Science.gov

Sample records for quercetin-mediated cell cycle

  1. The Chlamydomonas Cell Cycle

    PubMed Central

    Cross, Frederick R.; Umen, James G.

    2015-01-01

    The position of Chlamydomonas within the eukaryotic phylogeny makes it a unique model in at least two important ways: as a representative of the critically important, early-diverging lineage leading to plants, and as a microbe retaining important features of the last eukaryotic common ancestor (LECA) that have been lost in the highly studied yeast lineages. Its cell biology has been studied for many decades, and it has well-developed experimental genetic tools, both classical (Mendelian) and molecular. Unlike land plants, it is a haploid with very few gene duplicates, making it ideal for loss-of-function genetic studies. The Chlamydomonas cell cycle has a striking temporal and functional separation between cell growth and rapid cell divisions, probably connected to the interplay between diurnal cycles that drive photosynthetic cell growth with the cell division cycle; it also exhibits a highly choreographed interaction between the cell cycle and its centriole/basal body/flagellar cycle. Here we review the current status of studies of the Chlamydomonas cell cycle. We begin with an overview of cell cycle control in the well-studied yeast and animal systems, which has yielded a canonical, well-supported model. We discuss briefly what is known about similarities and differences in plant cell cycle control compared to this model. We next review the cytology and cell biology of the multiple fission cell cycle of Chlamydomonas. Lastly we review recent genetic approaches and insights into Chlamydomonas cell cycle regulation that have been enabled by a new generation of genomics-based tools. PMID:25690512

  2. Specific cell cycle synchronization with butyrate and cell cycle analysis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Synchronized cells have been invaluable for many kinds of cell cycle and cell proliferation studies. Butyrate induces cell cycle arrest and apoptosis in MDBK cells. To explore the possibility of using butyrate-blocked cells to obtain synchronized cells, we investigated the property of the cell cyc...

  3. Quercetin mediated reduction of angiogenic markers and chaperones in DLA-induced solid tumours.

    PubMed

    Anand, Kushi; Asthana, Pallavi; Kumar, Anup; Ambasta, Rashmi K; Kumar, Pravir

    2011-01-01

    Diet-derived flavonoids, in particular quercetin, may play advantageous roles by preventing or/and inhibiting oncogenesis. Evidence suggests that quercetin can elicit various properties depending on the cell type. The aim of this study was to evaluate its effects on Dalton's lymphoma ascites (DLA) induced solid tumours and to identify the target(s) of action. We addressed this question by inducing subcutaneous solid tumours in Swiss albino mice and investigated whether the quercetin affects essential biological processes that are responsible for tumour growth, morphology, angiogenesis and apoptosis. We also studied influence on several heat shock proteins (HSPs). Our findings demonstrate that intra-tumour administration of quercetin results in decreased volume/weight. Furthermore, we demonstrate that quercetin promotes apoptosis of cancer cells by down-regulating the levels of Hsp90 and Hsp70. Depletion of these two chaperones by quercetin might result in triggering of caspase-3 in treated tumours. Moreover, it also down-regulated the expression of major key angiogenic or pro-angiogenic factors, like HIF-1α and VEGF In addition, H and E staining together with immunofluorescence of fixed tumour tissue provided evidence in support of increased cell death in quercetin-treated mice. PMID:22393949

  4. The Arabidopsis Cell Division Cycle

    PubMed Central

    Gutierrez, Crisanto

    2009-01-01

    Plant cells have evolved a complex circuitry to regulate cell division. In many aspects, the plant cell cycle follows a basic strategy similar to other eukaryotes. However, several key issues are unique to plant cells. In this chapter, both the conserved and unique cellular and molecular properties of the plant cell cycle are reviewed. In addition to division of individual cells, the specific characteristic of plant organogenesis and development make that cell proliferation control is of primary importance during development. Therefore, special attention should be given to consider plant cell division control in a developmental context. Proper organogenesis depends on the formation of different cell types. In plants, many of the processes leading to cell differentiation rely on the occurrence of a different cycle, termed the endoreplication cycle, whereby cells undergo repeated full genome duplication events in the absence of mitosis and increase their ploidy. Recent findings are focusing on the relevance of changes in chromatin organization for a correct cell cycle progression and, conversely, in the relevance of a correct functioning of chromatin remodelling complexes to prevent alterations in both the cell cycle and the endocycle. PMID:22303246

  5. Cell cycle control in Alphaproteobacteria.

    PubMed

    Collier, Justine

    2016-04-01

    Alphaproteobacteria include many medically and environmentally important organisms. Despite the diversity of their niches and lifestyles, from free-living to host-associated, they usually rely on very similar mechanisms to control their cell cycles. Studies on Caulobacter crescentus still lay the foundation for understanding the molecular details of pathways regulating DNA replication and cell division and coordinating these two processes with other events of the cell cycle. This review highlights recent discoveries on the regulation and the mode of action of conserved global regulators and small molecules like c-di-GMP and (p)ppGpp, which play key roles in cell cycle control. It also describes several newly identified mechanisms that modulate cell cycle progression in response to stresses or environmental conditions. PMID:26871482

  6. The cell cycle and pluripotency.

    PubMed

    Hindley, Christopher; Philpott, Anna

    2013-04-15

    PSCs (pluripotent stem cells) possess two key properties that have made them the focus of global research efforts in regenerative medicine: they have unlimited expansion potential under conditions which favour their preservation as PSCs and they have the ability to generate all somatic cell types upon differentiation (pluripotency). Conditions have been defined in vitro in which pluripotency is maintained, or else differentiation is favoured and is directed towards specific somatic cell types. However, an unanswered question is whether or not the core cell cycle machinery directly regulates the pluripotency and differentiation properties of PSCs. If so, then manipulation of the cell cycle may represent an additional tool by which in vitro maintenance or differentiation of PSCs may be controlled in regenerative medicine. The present review aims to summarize our current understanding of links between the core cell cycle machinery and the maintenance of pluripotency in ESCs (embryonic stem cells) and iPSCs (induced PSCs). PMID:23535166

  7. Metabolic cycle, cell cycle, and the finishing kick to Start

    PubMed Central

    Futcher, Bruce

    2006-01-01

    Slowly growing budding yeast store carbohydrate, then liquidate it in late G1 phase of the cell cycle, superimposing a metabolic cycle on the cell cycle. This metabolic cycle may separate biochemically incompatible processes. Alternatively it may provide a burst of energy and material for commitment to the cell cycle. Stored carbohydrate could explain the size requirement for cells passing the Start point. PMID:16677426

  8. Cell Cycle Regulation by Checkpoints

    PubMed Central

    Barnum, Kevin J.; O’Connell, Matthew J.

    2016-01-01

    Cell cycle checkpoints are surveillance mechanisms that monitor the order, integrity, and fidelity of the major events of the cell cycle. These include growth to the appropriate cell size, the replication and integrity of the chromosomes, and their accurate segregation at mitosis. Many of these mechanisms are ancient in origin and highly conserved, and hence have been heavily informed by studies in simple organisms such as the yeasts. Others have evolved in higher organisms, and control alternative cell fates with significant impact on tumor suppression. Here, we consider these different checkpoint pathways and the consequences of their dysfunction on cell fate. PMID:24906307

  9. Myc and cell cycle control.

    PubMed

    Bretones, Gabriel; Delgado, M Dolores; León, Javier

    2015-05-01

    Soon after the discovery of the Myc gene (c-Myc), it became clear that Myc expression levels tightly correlate to cell proliferation. The entry in cell cycle of quiescent cells upon Myc enforced expression has been described in many models. Also, the downregulation or inactivation of Myc results in the impairment of cell cycle progression. Given the frequent deregulation of Myc oncogene in human cancer it is important to dissect out the mechanisms underlying the role of Myc on cell cycle control. Several parallel mechanisms account for Myc-mediated stimulation of the cell cycle. First, most of the critical positive cell cycle regulators are encoded by genes induced by Myc. These Myc target genes include Cdks, cyclins and E2F transcription factors. Apart from its direct effects on the transcription, Myc is able to hyperactivate cyclin/Cdk complexes through the induction of Cdk activating kinase (CAK) and Cdc25 phosphatases. Moreover, Myc antagonizes the activity of cell cycle inhibitors as p21 and p27 through different mechanisms. Thus, Myc is able to block p21 transcription or to induce Skp2, a protein involved in p27 degradation. Finally, Myc induces DNA replication by binding to replication origins and by upregulating genes encoding proteins required for replication initiation. Myc also regulates genes involved in the mitotic control. A promising approach to treat tumors with deregulated Myc is the synthetic lethality based on the inhibition of Cdks. Thus, the knowledge of the Myc-dependent cell cycle regulatory mechanisms will help to discover new therapeutic approaches directed against malignancies with deregulated Myc. This article is part of a Special Issue entitled: Myc proteins in cell biology and pathology. PMID:24704206

  10. Autoradiography and the Cell Cycle.

    ERIC Educational Resources Information Center

    Jones, C. Weldon

    1992-01-01

    Outlines the stages of a cell biology "pulse-chase" experiment in which the students apply autoradiography techniques to learn about the concept of the cell cycle. Includes (1) seed germination and plant growth; (2) radioactive labeling and fixation of root tips; (3) feulgen staining of root tips; (4) preparation of autoradiograms; and (5)…

  11. Cell Cycle Regulation and Melanoma.

    PubMed

    Xu, Wen; McArthur, Grant

    2016-06-01

    Dysregulation of cell cycle control is a hallmark of melanomagenesis. Agents targeting the G1-S and G2-M checkpoints, as well as direct anti-mitotic agents, have all shown promising preclinical activity in melanoma. However, in vivo, standalone single agents targeting cell cycle regulation have only demonstrated modest efficacy in unselected patients. The advent of specific CDK 4/6 inhibitors targeting the G1-S transition, with an improved therapeutic index, is a significant step forward. Potential synergy exists with the combination of CDK4/6 inhibitors with existing therapies targeting the MAPK pathway, particularly in subsets of metastatic melanomas such as NRAS and BRAF mutants. This reviews summaries of the latest developments in both preclinical and clinical data with cell cycle-targeted therapies in melanoma. PMID:27106898

  12. Temperature and the cell cycle.

    PubMed

    Francis, D; Barlow, P W

    1988-01-01

    During the period between successive divisions, a cell traverses three stages of interphase: G1 (pre-synthetic interphase), S-phase (DNA synthetic interphase) and G2 (post-synthetic interphase). The time taken for all cells in a meristem to divide (the cell doubling time (cdt] decreases in response to an increase in temperature. For example, the cdt in root meristems of Zea mays decreases 21-fold as the temperature is increased from 3 to 25 degrees C. Whether all phases of the cell cycle alter proportionately with temperature has been ascertained by comparing data from the root meristem of five species: Pisum sativum, Helianthus annuus, Tradescantia paludosa, Allium cepa and Triticum aestivum. In three of the five species there is a disproportionate lengthening of the G1 phase at low temperatures. We suggest that arrest in G1 with the associated 2C amount of DNA, confers maximal protection on the genome of a somatic cell to the stress of low temperature. DNA replication has been studied at different temperatures for Helianthus annuus, Secale cereal and Oryza sativa. The rate of DNA replication, per single replication fork, increases when the temperature is raised, while the distance between initiation points (replicon size) remains constant. The temperature at which the cell cycle has a minimum duration is close to 30 degrees C in many species, and it seems that this optimum temperature is always near the upper temperature limit of the cell cycle. The rate of cell division determines the rates of organ and cell growth. Thus, temperature has a major effect on the way in which meristematic cells are deployed in organogenesis. The rate of organogenesis, in turn, determines the response of the plant to the growing season. We predict that species growing in sub-arctic conditions comprise cells with low DNA contents and hence have the potentialities for rapid cell cycles so that maximum advantage can be taken of a short growing season. Data from Triticum aestivum show

  13. Cell heterogeneity during the cell cycle

    SciTech Connect

    Darzynkiewicz, Z.; Crissman, H.; Traganos, F.; Steinkamp, J.

    1982-12-01

    Using flow cytometry, populations of Chinese hamster ovary cells, asynchronous and synchronized in the cycle, were measured with respect to cellular RNA- and protein-content, as well as cell light scatter properties. Heterogeneities of cell populations were expressed as coefficients of variation (c.v.) in percent of the respective mean values. Populations of cells immediately after mitosis have about 15% higher c.v. than mitotic cell populations, regardless of whether RNA, proteins, or light scatter are measured. These data indicate that cytoplasmic constituents are unequally distributed into the daughter cells during cytokinesis and that unequal cytokinesis generates intercellular metabolic variability during the cycle. An additional increase in heterogeneity, although of smaller degree, occurs during G/sub 2/ phase. Populations of S-phase cells are the most uniform, having 20-30% lower c.v. than the postmitotic cells. Cell progression through S does not involve any significant increase in intercellular variability with respect to RNA or protein content. In unperturbed exponentially growing cultures a critical RNA content is required for G/sub 1/ cells prior to their entrance into S. The cell residence times in the equalization compartments are exponentially distributed, which may reflect the randomness generated by the uneven division of metabolic constituents to daughter cells during cytokinesis. The cell heterogeneities were presently estimated at two metabolic levels, transcription (RNA content) and translation (proteins). The most uniform were populations stained for RNA and the highest variability was observed after staining of proteins. This suggests that the regulatory mechanisms equalizing cells in the cell cycle may operate primarily at the level of DNA transcription.

  14. Functional interplay between the cell cycle and cell phenotypes.

    PubMed

    Chen, Wei-Chiang; Wu, Pei-Hsun; Phillip, Jude M; Khatau, Shyam B; Choi, Jae Min; Dallas, Matthew R; Konstantopoulos, Konstantinos; Sun, Sean X; Lee, Jerry S H; Hodzic, Didier; Wirtz, Denis

    2013-03-01

    Cell cycle distribution of adherent cells is typically assessed using flow cytometry, which precludes the measurements of many cell properties and their cycle phase in the same environment. Here we develop and validate a microscopy system to quantitatively analyze the cell-cycle phase of thousands of adherent cells and their associated cell properties simultaneously. This assay demonstrates that population-averaged cell phenotypes can be written as a linear combination of cell-cycle fractions and phase-dependent phenotypes. By perturbing the cell cycle through inhibition of cell-cycle regulators or changing nuclear morphology by depletion of structural proteins, our results reveal that cell cycle regulators and structural proteins can significantly interfere with each other's prima facie functions. This study introduces a high-throughput method to simultaneously measure the cell cycle and phenotypes at single-cell resolution, which reveals a complex functional interplay between the cell cycle and cell phenotypes. PMID:23319145

  15. "Constructing" the Cell Cycle in 3D

    ERIC Educational Resources Information Center

    Koc, Isil; Turan, Merve

    2012-01-01

    The cycle of duplication and division, known as the "cell cycle," is the essential mechanism by which all living organisms reproduce. This activity allows students to develop an understanding of the main events that occur during the typical eukaryotic cell cycle mostly in the process of mitotic phase that divides the duplicated genetic material…

  16. Analysis of the Schizosaccharomyces pombe Cell Cycle.

    PubMed

    Hagan, Iain M; Grallert, Agnes; Simanis, Viesturs

    2016-01-01

    Schizosaccharomyces pombe cells are rod shaped, and they grow by tip elongation. Growth ceases during mitosis and cell division; therefore, the length of a septated cell is a direct measure of the timing of mitotic commitment, and the length of a wild-type cell is an indicator of its position in the cell cycle. A large number of documented stage-specific changes can be used as landmarks to characterize cell cycle progression under specific experimental conditions. Conditional mutations can permanently or transiently block the cell cycle at almost any stage. Large, synchronously dividing cell populations, essential for the biochemical analysis of cell cycle events, can be generated by induction synchrony (arrest-release of a cell cycle mutant) or selection synchrony (centrifugal elutriation or lactose-gradient centrifugation). Schizosaccharomyces pombe cell cycle studies routinely combine particular markers, mutants, and synchronization procedures to manipulate the cycle. We describe these techniques and list key landmarks in the fission yeast mitotic cell division cycle. PMID:27587785

  17. Assaying Cell Cycle Status Using Flow Cytometry.

    PubMed

    Kim, Kang Ho; Sederstrom, Joel M

    2015-01-01

    In this unit, two protocols are described for analyzing cell cycle status using flow cytometry. The first is based on the simultaneous analysis of proliferation-specific marker (Ki-67) and cellular DNA content, which discriminate resting/quiescent cell populations (G0 cell) and quantify cell cycle distribution (G1, S, or G2/M), respectively. The second is based on differential staining of DNA and RNA through co-staining of Hoechst 33342 and Pyronin Y, which is also useful to identify G0 cells from G1 cells. Along with these methods for analyzing cell cycle status, two additional methods for cell proliferation assays with recent updates of newly developed fluorophores, which allow multiplex analysis of cell cycle status, cell proliferation, and a gene of interest using flow cytometry, are outlined. PMID:26131851

  18. Fission Yeast Cell Cycle Synchronization Methods.

    PubMed

    Tormos-Pérez, Marta; Pérez-Hidalgo, Livia; Moreno, Sergio

    2016-01-01

    Fission yeast cells can be synchronized by cell cycle arrest and release or by size selection. Cell cycle arrest synchronization is based on the block and release of temperature-sensitive cell cycle mutants or treatment with drugs. The most widely used approaches are cdc10-129 for G1; hydroxyurea (HU) for early S-phase; cdc25-22 for G2, and nda3-KM311 for mitosis. Cells can also be synchronized by size selection using centrifugal elutriation or a lactose gradient. Here we describe the methods most commonly used to synchronize fission yeast cells. PMID:26519320

  19. Gene copy number and cell cycle arrest

    NASA Astrophysics Data System (ADS)

    Ghosh, Bhaswar; Bose, Indrani

    2006-03-01

    The cell cycle is an orderly sequence of events which ultimately lead to the division of a single cell into two daughter cells. In the case of DNA damage by radiation or chemicals, the damage checkpoints in the G1 and G2 phases of the cell cycle are activated. This results in an arrest of the cell cycle so that the DNA damage can be repaired. Once this is done, the cell continues with its usual cycle of activity. We study a mathematical model of the DNA damage checkpoint in the G2 phase which arrests the transition from the G2 to the M (mitotic) phase of the cell cycle. The tumor suppressor protein p53 plays a key role in activating the pathways leading to cell cycle arrest in mammalian systems. If the DNA damage is severe, the p53 proteins activate other pathways which bring about apoptosis, i.e., programmed cell death. Loss of the p53 gene results in the proliferation of cells containing damaged DNA, i.e., in the growth of tumors which may ultimately become cancerous. There is some recent experimental evidence which suggests that the mutation of a single copy of the p53 gene (in the normal cell each gene has two identical copies) is sufficient to trigger the formation of tumors. We study the effect of reducing the gene copy number of the p53 and two other genes on cell cycle arrest and obtain results consistent with experimental observations.

  20. Cell cycle: proteomics gives it a spin.

    PubMed

    Archambault, Vincent

    2005-08-01

    The eukaryotic cell division cycle has been studied at the molecular level for over 30 years, most fruitfully in model organisms. In the past 5 years, developments in mass spectrometry-based proteomics have been applied to the study of protein interactions and post-translational modifications involving key cell cycle regulators such as cyclin-dependent kinases and the anaphase-promoting complex, as well as effectors such as centrosomes, the kinetochore and DNA replication forks. In addition, innovations in chemical biology, functional proteomics and bioinformatics have been employed to study the cell cycle at the proteome level. This review surveys the contributions of proteomics to cell cycle research. The near future should see the application of more quantitative proteomic approaches to probe the dynamic aspects of the molecular system that underlie the cell cycle in model organisms and in human cells. PMID:16097893

  1. Cell cycle control and seed development

    PubMed Central

    Dante, Ricardo A.; Larkins, Brian A.; Sabelli, Paolo A.

    2014-01-01

    Seed development is a complex process that requires coordinated integration of many genetic, metabolic, and physiological pathways and environmental cues. Different cell cycle types, such as asymmetric cell division, acytokinetic mitosis, mitotic cell division, and endoreduplication, frequently occur in sequential yet overlapping manner during the development of the embryo and the endosperm, seed structures that are both products of double fertilization. Asymmetric cell divisions in the embryo generate polarized daughter cells with different cell fates. While nuclear and cell division cycles play a key role in determining final seed cell numbers, endoreduplication is often associated with processes such as cell enlargement and accumulation of storage metabolites that underlie cell differentiation and growth of the different seed compartments. This review focuses on recent advances in our understanding of different cell cycle mechanisms operating during seed development and their impact on the growth, development, and function of seed tissues. Particularly, the roles of core cell cycle regulators, such as cyclin-dependent-kinases and their inhibitors, the Retinoblastoma-Related/E2F pathway and the proteasome-ubiquitin system, are discussed in the contexts of different cell cycle types that characterize seed development. The contributions of nuclear and cellular proliferative cycles and endoreduplication to cereal endosperm development are also discussed. PMID:25295050

  2. Cell cycle gene expression under clinorotation

    NASA Astrophysics Data System (ADS)

    Artemenko, Olga

    2016-07-01

    Cyclins and cyclin-dependent kinase (CDK) are main regulators of the cell cycle of eukaryotes. It's assumes a significant change of their level in cells under microgravity conditions and by other physical factors actions. The clinorotation use enables to determine the influence of gravity on simulated events in the cell during the cell cycle - exit from the state of quiet stage and promotion presynthetic phase (G1) and DNA synthesis phase (S) of the cell cycle. For the clinorotation effect study on cell proliferation activity is the necessary studies of molecular mechanisms of cell cycle regulation and development of plants under altered gravity condition. The activity of cyclin D, which is responsible for the events of the cell cycle in presynthetic phase can be controlled by the action of endogenous as well as exogenous factors, but clinorotation is one of the factors that influence on genes expression that regulate the cell cycle.These data can be used as a model for further research of cyclin - CDK complex for study of molecular mechanisms regulation of growth and proliferation. In this investigation we tried to summarize and analyze known literature and own data we obtained relatively the main regulators of the cell cycle in altered gravity condition.

  3. Protein tyrosine nitration in the cell cycle

    SciTech Connect

    Jia, Min; Mateoiu, Claudia; Souchelnytskyi, Serhiy

    2011-09-23

    Highlights: {yields} Enrichment of 3-nitrotyrosine containing proteins from cells synchronized in different phases of the cell cycle. {yields} Identification of 76 tyrosine nitrated proteins that change expression during the cell cycle. {yields} Nineteen identified proteins were previously described as regulators of cell proliferation. -- Abstract: Nitration of tyrosine residues in proteins is associated with cell response to oxidative/nitrosative stress. Tyrosine nitration is relatively low abundant post-translational modification that may affect protein functions. Little is known about the extent of protein tyrosine nitration in cells during progression through the cell cycle. Here we report identification of proteins enriched for tyrosine nitration in cells synchronized in G0/G1, S or G2/M phases of the cell cycle. We identified 27 proteins in cells synchronized in G0/G1 phase, 37 proteins in S phase synchronized cells, and 12 proteins related to G2/M phase. Nineteen of the identified proteins were previously described as regulators of cell proliferation. Thus, our data indicate which tyrosine nitrated proteins may affect regulation of the cell cycle.

  4. High-Cycle-Life Lithium Cell

    NASA Technical Reports Server (NTRS)

    Yen, S. P. S.; Carter, B.; Shen, D.; Somoano, R.

    1985-01-01

    Lithium-anode electrochemical cell offers increased number of charge/ discharge cycles. Cell uses components selected for compatibility with electrolyte solvent: These materials are wettable and chemically stable. Low vapor pressure and high electrochemical stability of solvent improve cell packaging, handling, and safety. Cell operates at modest temperatures - less than 100 degrees C - and is well suited to automotive, communications, and other applications.

  5. Nucleosome architecture throughout the cell cycle

    PubMed Central

    Deniz, Özgen; Flores, Oscar; Aldea, Martí; Soler-López, Montserrat; Orozco, Modesto

    2016-01-01

    Nucleosomes provide additional regulatory mechanisms to transcription and DNA replication by mediating the access of proteins to DNA. During the cell cycle chromatin undergoes several conformational changes, however the functional significance of these changes to cellular processes are largely unexplored. Here, we present the first comprehensive genome-wide study of nucleosome plasticity at single base-pair resolution along the cell cycle in Saccharomyces cerevisiae. We determined nucleosome organization with a specific focus on two regulatory regions: transcription start sites (TSSs) and replication origins (ORIs). During the cell cycle, nucleosomes around TSSs display rearrangements in a cyclic manner. In contrast to gap (G1 and G2) phases, nucleosomes have a fuzzier organization during S and M phases, Moreover, the choreography of nucleosome rearrangements correlate with changes in gene expression during the cell cycle, indicating a strong association between nucleosomes and cell cycle-dependent gene functionality. On the other hand, nucleosomes are more dynamic around ORIs along the cell cycle, albeit with tighter regulation in early firing origins, implying the functional role of nucleosomes on replication origins. Our study provides a dynamic picture of nucleosome organization throughout the cell cycle and highlights the subsequent impact on transcription and replication activity. PMID:26818620

  6. Fuel cell and advanced turbine power cycle

    SciTech Connect

    White, D.J.

    1995-10-19

    Solar Turbines, Incorporated (Solar) has a vested interest in the integration of gas turbines and high temperature fuel cells and in particular, solid oxide fuel cells (SOFCs). Solar has identified a parallel path approach to the technology developments needed for future products. The primary approach is to move away from the simple cycle industrial machines of the past and develop as a first step more efficient recuperated engines. This move was prompted by the recognition that the simple cycle machines were rapidly approaching their efficiency limits. Improving the efficiency of simple cycle machines is and will become increasingly more costly. Each efficiency increment will be progressively more costly than the previous step.

  7. Retinal progenitor cells, differentiation, and barriers to cell cycle reentry.

    PubMed

    Davis, Denise M; Dyer, Michael A

    2010-01-01

    Neurogenesis in the retina occurs via the coordination of proliferation, cell cycle exit and differentiation of retinal progenitor cells. Until recently, it was widely assumed that once a retinal progenitor cell produced a postmitotic neuron, there was no possibility for cell-cycle re-entry. However, recent studies have shown that mature differentiated horizontal neurons with reduced Rb pathway function can re-enter the cell cycle and proliferate while maintaining their differentiated features. This chapter will explore the molecular and cellular mechanisms that help to keep differentiated retinal neurons and glia postmitotic. We propose that there are cell-type specific barriers to cell-cycle re-entry by differentiated neurons and these may include apoptosis, chromatin/epigenetics mechanisms, cellular morphology and/or metabolic demands that are distinct across cell populations. Our data suggest that differentiated neurons span a continuum of cellular properties related to their ability to re-enter the cell cycle and undergo cytokinesis while maintaining their differentiated features. A deeper understanding of these processes may allow us to begin to explain the cell type specificity of neuronal cell death and tumor susceptibility. For example, neurons that have more barriers to cell-cycle re-entry may be less likely to form tumors but more likely to undergo degeneration. Conversely, neurons that have fewer barriers to cell-cycle re-entry may be more likely to form tumors but less likely to undergo degeneration. PMID:20959166

  8. Cell Cycle Synchronization in Xenopus Egg Extracts.

    PubMed

    Gillespie, Peter J; Neusiedler, Julia; Creavin, Kevin; Chadha, Gaganmeet Singh; Blow, J Julian

    2016-01-01

    Many important discoveries in cell cycle research have been made using cell-free extracts prepared from the eggs of the South African clawed frog Xenopus laevis. These extracts efficiently support the key nuclear functions of the eukaryotic cell cycle in vitro under apparently the same controls that exist in vivo. The Xenopus cell-free system is therefore uniquely suited to the study of the mechanisms, dynamics and integration of cell cycle regulated processes at a biochemical level. Here, we describe methods currently in use in our laboratory for the preparation of Xenopus egg extracts and demembranated sperm nuclei. We detail how these extracts can be used to study the key transitions of the eukaryotic cell cycle and describe conditions under which these transitions can be manipulated by addition of drugs that either retard or advance passage. In addition, we describe in detail essential techniques that provide a practical starting point for investigating the function of proteins involved in the operation of the eukaryotic cell cycle. PMID:26254920

  9. Cycle life test of secondary spacecraft cells

    NASA Technical Reports Server (NTRS)

    Harkness, J. D.

    1980-01-01

    The results of the life cycling program on rechargeable calls are reported. Information on required data, the use of which the data will be put, application details, including orbital description, charge control methods, load rquirements, etc., are given. Cycle tests were performed on 660 sealed, nickel cadmium cells. The cells consisted of seven sample classifications ranging form 3.0 to 20 amp. hours. Nickel cadmium, silver cadmium, and silver zinc sealed cells, excluding synchronous orbit and accelerated test packs were added. The capacities of the nickel cadmium cells, the silver cadmium and the silver zinc cells differed in range of amp hrs. The cells were cylced under different load, charge control, and temperature conditions. All cell packs are recharged by use of a pack voltage limit. All charging is constant current until the voltage limit is reached.

  10. Cycle life test of secondary spacecraft cells

    NASA Astrophysics Data System (ADS)

    Harkness, J. D.

    1980-04-01

    The results of the life cycling program on rechargeable calls are reported. Information on required data, the use of which the data will be put, application details, including orbital description, charge control methods, load rquirements, etc., are given. Cycle tests were performed on 660 sealed, nickel cadmium cells. The cells consisted of seven sample classifications ranging form 3.0 to 20 amp. hours. Nickel cadmium, silver cadmium, and silver zinc sealed cells, excluding synchronous orbit and accelerated test packs were added. The capacities of the nickel cadmium cells, the silver cadmium and the silver zinc cells differed in range of amp hrs. The cells were cylced under different load, charge control, and temperature conditions. All cell packs are recharged by use of a pack voltage limit. All charging is constant current until the voltage limit is reached.

  11. Improved Gene Targeting through Cell Cycle Synchronization

    PubMed Central

    Tsakraklides, Vasiliki; Brevnova, Elena; Stephanopoulos, Gregory; Shaw, A. Joe

    2015-01-01

    Gene targeting is a challenge in organisms where non-homologous end-joining is the predominant form of recombination. We show that cell division cycle synchronization can be applied to significantly increase the rate of homologous recombination during transformation. Using hydroxyurea-mediated cell cycle arrest, we obtained improved gene targeting rates in Yarrowia lipolytica, Arxula adeninivorans, Saccharomyces cerevisiae, Kluyveromyces lactis and Pichia pastoris demonstrating the broad applicability of the method. Hydroxyurea treatment enriches for S-phase cells that are active in homologous recombination and enables previously unattainable genomic modifications. PMID:26192309

  12. Cell Cycle Regulation in the Developing Lens

    PubMed Central

    Griep, Anne E.

    2007-01-01

    Regulation of cell proliferation is a critical aspect of the development of multicellular organisms. The ocular lens is an excellent model system in which to unravel the mechanisms controlling cell proliferation during development. In recent years, several cell cycle regulators have been shown to be essential for maintaining normal patterns of lens cell proliferation. Additionally, many growth factor signaling pathways and cell adhesion factors have been shown to have the capacity to regulate lens cell proliferation. Given this complexity, understanding the cross talk between these many signaling pathways and how they are coordinated are important directions for the future. PMID:17218126

  13. Flavonoids: from cell cycle regulation to biotechnology.

    PubMed

    Woo, Ho-Hyung; Jeong, Byeong Ryong; Hawes, Martha C

    2005-03-01

    Flavonoids have been proposed to play diverse roles in plant growth and development, including defense, symbiosis, pollen development and male fertility, polar auxin transport, and protection against ultraviolet radiation. Recently, a new role in cell cycle regulation has emerged. Genetic alteration of glucuronide metabolism by altered expression of a Pisum sativum UDP-glucuronosyltransferase (PsUGT1) results in an altered cell cycle in pea, alfalfa, and Arabidopsis. In alfalfa, altered expression of PsUGT1 results in accumulation of a flavonoid-like compound that suppresses growth of cultured cells. The results are consistent with the hypothesis that PsUGT1 functions by controlling cellular levels of a factor controlling cell cycle (FCC). PMID:15834800

  14. Cell cycle-specific effects of lovastatin.

    PubMed Central

    Jakóbisiak, M; Bruno, S; Skierski, J S; Darzynkiewicz, Z

    1991-01-01

    Lovastatin (LOV), the drug recently introduced to treat hypercholesteremia, inhibits the synthesis of mevalonic acid. The effects of LOV on the cell cycle progression of the human bladder carcinoma T24 cell line expressing activated p21ras were investigated. At a concentration of 2-10 microM, LOV arrested cells in G1 and also prolonged--or arrested a minor fraction of cells in--the G2 phase of the cell cycle; at a concentration of 50 microM, LOV was cytotoxic. The cytostatic effects were reversed by addition of exogenous mevalonate. Cells arrested in the cycle by LOV were viable for up to 72 hr and did not show any changes in RNA or protein content or chromatin condensation, which would be typical of either unbalanced growth or deep quiescence. The expression of the proliferation-associated nuclear proteins Ki-67 and p105 in these cells was reduced by up to 72% and 74%, respectively, compared with exponentially growing control cells. After removal of LOV, the cells resumed progression through the cycle; they entered S phase asynchronously after a lag of approximately 6 hr. Because mevalonate is essential for the posttranslational modification (isoprenylation) of p21ras, which in turn allows this protein to become attached to the cell membrane, the data suggest that the LOV-induced G1 arrest may be a consequence of the loss of the signal transduction capacity of p21ras. Indeed, while exposure of cells to LOV had no effect on the cellular content of p21ras (detected immunocytochemically), it altered the intracellular location of this protein, causing its dissociation from the cell membrane and translocation toward the cytoplasm and nucleus. However, it is also possible that inhibition of isoprenylation of proteins other than p21ras (e.g., nuclear lamins) by LOV may be responsible for the observed suppression of growth of T24 cells. Images PMID:1673788

  15. Parvovirus infection-induced cell death and cell cycle arrest

    PubMed Central

    Chen, Aaron Yun; Qiu, Jianming

    2011-01-01

    The cytopathic effects induced during parvovirus infection have been widely documented. Parvovirus infection-induced cell death is often directly associated with disease outcomes (e.g., anemia resulting from loss of erythroid progenitors during parvovirus B19 infection). Apoptosis is the major form of cell death induced by parvovirus infection. However, nonapoptotic cell death, namely necrosis, has also been reported during infection of the minute virus of mice, parvovirus H-1 and bovine parvovirus. Recent studies have revealed multiple mechanisms underlying the cell death during parvovirus infection. These mechanisms vary in different parvoviruses, although the large nonstructural protein (NS)1 and the small NS proteins (e.g., the 11 kDa of parvovirus B19), as well as replication of the viral genome, are responsible for causing infection-induced cell death. Cell cycle arrest is also common, and contributes to the cytopathic effects induced during parvovirus infection. While viral NS proteins have been indicated to induce cell cycle arrest, increasing evidence suggests that a cellular DNA damage response triggered by an invading single-stranded parvoviral genome is the major inducer of cell cycle arrest in parvovirus-infected cells. Apparently, in response to infection, cell death and cell cycle arrest of parvovirus-infected cells are beneficial to the viral cell lifecycle (e.g., viral DNA replication and virus egress). In this article, we will discuss recent advances in the understanding of the mechanisms underlying parvovirus infection-induced cell death and cell cycle arrest. PMID:21331319

  16. Modeling of Sonos Memory Cell Erase Cycle

    NASA Technical Reports Server (NTRS)

    Phillips, Thomas A.; MacLeond, Todd C.; Ho, Fat D.

    2010-01-01

    Silicon-oxide-nitride-oxide-silicon (SONOS) nonvolatile semiconductor memories (NVSMS) have many advantages. These memories are electrically erasable programmable read-only memories (EEPROMs). They utilize low programming voltages, endure extended erase/write cycles, are inherently resistant to radiation, and are compatible with high-density scaled CMOS for low power, portable electronics. The SONOS memory cell erase cycle was investigated using a nonquasi-static (NQS) MOSFET model. The SONOS floating gate charge and voltage, tunneling current, threshold voltage, and drain current were characterized during an erase cycle. Comparisons were made between the model predictions and experimental device data.

