was observed from 295 dB/m (216–400 dB/m) to 266 dB/m (100–353 dB/m). In parallel, body weight decreased by 4.6% (P<0.001), of which 61.9% was body fat. In addition, liver stiffness (P=0.002), γ-GT activities, and serum lipid concentrations decreased (all P<0.001). CONCLUSIONS: This study shows for the first time that non-invasive elastography can be used to monitor rapid effects of dietary treatment for hepatic steatosis. CAP improvements occur after only 14 days on short-term low-calorie diet, together with reductions of body composition parameters, serum lipids, and liver enzymes, pointing to the dynamics of hepatic lipid turnover. PMID:27311064

  2. Lactobacillus fermentum ZYL0401 Attenuates Lipopolysaccharide-Induced Hepatic TNF-α Expression and Liver Injury via an IL-10- and PGE2-EP4-Dependent Mechanism

    PubMed Central

    Lv, Longxian; Yang, Jianzhuan; Lu, Haifeng; Li, Lanjuan

    2015-01-01

    Lipopolysaccharide (LPS) has essential role in the pathogenesis of D-galactosamine-sensitized animal models and alcoholic liver diseases of humans, by stimulating release of pro-inflammatory mediators that cause hepatic damage and intestinal barrier impairment. Oral pretreatment of probiotics has been shown to attenuate LPS-induced hepatic injury, but it is unclear whether the effect is direct or due to improvement in the intestinal barrier. The present study tested the hypothesis that pretreatment with probiotics enables the liver to withstand directly LPS-induced hepatic injury and inflammation. In a mouse model of LPS-induced hepatic injury, the levels of hepatic tumor necrosis factor-alpha (TNF-α) and serum alanine aminotransferase (ALT) of mice with depleted intestinal commensal bacteria were not significantly different from that of the control models. Pre-feeding mice for 10 days with Lactobacillus fermentum ZYL0401 (LF41), significantly alleviated LPS-induced hepatic TNF-α expression and liver damage. After LF41 pretreatment, mice had dramatically more L.fermentum-specific DNA in the ileum, significantly higher levels of ileal cyclooxygenase (COX)-2 and interleukin 10 (IL-10) and hepatic prostaglandin E2 (PGE2). However, hepatic COX-1, COX-2, and IL-10 protein levels were not changed after the pretreatment. There were also higher hepatic IL-10 protein levels after LPS challenge in LF41-pretreaed mice than in the control mice. Attenuation of hepatic TNF-α was mediated via the PGE2/E prostanoid 4 (EP4) pathway, and serum ALT levels were attenuated in an IL-10-dependent manner. A COX-2 blockade abolished the increase in hepatic PGE2 and IL-10 associated with LF41. In LF41-pretreated mice, a blockade of IL-10 caused COX-2-dependent promotion of hepatic PGE2, without affecting hepatic COX-2levels. In LF41-pretreated mice, COX2 prevented enhancing TNF-α expression in both hepatic mononuclear cells and the ileum, and averted TNF-α-mediated increase in

  3. Thymoquinone attenuates liver fibrosis via PI3K and TLR4 signaling pathways in activated hepatic stellate cells.

    PubMed

    Bai, Ting; Lian, Li-Hua; Wu, Yan-Ling; Wan, Ying; Nan, Ji-Xing

    2013-02-01

    Thymoquinone (TQ) is the major active compound derived from the medicinal Nigella sativa. In the present study, we investigated the anti-fibrotic mechanism of TQ in lipopolysaccharide (LPS)-activated rat hepatic stellate cells line, T-HSC/Cl-6. T-HSC/Cl-6 cells were treated with TQ (3.125, 6.25 and 12.5μM) prior to LPS (1μg/ml). Our data demonstrated that TQ effectively decreased activated T-HSC/Cl-6 cell viability. TQ significantly attenuated the expression of CD14 and Toll-like receptor 4 (TLR4). TQ also significantly inhibited phosphatidylinositol 3-kinase (PI3K) and serine/threonine kinase-protein kinase B (Akt) phosphorylation. The expression of α-SMA and collagen-I were significantly decreased by TQ. Furthermore, TQ decreased X linked inhibitor of apoptosis (XIAP) and cellular FLIP (c-FLIPL) expression, which are related with the regulation of apoptosis. Furthermore, TQ significantly increased the survival against LPS challenge in d-galactosamine (d-GlaN)-sensitized mice, and decreased the levels of serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST), which were in line with in vitro results. Our data demonstrated that TQ attenuates liver fibrosis partially via blocking TLR4 expression and PI3K phosphorylation on the activated HSCs. Therefore, TQ may be a potential candidate for the therapy of hepatic fibrosis. PMID:23318601

  4. Proatherogenic macrophage activities are targeted by the flavonoid quercetin.

    PubMed

    Lara-Guzman, Oscar J; Tabares-Guevara, Jorge H; Leon-Varela, Yudy M; Álvarez, Rafael M; Roldan, Miguel; Sierra, Jelver A; Londoño-Londoño, Julian A; Ramirez-Pineda, Jose R

    2012-11-01

    Many studies have demonstrated that the flavonoid quercetin protects against cardiovascular disease (CVD) and related risk factors. Atherosclerosis, the underlying cause of CVD, is also attenuated by oral quercetin administration in animal models. Although macrophages are key players during fatty streak formation and plaque progression and aggravation, little is known about the effects of quercetin on atherogenic macrophages. Here, we report that primary bone marrow-derived macrophages internalized less oxidized low-density lipoprotein (oxLDL) and accumulated less intracellular cholesterol in the presence of quercetin. This reduction of foam cell formation correlated with reduced surface expression of the oxLDL receptor CD36. Quercetin also targeted the lipopolysaccharide-dependent, oxLDL-independent pathway of lipid droplet formation in macrophages. In oxLDL-stimulated macrophages, quercetin inhibited reactive oxygen species production and interleukin (IL)-6 secretion. In a system that evaluated cholesterol crystal-induced IL-1β secretion via nucleotide-binding domain and leucine-rich repeat containing protein 3 inflammasome activation, quercetin also exhibited an inhibitory effect. Dyslipidemic apolipoprotein E-deficient mice chronically treated with intraperitoneal quercetin injections had smaller atheromatous lesions, reduced lipid deposition, and less macrophage and T cell inflammatory infiltrate in the aortic roots than vehicle-treated animals. Serum levels of total cholesterol and the lipid peroxidation product malondialdehyde were also reduced in these mice. Our results demonstrate that quercetin interferes with both key proatherogenic activities of macrophages, namely foam cell formation and pro-oxidant/proinflammatory responses, and these effects may explain the atheroprotective properties of this common flavonoid. PMID:22869926

  5. Quercetin as a prophylactic measure against high altitude cerebral edema.

    PubMed

    Patir, Himadri; Sarada, S K S; Singh, Saumya; Mathew, Titto; Singh, Bhagwat; Bansal, Anju

    2012-08-15

    The present study was undertaken to elucidate the intervention of quercetin against high altitude cerebral edema (HACE) using male Sprague Dawley rats as an animal model. This study was also programmed to compare and correlate the effect of both quercetin (flavonoid) and dexamethasone (steroid) against HACE. Six groups of animals were designed for this experiment, (I) normoxia, (II) hypoxia (25,000 ft, 24 h), (III) normoxia+quercetin (50 mg/kg body wt), (IV) normoxia+dexamethasone (4 mg/kg body wt), (V) hypoxia+quercetin (50 mg/kg body wt), (VI) hypoxia+dexamethasone (4 mg/kg body wt). Quercetin at 50 mg/kg body wt, orally 1h prior to hypoxia exposure, was considered as the optimum dose, due to a significant reduction in the level of brain water content and cerebral transvascular leakage (P < 0.001), as compared to control (24 h hypoxia). Dexamethasone was administered at 4 mg/kg body wt, orally, 1h prior to hypoxia exposure. Both drugs (quercetin and dexamethasone) could efficiently reduce the hypoxia-induced hematological changes. Quercetin was observed to be a more potent antioxidative and anti-inflammatory agent. It blocks nuclear factor kappa-beta (NFκB) more significantly (P < 0.05) than the dexamethasone-administered hypoxia-exposed rats. Histopathological findings demonstrate the absence of an edema and inflammation in the brain sections of quercetin-administered hypoxia-exposed rats. The present study reveals quercetin to be a potent drug against HACE, as it efficiently attenuates inflammation as well as cerebral edema formation without any side effects of steroid therapy (dexamethasone). PMID:22743108

  6. β-aminoisobutyric acid attenuates hepatic endoplasmic reticulum stress and glucose/lipid metabolic disturbance in mice with type 2 diabetes

    PubMed Central

    Shi, Chang-Xiang; Zhao, Ming-Xia; Shu, Xiao-Dong; Xiong, Xiao-Qing; Wang, Jue-Jin; Gao, Xing-Ya; Chen, Qi; Li, Yue-Hua; Kang, Yu-Ming; Zhu, Guo-Qing

    2016-01-01

    β-aminoisobutyric acid (BAIBA) is a nature thymine catabolite, and contributes to exercise-induced protection from metabolic diseases. Here we show the therapeutical effects of BAIBA on hepatic endoplasmic reticulum (ER) stress and glucose/lipid metabolic disturbance in diabetes. Type 2 diabetes was induced by combined streptozotocin (STZ) and high-fat diet (HFD) in mice. Oral administration of BAIBA for 4 weeks reduced blood glucose and lipids levels, hepatic key enzymes of gluconeogenesis and lipogenesis expressions, attenuated hepatic insulin resistance and lipid accumulation, and improved insulin signaling in type 2 diabetic mice. BAIBA reduced hepatic ER stress and apoptosis in type 2 diabetic mice. Furthermore, BAIBA alleviated ER stress in human hepatocellular carcinoma (HepG2) cells with glucosamine-induced insulin resistance. Hepatic AMPK phosphorylation was reduced in STZ/HFD mice and glucosamine-treated HepG2 cells, which were restored by BAIBA treatment. The suppressive effects of BAIBA on glucosamine-induced ER stress were reversed by knockdown of AMPK with siRNA. In addition, BAIBA prevented thapsigargin- or tunicamycin-induced ER stress, and tunicamycin–induced apoptosis in HepG2 cells. These results indicate that BAIBA attenuates hepatic ER stress, apoptosis and glucose/lipid metabolic disturbance in mice with type 2 diabetes. AMPK signaling is involved to the role of BAIBA in attenuating ER stress. PMID:26907958

  7. Different profiles of quercetin metabolites in rat plasma: comparison of two administration methods.

    PubMed

    Kawai, Yoshichika; Saito, Satomi; Nishikawa, Tomomi; Ishisaka, Akari; Murota, Kaeko; Terao, Junji

    2009-03-23

    The bioavailability of polyphenols in human and rodents has been discussed regarding their biological activity. We found different metabolite profiles of quercetin in rat plasma between two administration procedures. A single intragastric administration (50 mg/kg) resulted in the appearance of a variety of metabolites in the plasma, whereas only a major fraction was detected by free access (1% quercetin). The methylated/non-methylated metabolites ratio was much higher in the free access group. Mass spectrometric analyses showed that the fraction from free access contained highly conjugated quercetin metabolites such as sulfo-glucuronides of quercetin and methylquercetin. The metabolite profile of human plasma after an intake of onion was similar to that with intragastric administration in rats. In vitro oxidation of human low-density lipoprotein showed that methylation of the catechol moiety of quercetin significantly attenuated the antioxidative activity. These results might provide information about the bioavailability of quercetin when conducting animal experiments. PMID:19270373

  8. Antagonism of quercetin against tremor induced by unilateral striatal lesion of 6-OHDA in rats.

    PubMed

    Mu, Xin; Yuan, Xia; Du, Li-Da; He, Guo-Rong; Du, Guan-Hua

    2016-01-01

    Quercetin, a flavonoid present in many plants, is reported to be effective in models of neurodegenerative diseases. The aim of the present study was to evaluate the anti-tremor effects of quercetin in 6-hydroxydopamine (6-OHDA)-induced rat model of Parkinson's disease. In rats, quercetin had no effect on apomorphine-induced rotations, but it could significantly attenuate muscle tremor of 6-OHDA lesioned rats. Interestingly, quercetin could decrease the burst frequency in a dose- and time-dependent manner. These results suggest that quercetin may have a protective effect on models to mimic muscle tremors of Parkinson's disease. This effect of quercetin may be associated with serotonergic system, but further study is needed. PMID:26217978

  9. Hepatitis

    MedlinePlus

    ... has been associated with drinking contaminated water. Hepatitis Viruses Type Transmission Prognosis A Fecal-oral (stool to ... risk for severe disease. Others A variety of viruses can affect the liver Signs and Symptoms Hepatitis ...

  10. Sasa borealis Stem Extract Attenuates Hepatic Steatosis in High-Fat Diet-induced Obese Rats

    PubMed Central

    Song, Yuno; Lee, Soo-Jung; Jang, Sun-Hee; Ha, Ji Hee; Song, Young Min; Ko, Yeoung-Gyu; Kim, Hong-Duck; Min, Wongi; Kang, Suk Nam; Cho, Jae-Hyeon

    2014-01-01

    The aim of the current study is to examine the improving effect of Sasa borealis stem (SBS) extract extracts on high-fat diet (HFD)-induced hepatic steatosis in rats. To determine the hepatoprotective effect of SBS, we fed rats a normal regular diet (ND), HFD, and HFD supplemented with 150 mg/kg body weight (BW) SBS extracts for five weeks. We found that the body weight and liver weight of rats in the HFD + SBS group were significantly lower than those in the HFD group. Significantly lower serum total cholesterol (TC) and triglyceride (TG) concentrations were observed in the SBS-supplemented group compared with the HFD group. We also found that the HFD supplemented with SBS group showed dramatically reduced hepatic lipid accumulation compared to the HFD alone group, and administration of SBS resulted in dramatic suppression of TG, TC in the HFD-induced fatty liver. In liver gene expression within the SBS treated group, PPARα was significantly increased and SREBP-1c was significantly suppressed. SBS induced a significant decrease in the hepatic mRNA levels of PPARγ, FAS, ACC1, and DGAT2. In conclusion, SBS improved cholesterol metabolism, decreased lipogenesis, and increased lipid oxidation in HFD-induced hepatic steatosis in rats, implying a potential application in treatment of non-alcoholic fatty liver disease. PMID:24905748

  11. Sasa borealis stem extract attenuates hepatic steatosis in high-fat diet-induced obese rats.

    PubMed

    Song, Yuno; Lee, Soo-Jung; Jang, Sun-Hee; Ha, Ji Hee; Song, Young Min; Ko, Yeoung-Gyu; Kim, Hong-Duck; Min, Wongi; Kang, Suk Nam; Cho, Jae-Hyeon

    2014-06-01

    The aim of the current study is to examine the improving effect of Sasa borealis stem (SBS) extract extracts on high-fat diet (HFD)-induced hepatic steatosis in rats. To determine the hepatoprotective effect of SBS, we fed rats a normal regular diet (ND), HFD, and HFD supplemented with 150 mg/kg body weight (BW) SBS extracts for five weeks. We found that the body weight and liver weight of rats in the HFD + SBS group were significantly lower than those in the HFD group. Significantly lower serum total cholesterol (TC) and triglyceride (TG) concentrations were observed in the SBS-supplemented group compared with the HFD group. We also found that the HFD supplemented with SBS group showed dramatically reduced hepatic lipid accumulation compared to the HFD alone group, and administration of SBS resulted in dramatic suppression of TG, TC in the HFD-induced fatty liver. In liver gene expression within the SBS treated group, PPARα was significantly increased and SREBP-1c was significantly suppressed. SBS induced a significant decrease in the hepatic mRNA levels of PPARγ, FAS, ACC1, and DGAT2. In conclusion, SBS improved cholesterol metabolism, decreased lipogenesis, and increased lipid oxidation in HFD-induced hepatic steatosis in rats, implying a potential application in treatment of non-alcoholic fatty liver disease. PMID:24905748

  12. Attenuated Effects of Deep-Sea Water on Hepatic Apoptosis in STZ-Induced Diabetic Rats.

    PubMed

    Hsu, Tsai-Ching; Chiu, Chun-Ching; Lin, Hsou-Lin; Kao, Tseng-Wei; Chen, Li-Jeng; Wu, Li-Yi; Huang, Chih-Yang; Tzang, Bor-Show

    2015-06-30

    Diabetes mellitus (DM) is a metabolic disorder and increasing evidences have indicated a connection between DM and hepatic abnormality. Deep-sea water (DSW) has been applied in many fields, especially in medicine; herein, we investigated the influence of DSW on hepatic apoptosis in streptozocin (STZ)-induced diabetes rats. Our experimental results firstly demonstrated the beneficial effects of 1×DSW, 2×DSW and 3×DSW in alleviating hepatic apoptosis in STZ-induced diabetic rats. We demonstrated that 1×DSW, 2×DSW and 3×DSW significantly suppressed the caspase-3 activity and TUNEL-positive cells in livers of STZ-induced diabetic rats. Significant reductions of both Fas-dependent and mitochondrial-dependent apoptotic molecules were also detected in livers of STZ-induced diabetic rats receiving DSW. Additionally, apoptotic signaling molecules such as phosphorylated IκB-α and NF-κB were significantly reduced in livers of DSW-treated STZ-induced diabetic rats. These findings indicate hepatic protective effects of DSW on DM and suggest DSW as a possible ingredient for health food. PMID:26014125

  13. Ability of IDO to attenuate liver injury in alpha-galactosylceramide-induced hepatitis model.

    PubMed

    Ito, Hiroyasu; Hoshi, Masato; Ohtaki, Hirofumi; Taguchi, Ayako; Ando, Kazuki; Ishikawa, Tetsuya; Osawa, Yosuke; Hara, Akira; Moriwaki, Hisataka; Saito, Kuniaki; Seishima, Mitsuru

    2010-10-15

    IDO converts tryptophan to l-kynurenine, and it is noted as a relevant molecule in promoting tolerance and suppressing adaptive immunity. In this study, we examined the effect of IDO in α-galactosylceramide (α-GalCer)-induced hepatitis. The increase in IDO expression in the liver of wild-type (WT) mice administered α-GalCer was confirmed by real-time PCR, Western blotting, and IDO immunohistochemical analysis. The serum alanine aminotransferase levels in IDO-knockout (KO) mice after α-GalCer injection significantly increased compared with those in WT mice. 1-Methyl-D-tryptophan also exacerbated liver injury in this murine hepatitis model. In α-GalCer-induced hepatitis models, TNF-α is critical in the development of liver injury. The mRNA expression and protein level of TNF-α in the liver from IDO-KO mice were more enhanced compared with those in WT mice. The phenotypes of intrahepatic lymphocytes from WT mice and IDO-KO mice treated with α-GalCer were analyzed by flow cytometry, and the numbers of CD49b(+) and CD11b(+) cells were found to have increased in IDO-KO mice. Moreover, as a result of the increase in the number of NK cells and macrophages in the liver of IDO-KO mice injected with α-GalCer, TNF-α secretion in these mice was greater than that in WT mice. Deficiency of IDO exacerbated liver injury in α-GalCer-induced hepatitis. IDO induced by proinflammatory cytokines may decrease the number of TNF-α-producing immune cells in the liver. Thus, IDO may suppress overactive immune response in the α-GalCer-induced hepatitis model. PMID:20844202

  14. Activated farnesoid X receptor attenuates apoptosis and liver injury in autoimmune hepatitis.

    PubMed

    Lian, Fan; Wang, Yu; Xiao, Youjun; Wu, Xiwen; Xu, Hanshi; Liang, Liuqin; Yang, Xiuyan

    2015-10-01

    Autoimmune hepatitis (AIH) is a chronic inflammatory liver disease associated with interface hepatitis, the presence of autoantibodies, regulatory T‑cell dysfunction and raised plasma liver enzyme levels. The present study assessed the hepatoprotective and antiapoptotic role of farnesoid X receptor (FXR) in AIH. a mouse model of AIH was induced by treatment with concanavalin A (ConA). The FXR agonist, chenodeoxycholic acid (CDCA), was administered to mice exhibiting ConA‑induced liver injury and a normal control. Blood samples were obtained to detect the levels of aminotransferases and inflammatory cytokines. Liver specimens were collected, and hematoxylin‑eosin staining was used for histopathological examination and detection. Apoptosis was evaluated using the terminal deoxynucleotidyl-transferase‑mediated dUTP nick end labeling (TUNEL) method. The expression levels of apoptosis‑associated genes and proteins were determined by reverse transcription‑quantitative polymerase chain reaction and western blotting, respectively. The results demonstrated that FXR was downregulated at the mRNA and protein level in the liver specimens of mice induced with ConA‑induced hepatitis. Increased levels of aminotransferases and inflammatory cytokines, including interferon‑γ, tumor necrosis factor‑α, interleukin (IL)‑4 and IL‑2, were detected in ConA‑treated mice. The mice pretreated with the FXR agonist, CDCA, were more resistant to ConA hepatitis, as indicated by reduced levels of alanine transaminase/aspartate aminotransferase and aminotransferases. The activation of FXR ameliorated hepatocyte apoptosis, as demonstrated by TUNEL analysis and downregulation of the Fas/Fas ligand, tumor necrosis factor‑related apoptosis‑inducing ligand and caspase‑3. Taken together, FXR activation ameliorated liver injury and suppressed inflammatory cytokines in ConA‑induced hepatitis. FXR, therefore, exerts a protective role against ConA-induced apoptosis. PMID

  15. Glutathione peroxidase 1 deficiency attenuates concanavalin A-induced hepatic injury by modulation of T-cell activation

    PubMed Central

    Lee, D H; Son, D J; Park, M H; Yoon, D Y; Han, S B; Hong, J T

    2016-01-01

    Concanavalin A (Con A)-induced hepatitis model is well-established experimental T cell-mediated liver disease. Reactive oxygen species (ROS) is associated with T-cell activation and proliferation, but continued ROS exposure induces T-cell hyporesponsiveness. Because glutathione peroxidase 1 (Gpx1) is an antioxidant enzyme and is involved in T-cell development, we investigated the role of Gpx1 during Con A-induced liver injury in Gpx1 knockout (KO) mice. Male wild-type (WT) mice and Gpx1 KO mice were intravenously injected with Con A (10 mg/kg), and then killed after 8 h after Con A injection. Serum levels of aspartate transaminase and alanine transaminase were measured to assess hepatic injury. To identify that Gpx1 affects T cell-mediated inflammation, we pretreated Gpx1 inhibitor to Human Jurkat T cells then treated Con A. Con A-induced massive liver damage in WT mice but its damage was attenuated in Gpx1 KO mice. Con A-induced Th1 cytokines such as tumor necrosis factor-α (TNF-α), interferon-γ (IFN-γ) and interleukin (IL)-2 were also decreased in the liver and spleen of Gpx1 KO mice compared with WT mice. In Jurkat T cells, Con A-induced mRNA levels of IL-2, IFN-γ and TNF-α were downregulated by pretreatment of Gpx inhibitor, mercaptosuccinic acid. We also observed that Gpx1 KO mice showed increasing oxidative stress in the liver and spleen compared with WT mice. These results suggest that Gpx1 deficiency attenuates Con A-induced liver injury by induction of T-cell hyporesponsiveness through chronic ROS exposure. PMID:27124582

  16. Senegenin Attenuates Hepatic Ischemia-Reperfusion Induced Cognitive Dysfunction by Increasing Hippocampal NR2B Expression in Rats

    PubMed Central

    Gu, Xiaoping; Zheng, Yaguo; Sun, Yu-e; Liang, Ying; Bo, Jinhua; Ma, Zhengliang

    2012-01-01

    Background The root of Polygala tenuifolia, a traditional Chinese medicine, has been used to improve memory and intelligence, while the underlying mechanisms remain largely unknown. In this study, we investigated the protective effects of senegenin, an component of Polygala tenuifolia root extracts, on cognitive dysfunction induced by hepatic ischemia-reperfusion. Methodology/Principal Findings Initially, we constructed a rat model of hepatic ischemia-reperfusion (HIR) and found that the memory retention ability of rats in the step-down and Y maze test was impaired after HIR, paralleled by a decrease of N-methyl-D-aspartate (NMDA) receptor NR2B subunit mRNA and protein expressions in hippocampus. Furthermore, we found that administration of senegenin by gavage attenuated HIR-induced cognitive impairment in a dose and time dependent manner, and its mechanisms might partly due to the increasing expression of NR2B in rat hippocampus. Conclusions/Significance Cognitive dysfunction induced by HIR is associated with reduction of NR2B expression. Senegenin plays a neuroprotective role in HIR via increasing NR2B expression in rat hippocampus. These findings suggest that senegenin might be a potential agent for prevention and treatment of postoperative cognitive dysfunction (POCD) or other neurodegenerative diseases. PMID:23029109

  17. USP7 Attenuates Hepatic Gluconeogenesis Through Modulation of FoxO1 Gene Promoter Occupancy

    PubMed Central

    Hall, Jessica A.; Tabata, Mitsuhisa; Rodgers, Joseph T.

    2014-01-01

    Hepatic forkhead protein FoxO1 is a key component of systemic glucose homeostasis via its ability to regulate the transcription of rate-limiting enzymes in gluconeogenesis. Important in the regulation of FoxO1 transcriptional activity are the modifying/demodifying enzymes that lead to posttranslational modification. Here, we demonstrate the functional interaction and regulation of FoxO1 by herpesvirus-associated ubiquitin-specific protease 7 (USP7; also known as herpesvirus-associated ubiquitin-specific protease, HAUSP), a deubiquitinating enzyme. We show that USP7-mediated mono-deubiquitination of FoxO1 results in suppression of FoxO1 transcriptional activity through decreased FoxO1 occupancy on the promoters of gluconeogenic genes. Knockdown of USP7 in primary hepatocytes leads to increased expression of FoxO1-target gluconeogenic genes and elevated glucose production. Consistent with this, USP7 gain-of-function suppresses the fasting/cAMP-induced activation of gluconeogenic genes in hepatocyte cells and in mouse liver, resulting in decreased hepatic glucose production. Notably, we show that the effects of USP7 on hepatic glucose metabolism depend on FoxO1. Together, these results place FoxO1 under the intimate regulation of deubiquitination and glucose metabolic control with important implication in diseases such as diabetes. PMID:24694308

  18. Diosgenin attenuates hepatic stellate cell activation through transforming growth factor-β/Smad signaling pathway

    PubMed Central

    Xie, Wei-Lin; Jiang, Rong; Shen, Xiao-Lu; Chen, Zhi-Yu; Deng, Xiao-Ming

    2015-01-01

    Activation of hepatic stellate cells (HSC) plays a pivotal role in the development of hepatic fibrosis. Transforming growth factor-β1 (TGF-β1) is considered to be the main stimuli factor responsible for the activation of HSC. Diosgenin is a steroidal saponin found in several plants including Solanum and Dioscorea species, and it inhibited high glucose-induced renal tubular fibrosis. However, the effects of diosgenin against hepatic fibrosis remain elusive. Therefore, in this study, we investigated the effects of diosgenin on TGF-β1-induced HSCs and elucidate the possible mechanism of its anti-fibrotic effect. Our results demonstrated that diosgenin inhibited TGF-β1-induced HSC proliferation, reduced the expression of collagen I and α-smooth muscle actin (α-SMA), as well as the expression of TGF-β receptor I (TGF-β RI) and II. Moreover, diosgenin suppressed TGF-β1-induced phosphorylation of Smad3 in HSCs. In conclusion, our data demonstrate that diosgenin inhibited HSC-T6 cell proliferation and activation, at least in part, via the TGF-β1/Smad signaling pathway. These results provide that diosgenin may have potential to treat liver fibrosis. PMID:26884947

  19. Diosgenin attenuates hepatic stellate cell activation through transforming growth factor-β/Smad signaling pathway.

    PubMed

    Xie, Wei-Lin; Jiang, Rong; Shen, Xiao-Lu; Chen, Zhi-Yu; Deng, Xiao-Ming

    2015-01-01

    Activation of hepatic stellate cells (HSC) plays a pivotal role in the development of hepatic fibrosis. Transforming growth factor-β1 (TGF-β1) is considered to be the main stimuli factor responsible for the activation of HSC. Diosgenin is a steroidal saponin found in several plants including Solanum and Dioscorea species, and it inhibited high glucose-induced renal tubular fibrosis. However, the effects of diosgenin against hepatic fibrosis remain elusive. Therefore, in this study, we investigated the effects of diosgenin on TGF-β1-induced HSCs and elucidate the possible mechanism of its anti-fibrotic effect. Our results demonstrated that diosgenin inhibited TGF-β1-induced HSC proliferation, reduced the expression of collagen I and α-smooth muscle actin (α-SMA), as well as the expression of TGF-β receptor I (TGF-β RI) and II. Moreover, diosgenin suppressed TGF-β1-induced phosphorylation of Smad3 in HSCs. In conclusion, our data demonstrate that diosgenin inhibited HSC-T6 cell proliferation and activation, at least in part, via the TGF-β1/Smad signaling pathway. These results provide that diosgenin may have potential to treat liver fibrosis. PMID:26884947

  20. Effect of quercetin and its metabolite on caveolin-1 expression induced by oxidized LDL and lysophosphatidylcholine in endothelial cells.

    PubMed

    Kamada, Chiemi; Mukai, Rie; Kondo, Akari; Sato, Shinya; Terao, Junji

    2016-05-01

    Oxidized low-density lipoprotein contributes to atherosclerotic plaque formation, and quercetin is expected to exert anti-atherosclerotic effects. We previously reported accumulation of conjugated quercetin metabolites in the aorta of rabbits fed high-cholesterol diets with quercetin glucosides, resulting in attenuation of lipid peroxidation and inhibition of lipid accumulation. Caveolin-1, a major structural protein of caveolae in vascular endothelial cells, plays a role in atherosclerosis development. Here we investigated effects of oxidized low-density lipoprotein, quercetin and its metabolite, quercetin 3-O-β-glucuronide, on caveolin-1 expression. Oxidized low-density lipoprotein significantly upregulated caveolin-1 mRNA expression. An oxidized low-density lipoprotein component, lysophosphatidylcholine, also induced expression of both caveolin-1 mRNA and protein. However, lysophosphatidylcholine did not affect the location of caveolin-1 proteins within caveolae structures. Co-treatment with quercetin or quercetin 3-O-β-glucuronide inhibited lysophosphatidylcholine-induced caveolin-1 expression. Quercetin and quercetin 3-O-β-glucuronide also suppressed expression of adhesion molecules induced by oxidized low-density lipoprotein and lysophosphatidylcholine. These results strongly suggest lysophosphatidylcholine derived from oxidized low-density lipoprotein contributes to atherosclerotic events by upregulating caveolin-1 expression, resulting in induction of adhesion molecules. Quercetin metabolites are likely to exert an anti-atherosclerotic effect by attenuating caveolin-1 expression in endothelial cells. PMID:27257344

  1. Effect of quercetin and its metabolite on caveolin-1 expression induced by oxidized LDL and lysophosphatidylcholine in endothelial cells

    PubMed Central

    Kamada, Chiemi; Mukai, Rie; Kondo, Akari; Sato, Shinya; Terao, Junji

    2016-01-01

    Oxidized low-density lipoprotein contributes to atherosclerotic plaque formation, and quercetin is expected to exert anti-atherosclerotic effects. We previously reported accumulation of conjugated quercetin metabolites in the aorta of rabbits fed high-cholesterol diets with quercetin glucosides, resulting in attenuation of lipid peroxidation and inhibition of lipid accumulation. Caveolin-1, a major structural protein of caveolae in vascular endothelial cells, plays a role in atherosclerosis development. Here we investigated effects of oxidized low-density lipoprotein, quercetin and its metabolite, quercetin 3-O-β-glucuronide, on caveolin-1 expression. Oxidized low-density lipoprotein significantly upregulated caveolin-1 mRNA expression. An oxidized low-density lipoprotein component, lysophosphatidylcholine, also induced expression of both caveolin-1 mRNA and protein. However, lysophosphatidylcholine did not affect the location of caveolin-1 proteins within caveolae structures. Co-treatment with quercetin or quercetin 3-O-β-glucuronide inhibited lysophosphatidylcholine-induced caveolin-1 expression. Quercetin and quercetin 3-O-β-glucuronide also suppressed expression of adhesion molecules induced by oxidized low-density lipoprotein and lysophosphatidylcholine. These results strongly suggest lysophosphatidylcholine derived from oxidized low-density lipoprotein contributes to atherosclerotic events by upregulating caveolin-1 expression, resulting in induction of adhesion molecules. Quercetin metabolites are likely to exert an anti-atherosclerotic effect by attenuating caveolin-1 expression in endothelial cells. PMID:27257344

  2. Inhibition of soluble epoxide hydrolase attenuates hepatic fibrosis and endoplasmic reticulum stress induced by carbon tetrachloride in mice

    SciTech Connect

    Harris, Todd R.; Bettaieb, Ahmed; Kodani, Sean; Dong, Hua; Myers, Richard; Chiamvimonvat, Nipavan; Haj, Fawaz G.; Hammock, Bruce D.

