Science.gov

Sample records for quiescent x-ray emission

  1. X-ray and UV correlation in the quiescent emission of Cen X-4, evidence of accretion and reprocessing

    NASA Astrophysics Data System (ADS)

    Bernardini, F.; Cackett, E. M.; Brown, E. F.; D'Angelo, C.; Degenaar, N.; Miller, J. M.; Reynolds, M.; Wijnands, R.

    2014-01-01

    We conducted the first long-term (60 days), multiwavelength (optical, ultraviolet, and X-ray) simultaneous monitoring of Cen X-4 with daily Swift observations, with the goal of understanding variability in the low mass X-ray binary Cen X-4 during quiescence. We found Cen X-4 to be highly variable in all energy bands on timescales from days to months, with the strongest quiescent variability a factor of 22 drop in the X-ray count rate in only 4 days. The X-ray, UV and optical (V band) emission are correlated on timescales down to less than 110 s. The shape of the correlation is a power law with index ? about 0.2-0.6. The X-ray spectrum is well fitted by a hydrogen NS atmosphere (kT = 59 - 80 eV) and a power law (with spectral index ? = 1.4 - 2.0), with the spectral shape remaining constant as the flux varies. Both components vary in tandem, with each responsible for about 50% of the total X-ray flux, implying that they are physically linked. We conclude that the X-rays are likely generated by matter accreting down to the NS surface. Moreover, based on the short timescale of the correlation, we also unambiguously demonstrate that the UV emission can not be due to either thermal emission from the stream impact point, or a standard optically thick, geometrically thin disc. The spectral energy distribution shows a small UV emitting region, too hot to arise from the accretion disk, that we identified as a hot spot on the companion star. Therefore, the UV emission is most likely produced by reprocessing from the companion star, indeed the vertical size of the disc is small and can only reprocess a marginal fraction of the X-ray emission. We also found the accretion disc in quiescence to likely be UV faint, with a minimal contribution to the whole UV flux.

  2. A study of the flaring and quiescent X-ray and UV emission from II Pegasi

    NASA Technical Reports Server (NTRS)

    Tagliaferri, G.; White, N. E.; Doyle, J. G.; Culhane, J. L.; Hassall, B. J. M.; Swank, J. H.

    1991-01-01

    An investigation has been conducted of the rotational modulation of the transition-region UV and coronal X-ray emission for the RS CVn system II Pegasi. The X-ray light curve is dominated by a strong flare detected at orbital phase, where the minimum of the photometric wave occurred. The flare parameters derived show that the flare originates with a height greater than half the stellar radius. The characteristics of the flare are similar to those of a solar two-ribbon flare; a comparison of the midtransition region density with that in the coronal region shows a very steep pressure gradient.

  3. The contribution of young core-collapse supernova remnants to the X-ray emission near quiescent supermassive black holes

    NASA Astrophysics Data System (ADS)

    Rimoldi, A.; Rossi, E. M.; Costantini, E.; Portegies Zwart, S.

    2016-03-01

    Appreciable star formation, and, therefore, numerous massive stars, are frequently found near supermassive black holes (SMBHs). As a result, core-collapse supernovae in these regions should also be expected. In this paper, we consider the observational consequences of predicting the fate of supernova remnants (SNRs) in the sphere of influence of quiescent SMBHs. We present these results in the context of `autarkic' nuclei, a model that describes quiescent nuclei as steady-state and self-sufficient environments where the SMBH accretes stellar winds with no appreciable inflow of material from beyond the sphere of influence. These regions have properties such as gas density that scale with the mass of the SMBH. Using predictions of the X-ray lifetimes of SNRs originating in the sphere of influence, we make estimates of the number of core collapse SNRs present at a given time. With the knowledge of lifetimes of SNRs and their association with young stars, we predict a number of core-collapse SNRs that grows from ˜1 around Milky Way-like (4.3 × 106 M⊙) SMBHs to ˜100 around the highest mass (1010 M⊙) SMBHs. The presence of young SNRs will amplify the X-ray emission near quiescent SMBHs, and we show that the total core-collapse SNR emission has the potential to influence soft X-ray searches for very low-luminosity SMBHs. Our SNR lifetime estimates also allow us to predict star formation rates in these regions. Assuming a steady-state replenishment of massive stars, we estimate a star formation rate density of 2 × 10-4 M⊙ yr-1 pc-2 around the Milky Way SMBH, and a similar value around other SMBHs due to a weak dependence on SMBH mass. This value is consistent with currently available observations.

  4. The Quiescent X-Ray Emission of Axps and Sgrs -- Powered by Accretion from a Fallback Disk

    NASA Astrophysics Data System (ADS)

    Truemper, Joachim; Dennerl, Konrad; Kylafis, Nikos; Zezas, Andreas; Ertan, Ünal

    2015-01-01

    Disk accretion as a means to explain the persistent and transient X-ray emission of anomalous X-ray pulsars (AXPs) has been first proposed by van Paradijs et al. 1995, by Chatterjee et al. 2000 and by Alpar 2001. This class of models was developed further in a series of papers of the Istanbul group (for a recent summary see Ertan et al. 2009), and can be applied to soft gamma ray repeaters (SGRs) as well, which have similar timing and spectral properties as AXPs. The required magnetic dipole fields to explain the temporal evolution of the neutron stars are in the range of 1012-1013 G. Highly super-Eddington bursts observed in SGRs, could be produced by the decay of super-strong magnetic fields (1014-1015 G) residing in localized multi-pole fields. The presence of magnetar multipole fields close to the surface of the star is compatible with the fallback disk model since the disk matter interacts with the magnetic dipole field.

  5. Jovian X-ray emissions

    NASA Technical Reports Server (NTRS)

    Waite, J. H.; Lewis, W. S.; Gladstone, G. R.; Fabian, A. C.; Brandt, W. N.

    1996-01-01

    The Einstein and Rosat observations of X-ray emissions from Jupiter are summarized. Jupiter's soft X-ray emission is observed to originate from the planet's auroral zones, and specifically, from its equatorial region. The processes responsible for these emissions are not established. The brightness distribution of the Jovian X-rays is characterized by the dependence on central meridian longitude and by north-south and morning-afternoon asymmetries. The X-rays observed during the impact of the comet Shoemaker-Levy 9 are believed to be impact-induced brightenings of the X-ray aurora.

  6. The First X-Ray Imaging Spectroscopy of Quiescent Solar Active Regions with NuSTAR

    NASA Astrophysics Data System (ADS)

    Hannah, Iain G.; Grefenstette, Brian W.; Smith, David M.; Glesener, Lindsay; Krucker, Säm; Hudson, Hugh S.; Madsen, Kristin K.; Marsh, Andrew; White, Stephen M.; Caspi, Amir; Shih, Albert Y.; Harrison, Fiona A.; Stern, Daniel; Boggs, Steven E.; Christensen, Finn E.; Craig, William W.; Hailey, Charles J.; Zhang, William W.

    2016-03-01

    We present the first observations of quiescent active regions (ARs) using the Nuclear Spectroscopic Telescope Array (NuSTAR), a focusing hard X-ray telescope capable of studying faint solar emission from high-temperature and non-thermal sources. We analyze the first directly imaged and spectrally resolved X-rays above 2 keV from non-flaring ARs, observed near the west limb on 2014 November 1. The NuSTAR X-ray images match bright features seen in extreme ultraviolet and soft X-rays. The NuSTAR imaging spectroscopy is consistent with isothermal emission of temperatures 3.1–4.4 MK and emission measures 1–8 × 1046 cm‑3. We do not observe emission above 5 MK, but our short effective exposure times restrict the spectral dynamic range. With few counts above 6 keV, we can place constraints on the presence of an additional hotter component between 5 and 12 MK of ∼ {10}46 cm‑3 and ∼ {10}43 cm‑3, respectively, at least an order of magnitude stricter than previous limits. With longer duration observations and a weakening solar cycle (resulting in an increased livetime), future NuSTAR observations will have sensitivity to a wider range of temperatures as well as possible non-thermal emission.

  7. The quiescent counterpart of the peculiar X-ray burster SAX J2224.9+5421

    SciTech Connect

    Degenaar, N.; Miller, J. M.; Wijnands, R.

    2014-05-20

    SAX J2224.9+5421 is an extraordinary neutron star low-mass X-ray binary. It was discovered when it was exhibiting a ≅ 10 s long thermonuclear X-ray burst, but it had faded to a 0.5-10 keV luminosity of L {sub X} ≲ 8 × 10{sup 32}(D/7.1 kpc){sup 2} erg s{sup –1} only ≅ 8 hr later. It is generally assumed that neutron stars are quiescent (i.e., not accreting) at such intensity, raising questions about the trigger conditions of the X-ray burst and the origin of the faint persistent emission. We report on a ≅51 ks XMM-Newton observation aimed at finding clues explaining the unusual behavior of SAX J2224.9+5421. We identify a likely counterpart that is detected at L {sub X} ≅ 5 × 10{sup 31}(D/7.1 kpc){sup 2} erg s{sup –1} (0.5-10 keV) and has a soft X-ray spectrum that can be described by a neutron star atmosphere model with a temperature of kT {sup ∞} ≅ 50 eV. This would suggest that SAX J2224.9+5421 is a transient source that was in quiescence during our XMM-Newton observation and experienced a very faint (ceasing) accretion outburst at the time of the X-ray burst detection. We consider one other potential counterpart that is detected at L {sub X} ≅ 5 × 10{sup 32}(D/7.1 kpc){sup 2} erg s{sup –1} and displays an X-ray spectrum that is best described by a power law with a photon index of Γ ≅ 1.7. Similarly hard X-ray spectra are seen for a few quiescent neutron stars and may be indicative of a relatively strong magnetic field or the occurrence of low-level accretion.

  8. Late Time Multi-wavelength Observations of Swift J1644+5734: A Luminous Optical/IR Bump and Quiescent X-Ray Emission

    NASA Astrophysics Data System (ADS)

    Levan, A. J.; Tanvir, N. R.; Brown, G. C.; Metzger, B. D.; Page, K. L.; Cenko, S. B.; O’Brien, P. T.; Lyman, J. D.; Wiersema, K.; Stanway, E. R.; Fruchter, A. S.; Perley, D. A.; Bloom, J. S.

    2016-03-01

    We present late time multi-wavelength observations of Swift J1644+57, suggested to be a relativistic tidal disruption flare (TDF). Our observations extend to >4 years from discovery and show that 1.4 years after outburst the relativistic jet switched off on a timescale less than tens of days, corresponding to a power-law decay faster than t‑70. Beyond this point weak X-rays continue to be detected at an approximately constant luminosity of LX ∼ 5 × 1042 erg s‑1 and are marginally inconsistent with a continuing decay of t‑5/3, similar to that seen prior to the switch-off. Host photometry enables us to infer a black hole mass of MBH = 3 × 106 M⊙, consistent with the late time X-ray luminosity arising from sub-Eddington accretion onto the black hole in the form of either an unusually optically faint active galactic nucleus or a slowly varying phase of the transient. Optical/IR observations show a clear bump in the light curve at timescales of 30–50 days, with a peak magnitude (corrected for host galaxy extinction) of MR ∼ ‑22 to ‑23. The luminosity of the bump is significantly higher than seen in other, non-relativistic TDFs and does not match any re-brightening seen at X-ray or radio wavelengths. Its luminosity, light curve shape, and spectrum are broadly similar to those seen in superluminous supervnovae, although subject to large uncertainties in the correction of the significant host extinction. We discuss these observations in the context of both TDF and massive star origins for Swift J1644+5734 and other candidate relativistic tidal flares.

  9. THE QUIESCENT X-RAY PROPERTIES OF THE ACCRETING MILLISECOND X-RAY PULSAR AND ECLIPSING BINARY SWIFT J1749.4-2807

    SciTech Connect

    Degenaar, N.; Patruno, A.; Wijnands, R.

    2012-09-10

    Swift J1749.4-2807 is a transient neutron star low-mass X-ray binary that contains an accreting millisecond X-ray pulsar spinning at 518 Hz. It is the first of its kind that displays X-ray eclipses, which holds significant promise to precisely constrain the mass of the neutron star. We report on a {approx_equal} 105 ks long XMM-Newton observation performed when Swift J1749.4-2807 was in quiescence. We detect the source at a 0.5-10 keV luminosity of {approx_equal}1 Multiplication-Sign 10{sup 33}(D/6.7 kpc){sup 2} erg s{sup -1}. The X-ray light curve displays three eclipses that are consistent in orbital phase and duration with the ephemeris derived during outburst. Unlike most quiescent neutron stars, the X-ray spectrum can be adequately described with a simple power law, while a pure-hydrogen atmosphere model does not fit the data. We place an upper limit on the 0.01-100 keV thermal luminosity of the cooling neutron star of {approx}< 2 Multiplication-Sign 10{sup 33} erg s{sup -1} and constrain its temperature to be {approx}< 0.1 keV (for an observer at infinity). Timing analysis does not reveal evidence for X-ray pulsations near the known spin frequency of the neutron star or its first overtone with a fractional rms of {approx}< 34% and {approx}< 28%, respectively. We discuss the implications of our findings for dynamical mass measurements, the thermal state of the neutron star, and the origin of the quiescent X-ray emission.

  10. X-ray line emission from Capella

    NASA Technical Reports Server (NTRS)

    Holt, S. S.; Boldt, E. A.; Serlemitsos, P. J.; White, N. E.; Becker, R. H.; Mushotzky, R. F.; Smith, B. W.

    1979-01-01

    X-ray emission-line components from Mg, Si, S, and Fe are unambiguously detected from Capella with the solid-state spectrometer onboard the Einstein Observatory. The X-ray spectrum is inconsistent with an isothermal corona, and requires components between 6-million K and at least 24-million K for an adequate fit. An inhomogeneous corona in which the X-ray emitting plasma is confined to magnetically contained loops appears to be reconcilable with all of the experimental evidence.

  11. X-ray emission from stars

    NASA Astrophysics Data System (ADS)

    Vaiana, G. S.

    1981-11-01

    Data from the Einstein Observatory are examined to discover the processes which lead to the appearance of stellar surface activity. Previous astrophysical observations are reviewed, including stellar X ray, UV, Ca II, H, and K emissions observations, and monitoring of the solar corona. All stars have been observed to emit X rays at one time or another, and the Einstein spacecraft has furnished data on X ray emission and stellar rotation, Ca II, H, and K emission from late-type stars, X ray emission from early-type stars and pre-main-sequence stars, and has provided evidence that X rays are not emitted by stellar winds. Stellar coronae have been identified as the source of the X ray emission in pre-main-sequence stars, and correlations have been found between the level of X ray emission and the rotation rate in late-type stars. Further attention is given to the capture of the energy of infalling and outgassing material by the stellar magnetic fields, and purposes of the AXAF orbiting instrument to be launched by the Shuttle are discussed, specifically for stellar X ray spectrographic observations.

  12. X-Ray Emissions from Jupiter

    NASA Technical Reports Server (NTRS)

    Gladstone, G. R.; Waite, J. H., Jr.; Grodent, D.; Crary, F. J.; Elsner, R. F.; Weisskopf, M. C.; Lewis, W. S.; Jahn, J.-M.; Bhardwaj, A.; Clarke, J. T.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    X-ray emissions from Jupiter have been observed for over 20 years. Jovian x-ray emissions are associated with high-latitude aurora and with solar fluorescence and/or an energetic particle source at low-latitudes as identified by past Einstein and ROSAT observations. Enhanced auroral x-rays were also observed to be associated with the impact of Comet Shoemaker-Levy 9. The high-latitude x-ray emissions are best explained by energetic sulfur and oxygen ion precipitation from the Jovian magnetosphere, a suggestion that has been confirmed by recent Chandra ACIS observations. Exciting new information about Jovian x-ray emissions has been made possible with Chandra's High Resolution Camera. We report here for the first time the detection of a forty minute oscillation associated with the Jovian x-ray aurora. With the help of ultraviolet auroral observations from Hubble Space Telescope, we pinpoint the auroral mapping of the x-rays and provide new information on the x-ray source mechanism.

  13. THE X-RAY POLARIZATION SIGNATURE OF QUIESCENT MAGNETARS: EFFECT OF MAGNETOSPHERIC SCATTERING AND VACUUM POLARIZATION

    SciTech Connect

    Fernandez, Rodrigo; Davis, Shane W.

    2011-04-01

    In the magnetar model, the quiescent non-thermal soft X-ray emission from anomalous X-ray pulsars and soft gamma repeaters is thought to arise from resonant Comptonization of thermal photons by charges moving in a twisted magnetosphere. Robust inference of physical quantities from observations is difficult, because the process depends strongly on geometry, and current understanding of the magnetosphere is not very deep. The polarization of soft X-ray photons is an independent source of information, and its magnetospheric imprint remains only partially explored. In this paper, we calculate how resonant cyclotron scattering would modify the observed polarization signal relative to the surface emission, using a multidimensional Monte Carlo radiative transfer code that accounts for the gradual coupling of polarization eigenmodes as photons leave the magnetosphere. We employ a globally twisted, self-similar, force-free magnetosphere with a power-law momentum distribution, assume a blackbody spectrum for the seed photons, account for general relativistic light deflection close to the star, and assume that vacuum polarization dominates the dielectric properties of the magnetosphere. The latter is a good approximation if the pair multiplicity is not much larger than unity. Phase-averaged polarimetry is able to provide a clear signature of the magnetospheric reprocessing of thermal photons and to constrain mechanisms generating the thermal emission. Phase-resolved polarimetry, in addition, can characterize the spatial extent and magnitude of the magnetospheric twist angle at {approx}100 stellar radii, and discern between uni- or bidirectional particle energy distributions, almost independently of every other parameter in the system. We discuss prospects for detectability with the Gravity and Extreme Magnetism (GEMS) mission.

  14. X-ray emission from comets

    SciTech Connect

    Dennerl, Konrad

    1999-06-11

    When comet Hyakutake (C/1996 B2) encountered Earth in March 1996 at a minimum distance of only 15 million kilometers (40 times the distance of the moon), x-ray and extreme ultraviolet emission was discovered for the first time from a comet. The observations were performed with the astronomy satellites ROSAT and EUVE. A systematic search for x-rays from comets in archival data, obtained during the ROSAT all-sky survey in 1990/91, resulted in the discovery of x-ray emission from four additional comets. They were detected at seven occasions in total, when they were optically 300 to 30 000 times fainter than Hyakutake. These findings indicated that comets represent a new class of celestial x-ray sources. Subsequent detections of x-ray emission from additional comets with the satellites ROSAT, EUVE, and BeppoSAX confirmed this conclusion. The x-ray observations have obviously revealed the presence of a process in comets which had escaped attention until recently. This process is most likely charge exchange between highly charged heavy ions in the solar wind and cometary neutrals. The solar wind, a stream of particles continuously emitted from the sun with {approx_equal} 400 km s{sup -1}, consists predominantly of protons, electrons, and alpha particles, but contains also a small fraction ({approx_equal}0.1%) of highly charged heavier ions, such as C{sup 6+},O{sup 6+},Ne{sup 8+},Si{sup 9+},Fe{sup 11+}. When these ions capture electrons from the cometary gas, they attain highly excited states and radiate a large fraction of their excitation energy in the extreme ultraviolet and x-ray part of the spectrum. Charge exchange reproduces the intensity, the morphology and the spectrum of the observed x-ray emission from comets very well.

  15. Optical, Far-Infrared and X-ray Properties of the FIR quiescent SC Galaxy NGC 247

    NASA Astrophysics Data System (ADS)

    Mackie, G.; Ikebe, Y.; Fabbiano, G.; Kim, D.-W.

    1994-05-01

    We present a multi-wavelength study of the large Sc galaxy, NGC 247 in the Sculptor group. Optical (B, I and H? ) CCD, Far-Infrared (FIR) (IRAS 60 and 100microns), and X-ray (ROSAT PSPC, 0.2-2.4keV) images are combined to investigate local and global emission properties. NGC 247 is unique since it has the lowest LFIR, and FIR/B ratio of the large (D25B>8(') ) Sc's observed by IRAS. It may be considered the best example of a FIR quiescent galaxy, although its 60/100microns colour (dust temperature) is not abnormal for an Sc. There are 4-5 X-ray sources (LX ~ 5E37--3E38 erg s(-1) ) located in the disk of the galaxy. These sources are not coincident with the regions of 60microns emission, consistent with the interpretation that the X-ray sources are old population binary systems. Constraints are put on X-ray diffuse emission and source variability.

  16. Constraining the neutron star equation of state using quiescent low-mass X-ray binaries

    SciTech Connect

    Jonker, P. G.

    2008-02-27

    Chandra or XMM-Newton observations of quiescent low-mass X-ray binaries can provide important constraints on the equation of state of neutron stars. The mass and radius of the neutron star can potentially be determined from fitting a neutron star atmosphere model to the observed X-ray spectrum. For a radius measurement it is of critical importance that the distance to the source is well constrained since the fractional uncertainty in the radius is at least as large as the fractional uncertainty in the distance. Uncertainties in modelling the neutron star atmosphere remain. At this stage it is not yet clear if the soft thermal component in the spectra of many quiescent X-ray binaries is variable on timescales too short to be accommodated by the cooling neutron star scenario. This can be tested with a long XMM-Newton observation of the neutron star X-ray transient Cen X-4 in quiescence. With such an observation one can use the Reflection Grating Spectrometer spectrum to constrain the interstellar extinction to the source. This removes this parameter from the X-ray spectral fitting of the EPIC pn and MOS spectra and allows one to investigate whether the variability observed in the quiescent X-ray spectrum of this source is due to variations in the soft thermal spectral component or variations in the power law spectral component coupled with variations in N{sub H}. This will test whether the soft thermal component can indeed be due to the hot thermal glow of the neutron star. Irrespective of the outcome of such a study, the observed cooling in quiescence in sources for which the crust is significantly out of thermal equilibrium with the core due to a prolonged outburst, such as KS 1731-260, seem excellent candidates for mass and radius determinations through modelling the observed X-rays with a neutron star atmosphere model (the caveats about the source distance and atmosphere modelling do also apply here obviously and presently prevent one from obtaining such constraints). Finally, the fact that the soft thermal glow in sources such as SAX J1808.4-3658 and 1H 1905+000 has not been detected in quiescence means that the neutron star cores of these sources must be cold. The most plausible explanation seems to be that the neutron stars are more massive than 1.4 M{sub {center_dot}} and cool via the direct URCA process.

  17. REJECTING PROPOSED DENSE MATTER EQUATIONS OF STATE WITH QUIESCENT LOW-MASS X-RAY BINARIES

    SciTech Connect

    Guillot, Sebastien; Rutledge, Robert E. E-mail: rutledge@physics.mcgill.ca

    2014-11-20

    Neutrons stars are unique laboratories for discriminating between the various proposed equations of state of matter at and above nuclear density. One sub-class of neutron stars—those inside quiescent low-mass X-ray binaries (qLMXBs)—produce a thermal surface emission from which the neutron star radius (R {sub NS}) can be measured, using the widely accepted observational scenario for qLMXBs, assuming unmagnetized H atmospheres. In a combined spectral analysis, this work first reproduces a previously published measurement of the R {sub NS}, assumed to be the same for all neutron stars, using a slightly expanded data set. The radius measured is R{sub NS}=9.4±1.2 km. On the basis of spectral analysis alone, this measured value is not affected by imposing an assumption of causality in the core. However, the assumptions underlying this R {sub NS} measurement would be falsified by the observation of any neutron star with a mass >2.6 M {sub ☉}, since radii <11 km would be rejected if causality is assumed, which would exclude most of the R {sub NS} parameter space obtained in this analysis. Finally, this work directly tests a selection of dense matter equations of state: WFF1, AP4, MPA1, PAL1, MS0, and three versions of equations of state produced through chiral effective theory. Two of those, MS0 and PAL1, are rejected at the 99% confidence level, accounting for all quantifiable uncertainties, while the other cannot be excluded at >99% certainty.

  18. X-ray emission from stellar coronae

    NASA Astrophysics Data System (ADS)

    Pallavicini, R.

    1989-07-01

    Current observational resources and theoretical understanding pertaining to the tenuous, high-temperature coronae surrounding stars of virtually all spectral types and luminosity classes, which emit most of their radiation in the soft X-ray portion of the spectrum, are evaluated; much of the progress made in this field of study to date has proceeded from extensive Einstein and Exosat observations. Different candidate mechanisms for coronal emission in different parts of the HR diagram are assessed, and attention is given to broader scenarios proposed to account for these data. It is found that, despite the substantial progress made in recent years, understanding of stellar coronal emission is still largely phenomenological.

  19. Modeling X-ray emission around galaxies

    SciTech Connect

    Anderson, Michael E.; Bregman, Joel N.

    2014-04-10

    Extended X-ray emission can be studied by spatial surface brightness measurements or by spectral analysis, but the two methods can disagree at low intensity levels. Here we present an improved method for spatial analysis that can be extended to include spectral information simultaneously. We construct a model for the entire image in a given energy band and generate a likelihood function to compare the model to the data. A critical goal is disentangling vignetted and unvignetted backgrounds through their different spatial distributions. Employing either maximum likelihood or Markov Chain Monte Carlo, we can derive probability distributions for the source and background parameters together, or we can fit and subtract the background, leaving the description of the source non-parametric. We calibrate this method against a variety of simulated images, and apply it to Chandra observations of the hot gaseous halo around the elliptical galaxy NGC 720. We follow the emission below a tenth of the background and infer a hot gas mass within 35 kpc of 4-5 10{sup 9} M {sub ?}, with some indication that the profile continues to at least 50 kpc and that it steepens. We derive stronger constraints on the surface brightness profile than previous studies that employed the spectral method, and we show that the density profiles inferred from these studies are in conflict with the observed surface brightness profile. Contrary to a previous claim, we find that the X-ray halo does not contain the full complement of missing baryons within the virial radius.

  20. X-Ray Emission from "Uranium" Stars

    NASA Technical Reports Server (NTRS)

    Schlegel, Eric; Mushotzky, Richard (Technical Monitor)

    2005-01-01

    The project aims to secure XMM observations of two targets with extremely low abundances of the majority of heavy elements (e.g., log[Fe/H] $\\sim$-4), but that show absorption lines of uranium. The presence of an r-process element such as uranium requires a binary star system in which the companion underwent a supernova explosion. A binary star system raises the distinct possibility of the existence of a compact object, most likely a neutron star, in the binary, assuming it survived the supernova blast. The presence of a compact object then suggests X-ray emission if sufficient matter accretes to the compact object. The observations were completed less than one year ago following a series of reobservations to correct for significant flaring that occurred during the original observations. The ROSAT all-sky survey was used to report on the initial assessment of X-ray emission from these objects; only upper limits were reported. These upper limits were used to justify the XMM observing time, but with the expectation that upper limits would merely be pushed lower. The data analysis hinges critically on the quality and degree of precision with which the background is handled. During the past year, I have spent some time learning the ins and outs of XMM data analysis. In the coming year, I can apply that learning to the analysis of the 'uranium' stars.

  1. Resonant X-ray emission with a standing wave excitation

    PubMed Central

    Ruotsalainen, Kari O.; Honkanen, Ari-Pekka; Collins, Stephen P.; Monaco, Giulio; Moretti Sala, Marco; Krisch, Michael; Hämäläinen, Keijo; Hakala, Mikko; Huotari, Simo

    2016-01-01

    The Borrmann effect is the anomalous transmission of x-rays in perfect crystals under diffraction conditions. It arises from the interference of the incident and diffracted waves, which creates a standing wave with nodes at strongly absorbing atoms. Dipolar absorption of x-rays is thus diminished, which makes the crystal nearly transparent for certain x-ray wave vectors. Indeed, a relative enhancement of electric quadrupole absorption via the Borrmann effect has been demonstrated recently. Here we show that the Borrmann effect has a significantly larger impact on resonant x-ray emission than is observable in x-ray absorption. Emission from a dipole forbidden intermediate state may even dominate the corresponding x-ray spectra. Our work extends the domain of x-ray standing wave methods to resonant x-ray emission spectroscopy and provides means for novel spectroscopic experiments in d- and f-electron systems. PMID:26935531

  2. Resonant X-ray emission with a standing wave excitation

    NASA Astrophysics Data System (ADS)

    Ruotsalainen, Kari O.; Honkanen, Ari-Pekka; Collins, Stephen P.; Monaco, Giulio; Moretti Sala, Marco; Krisch, Michael; Hämäläinen, Keijo; Hakala, Mikko; Huotari, Simo

    2016-03-01

    The Borrmann effect is the anomalous transmission of x-rays in perfect crystals under diffraction conditions. It arises from the interference of the incident and diffracted waves, which creates a standing wave with nodes at strongly absorbing atoms. Dipolar absorption of x-rays is thus diminished, which makes the crystal nearly transparent for certain x-ray wave vectors. Indeed, a relative enhancement of electric quadrupole absorption via the Borrmann effect has been demonstrated recently. Here we show that the Borrmann effect has a significantly larger impact on resonant x-ray emission than is observable in x-ray absorption. Emission from a dipole forbidden intermediate state may even dominate the corresponding x-ray spectra. Our work extends the domain of x-ray standing wave methods to resonant x-ray emission spectroscopy and provides means for novel spectroscopic experiments in d- and f-electron systems.

  3. Resonant X-ray emission with a standing wave excitation.

    PubMed

    Ruotsalainen, Kari O; Honkanen, Ari-Pekka; Collins, Stephen P; Monaco, Giulio; Moretti Sala, Marco; Krisch, Michael; Hämäläinen, Keijo; Hakala, Mikko; Huotari, Simo

    2016-01-01

    The Borrmann effect is the anomalous transmission of x-rays in perfect crystals under diffraction conditions. It arises from the interference of the incident and diffracted waves, which creates a standing wave with nodes at strongly absorbing atoms. Dipolar absorption of x-rays is thus diminished, which makes the crystal nearly transparent for certain x-ray wave vectors. Indeed, a relative enhancement of electric quadrupole absorption via the Borrmann effect has been demonstrated recently. Here we show that the Borrmann effect has a significantly larger impact on resonant x-ray emission than is observable in x-ray absorption. Emission from a dipole forbidden intermediate state may even dominate the corresponding x-ray spectra. Our work extends the domain of x-ray standing wave methods to resonant x-ray emission spectroscopy and provides means for novel spectroscopic experiments in d- and f-electron systems. PMID:26935531

  4. Nondispersive X-ray emission analysis for geochemical exploration

    NASA Technical Reports Server (NTRS)

    Adler, I.; Lamothe, R.; Schmadebeck, R.; Trombka, J. I.

    1969-01-01

    Nondispersive X-ray emission technique uses lightweight, and rugged X-ray fluorescence units. The X-ray pulse-height spectra is excited by radioactive isotope sources. The technique is applicable for quantitative and qualitative analyses on complex chemical systems, and satisfies the goals for a lunar geochemical exploration device.

  5. X-Ray Emission from Protostellar Jets

    NASA Technical Reports Server (NTRS)

    Morse, Jon A.; McCray, Dick; Bally, John; Devine, David

    1998-01-01

    The goals of this program were to identify the termination shocks in several parsec-scale protostellar jets through the thermal soft X-rays emitted by the high-velocity terminal shock waves, and to assess the impact these outflows have on the surrounding interstellar and intercloud medium. The terminal shock waves that plow into the undisturbed interstellar medium may have shock velocities commensurate with the observed space motions of several hundred km s(exp -1). Such shocks will heat and ionize the interstellar medium, perhaps creating large ovoid bubbles of hot gas. Identifying the location of the terminal shocks in these outflows would also allow us to place constraints on the ages of these outflows, and hence the duration of the mass-loss phase that accompanies the formation of a star. We targeted four outflows where the outer optical shock waves are projected against low-extinction backgrounds. From the two dozen or so parsec-scale flows known, we chose those that have the highest velocities, brightest optical counterparts, and/or the richest concentration of shock waves in a small area on the sky. Four giant HH flows have been observed with the ROSAT HRI at Priority A for 30 ksec each. Results: Unfortunately, we failed to detect X-ray emission from the terminal bow shocks of the giant HH flows using the ROSAT HRI. The reasons are likely to be: (1) The shock velocities may be too low to emit in the soft X-rays. (2) The sensitivity of the HRI is too low to detect the diffuse emission. The fields that we observed were chosen to be low extinction sight-lines, with the consequence that the tenuous media into which the outer bow shocks are propagating produce low fluxes. Despite the failure to achieve the primary science goals, we have identified in each image a half a dozen or so point-source young stellar objects. The HRI images have been very useful for discerning potential outflow sources and are being combined with optical, near-IR, and radio imaging data of each outflow field. The first paper on L1551 NE is currently in preparation.

  6. Studies on x-ray and UV emissions in electron cyclotron resonance x-ray source

    SciTech Connect

    Baskaran, R.; Selvakumaran, T. S.

    2008-02-15

    A novel electron cyclotron resonance x-ray source is constructed based on the ECR technique. In this paper, the possibility of using the ECR x-ray source for producing UV rays by optimizing the plasma parameters is explored. X-ray and UV emissions from the ECR x-ray source are carried out for argon, nitrogen, and CO{sub 2} plasma. The x-ray spectral and dose measurements are carried with NaI(Tl) based spectrometer and dosimeter, respectively. For UV measurement, a quartz window arrangement is made at the exit port and the UV intensity is measured at 5 cm from the quartz plate using UV meter. The x-ray and UV emissions are carried out for different microwave power levels and gas pressures. The x-ray emission is observed in the pressure range {<=}10{sup -5} Torr, whereas the UV emission is found to be negligible for the gas pressures <10{sup -5} Torr and it starts increasing in the pressure range between 10{sup -5} and 10{sup -3} Torr. At high-pressure range, collision frequency of electron-atom is large which leads to the higher UV flux. At low pressure, the electron-atom collision frequency is low and hence the electrons reach high energy and by hitting the cavity wall produces higher x-ray flux. By choosing proper experimental conditions and plasma gas species, the same source can be used as either an x-ray source or an UV source.

  7. X-Ray Emission from the Soft X-Ray Transient Aquila X-1

    NASA Technical Reports Server (NTRS)

    Tavani, Marco

    1998-01-01

    Aquila X-1 is the most prolific of soft X-ray transients. It is believed to contain a rapidly spinning neutron star sporadically accreting near the Eddington limit from a low-mass companion star. The interest in studying the repeated X-ray outbursts from Aquila X-1 is twofold: (1) studying the relation between optical, soft and hard X-ray emission during the outburst onset, development and decay; (2) relating the spectral component to thermal and non-thermal processes occurring near the magnetosphere and in the boundary layer of a time-variable accretion disk. Our investigation is based on the BATSE monitoring of Aquila X-1 performed by our group. We observed Aquila X-1 in 1997 and re-analyzed archival information obtained in April 1994 during a period of extraordinary outbursting activity of the source in the hard X-ray range. Our results allow, for the first time for this important source, to obtain simultaneous spectral information from 2 keV to 200 keV. A black body (T = 0.8 keV) plus a broken power-law spectrum describe accurately the 1994 spectrum. Substantial hard X-ray emission is evident in the data, confirming that the accretion phase during sub-Eddington limit episodes is capable of producing energetic hard emission near 5 x 10(exp 35) ergs(exp -1). A preliminary paper summarizes our results, and a more comprehensive account is being written. We performed a theoretical analysis of possible emission mechanisms, and confirmed that a non-thermal emission mechanism triggered in a highly sheared magnetosphere at the accretion disk inner boundary can explain the hard X-ray emission. An anticorrelation between soft and hard X-ray emission is indeed prominently observed as predicted by this model.