  17. K+ channels and cell cycle progression in tumor cells

    PubMed Central

    Ouadid-Ahidouch, Halima; Ahidouch, Ahmed

    2013-01-01

    K+ ions play a major role in many cellular processes. The deregulation of K+ signaling is associated with a variety of diseases such as hypertension, atherosclerosis, or diabetes. K+ ions are important for setting the membrane potential, the driving force for Ca2+ influx, and regulate volume of growing cells. Moreover, it is increasingly recognized that K+ channels control cell proliferation through a novel signaling mechanisms triggered and modulated independently of ion fluxes. In cancer, aberrant expression, regulation and/or sublocalization of K+ channels can alter the downstream signals that converge on the cell cycle machinery. Various K+ channels are involved in cell cycle progression and are needed only at particular stages of the cell cycle. Consistent with this idea, the expression of Eag1 and HERG channels fluctuate along the cell cycle. Despite of acquired knowledge, our understanding of K+ channels functioning in cancer cells requires further studies. These include identifying the molecular mechanisms controlling the cell cycle machinery. By understanding how K+ channels regulate cell cycle progression in cancer cells, we will gain insights into how cancer cells subvert the need for K+ signal and its downstream targets to proliferate. PMID:23970866

  18. Natural flavonoids targeting deregulated cell cycle progression in cancer cells.

    PubMed

    Singh, Rana Pratap; Agarwal, Rajesh

    2006-03-01

    The prolonged duration requiring alteration of multi-genetic and epigenetic molecular events for cancer development provides a strong rationale for cancer prevention, which is developing as a potential strategy to arrest or reverse carcinogenic changes before the appearance of the malignant disease. Cell cycle progression is an important biological event having controlled regulation in normal cells, which almost universally becomes aberrant or deregulated in transformed and neoplastic cells. In this regard, targeting deregulated cell cycle progression and its modulation by various natural and synthetic agents are gaining widespread attention in recent years to control the unchecked growth and proliferation in cancer cells. In fact, a vast number of experimental studies convincingly show that many phytochemicals halt uncontrolled cell cycle progression in cancer cells. Among these phytochemicals, natural flavonoids have been identified as a one of the major classes of natural anticancer agents exerting antineoplastic activity via cell cycle arrest as a major mechanism in various types of cancer cells. This review is focused at the modulatory effects of natural flavonoids on cell cycle regulators including cyclin-dependent kinases and their inhibitors, cyclins, p53, retinoblastoma family of proteins, E2Fs, check-point kinases, ATM/ATR and survivin controlling G1/S and G2/M check-point transitions in cell cycle progression, and discusses how these molecular changes could contribute to the antineoplastic effects of natural flavonoids. PMID:16515531

  19. Cell Cycle Regulation of DNA Replication

    PubMed Central

    Sclafani, R. A.; Holzen, T. M.

    2008-01-01

    Eukaryotic DNA replication is regulated to ensure all chromosomes replicate once and only once per cell cycle. Replication begins at many origins scattered along each chromosome. Except for budding yeast, origins are not defined DNA sequences and probably are inherited by epigenetic mechanisms. Initiation at origins occurs throughout the S phase according to a temporal program that is important in regulating gene expression during development. Most replication proteins are conserved in evolution in eukaryotes and archaea, but not in bacteria. However, the mechanism of initiation is conserved and consists of origin recognition, assembly of pre-replication (pre-RC) initiative complexes, helicase activation, and replisome loading. Cell cycle regulation by protein phosphorylation ensures that pre-RC assembly can only occur in G1 phase, whereas helicase activation and loading can only occur in S phase. Checkpoint regulation maintains high fidelity by stabilizing replication forks and preventing cell cycle progression during replication stress or damage. PMID:17630848

  20. Synchronized Cell Cycle Arrest Promotes Osteoclast Differentiation.

    PubMed

    Kwon, Minsuk; Kim, Jin-Man; Lee, Kyunghee; Park, So-Young; Lim, Hyun-Sook; Kim, Taesoo; Jeong, Daewon

    2016-01-01

    Osteoclast progenitors undergo cell cycle arrest before differentiation into osteoclasts, induced by exposure to macrophage colony-stimulating factor (M-CSF) and receptor activator of nuclear factor-κB ligand (RANKL). The role of such cell cycle arrest in osteoclast differentiation has remained unclear, however. We here examined the effect of synchronized cell cycle arrest on osteoclast formation. Osteoclast progenitors deprived of M-CSF in culture adopted a uniform morphology and exhibited cell cycle arrest at the G₀-G₁ phase in association with both down-regulation of cyclins A and D1 as well as up-regulation of the cyclin-dependent kinase inhibitor p27(Kip1). Such M-CSF deprivation also promoted the differentiation of osteoclast progenitors into multinucleated osteoclasts expressing high levels of osteoclast marker proteins such as NFATc1, c-Fos, Atp6v0d2, cathepsin K, and integrin β3 on subsequent exposure to M-CSF and RANKL. Our results suggest that synchronized arrest and reprogramming of osteoclast progenitors renders them poised to respond to inducers of osteoclast formation. Further characterization of such effects may facilitate induction of the differentiation of heterogeneous and multipotent cells into desired cell lineages. PMID:27517906

  1. Synchronized Cell Cycle Arrest Promotes Osteoclast Differentiation

    PubMed Central

    Kwon, Minsuk; Kim, Jin-Man; Lee, Kyunghee; Park, So-Young; Lim, Hyun-Sook; Kim, Taesoo; Jeong, Daewon

    2016-01-01

    Osteoclast progenitors undergo cell cycle arrest before differentiation into osteoclasts, induced by exposure to macrophage colony-stimulating factor (M-CSF) and receptor activator of nuclear factor-κB ligand (RANKL). The role of such cell cycle arrest in osteoclast differentiation has remained unclear, however. We here examined the effect of synchronized cell cycle arrest on osteoclast formation. Osteoclast progenitors deprived of M-CSF in culture adopted a uniform morphology and exhibited cell cycle arrest at the G0–G1 phase in association with both down-regulation of cyclins A and D1 as well as up-regulation of the cyclin-dependent kinase inhibitor p27Kip1. Such M-CSF deprivation also promoted the differentiation of osteoclast progenitors into multinucleated osteoclasts expressing high levels of osteoclast marker proteins such as NFATc1, c-Fos, Atp6v0d2, cathepsin K, and integrin β3 on subsequent exposure to M-CSF and RANKL. Our results suggest that synchronized arrest and reprogramming of osteoclast progenitors renders them poised to respond to inducers of osteoclast formation. Further characterization of such effects may facilitate induction of the differentiation of heterogeneous and multipotent cells into desired cell lineages. PMID:27517906

  2. Cell cycle checkpoint regulators reach a zillion

    PubMed Central

    Yasutis, Kimberly M.; Kozminski, Keith G.

    2013-01-01

    Entry into mitosis is regulated by a checkpoint at the boundary between the G2 and M phases of the cell cycle (G2/M). In many organisms, this checkpoint surveys DNA damage and cell size and is controlled by both the activation of mitotic cyclin-dependent kinases (Cdks) and the inhibition of an opposing phosphatase, protein phosphatase 2A (PP2A). Misregulation of mitotic entry can often lead to oncogenesis or cell death. Recent research has focused on discovering the signaling pathways that feed into the core checkpoint control mechanisms dependent on Cdk and PP2A. Herein, we review the conserved mechanisms of the G2/M transition, including recently discovered upstream signaling pathways that link cell growth and DNA replication to cell cycle progression. Critical consideration of the human, frog and yeast models of mitotic entry frame unresolved and emerging questions in this field, providing a prediction of signaling molecules and pathways yet to be discovered. PMID:23598718

  3. Potassium channels in cell cycle and cell proliferation

    PubMed Central

    Urrego, Diana; Tomczak, Adam P.; Zahed, Farrah; Stühmer, Walter; Pardo, Luis A.

    2014-01-01

    Normal cell-cycle progression is a crucial task for every multicellular organism, as it determines body size and shape, tissue renewal and senescence, and is also crucial for reproduction. On the other hand, dysregulation of the cell-cycle progression leading to uncontrolled cell proliferation is the hallmark of cancer. Therefore, it is not surprising that it is a tightly regulated process, with multifaceted and very complex control mechanisms. It is now well established that one of those mechanisms relies on ion channels, and in many cases specifically on potassium channels. Here, we summarize the possible mechanisms underlying the importance of potassium channels in cell-cycle control and briefly review some of the identified channels that illustrate the multiple ways in which this group of proteins can influence cell proliferation and modulate cell-cycle progression. PMID:24493742

  4. SAFT nickel hydrogen cell cycling status

    NASA Technical Reports Server (NTRS)

    Borthomieu, Yannick; Duquesne, Didier

    1994-01-01

    An overview of the NiH2 cell development is given. The NiH2 SAFT system is an electrochemical (single or dual) stack (IPV). The stack is mounted in an hydroformed Inconel 718 vessel operating at high pressure, equipped with 'rabbit ears' ceramic brazed electrical feedthroughs. The cell design is described: positive electrode, negative electrode, and stack configuration. Overviews of low earth orbit and geostationary earth orbit cyclings are provided. DPA results are also provided. The cycling and DPA results demonstrate that SAFT NiH2 is characterized by high reliability and very stable performances.

  5. The cell cycle and acute kidney injury

    PubMed Central

    Price, Peter M.; Safirstein, Robert L.; Megyesi, Judit

    2009-01-01

    Acute kidney injury (AKI) activates pathways of cell death and cell proliferation. Although seemingly discrete and unrelated mechanisms, these pathways can now be shown to be connected and even to be controlled by similar pathways. The dependence of the severity of renal-cell injury on cell cycle pathways can be used to control and perhaps to prevent acute kidney injury. This review is written to address the correlation between cellular life and death in kidney tubules, especially in acute kidney injury. PMID:19536080

  6. Control points within the cell cycle

    SciTech Connect

    Van't Hof, J.

    1984-01-01

    Evidence of the temporal order of chromosomal DNA replication argues favorably for the view that the cell cycle is controlled by genes acting in sequence whose time of expression is determined by mitosis and the amount of nuclear DNA (2C vs 4C) in the cell. Gl and G2 appear to be carbohydrate dependent in that cells starved of either carbohydrate of phosphate fail to make these transitions. Cells deprived of nitrate, however, fail only at Gl to S transition indicating that the controls that operate in G1 differ from those that operate in G2. 46 references, 5 figures.

  7. Mitochondrial dynamics and the cell cycle

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nuclear-mitochondrial (NM) communication impacts many aspects of plant development including vigor, sterility and viability. Dynamic changes in mitochondrial number, shape, size, and cellular location takes place during the cell cycle possibly impacting the process itself and leading to distribution...

  8. Cell Cycle Progression of Human Cells Cultured in Rotating Bioreactor

    NASA Technical Reports Server (NTRS)

    Parks, Kelsey

    2009-01-01

    Space flight has been shown to alter the astronauts immune systems. Because immune performance is complex and reflects the influence of multiple organ systems within the host, scientists sought to understand the potential impact of microgravity alone on the cellular mechanisms critical to immunity. Lymphocytes and their differentiated immature form, lymphoblasts, play an important and integral role in the body's defense system. T cells, one of the three major types of lymphocytes, play a central role in cell-mediated immunity. They can be distinguished from other lymphocyte types, such as B cells and natural killer cells by the presence of a special receptor on their cell surface called T cell receptors. Reported studies have shown that spaceflight can affect the expression of cell surface markers. Cell surface markers play an important role in the ability of cells to interact and to pass signals between different cells of the same phenotype and cells of different phenotypes. Recent evidence suggests that cell-cycle regulators are essential for T-cell function. To trigger an effective immune response, lymphocytes must proliferate. The objective of this project is to investigate the changes in growth of human cells cultured in rotating bioreactors and to measure the growth rate and the cell cycle distribution for different human cell types. Human lymphocytes and lymphoblasts will be cultured in a bioreactor to simulate aspects of microgravity. The bioreactor is a cylindrical culture vessel that incorporates the aspects of clinostatic rotation of a solid fluid body around a horizontal axis at a constant speed, and compensates gravity by rotation and places cells within the fluid body into a sustained free-fall. Cell cycle progression and cell proliferation of the lymphocytes will be measured for a number of days. In addition, RNA from the cells will be isolated for expression of genes related in cell cycle regulations.

  9. Cell cycle nucleic acids, polypeptides and uses thereof

    DOEpatents

    Gordon-Kamm, William J.; Lowe, Keith S.; Larkins, Brian A.; Dilkes, Brian R.; Sun, Yuejin

    2007-08-14

    The invention provides isolated nucleic acids and their encoded proteins that are involved in cell cycle regulation. The invention further provides recombinant expression cassettes, host cells, transgenic plants, and antibody compositions. The present invention provides methods and compositions relating to altering cell cycle protein content, cell cycle progression, cell number and/or composition of plants.

  10. Indirect-fired gas turbine dual fuel cell power cycle

    SciTech Connect

    Micheli, P.L.; Williams, M.C.; Sudhoff, F.A.

    1998-04-01

    The present invention relates generally to an integrated fuel cell power plant, and more specifically to a combination of cycles wherein a first fuel cell cycle tops an indirect-fired gas turbine cycle and a second fuel cell cycle bottoms the gas turbine cycle so that the cycles are thermally integrated in a tandem operating arrangement. The United States Government has rights in this invention pursuant to the employer-employee relationship between the United States Department of Energy and the inventors.

  11. FUEL CELL/MICRO-TURBINE COMBINED CYCLE

    SciTech Connect

    Larry J. Chaney; Mike R. Tharp; Tom W. Wolf; Tim A. Fuller; Joe J. Hartvigson

    1999-12-01

    A wide variety of conceptual design studies have been conducted that describe ultra-high efficiency fossil power plant cycles. The most promising of these ultra-high efficiency cycles incorporate high temperature fuel cells with a gas turbine. Combining fuel cells with a gas turbine increases overall cycle efficiency while reducing per kilowatt emissions. This study has demonstrated that the unique approach taken to combining a fuel cell and gas turbine has both technical and economic merit. The approach used in this study eliminates most of the gas turbine integration problems associated with hybrid fuel cell turbine systems. By using a micro-turbine, and a non-pressurized fuel cell the total system size (kW) and complexity has been reduced substantially from those presented in other studies, while maintaining over 70% efficiency. The reduced system size can be particularly attractive in the deregulated electrical generation/distribution environment where the market may not demand multi-megawatt central stations systems. The small size also opens up the niche markets to this high efficiency, low emission electrical generation option.

  12. Cell shape dynamics during the staphylococcal cell cycle

    PubMed Central

    Monteiro, João M.; Fernandes, Pedro B.; Vaz, Filipa; Pereira, Ana R.; Tavares, Andreia C.; Ferreira, Maria T.; Pereira, Pedro M.; Veiga, Helena; Kuru, Erkin; VanNieuwenhze, Michael S.; Brun, Yves V.; Filipe, Sérgio R.; Pinho, Mariana G.

    2015-01-01

    Staphylococcus aureus is an aggressive pathogen and a model organism to study cell division in sequential orthogonal planes in spherical bacteria. However, the small size of staphylococcal cells has impaired analysis of changes in morphology during the cell cycle. Here we use super-resolution microscopy and determine that S. aureus cells are not spherical throughout the cell cycle, but elongate during specific time windows, through peptidoglycan synthesis and remodelling. Both peptidoglycan hydrolysis and turgor pressure are required during division for reshaping the flat division septum into a curved surface. In this process, the septum generates less than one hemisphere of each daughter cell, a trait we show is common to other cocci. Therefore, cell surface scars of previous divisions do not divide the cells in quadrants, generating asymmetry in the daughter cells. Our results introduce a need to reassess the models for division plane selection in cocci. PMID:26278781

  13. Modeling of SONOS Memory Cell Erase Cycle

    NASA Technical Reports Server (NTRS)

    Phillips, Thomas A.; MacLeod, Todd C.; Ho, Fat H.

    2011-01-01

    Utilization of Silicon-Oxide-Nitride-Oxide-Silicon (SONOS) nonvolatile semiconductor memories as a flash memory has many advantages. These electrically erasable programmable read-only memories (EEPROMs) utilize low programming voltages, have a high erase/write cycle lifetime, are radiation hardened, and are compatible with high-density scaled CMOS for low power, portable electronics. In this paper, the SONOS memory cell erase cycle was investigated using a nonquasi-static (NQS) MOSFET model. Comparisons were made between the model predictions and experimental data.

  14. Solid oxide fuel cell combined cycles

    SciTech Connect

    Bevc, F.P.; Lundberg, W.L.; Bachovchin, D.M.

    1996-12-31

    The integration of the solid oxide fuel cell and combustion turbine technologies can result in combined-cycle power plants, fueled with natural gas, that have high efficiencies and clean gaseous emissions. Results of a study are presented in which conceptual designs were developed for 3 power plants based upon such an integration, and ranging in rating from 3 to 10 MW net ac. The plant cycles are described and characteristics of key components summarized. Also, plant design-point efficiency estimates are presented as well as values of other plant performance parameters.

  15. Westinghouse fuel cell combined cycle systems

    SciTech Connect

    Veyo, S.

    1996-12-31

    Efficiency (voltage) of the solid oxide fuel cell (SOFC) should increase with operating pressure, and a pressurized SOFC could function as the heat addition process in a Brayton cycle gas turbine (GT) engine. An overall cycle efficiency of 70% should be possible. In cogeneration, half of the waste heat from a PSOFC/GT should be able to be captured in process steam and hot water, leading to a fuel effectiveness of about 85%. In order to make the PSOFC/GT a commercial reality, satisfactory operation of the SOFC at elevated pressure must be verified, a pressurized SOFC generator module must be designed, built, and tested, and the combined cycle and parameters must be optimized. A prototype must also be demonstrated. This paper describes progress toward making the PSOFC/GT a reality.

  16. 4D chromatin dynamics in cycling cells

    PubMed Central

    Strickfaden, Hilmar; Zunhammer, Andreas; van Koningsbruggen, Silvana; Köhler, Daniela

    2010-01-01

    This live cell study of chromatin dynamics in four dimensions (space and time) in cycling human cells provides direct evidence for three hypotheses first proposed by Theodor Boveri in seminal studies of fixed blastomeres from Parascaris equorum embryos: (I) Chromosome territory (CT) arrangements are stably maintained during interphase. (II) Chromosome proximity patterns change profoundly during prometaphase. (III) Similar CT proximity patterns in pairs of daughter nuclei reflect symmetrical chromosomal movements during anaphase and telophase, but differ substantially from the arrangement in mother cell nucleus. Hypothesis I could be confirmed for the majority of interphase cells. A minority, however, showed complex, rotational movements of CT assemblies with large-scale changes of CT proximity patterns, while radial nuclear arrangements were maintained. A new model of chromatin dynamics is proposed. It suggests that long-range DNA-DNA interactions in cell nuclei may depend on a combination of rotational CT movements and locally constrained chromatin movements. PMID:21327076

  17. Analysis of cell cycle position in mammalian cells.

    PubMed

    Cecchini, Matthew J; Amiri, Mehdi; Dick, Frederick A

    2012-01-01

    The regulation of cell proliferation is central to tissue morphogenesis during the development of multicellular organisms. Furthermore, loss of control of cell proliferation underlies the pathology of diseases like cancer. As such there is great need to be able to investigate cell proliferation and quantitate the proportion of cells in each phase of the cell cycle. It is also of vital importance to indistinguishably identify cells that are replicating their DNA within a larger population. Since a cell's decision to proliferate is made in the G1 phase immediately before initiating DNA synthesis and progressing through the rest of the cell cycle, detection of DNA synthesis at this stage allows for an unambiguous determination of the status of growth regulation in cell culture experiments. DNA content in cells can be readily quantitated by flow cytometry of cells stained with propidium iodide, a fluorescent DNA intercalating dye. Similarly, active DNA synthesis can be quantitated by culturing cells in the presence of radioactive thymidine, harvesting the cells, and measuring the incorporation of radioactivity into an acid insoluble fraction. We have considerable expertise with cell cycle analysis and recommend a different approach. We Investigate cell proliferation using bromodeoxyuridine/fluorodeoxyuridine (abbreviated simply as BrdU) staining that detects the incorporation of these thymine analogs into recently synthesized DNA. Labeling and staining cells with BrdU, combined with total DNA staining by propidium iodide and analysis by flow cytometry offers the most accurate measure of cells in the various stages of the cell cycle. It is our preferred method because it combines the detection of active DNA synthesis, through antibody based staining of BrdU, with total DNA content from propidium iodide. This allows for the clear separation of cells in G1 from early S phase, or late S phase from G2/M. Furthermore, this approach can be utilized to investigate the effects

  18. Targeting cell cycle regulators in hematologic malignancies

    PubMed Central

    Aleem, Eiman; Arceci, Robert J.

    2015-01-01

    Hematologic malignancies represent the fourth most frequently diagnosed cancer in economically developed countries. In hematologic malignancies normal hematopoiesis is interrupted by uncontrolled growth of a genetically altered stem or progenitor cell (HSPC) that maintains its ability of self-renewal. Cyclin-dependent kinases (CDKs) not only regulate the mammalian cell cycle, but also influence other vital cellular processes, such as stem cell renewal, differentiation, transcription, epigenetic regulation, apoptosis, and DNA repair. Chromosomal translocations, amplification, overexpression and altered CDK activities have been described in different types of human cancer, which have made them attractive targets for pharmacological inhibition. Mouse models deficient for one or more CDKs have significantly contributed to our current understanding of the physiological functions of CDKs, as well as their roles in human cancer. The present review focuses on selected cell cycle kinases with recent emerging key functions in hematopoiesis and in hematopoietic malignancies, such as CDK6 and its role in MLL-rearranged leukemia and acute lymphocytic leukemia, CDK1 and its regulator WEE-1 in acute myeloid leukemia (AML), and cyclin C/CDK8/CDK19 complexes in T-cell acute lymphocytic leukemia. The knowledge gained from gene knockout experiments in mice of these kinases is also summarized. An overview of compounds targeting these kinases, which are currently in clinical development in various solid tumors and hematopoietic malignances, is presented. These include the CDK4/CDK6 inhibitors (palbociclib, LEE011, LY2835219), pan-CDK inhibitors that target CDK1 (dinaciclib, flavopiridol, AT7519, TG02, P276-00, terampeprocol and RGB 286638) as well as the WEE-1 kinase inhibitor, MK-1775. The advantage of combination therapy of cell cycle inhibitors with conventional chemotherapeutic agents used in the treatment of AML, such as cytarabine, is discussed. PMID:25914884

  19. Temporal Organization of the Cell Cycle

    PubMed Central

    Tyson, John J.; Novak, Bela

    2009-01-01

    Summary The coordination of growth, DNA replication and division in proliferating cells can be adequately explained by a ‘clock + checkpoint’ model. The clock is an underlying circular sequence of states; the checkpoints ensure that the cycle proceeds without mistakes. From the molecular complexities of the control system in modern eukaryotes, we isolate a simple network of positive and negative feedbacks that embodies a clock + checkpoints. The model accounts for the fundamental physiological properties of mitotic cell divisions, evokes a new view of the meiotic program, and suggests how the control system may have evolved in the first place. PMID:18786381

  20. Elutriation for Cell Cycle Synchronization in Fission Yeast.

    PubMed

    Kume, Kazunori

    2016-01-01

    Cell synchronization is a powerful technique for studying the eukaryotic cell cycle events precisely. The fission yeast is a rod-shaped cell whose growth is coordinated with the cell cycle. Monitoring the cellular growth of fission yeast is a relatively simple way to measure the cell cycle stage of a cell. Here, we describe a detailed method of unperturbed cell synchronization, named centrifugal elutriation, for fission yeast. PMID:26254921

  1. Cell cycle population effects in perturbation studies

    PubMed Central

    O'Duibhir, Eoghan; Lijnzaad, Philip; Benschop, Joris J; Lenstra, Tineke L; van Leenen, Dik; Groot Koerkamp, Marian JA; Margaritis, Thanasis; Brok, Mariel O; Kemmeren, Patrick; Holstege, Frank CP

    2014-01-01

    Growth condition perturbation or gene function disruption are commonly used strategies to study cellular systems. Although it is widely appreciated that such experiments may involve indirect effects, these frequently remain uncharacterized. Here, analysis of functionally unrelated Saccharyomyces cerevisiae deletion strains reveals a common gene expression signature. One property shared by these strains is slower growth, with increased presence of the signature in more slowly growing strains. The slow growth signature is highly similar to the environmental stress response (ESR), an expression response common to diverse environmental perturbations. Both environmental and genetic perturbations result in growth rate changes. These are accompanied by a change in the distribution of cells over different cell cycle phases. Rather than representing a direct expression response in single cells, both the slow growth signature and ESR mainly reflect a redistribution of cells over different cell cycle phases, primarily characterized by an increase in the G1 population. The findings have implications for any study of perturbation that is accompanied by growth rate changes. Strategies to counter these effects are presented and discussed. PMID:24952590

  2. Cell cycle regulation of Golgi membrane dynamics.

    PubMed

    Tang, Danming; Wang, Yanzhuang

    2013-06-01

    The Golgi apparatus is a membranous organelle in the cell that plays essential roles in protein and lipid trafficking, sorting, processing, and modification. Its basic structure is a stack of closely aligned flattened cisternae. In mammalian cells, dozens of Golgi stacks are often laterally linked into a ribbon-like structure. Biogenesis of the Golgi during cell division occurs through a sophisticated disassembly and reassembly process that can be divided into three distinct but cooperative steps, including the deformation and reformation of the Golgi cisternae, stacks, and ribbon. Here, we review our current understanding of the protein machineries that control these three steps in the cycle of mammalian cell division: GRASP65 and GRASP55 in Golgi stack and ribbon formation; ubiquitin and AAA ATPases in postmitotic Golgi membrane fusion; and golgins and cytoskeleton in Golgi ribbon formation. PMID:23453991

  3. Cell cycle of globose basal cells in rat olfactory epithelium.

    PubMed

    Huard, J M; Schwob, J E

    1995-05-01

    The olfactory epithelium of adult mammals has the unique property of generating olfactory sensory neurons throughout life. Cells of the basal compartment, which include horizontal and globose basal cells, are responsible for the ongoing process of neurogenesis in this system. We report here that the globose basal cells in olfactory epithelium of rats, as in mice, are the predominant type of proliferating cell, and account for 97.6% of the actively dividing cells in the basal compartment of the normal epithelium. Globose basal cells have not been fully characterized in terms of their proliferative properties, and the dynamic aspects of neurogenesis are not well understood. As a consequence, it is uncertain whether cell kinetic properties are under any regulation that could affect the rate of neurogenesis. To address this gap in our knowledge, we have determined the duration of both the synthesis phase (S-phase) and the full cell cycle of globose basal cells in adult rats. The duration of the S-phase was found to be 9 hr in experiments utilizing sequential injections of either IdU followed by BrdU or 3H-thy followed by BrdU. The duration of the cell cycle was determined by varying the time interval between the injections of 3H-thy and BrdU and tracking the set of cells that exit S shortly after the first injection. With this paradigm, the interval required for these cells to traverse G2, M, G1, and a second S-phase, is equivalent to the duration of one mitotic cycle and equals 17 hr. These observations serve as the foundation to assess whether the cell cycle duration is subject to regulation in response to experimental injury, and whether such regulation is partly responsible for changes in the rate of neurogenesis in such settings. PMID:7647371

  4. Cell cycle-dependence of HL-60 cell deformability.

    PubMed Central

    Tsai, M A; Waugh, R E; Keng, P C

    1996-01-01

    In this study, the role of cytoskeleton in HL-60 deformability during the cell cycle was investigated. G1, S, and G2/M cell fractions were separated by centrifugal elutriation. Cell deformability was evaluated by pipette aspiration. Tested at the same aspiration pressures, S cells were found to be less deformable than G1 cells. Moreover, HL-60 cells exhibited power-law fluid behavior: mu = mu c(gamma m/ gamma c)-b, where mu is cytoplasmic viscosity, gamma m is mean shear rate, mu c is the characteristic viscosity at the characteristic shear rate gamma c, and b is a material constant. At a given shear rate, S cells (mu c = 276 +/- 14 Pa.s, b = 0.51 +/- 0.03) were more viscous than G1 cells (mu c = 197 +/- 25, b = 0.53 +/- 0.02). To evaluate the relative importance of different cytoskeletal components in these cell cycle-dependent properties, HL-60 cells were treated with 30 microM dihydrocytochalasin B (DHB) to disrupt F-actin or 100 microM colchicine to collapse microtubules. DHB dramatically softened both G1 and S cells, which reduced the material constants mu c by approximately 65% and b by 20-30%. Colchicine had a limited effect on G1 cells but significantly reduced mu c of S cells (approximately 25%). Thus, F-actin plays the predominate role in determining cell mechanical properties, but disruption of microtubules may also influence the behavior of proliferating cells in a cell cycle-dependent fashion. Images FIGURE 1 PMID:8785361

  5. MicroRNAs and cell cycle of malignant glioma.

    PubMed

    Ouyang, Qing; Xu, Lunshan; Cui, Hongjuan; Xu, Minhui; Yi, Liang

    2016-01-01

    The control of malignant glioma cell cycle by microRNAs (miRNAs) is well established. The deregulation of miRNAs in glioma may contribute to tumor proliferation by directly targeting the critical cell-cycle regulators. Tumor suppressive miRNAs inhibit cell cycle through repressing the expression of positive cell-cycle regulators. However, oncogenic miRNAs promote the cell-cycle progression by targeting cell-cycle negative regulators. Recent studies have identified that transcription factors had involved in the expression of miRNAs. Transcription factors and miRNAs are implicated in regulatory network of glioma cell cycle, the deregulation of these transcription factors might be a cause of the deregulation of miRNAs. Abnormal versions of miRNAs have been implicated in the cell cycle of glioma. Based on those, miRNAs are excellent biomarker candidates and potential targets for therapeutic intervention in glioma. PMID:26000816

  6. Mitochondrial Regulation of Cell Cycle and Proliferation

    PubMed Central

    Antico Arciuch, Valeria Gabriela; Elguero, María Eugenia; Poderoso, Juan José

    2012-01-01

    Abstract Eukaryotic mitochondria resulted from symbiotic incorporation of α-proteobacteria into ancient archaea species. During evolution, mitochondria lost most of the prokaryotic bacterial genes and only conserved a small fraction including those encoding 13 proteins of the respiratory chain. In this process, many functions were transferred to the host cells, but mitochondria gained a central role in the regulation of cell proliferation and apoptosis, and in the modulation of metabolism; accordingly, defective organelles contribute to cell transformation and cancer, diabetes, and neurodegenerative diseases. Most cell and transcriptional effects of mitochondria depend on the modulation of respiratory rate and on the production of hydrogen peroxide released into the cytosol. The mitochondrial oxidative rate has to remain depressed for cell proliferation; even in the presence of O2, energy is preferentially obtained from increased glycolysis (Warburg effect). In response to stress signals, traffic of pro- and antiapoptotic mitochondrial proteins in the intermembrane space (B-cell lymphoma-extra large, Bcl-2-associated death promoter, Bcl-2 associated X-protein and cytochrome c) is modulated by the redox condition determined by mitochondrial O2 utilization and mitochondrial nitric oxide metabolism. In this article, we highlight the traffic of the different canonical signaling pathways to mitochondria and the contributions of organelles to redox regulation of kinases. Finally, we analyze the dynamics of the mitochondrial population in cell cycle and apoptosis. Antioxid. Redox Signal. 16, 1150–1180. PMID:21967640

  7. [Cell cycle, mitosis and therapeutic applications].

    PubMed

    Levy, Antonin; Albiges-Sauvin, Laurence; Massard, Christophe; Soria, Jean-Charles; Deutsch, Eric

    2011-10-01

    Genomic DNA is constantly under stress of endogenous and exogenous DNA damaging agents. Without proper care, the DNA damage causes an alteration of the genomic structure and can lead to cell death or the occurrence of mutations involved in tumorigenesis. During the process of evolution, organisms have acquired a series of response mechanisms and repair of DNA damage, thereby ensuring the maintenance of genome stability and faithful transmission of genetic information. The checkpoints are the major mechanisms by which a cell can respond to DNA damage, either by actively stopping the cell cycle or by induction of apoptosis. Two parallel signalling pathways, ATM and ATR respond to genotoxic stress by activating their downstream target proteins including the two effectors kinases CHK1 and CHK2. Promising preliminary data render these proteins potential targets for therapeutic development against cancer. PMID:21669563

  8. Feedback and Modularity in Cell Cycle Control

    NASA Astrophysics Data System (ADS)

    Skotheim, Jan

    2009-03-01

    Underlying the wonderful diversity of natural forms is the ability of an organism to grow into its appropriate shape. Regulation ensures that cells grow, divide and differentiate so that the organism and its constitutive parts are properly proportioned and of suitable size. Although the size-control mechanism active in an individual cell is of fundamental importance to this process, it is difficult to isolate and study in complex multi-cellular systems and remains poorly understood. This motivates our use of the budding yeast model organism, whose Start checkpoint integrates multiple internal (e.g. cell size) and external signals into an irreversible decision to enter the cell cycle. We have endeavored to address the following two questions: What makes the Start transition irreversible? How does a cell compute its own size? I will report on the progress we have made. Our work is part of an emerging framework for understanding biological control circuits, which will allow us to discern the function of natural systems and aid us in engineering synthetic systems.

  9. Alteration of cell cycle progression by Sindbis virus infection

    SciTech Connect

    Yi, Ruirong; Saito, Kengo; Isegawa, Naohisa; Shirasawa, Hiroshi

    2015-07-10

    We examined the impact of Sindbis virus (SINV) infection on cell cycle progression in a cancer cell line, HeLa, and a non-cancerous cell line, Vero. Cell cycle analyses showed that SINV infection is able to alter the cell cycle progression in both HeLa and Vero cells, but differently, especially during the early stage of infection. SINV infection affected the expression of several cell cycle regulators (CDK4, CDK6, cyclin E, p21, cyclin A and cyclin B) in HeLa cells and caused HeLa cells to accumulate in S phase during the early stage of infection. Monitoring SINV replication in HeLa and Vero cells expressing cell cycle indicators revealed that SINV which infected HeLa cells during G{sub 1} phase preferred to proliferate during S/G{sub 2} phase, and the average time interval for viral replication was significantly shorter in both HeLa and Vero cells infected during G{sub 1} phase than in cells infected during S/G{sub 2} phase. - Highlights: • SINV infection was able to alter the cell cycle progression of infected cancer cells. • SINV infection can affect the expression of cell cycle regulators. • SINV infection exhibited a preference for the timing of viral replication among the cell cycle phases.

  10. Mitochondrial dynamics and the cell cycle

    PubMed Central

    Kianian, Penny M. A.; Kianian, Shahryar F.

    2014-01-01

    Nuclear-mitochondrial (NM) communication impacts many aspects of plant development including vigor, sterility, and viability. Dynamic changes in mitochondrial number, shape, size, and cellular location takes place during the cell cycle possibly impacting the process itself and leading to distribution of this organelle into daughter cells. The genes that underlie these changes are beginning to be identified in model plants such as Arabidopsis. In animals disruption of the drp1 gene, a homolog to the plant drp3A and drp3B, delays mitochondrial division. This mutation results in increased aneuploidy due to chromosome mis-segregation. It remains to be discovered if a similar outcome is observed in plants. Alloplasmic lines provide an opportunity to understand the communication between the cytoplasmic organelles and the nucleus. Examples of studies in these lines, especially from the extensive collection in wheat, point to the role of mitochondria in chromosome movement, pollen fertility and other aspects of development. PMID:24904617

  11. PLK-1: Angel or devil for cell cycle progression.

    PubMed

    Kumar, Shiv; Sharma, Ashish Ranjan; Sharma, Garima; Chakraborty, Chiranjib; Kim, Jaebong

    2016-04-01

    PLK-1 is a key player in the eukaryotic cell cycle. Cell cycle progression is precisely controlled by cell cycle regulatory kinases. PLK-1 is a mitotic kinase that actively regulates the G2/M transition, mitosis, mitotic exit, and cytokinesis. During cell cycle progression, PLK-1 controls various events related to the cell cycle maturation, directly and/or indirectly. On the contrary, aberrant expression of PLK-1 is strongly associated with tumorigenesis and its poor prognosis. The misexpression of PLK-1 causes the abnormalities including aneuploidy, mitotic defects, leading to tumorigenesis through inhibiting the p53 and pRB genes. Therefore, we reviewed the role of PLK-1 in the cell cycle progression and in the tumorigenesis either as a cell cycle regulator or on an attractive anti-cancer drug target. PMID:26899266

  12. Capacity fade of Sony 18650 cells cycled at elevated temperatures. Part I. Cycling performance

    NASA Astrophysics Data System (ADS)

    Ramadass, P.; Haran, Bala; White, Ralph; Popov, Branko N.