    2015-07-15

    Liver fibrosis is a pathological condition in which chronic inflammation and changes to the extracellular matrix lead to alterations in hepatic tissue architecture and functional degradation of the liver. Inhibitors of the enzyme soluble epoxide hydrolase (sEH) reduce fibrosis in the heart, pancreas and kidney in several disease models. In this study, we assess the effect of sEH inhibition on the development of fibrosis in a carbon tetrachloride (CCl{sub 4})-induced mouse model by monitoring changes in the inflammatory response, matrix remolding and endoplasmic reticulum stress. The sEH inhibitor 1-trifluoromethoxyphenyl-3-(1-propionylpiperidin-4-yl) urea (TPPU) was administered in drinking water. Collagen deposition in the liver was increased five-fold in the CCl{sub 4}-treated group, and this was returned to control levels by TPPU treatment. Hepatic expression of Col1a2 and 3a1 mRNA was increased over fifteen-fold in the CCl{sub 4}-treated group relative to the Control group, and this increase was reduced by 50% by TPPU treatment. Endoplasmic reticulum (ER) stress observed in the livers of CCl{sub 4}-treated animals was attenuated by TPPU treatment. In order to support the hypothesis that TPPU is acting to reduce the hepatic fibrosis and ER stress through its action as a sEH inhibitor we used a second sEH inhibitor, trans-4-(4-[3-(4-trifluoromethoxy-phenyl)-ureido]-cyclohexyloxy)-benzoic acid (t-TUCB), and sEH null mice. Taken together, these data indicate that the sEH may play an important role in the development of hepatic fibrosis induced by CCl{sub 4}, presumably by reducing endogenous fatty acid epoxide chemical mediators acting to reduce ER stress. - Highlights: • We administer an inhibitor of sEH in a CCl4 murine model. • sEH inhibition reduces liver collagen deposition and pro-fibrotic gene expression. • sEH inhibition induces MMP-1a activity.

  3. Morin attenuates hepatic insulin resistance in high-fat-diet-induced obese mice.

    PubMed

    Naowaboot, Jarinyaporn; Wannasiri, Supaporn; Pannangpetch, Patchareewan

    2016-06-01

    Morin is a natural bioflavonoid that exhibits antioxidant and anti-inflammatory properties. The present study was designed to evaluate the effect of morin on insulin resistance, oxidative stress, and inflammation in a high-fat-diet (HFD)-induced obese mice. Obesity was induced in ICR mice by feeding a HFD (60 % kcal from fat) for 12 weeks. After the first 6 weeks, obese mice were treated with morin (50 or 100 mg/kg/day) once daily for further 6 weeks. Blood glucose, lipid profile, insulin, leptin, adiponectin, and markers of oxidative stress and inflammation were then measured. Liver was excised, subjected to histopathology, glycogen determination, and gene and protein expression analysis. Morin administration reduced blood glucose, serum insulin, leptin, malondialdehyde, interleukin-6 (IL-6), and monocyte chemoattractant protein-1 (MCP-1) levels and increased serum adiponectin levels. Moreover, there was a reduction in serum lipid and liver triglyceride levels. Liver histology indicated that morin limited accumulation of lipid droplets. Interestingly, morin reduced expression of hepatic sterol regulatory element binding protein 1c (SREBP1c), fatty acid synthase (FAS), and acetyl-CoA carboxylase (ACC) and up-regulated hepatic carnitine palmitoyltransferase 1a (CPT1a) expression. Morin also stimulated glycogen storage and suppressed phosphoenolpyruvate carboxykinase (PEPCK) and glucose-6-phosphatase (G6Pase) protein expression. Furthermore, hepatic superoxide dismutase (SOD) and catalase (CAT) expression were increased after morin treatment. These findings indicate that morin has a positive effect in the HFD-induced obesity condition by suppressing lipogenesis, gluconeogenesis, inflammation, and oxidative stress activities. PMID:26976296

  4. Pioglitazone attenuates hepatic inflammation and fibrosis in phosphatidylethanolamine N-methyltransferase-deficient mice.

    PubMed

    van der Veen, Jelske N; Lingrell, Susanne; Gao, Xia; Quiroga, Ariel D; Takawale, Abhijit; Armstrong, Edward A; Yager, Jerome Y; Kassiri, Zamaneh; Lehner, Richard; Vance, Dennis E; Jacobs, René L

    2016-04-01

    Phosphatidylethanolamine N-methyltransferase (PEMT) is an important enzyme in hepatic phosphatidylcholine (PC) biosynthesis. Pemt(-/-) mice are protected against high-fat diet (HFD)-induced obesity and insulin resistance; however, these mice develop nonalcoholic fatty liver disease (NAFLD). We hypothesized that peroxisomal proliferator-activated receptor-γ (PPARγ) activation by pioglitazone might stimulate adipocyte proliferation, thereby directing lipids from the liver toward white adipose tissue. Pioglitazone might also act directly on PPARγ in the liver to improve NAFLD. Pemt(+/+) and Pemt(-/-) mice were fed a HFD with or without pioglitazone (20 mg·kg(-1)·day(-1)) for 10 wk. Pemt(-/-) mice were protected from HFD-induced obesity but developed NAFLD. Treatment with pioglitazone caused an increase in body weight gain in Pemt(-/-) mice that was mainly due to increased adiposity. Moreover, pioglitazone improved NAFLD in Pemt(-/-) mice, as indicated by a 35% reduction in liver weight and a 57% decrease in plasma alanine transaminase levels. Livers from HFD-fed Pemt(-/-) mice were steatotic, inflamed, and fibrotic. Hepatic steatosis was still evident in pioglitazone-treated Pemt(-/-) mice; however, treatment with pioglitazone reduced hepatic fibrosis, as evidenced by reduced Sirius red staining and lowered mRNA levels of collagen type Iα1 (Col1a1), tissue inhibitor of metalloproteinases 1 (Timp1), α-smooth muscle actin (Acta2), and transforming growth factor-β (Tgf-β). Similarly, oxidative stress and inflammation were reduced in livers from Pemt(-/-) mice upon treatment with pioglitazone. Together, these data show that activation of PPARγ in HFD-fed Pemt(-/-) mice improved liver function, while these mice were still protected against diet-induced obesity and insulin resistance. PMID:26797396

  5. Hepatitis

    MedlinePlus

    ... be serious. Some can lead to scarring, called cirrhosis, or to liver cancer. Sometimes hepatitis goes away by itself. If it does not, it can be treated with drugs. Sometimes hepatitis lasts a lifetime. Vaccines can help prevent some viral forms.

  6. Opuntia ficus-indica seed attenuates hepatic steatosis and promotes M2 macrophage polarization in high-fat diet-fed mice.

    PubMed

    Kang, Jung-Woo; Shin, Jun-Kyu; Koh, Eun-Ji; Ryu, Hyojeong; Kim, Hyoung Ja; Lee, Sun-Mee

    2016-04-01

    Opuntia ficus-indica (L.) is a popular edible plant that possesses considerable nutritional value and exhibits diverse biological actions including anti-inflammatory and antidiabetic activities. In this study, we hypothesized that DWJ504, an extract of O ficus-indica seed, would ameliorate hepatic steatosis and inflammation by regulating hepatic de novo lipogenesis and macrophage polarization against experimental nonalcoholic steatohepatitis. Mice were fed a normal diet or a high-fat diet (HFD) for 10 weeks. DWJ504 (250, 500, and 1000 mg/kg) or vehicle (0.5% carboxymethyl cellulose) were orally administered for the last 4 weeks of the 10-week HFD feeding period. DWJ504 treatment remarkably attenuated HFD-induced increases in hepatic lipid content and hepatocellular damage. DWJ504 attenuated increases in sterol regulatory element-binding protein 1 and carbohydrate-responsive element-binding protein expression and a decrease in carnitine palmitoyltransferase 1A. Although DWJ504 augmented peroxisome proliferator-activated receptor α protein expression, it attenuated peroxisome proliferator-activated receptor γ expression. Moreover, DWJ504 promoted hepatic M2 macrophage polarization as indicated by attenuation of the M1 marker genes and enhancement of M2 marker genes. Finally, DWJ504 attenuated expression of toll-like receptor 4, nuclear factor κB, tumor necrosis factor α, interleukin 6, TIR-domain-containing adapter-inducing interferon β, and interferon β levels. Our results demonstrate that DWJ504 prevented intrahepatic lipid accumulation, induced M2 macrophage polarization, and suppressed the toll-like receptor 4-mediated inflammatory signaling pathway. Thus, DWJ504 has therapeutic potential in the prevention of nonalcoholic fatty liver disease. PMID:27001282

  7. Isoliquiritigenin attenuates oxidative hepatic damage induced by carbon tetrachloride with or without buthionine sulfoximine.

    PubMed

    Zhao, ZhengLin; Park, Sang Mi; Guan, LiXin; Wu, YiYan; Lee, Jong Rok; Kim, Sang Chan; Kim, Young Woo; Zhao, RongJie

    2015-01-01

    Glycyrrhizae radix (G. radix) has been demonstrated to have hepatoprotective properties. This study determined the therapeutic effects of isoliquiritigenin (isoLQ) in G. radix, against liver injury induced by CCl4 in rats. CCl4 (0.5 ml/kg/d, twice) or CCl4 plus buthionine sulfoximine exerted severe liver damage assessed by increased plasma levels of alanine aminotransferase and aspartate aminotransferase, in addition to hepatic degeneration and necrosis. These pathological changes were markedly protected by pretreatment with isoLQ (5, 20 mg/kg/d, p.o.) for 3 consecutive days. In addition, pretreatment with isoLQ inhibited CCl4-induced reduction of cytochrome P450 2E1 protein and mRNA expression as well as activity in the liver. Moreover, isoLQ pretreatment reversed the decrease in hepatic antioxidant capacity induced by CCl4 as well as suppressed expression of tumor necrosis factor-alpha and cyclooxigenase-2 in the liver. These results suggest that isoLQ has a protective effect against CCl4-induced liver damage through induction of antioxidant and anti-inflammatory activities. PMID:25450236

  8. Gadolinium chloride, a Kupffer cell inhibitor, attenuates hepatic injury in a rat model of chronic cholestasis.

    PubMed

    Zandieh, Ali; Payabvash, Seyedmehedi; Pasalar, Parvin; Morteza, Afsaneh; Zandieh, Basira; Tavangar, Seyed Mohammad; Dehpour, Ahmad Reza

    2011-11-01

    The aim of the current study was to elucidate the effect of Kupffer cells inhibition on hepatic injury induced by chronic cholestasis. Sprague-Dawley rats underwent bile duct ligation (BDL) or sham operation and were treated with either saline solution or gadolinium chloride (GdCl(3), a specific Kupffer cell inhibitor, 20 mg/kg i.p. daily). Serum and liver samples were collected after 28 days. Direct and total bilirubin concentrations and serum enzyme activities of alkaline phosphatase (ALP), alanine aminotransferase (ALT), aspartate aminotransferase (AST), and γ-glutamyl transpeptidase (GGT) increased following BDL (p < 0.01). On the contrary to bilirubin concentrations and AST activity, GdCl(3) partially prevented the elevation in ALP, ALT and GGT enzyme activities (p < 0.05). GdCl(3) alleviated lipid peroxidation (reflected by malondialdehyde [MDA] concentration) and increased the activities of antioxidant enzymes (i.e. catalase and glutathione peroxidase) in liver samples after BDL (p < 0.05). Fibrosis, ductular proliferation and portal inflammation were also scored in liver samples. Among morphological changes appeared following BDL (i.e. marked fibrosis, portal inflammation and ductular proliferation); only ductular proliferation was not alleviated by GdCl(3). Therefore, Kupffer cells inhibition has beneficial effects against the development of hepatic injury induced by chronic cholestasis. PMID:21339256

  9. Agaricoglycerides Protect against Hepatic Ischemia/Reperfusion Injury by Attenuating Inflammatory Response, Oxidative Stress, and Expression of NF-κB

    PubMed Central

    Zhao, Xiang-qian; Liang, Bin; Liu, Yang; Huang, Xiao-qiang

    2015-01-01

    We have investigated the effects of agaricoglycerides (AG) in a mouse model of hepatic I/R injury. I/R triggered increases/changes in markers of liver injury, hepatic oxidative stress, tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and nuclear factor κB (NF-κB). AG significantly reduced the extent of liver inflammation and oxidative stress and also attenuated the NF-κB activation as well as TNF-α and IL-1β production. Our results indicate that AG may represent a novel protective strategy against I/R-induced injury and inflammatory diseases. PMID:25960746

  10. Paradoxical attenuation of autoimmune hepatitis by oral isoniazid in wild-type and N-acetyltransferase-deficient mice.

    PubMed

    Metushi, Imir G; Cai, Ping; Vega, Libia; Grant, Denis M; Uetrecht, Jack

    2014-06-01

    Isoniazid (INH) treatment can cause serious liver injury and autoimmunity. There are now several lines of evidence that INH-induced liver injury is immune mediated, but this type of liver injury has not been reproduced in animals, possibly because immune tolerance is the dominant response of the liver. In this study, we immunized mice with isonicotinic acid (INA)-modified proteins and Freund's adjuvant, which led to mild experimental autoimmune hepatitis (EAH) with an increase in cells staining positive for F4/80, CD11b, CD8, CD4, CD45R, and KI67. We expected that subsequent treatment of mice with oral INH would lead to more serious immune-mediated liver injury, but paradoxically it markedly attenuated the EAH caused by immunization with INA-modified hepatic proteins. In addition, patients of the slow acetylator phenotype are at increased risk of INH-induced liver injury. Treatment of arylamine N-acetyltransferase-deficient Nat1/2(-/-) mice with INH for up to 5 weeks produced mild increases in glutamate and sorbitol dehydrogenase activities, but not severe liver injury. Female Nat1/2(-/-) mice treated with INH for 1, 3, or 7 days developed steatosis, an increase in Oil Red O staining, and abnormal mitochondrial morphology in the liver. A decrease in M1 and an increase in M2a and M2b macrophages was observed in female Nat1/2(-/-) mice treated with INH for 1, 3, or 7 days; these changes returned to baseline levels by day 35. These data indicate that INH has immunosuppressive effects, even though it is also known to induce autoantibody production and a lupus-like autoimmune syndrome in humans. PMID:24623063

  11. Periostin down-regulation attenuates the pro-fibrogenic response of hepatic stellate cells induced by TGF-β1

    PubMed Central

    Hong, Li; Shejiao, Dai; Fenrong, Chen; Gang, Zhao; Lei, Dong

    2015-01-01

    Liver fibrosis is characterized by an exacerbated accumulation of deposition of the extracellular matrix (ECM), and the activation of hepatic stellate cells (HSC) plays a pivotal role in the development of liver fibrosis. Periostin has been shown to regulate cell adhesion, proliferation, migration and apoptosis; however, the involvement of periostin and its role in transforming growth factor (TGF)-β1-induced HSC activation remains unclear. We used RT-PCR and Western blot to evaluate the expression level of periostin in hepatic fibrosis tissues and HSCs, respectively. Cell proliferation was determined using the Cell Proliferation ELISA BrdU kit, cell cycle was analysed by flow cytometry. The expression of α-smooth muscle actin (α-SMA), collagen I, TGF-β1, p-Smad2 and p-Smad3 were determined by western blot. Our study found that periostin was up-regulated in liver fibrotic tissues and activated HSCs. In addition, siRNA-periostin suppressed TGF-β1-induced HSC proliferation. The HSC transfected with siRNA-periostin significantly inhibited TGF-β1-induced expression levels of α-SMA and collagen I. Furthermore, TGF-β1 stimulated the expression of periostin, and siRNA-periostin attenuated TGF-β1-induced Smad2/3 activation in HSCs. These results suggest that periostin may function as a novel regulator to modulate HSC activation, potentially by promoting the TGF-β1/Smad signalling pathway, and propose a strategy to target periostin for the treatment of liver fibrosis. PMID:26249143

  12. Cerebrolysin attenuates cerebral and hepatic injury due to lipopolysaccharide in rats.

    PubMed

    Abdel-Salam, O M E; Omara, E A; Mohammed, N A; Youness, E R; Khadrawy, Y A; Sleem, A A

    2013-12-01

    This study aimed to investigate the effect of cerebrolysin on oxidative stress in the brain and liver during systemic inflammation. Rats were intraperitoneally challenged with a single subseptic dose of lipopolysaccharide (LPS; 300 μg/kg) without or with cerebrolysin at doses of 21.5, 43 or 86 mg/kg. After 4 h, rats were euthanized and the brain and liver tissues were subjected to biochemical and histopathological analyses. Cerebrolysin revealed inhibitory effects on the elevation of lipid peroxidation and nitric oxide induced by LPS. In contrast, the decrease in reduced glutathione level and paraoxonase activity induced by LPS was attenuated by an injection of cerebrolysin in a dose-dependent manner. Moreover, cerebrolysin reduced LPS-induced activation of brain NF-κB and reversed LPS-induced decline of brain butyrylcholinesterase and acetylcholinesterase activities in a dose-dependent manner. Histopathological analyses revealed that neuronal damage and liver necrosis induced by LPS were ameliorated by cerebrolysin dose-dependently. Cerebrolysin treatment dose-dependently attenuated LPS-induced expressions in cyclooxygenase 2, inducible nitric oxide synthase, and caspase-3 in the cortex or striatum as well as the liver. These results suggest that cerebrolysin treatment might have beneficial therapeutic effects in cerebral inflammation. Cerebrolysin might also prove of value in liver disease and this possibility requires further exploration. PMID:24423658

  13. Protective Effect of Quercetin on Posttraumatic Cardiac Injury

    PubMed Central

    Jing, Zehao; Wang, Zhuorun; Li, Xiujie; Li, Xintao; Cao, Tingting; Bi, Yue; Zhou, Jicheng; Chen, Xu; Yu, Deqin; Zhu, Liang; Li, Shuzhuang

    2016-01-01

    Quercetin is an important dietary flavonoid present in fruits and vegetables and has attracted attention because of its anti-inflammatory and anti-oxidative properties. Inflammation and oxidative stress play important roles in posttraumatic cardiomyocyte apoptosis, which contributes to secondary cardiac dysfunction. This study investigates the protective effect of quercetin on trauma-induced secondary cardiac injury and the mechanisms involved. Widely accepted nonlethal mechanical trauma models were established. In vivo, cardiomyocyte apoptosis and cardiac dysfunction in rats were assessed using TUNEL staining and a biological mechanic experiment system. In vitro, cell viability, tumour necrosis factor-α (TNF-α), reactive oxygen species (ROS) and [Ca2+]i of H9c2 cells were detected using an MTT assay, ELISA, and 2′,7′-dichlorofluorescin diacetate and fluo-4 acetoxymethyl ester assays respectively. Quercetin pretreatment (20 mg/kg i.p.; 0.5 h before trauma) significantly improved posttraumatic cardiomyocyte apoptosis and cardiac dysfunction. Pretreatment with quercetin (20 μM; 24 h before trauma plasma addition) significantly attenuated trauma-induced viability decreases, TNF-α increases, ROS overproduction and [Ca2+]i overload in H9c2 cells. In conclusion, quercetin may reverse posttraumatic cardiac dysfunction by reducing cardiomyocyte apoptosis through the suppression of TNF-α increases, ROS overproduction and Ca2+ overload in cardiomyocytes, representing a potential preventive approach for the treatment of secondary cardiac injury after mechanical trauma. PMID:27470932

  14. Protective Effect of Quercetin on Posttraumatic Cardiac Injury.

    PubMed

    Jing, Zehao; Wang, Zhuorun; Li, Xiujie; Li, Xintao; Cao, Tingting; Bi, Yue; Zhou, Jicheng; Chen, Xu; Yu, Deqin; Zhu, Liang; Li, Shuzhuang

    2016-01-01

    Quercetin is an important dietary flavonoid present in fruits and vegetables and has attracted attention because of its anti-inflammatory and anti-oxidative properties. Inflammation and oxidative stress play important roles in posttraumatic cardiomyocyte apoptosis, which contributes to secondary cardiac dysfunction. This study investigates the protective effect of quercetin on trauma-induced secondary cardiac injury and the mechanisms involved. Widely accepted nonlethal mechanical trauma models were established. In vivo, cardiomyocyte apoptosis and cardiac dysfunction in rats were assessed using TUNEL staining and a biological mechanic experiment system. In vitro, cell viability, tumour necrosis factor-α (TNF-α), reactive oxygen species (ROS) and [Ca(2+)]i of H9c2 cells were detected using an MTT assay, ELISA, and 2',7'-dichlorofluorescin diacetate and fluo-4 acetoxymethyl ester assays respectively. Quercetin pretreatment (20 mg/kg i.p.; 0.5 h before trauma) significantly improved posttraumatic cardiomyocyte apoptosis and cardiac dysfunction. Pretreatment with quercetin (20 μM; 24 h before trauma plasma addition) significantly attenuated trauma-induced viability decreases, TNF-α increases, ROS overproduction and [Ca(2+)]i overload in H9c2 cells. In conclusion, quercetin may reverse posttraumatic cardiac dysfunction by reducing cardiomyocyte apoptosis through the suppression of TNF-α increases, ROS overproduction and Ca(2+) overload in cardiomyocytes, representing a potential preventive approach for the treatment of secondary cardiac injury after mechanical trauma. PMID:27470932

  15. Oxidative Stress Attenuates Lipid Synthesis and Increases Mitochondrial Fatty Acid Oxidation in Hepatoma Cells Infected with Hepatitis C Virus.

    PubMed

    Douglas, Donna N; Pu, Christopher Hao; Lewis, Jamie T; Bhat, Rakesh; Anwar-Mohamed, Anwar; Logan, Michael; Lund, Garry; Addison, William R; Lehner, Richard; Kneteman, Norman M

    2016-01-22

    Cytopathic effects are currently believed to contribute to hepatitis C virus (HCV)-induced liver injury and are readily observed in Huh7.5 cells infected with the JFH-1 HCV strain, manifesting as apoptosis highly correlated with growth arrest. Reactive oxygen species, which are induced by HCV infection, have recently emerged as activators of AMP-activated protein kinase. The net effect is ATP conservation via on/off switching of metabolic pathways that produce/consume ATP. Depending on the scenario, this can have either pro-survival or pro-apoptotic effects. We demonstrate reactive oxygen species-mediated activation of AMP-activated kinase in Huh7.5 cells during HCV (JFH-1)-induced growth arrest. Metabolic labeling experiments provided direct evidence that lipid synthesis is attenuated, and β-oxidation is enhanced in these cells. A striking increase in nuclear peroxisome proliferator-activated receptor α, which plays a dominant role in the expression of β-oxidation genes after ligand-induced activation, was also observed, and we provide evidence that peroxisome proliferator-activated receptor α is constitutively activated in these cells. The combination of attenuated lipid synthesis and enhanced β-oxidation is not conducive to lipid accumulation, yet cellular lipids still accumulated during this stage of infection. Notably, the serum in the culture media was the only available source for polyunsaturated fatty acids, which were elevated (2-fold) in the infected cells, implicating altered lipid import/export pathways in these cells. This study also provided the first in vivo evidence for enhanced β-oxidation during HCV infection because HCV-infected SCID/Alb-uPA mice accumulated higher plasma ketones while fasting than did control mice. Overall, this study highlights the reprogramming of hepatocellular lipid metabolism and bioenergetics during HCV infection, which are predicted to impact both the HCV life cycle and pathogenesis. PMID:26627833

  16. Water Extract of Dolichos lablab Attenuates Hepatic Lipid Accumulation in a Cellular Nonalcoholic Fatty Liver Disease Model.

    PubMed

    Im, A-Rang; Kim, Yun Hee; Lee, Hye Won; Song, Kwang Hoon

    2016-05-01

    Nonalcoholic fatty liver disease (NAFLD) is a common chronic liver disease that is rising in prevalence worldwide. Therapeutic strategies for patients with NAFLD are limited by a lack of effective drugs. In this report, we show that Dolichos lablab water extract (DLL-Ex) protects against free fatty acid (FFA)-induced lipid accumulation and attenuates expression of genes involved in lipid droplet accumulation in cellular NAFLD models. The hepatoprotective effects and underlying mechanism of DLL-Ex were assessed using an in vitro cellular model in which NAFLD was simulated by inducing excessive FFA influx into hepatocytes. HepG2 cells were treated with DLL-Ex and FFAs for 24 h, after which intracellular lipid content was observed by using Nile Red and Oil Red O staining. Quantitative real-time polymerase chain reaction was used to measure expression levels of genes related to FFA-mediated cellular energy depletion. Western blotting was used to measure protein levels of phosphorylated c-Jun N-terminal kinase, AMP-activated protein kinase alpha (AMPKα), and peroxisome proliferator-activated receptor γ coactivator 1 alpha. In HepG2 cells, DLL-Ex inhibited expression of CD36, which regulates fatty acid uptake, as well as BODIPY-labeled fatty acid uptake. Additionally, DLL-Ex significantly attenuated FFA-mediated cellular energy depletion and mitochondrial membrane depolarization. Furthermore, DLL-Ex enhanced phosphorylation of AMPK, indicating that AMPK is a critical regulator of DLL-Ex-mediated inhibition of hepatic lipid accumulation, possibly through its antioxidative effect. These results demonstrate that DLL-Ex exerts potent anti-NAFLD activity, suggesting that it could be a potential adjuvant treatment for patients with NAFLD. PMID:27152979

  17. Chrysin attenuates liver fibrosis and hepatic stellate cell activation through TGF-β/Smad signaling pathway.

    PubMed

    Balta, Cornel; Herman, Hildegard; Boldura, Oana Maria; Gasca, Ionela; Rosu, Marcel; Ardelean, Aurel; Hermenean, Anca

    2015-10-01

    We investigated the protective effect of chrysin on chronic liver fibrosis in mice and the potential mechanism underlying TGF-β1-mediated hepatic stellate cells (HSCs) activation on fibrogenesis. Experimental fibrosis was established by intraperitoneal injection of mice with 20% v/v, 2 ml/kg CCl4 twice a week, for 7 weeks. Mice were orally treated with 3 doses of chrysin (50, 100 and 200 mg/kg) or with vehicle as control. For the assessment of the spontaneous reversion of fibrosis, CCl4 treated animals were investigated after two weeks of recovery time. Silymarin was used as standard hepatoprotective flavonoid. Histopathological investigations showed that hepatic fibrosis grade was markedly reduced in the chrysin groups compared to the fibrotic one. Moreover, CCl4 activated HSCs induced an upregulation of smooth muscle actin (α-SMA), an increased number of TGF-β1 immunopositive cells and marked up-regulation of TGF-β1. α-SMA and TGF-β1 levels were significantly reduced in all chrysin treated groups in a dose-dependent manner, whereas the level of spontaneous reversal of fibrosis was lower compared to all flavonoid treated groups. Liver mRNA levels of Smad 2 in the 50, 100 and 200 mg/kg chrysin treated groups were significantly reduced by about 88.54%, 92.15% and 95.56% of the corresponding levels in the fibrosis mice group. The results were similar for mRNA levels of Smad 3. The protective response to silymarin was almost similar to that seen with the highest doses of chrysin. In this study, we have shown that chrysin has the efficacy to reverse CCl4-stimulated liver fibrosis by inhibition of HSCs activation and proliferation through TGF-β1/Smad pathway. These results suggest that chrysin may be useful in stopping or reversing the progression of liver fibrosis and might offer the possibility to develop a new therapeutic drug, useful in treatment of chronic liver diseases. PMID:26297989

  18. Diallyl trisulfide attenuates ethanol-induced hepatic steatosis by inhibiting oxidative stress and apoptosis.

    PubMed

    Chen, Lian-Yun; Chen, Qin; Cheng, Yi-Feng; Jin, Huan-Huan; Kong, De-Song; Zhang, Feng; Wu, Li; Shao, Jiang-Juan; Zheng, Shi-Zhong

    2016-04-01

    Inhibiting the major characteristics of alcoholic fatty liver (AFL) such as lipid accumulation, oxidative stress and apoptosis is a promising strategy of treating AFL. Diallyl trisulfide (DATS) is the major constituent isolated from garlic, which shows promise in the treatment of chronic liver disease. However, the effects of DATS on ethanol-induced liver injury and the related mechanisms remain unclear. The aim of this study was to evaluate the potential protective effects of DATS on AFL and the potential mechanisms. A single intragastric dose of ethanol was given to rats in vivo, while ethanol-stimulated LO2 cells were used as an in vitro model. Our results demonstrated that DATS prevented ethanol-induced injury, as indicated by the reduced activities of aspartate transaminase (AST) and alanine aminotransferase (ALT) in the serum and culture medium, and inhibition of cell apoptosis. Furthermore, DATS reduced hepatic steatosis by up-regulating the expression of peroxisome proliferator-activated receptor-alpha (PPAR-α) and down-regulating the expression of sterolregulatory element binding protein 1c(SREBP-1c). In addition, DATS alleviated ethanol-induced oxidative stress by enhancing non-enzymatic antioxidant and enzymatic antioxidants contents and by reducing the levels of reactive oxygen species (ROS) and malondialdehyde (MDA). These data collectively revealed that DATS protected ethanol-induced liver injury by inhibiting lipid accumulation and oxidative stress. PMID:27044810

  19. Epigallocatechin-3-gallate (EGCG) attenuates concanavalin A-induced hepatic injury in mice.

    PubMed

    Liu, Dongmei; Zhang, Xiaoli; Jiang, Li; Guo, Yun; Zheng, Changqing

    2014-05-01

    (-)-Epigallocatechin-3-gallate (EGCG) is the most abundant polyphenolic compound present in green tea and has been shown to possess anti-inflammatory and anti-oxidative properties. In this study, we investigated the protective effects of EGCG against concanavalin A (ConA)-induced liver injury and the underlying mechanisms. EGCG (5 mg/kg) was administered orally by gavage to mice twice daily for 10 days before an intravenous injection of ConA. We found that EGCG effectively rescued lethality, improved hepatic pathological damage, and decreased serum levels of alanine aminotransaminase (ALT) in ConA-challenged mice. Furthermore, EGCG also significantly prevented the release of tumor necrosis factor (TNF)-α, interferon (IFN)-γ, interleukin (IL)-4, and IL-6 in serum, reduced malondialdehyde (MDA) levels, and restored glutathione (GSH) content and superoxide dismutase (SOD) activity in liver tissues from ConA-challenged mice. Finally, nuclear factor (NF)-κB activation and expression levels of Toll-like receptor (TLR) 2, TLR4 and TLR9 protein in liver tissues were significantly inhibited by EGCG pretreatment. Taken together, our data suggest that EGCG possesses hepatoprotective properties against ConA-induced liver injury through its anti-inflammatory and anti-oxidant actions. PMID:24373695

  20. Silymarin attenuated hepatic steatosis through regulation of lipid metabolism and oxidative stress in a mouse model of nonalcoholic fatty liver disease (NAFLD)

    PubMed Central

    Ni, Xunjun; Wang, Haiyan

    2016-01-01

    Silymarin, which derived from the milk thistle plant (silybum marianum), has been used for centuries as a natural remedy for diseases of the liver and biliary tract. Considering the therapeutic potential to liver disease, we tested efficacy of silymarin on hepatic steatosis with a high fat diet (HFD)-induced mouse model of non-alcoholic fatty liver disease (NAFLD), and investigated possible effects on lipid metabolic pathways. In our study, silymarin could attenuate the hepatic steatosis, which was proved by both Oil Red O staining and hepatic triglyceride (TG) level determination. Furthermore, compared with INT-747, a potent and selective FXR agonist, silymarin could preserve plasmatic high-density lipoprotein cholesterol (HDL-C) to a higher level and low-density lipoprotein cholesterol (LDL-C) to a lower level, which benefited more to the circulation system. Through real-time PCR analysis, we clarified a vital protective role of silymarin in mRNA regulation of genes involved in lipid metabolism and oxidative stress. It was also shown that silymarin had no effects on body weight, food intake, and liver transaminase. Taken together, silymarin could attenuate hepatic steatosis in a mouse model of NAFLD through regulation of lipid metabolism and oxidative stress, and benefit to the circulation system. All these findings shed new light on NAFLD treatment. PMID:27158393

  1. Silymarin attenuated hepatic steatosis through regulation of lipid metabolism and oxidative stress in a mouse model of nonalcoholic fatty liver disease (NAFLD).