  8. X-Ray Emission for the Saturnian System

    NASA Technical Reports Server (NTRS)

    Bhardwaj, Anil; Elsner, Ron F.; Waite, J. Hunter; Gladstone, G. Randall; Branduardi-Raymont, Graziella; Cravens, Tom E.; Ford, Peter G.

    2005-01-01

    Early attempts to detect X-ray emission from Saturn with Einstein (in December 1979) and ROSAT (in April 1992) were negative and marginal, respectively. Saturnian X-rays were unambiguously detected by XMM-Newton in September 2002 and by the Chandra X-ray Observatory in April 2003. These earlier X-ray observations of Saturn revealed emissions only from its non-auroral disk. In January 2004, Saturn was observed by the Advanced CCD Imaging Spectrometer of the Chandra observatory in two exposures on 20 and 26-27 January; each continuous observation lasted for about one full Saturn rotation. These new observations detected an X-ray flare at Saturn, and show that the Saturnian X-ray emission is highly variable - a factor of 4 variability in brightness over one week. These observations also discovered X-rays from Saturn's rings. The X-ray spectrum of the rings is dominated by emission in the 0.49-0.63 keV band with peak flux near the atomic oxygen K(lpha) fluorescence line at 525 eV. In addition, there is a hint of auroral emission from Saturn's south pole. But unlike Jupiter, X-rays from Saturn's polar region have characteristics similar to those from its disk and that they vary in brightness inversely to the FUV aurora observed by the Hubble Space Telescope. These exciting results obtained from Chandra observations will be presented and discussed.

  9. Neutron star masses and radii from quiescent low-mass x-ray binaries

    SciTech Connect

    Lattimer, James M.; Steiner, Andrew W. E-mail: steiner3@uw.edu

    2014-04-01

    We perform a systematic analysis of neutron star radius constraints from five quiescent low-mass X-ray binaries and examine how they depend on measurements of their distances and amounts of intervening absorbing material, as well as their assumed atmospheric compositions. We construct and calibrate to published results a semi-analytic model of the neutron star atmosphere which approximates these effects for the predicted masses and radii. Starting from mass and radius probability distributions established from hydrogen-atmosphere spectral fits of quiescent sources, we apply this model to compute alternate sets of probability distributions. We perform Bayesian analyses to estimate neutron star mass-radius curves and equation of state (EOS) parameters that best-fit each set of distributions, assuming the existence of a known low-density neutron star crustal EOS, a simple model for the high-density EOS, causality, and the observation that the neutron star maximum mass exceeds 2 M {sub ?}. We compute the posterior probabilities for each set of distance measurements and assumptions about absorption and composition. We find that, within the context of our assumptions and our parameterized EOS models, some absorption models are disfavored. We find that neutron stars composed of hadrons are favored relative to those with exotic matter with strong phase transitions. In addition, models in which all five stars have hydrogen atmospheres are found to be weakly disfavored. Our most likely models predict neutron star radii that are consistent with current experimental results concerning the nature of the nucleon-nucleon interaction near the nuclear saturation density.

  10. X-Ray Emission from Compact Sources

    SciTech Connect

    Cominsky, L

    2004-03-23

    This paper presents a review of the physical parameters of neutron stars and black holes that have been derived from X-ray observations. I then explain how these physical parameters can be used to learn about the extreme conditions occurring in regions of strong gravity, and present some recent evidence for relativistic effects seen in these systems. A glossary of commonly used terms and a short tutorial on the names of X-ray sources are also included.

  11. Evidence for Optical Flares in Quiescent Soft X-Ray Transients

    NASA Astrophysics Data System (ADS)

    Zurita, C.; Casares, J.; Shahbaz, T.

    2003-01-01

    We present the results of high time resolution optical photometry of five quiescent soft X-ray transients (SXTs): V404 Cyg, A0620-00, J0422+32, GS 2000+25, and Cen X-4. We detect fast optical variations superposed on the secondary star's double-humped ellipsoidal modulation. The variability resembles typical flare activity and has amplitudes ranging from 0.06 to 0.6 mag. Flares occur on timescales of minutes to a few hours, with no dependency on orbital phase, and contribute ~19%-46% to the total veiling observed in the R band. We find that the observed level of flaring activity is veiled by the light of the companion star, and therefore, systems with cool companions (e.g., J0422+32) exhibit stronger variability. After correcting for this dilution, we do not find any correlation between the flaring activity and fundamental system parameters. We find no underlying coherent periods in the data, only quasi-periodic variations ranging between 30 and 90 minutes for the short-period SXTs and longer than 1 hr for V404 Cyg. The power-law index of the power spectra is consistent with what is observed at X-rays wavelengths, i.e., a 1/f distribution, which is compatible with the cellular automaton model. Our observed R'-band luminosities, which are in the range 1031-1033 ergs s-1, are too large to be due to chromospheric activity in the rapidly rotating companions. Since the typical timescale of the flares increases with orbital period, they are most likely produced in the accretion disk. The associated dynamical (Keplerian) timescales suggest that flares are produced at ~0.3Rd-0.7Rd. Possible formation mechanisms are magnetic loop reconnection events in the disk or, less likely, optical reprocessing of X-ray flares. In the former scenario, the maximum duration of the flares suggests that the outer disk is responsible for the flare events and so allows us to constrain the sharing timescale to ?~(5-6)?-1K.

  12. EUV and X-Ray emission from comets: models.

    NASA Astrophysics Data System (ADS)

    Kharchenko, V.

    Several models have been proposed to explain the origin of cometary X-ray and EUV emissions. These models will be reviewed and their predictions will be compared with observational data. The dominant mechanism of the cometary X-ray emission, electron-capture collisions of highly charged solar wind ions with neutral cometary gas, will be discussed in detail. The charge transfer mechanism has successfully described properties of detected cometary X-rays. Results of the modeling of X-ray photon spectra, X-ray brightness distributions, and total EUV and X-ray luminosities will be presented for different comets. Finally, the perspectives of the solar wind diagnostic, which may use cometary Xrays as a probe , will be analyzed. This diagnostic is based on recent achievements in detecting and modeling of cometary X-rays. EUV and X-ray emission spectra of individual solar wind ions have been computed incorporating new data from laboratory measurements and accurate theoretical calculations. Synthetic spectra of the cometary emission have been constructed for different ion compositions of the solar wind flux. Methods of determination of the solar wind composition and ion flux variability from cometary X-ray observations will be discussed.

  13. Soft X-Ray Emissions from Planets and Moons

    NASA Technical Reports Server (NTRS)

    Bhardwaj, A.; Gladstone, G. R.; Elsner, R. F.; Waite, J. H., Jr.; Grodent, D.; Lewis, W. S.; Crary, F. J.; Weisskopf, M. C.; Howell, R. R.; Johnson, R. E.; Six, N. Frank (Technical Monitor)

    2002-01-01

    The soft x-ray energy band (less than 4 keV) is an important spectral regime for planetary remote sensing, as a wide variety of solar system objects are now known to shine at these wavelengths. These include Earth, Jupiter, comets, moons, Venus, and the Sun. Earth and Jupiter, as magnetic planets, are observed to emanate strong x-ray emissions from their auroral (polar) regions, thus providing vital information on the nature of precipitating particles and their energization processes in planetary magnetospheres. X rays from low latitudes have also been observed on these planets, resulting largely from atmospheric scattering and fluorescence of solar x-rays. Cometary x-rays are now a well established phenomena, more than a dozen comets have been observed at soft x-ray energies, with the accepted production mechanism being charge-exchange between heavy solar wind ions and cometary neutrals. Also, Lunar x-rays have been observed and are thought to be produced by scattering and fluorescence of solar x-rays from the Moon's surface. With the advent of sophisticated x-ray observatories, e.g., Chandra and XMM-Newton, the field of planetary x-ray astronomy is advancing at a much faster pace. The Chandra X-ray Observatory (CXO) has recently captured soft x-rays from Venus. Venusian x-rays are most likely produced through fluorescence of solar x-rays by C and O atoms in the upper atmosphere. Very recently, using CXO we have discovered soft x-rays from the moons of Jupiter-Io, Europa, and probably Ganymede. The plausible source of the x-rays from the Galilean satellites is bombardment of their surfaces by energetic (greater than 10 KeV) ions from the inner magnetosphere of Jupiter. The Io plasma Torus (IPT) is also discovered by CXO to be a source of soft x-rays by CXO have revealed a mysterious pulsating (period approx. 45 minutes) x-ray hot spot is fixed in magnetic latitude and longitude and is magnetically connected to a region in the outer magnetosphere of Jupiter. These surprising results have called into question our understanding of Jovian auroral x-rays. In this paper, we will present a comparative view of the x-ray observations on planets, comets, and moons, with emphasis on recent results from CXO, and discuss the proposed source mechanisms.

  14. X-ray emission from supergiant shell in the LMC.

    NASA Astrophysics Data System (ADS)

    Bomans, D. J.; Chu, Y.-H.; Magnier, E. A.; Points, S.

    1996-02-01

    The authors have used the Snowden & Petre (1995) mosaics of pointed ROSAT PSPC observations of the Large Magellanic Cloud to study the X-ray characteristics of supergiant shells. Diffuse soft X-ray emission above the background is detected in all of the well-defined supergiant shells. The observed large range of X-ray properties can be explained by differential obscuration, temperature and density differences, and localized heating by supernova remnants.

  15. Confirmation of IGR J01363 plus 6610 as a Be X-Ray Binary with Very Low Quiescent X-Ray Luminosity

    NASA Technical Reports Server (NTRS)

    Tomsick, John A.; Heinke, Craig; Halpern, Jules; Kaaret, Philip; Chaty, Sylvain; Rodriguez, Jerome; Bodaghee, Arash

    2011-01-01

    The field containing the candidate High Mass X-ray Binary IGR J01 363+6610 was observed by XMM-Newton on 2009 July 31 for 28 ks. A Be star was previously suggested as the possible counterpart of the INTEGRAL source, and although Chandra, during a 2007 observation, did not detect an X-ray source at the position of the Be star, we find a variable source (XMMU 101 3549.5+661243) with an average X-ray flux of 2 x 10(exp -13)ergs/sq cm/s (0.2-12 keV, unabsorbed) at this position with XMM-Newton. The spectrum of this source is consistent with a hard power law with a photon index of r = 1.4+/-0.3 and a column density of N(sub H) = (15(+0.7/-0.5)) x 10(exp 22)/sq cm (90% confidence errors). These results, along with our optical investigation of other X-ray sources in the field, make the association with the Be star very likely, and the 2 kpc distance estimate for the Be star indicates an X-ray luminosity of 9.1 x 10(exp 31) ergs/s. This is lower than typical for a Be X-ray binary, and the upper limit on the luminosity was even lower ( < 1.4 x 10(exp 3)ergs/s assuming the same spectral model) during the Chandra observation. We discuss possible implications of the very low quiescent luminosity for the physical properties of IGR 101363+6610.

  16. X-ray emission from high temperature plasmas

    NASA Technical Reports Server (NTRS)

    Harries, W. L.

    1977-01-01

    The physical processes occurring in plasma focus devices were investigated with particular emphasis on X-ray emission. Topics discussed include: trajectories of high energy electrons; detection of ion trajectories; spatial distribution of neutron emission; space and time resolved emission of hard X-rays from a plasma focus; the staged plasma focus as a variation of the hypocloidal pinch; formation of current sheets in a staged plasma focus; and X-ray and neutron emission from a staged plasma focus. The possibility of operating dense plasma-focus type devices in multiple arrays beyond the scaling law for a single gun is discussed.

  17. Microlensing Constraints on Quasar X-ray Emission Regions

    NASA Astrophysics Data System (ADS)

    Dai, Xinyu; Chen, B.; Kochanek, C. S.; Chartas, G.; Morgan, C. W.; Mosquera, A. M.; Blackburne, J. A.

    2013-04-01

    Gravitational microlensing provides a unique probe of the innermost parts of quasar accretion disks, close to the event horizon of supermassive black holes. We report our long-term monitoring results, including our recent large Chandra program for seven gravitationally lensed quasars: Q2237+0305, RXJ1131-1231, QJ0158-4325, SDSS0924+0219, SDSS1004+4112, HE0435-1223, and HE1104-1805. We discover for the first time chromatic microlensing differences between the soft and hard X-ray bands in the X-ray continuum emission. Our results indicate that the coronae above the accretion disk thought to generate X-rays have a non-uniform electron distribution, and the hard X-ray emission region is smaller than the soft region in two cases tracking the event horizon of black holes. We detect metal emission lines for almost all X-ray images in all lenses. We measure larger equivalent line widths in lensed quasars compared to a large sample of normal non-lensed AGNs of similar luminosities. We conclude that the iron line emission region is smaller than that of the X-ray continuum, possibly resulting from strong gravitational lensing near the black hole. Our results also confirm earlier microlensing results that quasar X-ray emission regions are significantly smaller than the optical emission regions. We also discuss the prospects of our on-going large Chandra Cycle 14/15 monitor program.

  18. X-ray emission from high temperature plasmas

    NASA Technical Reports Server (NTRS)

    Harries, W. L.

    1974-01-01

    X-rays from a 25-hJ plasma focus apparatus were observed with pinhole cameras. The cameras consist of 0.4 mm diameter pinholes in 2 cm thick lead housing enclosing an X-ray intensifying screen at the image plane. Pictures recorded through thin aluminum foils or plastic sheets for X-ray energies sub gamma smaller than 15 keV show distributed X-ray emissions from the focussed plasma and from the anode surface. However, when thick absorbers are used, radial filamentary structure in the X-ray emission from the anode surface is revealed. Occasionally larger structures are observed in addition to the filaments. Possible mechanisms for the filamentary structure are discussed.

  19. X-ray emission from massive stars with magnetic fields

    NASA Astrophysics Data System (ADS)

    Oskinova, L. M.; Hamann, W.-R.; Cassinelli, J. P.; Brown, J. C.; Todt, H.

    2011-12-01

    We investigate the connections between the magnetic fields and the X-ray emission from massive stars. Our study shows that the X-ray properties of known strongly magnetic stars are diverse: while some comply to the predictions of the magnetically confined wind model, others do not. We conclude that strong, hard, and variable X-ray emission may be a sufficient attribute of magnetic massive stars, but it is not a necessary one. We address the general properties of X-ray emission from ``normal'' massive stars, especially the long standing mystery about the correlations between the parameters of X-ray emission and fundamental stellar properties. The recent development in stellar structure modeling shows that small-scale surface magnetic fields may be common. We suggest a ``hybrid'' scenario which could explain the X-ray emission from massive stars by a combination of magnetic mechanisms on the surface and shocks in the stellar wind. The magnetic mechanisms and the wind shocks are triggered by convective motions in sub-photospheric layers. This scenario opens the door for a natural explanation of the well established correlation between bolometric and X-ray luminosities. Based on observations obtained with \\xmm and \\cxo.

  20. X-ray studies of coeval star samples. III. X-ray emission in the Ursa Major stream

    SciTech Connect

    Schmitt, J.H.M.M.; Micela, G.; Sciortino, S.; Vaiana, G.S.; Harnden, F.R., Jr. Osservatorio Astronomico, Palermo Harvard-Smithsonian Center for Astrophysics, Cambridge, MA )

    1990-03-01

    Results are reported from a comprehensive survey of X-ray emission from stars known or suspected to be members of the UMa cluster and/or stream. Of the 42 UMa member stars surveyed, 18 were detected as X-ray sources, and spectral analysis was performed for 10 stars with sufficient X-ray counts. Consideration is given to relations between X-ray luminosity, color, and kinematics of the sample stars, and the X-ray spectra of the UMa stars are discussed in the context of the general problem of stellar X-ray temperatures. Also confirmed is the lack of X-ray-emitting A dwarfs among UMa members; among stars of later spectra type there is a rather large dispersion in X-ray luminosity. This dispersion cannot readily be explained by contamination with field star interlopers and appears rather to be a property of the UMa X-ray luminosity distribution function. 43 refs.

  1. X-ray studies of coeval star samples. III - X-ray emission in the Ursa Major stream

    NASA Technical Reports Server (NTRS)

    Schmitt, J. H. M. M.; Micela, G.; Sciortino, S.; Vaiana, G. S.; Harnden, F. R., Jr.

    1990-01-01

    Results are reported from a comprehensive survey of X-ray emission from stars known or suspected to be members of the UMa cluster and/or stream. Of the 42 UMa member stars surveyed, 18 were detected as X-ray sources, and spectral analysis was performed for 10 stars with sufficient X-ray counts. Consideration is given to relations between X-ray luminosity, color, and kinematics of the sample stars, and the X-ray spectra of the UMa stars are discussed in the context of the general problem of stellar X-ray temperatures. Also confirmed is the lack of X-ray-emitting A dwarfs among UMa members; among stars of later spectra type there is a rather large dispersion in X-ray luminosity. This dispersion cannot readily be explained by contamination with field star interlopers and appears rather to be a property of the UMa X-ray luminosity distribution function.

  2. X-Ray Emission from the Guitar Nebula

    NASA Technical Reports Server (NTRS)

    Romani, Roger W.; Cordes, James M.; Yadigaroglu, I.-A.

    1997-01-01

    We have detected weak soft X-ray emission from the pulsar wind nebula trailing the high-velocity star PSR 2224+65 (the "Guitar Nebula"). This X-ray flux gives evidence of gamma approximately 10(exp 7) eV particles in the pulsar wind and constrains the properties of the postshock flow. The X-ray emission is most easily understood if the shocked pulsar wind is partly confined in the nebula and if magnetic fields in this zone can grow to near-equipartition values.

  3. The correlation of solar flare hard X-ray bursts with Doppler blueshifted soft X-ray flare emission

    NASA Technical Reports Server (NTRS)

    Bentley, R. D.; Doschek, G. A.; Simnett, G. M.; Rilee, M. L.; Mariska, J. T.; Culhane, J. L.; Kosugi, T.; Watanabe, T.

    1994-01-01

    We have investigated the temporal correlation between hard X-ray bursts and the intensity of Doppler blueshifted soft X-ray spectral line emission. We find a strong correlation for many events that have intense blueshifted spectral signatures and some correlation in events with modest blueshifts. The onset of hard X-rays frequently coincides to within a few seconds with the onset of blueshifted emission. The peak intensity of blueshifted emission is frequently close in time to the peak of the hard X-ray emission. Decay rates of the blueshifted and hard X-ray emission are similar, with the decay of the blueshifted emission tending to lag behind the hard X-ray emission in some cases. There are, however, exceptions to these conclusions, and, therefore, the results should not be generalized to all flares. Most of the data for this work were obtained from instruments flown on the Japanese Yohkoh solar spacecraft.

  4. X-ray emission from magnetic massive stars

    NASA Astrophysics Data System (ADS)

    Naz, Yal; Petit, Vronique; Rinbrand, Melanie; Cohen, David; Owocki, Stan; ud-Doula, Asif; Wade, Gregg; Swings, Jean-Pierre

    Magnetically confined winds of early-type stars are expected to be sources of bright and hard X-rays. In an attempt to clarify the systematics of the observed X-ray properties, we have analyzed a large series of Chandra and XMM observations, corresponding to over 100 exposures of 60 percent of the known magnetic massive stars listed recently by Petit et al. (2013). We notably show that the X-ray luminosity is strongly correlated with mass-loss rate, in agreement with predictions of magnetically confined wind models. We also investigated the behaviour of other X-ray properties (plasma temperature, absorption, variability), yielding additional constraints on models. This work not only advances our knowledge of the X-ray emission of massive stars, but also suggests new observational and theoretical avenues to further explore magnetically confined winds. Poster by Y. Naz, leader of international team, and J.P. Swings

  5. X-Ray and Gamma-Ray Emissions from Rotation Powered Millisecond Pulsars

    NASA Astrophysics Data System (ADS)

    Takata, J.; Cheng, K. S.; Taam, Ronald E.

    2012-01-01

    The Fermi Large Area Telescope has revealed that rotation powered millisecond pulsars (MSPs) are a major contributor to the Galactic ?-ray source population. Such pulsars may also be important in modeling the quiescent state of several low-mass X-ray binaries (LMXBs), where optical observations of the companion star suggest the possible existence of rotation powered MSPs. To understand the observational properties of the different evolutionary stages of MSPs, the X-ray and ?-ray emissions associated with the outer gap model are investigated. For rotation powered MSPs, the size of the outer gap and the properties of the high-energy emission are controlled by either the photon-photon pair-creation process or magnetic pair-creation process near the surface. For these pulsars, we find that the outer gap model controlled by the magnetic pair-creation process is preferable in explaining the possible correlations between the ?-ray luminosity or non-thermal X-ray luminosity versus the spin-down power. For the accreting MSPs in quiescent LMXBs, the thermal X-ray emission at the neutron star (NS) surface resulting from deep crustal heating can control the conditions in the outer gap. We argue that the optical modulation observed in the quiescent state of several LMXBs originates from the irradiation of the donor star by ?-rays from the outer gap. In these systems, the irradiation luminosity required for the optical modulation of the source such as SAX J1808.4-3658 can be achieved for a NS of high mass. Finally, we discuss the high-energy emission associated with an intra-binary shock in black widow systems, e.g., PSR B1957+20.

  6. X-ray emission from Of stars and OB supergiants

    NASA Technical Reports Server (NTRS)

    Cassinelli, J. P.; Waldron, W. L.; Sanders, W. T.; Harnden, F. R., Jr.; Rosner, R.; Vaiana, G. S.

    1981-01-01

    The result of a survey of X-ray emission from luminous early-type stars is reported in which observations were made using the imaging proportional counter on the Einstein Observatory. The survey suggests that all Of stars and OB supergiants earlier than B1 I are X-ray sources with luminosities not less than 10 to the 32nd ergs/s and that some later B supergiants have X-ray luminosities not less than 10 to the 31st ergs/s. The X-ray luminosities are roughly 10 to the -7.2nd of the bolometric luminosities for supergiants earlier than B1 and perhaps a factor of 3 less for later B supergiants. Spectral analysis of the X-rays in conjunction with information on anomalous ionization in the wind from four of the strongest sources implies that the data are not consistent with a model in which the X-rays originate in a thin slab coronal zone at the base of the wind. Constraints on the source of X-rays from B supergiants are derived by combining the X-ray flux information with that on ultraviolet line anomalies.

  7. The very soft X-ray emission of X-ray-faint early-type galaxies

    NASA Technical Reports Server (NTRS)

    Pellegrini, S.; Fabbiano, G.

    1994-01-01

    A recent reanaylsis of Einstein data, and new ROSAT observations, have revealed the presence of at least two components in the X-ray spectra of X-ray faint early-type galaxies: a relatively hard component (kT greater than 1.5 keV), and a very soft component (kT approximately 0.2-0.3 keV). In this paper we address the problem of the nature of the very soft component and whether it can be due to a hot interstellar medium (ISM), or is most likely originated by the collective emission of very soft stellar sources. To this purpose, hydrodynamical evolutionary sequences for the secular behavior of gas flows in ellipticals have been performed, varying the Type Ia supernovae rate of explosion, and the dark matter amount and distribution. The results are compared with the observational X-ray data: the average Einstein spectrum for six X-ray faint early-type galaxies (among which are NGC 4365 and NGC 4697), and the spectrum obtained by the ROSAT pointed observation of NGC 4365. The very soft component could be entirely explained with a hot ISM only in galaxies such as NGC 4697, i.e., when the depth of the potential well-on which the average ISM temperature strongly depends-is quite shallow; in NGC 4365 a diffuse hot ISM would have a temperature larger than that of the very soft component, because of the deeper potential well. So, in NGC 4365 the softest contribution to the X-ray emission comes certainly from stellar sources. As stellar soft X-ray emitters, we consider late-type stellar coronae, supersoft sources such as those discovered by ROSAT in the Magellanic Clouds and M31, and RS CVn systems. All these candidates can be substantial contributors to the very soft emission, though none of them, taken separately, plausibly accounts entirely for its properties. We finally present a model for the X-ray emission of NGC 4365, to reproduce in detail the results of the ROSAT pointed observation, including the Position Sensitive Proportional Counter (PSPC) spectrum and radial surface brightness distribution. The present data may suggest that the X-ray surface brightness is more extended than the optical profile. In this case, a straightforward explanation in terms of stellar sources could not be satisfactory. The available data can be better explained with three different contributions: a very soft component of stellar origin, a hard component from X-ray binaries, and an approximately 0.6 keV hot ISM. The latter can explain the extended X-ray surface brightness profile, if the galaxy has a dark-to-luminous mass ratio of 9, with the dark matter very broadly distributed, and a SN Ia explosive rate of approximately 0.6 the Tammann rate.

  8. Observing Solvation Dynamics with Simultaneous Femtosecond X-ray Emission Spectroscopy and X-ray Scattering.

    PubMed

    Haldrup, Kristoffer; Gawelda, Wojciech; Abela, Rafael; Alonso-Mori, Roberto; Bergmann, Uwe; Bordage, Amlie; Cammarata, Marco; Canton, Sophie E; Dohn, Asmus O; van Driel, Tim Brandt; Fritz, David M; Galler, Andreas; Glatzel, Pieter; Harlang, Tobias; Kjr, Kasper S; Lemke, Henrik T; Mller, Klaus B; Nmeth, Zoltn; Ppai, Mtys; Sas, Norbert; Uhlig, Jens; Zhu, Diling; Vank, Gyrgy; Sundstrm, Villy; Nielsen, Martin M; Bressler, Christian

    2016-02-18

    In liquid phase chemistry dynamic solute-solvent interactions often govern the path, ultimate outcome, and efficiency of chemical reactions. These steps involve many-body movements on subpicosecond time scales and thus ultrafast structural tools capable of capturing both intramolecular electronic and structural changes, and local solvent structural changes are desired. We have studied the intra- and intermolecular dynamics of a model chromophore, aqueous [Fe(bpy)3](2+), with complementary X-ray tools in a single experiment exploiting intense XFEL radiation as a probe. We monitored the ultrafast structural rearrangement of the solute with X-ray emission spectroscopy, thus establishing time zero for the ensuing X-ray diffuse scattering analysis. The simultaneously recorded X-ray diffuse scattering patterns reveal slower subpicosecond dynamics triggered by the intramolecular structural dynamics of the photoexcited solute. By simultaneous combination of both methods only, we can extract new information about the solvation dynamic processes unfolding during the first picosecond (ps). The measured bulk solvent density increase of 0.2% indicates a dramatic change of the solvation shell around each photoexcited solute, confirming previous ab initio molecular dynamics simulations. Structural changes in the aqueous solvent associated with density and temperature changes occur with ?1 ps time constants, characteristic for structural dynamics in water. This slower time scale of the solvent response allows us to directly observe the structure of the excited solute molecules well before the solvent contributions become dominant. PMID:26783685

  9. ANS hard X-ray experiment development program. [emission from X-ray sources

    NASA Technical Reports Server (NTRS)

    Parsignault, D.; Gursky, H.; Frank, R.; Kubierschky, K.; Austin, G.; Paganetti, R.; Bawdekar, V.

    1974-01-01

    The hard X-ray (HXX) experiment is one of three experiments included in the Dutch Astronomical Netherlands Satellite, which was launched into orbit on 30 August 1974. The overall objective of the HXX experiment is the detailed study of the emission from known X-ray sources over the energy range 1.5-30keV. The instrument is capable of the following measurements: (1) spectral content over the full energy range with an energy resolution of approximately 20% and time resolution down to 4 seconds; (2) source time variability down to 4 milliseconds; (3) silicon emission lines at 1.86 and 2.00keV; (4) source location to a limit of one arc minute in ecliptic latitude; and (5) spatial structure with angular resolution of the arc minutes. Scientific aspects of experiment, engineering design and implementation of the experiment, and program history are included.

  10. A Common Stochastic Process Rules Gamma-ray Burst Prompt Emission and X-ray Flares

    NASA Astrophysics Data System (ADS)

    Guidorzi, C.; Dichiara, S.; Frontera, F.; Margutti, R.; Baldeschi, A.; Amati, L.

    2015-03-01

    Prompt ?-ray and early X-ray afterglow emissions in gamma-ray bursts (GRBs) are characterized by a bursty behavior and are often interspersed with long quiescent times. There is compelling evidence that X-ray flares are linked to prompt ?-rays. However, the physical mechanism that leads to the complex temporal distribution of ?-ray pulses and X-ray flares is not understood. Here we show that the waiting time distribution (WTD) of pulses and flares exhibits a power-law tail extending over four decades with an index of about two and can be the manifestation of a common time-dependent Poisson process. This result is robust and is obtained on different catalogs. Surprisingly, GRBs with many (?slant 8) ?-ray pulses are very unlikely to be accompanied by X-ray flares after the end of the prompt emission (3.1? Gaussian confidence). These results are consistent with a simple interpretation: a hyperaccreting disk breaks up into one or a few groups of fragments, each of which is independently accreted with the same probability per unit time. Prompt ?-rays and late X-ray flares are nothing but different fragments being accreted at the beginning and at the end, respectively, following the very same stochastic process and likely the same mechanism.

  11. X-ray emission of hot massive stars

    NASA Astrophysics Data System (ADS)

    Oskinova, L.

    2014-07-01

    Massive hot stars are important cosmic engines that severely influence their environment by powerful stellar wind and strong ionizing radiation. Modern observations of X-ray emission from massive stars provide deep insight into the structure and dynamics of their winds and allow to study the very hot gas in wind blown bubbles. I will review the recent findings on X-ray emission from OB and Wolf-Rayet stars and massive star clusters. While our knowledge about the X-ray emission from massive stars is increasing, a small fraction of massive stars that have strong magnetic fields are often unusual in their X-ray light. Massive star clusters provide an excellent opportunity to study stellar feedback and the hot gas filling the intracluster medium. The most massive stars are often binaries where the stellar winds collide and produce X-ray or even gamma-ray radiation. Finally, I will discuss the progress towards an unified view of stellar winds in single stars and in high mass X-ray binaries.

  12. X-ray emission from colliding laser plasmas

    SciTech Connect

    Wilke, M.; Obst, A.W.; Winske, D.

    1995-09-01

    Colliding Au, CD and Ti-Cr plasmas have been generated by illuminating two opposing foils each with a {approximately} 100J, 0.5 nsec, 2{omega} Nd-glass laser beam from the Trident laser facility at Los Alamos. The plasmas are being used to study plasma interactions which span the parameter regime from interpenetrating to collisional stagnation. X-ray emission during the laser target interaction and the subsequent collision is used to diagnose the initial plasma conditions and the colliding plasma properties. X-ray instrumentation consists of a 100 ps gated x-ray pinhole imager, a time-integratcd bremsstrahlung x-ray spectrograph and a gated x-ray spectrograph used to record isoelectronic spectra from the Ti-Cr plasmas. The imager has obtained multi-frame images of the collision and therefore, a measure of the stagnation length which is a function of the ion charge state and density and a strong function of the electron temperature. Other instrumentation includes a Thomson scattering spectrometer with probe beam, neutron detectors used to monitor the CD coated foil collisions and an ion spectrometer. We will describe the current status of the experiments and current results with emphasis on the x-ray emission diagnostics. We will also briefly describe the modeling using Lasnex and ISIS, a particle-in-cell code with massless fluid electrons and inter particle (classical) collisions.

  13. Extended X-Ray Emission around Quasars at Intermediate Redshift

    NASA Technical Reports Server (NTRS)

    Fiore, Fabrizio

    1998-01-01

    We compare the optical to soft X-ray spectral energy distribution (SED) of a sample of bright low-redshift (0.048 less than z less than 0.155), radio-quiet quasars, with a range of thermal models which have been proposed to explain the optical/UV/soft X-ray quasar emission: (a) optically thin emission from an ionized plasma, (b) optically thick emission from the innermost regions of an accretion disk in Schwarzschild and Kerr geometries. We presented ROSAT PSPC observations of these quasars in an earlier paper. Here our goals are to search for the signature of thermal emission in the quasar SED, and to investigate whether a single component is dominating at different frequencies. We find that isothermal optically thin plasma models can explain the observed soft X-ray color and the mean OUV color. However, they predict an ultraviolet (1325 Angstrom) luminosity a factor of 3 to 10 times lower than observed. Pure disk models, even in a Kerr geometry, do not have the necessary flexibility to account for the observed OUV and soft X-ray luminosities. Additional components are needed both in the optical and in the soft X-rays (e.g. a hot corona can explain the soft X-ray color). The most constrained modification of pure disk models, is the assumption of an underlying power law component extending from the infrared (3 micrometers) to the X-ray. This can explain both the OUV and soft X-ray colors and luminosities and does not exceed the 3 micrometers luminosity, where a contribution from hot dust is likely to be important. We also discuss the possibility that the observed soft X-ray color and luminosity are dominated by reflection from the ionized surface of the accretion disk. While modifications of both optically thin plasma models and pure disk models might account for the observed SED, we do not find any strong evidence that the OUV bump and soft X-ray emission are one and the same component. Likewise, we do not find any strong argument which definitely argues in favor of thermal models.

  14. Synchrotron-Radiation Induced X-Ray Emission (SRIXE)

    SciTech Connect

    Jones, Keith W.