    The capacity fade of Sony 18650 Li-ion cells increases with increase in temperature. After 800 cycles, the cells cycled at RT and 45 °C showed a capacity fade of 30 and 36%, respectively. The cell cycled at 55 °C showed a capacity loss of about 70% after 490 cycles. The rate capability of the cells continues to decrease with cycling. Impedance measurements showed an overall increase in the cell resistance with cycling and temperature. Impedance studies of the electrode materials showed an increased positive electrode resistance when compared to that of the negative electrode for cells cycled at RT and 45 °C. However, cells cycled at 50 and 55 °C exhibit higher negative electrode resistance. The increased capacity fade for the cells cycled at high temperatures can be explained by taking into account the repeated film formation over the surface of anode, which results in increased rate of lithium loss and also in a drastic increase in the negative electrode resistance with cycling.

  13. KOH concentration effect on cycle life of nickel-hydrogen cells. III - Cycle life test

    NASA Technical Reports Server (NTRS)

    Lim, H. S.; Verzwyvelt, S. A.

    1988-01-01

    A cycle life test of Ni/H2 cells containing electrolytes of various KOH concentrations and a sintered type nickel electrode was carried out at 23 C using a 45 min accelerated low earth orbit (LEO) cycle regime at 80 percent depth of discharge. One of three cells containing 26 percent KOH has achieved over 28,000 cycles, and the other two 19,000 cycles, without a sign of failure. Two other cells containing 31 percent KOH electrolyte, which is the concentration presently used in aerospace cells, failed after 2,979 and 3,620 cycles. This result indicates that the cycle life of the present type of Ni/H2 cells may be extended by a factor of 5 to 10 simply by lowering the KOH concentration. Long cycle life of a Ni/H2 battery at high depth-of-discharge operation is desired, particularly for an LEO spacecraft application. Typically, battery life of about 30,000 cycles is required for a five year mission in an LEO. Such a cycle life with presently available cells can be assured only at a very low depth-of-discharge operation. Results of testing already show that the cycle life of an Ni/H2 cell is tremendously improved by simply using an electrolyte of low KOH concentration.

  14. The Cell Cycle Switch Computes Approximate Majority

    NASA Astrophysics Data System (ADS)

    Cardelli, Luca; Csikász-Nagy, Attila

    2012-09-01

    Both computational and biological systems have to make decisions about switching from one state to another. The `Approximate Majority' computational algorithm provides the asymptotically fastest way to reach a common decision by all members of a population between two possible outcomes, where the decision approximately matches the initial relative majority. The network that regulates the mitotic entry of the cell-cycle in eukaryotes also makes a decision before it induces early mitotic processes. Here we show that the switch from inactive to active forms of the mitosis promoting Cyclin Dependent Kinases is driven by a system that is related to both the structure and the dynamics of the Approximate Majority computation. We investigate the behavior of these two switches by deterministic, stochastic and probabilistic methods and show that the steady states and temporal dynamics of the two systems are similar and they are exchangeable as components of oscillatory networks.

  15. SUMOylation-mediated regulation of cell cycle progression and cancer

    PubMed Central

    Eifler, Karolin; Vertegaal, Alfred C.O.

    2016-01-01

    SUMOylation plays critical roles during cell cycle progression. Many important cell cycle regulators, including many oncogenes and tumor suppressors, are functionally regulated via SUMOylation. The dynamic SUMOylation pattern observed throughout the cell cycle is ensured via distinct spatial and temporal regulation of the SUMO machinery. Additionally, SUMOylation cooperates with other post-translational modifications to mediate cell cycle progression. Deregulation of these SUMOylation and deSUMOylation enzymes causes severe defects in cell proliferation and genome stability. Different types of cancers were recently shown to be dependent on a functioning SUMOylation system, a finding that could potentially be exploited in anti-cancer therapies. PMID:26601932

  16. Indirect-fired gas turbine dual fuel cell power cycle

    DOEpatents

    Micheli, Paul L.; Williams, Mark C.; Sudhoff, Frederick A.

    1996-01-01

    A fuel cell and gas turbine combined cycle system which includes dual fuel cell cycles combined with a gas turbine cycle wherein a solid oxide fuel cell cycle operated at a pressure of between 6 to 15 atms tops the turbine cycle and is used to produce CO.sub.2 for a molten carbonate fuel cell cycle which bottoms the turbine and is operated at essentially atmospheric pressure. A high pressure combustor is used to combust the excess fuel from the topping fuel cell cycle to further heat the pressurized gas driving the turbine. A low pressure combustor is used to combust the excess fuel from the bottoming fuel cell to reheat the gas stream passing out of the turbine which is used to preheat the pressurized air stream entering the topping fuel cell before passing into the bottoming fuel cell cathode. The CO.sub.2 generated in the solid oxide fuel cell cycle cascades through the system to the molten carbonate fuel cell cycle cathode.

  17. Graded requirement for the spliceosome in cell cycle progression

    PubMed Central

    Karamysheva, Zemfira; Díaz-Martínez, Laura A; Warrington, Ross; Yu, Hongtao

    2015-01-01

    Genome stability is ensured by multiple surveillance mechanisms that monitor the duplication, segregation, and integrity of the genome throughout the cell cycle. Depletion of components of the spliceosome, a macromolecular machine essential for mRNA maturation and gene expression, has been associated with increased DNA damage and cell cycle defects. However, the specific role for the spliceosome in these processes has remained elusive, as different cell cycle defects have been reported depending on the specific spliceosome subunit depleted. Through a detailed cell cycle analysis after spliceosome depletion, we demonstrate that the spliceosome is required for progression through multiple phases of the cell cycle. Strikingly, the specific cell cycle phenotype observed after spliceosome depletion correlates with the extent of depletion. Partial depletion of a core spliceosome component results in defects at later stages of the cell cycle (G2 and mitosis), whereas a more complete depletion of the same component elicits an early cell cycle arrest in G1. We propose a quantitative model in which different functional dosages of the spliceosome are required for different cell cycle transitions. PMID:25892155

  18. Burn to cycle: energetics of cell-cycle control and stem cell maintenance.

    PubMed

    Mans, Laurie D; Haramis, Anna-Pavlina G

    2014-01-01

    Stem cells have the unique ability to both maintain the stem cell population via self-renewal and give rise to differentiated cells. The balance between these options is very delicate and important for the short- and long-term maintenance of tissue homeostasis in an organism. Pathways involved in integrating environmental cues and in directing energy metabolism play an important role in the fate decisions of stem cells. In this review, we give an overview of the effects of cellular and systemic metabolic states on stem-cell fate in both embryonic and in adult stem cell populations, with a particular emphasis on cell-cycle regulation. We discuss the major pathways implicated in sensing energetic status and regulating metabolism, including: the mTOR pathway, Forkhead-box-O transcription factors (FoxOs), Sirtuins, reactive oxygen species (ROS), AMP-activated kinase (AMPK) and LKB1, the mTOR pathway and hypoxia inducible factors (HIFs). Given the importance of a correct balance between self-renewal and differentiation, understanding the mechanisms that drive stem-cell fate in different metabolic conditions will provide more insight in stem cell biology in both health and disease. PMID:24896332

  19. Cell cycle control of polyomavirus-induced transformation.

    PubMed Central

    Chen, H H; Fluck, M M

    1993-01-01

    The cell cycle dependence of polyomavirus transformation was analyzed in infections of nonpermissive Fischer rat (FR3T3) cells released from G0. A 5- to 100-fold (average, ca. 20-fold) difference in relative frequency of transformation was found for cells infected in the early G1 phase of the cell cycle compared with cells infected in G2. Differences in the relative level of early viral gene expression in those two cell populations were equivalent to those obtained for transformation frequencies. The difference in transformation potential was accounted for only in part by a cell cycle control of viral adsorption (2- to 15-fold effect). Furthermore, in cells infected in the early G1 phase, viral gene expression was induced as a big synchronous burst of large transcripts of variable sizes, delayed till the G1 phase of the cell cycle after that in which infection took place. Thus, the results demonstrate that the abortive infection cycle of G0-released FR3T3 cells is cell cycle regulated at least at two steps: adsorption and another early step, nuclear transport, decapsidation, up to or including the transcription of the viral early genes. The cell cycle regulation of these steps results in a similar regulation of the abortive and stable transformation processes, although it is more pronounced for the latter. A model implicating c-fos and c-jun is proposed. Images PMID:8383223

  20. Basal p21 controls population heterogeneity in cycling and quiescent cell cycle states

    PubMed Central

    Overton, K. Wesley; Spencer, Sabrina L.; Noderer, William L.; Meyer, Tobias; Wang, Clifford L.

    2014-01-01

    Phenotypic heterogeneity within a population of genetically identical cells is emerging as a common theme in multiple biological systems, including human cell biology and cancer. Using live-cell imaging, flow cytometry, and kinetic modeling, we showed that two states—quiescence and cell cycling—can coexist within an isogenic population of human cells and resulted from low basal expression levels of p21, a Cyclin-dependent kinase (CDK) inhibitor (CKI). We attribute the p21-dependent heterogeneity in cell cycle activity to double-negative feedback regulation involving CDK2, p21, and E3 ubiquitin ligases. In support of this mechanism, analysis of cells at a point before cell cycle entry (i.e., before the G1/S transition) revealed a p21–CDK2 axis that determines quiescent and cycling cell states. Our findings suggest a mechanistic role for p21 in generating heterogeneity in both normal tissues and tumors. PMID:25267623

  1. Cell shape, cytoskeletal mechanics, and cell cycle control in angiogenesis

    NASA Technical Reports Server (NTRS)

    Ingber, D. E.; Prusty, D.; Sun, Z.; Betensky, H.; Wang, N.

    1995-01-01

    Capillary endothelial cells can be switched between growth and differentiation by altering cell-extracellular matrix interactions and thereby, modulating cell shape. Studies were carried out to determine when cell shape exerts its growth-regulatory influence during cell cycle progression and to explore the role of cytoskeletal structure and mechanics in this control mechanism. When G0-synchronized cells were cultured in basic fibroblast growth factor (FGF)-containing defined medium on dishes coated with increasing densities of fibronectin or a synthetic integrin ligand (RGD-containing peptide), cell spreading, nuclear extension, and DNA synthesis all increased in parallel. To determine the minimum time cells must be adherent and spread on extracellular matrix (ECM) to gain entry into S phase, cells were removed with trypsin or induced to retract using cytochalasin D at different times after plating. Both approaches revealed that cells must remain extended for approximately 12-15 h and hence, most of G1, in order to enter S phase. After this restriction point was passed, normally 'anchorage-dependent' endothelial cells turned on DNA synthesis even when round and in suspension. The importance of actin-containing microfilaments in shape-dependent growth control was confirmed by culturing cells in the presence of cytochalasin D (25-1000 ng ml-1): dose-dependent inhibition of cell spreading, nuclear extension, and DNA synthesis resulted. In contrast, induction of microtubule disassembly using nocodazole had little effect on cell or nuclear spreading and only partially inhibited DNA synthesis. Interestingly, combination of nocodazole with a suboptimal dose of cytochalasin D (100 ng ml-1) resulted in potent inhibition of both spreading and growth, suggesting that microtubules are redundant structural elements which can provide critical load-bearing functions when microfilaments are partially compromised. Similar synergism between nocodazole and cytochalasin D was observed

  2. From the cell cycle to population cycles in phytoplankton-nutrient interactions

    SciTech Connect

    Pascual, M.; Caswell, H.

    1997-04-01

    The internal demographic structure of a population influences its dynamics and its response to the environment. Most models for phytoplankton ignore internal structure and group all cells in a single variable such as total biomass or density. However, a cell does have a life history, the cell division cycle. We investigate the significance of the cell cycle to phytoplankton population dynamics in a variable nutrient environment, using chemostate models. Following the transition point hypothesis, nutrient uptake affects cell development only within a limited segment of the cell cycle. Simulation results demonstrate oscillations in cell numbers and population structure generated by this interaction. When nutrient input is varied periodically, the population displays an aperiodic response with frequencies different from that of the forcing. These results also hold for a model that includes nutrient storage by the cells. These dynamics differ from those of traditional chemostate models and from cell cycle models driven by light cycles. Resource control of cell cycle progression may explain the time delays previously postulated to explain oscillatory transients in chemostate experiments. 78 refs., 22 figs.

  3. Cycle life of nickel-hydrogen cells. II - Accelerated cycle life test

    NASA Technical Reports Server (NTRS)

    Lim, H. S.; Verzwyvelt, S. A.

    1986-01-01

    A cycle life test of nickel-hydrogen (Ni/H2) cells containing electrolytes of various KOH concentrations and a sintered-type nickel electrode were carried out at 23 C using a 45-min accelerated low earth orbit (LEO) cycle regime at 80 percent depth of discharge. Ten cells containing 21 to 36 percent KOH were tested. Since this accelerated test regime accelerated the cycle life roughly twice as fast as a typical LEO regime, the present results indicate that the cells with 26 percent KOH may last over 5 years in an 80 percent depth-of-discharge cycling in an LEO regime. Cells with lower KOH concentrations (21 to 23.5 percent) also showed longer cycle life than those with KOH concentrations of 31 percent or higher, although the life was shorter than those with 26 percent KOH.

  4. Thermal stress cycling of GaAs solar cells

    NASA Technical Reports Server (NTRS)

    Francis, Robert W.

    1987-01-01

    Thermal stress cycling was performed on gallium arsenide solar cells to investigate their electrical, mechanical, and structural integrity. Cells were cycled under low Earth orbit (LEO) simulated temperature conditions in vacuum. Cell evaluations consisted of power output values, spectral response, optical microscopy and ion microprobe mass analysis, and depth profiles on both front surface inter-grid areas and metallization contact grid lines. Cells were examined for degradation after 500, 5,000, 10,000 and 15,245 thermal cycles. No indication of performance degradation was found for any vendor's cell lot.

  5. Regulation of the Embryonic Cell Cycle During Mammalian Preimplantation Development.

    PubMed

    Palmer, N; Kaldis, P

    2016-01-01

    The preimplantation development stage of mammalian embryogenesis consists of a series of highly conserved, regulated, and predictable cell divisions. This process is essential to allow the rapid expansion and differentiation of a single-cell zygote into a multicellular blastocyst containing cells of multiple developmental lineages. This period of development, also known as the germinal stage, encompasses several important developmental transitions, which are accompanied by dramatic changes in cell cycle profiles and dynamics. These changes are driven primarily by differences in the establishment and enforcement of cell cycle checkpoints, which must be bypassed to facilitate the completion of essential cell cycle events. Much of the current knowledge in this area has been amassed through the study of knockout models in mice. These mouse models are powerful experimental tools, which have allowed us to dissect the relative dependence of the early embryonic cell cycles on various aspects of the cell cycle machinery and highlight the extent of functional redundancy between members of the same gene family. This chapter will explore the ways in which the cell cycle machinery, their accessory proteins, and their stimuli operate during mammalian preimplantation using mouse models as a reference and how this allows for the usually well-defined stages of the cell cycle to be shaped and transformed during this unique and critical stage of development. PMID:27475848

  6. Capacity-cycle life behavior in secondary lithium cells

    NASA Technical Reports Server (NTRS)

    Somoano, R. B.; Carter, B. J.; Shen, D.; Yen, S. P. S.

    1985-01-01

    The practical utilization of high energy density rechargeable lithium cells is dependent upon maintaining high capacity for the duration of the required cycle life. However, a critical, yet generic problem with room temperature lithium systems is that the capacity often declines considerably during the early stages of cycling. The results of our studies are reported on electrolyte degradation which is observed after cells have undergone 300 and 700 deep cycles with 3-methylsulfolane- and 2-methyltetrahydrofuran-LiAsF6 electrolytes, respectively.

  7. The ORC1 cycle in human cells: I. cell cycle-regulated oscillation of human ORC1.

    PubMed

    Tatsumi, Yasutoshi; Ohta, Satoshi; Kimura, Hiroshi; Tsurimoto, Toshiki; Obuse, Chikashi

    2003-10-17

    Components of ORC (the origin recognition complex) are highly conserved among eukaryotes and are thought to play an essential role in the initiation of DNA replication. The level of the largest subunit of human ORC (ORC1) during the cell cycle was studied in several human cell lines with a specific antibody. In all cell lines, ORC1 levels oscillate: ORC1 starts to accumulate in mid-G1 phase, reaches a peak at the G1/S boundary, and decreases to a basal level in S phase. In contrast, the levels of other ORC subunits (ORCs 2-5) remain constant throughout the cell cycle. The oscillation of ORC1, or the ORC1 cycle, also occurs in cells expressing ORC1 ectopically from a constitutive promoter. Furthermore, the 26 S proteasome inhibitor MG132 blocks the decrease in ORC1, suggesting that the ORC1 cycle is mainly due to 26 S proteasome-dependent degradation. Arrest of the cell cycle in early S phase by hydroxyurea, aphidicolin, or thymidine treatment is associated with basal levels of ORC1, indicating that ORC1 proteolysis starts in early S phase and is independent of S phase progression. These observations indicate that the ORC1 cycle in human cells is highly linked with cell cycle progression, allowing the initiation of replication to be coordinated with the cell cycle and preventing origins from refiring. PMID:12909627

  8. Analysis of Cell Cycle Phase Response Captures the Synchronization Phenomena and Reveals a Novel Cell Cycle Network Topology

    NASA Astrophysics Data System (ADS)

    Li, Ying; Lin, Yihan; Scherer, Norbert; Dinner, Aaron

    2011-03-01

    Cell cycle progression requires a succession of temporally-regulated sub-processes, including chromosome replication and cell division, which are each controlled by their own regulatory modules. The modular design of cell cycle regulatory network allows robust environmental responses and evolutionary adaptations. It is emerging that some of the cell cycle modules involve their own autonomous periodic dynamics. As a consequence, the realization of robust coordination among these modules becomes challenging since each module could potentially run out of sync. We believe that an insight into this puzzle resides in the coupling between the contributing regulatory modules. Here, we measured the phase response curve (PRC) of the cell cycle oscillator by driving the expression of a master regulator of the cell cycle in a pulsatile manner and measuring the single cell phase response. We constructed a return map that quantitatively explains the synchronization phenomena that were caused by periodic chemical perturbation. To capture the measured phase response, we derived a minimalist coupled oscillator model that generalizes the basic topology of the cell cycle network. This diode-like coupling suggests that the cell is engineered to ensure complete coordination of constituent events with the cell cycle.

  9. Different cell cycle modulation by celecoxib at different concentrations.

    PubMed

    Kim, Young-Mee; Pyo, Hongryull

    2013-03-01

    Abstract Different cyclooxygenase (COX)-2 inhibitors were known to cause different cell cycle changes. We investigated whether this different effect on cell cycle change was due to concentration-dependent effect. We investigated the effects of celecoxib, a COX-2 selective inhibitor, on cell cycle regulation in irradiated cancer cells that express high or low levels of COX-2. Four stably COX-2 knocked-down or overexpressed cell lines were treated with various concentrations of celecoxib with or without radiation. Celecoxib differentially modulated the cell cycle according to the concentrations applied. G1 arrest was induced at lower concentrations, whereas G2/M arrest was induced at higher concentrations in each cell line tested. Radiation-induced G2/M arrest was enhanced at lower concentrations but reduced at higher concentrations. The cutoff values to divide lower and higher concentrations were cell-type specific. Celecoxib treatment activated Cdc25C and inhibited p21 expression in both unirradiated and irradiated cells, regardless of COX-2 expression. Apoptosis was induced in irradiated cells 48 hours after treatment with celecoxib dependent of COX-2. These results imply that celecoxib deactivates the G2 checkpoint via both Cdc25C- and p21-dependent pathways in irradiated cells, which subsequently die by secondary apoptosis. Cell cycle modulating effects in irradiated cells resulting from treatment with celecoxib may have clinical importance with regard to the potential application of celecoxib in cancer patients undergoing radiotherapy. PMID:23268707

  10. The Cell Cycle: An Activity Using Paper Plates to Represent Time Spent in Phases of the Cell Cycle

    ERIC Educational Resources Information Center

    Scherer, Yvette D.

    2014-01-01

    In this activity, students are given the opportunity to combine skills in math and geometry for a biology lesson in the cell cycle. Students utilize the data they collect and analyze from an online onion-root-tip activity to create a paper-plate time clock representing a 24-hour cell cycle. By dividing the paper plate into appropriate phases of…

  11. Cell Cycle Related Differentiation of Bone Marrow Cells into Lung Cells

    SciTech Connect

    Dooner, Mark; Aliotta, Jason M.; Pimental, Jeffrey; Dooner, Gerri J.; Abedi, Mehrdad; Colvin, Gerald; Liu, Qin; Weier, Heinz-Ulli; Dooner, Mark S.; Quesenberry, Peter J.

    2007-12-31

    Green-fluorescent protein (GFP) labeled marrow cells transplanted into lethally irradiated mice can be detected in the lungs of transplanted mice and have been shown to express lung specific proteins while lacking the expression of hematopoietic markers. We have studied marrow cells induced to transit cell cycle by exposure to IL-3, IL-6, IL-11 and steel factor at different times of culture corresponding to different phases of cell cycle. We have found that marrow cells at the G1/S interface have a 3-fold increase in cells which assume a lung phenotype and that this increase is no longer seen in late S/G2. These cells have been characterized as GFP{sup +} CD45{sup -} and GFP{sup +} cytokeratin{sup +}. Thus marrow cells with the capacity to convert into cells with a lung phenotype after transplantation show a reversible increase with cytokine induced cell cycle transit. Previous studies have shown the phenotype of bone marrow stem cells fluctuates reversibly as these cells traverse cell cycle, leading to a continuum model of stem cell regulation. The present studies indicate that marrow stem cell production of nonhematopoietic cells also fluctuates on a continuum.

  12. Cycle life test. [of secondary spacecraft cells

    NASA Technical Reports Server (NTRS)

    Harkness, J. D.

    1977-01-01

    Statistical information concerning cell performance characteristics and limitations of secondary spacecraft cells is presented. Weaknesses in cell design as well as battery weaknesses encountered in various satellite programs are reported. Emphasis is placed on improving the reliability of space batteries.

  13. Cell cycle control, checkpoint mechanisms, and genotoxic stress.

    PubMed Central

    Shackelford, R E; Kaufmann, W K; Paules, R S

    1999-01-01

    The ability of cells to maintain genomic integrity is vital for cell survival and proliferation. Lack of fidelity in DNA replication and maintenance can result in deleterious mutations leading to cell death or, in multicellular organisms, cancer. The purpose of this review is to discuss the known signal transduction pathways that regulate cell cycle progression and the mechanisms cells employ to insure DNA stability in the face of genotoxic stress. In particular, we focus on mammalian cell cycle checkpoint functions, their role in maintaining DNA stability during the cell cycle following exposure to genotoxic agents, and the gene products that act in checkpoint function signal transduction cascades. Key transitions in the cell cycle are regulated by the activities of various protein kinase complexes composed of cyclin and cyclin-dependent kinase (Cdk) molecules. Surveillance control mechanisms that check to ensure proper completion of early events and cellular integrity before initiation of subsequent events in cell cycle progression are referred to as cell cycle checkpoints and can generate a transient delay that provides the cell more time to repair damage before progressing to the next phase of the cycle. A variety of cellular responses are elicited that function in checkpoint signaling to inhibit cyclin/Cdk activities. These responses include the p53-dependent and p53-independent induction of Cdk inhibitors and the p53-independent inhibitory phosphorylation of Cdk molecules themselves. Eliciting proper G1, S, and G2 checkpoint responses to double-strand DNA breaks requires the function of the Ataxia telangiectasia mutated gene product. Several human heritable cancer-prone syndromes known to alter DNA stability have been found to have defects in checkpoint surveillance pathways. Exposures to several common sources of genotoxic stress, including oxidative stress, ionizing radiation, UV radiation, and the genotoxic compound benzo[a]pyrene, elicit cell cycle

  14. Adenosine induces G2/M cell-cycle arrest by inhibiting cell mitosis progression.

    PubMed

    Jia, Kun-Zhi; Tang, Bo; Yu, Lu; Cheng, Wei; Zhang, Rong; Zhang, Jian-Fa; Hua, Zi-Chun

    2010-01-01

    Cellular adenosine accumulates under stress conditions. Few papers on adenosine are concerned with its function in the cell cycle. The cell cycle is the essential mechanism by which all living things reproduce and the target machinery when cells encounter stresses, so it is necessary to examine the relationship between adenosine and the cell cycle. In the present study, adenosine was found to induce G-2/M cell-cycle arrest. Furthermore, adenosine was found to modulate the expression of some important proteins in the cell cycle, such as cyclin B and p21, and to inhibit the transition of metaphase to anaphase in mitosis. PMID:19947935

  15. In situ cell cycle phase determination using Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Oshima, Yusuke; Takenaka, Tatsuji; Sato, Hidetoshi; Furihata, Chie

    2010-02-01

    Raman spectroscopy is a powerful tool for analysis of the chemical composition in living tissue and cells without destructive processes such as fixation, immunostaining, and fluorescence labeling. Raman microspectroscopic technique enables us to obtain a high quality spectrum from a single living cell. We demonstrated in situ cell cycle analysis with Raman microspectroscopy with the excitation wavelength of 532 nm. Cell cycle phases, G0/G1 and G2/M were able to be identified in the present study. The result of in situ Raman analysis was evaluated with flow cytometry analysis. Although the Raman spectra of living cells showed complex patterns during cell cycle, several Raman bands could be useful as markers for the cell cycle identification. A single cell analysis using Raman microspectroscopy predicted a possibility to observe directly molecular dynamics intracellular molecules of proteins, lipids and nucleic acids. Our current study focused on cytoplasm region and resonant Raman signals of cytochrome c in mitochondrion, and discussed how the Raman signals from cellular components contribute to the Raman spectral changes in cell cycle change in the human living cell (lung cancer cell).

  16. Subversion of cell cycle regulatory mechanisms by HIV

    PubMed Central

    Rice, Andrew P.; Kimata, Jason T.

    2015-01-01

    To establish a productive infection, HIV-1 must counteract cellular innate immune mechanisms and redirect cellular process towards viral replication. Recent studies have discovered that HIV-1 and other primate immunodeficiency viruses subvert cell cycle regulatory mechanisms to achieve these ends. The viral Vpr and Vpx proteins target cell cycle controls to counter innate immunity. The cell cycle-related protein Cyclin L2 is also utilized to counter innate immunity. The viral Tat protein utilizes Cyclin T1 to activated proviral transcription, and regulation of Cyclin T1 levels in CD4+ T cells has important consequences for viral replication and latency. This review will summarize this emerging evidence that primate immunodeficiency viruses subvert cell cycle regulatory mechanisms to enhance replication. PMID:26067601

  17. Endothelial cell subpopulations in vitro: cell volume, cell cycle, and radiosensitivity

    SciTech Connect

    Rubin, D.B.; Drab, E.A.; Bauer, K.D. )

    1989-10-01

    Vascular endothelial cells (EC) are important clinical targets of radiation and other forms of free radical/oxidant stresses. In this study, we found that the extent of endothelial damage may be determined by the different cytotoxic responses of EC subpopulations. The following characteristics of EC subpopulations were examined: (1) cell volume; (2) cell cycle position; and (3) cytotoxic indexes for both acute cell survival and proliferative capacity after irradiation (137Cs, gamma, 0-10 Gy). EC cultured from bovine aortas were separated by centrifugal elutriation into subpopulations of different cell volumes. Through flow cytometry, we found that cell volume was related to the cell cycle phase distribution. The smallest EC were distributed in G1 phase and the larger cells were distributed in either early S, middle S, or late S + G2M phases. Cell cycle phase at the time of irradiation was not associated with acute cell loss. However, distribution in the cell cycle did relate to cell survival based on proliferative capacity (P less than 0.01). The order of increasing radioresistance was cells in G1 (D0 = 110 cGy), early S (135 cGy), middle S (145 cGy), and late S + G2M phases (180 cGy). These findings (1) suggest an age-related response to radiation in a nonmalignant differentiated cell type and (2) demonstrate EC subpopulations in culture.

  18. Staphylococcal Enterotoxin O Exhibits Cell Cycle Modulating Activity

    PubMed Central

    Hodille, Elisabeth; Alekseeva, Ludmila; Berkova, Nadia; Serrier, Asma; Badiou, Cedric; Gilquin, Benoit; Brun, Virginie; Vandenesch, François; Terman, David S.; Lina, Gerard

    2016-01-01

    Maintenance of an intact epithelial barrier constitutes a pivotal defense mechanism against infections. Staphylococcus aureus is a versatile pathogen that produces multiple factors including exotoxins that promote tissue alterations. The aim of the present study is to investigate the cytopathic effect of staphylococcal exotoxins SEA, SEG, SEI, SElM, SElN and SElO on the cell cycle of various human cell lines. Among all tested exotoxins only SEIO inhibited the proliferation of a broad panel of human tumor cell lines in vitro. Evaluation of a LDH release and a DNA fragmentation of host cells exposed to SEIO revealed that the toxin does not induce necrosis or apoptosis. Analysis of the DNA content of tumor cells synchronized by serum starvation after exposure to SEIO showed G0/G1 cell cycle delay. The cell cycle modulating feature of SEIO was confirmed by the flow cytometry analysis of synchronized cells exposed to supernatants of isogenic S. aureus strains wherein only supernatant of the SElO producing strain induced G0/G1 phase delay. The results of yeast-two-hybrid analysis indicated that SEIO’s potential partner is cullin-3, involved in the transition from G1 to S phase. In conclusion, we provide evidence that SEIO inhibits cell proliferation without inducing cell death, by delaying host cell entry into the G0/G1 phase of the cell cycle. We speculate that this unique cell cycle modulating feature allows SEIO producing bacteria to gain advantage by arresting the cell cycle of target cells as part of a broader invasive strategy. PMID:27148168

  19. Staphylococcal Enterotoxin O Exhibits Cell Cycle Modulating Activity.

    PubMed

    Hodille, Elisabeth; Alekseeva, Ludmila; Berkova, Nadia; Serrier, Asma; Badiou, Cedric; Gilquin, Benoit; Brun, Virginie; Vandenesch, François; Terman, David S; Lina, Gerard

    2016-01-01

    Maintenance of an intact epithelial barrier constitutes a pivotal defense mechanism against infections. Staphylococcus aureus is a versatile pathogen that produces multiple factors including exotoxins that promote tissue alterations. The aim of the present study is to investigate the cytopathic effect of staphylococcal exotoxins SEA, SEG, SEI, SElM, SElN and SElO on the cell cycle of various human cell lines. Among all tested exotoxins only SEIO inhibited the proliferation of a broad panel of human tumor cell lines in vitro. Evaluation of a LDH release and a DNA fragmentation of host cells exposed to SEIO revealed that the toxin does not induce necrosis or apoptosis. Analysis of the DNA content of tumor cells synchronized by serum starvation after exposure to SEIO showed G0/G1 cell cycle delay. The cell cycle modulating feature of SEIO was confirmed by the flow cytometry analysis of synchronized cells exposed to supernatants of isogenic S. aureus strains wherein only supernatant of the SElO producing strain induced G0/G1 phase delay. The results of yeast-two-hybrid analysis indicated that SEIO's potential partner is cullin-3, involved in the transition from G1 to S phase. In conclusion, we provide evidence that SEIO inhibits cell proliferation without inducing cell death, by delaying host cell entry into the G0/G1 phase of the cell cycle. We speculate that this unique cell cycle modulating feature allows SEIO producing bacteria to gain advantage by arresting the cell cycle of target cells as part of a broader invasive strategy. PMID:27148168

  20. Impact of the cell division cycle on gene circuits

    NASA Astrophysics Data System (ADS)

    Bierbaum, Veronika; Klumpp, Stefan

    2015-12-01

    In growing cells, protein synthesis and cell growth are typically not synchronous, and, thus, protein concentrations vary over the cell division cycle. We have developed a theoretical description of genetic regulatory systems in bacteria that explicitly considers the cell division cycle to investigate its impact on gene expression. We calculate the cell-to-cell variations arising from cells being at different stages in the division cycle for unregulated genes and for basic regulatory mechanisms. These variations contribute to the extrinsic noise observed in single-cell experiments, and are most significant for proteins with short lifetimes. Negative autoregulation buffers against variation of protein concentration over the division cycle, but the effect is found to be relatively weak. Stronger buffering is achieved by an increased protein lifetime. Positive autoregulation can strongly amplify such variation if the parameters are set to values that lead to resonance-like behaviour. For cooperative positive autoregulation, the concentration variation over the division cycle diminishes the parameter region of bistability and modulates the switching times between the two stable states. The same effects are seen for a two-gene mutual-repression toggle switch. By contrast, an oscillatory circuit, the repressilator, is only weakly affected by the division cycle.

  1. The Mammalian Cell Cycle Regulates Parvovirus Nuclear Capsid Assembly

    PubMed Central

    Riolobos, Laura; Domínguez, Carlos; Kann, Michael; Almendral, José M.

    2015-01-01

    It is unknown whether the mammalian cell cycle could impact the assembly of viruses maturing in the nucleus. We addressed this question using MVM, a reference member of the icosahedral ssDNA nuclear parvoviruses, which requires cell proliferation to infect by mechanisms partly understood. Constitutively expressed MVM capsid subunits (VPs) accumulated in the cytoplasm of mouse and human fibroblasts synchronized at G0, G1, and G1/S transition. Upon arrest release, VPs translocated to the nucleus as cells entered S phase, at efficiencies relying on cell origin and arrest method, and immediately assembled into capsids. In synchronously infected cells, the consecutive virus life cycle steps (gene expression, proteins nuclear translocation, capsid assembly, genome replication and encapsidation) proceeded tightly coupled to cell cycle progression from G0/G1 through S into G2 phase. However, a DNA synthesis stress caused by thymidine irreversibly disrupted virus life cycle, as VPs became increasingly retained in the cytoplasm hours post-stress, forming empty capsids in mouse fibroblasts, thereby impairing encapsidation of the nuclear viral DNA replicative intermediates. Synchronously infected cells subjected to density-arrest signals while traversing early S phase also blocked VPs transport, resulting in a similar misplaced cytoplasmic capsid assembly in mouse fibroblasts. In contrast, thymidine and density arrest signals deregulating virus assembly neither perturbed nuclear translocation of the NS1 protein nor viral genome replication occurring under S/G2 cycle arrest. An underlying mechanism of cell cycle control was identified in the nuclear translocation of phosphorylated VPs trimeric assembly intermediates, which accessed a non-conserved route distinct from the importin α2/β1 and transportin pathways. The exquisite cell cycle-dependence of parvovirus nuclear capsid assembly conforms a novel paradigm of time and functional coupling between cellular and virus life

  2. A revision of the Dictyostelium discoideum cell cycle.

    PubMed

    Weijer, C J; Duschl, G; David, C N

    1984-08-01

    We have investigated the Dictyostelium discoideum cell cycle using fluorometric determinations of cellular and nuclear DNA contents in exponentially growing cultures and in synchronized cultures. Almost all cells are in G2 during both growth and development. There is no G1 period, S phase is less than 0.5 h, and G2 has an average length of 6.5 h in axenically grown cells. Mitochondrial DNA, which constitutes about half of the total DNA, is replicated throughout the cell cycle. There is no difference in the nuclear DNA contents of axenically grown and bacterially grown cells. Thus the long cell cycle in axenically grown cells is due to a lengthening of the G2 phase. PMID:6389576

  3. Configuration and performance of fuel cell-combined cycle options

    SciTech Connect

    Rath, L.K.; Le, P.H.; Sudhoff, F.A.

    1995-12-31

    The natural gas, indirect-fired, carbonate fuel-cell-bottomed, combined cycle (NG-IFCFC) and the topping natural-gas/solid-oxide fuel-cell combined cycle (NG-SOFCCC) are introduced as novel power-plant systems for the distributed power and on-site markets in the 20-200 mega-watt (MW) size range. The novel NG-IFCFC power-plant system configures the ambient pressure molten-carbonate fuel cell (MCFC) with a gas turbine, air compressor, combustor, and ceramic heat exchanger: The topping solid-oxide fuel-cell (SOFC) combined cycle is not new. The purpose of combining a gas turbine with a fuel cell was to inject pressurized air into a high-pressure fuel cell and to reduce the size, and thereby, to reduce the cost of the fuel cell. Today, the SOFC remains pressurized, but excess chemical energy is combusted and the thermal energy is utilized by the Carnot cycle heat engine to complete the system. ASPEN performance results indicate efficiencies and heat rates for the NG-IFCFC or NG-SOFCCC are better than conventional fuel cell or gas turbine steam-bottomed cycles, but with smaller and less expensive components. Fuel cell and gas turbine systems should not be viewed as competitors, but as an opportunity to expand to markets where neither gas turbines nor fuel cells alone would be commercially viable. Non-attainment areas are the most likely markets.