    PubMed

    Ni, Xunjun; Wang, Haiyan

    2016-01-01

    Silymarin, which derived from the milk thistle plant (silybum marianum), has been used for centuries as a natural remedy for diseases of the liver and biliary tract. Considering the therapeutic potential to liver disease, we tested efficacy of silymarin on hepatic steatosis with a high fat diet (HFD)-induced mouse model of non-alcoholic fatty liver disease (NAFLD), and investigated possible effects on lipid metabolic pathways. In our study, silymarin could attenuate the hepatic steatosis, which was proved by both Oil Red O staining and hepatic triglyceride (TG) level determination. Furthermore, compared with INT-747, a potent and selective FXR agonist, silymarin could preserve plasmatic high-density lipoprotein cholesterol (HDL-C) to a higher level and low-density lipoprotein cholesterol (LDL-C) to a lower level, which benefited more to the circulation system. Through real-time PCR analysis, we clarified a vital protective role of silymarin in mRNA regulation of genes involved in lipid metabolism and oxidative stress. It was also shown that silymarin had no effects on body weight, food intake, and liver transaminase. Taken together, silymarin could attenuate hepatic steatosis in a mouse model of NAFLD through regulation of lipid metabolism and oxidative stress, and benefit to the circulation system. All these findings shed new light on NAFLD treatment. PMID:27158393

  2. Effects of quercetin on oxidative stress and memory retrieval in kindled rats.

    PubMed

    Nassiri-Asl, Marjan; Moghbelinejad, Sahar; Abbasi, Esmail; Yonesi, Fatemeh; Haghighi, Mohammad-Reza; Lotfizadeh, Mina; Bazahang, Parisa

    2013-08-01

    Flavonoids are a class of polyphenolic compounds present in fruits and vegetables. Several studies have demonstrated a relationship between the consumption of flavonoid-rich diets and the prevention of human diseases including neurodegenerative disorders. Thus, we assessed the effect of quercetin (3,3',4',5,7-pentahydroxyflavone) on oxidative stress and memory retrieval using a step-through passive avoidance task in kindled rats. Quercetin (25, 50, and 100 mg/kg) was administered intraperitoneally (i.p.) before pentylenetetrazole (PTZ) every other day prior to the training. Retention tests were performed to assess memory in rats. Compared to control, pretreatment with 50 mg/kg of quercetin could attenuate seizure severity from the beginning of the kindling experiment by lowering the mean seizure stages. Moreover, quercetin 50 mg/kg significantly increased the step-through latency of the passive avoidance response compared to the control in the retention test. Malondialdehyde (MDA) levels were significantly increased in the quercetin groups compared to the PTZ group in the hippocampus and cerebral cortex following PTZ kindling. In the quercetin groups, higher sulfhydryl (SH) contents were not observed compared to the PTZ group. These results indicate that quercetin at a specific dose results in decreased seizure severity during kindling and performance improvement in a passive avoidance task in kindled rats. All doses of quercetin led to increased oxidative stress in the hippocampi and cerebral cortices of kindled rats. PMID:23747498

  3. Connective tissue growth factor hammerhead ribozyme attenuates human hepatic stellate cell function

    PubMed Central

    Gao, Run-Ping; Brigstock, David R

    2009-01-01

    AIM: To determine the effect of hammerhead ribozyme targeting connective tissue growth factor (CCN2) on human hepatic stellate cell (HSC) function. METHODS: CCN2 hammerhead ribozyme cDNA plus two self-cleaving sequences were inserted into pTriEx2 to produce pTriCCN2-Rz. Each vector was individually transfected into cultured LX-2 human HSCs, which were then stimulated by addition of transforming growth factor (TGF)-β1 to the culture medium. Semi-quantitative RT-PCR was used to determine mRNA levels for CCN2 or collagen I, while protein levels of each molecule in cell lysates and conditioned medium were measured by ELISA. Cell-cycle progression of the transfected cells was assessed by flow cytometry. RESULTS: In pTriEx2-transfected LX-2 cells, TGF-β1 treatment caused an increase in the mRNA level for CCN2 or collagen I, and an increase in produced and secreted CCN2 or extracellular collagen I protein levels. pTriCCN2-Rz-transfected LX-2 cells showed decreased basal CCN2 or collagen mRNA levels, as well as produced and secreted CCN2 or collagen I protein. Furthermore, the TGF-β1-induced increase in mRNA or protein for CCN2 or collagen I was inhibited partially in pTriCCN2-Rz-transfected LX-2 cells. Inhibition of CCN2 using hammerhead ribozyme cDNA resulted in fewer of the cells transitioning into S phase. CONCLUSION: Endogenous CCN2 is a mediator of basal or TGF-β1-induced collagen I production in human HSCs and regulates entry of the cells into S phase. PMID:19673024

  4. Luteolin attenuates hepatic steatosis and insulin resistance through the interplay between the liver and adipose tissue in mice with diet-induced obesity.

    PubMed

    Kwon, Eun-Young; Jung, Un Ju; Park, Taesun; Yun, Jong Won; Choi, Myung-Sook

    2015-05-01

    The flavonoid luteolin has various pharmacological activities. However, few studies exist on the in vivo mechanism underlying the actions of luteolin in hepatic steatosis and obesity. The aim of the current study was to elucidate the action of luteolin on obesity and its comorbidity by analyzing its transcriptional and metabolic responses, in particular the luteolin-mediated cross-talk between liver and adipose tissue in diet-induced obese mice. C57BL/6J mice were fed a normal, high-fat, and high-fat + 0.005% (weight for weight) luteolin diet for 16 weeks. In high fat-fed mice, luteolin improved hepatic steatosis by suppressing hepatic lipogenesis and lipid absorption. In adipose tissue, luteolin increased PPARγ protein expression to attenuate hepatic lipotoxicity, which may be linked to the improvement in circulating fatty acid (FA) levels by enhancing FA uptake genes and lipogenic genes and proteins in adipose tissue. Interestingly, luteolin also upregulated the expression of genes controlling lipolysis and the tricarboxylic acid (TCA) cycle prior to lipid droplet formation, thereby reducing adiposity. Moreover, luteolin improved hepatic insulin sensitivity by suppressing SREBP1 expression that modulates Irs2 expression through its negative feedback and gluconeogenesis. Luteolin ameliorates the deleterious effects of diet-induced obesity and its comorbidity via the interplay between liver and adipose tissue. PMID:25524918

  5. Inhibiting miR-21 attenuates experimental hepatic fibrosis by suppressing both the ERK1 pathway in HSC and hepatocyte EMT.

    PubMed

    Wu, Kaiming; Ye, Changhong; Lin, Lin; Chu, Yimin; Ji, Meng; Dai, Weiping; Zeng, Xin; Lin, Yong

    2016-08-01

    MicroRNA-21 (miR-21) has emerged as a critical regulatory molecule and an important serum marker in hepatic fibrogenesis. The aim of the present study was to investigate the role of inhibiting miR-21 on hepatic fibrosis treatment. Serum miR-21 levels in 60 healthy individuals and 180 patients with different stages of liver cirrhosis were examined, miR-21 levels in normal or cirrhotic human liver tissues (n=10 each) were also detected. An adenoviral vector (Ad-TuD-21) carrying the sponging ToughDecoy (TuD)-RNA sequence against miR-21 was constructed to reduce miR-21 expression efficiently in vitro and in vivo Histological and immunohistological examinations were performed to evaluate the inhibitory effects and mechanism of Ad-TuD-21 delivery into carbon tetrachloride (CCl4) induced hepatic fibrosis rats by targeting extracellular signal-regulated kinase 1 (ERK1) signalling in hepatic stellate cells (HSC) and hepatocyte epithelial-mesenchymal transition (EMT). Our results revealed that enhanced miR-21 levels in cirrhotic patients were related to the severity and activity of liver cirrhosis. Ad-TuD-21 administered to liver fibrosis rats could remarkably suppress profibrotic gene expression, cause histological improvements in liver and attenuate hepatic fibrosis significantly. More importantly, after Ad-TuD-21 treatment, inhibition of both the ERK1 signalling pathway in HSC and hepatocyte EMT was confirmed, which paralleled the enhancement of miR-21 target genes-sprouty2 (SPRY2) and hepatocyte nuclear factor 4α (HNF4α)-expression in vivo These data demonstrated that miR-21 is a key regulator to promote hepatic fibrogenesis, and sponging miR-21 expression may present a novel potentially therapeutic option for hepatic fibrosis. PMID:27226339

  6. Hepatic arterial administration of sorafenib and iodized oil effectively attenuates tumor growth and intrahepatic metastasis in rabbit VX2 hepatocellular carcinoma model

    PubMed Central

    Zhang, Lin; Liu, Feng-Yong; Fu, Jin-Xin; Duan, Feng; Fan, Qing-Sheng; Wang, Mao-Qiang

    2014-01-01

    Aim: To investigate the therapeutic effect of the hepatic arterial administration of sorafenib in rabbit VX-2 hepatocellular carcinoma (HCC) model. Methods: Rabbit VX-2 HCC models were established via implanting VX-2 tumors into the livers, and randomly divided into four groups, respectively treated with (1) The hepatic arterial administration of iodized oil alone (TACE-i), (2) The hepatic arterial administration of iodized oil and pharmorubicin (TACE-ip), (3) The hepatic arterial administration of iodized and cis-DDP (TACE-ic), (4) The hepatic arterial administration of iodized and sorafenib (TACE-is). The growth rate and intrahepatic metastasis of implanted VX-2 tumor in each rabbit were measured. Microvessel density (MVD) in the adjacent tissues of implanted VX-2 tumor were estimated by detecting the expression of CD34 and VEGF level in tumor adjacent tissues were also examined by Immunohistochemistry. Results: Compared with other groups, TACE-is treatment group presented a better effect on inhibiting tumor growth rate and intrahepatic metastasis in rabbit VX-2 HCC model. The angiogenesis (assessed by MVD) in the adjacent tissues were suppressed more dramatically in TACE-is treated group. Moreover, TACE-is treatment did not significantly increase the levels of alanine transaminase and creatinine compared to the group with TACE-i treatment. Conclusion: The hepatic arterial administration of sorafenib and iodized oil (TACE-is) effectively attenuates tumor growth and intrahepatic metastasis in rabbit VX-2 HCC model without obvious hepatic and renal toxicity. One of the related mechanisms may be due to the inhibition of angiogenesis in the adjacent tissues. Our data indicated that TACE-is may be a secure and effective treatment for HCC. PMID:25550815

  7. Adenoviral overexpression of Lhx2 attenuates cell viability but does not preserve the stem cell like phenotype of hepatic stellate cells

    SciTech Connect

    Genz, Berit; Thomas, Maria; Pützer, Brigitte M.; Siatkowski, Marcin; Fuellen, Georg; Vollmar, Brigitte; Abshagen, Kerstin

    2014-11-01

    Hepatic stellate cells (HSC) are well known initiators of hepatic fibrosis. After liver cell damage, HSC transdifferentiate into proliferative myofibroblasts, representing the major source of extracellular matrix in the fibrotic organ. Recent studies also demonstrate a role of HSC as progenitor or stem cell like cells in liver regeneration. Lhx2 is described as stem cell maintaining factor in different organs and as an inhibitory transcription factor in HSC activation. Here we examined whether a continuous expression of Lhx2 in HSC could attenuate their activation and whether Lhx2 could serve as a potential target for antifibrotic gene therapy. Therefore, we evaluated an adenoviral mediated overexpression of Lhx2 in primary HSC and investigated mRNA expression patterns by qRT-PCR as well as the activation status by different in vitro assays. HSC revealed a marked increase in activation markers like smooth muscle actin alpha (αSMA) and collagen 1α independent from adenoviral transduction. Lhx2 overexpression resulted in attenuated cell viability as shown by a slightly hampered migratory and contractile phenotype of HSC. Expression of stem cell factors or signaling components was also unaffected by Lhx2. Summarizing these results, we found no antifibrotic or stem cell maintaining effect of Lhx2 overexpression in primary HSC. - Highlights: • We performed adenoviral overexpression of Lhx2 in primary hepatic stellate cells. • Hepatic stellate cells expressed stem cell markers during cultivation. • Cell migration and contractility was slightly hampered upon Lhx2 overexpression. • Lhx2 overexpression did not affect stem cell character of hepatic stellate cells.

  8. Psidium guajava Linn. leaf extract affects hepatic glucose transporter-2 to attenuate early onset of insulin resistance consequent to high fructose intake: An experimental study

    PubMed Central

    Mathur, R.; Dutta, Shagun; Velpandian, T.; Mathur, S.R.

    2015-01-01

    Background: Insulin resistance (IR) is amalgam of pathologies like altered glucos metabolism, dyslipidemia, impaired glucose tolerance, non-alcoholic fatty liver disease, and associated with type-II diabetes and cardiometabolic diseases. One of the reasons leading to its increased and early incidence is understood to be a high intake of processed fructose containing foods and beverages by individuals, especially, during critical developmental years. Objective: To investigate the preventive potential of aqueous extract of Psidium guajava leaves (PG) against metabolic pathologies, vis-à-vis, IR, dyslipidemia, hyperleptinemia and hypertension, due to excess fructose intake initiated during developmental years. Materials and Methods: Post-weaning (4 weeks old) male rats were provided fructose (15%) as drinking solution, ad libitum, for 8 weeks and assessed for food and water/fructose intake, body weight, fasting blood sugar, mean arterial pressure, lipid biochemistry, endocrinal (insulin, leptin), histopathological (fatty liver) and immunohistochemical (hepatic glucose transporter [GLUT2]) parameters. Parallel treatment groups were administered PG in doses of 250 and 500 mg/kg/d, po × 8 weeks and assessed for same parameters. Using extensive liquid chromatography-mass spectrometry protocols, PG was analyzed for the presence of phytoconstituents like Myrecetin, Luteolin, Kaempferol and Guavanoic acid and validated to contain Quercetin up to 9.9%w/w. Results: High fructose intake raised circulating levels of insulin and leptin and hepatic GLUT2 expression to promote IR, dyslipidemia, and hypertension that were favorably re-set with PG. Although PG is known for its beneficial role in diabetes mellitus, for the first time we report its potential in the management of lifelong pathologies arising from high fructose intake initiated during developmental years. PMID:25829790

  9. Quercetin reduces obesity-associated ATM infiltration and inflammation in mice: a mechanism including AMPKα1/SIRT1.

    PubMed

    Dong, Jing; Zhang, Xian; Zhang, Lei; Bian, Hui-Xi; Xu, Na; Bao, Bin; Liu, Jian

    2014-03-01

    Adipose tissue macrophage (ATM) plays a central role in obesity-associated inflammation and insulin resistance. Quercetin, a dietary flavonoid, possesses anti-inflammation and anti-insulin resistance properties. However, it is unclear whether quercetin can alleviate high-fat diet (HFD)-induced ATM infiltration and inflammation in mice. In this study, 5-week-old C57BL/6 mice were fed low-fat diet, HFD, or HFD with 0.l% quercetin for 12 weeks, respectively. Dietary quercetin reduced HFD-induced body weight gain and improved insulin sensitivity and glucose intolerance in mice. Meanwhile, dietary quercetin enhanced glucose transporter 4 translocation and protein kinase B signal in epididymis adipose tissues (EATs), suggesting that it heightened glucose uptake in adipose tissues. Histological and real-time PCR analysis revealed that quercetin attenuated mast cell and macrophage infiltration into EATs in HFD-fed mice. Dietary quercetin also modified the phenotype ratio of M1/M2 macrophages, lowered the levels of proinflammatory cytokines, and enhanced adenosine monophosphate-activated protein kinase (AMPK) α1 phosphorylation and silent information regulator 1 (SIRT1) expression in EATs. Further, using AMPK activator 5-aminoimidazole-4-carboxamide-1-β4-ribofuranoside and inhibitor Compound C, we found that quercetin inhibited polarization and inflammation of mouse bone marrow-derived macrophages through an AMPKα1/SIRT1-mediated mechanism. In conclusion, dietary quercetin might suppress ATM infiltration and inflammation through the AMPKα1/SIRT1 pathway in HFD-fed mice. PMID:24465016

  10. The Dipeptidyl Peptidase-4 Inhibitor Teneligliptin Attenuates Hepatic Lipogenesis via AMPK Activation in Non-Alcoholic Fatty Liver Disease Model Mice

    PubMed Central

    Ideta, Takayasu; Shirakami, Yohei; Miyazaki, Tsuneyuki; Kochi, Takahiro; Sakai, Hiroyasu; Moriwaki, Hisataka; Shimizu, Masahito

    2015-01-01

    Non-alcoholic fatty liver disease (NAFLD), which is strongly associated with metabolic syndrome, is increasingly a major cause of hepatic disorder. Dipeptidyl peptidase (DPP)-4 inhibitors, anti-diabetic agents, are expected to be effective for the treatment of NAFLD. In the present study, we established a novel NAFLD model mouse using monosodium glutamate (MSG) and a high-fat diet (HFD) and investigated the effects of a DPP-4 inhibitor, teneligliptin, on the progression of NAFLD. Male MSG/HFD-treated mice were divided into two groups, one of which received teneligliptin in drinking water. Administration of MSG and HFD caused mice to develop severe fatty changes in the liver, but teneligliptin treatment improved hepatic steatosis and inflammation, as evaluated by the NAFLD activity score. Serum alanine aminotransferase and intrahepatic triglyceride levels were significantly decreased in teneligliptin-treated mice (p < 0.05). Hepatic mRNA levels of the genes involved in de novo lipogenesis were significantly downregulated by teneligliptin (p < 0.05). Moreover, teneligliptin increased hepatic expression levels of phosphorylated AMP-activated protein kinase (AMPK) protein. These findings suggest that teneligliptin attenuates lipogenesis in the liver by activating AMPK and downregulating the expression of genes involved in lipogenesis. DPP-4 inhibitors may be effective for the treatment of NAFLD and may be able to prevent its progression to non-alcoholic steatohepatitis. PMID:26670228

  11. The Dipeptidyl Peptidase-4 Inhibitor Teneligliptin Attenuates Hepatic Lipogenesis via AMPK Activation in Non-Alcoholic Fatty Liver Disease Model Mice.

    PubMed

    Ideta, Takayasu; Shirakami, Yohei; Miyazaki, Tsuneyuki; Kochi, Takahiro; Sakai, Hiroyasu; Moriwaki, Hisataka; Shimizu, Masahito

    2015-01-01

    Non-alcoholic fatty liver disease (NAFLD), which is strongly associated with metabolic syndrome, is increasingly a major cause of hepatic disorder. Dipeptidyl peptidase (DPP)-4 inhibitors, anti-diabetic agents, are expected to be effective for the treatment of NAFLD. In the present study, we established a novel NAFLD model mouse using monosodium glutamate (MSG) and a high-fat diet (HFD) and investigated the effects of a DPP-4 inhibitor, teneligliptin, on the progression of NAFLD. Male MSG/HFD-treated mice were divided into two groups, one of which received teneligliptin in drinking water. Administration of MSG and HFD caused mice to develop severe fatty changes in the liver, but teneligliptin treatment improved hepatic steatosis and inflammation, as evaluated by the NAFLD activity score. Serum alanine aminotransferase and intrahepatic triglyceride levels were significantly decreased in teneligliptin-treated mice (p < 0.05). Hepatic mRNA levels of the genes involved in de novo lipogenesis were significantly downregulated by teneligliptin (p < 0.05). Moreover, teneligliptin increased hepatic expression levels of phosphorylated AMP-activated protein kinase (AMPK) protein. These findings suggest that teneligliptin attenuates lipogenesis in the liver by activating AMPK and downregulating the expression of genes involved in lipogenesis. DPP-4 inhibitors may be effective for the treatment of NAFLD and may be able to prevent its progression to non-alcoholic steatohepatitis. PMID:26670228

  12. The Combination of Resveratrol and Quercetin Attenuates Metabolic Syndrome in Rats by Modifying the Serum Fatty Acid Composition and by Upregulating SIRT 1 and SIRT 2 Expression in White Adipose Tissue

    PubMed Central

    Peredo-Escárcega, Ana Elena; Guarner-Lans, Verónica; Pérez-Torres, Israel; Ortega-Ocampo, Sergio; Carreón-Torres, Elizabeth; Castrejón-Tellez, Vicente; Díaz-Díaz, Eulises; Rubio-Ruiz, María Esther

    2015-01-01

    Resveratrol (RSV) and quercetin (QRC) modify energy metabolism and reduce cardiovascular risk factors included in the metabolic syndrome (MetS). These natural compounds upregulate and activate sirtuins (SIRTs), a family of NAD-dependent histone deacetylases. We analyzed the effect of two doses of a commercial combination of RSV and QRC on serum fatty acid composition and their regulation of SIRTs 1–3 and PPAR-γ expression in white adipose tissue. MetS was induced in Wistar rats by adding 30% sucrose to drinking water for five months. Rats were divided into control and two groups receiving the two different doses of RSV and QRC in drinking water daily for 4 weeks following the 5 months of sucrose treatment. Commercial kits were used to determine serum parameters and the expressions of SIRTs in WAT were analysed by western blot. In MetS rats body mass, central adiposity, insulin, triglycerides, non-HDL-C, leptin, adiponectin, monounsaturated fatty acids (MUFAs), and nonesterified fatty acids (NEFAs) were increased, while polyunsaturated fatty acids (PUFAs) and HDL-C were decreased. SIRT 1 and SIRT 2 were downregulated, while PPAR-γ was increased. RSV + QRC administration improved the serum health parameters modified by MetS and upregulate SIRT 1 and SIRT 2 expression in white abdominal tissue in MetS animals. PMID:26609312

  13. Ameliorative Effect of Quercetin on Neurochemical and Behavioral Deficits in Rotenone Rat Model of Parkinson's Disease: Modulating Autophagy (Quercetin on Experimental Parkinson's Disease).

    PubMed

    El-Horany, Hemat E; El-Latif, Rania N Abd; ElBatsh, Maha M; Emam, Marwa N

    2016-07-01

    Autophagy is necessary for neuronal homeostasis and its dysfunction has been implicated in Parkinson's disease (PD) as it can exacerbate endoplasmic reticulum (ER) stress and ER stress-induced apoptosis. Quercetin is a flavonoid known for its neuroprotective and antioxidant effects. The present study investigated the protective, autophagy-modulating effects of quercetin in the rotenone rat model of PD. Rotenone was intraperitoneally injected at dose of 2 ml/kg/day for 4 weeks. Simultaneous intraperitoneal injection of quercetin was given at a dose of 50 mg/kg/day also for 4 weeks. Neurobehavioral changes were studied. Oxidative/antioxidant status, C/EBP homologous protein (CHOP), Beclin-1, and dopamine levels were assessed. DNA fragmentation and histopathological changes were evaluated. This research work revealed that quercetin significantly attenuated rotenone-induced behavioral impairment, augmented autophagy, ameliorated ER stress- induced apoptosis with attenuated oxidative stress. From the current study, quercetin can act as an autophagy enhancer in PD rat model and modulates the microenvironment that leads to neuronal death. PMID:27252111

  14. C1q/TNF-Related Protein 9 (CTRP9) attenuates hepatic steatosis via the autophagy-mediated inhibition of endoplasmic reticulum stress.

    PubMed

    Jung, Tae Woo; Hong, Ho Cheol; Hwang, Hwan-Jin; Yoo, Hye Jin; Baik, Sei Hyun; Choi, Kyung Mook

    2015-12-01

    C1q/TNF-Related Protein (CTRP) 9, the closest paralog of adiponectin, has been reported to protect against diet-induced obesity and non-alcoholic fatty liver disease (NAFLD). However, the underlying mechanism has not been fully elucidated. We explored the protective effect of CTRP9 against hepatic steatosis and apoptosis, and identified the mechanisms through autophagy and endoplasmic reticulum (ER) stress using in vitro and in vivo experiments. Treating HepG2 cells with human recombinant CTRP9 significantly ameliorated palmitate- or tunicamycin-induced dysregulation of lipid metabolism, caspase 3 activity and chromatin condensation, which lead to reduction of hepatic triglyceride (TG) accumulation. CTRP9 treatment induced autophagy markers including LC3 conversion, P62 degradation, Beclin1 and ATG7 through AMPK phosphorylation in human primary hepatocytes. Furthermore, CTRP9 decreased palmitate- or tunicamycin-induced ER stress markers, such as eIF2α, CHOP and IRE-1, in HepG2 cells. Compound C, an AMPK inhibitor, and 3 methyladenine (3 MA), an autophagy inhibitor, canceled the effects of CTRP9 on ER stress, apoptosis and hepatic steatosis. In the livers of HFD-fed mice, adenovirus-mediated CTRP9 overexpression significantly induced AMPK phosphorylation and autophagy, whereas suppressed ER stress markers. In addition, both SREBP1-mediated lipogenic gene expression and apoptosis were significantly attenuated, which result in improvement in hepatic steatosis by overexpression of CTRP9. These results demonstrate that CTRP9 alleviates hepatic steatosis through relief of ER stress via the AMPK-mediated induction of autophagy. PMID:26419929

  15. Adenoviral overexpression of Lhx2 attenuates cell viability but does not preserve the stem cell like phenotype of hepatic stellate cells.

    PubMed

    Genz, Berit; Thomas, Maria; Pützer, Brigitte M; Siatkowski, Marcin; Fuellen, Georg; Vollmar, Brigitte; Abshagen, Kerstin

    2014-11-01

    Hepatic stellate cells (HSC) are well known initiators of hepatic fibrosis. After liver cell damage, HSC transdifferentiate into proliferative myofibroblasts, representing the major source of extracellular matrix in the fibrotic organ. Recent studies also demonstrate a role of HSC as progenitor or stem cell like cells in liver regeneration. Lhx2 is described as stem cell maintaining factor in different organs and as an inhibitory transcription factor in HSC activation. Here we examined whether a continuous expression of Lhx2 in HSC could attenuate their activation and whether Lhx2 could serve as a potential target for antifibrotic gene therapy. Therefore, we evaluated an adenoviral mediated overexpression of Lhx2 in primary HSC and investigated mRNA expression patterns by qRT-PCR as well as the activation status by different in vitro assays. HSC revealed a marked increase in activation markers like smooth muscle actin alpha (αSMA) and collagen 1α independent from adenoviral transduction. Lhx2 overexpression resulted in attenuated cell viability as shown by a slightly hampered migratory and contractile phenotype of HSC. Expression of stem cell factors or signaling components was also unaffected by Lhx2. Summarizing these results, we found no antifibrotic or stem cell maintaining effect of Lhx2 overexpression in primary HSC. PMID:24995995

  16. Oxymatrine attenuates CCl4-induced hepatic fibrosis via modulation of TLR4-dependent inflammatory and TGF-β1 signaling pathways.

    PubMed

    Zhao, Hong-Wei; Zhang, Zhen-Fang; Chai, Xuan; Li, Guang-Quan; Cui, He-Rong; Wang, Hong-Bo; Meng, Ya-Kun; Liu, Hui-Min; Wang, Jia-Bo; Li, Rui-Sheng; Bai, Zhao-Fang; Xiao, Xiao-He

    2016-07-01

    Oxymatrine (OMT) is able to effectively protect against hepatic fibrosis because of its anti-inflammatory property, while the underlying mechanism remains incompletely understood. In this study, forty rats were randomly divided into five groups: control group, model group (carbon tetrachloride, CCl4) and three OMT treatment groups (30, 60, 120mg/kg). After CCl4 alone, the fibrosis score was 20.2±0.8, and the level of alanine aminotransferase (ALT), aspartate aminotransferase (AST), hydroxyproline content, and collagen I expression was elevated, but OMT blunted these parameters. Treatment with OMT prevented CCl4-induced increases in expression of pro-inflammatory and pro-fibrotic cytokines interleukin (IL)-6 and tumor necrosis factor (TNF)-α, meanwhile OMT promoted the expression of anti-inflammatory and anti-fibrotic factors such as interleukin (IL)-10 and bone morphogenetic protein and activin membrane-bound inhibitor (Bambi). Moreover, lipopolysaccharides (LPS) and high mobility group box-1 (HMGB1), which activates Toll-like receptor 4 (TLR4) and modulate hepatic fibrogenesis through hepatic stellate cells (HSCs) or Kupffer cells, were significantly decreased by OMT treatment. These results were further supported by in vitro data. First, OMT suppressed the expression of TLR4 and its downstream pro-inflammatory cytokines, lowered the level of HMGB1, TGF-β1 in macrophages. Then, OMT promoted Bambi expression and thereby inhibited activation of HSCs mediated by transforming growth factor (TGF)-β1. In conclusion, this study showed that OMT could effectively attenuate the CCl4-induced hepatic fibrosis, and this effect may be due to modulation of TLR4-dependent inflammatory and TGF-β1 signaling pathways. PMID:27179304

  17. Sulforaphane attenuates hepatic fibrosis via NF-E2-related factor 2-mediated inhibition of transforming growth factor-β/Smad signaling.

    PubMed

    Oh, Chang Joo; Kim, Joon-Young; Min, Ae-Kyung; Park, Keun-Gyu; Harris, Robert A; Kim, Han-Jong; Lee, In-Kyu

    2012-02-01

    Sulforaphane (SFN) is a dietary isothiocyanate that exerts chemopreventive effects via NF-E2-related factor 2 (Nrf2)-mediated induction of antioxidant/phase II enzymes, such as heme oxygenase-1 (HO-1) and NAD(P)H quinone oxidoreductase 1 (NQO1). This work was undertaken to evaluate the effects of SFN on hepatic fibrosis and profibrotic transforming growth factor (TGF)-β/Smad signaling, which are closely associated with oxidative stress. SFN suppressed TGF-β-enhanced expression of α-smooth muscle actin (α-SMA), a marker of hepatic stellate cell (HSC) activation, and profibrogenic genes such as type I collagen, fibronectin, tissue inhibitor of matrix metalloproteinase (TIMP)-1, and plasminogen activator inhibitor (PAI)-1 in hTERT, an immortalized human HSC line. SFN inhibited TGF-β-stimulated activity of a PAI-1 promoter construct and (CAGA)(9) MLP-Luc, an artificial Smad3/4-specific reporter, in addition to reducing phosphorylation and nuclear translocation of Smad3. Nrf2 overexpression was sufficient to inhibit the TGF-β/Smad signaling and PAI-1 expression. Conversely, knockdown of Nrf2, but not inhibition of HO-1 or NQO1 activity, significantly abolished the inhibitory effect of SFN on (CAGA)(9) MLP-Luc activity. However, inhibition of NQO1 activity reversed repression of TGF-β-stimulated expression of type I collagen by SFN, suggesting the involvement of antioxidant activity of SFN in the suppression of Smad-independent fibrogenic gene expression. Finally, SFN treatment attenuated the development and progression of early stage hepatic fibrosis induced by bile duct ligation in mice, accompanied by reduced expression of type I collagen and α-SMA. Collectively, these results show that SFN elicits an antifibrotic effect on hepatic fibrosis through Nrf2-mediated inhibition of the TGF-β/Smad signaling and subsequent suppression of HSC activation and fibrogenic gene expression. PMID:22155056

  18. Tyrosol Attenuates High Fat Diet-Induced Hepatic Oxidative Stress: Potential Involvement of Cystathionine β-Synthase and Cystathionine γ-Lyase.

    PubMed

    Sarna, Lindsei K; Sid, Victoria; Wang, Pengqi; Siow, Yaw L; House, James D; O, Karmin

    2016-05-01

    The Mediterranean diet is known for its cardioprotective effects. Recently, its protective qualities have also been reported in patients with non-alcoholic fatty liver disease (NAFLD). Oxidative stress is one of the important factors responsible for the development and progression of NAFLD. Hydrogen sulfide (H2S), a multifaceted gasotransmitter, has emerged as a potential therapeutic target in NAFLD. Cystathionine β-synthase (CBS) and cystathionine γ-lyase (CSE) are major enzymes responsible for endogenous H2S synthesis. Since oxidative stress contributes to NAFLD pathogenesis, the objective of this study was to investigate the effect of tyrosol, a major compound in olive oil and white wine, on high fat diet-induced hepatic oxidative stress and the mechanisms involved. Mice (C57BL/6) were fed for 5 weeks with a control diet (10 % kcal fat), a high fat diet (60 % kcal fat, HFD) or a HFD supplemented with tyrosol. High fat diet feeding induced hepatic oxidative stress, as indicated by the significant increase in lipid peroxidation and NADPH oxidase activity. Tyrosol supplementation significantly increased hepatic CBS and CSE expression and H2S synthesis in high fat diet-fed mice. Such effects were associated with the attenuation of high fat diet-induced hepatic lipid peroxidation and the restoration of the redox equilibrium of the antioxidant glutathione. Tyrosol also inhibited palmitic acid-induced oxidative stress in hepatocytes (HepG2 cells). These results suggest that the antioxidant properties of tyrosol may be mediated through functional changes in CBS and CSE activity, which might contribute to the hepatoprotective effect of the Mediterranean diet. PMID:26518313

  19. Korean Pine Nut Oil Attenuated Hepatic Triacylglycerol Accumulation in High-Fat Diet-Induced Obese Mice

    PubMed Central

    Park, Soyoung; Shin, Sunhye; Lim, Yeseo; Shin, Jae Hoon; Seong, Je Kyung; Han, Sung Nim

    2016-01-01

    Korean pine nut oil (PNO) has been reported to influence weight gain and lipid metabolism. We examined whether PNO replacement in a high-fat diet (HFD) can ameliorate HFD-induced hepatic steatosis. Five-week-old male C57BL mice were fed control diets containing 10% of the energy from fat from PNO or soybean oil (SBO) (PC, SC) or HFDs with 45% of the energy from fat, with 10% from PNO or SBO and 35% from lard (PHFD, SHFD), for 12 weeks. Body weight gain and amount of white adipose tissue were lower in PHFD (10% and 18% lower, respectively) compared with SHFD. Hepatic triacylglycerol (TG) level was significantly lower in PHFD than the SHFD (26% lower). PNO consumption upregulated hepatic ACADL mRNA levels. The hepatic PPARG mRNA level was lower in the PC than in the SC. Expression of the sirtuin (SIRT) 3 protein in white adipose tissue was down-regulated in the SHFD and restored in the PHFD to the level in the lean control mice. SIRT 3 was reported to be upregulated under conditions of caloric restriction (CR) and plays a role in regulating mitochondrial function. PNO consumption resulted in lower body fat and hepatic TG accumulation in HFD-induced obesity, which seemed to be associated with the CR-mimetic response. PMID:26805879

  20. Korean Pine Nut Oil Attenuated Hepatic Triacylglycerol Accumulation in High-Fat Diet-Induced Obese Mice.

    PubMed

    Park, Soyoung; Shin, Sunhye; Lim, Yeseo; Shin, Jae Hoon; Seong, Je Kyung; Han, Sung Nim

    2016-01-01

    Korean pine nut oil (PNO) has been reported to influence weight gain and lipid metabolism. We examined whether PNO replacement in a high-fat diet (HFD) can ameliorate HFD-induced hepatic steatosis. Five-week-old male C57BL mice were fed control diets containing 10% of the energy from fat from PNO or soybean oil (SBO) (PC, SC) or HFDs with 45% of the energy from fat, with 10% from PNO or SBO and 35% from lard (PHFD, SHFD), for 12 weeks. Body weight gain and amount of white adipose tissue were lower in PHFD (10% and 18% lower, respectively) compared with SHFD. Hepatic triacylglycerol (TG) level was significantly lower in PHFD than the SHFD (26% lower). PNO consumption upregulated hepatic ACADL mRNA levels. The hepatic PPARG mRNA level was lower in the PC than in the SC. Expression of the sirtuin (SIRT) 3 protein in white adipose tissue was down-regulated in the SHFD and restored in the PHFD to the level in the lean control mice. SIRT 3 was reported to be upregulated under conditions of caloric restriction (CR) and plays a role in regulating mitochondrial function. PNO consumption resulted in lower body fat and hepatic TG accumulation in HFD-induced obesity, which seemed to be associated with the CR-mimetic response. PMID:26805879

  1. White Pitaya (Hylocereus undatus) Juice Attenuates Insulin Resistance and Hepatic Steatosis in Diet-Induced Obese Mice

    PubMed Central

    Song, Haizhao; Zheng, Zihuan; Wu, Jianan; Lai, Jia; Chu, Qiang; Zheng, Xiaodong

    2016-01-01

    Insulin resistance and hepatic steatosis are the most common complications of obesity. Pitaya is an important source of phytochemicals such as polyphenols, flavonoid and vitamin C which are related to its antioxidant activity. The present study was conducted to evaluate the influence of white pitaya juice (WPJ) on obesity-related metabolic disorders (e.g. insulin resistance and hepatic steatosis) in high-fat diet-fed mice. Forty-eight male C57BL/6J mice were assigned into four groups and fed low-fat diet with free access to water or WPJ, or fed high-fat diet with free access to water or WPJ for 14 weeks. Our results showed that administration of WPJ improved high-fat diet-induced insulin resistance, hepatic steatosis and adipose hypertrophy, but it exerted no influence on body weight gain in mice. Hepatic gene expression analysis indicated that WPJ supplement not only changed the expression profile of genes involved in lipid and cholesterol metabolism (Srebp1, HMGCoR, Cpt1b, HL, Insig1 and Insig2) but also significantly increased the expression levels of FGF21-related genes (Klb, FGFR2, Egr1 and cFos). In conclusion, WPJ protected from diet-induced hepatic steatosis and insulin resistance, which was associated with the improved FGF21 resistance and lipid metabolism. PMID:26914024

  2. White Pitaya (Hylocereus undatus) Juice Attenuates Insulin Resistance and Hepatic Steatosis in Diet-Induced Obese Mice.