    1999-09-01

    Elemental analysis using emission of characteristic x rays is a well-established scientific method. The success of this analytical method is highly dependent on the properties of the source used to produce the x rays. X-ray tubes have long existed as a principal excitation source, but electron and proton beams have also been employed extensively. The development of the synchrotron radiation x-ray source that has taken place during the past 40 years has had a major impact on the general field of x-ray analysis. Even tier 40 years, science of x-ray analysis with synchrotron x-ray beams is by no means mature. Improvements being made to existing synchrotron facilities and the design and construction of new facilities promise to accelerate the development of the general scientific use of synchrotron x-ray sources for at least the next ten years. The effective use of the synchrotron source technology depends heavily on the use of high-performance computers for analysis and theoretical interpretation of the experimental data. Fortunately, computer technology has advanced at least as rapidly as the x-ray technology during the past 40 years and should continue to do so during the next decade. The combination of these technologies should bring about dramatic advances in many fields where synchrotron x-ray science is applied. It is interesting also to compare the growth and rate of acceptance of this particular research endeavor to the rates for other technological endeavors. Griibler [1997] cataloged the time required for introduction, diffusion,and acceptance of technological, economic, and social change and found mean values of 40 to 50 years. The introduction of the synchrotron source depends on both technical and non-technical factors, and the time scale at which this seems to be occurring is quite compatible with what is seen for other major innovations such as the railroad or the telegraph. It will be interesting to see how long the present rate of technological change and increase in scientific use can be maintained for the synchrotron x-ray source. A short summary of the present state of the synchrotron radiation-induced x-ray emission (SRIXE) method is presented here. Basically, SRIXE experiments can include any that depend on the detection. of characteristic x-rays produced by the incident x-ray beam born the synchrotron source as they interact with a sample. Thus, experiments done to measure elemental composition, chemical state, crystal, structure, and other sample parameters can be considered in a discussion of SRIXE. It is also clear that the experimentalist may well wish to use a variety of complementary techniques for study of a given sample. For this reason, discussion of computed microtomography (CMT) and x-ray diffraction is included here. It is hoped that this present discussion will serve as a succinct introduction to the basic ideas of SRIXE for those not working in the field and possibly help to stimulate new types of work by those starting in the field as well as by experienced practitioners of the art. The topics covered include short descriptions of (1) the properties of synchrotron radiation, (2) a description of facilities used for its production, (3) collimated microprobe, (4) focused microprobes, (5) continuum and monoenergetic excitation, (6) detection limits, (7) quantitation, (8) applications of SRIXE, (9) computed microtomography (CMT), and (10)chemical speciation using x-ray absorption near-edge structure (XANES) and extended x-ray absorption fine structure (EXAFS). An effort has been made to cite a wide variety of work from different laboratories to show the vital nature of the field.

  15. X-ray emission from chemically peculiar stars

    NASA Technical Reports Server (NTRS)

    Drake, S. A.; Linsky, J. L.; Schmitt, J. H. M. M.; Rosso, C.

    1994-01-01

    We have searched the Roentgen Satellite (ROSAT) All-Sky Survey (RASS) database at the positions of about 100 magnetic Bp-Ap stars of the helium-strong, helium-weak, silicon, and strontium-chromium subclasses. We detect X-ray sources at the positions of 10 of these stars; in four cases the X-ray emission presumably arises from an early-type companion with a radiatively driven wind, while we believe that the magnetic chemically peculiar (CP) star is the most likely X-ray source (as opposed to a binary companion) in at least three and at most five of the six remaining cases. The helium-strong stars have X-ray emission levels that are characteristic of the luminous OB stars with massive winds (log L(sub x)/L(sub bol) is about -7), whereas the He-weak and Si stars (which generally show no evidence for significant mass loss) have log L(sub x)/L(sub bol) values that can reach as high as about -6. In contrast, we find no convincing evidence that the cooler SrCrEu-type CP stars are intrinsic X-ray sources. We discuss the X-ray and radio emission properties of our sample of CP stars, and argue that both types of emission may be magnetospheric in origin; however, there is clearly not a simple one-to-one correspondence between them, since many of the magnetic stars that are detected radio sources were not detected as X-ray sources in the present survey.

  16. Exotic x-ray emission from dense plasmas

    NASA Astrophysics Data System (ADS)

    Rosmej, F. B.; Dachicourt, R.; Deschaud, B.; Khaghani, D.; Dozires, M.; md, M.; Renner, O.

    2015-11-01

    Exotic x-ray emission from dense matter is identified as the complex high intensity satellite emission from autoionizing states of highly charged ions. Among a vast amount of possible transitions, double K-hole hollow ion (HI) x-ray emission K0L X ? K1L X-1 + h? hollow is of exceptional interest due to its advanced diagnostic potential for matter under extreme conditions where opacity and radiation fields play important roles. Transient ab initio simulations identify intense short pulse radiation fields (e.g., those emitted by x-ray free electron lasers) as possible driving mechanisms of HI x-ray emission via two distinct channels: first, successive photoionization of K-shell electrons, second, photoionization followed by resonant photoexciation among various ionic charge states that are simultaneously present in high density matter. We demonstrated that charge exchange of intermixing inhomogenous plasmas as well as collisions driven by suprathermal electrons are possible mechanisms to populate HIs to observable levels in dense plasmas, particularly in high current Z-pinch plasmas and high intensity field-ionized laser produced plasmas. Although the HI x-ray transitions were repeatedly identified in many other cases of dense optical laser produced plasmas on the basis of atomic structure calculations, their origin is far from being understood and remains one of the last holy grails of high intensity laser-matter interaction.

  17. L X-ray emission induced by heavy ions

    NASA Astrophysics Data System (ADS)

    Pajek, M.; Bana?, D.; Braziewicz, J.; Majewska, U.; Semaniak, J.; Fija?-Kirejczyk, I.; Jask?a, M.; Czarnacki, W.; Korman, A.; Kretschmer, W.; Mukoyama, T.; Trautmann, D.

    2015-11-01

    Particle-induced X-ray emission (PIXE) technique is usually applied using typically 1 MeV to 3 MeV protons or helium ions, for which the ion-atom interaction is dominated by the single ionization process. For heavier ions the multiple ionization plays an increasingly important role and this process can influence substantially both the X-ray spectra and atomic decay rates. Additionally, the subshell coupling effects are important for the L- and M-shells ionized by heavy ions. Here we discuss the main features of the X-ray emission induced by heavy ions which are important for PIXE applications, namely, the effects of X-ray line shifts and broadening, vacancy rearrangement and change of the fluorescence and Coster-Kronig yields in multiple ionized atoms. These effects are illustrated here by the results of the measurements of L X-ray emission from heavy atoms bombarded by 6 MeV to 36 MeV Si ions, which were reported earlier. The strong L-subshell coupling effects are observed, in particular L2-subshell, which can be accounted for within the coupling subshell model (CSM) developed within the semiclassical approximation. Finally, the prospects to use heavy ions in PIXE analysis are discussed.

  18. Discovery of Diffuse Hard X-ray Emission Around Jupiter

    NASA Astrophysics Data System (ADS)

    Ezoe, Yuichiro; Ishikawa, K.; Ohashi, T.; Terada, N.; Miyoshi, Y.; Uchiyama, Y.

    2009-09-01

    Our discovery of diffuse hard (1-5 keV) X-ray emission around Jupiter is reported. Recent Chandra and XMM-Newton observations revealed several types of X-rays in the vicinity of Jupiter such as auroral and disk emission from Jupiter and faint diffuse X-rays from the Io Plasma Torus (see Bhardwaj et al. 2007 for review). To investigate possible diffuse hard X-ray emission around Jupiter with the highest sensitivity, we conducted data analysis of Suzaku XIS observations of Jupiter on Feb 2006. After removing satellite and planetary orbital motions, we detected a significant diffuse X-ray emission extending to 6 x 3 arcmin with the 1-5 keV X-ray luminosity of 3e15 erg/s. The emitting region very well coincided with the Jupiter's radiation belts and the bright spot seemed to move according to the Io's motion. The 1-5 keV X-ray spectrum was represented by a simple power law model with a photon index of 1.4. Such a flat continuum strongly suggests non-thermal origin. We hence examined three mechanisms: bremsstrahlung by keV electrons, synchrotron emission by TeV electrons, and inverse Compton scattering of solar photons by MeV electrons. The former two can be rejected because of the X-ray spectral shape and implausible existence of TeV electrons around Jupiter, respectively. The last possibility was found to be possible because tens MeV electrons, which have been confirmed in inner radiation belts (Bolton et al. 2002), can kick solar photons to the keV energy range and provide a simple power-law continuum. We estimated an average electron density from the X-ray luminosity assuming the oblate spheroid shaped emitting region with 8 x 8 x 4 Jovian radii. The necessary density was 0.02 1/cm3 for 50 MeV electrons. Hence, our results may suggest a new particle acceleration phenomenon related to Io.

  19. Diffuse X-ray emission from the Dumbbell Nebula?

    NASA Technical Reports Server (NTRS)

    Chu, You-Hua; Kwitter, Karen B.; Kaler, James B.

    1993-01-01

    We have analyzed ROSAT Position Sensitive Proportional Counter pointed observations of the Dumbbell Nebula and find that the previously reported 'extended' X-ray emission is an instrumental electronic ghost image at the softest energy band. At slightly higher energy bands, the image of the Dumbbell is not very different from that of the white dwarf HZ43. We conclude that the X-ray emission of the Dumbbell Nebula comes from its central star. A blackbody model is fitted to the spectrum and the best-fit temperature of not greater than 136,000 +/- 10,000 K is in excellent agreement with the Zanstra temperatures.

  20. Detecting X-ray Emission from Cometary Atmospheres Using the Suzaku X-ray Imaging Spectrometer

    SciTech Connect

    Brown, G V; Beiersdorfer, P; Bodewits, D; Porter, F S; Ezoe, Y; Hamaguchi, K; Hanya, M; Itoh, M; Kilbourne, C A; Kohmura, T; Maeda, Y; Negoro, H; Tsuboi, Y; Tsunemi, H; Urata, Y

    2009-11-16

    The Suzaku X-ray imaging spectrometer has been used to observe the X-ray emission from comets 73P/Schwassmann-Wachmann 3C and 8P/Tuttle. Comet 73P/Schwassmann-Wachmann 3C was observed during May and June of 2006, while it was near perihelion and passed within 0.1 AU of the Earth. Comet 8P/Tuttle was observed during January of 2008 when it was at its closest approach to the Earth at 0.25 AU, and again near perihelion at a distance of 0.5 Au from Earth. In the case of comet 73P/Schwassmann Wachmann 3C, the XIS spectra show line emission from highly charged oxygen and carbon ions as well as emission from what is most likely L-shell transitions from Mg, Si, and S ions. This line emission is caused by charge exchange recombination between solar wind ions and cometary neutrals, and can be used as a diagnostic of the solar wind. Here we present some of the results of the observation of the comet 73P/Schwassmann-Wachmann 3C.

  1. Nonthermal X-ray Emission in Supernova Remnants

    NASA Astrophysics Data System (ADS)

    Dyer, K. K.; Reynolds, S. P.; Borkowski, K. J.; Petre, R.

    2000-12-01

    While synchrotron emission in supernova remnants has been observed and analyzed to great effect at radio wavelengths, there is a growing number of both galactic and extragalactic supernova remnants with nonthermal (non-plerionic) emission in the X-ray band. In the past the only tool available to describe X-ray synchrotron emission was the generic powerlaw model. Powerlaw models are inadequate for several reasons: simple comparison of radio and X-ray fluxes show that synchrotron must drop significantly below the radio-measured powerlaw somewhere before X-ray energies. Powerlaw models are also very poorly constrained. Coupled with a complex thermal model there is often no unique solution for the thermal-nonthermal separation. I will present synchrotron models, which use the radio spectral index and flux as inputs and include the full single-particle emissivity. Our models of synchrotron emission can account for the spectra of dominantly nonthermal supernova remnants with interesting consequences for residual thermal abundances and acceleration of particles. In addition, these models, which use the radio spectral index and flux as inputs, deliver a much better-constrained separation between the thermal and nonthermal components. These models make both spectral and spatial predictions, describing how the nonthermal emission varies across the remnant. We have demonstrated that the integrated spectrum of SN1006, a remnant dominated by nonthermal emission, is well described by synchrotron models. As an example of the use of thermal and nonthermal models I will present spatially resolved observations of this remnant, analyzed with versions of the synchrotron model designed to describe the remnant subregions. Armed with spatially resolved nonthermal models and new thermal models we now have the tools to separate thermal and nonthermal X-rays in supernova remnants. The ability to separate thermal and nonthermal emission is essential to understanding the thermal component, as well as having implications for nonthermal emission. This work is supported by the Graduate Student Researchers Program through NASA's GSFC.

  2. K alpha line emission during solar X-ray bursts

    NASA Technical Reports Server (NTRS)

    Phillips, K. J. H.; Neupert, W. M.

    1973-01-01

    The expected flux of K alpha line emission from sulfur, argon, calcium, and iron is calculated during both thermal and nonthermal solar X-ray events. Such emission is shown to be weak during the course of most of the nonthermal hard X-ray bursts that Kane and Anderson (1970) have observed. If Compton backscattering is significant at high energies, the flux is reduced still further for disk flares, but it is noted that the strong, near-limb burst of June 26 would have produced about 100 photons /sq cm/sec of sulfur and iron K alpha emission. The impulsive hard X-ray bursts may in general be too short-lived for much K alpha emission. It may be noted that sulfur K alpha emission in particular depends sensitively on the lower-energy limit of the nonthermal electron spectrum, assuming such a sharply defined boundary exists. During soft X-ray bursts, when temperatures of a few 10 to the 7th power K are obtained, K alpha emission from certain iron ions, specifically Fe XVIII-XXIII, may be important.

  3. Tracking of azobenzene isomerization by X-ray emission spectroscopy.

    PubMed

    Ebadi, H

    2014-09-11

    Cis-trans isomerizations are among the fundamental processes in photochemistry. In azobenzene or its derivatives this dynamics is, due to its reversibility, one of the reactions widely used in photostimulation of molecular motors or in molecular electronics. Though intensively investigated in the optical regime, no detailed study exists in the X-ray regime so far. Because the X-ray emission spectroscopy echoes the electronic structure sensitive to the geometry, this theoretical report based on the density functional theory and its time-dependent version presents different nitrogen K-edge X-ray emission spectra for cis and trans isomers with close interrelation to their electron configuration. Considering the spectrum along the isomerization path, these structural signatures can be utilized to probe the isomerization dynamics in the excited molecule. The scheme can further be generalized to the element specific photoreactions. PMID:25134009

  4. Stellar X-ray Emission From Magnetically Funneled Shocks

    NASA Astrophysics Data System (ADS)

    Guenther, Hans

    Stars and planets form in giant molecular clouds, so they are deeply embedded in their early stages. When they become optically visible, the young stars are still surrounded by a proto-planetary disk, where planets evolve. These stars are called classical T Tauri stars (CTTS). A key, yet poorly constrained, parameter for the disk evolution is the stellar high-energy emission. It can ionize the outer layers of the disk, change its chemistry and even drive photoevaporation of the disk. Thus the spectral shape and the temporal variability of the stellar X-ray and UV emission shapes the gas and dust properties in some regions of the disk. It sets the photoevaporation timescale which provides an upper limit for planet formation. CTTS still actively accrete mass from their disk. The infalling matter is funneled by the stellar magnetic field and impacts on the star close to free fall velocity. A hot accretion shock develops, which emits X-rays which are distinct from any coronal X-rays. Eventually the disk disperses and bulk planet formation comes to an end. X-ray emitting shocks can still occur at a later stage in stellar evolution, if e.g. the magnetic field is strong enough to funnel the stellar wind to collide in the disk midplane. This so-called magnetically confined wind shock model was originally developed for the A0p star IQ Aur. The magnetically funneled accretion model has been successfully tested for CTTS in a small mass range only; the magnetically confined wind shock model lacks a comparison for high-resolution X-ray grating spectra for all but the most massive stars. In this proposal we request funding to analyze three XMM-Newton observations, which will probe X-ray emitting shocks in stars with magnetic fields: DN Tau (observed as category C target in cycle 8), a CTTS with much lower mass than previous CTTS with X- ray grating spectroscopy; MN Lup (to be observed in cycle 9), a prime candidate for simultaneous X-ray/Doppler-imaging studies; and IQ Aur (to be observed in cycle 9), a magnetic A0p star with an exceptionally soft X-ray spectrum. We have an established and working code to simulate high-resolution X-ray spectra emitted by shocks. This code was originally developed for accretion shocks on CTTS. We will fit a grid of models from this code to the observed spectra to deduce the shock properties, such as infall velocity, mass accretion rate and elemental composition. Specifically, we will 1) test for the existence of wind shocks in IQ Aur and, if confirmed, measure density, velocity, mass flow and distance to the stellar surface, 2) calculate the accretion density and rate on DN Tau (all previously modeled CTTS have higher masses, so a comparison shows how the accretion shock X-ray emission and thus the feedback on the disk depends on the stellar mass) and 3) analyze the X-ray properties of MN Lup, which has been Doppler-imaged in the past, to design a simultaneous X-ray/Doppler imaging campaign to pinpoint the accretion spots on the stellar surface. Through an analysis of X-ray data, this research characterizes the (high-energy) environment of planet formation and the interaction of different components in stellar systems (magnetic fields and plasma flows), which are two aspects of NASA's strategic goals.

  5. Diffuse X-Ray Emission in the Milky Way

    NASA Technical Reports Server (NTRS)

    Snowden, Steve

    2011-01-01

    Our understanding of the diffuse X-ray emission from the Milky Way has evolved. extensively with time from when it was first observed in the 1960's, and its origin is still the subject of debate as much now as ever. This presentation will provide an overview of that evolution, the various emission components, emission mechanisms, an assessment of the current state of the field, and implications for eROSITA.

  6. A CHANGE IN THE QUIESCENT X-RAY SPECTRUM OF THE NEUTRON STAR LOW-MASS X-RAY BINARY MXB 1659-29

    SciTech Connect

    Cackett, E. M.; Brown, E. F.; Cumming, A.; Degenaar, N.; Miller, J. M.; Fridriksson, J. K.; Wijnands, R.; Homan, J.

    2013-09-10

    The quasi-persistent neutron star low-mass X-ray binary MXB 1659-29 went into quiescence in 2001, and we have followed its quiescent X-ray evolution since. Observations over the first 4 yr showed a rapid drop in flux and temperature of the neutron star atmosphere, interpreted as cooling of the neutron star crust which had been heated during the 2.5 yr outburst. However, observations taken approximately 1400 and 2400 days into quiescence were consistent with each other, suggesting the crust had reached thermal equilibrium with the core. Here we present a new Chandra observation of MXB 1659-29 taken 11 yr into quiescence and 4 yr since the last Chandra observation. This new observation shows an unexpected factor of {approx}3 drop in count rate and change in spectral shape since the last observation, which cannot be explained simply by continued cooling. Two possible scenarios are that either the neutron star temperature has remained unchanged and there has been an increase in the column density, or, alternatively the neutron star temperature has dropped precipitously and the spectrum is now dominated by a power-law component. The first scenario may be possible given that MXB 1659-29 is a near edge-on system, and an increase in column density could be due to build-up of material in, and a thickening of, a truncated accretion disk during quiescence. But, a large change in disk height may not be plausible if standard accretion disk theory holds during quiescence. Alternatively, the disk may be precessing, leading to a higher column density during this latest observation.

  7. X-RAY EMISSION ANALYSIS: SAMPLE LOSSES DURING EXCITATION

    EPA Science Inventory

    Many samples of atmospheric aerosols and biological materials containing volatile or unstable species are now being examined by X-ray emission analysis, and loss of these species by sample heating is a critical consideration. The amount of heat energy deposited in a sample by the...

  8. Soft X-ray emission spectroscopy of polycyclic aromatichydrocarbons

    SciTech Connect

    Muramatsu, Yasuji; Tomizawa, Kana; Denlinger, Jonathan D.; Perera, Rupert C.C.

    2004-04-02

    High-resolution CK X-ray emission spectra of polycyclicaromatic hydrocarbons (PAH) were measured using synchrotron radiation.The main peak energies in the PAH X-ray spectra shifted to a higherenergy region as the ratio of hydrogenated outer carbon atoms tothenon-hydrogenated inner carbon atoms increased. Discrete variational(DV)-Xa molecular orbital calculations provided theoretical confirmationthat the spectral features depend on the ratio ofhydrogenated/non-hydrogenated carbon atoms, which suggests that thefeatures around the main peaks provide the information of the degree ofhydrogenation in PAH compounds.

  9. X-ray emission from hot subdwarfs with compact companions

    NASA Astrophysics Data System (ADS)

    Mereghetti, S.; La Palombara, N.; Esposito, P.; Tiengo, A.

    2013-03-01

    We review the X-ray observations of hot subdwarf stars. While no X-ray emission has been detected yet from binaries containing B-type subdwarfs, interesting results have been obtained in the case of the two luminous O-type subdwarfs HD 49798 and BD + 37° 442. Both of them are members of binary systems in which the X-ray luminosity is powered by accretion onto a compact object: a rapidly spinning (13.2 s) and massive (1.28 M⊙) white dwarf in the case of HD 49798 and most likely a neutron star, spinning at 19.2 s, in the case of BD + 37° 442. Their study can shed light on the poorly known processes taking place during common envelope evolutionary phases and on the properties of wind mass loss from hot subdwarfs.

  10. Extended soft X-ray emission from NGC 4151

    NASA Technical Reports Server (NTRS)

    Elvis, M.; Briel, U. G.; Henry, J. P.

    1983-01-01

    The detection of an extended component of the soft X-ray source in NGC 4151 is reported. The observations and the search for the extent of the source are presented, and three possible causes are considered. These include a hot thermal plasma in pressure equilibrium with the optical line emitting clouds and confining them; shock heating of outflowing forbidden line clouds as they impact on the normal interstellar medium of the galaxy; enhanced star formation, stimulated by shock originating from outflowing emission line clouds leading to an unusual concentration of SNR and massive X-ray binaries. It is found that shock heating is the most plausible explanation, although X-ray binaries are a possible source.

  11. Enhanced hard x-ray emission from microdroplet preplasma

    SciTech Connect

    Anand, M.; Kahaly, S.; Ravindra Kumar, G.; Krishnamurthy, M.; Sandhu, A.S.; Gibbon, P.

    2006-05-01

    We perform a comparative study of hard x-ray emission from femtosecond laser plasmas in 15 {mu}m methanol microdroplets and Perspex target. The hard x-ray yield from droplet plasmas is {approx_equal}68 times more than that obtained from solid plasmas at 2x10{sup 15} W cm{sup -2}. A 10 ns prepulse at about 5% of the main pulse appears to be essential for hard x-ray generation from droplets. Hot electron temperature of 36 keV is measured from the droplets at 8x10{sup 14} W cm{sup -2}, whereas a three times higher intensity is needed to obtain similar hot electron temperatures from Perspex plasmas. Particle-in-cell simulations with very long scale-length density profiles support experimental observations.

  12. Ultrasoft transient X-ray emission from AGN.

    NASA Astrophysics Data System (ADS)

    Mannheim, K.; Grupe, D.; Beuermann, K.; Thomas, H.-C.; Fink, H. H.

    1996-02-01

    The authors report some remarkable and unexpected results of optical/UV/X-ray follow-up observations of bright soft X-ray selected AGN from the ROSAT All-Sky-Survey. The majority of these AGN are rather anonymous Seyfert galaxies, mostly of the narrow-line Seyfert 1 subtype. The authors confirm the well-known X-ray variability. However, they also found strikingly different variability patterns: (i) a drop in the PSPC count rate by a factor of ?400 in WPVS007 (RX J0039.2-5117), (ii) a bolometrically dominant soft X-ray component decreasing in flux by a factor ?100 in IC 3599 accompanied by a decrease in optical emission line fluxes, and (iii) a drastic X-ray spectral change in RX J0134-42 from ultrasoft to a typical hard Seyfert spectrum. These dramatic variations occur within a (few) year(s), implying that the accretion flow in the immediate vicinity of the central black hole must have undergone a major change. The authors discuss possible physical explanations such as accretion disk instabilities or the tidal disruption of stars.

  13. X-ray emission from the Pleiades cluster

    NASA Technical Reports Server (NTRS)

    Agrawal, P. C.; Singh, K. P.; Riegler, G. R.

    1983-01-01

    The detection and identification of H0344+24, a new X-ray source located in the Pleiades cluster, is reported, based on observations made with HEAO A-2 low-energy detector 1 in the 0.15-3.0-keV energy band in August, 1977. The 90-percent-confidence error box for the new source is centered at 03 h 44.1 min right ascension (1950), near the center star of the 500-star Pleiades cluster, 25-eta-Tau. Since no likely galactic or extragalactic source of X-rays was found in a catalog search of the error-box region, identification of the source with the Pleiades cluster is considered secure. X-ray luminosity of the source is calculated to be about 10 to the 32nd ergs/sec, based on a distance of 125 pc. The X-ray characteristics of the Pleiades stars are discussed, and it is concluded that H0344+24 can best be explained as the integrated X-ray emission of all the B and F stars in the cluster.

  14. X-ray emission from hybrid-chromosphere stars

    NASA Technical Reports Server (NTRS)

    Brown, Alexander; Linsky, Jeffrey L.; Drake, Stephen A.; Van Steenberg, Michael E.

    1991-01-01

    The observations of hybrid stars made by the Exosat X-ray satellite are considered, and emphasis is placed on the hybrid star alpha TrA. Attention is focused on the determination of the column density of IS hydrogen toward the stars in order to interpret X-ray observations of stellar coronal emission. The coronal properties of alpha TrA are discussed as well as implications of the general coronal properties of hybrid stars. An analysis of the X-ray data, in conjunction with transition region properties of the star, shows that the X-ray emitting plasma is likely to have a temperature of at least 10 to the 6th K. The X-ray luminosity of the star is calculated to be about 5 x 10 to the 29th ergs/s over the 1-300 A spectral region and 7 x 10 to the 28th ergs/s in the 0.2-4 keV energy range for N(H) = 5 x 10 to the 19th /sq cm and a temperature of 10 to the 6th K.

  15. X-ray Emission from Thunderstorms and Lightning

    ScienceCinema

    Dwyer, Joseph [Florida Institute of Technology, Melbourne, Florida, United States

    2010-01-08

    How lightning is initiated in the relatively low electric fields inside thunderclouds and how it can then propagate for tens of kilometers through virgin air are two of the great unsolved problems in the atmospheric sciences.  Until very recently it was believed that lightning was entirely a conventional discharge, involving only low-energy (a few eV) electrons.  This picture changed completely a few years ago with the discovery of intense x-ray emission from both natural cloud-to-ground lightning and rocket-triggered lightning.  This energetic emission cannot be produced by a conventional discharge, and so the presence of x-rays strongly implies that runaway breakdown plays a role in lightning processes.  During runaway breakdown, electrons are accelerated through air to nearly the speed of light by strong electric fields.  These runaway electrons then emit bremsstrahlung x-rays and gamma-rays during collisions with air.  Indeed, the x-ray and gamma-ray emission produced by runaway breakdown near the tops of thunderstorms is bright enough to be seen from outer space, 600 km away.  As a result, the physics used for decades to describe thunderstorm electrification and lightning discharges is incomplete and needs to be revisited. 

  16. X-ray Emission from Thunderstorms and Lightning

    SciTech Connect

    Dwyer, Joseph

    2009-07-08

    How lightning is initiated in the relatively low electric fields inside thunderclouds and how it can then propagate for tens of kilometers through virgin air are two of the great unsolved problems in the atmospheric sciences.  Until very recently it was believed that lightning was entirely a conventional discharge, involving only low-energy (a few eV) electrons.  This picture changed completely a few years ago with the discovery of intense x-ray emission from both natural cloud-to-ground lightning and rocket-triggered lightning.  This energetic emission cannot be produced by a conventional discharge, and so the presence of x-rays strongly implies that runaway breakdown plays a role in lightning processes.  During runaway breakdown, electrons are accelerated through air to nearly the speed of light by strong electric fields.  These runaway electrons then emit bremsstrahlung x-rays and gamma-rays during collisions with air.  Indeed, the x-ray and gamma-ray emission produced by runaway breakdown near the tops of thunderstorms is bright enough to be seen from outer space, 600 km away.  As a result, the physics used for decades to describe thunderstorm electrification and lightning discharges is incomplete and needs to be revisited. 

  17. X-ray Emission from Thunderstorms and Lightning

    SciTech Connect

    Dwyer, Joseph

    2009-08-08

    How lightning is initiated in the relatively low electric fields inside thunderclouds and how it can then propagate for tens of kilometers through virgin air are two of the great unsolved problems in the atmospheric sciences. Until very recently it was believed that lightning was entirely a conventional discharge, involving only low-energy (a few eV) electrons. This picture changed completely a few years ago with the discovery of intense x-ray emission from both natural cloud-to-ground lightning and rocket-triggered lightning. This energetic emission cannot be produced by a conventional discharge, and so the presence of x-rays strongly implies that runaway breakdown plays a role in lightning processes. During runaway breakdown, electrons are accelerated through air to nearly the speed of light by strong electric fields. These runaway electrons then emit bremsstrahlung x-rays and gamma-rays during collisions with air. Indeed, the x-ray and gamma-ray emission produced by runaway breakdown near the tops of thunderstorms is bright enough to be seen from outer space, 600 km away. As a result, the physics used for decades to describe thunderstorm electrification and lightning discharges is incomplete and needs to be revisited.

  18. K alpha line emission during solar X-ray bursts

    NASA Technical Reports Server (NTRS)

    Phillips, K. J. H.; Neupert, W. M.

    1973-01-01

    Calculations of K alpha line emission from S, Ar, Ca and Fe are presented. It is reported that on the basis of data for hard X-ray bursts, the flux during most impulsive, non-thermal events is likely to be weak, though for a few strong bursts, a flux of approximately 100 photons/cm/s may be expected. The amount of S K alpha emission particularly is sensitively dependent on the value of the lower energy bound of the non-thermal electron distribution, offering a possible means of determining this. Thermal K alpha emission is only significant for Fe ions. The calculated thermal K alpha radiation is much less than that observed during an intense soft X-ray burst. It is concluded that a detailed temperature structure for the emission source is required in order to explain the discrepancy.

  19. A laboratory-based hard x-ray monochromator for high-resolution x-ray emission spectroscopy and x-ray absorption near edge structure measurements

    NASA Astrophysics Data System (ADS)

    Seidler, G. T.; Mortensen, D. R.; Remesnik, A. J.; Pacold, J. I.; Ball, N. A.; Barry, N.; Styczinski, M.; Hoidn, O. R.

    2014-11-01

    We report the development of a laboratory-based Rowland-circle monochromator that incorporates a low power x-ray (bremsstrahlung) tube source, a spherically bent crystal analyzer, and an energy-resolving solid-state detector. This relatively inexpensive, introductory level instrument achieves 1-eV energy resolution for photon energies of 5 keV to 10 keV while also demonstrating a net efficiency previously seen only in laboratory monochromators having much coarser energy resolution. Despite the use of only a compact, air-cooled 10 W x-ray tube, we find count rates for nonresonant x-ray emission spectroscopy comparable to those achieved at monochromatized spectroscopy beamlines at synchrotron light sources. For x-ray absorption near edge structure, the monochromatized flux is small (due to the use of a low-powered x-ray generator) but still useful for routine transmission-mode studies of concentrated samples. These results indicate that upgrading to a standard commercial high-power line-focused x-ray tube or rotating anode x-ray generator would result in monochromatized fluxes of order 106-107 photons/s with no loss in energy resolution. This work establishes core technical capabilities for a rejuvenation of laboratory-based hard x-ray spectroscopies that could have special relevance for contemporary research on catalytic or electrical energy storage systems using transition-metal, lanthanide, or noble-metal active species.

  20. A laboratory-based hard x-ray monochromator for high-resolution x-ray emission spectroscopy and x-ray absorption near edge structure measurements

    SciTech Connect

    Seidler, G. T. Mortensen, D. R.; Remesnik, A. J.; Pacold, J. I.; Ball, N. A.; Barry, N.; Styczinski, M.; Hoidn, O. R.

    2014-11-15

    We report the development of a laboratory-based Rowland-circle monochromator that incorporates a low power x-ray (bremsstrahlung) tube source, a spherically bent crystal analyzer, and an energy-resolving solid-state detector. This relatively inexpensive, introductory level instrument achieves 1-eV energy resolution for photon energies of ∼5 keV to ∼10 keV while also demonstrating a net efficiency previously seen only in laboratory monochromators having much coarser energy resolution. Despite the use of only a compact, air-cooled 10 W x-ray tube, we find count rates for nonresonant x-ray emission spectroscopy comparable to those achieved at monochromatized spectroscopy beamlines at synchrotron light sources. For x-ray absorption near edge structure, the monochromatized flux is small (due to the use of a low-powered x-ray generator) but still useful for routine transmission-mode studies of concentrated samples. These results indicate that upgrading to a standard commercial high-power line-focused x-ray tube or rotating anode x-ray generator would result in monochromatized fluxes of order 10{sup 6}–10{sup 7} photons/s with no loss in energy resolution. This work establishes core technical capabilities for a rejuvenation of laboratory-based hard x-ray spectroscopies that could have special relevance for contemporary research on catalytic or electrical energy storage systems using transition-metal, lanthanide, or noble-metal active species.

  1. A laboratory-based hard x-ray monochromator for high-resolution x-ray emission spectroscopy and x-ray absorption near edge structure measurements.

    PubMed

    Seidler, G T; Mortensen, D R; Remesnik, A J; Pacold, J I; Ball, N A; Barry, N; Styczinski, M; Hoidn, O R

    2014-11-01

    We report the development of a laboratory-based Rowland-circle monochromator that incorporates a low power x-ray (bremsstrahlung) tube source, a spherically bent crystal analyzer, and an energy-resolving solid-state detector. This relatively inexpensive, introductory level instrument achieves 1-eV energy resolution for photon energies of ∼5 keV to ∼10 keV while also demonstrating a net efficiency previously seen only in laboratory monochromators having much coarser energy resolution. Despite the use of only a compact, air-cooled 10 W x-ray tube, we find count rates for nonresonant x-ray emission spectroscopy comparable to those achieved at monochromatized spectroscopy beamlines at synchrotron light sources. For x-ray absorption near edge structure, the monochromatized flux is small (due to the use of a low-powered x-ray generator) but still useful for routine transmission-mode studies of concentrated samples. These results indicate that upgrading to a standard commercial high-power line-focused x-ray tube or rotating anode x-ray generator would result in monochromatized fluxes of order 10(6)-10(7) photons/s with no loss in energy resolution. This work establishes core technical capabilities for a rejuvenation of laboratory-based hard x-ray spectroscopies that could have special relevance for contemporary research on catalytic or electrical energy storage systems using transition-metal, lanthanide, or noble-metal active species. PMID:25430123

  2. "X-Ray Transients in Star-Forming Regions" and "Hard X-Ray Emission from X-Ray Bursters"

    NASA Technical Reports Server (NTRS)

    Halpern, Jules P.; Kaaret, Philip

    1999-01-01

    This grant funded work on the analysis of data obtained with the Burst and Transient Experiment (BATSE) on the Compton Gamma-Ray Observatory. The goal of the work was to search for hard x-ray transients in star forming regions using the all-sky hard x-ray monitoring capability of BATSE. Our initial work lead to the discovery of a hard x-ray transient, GRO J1849-03. Follow-up observations of this source made with the Wide Field Camera on BeppoSAX showed that the source should be identified with the previously known x-ray pulsar GS 1843-02 which itself is identified with the x-ray source X1845-024 originally discovered with the SAS-3 satellite. Our identification of the source and measurement of the outburst recurrence time, lead to the identification of the source as a Be/X-ray binary with a spin period of 94.8 s and an orbital period of 241 days. The funding was used primarily for partial salary and travel support for John Tomsick, then a graduate student at Columbia University. John Tomsick, now Dr. Tomsick, received his Ph.D. from Columbia University in July 1999, based partially on results obtained under this investigation. He is now a postdoctoral research scientist at the University of California, San Diego.