  4. Estrogen receptor alpha is cell cycle-regulated and regulates the cell cycle in a ligand-dependent fashion.

    PubMed

    JavanMoghadam, Sonia; Weihua, Zhang; Hunt, Kelly K; Keyomarsi, Khandan

    2016-06-17

    Estrogen receptor alpha (ERα) has been implicated in several cell cycle regulatory events and is an important predictive marker of disease outcome in breast cancer patients. Here, we aimed to elucidate the mechanism through which ERα influences proliferation in breast cancer cells. Our results show that ERα protein is cell cycle-regulated in human breast cancer cells and that the presence of 17-β-estradiol (E2) in the culture medium shortened the cell cycle significantly (by 4.5 hours, P < 0.05) compared with unliganded conditions. The alterations in cell cycle duration were observed in the S and G2/M phases, whereas the G1 phase was indistinguishable under liganded and unliganded conditions. In addition, ERα knockdown in MCF-7 cells accelerated mitotic exit, whereas transfection of ERα-negative MDA-MB-231 cells with exogenous ERα significantly shortened the S and G2/M phases (by 9.1 hours, P < 0.05) compared with parental cells. Finally, treatment of MCF-7 cells with antiestrogens revealed that tamoxifen yields a slower cell cycle progression through the S and G2/M phases than fulvestrant does, presumably because of the destabilizing effect of fulvestrant on ERα protein. Together, these results show that ERα modulates breast cancer cell proliferation by regulating events during the S and G2/M phases of the cell cycle in a ligand-dependent fashion. These results provide the rationale for an effective treatment strategy that includes a cell cycle inhibitor in combination with a drug that lowers estrogen levels, such as an aromatase inhibitor, and an antiestrogen that does not result in the degradation of ERα, such as tamoxifen. PMID:27049344

  5. Apicomplexan cell cycle flexibility: centrosome controls the clutch

    PubMed Central

    Chen, Chun-Ti; Gubbels, Marc-Jan

    2015-01-01

    The centrosome serves as a central hub coordinating multiple cellular events in eukaryotes. A recent study in Toxoplasma gondii revealed a unique bipartite structure of the centrosome, which coordinates the nuclear cycle (S-phase and mitosis) and budding cycle (cytokinesis) of the parasite, and deciphers the principle behind flexible apicomplexan cell division modes. PMID:25899747

  6. Looking at plant cell cycle from the chromatin window

    PubMed Central

    Desvoyes, Bénédicte; Fernández-Marcos, María; Sequeira-Mendes, Joana; Otero, Sofía; Vergara, Zaida; Gutierrez, Crisanto

    2014-01-01

    The cell cycle is defined by a series of complex events, finely coordinated through hormonal, developmental and environmental signals, which occur in a unidirectional manner and end up in producing two daughter cells. Accumulating evidence reveals that chromatin is not a static entity throughout the cell cycle. In fact, there are many changes that include nucleosome remodeling, histone modifications, deposition and exchange, among others. Interestingly, it is possible to correlate the occurrence of several of these chromatin-related events with specific processes necessary for cell cycle progression, e.g., licensing of DNA replication origins, the E2F-dependent transcriptional wave in G1, the activation of replication origins in S-phase, the G2-specific transcription of genes required for mitosis or the chromatin packaging occurring in mitosis. Therefore, an emerging view is that chromatin dynamics must be considered as an intrinsic part of cell cycle regulation. In this article, we review the main features of several key chromatin events that occur at defined times throughout the cell cycle and discuss whether they are actually controlling the transit through specific cell cycle stages. PMID:25120553

  7. Mathematical model of the cell division cycle of fission yeast.

    PubMed

    Novak, Bela; Pataki, Zsuzsa; Ciliberto, Andrea; Tyson, John J.

    2001-03-01

    Much is known about the genes and proteins controlling the cell cycle of fission yeast. Can these molecular components be spun together into a consistent mechanism that accounts for the observed behavior of growth and division in fission yeast cells? To answer this question, we propose a mechanism for the control system, convert it into a set of 14 differential and algebraic equations, study these equations by numerical simulation and bifurcation theory, and compare our results to the physiology of wild-type and mutant cells. In wild-type cells, progress through the cell cycle (G1-->S-->G2-->M) is related to cyclic progression around a hysteresis loop, driven by cell growth and chromosome alignment on the metaphase plate. However, the control system operates much differently in double-mutant cells, wee1(-) cdc25Delta, which are defective in progress through the latter half of the cell cycle (G2 and M phases). These cells exhibit "quantized" cycles (interdivision times clustering around 90, 160, and 230 min). We show that these quantized cycles are associated with a supercritical Hopf bifurcation in the mechanism, when the wee1 and cdc25 genes are disabled. (c) 2001 American Institute of Physics. PMID:12779461

  8. Genome-wide examination of myoblast cell cycle withdrawal duringdifferentiation

    SciTech Connect

    Shen, Xun; Collier, John Michael; Hlaing, Myint; Zhang, Leanne; Delshad, Elizabeth H.; Bristow, James; Bernstein, Harold S.

    2002-12-02

    Skeletal and cardiac myocytes cease division within weeks of birth. Although skeletal muscle retains limited capacity for regeneration through recruitment of satellite cells, resident populations of adult myocardial stem cells have not been identified. Because cell cycle withdrawal accompanies myocyte differentiation, we hypothesized that C2C12 cells, a mouse myoblast cell line previously used to characterize myocyte differentiation, also would provide a model for studying cell cycle withdrawal during differentiation. C2C12 cells were differentiated in culture medium containing horse serum and harvested at various time points to characterize the expression profiles of known cell cycle and myogenic regulatory factors by immunoblot analysis. BrdU incorporation decreased dramatically in confluent cultures 48 hr after addition of horse serum, as cells started to form myotubes. This finding was preceded by up-regulation of MyoD, followed by myogenin, and activation of Bcl-2. Cyclin D1 was expressed in proliferating cultures and became undetectable in cultures containing 40 percent fused myotubes, as levels of p21(WAF1/Cip1) increased and alpha-actin became detectable. Because C2C12 myoblasts withdraw from the cell cycle during myocyte differentiation following a course that recapitulates this process in vivo, we performed a genome-wide screen to identify other gene products involved in this process. Using microarrays containing approximately 10,000 minimally redundant mouse sequences that map to the UniGene database of the National Center for Biotechnology Information, we compared gene expression profiles between proliferating, differentiating, and differentiated C2C12 cells and verified candidate genes demonstrating differential expression by RT-PCR. Cluster analysis of differentially expressed genes revealed groups of gene products involved in cell cycle withdrawal, muscle differentiation, and apoptosis. In addition, we identified several genes, including DDAH2 and Ly

  9. The circadian clock and cell cycle: Interconnected biological circuits

    PubMed Central

    Masri, Selma; Cervantes, Marlene; Sassone-Corsi, Paolo

    2014-01-01

    The circadian clock governs biological timekeeping on a systemic level, helping to regulate and maintain physiological processes, including endocrine and metabolic pathways with a periodicity of 24-hours. Disruption within the circadian clock machinery has been linked to numerous pathological conditions, including cancer, suggesting that clock-dependent regulation of the cell cycle is an essential control mechanism. This review will highlight recent advances on the ‘gating’ controls of the circadian clock at various checkpoints of the cell cycle and also how the cell cycle can influence biological rhythms. The reciprocal influence that the circadian clock and cell cycle exert on each other suggests that these intertwined biological circuits are essential and multiple regulatory/control steps have been instated to ensure proper timekeeping. PMID:23969329

  10. A hybrid model of cell cycle in mammals.

    PubMed

    Behaegel, Jonathan; Comet, Jean-Paul; Bernot, Gilles; Cornillon, Emilien; Delaunay, Franck

    2016-02-01

    Time plays an essential role in many biological systems, especially in cell cycle. Many models of biological systems rely on differential equations, but parameter identification is an obstacle to use differential frameworks. In this paper, we present a new hybrid modeling framework that extends René Thomas' discrete modeling. The core idea is to associate with each qualitative state "celerities" allowing us to compute the time spent in each state. This hybrid framework is illustrated by building a 5-variable model of the mammalian cell cycle. Its parameters are determined by applying formal methods on the underlying discrete model and by constraining parameters using timing observations on the cell cycle. This first hybrid model presents the most important known behaviors of the cell cycle, including quiescent phase and endoreplication. PMID:26708052

  11. Large scale spontaneous synchronization of cell cycles in amoebae

    NASA Astrophysics Data System (ADS)

    Segota, Igor; Boulet, Laurent; Franck, Carl

    2014-03-01

    Unicellular eukaryotic amoebae Dictyostelium discoideum are generally believed to grow in their vegetative state as single cells until starvation, when their collective aspect emerges and they differentiate to form a multicellular slime mold. While major efforts continue to be aimed at their starvation-induced social aspect, our understanding of population dynamics and cell cycle in the vegetative growth phase has remained incomplete. We show that substrate-growtn cell populations spontaneously synchronize their cell cycles within several hours. These collective population-wide cell cycle oscillations span millimeter length scales and can be completely suppressed by washing away putative cell-secreted signals, implying signaling by means of a diffusible growth factor or mitogen. These observations give strong evidence for collective proliferation behavior in the vegetative state and provide opportunities for synchronization theories beyond classic Kuramoto models.

  12. Molecular markers and cell cycle inhibitors show the importance of cell cycle progression in nematode-induced galls and syncytia.

    PubMed Central

    de Almeida Engler, J; De Vleesschauwer, V; Burssens, S; Celenza, J L; Inzé, D; Van Montagu, M; Engler, G; Gheysen, G

    1999-01-01

    Root knot and cyst nematodes induce large multinucleated cells, designated giant cells and syncytia, respectively, in plant roots. We have used molecular markers to study cell cycle progression in these specialized feeding cells. In situ hybridization with two cyclin-dependent kinases and two cyclins showed that these genes were induced very early in galls and syncytia and that the feeding cells progressed through the G2 phase. By using cell cycle blockers, DNA synthesis and progression through the G2 phase, or mitosis, were shown to be essential for gall and syncytium establishment. When mitosis was blocked, further gall development was arrested. This result demonstrates that cycles of endoreduplication or other methods of DNA amplification are insufficient to drive giant cell expansion. On the other hand, syncytium development was much less affected by a mitotic block; however, syncytium expansion was inhibited. PMID:10330466

  13. Variety in intracellular diffusion during the cell cycle

    NASA Astrophysics Data System (ADS)

    Selhuber-Unkel, Christine; Yde, Pernille; Berg-Sørensen, Kirstine; Oddershede, Lene B.

    2009-06-01

    During the cell cycle, the organization of the cytoskeletal network undergoes dramatic changes. In order to reveal possible changes of the viscoelastic properties in the intracellular space during the cell cycle we investigated the diffusion of endogenous lipid granules within the fission yeast Schizosaccharomyces Pombe using optical tweezers. The cell cycle was divided into interphase and mitotic cell division, and the mitotic cell division was further subdivided in its stages. During all stages of the cell cycle, the granules predominantly underwent subdiffusive motion, characterized by an exponent α that is also linked to the viscoelastic moduli of the cytoplasm. The exponent α was significantly smaller during interphase than during any stage of the mitotic cell division, signifying that the cytoplasm was more elastic during interphase than during division. We found no significant differences in the subdiffusive exponents from granules measured in different stages of cell division. Also, our results for the exponent displayed no significant dependence on the position of the granule within the cell. The observation that the cytoplasm is more elastic during interphase than during mitotic cell division is consistent with the fact that elastic cytoskeletal elements such as microtubules are less abundantly present during cell division than during interphase.

  14. Bax alpha perturbs T cell development and affects cell cycle entry of T cells.

    PubMed Central

    Brady, H J; Gil-Gómez, G; Kirberg, J; Berns, A J

    1996-01-01

    Bax alpha can heterodimerize with Bcl-2 and Bcl-X(L), countering their effects, as well as promoting apoptosis on overexpression. We show that bax alpha transgenic mice have greatly reduced numbers of mature T cells, which results from an impaired positive selection in the thymus. This perturbation in positive selection is accompanied by an increase in the number of cycling thymocytes. Further to this, mature T cells overexpressing Bax alpha have lower levels of p27Kip1 and enter S phase more rapidly in response to interleukin-2 stimulation than do control T cells, while the converse is true of bcl-2 transgenic T cells. These data indicate that apoptotic regulatory proteins can modulate the level of cell cycle-controlling proteins and thereby directly impact on the cell cycle. Images PMID:9003775

  15. Cell cycle deregulation by methyl isocyanate: Implications in liver carcinogenesis.

    PubMed

    Panwar, Hariom; Raghuram, Gorantla V; Jain, Deepika; Ahirwar, Alok K; Khan, Saba; Jain, Subodh K; Pathak, Neelam; Banerjee, Smita; Maudar, Kewal K; Mishra, Pradyumna K

    2014-03-01

    Liver is often exposed to plethora of chemical toxins. Owing to its profound physiological role and central function in metabolism and homeostasis, pertinent succession of cell cycle in liver epithelial cells is of prime importance to maintain cellular proliferation. Although recent evidence has displayed a strong association between exposures to methyl isocyanate (MIC), one of the most toxic isocyanates, and neoplastic transformation, molecular characterization of the longitudinal effects of MIC on cell cycle regulation has never been performed. Here, we sequentially delineated the status of different proteins arbitrating the deregulation of cell cycle in liver epithelial cells treated with MIC. Our data reaffirms the oncogenic capability of MIC with elevated DNA damage response proteins pATM and γ-H2AX, deregulation of DNA damage check point genes CHK1 and CHK2, altered expression of p53 and p21 proteins involved in cell cycle arrest with perturbation in GADD-45 expression in the treated cells. Further, alterations in cyclin A, cyclin E, CDK2 levels along with overexpression of mitotic spindle checkpoints proteins Aurora A/B, centrosomal pericentrin protein, chromosomal aberrations, and loss of Pot1a was observed. Thus, MIC impacts key proteins involved in cell cycle regulation to trigger genomic instability as a possible mechanism of developmental basis of liver carcinogenesis. PMID:22223508

  16. Keith's MAGIC: Cloning and the Cell Cycle.

    PubMed

    Wells, D N

    2013-10-01

    Abstract Professor Keith Campbell's critical contribution to the discovery that a somatic cell from an adult animal can be fully reprogrammed by oocyte factors to form a cloned individual following nuclear transfer (NT)(Wilmut et al., 1997 ) overturned a dogma concerning the reversibility of cell fate that many scientists had considered to be biologically impossible. This seminal experiment proved the totipotency of adult somatic nuclei and finally confirmed that adult cells could differentiate without irreversible changes to the genetic material. PMID:24020700

  17. Ammonium Ion Requirement for the Cell Cycle of Mycobacterium avium

    PubMed Central

    McCarthy, Charlotte

    1978-01-01

    Mycobacterium avium has a defined cell cycle in which small cells elongate to about five times their original length and then divide by fragmentation. The nitrogen requirement for production of maximal number of colony-forming units was assessed by varying concentrations and kinds of nitrogen source in the medium. Ferric ammonium citrate at a concentration in 7H10 medium of 0.17 μmol/ml or ammonium chloride at 0.25 μmol/ml as the nitrogen source permitted the cells to elongate and to undergo limited division, with the final culture at 4 × 107 colony-forming units per ml. Ammonium chloride at 2.5 μmol/ml or glutamine at 1.37 μmol/ml supported completion of the cell cycle with final colony-forming units at about 5 × 108/ml. Other amino acids, including glutamic acid, at 2.5 μmol/ml did not support completion of the cell cycle, although in most cases an intermediate number of colony-forming units per milliliter were formed. Limited uptake of [14C]glutamic acid and uptake of [14C]glutamine were not detectable until cell fission began. Cells not limited for nitrogen took up five times as much 35S during fission as limited cells did during the same time. The nonlimited cells contained 10 times as much sulfolipid as the nitrogen-limited cells at the end of the cell cycle. These results demonstrate that rapidly dividing cells of M. avium utilize amino acids and sulfur and also synthesize sulfolipids in events that are apparently separable from metabolic functions of elongating cells. The results are contrasted with those found for other mycobacteria in which no cell cycle has been demonstrated. Images PMID:624592

  18. Thermally regenerative hydrogen/oxygen fuel cell power cycles

    NASA Technical Reports Server (NTRS)

    Morehouse, J. H.

    1986-01-01

    Two innovative thermodynamic power cycles are analytically examined for future engineering feasibility. The power cycles use a hydrogen-oxygen fuel cell for electrical energy production and use the thermal dissociation of water for regeneration of the hydrogen and oxygen. The TDS (thermal dissociation system) uses a thermal energy input at over 2000 K to thermally dissociate the water. The other cycle, the HTE (high temperature electrolyzer) system, dissociates the water using an electrolyzer operating at high temperature (1300 K) which receives its electrical energy from the fuel cell. The primary advantages of these cycles is that they are basically a no moving parts system, thus having the potential for long life and high reliability, and they have the potential for high thermal efficiency. Both cycles are shown to be classical heat engines with ideal efficiency close to Carnot cycle efficiency. The feasibility of constructing actual cycles is investigated by examining process irreversibilities and device efficiencies for the two types of cycles. The results show that while the processes and devices of the 2000 K TDS exceed current technology limits, the high temperature electrolyzer system appears to be a state-of-the-art technology development. The requirements for very high electrolyzer and fuel cell efficiencies are seen as determining the feasbility of the HTE system, and these high efficiency devices are currently being developed. It is concluded that a proof-of-concept HTE system experiment can and should be conducted.

  19. p53 and Cell Cycle Effects After DNA Damage

    PubMed Central

    Senturk, Emir; Manfredi, James J.

    2016-01-01

    Flow cytometry, a valuable technique that employs the principles of light scattering, light excitation, and emission of fluorochrome molecules, can be used to assess the cell cycle position of individual cells based on DNA content. After the permeabilization of cells, the DNA can be stained with a fluorescent dye. Cells which have a 2N amount of DNA can be distinguished from cells with a 4N amount of DNA, making flow cytometry a very useful tool for the analysis of cell cycle checkpoints following DNA damage. A critical feature of the cellular response to DNA damage is the ability to pause and repair the damage so that consequential mutations are not passed along to daughter generations of cells. If cells arrest prior to DNA replication, they will contain a 2N amount of DNA, whereas arrest after replication but before mitosis will result in a 4N amount of DNA. Using this technique, the role that p53 plays in cell cycle checkpoints following DNA damage can be evaluated based on changes in the profile of the G1, S, and G2/M phases of the cell cycle. PMID:23150436

  20. Classic “broken cell” techniques and newer live cell methods for cell cycle assessment

    PubMed Central

    Henderson, Lindsay; Bortone, Dante S.; Lim, Curtis

    2013-01-01

    Many common, important diseases are either caused or exacerbated by hyperactivation (e.g., cancer) or inactivation (e.g., heart failure) of the cell division cycle. A better understanding of the cell cycle is critical for interpreting numerous types of physiological changes in cells. Moreover, new insights into how to control it will facilitate new therapeutics for a variety of diseases and new avenues in regenerative medicine. The progression of cells through the four main phases of their division cycle [G0/G1, S (DNA synthesis), G2, and M (mitosis)] is a highly conserved process orchestrated by several pathways (e.g., transcription, phosphorylation, nuclear import/export, and protein ubiquitination) that coordinate a core cell cycle pathway. This core pathway can also receive inputs that are cell type and cell niche dependent. “Broken cell” methods (e.g., use of labeled nucleotide analogs) to assess for cell cycle activity have revealed important insights regarding the cell cycle but lack the ability to assess living cells in real time (longitudinal studies) and with single-cell resolution. Moreover, such methods often require cell synchronization, which can perturb the pathway under study. Live cell cycle sensors can be used at single-cell resolution in living cells, intact tissue, and whole animals. Use of these more recently available sensors has the potential to reveal physiologically relevant insights regarding the normal and perturbed cell division cycle. PMID:23392113

  1. NUTRIENT REGULATION OF CELL CYCLE PROGRESSION

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cell replication is tightly controlled in normal tissues and aberrant during disease progression, such as in tumorigenesis. The replication of cells can be divided into four distinct phases: Gap 1 (G1), synthesis (S), gap 2 (G2), and mitosis (M). The progression from one phase to the next is intrica...

  2. The Timing of T Cell Priming and Cycling

    PubMed Central

    Obst, Reinhard

    2015-01-01

    The proliferation of specific lymphocytes is the central tenet of the clonal selection paradigm. Antigen recognition by T cells triggers a series of events that produces expanded clones of differentiated effector cells. TCR signaling events are detectable within seconds and minutes and are likely to continue for hours and days in vivo. Here, I review the work done on the importance of TCR signals in the later part of the expansion phase of the primary T cell response, primarily regarding the regulation of the cell cycle in CD4+ and CD8+ cells. The results suggest a degree of programing by early signals for effector differentiation, particularly in the CD8+ T cell compartment, with optimal expansion supported by persistent antigen presentation later on. Differences to CD4+ T cell expansion and new avenues toward a molecular understanding of cell cycle regulation in lymphocytes are discussed. PMID:26594213

  3. Targeting the cancer cell cycle by cold atmospheric plasma

    NASA Astrophysics Data System (ADS)

    Volotskova, O.; Hawley, T. S.; Stepp, M. A.; Keidar, M.

    2012-09-01

    Cold atmospheric plasma (CAP), a technology based on quasi-neutral ionized gas at low temperatures, is currently being evaluated as a new highly selective alternative addition to existing cancer therapies. Here, we present a first attempt to identify the mechanism of CAP action. CAP induced a robust ~2-fold G2/M increase in two different types of cancer cells with different degrees of tumorigenicity. We hypothesize that the increased sensitivity of cancer cells to CAP treatment is caused by differences in the distribution of cancer cells and normal cells within the cell cycle. The expression of γH2A.X (pSer139), an oxidative stress reporter indicating S-phase damage, is enhanced specifically within CAP treated cells in the S phase of the cell cycle. Together with a significant decrease in EdU-incorporation after CAP, these data suggest that tumorigenic cancer cells are more susceptible to CAP treatment.

  4. The Dynamical Mechanisms of the Cell Cycle Size Checkpoint

    NASA Astrophysics Data System (ADS)

    Feng, Shi-Fu; Yan, Jie; Liu, Zeng-Rong; Yang, Ling

    2012-10-01

    Cell division must be tightly coupled to cell growth in order to maintain cell size, whereas the mechanisms of how initialization of mitosis is regulated by cell size remain to be elucidated. We develop a mathematical model of the cell cycle, which incorporates cell growth to investigate the dynamical properties of the size checkpoint in embryos of Xenopus laevis. We show that the size checkpoint is naturally raised from a saddle-node bifurcation, and in a mutant case, the cell loses its size control ability due to the loss of this saddle-node point.

  5. NONO couples the circadian clock to the cell cycle

    PubMed Central

    Kowalska, Elzbieta; Ripperger, Juergen A.; Hoegger, Dominik C.; Bruegger, Pascal; Buch, Thorsten; Birchler, Thomas; Mueller, Anke; Albrecht, Urs; Contaldo, Claudio; Brown, Steven A.

    2013-01-01

    Mammalian circadian clocks restrict cell proliferation to defined time windows, but the mechanism and consequences of this interrelationship are not fully understood. Previously we identified the multifunctional nuclear protein NONO as a partner of circadian PERIOD (PER) proteins. Here we show that it also conveys circadian gating to the cell cycle, a connection surprisingly important for wound healing in mice. Specifically, although fibroblasts from NONO-deficient mice showed approximately normal circadian cycles, they displayed elevated cell doubling and lower cellular senescence. At a molecular level, NONO bound to the p16-Ink4A cell cycle checkpoint gene and potentiated its circadian activation in a PER protein-dependent fashion. Loss of either NONO or PER abolished this activation and circadian expression of p16-Ink4A and eliminated circadian cell cycle gating. In vivo, lack of NONO resulted in defective wound repair. Because wound healing defects were also seen in multiple circadian clock-deficient mouse lines, our results therefore suggest that coupling of the cell cycle to the circadian clock via NONO may be useful to segregate in temporal fashion cell proliferation from tissue organization. PMID:23267082

  6. High efficiency carbonate fuel cell/turbine hybrid power cycle

    SciTech Connect

    Steinfeld, G.; Maru, H.C.; Sanderson, R.A.

    1996-07-01

    The hybrid power cycle studies were conducted to identify a high efficiency, economically competitive system. A hybrid power cycle which generates power at an LHV efficiency > 70% was identified that includes an atmospheric pressure direct carbonate fuel cell, a gas turbine, and a steam cycle. In this cycle, natural gas fuel is mixed with recycled fuel cell anode exhaust, providing water for reforming fuel. The mixed gas then flows to a direct carbonate fuel cell which generates about 70% of the power. The portion of the anode exhaust which is not recycled is burned and heat transferred through a heat exchanger (HX) to the compressed air from a gas turbine. The heated compressed air is then heated further in the gas turbine burner and expands through the turbine generating 15% of the power. Half the exhaust from the turbine provides air for the anode exhaust burner. All of the turbine exhaust eventually flows through the fuel cell cathodes providing the O2 and CO2 needed in the electrochemical reaction. Exhaust from the cathodes flows to a steam system (heat recovery steam generator, staged steam turbine generating 15% of the cycle power). Simulation of a 200 MW plant with a hybrid power cycle had an LHV efficiency of 72.6%. Power output and efficiency are insensitive to ambient temperature, compared to a gas turbine combined cycle; NOx emissions are 75% lower. Estimated cost of electricity for 200 MW is 46 mills/kWh, which is competitive with combined cycle where fuel cost is > $5.8/MMBTU. Key requirement is HX; in the 200 MW plant studies, a HX operating at 1094 C using high temperature HX technology currently under development by METC for coal gassifiers was assumed. A study of a near term (20 MW) high efficiency direct carbonate fuel cell/turbine hybrid power cycle has also been completed.

  7. How the cell cycle impacts chromatin architecture and influences cell fate

    PubMed Central

    Ma, Yiqin; Kanakousaki, Kiriaki; Buttitta, Laura

    2015-01-01

    Since the earliest observations of cells undergoing mitosis, it has been clear that there is an intimate relationship between the cell cycle and nuclear chromatin architecture. The nuclear envelope and chromatin undergo robust assembly and disassembly during the cell cycle, and transcriptional and post-transcriptional regulation of histone biogenesis and chromatin modification is controlled in a cell cycle-dependent manner. Chromatin binding proteins and chromatin modifications in turn influence the expression of critical cell cycle regulators, the accessibility of origins for DNA replication, DNA repair, and cell fate. In this review we aim to provide an integrated discussion of how the cell cycle machinery impacts nuclear architecture and vice-versa. We highlight recent advances in understanding cell cycle-dependent histone biogenesis and histone modification deposition, how cell cycle regulators control histone modifier activities, the contribution of chromatin modifications to origin firing for DNA replication, and newly identified roles for nucleoporins in regulating cell cycle gene expression, gene expression memory and differentiation. We close with a discussion of how cell cycle status may impact chromatin to influence cell fate decisions, under normal contexts of differentiation as well as in instances of cell fate reprogramming. PMID:25691891

  8. Post-transcriptional RNA Regulons Affecting Cell Cycle and Proliferation

    PubMed Central

    Blackinton, Jeff G.

    2014-01-01

    The cellular growth cycle is initiated and maintained by punctual, yet agile, regulatory events involving modifications of cell cycle proteins as well as coordinated gene expression to support cyclic checkpoint decisions. Recent evidence indicates that post-transcriptional partitioning of messenger RNA subsets by RNA-binding proteins help physically localize, temporally coordinate, and efficiently translate cell cycle proteins. This dynamic organization of mRNAs encoding cell cycle components contributes to the overall economy of the cell cycle consistent with the post-transcriptional RNA regulon model of gene expression. This review examines several recent studies demonstrating the coordination of mRNA subsets encoding cell cycle proteins during nuclear export and subsequent coupling to protein synthesis, and discusses evidence for mRNA coordination of p53 targets and the DNA damage response pathway. We consider how these observations may connect to upstream and downstream post-transcriptional coordination and coupling of splicing, export, localization, and translation. Published examples from yeast, nematode, insect, and mammalian systems are discussed, and we consider genetic evidence supporting the conclusion that dysregulation of RNA regulons may promote pathogenic states of growth such as carcinogenesis. PMID:24882724

  9. Creatine kinase in cell cycle regulation and cancer.

    PubMed

    Yan, Yong-Bin

    2016-08-01

    The phosphocreatine-creatine kinase (CK) shuttle system is increasingly recognized as a fundamental mechanism for ATP homeostasis in both excitable and non-excitable cells. Many intracellular processes are ATP dependent. Cell division is a process requiring a rapid rate of energy turnover. Cell cycle regulation is also a key point to understanding the mechanisms underlying cancer progression. It has been known for about 40 years that aberrant CK levels are associated with various cancers and for over 30 years that CK is involved in mitosis regulation. However, the underlying molecular mechanisms have not been investigated sufficiently until recently. By maintaining ATP at sites of high-energy demand, CK can regulate cell cycle progression by affecting the intracellular energy status as well as by influencing signaling pathways that are essential to activate cell division and cytoskeleton reorganization. Aberrant CK levels may impair cell viability under normal or stressed conditions and induce cell death. The involvement of CK in cell cycle regulation and cellular energy metabolism makes it a potential diagnostic biomarker and therapeutic target in cancer. To understand the multiple physiological/pathological functions of CK, it is necessary to identify CK-binding partners and regulators including proteins, non-coding RNAs and participating endogenous small molecular weight chemical compounds. This review will focus on molecular mechanisms of CK in cell cycle regulation and cancer progression. It will also discuss the implications of recent mechanistic studies, the emerging problems and future challenges of the multifunctional enzyme CK. PMID:27020776

  10. Analysis of variation of amplitudes in cell cycle gene expression

    PubMed Central

    Liu, Delong; Gaido, Kevin W; Wolfinger, Russ

    2005-01-01

    Background Variation in gene expression among cells in a population is often considered as noise produced from gene transcription and post-transcription processes and experimental artifacts. Most studies on noise in gene expression have emphasized a few well-characterized genes and proteins. We investigated whether different cell-arresting methods have impacts on the maximum expression levels (amplitudes) of a cell cycle related gene. Results By introducing random noise, modeled by a von Mises distribution, to the phase angle in a sinusoidal model in a cell population, we derived a relationship between amplitude and the distribution of noise in maximum transcription time (phase). We applied our analysis to Whitfield's HeLa cell cycle data. Our analysis suggests that among 47 cell cycle related genes common to the 2nd experiment (thymidine-thymidine method) and the 4th experiment (thymidine-nocodazole method): (i) the amplitudes of CDC6 and PCNA, which are expressed during G1/S phase, are smaller in the 2nd experiment than in the 4th, while the amplitude of CDC20, which is expressed during G2/M phase, is smaller in the 4th experiment; and (ii) the two cell-arresting methods had little impact on the amplitudes of the other 43 genes in the 2nd and 4th experiments. Conclusion Our analysis suggests that procedures that arrest cells in different stages of the cell cycle differentially affect expression of some cell cycle related genes once the cells are released from arrest. The impact of the cell-arresting method on expression of a cell cycle related gene can be quantitatively estimated from the ratio of two estimated amplitudes in two experiments. The ratio can be used to gauge the variation in the phase/peak expression time distribution involved in stochastic transcription and post-transcriptional processes for the gene. Further investigations are needed using normal, unperturbed and synchronized HeLa cells as a reference to compare how many cell cycle related genes

  11. Nanosecond pulsed electric fields and the cell cycle

    NASA Astrophysics Data System (ADS)

    Mahlke, Megan A.