    PubMed

    Song, Haizhao; Zheng, Zihuan; Wu, Jianan; Lai, Jia; Chu, Qiang; Zheng, Xiaodong

    2016-01-01

    Insulin resistance and hepatic steatosis are the most common complications of obesity. Pitaya is an important source of phytochemicals such as polyphenols, flavonoid and vitamin C which are related to its antioxidant activity. The present study was conducted to evaluate the influence of white pitaya juice (WPJ) on obesity-related metabolic disorders (e.g. insulin resistance and hepatic steatosis) in high-fat diet-fed mice. Forty-eight male C57BL/6J mice were assigned into four groups and fed low-fat diet with free access to water or WPJ, or fed high-fat diet with free access to water or WPJ for 14 weeks. Our results showed that administration of WPJ improved high-fat diet-induced insulin resistance, hepatic steatosis and adipose hypertrophy, but it exerted no influence on body weight gain in mice. Hepatic gene expression analysis indicated that WPJ supplement not only changed the expression profile of genes involved in lipid and cholesterol metabolism (Srebp1, HMGCoR, Cpt1b, HL, Insig1 and Insig2) but also significantly increased the expression levels of FGF21-related genes (Klb, FGFR2, Egr1 and cFos). In conclusion, WPJ protected from diet-induced hepatic steatosis and insulin resistance, which was associated with the improved FGF21 resistance and lipid metabolism. PMID:26914024

  3. iPLA2β deficiency attenuates obesity and hepatic steatosis in ob/ob mice through hepatic fatty-acyl phospholipid remodeling.

    PubMed

    Deng, Xiuling; Wang, Jiliang; Jiao, Li; Utaipan, Tanyarath; Tuma-Kellner, Sabine; Schmitz, Gerd; Liebisch, Gerhard; Stremmel, Wolfgang; Chamulitrat, Walee

    2016-05-01

    PLA2G6 or GVIA calcium-independent PLA2 (iPLA2β) is identified as one of the NAFLD modifier genes in humans, and thought to be a target for NAFLD therapy. iPLA2β is known to play a house-keeping role in phospholipid metabolism and remodeling. However, its role in NAFLD pathogenesis has not been supported by results obtained from high-fat feeding of iPLA2β-null (PKO) mice. Unlike livers of human NAFLD and genetically obese rodents, fatty liver induced by high-fat diet is not associated with depletion of hepatic phospholipids. We therefore tested whether iPLA2β could regulate obesity and hepatic steatosis in leptin-deficient mice by cross-breeding PKO with ob/ob mice to generate ob/ob-PKO mice. Here we observed an improvement in ob/ob-PKO mice with significant reduction in serum enzymes, lipids, glucose, insulin as well as improved glucose tolerance, and reduction in islet hyperplasia. The improvement in hepatic steatosis measured by liver triglycerides, fatty acids and cholesterol esters was associated with decreased expression of PPARγ and de novo lipogenesis genes, and the reversal of β-oxidation gene expression. Notably, ob/ob livers contained depleted levels of lysophospholipids and phospholipids, and iPLA2β deficiency in ob/ob-PKO livers lowers the former, but replenished the latter particularly phosphatidylethanolamine (PE) and phosphatidylcholine (PC) that contained arachidonic (AA) and docosahexaenoic (DHA) acids. Compared with WT livers, PKO livers also contained increased PE and PC containing AA and DHA. Thus, iPLA2β deficiency protected against obesity and ob/ob fatty liver which was associated with hepatic fatty-acyl phospholipid remodeling. Our results support the deleterious role of iPLA2β in severe obesity associated NAFLD. PMID:26873633

  4. Protective effect of rosiglitazone, quercetin, and their combination on fructose-induced metabolic syndrome in rats

    PubMed Central

    Abo-youssef, Amira M.

    2015-01-01

    Objectives: Quercetin exhibits a wide range of biological functions. The present study aimed to investigate the possible beneficial effects of rosiglitazone, quercetin as well as their combination on metabolic and biochemical changes associated with the fructose-induced metabolic syndrome (MS). Materials and Methods: Four groups of rats were fed on fructose-enriched diet for 14 weeks. One group served as fructose-enriched diet control, while the remaining groups were treated with rosiglitazone (4 mg/kg/day), quercetin (50 mg/kg/day), and their combination during the last 4 weeks. A fifth group was fed on normal laboratory diet. At the end of the experiment, blood samples were withdrawn for the estimation of markers of MS. Results: Rosiglitazone or quercetin attenuated the biochemical and metabolic changes associated with MS. The combination of rosiglitazone and quercetin nearly normalized these changes. Conclusion: Quercetin, as well as its combination with rosiglitazone, showed beneficial protective effects against metabolic and biochemical changes associated with MS. PMID:26729953

  5. Ebselen pretreatment attenuates ischemia/reperfusion injury and prevents hyperglycemia by improving hepatic insulin signaling and β-cell survival in gerbils.

    PubMed

    Park, S; Kang, S; Kim, D S; Shin, B K; Moon, N R; Daily, J W

    2014-08-01

    Transient carotid artery occlusion causes ischemia/reperfusion (I/R) injury resulting in neuron and pancreatic β-cell death with consequential post-stroke hyperglycemia, which can lead to diabetes and may accelerate the development of Alzheimer's disease. Antioxidants have been shown to protect against the I/R injury and destruction of neurons. However, it is unknown whether the protection against I/R injury extends to the pancreatic β-cells. Therefore, we investigated whether treatment with ebselen, a glutathione peroxidase mimic, prevents neuronal and β-cell death following I/R in gerbils susceptible to stroke. After 28 days post artery occlusion, there was widespread neuronal cell death in the CA1 of the hippocampus and elevated IL-1β and TNF-α levels. Pretreatment with ebselen prevented the death by 56% and attenuated neurological damage (abnormal eyelid drooping, hair bristling, muscle tone, flexor reflex, posture, and walking patterns). Ischemic gerbils also exhibited impaired glucose tolerance and insulin sensitivity which induced post-stroke hyperglycemia associated with decreased β-cell mass due to increased β-cell apoptosis. Ebselen prevented the increased β-cell apoptosis, possibly by decreasing IL-1β and TNF-α in islets. Ischemia also attenuated hepatic insulin signaling, and expression of GLUT2 and glucokinase, whereas ebselen prevented the attenuation and suppressed gluconeogenesis by decreasing PEPCK expression. In conclusion, antioxidant protection by ebselen attenuated I/R injury of neurons and pancreatic β-cells and prevented subsequent impairment of glucose regulation that could lead to diabetes and Alzheimer's disease. PMID:24807533

  6. Quercetin, not caffeine, is a major neuroprotective component in coffee.

    PubMed

    Lee, Moonhee; McGeer, Edith G; McGeer, Patrick L

    2016-10-01

    Epidemiologic studies indicate that coffee consumption reduces the risk of Parkinson's disease and Alzheimer's disease. To determine the factors involved, we examined the protective effects of coffee components. The test involved prevention of neurotoxicity to SH-SY5Y cells that was induced by lipopolysaccharide plus interferon-γ or interferon-γ released from activated microglia and astrocytes. We found that quercetin, flavones, chlorogenic acid, and caffeine protected SH-SY5Y cells from these toxins. They also reduced the release of tumor necrosis factor-α and interleukin-6 from the activated microglia and astrocytes and attenuated the activation of proteins from P38 mitogen-activated protein kinase (MAPK) and nuclear factor kappa light chain enhancer of activated B cells (NFκB). After exposure to toxin containing glial-stimulated conditioned medium, we also found that quercetin reduced oxidative/nitrative damage to DNA, as well as to the lipids and proteins of SH-SY5Y cells. There was a resultant increase in [GSH]i in SH-SY5Y cells. The data indicate that quercetin is the major neuroprotective component in coffee against Parkinson's disease and Alzheimer's disease. PMID:27479153

  7. Astaxanthin Pretreatment Attenuates Hepatic Ischemia Reperfusion-Induced Apoptosis and Autophagy via the ROS/MAPK Pathway in Mice

    PubMed Central

    Li, Jingjing; Wang, Fan; Xia, Yujing; Dai, Weiqi; Chen, Kan; Li, Sainan; Liu, Tong; Zheng, Yuanyuan; Wang, Jianrong; Lu, Wenxia; Zhou, Yuqing; Yin, Qin; Lu, Jie; Zhou, Yingqun; Guo, Chuanyong

    2015-01-01

    Background: Hepatic ischemia reperfusion (IR) is an important issue in complex liver resection and liver transplantation. The aim of the present study was to determine the protective effect of astaxanthin (ASX), an antioxidant, on hepatic IR injury via the reactive oxygen species/mitogen-activated protein kinase (ROS/MAPK) pathway. Methods: Mice were randomized into a sham, IR, ASX or IR + ASX group. The mice received ASX at different doses (30 mg/kg or 60 mg/kg) for 14 days. Serum and tissue samples at 2 h, 8 h and 24 h after abdominal surgery were collected to assess alanine aminotransferase (ALT), aspartate aminotransferase (AST), inflammation factors, ROS, and key proteins in the MAPK family. Results: ASX reduced the release of ROS and cytokines leading to inhibition of apoptosis and autophagy via down-regulation of the activated phosphorylation of related proteins in the MAPK family, such as P38 MAPK, JNK and ERK in this model of hepatic IR injury. Conclusion: Apoptosis and autophagy caused by hepatic IR injury were inhibited by ASX following a reduction in the release of ROS and inflammatory cytokines, and the relationship between the two may be associated with the inactivation of the MAPK family. PMID:26023842

  8. Mulberry ethanol extract attenuates hepatic steatosis and insulin resistance in high-fat diet-fed mice.

    PubMed

    Song, Haizhao; Lai, Jia; Tang, Qiong; Zheng, Xiaodong

    2016-07-01

    Nonalcoholic fatty liver disease is one of the most common complications of obesity. Mulberry is an important source of phytochemicals, such as anthocyanins, polyphenols and flavonoids, which are related to its antioxidant activity. In this study, we developed a hypothesis that mulberry exerted beneficial effects on metabolic disorders and evaluated the influence of the mulberry ethanol extract (MEE) on high-fat diet-induced hepatic steatosis and insulin resistance in mice. Thirty-six male C57BL/6J mice were assigned into 3 groups and fed either a low-fat diet or a high-fat diet with or without supplementation with MEE. Our results showed that administration of MEE reduced diet-induced body weight gain, improved high-fat diet-induced hepatic steatosis and adipose hypertrophy, alleviated insulin resistance, and improved glucose homeostasis. Analysis of hepatic gene expression indicated that MEE treatment changed the expression profile of genes involved in lipid and cholesterol metabolism. In conclusion, the present study demonstrated that MEE supplementation protected mice from high-fat diet-induced obesity, hepatic steatosis, and insulin resistance. Moreover, the protective effects of MEE were associated with the induction of fatty acid oxidation and decreased fatty acid and cholesterol biosynthesis. PMID:27262537

  9. Hepatitis B Virus-Induced Parkin-Dependent Recruitment of Linear Ubiquitin Assembly Complex (LUBAC) to Mitochondria and Attenuation of Innate Immunity

    PubMed Central

    Khan, Mohsin; Syed, Gulam Hussain; Kim, Seong-Jun; Siddiqui, Aleem

    2016-01-01

    Hepatitis B virus (HBV) suppresses innate immune signaling to establish persistent infection. Although HBV is a DNA virus, its pre-genomic RNA (pgRNA) can be sensed by RIG-I and activates MAVS to mediate interferon (IFN) λ synthesis. Despite of the activation of RIG-I-MAVS axis by pgRNA, the underlying mechanism explaining how HBV infection fails to induce interferon-αβ (IFN) synthesis remained uncharacterized. We demonstrate that HBV induced parkin is able to recruit the linear ubiquitin assembly complex (LUBAC) to mitochondria and abrogates IFN β synthesis. Parkin interacts with MAVS, accumulates unanchored linear polyubiquitin chains on MAVS via LUBAC, to disrupt MAVS signalosome and attenuate IRF3 activation. This study highlights the novel role of parkin in antiviral signaling which involves LUBAC being recruited to the mitochondria. These results provide avenues of investigations on the role of mitochondrial dynamics in innate immunity. PMID:27348524

  10. Development of Autoimmune Hepatitis-like Disease and Autoantibody Production to Nuclear Antigens in Mice Lacking B and T Lymphocyte Attenuator (BTLA)

    PubMed Central

    Oya, Yoshihiro; Watanabe, Norihiko; Owada, Takayoshi; Oki, Mie; Hirose, Koichi; Suto, Akira; Kagami, Shin-ichiro; Nakajima, Hiroshi; Kishimoto, Takashi; Iwamoto, Itsuo; Murphy, Theresa L; Murphy, Kenneth M; Saito, Yasushi

    2009-01-01

    Objective B and T lymphocyte attenuator (BTLA), a coreceptor expressed on lymphocytes, has recently been described as an inhibitory coreceptor that negatively regulates lymphocyte activation. The purpose of this study was to investigate the role of BTLA in the regulation of immune homeostasis and the pathogenesis of autoimmunity. Methods We examined the levels of immunoglobulins, autoantibodies to nuclear antigens, and activation status of T cells in BTLA-deficient (BTLA−/−) mice. We also examined histopathologic changes of the organs in BTLA−/− mice. Results We found that BTLA−/− mice gradually developed hyper-γ-globulinemia, antinuclear antibody, anti-SS-A antibody and anti-double-strand DNA antibody, and an increase of activated CD4+ T cells in the periphery with age. Lack of BTLA led to spontaneous development of autoimmune hepatitis (AIH)-like disease characterized by elevation of transaminases and interface hepatitis and spotty necrosis in the liver. BTLA−/− mice also showed inflammatory cell infiltration in multiple organs including salivary glands, lungs and pancreas, similar to Sjögren’s syndrome, a frequent complication of AIH. Furthermore, BTLA−/− mice showed a significant reduction in the survival rate after the age of 7 months. Conclusion Our results indicate that BTLA plays an important role in the maintenance of immune tolerance and the prevention of autoimmune diseases. PMID:18668554

  11. Cx3cr1 deficiency in mice attenuates hepatic granuloma formation during acute schistosomiasis by enhancing the M2-type polarization of macrophages

    PubMed Central

    Ran, Lin; Yu, Qilin; Zhang, Shu; Xiong, Fei; Cheng, Jia; Yang, Ping; Xu, Jun-Fa; Nie, Hao; Zhong, Qin; Yang, Xueli; Yang, Fei; Gong, Quan; Kuczma, Michal; Kraj, Piotr; Gu, Weikuan; Ren, Bo-Xu; Wang, Cong-Yi

    2015-01-01

    ABSTRACT Acute schistosomiasis is characterized by pro-inflammatory responses against tissue- or organ-trapped parasite eggs along with granuloma formation. Here, we describe studies in Cx3cr1−/− mice and demonstrate the role of Cx3cr1 in the pathoetiology of granuloma formation during acute schistosomiasis. Mice deficient in Cx3cr1 were protected from granuloma formation and hepatic injury induced by Schistosoma japonicum eggs, as manifested by reduced body weight loss and attenuated hepatomegaly along with preserved liver function. Notably, S. japonicum infection induced high levels of hepatic Cx3cr1 expression, which was predominantly expressed by infiltrating macrophages. Loss of Cx3cr1 rendered macrophages preferentially towards M2 polarization, which then led to a characteristic switch of the host immune defense from a conventional Th1 to a typical Th2 response during acute schistosomiasis. This immune switch caused by Cx3cr1 deficiency was probably associated with enhanced STAT6/PPAR-γ signaling and increased expression of indoleamine 2,3-dioxygenase (IDO), an enzyme that promotes M2 polarization of macrophages. Taken together, our data provide evidence suggesting that CX3CR1 could be a viable therapeutic target for treatment of acute schistosomiasis. PMID:26035381

  12. Artemisia scoparia extract attenuates non-alcoholic fatty liver disease in diet-induced obesity mice by enhancing hepatic insulin and AMPK signaling independently of FGF21 pathway

    PubMed Central

    Wang, Zhong Q.; Zhang, Xian H.; Yu, Yongmei; Tipton, Russell C.; Raskin, Ilya; Ribnicky, David; Johnson, William; Cefalu, William T.

    2013-01-01

    Objective Nonalcoholic fatty liver disease (NAFLD) is a common liver disease which has no standard treatment. In this regard, we sought to evaluate the effects of extracts of Artemisia santolinaefolia (SANT) and Artemisia scoparia (SCO) on hepatic lipid deposition and cellular signaling in a diet-induced obesity (DIO) animal model. Materials/Methods DIO C57/B6J mice were randomly divided into three groups, i.e. HFD, SANT and SCO. Both extracts were incorporated into HFD at a concentration of 0.5% (w/w). Fasting plasma glucose, insulin, adiponectin, and FGF21 concentrations were measured. Results At the end of the 4-week intervention, liver tissues were collected for analysis of insulin, AMPK, and FGF21 signaling. SANT and SCO supplementation significantly increased plasma adiponectin levels when compared with the HFD mice (P < 0.001). Fasting insulin levels were significantly lower in the SCO than HFD mice, but not in SANT group. Hepatic H&E staining showed fewer lipid droplets in the SCO group than in the other two groups. Cellular signaling data demonstrated that SCO significantly increased liver IRS-2 content, phosphorylation of IRS-1, IR β, Akt1 and Akt2, AMPK α1 and AMPK activity and significantly reduced PTP 1B abundance when compared with the HFD group. SCO also significantly decreased fatty acid synthase (FAS), HMG-CoA Reductase (HMGR), and Sterol regulatory element-binding protein 1c (SREBP1c), but not Carnitine palmitoyltransferase I (CPT-1) when compared with HFD group. Neither SANT nor SCO significantly altered plasma FGF21 concentrations and liver FGF21 signaling. Conclusion This study suggests that SCO may attenuate liver lipid accumulation in DIO mice. Contributing mechanisms were postulated to include promotion of adiponectin expression, inhibition of hepatic lipogenesis, and/or enhanced insulin and AMPK signaling independent of FGF21 pathway. PMID:23702383

  13. The ethanolic extract of Juglans sinensis leaves and twigs attenuates CCl4-induced hepatic oxidative stress in rats

    PubMed Central

    Yang, Heejung; Sung, Sang Hyun; Kim, Young Choong

    2015-01-01

    Background: The nuts of Juglans sinensis Dode, walnut tree, are rich in unsaturated fatty acids and bioactive compounds with antioxidant activity on liver damages. However, hepatoprotective activity of the leaves and twigs of J. sinensis have not intensively studied yet. Objective: Hepatoprotective activity of the refined ethanolic extract of J. sinensis (JSE3) was evaluated using carbon tetrachloride (CCl4)-intoxicated rats. Materials and Methods: Hepatotoxicity was induced in Sprague Dawley rats by intraperitoneal injection of CCl4 for 6 weeks in the presence or absence of JSE3 (100 and 200 mg/kg body weight). The hepatoprotective activity of JSE3 was assessed by biochemical parameters including plasma aspartate aminotransferase (AST), alanine aminotransferase (ALT), and antioxidant enzymes, such as superoxide dismutase (SOD), glutathione reductase, glutathione peroxide, reduced glutathione and oxidized glutathione, along with histopathological studies on hepatic tissue. Results: JSE3 significantly decreased the elevated levels of AST and ALT and restored the reduced levels of antioxidant enzymes. JSE3 also decreased the amounts of collagen content accumulated by CCl4 intoxication. Conclusion: These results suggested that the refined extract of J. sinensis may have a potential to be developed as a therapeutic agent to treat hepatic diseases, such as fatty liver and hepatic fibrosis. PMID:26246728

  14. Ligustrazine attenuates oxidative stress-induced activation of hepatic stellate cells by interrupting platelet-derived growth factor-β receptor-mediated ERK and p38 pathways

    SciTech Connect

    Zhang, Feng; Ni, Chunyan; Kong, Desong; Zhang, Xiaoping; Zhu, Xiaojing; Chen, Li; Lu, Yin; Zheng, Shizhong

    2012-11-15

    Hepatic fibrosis represents a frequent event following chronic insult to trigger wound healing reactions with accumulation of extracellular matrix (ECM) in the liver. Activation of hepatic stellate cells (HSCs) is the pivotal event during liver fibrogenesis. Compelling evidence indicates that oxidative stress is concomitant with liver fibrosis irrespective of the underlying etiology. Natural antioxidant ligustrazine exhibits potent antifibrotic activities, but the mechanisms are poorly understood. Our studies were to investigate the ligustrazine effects on HSC activation stimulated by hydrogen peroxide (H{sub 2}O{sub 2}), an in vitro model mimicking the oxidative stress in liver fibrogenesis, and to elucidate the possible mechanisms. Our results demonstrated that H{sub 2}O{sub 2} at 5 μM significantly stimulated HSC proliferation and expression of marker genes of HSC activation; whereas ligustrazine dose-dependently suppressed proliferation and induced apoptosis in H{sub 2}O{sub 2}-activated HSCs, and attenuated expression of fibrotic marker genes. Mechanistic investigations revealed that ligustrazine reduced platelet-derived growth factor-β receptor (PDGF-βR) expression and blocked the phosphorylation of extracellular regulated protein kinase (ERK) and p38 kinase, two downstream effectors of PDGF-βR. Further molecular evidence suggested that ligustrazine interruption of ERK and p38 pathways was dependent on the blockade of PDGF-βR and might be involved in ligustrazine reduction of fibrotic marker gene expression under H{sub 2}O{sub 2} stimulation. Furthermore, ligustrazine modulated some proteins critical for HSC activation and ECM homeostasis in H{sub 2}O{sub 2}-stimulated HSCs. These data collectively indicated that ligustrazine could attenuate HSC activation caused by oxidative stress, providing novel insights into ligustrazine as a therapeutic option for hepatic fibrosis. Highlights: ► Ligustrazine inhibits oxidative stress-induced HSC activation.

  15. Effect of different exposed lights on quercetin and quercetin glucoside content in onion (Allium cepa L.)

    PubMed Central

    Ko, Eun Young; Nile, Shivraj Hariram; Sharma, Kavita; Li, Guan Hao; Park, Se Won

    2014-01-01

    Quercetin and quercetin glucosides are the major flavonols present in onion (Allium cepa L.) and are predominantly present as quercetin, quercetin-3,4′-diglucoside and quercetin-4′-glucoside. Effect of different light wavelengths on onion after harvest and storage, with fluorescent, blue, red and ultra violet light influenced the quercetin and quercetin glucosides profile. In a peeled onion, all the light treatments elevated quercetin content in bulb. Among them, particularly fluorescent light effect was more eminent which stimulates the maximum synthesis of quercetin in onion. In case of whole onion bulb, skin and pulp showed different responses to light treatment, respectively. The pulp had the highest quercetin glucosides under blue light, whereas the lowest under fluorescent light. Onion skin showed nearly opposite pattern as compared to the pulp. In particular, light treatment proved to be a better way to increase the level of quercetin content in onions which might be utilized for industrial production of bioactive compounds from onion and onion waste products. PMID:26150744

  16. Effect of different exposed lights on quercetin and quercetin glucoside content in onion (Allium cepa L.).

    PubMed

    Ko, Eun Young; Nile, Shivraj Hariram; Sharma, Kavita; Li, Guan Hao; Park, Se Won

    2015-07-01

    Quercetin and quercetin glucosides are the major flavonols present in onion (Allium cepa L.) and are predominantly present as quercetin, quercetin-3,4'-diglucoside and quercetin-4'-glucoside. Effect of different light wavelengths on onion after harvest and storage, with fluorescent, blue, red and ultra violet light influenced the quercetin and quercetin glucosides profile. In a peeled onion, all the light treatments elevated quercetin content in bulb. Among them, particularly fluorescent light effect was more eminent which stimulates the maximum synthesis of quercetin in onion. In case of whole onion bulb, skin and pulp showed different responses to light treatment, respectively. The pulp had the highest quercetin glucosides under blue light, whereas the lowest under fluorescent light. Onion skin showed nearly opposite pattern as compared to the pulp. In particular, light treatment proved to be a better way to increase the level of quercetin content in onions which might be utilized for industrial production of bioactive compounds from onion and onion waste products. PMID:26150744

  17. Quercetin sensitizes pancreatic cancer cells to TRAIL-induced apoptosis through JNK-mediated cFLIP turnover.

    PubMed

    Kim, Ji Hye; Kim, Min Joo; Choi, Kyung-Chul; Son, Jaekyoung

    2016-09-01

    Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a promising anticancer agent that can selectively kill cancer cells. Nonetheless, many cancers are resistant to TRAIL, and the molecular mechanisms of TRAIL resistance in cancer, particularly pancreatic cancer, are still unclear. In this study, we tested the hypothesis that quercetin, a flavonoid, induces apoptosis in TRAIL-resistant pancreatic cancer cells. Although quercetin alone had no significant cytotoxic effect, when combined with TRAIL, it promoted TRAIL-induced apoptosis that required mitochondrial outer membrane permeabilization. A BH3-only protein BID knockdown dramatically attenuated TRAIL/quercetin-induced apoptosis. The expression levels of cellular FLICE-like inhibitory protein (cFLIP) decreased in a dose-dependent manner in the presence of quercetin, and overexpression of cFLIP was able to robustly rescue pancreatic cancer cells from TRAIL/quercetin-induced apoptosis. Additionally, quercetin activated c-Jun N-terminal kinase (JNK) in a dose-dependent manner, which in turn induced the proteasomal degradation of cFLIP, and JNK activation also sensitized pancreatic cancer cells to TRAIL-induced apoptosis. Thus, our results suggest that quercetin induces TRAIL-induced apoptosis via JNK activation-mediated cFLIP turnover. PMID:27477310

  18. Quercetin interaction with the chloroplast ATPase complex.

    PubMed

    Shoshan, V; Shahak, Y; Shavit, N

    1980-07-01

    1. Quercetin, a flavonoid which acts as an energy transfer inhibitor in photophosphorylation is shown to inhibit the P-ATP exchange activity of membrane-bound CF1 and the ATPase activity of isolated CF1. Quercetin, affects also the proton uptake in chloroplasts in a manner similar to that of dicyclohexylcarbodiimide. 2. The light-dependent proton uptake in EDTA-treated chloroplasts is stimulated by quercetin. In untreated chloroplasts quercetin has a dual effect: it enhances at pH above 7.5 while at lower pH values it decreases the extent of H+ uptake. Similar effects were obtained with dicyclohexylcarbodiimide. 3. Like quercetin, dicyclohexylcarbodiimide was also found to inhibit the ATPase activity of isolated CF1. 4. Quercetin inhibits uncoupled electron transport induced by either EDTA-treatment of chloroplasts or by addition of uncouplers. Quercetin restores H+ uptake in both types of uncoupled chloroplasts. 5. The mode of action of quercetin and dicyclohexylcarbodiimide in photophosphorylation is discussed, and interaction with both CF1 and F0 is suggested. PMID:6446936

  19. Novel quercetin-3-O-glucoside eicosapentaenoic acid ester ameliorates inflammation and hyperlipidemia.

    PubMed

    Sekhon-Loodu, Satvir; Ziaullah, Ziaullah; Rupasinghe, H P Vasantha; Wang, Yanwen; Kulka, Marianna; Shahidi, Fereidoon

    2015-08-01

    Quercetin, a major flavonol, present abundantly in apples and onions, is widely studied for ameliorating metabolic syndrome abnormalities. However, quercetin is mainly present in plant food in the form of quercetin glycosides and has been reported for poor gastrointestinal absorption. The present study was designed with the purpose of imparting a lipophilic property to quercetin-3-O-glucoside (QG) by its acylation with eicosapentaenoic acid (EPA) and to study the influence of eicosapentaenoic acid ester of quercetin-3-O-glucoside (QE) on hyperlipidemia and inflammation in vivo and in vitro. QE was more effective in reducing the production of tumor necrosis factor-alpha (TNF-α), prostaglandin 2 (PGE2), cyclo-oxygenase (COX)-2 levels and nuclear expression of nuclear factor-kappa B (NF-кB) compared to the parent compounds (QG and EPA) and commercial drugs, after lipopolysaccharides (LPS) induced inflammation in THP-1 derived macrophages. Serum high-density lipoprotein (HDL)-cholesterol was significantly higher and hepatic total cholesterol concentration was lower in the rats fed high-fat diet supplemented with QE, compared to the high-fat diet with inflammation (HFL). The serum concentrations of C-reactive protein (CRP), interleukin (IL)-6, and interferon-gamma (IFN-γ) were significantly lower in QE treatment group than HFL group. EPA conjugated flavonol, QE, had significant anti-inflammatory and hypolipidemic properties and may be effective for the treatment of obesity-related disorders. PMID:26165697

  20. Anxiety and cognitive effects of quercetin liposomes in rats.

    PubMed

    Priprem, Aroonsri; Watanatorn, Jintanaporn; Sutthiparinyanont, Saengrawee; Phachonpai, Wathita; Muchimapura, Supaporn

    2008-03-01

    Quercetin, an effective flavonol used as an antioxidant, was investigated for its anxiolytic and cognitive activities in male Wistar rats. Oral quercetin (300 mg/kg body weight/day) was compared with oral and intranasal quercetin liposomes (20 microg/day). Quercetin liposomes, in a mixture of egg phosphatidylcholine, cholesterol, and quercetin (2:1:1) and dispersed in 50% polyethylene glycol in water, were approximately 200 nm in mean particle diameter and negative surface charge with a range of encapsulation efficiency of 60% to 80%. Anxiolytic and cognitive-enhancing effects of quercetin, conventional and liposomal, were subjected to elevated plus maze and Morris water maze tests, respectively. Both conventional and quercetin liposomes showed anxiolytic and cognitive-enhancing effects. A lower dose and a faster rate were observed with intranasal quercetin liposomes when compared with oral quercetin, conventional and liposomal. The intranasal quercetin liposomes are effective in the delivery of quercetin to the central nervous system. PMID:18249157

  1. Quercetin and the mitochondria: A mechanistic view.

    PubMed

    de Oliveira, Marcos Roberto; Nabavi, Seyed Mohammad; Braidy, Nady; Setzer, William N; Ahmed, Touqeer; Nabavi, Seyed Fazel

    2016-01-01

    Quercetin is an important flavonoid that is ubiquitously present in the diet in a variety of fruits and vegetables. It has been traditionally viewed as a potent antioxidant and anti-inflammatory molecule. However, recent studies have suggested that quercetin may exert its beneficial effects independent of its free radical-scavenging properties. Attention has been placed on the effect of quercetin on an array of mitochondrial processes. Quercetin is now recognized as a phytochemical that can modulate pathways associated with mitochondrial biogenesis, mitochondrial membrane potential, oxidative respiration and ATP anabolism, intra-mitochondrial redox status, and subsequently, mitochondria-induced apoptosis. The present review evaluates recent evidence on the ability of quercetin to interact with the abovementioned pathways, and critically analyses how, such interactions can exert protection against mitochondrial damage in response to toxicity induced by several exogenously and endogenously-produced cellular stressors, and oxidative stress in particular. PMID:26740171

  2. Oral Delivery of a High Quercetin Payload Nanosized Emulsion: In Vitro and In Vivo Activity Against B16-F10 Melanoma.

    PubMed

    Dora, Cristiana Lima; Silva, Luis Felipe Costa; Mazzarino, Leticia; Siqueira, Jarbas Mota; Fernandes, Daniel; Pacheco, Leticia Kramer; Maioral, Mariana Franzoni; Santos-Silva, Maria Claudia; Baischl, Ana Luiza Muccillo; Assreuy, Jamil; Lemos-Senna, Elenara

    2016-02-01

    Quercetin is a natural compound that has several biological activities including anticancer activity. However, the use of this drug has been limited mostly because of its poor water solubility and low bioavailability. Therefore, the development of quercetin-loaded nanocarrier systems may be considered a promising advance to exploit its therapeutic properties in clinical setting including cancer treatment. This study evaluates the effect of orally administered nanosized emulsion containing quercetin (QU-NE) on the cytotoxicity activity against B16-F10 cells in vitro, and on subcutaneous melanoma in mice inoculated with B16-F1O cells. In vivo experiments, also evaluate the co-administration of quercetin with cisplatin in order to predict synergic effects and the renal and hepatic toxicity. The nanocarriers were prepared through the hot solvent diffusion associated with the phase inversion temperature methods. In vitro study showed reduction of cell viability in a concentration-depend manner for free quercetin and QU-NE. In vivo study, quercetin either as a free drug or colloidal dispersion was administrated at a dose of 5 mg kg(-1) twice a week for 17 days via oral route. Cisplatin was administrated at dose of 1 mg kg(-1) once a week intraperitoneally. Free quercetin and QU-NE reduced tumor growth, however, the reduction observed for QU-NE (P < 0.001 vs. control) was significantly higher than free quercetin (P < 0.05 vs. control). The association of both drugs did not show synergic effect. Besides, no renal or hepatic toxicities were observed after administration of free quercetin and QU-NE. These results suggest that an improvement in the oral bioavailability of quercetin occurred when this compound was dissolved in the oily phase of a nanosized emulsion, indicating that it might have a potential application in the treatment of melanoma. PMID:27433577

  3. Essential role of Nrf2 in keratinocyte protection from UVA by quercetin

    SciTech Connect

    Kimura, Shintarou; Warabi, Eiji; Yanagawa, Toru; Ma, Dongmei; Itoh, Ken; Ishii, Yoshiyuki; Kawachi, Yasuhiro; Ishii, Tetsuro

    2009-09-11

    Much of the cell injury caused by ultraviolet A (UVA) irradiation is associated with oxidative stress. Quercetin is a major natural polyphenol that is known to protect cells from UVA-induced damage. Here, we investigated the molecular mechanism of this protection. Quercetin pretreatment strongly suppressed UVA-induced apoptosis in human keratinocyte HaCaT cells, markedly increased protein levels of the transcription factor Nrf2, induced the expression of antioxidative genes, and dramatically reduced the production of reactive oxygen species following UVA irradiation. Importantly, these beneficial effects were greatly attenuated by downregulating Nrf2 expression. Thus, quercetin protects cells from UVA damage mainly by elevating intracellular antioxidative activity via the enhanced accumulation of a transcription factor for antioxidant genes, Nrf2.