  3. A rocket borne instrument for the study of soft X-ray emission from cosmic X-ray sources

    NASA Technical Reports Server (NTRS)

    Agrawal, P. C.; Moore, W. E.; Garmire, G. P.

    1974-01-01

    Details about a rocket-borne instrument designed for studying the various characteristics of soft X-ray emission from cosmic X-ray sources in the energy range of 0.2 to 3 keV are presented. The X-ray detector consists of a bank of four multilayer, wall-less proportional counters, each with an area of 400 sq cm. The detectors are covered by windows of 1.4-micron polypropylene and are maintained at a constant pressure in flight using a gas control system. Two of the detectors are equipped with 0.4- by 10-deg collimators for mapping the spatial distribution of soft X-rays from extended X-ray sources. A pair of balanced filters consisting of oxygen and CF4 are used for detecting oxygen emission lines.

  4. Determination of total x-ray absorption coefficient using non-resonant x-ray emission

    PubMed Central

    Achkar, A. J.; Regier, T. Z.; Monkman, E. J.; Shen, K. M.; Hawthorn, D. G.

    2011-01-01

    An alternative measure of x-ray absorption spectroscopy (XAS) called inverse partial fluorescence yield (IPFY) has recently been developed that is both bulk sensitive and free of saturation effects. Here we show that the angle dependence of IPFY can provide a measure directly proportional to the total x-ray absorption coefficient, (E). In contrast, fluorescence yield (FY) and electron yield (EY) spectra are offset and/or distorted from (E) by an unknown and difficult to measure amount. Moreover, our measurement can determine (E) in absolute units with no free parameters by scaling to (E) at the non-resonant emission energy. We demonstrate this technique with measurements on NiO and NdGaO3. Determining (E) across edge-steps enables the use of XAS as a non-destructive measure of material composition. In NdGaO3, we also demonstrate the utility of IPFY for insulating samples, where neither EY or FY provide reliable spectra due to sample charging and self-absorption effects, respectively. PMID:22355697

  5. Synchrotron X-ray emission from old pulsars

    NASA Astrophysics Data System (ADS)

    Kisaka, Shota; Tanaka, Shuta J.

    2014-09-01

    We study the synchrotron radiation as the observed non-thermal emission by the X-ray satellites from old pulsars (≳1-10 Myr) to investigate the particle acceleration in their magnetospheres. We assume that the power-law component of the observed X-ray spectra is caused by the synchrotron radiation from electrons and positrons in the magnetosphere. We consider two pair-production mechanisms of X-ray emitting particles, the magnetic and the photon-photon pair productions. High-energy photons, which ignite the pair production, are emitted via the curvature radiation of the accelerated particles. We use the analytical description for the radiative transfer and estimate the luminosity of the synchrotron radiation. We find that for pulsars with the spin-down luminosity Lsd ≲ 1033 erg s-1, the locations of the particle acceleration and the non-thermal X-ray emission are within ≲107 cm from the centre of the neutron star, where the magnetic pair production occurs. For pulsars with the spin-down luminosity Lsd ≲ 1031 erg s-1 such as J0108-1431, the synchrotron radiation is difficult to explain the observed non-thermal component even if we consider the existence of the strong and small-scale surface magnetic field structures.

  6. An optimal design of X-ray target for uniform X-ray emission from an electronic brachytherapy system

    NASA Astrophysics Data System (ADS)

    Ihsan, Aamir; Heo, Sung Hwan; Kim, Hyun Jin; Kang, Chang Mu; Cho, Sung Oh

    2011-05-01

    We present a novel design of an X-ray target to deliver uniform dose from an electronic brachytherapy system (EBS). This design comprises of a combination of both the reflection- and transmission-type target geometries. Monte-Carlo simulation code MCNP5 has been employed for the calculation of angular distribution of the X-ray intensity produced from various morphologies of X-ray targets. The simulation results reveal that the combinatorial target-assembly is promising and effective in achieving uniformity of X-ray emission over the entire space of solid angle of 4 ? in comparison to a transmission-type target that produces X-rays mainly in the forward direction and a reflection-type target that generates X-rays mostly in the backward direction. As a direct consequence of the uniformity of X-ray emission, the combinatorial target-assembly can impart a uniform dose distribution which makes it suitable as a target of an X-ray tube for EBS.

  7. X-ray emission from high temperature plasmas

    NASA Technical Reports Server (NTRS)

    Harries, W. L.

    1975-01-01

    The bremsstrahlung X-rays from a plasma focus device were investigated with emphasis on the emission versus position, time, energy, and angle of emission. It is shown that low energy X-rays come from the plasma focus region, but that the higher energy components come from the anode. The emission is anisotropic, the low energy polar diagram resembling a cardioid, while the high energy emission is a lobe into the anode. The plasma parameters were considered indicating that even in the dense focus, the plasma is collisionless near the axis. By considering the radiation patterns of relativistic electrons a qualitative picture is obtained, which explains the measured polar diagrams, assuming the electrons that produce the X-rays have velocity vectors lying roughly in a cone between the point of focus and the anode. The average electron energy is about 3keV at the focus and about 10 keV on the anode surface. Results are consistent with the converging beam model of neutron production.

  8. X-ray emission from clusters of galaxies

    NASA Technical Reports Server (NTRS)

    Mushotzky, R. F.

    1984-01-01

    Some X-ray spectral observations of approximately 30 clusters of galaxies from HEAO-1 are summarized. There exists strong correlation betwen X-ray luminosity, L(x), and temperature kT in the form L(x)alphaT to the 2.3 power. This result combined with the L(x) central galaxy density relation and the virial theorem indicates that the core dadius of the gas should be roughly independent of L(x) or Kt and that more luminous clusters have a greater fraction of their virial mass in gas. The poor correlation of KT and optical velocity dispersion seems to indicate that clusters have a variety of equations of state. There is poor agreement between X-ray imaging observations and optical and X-ray spectral measures of the polytropic index. Most clusters show Fe emission lines with a strong indication that they all have roughly 1/2 solar abundance. The evidence for cooling in the cores several clusters is discussed based on spectral observations with the Einstein solid state spectrometer.

  9. X-ray emission from clusters of galaxies

    NASA Technical Reports Server (NTRS)

    Mushotzky, R. F.

    1983-01-01

    Some X-ray spectral observations of approximately 30 clusters of galaxies from HEAO-1 are summarized. There exists strong correlations between X-ray luminosity, L(x), and temperature kT in the form L(x)alphaT to the 2.3 power. This result combined with the L(x) central galaxy density relation and the virial theorem indicates that the core dadius of the gas should be roughly independent of L(x) or KT and that more luminous clusters have a greater fraction of their virial mass in gas. The poor correlation of KT and optical velocity dispersion seems to indicate that clusters have a variety of equations of state. There is poor agreement between X-ray imaging observations and optical and X-ray spectral measures of the polytropic index. Most clusters show Fe emission lines with a strong indication that they all have roughly 1/2 solar abundance. The evidence for cooling in the cores of several clusters is discussed based on spectral observations with the Einstein solid state spectrometer.

  10. Quantifying the Exospheric Component of Soft X-ray Emission

    NASA Technical Reports Server (NTRS)

    Kuntz, Kip; Collier, Michael R.; Snowden, Steven L.; Robertson, Ina; Hansen, Kenneth; Cravens, Thomas

    2007-01-01

    High charge state heavy ions in the solar wind exchange charge with ambient neutral gas. This process creates a product ion in an excited state. During the radiative cascade process, EUV and X-ray photons are emitted with energies in the range of about 100 eV to 1 keV. Because the terrestrial exospheric density at the nominal magnetopause location is relatively high, approx. 10 cu cm, solar wind charge exchange, or SWCX, can be observed by Earth-orbiting soft X-ray instruments such as the ROSAT Position Sensitive Proportional Counters (PSPC). In this presentation, we will compare simulated and observed soft Xray emission during an event on August 18-19, 1991 and discuss the role of exospheric SWCX emission for this and other events.

  11. Models for X-Ray Emission from Isolated Pulsars

    NASA Technical Reports Server (NTRS)

    Wang, F. Y.-H.; Ruderman, M.; Halpern, Jules P.; Zhu, T.; Oliversen, Ronald (Technical Monitor)

    2001-01-01

    A model is proposed for the observed combination of power-law and thermal X-rays from rotationally powered pulsars. For gamma-ray pulsars with accelerators very many stellar radii above the neutron star surface, 100 MeV curvature gamma-rays from e(-) or e(+) flowing starward out of such accelerators are converted to e1 pairs on closed field lines all around the star. These pairs strongly affect X-ray emission from near the star in two ways. (1) The pairs are a source of synchrotron emission immediately following their creation in regions where B approx. 10(exp 10) G. This emission, in the photon energy range 0.1 keV less than E(sub X) less than 5 MeV, has a power-law spectrum with energy index 0.5 and X-ray luminosity that depends on the back-flow current, and is typically approx. 10(exp 33) ergs/ s. (2) The pairs ultimately a cyclotron resonance "blanket" surrounding the star except for two holes along the open field line bundles which pass through it. In such a blanket the gravitational pull on e(+,-) pairs toward the star is balanced by the hugely amplified push of outflowing surface emitted X-rays wherever cyclotron resonance occurs. Because of it the neutron star is surrounded by a leaky "hohlraum" of hot blackbody radiation with two small holes, which prevents direct X-ray observation of a heated polar cap of a gamma-ray pulsar. Weakly spin modulated radiation from the blanket together with more strongly spin-modulated radiation from the holes through it would then dominate observed low energy (0.1-10 keV) emission. For non-y-ray pulsars, in which no such accelerators with their accompanying extreme relativistic back-flow toward the star are expected, optically thick e1 resonance blankets should not form (except in special cases very close to the open field line bundle). From such pulsars blackbody radiation from both the warm stellar surface and the heated polar caps should be directly observable. In these pulsars, details of the surface magnetic field evolution, especially of polar cap areas, become relevant to observations. The models are compared to X-ray data from Geminga, PSR 1055-52, PSR 0656+14, PSR 1929+10, and PSR 0950+08.

  12. Einstein Observations of X-ray emission from A stars

    NASA Technical Reports Server (NTRS)

    Golub, L.; Harnden, F. R., Jr.; Maxson, C. W.; Vaiana, G. S.; Snow, T. P., Jr.; Rosner, R.; Cash, W. C., Jr.

    1983-01-01

    Results are reported from the combined CfA Stellar Survey of selected bright A stars and an Einstein Guest Observer program for Ap and Am stars. In an initial report of results from the CfA Stellar Surveys by Vaiana et al. (1981) it was noted that the spread in observed X-ray luminosities among the few A stars observed was quite large. The reasons for this large spread was studied by Pallavicini et al. (1981). It was found that the X-ray emission from normal stars is related very strongly to bolometric luminosity for early-type stars and to rotation rate for late-type stars. However, an exception to this rule has been the apparently anomalous behavior of A star X-ray emission, for which the large spread in luminosity showed no apparent correlation with either bolometric luminosity or stellar rotation rate. In the present study, it is shown that the level of emission from normal A stars agrees with the correlation observed for O and B stars.

  13. Einstein Observations of X-ray emission from A stars

    NASA Astrophysics Data System (ADS)

    Golub, L.; Harnden, F. R., Jr.; Maxson, C. W.; Vaiana, G. S.; Snow, T. P., Jr.; Rosner, R.; Cash, W. C., Jr.

    1983-08-01

    Results are reported from the combined CfA Stellar Survey of selected bright A stars and an Einstein Guest Observer program for Ap and Am stars. In an initial report of results from the CfA Stellar Surveys by Vaiana et al. (1981) it was noted that the spread in observed X-ray luminosities among the few A stars observed was quite large. The reasons for this large spread was studied by Pallavicini et al. (1981). It was found that the X-ray emission from normal stars is related very strongly to bolometric luminosity for early-type stars and to rotation rate for late-type stars. However, an exception to this rule has been the apparently anomalous behavior of A star X-ray emission, for which the large spread in luminosity showed no apparent correlation with either bolometric luminosity or stellar rotation rate. In the present study, it is shown that the level of emission from normal A stars agrees with the correlation observed for O and B stars.

  14. Statistical data of X-ray emission from laboratory sparks

    NASA Astrophysics Data System (ADS)

    Kochkin, P.; Deursen, D. V.

    2011-12-01

    In this study we present a summary of the data of 1331 long laboratory sparks in atmospheric pressure intended for a statistical analysis. A 2 MV, 17kJ Marx generator were used to generate 1.2/52?s shape pulses positive and negative polarity. The generator was connected to a spark gap with cone-shaped electrodes. The distance between high-voltage and grounded electrodes was 1.08 meters. Breakdown voltage between electrodes was about 1MV. X-rays have been detected during the development of the discharge channel. The currents through the grounded electrode and through the high-voltage electrode were recorded separately and simultaneously with the voltage and the X-ray signal. X-rays were registered by two LaBr3(Ce+) scintillation detectors in different positions with respect to the forming discharge channel. Detector D1 was placed immediately under the grounded electrode at 15cm distance. Detector D2 was placed at horizontal distances of 143cm and 210cm, at mid-gap height. We also used lead shields of 1.5, 3, and 4 mm thickness for radiation attenuation measurements. For detector collimation we used shields up to 2 cm thickness. Also no metallic objects with pointed surfaces were present within 2 m from the spark gap. Typical plot of positive discharge presented in Figure 1a. Table 1 shows the summary of the X-ray registrations. Signal detection occurred significantly more for positive polarity discharges than for negative. This dependence was observed for both detectors. For detector D2 the probability of X-ray registration decreased proportional to 1/d2 with increasing the distance d to the breakdown gap from 1m43 to 2m10. Detailed energy spectra and time distribution of X-ray emission were obtained; see for example Fig. 1b. For both polarities of the high voltage, the X-rays only occurred when there was a current at the cathode.

  15. Chandra Detects X-ray Emission from Sgr A*

    NASA Astrophysics Data System (ADS)

    Baganoff, F. K.; Bautz, M. W.; Cui, W.; Doty, J. P.; Ricker, G. R.; Brandt, W. N.; Feigelson, E. D.; Garmire, G. P.; Maeda, Y.; Townsley, L. K.; Morris, M.; Pravdo, S. H.

    2000-10-01

    X-ray emission has been detected from Sgr A* for the first time in a 50-ks Chandra observation with the ACIS-I instrument. The newly discovered X-ray source, CXO J174540.0-290027, is coincident with the radio position of Sgr A* to within 0.35″ , corresponding to a maximum projected distance of 16 light-days for an assumed distance to the center of our Galaxy of 8.0 kpc. CXO J174540.0-290027 is the third brightest X-ray source in the entire 17' x 17' field of view and the second brightest heavily absorbed source. Since the brightest absorbed source lies ≈ 0.5‧ from Sgr A*, the probability of detecting an absorbed source by random chance that is as bright or brighter than the Sgr A* candidate and that lies within 0.35″ of the radio position is about 3 x 10-4. The best-fit absorbed power-law model has a photon index Γ ≈ 2.7 (N(E) E-Γ ) and a column density NH ≈ 1 x 1023\\ cm-2. The measured (absorbed) flux in the 2--10 keV passband is ≈ 1x 10-13\\ ergs\\ cm-2\\ s-1, and the absorption-corrected luminosity is ≈ 2 x 1033\\ ergs\\ s-1. The spectrum is equally well fit by an absorbed thermal bremsstrahlung model with kT ≈ 4\\ keV and NH ≈ 8 x 1022\\ cm-2. Implications of the measured flux and spectrum for ADAF, CDAF, jet-disk, and other emission models are discussed. Comparison of the X-ray spectral shape and LX/L_R ratio of Sgr A* to a sample of LLAGN indicates that their high-energy emission mechanisms are significantly different. This research was supported by NASA grant NAS8-38252.

  16. THE CHANDRA CARINA COMPLEX PROJECT: DECIPHERING THE ENIGMA OF CARINA'S DIFFUSE X-RAY EMISSION

    SciTech Connect

    Townsley, Leisa K.; Broos, Patrick S.; Garmire, Gordon P.; Chu, You-Hua; Gruendl, Robert A.; Gagne, Marc; Hamaguchi, Kenji; Montmerle, Thierry; Naze, Yael; Oey, M. S.; Park, Sangwook; Petre, Robert; Pittard, Julian M.

    2011-05-01

    We present a 1.42 deg{sup 2} mosaic of diffuse X-ray emission in the Great Nebula in Carina from the Chandra X-ray Observatory Advanced CCD Imaging Spectrometer camera. After removing >14,000 X-ray point sources from the field, we smooth the remaining unresolved emission, tessellate it into segments of similar apparent surface brightness, and perform X-ray spectral fitting on those tessellates to infer the intrinsic properties of the X-ray-emitting plasma. By modeling faint resolved point sources, we estimate the contribution to the extended X-ray emission from unresolved point sources and show that the vast majority of Carina's unresolved X-ray emission is truly diffuse. Line-like correlated residuals in the X-ray spectral fits suggest that substantial X-ray emission is generated by charge exchange at the interfaces between Carina's hot, rarefied plasma and its many cold neutral pillars, ridges, and clumps.

  17. Backscatter of hard X-rays in the solar atmosphere. [Calculating the reflectance of solar x ray emission

    NASA Technical Reports Server (NTRS)

    Bai, T.; Ramaty, R.

    1977-01-01

    The solar photosphere backscatters a substantial fraction of the hard X rays from solar flares incident upon it. This reflection was studied using a Monte Carlo simulation which takes into account Compton scattering and photo-electric absorption. Both isotropic and anisotropic X ray sources are considered. The bremsstrahlung from an anisotropic distribution of electrons are evaluated. By taking the reflection into account, the inconsistency is removed between recent observational data regarding the center-to-limb variation of solar X ray emission and the predictions of models in which accelerated electrons are moving down toward the photosphere.

  18. Diffuse X-ray Emission from M101

    NASA Technical Reports Server (NTRS)

    Kuntz, K. D.; Snowden, S. L.; Pence, W. D.; Mukai, K.; White, Nicholas E. (Technical Monitor)

    2002-01-01

    The total 0.45-2.0 keV luminosity of M101 is 3.1 x 10(exp 39) ergs/s, of which 2.2 x 10(exp 39) ergs/s is due to diffuse emission. Of the diffuse emission, no more than 6% can be due to unresolved point sources such as X-ray binaries, and approx. 11% is due to dwarf stars. The diffuse emission traces the spiral arms and is roughly correlated with the H alpha and FUV (far ultraviolet) emission. The radial distribution closely follows the optical profile. The bulk of the diffuse emission is characterized by a two thermal component spectrum with kT = 0.20,0.75 keV, and the ratios of the emission measures of the two components is roughly constant as a function of both radius and surface brightness. The softer component has a sufficiently large covering factor that the bulk of the emission is likely extra-planar. We find no evidence of an extended axisymmetric X-ray halo, suggesting that any such halo has a strength much smaller than current predictions.

  19. The hard X-ray emission of Centaurus A

    NASA Astrophysics Data System (ADS)

    Beckmann, V.; Jean, P.; Lubi?ski, P.; Soldi, S.; Terrier, R.

    2011-07-01

    Context. The radio galaxy Cen A has been detected all the way up to the TeV energy range. This raises the question about the dominant emission mechanisms in the high-energy domain. Aims: Spectral analysis allows us to put constraints on the possible emission processes. Here we study the hard X-ray emission, in order to distinguish between a thermal and a non-thermal inverse Compton process. Methods: Using hard X-ray data provided by INTEGRAL, we determined the cut-off of the power-law spectrum in the hard X-ray domain (3-1000 keV). In addition, INTEGRAL data are used to study the spectral variability. The extended emission detected in the gamma-rays by Fermi/LAT is investigated using the data of the spectrometre SPI in the 40-1000 keV range. Results: The hard X-ray spectrum of Cen A shows a significant cut-off at energies EC = 434 {+106 atop -73} keV with an underlying power-law of photon index ? = 1.73 0.02. A more physical model of thermal Comptonisation (compPS) gives a plasma temperature of kTe = 206 62 keV within the optically thin corona with Compton parameter y = 0.42 {+0.09 atop -0.06}. The reflection component is significant at the 1.9? level with R = 0.12 {+0.09 atop -0.10}, and a reflection strength R > 0.3 can be excluded on a 3? level. Time resolved spectral studies show that the flux, absorption, and spectral slope varied in the range f3-30 keV = 1.2-9.2 10-10 erg cm-2 s-1, NH = 7-16 1022 cm-2, and ? = 1.75-1.87. Extending the cut-off power-law or the Comptonisation model to the gamma-ray range shows that they cannot account for the high-energy emission. On the other hand, a broken or curved power-law model can also represent the data, therefore a non-thermal origin of the X-ray to GeV emission cannot be ruled out. The analysis of the SPI data provides no sign of significant emission from the radio lobes and gives a 3? upper limit of f40-1000 keV ? 1.1 10-3 ph cm-2 s-1. Conclusions: While gamma-rays, as detected by CGRO and Fermi, are caused by non-thermal (jet) processes, the main process in the hard X-ray emission of Cen A is still not unambiguously determined, since it is either dominated by thermal inverse Compton emission or by non-thermal emission from the base of the jet. Based on observations with INTEGRAL, an ESA project with instruments and science data centre funded by ESA member states (especially the PI countries: Denmark, France, Germany, Italy, Switzerland and Spain), the Czech Republic, and Poland and with participation of Russia and the US.

  20. Multiwavelength Study of Quiescent States of Mrk 421 with Unprecedented Hard X-Ray Coverage Provided by NuSTAR in 2013

    NASA Astrophysics Data System (ADS)

    Baloković, M.; Paneque, D.; Madejski, G.; Furniss, A.; Chiang, J.; Ajello, M.; Alexander, D. M.; Barret, D.; Blandford, R. D.; Boggs, S. E.; Christensen, F. E.; Craig, W. W.; Forster, K.; Giommi, P.; Grefenstette, B.; Hailey, C.; Harrison, F. A.; Hornstrup, A.; Kitaguchi, T.; Koglin, J. E.; Madsen, K. K.; Mao, P. H.; Miyasaka, H.; Mori, K.; Perri, M.; Pivovaroff, M. J.; Puccetti, S.; Rana, V.; Stern, D.; Tagliaferri, G.; Urry, C. M.; Westergaard, N. J.; Zhang, W. W.; Zoglauer, A.; The NuSTAR Team; Archambault, S.; Archer, A.; Barnacka, A.; Benbow, W.; Bird, R.; Buckley, J. H.; Bugaev, V.; Cerruti, M.; Chen, X.; Ciupik, L.; Connolly, M. P.; Cui, W.; Dickinson, H. J.; Dumm, J.; Eisch, J. D.; Falcone, A.; Feng, Q.; Finley, J. P.; Fleischhack, H.; Fortson, L.; Griffin, S.; Griffiths, S. T.; Grube, J.; Gyuk, G.; Huetten, M.; Håkansson, N.; Holder, J.; Humensky, T. B.; Johnson, C. A.; Kaaret, P.; Kertzman, M.; Khassen, Y.; Kieda, D.; Krause, M.; Krennrich, F.; Lang, M. J.; Maier, G.; McArthur, S.; Meagher, K.; Moriarty, P.; Nelson, T.; Nieto, D.; Ong, R. A.; Park, N.; Pohl, M.; Popkow, A.; Pueschel, E.; Reynolds, P. T.; Richards, G. T.; Roache, E.; Santander, M.; Sembroski, G. H.; Shahinyan, K.; Smith, A. W.; Staszak, D.; Telezhinsky, I.; Todd, N. W.; Tucci, J. V.; Tyler, J.; Vincent, S.; Weinstein, A.; Wilhelm, A.; Williams, D. A.; Zitzer, B.; The VERITAS Collaboration; Ahnen, M. L.; Ansoldi, S.; Antonelli, L. A.; Antoranz, P.; Babic, A.; Banerjee, B.; Bangale, P.; Barres de Almeida, U.; Barrio, J. A.; Becerra González, J.; Bednarek, W.; Bernardini, E.; Biasuzzi, B.; Biland, A.; Blanch, O.; Bonnefoy, S.; Bonnoli, G.; Borracci, F.; Bretz, T.; Carmona, E.; Carosi, A.; Chatterjee, A.; Clavero, R.; Colin, P.; Colombo, E.; Contreras, J. L.; Cortina, J.; Covino, S.; Da Vela, P.; Dazzi, F.; De Angelis, A.; De Lotto, B.; de Oña Wilhelmi, E.; Delgado Mendez, C.; Di Pierro, F.; Dominis Prester, D.; Dorner, D.; Doro, M.; Einecke, S.; Elsaesser, D.; Fernández-Barral, A.; Fidalgo, D.; Fonseca, M. V.; Font, L.; Frantzen, K.; Fruck, C.; Galindo, D.; García López, R. J.; Garczarczyk, M.; Garrido Terrats, D.; Gaug, M.; Giammaria, P.; Glawion (Eisenacher, D.; Godinović, N.; González Muñoz, A.; Guberman, D.; Hahn, A.; Hanabata, Y.; Hayashida, M.; Herrera, J.; Hose, J.; Hrupec, D.; Hughes, G.; Idec, W.; Kodani, K.; Konno, Y.; Kubo, H.; Kushida, J.; La Barbera, A.; Lelas, D.; Lindfors, E.; Lombardi, S.; Longo, F.; López, M.; López-Coto, R.; López-Oramas, A.; Lorenz, E.; Majumdar, P.; Makariev, M.; Mallot, K.; Maneva, G.; Manganaro, M.; Mannheim, K.; Maraschi, L.; Marcote, B.; Mariotti, M.; Martínez, M.; Mazin, D.; Menzel, U.; Miranda, J. M.; Mirzoyan, R.; Moralejo, A.; Moretti, E.; Nakajima, D.; Neustroev, V.; Niedzwiecki, A.; Nievas Rosillo, M.; Nilsson, K.; Nishijima, K.; Noda, K.; Orito, R.; Overkemping, A.; Paiano, S.; Palacio, J.; Palatiello, M.; Paoletti, R.; Paredes, J. M.; Paredes-Fortuny, X.; Persic, M.; Poutanen, J.; Prada Moroni, P. G.; Prandini, E.; Puljak, I.; Rhode, W.; Ribó, M.; Rico, J.; Rodriguez Garcia, J.; Saito, T.; Satalecka, K.; Scapin, V.; Schultz, C.; Schweizer, T.; Shore, S. N.; Sillanpää, A.; Sitarek, J.; Snidaric, I.; Sobczynska, D.; Stamerra, A.; Steinbring, T.; Strzys, M.; Takalo, L.; Takami, H.; Tavecchio, F.; Temnikov, P.; Terzić, T.; Tescaro, D.; Teshima, M.; Thaele, J.; Torres, D. F.; Toyama, T.; Treves, A.; Verguilov, V.; Vovk, I.; Ward, J. E.; Will, M.; Wu, M. H.; Zanin, R.; The MAGIC Collaboration; Perkins, J.; Verrecchia, F.; Leto, C.; Böttcher, M.; Villata, M.; Raiteri, C. M.; Acosta-Pulido, J. A.; Bachev, R.; Berdyugin, A.; Blinov, D. A.; Carnerero, M. I.; Chen, W. P.; Chinchilla, P.; Damljanovic, G.; Eswaraiah, C.; Grishina, T. S.; Ibryamov, S.; Jordan, B.; Jorstad, S. G.; Joshi, M.; Kopatskaya, E. N.; Kurtanidze, O. M.; Kurtanidze, S. O.; Larionova, E. G.; Larionova, L. V.; Larionov, V. M.; Latev, G.; Lin, H. C.; Marscher, A. P.; Mokrushina, A. A.; Morozova, D. A.; Nikolashvili, M. G.; Semkov, E.; Smith, P. S.; Strigachev, A.; Troitskaya, Yu. V.; Troitsky, I. S.; Vince, O.; Barnes, J.; Güver, T.; Moody, J. W.; Sadun, A. C.; Sun, S.; Hovatta, T.; Richards, J. L.; Max-Moerbeck, W.; Readhead, A. C. R.; Lähteenmäki, A.; Tornikoski, M.; Tammi, J.; Ramakrishnan, V.; Reinthal, R.; Angelakis, E.; Fuhrmann, L.; Myserlis, I.; Karamanavis, V.; Sievers, A.; Ungerechts, H.; Zensus, J. A.

    2016-03-01

    We present coordinated multiwavelength observations of the bright, nearby BL Lacertae object Mrk 421 taken in 2013 January–March, involving GASP-WEBT, Swift, NuSTAR, Fermi-LAT, MAGIC, VERITAS, and other collaborations and instruments, providing data from radio to very high energy (VHE) γ-ray bands. NuSTAR yielded previously unattainable sensitivity in the 3–79 keV range, revealing that the spectrum softens when the source is dimmer until the X-ray spectral shape saturates into a steep {{Γ }}≈ 3 power law, with no evidence for an exponential cutoff or additional hard components up to ∼80 keV. For the first time, we observed both the synchrotron and the inverse-Compton peaks of the spectral energy distribution (SED) simultaneously shifted to frequencies below the typical quiescent state by an order of magnitude. The fractional variability as a function of photon energy shows a double-bump structure that relates to the two bumps of the broadband SED. In each bump, the variability increases with energy, which, in the framework of the synchrotron self-Compton model, implies that the electrons with higher energies are more variable. The measured multi band variability, the significant X-ray-to-VHE correlation down to some of the lowest fluxes ever observed in both bands, the lack of correlation between optical/UV and X-ray flux, the low degree of polarization and its significant (random) variations, the short estimated electron cooling time, and the significantly longer variability timescale observed in the NuSTAR light curves point toward in situ electron acceleration and suggest that there are multiple compact regions contributing to the broadband emission of Mrk 421 during low-activity states.

  1. Discovery of Soft X-Ray Emission From Io, Europa and the Io Plasma Torus

    NASA Technical Reports Server (NTRS)

    Elsner, R. F.; Gladstone, G. R.; Waite, J. H.; Crary, F. J.; Howell, R. R.; Johnson, R. E.; Ford, P. G.; Metzger, A. E.; Hurley, K. C.; Feigelson, E. D.; Six, N. Frank (Technical Monitor)

    2001-01-01

    We report the discovery of soft (0.25 - 2 keV) x-ray emission from the moons Io and Europa, probably Ganymede, and from the Io Plasma Torus (IPT). Bombardment by energetic (greater than 10 keV) H, O, and S ions from the region of the IPT seems the likely source of the x-ray emission from the Galilean moons. According to our estimates, fluorescent x-ray emission excited by solar x-rays, even during flares from the active Sun, charge-exchange processes, previously invoked to explain Jupiter's x-ray aurora and cometary x-ray emission, and ion stripping by dust grains fall to account for the observed emission. On the other hand, bremsstrahlung emission of soft X-rays from non-thermal electrons in the few hundred to few thousand eV range may account for a substantial fraction of the observed x-ray flux from the IPT.

  2. X-ray/UV variability and the origin of soft X-ray excess emission from II Zw 177

    NASA Astrophysics Data System (ADS)

    Pal, Main

    We study a detailed broad-band X-ray/UV emission from the narrow line Seyfert 1 galaxy II Zw 177 based on two XMM-Newton and single Swift/XRT observations. Both XMM-Newton observations show the soft X-ray excess emission below 2 keV when the best-fit 2 - 10 keV power law is extrapolated down to 0.3 keV. We find the blurred reflection from an ionized accretion disc and Comptonized disc emission both describe the observed soft excess well. We find a remarkable trend of decreasing UV flux with increasing soft X-ray excess and power law emission. We suggest that this could be due to that the external edge of corona hide a fraction of accretion disk. Co-Author: Prof. Gulab C. Dewangan (IUCAA), Prof. Ranjeev Misra (IUCAA), Pramod Kumar (Nanded university)

  3. Chandra ACIS Observations of Jovian X-Ray Emission

    NASA Technical Reports Server (NTRS)

    Garmire, Gordon; Elsner, Ronald; Feigelson, Eric; Ford, Peter; Gladstone, G. Randall; Hurley, Kevin; Metzger, Albert; Waite, J. Hunter, Jr.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    On November 25 and 26, 1999, the Chandra X-ray spacecraft conducted a set of four 19,000 sec observations of Jupiter. The ACIS-S instrument configuration was used for its good low energy efficiency and spatial resolution. An anomalous response was obtained which was subsequently attributed to strong jovian infrared radiation penetrating the detector and piling up spurious events across the entire X-ray range. However, the pre-observation establishment of an offsetting bias field has allowed the recovery of data from that portion of Jupiter's disc which remained within the elevated portion of the bias field during the observation. This ranges from fewer than 3000 sec to the entire observing time for about 10% of the planet. Auroral emission is seen near both poles in each observation. The northern aurora ia overall more intense than the southern, consistent with prior Einstein and ROSAT Observatory results. The southern aurora shows more modulation with Jupiter's rotation than the northern. Spatial resolution has been improved by at least a factor of two over prior measurements but convincing evidence of structure has not been seen. Lower latitude emission, first observed by ROSAT, is confirmed with flux levels averaging more than a factor of five below peak auroral values. Pronounced variation in the observed emission has occurred over the observing period. The spectral response extends from 0.24 keV, below which noise dominates, to about 1.2 keV. For all four observations the spectrum is clearly enhanced between 0.45 and 0.85 keV. This is apparently unequivocal evidence that Jupiter's X-ray emission is the result of oxygen and perhaps sulfur ions precipitating into the planet's atmosphere, where they undergo charge exchange interactions. The identification of specific transitions lines in the spectrum is among the ongoing efforts. A bremsstrahlung component has not yet been identified.

  4. Diffuse X-Ray Emission from Star-forming Galaxies

    NASA Astrophysics Data System (ADS)

    Sarkar, Kartick C.; Nath, Biman B.; Sharma, Prateek; Shchekinov, Yuri

    2016-02-01

    We study the diffuse X-ray luminosity (LX) of star-forming galaxies using two-dimensional axisymmetric hydrodynamical simulations and analytical considerations of supernovae-(SNe-)driven galactic outflows. We find that the mass loading of the outflows, a crucial parameter for determining the X-ray luminosity, is constrained by the availability of gas in the central star-forming region, and a competition between cooling and expansion. We show that the allowed range of the mass loading factor can explain the observed scaling of LX with star formation rate (SFR) as {L}{{X}}\\quad \\propto SFR2 for SFR ≳ \\quad 1 {M}ȯ yr‑1, and a flatter relation at low SFRs. We also show that the emission from the hot circumgalactic medium (CGM) in the halo of massive galaxies can explain the large scatter in the {L}{{X}}{--}{SFR} relation for low SFRs (≲few {M}ȯ yr‑1). Our results suggest that galaxies with small SFRs and large diffuse X-ray luminosities are excellent candidates for the detection of the elusive CGM.