    Exposure to nanosecond pulsed electrical fields (nsPEFs) can cause poration of external and internal cell membranes, DNA damage, and disassociation of cytoskeletal components, all of which are capable of disrupting a cell's ability to replicate. The phase of the cell cycle at the time of exposure is linked to differential sensitivities to nsPEFs across cell lines, as DNA structure, membrane elasticity, and cytoskeletal structure change dramatically during the cell cycle. Additionally, nsPEFs are capable of activating cell cycle checkpoints, which could lead to apoptosis or slow population growth. NsPEFs are emerging as a method for treating tumors via apoptotic induction; therefore, investigating the relevance of nsPEFs and the cell cycle could translate into improved efficacy in tumor treatment. Populations of Jurkat and Chinese Hamster Ovary (CHO) cells were examined post-exposure (10 ns pulse trains at 150kV/cm) by analysis of DNA content via propidium iodide staining and flow cytometric analysis at various time points (1, 6, and 12h post-exposure) to determine population distribution in cell cycle phases. Additionally, CHO and Jurkat cells were synchronized in G1/S and G2/M phases, pulsed, and analyzed to evaluate the role of cell cycle phase in survival of nsPEFs. CHO populations appeared similar to sham populations post-nsPEFs but exhibited arrest in the G1 phase at 6h after exposure. Jurkat cells exhibited increased cell death after nsPEFs compared to CHO cells but did not exhibit checkpoint arrest at any observed time point. The G1/S phase checkpoint is partially controlled by the action of p53; the lack of an active p53 response in Jurkat cells could contribute to their ability to pass this checkpoint and resist cell cycle arrest. Both cell lines exhibited increased sensitivity to nsPEFs in G2/M phase. Live imaging of CHO cells after nsPEF exposure supports the theory of G1/S phase arrest, as a reduced number of cells undergo mitosis within 24 h when

  12. Cell cycle arrest is not yet senescence, which is not just cell cycle arrest: terminology for TOR-driven aging.

    PubMed

    Blagosklonny, Mikhail V

    2012-03-01

    Cell cycle arrest is not yet senescence. When the cell cycle is arrested, an inappropriate growth-promotion converts an arrest into senescence (geroconversion). By inhibiting the growth-promoting mTOR pathway, rapamycin decelerates geroconversion of the arrested cells. And as a striking example, while causing arrest, p53 may decelerate or suppress geroconversion (in some conditions). Here I discuss the meaning of geroconversion and also the terms gerogenes, gerossuppressors, gerosuppressants, gerogenic pathways, gero-promoters, hyperfunction and feedback resistance, regenerative potential, hypertrophy and secondary atrophy, pro-gerogenic and gerogenic cells. PMID:22394614

  13. Cyclin and DNA Distributed Cell Cycle Model for GS-NS0 Cells

    PubMed Central

    García Münzer, David G.; Kostoglou, Margaritis; Georgiadis, Michael C.; Pistikopoulos, Efstratios N.; Mantalaris, Athanasios

    2015-01-01

    Mammalian cell cultures are intrinsically heterogeneous at different scales (molecular to bioreactor). The cell cycle is at the centre of capturing heterogeneity since it plays a critical role in the growth, death, and productivity of mammalian cell cultures. Current cell cycle models use biological variables (mass/volume/age) that are non-mechanistic, and difficult to experimentally determine, to describe cell cycle transition and capture culture heterogeneity. To address this problem, cyclins—key molecules that regulate cell cycle transition—have been utilized. Herein, a novel integrated experimental-modelling platform is presented whereby experimental quantification of key cell cycle metrics (cell cycle timings, cell cycle fractions, and cyclin expression determined by flow cytometry) is used to develop a cyclin and DNA distributed model for the industrially relevant cell line, GS-NS0. Cyclins/DNA synthesis rates were linked to stimulatory/inhibitory factors in the culture medium, which ultimately affect cell growth. Cell antibody productivity was characterized using cell cycle-specific production rates. The solution method delivered fast computational time that renders the model’s use suitable for model-based applications. Model structure was studied by global sensitivity analysis (GSA), which identified parameters with a significant effect on the model output, followed by re-estimation of its significant parameters from a control set of batch experiments. A good model fit to the experimental data, both at the cell cycle and viable cell density levels, was observed. The cell population heterogeneity of disturbed (after cell arrest) and undisturbed cell growth was captured proving the versatility of the modelling approach. Cell cycle models able to capture population heterogeneity facilitate in depth understanding of these complex systems and enable systematic formulation of culture strategies to improve growth and productivity. It is envisaged that this

  14. Metformin inhibits cell cycle progression of B-cell chronic lymphocytic leukemia cells.

    PubMed

    Bruno, Silvia; Ledda, Bernardetta; Tenca, Claudya; Ravera, Silvia; Orengo, Anna Maria; Mazzarello, Andrea Nicola; Pesenti, Elisa; Casciaro, Salvatore; Racchi, Omar; Ghiotto, Fabio; Marini, Cecilia; Sambuceti, Gianmario; DeCensi, Andrea; Fais, Franco

    2015-09-01

    B-cell chronic lymphocytic leukemia (CLL) was believed to result from clonal accumulation of resting apoptosis-resistant malignant B lymphocytes. However, it became increasingly clear that CLL cells undergo, during their life, iterative cycles of re-activation and subsequent clonal expansion. Drugs interfering with CLL cell cycle entry would be greatly beneficial in the treatment of this disease. 1, 1-Dimethylbiguanide hydrochloride (metformin), the most widely prescribed oral hypoglycemic agent, inexpensive and well tolerated, has recently received increased attention for its potential antitumor activity. We wondered whether metformin has apoptotic and anti-proliferative activity on leukemic cells derived from CLL patients. Metformin was administered in vitro either to quiescent cells or during CLL cell activation stimuli, provided by classical co-culturing with CD40L-expressing fibroblasts. At doses that were totally ineffective on normal lymphocytes, metformin induced apoptosis of quiescent CLL cells and inhibition of cell cycle entry when CLL were stimulated by CD40-CD40L ligation. This cytostatic effect was accompanied by decreased expression of survival- and proliferation-associated proteins, inhibition of signaling pathways involved in CLL disease progression and decreased intracellular glucose available for glycolysis. In drug combination experiments, metformin lowered the apoptotic threshold and potentiated the cytotoxic effects of classical and novel antitumor molecules. Our results indicate that, while CLL cells after stimulation are in the process of building their full survival and cycling armamentarium, the presence of metformin affects this process. PMID:26265439

  15. Metformin inhibits cell cycle progression of B-cell chronic lymphocytic leukemia cells

    PubMed Central

    Bruno, Silvia; Ledda, Bernardetta; Tenca, Claudya; Ravera, Silvia; Orengo, Anna Maria; Mazzarello, Andrea Nicola; Pesenti, Elisa; Casciaro, Salvatore; Racchi, Omar; Ghiotto, Fabio; Marini, Cecilia; Sambuceti, Gianmario; DeCensi, Andrea; Fais, Franco

    2015-01-01

    B-cell chronic lymphocytic leukemia (CLL) was believed to result from clonal accumulation of resting apoptosis-resistant malignant B lymphocytes. However, it became increasingly clear that CLL cells undergo, during their life, iterative cycles of re-activation and subsequent clonal expansion. Drugs interfering with CLL cell cycle entry would be greatly beneficial in the treatment of this disease. 1, 1-Dimethylbiguanide hydrochloride (metformin), the most widely prescribed oral hypoglycemic agent, inexpensive and well tolerated, has recently received increased attention for its potential antitumor activity. We wondered whether metformin has apoptotic and anti-proliferative activity on leukemic cells derived from CLL patients. Metformin was administered in vitro either to quiescent cells or during CLL cell activation stimuli, provided by classical co-culturing with CD40L-expressing fibroblasts. At doses that were totally ineffective on normal lymphocytes, metformin induced apoptosis of quiescent CLL cells and inhibition of cell cycle entry when CLL were stimulated by CD40-CD40L ligation. This cytostatic effect was accompanied by decreased expression of survival- and proliferation-associated proteins, inhibition of signaling pathways involved in CLL disease progression and decreased intracellular glucose available for glycolysis. In drug combination experiments, metformin lowered the apoptotic threshold and potentiated the cytotoxic effects of classical and novel antitumor molecules. Our results indicate that, while CLL cells after stimulation are in the process of building their full survival and cycling armamentarium, the presence of metformin affects this process. PMID:26265439

  16. Cell cycle regulation of the human cdc2 gene.

    PubMed Central

    Dalton, S

    1992-01-01

    Transcription of the human cdc2 gene is cell cycle regulated and restricted to proliferating cells. Nuclear run-on assays show that cdc2 transcription is high in S and G2 phases of the cell cycle but low in G1. To investigate transcriptional control further, genomic clones of the human cdc2 gene containing 5' flanking sequences were isolated and shown to function as a growth regulated promoter in vivo when fused to a CAT reporter gene. In primary human fibroblasts, the human cdc2 promoter is negatively regulated by arrest of cell growth in a similar fashion to the endogenous gene. This requires specific 5' flanking upstream negative control (UNC) sequences which mediate repression. The retinoblastoma susceptibility gene product (Rb) specifically represses cdc2 transcription in cycling cells via 136 bp of 5' flanking sequence located between -245 and -109 within the UNC region. E2F binding sites in this region were shown to be essential for optimal repression. A model is proposed where Rb negatively regulates the cdc2 promoter in non-cycling and cycling G1 cells. Images PMID:1582409

  17. Cycle life characteristics of Li-TiS2 cells

    NASA Technical Reports Server (NTRS)

    Deligiannis, Frank; Shen, D.; Huang, C. K.; Surampudi, S.

    1991-01-01

    The development of lithium ambient temperature rechargeable cells is discussed. During the development process, we hope to gain a greater understanding of the materials and the properties of the Li-TiS2 cell and its components. The design will meet the requirements of 100 Wh/Kg and 1000 cycles, at 50 percent depth-of-discharge, by 1995.

  18. Cell cycle imaging with quantitative differential interference contrast microscopy

    NASA Astrophysics Data System (ADS)

    Kostyk, Piotr; Phelan, Shelley; Xu, Min

    2013-02-01

    We report a microscopic approach for determining cell cycle stages by measuring the nuclear optical path length (OPL) with quantitative differential interference contrast (DIC) microscopy. The approach is validated by the excellent agreement between the proportion of proliferating-to-quiescent cancerous breast epithelial cells obtained from DIC microscopy, and that from a standard immunofluorescence assay.

  19. Cell cycle regulators and their abnormalities in breast cancer.

    PubMed Central

    Fernández, P L; Jares, P; Rey, M J; Campo, E; Cardesa, A

    1998-01-01

    One of the main properties of cancer cells is their increased and deregulated proliferative activity. It is now well known that abnormalities in many positive and negative modulators of the cell cycle are frequent in many cancer types, including breast carcinomas. Abnormalities such as defective function of the retinoblastoma gene and cyclin-dependent kinase inhibitors (for example, p16, p21, and p27), as well as upregulation of cyclins, are often seen in breast tumours. These abnormalities are sometimes coincidental, and newly described interplays between them suggest the existence of a complex regulatory web in the cell cycle. PMID:10193510

  20. Cell cycling with the SEB: a personal view.

    PubMed

    Bryant, John

    2014-06-01

    This review, written from a personal perspective, traces firstly the development of plant cell cycle research from the 1970s onwards, with some focus on the work of the author and of Dr Dennis Francis. Secondly there is a discussion of the support for and discussion of plant cell cycle research in the SEB, especially through the activities of the Cell Cycle Group within the Society's Cell Biology Section. In the main part of the review, selected aspects of DNA replication that have of been of special interest to the author are discussed. These are DNA polymerases and associated proteins, pre-replication events, regulation of enzymes and other proteins, nature and activation of DNA replication origins, and DNA endoreduplication. For all these topics, there is mention of the author's own work, followed by a brief synthesis of current understanding and a look to possible future developments. PMID:24493805

  1. Cell cycle sibling rivalry: Cdc2 vs. Cdk2.

    PubMed

    Kaldis, Philipp; Aleem, Eiman

    2005-11-01

    It has been long believed that the cyclin-dependent kinase 2 (Cdk2) binds to cyclin E or cyclin A and exclusively promotes the G1/S phase transition and that Cdc2/cyclin B complexes play a major role in mitosis. We now provide evidence that Cdc2 binds to cyclin E (in addition to cyclin A and B) and is able to promote the G1/S transition. This new concept indicates that both Cdk2 and/or Cdc2 can drive cells through G1/S phase in parallel. In this review we discuss the classic cell cycle model and how results from knockout mice provide new evidence that refute this model. We focus on the roles of Cdc2 and p27 in regulating the mammalian cell cycle and propose a new model for cell cycle regulation that accommodates these novel findings. PMID:16258277

  2. Redox Control of the Cell Cycle in Health and Disease

    PubMed Central

    Sarsour, Ehab H.; Kumar, Maneesh G.; Chaudhuri, Leena; Kalen, Amanda L.

    2009-01-01

    Abstract The cellular oxidation and reduction (redox) environment is influenced by the production and removal of reactive oxygen species (ROS). In recent years, several reports support the hypothesis that cellular ROS levels could function as “second messengers” regulating numerous cellular processes, including proliferation. Periodic oscillations in the cellular redox environment, a redox cycle, regulate cell-cycle progression from quiescence (G0) to proliferation (G1, S, G2, and M) and back to quiescence. A loss in the redox control of the cell cycle could lead to aberrant proliferation, a hallmark of various human pathologies. This review discusses the literature that supports the concept of a redox cycle controlling the mammalian cell cycle, with an emphasis on how this control relates to proliferative disorders including cancer, wound healing, fibrosis, cardiovascular diseases, diabetes, and neurodegenerative diseases. We hypothesize that reestablishing the redox control of the cell cycle by manipulating the cellular redox environment could improve many aspects of the proliferative disorders. Antioxid. Redox Signal. 11, 2985–3011. PMID:19505186

  3. Effects of biodegradable Mg-6Zn alloy extracts on cell cycle of intestinal epithelial cells.

    PubMed

    Wang, Zhanhui; Yan, Jun; Zheng, Qi; Wang, Zhigang; Li, Jianan; Zhang, Xiaonong; Zhang, Shaoxiang

    2013-02-01

    In this study, intestinal epithelial cells (IEC)-6 were cultured in different concentration extracts of Mg-6Zn alloys for different time periods. We studied the indirect effects of Mg-6Zn alloys on cell cycle of IEC-6 cells. The cell cycle of IEC-6 cells was measured using flow cytometry. And, the cell cycle of IEC-6 cells was evaluated by investigating the expression of cyclin D1, CDK4, and P21 using real-time polymerase chain reaction (PCR) and Western blotting tests. It was found that the IEC-6 cells displayed better cell functions in 20% extract of the Mg-6Zn alloy extracts, compared to the 100% or 60% extract. The in vitro results indicated that the conspicuous alkaline environment that is a result of rapid corrosion of Mg-6Zn alloys is disadvantageous to cell cycle of IEC-6 cells. PMID:22071354

  4. Regulation of the Cell Division Cycle in Trypanosoma brucei

    PubMed Central

    2012-01-01

    The cell division cycle is tightly regulated by the activation and inactivation of a series of proteins that control the replication and segregation of organelles to the daughter cells. During the past decade, we have witnessed significant advances in our understanding of the cell cycle in Trypanosoma brucei and how the cycle is regulated by various regulatory proteins. However, many other regulators, especially those unique to trypanosomes, remain to be identified, and we are just beginning to delineate the signaling pathways that drive the transitions through different cell cycle stages, such as the G1/S transition, G2/M transition, and mitosis-cytokinesis transition. Trypanosomes appear to employ both evolutionarily conserved and trypanosome-specific molecules to regulate the various stages of its cell cycle, including DNA replication initiation, spindle assembly, chromosome segregation, and cytokinesis initiation and completion. Strikingly, trypanosomes lack some crucial regulators that are well conserved across evolution, such as Cdc6 and Cdt1, which are involved in DNA replication licensing, the spindle motor kinesin-5, which is required for spindle assembly, the central spindlin complex, which has been implicated in cytokinesis initiation, and the actomyosin contractile ring, which is located at the cleavage furrow. Conversely, trypanosomes possess certain regulators, such as cyclins, cyclin-dependent kinases, and mitotic centromere-associated kinesins, that are greatly expanded and likely play diverse cellular functions. Overall, trypanosomes apparently have integrated unique regulators into the evolutionarily conserved pathways to compensate for the absence of those conserved molecules and, additionally, have evolved certain cell cycle regulatory pathways that are either different from its human host or distinct between its own life cycle forms. PMID:22865501

  5. Neuronal cell cycle: the neuron itself and its circumstances

    PubMed Central

    Frade, José M; Ovejero-Benito, María C

    2015-01-01

    Neurons are usually regarded as postmitotic cells that undergo apoptosis in response to cell cycle reactivation. Nevertheless, recent evidence indicates the existence of a defined developmental program that induces DNA replication in specific populations of neurons, which remain in a tetraploid state for the rest of their adult life. Similarly, de novo neuronal tetraploidization has also been described in the adult brain as an early hallmark of neurodegeneration. The aim of this review is to integrate these recent developments in the context of cell cycle regulation and apoptotic cell death in neurons. We conclude that a variety of mechanisms exists in neuronal cells for G1/S and G2/M checkpoint regulation. These mechanisms, which are connected with the apoptotic machinery, can be modulated by environmental signals and the neuronal phenotype itself, thus resulting in a variety of outcomes ranging from cell death at the G1/S checkpoint to full proliferation of differentiated neurons. PMID:25590687

  6. Entrainability of cell cycle oscillator models with exponential growth of cell mass.

    PubMed

    Nakao, Mitsuyuki; Enkhkhudulmur, Tsog-Erdene; Katayama, Norihiro; Karashima, Akihiro

    2014-01-01

    Among various aspects of cell cycle, understanding synchronization mechanism of cell cycle is important because of the following reasons. (1)Cycles of cell assembly should synchronize to form an organ. (2) Synchronizing cell cycles are required to experimental analysis of regulatory mechanisms of cell cycles. (3) Cell cycle has a distinct phase relationship with the other biological rhythms such as circadian rhythm. However, forced as well as mutual entrainment mechanisms are not clearly known. In this study, we investigated entrainability of cell cycle models of yeast cell under the periodic forcing to both of the cell mass and molecular dynamics. Dynamics of models under study involve the cell mass growing exponentially. In our result, they are shown to allow only a limited frequency range for being entrained by the periodic forcing. In contrast, models with linear growth are shown to be entrained in a wider frequency range. It is concluded that if the cell mass is included in the cell cycle regulation, its entrainability is sensitive to a shape of growth curve assumed in the model. PMID:25571564

  7. Coordinating cell polarity and cell cycle progression: what can we learn from flies and worms?

    PubMed Central

    Noatynska, Anna; Tavernier, Nicolas; Gotta, Monica; Pintard, Lionel

    2013-01-01

    Spatio-temporal coordination of events during cell division is crucial for animal development. In recent years, emerging data have strengthened the notion that tight coupling of cell cycle progression and cell polarity in dividing cells is crucial for asymmetric cell division and ultimately for metazoan development. Although it is acknowledged that such coupling exists, the molecular mechanisms linking the cell cycle and cell polarity machineries are still under investigation. Key cell cycle regulators control cell polarity, and thus influence cell fate determination and/or differentiation, whereas some factors involved in cell polarity regulate cell cycle timing and proliferation potential. The scope of this review is to discuss the data linking cell polarity and cell cycle progression, and the importance of such coupling for asymmetric cell division. Because studies in model organisms such as Caenorhabditis elegans and Drosophila melanogaster have started to reveal the molecular mechanisms of this coordination, we will concentrate on these two systems. We review examples of molecular mechanisms suggesting a coupling between cell polarity and cell cycle progression. PMID:23926048

  8. Life-cycle costs of high-performance cells

    NASA Technical Reports Server (NTRS)

    Daniel, R.; Burger, D.; Reiter, L.

    1985-01-01

    A life cycle cost analysis of high efficiency cells was presented. Although high efficiency cells produce more power, they also cost more to make and are more susceptible to array hot-spot heating. Three different computer analysis programs were used: SAMICS (solar array manufacturing industry costing standards), PVARRAY (an array failure mode/degradation simulator), and LCP (lifetime cost and performance). The high efficiency cell modules were found to be more economical in this study, but parallel redundancy is recommended.

  9. A role for homologous recombination proteins in cell cycle regulation

    PubMed Central

    Kostyrko, Kaja; Bosshard, Sandra; Urban, Zuzanna; Mermod, Nicolas

    2015-01-01

    Eukaryotic cells respond to DNA breaks, especially double-stranded breaks (DSBs), by activating the DNA damage response (DDR), which encompasses DNA repair and cell cycle checkpoint signaling. The DNA damage signal is transmitted to the checkpoint machinery by a network of specialized DNA damage-recognizing and signal-transducing molecules. However, recent evidence suggests that DNA repair proteins themselves may also directly contribute to the checkpoint control. Here, we investigated the role of homologous recombination (HR) proteins in normal cell cycle regulation in the absence of exogenous DNA damage. For this purpose, we used Chinese Hamster Ovary (CHO) cells expressing the Fluorescent ubiquitination-based cell cycle indicators (Fucci). Systematic siRNA-mediated knockdown of HR genes in these cells demonstrated that the lack of several of these factors alters cell cycle distribution, albeit differentially. The knock-down of MDC1, Rad51 and Brca1 caused the cells to arrest in the G2 phase, suggesting that they may be required for the G2/M transition. In contrast, inhibition of the other HR factors, including several Rad51 paralogs and Rad50, led to the arrest in the G1/G0 phase. Moreover, reduced expression of Rad51B, Rad51C, CtIP and Rad50 induced entry into a quiescent G0-like phase. In conclusion, the lack of many HR factors may lead to cell cycle checkpoint activation, even in the absence of exogenous DNA damage, indicating that these proteins may play an essential role both in DNA repair and checkpoint signaling. PMID:26125600

  10. Thermal stress cycling of GaAs solar cells

    NASA Technical Reports Server (NTRS)

    Janousek, B. K.; Francis, R. W.; Wendt, J. P.

    1985-01-01

    A thermal cycling experiment was performed on GaAs solar cells to establish the electrical and structural integrity of these cells under the temperature conditions of a simulated low-Earth orbit of 3-year duration. Thirty single junction GaAs cells were obtained and tests were performed to establish the beginning-of-life characteristics of these cells. The tests consisted of cell I-V power output curves, from which were obtained short-circuit current, open circuit voltage, fill factor, and cell efficiency, and optical micrographs, spectral response, and ion microprobe mass analysis (IMMA) depth profiles on both the front surfaces and the front metallic contacts of the cells. Following 5,000 thermal cycles, the performance of the cells was reexamined in addition to any factors which might contribute to performance degradation. It is established that, after 5,000 thermal cycles, the cells retain their power output with no loss of structural integrity or change in physical appearance.

  11. Identification of a novel EGF-sensitive cell cycle checkpoint

    SciTech Connect

    Walker, Francesca . E-mail: francesca.walker@ludwig.edu.au; Zhang Huihua; Burgess, Antony W.

    2007-02-01

    The site of action of growth factors on mammalian cell cycle has been assigned to the boundary between the G1 and S phases. We show here that Epidermal Growth Factor (EGF) is also required for mitosis. BaF/3 cells expressing the EGFR (BaF/wtEGFR) synthesize DNA in response to EGF, but arrest in S-phase. We have generated a cell line (BaF/ERX) with defective downregulation of the EGFR and sustained activation of EGFR signalling pathways: these cells undergo mitosis in an EGF-dependent manner. The transit of BaF/ERX cells through G2/M strictly requires activation of EGFR and is abolished by AG1478. This phenotype is mimicked by co-expression of ErbB2 in BaF/wtEGFR cells, and abolished by inhibition of the EGFR kinase, suggesting that sustained signalling of the EGFR, through impaired downregulation of the EGFR or heterodimerization, is required for completion of the cycle. We have confirmed the role of EGFR signalling in the G2/M phase of the cell cycle using a human tumor cell line which overexpresses the EGFR and is dependent on EGFR signalling for growth. These findings unmask an EGF-sensitive checkpoint, helping to understand the link between sustained EGFR signalling, proliferation and the acquisition of a radioresistant phenotype in cancer cells.

  12. Labeling of lectin receptors during the cell cycle.

    PubMed

    Garrido, J

    1976-12-01

    Labeling of lectin receptors during the cell cycle. (Localizabión de receptores para lectinas durante el ciclo celular). Arch. Biol. Med. Exper. 10: 100-104, 1976. The topographic distribution of specific cell surface receptors for concanavalin A and wheat germ agglutinin was studied by ultrastructural labeling in the course of the cell cycle. C12TSV5 cells were synchronized by double thymidine block or mechanical selection (shakeoff). They were labeled by means of lectin-peroxidase techniques while in G1 S, G2 and M phases of the cycle. The results obtained were similar for both lectins employed. Interphase cells (G1 S, G2) present a stlihtly discontinous labeling pattern that is similar to the one observed on unsynchronized cells of the same line. Cells in mitosis, on the contrary, present a highly discontinous distribution of reaction product. This pattern disappears after the cells enters G1 and is not present on mitotic cells fixed in aldehyde prior to labeling. PMID:1030938

  13. Computation Molecular Kinetics Model of HZE Induced Cell Cycle Arrest

    NASA Technical Reports Server (NTRS)

    Cucinotta, Francis A.; Ren, Lei

    2004-01-01

    Cell culture models play an important role in understanding the biological effectiveness of space radiation. High energy and charge (HZE) ions produce prolonged cell cycle arrests at the G1/S and G2/M transition points in the cell cycle. A detailed description of these phenomena is needed to integrate knowledge of the expression of DNA damage in surviving cells, including the determination of relative effectiveness factors between different types of radiation that produce differential types of DNA damage and arrest durations. We have developed a hierarchical kinetics model that tracks the distribution of cells in various cell phase compartments (early G1, late G1, S, G2, and M), however with transition rates that are controlled by rate-limiting steps in the kinetics of cyclin-cdk's interactions with their families of transcription factors and inhibitor molecules. The coupling of damaged DNA molecules to the downstream cyclin-cdk inhibitors is achieved through a description of the DNA-PK and ATM signaling pathways. For HZE irradiations we describe preliminary results, which introduce simulation of the stochastic nature of the number of direct particle traversals per cell in the modulation of cyclin-cdk and cell cycle population kinetics. Comparison of the model to data for fibroblast cells irradiated photons or HZE ions are described.

  14. Modelling cell cycle synchronisation in networks of coupled radial glial cells.

    PubMed

    Barrack, Duncan S; Thul, Rüdiger; Owen, Markus R

    2015-07-21

    Radial glial cells play a crucial role in the embryonic mammalian brain. Their proliferation is thought to be controlled, in part, by ATP mediated calcium signals. It has been hypothesised that these signals act to locally synchronise cell cycles, so that clusters of cells proliferate together, shedding daughter cells in uniform sheets. In this paper we investigate this cell cycle synchronisation by taking an ordinary differential equation model that couples the dynamics of intracellular calcium and the cell cycle and extend it to populations of cells coupled via extracellular ATP signals. Through bifurcation analysis we show that although ATP mediated calcium release can lead to cell cycle synchronisation, a number of other asynchronous oscillatory solutions including torus solutions dominate the parameter space and cell cycle synchronisation is far from guaranteed. Despite this, numerical results indicate that the transient and not the asymptotic behaviour of the system is important in accounting for cell cycle synchronisation. In particular, quiescent cells can be entrained on to the cell cycle via ATP mediated calcium signals initiated by a driving cell and crucially will cycle in near synchrony with the driving cell for the duration of neurogenesis. This behaviour is highly sensitive to the timing of ATP release, with release at the G1/S phase transition of the cell cycle far more likely to lead to near synchrony than release during mid G1 phase. This result, which suggests that ATP release timing is critical to radial glia cell cycle synchronisation, may help us to understand normal and pathological brain development. PMID:25908204

  15. A combined gas cooled nuclear reactor and fuel cell cycle

    NASA Astrophysics Data System (ADS)

    Palmer, David J.

    Rising oil costs, global warming, national security concerns, economic concerns and escalating energy demands are forcing the engineering communities to explore methods to address these concerns. It is the intention of this thesis to offer a proposal for a novel design of a combined cycle, an advanced nuclear helium reactor/solid oxide fuel cell (SOFC) plant that will help to mitigate some of the above concerns. Moreover, the adoption of this proposal may help to reinvigorate the Nuclear Power industry while providing a practical method to foster the development of a hydrogen economy. Specifically, this thesis concentrates on the importance of the U.S. Nuclear Navy adopting this novel design for its nuclear electric vessels of the future with discussion on efficiency and thermodynamic performance characteristics related to the combined cycle. Thus, the goals and objectives are to develop an innovative combined cycle that provides a solution to the stated concerns and show that it provides superior performance. In order to show performance, it is necessary to develop a rigorous thermodynamic model and computer program to analyze the SOFC in relation with the overall cycle. A large increase in efficiency over the conventional pressurized water reactor cycle is realized. Both sides of the cycle achieve higher efficiencies at partial loads which is extremely important as most naval vessels operate at partial loads as well as the fact that traditional gas turbines operating alone have poor performance at reduced speeds. Furthermore, each side of the cycle provides important benefits to the other side. The high temperature exhaust from the overall exothermic reaction of the fuel cell provides heat for the reheater allowing for an overall increase in power on the nuclear side of the cycle. Likewise, the high temperature helium exiting the nuclear reactor provides a controllable method to stabilize the fuel cell at an optimal temperature band even during transients helping

  16. High efficiency fuel cell/advanced turbine power cycles

    SciTech Connect

    Morehead, H.

    1995-10-19

    An outline of the Westinghouse high-efficiency fuel cell/advanced turbine power cycle is presented. The following topics are discussed: The Westinghouse SOFC pilot manufacturing facility, cell scale-up plan, pressure effects on SOFC power and efficiency, sureCell versus conventional gas turbine plants, sureCell product line for distributed power applications, 20 MW pressurized-SOFC/gas turbine power plant, 10 MW SOFC/CT power plant, sureCell plant concept design requirements, and Westinghouse SOFC market entry.

  17. Vertebrate Cell Cycle Modulates Infection by Protozoan Parasites

    NASA Astrophysics Data System (ADS)

    Dvorak, James A.; Crane, Mark St. J.

    1981-11-01

    Synchronized HeLa cell populations were exposed to Trypanosoma cruzi or Toxoplasma gondii, obligate intracellular protozoan parasites that cause Chagas' disease and toxoplasmosis, respectively, in humans. The ability of the two parasites to infect HeLa cells increased as the HeLa cells proceeded from the G1 phase to the S phase of their growth cycle and decreased as the cells entered G2-M. Characterization of the S-phase cell surface components responsible for this phenomenon could be beneficial in the development of vaccines against these parasitic diseases.

  18. Human Fucci Pancreatic Beta Cell Lines: New Tools to Study Beta Cell Cycle and Terminal Differentiation

    PubMed Central

    Carlier, Géraldine; Maugein, Alicia; Cordier, Corinne; Pechberty, Séverine; Garfa-Traoré, Meriem; Martin, Patrick; Scharfmann, Raphaël; Albagli, Olivier

    2014-01-01

    Regulation of cell cycle in beta cells is poorly understood, especially in humans. We exploited here the recently described human pancreatic beta cell line EndoC-βH2 to set up experimental systems for cell cycle studies. We derived 2 populations from EndoC-βH2 cells that stably harbor the 2 genes encoding the Fucci fluorescent indicators of cell cycle, either from two vectors, or from a unique bicistronic vector. In proliferating non-synchronized cells, the 2 Fucci indicators revealed cells in the expected phases of cell cycle, with orange and green cells being in G1 and S/G2/M cells, respectively, and allowed the sorting of cells in different substeps of G1. The Fucci indicators also faithfully red out alterations in human beta cell proliferative activity since a mitogen-rich medium decreased the proportion of orange cells and inflated the green population, while reciprocal changes were observed when cells were induced to cease proliferation and increased expression of some beta cell genes. In the last situation, acquisition of a more differentiated beta cell phenotype correlates with an increased intensity in orange fluorescence. Hence Fucci beta cell lines provide new tools to address important questions regarding human beta cell cycle and differentiation. PMID:25259951

  19. Emerging regulatory mechanisms in ubiquitin-dependent cell cycle control

    PubMed Central

    Mocciaro, Annamaria; Rape, Michael

    2012-01-01

    The covalent modification of proteins with ubiquitin is required for accurate cell division in all eukaryotes. Ubiquitylation depends on an enzymatic cascade, in which E3 enzymes recruit specific substrates for modification. Among ~600 human E3s, the SCF (Skp1–cullin1–F-box) and the APC/C (anaphase-promoting complex/cyclosome) are known for driving the degradation of cell cycle regulators to accomplish irreversible cell cycle transitions. The cell cycle machinery reciprocally regulates the SCF and APC/C through various mechanisms, including the modification of these E3s or the binding of specific inhibitors. Recent studies have provided new insight into the intricate relationship between ubiquitylation and the cell division apparatus as they revealed roles for atypical ubiquitin chains, new mechanisms of substrate and E3 regulation, as well as extensive crosstalk between ubiquitylation enzymes. Here, we review these emerging regulatory mechanisms of ubiquitin-dependent cell cycle control and discuss how their manipulation might provide therapeutic benefits in the future. PMID:22357967

  20. Novel functions of core cell cycle regulators in neuronal migration.

    PubMed

    Godin, Juliette D; Nguyen, Laurent

    2014-01-01

    The cerebral cortex is one of the most intricate regions of the brain, which required elaborated cell migration patterns for its development. Experimental observations show that projection neurons migrate radially within the cortical wall, whereas interneurons migrate along multiple tangential paths to reach the developing cortex. Tight regulation of the cell migration processes ensures proper positioning and functional integration of neurons to specific cerebral cortical circuits. Disruption of neuronal migration often lead to cortical dysfunction and/or malformation associated with neurological disorders. Unveiling the molecular control of neuronal migration is thus fundamental to understand the physiological or pathological development of the cerebral cortex. Generation of functional cortical neurons is a complex and stratified process that relies on decision of neural progenitors to leave the cell cycle and generate neurons that migrate and differentiate to reach their final position in the cortical wall. Although accumulating work shed some light on the molecular control of neuronal migration, we currently do not have a comprehensive understanding of how cell cycle exit and migration/differentiation are coordinated at the molecular level. The current chapter tends to lift the veil on this issue by discussing how core cell cycle regulators, and in particular p27(Kip1) acts as a multifunctional protein to control critical steps of neuronal migration through activities that go far beyond cell cycle regulation. PMID:24243100

  1. Cell cycle-specific replication of Escherichia coli minichromosomes.

    PubMed Central

    Leonard, A C; Helmstetter, C E

    1986-01-01

    The timing of Escherichia coli minichromosome replication in the cell division cycle was examined using an improved procedure for studying plasmid replication frequency. Cultures growing exponentially in glucose/Casamino acids minimal medium were pulse-labeled with [3H]thymidine, and the radioactivity incorporated into plasmid DNA in cells of different ages was analyzed. At the end of the labeling period the bacteria were bound to the surface of a nitrocellulose membrane filter, and the radioactivity in new daughter cells, which eluted continuously from the membrane, was quantitated following agarose gel electrophoresis. The minichromosomes replicated during a discrete interval in the cell division cycle that appeared to coincide with initiation of chromosome replication. In contrast, plasmid pBR322 replicated throughout the division cycle at a rate that increased gradually as a function of cell age. The difference in minichromosome and pBR322 replication was clearly discernible in cells harboring both plasmids. It was also found that the 16 kD gene adjacent to oriC was not a determinant of the timing of minichromosome replication during the division cycle. The results are consistent with the conclusion that minichromosome replication frequency is governed by the same mechanism that controls chromosome replication. Images PMID:3523483

  2. UV-induced changes in cell cycle and gene expression within rabbit lens epithelial cells

    SciTech Connect

    Sidjanin, D.; Grdina, D.; Woloschak, G.E.

    1994-11-01

    Damage to lens epithelial cells is a probable initiation process in cataract formation induced by ultraviolet radiation. These experiments investigated the ability of 254 nm radiation on cell cycle progression and gene expression in rabbit lens epithelial cell line N/N1003A. No changes in expression of c-fos, c-jun, alpha- tubulin, or vimentin was observed following UV exposure. Using flow cytometry, an accumulation of cells in G1/S phase of the cell cycle 1 hr following exposure. The observed changes in gene expression, especially the decreased histone transcripts reported here may play a role in UV induced inhibition of cell cycle progression.

  3. α-Mangostin Induces Apoptosis and Cell Cycle Arrest in Oral Squamous Cell Carcinoma Cell

    PubMed Central

    Kwak, Hyun-Ho; Park, Bong-Soo

    2016-01-01

    Mangosteen has long been used as a traditional medicine and is known to have antibacterial, antioxidant, and anticancer effects. Although the effects of α-mangostin, a natural compound extracted from the pericarp of mangosteen, have been investigated in many studies, there is limited data on the effects of the compound in human oral squamous cell carcinoma (OSCC). In this study, α-mangostin was assessed as a potential anticancer agent against human OSCC cells. α-Mangostin inhibited cell proliferation and induced cell death in OSCC cells in a dose- and time-dependent manner with little to no effect on normal human PDLF cells. α-Mangostin treatment clearly showed apoptotic evidences such as nuclear fragmentation and accumulation of annexin V and PI-positive cells on OSCC cells. α-Mangostin treatment also caused the collapse of mitochondrial membrane potential and the translocation of cytochrome c from the mitochondria into the cytosol. The expressions of the mitochondria-related proteins were activated by α-mangostin. Treatment with α-mangostin also induced G1 phase arrest and downregulated cell cycle-related proteins (CDK/cyclin). Hence, α-mangostin specifically induces cell death and inhibits proliferation in OSCC cells via the intrinsic apoptosis pathway and cell cycle arrest at the G1 phase, suggesting that α-mangostin may be an effective agent for the treatment of OSCC. PMID:27478478

  4. Glucocorticoids Play a Key Role in Circadian Cell Cycle Rhythms

    PubMed Central

    Dickmeis, Thomas; Lahiri, Kajori; Nica, Gabriela; Vallone, Daniela; Santoriello, Cristina; Neumann, Carl J; Hammerschmidt, Matthias; Foulkes, Nicholas S

    2007-01-01

    Clock output pathways play a pivotal role by relaying timing information from the circadian clock to a diversity of physiological systems. Both cell-autonomous and systemic mechanisms have been implicated as clock outputs; however, the relative importance and interplay between these mechanisms are poorly understood. The cell cycle represents a highly conserved regulatory target of the circadian timing system. Previously, we have demonstrated that in zebrafish, the circadian clock has the capacity to generate daily rhythms of S phase by a cell-autonomous mechanism in vitro. Here, by studying a panel of zebrafish mutants, we reveal that the pituitary–adrenal axis also plays an essential role in establishing these rhythms in the whole animal. Mutants with a reduction or a complete absence of corticotrope pituitary cells show attenuated cell-proliferation rhythms, whereas expression of circadian clock genes is not affected. We show that the corticotrope deficiency is associated with reduced cortisol levels, implicating glucocorticoids as a component of a systemic signaling pathway required for circadian cell cycle rhythmicity. Strikingly, high-amplitude rhythms can be rescued by exposing mutant larvae to a tonic concentration of a glucocorticoid agonist. Our work suggests that cell-autonomous clock mechanisms are not sufficient to establish circadian cell cycle rhythms at the whole-animal level. Instead, they act in concert with a systemic signaling environment of which glucocorticoids are an essential part. PMID:17373855

  5. Does Arabidopsis thaliana DREAM of cell cycle control?

    PubMed

    Fischer, Martin; DeCaprio, James A

    2015-08-01

    Strict temporal control of cell cycle gene expression is essential for all eukaryotes including animals and plants. DREAM complexes have been identified in worm, fly, and mammals, linking several distinct transcription factors to coordinate gene expression throughout the cell cycle. In this issue of The EMBO Journal, Kobayashi et al (2015) identify distinct activator and repressor complexes for genes expressed during the G2 and M phases in Arabidopsis that can be temporarily separated during proliferating and post‐mitotic stages of development. The complexes incorporate specific activator and repressor MYB and E2F transcription factors and indicate the possibility of the existence of multiple DREAM complexes in plants. PMID:26089020

  6. Arginine starvation in colorectal carcinoma cells: Sensing, impact on translation control and cell cycle distribution.