  4. Ochratoxin-induced toxicity, oxidative stress and apoptosis ameliorated by quercetin--modulation by Nrf2.

    PubMed

    Ramyaa, Periasamy; Padma, Viswanadha Vijaya

    2013-12-01

    Ochratoxin (OTA) is one of the most abundant food contaminating mycotoxins and is commonly present in the food chain. Many of the effects associated with OTA, appear to be mediated through oxidative stress. Although the toxicity of OTA is fairly well characterized, antidotes for alleviating the toxicity are sparsely reported. Dietary antioxidants have gained much importance in the recent years for their antioxidative and therapeutic properties. In the present study the therapeutic strategy was directed towards use of quercetin, a dietary antioxidant to combat OTA-induced toxicity in Vero cell line. Our results demonstrate that quercetin pre-treatment suppressed OTA-induced cytotoxicity and oxidative stress. It modulated OTA-induced alteration on the antioxidant defence through activation of Nrf2 pathway. Morphological studies by scanning electron microscopy (SEM) and cell cycle analysis indicated that quercetin prevented OTA-induced apoptosis. It also inhibited the activation of caspase cascade that leads to DNA fragmentation. Quercetin also exhibited antigenotoxic potential by attenuating OTA-induced DNA damage and micronucleus (MN) formation. The results of the study demonstrate for the first time that quercetin pre-treatment prevents OTA-induced oxidative stress and apoptosis in Vero cell line. PMID:23994659

  5. Intake of a Western diet containing cod instead of pork alters fatty acid composition in tissue phospholipids and attenuates obesity and hepatic lipid accumulation in mice.

    PubMed

    Liisberg, Ulrike; Fauske, Kristin Røen; Kuda, Ondrej; Fjære, Even; Myrmel, Lene Secher; Norberg, Nina; Frøyland, Livar; Graff, Ingvild Eide; Liaset, Bjørn; Kristiansen, Karsten; Kopecky, Jan; Madsen, Lise

    2016-07-01

    The content of the marine n-3 polyunsaturated fatty acids (PUFAs), eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) is far lower in lean than in fatty seafood. Cod filets contain less than 2g fat per kg, whereof approximately 50% is EPA and DHA. However, a large fraction of these n-3 PUFAs is present in the phospholipid (PL) fraction and may have high bioavailability and capacity to change the endocannabinoid profile. Here we investigated whether exchanging meat from a lean terrestrial animal with cod in a background Western diet would alter the endocannabinoid tone in mice and thereby attenuate obesity development and hepatic lipid accumulation. Accordingly, we prepared iso-caloric diets with 15.1 energy (e) % protein, 39.1 e% fat and 45.8 e% carbohydrates using freeze-dried meat from cod filets or pork sirloins, and using a combination of soybean oil, corn oil, margarine, milk fat, and lard as the fat source. Compared with mice receiving diets containing pork, mice fed cod gained less adipose tissue mass and had a lower content of hepatic lipids. This was accompanied by a lower n-6 to n-3 ratio in liver PLs and in red blood cells (RBCs) in the mice. Furthermore, mice receiving the cod-containing diet had lower circulating levels of the two major endocannabinoids, N-arachidonoylethanolamine and 2-arachidonoylglycerol. Together, our data demonstrate that despite the relatively low content of n-3 PUFAs in cod fillets, the cod-containing diet could exert beneficial metabolic effects. PMID:27155918

  6. Quercetin-induced apoptosis prevents EBV infection

    PubMed Central

    Lee, Minjung; Son, Myoungki; Ryu, Eunhyun; Shin, Yu Su; Kim, Jong Gwang; Kang, Byung Woog; Sung, Gi-Ho; Cho, Hyosun; Kang, Hyojeung

    2015-01-01

    Epstein-Barr virus (EBV) is a human gamma-1 herpesvirus that establishes a lifelong latency in over 90% of the world's population. During latency, virus exists predominantly as a chromatin-associated, multicopy episome in the nuclei of a variety of tumor cells derived from B cells, T cells, natural killer (NK) cells, and epithelial cells. Licorice is the root of Glycyrrhiza uralensis or G. glabra that has traditionally cultivated in eastern part of Asia. Licorice was reported to have anti-viral, anti-inflammatory, anti-atopic, hepatoprotective, anti-neurodegenerative, anti-tumor, anti-diabetic effects and so forth. Quercetin and isoliquiritigenin are produced from licorice and highly similar in molecular structure. They have diverse bioactive effects such as antiviral activity, anti-asthmatic activity, anti-cancer activity, anti-inflammation activity, monoamine-oxidase inhibitor, and etc. To determine anti-EBV and anti-EBVaGC (Epstein-Barr virus associated gastric carcinoma) effects of licorice, we investigated antitumor and antiviral effects of quercetin and isoliquiritigenin against EBVaGC. Although both quercetin and isoliquiritigenin are cytotoxic to SNU719 cells, quercetin induced more apoptosis in SNU719 cells than isoliquiritigenin, more completely eliminated DNMT1 and DNMT3A expressions than isoliquiritigenin, and more strongly affects the cell cycle progression of SNU719 than isoliquiritigenin. Both quercetin and isoliquiritigenin induce signal transductions to stimulate apoptosis, and induce EBV gene transcription. Quercetin enhances frequency of F promoter use, whereas isoliquiritigenin enhances frequency of Q promoter use. Quercetin reduces EBV latency, whereas isoliquiritigenin increases the latency. Quercetin increases more the EBV progeny production, and inhibits more EBV infection than isoliquiritigenin. These results indicate that quercetin could be a promising candidate for antiviral and antitumor agents against EBV and human gastric carcinoma

  7. Quercetin in brain diseases: Potential and limits.

    PubMed

    Dajas, Federico; Abin-Carriquiry, Juan Andrés; Arredondo, Florencia; Blasina, Fernanda; Echeverry, Carolina; Martínez, Marcela; Rivera, Felicia; Vaamonde, Lucía

    2015-10-01

    Quercetin is a ubiquitous flavonoid present in beverages, food and plants that has been demonstrated to have a role in the prevention of neurodegenerative and cerebrovascular diseases. In neuronal culture, quercetin increases survival against oxidative insults. Antioxidation appears to be a necessary but not sufficient condition for its neuroprotective action and modulation of intracellular signaling and transcription factors, increasing the expression of antioxidant and pro survival proteins and modulating inflammation, appears as important for neuronal protection. Quercetin also regulates the activity of kinases, changing the phosphorylation state of target molecules, resulting in modulation of cellular function and gene expression. Concentrations of quercetin higher than 100 μM consistently show cytotoxic and apoptotic effects by its autoxidation and generation of toxic quinones. In vivo, results are controversial with some studies showing neuroprotection by quercetin and others not, requiring a drug delivery system or chronic treatments to show neuroprotective effects. The blood and brain bioavailability of free quercetin after ingestion is a complex and controversial process that produces final low concentrations, a fact that has led to suggestions that metabolites would be active by themselves and/or as pro-drugs that would release the active aglycone in the brain. Available studies show that in normal or low oxidative conditions, chronic treatments with quercetin contributes to re-establish the redox regulation of proteins, transcription factors and survival signaling cascades that promote survival. In the presence of highly oxidative conditions such as in an ischemic tissue, quercetin could become pro-oxidant and toxic. At present, evidence points to quercetin as a preventive molecule for neuropathology when administered in natural matrices such as vegetables and food. More research is needed to support its use as a lead compound in its free form in

  8. Attenuation of Mouse Hepatitis Virus by Deletion of the LLRKxGxKG Region of Nsp1

    PubMed Central

    Baojun, Luo; Yi, Yang; Xiang, He; Wenli, Su; Zounan, Sun; Deyin, Guo; Qingyu, Zhu; Jingmei, Liu; Guohui, Chang

    2013-01-01

    Coronaviruses are a family of large positive-sense RNA viruses that are responsible for a wide range of important veterinary and human diseases. Nsp1 has been shown to have an important role in the pathogenetic mechanisms of coronaviruses in vivo. To assess the function of a relatively conserved domain (LLRKxGxKG) of MHV nsp1, a mutant virus, MHV-nsp1-27D, with a 27 nts (LLRKxGxKG) deletion in nsp1, was constructed using a reverse genetic system with a vaccinia virus vector. The mutant virus had similar growth kinetics to MHV-A59 wild-type virus in 17CI-1 cells, but was highly attenuated in vivo. Moreover, the mutant virus completely protected C57BL/6 mice from a lethal MHV-A59 challenge. To further analyze the mechanism of the attenuation of the mutant virus, changes in reporter gene expression were measured in nsp1- or nsp1-27D-expressing cells; the results showed that nsp1 inhibited reporter gene expression controlled by different promoters, but that this inhibition was reduced for nsp1-27D. The research in vivo and in vitro suggests that the LLRKxGxKG region of nsp1 may play an important role in this process. PMID:23593419

  9. Attenuation of mouse hepatitis virus by deletion of the LLRKxGxKG region of Nsp1.

    PubMed

    Lei, Lin; Ying, Sun; Baojun, Luo; Yi, Yang; Xiang, He; Wenli, Su; Zounan, Sun; Deyin, Guo; Qingyu, Zhu; Jingmei, Liu; Guohui, Chang

    2013-01-01

    Coronaviruses are a family of large positive-sense RNA viruses that are responsible for a wide range of important veterinary and human diseases. Nsp1 has been shown to have an important role in the pathogenetic mechanisms of coronaviruses in vivo. To assess the function of a relatively conserved domain (LLRKxGxKG) of MHV nsp1, a mutant virus, MHV-nsp1-27D, with a 27 nts (LLRKxGxKG) deletion in nsp1, was constructed using a reverse genetic system with a vaccinia virus vector. The mutant virus had similar growth kinetics to MHV-A59 wild-type virus in 17CI-1 cells, but was highly attenuated in vivo. Moreover, the mutant virus completely protected C57BL/6 mice from a lethal MHV-A59 challenge. To further analyze the mechanism of the attenuation of the mutant virus, changes in reporter gene expression were measured in nsp1- or nsp1-27D-expressing cells; the results showed that nsp1 inhibited reporter gene expression controlled by different promoters, but that this inhibition was reduced for nsp1-27D. The research in vivo and in vitro suggests that the LLRKxGxKG region of nsp1 may play an important role in this process. PMID:23593419

  10. Long term follow-up study to evaluate immunogenicity and safety of a single dose of live attenuated hepatitis a vaccine in children

    PubMed Central

    Mitra, Monjori; Shah, Nitin; Faridi, MMA; Ghosh, Apurba; Sankaranarayanan, VS; Aggarwal, Anju; Chatterjee, Suparna; Bhattacharyya, Nisha; Kadhe, Ganesh; Vishnoi, Gaurav; Mane, Amey

    2015-01-01

    Worldwide, viral hepatitis continues to be a cause of considerable morbidity and mortality. Mass immunization with a single dose of live attenuated HAV has been shown to significantly reduce disease burden in the community. This was a phase IV, 5-year follow up study carried out at 4 centers (Kolkata, Delhi, Mumbai and Chennai) across India. The subjects with antibody titer <20 mIU/mL at baseline were evaluated for long term immunogenicity. Of the 503 subjects enrolled, 349 subjects were baseline seronegative with an anti-HAV antibody titer <20 mIU/mL. Overall, 343 subjects could be followed up at some point of time during this 5 y post vaccination period. In the last year (60 months) of follow-up, 108 subjects (97.3%) of 111 subjects (who came for follow-up at the end of 5 y) had a protective antibody titer (anti-HAV antibody titer >20 mIU/mL). The seroconversion rates considering seroprotection levels of anti-HAV antibody titer >20 mIU/mL, following vaccination starting from 6 weeks, 6 months, 12 months, 24 months, 36 months, 48 months and 60 months were 95.1%, 97.9%, 98.3%, 96.2%, 97.8%, 92.6% and 97.3%, respectively. The geometric mean concentration (GMC) over the years increased from 64.9 mIU/mL at 6 weeks to 38.1 mIU/mL and 135.2 mIU/mL at 6 months and 12 months, respectively and was maintained at 127.1 mIU/mL at 60 months. In conclusion, the result of this 5-year follow up study showed that the single dose of live attenuated vaccine is well tolerated and provides long-term immunogenicity in healthy Indian children. PMID:26018443

  11. Long term follow-up study to evaluate immunogenicity and safety of a single dose of live attenuated hepatitis a vaccine in children.

    PubMed

    Mitra, Monjori; Shah, Nitin; Faridi, Mma; Ghosh, Apurba; Sankaranarayanan, V S; Aggarwal, Anju; Chatterjee, Suparna; Bhattacharyya, Nisha; Kadhe, Ganesh; Vishnoi, Gaurav; Mane, Amey

    2015-01-01

    Worldwide, viral hepatitis continues to be a cause of considerable morbidity and mortality. Mass immunization with a single dose of live attenuated HAV has been shown to significantly reduce disease burden in the community. This was a phase IV, 5-year follow up study carried out at 4 centers (Kolkata, Delhi, Mumbai and Chennai) across India. The subjects with antibody titer <20 mIU/mL at baseline were evaluated for long term immunogenicity. Of the 503 subjects enrolled, 349 subjects were baseline seronegative with an anti-HAV antibody titer <20 mIU/mL. Overall, 343 subjects could be followed up at some point of time during this 5 y post vaccination period. In the last year (60 months) of follow-up, 108 subjects (97.3%) of 111 subjects (who came for follow-up at the end of 5 y) had a protective antibody titer (anti-HAV antibody titer >20 mIU/mL). The seroconversion rates considering seroprotection levels of anti-HAV antibody titer >20 mIU/mL, following vaccination starting from 6 weeks, 6 months, 12 months, 24 months, 36 months, 48 months and 60 months were 95.1%, 97.9%, 98.3%, 96.2%, 97.8%, 92.6% and 97.3%, respectively. The geometric mean concentration (GMC) over the years increased from 64.9 mIU/mL at 6 weeks to 38.1 mIU/mL and 135.2 mIU/mL at 6 months and 12 months, respectively and was maintained at 127.1 mIU/mL at 60 months. In conclusion, the result of this 5-year follow up study showed that the single dose of live attenuated vaccine is well tolerated and provides long-term immunogenicity in healthy Indian children. PMID:26018443

  12. Dioscin alleviates alcoholic liver fibrosis by attenuating hepatic stellate cell activation via the TLR4/MyD88/NF-κB signaling pathway

    PubMed Central

    Liu, Min; Xu, Youwei; Han, Xu; Yin, Lianhong; Xu, Lina; Qi, Yan; Zhao, Yanyan; Liu, Kexin; Peng, Jinyong

    2015-01-01

    The present work aimed to investigate the activities and underlying mechanisms of dioscin against alcoholic liver fibrosis (ALF). In vivo liver fibrosis in mice was induced by an alcoholic liquid diet, and in vitro studies were performed on activated HSC-T6 and LX2 cells treated with lipopolysaccharide. Our results showed that dioscin significantly attenuated hepatic stellate cells (HSCs) activation, improved collagen accumulation, and attenuated inflammation through down-regulating the levels of myeloid differentiation factor 88 (MyD88), nuclear factor κB (NF-κB), interleukin (IL)-1, IL-6 and tumour necrosis factor-α by decreasing Toll-like receptor (TLR)4 expression both in vivo and in vitro. TLR4 overexpression was also decreased by dioscin, leading to the markedly down-regulated levels of MyD88, NF-κB, transforming growth factor-β1 (TGF-β1), α-smooth muscle actin (α-SMA) and type I collagen (COL1A1) in cultured HSCs. Suppression of cellular MyD88 by ST2825 or abrogation of NF-κB by pyrrolidine dithiocarbamate eliminated the inhibitory effects of dioscin on the levels of TGF-β1, α-SMA and COL1A1. In a word, dioscin exhibited potent effects against ALF via altering TLR4/MyD88/NF-κB signaling pathway, which provided novel insights into the mechanisms of this compound as an antifibrogenic candidate for the treatment of ALF in the future. PMID:26655640

  13. Divergent antiviral effects of bioflavonoids on the hepatitis C virus life cycle

    SciTech Connect

    Khachatoorian, Ronik; Arumugaswami, Vaithilingaraja; Raychaudhuri, Santanu; Yeh, George K.; Maloney, Eden M.; Wang, Julie; and others

    2012-11-25

    We have previously demonstrated that quercetin, a bioflavonoid, blocks hepatitis C virus (HCV) proliferation by inhibiting NS5A-driven internal ribosomal entry site (IRES)-mediated translation of the viral genome. Here, we investigate the mechanisms of antiviral activity of quercetin and six additional bioflavonoids. We demonstrate that catechin, naringenin, and quercetin possess significant antiviral activity, with no associated cytotoxicity. Infectious virion secretion was not significantly altered by these bioflavonoids. Catechin and naringenin demonstrated stronger inhibition of infectious virion assembly compared to quercetin. Quercetin markedly blocked viral translation whereas catechin and naringenin demonstrated mild activity. Similarly quercetin completely blocked NS5A-augmented IRES-mediated translation in an IRES reporter assay, whereas catechin and naringenin had only a mild effect. Moreover, quercetin differentially inhibited HSP70 induction compared to catechin and naringenin. Thus, the antiviral activity of these bioflavonoids is mediated through different mechanisms. Therefore combination of these bioflavonoids may act synergistically against HCV.

  14. Mitochondrial Aldehyde Dehydrogenase Activation by Alda‐1 Inhibits Atherosclerosis and Attenuates Hepatic Steatosis in Apolipoprotein E‐Knockout Mice

    PubMed Central

    Stachowicz, Aneta; Olszanecki, Rafał; Suski, Maciej; Wiśniewska, Anna; Totoń‐Żurańska, Justyna; Madej, Józef; Jawień, Jacek; Białas, Magdalena; Okoń, Krzysztof; Gajda, Mariusz; Głombik, Katarzyna; Basta‐Kaim, Agnieszka; Korbut, Ryszard

    2014-01-01

    Background Mitochondrial dysfunction has been shown to play an important role in the development of atherosclerosis and nonalcoholic fatty liver disease (NAFLD). Mitochondrial aldehyde dehydrogenase (ALDH2), an enzyme responsible for the detoxification of reactive aldehydes, is considered to exert protective function in mitochondria. We investigated the influence of Alda‐1, an activator of ALDH2, on atherogenesis and on the liver steatosis in apolipoprotein E knockout (apoE−/−) mice. Methods and Results Alda‐1 caused decrease of atherosclerotic lesions approximately 25% as estimated by “en face” and “cross‐section” methods without influence on plasma lipid profile, atherosclerosis‐related markers of inflammation, and macrophage and smooth muscle content in the plaques. Plaque nitrotyrosine was not changed upon Alda‐1 treatment, and there were no changes in aortic mRNA levels of factors involved in antioxidative defense, regulation of apoptosis, mitogenesis, and autophagy. Hematoxylin/eosin staining showed decrease of steatotic changes in liver of Alda‐1‐treated apoE−/− mice. Alda‐1 attenuated formation of 4‐hydroxy‐2‐nonenal (4‐HNE) protein adducts and decreased triglyceride content in liver tissue. Two‐dimensional electrophoresis coupled with mass spectrometry identified 20 differentially expressed mitochondrial proteins upon Alda‐1 treatment in liver of apoE−/− mice, mostly proteins related to metabolism and oxidative stress. The most up‐regulated were the proteins that participated in beta oxidation of fatty acids. Conclusions Collectively, Alda‐1 inhibited atherosclerosis and attenuated NAFLD in apoE−/− mice. The pattern of changes suggests a beneficial effect of Alda‐1 in NAFLD; however, the exact liver functional consequences of the revealed alterations as well as the mechanism(s) of antiatherosclerotic Alda‐1 action require further investigation. PMID:25392542

  15. Aloe vera gel extract attenuates ethanol-induced hepatic lipid accumulation by suppressing the expression of lipogenic genes in mice.

    PubMed

    Saito, Marie; Tanaka, Miyuki; Misawa, Eriko; Yamada, Muneo; Yamauchi, Kouji; Iwatsuki, Keiji

    2012-01-01

    We have previously reported that Aloe vera gel had hypoglycemic activity and anti-obesity effects, although the effect on alcoholic fatty liver was unclear. We examined in this present study the effect of an Aloe vera gel extract (AVGE) on hepatic lipid metabolism by using an ethanol-induced transient fatty liver mouse model. Ethanol (3 g/kg of mouse weight) was orally administered to induce an accumulation of triglyceride (TG) and increase the mRNA expression of such lipogenic genes as sterol regulatory element-binding protein-1 (SREBP-1) and fatty acid synthase (FASN) in the liver. Although ethanol ingestion caused a 5.4-fold increase in liver TG, pre-treating with AVGE (1 mg/kg/d) for 1 week significantly suppressed this elevation of the ethanol-induced liver TG level. The expression of lipogenic genes was also lower in the AVGE pre-treatment group than in the control group. This inhibitory effect on the ethanol-induced accumulation of TG was attributed to a reduction in the expression of lipogenic genes that were increased by ethanol. PMID:23132591

  16. Green Tea Phenolic Epicatechins Inhibit Hepatitis C Virus Replication via Cycloxygenase-2 and Attenuate Virus-Induced Inflammation

    PubMed Central

    Lin, Ying-Ting; Wu, Yu-Hsuan; Tseng, Chin-Kai; Lin, Chun-Kuang; Chen, Wei-Chun; Hsu, Yao-Chin; Lee, Jin-Ching

    2013-01-01

    Chronic hepatitis C virus (HCV) infection is the leading risk factor for hepatocellular carcinoma (HCC) and chronic liver disease worldwide. Green tea, in addition to being consumed as a healthy beverage, contains phenolic catechins that have been used as medicinal substances. In the present study, we illustrated that the epicatechin isomers (+)-epicatechin and (−)-epicatechin concentration-dependently inhibited HCV replication at nontoxic concentrations by using in vitro cell-based HCV replicon and JFH-1 infectious systems. In addition to significantly suppressing virus-induced cyclooxygenase-2 (COX-2) expression, our results revealed that the anti-HCV activity of the epicatechin isomers occurred through the down-regulation of COX-2. Furthermore, both the epicatechin isomers additively inhibited HCV replication in combination with either interferon-α or viral enzyme inhibitors [2′-C-methylcytidine (NM-107) or telaprevir]. They also had prominent anti-inflammatory effects by inhibiting the gene expression of tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and inducible nitrite oxide synthase as well as the COX-2 in viral protein-expressing hepatoma Huh-7 cells. Collectively, (+)-epicatechin and (−)-epicatechin may serve as therapeutic supplements for treating HCV-related diseases. PMID:23365670

  17. Acetonic and Methanolic Extracts of Heterotheca inuloides, and Quercetin, Decrease CCl4-Oxidative Stress in Several Rat Tissues

    PubMed Central

    Coballase-Urrutia, Elvia; Pedraza-Chaverri, José; Cárdenas-Rodríguez, Noemí; Huerta-Gertrudis, Bernardino; García-Cruz, Mercedes Edna; Montesinos-Correa, Hortencia; Sánchez-González, Dolores Javier; Camacho-Carranza, Rafael; Espinosa-Aguirre, Jesús Javier

    2013-01-01

    The present study was designed to test the hypothesis that the acetonic and methanolic extracts of H. inuloides prevent carbon tetrachloride-(CCl4) induced oxidative stress in vital tissues. Pretreatment with both H. inuloides extracts or quercetin attenuated the increase in serum activity of alkaline phosphatase (ALP), total bilirubin (BB), creatinine (CRE), and creatine kinase (CK), and impeded the decrease of γ-globulin (γ-GLOB) and albumin (ALB) observed in CCl4-induced tissue injury. The protective effect was confirmed by histological analysis with hematoxylin-eosin and periodic acid/Schiff's reagent. Level of lipid peroxidation was higher in the organs of rats exposed to CCl4 than in those of the animals treated with Heterohteca extracts or quercetin, and these showed levels similar to the untreated group. Pretreatment of animals with either of the extracts or quercetin also prevented the increase of 4-hydroxynonenal and 3-nitrotyrosine. Pretreatment with the plant extracts or quercetin attenuated CCl4 toxic effects on the activity of several antioxidant enzymes. The present results strongly suggest that the chemopreventive effect of the extracts used and quercetin, against CCl4 toxicity, is associated with their antioxidant properties and corroborated previous results obtained in liver tissue. PMID:23365610

  18. Quercetin treatment ameliorates inflammation and fibrosis in mice with nonalcoholic steatohepatitis.

    PubMed

    Marcolin, Eder; San-Miguel, Beatriz; Vallejo, Daniela; Tieppo, Juliana; Marroni, Norma; González-Gallego, Javier; Tuñón, María J

    2012-10-01

    We investigated whether quercetin protects from steatosis and limits the expression of proinflammatory and fibrogenic genes in C57BL/6J mice with nonalcoholic steatohepatitis (NASH) induced by feeding a methionine-choline-deficient (MCD) diet. Quercetin (50 mg/kg) was given by oral route daily. Mice were randomly divided into 4 groups that received for 2 or 4 wk: the control diet plus vehicle, control diet plus quercetin, MCD diet plus vehicle, and MCD diet plus quercetin. At both 2 and 4 wk, feeding the MCD diet resulted in liver steatosis, inflammatory cell accumulation, oxidative stress evaluated by the concentration of TBARS, and fibrosis evidenced by the staining of α-smooth muscle actin-positive cells in the liver. At both 2 and 4 wk, the MCD diet induced an increase in the mRNA levels of Il6, Tnf, Ptgs2, and Hmgb1 and increased the protein concentrations of Toll-like receptor-4, c-Jun terminal kinase, and p65 NFκB subunit compared with control rats. Feeding the mice the MCD diet also triggered an increase of Col1a1, Col3a1, Plod3, Tgfb1, Smad3, Smad7, Pdgfb, Ctgf, Areg, Mmp9, and Timp1 mRNA levels. These effects were totally or partially prevented by treatment with quercetin. The data obtained suggest that attenuation of multiple profibrotic and proinflammatory gene pathways contributes to the beneficial effects of quercetin in mice with MCD diet-induced steatohepatitis. PMID:22915297

  19. Quercetin inhibits the growth of human gastric cancer stem cells by inducing mitochondrial-dependent apoptosis through the inhibition of PI3K/Akt signaling.

    PubMed

    Shen, Xinsheng; Si, Yaqing; Wang, Zhao; Wang, Jiachen; Guo, Yongqiang; Zhang, Xiefu

    2016-08-01

    Cancer stem cells (CSCs) have recently been linked to new treatment strategies for gastric cancer due to the critical role which they play as the 'heartbeat' of cancer. In the present study, we explored the effects of quercetin, an anti-inflammatory and antiviral compound, on gastric CSCs (GCSCs). We noted that quercetin exerted pronounced inhibitory effects on GCSC survival. Moreover, quercetin induced cell apoptosis in a mitochondrial-dependent manner, as shown by the reduction in mitochondrial membrane potential, the activation of caspase-3 and -9, and the downregulation of Bcl-2, as well as the upregulation of Bax and cytochrome c (Cyt-c). Additionally, a marked decrease in Akt phosphorylation levels was observed following treatment with quercetin, whereas pre-treatment with fumonisin B1 (FB1, Akt activator) significantly attenuated the inhibitory effects of quercetin on cell growth and its promoting effects on mitochondrial-dependent apoptosis. Notably, FB1 enhanced the expression of Bcl-2, which was inhibited by quercetin, and prevented the decrease in mitochondrial membrane potential induced by quercetin. However, the increase in the levels of caspases, Bax and Cyt-c induced by quercetin was also attenuated by the addition of FB1 to the GCSCs. Therefore, our results demonstrate that quercetin triggers mitochondrial apoptotic-dependent growth inhibition via the blockade of phosphoinositide 3-kinase (PI3K)-Akt signaling in GCSCs, indicating a potential target for the treatment of gastric cancer. PMID:27278820

  20. Non-Invasive Assessment of Hepatic Steatosis in Patients with NAFLD Using Controlled Attenuation Parameter and 1H-MR Spectroscopy

    PubMed Central

    Karlas, Thomas; Petroff, David; Garnov, Nikita; Böhm, Stephan; Tenckhoff, Hannelore; Wittekind, Christian; Wiese, Manfred; Schiefke, Ingolf; Linder, Nicolas; Schaudinn, Alexander; Busse, Harald; Kahn, Thomas; Mössner, Joachim; Berg, Thomas; Tröltzsch, Michael; Keim, Volker; Wiegand, Johannes

    2014-01-01

    Introduction Non-invasive assessment of steatosis and fibrosis is of growing relevance in non-alcoholic fatty liver disease (NAFLD). 1H-Magnetic resonance spectroscopy (1H-MRS) and the ultrasound-based controlled attenuation parameter (CAP) correlate with biopsy proven steatosis, but have not been correlated with each other so far. We therefore performed a head-to-head comparison between both methods. Methods Fifty patients with biopsy-proven NAFLD and 15 healthy volunteers were evaluated with 1H-MRS and transient elastography (TE) including CAP. Steatosis was defined according to the percentage of affected hepatocytes: S1 5-33%, S2 34–66%, S3 ≥67%. Results Steatosis grade in patients with NAFLD was S1 36%, S2 40% and S3 24%. CAP and 1H-MRS significantly correlated with histopathology and showed comparable accuracy for the detection of hepatic steatosis: areas under the receiver-operating characteristics curves were 0.93 vs. 0.88 for steatosis ≥S1 and 0.94 vs. 0.88 for ≥S2, respectively. Boot-strapping analysis revealed a CAP cut-off of 300 dB/m for detection of S2-3 steatosis, while retaining the lower cut-off of 215 dB/m for the definition of healthy individuals. Direct comparison between CAP and 1H-MRS revealed only modest correlation (total cohort: r = 0.63 [0.44, 0.76]; NAFLD cases: r = 0.56 [0.32, 0.74]). For detection of F2–4 fibrosis TE had sensitivity and specificity of 100% and 98.1% at a cut-off value of 8.85 kPa. Conclusion Our data suggest a comparable diagnostic value of CAP and 1H-MRS for hepatic steatosis quantification. Combined with the simultaneous TE fibrosis assessment, CAP represents an efficient method for non-invasive characterization of NAFLD. Limited correlation between CAP and 1H-MRS may be explained by different technical aspects, anthropometry, and presence of advanced liver fibrosis. PMID:24637477

  1. Salvianolic acid B lowers portal pressure in cirrhotic rats and attenuates contraction of rat hepatic stellate cells by inhibiting RhoA signaling pathway.