  5. Hard X-ray Emission by Resonant Compton Upscattering in Magnetars

    NASA Astrophysics Data System (ADS)

    Wadiasingh, Zorawar; Baring, M. G.; Gonthier, P. L.

    2013-04-01

    Flat spectrum, non-thermal X-ray quiescent emission extending between 10 keV and around 150 keV has been seen in a number of magnetars by RXTE, INTEGRAL, Suzaku and Fermi-GBM. For inner magnetospheric models of such hard X-ray emission, resonant Compton upscattering is anticipated to be the most efficient process for generating continuum radiation. This is because the scattering becomes resonant at the cyclotron frequency, and the effective cross section exceeds the classical Thomson value by over two orders of magnitude, thereby enhancing the efficiency of continuum production and the cooling of relativistic electrons. We present angle-dependent hard X-ray upscattering model spectra for uncooled monoenergetic relativistic electrons injected in inner regions of pulsar magnetospheres. These spectra are integrated over closed field lines and obtained for different observing perspectives. The spectral cut-off energies are critically dependent on the observer viewing angles and electron Lorentz factor. We find that electrons with energies less than around 15 MeV will emit most of their radiation below 250 keV, consistent with the observed turnovers in magnetar hard X-ray tails. Moreover, electrons of higher energy still emit most of the radiation below 1 MeV, except for very select viewing perspectives that sample tangents to field lines, thereby making it difficult to observe signals extending into the Fermi-LAT band. Our spectral computations use, for the first time, a new Sokolov and Ternov (ST) formulation of the QED Compton scattering cross section in strong magnetic fields. Such an ST formalism is formally correct for treating spin-dependent effects that are important in the cyclotron resonance.

  6. X-ray emission from cataclysmic variables with accretion disks. I - Hard X-rays. II - EUV/soft X-ray radiation

    NASA Technical Reports Server (NTRS)

    Patterson, J.; Raymond, J. C.

    1985-01-01

    Theoretical models explaining the hard-X-ray, soft-X-ray, and EUV emission of accretion-disk cataclysmic variables in terms of the disk boundary layer (DBL) are developed on the basis of a survey of the published observational data. The data are compared with model predictions in graphs for systems with high or low (greater than or less than 10-Pg/s) accretion rates. Good agreement is obtained both at low accretion rates, where an optically thin rarefied hot (Te = 10 to the 8th K) DBL radiates most of its energy as hard X-rays, and at high accretion rates, where an optically thick 100,000-K DBL radiates most of its energy in the EUV and as soft X-rays. Detailed analysis of the old nova V603 Aql suggests that previous models predicting more detections of soft-X-ray/EUV emissions from thick-DBL objects (Ferland et al., 1982) used inappropriate dwarf masses, interstellar column densities, or classical-nova space densities.

  7. OPTICAL EMISSION OF THE BLACK HOLE X-RAY TRANSIENT MAXI J1659-152 DURING QUIESCENCE

    SciTech Connect

    Kong, Albert K. H.

    2012-12-01

    We report on the optical detection of the black hole X-ray transient MAXI J1659-152 during its quiescent state. By using the Canada-France-Hawaii Telescope, we observed MAXI J1659-152 about seven months after the end of an X-ray outburst. The optical counterpart of MAXI J1659-152 is clearly detected with an r'-band magnitude of 23.6-23.8. The detection confirms that the optical emission of MAXI J1659-152 during quiescence is relatively bright compared to other black hole X-ray transients. This implies that the distance to MAXI J1659-152 is 4.6-7.5 kpc for an M2 dwarf companion star or 2.3-3.8 kpc for an M5 dwarf companion star. By comparing with other measurements, an M2 dwarf companion is more likely.

  8. NEUTRON STAR RADIUS MEASUREMENT WITH THE QUIESCENT LOW-MASS X-RAY BINARY U24 IN NGC 6397

    SciTech Connect

    Guillot, Sebastien; Rutledge, Robert E.; Brown, Edward F. E-mail: rutledge@physics.mcgill.ca

    2011-05-10

    This paper reports the spectral and timing analyses of the quiescent low-mass X-ray binary (qLMXB) U24 observed during five archived Chandra/ACIS exposures of the nearby globular cluster NGC 6397, for a total of 350 ks. We find that the X-ray flux and the parameters of the hydrogen atmosphere spectral model are consistent with those previously published for this source. On short timescales, we find no evidence of aperiodic intensity variability, with 90% confidence upper limits during five observations ranging between <8.6% rms and <19% rms, in the 0.0001-0.1 Hz frequency range (0.5-8.0 keV); and no evidence of periodic variability, with maximum observed powers in this frequency range having a chance probability of occurrence from a Poisson-deviated light curve in excess of 10%. We also report the improved neutron star (NS) physical radius measurement, with statistical accuracy of the order of {approx}10%: R{sub NS} = 8.9{sup +0.9}{sub -0.6} km for M{sub NS} = 1.4 M{sub sun}. Alternatively, we provide the confidence regions in mass-radius space as well as the best-fit projected radius R{sub {infinity}} = 11.9{sup +1.0}{sub -0.8} km, as seen by an observer at infinity. The best-fit effective temperature, kT{sub eff} = 80{sup +4}{sub -5} eV, is used to estimate the NS core temperature which falls in the range T{sub core} = (3.0-9.8) x 10{sup 7} K, depending on the atmosphere model considered. This makes U24 the third most precisely measured NS radius among qLMXBs, after those in {omega} Cen and M13.

  9. DISCOVERY OF A CANDIDATE QUIESCENT LOW-MASS X-RAY BINARY IN THE GLOBULAR CLUSTER NGC 6553

    SciTech Connect

    Guillot, Sebastien; Rutledge, Robert E.; Brown, Edward F.; Pavlov, George G.; Zavlin, Vyacheslav E. E-mail: rutledge@physics.mcgill.ca

    2011-09-10

    This paper reports the search for quiescent low-mass X-ray binaries (qLMXBs) in the globular cluster (GC) NGC 6553 using an XMM-Newton observation designed specifically for that purpose. We spectrally identify one candidate qLMXB in the core of the cluster, based on the consistency of the spectrum with a neutron star H-atmosphere model at the distance of NGC 6553. Specifically, the best-fit radius found using the three XMM European Photon Imaging Camera spectra is R{sub NS} = 6.3{sub -}0{sub .8}{sup +2.3} km (for M{sub NS} = 1.4 M{sub sun}) and the best-fit temperature is kT{sub eff} = 136{sub -34}{sup +21} eV. Both physical parameters are in accordance with typical values of previously identified qLMXBs in GC and in the field, i.e., R{sub NS} {approx} 5-20 km and kT{sub eff} {approx} 50-150 eV. A power-law (PL) component with a photon index {Gamma} = 2.1{sup +0.5}{sub -0.8} is also required for the spectral fit and contributes {approx}33% of the total flux of the X-ray source. A detailed analysis supports the hypothesis that the PL component originates from nearby sources in the core, unresolved with XMM. The analysis of an archived Chandra observation provides marginal additional support to the stated hypothesis. Finally, a catalog of all the sources detected within the XMM field of view is presented here.

  10. X-ray/UV variability and the origin of soft X-ray excess emission from II Zw 177

    NASA Astrophysics Data System (ADS)

    Pal, Main; Dewangan, Gulab C.; Misra, Ranjeev; Pawar, Pramod K.

    2016-03-01

    We study X-ray and UV emission from the narrow-line Seyfert 1 galaxy II Zw 177 using a 137 ks long and another 13 ks short XMM-Newton observation performed in 2012 and 2001, respectively. Both observations show soft X-ray excess emission contributing 76.9 ± 4.9 per cent in 2012 and 58.8 ± 10.2 per cent in 2001 in the 0.3-2 keV band. We find that both blurred reflection from an ionized disc and Comptonized disc emission describe the observed soft excess well. Time-resolved spectroscopy on scales of ˜20 ks reveals strong correlation between the soft excess and the power-law components. The fractional variability amplitude Fvar derived from EPIC-pn light curves at different energy bands is nearly constant (Fvar ˜ 20 per cent). This is in contrast to other active galactic nuclei where the lack of short term variation in soft X-ray excess emission has been attributed to intense light bending in the framework of the `lamppost' model. Thus, the variations in power-law emission are most likely intrinsic to corona rather than just due to the changes of height of compact corona. The variable UV emission (Fvar ˜ 1 per cent) is uncorrelated to any of the X-ray components on short time-scales suggesting that the UV emission is not dominated by the reprocessed emission. The gradual observed decline in the UV emission in 2012 may be related to the secular decline due to the changes in the accretion rate. In this case, the short term X-ray variability is not due to the changes in the seed photons but intrinsic to the hot corona.

  11. A Chandra survey of X-ray emission from radio jets: Correlations of the jet X-ray flux

    NASA Astrophysics Data System (ADS)

    Schwartz, Daniel A.; Marshall, Herman L.; Worrall, Diana M.; Birkinshaw, Mark; Perlman, Eric S.; Lovell, Jim; Jauncey, David L.; Murphy, David William; Gelbord, Jonathan; Godfrey, Leith; Bicknell, Geoffrey V.

    2015-01-01

    We have completed a Chandra survey for X-ray emission from 54 radio jets that are extended on arcsecond scales. These are in flat spectrum radio loud quasars and have redshifts in the range z=0.3 to z=2.1. We detect X-ray emission from 60% of the jets. The study reported here considers the straight part of the jet nearest to the quasar. The X-ray counting rate from this correlates very well to that from the quasar. Correlation with redshift, the jet radio flux, the radio core flux, or visual apparent magnitude is poor or non-existent.This research was supported by NASA contract NAS8-03060, SAO Grant GO9-0121B, and HST Grant HST-GO-11838.04-A

  12. Depth-Resolved X-ray Absorption Spectroscopy by Means of Grazing Emission X-ray Fluorescence.

    PubMed

    Kayser, Yves; S, Jacinto; Szlachetko, Jakub

    2015-11-01

    Grazing emission X-ray fluorescence (GEXRF) is well suited for nondestructive elemental-sensitive depth-profiling measurements on samples with nanometer-sized features. By varying the grazing emission angle under which the X-ray fluorescence signal is detected, the probed depth range can be tuned from a few to several hundred nanometers. The dependence of the XRF intensity on the grazing emission angle can be assessed in a sequence of measurements or in a scanning-free approach using a position-sensitive area detector. Hereafter, we will show that the combination of scanning-free GEXRF and fluorescence detected X-ray absorption spectroscopy (XAS) allows for depth-resolved chemical speciation measurements with nanometer-scale accuracy. While the conventional grazing emission geometry is advantageous to minimize self-absorption effects, the use of a scanning-free setup makes the sequential scanning of the grazing emission angles obsolete and paves the way toward time-resolved depth-sensitive XAS measurements. The presented experimental approach was applied to study the surface oxidation of an Fe layer on the top of bulk Si and of a Ge bulk sample. Thanks to the penetrating properties and the insensitivity toward the electric conduction properties of the incident and emitted X-rays, the presented experimental approach is well suited for in situ sample surface studies in the nanometer regime. PMID:26458105

  13. Solar X-ray physics

    SciTech Connect

    Bornmann, P.L. )

    1991-01-01

    Research on solar X-ray phenomena performed by American scientists during 1987-1990 is reviewed. Major topics discussed include solar images observed during quiescent times, the processes observed during solar flares, and the coronal, interplanetary, and terrestrial phenomena associated with solar X-ray flares. Particular attention is given to the hard X-ray emission observed at the start of the flare, the energy transfer to the soft X-ray emitting plasma, the late resolution of the flare as observed in soft X-ray, and the rate of occurrence of solar flares as a function of time and latitude. Pertinent aspects of nonflaring, coronal X-ray emission and stellar flares are also discussed. 175 refs.

  14. X-Ray, UV, and Optical Observations of Supernova 2006bp with Swift: Detection of Early X-Ray Emission

    NASA Technical Reports Server (NTRS)

    Immler, S.; Brown, P. J.; Milne, P.; Dessart, L.; Mazzali, P. A.; Landsman, W.; Gehrels, N.; Petre, R.; Burrows, D. N.; Nousek, J. A.; Chevalier, R. A.; Williams, C. L.; Koss, M.; Stockdale, C. J.; Kelley, M. T.; Weiler, K. W.; Holland, S. T.; Pian, E.; Roming, P. W. A.; Pooley, D.; Nomoto, K.; Greiner, J.; Campana, S.; Soderberg, A. M.

    2007-01-01

    We present results on the X-ray and optical/UV emission from the Type IIP supernova (SN) 2006bp and the interaction of the SW shock with its environment, obtained with the X-Ray Telescope (XRT) and UV/Optical Telescope (UVOT) on-board the Swift observatory. SN 2006bp is detected in X-rays at a 4.5 sigmalevel of significance in the merged XRT data from days 1 to 12 after the explosion. If the (0.2-10 keV band) X-ray luminosity of L(sub 0.2-10) = (1.8 plus or minus 0.4) x l0(exp 39 ergs s(exp -1) is caused by interaction of the SN shock with circumstellar material (CSM), deposited by a stellar wind from the progenitor's companion star, a mass-loss rate of M is approximately 2x10(exp -6) solar mass yr(exp -1) (v(sub w)/10 km s(exp -l) is inferred. The mass-loss rate is one of the lowest ever recorded for a core-collapse SN and consistent with the non-detection in the radio with the VLA on days 2, 9, and 11 after the explosion. The Swift data further show a fading of the X-ray emission starting around day 12 after the explosion. In combination with a follow-up XMM-Newton observation obtained on day 21 after the explosion, an X-ray rate of decline Lx, varies as t(exp -n) with index n = 1.2 plus or minus 0.6 is inferred. Since no other SN has been detected in X-rays prior to the optical peak and since Type IIP SNe have an extended 'plateau' phase in the optical, we discuss the scenario that the X-rays might be due to inverse Compton scattering of photospheric optical photons off relativistic electrons produced in circumstellar shocks. However, due to the high required value of the Lorentz factor (approximately 10-100), inconsistent with the ejecta velocity inferred from optical line widths, we conclude that Inverse Compton scattering is an unlikely explanation for the observed X-ray emission. The fast evolution of the optical/ultraviolet (1900-5500A) spectral energy distribution and the spectral changes observed with Swift reveal the onset of metal line-blanketing and cooling of the expanding photosphere during the first few weeks after the outburst.

  15. Weak hard X-ray emission from broad absorption line quasars: evidence for intrinsic X-ray weakness

    SciTech Connect

    Luo, B.; Brandt, W. N.; Scott, A. E.; Alexander, D. M.; Gandhi, P.; Stern, D.; Teng, S. H.; Arévalo, P.; Bauer, F. E.; Boggs, S. E.; Craig, W. W.; Christensen, F. E.; Comastri, A.; Farrah, D.; Hailey, C. J.; Harrison, F. A.; Koss, M.; Ogle, P.; Puccetti, S.; Saez, C.; and others

    2014-10-10

    We report NuSTAR observations of a sample of six X-ray weak broad absorption line (BAL) quasars. These targets, at z = 0.148-1.223, are among the optically brightest and most luminous BAL quasars known at z < 1.3. However, their rest-frame ≈2 keV luminosities are 14 to >330 times weaker than expected for typical quasars. Our results from a pilot NuSTAR study of two low-redshift BAL quasars, a Chandra stacking analysis of a sample of high-redshift BAL quasars, and a NuSTAR spectral analysis of the local BAL quasar Mrk 231 have already suggested the existence of intrinsically X-ray weak BAL quasars, i.e., quasars not emitting X-rays at the level expected from their optical/UV emission. The aim of the current program is to extend the search for such extraordinary objects. Three of the six new targets are weakly detected by NuSTAR with ≲ 45 counts in the 3-24 keV band, and the other three are not detected. The hard X-ray (8-24 keV) weakness observed by NuSTAR requires Compton-thick absorption if these objects have nominal underlying X-ray emission. However, a soft stacked effective photon index (Γ{sub eff} ≈ 1.8) for this sample disfavors Compton-thick absorption in general. The uniform hard X-ray weakness observed by NuSTAR for this and the pilot samples selected with <10 keV weakness also suggests that the X-ray weakness is intrinsic in at least some of the targets. We conclude that the NuSTAR observations have likely discovered a significant population (≳ 33%) of intrinsically X-ray weak objects among the BAL quasars with significantly weak <10 keV emission. We suggest that intrinsically X-ray weak quasars might be preferentially observed as BAL quasars.

  16. Variable X-ray Emission from FU Orionis

    NASA Astrophysics Data System (ADS)

    Skinner, Steve L.; Guedel, M.; Briggs, K. R.; Lamzin, S. A.; Sokal, K. R.

    2009-05-01

    FU Orionis is the prototype of a small but remarkable class of pre-main sequence stars ('FUors') that have undergone large optical outbursts thought to be linked to episodic accretion. FU Ori increased in optical brightness by about 6 mag in 1936-37 and is still in slow decline. Because of their high accretion rates, FUors are good candidates for exploring potential effects of accretion on X-ray emission. A recently completed survey of FUors with XMM-Newton detected X-rays from FU Ori and V1735 Cyg. We present new results from a sensitive 99 ksec (1.15 day) follow-up X-ray observation of FU Ori with Chandra. The Chandra ACIS-S CCD spectrum confirms the presence of a cool plasma component (kT < 1 keV) viewed under moderate absorption and a much hotter component (kT > 3 keV), viewed under high absorption, in accord with previous XMM results. The uninterrupted Chandra light curve shows that the hot component is slowly variable on a timescale of one day, but no variability is detected in the cool component. The slow variability and high plasma temperature point to a magnetic origin for the hot component, but other mechanisms (including accretion) may be responsible for the cool non-variable component. We will discuss these new results in the context of what is known about FU Ori from previous observations, including XMM (Skinner et al. 2006, ApJ, 643, 995) and HST (Kravtsova et al. 2007, Ast. Ltrs., 33, 755).

  17. The X-ray spectra of galaxies. II - Average spectral properties and emission mechanisms

    NASA Technical Reports Server (NTRS)

    Kim, D.-W.; Fabbiano, G.; Trinchieri, G.

    1992-01-01

    The Imaging Proportional Counter data in the Einstein database is used to study the X-ray spectra of normal galaxies. The X-ray emission temperature of spirals is found to be higher on the average than that of ellipticals. This supports the idea that accreting binaries are a major source of X-rays in spirals, while a hot interstellar medium (ISM) is present in ellipticals. The X-ray spectra of Sa galaxies are intermediate between those of ellipticals and spirals, suggesting that these galaxies contain hot gaseous emission as well as emission from accreting binaries. In E and SO galaxies the emission temperature becomes higher with a decreasing X-ray to optical luminosity ratio, which suggests that the emission of X-ray faint early-type galaxies consists of a large evolved stellar component, while the gaseous emission becomes dominant in X-ray brighter galaxies. The group with the lowest X-ray to optical ratio does not follow this trend; in these galaxies a very soft X-ray component, amounting to about half the total X-ray emission, is found in addition to the hard X-ray component. Possible explanations are integrated emission of M stars and a relatively cool ISM. A very soft component is also found in several spiral galaxies. This may indicate that some spirals contain hot gaseous components similar to those seen in NGC 253 and M82.

  18. Upper limits for X-ray emission from Jupiter as measured from the Copernicus satellite

    NASA Technical Reports Server (NTRS)

    Vesecky, J. F.; Culhane, J. L.; Hawkins, F. J.

    1975-01-01

    X-ray telescopic observations are made by the Copernicus satellite for detecting X-ray emission from Jupiter analogous to X-rays from terrestrial aurorae. Values of X-ray fluxes recorded by three Copernicus detectors covering the 0.6 to 7.5 keV energy range are reported. The detectors employed are described and the times at which the observations were made are given. Resulting upper-limit spectra are compared with previous X-ray observations of Jupiter. The upper-limit X-ray fluxes are discussed in terms of magnetospheric activity on Jupiter.

  19. Response of the low ionosphere to X-ray and Lyman-? solar flare emissions

    NASA Astrophysics Data System (ADS)

    Raulin, Jean-Pierre; Trottet, GRard; Kretzschmar, Matthieu; Macotela, Edith L.; Pacini, Alessandra; Bertoni, Fernando C. P.; Dammasch, Ingolf E.

    2013-01-01

    Using soft X-ray measurements from detectors onboard the Geostationary Operational Environmental Satellite (GOES) and simultaneous high-cadence Lyman-? observations from the Large Yield Radiometer (LYRA) onboard the Project for On-Board Autonomy 2 (PROBA2) ESA spacecraft, we study the response of the lower part of the ionosphere, the D region, to seven moderate to medium-size solar flares that occurred in February and March of 2010. The ionospheric disturbances are analyzed by monitoring the resulting sub-ionospheric wave propagation anomalies detected by the South America Very Low Frequency (VLF) Network (SAVNET). We find that the ionospheric disturbances, which are characterized by changes of the VLF wave phase, do not depend on the presence of Lyman-? radiation excesses during the flares. Indeed, Lyman-? excesses associated with flares do not produce measurable phase changes. Our results are in agreement with what is expected in terms of forcing of the lower ionosphere by quiescent Lyman-? emission along the solar activity cycle. Therefore, while phase changes using the VLF technique may be a good indicator of quiescent Lyman-? variations along the solar cycle, they cannot be used to scale explosive Lyman-? emission during flares.

  20. X-ray Emission from Early Universe Analog Galaxies

    NASA Astrophysics Data System (ADS)

    Brorby, Matthew; Kaaret, Philip; Prestwich, Andrea H.; Mirabel, I. Felix; Feng, Hua

    2016-01-01

    Around 300,000 years after the Big Bang, the Universe had cooled enough to combine and form neutral atoms. This signified the beginning of a time known as the Dark Ages. Neutral matter began to fall into the dark matter gravitational wells that were seeded after the initial moments of the Big Bang. As the first stars and galaxies formed within these gravitational wells, the surrounding baryonic matter was heated and started to ionize. The source of energetic photons that heated and reionized the early Universe remains uncertain. Early galaxies had low metallicity and recent population synthesis calculations suggest that the number and luminosity of high-mass X-ray binaries are enhanced in star-forming galaxies with low metallicity, offering a potentially important and previously overlooked source of heating and reionization. Here we examine two types of local galaxies that have been shown to be good analogs to the early galaxies in the Universe: Blue compact dwarf galaxies (BCDs) and Lyman Break Analogs (LBAs).A BCD is defined by its blue optical colors, low metallicities, and physically small size. This makes BCDs the best available local analogs for early star formation. We analyzed data from a sample of 25 metal-poor BCDs and compared our results with those of near-solar metallicity galaxies. Using a Bayesian approach, we showed that the X-ray luminosity function for the low-metallicity BCDs is significantly elevated relative to the XLF for near-solar metallicity galaxies.Larger, gas-rich galaxies may have formed shortly after these first galaxies. These larger galaxies would be similar in their properties to the high-redshift Lyman break galaxies (LBGs). LBAs provide the best local comparison to the LBGs. We studied a sample of 10 LBAs in order to measure the relation between star formation rate and X-ray luminosity for these galaxies. We found that for LBAs with intermediate sub-solar metallicities, there is enhanced X-ray emission relative to the expected value from near-solar metallicity galaxies.By incorporating our results into simulations used to predict the redshifted 21cm signal from the early Universe, unique and observable predictions could be made for future 21cm observations.

  1. Charge transfer and X-ray emission from supernova remnants

    NASA Technical Reports Server (NTRS)

    Wise, Michael W.; Sarazin, Craig L.

    1989-01-01

    The X-ray line emission excited by charge transfer between neutral hydrogen and the hydrogenic or fully stripped ions of heavy elements has been computed for a grid of nonequilibrium ionization models for supernova remnants. The effects of charge transfer excitation on the X-ray spectra of supernova remnants are discussed. The charge transfer process depends very sensitively upon the abundance of neutral hydrogen behind the shock. Consequently, a careful treatment of the ionization of hydrogen was required. The model line fluxes are compared with those excited by conventional collisional processes involving electrons. Results are presented in the form of contour plots for both the flux excited by charge transfer and the ratio of the charge transfer flux to that associated solely with collisional processes involving electrons. Charge transfer never contributes more than 10 percent of the flux of the strongest electron collisionally excited lines, and its contribution is typically 0.001 to 10 to the -5th for a shock moving into a medium composed of neutral hydrogen.

  2. X-ray emission of YSOs in the Horsehead Nebula

    NASA Astrophysics Data System (ADS)

    Lopez-Santiago, Javier

    2010-10-01

    The Horsehead Nebula is the nearest bright-rimmed cloud to the Sun. In its interior, star formation is taking place at different scales. Deep mid-infrared observations of the forming stars in this region have revealed a large variety of objects, from class I to class III stars, including transitional disk objects. The stars at the limb of the cloud are exposed to the ultraviolet field of sigma Ori, while stars in the interior of the cloud are forming basically in an isolated scenario. By its proximity, the Horsehead Nebula is an excellent laboratory to study the physics of the X-ray emission in young stellar objects at similar evolutionary stages in different environments.

  3. First Detection of Phase-dependent Colliding Wind X-ray Emission outside the Milky Way

    NASA Technical Reports Server (NTRS)

    Naze, Yael; Koenigsberger, Gloria; Moffat, Anthony F. J.

    2007-01-01

    After having reported the detection of X-rays emitted by the peculiar system HD 5980, we assess here the origin of this high-energy emission from additional X-ray observations obtained with XMM-Newton. This research provides the first detection of apparently periodic X-ray emission from hot gas produced by the collision of winds in an evolved massive binary outside the Milky Way. It also provides the first X-ray monitoring of a Luminous Blue Variable only years after its eruption and shows that the source of the X-rays is not associated with the ejecta.

  4. Synchronous time-resolved optical and x-ray emission from simultaneous optical and x-ray streak cameras driven by a master ramp generator

    SciTech Connect

    Balmer, J.E.; Lampert, W.; Roschger, E.; Hares, J.D.; Kilkenny, J.D.

    1985-05-01

    An optical and an x-ray streak camera have been synchronized by driving the deflection plates of both cameras from the same ramp generator. The relative timing of the two cameras was calibrated by running UV light onto the x-ray streak camera. The x-ray streak camera was then used to measure the time of the x-ray emission from a laser plasma with respect to the laser pulse.

  5. Nonquasineutral relativistic current filaments and their X-ray emission

    NASA Astrophysics Data System (ADS)

    Gordeev, A. V.; Losseva, T. V.

    2009-02-01

    Nonquasineutral electron current filaments with the azimuthal magnetic field are considered that arise due to the generation of electron vorticity in the initial (dissipative) stage of evolution of a current-carrying plasma, when the Hall number is small (? B/ en e c ? 1) because of the low values of the plasma conductivity and magnetic field strength. Equilibrium filamentary structures with both zero and nonzero net currents are considered. Structures with a zero net current type form on time scales of t < t sk = ( r 0? pe / c)2 t st, where t sk is the skin time, t st is the typical time of electron-ion collisions, and r 0 is the radius of the filament. It is shown that, in nonquasineutral filaments in which the current is carried by electrons drifting in the crossed electric ( E r ) and magnetic ( B ?) fields, ultrarelativistic electron beams on the typical charge-separation scale r B = B/(4? en e ) (the so-called magnetic Debye radius) can be generated. It is found that, for comparable electron currents, the characteristic electron energy in filaments with a nonzero net current is significantly lower than that in zero-net-current filaments that form on typical time scales of t < t sk. This is because, in the latter type of filaments, the oppositely directed electron currents repel one another; as a result, both the density and velocity of electrons increase near the filament axis, where the velocities of relativistic electrons are maximum. Filaments with a zero net current can emit X rays with photon energies ? ? up to 10 MeV. The electron velocity distributions in filaments, the X-ray emission spectra, and the total X-ray yield per unit filament length are calculated as functions of the current and the electron number density in the filament. Analytical estimates of the characteristic lifetime of a radiating filament and the typical size of the radiating region as functions of the plasma density are obtained. The results of calculations are compared with the available experimental data.

  6. The cosmic X-ray background-IRAS galaxy correlation and the local X-ray volume emissivity

    NASA Technical Reports Server (NTRS)

    Miyaji, Takamitsu; Lahav, Ofer; Jahoda, Keith; Boldt, Elihu

    1994-01-01

    We have cross-correlated the galaxies from the IRAS 2 Jy redshift survey sample and the 0.7 Jy projected sample with the all-sky cosmic X-ray background (CXB) map obtained from the High Energy Astronomy Observatory (HEAO) 1 A-2 experiment. We have detected a significant correlation signal between surface density of IRAS galaxies and the X-ray background intensity, with W(sub xg) = (mean value of ((delta I)(delta N)))/(mean value of I)(mean value of N)) of several times 10(exp -3). While this correlation signal has a significant implication for the contribution of the local universe to the hard (E greater than 2 keV) X-ray background, its interpretation is model-dependent. We have developed a formulation to model the cross-correlation between CXB surface brightness and galaxy counts. This includes the effects of source clustering and the X-ray-far-infrared luminosity correlation. Using an X-ray flux-limited sample of active galactic nuclei (AGNs), which has IRAS 60 micrometer measurements, we have estimated the contribution of the AGN component to the observed CXB-IRAS galaxy count correlations in order to see whether there is an excess component, i.e., contribution from low X-ray luminosity sources. We have applied both the analytical approach and Monte Carlo simulations for the estimations. Our estimate of the local X-ray volume emissivity in the 2-10 keV band is rho(sub x) approximately = (4.3 +/- 1.2) x 10(exp 38) h(sub 50) ergs/s/cu Mpc, consistent with the value expected from the luminosity function of AGNs alone. This sets a limit to the local volume emissivity from lower luminosity sources (e.g., star-forming galaxies, low-ionization nuclear emission-line regions (LINERs)) to rho(sub x) less than or approximately = 2 x 10(exp 38) h(sub 50) ergs/s/cu Mpc.

  7. Effect of insulator sleeve material on the x-ray emission from a plasma focus device

    NASA Astrophysics Data System (ADS)

    Hussain, S.; Shafiq, M.; Badar, M. A.; Zakaullah, M.

    2010-09-01

    The effect of insulator sleeve material on x-ray emission from a 2.3 kJ Mather type plasma focus device operated in argon-hydrogen mixture is investigated. The time and space resolved x-ray emission characteristics are studied by using a three channel p-i-n diode x-ray spectrometer and a multipinhole camera. The x-ray emission depends on the volumetric ratio of argon-hydrogen mixture as well as the filling pressure and the highest x-ray emission is observed for a volumetric ratio 40% Ar to 60% H2 at 2.5 mbar filling pressure. The fused silica insulator sleeve produces the highest x-ray emission whereas nonceramic insulator sleeves such as nylon, Perspex, or Teflon does not produce focus or x-rays. The pinhole images of the x-ray emitting zones reveal that the contribution of the Cu Kα line is weak and plasma x-rays are intense. The highest plasma electron temperature is estimated to be 3.3 and 3.6 keV for Pyrex glass and fused silica insulator sleeves, respectively. It is speculated that the higher surface resistivity of fused silica is responsible for enhanced x-ray emission and plasma electron temperature.

  8. Effect of insulator sleeve material on the x-ray emission from a plasma focus device

    SciTech Connect

    Hussain, S.; Badar, M. A.; Shafiq, M.; Zakaullah, M.

    2010-09-15

    The effect of insulator sleeve material on x-ray emission from a 2.3 kJ Mather type plasma focus device operated in argon-hydrogen mixture is investigated. The time and space resolved x-ray emission characteristics are studied by using a three channel p-i-n diode x-ray spectrometer and a multipinhole camera. The x-ray emission depends on the volumetric ratio of argon-hydrogen mixture as well as the filling pressure and the highest x-ray emission is observed for a volumetric ratio 40% Ar to 60%H{sub 2} at 2.5 mbar filling pressure. The fused silica insulator sleeve produces the highest x-ray emission whereas nonceramic insulator sleeves such as nylon, Perspex, or Teflon does not produce focus or x-rays. The pinhole images of the x-ray emitting zones reveal that the contribution of the Cu K{alpha} line is weak and plasma x-rays are intense. The highest plasma electron temperature is estimated to be 3.3 and 3.6 keV for Pyrex glass and fused silica insulator sleeves, respectively. It is speculated that the higher surface resistivity of fused silica is responsible for enhanced x-ray emission and plasma electron temperature.

  9. X-ray Emission from Megamaser Galaxy IC 2560

    SciTech Connect

    Madejski, Greg; Done, Chris; Zycki, Piotr; Greenhill, Lincoln; /KIPAC, Menlo Park /Harvard-Smithsonian Ctr. Astrophys.

    2005-09-12

    Observation of the H{sub 2}O megamaser galaxy IC 2560 with the Chandra Observatory reveals a complex spectrum composed of soft X-ray emission due to multi-temperature thermal plasma, and a hard continuum with strong emission lines. The continuum is most likely a Compton reflection (reprocessing) of primary emission that is completely absorbed at least up to 7 keV. The lines can be identified with fluorescence from Si, S and Fe in the lowest ionization stages. The equivalent widths of the Si and S lines are broadly compatible with those anticipated for reprocessing by optically thick cold plasma of Solar abundances, while the large equivalent width of the Fe line requires some overabundance of iron. A contribution to the line from a transmitted component cannot be ruled out, but the limits on the strength of the Compton shoulder make it less likely. From the bolometric luminosity of the nuclear region, we infer that the source radiates at 1-10% of its Eddington luminosity, for an adopted central mass of 3 x 10{sup 6} M{sub {circle_dot}}. The overall spectrum is consistent with the hypotheses that the central engines powering the detected megamsers in accretion disks are obscured from direct view by the associated accretion disk material itself, and that there is a correlation between the occurrence of megamaser emission and Compton-thick absorption columns. For the 11 known galaxies with both column density measurements and maser emission believed to arise from accretion disks, eight AGN are Compton thick.

  10. X-ray Emission in the Large Magellanic Cloud

    NASA Technical Reports Server (NTRS)

    Chu, You-Hua; Snowden, Steve; Gruendl, Robert; Points, Sean

    2003-01-01

    All HRI images of the LMC was mosaicked. The HRI mosaic has been presented in various meetings. We have identified point and diffuse X-ray sources and analyzing their X-ray properties. The HRI mosaic has been included in papers studying individual interstellar features as well as large-scale distribution of hot gas. The results have been published in several papers.

  11. Variability of X-ray emission from OB stars

    SciTech Connect

    Collura, A.; Sciortino, S.; Serio, S.; Vaiana, G. S.; Harnden, F. R., JR.