    PubMed

    Vynnytska-Myronovska, Bozhena O; Kurlishchuk, Yuliya; Chen, Oleh; Bobak, Yaroslav; Dittfeld, Claudia; Hüther, Melanie; Kunz-Schughart, Leoni A; Stasyk, Oleh V

    2016-02-01

    Tumor cells rely on a continued exogenous nutrient supply in order to maintain a high proliferative activity. Although a strong dependence of some tumor types on exogenous arginine sources has been reported, the mechanisms of arginine sensing by tumor cells and the impact of changes in arginine availability on translation and cell cycle regulation are not fully understood. The results presented herein state that human colorectal carcinoma cells rapidly exhaust the internal arginine sources in the absence of exogenous arginine and repress global translation by activation of the GCN2-mediated pathway and inhibition of mTOR signaling. Tumor suppressor protein p53 activation and G1/G0 cell cycle arrest support cell survival upon prolonged arginine starvation. Cells with the mutant or deleted TP53 fail to stop cell cycle progression at defined cell cycle checkpoints which appears to be associated with reduced recovery after durable metabolic stress triggered by arginine withdrawal. PMID:26751966

  7. Lithium/disulfide cells capable of long cycle life

    SciTech Connect

    Kaun, T.D.; Holifield, T.F.; DeLuca, W.H.

    1988-01-01

    The lithium-alloy/disulfide cell has undergone improvements to provide a very stable, high performance upper-plateau (UP) FeS/sub 2/ electrode. Prismatic UP FeS/sub 2/ cell tests (12--24 Ah capacity) with a LiCl-LiBr-KBr eutectic electrolyte have demonstrated 1000 deep discharge cycles at 400/degree/C with less than a 20% drop in capacity and without reduced power capability. Previous lithium-alloy/disulfide cells, which were based on a two voltage-plateau FeS/sub 2/ electrode and LiCl-KCl eutectic electrolyte had a life expectancy of only 100 cycles. Both time- and cycle-related capacity loss mechanisms have been eliminated with the improved cell design. In addition, new cell design features of overcharge tolerance and overdischarge safeguarding enhance battery durability. The performance prospects of a Li-alloy/UP FeS/sub 2/ battery for an IDSEP van application are discussed. A specific energy of 150 Wh/kg for this battery after 1000 cycles of operation is projected. 8 refs., 5 figs., 1 tab.

  8. Alteration of cell-cycle regulation in epithelial ovarian cancer.

    PubMed

    Nam, E J; Kim, Y T

    2008-01-01

    In spite of the clinical importance of epithelial ovarian cancer (EOC), little is known about the pathobiology of its precursor lesions and progression. Regulatory mechanisms of the cell cycle are mainly composed of cyclins, cyclin-dependent kinases (CDK), and CDK inhibitors. Alteration of these mechanisms results in uncontrolled cell proliferation, which is a distinctive feature of human cancers. This review describes the current state of knowledge about the alterations of cell-cycle regulations in the context of p16-cyclin D1-CDK4/6-pRb pathway, p21-p27-cyclin E-CDK2 pathway, p14-MDM2-p53 pathway, and ATM-Chk2-CDC25 pathway, respectively. Recent evidence suggests that ovarian cancer is a heterogenous group of neoplasms with several different histologic types, each with its own underlying molecular genetic mechanism. Therefore, expression of cell cycle regulatory proteins should be tested separately according to each histologic type. In serous ovarian carcinoma, high expression of p16, p53, and p27 and low expression of p21 and cyclin E were shown. In addition, this review focuses on the prognostic significance of cell cycle-regulating proteins in EOC. However, it is difficult to compare the results from different groups due to diverse methodologies and interpretations. Accordingly, researchers should establish standardized criteria for the interpretation of immunohistochemical results. PMID:18298566

  9. The Effect of Spaceflight on Cartilage Cell Cycle and Differentiation

    NASA Technical Reports Server (NTRS)

    Doty, Stephen B.; Stiner, Dalina; Telford, William G.

    2000-01-01

    In vivo studies have shown that spaceflight results in loss of bone and muscle. In an effort to understand the mechanisms of these changes, cell cultures of cartilage, bone and muscle have been subjected to spaceflight to study the microgravity effects on differentiated cells. However it now seems possible that the cell differentiation process itself may be the event(s) most affected by spaceflight. For example, osteoblast-like cells have been shown to have reduced cellular activity in microgravity due to an underdifferentiated state (Carmeliet, et al, 1997). And reduced human lymphocyte growth in spaceflight was related to increased apoptosis (Lewis, et al, 1998). Which brings us to the question of whether reduced cellular activity in space is due to an effect on the differentiated cell, an effect on the cell cycle and cell proliferation, or an effect on cell death. This question has not been specifically addressed on previous flights and was the question behind die present study.

  10. Cell Cycle Phase-Specific Drug Resistance as an Escape Mechanism of Melanoma Cells.

    PubMed

    Beaumont, Kimberley A; Hill, David S; Daignault, Sheena M; Lui, Goldie Y L; Sharp, Danae M; Gabrielli, Brian; Weninger, Wolfgang; Haass, Nikolas K

    2016-07-01

    The tumor microenvironment is characterized by cancer cell subpopulations with heterogeneous cell cycle profiles. For example, hypoxic tumor zones contain clusters of cancer cells that arrest in G1 phase. It is conceivable that neoplastic cells exhibit differential drug sensitivity based on their residence in specific cell cycle phases. In this study, we used two-dimensional and organotypic melanoma culture models in combination with fluorescent cell cycle indicators to investigate the effects of cell cycle phases on clinically used drugs. We demonstrate that G1-arrested melanoma cells, irrespective of the underlying cause mediating G1 arrest, are resistant to apoptosis induced by the proteasome inhibitor bortezomib or the alkylating agent temozolomide. In contrast, G1-arrested cells were more sensitive to mitogen-activated protein kinase pathway inhibitor-induced cell death. Of clinical relevance, pretreatment of melanoma cells with a mitogen-activated protein kinase pathway inhibitor, which induced G1 arrest, resulted in resistance to temozolomide or bortezomib. On the other hand, pretreatment with temozolomide, which induced G2 arrest, did not result in resistance to mitogen-activated protein kinase pathway inhibitors. In summary, we established a model to study the effects of the cell cycle on drug sensitivity. Cell cycle phase-specific drug resistance is an escape mechanism of melanoma cells that has implications on the choice and timing of drug combination therapies. PMID:26970356

  11. [Dynamics of the cell cycle in human endothelial cell culture infected with influenza virus].

    PubMed

    Prochukhanova, A R; Lyublinskaya, O G; Azarenok, A A; Nazarova, A V; Zenin, V V; Zhilinskaya, I N

    2015-01-01

    Cell cycle in a culture of endothelial cells EAhy 926 infected with influenza virus was investigated. Cytometric analysis of culture, synchronized using contact inhibition, has shown that the exposure to the influenza virus in cells EAhy 926 lengthened S-phase of the cell cycle. This result has been tested and proven on culture EAhy 926 treated with nocodazole. Compared with lung carcinoma cells A549, in which influenza virus provokes the arrest of G0/G1 phase of the cycle, elongation of S-phase of cycle at a similar infection of endothelial culture EAhy 926 indicates that the influenza virus differently affects the dynamics of the cell cycle according to the origin of the infected culture. PMID:26021172

  12. Cell cycle control of DNA joint molecule resolution.

    PubMed

    Wild, Philipp; Matos, Joao

    2016-06-01

    The establishment of stable interactions between chromosomes underpins vital cellular processes such as recombinational DNA repair and bipolar chromosome segregation. On the other hand, timely disengagement of persistent connections is necessary to assure efficient partitioning of the replicated genome prior to cell division. Whereas great progress has been made in defining how cohesin-mediated chromosomal interactions are disengaged as cells prepare to undergo chromosome segregation, little is known about the metabolism of DNA joint molecules (JMs), generated during the repair of chromosomal lesions. Recent work on Mus81 and Yen1/GEN1, two conserved structure-selective endonucleases, revealed unforeseen links between JM-processing and cell cycle progression. Cell cycle kinases and phosphatases control Mus81 and Yen1/GEN1 to restrain deleterious JM-processing during S-phase, while safeguarding chromosome segregation during mitosis. PMID:26970388

  13. Cell Cycle Control by a Minimal Cdk Network

    PubMed Central

    Gérard, Claude; Tyson, John J.; Coudreuse, Damien; Novák, Béla

    2015-01-01

    In present-day eukaryotes, the cell division cycle is controlled by a complex network of interacting proteins, including members of the cyclin and cyclin-dependent protein kinase (Cdk) families, and the Anaphase Promoting Complex (APC). Successful progression through the cell cycle depends on precise, temporally ordered regulation of the functions of these proteins. In light of this complexity, it is surprising that in fission yeast, a minimal Cdk network consisting of a single cyclin-Cdk fusion protein can control DNA synthesis and mitosis in a manner that is indistinguishable from wild type. To improve our understanding of the cell cycle regulatory network, we built and analysed a mathematical model of the molecular interactions controlling the G1/S and G2/M transitions in these minimal cells. The model accounts for all observed properties of yeast strains operating with the fusion protein. Importantly, coupling the model’s predictions with experimental analysis of alternative minimal cells, we uncover an explanation for the unexpected fact that elimination of inhibitory phosphorylation of Cdk is benign in these strains while it strongly affects normal cells. Furthermore, in the strain without inhibitory phosphorylation of the fusion protein, the distribution of cell size at division is unusually broad, an observation that is accounted for by stochastic simulations of the model. Our approach provides novel insights into the organization and quantitative regulation of wild type cell cycle progression. In particular, it leads us to propose a new mechanistic model for the phenomenon of mitotic catastrophe, relying on a combination of unregulated, multi-cyclin-dependent Cdk activities. PMID:25658582

  14. Cycle life status of SAFT VOS nickel-cadmium cells

    NASA Technical Reports Server (NTRS)

    Goualard, Jacques

    1993-01-01

    The SAFT prismatic VOS Ni-Cd cells have been flown in geosynchronous orbit since 1977 and in low earth orbit since 1983. Parallel cycling tests are performed by several space agencies in order to determine the cycle life for a wide range of temperature and depth of discharge (DOD). In low Earth orbit (LEO), the ELAN program is conducted on 24 Ah cells by CNES and ESA at the European Battery Test Center at temperatures ranging from 0 to 27 C and DOD from 10 to 40 percent. Data are presented up to 37,000 cycles. One pack (X-80) has achieved 49,000 cycles at 10 C and 23 percent DOD. The geosynchronous orbit simulation of a high DOD test is conducted by ESA on 3 batteries at 10 C and 70, 90, and 100 percent DOD. Thirty-one eclipse seasons are completed, and no signs of degradation have been found. The Air Force test at CRANE on 24 Ah and 40 Ah cells at 20 C and 80 percent DOD has achieved 19 shadow periods. Life expectancy is discussed. The VOS cell technology could be used for the following: (1) in geosynchronous conditions--15 yrs at 10-15 C and 80 percent DOD; and (2) in low earth orbit--10 yrs at 5-15 C and 25-30 percent DOD.

  15. Evaluation program for secondary spacecraft cells: Cycle life test

    NASA Technical Reports Server (NTRS)

    Harkness, J. D.

    1979-01-01

    The service life and storage stability for several storage batteries were determined. The batteries included silver-zinc batteries, nickel-cadmium batteries, and silver-cadmium batteries. The cell performance characteristics and limitations are to be used by spacecraft power systems planners and designers. A statistical analysis of the life cycle prediction and cause of failure versus test conditions is presented.

  16. Cycle life status of SAFT VOS nickel-cadmium cells

    NASA Astrophysics Data System (ADS)

    Goualard, Jacques

    1993-02-01

    The SAFT prismatic VOS Ni-Cd cells have been flown in geosynchronous orbit since 1977 and in low earth orbit since 1983. Parallel cycling tests are performed by several space agencies in order to determine the cycle life for a wide range of temperature and depth of discharge (DOD). In low Earth orbit (LEO), the ELAN program is conducted on 24 Ah cells by CNES and ESA at the European Battery Test Center at temperatures ranging from 0 to 27 C and DOD from 10 to 40 percent. Data are presented up to 37,000 cycles. One pack (X-80) has achieved 49,000 cycles at 10 C and 23 percent DOD. The geosynchronous orbit simulation of a high DOD test is conducted by ESA on 3 batteries at 10 C and 70, 90, and 100 percent DOD. Thirty-one eclipse seasons are completed, and no signs of degradation have been found. The Air Force test at CRANE on 24 Ah and 40 Ah cells at 20 C and 80 percent DOD has achieved 19 shadow periods. Life expectancy is discussed. The VOS cell technology could be used for the following: (1) in geosynchronous conditions--15 yrs at 10-15 C and 80 percent DOD; and (2) in low earth orbit--10 yrs at 5-15 C and 25-30 percent DOD.

  17. Irradiation-induced changes in nuclear shape and cell cycle

    SciTech Connect

    Iwata, M.; Sasaki, H.; Kishino, Y.; Tsuboi, T.; Sugishita, T.; Hosokawa, T.

    1982-03-01

    Using human uterine cervical carcinoma cells transplanted in nude mice and mice leukemia L5178Y cells, changes in the cell cycle following irradiation were observed by flow cytometry (FCM), and changes in the cell nuclei during the course of irradiation were measured by FCM. Experiments in vivo as well as in vitro caused accumulation of cells in the G2 to M populations, resulting in the so-called G2 block phenomenon as revealed by FCM analysis of DNA distributions. The radiation-induced changes of nuclear shapes were dependent on abnormal mitoses, which occurred more frequently in the G2 to M phases. Therefore it is suggested that the G2 block phenomenon plays an important role in radiation-induced cell death because the process of cell death by irradiation has been shown to proceed via these abnormal mitoses.

  18. Cell Cycle Regulatory Functions of the KSHV Oncoprotein LANA

    PubMed Central

    Wei, Fang; Gan, Jin; Wang, Chong; Zhu, Caixia; Cai, Qiliang

    2016-01-01

    Manipulation of cell cycle is a commonly employed strategy of viruses for achieving a favorable cellular environment during infection. Kaposi’s sarcoma-associated herpesvirus (KSHV), the primary etiological agent of several human malignancies including Kaposi’s sarcoma, and primary effusion lymphoma, encodes several oncoproteins that deregulate normal physiology of cell cycle machinery to persist with endothelial cells and B cells and subsequently establish a latent infection. During latency, only a small subset of viral proteins is expressed. Latency-associated nuclear antigen (LANA) is one of the latent antigens shown to be essential for transformation of endothelial cells in vitro. It has been well demonstrated that LANA is critical for the maintenance of latency, episome DNA replication, segregation and gene transcription. In this review, we summarize recent studies and address how LANA functions as an oncoprotein to steer host cell cycle-related events including proliferation and apoptosis by interacting with various cellular and viral factors, and highlight the potential therapeutic strategy of disrupting LANA-dependent signaling as targets in KSHV-associated cancers. PMID:27065950

  19. NSA2, a novel nucleolus protein regulates cell proliferation and cell cycle

    SciTech Connect

    Zhang, Heyu; Ma, Xi; Shi, Taiping; Song, Quansheng; Zhao, Hongshan; Ma, Dalong

    2010-01-01

    NSA2 (Nop seven-associated 2) was previously identified in a high throughput screen of novel human genes associated with cell proliferation, and the NSA2 protein is evolutionarily conserved across different species. In this study, we revealed that NSA2 is broadly expressed in human tissues and cultured cell lines, and located in the nucleolus of the cell. Both of the putative nuclear localization signals (NLSs) of NSA2, also overlapped with nucleolar localization signals (NoLSs), are capable of directing nucleolar accumulation. Moreover, over-expression of the NSA2 protein promoted cell growth in different cell lines and regulated the G1/S transition in the cell cycle. SiRNA silencing of the NSA2 transcript attenuated the cell growth and dramatically blocked the cell cycle in G1/S transition. Our results demonstrated that NSA2 is a nucleolar protein involved in cell proliferation and cell cycle regulation.

  20. Piperlongumine Suppresses Proliferation of Human Oral Squamous Cell Carcinoma through Cell Cycle Arrest, Apoptosis and Senescence.

    PubMed

    Chen, San-Yuan; Liu, Geng-Hung; Chao, Wen-Ying; Shi, Chung-Sheng; Lin, Ching-Yen; Lim, Yun-Ping; Lu, Chieh-Hsiang; Lai, Peng-Yeh; Chen, Hau-Ren; Lee, Ying-Ray

    2016-01-01

    Oral squamous cell carcinoma (OSCC), an aggressive cancer originating in the oral cavity, is one of the leading causes of cancer deaths in males worldwide. This study investigated the antitumor activity and mechanisms of piperlongumine (PL), a natural compound isolated from Piper longum L., in human OSCC cells. The effects of PL on cell proliferation, the cell cycle, apoptosis, senescence and reactive oxygen species (ROS) levels in human OSCC cells were investigated. PL effectively inhibited cell growth, caused cell cycle arrest and induced apoptosis and senescence in OSCC cells. Moreover, PL-mediated anti-human OSCC behavior was inhibited by an ROS scavenger N-acetyl-l-cysteine (NAC) treatment, suggesting that regulation of ROS was involved in the mechanism of the anticancer activity of PL. These findings suggest that PL suppresses tumor growth by regulating the cell cycle and inducing apoptosis and senescence and is a potential chemotherapy agent for human OSCC cells. PMID:27120594

  1. Piperlongumine Suppresses Proliferation of Human Oral Squamous Cell Carcinoma through Cell Cycle Arrest, Apoptosis and Senescence

    PubMed Central

    Chen, San-Yuan; Liu, Geng-Hung; Chao, Wen-Ying; Shi, Chung-Sheng; Lin, Ching-Yen; Lim, Yun-Ping; Lu, Chieh-Hsiang; Lai, Peng-Yeh; Chen, Hau-Ren; Lee, Ying-Ray

    2016-01-01

    Oral squamous cell carcinoma (OSCC), an aggressive cancer originating in the oral cavity, is one of the leading causes of cancer deaths in males worldwide. This study investigated the antitumor activity and mechanisms of piperlongumine (PL), a natural compound isolated from Piper longum L., in human OSCC cells. The effects of PL on cell proliferation, the cell cycle, apoptosis, senescence and reactive oxygen species (ROS) levels in human OSCC cells were investigated. PL effectively inhibited cell growth, caused cell cycle arrest and induced apoptosis and senescence in OSCC cells. Moreover, PL-mediated anti-human OSCC behavior was inhibited by an ROS scavenger N-acetyl-l-cysteine (NAC) treatment, suggesting that regulation of ROS was involved in the mechanism of the anticancer activity of PL. These findings suggest that PL suppresses tumor growth by regulating the cell cycle and inducing apoptosis and senescence and is a potential chemotherapy agent for human OSCC cells. PMID:27120594

  2. Characterization of high-power lithium-ion cells during constant current cycling. Part I. Cycle performance and electrochemical diagnostics

    SciTech Connect

    Shim, Joongpyo; Striebel, Kathryn A.

    2003-01-24

    Twelve-cm{sup 2} pouch type lithium-ion cells were assembled with graphite anodes, LiNi{sub 0.8}Co{sub 0.15}Al{sub 0.05}O{sub 2} cathodes and 1M LiPF{sub 6}/EC/DEC electrolyte. These pouch cells were cycled at different depths of discharge (100 percent and 70 percent DOD) at room temperature to investigate cycle performance and pulse power capability. The capacity loss and power fade of the cells cycled over 100 percent DOD was significantly faster than the cell cycled over 70 percent DOD. The overall cell impedance increased with cycling, although the ohmic resistance from the electrolyte was almost constant. From electrochemical analysis of each electrode after cycling, structural and/or impedance changes in the cathode are responsible for most of the capacity and power fade, not the consumption of cycleable Li from side-reactions.

  3. Predicting stem cell fate changes by differential cell cycle progression patterns.

    PubMed

    Roccio, Marta; Schmitter, Daniel; Knobloch, Marlen; Okawa, Yuya; Sage, Daniel; Lutolf, Matthias P

    2013-01-15

    Stem cell self-renewal, commitment and reprogramming rely on a poorly understood coordination of cell cycle progression and execution of cell fate choices. Using existing experimental paradigms, it has not been possible to probe this relationship systematically in live stem cells in vitro or in vivo. Alterations in stem cell cycle kinetics probably occur long before changes in phenotypic markers are apparent and could be used as predictive parameters to reveal changes in stem cell fate. To explore this intriguing concept, we developed a single-cell tracking approach that enables automatic detection of cell cycle phases in live (stem) cells expressing fluorescent ubiquitylation-based cell-cycle indicator (FUCCI) probes. Using this tool, we have identified distinctive changes in lengths and fluorescence intensities of G1 (red fluorescence) and S/G2-M (green) that are associated with self-renewal and differentiation of single murine neural stem/progenitor cells (NSCs) and embryonic stem cells (ESCs). We further exploited these distinctive features using fluorescence-activated cell sorting to select for desired stem cell fates in two challenging cell culture settings. First, as G1 length was found to nearly double during NSC differentiation, resulting in progressively increasing red fluorescence intensity, we successfully purified stem cells from heterogeneous cell populations by their lower fluorescence. Second, as ESCs are almost exclusively marked by the green (S/G2-M) FUCCI probe due to their very short G1, we substantially augmented the proportion of reprogramming cells by sorting green cells early on during reprogramming from a NSC to an induced pluripotent stem cell state. Taken together, our studies begin to shed light on the crucial relationship between cell cycle progression and fate choice, and we are convinced that the presented approach can be exploited to predict and manipulate cell fate in a wealth of other mammalian cell systems. PMID:23193167

  4. CELL CYCLE SYNCHRONIZATION OF MOUSE LIVER EPITHELIAL CELLS BY ELUTRIATION CENTRIFUGATION

    SciTech Connect

    Pearlman, Andrew L.; Bartholomew, James C.

    1980-06-01

    Detailed methods are described for the sorting and cell cycle synchronization by means of centrifugal elutriation of an established mouse liver epithelial cell line(NMuLi). In a comparison between three different elutriation media and between two different temperatures(4° and 20° C), the NMuLi cells were found to be most reproducibly sorted in the cell cycle when run in growth medium in the absence of serum and at the lower temperature. Under these conditions. and using decrements of rotor speed calculated from an empirically derived algorithm as described in the text an initially asynchronous population (38% G{sub 1}, 36% S, and 28% G{sub 2}M) was sorted into fractions enriched to 60% G{sub 1}, 75% S, and 50% G{sub 2}M. Of the cells loaded into the rotor, 30% were lost in the elutriation process, and about 20% recovered as aggregates. The remainder appeared in the various synchronized fractions. Epithelial cells sorted in this manner demonstrated no loss of viability, and upon replating showed significant movement in the cell cycle by 6 hrs post elutriation. The degree of synchronous movement through the cell cycle achieved by elutriation depended on the part of the cell cycle from which the original elutriated fraction came. Cells collected as late S and G{sub 2}M moved through the cell cycle with the tightest sychrony.

  5. The Interplay between Cell Wall Mechanical Properties and the Cell Cycle in Staphylococcus aureus

    PubMed Central

    Bailey, Richard G.; Turner, Robert D.; Mullin, Nic; Clarke, Nigel; Foster, Simon J.; Hobbs, Jamie K.

    2014-01-01

    The nanoscale mechanical properties of live Staphylococcus aureus cells during different phases of growth were studied by atomic force microscopy. Indentation to different depths provided access to both local cell wall mechanical properties and whole-cell properties, including a component related to cell turgor pressure. Local cell wall properties were found to change in a characteristic manner throughout the division cycle. Splitting of the cell into two daughter cells followed a local softening of the cell wall along the division circumference, with the cell wall on either side of the division circumference becoming stiffer. Once exposed, the newly formed septum was found to be stiffer than the surrounding, older cell wall. Deeper indentations, which were affected by cell turgor pressure, did not show a change in stiffness throughout the division cycle, implying that enzymatic cell wall remodeling and local variations in wall properties are responsible for the evolution of cell shape through division. PMID:25468333

  6. Anticancer effect of arsenite on cell migration, cell cycle and apoptosis in human pancreatic cancer cells

    PubMed Central

    HORIBE, YOHEI; ADACHI, SEIJI; YASUDA, ICHIRO; YAMAUCHI, TAKAHIRO; KAWAGUCHI, JUNJI; KOZAWA, OSAMU; SHIMIZU, MASAHITO; MORIWAKI, HISATAKA

    2016-01-01

    The standard treatment for advanced pancreatic cancer is chemotherapy, but its clinical outcome remains unsatisfactory. Therefore, the development of novel treatments for this malignancy is urgently required. In the present study, the anticancer effect of arsenite on platelet-derived growth factor (PDGF)-BB-induced migration, cell cycle and apoptosis was investigated in pancreatic cancer cells (AsPC-1 and BxPC-3), and compared with the effect on normal pancreatic epithelial (PE) cells. In the cell migration assay, arsenite clearly inhibited PDGF-BB-induced cell migration in AsPC-1 cells, but not in BxPC-3 or PE cells. Arsenite also caused cell apoptosis in AsPC-1 cells, but not in BxPC-3 or PE cells. In AsPC-1 cells, the levels of cyclin D1 and phosphorylated retinoblastoma protein decreased following treatment with arsenite, but this was not observed in BxPC-3 cells. To further examine the differences between these two cell lines, the effect of arsenite on upstream p44/p42 mitogen-activated protein kinase (MAPK) and Akt was investigated. PDGF-BB caused phosphorylation of p44/p42 MAPK and Akt in both cell lines. Pretreatment with arsenite significantly suppressed PDGF-BB-induced phosphorylation of Akt, but not of p44/p42 MAPK in AsPC-1 cells. By contrast, arsenite did not affect these molecules in BxPC-3 cells. Since the inhibition of the Akt signaling pathway markedly reduced PDGF-BB-induced migration in AsPC-1 cells, the present results strongly suggest that arsenite inhibits PDGF-BB-induced migration by suppressing the Akt signaling pathway in AsPC-1 cells. Therefore, arsenite may be a useful tool for the treatment of patients with certain types of pancreatic cancer, without causing adverse effects on normal pancreatic cells. PMID:27347121

  7. Cell cycle constraints on capsulation and bacteriophage susceptibility

    PubMed Central

    Ardissone, Silvia; Fumeaux, Coralie; Bergé, Matthieu; Beaussart, Audrey; Théraulaz, Laurence; Radhakrishnan, Sunish Kumar; Dufrêne, Yves F; Viollier, Patrick H

    2014-01-01

    Despite the crucial role of bacterial capsules in pathogenesis, it is still unknown if systemic cues such as the cell cycle can control capsule biogenesis. In this study, we show that the capsule of the synchronizable model bacterium Caulobacter crescentus is cell cycle regulated and we unearth a bacterial transglutaminase homolog, HvyA, as restriction factor that prevents capsulation in G1-phase cells. This capsule protects cells from infection by a generalized transducing Caulobacter phage (φCr30), and the loss of HvyA confers insensitivity towards φCr30. Control of capsulation during the cell cycle could serve as a simple means to prevent steric hindrance of flagellar motility or to ensure that phage-mediated genetic exchange happens before the onset of DNA replication. Moreover, the multi-layered regulatory circuitry directing HvyA expression to G1-phase is conserved during evolution, and HvyA orthologues from related Sinorhizobia can prevent capsulation in Caulobacter, indicating that alpha-proteobacteria have retained HvyA activity. DOI: http://dx.doi.org/10.7554/eLife.03587.001 PMID:25421297

  8. Possible roles of the endocytic cycle in cell motility.

    PubMed

    Traynor, David; Kay, Robert R

    2007-07-15

    Starving, highly motile Dictyostelium cells maintain an active endocytic cycle, taking up their surface about every 11 minutes. Cell motility depends on a functional NSF (N-ethylmaleimide sensitive factor) protein--also essential for endocytosis and membrane trafficking generally--and we, therefore, investigated possible ways in which the endocytic cycle might be required for cell movement. First, NSF, and presumably membrane trafficking, are not required for the initial polarization of the leading edge in a cyclic-AMP gradient. Second, we can detect no evidence for membrane flow from the leading edge, as photobleached or photoactivated marks in the plasma membrane move forward roughly in step with the leading edge, rather than backwards from it. Third, we find that the surface area of a cell--measured from confocal reconstructions--constantly fluctuates during movement as it projects pseudopodia and otherwise changes shape; increases of 20-30% can often occur over a few minutes. These fluctuations cannot be explained by reciprocal changes in filopodial surface area and they substantially exceed the 2-3% by which membranes can stretch. We propose that the endocytic cycle has a key function in motility by allowing adjustment of cell surface area to match changes in shape and that, without this function, movement is severely impaired. PMID:17606987

  9. Phase Resetting Reveals Network Dynamics Underlying a Bacterial Cell Cycle

    PubMed Central

    Lin, Yihan; Li, Ying; Crosson, Sean; Dinner, Aaron R.; Scherer, Norbert F.

    2012-01-01

    Genomic and proteomic methods yield networks of biological regulatory interactions but do not provide direct insight into how those interactions are organized into functional modules, or how information flows from one module to another. In this work we introduce an approach that provides this complementary information and apply it to the bacterium Caulobacter crescentus, a paradigm for cell-cycle control. Operationally, we use an inducible promoter to express the essential transcriptional regulatory gene ctrA in a periodic, pulsed fashion. This chemical perturbation causes the population of cells to divide synchronously, and we use the resulting advance or delay of the division times of single cells to construct a phase resetting curve. We find that delay is strongly favored over advance. This finding is surprising since it does not follow from the temporal expression profile of CtrA and, in turn, simulations of existing network models. We propose a phenomenological model that suggests that the cell-cycle network comprises two distinct functional modules that oscillate autonomously and couple in a highly asymmetric fashion. These features collectively provide a new mechanism for tight temporal control of the cell cycle in C. crescentus. We discuss how the procedure can serve as the basis for a general approach for probing network dynamics, which we term chemical perturbation spectroscopy (CPS). PMID:23209388

  10. Cell-Cycle Analyses Using Thymidine Analogues in Fission Yeast

    PubMed Central

    Anda, Silje; Boye, Erik; Grallert, Beata

    2014-01-01

    Thymidine analogues are powerful tools when studying DNA synthesis including DNA replication, repair and recombination. However, these analogues have been reported to have severe effects on cell-cycle progression and growth, the very processes being investigated in most of these studies. Here, we have analyzed the effects of 5-ethynyl-2′-deoxyuridine (EdU) and 5-Chloro-2′-deoxyuridine (CldU) using fission yeast cells and optimized the labelling procedure. We find that both analogues affect the cell cycle, but that the effects can be mitigated by using the appropriate analogue, short pulses of labelling and low concentrations. In addition, we report sequential labelling of two consecutive S phases using EdU and 5-bromo-2′-deoxyuridine (BrdU). Furthermore, we show that detection of replicative DNA synthesis is much more sensitive than DNA-measurements by flow cytometry. PMID:24551125

  11. Astaxanthin Inhibits Proliferation and Induces Apoptosis and Cell Cycle Arrest of Mice H22 Hepatoma Cells.

    PubMed

    Shao, Yiye; Ni, Yanbo; Yang, Jing; Lin, Xutao; Li, Jun; Zhang, Lixia

    2016-01-01

    BACKGROUND It is widely recognized that astaxanthin (ASX), a member of the carotenoid family, has strong biological activities including antioxidant, anti-inflammation, and immune-modulation activities. Previous studies have confirmed that ASX can effectively inhibit hepatoma cells in vitro. MATERIAL AND METHODS MTT was used to assay proliferation of mice H22 cells, and flow cytometry was used to determine apoptosis and cell cycle arrest of H22 cells in vitro and in vivo. Moreover, anti-tumor activity of ASX was observed in mice. RESULTS ASX inhibited the proliferation of H22 cells, promoted cell necrosis, and induced cell cycle arrest in G2 phase in vitro and in vivo. CONCLUSIONS This study indicated that ASX can inhibit proliferation and induce apoptosis and cell cycle arrest in mice H22 hepatoma cells in vitro and in vivo. PMID:27333866

  12. Astaxanthin Inhibits Proliferation and Induces Apoptosis and Cell Cycle Arrest of Mice H22 Hepatoma Cells

    PubMed Central

    Shao, Yiye; Ni, Yanbo; Yang, Jing; Lin, Xutao; Li, Jun; Zhang, Lixia

    2016-01-01

    Background It is widely recognized that astaxanthin (ASX), a member of the carotenoid family, has strong biological activities including antioxidant, anti-inflammation, and immune-modulation activities. Previous studies have confirmed that ASX can effectively inhibit hepatoma cells in vitro. Material/Methods MTT was used to assay proliferation of mice H22 cells, and flow cytometry was used to determine apoptosis and cell cycle arrest of H22 cells in vitro and in vivo. Moreover, anti-tumor activity of ASX was observed in mice. Results ASX inhibited the proliferation of H22 cells, promoted cell necrosis, and induced cell cycle arrest in G2 phase in vitro and in vivo. Conclusions This study indicated that ASX can inhibit proliferation and induce apoptosis and cell cycle arrest in mice H22 hepatoma cells in vitro and in vivo. PMID:27333866

  13. Chemical dissection of the cell cycle: probes for cell biology and anti-cancer drug development

    PubMed Central

    Senese, S; Lo, Y C; Huang, D; Zangle, T A; Gholkar, A A; Robert, L; Homet, B; Ribas, A; Summers, M K; Teitell, M A; Damoiseaux, R; Torres, J Z

    2014-01-01

    Cancer cell proliferation relies on the ability of cancer cells to grow, transition through the cell cycle, and divide. To identify novel chemical probes for dissecting the mechanisms governing cell cycle progression and cell division, and for developing new anti-cancer therapeutics, we developed and performed a novel cancer cell-based high-throughput chemical screen for cell cycle modulators. This approach identified novel G1, S, G2, and M-phase specific inhibitors with drug-like properties and diverse chemotypes likely targeting a broad array of processes. We further characterized the M-phase inhibitors and highlight the most potent M-phase inhibitor MI-181, which targets tubulin, inhibits tubulin polymerization, activates the spindle assembly checkpoint, arrests cells in mitosis, and triggers a fast apoptotic cell death. Importantly, MI-181 has broad anti-cancer activity, especially against BRAFV600E melanomas. PMID:25321469

  14. IARS2 silencing induces non-small cell lung cancer cells proliferation inhibition, cell cycle arrest and promotes cell apoptosis.

    PubMed

    Yin, J; Liu, W; Li, R; Liu, J; Zhang, Y; Tang, W; Wang, K

    2016-01-01

    The purpose of this study was to investigate the potential role of Ileucyl-tRNA synthetase (IARS2) silencing in non-small cell lung cancer (NSCLC). The silencing of IARS2 in H1299 cells and A549 cells were performed by lentivirus encoding shRNAs. The efficiency of IARS2 silencing was detected by quantitative real time PCR and western blot. The effects of IARS2 silencing on cell growth, cell apoptosis, cell cycle and cell colony formation ability were assessed by cells counting, MTT assay, flow cytometer analysis and soft agar colony formation assay, respectively. Compared with negative control group, IARS2 was significantly knockdown by transfection with lentivirus encoding shRNA of IARS2. The IARS2 silencing significantly inhibited the cells proliferation and cells colony formation ability, induced cell cycle arrest at G1/S phase and promoted cell apoptosis. IARS2 silencing induced NSCLC cells growth inhibition, cell cycle arrest and promoted cell apoptosis. These results suggest that IARS2 may be a novel target for the treatment of NSCLC. PMID:26639235

  15. SAMHD1 controls cell cycle status, apoptosis and HIV-1 infection in monocytic THP-1 cells.

    PubMed

    Bonifati, Serena; Daly, Michele B; St Gelais, Corine; Kim, Sun Hee; Hollenbaugh, Joseph A; Shepard, Caitlin; Kennedy, Edward M; Kim, Dong-Hyun; Schinazi, Raymond F; Kim, Baek; Wu, Li

    2016-08-01

    SAMHD1 limits HIV-1 infection in non-dividing myeloid cells by decreasing intracellular dNTP pools. HIV-1 restriction by SAMHD1 in these cells likely prevents activation of antiviral immune responses and modulates viral pathogenesis, thus highlighting a critical role of SAMHD1 in HIV-1 physiopathology. Here, we explored the function of SAMHD1 in regulating cell proliferation, cell cycle progression and apoptosis in monocytic THP-1 cells. Using the CRISPR/Cas9 technology, we generated THP-1 cells with stable SAMHD1 knockout. We found that silencing of SAMHD1 in cycling cells stimulates cell proliferation, redistributes cell cycle population in the G1/G0 phase and reduces apoptosis. These alterations correlated with increased dNTP levels and more efficient HIV-1 infection in dividing SAMHD1 knockout cells relative to control. Our results suggest that SAMHD1, through its dNTPase activity, affects cell proliferation, cell cycle distribution and apoptosis, and emphasize a key role of SAMHD1 in the interplay between cell cycle regulation and HIV-1 infection. PMID:27183329

  16. High efficiency carbonate fuel cell/turbine hybrid power cycles

    SciTech Connect

    Steinfeld, G.