    PubMed

    Xu, Hong; Zhou, Yang; Lu, Chao; Ping, Jian; Xu, Lie-Ming

    2012-12-01

    The contraction of hepatic stellate cells (HSCs) has a critical role in the regulation of intrahepatic vascular resistance and portal hypertension. Previous studies have confirmed that salvianolic acid B (Sal B) is effective against liver fibrosis. In the present study, we evaluated the effect of Sal B on portal hypertension and on HSCs contractility. Liver cirrhosis was induced in rats by peritoneal injection of dimethylnitrosamine and the portal pressure was measured. HSCs contraction was evaluated by collagen gel contraction assay. Glycerol-urea gel electrophoresis was performed to determine the phosphorylation of myosin light chain 2 (MLC2). F-actin stress fiber polymerization was detected by fluorescein isothiocyanate-labeled phalloidin. Intracellular Ca(2+) and RhoA signaling activation were also measured. Sal B effectively reduced the portal pressure in DMN-induced cirrhotic rats. It decreased the contraction by endothelin-1 (ET-1)-activated HSCs by ∼66.5% and caused the disassembly of actin stress fibers and MLC2 dephosphorylation. Although Sal B reduced ET-1-induced intracellular Ca(2+) increase, blocking Ca(2+) increase completely by BAPTA-AM, a Ca(2+) chelator, barely affected the magnitude of contraction. Sal B decreased ET-1-induced RhoA and Rho-associated coiled coil-forming protein kinase (ROCK) II activation by 66.84% and by 76.79%, respectively, and inhibited Thr(696) phosphorylation of MYPT1 by 80.09%. In vivo, Sal B lowers the portal pressure in rats with DMN-induced cirrhosis. In vitro, Sal B attenuates ET-1-induced HSCs contraction by inhibiting the activation of RhoA and ROCK II and the downstream MYPT1 phosphorylation at Thr(696). We consider Sal B a potential candidate for the pharmacological treatment of portal hypertension. PMID:22986787

  2. Quercetin Directly Interacts with Vitamin D Receptor (VDR): Structural Implication of VDR Activation by Quercetin.

    PubMed

    Lee, Ki-Young; Choi, Hye-Seung; Choi, Ho-Sung; Chung, Ka Young; Lee, Bong-Jin; Maeng, Han-Joo; Seo, Min-Duk

    2016-03-01

    The vitamin D receptor (VDR) is a member of the nuclear receptor (NR) superfamily. The VDR binds to active vitamin D3 metabolites, which stimulates downstream transduction signaling involved in various physiological activities such as calcium homeostasis, bone mineralization, and cell differentiation. Quercetin is a widely distributed flavonoidin nature that is known to enhance transactivation of VDR target genes. However, the detailed molecular mechanism underlying VDR activation by quercetin is not well understood. We firstdemonstrated the interaction between quercetin and the VDR at the molecular level by using fluorecence quenching and saturation transfer difference (STD) NMR experiments. The dissociation constant (Kd) of quercetin and the VDR was 21.15 ± 4.31 μM, and the mapping of quercetin subsites for VDR binding was performed using STD-NMR. The binding mode of quercetin was investigated by a docking study combined with molecular dynamics (MD) simulation. Quercetin might serve as a scaffold for the development of VDR modulators with selective biological activities. PMID:26902087

  3. Quercetin Directly Interacts with Vitamin D Receptor (VDR): Structural Implication of VDR Activation by Quercetin

    PubMed Central

    Lee, Ki-Young; Choi, Hye-Seung; Choi, Ho-Sung; Chung, Ka Young; Lee, Bong-Jin; Maeng, Han-Joo; Seo, Min-Duk

    2016-01-01

    The vitamin D receptor (VDR) is a member of the nuclear receptor (NR) superfamily. The VDR binds to active vitamin D3 metabolites, which stimulates downstream transduction signaling involved in various physiological activities such as calcium homeostasis, bone mineralization, and cell differentiation. Quercetin is a widely distributed flavonoid in nature that is known to enhance transactivation of VDR target genes. However, the detailed molecular mechanism underlying VDR activation by quercetin is not well understood. We first demonstrated the interaction between quercetin and the VDR at the molecular level by using fluorescence quenching and saturation transfer difference (STD) NMR experiments. The dissociation constant (Kd) of quercetin and the VDR was 21.15 ± 4.31 μM, and the mapping of quercetin subsites for VDR binding was performed using STD-NMR. The binding mode of quercetin was investigated by a docking study combined with molecular dynamics (MD) simulation. Quercetin might serve as a scaffold for the development of VDR modulators with selective biological activities. PMID:26902087

  4. Quercetin Feeding in Newborn Dairy Calves Cannot Compensate Colostrum Deprivation: Study on Metabolic, Antioxidative and Inflammatory Traits

    PubMed Central

    Gruse, Jeannine; Kanitz, Ellen; Weitzel, Joachim M.; Tuchscherer, Armin; Stefaniak, Tadeusz; Jawor, Paulina; Wolffram, Siegfried; Hammon, Harald M.

    2016-01-01

    formula- than in colostrum-fed groups. Hepatic mRNA expression of tumor necrosis factor was higher after quercetin feeding and expression of C-reactive protein was higher after formula feeding. Data confirm that colostrum improves neonatal health and indicate that quercetin feeding cannot compensate for insufficient colostrum supply. PMID:26752173

  5. Quercetin Feeding in Newborn Dairy Calves Cannot Compensate Colostrum Deprivation: Study on Metabolic, Antioxidative and Inflammatory Traits.

    PubMed

    Gruse, Jeannine; Kanitz, Ellen; Weitzel, Joachim M; Tuchscherer, Armin; Stefaniak, Tadeusz; Jawor, Paulina; Wolffram, Siegfried; Hammon, Harald M

    2016-01-01

    formula- than in colostrum-fed groups. Hepatic mRNA expression of tumor necrosis factor was higher after quercetin feeding and expression of C-reactive protein was higher after formula feeding. Data confirm that colostrum improves neonatal health and indicate that quercetin feeding cannot compensate for insufficient colostrum supply. PMID:26752173

  6. Quercetin Aglycone Is Bioavailable in Murine Pancreas and Pancreatic Xenografts

    PubMed Central

    Zhang, Lifeng; Angst, Eliane; Park, Jenny L.; Moro, Aune; Dawson, David W.; Reber, Howard A.; Eibl, Guido; Hines, O. Joe; Go, Vay-Liang W.; Lu, Qing-Yi

    2010-01-01

    Quercetin is a potential chemopreventive and chemotherapeutic agent for pancreatic and other cancers. This study was to examine the distribution of quercetin in plasma, lung, liver, pancreas and pancreatic cancer xenografts in a murine in vivo model and the uptake of quercetin in pancreatic cancer MiaPaCa-2 cells in cellular in vitro model. Mice were randomly allocated to control diet, 0.2 and 1% quercetin diet groups utilizing the AIN93G-based diet (n=12 per group) for 6 weeks. In addition, 6 mice from each group were injected weekly with chemotherapeutic drug gemcitabine (120 mg/kg mouse, i.p.). MiaPaCa cells were collected from culture medium after cells were exposed to 30 µM of quercetin for 0.5, 1, 2, 4, 8, and 24 hrs. Levels of quercetin and 3-O’-methyl-quercetin in mice tissues and MiaPaCa-2 cells were measured by high-pressure liquid chromatography following enzymatic hydrolysis and then extraction. Our study showed that quercetin is accumulated in pancreatic cancer cells, and is absorbed in the circulating system, tumors and tissues of pancreas, liver and lung in vivo. A higher proportion of total quercetin found in tumors and pancreas are aglycones. Gemcitabine co-treatment with quercetin reduced absorption of quercetin in mice circulatory system and liver. Results from the study provide important information on the interpretation of chemo-therapeutic efficacy of quercetin. PMID:20499918

  7. In vitro digestion and lactase treatment influence uptake of quercetin and quercetin glucoside by the Caco-2 cell monolayer

    PubMed Central

    Boyer, Jeanelle; Brown, Dan; Liu, Rui Hai

    2005-01-01

    Background Quercetin and quercetin glycosides are widely consumed flavonoids found in many fruits and vegetables. These compounds have a wide range of potential health benefits, and understanding the bioavailability of flavonoids from foods is becoming increasingly important. Methods This study combined an in vitro digestion, a lactase treatment and the Caco-2 cell model to examine quercetin and quercetin glucoside uptake from shallot and apple homogenates. Results The in vitro digestion alone significantly decreased quercetin aglycone recovery from the shallot digestate (p < 0.05), but had no significant effect on quercetin-3-glucoside recovery (p > 0.05). Digestion increased the Caco-2 cell uptake of shallot quercetin-4'-glucoside by 2-fold when compared to the non-digested shallot. Despite the loss of quercetin from the digested shallot, the bioavailability of quercetin aglycone to the Caco-2 cells was the same in both the digested and non-digested shallot. Treatment with lactase increased quercetin recovery from the shallot digestate nearly 10-fold and decreased quercetin-4'-glucoside recovery by more than 100-fold (p < 0.05), but had no effect on quercetin recovery from apple digestates. Lactase treatment also increased shallot quercetin bioavailability to the Caco-2 cells approximately 14-fold, and decreased shallot quercetin-4'-glucoside bioavailability 23-fold (p < 0.05). These Caco-2 cells had lactase activity similar to that expressed by a lactose intolerant human. Conclusions The increase in quercetin uptake following treatment with lactase suggests that dietary supplementation with lactase may increase quercetin bioavailability in lactose intolerant humans. Combining the digestion, the lactase treatment and the Caco-2 cell culture model may provide a reliable in vitro model for examining flavonoid glucoside bioavailability from foods. PMID:15644141

  8. Effects of quercetin on predator stress-related hematological and behavioral alterations in pregnant rats and their offspring.

    PubMed

    Toumi, Mohamed L; Merzoug, Sameha; Tahraoui, Abdelkrim

    2016-06-01

    This study aims at investigating the effect of a psychogenic stress during gestation on the behaviour and haematological indices in dams as well as on the neonatal haematological status and periadolescent behaviour in their offspring. Moreover, the ability of quercetin, a natural flavonoid, to prevent the stress-induced changes was estimated. Pregnant Wistar rats were pretreated with quercetin before the exposure to a predator stress on gestational day 19. Post-stress maternal anxiety-like behaviour was assessed with a concomitant haematological analysis. In the offspring, haematological analysis and behavioural testing were performed during the postnatal stage. Our results revealed that predator stress causes an anxiety-like behaviour in dams along with a decrease in erythrocytes, a microcytosis, and a thrombocytosis. Prenatally stressed neonates manifested microcytosis and thrombocytosis with a significant polycythemia. Signs of motor hyperactivity, anxiety-like behaviour, and memory dysfunction were detected at periadolescence. Quercetin pretreatment alleviated the stress-induced behavioural and haematological impairments in dams but failed to attenuate the haematological changes in neonates. A sex-dependent effect of quercetin on behaviour was found at periadolescence. Our findings suggest that, besides a beneficial effect on haematological and behavioural anomalies in traumatized dams, quercetin may lastingly modulate the behaviour of their progeny. PMID:27240984

  9. Protective effect of quercetin on cadmium-induced oxidative toxicity on germ cells in male mice.

    PubMed

    Bu, Tongliang; Mi, Yuling; Zeng, Weidong; Zhang, Caiqiao

    2011-03-01

    Cadmium is a toxic heavy metal that is widely distributed in the environment. As a critical process, oxidative toxicity mediates the morphological and functional damages in germ cells after cadmium exposure. In this study, the protective effect of quercetin on cadmium-induced oxidative toxicity was investigated in mouse testicular germ cells. After oral administration of cadmium chloride at 4 mg/kg body weight for 2 weeks, damages in spermatozoa occurred in the early stage of spermatogenesis. Cadmium treatment significantly decreased the testicular antioxidant system, including decreases in the glutathione (GSH) level, superoxide dismutase (SOD), and GSH peroxidase (GSH-Px) activities. Moreover, exposure to cadmium resulted in an increase of hydrogen peroxide production and lipid peroxidation in testes. In addition, cadmium provoked germ cell apoptosis by upregulating expression of the proapoptotic proteins Bax and caspase-3 and downregulating expression of the antiapoptotic protein Bcl-XL. However, combined administration of a common flavonoid quercetin at 75 mg/kg body weight significantly attenuated cadmium-induced germ cell apoptosis by suppressing the hydrogen peroxide production and lipid peroxidation in testicular tissue. Simultaneous supplementation of quercetin markedly restored the decrease in GSH level and SOD and GSH-Px activities elicited by cadmium treatment. Additionally, quercetin protected germ cells from cadmium-induced apoptosis by downregulating the expression of Bax and caspase-3 and upregulating Bcl-XL expression. These results indicate that quercetin, due to its antioxidative and antiapoptotic characters, may manifest effective protective action against cadmium-induced oxidative toxicity in mouse testicular germ cells. PMID:21337715

  10. Effect of quercetin on colon contractility and L-type Ca(2+) channels in colon smooth muscle of guinea-pig.

    PubMed

    Huang, Wei-Feng; Ouyang, Shou; Li, Shi-Ying; Lin, Yan-Fei; Ouyang, Hui; Zhang, Hui; Lu, Chun-Jing

    2009-12-25

    The aim of the present study was to investigate the effects of quercetin on colon contractility and voltage-dependent Ca(2+) channels in the single smooth muscle cell isolated from the proximal colon of guinea-pig and to clarify whether its effect on L-type Ca(2+) current (I(Ca,L)) would be related to its myorelaxing properties. Colon smooth muscle strips were used to take contractile tension recordings. Smooth muscle cells were freshly isolated from the proximal colon of guinea-pig by means of papain treatment. I(Ba,L) (barium instead of calcium as current carrier) was measured by using whole-cell patch-clamp techniques. The results showed that quercetin relaxed colon muscle strips in a concentration-dependent manner and antagonized the contractile effect of acetylcholine and neostigmine. Preincubation with indomethcin [cyclooxygenase (COX) inhibitor] and methylene blue [guanylate cyclase (GC) inhibitor] significantly attenuated the relaxing effect of quercetin, respectively. Quercetin increased I(Ba,L) in a concentration- [EC(50)= (7.59+/-0.38) mumol/L] and voltage-dependent pattern, and shifted the maximum of the current-voltage curve by 10 mV in the depolarizing direction without modifying the threshold potential for Ca(2+) influx. Quercetin shifted the steady-state inactivation curve toward more positive potentials by approximately 3.75 mV without affecting the slope of activation and inactivation curve. H-89 (PKA inhibitor) abolished quercetin-induced I(Ba,L) increase, while cAMP enhanced the quercetin-induced I(Ba,L) increase. The patch-clamp results proved that quercetin increased I(Ba,L) via PKA pathway. It is therefore suggested that the relaxing effect of quercetin attributes to the interaction of GC and COX stimulation, as well as the antagonism effect on acetylcholine, which hierarchically prevails over the increase in the Ca(2+) influx to be expected from I(Ca,L) stimulation. PMID:20029691

  11. A 43 kD protein isolated from the herb Cajanus indicus L attenuates sodium fluoride-induced hepatic and renal disorders in vivo.

    PubMed

    Manna, Prasenjit; Sinha, Mahua; Sil, Parames C

    2007-05-31

    The herb, Cajanus indicus L, is well known for its hepatoprotective action. A 43 kD protein has been isolated, purified and partially sequenced from the leaves of this herb. A number of in vivo and in vitro studies carried out in our laboratory suggest that this protein might be a major component responsible for the hepatoprotective action of the herb. Our successive studies have been designed to evaluate the potential efficacy of this protein in protecting the hepatic as well as renal tissues from the sodium fluoride (NaF) induced oxidative stress. The experimental groups of mice were exposed to NaF at a dose of 600 ppm through drinking water for one week. This exposure significantly altered the activities of the antioxidant enzymes like superoxide dismutase (SOD), catalase (CAT), glutathione-S-transferase (GST), glutathione reductase (GR) and the cellular metabolites such as reduced glutathione (GSH), oxidized glutathione (GSSG), total thiols, lipid peroxidation end products in liver and kidney compared to the normal mice. Intraperitoneal administration of the protein at a dose of 2 mg/kg body weight for seven days followed by NaF treatment (600 ppm for next seven days) normalized the activities of the hepato-renal antioxidant enzymes, the level of cellular metabolites and lipid peroxidation end products. Post treatment with the protein for four days showed that it could help recovering the damages after NaF administration. Time-course study suggests that the protein could stimulate the recovery of both the organs faster than natural process. Effects of a known antioxidant, vitamin E, and a non-relevant protein, bovine serum albumin (BSA) have been included in the study to validate the experimental data. Combining all, result suggests that NaF could induce severe oxidative stress both in the liver and kidney tissues in mice and the protein possessed the ability to attenuate that hepato-renal toxic effect of NaF probably via its antioxidant activity. PMID:17562290

  12. Absence of initiating activity by quercetin in the rat liver.

    PubMed

    Kato, K; Mori, H; Tanaka, T; Fujii, M; Kawai, T; Nishikawa, A; Takahashi, M; Hirono, I

    1985-08-01

    Initiating activity of quercetin was tested in rats which were treated with partial hepatectomy and given a liver cancer promoter, phenobarbital. A few intestinal neoplasms were seen but without significant difference in incidence from those in the quercetin-untreated group. Moreover, neither neoplastic nor preneoplastic liver changes were detected in quercetin-treated groups. With hepatocyte primary culture/DNA repair test, quercetin did not produce genotoxicity. The results show that quercetin has no initiating or genotoxic activities in the rat liver. PMID:4029060

  13. The Flavonoid Quercetin Reverses Pulmonary Hypertension in Rats

    PubMed Central

    Moreno, Enrique; Moral-Sanz, Javier; Barreira, Bianca; Galindo, Pilar; Pandolfi, Rachele; Jimenez, Rosario; Moreno, Laura; Cogolludo, Angel; Duarte, Juan; Perez-Vizcaino, Francisco

    2014-01-01

    Quercetin is a dietary flavonoid which exerts vasodilator, antiplatelet and antiproliferative effects and reduces blood pressure, oxidative status and end-organ damage in humans and animal models of systemic hypertension. We hypothesized that oral quercetin treatment might be protective in a rat model of pulmonary arterial hypertension. Three weeks after injection of monocrotaline, quercetin (10 mg/kg/d per os) or vehicle was administered for 10 days to adult Wistar rats. Quercetin significantly reduced mortality. In surviving animals, quercetin decreased pulmonary arterial pressure, right ventricular hypertrophy and muscularization of small pulmonary arteries. Classic biomarkers of pulmonary arterial hypertension such as the downregulated expression of lung BMPR2, Kv1.5, Kv2.1, upregulated survivin, endothelial dysfunction and hyperresponsiveness to 5-HT were unaffected by quercetin. Quercetin significantly restored the decrease in Kv currents, the upregulation of 5-HT2A receptors and reduced the Akt and S6 phosphorylation. In vitro, quercetin induced pulmonary artery vasodilator effects, inhibited pulmonary artery smooth muscle cell proliferation and induced apoptosis. In conclusion, quercetin is partially protective in this rat model of PAH. It delayed mortality by lowering PAP, RVH and vascular remodeling. Quercetin exerted effective vasodilator effects in isolated PA, inhibited cell proliferation and induced apoptosis in PASMCs. These effects were associated with decreased 5-HT2A receptor expression and Akt and S6 phosphorylation and partially restored Kv currents. Therefore, quercetin could be useful in the treatment of PAH. PMID:25460361

  14. Synergistic neurotoxicity induced by methylmercury and quercetin in mice

    PubMed Central

    Martins, Roberta de P.; Braga, Hugo de C.; da Silva, Aline P.; Dalmarco, Juliana B.; de Bem, Andreza F.; dos Santos, Adair Roberto S.; Dafre, Alcir L.; Pizzolatti, Moacir G.; Latini, Alexandra; Aschner, Michael; Farina, Marcelo

    2010-01-01

    Methylmercury (MeHg) is a highly neurotoxic pollutant, whose mechanisms of toxicity are related to its pro-oxidative properties. A previous report showed under in vivo conditions the neuroprotective effects of plants of the genus Polygala against MeHg-induced neurotoxicity. Moreover, the flavonoid quercetin, isolated from Polygala sabulosa, displayed beneficial effects against MeHg-induced oxidative damage under in vitro conditions. In this study, we sought for potential beneficial effects of quercetin against the neurotoxicity induced by MeHg in Swiss female mice. Animals were divided into six experimental groups: control, quercetin low dose (5 mg/Kg), quercetin high dose (50 mg/Kg), MeHg (40 mg/L, in tap water), MeHg + quercetin low dose, and MeHg + quercetin high dose. After the treatment (21 days), a significant motor deficit was observed in MeHg + quercetin groups. Biochemical parameters related to oxidative stress showed that the simultaneous treatment with quercetin and MeHg caused a higher cerebellar oxidative damage when compared to the individual exposures. MeHg plus quercetin elicited a higher cerebellar lipid peroxidation than MeHg or quercetin alone. The present results indicate that under in vivo conditions quercetin and MeHg cause additive pro-oxidative effects toward the mice cerebellum and that such phenomenon is associated with the observed motor deficit. PMID:19141311

  15. Isorhamnetin attenuates liver fibrosis by inhibiting TGF-β/Smad signaling and relieving oxidative stress.

    PubMed

    Yang, Ji Hye; Kim, Sang Chan; Kim, Kyu Min; Jang, Chang Ho; Cho, Sam Seok; Kim, Seung Jung; Ku, Sae Kwang; Cho, Il Je; Ki, Sung Hwan

    2016-07-15

    Hepatic fibrosis is considered integral to the progression of chronic liver diseases, leading to the development of cirrhosis and hepatocellular carcinoma. Activation of hepatic stellate cells (HSCs) is the dominant event in hepatic fibrogenesis. We investigated the ability of isorhamnetin, the 3'-O-methylated metabolite of quercetin, to protect against hepatic fibrosis in vitro and in vivo. Isorhamnetin inhibited transforming growth factor (TGF)-β1-induced expression of α-smooth muscle actin (α-SMA), plasminogen activator inhibitor-1 (PAI-1), and collagen in primary murine HSCs and LX-2 cells. The TGF-β1- or Smad-induced luciferase reporter activity of Smad binding elements was significantly decreased by isorhamnetin with a concomitant decrease in Smad2/3 phosphorylation. Isorhamnetin increased the nuclear translocation of Nrf2 in HSCs and increased antioxidant response element reporter gene activity. Furthermore, isorhamnetin blocked TGF-β1-induced reactive oxygen species production. The specific role of Nrf2 in isorhamnetin-mediated suppression of PAI-1 and phosphorylated Smad3 was verified using a siRNA against Nrf2. To examine the anti-fibrotic effect of isorhamnetin in vivo, liver fibrosis was induced by CCl4 in mice. Isorhamnetin significantly prevented CCl4-induced increases in serum alanine transaminase and aspartate transaminase levels, and caused histopathological changes characterized by decreases in hepatic degeneration, inflammatory cell infiltration, and collagen accumulation. Moreover, isorhamnetin markedly decreased the expression of phosphorylated Smad3, TGF-β1, α-SMA, and PAI-1. Isorhamnetin attenuated the CCl4-induced increase in the number of 4-hydroxynonenal and nitrotyrosine-positive cells, and prevented glutathione depletion. We propose that isorhamnetin inhibits the TGF-β/Smad signaling pathway and relieves oxidative stress, thus inhibiting HSC activation and preventing liver fibrosis. PMID:27151496

  16. Berberine Attenuates Development of the Hepatic Gluconeogenesis and Lipid Metabolism Disorder in Type 2 Diabetic Mice and in Palmitate-Incubated HepG2 Cells through Suppression of the HNF-4α miR122 Pathway

    PubMed Central

    Yu, Yang; Lan, Xiaoxin; Yao, Fan; Yan, Xin; Chen, Li; Hatch, Grant M.

    2016-01-01

    Berberine (BBR) has been shown to exhibit protective effects against diabetes and dyslipidemia. Previous studies have indicated that BBR modulates lipid metabolism and inhibits hepatic gluconeogensis by decreasing expression of Hepatocyte Nuclear Factor-4α (HNF-4α). However, the mechanism involved in this process was unknown. In the current study, we examined the mechanism of how BBR attenuates hepatic gluconeogenesis and the lipid metabolism alterations observed in type 2 diabetic (T2D) mice and in palmitate (PA)-incubated HepG2 cells. Treatment with BBR for 4 weeks improve all biochemical parameters compared to T2D mice. Treatment of T2D mice for 4 weeks or treatment of PA-incubated HepG2 cells for 24 h with BBR decreased expression of HNF-4α and the microRNA miR122, the key gluconeogenesis enzymes Phosphoenolpyruvate carboxykinase (PEPCK) and Glucose-6-phosphatase (G6Pase) and the key lipid metabolism proteins Sterol response element binding protein-1 (SREBP-1), Fatty acid synthase-1 (FAS-1) and Acetyl-Coenzyme A carboxylase (ACCα) and increased Carnitine palmitoyltransferase-1(CPT-1) compared to T2D mice or PA-incubated HepG2 cells. Expression of HNF-4α in HepG2 cells increased expression of gluconeogenic and lipid metabolism enzymes and BBR treatment or knock down of miR122 attenuated the effect of HNF-4α expression. In contrast, BBR treatment did not alter expression of gluconeogenic and lipid metabolism enzymes in HepG2 cells with knockdown of HNF-4α. In addition, miR122 mimic increased expression of gluconeogenic and lipid metabolism enzymes in HepG2 cells with knockdown of HNF-4α. These data indicate that miR122 is a critical regulator in the downstream pathway of HNF-4α in the regulation of hepatic gluconeogenesis and lipid metabolism in HepG2 cells. The effect of BBR on hepatic gluconeogenesis and lipid metabolism is mediated through HNF-4α and is regulated downstream of miR122. Our data provide new evidence to support HNF-4α and miR122

  17. Differential effects of quercetin on hippocampus-dependent learning and memory in mice fed with different diets related with oxidative stress.

    PubMed

    Xia, Shu-Fang; Xie, Zhen-Xing; Qiao, Yi; Li, Li-Rong; Cheng, Xiang-Rong; Tang, Xue; Shi, Yong-Hui; Le, Guo-Wei

    2015-01-01

    High fat diets induce oxidative stress which may be involved in neurodegenerative diseases. Quercetin is a kind of antioxidant that has neuroprotective effects and potent7ial pro-oxidant effects as well. In this study, we evaluated cognitive function in mice fed with high fat diets and basic diets with or without quercetin. Male Chinese Kunming (KM) mice were randomly assigned to five groups fed with basic diet (Control), basic diet with 0.005% (w/w) quercetin (CQ1), high fat diet (HFD), HFD with 0.005% (w/w) quercetin (HFDQ1) and 0.01% (w/w) quercetin (HFDQ2) for 13weeks. At the end of the study period, fasting blood glucose (FBG), plasma and hippocampal markers of oxidative stress, plasma lipid status, Morris water maze as well as hippocampal relative mRNA expression of akt, bdnf, camkII, creb, gsk-3β, nrf2 and pi3k were examined. The results suggested that in comparison to the control group, the escape latency was increased and percent time spent in the target quadrant was decreased, with increased reactive carbonyls, malondialdehyde (MDA) and declined expression of pi3k, akt, nrf2, creb and bdnf in the hippocampus of HFD and CQ1 groups. Conversely, higher quercetin supplemented to HFD improved antioxidant capacity and reversed cognitive decline completely. Significant correlations between the redox status and cognition-related gene expression were observed as well (P<0.05). Thus, in the case of oxidative stress, an appropriate dose of quercetin can attenuate oxidative stress to improve hippocampus dependent cognition. But under a balanced situation, quercetin exerts pro-oxidant effects to impair cognition. PMID:25447470

  18. The sorption of quercetin by high-basicity anion exchangers

    NASA Astrophysics Data System (ADS)

    Udalova, N. A.; Karpov, S. I.; Selemenev, V. F.; Sharmar, I. A.

    2009-06-01

    The sorption of quercetin on anionites with various porosities in the OH- and Cl- forms was studied under static conditions. The equilibrium (distribution coefficients K p) and kinetic (effective diffusion coefficients D eff) parameters of quercetin sorption on AV-17-2P and AV-17-6M anionites in the Cl- and OH- forms were calculated. The mechanism of quercetin interactions with the anion exchangers was studied by electron microscopy and IR spectroscopy.

  19. Rutin and total quercetin content in amaranth (Amaranthus spp.).

    PubMed

    Kalinova, Jana; Dadakova, Eva

    2009-03-01

    The aim of the study was to confirm the presence of rutin, one of the most common quercetin glycosides, and other quercetin derivatives in plants of genus Amaranthus, to investigate the influence of the species and variety on rutin distribution in the plant and content changes during growing season. The rutin content was determined by micellar electrokinetic capillary chromatography in individual plant parts at the beginning of the growth, at the flowering stage and at the maturity stage of five Amaranthus species. The total quercetin content was determined by micellar electrokinetic capillary chromatography too. The rutin content in amaranth ranged from 0.08 (in seeds) to 24.5 g/kg dry matter (in leaves). Comparison of the determined total quercetin content and the calculated content of quercetin released from rutin did not prove important presence of quercetin or other quercetin derivatives than rutin. Only amaranth leaves sampled at the maturity stage probably contained quercetin or quercetin derivatives. Significant differences in the rutin content were established among species and as well varieties. Amaranthus hybrid and A. cruentus were the best sources of rutin. PMID:19067170

  20. Application of Bioactive Quercetin in Oncotherapy: From Nutrition to Nanomedicine.

    PubMed

    Nam, Ju-Suk; Sharma, Ashish Ranjan; Nguyen, Lich Thi; Chakraborty, Chiranjib; Sharma, Garima; Lee, Sang-Soo

    2016-01-01

    Phytochemicals as dietary constituents are being explored for their cancer preventive properties. Quercetin is a major constituent of various dietary products and recently its anti-cancer potential has been extensively explored, revealing its anti-proliferative effect on different cancer cell lines, both in vitro and in vivo. Quercetin is known to have modulatory effects on cell apoptosis, migration and growth via various signaling pathways. Though, quercetin possesses great medicinal value, its applications as a therapeutic drug are limited. Problems like low oral bioavailability and poor aqueous solubility make quercetin an unreliable candidate for therapeutic purposes. Additionally, the rapid gastrointestinal digestion of quercetin is also a major barrier for its clinical translation. Hence, to overcome these disadvantages quercetin-based nanoformulations are being considered in recent times. Nanoformulations of quercetin have shown promising results in its uptake by the epithelial system as well as enhanced delivery to the target site. Herein we have tried to summarize various methods utilized for nanofabrication of quercetin formulations and for stable and sustained delivery of quercetin. We have also highlighted the various desirable measures for its use as a promising onco-therapeutic agent. PMID:26797598

  1. Polyploidy Analysis and Attenuation of Oxidative Stress in Hepatic Tissue of STZ-Induced Diabetic Rats Treated with an Aqueous Extract of Vochysia rufa

    PubMed Central

    Moraes, Izabela Barbosa; Manzan-Martins, Camilla; de Gouveia, Neire Moura; Calábria, Luciana Karen; Hiraki, Karen Renata Nakamura; Moraes, Alberto da Silva; Espindola, Foued Salmen

    2015-01-01

    Diabetes mellitus (DM) is characterized by hyperglycemia and alterations in the metabolism of lipids, carbohydrates, and proteins. Due to its hypoglycemic effect Vochysia rufa is frequently used in Uberlandia, Brazil, to treat DM. Despite its popularity, there is little information about its effect on hepatic tissue. Therefore, we evaluated the histoarchitecture, oxidative stress parameters, and polyploidy of liver tissue from streptozotocin- (STZ-) induced diabetic rats treated with aqueous extract of Vochysia rufa (AEV). Histology was determined by fixing the livers, processing, and staining with HE. Oxidative stress was determined by evaluating CAT, GPx, and SOD activity in liver homogenates and hepatic mitochondria fraction and by measuring GST, GSH levels and lipid peroxidation (MDA). Polyploidy was determined by subjecting isolated hepatocyte nuclei to flow cytometry. In the diabetic group, GST activity and GSH rates decreased whereas liver homogenate analysis showed that GPx, SOD activity and MDA increased. AEV treatment restored all parameters to normal levels. The oxidative stress analysis of hepatic mitochondria fraction showed similar results. Lower polyploid cell populations were found in the diabetic rat livers, even after glibenclamide treatment. Thus, AEV treatment efficiently reduced hepatic oxidative stress caused by STZ-induced diabetes and produced no morphological changes in the histological analysis. PMID:25763088

  2. α-Lipoic acid inhibits liver fibrosis through the attenuation of ROS-triggered signaling in hepatic stellate cells activated by PDGF and TGF-β.