    1989-03-01

    The variability in soft X-ray emission of 12 OB stars is studied. Two different methods of analysis, one more suitable for detecting short-term variations, the other aimed at detecting long time-scale variations, are applied to all stars in the sample. The long-term variability analysis shows that Cyg-OB2 8A Zeta Pup and Delta Ori exhibit significant count rate variations between different data sections. Similar variations are marginally detected in 15 Mon; the count rate variations for the other eight stars are consistent with statistical fluctuations. The light curve of Cyg-OB2 8A suggests the existence of two different emission levels. The short-term variability analysis detects marginal variability in Tau Sco with an effective amplitude of about 30 percent and a time scale of about 50 s. The upper limits to the effective short-term variability amplitude for all other sample stars are in the 10-30 percent range. 30 refs.

  12. Variability of X-ray emission from OB stars

    NASA Technical Reports Server (NTRS)

    Collura, A.; Sciortino, S.; Serio, S.; Vaiana, G. S.; Harnden, F. R., Jr.

    1989-01-01

    The variability in soft X-ray emission of 12 OB stars is studied. Two different methods of analysis, one more suitable for detecting short-term variations, the other aimed at detecting long time-scale variations, are applied to all stars in the sample. The long-term variability analysis shows that Cyg-OB2 8A Zeta Pup and Delta Ori exhibit significant count rate variations between different data sections. Similar variations are marginally detected in 15 Mon; the count rate variations for the other eight stars are consistent with statistical fluctuations. The light curve of Cyg-OB2 8A suggests the existence of two different emission levels. The short-term variability analysis detects marginal variability in Tau Sco with an effective amplitude of about 30 percent and a time scale of about 50 s. The upper limits to the effective short-term variability amplitude for all other sample stars are in the 10-30 percent range.

  13. X-ray emission from the galactic disk

    NASA Technical Reports Server (NTRS)

    Bleach, R. D.; Boldt, E. A.; Holt, S. S.; Schwartz, D. A.; Serlemitsos, P. J.

    1972-01-01

    A search was made of a diffuse component of X-rays 1.5 keV associated with an interarm region of the galaxy at galactic longitudes in the vicinity of 60 deg. A statistically significant excess associated with a narrow disk component was detected. The angular extent of this component has a most probable value of 2 deg and may be as large as 7 deg at 90% confidence. The best fit spectrum yields an intensity of 2.9 photons 1/(cm2-sec-ster) over the 2 to 10 keV range. The 3 sigma upper limit to any emission (e.g. iron line) in a 1.5 keV band centered at 7 keV from galactic latitudes h or = 3.5 deg is .3 photons 1/(cm2-sec-ster). Several possible emission models are discussed, with the most likely candidate being a population of unresolvable low luminosity discrete sources.

  14. Out on a Limb: Updates on the Search for X-ray Emission from AGB Stars

    NASA Astrophysics Data System (ADS)

    Montez, Rodolfo; Ramstedt, Sofia; Santiago-Boyd, Andrea; Kastner, Joel; Vlemmings, Wouter

    2016-01-01

    X-rays from asymptotic giant branch (AGB) stars are rarely detected, however, few modern X-ray observatories have targeted AGB stars. In 2012, we searched a list of 480 galactic AGB stars and found a total of 13 targeted or serendipitous observations with few detections (Ramstedt et al. 2012). Since this initial search new programs have successfully targeted and detected X-ray emission from a handful of AGB stars. The X-ray emission, when detected, reveals high temperature plasma (>= 10 MK). This plasma might be heated by a large-scale magnetic field or indicate the presence of accretion onto a compact companion. In this poster, we update our search for X-ray emission from AGB stars with a review of their characteristics, potential origins, and impact of X-ray emission in this late stage of stellar evolution.

  15. Stationary digital breast tomosynthesis with distributed field emission X-ray tube

    PubMed Central

    Sprenger, F.; Calderon, X.; Gidcumb, E.; Lu, J.; Qian, X.; Spronk, D.; Tucker, A.; Yang, G.; Zhou, O.

    2011-01-01

    Tomosynthesis requires projection images from different viewing angles. Using a distributed x-ray source this can be achieved without mechanical motion of the source with the potential for faster image acquisition speed. A distributed x-ray tube has been designed and manufactured specifically for breast tomosynthesis. The x-ray tube consists of 31 field emission x-ray sources with an angular range of 30. The total dose is up to 100mAs with an energy range between 27 and 45 kVp. We discuss the source geometry and results from the characterization of the first prototype. The x-ray tube uses field emission cathodes based on carbon nanotubes (CNT) as electron source. Prior to the manufacturing of the sealed x-ray tube extensive testing on the field emission cathodes has been performed to verify the requirements for commercial tomosynthesis systems in terms of emission current, focal spot size and tube lifetime. PMID:21617760

  16. Soft X-Ray Emissions from Planets and Moons

    NASA Technical Reports Server (NTRS)

    Bhardwaj, A.; Gladstone, G. R.; Elsner, R. F.; Waite, J. H., Jr.; Grodent, D.; Cravens, T. E.; Howell, R. R.; Metzger, A. E.; Ostgaard, N.; Maurellis, A.; Six, N. Frank (Technical Monitor)

    2002-01-01

    A wide variety of solar system planetary bodies are now known to radiate in the soft x-ray energy (<5 keV) regime. These include planets (Earth, Jupiter, Venus, Saturn): bodies having thick atmosphere and with/without intrinsic magnetic field; planetary satellites (Moon, Io, Europa, Ganymede): bodies with no/thin atmosphere; and comets and Io plasma torus: bodies having extended tenuous atmosphere. Several different mechanisms have been proposed to explain the generation of soft x-rays from these objects. whereas in the hard x-ray energy range (>10 keV) x-rays mainly result from electron bremsstrahlung process. In this paper we present a brief review of the x-ray observations on each of the planetary bodies and discuss their characteristics and proposed source mechanisms.

  17. Chandra X-ray Observations of Jovian Low-latitude Emissions: Morphological, Temporal, and Spectral Characteristics

    NASA Astrophysics Data System (ADS)

    Bhardwaj, A.; Elsner, R. F.; Gladstone, G. R.; Cravens, T. E.; Waite, J. H., Jr.; Branduardi-Raymont, G.; Ford, P.

    2004-11-01

    Chandra observed X-rays from Jupiter during 24-26 February 2003 for about 40 hours with the ACIS-S and HRC-I instruments. The analysis of Jovian low-latitude "disk" X-ray emissions are presented and compared with the high-latitude "auroral" emissions. We report the first Chandra ACIS-S measured X-ray spectrum (0.3-2 keV) of Jupiter's low-latitude disk. The disk X-ray emission is harder and extends to higher energies than the auroral spectrum. The temporal variation in the Jovian disk X-rays is on an average consistent with those in the solar X-rays observed by GOES, and TIMED/SEE. Contrary to the auroral X-rays, the disk emissions are uniformly distributed over the Jupiter; no indication of longitudinal dependence or correlation with surface magnetic field strength is visible. Also, unlike the 4020-min periodic oscillations seen in the auroral X-ray emissions, the disk emissions do not show any periodic oscillations. The disk spectrum seems to be consistent with resonant and fluorescent scattering of solar X-rays by the Jovian upper atmosphere. Jupiter's disk is found to be about 50% dimmer in soft X-rays in February 2003 compared that in December 2000, which is consistent with the decrease in solar activity. No evidence of lightning-induced X-rays is seen in the Chandra X-ray data. The Jovian disk spectra observed with Chandra-ACIS is stronger than that observed with XMM-Newton two months later during April 28-29, 2003. The XMM-Newton X-ray image of Jupiter shows evidence of limb darkening on the anti-sunward side as seen from Earth, as well as an asymmetry with respect to the subsolar point: suggesting a solar-driven process.

  18. A search for microwave emission from solar X-ray bright point flares

    NASA Technical Reports Server (NTRS)

    Avery, L. W.; Feldman, P. A.; Gaizauskas, V.; Roy, J.-R.; Wolfson, C. J.

    1977-01-01

    An attempt was made to detect 9.4-cm radio emission from flaring X-ray bright points with the 46-m telescope at the Algonquin Radio Observatory. Observations from the X-ray heliometer aboard OSO-8 were combined with optical and magnetic data to substantiate possible events. Reduction of 52 h of radio data has revealed one event which is a candidate for radio emission from a flaring X-ray bright point.

  19. Analysis and interpretation of diffuse x-ray emission using data from the Einstein satellite

    NASA Technical Reports Server (NTRS)

    Helfand, David J.

    1991-01-01

    An ambitious program to create a powerful and accessible archive of the HEAO-2 Imaging Proportional Counter (IPC) database was outlined. The scientific utility of that database for studies of diffuse x ray emissions was explored. Technical and scientific accomplishments are reviewed. Three papers were presented which have major new scientific findings relevant to the global structure of the interstellar medium and the origin of the cosmic x ray background. An all-sky map of diffuse x ray emission was constructed.

  20. High Resolution Temporal and Spectral Monitoring of Eta Carinae's X-Ray Emission the June Eclipse

    NASA Technical Reports Server (NTRS)

    Corcoran, M. F.; Hamaguchi, K.; Henley, D.; Pittard, J. M.; Gull, T. R.; Davidson, K.; Swank, J. H.; Petre, R.; Ishibashi, K.

    2004-01-01

    The supermassive and luminous star Eta Carinae undergoes strong X-ray variations every 5.5 years when its 2-10 keV X-ray emission brightens rapidly with wild fluctuations before dropping by a factor of 100 to a minimum lasting 3 months. The most recent X-ray "eclipse" began in June 2003 and during this time Eta Carinae was intensely observed throughout the electromagnetic spectrum. Here we report the first results of frequent monitoring of the 2-10 keV band X-ray emission by the Rossi X-ray Timing Explorer along wit high resolution X-ray spectra obtained with the transmission gratings on the Chandra X-ray Observatory. We compare these observations to those results obtained during the previous X-ray eclipse in 1998, and interpret the variations in the X-ray brightness, in the amount of absorption, in the X-ray emission measure and in the K-shell emission lines in terms of a colliding wind binary model.

  1. X-ray transients in quiescence

    NASA Astrophysics Data System (ADS)

    Campana, Sergio

    2001-12-01

    Transient X-ray binaries remain in their quiescent state for a long time (months to hundred years) and then bright up as the most powerful sources of the X-ray sky. While it is clear that, when in outbursts, transient binaries are powered by accretion, the origin of the low luminosity X-ray emission that has been detected in the quiescent state has different interpretations and provides the unique opportunity for testing different accretion regimes. In this paper we concentrate on the various aspects of the accretion physics at low rates onto compact objects. We describe the observational panorama of quiescent emission for the three classes of X-ray transients and try to interpret these data in light of the different regimes accessible at such low mass inflow rates. .

  2. Charge Exchange of Ne^9+ for X-ray Emission

    NASA Astrophysics Data System (ADS)

    Lyons, David

    2016-01-01

    Using the molecular-orbital close-coupling (MOCC) method, single electron capture (SEC) cross sections were computed for Ne^9+ colliding with H.Potential energies and nonadiabatic couplings were calculated and used to obtain the MOCC cross sections which are final-quantum-state-resolved including a separation of singlet and triplet states. Atomic-orbital close-coupling, classical trajectory Monte Carlo, and multichannel Landau-Zener (MCLZ) calculations are also performed. Cross sections for more complicated targets including He, H2, N2, H2O, CO, and CO2, were obtained with the MCLZ method. The SEC results are compared with experimental and other theoretical data, where available. The SEC cross sections are being used in cascade models to predict X-ray emission spectra relevant to solar systemand astrophysical environments.D. Lyons, R. S. Cumbee, P. D. Mullen, P. C. Stancil (UGA), D. R. Schultz (UNT), P. Liebermann (Wuppertal Univ.),R. Buenker (NCSU).This work was partially supported by NASA grant NNX09AC46G.

  3. Eclipse and Collapse of the Colliding Wind X-ray Emission from Eta Carinae

    NASA Technical Reports Server (NTRS)

    Hamaguchi, Kenji; Corcoran, Michael F.

    2012-01-01

    X-ray emission from the massive stellar binary system, Eta Carinae, drops strongly around periastron passage; the event is called the X-ray minimum. We launched a focused observing campaign in early 2009 to understand the mechanism of causing the X-ray minimum. During the campaign, hard X-ray emission (<10 keV) from Eta Carinae declined as in the previous minimum, though it recovered a month earlier. Extremely hard X-ray emission between 15-25 keV, closely monitored for the first time with the Suzaku HXD/PIN, decreased similarly to the hard X-rays, but it reached minimum only after hard X-ray emission from the star had already began to recover. This indicates that the X-ray minimum is produced by two composite mechanisms: the thick primary wind first obscured the hard, 2-10 keV thermal X-ray emission from the wind-wind collision (WWC) plasma; the WWC activity then decays as the two stars reach periastron.

  4. Charge state effect on Si K X-ray emission induced by Iq+ ions impacting

    NASA Astrophysics Data System (ADS)

    Lei, Yu; Zhao, Yongtao; Cheng, Rui; Zhou, Xianming; Sun, Yuanbo; Wang, Xing; Wang, Yuyu; Ren, Jieru; Li, Yongfeng; Yu, Yang; Liu, Shidong; Xu, Ge

    2014-04-01

    K X-ray emission of Si induced by Iq+ (q=20, 22, 25) ion impact has been investigated. The results show a much higher intensity of X-ray emission for I25+ ions bombardment compared to I20+ and I22+ ions. The experimental data are explained within the framework of 3d?, ?-3d? rotational coupling.

  5. X-ray emission from high temperature plasmas

    NASA Technical Reports Server (NTRS)

    Harries, W. L.

    1976-01-01

    The physical processes occurring in plasma focus devices were studied. These devices produce dense high temperature plasmas, which emit X rays of hundreds of KeV energy and one to ten billion neutrons per pulse. The processes in the devices seem related to solar flare phenomena, and would also be of interest for controlled thermonuclear fusion applications. The high intensity, short duration bursts of X rays and neutrons could also possibly be used for pumping nuclear lasers.

  6. X-ray Tube Using a Graphene Flower Cloth Field Emission Cathode

    NASA Astrophysics Data System (ADS)

    Iwai, Yusuke; Muramatsu, Kazuo; Tsuboi, Shougo; Jyouzuka, Atsuo; Nakamura, Tomonori; Onizuka, Yoshihiro; Mimura, Hidenori

    2013-10-01

    We have successfully fabricated a filament-less X-ray tube using a graphene flower cloth (GFC) field emission cathode. The GFC has numerous nanoprotrusions formed by self-standing graphene structures. The field emission current and the field enhancement factor β were 500 µA and 5600, respectively. The stability of voltage defined as a variance coefficient (σ/mean) of voltage was calculated to be 0.04% while maintaining the X-ray tube current of 300 µA. We applied our X-ray tube with the GFC field emitter to the X-ray fluorescence (XRF) analysis of stainless steel.

  7. Internal energy dissipation of gamma-ray bursts observed with Swift: Precursors, prompt gamma-rays, extended emission, and late X-ray flares

    SciTech Connect

    Hu, You-Dong; Liang, En-Wei; Xi, Shao-Qiang; Peng, Fang-Kun; Lu, Rui-Jing; Lü, Lian-Zhong; Zhang, Bing E-mail: Zhang@physics.unlv.edu

    2014-07-10

    We jointly analyze the gamma-ray burst (GRB) data observed with Burst Alert Telescope (BAT) and X-ray Telescope on board the Swift mission to present a global view on the internal energy dissipation processes in GRBs, including precursors, prompt gamma-ray emission, extended soft gamma-ray emission, and late X-ray flares. The Bayesian block method is utilized to analyze the BAT light curves to identify various emission episodes. Our results suggest that these emission components likely share the same physical origin, which is the repeated activation of the GRB central engine. What we observe in the gamma-ray band may be a small part of more extended underlying activities. The precursor emission, which is detected in about 10% of Swift GRBs, is preferably detected in those GRBs that have a massive star core-collapse origin. The soft extended emission tail, on the other hand, is preferably detected in those GRBs that have a compact star merger origin. Bright X-ray emission is detected during the BAT quiescent phases prior to subsequent gamma-ray peaks, implying that X-ray emission may be detectable prior the BAT trigger time. Future GRB alert instruments with soft X-ray capability are essential for revealing the early stages of GRB central engine activities, and shedding light on jet composition and the jet launching mechanism in GRBs.

  8. Long-duration X-ray emissions observed in thunderstorms

    NASA Astrophysics Data System (ADS)

    Eack, Kenneth B.; Beasley, William H.

    2015-07-01

    In 1995, a series of four balloon flights with an X-ray spectrometer and an electric field meter were conducted to examine if strong electric fields could accelerate, and perhaps multiply, cosmic ray secondary electrons and produce bremsstrahlung X-rays. X-ray intensities between 10 and 1000 times that of normal background were observed in conjunction with strong electric fields. Both negative and positive polarity electric fields (as referenced to the vertical field) produced X-rays, which lasted for time scales on the order of tens of seconds. It was also observed that the increased X-ray intensity would return to near background levels after lightning reduced the local electric field. The observations indicate that X-rays observed above background are most likely produced by a runaway electron process occurring in the strong static electric field present in thunderstorms. The production of runaway electrons can occur over long periods of time without causing an electrical breakdown. This may provide a leakage current that limits the large scale electric field to values near the runaway threshold, especially in regions where the thunderstorm charging rate is low.

  9. Mapping the great attractor region in x rays and diffuse x ray emission: A possible galactic wind in the bulge of M31

    NASA Technical Reports Server (NTRS)

    Forman, W. R.

    1992-01-01

    The NASA ADP Program to study the x ray emission in the direction of the Great Attractor and from the core of M31 has resulted in four papers; three on the Shapley Supercluster which is the dominant x ray feature in the Great Attractor region and one on the diffuse emission in M31. The results of these papers are summarized.

  10. X-ray emission from the A0p star IQ~Aur

    NASA Astrophysics Data System (ADS)

    Schmitt, Jurgen

    2008-10-01

    We propose to use XMM-Newton to obtain the first high-resolution X-ray spectrum of the peculiar magnetic A-type star IQ~Aur. From previous X-ray observations IQ~Aur is known as a strong, but very soft X-ray source. In addition to the HAeBe star HD~163296, IQ~Aur is a very good candidate for an A-type star with intrinsic X-ray emission. The XMM-Newton RGS spectrum will strongly constrain the location of the X-ray emission site from a measurement or upper limit to the strength of the OVII f/r line ratio, the overall RGS spectrum will determine the elemental abundances, which may be far from solar, and finally, the phase coverage of the EPIC data will be sufficient to search for a rotational modulation of IQ~Aur's X-ray flux.

  11. Fe Line Diagnostics of Cataclysmic Variables and Galactic Ridge X-Ray Emission

    NASA Astrophysics Data System (ADS)

    Xu, Xiao-jie; Wang, Q. Daniel; Li, Xiang-Dong

    2016-02-01

    The properties of the Galactic Ridge X-ray Emission (GRXE) observed in the 2–10 keV band place fundamental constraints on various types of X-ray sources in the Milky Way. Although the primarily discrete origin of the emission is now well established, the responsible populations of these sources remain uncertain, especially at relatively low fluxes. To provide insights into this issue, we systematically characterize the Fe emission line properties of the candidate types of the sources in the solar neighborhood and compare them with those measured for the GRXE. Our source sample includes 6 symbiotic stars, 16 intermediate polars (IPs), 3 polars, 16 quiescent dwarf novae, and 4 active binaries (ABs); they are all observed with the Suzaku X-ray Observatory. The data of about one-fourth of these sources are analyzed for the first time. We find that the mean equivalent width (EW6.7) of the 6.7 keV line and the mean 7.0/6.7 keV line ratio are 107 ± 16.0 eV and 0.71 ± 0.04 for IPs and 221 ± 135 eV and 0.44 ± 0.14 for polars, respectively, which are all substantially different from those (490 ± 15 eV and 0.2 ± 0.08) for the GRXE. Instead, the GRXE values are better agreed by the EW6.7 (438 ± 84.6 eV) and the ratio (0.27 ± 0.06) observed for the DNe. We further find that the EW6.7 is strongly correlated with the 2–10 keV luminosity of the DNe, which can be characterized by the relation {{EW}}6.7={(438+/- 95{{eV}})(L/{10}31{erg}{{{s}}}-1)}(-0.31+/- 0.15). Accounting for this correlation, the agreement can be improved further, especially when the contributions from other class sources to the GRXE are considered, which all have low EW6.7 values. We conclude that the GRXE mostly consists of typically faint but numerous DNe, plus ABs, while magnetic cataclysmic variables are probably mainly the high-flux representatives of the responsible populations and dominate the GRXE only in harder energy bands.

  12. Inflow Generated X-Ray Corona around Supermassive Black Holes and a Unified Model for X-Ray Emission

    NASA Astrophysics Data System (ADS)

    Wang, Lile; Cen, Renyue

    2016-02-01

    Three-dimensional hydrodynamic simulations are performed, which cover the spatial domain from hundreds of Schwarzschild radii to 2 pc around the central supermassive black hole of mass {10}8{M}ȯ , with detailed radiative cooling processes. The existence of a significant amount of shock heated, high temperature (≥slant {10}8 {{K}}) coronal gas in the inner (≤slant {10}4{r}{sch}) region is generally found. It is shown that the composite bremsstrahlung emission spectrum due to coronal gas of various temperatures is in reasonable agreement with the overall ensemble spectrum of active galactic nuclei (AGNs) and hard X-ray background. Taking into account inverse Compton processes, in the context of the simulation-produced coronal gas, our model can readily account for the wide variety of AGN spectral shapes, which can now be understood physically. The distinguishing feature of our model is that X-ray coronal gas is, for the first time, an integral part of the inflow gas and its observable characteristics are physically coupled to the concomitant inflow gas. One natural prediction of our model is the anti-correlation between accretion disk luminosity and spectral hardness: as the luminosity of SMBH accretion disk decreases, the hard X-ray luminosity increases relative to the UV/optical luminosity.

  13. Inflow Generated X-ray Corona Around Supermassive Black Holes and Unified Model for X-ray Emission

    NASA Astrophysics Data System (ADS)

    Wang, Lile; Cen, Renyue

    2016-01-01

    Three-dimensional hydrodynamic simulations, covering the spatial domain from hundreds of Schwarzschild radii to 2 pc around the central supermassive black hole of mass 108 M⊙, with detailed radiative cooling processes, are performed. Generically found is the existence of a significant amount of shock heated, high temperature (≥108 K) coronal gas in the inner (≤104 rsch) region. It is shown that the composite bremsstrahlung emission spectrum due to coronal gas of various temperatures are in reasonable agreement with the overall ensemble spectrum of AGNs and hard X-ray background. Taking into account inverse Compton processes, in the context of the simulation-produced coronal gas, our model can readily account for the wide variety of AGN spectral shape, which can now be understood physically. The distinguishing feature of our model is that X-ray coronal gas is, for the first time, an integral part of the inflow gas and its observable characteristics are physically coupled to the concomitant inflow gas. One natural prediction of our model is the anti-correlation between accretion disk luminosity and spectral hardness: as the luminosity of SMBH accretion disk decreases, the hard X-ray luminosity increases relative to the UV/optical luminosity.

  14. Dynamic radiography using a carbon-nanotube-based field-emission x-ray source

    SciTech Connect

    Cheng, Y.; Zhang, J.; Lee, Y.Z.; Gao, B.; Dike, S.; Lin, W.; Lu, J.P.; Zhou, O.

    2004-10-01

    We report a dynamic radiography system with a carbon nanotube based field-emission microfocus x-ray source. The system can readily generate x-ray radiation with continuous variation of temporal resolution as short as nanoseconds. Its potential applications for dynamic x-ray imaging are demonstrated. The performance characteristics of this compact and versatile system are promising for noninvasive imaging in biomedical research and industrial inspection.

  15. Electronic Structure of In2O3 from Resonant X-ray Emission Spectroscopy

    SciTech Connect

    Piper, L.; DeMasi, A; Cho, S; Smith, K; Fuchs, F; Bechstedt, F; Korber, C; Klein, A; Payne, D; Egdell, R

    2009-01-01

    The valence and conduction band structures of In2O3 have been measured using a combination of valence band x-ray photoemission spectroscopy, O K-edge resonant x-ray emission spectroscopy, and O K-edge x-ray absorption spectroscopy. Excellent agreement is noted between the experimental spectra and O 2p partial density of states calculated within hybrid density functional theory. Our data are consistent with a direct band gap for In2O3.

  16. X-RAY EMISSION FROM MAGNETIC MASSIVE STARS

    SciTech Connect

    Nazé, Yaël; Petit, Véronique; Rinbrand, Melanie; Owocki, Stan; Cohen, David; Ud-Doula, Asif; Wade, Gregg A.

    2014-11-01

    Magnetically confined winds of early-type stars are expected to be sources of bright and hard X-rays. To clarify the systematics of the observed X-ray properties, we have analyzed a large series of Chandra and XMM-Newton observations, corresponding to all available exposures of known massive magnetic stars (over 100 exposures covering ∼60% of stars compiled in the catalog of Petit et al.). We show that the X-ray luminosity is strongly correlated with the stellar wind mass-loss rate, with a power-law form that is slightly steeper than linear for the majority of the less luminous, lower- M-dot B stars and flattens for the more luminous, higher- M-dot O stars. As the winds are radiatively driven, these scalings can be equivalently written as relations with the bolometric luminosity. The observed X-ray luminosities, and their trend with mass-loss rates, are well reproduced by new MHD models, although a few overluminous stars (mostly rapidly rotating objects) exist. No relation is found between other X-ray properties (plasma temperature, absorption) and stellar or magnetic parameters, contrary to expectations (e.g., higher temperature for stronger mass-loss rate). This suggests that the main driver for the plasma properties is different from the main determinant of the X-ray luminosity. Finally, variations of the X-ray hardnesses and luminosities, in phase with the stellar rotation period, are detected for some objects and they suggest that some temperature stratification exists in massive stars' magnetospheres.

  17. On the relation between Fe II emission and soft X-ray properties of quasars

    SciTech Connect

    Boroson, T.A. )

    1989-08-01

    The claim that the equivalent width of the optical Fe II emission complexes and the soft X-ray slopes of quasars are related is examined. It is shown that among radio-loud quasars, flat radio spectrum objects have flatter soft X-ray slopes. This places steep radio spectrum quasars intermediate in their X-ray slopes between flat radio spectrum and radio-quiet objects. This information may be combined with the observation that steep radio spectrum quasars have weaker Fe II emission to suggest that no correlation between Fe II emission and X-ray spectral slope is expected. An analysis of 15 objects with homogeneously measured Fe II emission strengths and X-ray spectral slopes confirms this prediction. 13 refs.

  18. Characteristics of x-ray emission from optically thin high-Z plasmas in the soft x-ray region

    NASA Astrophysics Data System (ADS)

    Ohashi, Hayato; Higashiguchi, Takeshi; Suzuki, Yuhei; Arai, Goki; Li, Bowen; Dunne, Padraig; O'Sullivan, Gerry; Sakaue, Hiroyuki A.; Kato, Daiji; Murakami, Izumi; Tamura, Naoki; Sudo, Shigeru; Koike, Fumihiro; Suzuki, Chihiro

    2015-07-01

    The characteristics of soft x-ray emission from optically thin high-Z plasmas of gold, lead and bismuth were investigated with the large helical device. Compared to optically thicker laser-produced plasmas, significantly different spectral structures were observed due to the difference in opacities and electron temperatures. Peak structures appearing in unresolved transition arrays were identified by calculations using atomic structure codes. The main contributors of discrete line emission in each case were Pd-, Ag-, and Rh-like ion stages. The present calculations point to the overestimation of contributions for 4p-4d transitions based on intensity estimates arising purely from gA distributions that predict strong emission from 4p-4d transitions. Understanding of such spectral emission is not only important for the completion of databases of high-Z highly ion charge states but also the development of promising high brightness sources for biological imaging applications.

  19. X-Ray Emission from the Halo of M31

    NASA Technical Reports Server (NTRS)

    Mushotzky, Richard (Technical Monitor); DiStefano, Rosanne

    2004-01-01

    Our goal was to use short (10 ksec) observations of selected fields in the halo of M31, to determine the size and characteristics of its X-ray population and to study the connection between globular clusters and X-ray sources. The program of observations has yet to be successfully completed. We received acceptable data from just 2 of the 5 approved fields. Nevertheless, the results were intriguing and we have submitted a paper based on this data to Nature. We find that the X-ray source density is significantly enhanced in the vicinity of one GC, providing the first observational evidence supporting the ejection hypothesis. We also find additional X-ray sources, including some which are very soft, in large enough numbers to suggest that not all could have been formed in GCs. That is, some must be descended from the same primordial halo population that produced any compact stars comprising part of the halo's dark matter. Extrapolating fiom the X-ray source population, we estimate that stellar remnants and dim old stars in the halo could comprise as much as 25% of the estimated mass (approx. 10(exp 12) Solar Mass) of the halo. These results suggest that the other approved fields should be observed soon and also provide strong motivation for the future XMM-Newton programs.

  20. The 300 Kpc Long X-Ray Jet in PKS 1127-145, Z=1.18 Quasar: Constraining X-Ray Emission Models

    SciTech Connect

    Siemiginowska, Aneta; Stawarz, Lukasz; Cheung, C.C.; Harris, D.E.; Sikora, Marek; Aldcroft, Thomas L.; Bechtold, Jill; /Arizona U., Astron. Dept. - Steward Observ.

    2006-11-20

    We present a {approx} 100 ksec Chandra X-ray observation and new VLA radio data of the large scale, 300 kpc long X-ray jet in PKS 1127-145, a radio loud quasar at redshift z=1.18. With this deep X-ray observation we now clearly discern the complex X-ray jet morphology and see substructure within the knots. The X-ray and radio jet intensity profiles are seen to be strikingly different with the radio emission peaking strongly at the two outer knots while the X-ray emission is strongest in the inner jet region. The jet X-ray surface brightness gradually decreases by an order of magnitude going out from the core. The new X-ray data contain sufficient counts to do spectral analysis of the key jet features. The X-ray energy index of the inner jet is relatively flat with {alpha}{sub x} = 0.66 {+-} 0.15 and steep in the outer jet with {alpha}{sub x} = 1.0 {+-} 0.2. We discuss the constraints implied by the new data on the X-ray emission models and conclude that ''one-zone'' models fail and at least a two component model is needed to explain the jet's broad-band emission. We propose that the X-ray emission originates in the jet proper while the bulk of the radio emission comes from a surrounding jet sheath. We also consider intermittent jet activity as a possible cause of the observed jet morphology.

  1. EVIDENCE OF NON-THERMAL X-RAY EMISSION FROM HH 80

    SciTech Connect

    Lpez-Santiago, J.; Peri, C. S.; Benaglia, P.; Bonito, R.; Miceli, M.; Albacete-Colombo, J. F.; De Castro, E.

    2013-10-20

    Protostellar jets appear at all stages of star formation when the accretion process is still at work. Jets travel at velocities of hundreds of km s{sup 1}, creating strong shocks when interacting with the interstellar medium. Several cases of jets have been detected in X-rays, typically showing soft emission. For the first time, we report evidence of hard X-ray emission possibly related to non-thermal processes not explained by previous models of the post-shock emission predicted in the jet/ambient interaction scenario. HH 80 is located at the south head of the jet associated with the massive protostar IRAS 18162-2048. It shows soft and hard X-ray emission in regions that are spatially separated, with the soft X-ray emission region situated behind the region of hard X-ray emission. We propose a scenario for HH 80 where soft X-ray emission is associated with thermal processes from the interaction of the jet with denser ambient matter and hard X-ray emission is produced by synchrotron radiation at the front shock.

  2. X-Ray Emissivity of Old Stellar Populations: A Local Group Census

    NASA Astrophysics Data System (ADS)

    Ge, Chong; Li, Zhiyuan; Xu, Xiaojie; Gu, Qiusheng; Wang, Q. Daniel; Roberts, Shawn; Kraft, Ralph P.; Jones, Christine; Forman, William R.

    2015-10-01

    We study the unresolved X-ray emission in three Local Group dwarf elliptical (dE) galaxies (NGC 147, NGC 185, and NGC 205) using XMM-Newton observations; this emission most likely originates from a collection of weak X-ray sources, mainly cataclysmic variables and coronally active binaries. Precise knowledge of this stellar X-ray emission is crucial not only for understanding the relevant stellar astrophysics but also for disentangling and quantifying the thermal emission from diffuse hot gas in nearby galaxies. We find that the integrated X-ray emissivities of the individual dEs agree well with those of the solar vicinity, supporting an often assumed but untested view that the X-ray emissivity of old stellar populations is quasi-universal in normal galactic environments, in which dynamical effects on the formation and destruction of binary systems are not important. The average X-ray emissivity of the dEs studied in the literature, including M32, is measured to be {L}0.5-2 {{keV}}/{M}*=(6.0+/- 0.5+/- 1.8) {10}27 {erg} {{{s}}}-1 {M}? -1. We also compare this value to the integrated X-ray emissivities of Galactic globular clusters and old open clusters and discuss the role of dynamical effects in these dense stellar systems.

  3. Polarized X-ray Synchrotron Emission in Blazars

    NASA Astrophysics Data System (ADS)

    Baring, Matthew G.; Sarkar, T. J.

    2012-01-01

    Multiwavelength observations of blazars are now providing, for the first time, clean diagnostics on the shock acceleration environment in the jets/outflows in these extragalactic sources. This is enhanced by new spectroscopic information from the Fermi Gamma-Ray Space Telescope that constrains the power-law index of the radiating particle population. This paper explores complementary polarimetric consequences of such diagnostics that can be probed by NASA's new SMEX X-ray mission, GEMS. Polarization signals in shocked blazar jets couple directly to the magnetic field geometry and the inherent particle anisotropy in these relativistic discontinuities. These anisotropies and the photon spectral indices are interconnected, so that simultaneous X-ray/gamma-ray spectroscopic measurements and X-ray polarization determinations enable diagnostics on the field geometry. Here we highlight some representative polarization predictions for slab and helical field morphologies, including temporal swings in position angle, to encapsulate the possibilities for the GEMS blazar science legacy.