    1995-10-19

    Carbonate fuel cells developed by Energy Research Corporation, in commercial 2.85 MW size, have an efficiency of 57.9 percent. Studies of higher efficiency hybrid power cycles were conducted in cooperation with METC to identify an economically competitive system with an efficiency in excess of 65 percent. A hybrid power cycle was identified that includes a direct carbonate fuel cell, a gas turbine and a steam cycle, which generates power at a LHV efficiency in excess of 70 percent. This new system is called a Tandem Technology Cycle (TTC). In a TTC operating on natural gas fuel, 95 percent of the fuel is mixed with recycled fuel cell anode exhaust, providing water for the reforming of the fuel, and flows to a direct carbonate fuel cell system which generates 72 percent of the power. The portion of the fuel cell anode exhaust which is not recycled, is burned and heat is transferred to the compressed air from a gas turbine, raising its temperature to 1800{degrees}F. The stream is then heated to 2000{degrees}F in the gas turbine burner and expands through the turbine generating 13 percent of the power. Half the exhaust from the gas turbine flows to the anode exhaust burner, and the remainder flows to the fuel cell cathodes providing the O{sub 2} and CO{sub 2} needed in the electrochemical reaction. Exhaust from the fuel cells flows to a steam system which includes a heat recovery steam generator and stages steam turbine which generates 15 percent of the TTC system power. Studies of the TTC for 200-MW and 20-MW size plants quantified performance, emissions and cost-of-electricity, and compared the characteristics of the TTC to gas turbine combined cycles. A 200-MW TTC plant has an efficiency of 72.6 percent, and is relatively insensitive to ambient temperature, but requires a heat exchanger capable of 2000{degrees}F. The estimated cost of electricity is 45.8 mills/kWhr which is not competitive with a combined cycle in installations where fuel cost is under $5.8/MMBtu.

  17. Tangeretin induces cell cycle arrest and apoptosis through upregulation of PTEN expression in glioma cells.

    PubMed

    Ma, Li-Li; Wang, Da-Wei; Yu, Xu-Dong; Zhou, Yan-Ling

    2016-07-01

    Tangeretin (TANG), present in peel of citrus fruits, has been shown to various medicinal properties such as chemopreventive and neuroprotective. However, the chemopreventive effect of TANG on glioblastoma cells has not been examined. The present study was designed to explore the anticancer potential of TANG in glioblastoma cells and to investigate the related mechanism. Human glioblastoma U-87MG and LN-18 cells were treated with 45μM concentration of TANG and cell growth was measured by MTT assay. The cell cycle distribution and cell death were measured by flow cytometry. The expression of cell cycle and apoptosis related genes were analyzed by quantitative RT-PCR and western blot. The cells treated with TANG were significantly increased cell growth suppression and cell death effects than vehicle treated cells. Further, TANG treatment increases G2/M arrest and apoptosis by modulating PTEN and cell-cycle regulated genes such as cyclin-D and cdc-2 mRNA and protein expressions. Moreover, the ability of TANG to decrease cell growth and to induce cell death was compromised when PTEN was knockdown by siRNA. Taken together, the chemopreventive effect of TANG is associated with regulation of cell-cycle and apoptosis in glioblastoma, thereby attenuating glioblastoma cell growth. Hence, the present findings suggest that TANG may be a therapeutic agent for glioblastoma treatment. PMID:27261630

  18. Citral inhibits cell proliferation and induces apoptosis and cell cycle arrest in MCF-7 cells.

    PubMed

    Chaouki, Wahid; Leger, David Y; Liagre, Bertrand; Beneytout, Jean-Louis; Hmamouchi, Mohamed

    2009-10-01

    Many natural components of plants extract are studied for their beneficial effects on health and particularly on carcinogenesis chemoprevention. In this study, we investigated the effect of citral (3,7-dimethyl-2,6-octadienal), a key component of essential oils extracted from several herbal plants, on the proliferation rate, cell cycle distribution, and apoptosis of the human breast cancer cell line MCF-7. The effects of this compound were also tested on cyclo-oxygenase activity. Citral treatment caused inhibition of MCF-7 cell growth (IC(50)-48 h: 18 x 10(-5)m), with a cycle arrest in G(2)/M phase and apoptosis induction. Moreover, we observed a decrease in prostaglandin E(2) synthesis 48 h after citral treatment. These findings suggest that citral has a potential chemopreventive effect. PMID:19656204

  19. Polyamines and the Cell Cycle of Catharanthus roseus Cells in Culture 1

    PubMed Central

    Maki, Hisae; Ando, Satoshi; Kodama, Hiroaki; Komamine, Atsushi

    1991-01-01

    Investigation was made on the effect of partial depletion of polyamines (PAs), induced by treatment with inhibitors of the biosynthesis of PAs, on the distribution of cells at each phase of the cell cycle in Catharanthus roseus (L.) G. Don. cells in suspension cultures, using flow cytometry. More cells treated with inhibitors of arginine decarboxylase (ADC) and ornithine decarboxylase (ODC) were accumulated in the G1 phase than those in the control, while the treatment with an inhibitor of spermidine (SPD) synthase showed no effect on the distribution of cells. The endogenous levels of the PAs, putrescine (PUT), SPD, and spermine (SPM), were determined during the cell cycle in synchronous cultures of C. roseus. Two peaks of endogenous level of PAs, in particular, of PUT and SPD, were observed during the cell cycle. Levels of PAs increased markedly prior to synthesis of DNA in the S phase and prior to cytokinesis. Activities of ADC and ODC were also assayed during the cell cycle. Activities of ADC was much higher than that of ODC throughout the cell cycle, but both activities of ODC and ADC changed in concert with changes in levels of PAs. Therefore, it is suggested that these enzymes may regulate PA levels during the cell cycle. These results indicate that inhibitors of PUT biosynthesis caused the suppression of cell proliferation by prevention of the progression of the cell cycle, probably from the G1 to the S phase, and PUT may play more important roles in the progression of the cell cycle than other PAs. PMID:16668290

  20. Polydatin inhibits growth of lung cancer cells by inducing apoptosis and causing cell cycle arrest.

    PubMed

    Zhang, Yusong; Zhuang, Zhixiang; Meng, Qinghui; Jiao, Yang; Xu, Jiaying; Fan, Saijun

    2014-01-01

    Polydatin (PD), a small natural compound from Polygonum cuspidatum, has a number of biological functions. However, the anticancer activity of PD has been poorly investigated. In the present study, thiazolyl blue tetrazolium bromide assay was used to evaluate the inhibitory effect of PD on cell growth. Cell cycle distribution and apoptosis were investigated by flow cytometry. In addition, the expression of several proteins associated with apoptosis and cell cycle were analyzed by western blot analysis. The results demonstrated that PD significantly inhibits the proliferation of A549 and NCI-H1975 lung cancer cell lines and causes dose-dependent apoptosis. Cell cycle analysis revealed that PD induces S phase cell cycle arrest. Western blot analysis showed that the expression of Bcl-2 decreased as that of Bax increased, and the expression of cyclin D1 was also suppressed. The results suggest that PD has potential therapeutic applications in the treatment of lung cancer. PMID:24348867

  1. Lineage correlations of single cell division time as a probe of cell-cycle dynamics.

    PubMed

    Sandler, Oded; Mizrahi, Sivan Pearl; Weiss, Noga; Agam, Oded; Simon, Itamar; Balaban, Nathalie Q

    2015-03-26

    Stochastic processes in cells are associated with fluctuations in mRNA, protein production and degradation, noisy partition of cellular components at division, and other cell processes. Variability within a clonal population of cells originates from such stochastic processes, which may be amplified or reduced by deterministic factors. Cell-to-cell variability, such as that seen in the heterogeneous response of bacteria to antibiotics, or of cancer cells to treatment, is understood as the inevitable consequence of stochasticity. Variability in cell-cycle duration was observed long ago; however, its sources are still unknown. A central question is whether the variance of the observed distribution originates from stochastic processes, or whether it arises mostly from a deterministic process that only appears to be random. A surprising feature of cell-cycle-duration inheritance is that it seems to be lost within one generation but to be still present in the next generation, generating poor correlation between mother and daughter cells but high correlation between cousin cells. This observation suggests the existence of underlying deterministic factors that determine the main part of cell-to-cell variability. We developed an experimental system that precisely measures the cell-cycle duration of thousands of mammalian cells along several generations and a mathematical framework that allows discrimination between stochastic and deterministic processes in lineages of cells. We show that the inter- and intra-generation correlations reveal complex inheritance of the cell-cycle duration. Finally, we build a deterministic nonlinear toy model for cell-cycle inheritance that reproduces the main features of our data. Our approach constitutes a general method to identify deterministic variability in lineages of cells or organisms, which may help to predict and, eventually, reduce cell-to-cell heterogeneity in various systems, such as cancer cells under treatment. PMID:25762143

  2. Size sensors in bacteria, cell cycle control, and size control

    PubMed Central

    Robert, Lydia

    2015-01-01

    Bacteria proliferate by repetitive cycles of cellular growth and division. The progression into the cell cycle is admitted to be under the control of cell size. However, the molecular basis of this regulation is still unclear. Here I will discuss which mechanisms could allow coupling growth and division by sensing size and transmitting this information to the division machinery. Size sensors could act at different stages of the cell cycle. During septum formation, mechanisms controlling the formation of the Z ring, such as MinCD inhibition or Nucleoid Occlusion (NO) could participate in the size-dependence of the division process. In addition or alternatively, the coupling of growth and division may occur indirectly through the control of DNA replication initiation. The relative importance of these different size-sensing mechanisms could depend on the environmental and genetic context. The recent demonstration of an incremental strategy of size control in bacteria, suggests that DnaA-dependent control of replication initiation could be the major size control mechanism limiting cell size variation. PMID:26074903

  3. Bioelectrical regulation of cell cycle and the planarian model system.

    PubMed

    Barghouth, Paul G; Thiruvalluvan, Manish; Oviedo, Néstor J

    2015-10-01

    Cell cycle regulation through the manipulation of endogenous membrane potentials offers tremendous opportunities to control cellular processes during tissue repair and cancer formation. However, the molecular mechanisms by which biophysical signals modulate the cell cycle remain underappreciated and poorly understood. Cells in complex organisms generate and maintain a constant voltage gradient across the plasma membrane known as the transmembrane potential. This potential, generated through the combined efforts of various ion transporters, pumps and channels, is known to drive a wide range of cellular processes such as cellular proliferation, migration and tissue regeneration while its deregulation can lead to tumorigenesis. These cellular regulatory events, coordinated by ionic flow, correspond to a new and exciting field termed molecular bioelectricity. We aim to present a brief discussion on the biophysical machinery involving membrane potential and the mechanisms mediating cell cycle progression and cancer transformation. Furthermore, we present the planarian Schmidtea mediterranea as a tractable model system for understanding principles behind molecular bioelectricity at both the cellular and organismal level. This article is part of a Special Issue entitled: Membrane channels and transporters in cancers. PMID:25749155

  4. Cell cycle regulation by the NEK family of protein kinases.

    PubMed

    Fry, Andrew M; O'Regan, Laura; Sabir, Sarah R; Bayliss, Richard

    2012-10-01

    Genetic screens for cell division cycle mutants in the filamentous fungus Aspergillus nidulans led to the discovery of never-in-mitosis A (NIMA), a serine/threonine kinase that is required for mitotic entry. Since that discovery, NIMA-related kinases, or NEKs, have been identified in most eukaryotes, including humans where eleven genetically distinct proteins named NEK1 to NEK11 are expressed. Although there is no evidence that human NEKs are essential for mitotic entry, it is clear that several NEK family members have important roles in cell cycle control. In particular, NEK2, NEK6, NEK7 and NEK9 contribute to the establishment of the microtubule-based mitotic spindle, whereas NEK1, NEK10 and NEK11 have been implicated in the DNA damage response. Roles for NEKs in other aspects of mitotic progression, such as chromatin condensation, nuclear envelope breakdown, spindle assembly checkpoint signalling and cytokinesis have also been proposed. Interestingly, NEK1 and NEK8 also function within cilia, the microtubule-based structures that are nucleated from basal bodies. This has led to the current hypothesis that NEKs have evolved to coordinate microtubule-dependent processes in both dividing and non-dividing cells. Here, we review the functions of the human NEKs, with particular emphasis on those family members that are involved in cell cycle control, and consider their potential as therapeutic targets in cancer. PMID:23132929

  5. Analysis of relationship between programmed cell death and cell cycle in limb-bud.

    PubMed

    Toné, S; Tanaka, S

    1997-01-01

    Programmed cell death plays a crucial role in limb morphogenesis of amniote. In this paper, we showed that cell cycle and cell death in limb-buds were closely related events and there existed a critical S-phase, which corresponded to the most sensitive time for inhibition of cell death following administration of an excess dose of 5-bromodeoxyuridine (BrdU). The use of microfluorometry of BrdU incorporation coupled with measurement of DNA amount of individual cells enabled us to consider that cells committed to die were withdrawn from cell cycle at G2-phase. Finally, we will summarize the nuclear events involved in apoptosis in limb morphogenesis in relation to cell cycle. PMID:9267810

  6. Cell Cycle Analysis of CML Stem Cells Using Hoechst 33342 and Propidium Iodide.

    PubMed

    DeSouza, Ngoc; Zhou, Megan; Shan, Yi

    2016-01-01

    Chronic myeloid leukemia (CML) is a myeloproliferative disease with an expansion of white blood cells. The current treatments for CML are shown not to be long-term effective because of CML stem cells' insensitivity to tyrosine kinase inhibitors. Therefore, studying more about CML stem cells is essential to understand the pathways of CML stem cell development and proliferation and finally lead to effective treatments to eliminate CML stem cells and eradicate CML. This chapter describes two methods to analyze cell cycle of CML stem cells. The rare population of CML stem cells can be identified by staining with cell surface markers, and then DNA-binding dyes Hoechst 33342 and propidium iodide (PI) are added to stain the DNA content which is changed when cells go through different phases of the cell cycle. Samples are run through the flow cytometer to be analyzed based on different absorbance and emission wavelengths of different florescent colors. PMID:27581138

  7. DNA methylation is stable during replication and cell cycle arrest

    PubMed Central

    Vandiver, Amy R.; Idrizi, Adrian; Rizzardi, Lindsay; Feinberg, Andrew P.; Hansen, Kasper D.

    2015-01-01

    DNA methylation is an epigenetic modification with important functions in development. Large-scale loss of DNA methylation is a hallmark of cancer. Recent work has identified large genomic blocks of hypomethylation associated with cancer, EBV transformation and replicative senescence, all of which change the proportion of actively proliferating cells within the population measured. We asked if replication or cell-cycle arrest affects the global levels of methylation or leads to hypomethylated blocks as observed in other settings. We used fluorescence activated cell sorting to isolate primary dermal fibroblasts in G0, G1 and G2 based on DNA content and Ki67 staining. We additionally examined G0 cells arrested by contact inhibition for one week to determine the effects of extended arrest. We analyzed genome wide DNA methylation from sorted cells using whole genome bisulfite sequencing. This analysis demonstrated no global changes or large-scale hypomethylated blocks in any of the examined cell cycle phases, indicating that global levels of methylation are stable with replication and arrest. PMID:26648411

  8. Single Cell Mass Cytometry Adapted to Measurements of the Cell Cycle1

    PubMed Central

    Behbehani, Gregory K.; Bendall, Sean C.; Clutter, Matthew R.; Fantl, Wendy J.; Nolan, Garry P.

    2013-01-01

    Mass cytometry is a recently introduced technology that utilizes transition element isotope-tagged antibodies for protein detection on a single-cell basis. By circumventing the limitations of emission spectral overlap associated with fluorochromes utilized in traditional flow cytometry, mass cytometry currently allows measurement of up to 40 parameters per cell. Recently a comprehensive mass cytometry analysis was described for the hematopoietic differentiation program in human bone marrow from a healthy donor. The present study describes approaches to delineate cell cycle stages utilizing iododeoxyuridine (IdU) to mark cells in S phase, simultaneously with antibodies against cyclin B1, cyclin A, and phosphorylated histone H3 (S28) that characterize the other cell cycle phases. Protocols were developed in which an antibody against phosphorylated retinoblastoma protein (Rb) at serines 807 and 811 was used to separate cells in G0 and G1 phases of the cell cycle. This mass cytometry method yielded cell cycle distributions of both normal and cancer cell populations that were equivalent to those obtained by traditional fluorescence cytometry techniques. We applied this to map the cell cycle phases of cells spanning the hematopoietic hierarchy in healthy human bone marrow as a prelude to later studies with cancers and other disorders of this lineage. PMID:22693166

  9. Local homogeneity of cell cycle length in developing mouse cortex

    NASA Technical Reports Server (NTRS)

    Cai, L.; Hayes, N. L.; Nowakowski, R. S.

    1997-01-01

    We have measured the amount of variation in the length of the cell cycle for cells in the pseudostratified ventricular epithelium (PVE) of the developing cortex of mice on embryonic day 14. Our measurements were made in three cortical regions (i.e., the neocortex, archicortex, and periarchicortex) using three different methods: the cumulative labeling method (CLM), the percent labeled mitoses (PLM) method, and a comparison of the time needed for the PLM to ascend from 0 to 100% with the time needed for the PLM to descend from 100 to 0%. These 3 different techniques provide different perspectives on the cytokinetic parameters. Theoretically, CLM gives an estimate for a maximum value of the total length of the cell cycle (TC), whereas PLM gives an estimate of a minimum value of TC. The difference between these two estimates indicates that the range for TC is +/-1% of the mean TC for periarchicortex, +/-7% for neocortex, and +/-8% for archicortex. This was confirmed by a lengthening of the PLM descent time in comparison with its ascent time. The sharpness of the transitions and the flatness of the plateau of the PLM curves indicate that 99% of the proliferating cells are within this narrow estimated range for TC; hence, only approximately 1% deviate outside of a relatively restricted range from the average TC of the population. In the context of the possible existence within the cortical PVE of two populations with markedly dissimilar cell cycle kinetics from the mean, one such population must comprise approximately 99% of the total population, and the other, if it exists, is only approximately 1% of the total. This seems to be true for all three cortical regions. The narrow range of TC indicates a homogeneity in the cell cycle length for proliferating cells in three different cortical regions, despite the fact that progenitor cells of different lineages may be present. It further predicts the existence of almost synchronous interkinetic nuclear movements of the

  10. Does Arabidopsis thaliana DREAM of cell cycle control?

    PubMed Central

    Fischer, Martin; DeCaprio, James A

    2015-01-01

    Strict temporal control of cell cycle gene expression is essential for all eukaryotes including animals and plants. DREAM complexes have been identified in worm, fly, and mammals, linking several distinct transcription factors to coordinate gene expression throughout the cell cycle. In this issue of The EMBO Journal, Kobayashi et al (2015) identify distinct activator and repressor complexes for genes expressed during the G2 and M phases in Arabidopsis that can be temporarily separated during proliferating and post-mitotic stages of development. The complexes incorporate specific activator and repressor MYB and E2F transcription factors and indicate the possibility of the existence of multiple DREAM complexes in plants. PMID:26089020

  11. Cell cycle arrest induced by MPPa-PDT in MDA-MB-231 cells

    NASA Astrophysics Data System (ADS)

    Liang, Liming; Bi, Wenxiang; Tian, Yuanyuan

    2016-05-01

    Photodynamic therapy (PDT) is a medical treatment using a photosensitizing agent and light source to treat cancers. Pyropheophorbidea methyl ester (MPPa), a derivative of chlorophyll, is a novel potent photosensitizer. To learn more about this photosensitizer, we examined the cell cycle arrest in MDA-MB-231. Cell cycle and apoptosis were measured by flow cytometer. Checkpoints of the cell cycle were measured by western blot. In this study, we found that the expression of Cyclin D1 was obviously decreased, while the expression of Chk2 and P21 was increased after PDT treatment. This study showed that MPPa-PDT affected the checkpoints of the cell cycle and led the cells to apoptosis.

  12. Linalool Induces Cell Cycle Arrest and Apoptosis in Leukemia Cells and Cervical Cancer Cells through CDKIs

    PubMed Central

    Chang, Mei-Yin; Shieh, Den-En; Chen, Chung-Chi; Yeh, Ching-Sheng; Dong, Huei-Ping

    2015-01-01

    Plantaginaceae, a popular traditional Chinese medicine, has long been used for treating various diseases from common cold to cancer. Linalool is one of the biologically active compounds that can be isolated from Plantaginaceae. Most of the commonly used cytotoxic anticancer drugs have been shown to induce apoptosis in susceptible tumor cells. However, the signaling pathway for apoptosis remains undefined. In this study, the cytotoxic effect of linalool on human cancer cell lines was investigated. Water-soluble tetrazolium salts (WST-1) based colorimetric cellular cytotoxicity assay, was used to test the cytotoxic ability of linalool against U937 and HeLa cells, and flow cytometry (FCM) and genechip analysis were used to investigate the possible mechanism of apoptosis. These results demonstrated that linalool exhibited a good cytotoxic effect on U937 and HeLa cells, with the IC50 value of 2.59 and 11.02 μM, respectively, compared with 5-FU with values of 4.86 and 12.31 μM, respectively. After treating U937 cells with linalool for 6 h, we found an increased sub-G1 peak and a dose-dependent phenomenon, whereby these cells were arrested at the G0/G1 phase. Furthermore, by using genechip analysis, we observed that linalool can promote p53, p21, p27, p16, and p18 gene expression. Therefore, this study verified that linalool can arrest the cell cycle of U937 cells at the G0/G1 phase and can arrest the cell cycle of HeLa cells at the G2/M phase. Its mechanism facilitates the expression of the cyclin-dependent kinases inhibitors (CDKIs) p53, p21, p27, p16, and p18, as well as the non-expression of cyclin-dependent kinases (CDKs) activity. PMID:26703569

  13. Tracking of Normal and Malignant Progenitor Cell Cycle Transit in a Defined Niche

    PubMed Central

    Pineda, Gabriel; Lennon, Kathleen M.; Delos Santos, Nathaniel P.; Lambert-Fliszar, Florence; Riso, Gennarina L.; Lazzari, Elisa; Marra, Marco A.; Morris, Sheldon; Sakaue-Sawano, Asako; Miyawaki, Atsushi; Jamieson, Catriona H. M.

    2016-01-01

    While implicated in therapeutic resistance, malignant progenitor cell cycle kinetics have been difficult to quantify in real-time. We developed an efficient lentiviral bicistronic fluorescent, ubiquitination-based cell cycle indicator reporter (Fucci2BL) to image live single progenitors on a defined niche coupled with cell cycle gene expression analysis. We have identified key differences in cell cycle regulatory gene expression and transit times between normal and chronic myeloid leukemia progenitors that may inform cancer stem cell eradication strategies. PMID:27041210

  14. Cell cycle and centromere FISH studies in premature centromere division

    PubMed Central

    Corona-Rivera, Alfredo; Salamanca-Gomez, Fabio; Bobadilla-Morales, Lucina; Corona-Rivera, Jorge R; Palomino-Cueva, Cesar; Garcia-Cobian, Teresa A; Corona-Rivera, Enrique

    2005-01-01

    Background Mitotic configurations consistent in split centromeres and splayed chromatids in all or most of the chromosomes or premature centromere division (PCD) have been described in three categories. (1) Low frequency of PCD observed in colchicines-treated lymphocyte cultures from normal individuals. (2) High frequency of PCD with mosaic variegated aneuploidy. (3) High frequency of PCD as a sole chromosome abnormality observed in individuals with no recognizable clinical pattern. We report four members of a family with the third category of PCD. Methods Cell cycle duration assessed by average generation time using differential sister chromatid stain analysis and FISH studies of DNA centromere sequences in PCD individuals, are included and compared with previously reported PCD individuals from 9 families. Results We observed PCD in colchicine-treated cultures from the propositus, his father, and two paternal aunts but not in his mother and four other paternal and maternal family members, as well as in untreated cultures from the propositus and his father. We observed cytological evidence of active centromeres by Cd stain. Significative cell cycle time reduction in anaphases of PCD individuals (average generation time of 21.8 h;SD 0.4) with respect to individuals without PCD (average generation time of 31.8 h;SD 3.9) was observed (P < 0.005, Student t-test for independent samples). Increased cell proliferation kinetics was observed in anaphasic cells of individuals with PCD, by differential sister chromatid stain analysis. FISH studies revealed the presence of alpha satellite DNA from chromosomes 1, 13, 21/18, X, all centromeres, and CENP-B box sequences in metaphasic and anaphasic cells from PCD individuals. Conclusion This report examines evidences of a functional relationship between PCD and cell cycle impairment. It seems that essential centromere integrity is present in these cases. PMID:16174301

  15. The Cell Cycle Timing of Human Papillomavirus DNA Replication

    PubMed Central

    Reinson, Tormi; Henno, Liisi; Toots, Mart; Ustav, Mart; Ustav, Mart

    2015-01-01

    Viruses manipulate the cell cycle of the host cell to optimize conditions for more efficient viral genome replication. One strategy utilized by DNA viruses is to replicate their genomes non-concurrently with the host genome; in this case, the viral genome is amplified outside S phase. This phenomenon has also been described for human papillomavirus (HPV) vegetative genome replication, which occurs in G2-arrested cells; however, the precise timing of viral DNA replication during initial and stable replication phases has not been studied. We developed a new method to quantitate newly synthesized DNA levels and used this method in combination with cell cycle synchronization to show that viral DNA replication is initiated during S phase and is extended to G2 during initial amplification but follows the replication pattern of cellular DNA during S phase in the stable maintenance phase. E1 and E2 protein overexpression changes the replication time from S only to both the S and G2 phases in cells that stably maintain viral episomes. These data demonstrate that the active synthesis and replication of the HPV genome are extended into the G2 phase to amplify its copy number and the duration of HPV genome replication is controlled by the level of the viral replication proteins E1 and E2. Using the G2 phase for genome amplification may be an important adaptation that allows exploitation of changing cellular conditions during cell cycle progression. We also describe a new method to quantify newly synthesized viral DNA levels and discuss its benefits for HPV research. PMID:26132923

  16. The Cell Cycle Timing of Human Papillomavirus DNA Replication.

    PubMed

    Reinson, Tormi; Henno, Liisi; Toots, Mart; Ustav, Mart; Ustav, Mart

    2015-01-01

    Viruses manipulate the cell cycle of the host cell to optimize conditions for more efficient viral genome replication. One strategy utilized by DNA viruses is to replicate their genomes non-concurrently with the host genome; in this case, the viral genome is amplified outside S phase. This phenomenon has also been described for human papillomavirus (HPV) vegetative genome replication, which occurs in G2-arrested cells; however, the precise timing of viral DNA replication during initial and stable replication phases has not been studied. We developed a new method to quantitate newly synthesized DNA levels and used this method in combination with cell cycle synchronization to show that viral DNA replication is initiated during S phase and is extended to G2 during initial amplification but follows the replication pattern of cellular DNA during S phase in the stable maintenance phase. E1 and E2 protein overexpression changes the replication time from S only to both the S and G2 phases in cells that stably maintain viral episomes. These data demonstrate that the active synthesis and replication of the HPV genome are extended into the G2 phase to amplify its copy number and the duration of HPV genome replication is controlled by the level of the viral replication proteins E1 and E2. Using the G2 phase for genome amplification may be an important adaptation that allows exploitation of changing cellular conditions during cell cycle progression. We also describe a new method to quantify newly synthesized viral DNA levels and discuss its benefits for HPV research. PMID:26132923

  17. Cycle reset in a melanoma cell line caused by cooling.

    PubMed

    Dewey, D L

    1987-11-01

    When cells in culture are released from G0 into cycle by diluting into fresh medium there is a delay of many hours before they re-enter the cycle and start DNA synthesis. A mouse melanoma cell line designated HP2 has been used to investigate the effects of non-standard temperatures between the time of plating and DNA synthesis. When the cells were incubated in a 5% CO2 box at 8 degrees C for periods during the G0-G1 transition there was an extra delay before the start of S, approximately equal to the time that the cells were held at 8 degrees C and independent of the time when the cold pulse was administered. When the cells were cooled to 25 degrees C the delay was longer than the time for which the cells had been kept at 25 degrees C, and this extra delay was also dependent on the point in G0-G1 when the cells were cooled, as though the cells could be reset to an earlier time by this treatment. It is suggested that a labile substance required for progression is destroyed faster than it is made at 25 degrees C but at 8 degrees C the rate of destruction is very low. Another phenomenon noted during these cooling experiments was that the peak height of the S phase profile, as measured by frequent pulse-thymidine incorporation experiments, was substantially higher for cells which had been cooled at a later stage in the G0-G1 transition, even though the overall times at 37 degrees C and at the colder temperature were identical. By varying the temperature of the cold pulse it was possible to separate the change in the peak height and the delay as separate entities. PMID:3502929

  18. Effects of mimosine on Wolbachia in mosquito cells: cell cycle suppression reduces bacterial abundance

    PubMed Central

    Fallon, Ann M.

    2016-01-01

    The plant allelochemical l-mimosine (β-[N-(3-hydroxy-4-pyridone)]-α-aminopropionic acid; leucenol) resembles the nonessential amino acid, tyrosine. Because the obligate intracellular alphaproteobacterium, Wolbachia pipientis, metabolizes amino acids derived from host cells, the effects of mimosine on infected and uninfected mosquito cells were investigated. The EC50 for mimosine was 6–7 μM with Aedes albopictus C7-10 and C/wStr cell lines, and was not influenced by infection status. Mosquito cells responded to concentrations of mimosine substantially lower than those used to synchronize the mammalian cell cycle; at concentrations of 30–35 μM, mimosine reversibly arrested the mosquito cell cycle at the G1/S boundary and inhibited growth of Wolbachia strain wStr. Although lower concentrations of mimosine slightly increased wStr abundance, concentrations that suppressed the cell cycle reduced Wolbachia levels. PMID:26019119

  19. Soaking RNAi in Bombyx mori BmN4-SID1 cells arrests cell cycle progression.

    PubMed

    Mon, Hiroaki; Li, Zhiqing; Kobayashi, Isao; Tomita, Shuichiro; Lee, JaeMan; Sezutsu, Hideki; Tamura, Toshiki; Kusakabe, Takahiro

    2013-01-01

    RNA interference (RNAi) is an evolutionarily conserved mechanism for sequence-specific gene silencing. Previously, the BmN4-SID1 cell expressing Caenorhabditis ele gans SID-1 was established, in which soaking RNAi could induce effective gene silencing. To establish its utility, 6 cell cycle progression related cDNAs, CDK1, MYC, MYB, RNRS, CDT1, and GEMININ, were isolated from the silkworm, Bombyx mori L. (Lepidoptera: Bombycidae), and their expressions were further silenced by soaking RNAi in the BmN4-SID1 cells. The cell cycle progression analysis using flow cytometer demonstrated that the small amount of double stranded RNA was enough to arrest cell cycle progression at the specific cell phases. These data suggest that RNAi in the BmN4-SID1 cells can be used as a powerful tool for loss-of-function analysis of B. mori genes. PMID:24773378

  20. Development of cell-cycle checkpoint therapy for solid tumors.

    PubMed

    Tamura, Kenji

    2015-12-01

    Cellular proliferation is tightly controlled by several cell-cycle checkpoint proteins. In cancer, the genes encoding these proteins are often disrupted and cause unrestrained cancer growth. The proteins are over-expressed in many malignancies; thus, they are potential targets for anti-cancer therapies. These proteins include cyclin-dependent kinase, checkpoint kinase, WEE1 kinase, aurora kinase and polo-like kinase. Cyclin-dependent kinase inhibitors are the most advanced cell-cycle checkpoint therapeutics available. For instance, palbociclib (PD0332991) is a first-in-class, oral, highly selective inhibitor of CDK4/6 and, in combination with letrozole (Phase II; PALOMA-1) or with fulvestrant (Phase III; PALOMA-3), it has significantly prolonged progression-free survival, in patients with metastatic estrogen receptor-positive, HER2-negative breast cancer, in comparison with that observed in patients using letrozole, or fulvestrant alone, respectively. In this review, we provide an overview of the current compounds available for cell-cycle checkpoint protein-directed therapy for solid tumors. PMID:26486823

  1. A DNA-damage-induced cell cycle checkpoint in Arabidopsis.

    PubMed Central

    Preuss, S B; Britt, A B

    2003-01-01

    Although it is well established that plant seeds treated with high doses of gamma radiation arrest development as seedlings, the cause of this arrest is unknown. The uvh1 mutant of Arabidopsis is defective in a homolog of the human repair endonuclease XPF, and uvh1 mutants are sensitive to both the toxic effects of UV and the cytostatic effects of gamma radiation. Here we find that gamma irradiation of uvh1 plants specifically triggers a G(2)-phase cell cycle arrest. Mutants, termed suppressor of gamma (sog), that suppress this radiation-induced arrest and proceed through the cell cycle unimpeded were recovered in the uvh1 background; the resulting irradiated plants are genetically unstable. The sog mutations fall into two complementation groups. They are second-site suppressors of the uvh1 mutant's sensitivity to gamma radiation but do not affect the susceptibility of the plant to UV radiation. In addition to rendering the plants resistant to the growth inhibitory effects of gamma radiation, the sog1 mutation affects the proper development of the pollen tetrad, suggesting that SOG1 might also play a role in the regulation of cell cycle progression during meiosis. PMID:12750343

  2. Stochastic Polynomial Dynamic Models of the Yeast Cell Cycle

    NASA Astrophysics Data System (ADS)

    Mitra, Indranil; Dimitrova, Elena; Jarrah, Abdul S.

    2010-03-01

    In the last decade a new holistic approach for tackling biological problems, systems biology, which takes into account the study of the interactions between the components of a biological system to predict function and behavior has emerged. The reverse-engineering of biochemical networks from experimental data have increasingly become important in systems biology. Based on Boolean networks, we propose a time-discrete stochastic framework for the reverse engineering of the yeast cell cycle regulatory network from experimental data. With a suitable choice of state set, we have used powerful tools from computational algebra, that underlie the reverse-engineering algorithm, avoiding costly enumeration strategies. Stochasticity is introduced by choosing at each update step a random coordinate function for each variable, chosen from a probability space of update functions. The algorithm is based on a combinatorial structure known as the Gr"obner fans of a polynomial ideal which identifies the underlying network structure and dynamics. The model depicts a correct dynamics of the yeast cell cycle network and reproduces the time sequence of expression patterns along the biological cell cycle. Our findings indicate that the methodolgy has high chance of success when applied to large and complex systems to determine the dynamical properties of corresponding networks.