    PubMed

    Foo, Ning-Ping; Lin, Shu-Huei; Lee, Yu-Hsuan; Wu, Ming-Jiuan; Wang, Ying-Jan

    2011-03-28

    Reactive oxygen species (ROS) have been implicated in hepatic stellate cell activation and liver fibrosis. We previously reported that α-lipoic acid (LA) and its reduced form dihydrolipoic acid (DHLA) inhibited toxicant-induced inflammation and ROS generation. In the present study, we further examined the effects of LA/DHLA on thioacetamide (TAA)-induced liver fibrosis in rats and the possible underlying mechanisms in hepatic stellate cells in vitro. We found that co-administration of LA to rats chronically treated with TAA inhibited the development of liver cirrhosis, as indicated by reductions in cirrhosis incidence, hepatic fibrosis, and AST/ALT activities. We also found that DHLA inhibited TGF-β/PDGF-stimulated HSC-T6 activation and ROS generation. These effects could be mediated by the MAPK and PI3K/Akt pathways. According to our current results, LA may have a beneficial role in the treatment of chronic liver diseases caused by ongoing hepatic damage. PMID:21251946

  3. The reversibility of the glutathionyl-quercetin adduct spreads oxidized quercetin-induced toxicity

    SciTech Connect

    Boots, Agnes W. . E-mail: a.boots@farmaco.unimaas.nl; Balk, Jiska M.; Bast, Aalt; Haenen, Guido R.M.M.

    2005-12-16

    Quercetin is one of the most prominent dietary antioxidants. During its antioxidant activity, quercetin becomes oxidized into its o-quinone/quinone methide QQ. QQ is toxic since it instantaneously reacts with thiols of, e.g., proteins. In cells, QQ will initially form an adduct with glutathione (GSH), giving GSQ. We have found that GSQ is not stable; it dissociates continuously into GSH and QQ with a half life of 2 min. Surprisingly, GSQ incubated with 2-mercapto-ethanol (MSH), a far less reactive thiol, results in the conversion of GSQ into the MSH-adduct MSQ. A similar conversion of GSQ into relatively stable protein thiol-quercetin adducts is expected. With the dithiol dihydrolipoic acid (L(SH){sub 2}), quercetin is formed out of GSQ. These results indicate that GSQ acts as transport and storage of QQ. In that way, the initially highly focussed toxicity of QQ is dispersed by the formation of GSQ that finally spreads QQ-induced toxicity, probably even over cells.

  4. Quercetin Reduces Ehrlich Tumor-Induced Cancer Pain in Mice

    PubMed Central

    Calixto-Campos, Cassia; Corrêa, Mab P.; Carvalho, Thacyana T.; Zarpelon, Ana C.; Hohmann, Miriam S. N.; Rossaneis, Ana C.; Coelho-Silva, Leticia; Pavanelli, Wander R.; Pinge-Filho, Phileno; Crespigio, Jefferson; Bernardy, Catia C. F.; Casagrande, Rubia; Verri, Waldiceu A.

    2015-01-01

    Cancer pain directly affects the patient's quality of life. We have previously demonstrated that the subcutaneous administration of the mammary adenocarcinoma known as Ehrlich tumor induces pain in mice. Several studies have shown that the flavonoid quercetin presents important biological effects, including anti-inflammatory, antioxidant, analgesic, and antitumor activity. Therefore, the analgesic effect and mechanisms of quercetin were evaluated in Ehrlich tumor-induced cancer pain in mice. Intraperitoneal (i.p.) treatments with quercetin reduced Ehrlich tumor-induced mechanical and thermal hyperalgesia, but not paw thickness or histological alterations, indicating an analgesic effect without affecting tumor growth. Regarding the analgesic mechanisms of quercetin, it inhibited the production of hyperalgesic cytokines IL-1β and TNFα and decreased neutrophil recruitment (myeloperoxidase activity) and oxidative stress. Naloxone (opioid receptor antagonist) inhibited quercetin analgesia without interfering with neutrophil recruitment, cytokine production, and oxidative stress. Importantly, cotreatment with morphine and quercetin at doses that were ineffective as single treatment reduced the nociceptive responses. Concluding, quercetin reduces the Ehrlich tumor-induced cancer pain by reducing the production of hyperalgesic cytokines, neutrophil recruitment, and oxidative stress as well as by activating an opioid-dependent analgesic pathway and potentiation of morphine analgesia. Thus, quercetin treatment seems a suitable therapeutic approach for cancer pain that merits further investigation. PMID:26351625

  5. Bovine Serum Albumin Nanoparticles Containing Quercetin: Characterization and Antioxidant Activity.

    PubMed

    Antônio, Emilli; Khalil, Najeh Maissar; Mainardes, Rubiana Mara

    2016-02-01

    Quercetin is a flavonoid reported as anti-allergic, anti-inflammatory, antiplatelet, anti-microbial, antioxidant, antineurodegenerative and antitumoral. However, due to its low water solubility, its efficacy is restricted. Nanotechnology can be an importante tool to improve the quercetin properties and increase its bioavailability. In this study, bovine serum albumin (BSA) nanoparticles containing quercetin were developed by desolvation technique, characterized the mean particle size, polydispersity, zeta potential, encapsulation efficiency, physical state of drug in nanoparticles and drug release profile as well as their antioxidant activity was evaluated. The influence of glutaraldehyde percentage in nanoparticles properties was evaluated and did not influence the nanoparticles parameters. Nanoparticles presented a mean size around 130 nm and encapsulation efficiency around 85%. Results from X-ray diffractometry showed that the crystal of the drug was converted to an amorphous state in polymeric matrix. Quercetin release profile demonstrated a biphasic pattern and after 96 h approximately 18% of drug was released. Kinetic models demonstrated that the quercetin release followed a second-order model and the release was governed by Fickian diffusion. After 96 h, quercetin-loaded nanoparticles were more effective than free quercetin for scanvenger of radical ABTS + and hypochlorous acid. BSA nanoparticles represents potential carriers for improve quercetin properties. PMID:27433585

  6. Quercetin Alleviates High-Fat Diet-Induced Oxidized Low-Density Lipoprotein Accumulation in the Liver: Implication for Autophagy Regulation

    PubMed Central

    Liu, Liang; Gao, Chao; Yao, Ping; Gong, Zhiyong

    2015-01-01

    A growing body of evidence has indicated that high-fat diet-induced nonalcoholic fatty liver disease is usually accompanied by oxidized low-density lipoprotein (ox-LDL) deposited in the liver. The current study aimed to investigate the effect of quercetin on high-fat diet-induced ox-LDL accumulation in the liver and to explore the potential underlying mechanisms. The results demonstrate that quercetin supplementation for 24 weeks significantly alleviated high-fat diet-induced liver damage and reduced hepatic cholesterol and ox-LDL level. Quercetin notably inhibited both mRNA and protein expression of CD36 (reduced by 53% and 71%, resp.) and MSR1 (reduced by 25% and 45%, resp.), which were upregulated by high-fat diet. The expression of LC3II was upregulated by 2.4 times whereas that of p62 and mTOR was downregulated by 57% and 63% by quercetin treatment. Therefore, the significantly improved autophagy lysosomal degradation capacity for ox-LDL may be implicated in the hepatoprotective effect of quercetin; scavenger receptors mediated ox-LDL uptake might also be involved. PMID:26697490

  7. Platycodon grandiflorus Root Extract Attenuates Body Fat Mass, Hepatic Steatosis and Insulin Resistance through the Interplay between the Liver and Adipose Tissue.

    PubMed

    Kim, Ye Jin; Choi, Ji-Young; Ryu, Ri; Lee, Jeonghyeon; Cho, Su-Jung; Kwon, Eun-Young; Lee, Mi-Kyung; Liu, Kwang-Hyeon; Rina, Yu; Sung, Mi-Kyung; Choi, Myung-Sook

    2016-01-01

    The Platycodon grandiflorus root, a Korean medicinal food, is well known to have beneficial effects on obesity and diabetes. In this study, we demonstrated the metabolic effects of P. grandiflorus root ethanol extract (PGE), which is rich in platycodins, on diet-induced obesity. C57BL/6J mice (four-week-old males) were fed a normal diet (16.58% of kilocalories from fat), high-fat diet (HFD, 60% of kilocalories from fat), and HFD supplemented with 5% (w/w) PGE. In the HFD-fed mice, PGE markedly suppressed the body weight gain and white fat mass to normal control level, with simultaneous increase in the expression of thermogenic genes (such as SIRT1, PPARα, PGC1α, and UCP1), that accompanied changes in fatty acid oxidation (FAO) and energy expenditure. In addition, PGE improved insulin sensitivity through activation of the PPARγ expression, which upregulates adiponectin while decreasing leptin gene expression in adipocytes. Furthermore, PGE improved hepatic steatosis by suppressing hepatic lipogenesis while increasing expression of FAO-associated genes such as PGC1α. PGE normalized body fat and body weight, which is likely associated with the increased energy expenditure and thermogenic gene expression. PGE can protect from HFD-induced insulin resistance, and hepatic steatosis by controlling lipid and glucose metabolism. PMID:27589792

  8. Quercetin: a pleiotropic kinase inhibitor against cancer.

    PubMed

    Russo, Gian Luigi; Russo, Maria; Spagnuolo, Carmela; Tedesco, Idolo; Bilotto, Stefania; Iannitti, Roberta; Palumbo, Rosanna

    2014-01-01

    Increased consumption of fruits and vegetables can represent an easy strategy to significantly reduce the incidence of cancer. From this observation, derived mostly from epidemiological data, the new field of chemoprevention has emerged in the primary and secondary prevention of cancer. Chemoprevention is defined as the use of natural or synthetic compounds able to stop, reverse, or delay the process of tumorigenesis in its early stages. A large number of phytochemicals are potentially capable of simultaneously inhibiting and modulating several key factors regulating cell proliferation in cancer cells. Quercetin is a flavonoid possessing potential chemopreventive properties. It is a functionally pleiotropic molecule, possessing multiple intracellular targets, affecting different cell signaling processes usually altered in cancer cells, with limited toxicity on normal cells. Simultaneously targeting multiple pathways may help to kill malignant cells and slow down the onset of drug resistance. Among the different substrates triggered by quercetin, we have reviewed the ability of the molecule to inhibit protein kinases involved in deregulated cell growth in cancer cells. PMID:24114481

  9. Dose-response to 3 months of quercetin-containing supplements on metabolite and quercetin conjugate profile in adults.

    PubMed

    Cialdella-Kam, Lynn; Nieman, David C; Sha, Wei; Meaney, Mary Pat; Knab, Amy M; Shanely, R Andrew

    2013-06-01

    Quercetin, a flavonol in fruits and vegetables, has been demonstrated to have antioxidant, anti-inflammatory and immunomodulating influences. The purpose of the present study was to determine if quercetin, vitamin C and niacin supplements (Q-500 = 500 mg/d of quercetin, 125 mg/d of vitamin C and 5 mg/d of niacin; Q-1000 = 1000 mg/d of quercetin, 250 mg/d of vitamin C and 10 mg/d of niacin) would alter small-molecule metabolite profiles and serum quercetin conjugate levels in adults. Healthy adults (fifty-eight women and forty-two men; aged 40-83 years) were assigned using a randomised double-blinded placebo-controlled trial to one of three supplement groups (Q-1000, Q-500 or placebo). Overnight fasted blood samples were collected at 0, 1 and 3 months. Quercetin conjugate concentrations were measured using ultra-performance liquid chromatography (UPLC)-MS/MS, and metabolite profiles were measured using two MS platforms (UPLC-quadrupole time-of-flight MS (TOFMS) and GC-TOFMS). Statistical procedures included partial least square discriminant analysis (PLS-DA) and linear mixed model analysis with repeated measures. After accounting for age, sex and BMI, quercetin supplementation was associated with significant shifts in 163 metabolites/quercetin conjugates (false discovery rate, P<0·05). The top five metabolite shifts were an increase in serum guaiacol, 2-oxo-4-methylthiobutanoic acid, allocystathionine and two bile acids. Inflammatory and oxidative stress metabolites were not affected. PLS-DA revealed a clear separation only between the 1000 mg/d and placebo groups (Q(2)Y = 0·763). The quercetin conjugate, isorhamnetin-3-glucuronide, had the highest concentration at 3 months followed by quercetin-3-glucuronide, quercetin-3-sulphate and quercetin diglucuronide. In human subjects, long-term quercetin supplementation exerts disparate and wide-ranging metabolic effects and changes in quercetin conjugate concentrations. Metabolic shifts were apparent at the 1000 mg

  10. Quercetin ameliorates ischemia/reperfusion-induced cognitive deficits by inhibiting ASK1/JNK3/caspase-3 by enhancing the Akt signaling pathway.

    PubMed

    Pei, Bing; Yang, Miaomiao; Qi, Xiaoyan; Shen, Xin; Chen, Xing; Zhang, Fayong

    2016-09-01

    Cerebral ischemia/reperfusion (I/R) is a major cause of severe disability and death all worldwide. However, therapeutic options to minimize the detrimental effects of cerebral I/R injury are limited. Recent research has demonstrated that quercetin mediates neuroprotective effects associated with the activation of the Akt signaling pathway in the cerebral I/R brain. Therefore, the aim of this study was to further investigate the mechanisms of cognitive deficits induced by cerebral I/R injury and the effects of quercetin on these mechanisms. First, we assessed anxiety-like behavioral and cognitive impairment using the open field test and the Morris water maze test, respectively. Next, we examined the severity of apoptosis by staining hippocampal neurons by the Cresyl violet method. Third, we used western blot analysis to investigate the expression of total and phosphorylated Akt, ASK1, JNK3, c-Jun and caspase-3 after I/R injury. Our results revealed that mice subjected to bilateral common carotid occlusion exhibited severe anxiety-like behavior, learning and memory impairment, cell damage and apoptosis. These severe effects were attenuated by administration of quercetin. Further, western blot analysis revealed that quercetin increased p-Akt expression and decreased p-ASK1, p-JNK3 and cleaved caspase-3 expression after cerebral I/R injury and led to inhibition of neuronal apoptosis. Conversely, treatment with LY294002 (a selective inhibitor of Akt1) reversed the effects of quercetin. In conclusion, these findings highlight the important role of quercetin in protecting against cognitive deficits and inhibiting neuronal apoptosis via the Akt signaling pathway. We believe that quercetin might prove to be a useful therapeutic component in treating cerebral I/R diseases in the near future. PMID:27450812

  11. Reshaping faecal gut microbiota composition by the intake of trans-resveratrol and quercetin in high-fat sucrose diet-fed rats.

    PubMed

    Etxeberria, U; Arias, N; Boqué, N; Macarulla, M T; Portillo, M P; Martínez, J A; Milagro, F I

    2015-06-01

    Diet-induced obesity is associated to an imbalance in the normal gut microbiota composition. Resveratrol and quercetin, widely known for their health beneficial properties, have low bioavailability, and when they reach the colon, they are targets of the gut microbial ecosystem. Hence, the use of these molecules in obesity might be considered as a potential strategy to modulate intestinal bacterial composition. The purpose of this study was to determine whether trans-resveratrol and quercetin administration could counteract gut microbiota dysbiosis produced by high-fat sucrose diet (HFS) and, in turn, improve gut health. Wistar rats were randomised into four groups fed an HFS diet supplemented or not with trans-resveratrol [15 mg/kg body weight (BW)/day], quercetin (30 mg/kg BW/day) or a combination of both polyphenols at those doses. Administration of both polyphenols together prevented body weight gain and reduced serum insulin levels. Moreover, individual supplementation of trans-resveratrol and quercetin effectively reduced serum insulin levels and insulin resistance. Quercetin supplementation generated a great impact on gut microbiota composition at different taxonomic levels, attenuating Firmicutes/Bacteroidetes ratio and inhibiting the growth of bacterial species previously associated to diet-induced obesity (Erysipelotrichaceae, Bacillus, Eubacterium cylindroides). Overall, the administration of quercetin was found to be effective in lessening HFS-diet-induced gut microbiota dysbiosis. In contrast, trans-resveratrol supplementation alone or in combination with quercetin scarcely modified the profile of gut bacteria but acted at the intestinal level, altering the mRNA expression of tight-junction proteins and inflammation-associated genes. PMID:25762527

  12. Quercetin Affects Erythropoiesis and Heart Mitochondrial Function in Mice.

    PubMed

    Ruiz, Lina M; Salazar, Celia; Jensen, Erik; Ruiz, Paula A; Tiznado, William; Quintanilla, Rodrigo A; Barreto, Marlen; Elorza, Alvaro A

    2015-01-01

    Quercetin, a dietary flavonoid used as a food supplement, showed powerful antioxidant effects in different cellular models. However, recent in vitro and in vivo studies in mammals have suggested a prooxidant effect of quercetin and described an interaction with mitochondria causing an increase in O2 (∙-) production, a decrease in ATP levels, and impairment of respiratory chain in liver tissue. Therefore, because of its dual actions, we studied the effect of quercetin in vivo to analyze heart mitochondrial function and erythropoiesis. Mice were injected with 50 mg/kg of quercetin for 15 days. Treatment with quercetin decreased body weight, serum insulin, and ceruloplasmin levels as compared with untreated mice. Along with an impaired antioxidant capacity in plasma, quercetin-treated mice showed a significant delay on erythropoiesis progression. Heart mitochondrial function was also impaired displaying more protein oxidation and less activity for IV, respectively, than no-treated mice. In addition, a significant reduction in the protein expression levels of Mitofusin 2 and Voltage-Dependent Anion Carrier was observed. All these results suggest that quercetin affects erythropoiesis and mitochondrial function and then its potential use as a dietary supplement should be reexamined. PMID:26106459

  13. Quercetin-imprinted polymer for anthocyanin extraction from mangosteen pericarp.

    PubMed

    Piacham, Theeraphon; Isarankura-Na-Ayudhya, Chartchalerm; Prachayasittikul, Virapong

    2015-06-01

    Molecular imprinting is a facilitative technology for the production of artificial receptors possessing great endurance with high specificity toward target molecules of interest. The polymers are commonly applied for separation or analysis of substances of interest. In this study, we prepared molecularly imprinted polymers for the purpose of binding specifically to quercetin and related compounds. Quercetin was used as the template molecule, 4-vinylpyridine (4-VP) as the functional monomer, ethylene glycol dimethacrylate (EDMA) as the cross-linking monomer, azobisisobutyronitrile (AIBN) as the polymerization initiator and ethanol as the porogenic solvent. Such 4-VP-based imprinted polymer was found to bind the template molecule greater than that of the control polymer with an approximate 2 folds higher binding using 20mg of polymer in the optimal solvent, ethanol:water (4:1v/v). Quercetin-imprinted polymer (QIP) was found to bind well against its template; approximately 1mg/g polymer. In addition, QIP was applied to bind anthocyanin from the crude extract of mangosteen pericarp. The binding capacity of quercetin-MIP toward anthocyanin was approximately 0.875mg per gram of polymer. This result indicated that quercetin-MIP showed its specific binding to quercetin and related compound particularly anthocyanin. In conclusion, we have demonstrated the successful preparation and utilization of molecularly imprinted polymer for the specific recognition of quercetin as well as structurally related anthocyanins from the mangosteen pericarp with enhanced and robust performance. PMID:25842116

  14. Antioxidative and antiinflammatory activities of quercetin-loaded silica nanoparticles.

    PubMed

    Lee, Ga Hyun; Lee, Sung June; Jeong, Sang Won; Kim, Hyun-Chul; Park, Ga Young; Lee, Se Geun; Choi, Jin Hyun

    2016-07-01

    Utilizing the biological activities of compounds by encapsulating natural components in stable nanoparticles is an important strategy for a variety of biomedical and healthcare applications. In this study, quercetin-loaded silica nanoparticles were synthesized using an oil-in-water microemulsion method, which is a suitable system for producing functional nanoparticles of controlled size and shape. The resulting quercetin-loaded silica nanoparticles were spherical, highly monodispersed, and stable in an aqueous system. Superoxide radical scavenging effects were found for the quercetin-loaded silica nanoparticles as well as free quercetin. The quercetin-loaded silica nanoparticles showed cell viability comparable to that of the controls. The amounts of proinflammatory cytokines produced by macrophages, such as interleukin 1 beta, interleukin 6, and tumor necrosis factor alpha, were reduced significantly for the quercetin-loaded silica nanoparticles. These results suggest that the antioxidative and antiinflammatory activities of quercetin are maintained after encapsulation in silica. Silica nanoparticles can be used for the effective and stable incorporation of biologically active natural components into composite biomaterials. PMID:27038916

  15. Enhancing oral bioavailability of quercetin using novel soluplus polymeric micelles

    NASA Astrophysics Data System (ADS)

    Dian, Linghui; Yu, Enjiang; Chen, Xiaona; Wen, Xinguo; Zhang, Zhengzan; Qin, Lingzhen; Wang, Qingqing; Li, Ge; Wu, Chuanbin

    2014-12-01

    To improve its poor aqueous solubility and stability, the potential chemotherapeutic drug quercetin was encapsulated in soluplus polymeric micelles by a modified film dispersion method. With the encapsulation efficiency over 90%, the quercetin-loaded polymeric micelles (Qu-PMs) with drug loading of 6.7% had a narrow size distribution around mean size of 79.00 ± 2.24 nm, suggesting the complete dispersibility of quercetin in water. X-ray diffraction (XRD) patterns illustrated that quercetin was in amorphous or molecular form within PMs. Fourier transform infrared spectroscopy (FTIR) indicated that quercetin formed intermolecular hydrogen bonding with carriers. An in vitro dialysis test showed the Qu-PMs possessed significant sustained-release property, and the formulation was stable for at least 6 months under accelerated conditions. The pharmacokinetic study in beagle dogs showed that absorption of quercetin after oral administration of Qu-PMs was improved significantly, with a half-life 2.19-fold longer and a relative oral bioavailability of 286% as compared to free quercetin. Therefore, these novel soluplus polymeric micelles can be applied to encapsulate various poorly water-soluble drugs towards a development of more applicable therapeutic formulations.

  16. Chemotherapeutic potential of quercetin on human bladder cancer cells.

    PubMed

    Oršolić, Nada; Karač, Ivo; Sirovina, Damir; Kukolj, Marina; Kunštić, Martina; Gajski, Goran; Garaj-Vrhovac, Vera; Štajcar, Damir

    2016-07-28

    In an effort to improve local bladder cancer control, we investigated the cytotoxic and genotoxic effects of quercetin on human bladder cancer T24 cells. The cytotoxic effect of quercetin against T24 cells was examined by MTT test, clonogenic assay as well as DNA damaging effect by comet assay. In addition, the cytotoxic effect of quercetin on the primary culture of papillary urothelial carcinoma (PUC), histopathological stage T1 of low- or high-grade tumours, was investigated. Our analysis demonstrated a high correlation between reduced number of colony and cell viability and an increase in DNA damage of T24 cells incubated with quercetin at doses of 1 and 50 µM during short term incubation (2 h). At all exposure times (24, 48 and 72 h), the efficacy of quercetin, administered at a 10× higher dose compared to T24 cells, was statistically significant (P < 0.05) for the primary culture of PUC. In conclusion, our study suggests that quercetin could inhibit cell proliferation and colony formation of human bladder cancer cells by inducing DNA damage and that quercetin may be an effective chemopreventive and chemotherapeutic agent for papillary urothelial bladder cancer after transurethral resection. PMID:27149655

  17. Viral Hepatitis

    MedlinePlus

    ... Public Home » For Veterans and the Public Viral Hepatitis Menu Menu Viral Hepatitis Viral Hepatitis Home For ... the Public Veterans and Public Home How is Hepatitis C Treated? Find the facts about the newest ...

  18. Rg1 Attenuates alcoholic hepatic damage through regulating AMP-activated protein kinase and nuclear factor erythroid 2-related factor 2 signal pathways.

    PubMed

    Gao, Yan; Chu, Shi-Feng; Xia, Cong-Yuan; Zhang, Zhao; Zhang, Shuai; Chen, Nai-Hong

    2016-08-01

    Rg1 has shown multiple pharmacological activities and been considered to be evaluated for hepatic protective activity, as Rg1 could modulate different pathways in various diseases. Herein we assessed its effect and potential mechanism in a newly modified ethanol model. C57BL/6 mice were fed with Lieber-DeCarli liquid diet containing ethanol or isocaloric maltose dextrin as control diet with or without Rg1. Meanwhile, bicyclol was treated as positive drug to compare the efficacy of Rg1 against alcoholic hepatotoxicity. According to our data, Rg1 indeed improved the survival rate and lowered the abnormal high levels of serum parameters. H&E and Oil Red O staining indicated that the condition of liver damage was mitigated by Rg1 administration. Furthermore, AMPK and Nrf2 pathways were all modulated at both RNA and protein levels. In accordance with these findings, Rg1 effectively protected against alcoholic liver injury, possibly by modulating metabolism, suppressing oxidative stress, and enhancing oxidant defense systems of Nrf2 pathway. In vitro, Rg1 has no cell toxicity and promotes Nrf2 translocate into nuclear. In summary, we demonstrate that Rg1 is a potent activator of Nrf2 pathway, and could therefore be applied for prevention of hepatic damage. PMID:27229011

  19. [Study of quantum-pharmacological chemical characteristics of quercetin].

    PubMed

    Zahorodnyĭ, M I

    2007-01-01

    It was established in the previous studies that quercetin prevented the development and caused faster regression of ulcers, petechia and anabroses in rats, which were induced by diclofenac taking. In the group of patients taking diclofenac together with quercetin, the ulcers and dyspeptic events were less found. The application of quercetin normalizes the function and metabolism of cartilage tissue of rabbits with an experimental osteoarthrosis and in patients with osteoartrosis. Quantum-chemical properties of molecule quercetin were studied using the methods of molecular mechanics MM+ and ab initio 6-31G*, and also semiempirical method. The following indices were investigated: distance between atoms (A), the distribution of electronic density of only external valency electrons, distribution of electrostatic potential; common energy of the exertion of molecule (kkal/mmol); binding energy (kkal/mmol); electron energy (kkal/mmol); energy of nucleus-nucleus interaction (kkal/mmol); formation heat (kkal/mmol); atomic charge (eB); value of the dipole moment of molecule (D); localization and energy of highest occupied orbital (HOMO) and the lowest unoccupied (LUMO) molecular orbital (eB) of quercetin miolecule; the value of absolute rigidity of chemical structure of bioflavonoid. It was shown, that bioflavonoid quercetin belongs to mild reagents, has nucleophilic properties, can react with alkaline, unsaturated and aromatic compounds,. Polar substitutes in the quercetine molecule influence on the distribution of superficial valency electrons and localization of HOMO and LUMO. The energy value of quercetin LUMO enables us to refer quercetine to the reducing agent and it is illustrated by antioxidant properties of this medicine. PMID:18663944

  20. Viral Hepatitis

    MedlinePlus

    ... with hepatitis? How does a pregnant woman pass hepatitis B virus to her baby? If I have hepatitis B, what does my baby need so that she ... Can I breastfeed my baby if I have hepatitis B? More information on viral hepatitis What is hepatitis? ...

  1. Stage-specific quercetin sulfation in the gut of Mythimna separata larvae (Lepidoptera: Noctuidae).

    PubMed

    Aboshi, Takako; Ishida, Masahiro; Matsushita, Kaori; Hirano, Yunosuke; Nishida, Ritsuo; Mori, Naoki

    2014-01-01

    The metabolism of quercetin was investigated in Mythimna separata larvae. Quercetin 4'-O-sulfate was mainly identified in the frass when 6th instar larvae were fed artificial diets containing 1% quercetin. In the case of the 3rd instar larvae, a larger amount of quercetin was detected in the frass. M. separata larvae had different metabolic strategies for quercetin at different developmental stages. PMID:25036481

  2. A Novel Matrine Derivative WM130 Inhibits Activation of Hepatic Stellate Cells and Attenuates Dimethylnitrosamine-Induced Liver Fibrosis in Rats

    PubMed Central

    Xu, Yang; Peng, Zhangxiao; Ji, Weidan; Li, Xiang; Lin, Xuejing; Qian, Liqiang; Li, Xiaoya; Chai, Xiaoyun; Wu, Qiuye; Gao, Quangen; Su, Changqing

    2015-01-01

    Activation of hepatic stellate cells (HSCs) is a critical event in process of hepatic fibrogenesis and cirrhosis. Matrine, the active ingredient of Sophora, had been used for clinical treatment of acute/chronic liver disease. However, its potency was low. We prepared a high potency and low toxicity matrine derivate, WM130 (C30N4H40SO5F), which exhibited better pharmacological activities on antihepatic fibrosis. This study demonstrated that WM130 results in a decreased proliferative activity of HSC-T6 cells, with the half inhibitory concentration (IC50) of 68 μM. WM130 can inhibit the migration and induce apoptosis in HSC-T6 cells at both concentrations of 68 μM (IC50) and 34 μM (half IC50). The expression of α-SMA, Collagen I, Collagen III, and TGF-β1 could be downregulated, and the protein phosphorylation levels of EGFR, AKT, ERK, Smad, and Raf (p-EGFR, p-AKT, p-ERK, p-Smad, and p-Raf) were also decreased by WM130. On the DMN-induced rat liver fibrosis model, WM130 can effectively reduce the TGF-β1, AKT, α-SMA, and p-ERK levels, decrease the extracellular matrix (ECM) formation, and inhibit rat liver fibrosis progression. In conclusion, this study demonstrated that WM130 can significantly inhibit the activation of HSC-T6 cells and block the rat liver fibrosis progression by inducing apoptosis, suppressing the deposition of ECM, and inhibiting TGF-β/Smad and Ras/ERK pathways. PMID:26167476

  3. A Novel Matrine Derivative WM130 Inhibits Activation of Hepatic Stellate Cells and Attenuates Dimethylnitrosamine-Induced Liver Fibrosis in Rats.

    PubMed

    Xu, Yang; Peng, Zhangxiao; Ji, Weidan; Li, Xiang; Lin, Xuejing; Qian, Liqiang; Li, Xiaoya; Chai, Xiaoyun; Wu, Qiuye; Gao, Quangen; Su, Changqing

    2015-01-01

    Activation of hepatic stellate cells (HSCs) is a critical event in process of hepatic fibrogenesis and cirrhosis. Matrine, the active ingredient of Sophora, had been used for clinical treatment of acute/chronic liver disease. However, its potency was low. We prepared a high potency and low toxicity matrine derivate, WM130 (C30N4H40SO5F), which exhibited better pharmacological activities on antihepatic fibrosis. This study demonstrated that WM130 results in a decreased proliferative activity of HSC-T6 cells, with the half inhibitory concentration (IC50) of 68 μM. WM130 can inhibit the migration and induce apoptosis in HSC-T6 cells at both concentrations of 68 μM (IC50) and 34 μM (half IC50). The expression of α-SMA, Collagen I, Collagen III, and TGF-β1 could be downregulated, and the protein phosphorylation levels of EGFR, AKT, ERK, Smad, and Raf (p-EGFR, p-AKT, p-ERK, p-Smad, and p-Raf) were also decreased by WM130. On the DMN-induced rat liver fibrosis model, WM130 can effectively reduce the TGF-β1, AKT, α-SMA, and p-ERK levels, decrease the extracellular matrix (ECM) formation, and inhibit rat liver fibrosis progression. In conclusion, this study demonstrated that WM130 can significantly inhibit the activation of HSC-T6 cells and block the rat liver fibrosis progression by inducing apoptosis, suppressing the deposition of ECM, and inhibiting TGF-β/Smad and Ras/ERK pathways. PMID:26167476

  4. Effect of quercetin on apoptosis of PANC-1 cells

    PubMed Central

    Lee, Joo Hyun; Lee, Han-Beom; Jung, Gum O; Oh, Jung Taek; Park, Dong Eun

    2013-01-01

    Purpose To investigate the chemotherapeutic effect of quercetin against cancer cells, signaling pathway of apoptosis was explored in human pancreatic cells. Methods Various anticancer drugs including adriamycin, cisplatin, 5-fluorouracil (5-FU) and gemcitabine were used. Cell viability was measured by 3-[4,5-dimethylthiazol-2-yl]-2,5-diphe-nyltetra zolium bromide assay. Apoptosis was determined by 4'-6-diamidino-2-phenylindole nuclei staining and flow cytometry in PANC-1 cells treated with 50 µg/mL quercetin for 24 hours. Expression of endoplas mic reticulum (ER) stress mediators including, Grp78/Bip, p-PERK, PERK, ATF4, ATF6 and GADD153/CHOP proteins were measured by Western blot analysis. Mitochondrial membrane potential was measured by fluorescence staining with JC-1, rhodamine 123. Quercetin induced the apoptosis of PANC-1, which was characterized as nucleic acid and genomic DNA fragmentation, chromatin condensation, and sub-G0/G1 fraction of cell cycle increase. But not adriamycin, cisplatin, gemcitabine, and 5-FU. PANC-1 cells were markedly sensitive to quercetin. Results Treatment with quercetin resulted in the increased accumulation of intracellular Ca2+ ion. Treatment with quercetin also increased the expression of Grp78/Bip and GADD153/CHOP protein and induced mitochondrial dysfunction. Quercetin exerted cytotoxicity against human pancreatic cancer cells via ER stress-mediated apoptotic signaling including reactive oxygen species production and mitochondrial dysfunction. Conclusion These data suggest that quercetin may be an important modulator of chemosensitivity of cancer cells against anticancer chemotherapeutic agents. PMID:24368982

  5. Molecular Targets Underlying the Anticancer Effects of Quercetin: An Update.

    PubMed

    Khan, Fazlullah; Niaz, Kamal; Maqbool, Faheem; Ismail Hassan, Fatima; Abdollahi, Mohammad; Nagulapalli Venkata, Kalyan C; Nabavi, Seyed Mohammad; Bishayee, Anupam

    2016-01-01

    Quercetin, a medicinally important member of the flavonoid family, is one of the most prominent dietary antioxidants. It is present in a variety of foods-including fruits, vegetables, tea, wine, as well as other dietary supplements-and is responsible for various health benefits. Numerous pharmacological effects of quercetin include protection against diseases, such as osteoporosis, certain forms of malignant tumors, and pulmonary and cardiovascular disorders. Quercetin has the special ability of scavenging highly reactive species, such as hydrogen peroxide, superoxide anion, and hydroxyl radicals. These oxygen radicals are called reactive oxygen species, which can cause oxidative damage to cellular components, such as proteins, lipids, and deoxyribonucleic acid. Various oxygen radicals play important roles in pathophysiological and degenerative processes, such as aging. Subsequently, several studies have been performed to evaluate possible advantageous health effects of quercetin and to collect scientific evidence for these beneficial health claims. These studies also gather data in order to evaluate the exact mechanism(s) of action and toxicological effects of quercetin. The purpose of this review is to present and critically analyze molecular pathways underlying the anticancer effects of quercetin. Current limitations and future directions of research on this bioactive dietary polyphenol are also critically discussed. PMID:27589790

  6. Ezetimibe markedly attenuates hepatic cholesterol accumulation and improves liver function in the lysosomal acid lipase-deficient mouse, a model for cholesteryl ester storage disease.