  4. X-Ray Emission in the Heliosphere: Ion-Neutral Collisions as a Plasma Diagnostic

    NASA Astrophysics Data System (ADS)

    Cravens, Tom; Sibeck, David; Collier, MIchael

    2015-04-01

    The solar corona is the most powerful source of x-rays in the solar system but x-ray emission has also been observed from planets, including the Earth and Jupiter, from the Moon, from comets, and from interstellar gas entering the heliosphere. Astrophysical x-ray emission primarily comes from hot plasmas, such as in the million degree solar corona. The gas and plasma in planetary atmospheres are rather cold and the x-ray emission is driven by solar radiation and/or the solar wind. For example, x-rays from Venus come from the scattering and K-shell fluorescence of solar x-rays from the neutral atmosphere. Auroral x-ray emission at Earth and Jupiter is produced by energetic electron and ion precipitation from the magnetospheres into the atmospheres. Cometary and heliospheric x-ray emission is caused by charge transfer of high charge state solar wind ions (e.g., O7+, C6+,) with neutral hydrogen and helium.An important source of solar system x-rays is the solar wind charge exchange (SWCX) mechanism. The solar wind originates in the hot solar corona and species heavier than helium (comprising about 0.1% of the gas) are highly-charged (e.g., O7+, C6+, Fe12+,.). Such ions undergo charge transfer collisions when they encounter neutral gas (e.g., cometary or interstellar gas or the Earths geocoronal hydrogen). The product ions are in highly-excited states and, subsequently, emit soft x-ray photons. The SWCX mechanism can explain the observed cometary x-ray emission and can also explain part of the soft x-ray background (the other part of which originates in the hot interstellar medium).The Earth has an extensive hot hydrogen exosphere, or geocorona, that is visible in scattered solar Lyman alpha. X-ray emission is produced in the magnetosheath due to the SWCX mechanism as the solar wind interacts with the exospheric gas. The most intense x-ray emission comes from the subsolar sheath region and from the cusp regions. Imaging of this emission by a spacecraft located outside the magnetosphere would provide a global view of the solar wind interaction with Earth including dayside magnetic reconnection processes.

  5. X-ray line emission from the Tycho supernova remnant

    NASA Technical Reports Server (NTRS)

    Pravdo, S. H.; Smith, B. W.; Charles, P. A.; Tuohy, I. R.

    1979-01-01

    The observation of the X-ray spectrum of the Tycho supernova remnant in the energy range 0.5 to 20 keV is discussed. Four significant line features in the spectrum: The K alpha lines of silicon, sulphur, and iron; and the L lines of iron are examined. Comparisons between the silicon and sulphur equivalent widths and K alpha iron line energies of Tycho and Cas A are discussed. Suggest that the X-ray emitting plasma in Tycho is further from collisional ionization equilibrium than that of Cas A.

  6. X-ray Emission from Wolf-Rayet Nebulae

    NASA Astrophysics Data System (ADS)

    Toal, J. A.; Guerrero, M. A.; Chu, Y.-H.; Gruendl, R. A.; Arthur, S. J.; Smith, R. C.; Snowden, S. L.

    2013-05-01

    We present the analysis of the hot plasma detected with XMM-Newton and Chandra X-ray observations toward the only two Wolf-Rayet bubbles so far detected: S 308 and NGC 6888. Both nebulae present spectra dominated by soft temperature plasmas of 10^{6} K with luminosities of L_{{X}}10^{33}-10^{34} erg s^{-1}, but with different X-ray-emitting plasma distribution. In the case of S 308 it presents a limb-brightened morphology, while in the case of NGC 6888, it shows three maxima localized at the Northeast and Southwest caps and another one extending toward the Northwest.

  7. DISCOVERY OF X-RAY EMISSION FROM YOUNG SUNS IN THE SMALL MAGELLANIC CLOUD

    SciTech Connect

    Oskinova, L. M.; Hainich, R.; Sun, W.; Chen, Y.; Evans, C. J.; Henault-Brunet, V.; Chu, Y.-H.; Gruendl, R. A.; Gallagher, J. S. III; Guerrero, M. A.; Silich, S.; Naze, Y.; Reyes-Iturbide, J.

    2013-03-01

    We report the discovery of extended X-ray emission within the young star cluster NGC 602a in the Wing of the Small Magellanic Cloud (SMC) based on observations obtained with the Chandra X-Ray Observatory. X-ray emission is detected from the cluster core area with the highest stellar density and from a dusty ridge surrounding the H II region. We use a census of massive stars in the cluster to demonstrate that a cluster wind or wind-blown bubble is unlikely to provide a significant contribution to the X-ray emission detected from the central area of the cluster. We therefore suggest that X-ray emission at the cluster core originates from an ensemble of low- and solar-mass pre-main-sequence (PMS) stars, each of which would be too weak in X-rays to be detected individually. We attribute the X-ray emission from the dusty ridge to the embedded tight cluster of the newborn stars known in this area from infrared studies. Assuming that the levels of X-ray activity in young stars in the low-metallicity environment of NGC 602a are comparable to their Galactic counterparts, then the detected spatial distribution, spectral properties, and level of X-ray emission are largely consistent with those expected from low- and solar-mass PMS stars and young stellar objects (YSOs). This is the first discovery of X-ray emission attributable to PMS stars and YSOs in the SMC, which suggests that the accretion and dynamo processes in young, low-mass objects in the SMC resemble those in the Galaxy.

  8. A Pilot Deep Survey for X-Ray Emission from fuvAGB Stars

    NASA Astrophysics Data System (ADS)

    Sahai, R.; Sanz-Forcada, J.; Snchez Contreras, C.; Stute, M.

    2015-09-01

    We report the results of a pilot survey for X-ray emission from a newly discovered class of AGB stars with far-ultraviolet excesses (fuvAGB stars) using XMM-Newton and Chandra. We detected X-ray emission in three of six fuvAGB stars observedthe X-ray fluxes are found to vary in a stochastic or quasi-periodic manner on roughly hour-long timescales, and simultaneous UV observations using the Optical Monitor on XMM for these sources show similar variations in the UV flux. These data, together with previous studies, show that X-ray emission is found only in fuvAGB stars. From modeling the spectra, we find that the observed X-ray luminosities are (0.002-0.2) L? and the X-ray-emitting plasma temperatures are (35-160) 106 K. The high X-ray temperatures argue against the emission arising in stellar coronae, or directly in an accretion shock, unless it occurs on a WD companion. However, none of the detected objects is a known WD-symbiotic star, suggesting that if WD companions are present, they are relatively cool (<20,000 K). In addition, the high X-ray luminosities specifically argue against emission originating in the coronae of main-sequence companions. We discuss several models for the X-ray emission and its variability and find that the most likely scenario for the origin of the X-ray (and FUV) emission involves accretion activity around a companion star, with confinement by strong magnetic fields associated with the companion and/or an accretion disk around it.

  9. NuSTAR Hard X-Ray Survey of the Galactic Center Region I: Hard X-Ray Morphology and Spectroscopy of the Diffuse Emission

    NASA Astrophysics Data System (ADS)

    Mori, Kaya; Hailey, Charles J.; Krivonos, Roman; Hong, Jaesub; Ponti, Gabriele; Bauer, Franz; Perez, Kerstin; Nynka, Melania; Zhang, Shuo; Tomsick, John A.; Alexander, David M.; Baganoff, Frederick K.; Barret, Didier; Barrière, Nicolas; Boggs, Steven E.; Canipe, Alicia M.; Christensen, Finn E.; Craig, William W.; Forster, Karl; Giommi, Paolo; Grefenstette, Brian W.; Grindlay, Jonathan E.; Harrison, Fiona A.; Hornstrup, Allan; Kitaguchi, Takao; Koglin, Jason E.; Luu, Vy; Madsen, Kristen K.; Mao, Peter H.; Miyasaka, Hiromasa; Perri, Matteo; Pivovaroff, Michael J.; Puccetti, Simonetta; Rana, Vikram; Stern, Daniel; Westergaard, Niels J.; Zhang, William W.; Zoglauer, Andreas

    2015-12-01

    We present the first sub-arcminute images of the Galactic Center above 10 keV, obtained with NuSTAR. NuSTAR resolves the hard X-ray source IGR J17456-2901 into non-thermal X-ray filaments, molecular clouds, point sources, and a previously unknown central component of hard X-ray emission (CHXE). NuSTAR detects four non-thermal X-ray filaments, extending the detection of their power-law spectra with Γ ˜ 1.3-2.3 up to ˜50 keV. A morphological and spectral study of the filaments suggests that their origin may be heterogeneous, where previous studies suggested a common origin in young pulsar wind nebulae (PWNe). NuSTAR detects non-thermal X-ray continuum emission spatially correlated with the 6.4 keV Fe Kα fluorescence line emission associated with two Sgr A molecular clouds: MC1 and the Bridge. Broadband X-ray spectral analysis with a Monte-Carlo based X-ray reflection model self-consistently determined their intrinsic column density (˜1023 cm-2), primary X-ray spectra (power-laws with Γ ˜ 2) and set a lower limit of the X-ray luminosity of Sgr A* flare illuminating the Sgr A clouds to LX ≳ 1038 erg s-1. Above ˜20 keV, hard X-ray emission in the central 10 pc region around Sgr A* consists of the candidate PWN G359.95-0.04 and the CHXE, possibly resulting from an unresolved population of massive CVs with white dwarf masses MWD ˜ 0.9 M⊙. Spectral energy distribution analysis suggests that G359.95-0.04 is likely the hard X-ray counterpart of the ultra-high gamma-ray source HESS J1745-290, strongly favoring a leptonic origin of the GC TeV emission.

  10. A Study of Nonthermal X-Ray and Radio Emission from the O Star 9 Sgr

    NASA Technical Reports Server (NTRS)

    Waldron, Wayne L.; Corcoran, Michael F.; Drake, Stephen A.

    1999-01-01

    The observed X-ray and highly variable nonthermal radio emission from OB stars has eluded explanation for more than 18 years. The most favorable model of X-ray production in these stars (shocks) predicts both nonthermal radio and X-ray emission. The nonthermal X-ray emission should occur above 2 keV and the variability of this X-ray component should also be comparable to the observed radio variability. To test this scenario, we proposed an ASC/VLA monitoring program to observe the OB star, 9 Sgr, a well known nonthermal, variable radio source and a strong X-ray source. We requested 625 ks ASCA observations with a temporal spacing of approximately 4 days which corresponds to the time required for a density disturbance to propagate to the 6 cm radio free-free photosphere. The X-ray observations were coordinated with 5 multi-wavelength VLA observations. These observations represent the first systematic attempt to investigate the relationship between the X-ray and radio emission in OB stars.

  11. Two component model for X-ray emission of radio selected QSO's

    NASA Technical Reports Server (NTRS)

    Isobe, T.; Feigelson, E. D.; Singh, K. P.; Kembhavi, A.

    1986-01-01

    Using a large database of radio, optical, and x ray luminosities of AGNs with survival analysis, it was found that the x ray emission of the radio selected quasars has two components. One is related to the optical luminosity and the other is related to the radio luminosity.

  12. Hard X-ray emission from Cassiopeia A SNR

    NASA Astrophysics Data System (ADS)

    The, Lih-Sin; Leising, Mark D.; Hartmann, Dieter H.; Kurfess, James D.; Blanco, Philip; Bhattacharya, Dipen

    1997-05-01

    We report the results of extracting the hard X-ray continuum spectrum of Cas A SNR from RXTE/PCA Target of Opportunity (TOO) observations and CGRO/OSSE observations. The data can rule out the single thermal bremsstrahlung model for Cas A continuum between 2 and 150 keV. The single power law model gives a mediocre fit (~5%) to the data with a power-law index, ?=2.94+/-0.02. A model with two component (bremsstrahlung+bremsstrahlung or bremsstrahlung+power law) gives a good fit. The power law index is quite constrained suggesting that this continuum might not be the X-ray thermal bremsstrahlung from accelerated MeV electrons at shock fronts [1] which would have ?~=2.26. With several SNRs detected by ASCA showing a hard power-law nonthermal X-ray continuum, we expect a similar situation for Cas A SNR which has ?=2.98+/-0.09. We discuss the implication of the hardest nonthermal X-rays detected from Cas A to the synchrotron radiation model.

  13. Impulsive phase of flares in soft X-ray emission

    NASA Technical Reports Server (NTRS)

    Antonucci, E.; Gabriel, A. H.; Acton, L. W.; Leibacher, J. W.; Culhane, J. L.; Rapley, C. G.; Doyle, J. G.; Machado, M. E.; Orwig, L. E.

    1982-01-01

    Observations using the bent crystal spectrometer instrument on the Solar Maximum Mission show that turbulence and blue-shifted motions are characteristic of the soft X-ray plasma during the impulsive phase of flares, and are coincident with the hard X-ray bursts observed by the hard X-ray burst spectrometer. A method for analysing the Ca XIX and Fe XXV spectra characteristic of the impulsive phase is presented. Nonthermal widths and blue-shifted components in the spectral lines of Ca XIX and Fe XXV indicate the presence of turbulent velocities exceeding 100 km/s and upward motions of 300-400 km/s. The April 10, May 9, and June 29, 1980 flares are studied. The April 10 flare has two separated footpoints bright in hard X-rays. Plasma heated to temperatures greater than ten million K rises from the footpoints. During the three minutes in which the evaporation process occurs an energy of 3.7 x 10 to the 30th ergs. This is consistent with the above figures, allowing for loss by radiation and conduction.

  14. Magnetic fields in A-type stars associated with X-ray emission

    NASA Astrophysics Data System (ADS)

    Schrder, C.; Hubrig, S.; Schmitt, J. H. M. M.

    2008-06-01

    A common explanation for the observed X-ray emission of A-type stars is the presence of a hidden late-type companion. While this assumption can be shown to be correct in some cases, a number of lines of evidence suggests that low-mass companions cannot be the correct cause for the observed activity in all cases. A model explains the X-ray emission for magnetic Ap/Bp stars, focusing on the A0p star IQ Aur. In this paper we test whether this theoretical model is able to explain the observed X-ray emission. We present the observations of 13 A-type stars that have been associated with X-ray emission detected by ROSAT. To determine the mean longitudinal magnetic field strength we measured the circular polarization in the wings of the Balmer lines using FORS1. Although the emission of those objects that possess magnetic fields fits the prediction of the Babel and Montmerle model, not all X-ray detections are connected to the presence of a magnetic field. Additionally, the measured magnetic fields do not correlate with the X-ray luminosity. Accordingly, the magnetically confined wind shock model cannot explain the X-ray emission from all the presented stars.

  15. STELLAR WIND INDUCED SOFT X-RAY EMISSION FROM CLOSE-IN EXOPLANETS

    SciTech Connect

    Kislyakova, K. G.; Lammer, H.; Fossati, L.; Johnstone, C. P.; Holmström, M.; Zaitsev, V. V.

    2015-01-30

    In this Letter, we estimate the X-ray emission from close-in exoplanets. We show that the Solar/Stellar Wind Charge Exchange Mechanism (SWCX), which produces soft X-ray emission, is very effective for hot Jupiters. In this mechanism, X-ray photons are emitted as a result of the charge exchange between heavy ions in the solar wind and the atmospheric neutral particles. In the solar system, comets produce X-rays mostly through the SWCX mechanism, but it has also been shown to operate in the heliosphere, in the terrestrial magnetosheath, and on Mars, Venus, and the Moon. Since the number of emitted photons is proportional to the solar wind mass flux, this mechanism is not very effective for the solar system giants. Here we present a simple estimate of the X-ray emission intensity that can be produced by close-in extrasolar giant planets due to charge exchange with the heavy ions of the stellar wind. Using the example of HD 209458b, we show that this mechanism alone can be responsible for an X-ray emission of ≈10{sup 22} erg s{sup –1}, which is 10{sup 6} times stronger than the emission from the Jovian aurora. We discuss also the possibility of observing the predicted soft X-ray flux of hot Jupiters and show that despite high emission intensities they are unobservable with current facilities.

  16. Discovery of Soft X-Ray Emission from Io, Europa and the Io Plasma Torus

    NASA Technical Reports Server (NTRS)

    Elsner, R. F.; Gladstone, G. R.; Waite, J. H.; Crary, F. J.; Howell, R. R.; Johnson, R. E.; Ford, P. G.; Metzger, A. E.; Hurley, K. C.; Feigelson, E. D.; Six, N. Frank (Technical Monitor)

    2001-01-01

    The Chandra X-ray Observatory observed the Jovian system for about 24 hours on 25-26 Nov 1999 with the Advanced CCD Imaging Spectrometer (ACIS), in support of the Galileo flyby of Io, and for about 10 hours on 18 Dec 2000 with the imaging array of the High Resolution Camera (HRC-I), in support of the Cassini flyby of Jupiter. Analysis of these data have revealed soft (0.25--2 keV) x-ray emission from the moons Io and Europa, probably Ganymede, and from the Io Plasma Torus (IPT). Bombardment by energetic (greater than 10 keV) H, O, and S ions from the region of the IPT seems the likely source of the x-ray emission from the Galilean moons. According to our estimates, fluorescent x-ray emission excited by solar x-rays is about an order of magnitude too weak even during flares from the active Sun to account for the observed x-ray flux from the IPT. Charge-exchange processes, previously invoked to explain Jupiter's x-ray aurora and cometary x-ray emission, and ion stripping by dust grains both fall by orders of magnitude. On the other hand, we calculate that bremsstrahlung emission of soft X-rays from non-thermal electrons in the few hundred to few thousand eV range accounts for roughly one third of the observed x-ray flux from the IPT. Extension of the far ultraviolet (FUV) IPT spectrum likely also contributes.

  17. Detection of x-ray emission in a nanosecond discharge in air at atmospheric pressure.

    PubMed

    Zhang, Cheng; Shao, Tao; Yu, Yang; Niu, Zheng; Yan, Ping; Zhou, Yuanxiang

    2010-12-01

    Measurement of x-ray emission is an important parameter to investigate runaway behavior of fast electrons produced in nanosecond-pulse gas discharge. An online detection system of x rays is described in this paper, and the system consists of an x-ray detector with NaI (Tl) scintillator and photomultiplier tube, and an integrated multichannel analyzer. The system is responsible for detecting x-ray emission signal, processing the detected signals, and scaling the energy distribution. The calibration results show that every channel of the detection system represents a given x-ray energy and various x rays can be divided into different energy ranges between 10 and 130 keV. For a repetitive nanosecond-pulse breakdown between highly nonuniform gaps in open air, an energy distribution is obtained using the online detection system. It shows that the x-ray emission is a continuous spectrum and the x rays of above 60 keV dominate in the detected energy distribution. PMID:21198017

  18. Detection of x-ray emission in a nanosecond discharge in air at atmospheric pressure

    SciTech Connect

    Zhang Cheng; Yu Yang; Niu Zheng; Yan Ping; Shao Tao; Zhou Yuanxiang

    2010-11-15

    Measurement of x-ray emission is an important parameter to investigate runaway behavior of fast electrons produced in nanosecond-pulse gas discharge. An online detection system of x rays is described in this paper, and the system consists of an x-ray detector with NaI (Tl) scintillator and photomultiplier tube, and an integrated multichannel analyzer. The system is responsible for detecting x-ray emission signal, processing the detected signals, and scaling the energy distribution. The calibration results show that every channel of the detection system represents a given x-ray energy and various x rays can be divided into different energy ranges between 10 and 130 keV. For a repetitive nanosecond-pulse breakdown between highly nonuniform gaps in open air, an energy distribution is obtained using the online detection system. It shows that the x-ray emission is a continuous spectrum and the x rays of above 60 keV dominate in the detected energy distribution.

  19. A Comparison of X-Ray and Optical Emission in Cassiopeia A

    NASA Astrophysics Data System (ADS)

    Patnaude, Daniel J.; Fesen, Robert A.

    2014-07-01

    Broadband optical and narrowband Si XIII X-ray images of the young Galactic supernova remnant Cassiopeia A (Cas A) obtained over several decades are used to investigate spatial and temporal emission correlations on both large and small angular scales. The data examined consist of optical and near-infrared ground-based and Hubble Space Telescope images taken between 1951 and 2011, and of X-ray images from Einstein, ROSAT, and Chandra taken between 1979 and 2013. We find weak spatial correlations between the remnant's X-ray and optical emission features on large scales, but several cases of good optical/X-ray correlations on small scales for features which have brightened due to recent interactions with the reverse shock. We also find instances (1) where a time delay is observed between the appearance of a feature's optical and X-ray emissions, (2) of displacements of several arcseconds between a feature's X-ray and optical emission peaks, and (3) of regions showing no corresponding X-ray or optical emissions. To explain this behavior, we propose a highly inhomogeneous density model for Cas A's ejecta consisting of small, dense optically emitting knots (n ~102-3 cm-3) and a much lower density (n ~0.1-1 cm-3) diffuse X-ray emitting component often spatially associated with optical emission knots. The X-ray emitting component is sometimes linked to optical clumps through shock-induced mass ablation generating trailing material leading to spatially offset X-ray/optical emissions. A range of ejecta densities can also explain the observed X-ray/optical time delays since the remnant's ?5000 km s-1 reverse shock heats dense ejecta clumps to temperatures around 3 104 K relatively quickly, which then become optically bright while more diffuse ejecta become X-ray bright on longer timescales. Highly inhomogeneous ejecta as proposed here for Cas A may help explain some of the X-ray/optical emission features seen in other young core-collapse supernova remnants.

  20. A comparison of X-ray and optical emission in Cassiopeia A

    SciTech Connect

    Patnaude, Daniel J.; Fesen, Robert A.

    2014-07-10

    Broadband optical and narrowband Si XIII X-ray images of the young Galactic supernova remnant Cassiopeia A (Cas A) obtained over several decades are used to investigate spatial and temporal emission correlations on both large and small angular scales. The data examined consist of optical and near-infrared ground-based and Hubble Space Telescope images taken between 1951 and 2011, and of X-ray images from Einstein, ROSAT, and Chandra taken between 1979 and 2013. We find weak spatial correlations between the remnant's X-ray and optical emission features on large scales, but several cases of good optical/X-ray correlations on small scales for features which have brightened due to recent interactions with the reverse shock. We also find instances (1) where a time delay is observed between the appearance of a feature's optical and X-ray emissions, (2) of displacements of several arcseconds between a feature's X-ray and optical emission peaks, and (3) of regions showing no corresponding X-ray or optical emissions. To explain this behavior, we propose a highly inhomogeneous density model for Cas A's ejecta consisting of small, dense optically emitting knots (n ?10{sup 2-3} cm{sup 3}) and a much lower density (n ?0.1-1 cm{sup 3}) diffuse X-ray emitting component often spatially associated with optical emission knots. The X-ray emitting component is sometimes linked to optical clumps through shock-induced mass ablation generating trailing material leading to spatially offset X-ray/optical emissions. A range of ejecta densities can also explain the observed X-ray/optical time delays since the remnant's ?5000 km s{sup 1} reverse shock heats dense ejecta clumps to temperatures around 3 10{sup 4} K relatively quickly, which then become optically bright while more diffuse ejecta become X-ray bright on longer timescales. Highly inhomogeneous ejecta as proposed here for Cas A may help explain some of the X-ray/optical emission features seen in other young core-collapse supernova remnants.

  1. Low energy X-ray emission from five galaxy cluster sources

    NASA Technical Reports Server (NTRS)

    Reichert, G.; Mason, K. O.; Charles, P. A.; Bowyer, S.; Lea, S. M.; Pravdo, S.

    1981-01-01

    We report the detection of soft (0.2-2.5 keV) X-ray emission from several known cluster X-ray sources using the low energy detectors of the HEAO 1 A-2 experiment. Soft X-ray emission was observed from five clusters - the Centaurus cluster, Abell 2147, SC 1329-314, Abell 2319, and Abell 133. Spectral parameters estimated from the soft X-ray fluxes are inconsistent with those reported at higher energies for the Centaurus cluster, Abell 2147, and SC 1329-314, indicating the presence of more than one spectral component in these clusters. No evidence for more than one component was found for either Abell 2319 or Abell 133. The temperature of Abell 133 is constrained to be less than 2 x 10 to the 7th K, making it the coolest X-ray cluster yet detected.

  2. X-Ray Emission from Ultraviolet Luminous Galaxies and Lyman Break Galaxies

    NASA Technical Reports Server (NTRS)

    Hornschemeier, Ann; Ptak, A. F.; Salim, S.; Heckman, T. P.; Overzier, R.; Mallery, R.; Rich, M.; Strickland, D.; Grimes, J.

    2009-01-01

    We present results from an XMM mini-survey of GALEX-selected Ultraviolet-Luminous Galaxies (UVLGs) that appear to include an interesting subset that are analogs to the distant (3X-ray emission of LBGs appear to be broadly similar to that of galaxies in the local Universe, possibly indicating similarity in the production of accreting binaries over large evolutionary timescales in the Universe. We have detected luminous X-ray emission from one UVLG that permits basic X-ray spectroscopic analysis, and have direct X-ray constraints on a total of 6 UVLGs. We find evidence for likely large scatter in the assumed X-ray/star-formation rate relation for LBGs.

  3. Suzaku Detection of Diffuse Hard X-Ray Emission Outside Vela X

    NASA Technical Reports Server (NTRS)

    Katsuda, Satoru; Mori, Koji; Petre, Robert; Yamaguchi, Hiroya; Tsunemi, Hiroshi; Bocchino, Fabrizio; Bamba, Aya; Miceli, Marco; Hewitt, John W.; Temim, Tea; Uchida, Hiroyuki; Yoshii, Rie

    2011-01-01

    Vela X is a large, 3 deg x 2 deg, radio-emitting pulsar wind nebula (PWN) powered by the Vela pulsar in the Vela supernova remnant. Using four Suzaku/XIS observations pointed just outside Vela X, we find hard X-ray emission extending throughout the fields of view. The hard X-ray spectra are well represented by a power-law. The photon index is measured to be constant at Gamma approximates 2.4, similar to that of the southern outer part of Vela X. The power-law flux decreases with increasing distance from the pulsar. These properties lead us to propose that the hard X-ray emission is associated with the Vela PWN. The larger X-ray extension found in this work strongly suggests that distinct populations relativistic electrons form the X-ray PWN and Vela X, as was recently inferred from multiwavelength spectral modeling of Vela X.

  4. The association of solar millisecond radio spikes with hard X-ray emission

    NASA Technical Reports Server (NTRS)

    Guedel, M.; Benz, A. O.; Aschwanden, M. J.

    1991-01-01

    Conventional observational data regarding solar millisecond spikes are compared with data gathered simultaneously in the hard X-ray band by means of a statistical analysis. The analysis considers the association rate, correlation degree, and relative time delays between hard X-ray emissions (in the 25-438 keV range) and radio-spike events. About 95 percent of the radio-spike bursts occur during impulsive hard X-ray bursts, and approximately 43 percent of the compared events are characterized by hard X-ray time profiles that mimic the concentration of simultaneous radio spikes. The delay of the radio emission with respect to the hard X-ray bursts puts some constraints on the acceleration and propagation of particles. The time delays and the quantization into discrete radio events are theorized to be caused by the operation of the accelerator.

  5. Carbon nanotube based microfocus field emission x-ray source for microcomputed tomography

    SciTech Connect

    Liu Zejian; Yang Guang; Lee, Yueh Z.; Bordelon, David; Lu Jianping; Zhou, Otto

    2006-09-04

    Microcomputed tomography is now widely used for in vivo small animal imaging for cancer studies. Achieving high imaging quality of live objects requires the x-ray source to have both high spatial and temporal resolutions. Preliminary studies have shown that carbon nanotube (CNT) based field emission x-ray source has significant intrinsic advantages over the conventional thermionic x-ray tube including better temporal resolution and programmability. Here we report the design and characterization of a CNT based field emission x-ray source that also affords a high spatial resolution. The device uses modified asymmetric Einzel lenses for electron focusing and an elliptical shaped CNT cathode patterned by photolithography. Stable and small isotropic x-ray focal spot sizes were obtained.

  6. A Comprehensive Archival Chandra Search for X-Ray Emission from Ultracompact Dwarf Galaxies

    NASA Astrophysics Data System (ADS)

    Pandya, Viraj; Mulchaey, John; Greene, Jenny E.

    2016-03-01

    We present the first comprehensive archival study of the X-ray properties of ultracompact dwarf (UCD) galaxies, with the goal of identifying weakly accreting central black holes in UCDs. Our study spans 578 UCDs distributed across 13 different host systems, including clusters, groups, fossil groups, and isolated galaxies. Of the 336 spectroscopically confirmed UCDs with usable archival Chandra imaging observations, 21 are X-ray-detected. Imposing a completeness limit of {L}X\\gt 2× {10}38 erg s‑1, the global X-ray detection fraction for the UCD population is ∼ 3%. Of the 21 X-ray-detected UCDs, seven show evidence of long-term X-ray time variability on the order of months to years. X-ray-detected UCDs tend to be more compact than non-X-ray-detected UCDs, and we find tentative evidence that the X-ray detection fraction increases with surface luminosity density and global stellar velocity dispersion. The X-ray emission of UCDs is fully consistent with arising from a population of low-mass X-ray binaries (LMXBs). In fact, there are fewer X-ray sources than expected using a naive extrapolation from globular clusters. Invoking the fundamental plane of black hole activity for SUCD1 near the Sombrero galaxy, for which archival Jansky Very Large Array imaging at 5 GHz is publicly available, we set an upper limit on the mass of a hypothetical central black hole in that UCD to be ≲ {10}5{M}ȯ . While the majority of our sources are likely LMXBs, we cannot rule out central black holes in some UCDs based on X-rays alone, and so we address the utility of follow-up radio observations to find weakly accreting central black holes.

  7. [C ii] emission from galactic nuclei in the presence of X-rays

    NASA Astrophysics Data System (ADS)

    Langer, W. D.; Pineda, J. L.

    2015-08-01

    Context. The luminosity of [C ii] is used as a probe of the star formation rate in galaxies, but the correlation breaks down in some active galactic nuclei (AGNs). Models of the [C ii] emission from galactic nuclei do not include the influence of X-rays on the carbon ionization balance, which may be a factor in reducing the [C ii] luminosity. Aims: We aim to determine the properties of the ionized carbon and its distribution among highly ionized states in the interstellar gas in galactic nuclei under the influence of X-ray sources. We calculate the [C ii] luminosity in galactic nuclei under the influence of bright sources of soft X-rays. Methods: We solve the balance equation of the ionization states of carbon as a function of X-ray flux, electron, atomic hydrogen, and molecular hydrogen density. These are input to models of [C ii] emission from the interstellar medium (ISM) in galactic nuclei representing conditions in the Galactic central molecular zone and a higher density AGN model. The behavior of the [C ii] luminosity is calculated as a function of the X-ray luminosity. We also solve the distribution of the ionization states of oxygen and nitrogen in highly ionized regions. Results: We find that the dense warm ionized medium (WIM) and dense photon dominated regions (PDRs) dominate the [C ii] emission when no X-rays are present. The X-rays in galactic nuclei can affect strongly the C+ abundance in the WIM, converting some fraction to C2+ and higher ionization states and thus reducing its [C ii] luminosity. For an X-ray luminosity L(X-ray) ≳ 1043 erg s-1 the [C ii] luminosity can be suppressed by a factor of a few, and for very strong sources, L(X-ray) >1044 erg s-1 such as found for many AGNs, the [C ii] luminosity is significantly depressed. Comparison of the model with several extragalactic sources shows that the [C ii] to far-infrared ratio declines for L(X-ray) ≳ 1043 erg s-1, in reasonable agreement with our model. Conclusions: We conclude that X-rays can suppress the C+ abundance and, therefore, the [C ii] luminosity of the ISM in active galactic nuclei with a large X-ray flux. The X-ray flux can arise from a central massive accreting black hole and/or from many smaller discrete sources distributed throughout the nuclei. We also find that the lower ionization states of nitrogen and oxygen are also suppressed at high X-ray fluxes in warm ionized gas.

  8. The Chandra Planetary Nebula Survey (CHANPLANS). II. X-Ray Emission from Compact Planetary Nebulae

    NASA Astrophysics Data System (ADS)

    Freeman, M.; Montez, R., Jr.; Kastner, J. H.; Balick, B.; Frew, D. J.; Jones, D.; Miszalski, B.; Sahai, R.; Blackman, E.; Chu, Y.-H.; De Marco, O.; Frank, A.; Guerrero, M. A.; Lopez, J. A.; Zijlstra, A.; Bujarrabal, V.; Corradi, R. L. M.; Nordhaus, J.; Parker, Q. A.; Sandin, C.; Schnberner, D.; Soker, N.; Sokoloski, J. L.; Steffen, M.; Toal, J. A.; Ueta, T.; Villaver, E.

    2014-10-01

    We present results from the most recent set of observations obtained as part of the Chandra X-ray observatory Planetary Nebula Survey (CHANPLANS), the first comprehensive X-ray survey of planetary nebulae (PNe) in the solar neighborhood (i.e., within ~1.5 kpc of the Sun). The survey is designed to place constraints on the frequency of appearance and range of X-ray spectral characteristics of X-ray-emitting PN central stars and the evolutionary timescales of wind-shock-heated bubbles within PNe. CHANPLANS began with a combined Cycle 12 and archive Chandra survey of 35 PNe. CHANPLANS continued via a Chandra Cycle 14 Large Program which targeted all (24) remaining known compact (R neb <~ 0.4 pc), young PNe that lie within ~1.5 kpc. Results from these Cycle 14 observations include first-time X-ray detections of hot bubbles within NGC 1501, 3918, 6153, and 6369, and point sources in HbDs 1, NGC 6337, and Sp 1. The addition of the Cycle 14 results brings the overall CHANPLANS diffuse X-ray detection rate to ~27% and the point source detection rate to ~36%. It has become clearer that diffuse X-ray emission is associated with young (lsim 5 103 yr), and likewise compact (R neb <~ 0.15 pc), PNe with closed structures and high central electron densities (ne >~ 1000 cm-3), and is rarely associated with PNe that show H2 emission and/or pronounced butterfly structures. Hb 5 is one such exception of a PN with a butterfly structure that hosts diffuse X-ray emission. Additionally, two of the five new diffuse X-ray detections (NGC 1501 and NGC 6369) host [WR]-type central stars, supporting the hypothesis that PNe with central stars of [WR]-type are likely to display diffuse X-ray emission.

  9. X-ray emission of hot subdwarf stars

    NASA Astrophysics Data System (ADS)

    La Palombara, Nicola

    2011-10-01

    While several hot subdwarf stars have been deeply investigated in the optical and UV domain, only the sdO stars HD49798 and BD+37 442 have been detected at X-rays. In both cases the measured value of log(fx/fbol) is about -7, in agreement with the average value found in the standard OB stars: therefore it is interesting to investigate if this is a common property of the sdO stars. To this aim, we propose to observe with XMM-Newton the sdO stars BD+28 4211, BD+75 325, BD+37 1977 and BD-03 2179, since they are the best candidate to perform this type of search: they are optically bright (V = 9-10) and are characterized by a high temperature (Teff > 45000 K), thus implying an estimated X-ray flux high enough to be detectable with a XMM-Newton observation.

  10. Alpha Particle Induced X-ray Emission in the Classroom

    SciTech Connect

    Lopez, Jorge A.; Borunda, Mario F.; Morales, Jaime

    2003-08-26

    We report on an experimental demonstration in an introductory modern physics course to elucidate the X-ray line spectra, and how they arise from transitions of electrons to inner shells. We seek to determine the effect of limited use of an interactive component as a supplement to a traditional lecture, and how it would improve the student achievement. In this preliminary study the students were exposed to traditional lectures on X-ray production and Bohr's model, they then were given a homework on the abc of X-ray spectra, after which they were given a pre-test on the materials, followed by an in-class demonstration, and a final post-exam. The gain, as measured from pre- to post-exams appears to remark the differences in how students approached the subject before and after the use of the demonstration. This initial study shows the validity of in-class demonstrations as teaching tools and opens a wide new area of research in modern physics teaching.