  3. Complete and limited proteolysis in cell cycle progression.

    PubMed

    Goulet, Brigitte; Nepveu, Alain

    2004-08-01

    An important mechanism of regulation that controls progression through the cell cycle involves the timely degradation of specific regulatory proteins. In parallel to the main degradative pathways, it appears that the function of certain proteins may also be modulated by a process called limited proteolysis. We have recently shown that the CDP/Cux transcription factor is proteolytically processed at the G(1)/S transition by the cathepsin L protease. Two aspects of these findings are discussed in the context of the cell cycle. Firstly, together with the cohesin subunit Scc1 and the HCF-1 factor, CDP/Cux represents a third example whereby the process of "limited proteolysis" plays a role in the control of cell cycle progression. Secondly, our findings provides compelling evidence that the cathepsin L protease, which was believed to be obligatorily targeted through the endoplasmic reticulum to the lysosomes or the extra-cellular milieu, could also be present in the nucleus and modulate the function of transcription factors. PMID:15254406

  4. The ORC1 cycle in human cells: II. Dynamic changes in the human ORC complex during the cell cycle.

    PubMed

    Ohta, Satoshi; Tatsumi, Yasutoshi; Fujita, Masatoshi; Tsurimoto, Toshiki; Obuse, Chikashi

    2003-10-17

    The origin recognition complex (ORC) plays a central role in regulating the initiation of DNA replication in eukaryotes. The level of the ORC1 subunit oscillates throughout the cell cycle, defining an ORC1 cycle. ORC1 accumulates in G1 and is degraded in S phase, although other ORC subunits (ORCs 2-5) remain at almost constant levels. The behavior of ORC components in human cell nuclei with respect to the ORC1 cycle demonstrates that ORCs 2-5 form a complex that is present throughout the cell cycle and that associates with ORC1 when it accumulates in G1 nuclei. ORCs 2-5 are found in both nuclease-insoluble and -soluble fractions. The appearance of nuclease-insoluble ORCs 2-5 parallels the increase in the level of ORC1 associating with nuclease-insoluble, non-chromatin nuclear structures. Thus, ORCs 2-5 are temporally recruited to nuclease-insoluble structures by formation of the ORC1-5 complex. An artificial reduction in the level of ORC1 in human cells by RNA interference results in a shift of ORC2 to the nuclease-soluble fraction, and the association of MCM proteins with chromatin fractions is also blocked by this treatment. These results indicate that ORC1 regulates the status of the ORC complex in human nuclei by tethering ORCs 2-5 to nuclear structures. This dynamic shift is further required for the loading of MCM proteins onto chromatin. Thus, the pre-replication complex in human cells may be regulated by the temporal accumulation of ORC1 in G1 nuclei. PMID:12909626

  5. Apoptosis in male germ cells in response to cyclin A1-deficiency and cell cycle arrest.

    PubMed

    Salazar, Glicella; Liu, Dong; Liao, Ching; Batkiewicz, Leah; Arbing, Rachel; Chung, Sanny S W; Lele, Karen; Wolgemuth, Debra J

    2003-10-15

    Male mice homozygous for a mutated allele of the cyclin A1 gene (Ccna1) are sterile due to a block in cell cycle progression before the first meiotic division. Meiosis arrest in Ccna1(-/-) spermatocytes is associated with desynapsis abnormalities, lowered MPF activity, and apoptosis as evidenced by TUNEL-positive staining. With time, adult testicular tubules exhibit severe degeneration: some tubules in the older animals are almost devoid of germ cells at various stages of spermatogenesis. The mechanisms by which the cells sense the cell cycle arrest and the regulation of the decision to undergo cell death are under investigation. PMID:14555236

  6. Exosomes Secreted by Toxoplasma gondii-Infected L6 Cells: Their Effects on Host Cell Proliferation and Cell Cycle Changes

    PubMed Central

    Kim, Min Jae; Jung, Bong-Kwang; Cho, Jaeeun; Song, Hyemi; Pyo, Kyung-Ho; Lee, Ji Min; Kim, Min-Kyung; Chai, Jong-Yil

    2016-01-01

    Toxoplasma gondii infection induces alteration of the host cell cycle and cell proliferation. These changes are not only seen in directly invaded host cells but also in neighboring cells. We tried to identify whether this alteration can be mediated by exosomes secreted by T. gondii-infected host cells. L6 cells, a rat myoblast cell line, and RH strain of T. gondii were selected for this study. L6 cells were infected with or without T. gondii to isolate exosomes. The cellular growth patterns were identified by cell counting with trypan blue under confocal microscopy, and cell cycle changes were investigated by flow cytometry. L6 cells infected with T. gondii showed decreased proliferation compared to uninfected L6 cells and revealed a tendency to stay at S or G2/M cell phase. The treatment of exosomes isolated from T. gondii-infected cells showed attenuation of cell proliferation and slight enhancement of S phase in L6 cells. The cell cycle alteration was not as obvious as reduction of the cell proliferation by the exosome treatment. These changes were transient and disappeared at 48 hr after the exosome treatment. Microarray analysis and web-based tools indicated that various exosomal miRNAs were crucial for the regulation of target genes related to cell proliferation. Collectively, our study demonstrated that the exosomes originating from T. gondii could change the host cell proliferation and alter the host cell cycle. PMID:27180572

  7. Cell Division and Targeted Cell Cycle Arrest Opens and Stabilizes Basement Membrane Gaps

    PubMed Central

    Matus, David Q.; Chang, Emily; Makohon-Moore, Sasha C.; Hagedorn, Mary A.; Chi, Qiuyi; Sherwood, David R.

    2014-01-01

    Large gaps in basement membrane (BM) occur during organ remodeling and cancer cell invasion. Whether dividing cells, which temporarily reduce their attachment to BM, influence these breaches is unknown. Here we analyse uterine-vulval attachment during development across 21 species of rhabditid nematodes and find that the BM gap that forms between these organs is always bounded by a non-dividing vulval cell. Through cell cycle manipulation and live cell imaging in Caenorhabditis elegans, we show that actively dividing vulval cells facilitate enlargement of this breach by promoting BM movement. In contrast, targeted cell-cycle arrest halts BM movement and limits gap opening. Further, we demonstrate that the BM component laminin accumulates at the BM gap edge and promotes increased integrin levels in non-dividing vulval cells, stabilizing gap position. Together, these studies reveal that cell division can be used as a mechanism to regulate BM breaches, thus controlling the exchange of cells between tissues. PMID:24924309

  8. Preparative electrophoresis of cultured human cells: Effect of cell cycle phase

    NASA Technical Reports Server (NTRS)

    Kunze, M. E.; Todd, P. W.; Goolsby, C. L.; Walker, J. T.

    1985-01-01

    Human epithelioid T-1E cells were cultured in suspension and subjected to density gradient electrophoresis upward in a vertical column. It is indicated that the most rapidly migrating cells were at the beginning of the cell cycle and the most slowly migrating cells were at the end of the cell cycle. The fastest migrating cells divided 24 hr later than the slowest migrating cells. Colonies developing from slowly migrating cells had twice as many cells during exponential growth as did the most rapidly migrating cells, and the numbers of cells per colony at any time was inversely related to the electrophoretic migration rate. The DNA measurements by fluorescence flow cytometry indicates that the slowest migrating cell populations are enriched in cells that have twice as much DNA as the fastest migrating cells. It is concluded that electrophoretic mobility of these cultured human cells declines steadily through the cell cycle and that the mobility is lowest at the end of G sub 2 phase and highest at the beginning of G sub 1 phase.

  9. Cell-cycle research with synchronous cultures: an evaluation

    NASA Technical Reports Server (NTRS)

    Helmstetter, C. E.; Thornton, M.; Grover, N. B.

    2001-01-01

    The baby-machine system, which produces new-born Escherichia coli cells from cultures immobilized on a membrane, was developed many years ago in an attempt to attain optimal synchrony with minimal disturbance of steady-state growth. In the present article, we put forward a model to describe the behaviour of cells produced by this method, and provide quantitative evaluation of the parameters involved, at each of four different growth rates. Considering the high level of selection achievable with this technique and the natural dispersion in interdivision times, we believe that the output of the baby machine is probably close to optimal in terms of both quality and persistence of synchrony. We show that considerable information on events in the cell cycle can be obtained from populations with age distributions very much broader than those achieved with the baby machine and differing only modestly from steady state. The data presented here, together with the long and fruitful history of findings employing the baby-machine technique, suggest that minimisation of stress on cells is the single most important factor for successful cell-cycle analysis.

  10. Allyl isothiocyanate affects the cell cycle of Arabidopsis thaliana

    PubMed Central

    Åsberg, Signe E.; Bones, Atle M.; Øverby, Anders

    2015-01-01

    Isothiocyanates (ITCs) are degradation products of glucosinolates present in members of the Brassicaceae family acting as herbivore repellents and antimicrobial compounds. Recent results indicate that allyl ITC (AITC) has a role in defense responses such as glutathione depletion, ROS generation and stomatal closure. In this study we show that exposure to non-lethal concentrations of AITC causes a shift in the cell cycle distribution of Arabidopsis thaliana leading to accumulation of cells in S-phases and a reduced number of cells in non-replicating phases. Furthermore, transcriptional analysis revealed an AITC-induced up-regulation of the gene encoding cyclin-dependent kinase A while several genes encoding mitotic proteins were down-regulated, suggesting an inhibition of mitotic processes. Interestingly, visualization of DNA synthesis indicated that exposure to AITC reduced the rate of DNA replication. Taken together, these results indicate that non-lethal concentrations of AITC induce cells of A. thaliana to enter the cell cycle and accumulate in S-phases, presumably as a part of a defensive response. Thus, this study suggests that AITC has several roles in plant defense and add evidence to the growing data supporting a multifunctional role of glucosinolates and their degradation products in plants. PMID:26042144

  11. A genetic interaction map of cell cycle regulators.

    PubMed

    Billmann, Maximilian; Horn, Thomas; Fischer, Bernd; Sandmann, Thomas; Huber, Wolfgang; Boutros, Michael

    2016-04-15

    Cell-based RNA interference (RNAi) is a powerful approach to screen for modulators of many cellular processes. However, resulting candidate gene lists from cell-based assays comprise diverse effectors, both direct and indirect, and further dissecting their functions can be challenging. Here we screened a genome-wide RNAi library for modulators of mitosis and cytokinesis inDrosophilaS2 cells. The screen identified many previously known genes as well as modulators that have previously not been connected to cell cycle control. We then characterized ∼300 candidate modifiers further by genetic interaction analysis using double RNAi and a multiparametric, imaging-based assay. We found that analyzing cell cycle-relevant phenotypes increased the sensitivity for associating novel gene function. Genetic interaction maps based on mitotic index and nuclear size grouped candidates into known regulatory complexes of mitosis or cytokinesis, respectively, and predicted previously uncharacterized components of known processes. For example, we confirmed a role for theDrosophilaCCR4 mRNA processing complex componentl(2)NC136during the mitotic exit. Our results show that the combination of genome-scale RNAi screening and genetic interaction analysis using process-directed phenotypes provides a powerful two-step approach to assigning components to specific pathways and complexes. PMID:26912791

  12. Cell cycle regulated transcription: from yeast to cancer

    PubMed Central

    McInerny, Christopher J.

    2016-01-01

    Recent studies have revealed exciting new functions for forkhead transcription factors in cell proliferation and development. Cell proliferation is a fundamental process controlled by multiple overlapping mechanisms, and the control of gene expression plays a major role in the orderly and timely division of cells. This occurs through transcription factors regulating the expression of groups of genes at particular phases of the cell division cycle. In this way, the encoded gene products are present when they are required. This review outlines recent advances in our understanding of this process in yeast model systems and describes how this knowledge has informed analysis in more developmentally complex eukaryotes, particularly where it is relevant to human disease. PMID:27239285

  13. Association of luteinizing hormone receptor gene expression with cell cycle progression in granulosa cells

    PubMed Central

    Cannon, Jennifer D.; Seekallu, Srinivas V.; VandeVoort, Catherine A.; Chaffin, Charles L.

    2009-01-01

    During hormonally induced ovarian follicle growth, granulosa cell proliferation increases and returns to baseline prior to the administration of an ovulatory stimulus. Several key genes appear to follow a similar pattern, including the luteinizing hormone receptor (LHCGR), suggesting an association between cell cycle progression and gene expression. The expression of LHCGR mRNA in granulosa cells isolated from immature rats and treated in culture with FSH increased in a time-dependent manner, whereas administration of the cell cycle inhibitor mimosine completely suppressed expression. Although forskolin was able to induce luteinization in cells treated with mimosine, human chorionic gonadotropin had no effect, indicating the functional loss of LHCGR. The effects of mimosine on cell cycle progression and LHCGR mRNA expression were reversible within 24 h of mimosine removal. Cell cycle inhibition did not alter the stability of LHCGR mRNA, indicating that the primary effect was at the transcriptional level. To determine whether the relationship between LHCGR expression and cell cycle were relevant in vivo, immature rats were given a bolus of PMSG, followed by a second injection of either saline or PMSG 24 h later to augment levels of proliferation. The expression of LHCGR mRNA was elevated in the ovaries of animals receiving a supplement of PMSG. Mimosine also blocked cell cycle progression and LHCGR mRNA expression in macaque granulosa cells isolated following controlled ovarian stimulation cycles and in two different mouse Leydig tumor lines. These data collectively indicate that LHCGR mRNA is expressed as a function of the passage of cells across the G1-S phase boundary. PMID:19293332

  14. Regulation of Sp1 by cell cycle related proteins

    PubMed Central

    Tapias, Alicia; Ciudad, Carlos J.; Roninson, Igor B.; Noé, Véronique

    2009-01-01

    Sp1 transcription factor regulates the expression of multiple genes, including the Sp1 gene itself. We analyzed the ability of different cell cycle regulatory proteins to interact with Sp1 and to affect Sp1 promoter activity. Using an antibody array, we observed that CDK4, SKP2, Rad51, BRCA2 and p21 could interact with Sp1 and we confirmed these interactions by co-immunoprecipitation. CDK4, SKP2, Rad51, BRCA2 and p21 also activated the Sp1 promoter. Among the known Sp1-interacting proteins, E2F-DP1, Cyclin D1, Stat3 and Rb activated the Sp1 promoter, whereas p53 and NFκB inhibited it. The proteins that regulated Sp1 gene expression were shown by positive chromatin immunoprecipitation to be bound to the Sp1 promoter. Moreover, SKP2, BRCA2, p21, E2F-DP1, Stat3, Rb, p53 and NFκB had similar effects on an artificial promoter containing only Sp1 binding sites. Transient transfections of CDK4, Rad51, E2F-DP1, p21 and Stat3 increased mRNA expression from the endogenous Sp1 gene in HeLa cells whereas overexpression of NFκB, and p53 decreased Sp1 mRNA levels. p21 expression from a stably integrated inducible promoter in HT1080 cells activated Sp1 expression at the promoter and mRNA levels, but at the same time it decreased Sp1 protein levels due to the activation of Sp1 degradation. The observed multiple effects of cell cycle regulators on Sp1 suggest that Sp1 may be a key mediator of cell cycle associated changes in gene expression. PMID:18769160

  15. Cell cycle control in isoproterenol-induced murine salivary acinar cell proliferation.

    PubMed

    Zeng, T; Yamamoto, H; Bowen, E; Broverman, R L; Nguyen, K H; Humphreys-Beher, M G

    1996-11-01

    The eukaryotic cell cycle is a summary of a complex network of signal transduction pathways resulting in both DNA replication and cell division. Cyclin-dependent kinases (CDKs) control the cell cycle in all eukaryotes, whereas other proteins, known as cyclins, act as their regulatory subunits. Chronic injection with isoproterenol (ISO) can induce acinar cell proliferation in rodent salivary glands. Cyclins and CDK proteins from control and ISO-treated murine parotid acinar cells were detected by using Western blotting techniques. By comparing the expression of these cell cycle regulatory kinases in the parotid acinar cell transition from a quiescent state to a hypertrophic state, we found rapid increases in the protein levels of all CDKs, cyclin D and proliferating cell nuclear antigen (PCNA). The highest protein levels for CDKs and cyclins appeared at about 72 hr of ISO stimulation and were coincident with the highest rate of increase in gland wet weight. After 72 hr, the increase of both cell cycle protein and gland wet weight began to subside. By using a co-immunoprecipitation method, the following cell cycle regulators (CDK-cyclin complexes) were detected, CDK4-cyclin D, CDK2-cyclin E, CDK2-cyclin A, and cdc2-cyclin B, along with an increase in kinase activity over control untreated animals. Additionally, we detected significant decreases in the newly isolated CDK inhibitor (CKI) p27kip but not Wee 1 kinase. The increased levels of CKI correlated with a decrease in kinase activity of CDK/cyclin complexes by 144 hr of chronic isoproterenol treatment. Our data suggest that the holoenzymes for cell cycle control (cyclin-CDK complexes) function as a final regulatory mechanism leading to salivary gland acinar cell proliferation. The gradual decline in protein levels of the CDKs and cyclins after 3 days of chronic treatment further indicates that ISO-induced proliferation of parotid acinar cells is self-limiting and non-tumorigenic. PMID:9375366

  16. Human Pancreatic β-Cell G1/S Molecule Cell Cycle Atlas

    PubMed Central

    Fiaschi-Taesch, Nathalie M.; Kleinberger, Jeffrey W.; Salim, Fatimah G.; Troxell, Ronnie; Wills, Rachel; Tanwir, Mansoor; Casinelli, Gabriella; Cox, Amy E.; Takane, Karen K.; Scott, Donald K.; Stewart, Andrew F.

    2013-01-01

    Expansion of pancreatic β-cells is a key goal of diabetes research, yet induction of adult human β-cell replication has proven frustratingly difficult. In part, this reflects a lack of understanding of cell cycle control in the human β-cell. Here, we provide a comprehensive immunocytochemical “atlas” of G1/S control molecules in the human β-cell. This atlas reveals that the majority of these molecules, previously known to be present in islets, are actually present in the β-cell. More importantly, and in contrast to anticipated results, the human β-cell G1/S atlas reveals that almost all of the critical G1/S cell cycle control molecules are located in the cytoplasm of the quiescent human β-cell. Indeed, the only nuclear G1/S molecules are the cell cycle inhibitors, pRb, p57, and variably, p21: none of the cyclins or cdks necessary to drive human β-cell proliferation are present in the nuclear compartment. This observation may provide an explanation for the refractoriness of human β-cells to proliferation. Thus, in addition to known obstacles to human β-cell proliferation, restriction of G1/S molecules to the cytoplasm of the human β-cell represents an unanticipated obstacle to therapeutic human β-cell expansion. PMID:23493570

  17. Inhibition of the proteasome induces cell cycle arrest and apoptosis in mantle cell lymphoma cells.

    PubMed

    Bogner, Christian; Ringshausen, Ingo; Schneller, Folker; Fend, Falko; Quintanilla-Martinez, Leticia; Häcker, Georg; Goetze, Katharina; Oostendorp, Robert; Peschel, Christian; Decker, Thomas

    2003-07-01

    Mantle cell lymphoma (MCL) is a distinctive non-Hodgkin's lymphoma subtype, characterized by overexpression of cyclin D1 as a consequence of the chromosomal translocation t(11;14)(q13;q32). MCL remains an incurable disease, combining the unfavourable clinical features of aggressive and indolent lymphomas. The blastic variant of MCL, which is often associated with additional cytogenetic alterations, has an even worse prognosis and new treatment options are clearly needed. The present study investigated the effect of a specific proteasome inhibitor, lactacystin, on cell cycle progression and apoptosis in two lymphoma cell lines harbouring the t(11;14)(q13;q32) and additional cytogenetic alterations, including p53 mutation (NCEB) and p16 deletion (Granta 519). Granta cells were more susceptible to inhibition of the proteasome with respect to inhibition of proliferation and apoptosis induction. No changes were observed in the expression levels of the G1 regulatory molecules cyclin D1 and cdk4, but cell cycle arrest and apoptosis induction was accompanied by accumulation of the cdk inhibitor p21 in both cell lines. Increased p53 expression was only observed in Granta cells with wild-type p53. Cleavage of procaspase-3 and -9 was observed but cleavage of procaspase-8 was not involved in apoptosis induction. The proapoptotic effect of lactacystin was reversed by pretreatment with the pancaspase inhibitor zVAD.fmk. Lactacystin was also effective in inducing apoptosis in lymphoma cells from MCL patients. We conclude that inhibition of the proteasome might be a promising therapeutic approach for this incurable disease. PMID:12846895

  18. Cell cycle-dependent regulation of extra-adrenal glucocorticoid synthesis in murine intestinal epithelial cells.

    PubMed

    Atanasov, Atanas G; Leiser, Dominic; Roesselet, Corinne; Noti, Mario; Corazza, Nadia; Schoonjans, Kristina; Brunner, Thomas

    2008-12-01

    Glucocorticoids are anti-inflammatory steroids with important applications in the treatment of inflammatory diseases. Endogenous glucocorticoids are mainly produced by the adrenal glands, although there is increasing evidence for extra-adrenal sources. Recent findings show that intestinal crypt cells produce glucocorticoids, which contribute to the maintenance of intestinal immune homeostasis. Intestinal glucocorticoid synthesis is critically regulated by the transcription factor liver receptor homologue-1 (LRH-1). As expression of steroidogenic enzymes and LRH-1 is restricted to the proliferating cells of the crypts, we aimed to investigate the role of the cell cycle in the regulation of LRH-1 activity and intestinal glucocorticoid synthesis. We here show that either pharmacological or molecular modulation of cell cycle progression significantly inhibited expression of steroidogenic enzymes and synthesis of glucocorticoids in intestinal epithelial cells. Synchronization of intestinal epithelial cells in the cell cycle revealed that expression of steroidogenic enzymes is preferentially induced at the G(1)/S stage. Differentiation of immature intestinal epithelial cells to mature nonproliferating cells also resulted in reduced expression of steroidogenic enzymes. This cell cycle-related effect on intestinal steroidogenesis was found to be mediated through the regulation of LRH-1 transcriptional activity. This mechanism may restrict intestinal glucocorticoid synthesis to the proliferating cells of the crypts. PMID:18711026

  19. Effects of simulated microgravity on cell cycle in human endothelial cells

    NASA Astrophysics Data System (ADS)

    Sokolovskaya, Alisa A.; Ignashkova, Tatiana I.; Bochenkova, Anna V.; Moskovtsev, Aleksey A.; Baranov, Victor M.; Kubatiev, Aslan A.

    2014-06-01

    The aim of the current study is to investigate effects of simulated microgravity on the cell cycle of endothelial cells. We analyze changes in the cell cycle after exposure of endothelial-like EA.hy 926 cells to simulated microgravity using a Desktop random positioning machine (RPM). Cell cycle profiles determined by flow cytometry show, that the percentage of the cells in the G0/G1 phase after 24 and 96 h of RPM-simulated microgravity is significantly increased as compared to the control group. However, no significant difference is observed after 120 h of RPM-simulated microgravity. In regard to S phase, the percentage of cells is significantly decreased after 24 and 96 h of RPM, respectively; whereas 120 h later, the number of S-phase cells is comparable to the control group. Thus, we show that simulated microgravity inhibits cell cycle progression of human EA.hy 926 cells from the G0/G1 phase to the S phase. We observe an effect of a hibernation-like state, when the growth of the cells in the RPM group slows down, but does not stop. Our results further show that simulated microgravity can affect adhesion of endothelial cells, and alpha-tubulin expression, as most cells begin to detach from the surface of OptiCell unit after 24 h, form aggregates after 48 h, and exhibit accumulation of alpha-tubulin around the nucleus after 48 h of exposure to simulated microgravity conditions. Our results demonstrate a chance in the cell cycle in a low gravitational field.

  20. Hubble Space Telescope solar cell module thermal cycle test

    NASA Technical Reports Server (NTRS)

    Douglas, Alexander; Edge, Ted; Willowby, Douglas; Gerlach, Lothar

    1992-01-01

    The Hubble Space Telescope (HST) solar array consists of two identical double roll-out wings designed after the Hughes flexible roll-up solar array (FRUSA) and was developed by the European Space Agency (ESA) to meet specified HST power output requirements at the end of 2 years, with a functional lifetime of 5 years. The requirement that the HST solar array remain functional both mechanically and electrically during its 5-year lifetime meant that the array must withstand 30,000 low Earth orbit (LEO) thermal cycles between approximately +100 and -100 C. In order to evaluate the ability of the array to meet this requirement, an accelerated thermal cycle test in vacuum was conducted at NASA's Marshall Space Flight Center (MSFC), using two 128-cell solar array modules which duplicated the flight HST solar array. Several other tests were performed on the modules. The thermal cycle test was interrupted after 2,577 cycles, and a 'cold-roll' test was performed on one of the modules in order to evaluate the ability of the flight array to survive an emergency deployment during the dark (cold) portion of an orbit. A posttest static shadow test was performed on one of the modules in order to analyze temperature gradients across the module. Finally, current in-flight electrical performance data from the actual HST flight solar array will be tested.

  1. Pneumococcal Pneumolysin Induces DNA Damage and Cell Cycle Arrest.

    PubMed

    Rai, Prashant; He, Fang; Kwang, Jimmy; Engelward, Bevin P; Chow, Vincent T K

    2016-01-01

    Streptococcus pneumoniae produces pneumolysin toxin as a key virulence factor against host cells. Pneumolysin is a cholesterol-dependent cytolysin (CDC) toxin that forms lytic pores in host membranes and mediates pneumococcal disease pathogenesis by modulating inflammatory responses. Here, we show that pneumolysin, which is released during bacterial lysis, induces DNA double strand breaks (DSBs), as indicated by ataxia telangiectasia mutated (ATM)-mediated H2AX phosphorylation (γH2AX). Pneumolysin-induced γH2AX foci recruit mediator of DNA damage checkpoint 1 (MDC1) and p53 binding protein 1 (53BP1), to sites of DSBs. Importantly, results show that toxin-induced DNA damage precedes cell cycle arrest and causes apoptosis when DNA-dependent protein kinase (DNA-PK)-mediated non-homologous end joining is inhibited. Further, we observe that cells that were undergoing DNA replication harbored DSBs in greater frequency during pneumolysin treatment. This observation raises the possibility that DSBs might be arising as a result of replication fork breakdown. Additionally, neutralizing the oligomerization domain of pneumolysin with monoclonal antibody suppresses DNA damage and also cell cycle arrest, indicating that pneumolysin oligomerization is important for causing DNA damage. Taken together, this study reveals a previously unidentified ability of pneumolysin to induce cytotoxicity via DNA damage, with implications in the pathophysiology of S. pneumoniae infection. PMID:27026501

  2. (p)ppGpp and the bacterial cell cycle.

    PubMed

    Nazir, Aanisa; Harinarayanan, Rajendran

    2016-06-01

    Genes of the Rel/Spo homolog (RSH) superfamily synthesize and/or hydrolyse the modified nucleotides pppGpp/ ppGpp (collectively referred to as (p)ppGpp) and are prevalent across diverse bacteria and in plant chloroplasts. Bacteria accumulate (p)ppGpp in response to nutrient deprivation (generically called the stringent response) and elicit appropriate adaptive responses mainly through the regulation of transcription. Although at different concentrations (p)ppGpp affect the expression of distinct set of genes, the two well-characterized responses are reduction in expression of the protein synthesis machinery and increase in the expression of genes coding for amino acid biosynthesis. In Escherichia coli, the cellular (p)ppGpp level inversely correlates with the growth rate and increasing its concentration decreases the steady state growth rate in a defined growth medium. Since change in growth rate must be accompanied by changes in cell cycle parameters set through the activities of the DNA replication and cell division apparatus, (p)ppGpp could coordinate protein synthesis (cell mass increase) with these processes. Here we review the role of (p)ppGpp in bacterial cell cycle regulation. PMID:27240988

  3. Modeling cell-cycle synchronization during embryogenesis in Xenopus laevis

    NASA Astrophysics Data System (ADS)

    McIsaac, R. Scott; Huang, K. C.; Sengupta, Anirvan; Wingreen, Ned

    2010-03-01

    A widely conserved aspect of embryogenesis is the ability to synchronize nuclear divisions post-fertilization. How is synchronization achieved? Given a typical protein diffusion constant of 10 μm^2sec, and an embryo length of 1mm, it would take diffusion many hours to propagate a signal across the embryo. Therefore, synchrony cannot be attained by diffusion alone. We hypothesize that known autocatalytic reactions of cell-cycle components make the embryo an ``active medium'' in which waves propagate much faster than diffusion, enforcing synchrony. We report on robust spatial synchronization of components of the core cell cycle circuit based on a mathematical model previously determined by in vitro experiments. In vivo, synchronized divisions are preceded by a rapid calcium wave that sweeps across the embryo. Experimental evidence supports the hypothesis that increases in transient calcium levels lead to derepression of a negative feedback loop, allowing cell divisions to start. Preliminary results indicate a novel relationship between the speed of the initial calcium wave and the ability to achieve synchronous cell divisions.

  4. Pneumococcal Pneumolysin Induces DNA Damage and Cell Cycle Arrest

    PubMed Central

    Rai, Prashant; He, Fang; Kwang, Jimmy; Engelward, Bevin P.; Chow, Vincent T.K.

    2016-01-01

    Streptococcus pneumoniae produces pneumolysin toxin as a key virulence factor against host cells. Pneumolysin is a cholesterol-dependent cytolysin (CDC) toxin that forms lytic pores in host membranes and mediates pneumococcal disease pathogenesis by modulating inflammatory responses. Here, we show that pneumolysin, which is released during bacterial lysis, induces DNA double strand breaks (DSBs), as indicated by ataxia telangiectasia mutated (ATM)-mediated H2AX phosphorylation (γH2AX). Pneumolysin-induced γH2AX foci recruit mediator of DNA damage checkpoint 1 (MDC1) and p53 binding protein 1 (53BP1), to sites of DSBs. Importantly, results show that toxin-induced DNA damage precedes cell cycle arrest and causes apoptosis when DNA-dependent protein kinase (DNA-PK)-mediated non-homologous end joining is inhibited. Further, we observe that cells that were undergoing DNA replication harbored DSBs in greater frequency during pneumolysin treatment. This observation raises the possibility that DSBs might be arising as a result of replication fork breakdown. Additionally, neutralizing the oligomerization domain of pneumolysin with monoclonal antibody suppresses DNA damage and also cell cycle arrest, indicating that pneumolysin oligomerization is important for causing DNA damage. Taken together, this study reveals a previously unidentified ability of pneumolysin to induce cytotoxicity via DNA damage, with implications in the pathophysiology of S. pneumoniae infection. PMID:27026501

  5. Photosynthetic Apparatus Formation during the Cell Cycle of Chlorella

    PubMed Central

    Venediktov, Pavel S.; Chemeris, Yuree K.; Grishina, Natalia A.

    1981-01-01

    Synchronous cell division in cultures of Chlorella vulgaris Beijerinck was induced by intermittent illumination: 9 hours light, 6 hours darkness. The rate of photosynthetic O2 evolution per cell increases 4-fold in a one-step manner at the beginning of the light period, to the same extent as the increase in cell number. Over the division cycle, the following accumulation times during the light period were found: chlorophyll a, between 2 and 8 hours, chlorophyll b, between 5 and 8 hours, reaction centers of photosystems I and II, between 2 and 6 hours; and cytochrome f, between 2.5 and 5 hours. Cytochrome f accumulation is closely followed by an increase in amplitude of the rapid phase in light-induced absorption increase at 520 nanometers and in intensity of the delayed light emission. Enhancement of the delayed fluorescence yield per flash under continuous illumination (caused by the establishment of the pH difference across the thylakoid membrane) is maximal by the first hour of the light period. These findings, and others described in the text, suggested that the 4-fold growth of photosynthetic apparatus in the course of the cell cycle cannot be the result of gradual rise of electron-transport chain number. Rather, it is the result of a series of successive syntheses of its individual components. The rate-limiting step of electron transport is probably located between plastoquinone and cytochrome f. PMID:16661795

  6. Reliability of transcriptional cycles and the yeast cell-cycle oscillator.

    PubMed

    Sevim, Volkan; Gong, Xinwei; Socolar, Joshua E S

    2010-01-01

    A recently published transcriptional oscillator associated with the yeast cell cycle provides clues and raises questions about the mechanisms underlying autonomous cyclic processes in cells. Unlike other biological and synthetic oscillatory networks in the literature, this one does not seem to rely on a constitutive signal or positive auto-regulation, but rather to operate through stable transmission of a pulse on a slow positive feedback loop that determines its period. We construct a continuous-time Boolean model of this network, which permits the modeling of noise through small fluctuations in the timing of events, and show that it can sustain stable oscillations. Analysis of simpler network models shows how a few building blocks can be arranged to provide stability against fluctuations. Our findings suggest that the transcriptional oscillator in yeast belongs to a new class of biological oscillators. PMID:20628620

  7. Selection of mammalian cells based on their cell-cycle phase using dielectrophoresis

    PubMed Central

    Kim, Unyoung; Shu, Chih-Wen; Dane, Karen Y.; Daugherty, Patrick S.; Wang, Jean Y. J.; Soh, H. T.

    2007-01-01

    An effective, noninvasive means of selecting cells based on their phase within the cell cycle is an important capability for biological research. Current methods of producing synchronous cell populations, however, tend to disrupt the natural physiology of the cell or suffer from low synchronization yields. In this work, we report a microfluidic device that utilizes the dielectrophoresis phenomenon to synchronize cells by exploiting the relationship between the cell's volume and its phase in the cell cycle. The dielectrophoresis activated cell synchronizer (DACSync) device accepts an asynchronous mixture of cells at the inlet, fractionates the cell populations according to the cell-cycle phase (G1/S and G2/M), and elutes them through different outlets. The device is gentle and efficient; it utilizes electric fields that are 1–2 orders of magnitude below those used in electroporation and enriches asynchronous tumor cells in the G1 phase to 96% in one round of sorting, in a continuous flow manner at a throughput of 2 × 105 cells per hour per microchannel. This work illustrates the feasibility of using laminar flow and electrokinetic forces for the efficient, noninvasive separation of living cells. PMID:18093921

  8. Effects of cell cycle on the uptake of water soluble quantum dots by cells

    NASA Astrophysics Data System (ADS)

    Zheng, Shen; Chen, Ji-Yao; Wang, Jun-Yong; Zhou, Lu-Wei; Peng, Qian

    2011-12-01

    Quantum dots (QDs) with excellent optical properties have become powerful candidates for cell imaging. Although numerous reports have studied the uptake of QDs by cells, little information exists on the effects of cell cycle on the cellular QD uptake. In this report, the effects of cell cycle on the uptake of water soluble thiol-capped CdTe QDs by the human cervical carcinoma Hela cell line, human hepatocellular carcinoma QGY7701 cell line, and human embryonic kidney 293T cell line were studied by means of laser scanning confocal microscopy and flow cytometry. All three cell lines show to take up CdTe QDs via endocytosis. After arresting cells at specific phases with pharmacological agents, the cells in G2/M phase take up the most CdTe QDs, probably due to an increased membrane expansion during mitosis; whereas the cells in G1 phase do the least. A mathematical physics model was built to calculate the relative uptake rates of CdTe QDs by cells in different phases of the cell cycle, with the result as the uptake rate in G2/M phase is 2-4 times higher than that in G1 phase for these three cell lines. The results obtained from this study may provide the information useful for intracellular delivery of QDs.

  9. Systematic characterization of cell cycle phase-dependent protein dynamics and pathway activities by high-content microscopy-assisted cell cycle phenotyping.

    PubMed

    Bruhn, Christopher; Kroll, Torsten; Wang, Zhao-Qi

    2014-12-01

    Cell cycle progression is coordinated with metabolism, signaling and other complex cellular functions. The investigation of cellular processes in a cell cycle stage-dependent manner is often the subject of modern molecular and cell biological research. Cell cycle synchronization and immunostaining of cell cycle markers facilitate such analysis, but are limited in use due to unphysiological experimental stress, cell type dependence and often low flexibility. Here, we describe high-content microscopy-assisted cell cycle phenotyping (hiMAC), which integrates high-resolution cell cycle profiling of asynchronous cell populations with immunofluorescence microscopy. hiMAC is compatible with cell types from any species and allows for statistically powerful, unbiased, simultaneous analysis of protein interactions, modifications and subcellular localization at all cell cycle stages within a single sample. For illustration, we provide a hiMAC analysis pipeline tailored to study DNA damage response and genomic instability using a 3-4-day protocol, which can be adjusted to any other cell cycle stage-dependent analysis. PMID:25458086

  10. Coupling between the Circadian Clock and Cell Cycle Oscillators: Implication for Healthy Cells and Malignant Growth

    PubMed Central

    Feillet, Celine; van der Horst, Gijsbertus T. J.; Levi, Francis; Rand, David A.; Delaunay, Franck

    2015-01-01

    Uncontrolled cell proliferation is one of the key features leading to cancer. Seminal works in chronobiology have revealed that disruption of the circadian timing system in mice, either by surgical, genetic, or environmental manipulation, increased tumor development. In humans, shift work is a risk factor for cancer. Based on these observations, the link between the circadian clock and cell cycle has become intuitive. But despite identification of molecular connections between the two processes, the influence of the clock on the dynamics of the cell cycle has never been formally observed. Recently, two studies combining single live cell imaging with computational methods have shed light on robust coupling between clock and cell cycle oscillators. We recapitulate here these novel findings and integrate them with earlier results in both healthy and cancerous cells. Moreover, we propose that the cell cycle may be synchronized or slowed down through coupling with the circadian clock, which results in reduced tumor growth. More than ever, systems biology has become instrumental to understand the dynamic interaction between the circadian clock and cell cycle, which is critical in cellular coordination and for diseases such as cancer. PMID:26029155