    PubMed

    Chuang, Jen-Chieh; Lopez, Adam M; Posey, Kenneth S; Turley, Stephen D

    2014-01-17

    Lysosomal acid lipase (LAL) plays a critical role in the intracellular handling of lipids by hydrolyzing cholesteryl esters (CE) and triacylglycerols (TAG) contained in newly internalized lipoproteins. In humans, mutations in the LAL gene result in cholesteryl ester storage disease (CESD), or in Wolman disease (WD) when the mutations cause complete loss of LAL activity. A rat model for WD and a mouse model for CESD have been described. In these studies we used LAL-deficient mice to investigate how modulating the amount of intestinally-derived cholesterol reaching the liver might impact its mass, cholesterol content, and function in this model. The main experiment tested if ezetimibe, a potent cholesterol absorption inhibitor, had any effect on CE accumulation in mice lacking LAL. In male Lal(-/-) mice given ezetimibe in their diet (20 mg/day/kg bw) for 4 weeks starting at 21 days of age, both liver mass and hepatic cholesterol concentration (mg/g) were reduced to the extent that whole-liver cholesterol content (mg/organ) in the treated mice (74.3±3.4) was only 56% of that in those not given ezetimibe (133.5±6.7). There was also a marked improvement in plasma alanine aminotransferase (ALT) activity. Thus, minimizing cholesterol absorption has a favorable impact on the liver in CESD. PMID:24370824

  7. Quercetin solubilisation in bile salts: A comparison with sodium dodecyl sulphate.

    PubMed

    Buchweitz, Maria; Kroon, Paul A; Rich, Gillian T; Wilde, Peter J

    2016-11-15

    To understand the bioaccessibility of the flavonoid quercetin we studied its interaction with bile salt micelles. The environmental sensitivity of quercetin's UV-visible absorption spectrum gave information about quercetin partitioning. Two quercetin absorption peaks gave complementary information: Peak A (240-280nm) on the intermicellar phase and Peak B (340-440nm) on the micellar phase. Thus, by altering pH, we showed that only non-ionised quercetin partitions into micelles. We validated our interpretation by studying quercetin's interaction with SDS micelles. Pyrene fluorescence and the quercetin UV-visible spectra show that the adsorption site for pyrene and quercetin in bile salt micelles is more hydrophobic than that for SDS micelles. Also, both quercetin and pyrene reported a higher critical micelle concentration for bile salts than for SDS. Our method of using a flavonoid as an intrinsic probe, is generally applicable to other lipophilic bioactives, whenever they have observable environmental dependent properties. PMID:27283643

  8. Antioxidant and Prophylactic Effects of Delonix elata L., Stem Bark Extracts, and Flavonoid Isolated Quercetin against Carbon Tetrachloride-Induced Hepatotoxicity in Rats

    PubMed Central

    Venkatarangaiah, Krishna; Venkatesh; Shivamogga Rajanna, Santosh Kumar; Kashi Prakash Gupta, Rajesh

    2014-01-01

    Delonix elata L. (Ceasalpinaceae), is widely used by the traditional medical practitioners of Karnataka, India, to cure jaundice, and bronchial and rheumatic problems. The objective of this study was to screen the in vitro antioxidant and hepatoprotective activity of the stem bark extracts against CCl4-induced liver damage in rats. Among different stem bark extracts tested, the ethanol extract (DSE) has shown significant in vitro antioxidant property in radicals scavenging, metal chelating, and lipid peroxidation inhibition assays. HPLC analysis of the DSE revealed the presence of known antioxidant molecules, namely, gallic acid, ellagic acid, coumaric acid, quercetin, and rutin. Bioassay-guided fractionation of DSE has resulted in the isolation and characterization of quercetin. DSE and quercetin have shown significant prophylactic effects by restoring the liver function markers (AST, ALT, ALP, serum bilirubin, and total protein) and antioxidant enzymes (SOD, CAT, GPx, and GST). These results were proved to be hepatoprotective at par with silymarin and well supported by the histological observations of liver sections with distinct hepatic cells, and mild degree of fatty change and necrosis. The results indicated that the DSE and quercetin were significant for prophylactic activity against CCl4-induced liver damage in rats. This activity could be attributed to the antioxidant constituents in the DSE and hence justified the ethnomedicinal claims. PMID:24987689

  9. Antioxidant and prophylactic effects of Delonix elata L., stem bark extracts, and flavonoid isolated quercetin against carbon tetrachloride-induced hepatotoxicity in rats.

    PubMed

    Krishnappa, Pradeepa; Venkatarangaiah, Krishna; Venkatesh; Shivamogga Rajanna, Santosh Kumar; Kashi Prakash Gupta, Rajesh

    2014-01-01

    Delonix elata L. (Ceasalpinaceae), is widely used by the traditional medical practitioners of Karnataka, India, to cure jaundice, and bronchial and rheumatic problems. The objective of this study was to screen the in vitro antioxidant and hepatoprotective activity of the stem bark extracts against CCl4-induced liver damage in rats. Among different stem bark extracts tested, the ethanol extract (DSE) has shown significant in vitro antioxidant property in radicals scavenging, metal chelating, and lipid peroxidation inhibition assays. HPLC analysis of the DSE revealed the presence of known antioxidant molecules, namely, gallic acid, ellagic acid, coumaric acid, quercetin, and rutin. Bioassay-guided fractionation of DSE has resulted in the isolation and characterization of quercetin. DSE and quercetin have shown significant prophylactic effects by restoring the liver function markers (AST, ALT, ALP, serum bilirubin, and total protein) and antioxidant enzymes (SOD, CAT, GPx, and GST). These results were proved to be hepatoprotective at par with silymarin and well supported by the histological observations of liver sections with distinct hepatic cells, and mild degree of fatty change and necrosis. The results indicated that the DSE and quercetin were significant for prophylactic activity against CCl4-induced liver damage in rats. This activity could be attributed to the antioxidant constituents in the DSE and hence justified the ethnomedicinal claims. PMID:24987689

  10. microRNA-29b prevents liver fibrosis by attenuating hepatic stellate cell activation and inducing apoptosis through targeting PI3K/AKT pathway

    PubMed Central

    Wang, Jia; Chu, Eagle S.H.; Chen, Hai-Yong; Man, Kwan; Go, Minnie Y.Y.; Huang, Xiao Ru; Lan, Hui Yao; Sung, Joseph J.Y.; Yu, Jun

    2015-01-01

    microRNA-29b (miR-29b) is known to be associated with TGF-β-mediated fibrosis, but the mechanistic action of miR-29b in liver fibrosis remains unclear and is warranted for investigation. We found that miR-29b was significantly downregulated in human and mice fibrotic liver tissues and in primary activated HSCs. miR-29b downregulation was directly mediated by Smad3 through binding to the promoter of miR-29b in hepatic stellate cell (HSC) line LX1, whilst miR-29b could in turn suppress Smad3 expression. miR-29b transduction in the liver of mice prevented CCl4 induced-fibrogenesis, concomitant with decreased expression of α-SMA, collagen I and TIMP-1. Ectopic expression of miR-29b in activated HSCs (LX-1, HSC-T6) inhibited cell viability and colony formation, and caused cell cycle arrest in G1 phase by downregulating cyclin D1 and p21cip1. Further, miR-29b induced apoptosis in HSCs mediated by caspase-9 and PARP. miR-29b inhibited its downstream effectors of PIK3R1 and AKT3 through direct targeting their 3′UTR regions. Moreover, knockdown of PIK3R1 or AKT3 suppressed α-SMA and collagen I and induced apoptosis in both HSCs and in mice. In conclusion, miR-29b prevents liver fibrogenesis by inhibiting HSC activation and inducing HSC apoptosis through inhibiting PI3K/AKT pathway. These results provide novel mechanistic insights for the anti-fibrotic effect of miR-29b. PMID:25356754

  11. Brain-specific natriuretic peptide receptor-B deletion attenuates high-fat diet-induced visceral and hepatic lipid deposition in mice.

    PubMed

    Yamashita, Yui; Yamada-Goto, Nobuko; Katsuura, Goro; Ochi, Yukari; Kanai, Yugo; Miyazaki, Yuri; Kuwahara, Koichiro; Kanamoto, Naotetsu; Miura, Masako; Yasoda, Akihiro; Ohinata, Kousaku; Inagaki, Nobuya; Nakao, Kazuwa

    2016-07-01

    C-type natriuretic peptide (CNP) and its receptor, natriuretic peptide receptor-B (NPR-B), are abundantly distributed in the hypothalamus. To explore the role of central CNP/NPR-B signaling in energy regulation, we generated mice with brain-specific NPR-B deletion (BND mice) by crossing Nestin-Cre transgenic mice and mice with a loxP-flanked NPR-B locus. Brain-specific NPR-B deletion prevented body weight gain induced by a high-fat diet (HFD), and the mesenteric fat and liver weights were significantly decreased in BND mice fed an HFD. The decreased liver weight in BND mice was attributed to decreased lipid accumulation in the liver, which was confirmed by histologic findings and lipid content. Gene expression analysis revealed a significant decrease in the mRNA expression levels of CD36, Fsp27, and Mogat1 in the liver of BND mice, and uncoupling protein 2 mRNA expression was significantly lower in the mesenteric fat of BND mice fed an HFD than in that of control mice. This difference was not observed in the epididymal or subcutaneous fat. Although previous studies reported that CNP/NPR-B signaling inhibits SNS activity in rodents, SNS is unlikely to be the underlying mechanism of the metabolic phenotype observed in BND mice. Taken together, CNP/NPR-B signaling in the brain could be a central factor that regulates visceral lipid accumulation and hepatic steatosis under HFD conditions. Further analyses of the precise mechanisms will enhance our understanding of the contribution of the CNP/NPR-B system to energy regulation. PMID:27020246

  12. Dietary Quercetin Reduces Chemotherapy-Induced Fatigue in Mice

    PubMed Central

    Mahoney, Sara E.; Davis, J. Mark; Murphy, E. Angela; McClellan, Jamie L.; Pena, Marjory M.

    2014-01-01

    Purpose While fatigue is the most commonly reported symptom of chemotherapy, there are currently no effective treatments for chemotherapy-induced fatigue (CIF). We used a mouse model to examine the benefits of quercetin on CIF as measured by voluntary wheel running activity and sought to determine whether quercetin may be associated with a decrease in inflammation and/or anemia. Methods Mice were assigned to 1 of 4 groups: placebo-vehicle (Plac-PBS), placebo-5-fluorouracil (Plac-5FU), quercetin-vehicle (Quer-PBS), or quercetin-5-fluorouracil (Quer-5FU). All mice were given a daily injection of either 60 mg/kg of 5-FU or phosphate buffered saline (PBS) for 5 days. Quercetin (0.02%) treatment was administered in the food 3 days prior to 5-FU administration and for the duration of the experiment (ie, days −2 to 14). A second group of mice was sacrificed at 5 and 14 days post initial injection for assessment of monocyte chemoattractant protein-1 (MCP-1) and anemia. Results Voluntary wheel running was reduced in both the Plac-5FU and Quer-5FU groups following 5-FU injection (P < .05). However, the Quer-5FU group recovered to baseline levels by approximately day 7, whereas the Plac-5FU group remained suppressed. MCP-1 was significantly elevated at 14 days in Plac-5FU (P < .001), but no changes were seen with Quer-5FU. Treatment with 5-FU resulted in anemia at both 5 days and 14 days; however, quercetin blocked this effect at 14 days (P < .001). Conclusion These results demonstrate the beneficial effect of quercetin on improving recovery of voluntary physical activity following 5-FU treatment, which may be linked to a decrease in inflammation and anemia. PMID:24626097

  13. Quercetin and quercetin 3-O-glycosides from Bauhinia longifolia (Bong.) Steud. show anti-Mayaro virus activity

    PubMed Central

    2014-01-01

    Background The arthropod-borne Mayaro virus (MAYV) causes ‘Mayaro fever’, a disease of medical significance, primarily affecting individuals in permanent contact with forested areas in tropical South America. Recently, MAYV has attracted attention due to its likely urbanization. Currently, there are no licensed drugs against most mosquito-transmitted viruses. Here, we investigated the in vitro anti-MAYV activity of the flavonoids quercetin and its derivatives from the Brazilian shrub Bauhinia longifolia (Bong.) Steud. Methods Flavonoids were purified by chromatographic fractionation from leaf extracts of B. longifolia and chemically identified as quercetin and quercetin glycosides using spectroscopic techniques. Cytotoxicity of purified flavonoids and of EtOAc- and n-BuOH-containing flavonoid mixtures was measured by the dye-uptake assay while their antiviral activity was evaluated by a virus yield inhibition assay. Results The following flavonoids were purified from B. longifolia leaves: non-glycosylated quercetin and its glycosides guaijaverin, quercitrin, isoquercitrin, and hyperin. EtOAc and n-BuOH fractions containing these flavonoids demonstrated the highest antiviral activity of all tested substances, while quercetin had the highest antiviral activity amongst purified flavonoids. Quercetin, EtOAc, or n-BuOH fractions inhibited MAYV production by more than 90% at 25 μg/mL, displaying a stronger antiviral effect than the licensed antiviral ribavirin. A mixture of the isomers isoquercitrin and hyperin had a modest antiviral effect (IC90 = 104.9), while guaijaverin and quercitrin did not show significant antiviral activity. Conclusions B. longifolia is a good source of flavonoids with anti-Mayaro virus activity. This is the first report of the activity of quercetin and its derivatives against an alphavirus. PMID:24678592

  14. Site-specific anticancer effects of dietary flavonoid quercetin.

    PubMed

    Sak, Katrin

    2014-01-01

    Food-derived flavonoid quercetin, widely distributed in onions, apples, and tea, is able to inhibit growth of various cancer cells indicating that this compound can be considered as a good candidate for anticancer therapy. Although the exact mechanism of this action is not thoroughly understood, behaving as antioxidant and/or prooxidant as well as modulating different intracellular signalling cascades may all play a certain role. Such inhibitory activity of quercetin has been shown to depend first of all on cell lines and cancer types; however, no comprehensive site-specific analysis of this effect has been published. In this review article, cytotoxicity constants of quercetin measured in various human malignant cell lines of different origin were compiled from literature and a clear cancer selective action was demonstrated. The most sensitive malignant sites for quercetin revealed to be cancers of blood, brain, lung, uterine, and salivary gland as well as melanoma whereas cytotoxic activity was higher in more aggressive cells compared to the slowly growing cells showing that the most harmful cells for the organism are probably targeted. More research is needed to overcome the issues of poor water solubility and relatively low bioavailability of quercetin as the major obstacles limiting its clinical use. PMID:24377461

  15. Inhibitory effect of quercetin on periodontal pathogens in vitro.

    PubMed

    Geoghegan, F; Wong, R W K; Rabie, A B M

    2010-06-01

    Actinobacillus actinomycetemcomitans (Aa) and Porphyromonas gingivalis (Pg) are bacteria strongly associated with early onset, progressive and refractory periodontal disease and associated alveolar bone loss. Quercetin is a flavonoid found in many foods including apples, onions and tea. The aim of this study was to evaluate the effect of quercetin on in vitro growth of periodontal pathogens Aa and Pg. For comparison, quercetin's effect on several oral microbes was also evaluated. Different concentrations of quercetin solution were added to calibrated suspensions of Aa and Pg. All suspensions were incubated for 1, 3, 6, and 24 h in an anaerobic chamber at 37 degrees C. At each time point, selected dilutions from each culture broth were plated on blood agar plates. Colonies appearing on blood agar plates were visually counted on 3 days for Aa and 5 days for Pg. Minimum inhibitory concentrations of both periodontal pathogens were also determined. Both periodontal bacteria showed a significant decrease (p < 0.05) in viable counts after 1 h. No colony forming units of Pg could be observed after 24 h. The results suggest that quercetin possesses significant antimicrobial properties on periodontal pathogens in vitro. PMID:19957242

  16. Quercetin and Its Anti-Allergic Immune Response.

    PubMed

    Mlcek, Jiri; Jurikova, Tunde; Skrovankova, Sona; Sochor, Jiri

    2016-01-01

    Quercetin is the great representative of polyphenols, flavonoids subgroup, flavonols. Its main natural sources in foods are vegetables such as onions, the most studied quercetin containing foods, and broccoli; fruits (apples, berry crops, and grapes); some herbs; tea; and wine. Quercetin is known for its antioxidant activity in radical scavenging and anti-allergic properties characterized by stimulation of immune system, antiviral activity, inhibition of histamine release, decrease in pro-inflammatory cytokines, leukotrienes creation, and suppresses interleukin IL-4 production. It can improve the Th1/Th2 balance, and restrain antigen-specific IgE antibody formation. It is also effective in the inhibition of enzymes such as lipoxygenase, eosinophil and peroxidase and the suppression of inflammatory mediators. All mentioned mechanisms of action contribute to the anti-inflammatory and immunomodulating properties of quercetin that can be effectively utilized in treatment of late-phase, and late-late-phase bronchial asthma responses, allergic rhinitis and restricted peanut-induced anaphylactic reactions. Plant extract of quercetin is the main ingredient of many potential anti-allergic drugs, supplements and enriched products, which is more competent in inhibiting of IL-8 than cromolyn (anti-allergic drug disodium cromoglycate) and suppresses IL-6 and cytosolic calcium level increase. PMID:27187333

  17. Mechanisms of Neuroprotection by Quercetin: Counteracting Oxidative Stress and More

    PubMed Central

    Costa, Lucio G.; Garrick, Jacqueline M.; Roquè, Pamela J.; Pellacani, Claudia

    2016-01-01

    Increasing interest has recently focused on determining whether several natural compounds, collectively referred to as nutraceuticals, may exert neuroprotective actions in the developing, adult, and aging nervous system. Quercetin, a polyphenol widely present in nature, has received the most attention in this regard. Several studies in vitro, in experimental animals and in humans, have provided supportive evidence for neuroprotective effects of quercetin, either against neurotoxic chemicals or in various models of neuronal injury and neurodegenerative diseases. The exact mechanisms of such protective effects remain elusive, though many hypotheses have been formulated. In addition to a possible direct antioxidant effect, quercetin may also act by stimulating cellular defenses against oxidative stress. Two such pathways include the induction of Nrf2-ARE and induction of the antioxidant/anti-inflammatory enzyme paraoxonase 2 (PON2). In addition, quercetin has been shown to activate sirtuins (SIRT1), to induce autophagy, and to act as a phytoestrogen, all mechanisms by which quercetin may provide its neuroprotection. PMID:26904161

  18. Pharmacokinetics of quercetin-loaded nanodroplets with ultrasound activation and their use for bioimaging.

    PubMed

    Chang, Li-Wen; Hou, Mei-Ling; Hung, Shuo-Hui; Lin, Lie-Chwen; Tsai, Tung-Hu

    2015-01-01

    Bubble formulations have both diagnostic and therapeutic applications. However, research on nanobubbles/nanodroplets remains in the initial stages. In this study, a nanodroplet formulation was prepared and loaded with a novel class of chemotherapeutic drug, ie, quercetin, to observe its pharmacokinetic properties and ultrasonic bioimaging of specific sites, namely the abdominal vein and bladder. Four parallel groups were designed to investigate the effects of ultrasound and nanodroplets on the pharmacokinetics of quercetin. These groups were quercetin alone, quercetin triggered with ultrasound, quercetin-encapsulated in nanodroplets, and quercetin encapsulated in nanodroplets triggered with ultrasound. Spherical vesicles with a mean diameter of 280 nm were formed, and quercetin was completely encapsulated within. In vivo ultrasonic imaging confirmed that the nanodroplets could be treated by ultrasound. The results indicate that the initial 5-minute serum concentration, area under the concentration-time curve, elimination half-life, and clearance of quercetin were significantly enhanced by nanodroplets with or without ultrasound. PMID:25945049

  19. Pharmacokinetics of quercetin-loaded nanodroplets with ultrasound activation and their use for bioimaging

    PubMed Central

    Chang, Li-Wen; Hou, Mei-Ling; Hung, Shuo-Hui; Lin, Lie-Chwen; Tsai, Tung-Hu

    2015-01-01

    Bubble formulations have both diagnostic and therapeutic applications. However, research on nanobubbles/nanodroplets remains in the initial stages. In this study, a nanodroplet formulation was prepared and loaded with a novel class of chemotherapeutic drug, ie, quercetin, to observe its pharmacokinetic properties and ultrasonic bioimaging of specific sites, namely the abdominal vein and bladder. Four parallel groups were designed to investigate the effects of ultrasound and nanodroplets on the pharmacokinetics of quercetin. These groups were quercetin alone, quercetin triggered with ultrasound, quercetin-encapsulated in nanodroplets, and quercetin encapsulated in nanodroplets triggered with ultrasound. Spherical vesicles with a mean diameter of 280 nm were formed, and quercetin was completely encapsulated within. In vivo ultrasonic imaging confirmed that the nanodroplets could be treated by ultrasound. The results indicate that the initial 5-minute serum concentration, area under the concentration–time curve, elimination half-life, and clearance of quercetin were significantly enhanced by nanodroplets with or without ultrasound. PMID:25945049

  20. Quercetin as natural stabilizing agent for bio-polymer

    NASA Astrophysics Data System (ADS)

    Morici, Elisabetta; Arrigo, Rossella; Dintcheva, Nadka Tzankova

    2014-05-01

    The introduction of antioxidants in polymers is the main way to prevent or delay the degradation process. In particular natural antioxidants receive attention in the food industry also because of their presumed safety. In this work bio-polymers, i.e. a commercial starch-based polymer (Mater-Bi®) and a bio-polyester (PLA), and a bio-polyether (PEO) were additivated with quercetin, a natural flavonoid antioxidants, in order to formulate bio-based films for ecosustainable packaging and outdoor applications. The photo-oxidation behavior of unstabilized and quercetin stabilized films was analyzed and compared with the behavior of films additivated with a commercial synthetic light stabilizer. The quercetin is able to slow down the photo-degradation rate of all bio-polymeric films investigated in similar way to the synthetic stabilizer.

  1. Quercetin as natural stabilizing agent for bio-polymer

    SciTech Connect

    Morici, Elisabetta; Arrigo, Rossella; Dintcheva, Nadka Tzankova

    2014-05-15

    The introduction of antioxidants in polymers is the main way to prevent or delay the degradation process. In particular natural antioxidants receive attention in the food industry also because of their presumed safety. In this work bio-polymers, i.e. a commercial starch-based polymer (Mater-Bi®) and a bio-polyester (PLA), and a bio-polyether (PEO) were additivated with quercetin, a natural flavonoid antioxidants, in order to formulate bio-based films for ecosustainable packaging and outdoor applications. The photo-oxidation behavior of unstabilized and quercetin stabilized films was analyzed and compared with the behavior of films additivated with a commercial synthetic light stabilizer. The quercetin is able to slow down the photo-degradation rate of all bio-polymeric films investigated in similar way to the synthetic stabilizer.

  2. [Hypoglycemic and hypolipidemic effects of quercetin and its glycosides].

    PubMed

    Yan, Shu-xia; Li, Xian; Sun, Chong-de; Chen, Kun-song

    2015-12-01

    Quercetin and its glycosides are important flavonols in traditional herbal drugs and plant-derived food, and they have diverse hiological activities such as antioxidant, anticarcinogenic, anti-inflammatory, hypoglycemic and hypolipidemic activities. Numerous studies have demonstrated that quercetin and its glycosides were effective in the prevention and treatment of non-infectious chronic disease such as diabetes, obesity, and hyperlipidemia. They can regulate glucose and lipid metaholism through different mechanisms. They can decrease blood glucose via protecting pancreatic/p cells or/and improving insulin sensitivity. Also, they have lipid-lowering effects, which may be the result of regulation of lipid catabolism or/and anabolism. Their distributions, as well as the hypoglycemic and hypolipidemic effects are reviewed in this paper. In addition, further bioactivities as well as their dose-activity relationship, structure-activity relationship, bioavailability, and future clinical application of quercetin and its glycosides are discussed and proposed. PMID:27141664

  3. Preparation Of Gold Nanoparticle-Quercetin Complexes By Citrate Reduction Method

    NASA Astrophysics Data System (ADS)

    Pal, Rajat; Chakraborti, Abhay Sankar

    2010-10-01

    Quercetin is an important flavonoid and possesses strong antioxidant property. The aim of the present study is to formulate and characterize quercetin coated gold nanoparticles. Quercetin was conjugated with gold nanoparticle during synthesis of the particle by citrate reduction of chloroauric acid. The conjugates were characterized by different techniques like Atomic Force Microscopy, Dynamic Light Scattering, Transmission Electron Microscopy, Absorption Spectroscopy, Differential Scanning Calorimetry and Thermal Gravimetric Analysis. All these studies suggest formation of stable quercetin-gold nanoparticle complex.

  4. Enzymatic modification of chitosan with quercetin and its application as antioxidant edible films.

    PubMed

    Torres, E; Marín, V; Aburto, J; Beltrán, H I; Shirai, K; Villanueva, S; Sandoval, G

    2012-01-01

    Quercetin, rutin, naringin, hesperidin and chrysin were tested as substrates for chloroperoxidase to produce reactive quinones to graft onto chitosan. Quercetin and rutin quinones were successfully chemically attached to low molecular weight chitosan. The quercetin-modified chitosan showed an enhancement of plastic, antioxidant and antimicrobial properties as well as of thermal degradability. Finally, chitosan-quercetin films visibly decreased enzymatic oxidation when applied to Opuntia ficus indica cladodes. PMID:22586910

  5. Synthesis and Anti-Proliferative Effects of Quercetin Derivatives.

    PubMed

    Al-Jabban, Sami M R; Zhang, Xiaojie; Chen, Guanglin; Mekuria, Ermias Addo; Rakotondraibe, Liva Harinantenaina; Chen, Qiao-Hong

    2015-12-01

    Prostate cancer is the most common diagnosed invasive cancer in American men and is the second leading cause of cancer-related deaths. Although there are several therapies successful in treating early, localized stage prostate cancer, current treatment of advanced metastatic castration-resistant prostate cancer remains ineffective due to inevitable progression of resistance to first-line treatment with docetaxel. The natural product quercetin (3,3',4',5,7-pentahydroxyflavone), a flavonoid compound ubiquitous in dietary plants, possesses evidenced potential in treating advanced metastatic castration-resistant prostate cancer. However, its poor bioavailability and moderate potency hinder its advancement into clinical therapy. In order to engineer quercetin derivatives with improved potency and pharmacokinetic profiles for the treatment of advanced metastatic prostate cancer, we started this study with creating a small library of alkylated derivatives of quercetin for in vitro evaluation. The biological data and chemical reactivity of quercetin and its derivatives reported in literature directed us to design 3,4',7-O-trialkylquercetins as our first batch of targets. Consequently, nine 3,4',7-O-trialkylquercetins, together with four 3,7-O- dialkylquercetins, four 3,3',4',7-tetraalkylquercetins, and one 3,3',4'-O-trialkylquercetin, were prepared by one step O-alkylation of commercially available quercetin mediated by potassium carbonate. Their structures were determined by ID and 2D NMR data, and HRMS. Their anti-proliferative activities towards both androgen-refractory and androgen-sensitive prostate cancer cells were evaluated using WST-1 cell proliferation assay. The acquired structure-activity relationships indicate that 3,7-O-dialkylquercetins rather than 3,4',7-O-trialkylquercetins were much more potent than quercetin towards prostate cancer cells. PMID:26882678

  6. Quercetin Targets Cysteine String Protein (CSPα) and Impairs Synaptic Transmission

    PubMed Central

    Xu, Fenglian; Proft, Juliane; Gibbs, Sarah; Winkfein, Bob; Johnson, Jadah N.; Syed, Naweed; Braun, Janice E. A.

    2010-01-01

    Background Cysteine string protein (CSPα) is a synaptic vesicle protein that displays unique anti-neurodegenerative properties. CSPα is a member of the conserved J protein family, also called the Hsp40 (heat shock protein of 40 kDa) protein family, whose importance in protein folding has been recognized for many years. Deletion of the CSPα in mice results in knockout mice that are normal for the first 2–3 weeks of life followed by an unexplained presynaptic neurodegeneration and premature death. How CSPα prevents neurodegeneration is currently not known. As a neuroprotective synaptic vesicle protein, CSPα represents a promising therapeutic target for the prevention of neurodegenerative disorders. Methodology/Principal Findings Here, we demonstrate that the flavonoid quercetin promotes formation of stable CSPα-CSPα dimers and that quercetin-induced dimerization is dependent on the unique cysteine string region. Furthermore, in primary cultures of Lymnaea neurons, quercetin induction of CSPα dimers correlates with an inhibition of synapse formation and synaptic transmission suggesting that quercetin interfers with CSPα function. Quercetin's action on CSPα is concentration dependent and does not promote dimerization of other synaptic proteins or other J protein family members and reduces the assembly of CSPα:Hsc70 units (70kDa heat shock cognate protein). Conclusions/Significance Quercetin is a plant derived flavonoid and popular nutritional supplement proposed to prevent memory loss and altitude sickness among other ailments, although its precise mechanism(s) of action has been unclear. In view of the therapeutic promise of upregulation of CSPα and the undesired consequences of CSPα dysfunction, our data establish an essential proof of principle that pharmaceutical agents can selectively target the neuroprotective J protein CSPα. PMID:20548785

  7. Hepatitis virus panel

    MedlinePlus

    Hepatitis A antibody test; Hepatitis B antibody test; Hepatitis C antibody test; Hepatitis D antibody test ... or past infection, or immunity to hepatitis A Hepatitis B tests: Hepatitis B surface antigen (HBsAg), you have ...

  8. Hepatitis C and HIV

    MedlinePlus

    ... Problems : Hepatitis C Subscribe Translate Text Size Print Hepatitis C What is Hepatitis? Hepatitis means inflammation of the liver. This condition ... our related pages, Hepatitis A and Hepatitis B . Hepatitis C and HIV About 25% of people living ...

  9. Hepatitis B and HIV

    MedlinePlus

    ... Problems : Hepatitis B Subscribe Translate Text Size Print Hepatitis B What is Hepatitis? Hepatitis means inflammation of the liver. This condition ... our related pages, Hepatitis A and Hepatitis C . Hepatitis B and HIV About 10% of people living ...

  10. Production of 3-O-xylosyl quercetin in Escherichia coli.

    PubMed

    Pandey, Ramesh Prasad; Malla, Sailesh; Simkhada, Dinesh; Kim, Byung-Gee; Sohng, Jae Kyung

    2013-03-01

    Quercetin, a flavonol aglycone, is one of the most abundant flavonoids with high medicinal value. The bioavailability and pharmacokinetic properties of quercetin are influenced by the type of sugars attached to the molecule. To efficiently diversify the therapeutic uses of quercetin, Escherichia coli was harnessed as a production factory by the installation of various plant and bacterial UDP-xylose sugar biosynthetic genes. The genes encoding for the UDP-xylose pathway enzymes phosphoglucomutase (nfa44530), glucose-1-phosphate uridylyltransferase (galU), UDP-glucose dehydrogenase (calS8), and UDP-glucuronic acid decarboxylase (calS9) were overexpressed in E. coli BL21 (DE3) along with a glycosyltransferase (arGt-3) from Arabidopsis thaliana. Furthermore, E. coli BL21(DE3)/∆pgi, E. coli BL21(DE3)/∆zwf, E. coli BL21(DE3)/∆pgi∆zwf, and E. coli BL21(DE3)/∆pgi∆zwf∆ushA mutants carrying the aforementioned UDP-xylose sugar biosynthetic genes and glycosyltransferase and the galU-integrated E. coli BL21(DE3)/∆pgi host harboring only calS8, calS9, and arGt-3 were constructed to enhance whole-cell bioconversion of exogeneously supplied quercetin into 3-O-xylosyl quercetin. Here, we report the highest production of 3-O-xylosyl quercetin with E. coli BL21 (DE3)/∆pgi∆zwf∆ushA carrying UDP-xylose sugar biosynthetic genes and glycosyltransferase. The maximum concentration of 3-O-xylosyl quercetin achieved was 23.78 mg/L (54.75 μM), representing 54.75 % bioconversion, which was an ~4.8-fold higher bioconversion than that shown by E. coli BL21 (DE3) with the same set of genes when the reaction was carried out in 5-mL culture tubes with 100 μM quercetin under optimized conditions. Bioconversion was further improved by 98 % when the reaction was scaled up in a 3-L fermentor at 36 h. PMID:23053089