  11. Soft X-ray, microwave, and hard X-ray emission from a solar flare - Implications for electron heating and acceleration in current channels

    NASA Technical Reports Server (NTRS)

    Holman, Gordon D.; Kundu, Mukul R.; Kane, Sharad R.

    1989-01-01

    The soft X-ray, microwave, and hard X-ray emissions from the solar flare of May 14, 1980 are studied. The flare consists of a gradual component in soft X-rays and microwaves and a superposed impulsive burst accompanied by hard X-ray emission. The impulsive phase of the flare appears in the soft X-ray emission as a temperature spike and as an increased rate of energy dissipation into the plasma. A new, spatially and spectrally distinct, microwave component appears during the impulsive burst. The data are interpreted in terms of Joule heating and the electric field acceleration of electrons in one or more current sheets. It is found that all three emissions can be generated with sub-Dreicer electric fields. The soft X-ray emitting plasma can be heated by a single current sheet only if the resistivity in the sheet is well above the classical, collisional resistivity. Conditions are also given for the hard X-ray emission to be from nonthermal electrons with classical resistivity.

  12. A unified model of accretion flows and X ray emission in low mass X ray binary systems

    NASA Technical Reports Server (NTRS)

    Lamb, F. K.

    1989-01-01

    Recent work on a unified model of accretion flows and X-ray emission in low mass X-ray binaries is summarized. In this model, a weakly magnetic neutron star accretes gas simultaneously from a Keplerian disk and a corona above the inner part of the disk. Photons are produced and escape through an approximately radial inflow of gas captured from the inner disk corona. Changes in the optical depths of the central corona and the radial flow may explain the Z-shaped hardness-intensity and color-color tracks observed in the most luminous sources. Numerical simulations show that the radial flow oscillates when the luminosity rises to within a few percent of the Eddington critical luminosity L sub E, and that the oscillation frequency is approximately 5 to 10 Hz if the radial flow develops approximately 300 km from the neutron star. The 10 to 20 Hz oscillations observed in Sco X-1 when it is on the flaring branch are discussed.

  13. Deciphering the X-ray Emission of the Nearest Herbig Ae Star

    NASA Technical Reports Server (NTRS)

    Skinner, Stephen L.

    2004-01-01

    In this research program, we obtained and analyzed an X-ray observation of the young nearby intermediate mass pre-main sequence star HD 104237 using the XMM-Newton space-based observatory. The observation was obtained on 17 Feb. 2002. This observation yielded high-quality X-ray images, spectra, and timing data which provided valuable information on the physical processes responsible for the X-ray emission. This star is a member of the group of so-called Herbig Ae/Be stars, which are young intermediate mass (approx. 2 - 4 solar masses) pre-main sequence (PMS) stars a few million years old that have not yet begun core hydrogen burning. The objective of the XMM-Newton observation was to obtain higher quality data than previously available in order to constrain possible X-ray emission mechanisms. The origin of the X-ray emission from Herbig Ae/Be stars is not yet known. These intermediate mass PMS stars lie on radiative tracks and are not expected to emit X-rays via solar-like magnetic processes, nor are their winds powerful enough to produce X-rays by radiative wind shocks as in more massive O-type stars. The emission could originate in unseen low-mass companions, or it may be intrinsic to the Herbig stars themselves if they still have primordial magnetic fields or can sustain magnetic activity via a nonsolar dynamo.

  14. Extended X-ray emission from a quasar-driven superbubble

    SciTech Connect

    Greene, Jenny E.; Sun, Ai-Lei; Pooley, David; Zakamska, Nadia L.; Comerford, Julia M.

    2014-06-10

    We present observations of extended, 20 kpc scale soft X-ray gas around a luminous obscured quasar hosted by an ultraluminous infrared galaxy caught in the midst of a major merger. The extended X-ray emission is well fit as a thermal gas with a temperature of kT ≈280 eV and a luminosity of L {sub X} ≈ 10{sup 42} erg s{sup –1} and is spatially coincident with a known ionized gas outflow. Based on the X-ray luminosity, a factor of ∼10 fainter than the [O III] emission, we conclude that the X-ray emission is either dominated by photoionization, or by shocked emission from cloud surfaces in a hot quasar-driven wind.

  15. Laboratory simulation of charge exchange-produced X-ray emission from comets.

    PubMed

    Beiersdorfer, P; Boyce, K R; Brown, G V; Chen, H; Kahn, S M; Kelley, R L; May, M; Olson, R E; Porter, F S; Stahle, C K; Tillotson, W A

    2003-06-01

    In laboratory experiments using the engineering spare microcalorimeter detector from the ASTRO-E satellite mission, we recorded the x-ray emission of highly charged ions of carbon, nitrogen, and oxygen, which simulates charge exchange reactions between heavy ions in the solar wind and neutral gases in cometary comae. The spectra are complex and do not readily match predictions. We developed a charge exchange emission model that successfully reproduces the soft x-ray spectrum of comet Linear C/1999 S4, observed with the Chandra X-ray Observatory. PMID:12791989

  16. Spectral Diagnostics of Galactic and Stellar X-Ray Emission from Charge Exchange Recombination

    NASA Technical Reports Server (NTRS)

    Wargelin, B.

    2002-01-01

    The proposed research uses the electron beam ion trap at the Lawrence Livermore National Laboratory (LLNL) to study X-ray emission from charge-exchange recombination of highly charged ions with neutral gases. The resulting data fill a void in existing experimental and theoretical understanding of this atomic physics process, and are needed to explain all or part of the observed X-ray emission from the soft X-ray background, stellar winds, the Galactic Center, supernova ejecta, and photoionized nebulae. Progress made during the first year of the grant is described, as is work planned for the second year.

  17. Comparison of solar flare emission measures from broadband soft X-ray and ultraviolet spectrograph observations

    NASA Astrophysics Data System (ADS)

    Cook, J. W.; Waljeski, K.; Moses, D.; Bruechner, G. E.

    Joint observations of a solar flare were obtained by the American Science & Engineering (AS&E) Imaging X-ray Telescope and the Naval Research Laboratory (NRL) High Resolution Telescope and Spectrograph (HRTS). We compare emission measurements from soft X-ray and HRTS data. A small isolated X-ray loop close to the HRTS slit position has an emission meausure ne(squared) Delta L of (3.5 x 1029/cm5, compared to an emssion measure of 2.7 x 1029/cm5 obtained from the intensity of flaring Fe XXI 1354 A plasma along the HRTS slit.

  18. Chandra Detection of X-Ray Emission from Ultracompact Dwarf Galaxies and Extended Star Clusters

    NASA Astrophysics Data System (ADS)

    Hou, Meicun; Li, Zhiyuan

    2016-03-01

    We have conducted a systematic study of X-ray emission from ultracompact dwarf (UCD) galaxies and extended star clusters (ESCs), based on archival Chandra observations. Among a sample of 511 UCDs and ESCs complied from the literature, 17 X-ray counterparts with 0.5–8 keV luminosities above ∼5 × 1036 erg s‑1 are identified, which are distributed in eight early-type host galaxies. To facilitate comparison, we also identify X-ray counterparts of 360 globular clusters (GCs) distributed in four of the eight galaxies. The X-ray properties of the UCDs and ESCs are found to be broadly similar to those of the GCs. The incidence rate of X-ray-detected UCDs and ESCs, 3.3% ± 0.8%, while lower than that of the X-ray-detected GCs (7.0% ± 0.4%), is substantially higher than expected from the field populations of external galaxies. A stacking analysis of the individually undetected UCDs/ESCs further reveals significant X-ray signals, which corresponds to an equivalent 0.5–8 keV luminosity of ∼4 × 1035 erg s‑1 per source. Taken together, these provide strong evidence that the X-ray emission from UCDs and ESCs is dominated by low-mass X-ray binaries having formed from stellar dynamical interactions, consistent with the stellar populations in these dense systems being predominantly old. For the most massive UCDs, there remains the possibility that a putative central massive black hole gives rise to the observed X-ray emission.

  19. Spectral Diagnostics of Galactic and Stellar X-Ray Emission from Charge Exchange Recombination

    NASA Technical Reports Server (NTRS)

    Wargelin, B.

    2003-01-01

    The proposed research uses the electron beam ion trap at the Lawrence Livermore National Laboratory to study the X-ray emission from charge-exchange recombination of highly charged ions with neutral gases. The resulting data fill a void in the existing experimental and theoretical data and are needed to explain all or part of the observed X-ray emission from the Galactic Ridge, solar and stellar winds, the Galactic Center, supernova ejecta, and photoionized nebulae.

  20. X-ray Imaging and preliminary studies of the X-ray self-emission from an innovative plasma-trap based on the Bernstein waves heating mechanism

    NASA Astrophysics Data System (ADS)

    Caliri, C.; Romano, F. P.; Mascali, D.; Gammino, S.; Musumarra, A.; Castro, G.; Celona, L.; Neri, L.; Altana, C.

    2013-10-01

    Electron Cyclotron Resonance Ion Sources (ECRIS) are based on ECR heated plasmas emitting high fluxes of X-rays. Here we illustrate a pilot study of the X-ray emission from a compact plasma-trap in which an off-resonance microwave-plasma interaction has been attempted, highlighting a possible Bernstein-Waves based heating mechanism. EBWs-heating is obtained via the inner plasma EM-to-ES wave conversion and enables to reach densities much larger than the cut-off ones. At LNS-INFN, an innovative diagnostic technique based on the design of a Pinhole Camera (PHC) coupled to a CCD device for X-ray Imaging of the plasma (XRI) has been developed, in order to integrate X-ray traditional diagnostics (XRS). The complementary use of electrostatic probes measurements and X-ray diagnostics enabled us to gain knowledge about the high energy electrons density and temperature and about the spatial structure of the source. The combination of the experimental data with appropriate modeling of the plasma-source allowed to estimate the X-ray emission intensity in different energy domains (ranging from EUV up to Hard X-rays). The use of ECRIS as X-ray source for multidisciplinary applications, is now a concrete perspective due to the intense fluxes produced by the new plasma heating mechanism.

  1. Energetics and timing of the hard and soft X-ray emissions in white light flares

    NASA Technical Reports Server (NTRS)

    Neidig, Donald F.; Kane, Sharad R.

    1993-01-01

    By comparing the light curves in optical, hard X-ray, and soft X-ray wavelengths for eight well-observed flares, we confirm previous results indicating that the white light flare (WLF) is associated with the flare impulsive phase. The WLF emission peaks within seconds after the associated hard X-ray peak, and nearly two minutes before the 1-8 A soft X-ray peak. It is further shown that the peak power in nonthermal electrons above 50 keV is typically an order of magnitude larger, and the power in 1-8 A soft X-rays radiated over 2pi sr, at the time of the WLF peak, is an order of magnitude smaller than the peak WLF power.

  2. Discovery of Oxygen Kalpha X-ray Emission from the Rings of Saturn

    NASA Technical Reports Server (NTRS)

    Bhardwaj, Anil; Elsner, Ronald F.; Waite, J. Hunter, Jr.; Gladstone, G Randall; Cravens, Thomas E.; Ford, Peter G.

    2005-01-01

    Using the Advanced CCD Imaging Spectrometer (ACIS), the Chandra X-ray Observatory (CXO) observed the Saturnian system for one rotation of the planet (approx.37 ks) on 20 January, 2004, and again on 26-27 January, 2004. In this letter we report the detection of X-ray emission from the rings of Saturn. The X-ray spectrum from the rings is dominated by emission in a narrow (approx.130 eV wide) energy band centered on the atomic oxygen Ka fluorescence line at 0.53 keV. The X-ray power emitted from the rings in the 0.49-0.62 keV band is about one-third of that emitted from Saturn disk in the photon energy range 0.24-2.0 keV. Our analysis also finds a clear detection of X-ray emission from the rings in the 0.49-0.62 keV band in an earlier (14-15 April, 2003) Chandra ACIS observation of Saturn. Fluorescent scattering of solar X-rays from oxygen atoms in the H20 icy ring material is the likely source mechanism for ring X-rays, consistent with the scenario of solar photo-production of a tenuous ring oxygen atmosphere and ionosphere recently discovered by Cassini.

  3. Generation Mechanisms UV and X-ray Emissions During SL9 Impact

    NASA Technical Reports Server (NTRS)

    Waite, J. Hunter, Jr.

    1997-01-01

    The purpose of this grant was to study the ultraviolet and X-ray emissions associated with the impact of comet Shoemaker-Levy 9 with Jupiter. The University of Michigan task was primarily focused on theoretical calculations. The NAGW-4788 subtask was to be largely devoted to determining the constraints placed by the X-ray observations on the physical mechanisms responsible for the generation of the X-rays. Author summarized below the ROSAT observations and suggest a physical mechanism that can plausibly account for the observed emissions. It is hoped that the full set of activities can be completed at a later date. Further analysis of the ROSAT data acquired at the time of the impact was necessary to define the observational constraints on the magnetospheric-ionospheric processes involved in the excitation of the X-ray emissions associated with the fragment impacts. This analysis centered around improvements in the pointing accuracy and improvements in the timing information. Additional pointing information was made possible by the identification of the optical counterparts to the X-ray sources in the ROSAT field-of-view. Due to the large number of worldwide observers of the impacts, a serendipitous visible plate image from an observer in Venezuela provided a very accurate location of the present position of the X-ray source, virtually eliminating pointing errors in the data. Once refined, the pointing indicated that the two observed X-ray brightenings that were highly correlated in time with the K and P2 events were brightenings of the X-ray aurora (as identified in images prior to the impact).Appendix A "ROSAT observations of X-ray emissions from Jupiter during the impact of comet Shoemaker-Levy 9' also included.

  4. X-Ray Emission in Non-AGN Galaxies at z &8771 1

    NASA Astrophysics Data System (ADS)

    Chatterjee, Suchetana; Newman, Jeffrey A.; Jeltema, Tesla; Myers, Adam D.; Aird, James; Bundy, Kevin; Conselice, Christopher; Cooper, Michael; Laird, Elise; Nandra, Kirpal; Willmer, Christopher

    2015-06-01

    Using data from the DEEP2 galaxy redshift survey and the All Wavelength Extended Groth Strip International Survey we obtain stacked X-ray maps of galaxies at 0.7?slant z?slant 1.0 as a function of stellar mass. We compute the total X-ray counts of these galaxies and show that in the soft band (0.5-2 kev) there exists a significant correlation between galaxy X-ray counts and stellar mass at these redshifts. The best-fit relation between X-ray counts and stellar mass can be characterized by a power law with a slope of 0.58 0.1. We do not find any correlation between stellar mass and X-ray luminosities in the hard (2-7 kev) and ultra-hard (4-7 kev) bands. The derived hardness ratios of our galaxies suggest that the X-ray emission is degenerate between two spectral models, namely point-like power-law emission and extended plasma emission in the interstellar medium. This is similar to what has been observed in low redshift galaxies. Using a simple spectral model where half of the emission comes from power-law sources and the other half from the extended hot halo we derive the X-ray luminosities of our galaxies. The soft X-ray luminosities of our galaxies lie in the range 1039-8 {{10}40} erg s-1. Dividing our galaxy sample by the criteria U-B\\gt 1, we find no evidence that our results for X-ray scaling relations depend on optical color.

  5. Contour shape analysis of hollow ion x-ray emission

    SciTech Connect

    Rosmej, F. B.; Angelo, P.; Aouad, Y.

    2008-10-22

    Hollow ion x-ray transitions originating from the configurations K{sup 0}L{sup N} have been studied via relativistic atomic structure and Stark broadening calculations. The broadening of the total contour is largely influenced by the oscillator strengths distribution over wavelengths rather than by Stark broadening alone. Interference effects between the upper and lower levels are shown to result in a considerable contour narrowing as well as in a shift of the total contour which could be either red or blue.

  6. Recurrent X-ray Emission Variations of Eta Carinae and the Binary Hypothesis

    NASA Technical Reports Server (NTRS)

    Ishibashi, K.; Corcoran, M. F.; Davidson, K.; Swank, J. H.; Petre, R.; Drake, S. A.; Damineki, A.; White, S.

    1998-01-01

    Recent studies suggest that, the super-massive star eta Carinae may have a massive stellar companion (Damineli, Conti, and Lopes 1997), although the dense ejecta surrounding the star make this claim hard to test using conventional methods. Settling this question is critical for determining the current evolutionary state and future evolution of the star. We address this problem by an unconventional method: If eta Carinae is a binary, X-ray emission should be produced in shock waves generated by wind-wind collisions in the region between eta Carinae and its companion. Detailed X-ray monitoring of eta Carinae for more that) 2 years shows that the observed emission generally resembles colliding-wind X-ray emission, but with some significant discrepancies. Furthermore, periodic X-ray "flaring" may provide an additional clue to determine the presence of a companion star and for atmospheric pulsation in eta Carinae.

  7. An archival study of extended X-ray emission from classical and recurrent novae

    NASA Astrophysics Data System (ADS)

    Balman, ?len

    2006-01-01

    I discuss morphology and spectrum of the first resolved and detected classical nova shell in the X-rays - the remnant of GK Persei (1901). The existence of such a nebulosity brings about the possibility of other nova remnants emitting X-rays. I calculate that the X-ray luminosity should be about 10 26-10 33 ergs s -1 on the onset of cooling for nova remnants. I have done an archival search on 250 classical and recurrent nova candidates using Chandra, XMM-Newton, ROSAT and ASCA databases. There is no significant extended emission detected which places an upper limit of Fx < 10 -12 erg s -1 cm -2 (unabsorbed). Only exceptions are GK Per, RR Pic and DQ Her (all observed by Chandra ACIS-S and GK Per also by ROSAT HRI) where the latter two show marginal extended emission in the X-rays associated with emission knots (DQ Her) or an equatorial ring (RR Pic).

  8. Gas flow and generation of x ray emission in WR+OB binaries

    NASA Technical Reports Server (NTRS)

    Usov, V. V.

    1991-01-01

    The supersonic flow of the ionized gas in WR+OB binaries and X-ray generation are considered. X-ray emission is caused by gas heating up to temperatures of 10(exp 7) to 10(exp 8) K behind the front of shock waves. These are found in the collision of gas flowing out from the WR star with either the OB star's surface or the gas of the OB star's wind. The distribution of temperature and concentration behind the shock front are obtained. Using these distributions, the spectral power of bremsstrahlung X-ray emission of hot gas is calculated. Possible reasons that lead to a considerable difference between the observed parameters of X-ray emission of the WR binary of V 444 Cygni and the theoretically expected are discussed.

  9. Non-thermal Hard X-Ray Emission from Coma and Several Abell Clusters

    SciTech Connect

    Correa, C

    2004-02-05

    We report results of hard X-Ray observations of the clusters Coma, Abell 496, Abell754, Abell 1060, Abell 1367, Abell2256 and Abell3558 using RXTE data from the NASA HEASARC public archive. Specifically we searched for clusters with hard x-ray emission that can be fitted by a power law because this would indicate that the cluster is a source of non-thermal emission. We are assuming the emission mechanism proposed by Vahk Petrosian where the inter cluster space contains clouds of relativistic electrons that by themselves create a magnetic field and emit radio synchrotron radiation. These relativistic electrons Inverse-Compton scatter Microwave Background photons up to hard x-ray energies. The clusters that were found to be sources of non-thermal hard x-rays are Coma, Abell496, Abell754 and Abell 1060.

  10. Waiting in the Wings: Reflected X-ray Emission from the Homunculus Nebula

    NASA Technical Reports Server (NTRS)

    Corcoran, M. F.; Hamaguchi, K.; Gull, T.; Davidson, K.; Petre, R.; Hillier, D. J.; Smith, N.; Damineli, A.; Morse, J. A.; Walborn, N. R.

    2004-01-01

    We report the first detection of X-ray emission associated with the Homunculus Nebula which surrounds the supermassive star eta Carinae. The emission is characterized by a temperature in excess of 100 MK, and is consistent with scattering of the time-delayed X-ray flux associated with the star. The nebular emission is bright in the northwestern lobe and near the central regions of the Homunculus, and fainter in the southeastern lobe. We also report the detection of an unusually broad Fe K fluorescent line, which may indicate fluorescent scattering off the wind of a companion star or some other high velocity outflow. The X-ray Homunculus is the nearest member of the small class of Galactic X-ray reflection nebulae, and the only one in which both the emitting and reflecting sources are distinguishable.

  11. High-resolution X-ray Emission Spectroscopy as a Microprobe Imaging Modality

    NASA Astrophysics Data System (ADS)

    Pacold, Joseph; Seidler, Gerald; Mattern, Brian; Haave, Matthew; Gordon, Robert

    2011-03-01

    Hard x-ray microprobe beamlines at third generation light sources have made significant impacts in several fields of science and technology. Such facilities permit rapid 2-dimensional studies of multiphase materials on submicron length scales using a variety of pixel-by-pixel imaging modalities (e.g., x-ray diffraction, x-ray absorption near edge fine structure, or x-ray fluorescence). Here, we aim to expand hard x-ray microprobe imaging modalities to include high-resolution x-ray emission spectroscopy (XES). When performed at 1-eV resolution, such measurements can provide quite direct atomic-level information on ionic valence, spin, and local electronic and chemical environment. Ongoing work in our research group has improved the efficiency of XES via the development of a new type of compact and inexpensive x-ray spectrometer design, the ``miniature x-ray spectrometer'' or ``miniXS'' paradigm. We will report preliminary 2-dimensional XES studies of planar multiphase materials, with specific applications to samples of interest for geophysics and catalysis science. Supported by the U.S. Department of Energy Office of Basic Energy Sciences.

  12. Catalytic action of {beta} source on x-ray emission from plasma focus

    SciTech Connect

    Ahmad, S.; Sadiq, Mehboob; Hussain, S.; Shafiq, M.; Zakaullah, M.; Waheed, A.

    2006-01-15

    The influence of preionization around the insulator sleeve by a mesh-type {beta} source ({sub 28}Ni{sup 63}) for the x-ray emission from a (2.3-3.9 kJ) plasma focus device is investigated. Quantrad Si p-i-n diodes along with suitable filters are employed as time-resolved x-ray detectors and a multipinhole camera with absorption filters is used for time-integrated analysis. X-ray emission in 4{pi} geometry is measured as a function of argon and hydrogen gas filling pressures with and without {beta} source at different charging voltages. It is found that the pressure range for the x-ray emission is broadened, x-ray emission is enhanced, and shot to shot reproducibility is improved with the {beta} source. With argon, the Cu K{alpha} emission is estimated to be 27.14 J with an efficiency of 0.7% for {beta} source and 21.5 J with an efficiency of 0.55% without {beta} source. The maximum x-ray yield in 4{pi} geometry is found to be about 68.90 J with an efficiency of 1.8% for {beta} source and 54.58 J with an efficiency of 1.4% without {beta} source. With hydrogen, Cu K{alpha} emission is 11.82 J with an efficiency of 0.32% for {beta} source and 10.07 J with an efficiency of 0.27% without {beta} source. The maximum x-ray yield in 4{pi} geometry is found to be 30.20 J with an efficiency of 0.77% for {beta} source and 25.58 J with an efficiency of 0.6% without {beta} source. The x-ray emission with Pb insert at the anode tip without {beta} source is also investigated and found to be reproducible and significantly high. The maximum x-ray yield is estimated to be 46.6 J in 4{pi} geometry with an efficiency of 1.4% at 23 kV charging voltage. However, degradation of x-ray yield is observed when charging voltage exceeds 23 kV for Pb insert. From pinhole images it is observed that the x-ray emission due to the bombardment of electrons at the anode tip is dominant in both with and without {beta} source.

  13. SphinX MEASUREMENTS OF THE 2009 SOLAR MINIMUM X-RAY EMISSION

    SciTech Connect

    Sylwester, J.; Kowalinski, M.; Gburek, S.; Siarkowski, M.; Bakala, J.; Gryciuk, M.; Podgorski, P.; Sylwester, B.; Kuzin, S.; Farnik, F.; Reale, F.; Phillips, K. J. H.

    2012-06-01

    The SphinX X-ray spectrophotometer on the CORONAS-PHOTON spacecraft measured soft X-ray emission in the 1-15 keV energy range during the deep solar minimum of 2009 with a sensitivity much greater than GOES. Several intervals are identified when the X-ray flux was exceptionally low, and the flux and solar X-ray luminosity are estimated. Spectral fits to the emission at these times give temperatures of 1.7-1.9 MK and emission measures between 4 Multiplication-Sign 10{sup 47} cm{sup -3} and 1.1 Multiplication-Sign 10{sup 48} cm{sup -3}. Comparing SphinX emission with that from the Hinode X-ray Telescope, we deduce that most of the emission is from general coronal structures rather than confined features like bright points. For one of 27 intervals of exceptionally low activity identified in the SphinX data, the Sun's X-ray luminosity in an energy range roughly extrapolated to that of ROSAT (0.1-2.4 keV) was less than most nearby K and M dwarfs.

  14. A Study of the X-Ray Emission from Three Radio Pulsars

    NASA Technical Reports Server (NTRS)

    Slane, Patrick O. (Principal Investigator)

    1996-01-01

    The subject grant is for work on a study of x-ray emission from isolated pulsars. The purpose of the study was to: determine whether the pulsars were x-ray sources; and, if so, search for evidence of pulsations at the known radio period; and study the nature of the x-ray emission. Observation of the pulsar PSR 0355+54 were obtained, and the analysis of these data is complete. These results were reported at the 183rd AAS Meeting, and in a paper entitled 'X-Ray Emission from PSR 0355+54' which as published in the The Astrophysical Journal. Also obtained an approx. 3 ks PSPC observations of PSR 1642-03. A summary of the results from these data were reported in a Conference Proceedings for the 'New Horizon of X-ray Astronomy' symposium. In addition, as part of a study with a student from the SAO Summer Intern Program, I incorporated ROSAT archival data in an extended study of pulsar emission. These results were reported at the 185th AAS Meeting, and in a paper entitled 'Soft X-ray Emission from Selected Isolated Pulsars' which was published in The Astrophysical Journal (Letters).

  15. The Chandra Carina Complex Project: Introduction and Diffuse X-ray Emission

    NASA Astrophysics Data System (ADS)

    Townsley, Leisa K.; CCCP Team

    2011-05-01

    The Great Nebula in Carina provides an exceptional view into the violent massive star formation and feedback that typifies giant HII regions and starburst galaxies. We have mapped the Carina star-forming complex in X-rays, using archival Chandra data and a mosaic of 20 new 60-ks ACIS-I pointings, as a testbed for understanding recent and ongoing star formation and to probe Carina's regions of bright diffuse X-ray emission. This study has yielded a catalog of properties of >14,000 X-ray point sources; >9800 of them have multiwavelength counterparts. Using Chandra's unsurpassed X-ray spatial resolution, we have separated these point sources from the extensive, spatially-complex diffuse emission that pervades the region; X-ray properties of this diffuse emission suggest that it traces feedback from Carina's massive stars. Line-like correlated residuals in the diffuse emission spectral fits suggest that substantial X-ray emission is generated by charge exchange at the interfaces between Carina's hot, rarefied plasma and its many cold neutral pillars, ridges, and clumps.

  16. Superluminal radio sources - What does X-ray emission tell us?

    NASA Technical Reports Server (NTRS)

    Worrall, Diana M.

    1987-01-01

    In a study on superluminal radio sources, statistical relationships between X-ray, optical, and radio luminosities among different categories of active galactic nuclei are compared to search for common energy mechanisms. The X-ray versus optical and X-ray versus radio correlations of radio-loud QSOs and superluminal radio sources are found to be similar, arguing against a model in which the emission in only one or two of the three wave bands is relativistically boosted. A regression analysis shows that highly polarized QSOs and optically violently variable QSOs are more similar to other flat-spectrum, radio-loud QSOs than to BL Lac objects, and it is reasonable to assume that self-Compton emission dominates the X-ray emission from at least half of the sources in this class. The X-ray versus radio correlation for BL Lac objects is poor, and there is support for the hypothesis that their X-ray emission is dominated by an isotropic component which is not directly related to relativistically boosted radio emission.

  17. SphinX Measurements of the 2009 Solar Minimum X-Ray Emission

    NASA Astrophysics Data System (ADS)

    Sylwester, J.; Kowalinski, M.; Gburek, S.; Siarkowski, M.; Kuzin, S.; Farnik, F.; Reale, F.; Phillips, K. J. H.; Baka?a, J.; Gryciuk, M.; Podgorski, P.; Sylwester, B.

    2012-06-01

    The SphinX X-ray spectrophotometer on the CORONAS-PHOTON spacecraft measured soft X-ray emission in the 1-15 keV energy range during the deep solar minimum of 2009 with a sensitivity much greater than GOES. Several intervals are identified when the X-ray flux was exceptionally low, and the flux and solar X-ray luminosity are estimated. Spectral fits to the emission at these times give temperatures of 1.7-1.9 MK and emission measures between 4 1047 cm-3 and 1.1 1048 cm-3. Comparing SphinX emission with that from the Hinode X-ray Telescope, we deduce that most of the emission is from general coronal structures rather than confined features like bright points. For one of 27 intervals of exceptionally low activity identified in the SphinX data, the Sun's X-ray luminosity in an energy range roughly extrapolated to that of ROSAT (0.1-2.4 keV) was less than most nearby K and M dwarfs.

  18. BROADBAND SPECTRAL ANALYSIS OF THE GALACTIC RIDGE X-RAY EMISSION

    SciTech Connect

    Yuasa, Takayuki; Makishima, Kazuo; Nakazawa, Kazuhiro

    2012-07-10

    Detailed spectral analysis of the Galactic X-ray background emission, or the Galactic Ridge X-ray Emission (GRXE), is presented. To study the origin of the emission, broadband and high-quality GRXE spectra were produced from 18 pointing observations with Suzaku in the Galactic bulge region, with a total exposure of 1 Ms. The spectra were successfully fitted by a sum of two major spectral components: a spectral model of magnetic accreting white dwarfs with a mass of 0.66{sup +0.09}{sub -0.07} M{sub Sun} and a softer optically thin thermal emission with a plasma temperature of 1.2-1.5 keV that is attributable to coronal X-ray sources. When combined with previous studies that employed high spatial resolution of the Chandra satellite, the present spectroscopic result gives stronger support to the scenario that the GRXE is essentially an assembly of numerous discrete faint X-ray stars. The detected GRXE flux in the hard X-ray band was used to estimate the number density of the unresolved hard X-ray sources. When integrated over a luminosity range of {approx}10{sup 30}-10{sup 34} erg s{sup -1}, the result is consistent with a value that was reported previously by directly resolving faint point sources.

  19. AN XMM-NEWTON SURVEY OF THE SOFT X-RAY BACKGROUND. III. THE GALACTIC HALO X-RAY EMISSION

    SciTech Connect

    Henley, David B.; Shelton, Robin L.

    2013-08-20

    We present measurements of the Galactic halo's X-ray emission for 110 XMM-Newton sight lines selected to minimize contamination from solar wind charge exchange emission. We detect emission from few million degree gas on {approx}4/5 of our sight lines. The temperature is fairly uniform (median = 2.22 Multiplication-Sign 10{sup 6} K, interquartile range = 0.63 Multiplication-Sign 10{sup 6} K), while the emission measure and intrinsic 0.5-2.0 keV surface brightness vary by over an order of magnitude ({approx}(0.4-7) Multiplication-Sign 10{sup -3} cm{sup -6} pc and {approx}(0.5-7) Multiplication-Sign 10{sup -12} erg cm{sup -2} s{sup -1} deg{sup -2}, respectively, with median detections of 1.9 Multiplication-Sign 10{sup -3} cm{sup -6} pc and 1.5 Multiplication-Sign 10{sup -12} erg cm{sup -2} s{sup -1} deg{sup -2}, respectively). The high-latitude sky contains a patchy distribution of few million degree gas. This gas exhibits a general increase in emission measure toward the inner Galaxy in the southern Galactic hemisphere. However, there is no tendency for our observed emission measures to decrease with increasing Galactic latitude, contrary to what is expected for a disk-like halo morphology. The measured temperatures, brightnesses, and spatial distributions of the gas can be used to place constraints on models for the dominant heating sources of the halo. We provide some discussion of such heating sources, but defer comparisons between the observations and detailed models to a later paper.

  20. All the X-ray binaries in the Universe: X-ray Emission from Normal and Starburst Galaxies Near and Far

    NASA Astrophysics Data System (ADS)

    Hornschemeier, Ann; Basu-Zych, Antara; Lehmer, Bret

    2015-08-01

    There has recently been quite a bit of excitement on the role of X-ray emission from galaxies in early heating of the IGM, demonstrating that understanding of X-ray emission from normal and starburst galaxies may have significant impact on structure formation in the Universe. The X-ray output from X-ray binaries and hot gas are both important and may rival the ionizing output of AGN at z>5, particularly for Hydrogen reionization. Here we present our research on constraining the X-ray SED of galaxies across cosmic time via several complementary approaches. In the very local universe (d <~ 30 Mpc including the Local Group) we are using NuSTAR to understand the accretion states and total output of black hole and neutron star binaries using the important lever arm of 0.5-30 keV emission. At intermediate distances (10-100 Mpc), we are comparing the X-ray output of galaxies with star formation histories and population synthesis model predictions using both Chandra and XMM data. In the slightly more distant universe (z~0.1-0.2) we can find rare analogs to primordial starbursts via wide-field optical/UV surveys that may be studied with Chandra. We will finish with a discussion of starburst galaxies emitting X-rays at z>4, which thanks to the extremely deep Chandra Deep Field-South 7 Ms survey, are better constrained than ever before. We discuss survey strategy and how the various pieces of the puzzle fit together regarding the X-ray output of galaxies and their X-ray binary populations over cosmic time. We discuss implications for next-generation missions and instruments, including those with wide-field survey capabilities and high throughput, especially the Athena mission.

  1. Time-Resolved Imaging of Cryogenic Target X-Ray Emission at Peak Compression on OMEGA

    NASA Astrophysics Data System (ADS)

    Marshall, F. J.; Delettrez, J. A.; Epstein, R.; Goncharov, V. N.; Michel, D. T.; Sangster, T. C.; Stoeckl, C.

    2014-10-01

    This talk will describe the measurements of cryogenic target region size and time history inferred from the combination of a high-speed x-ray framing camera and two time-integrating x-ray microscopes. The high-speed framing camera infers the time of peak stagnation from pinhole images taken at 30-ps time intervals with 30-ps frame times and with ~15 μm resolution. The two Kirkpatrick-Baez-type x-ray microscopes have spatial resolutions of ~5 μm and ~7 μm respectively, and are currently time integrating. The inferred x-ray core size and emission time interval will be compared to the measured neutron emission time and to simulations of the experiments. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.

  2. Galactic Ridge X-ray Emission study with NuSTAR

    NASA Astrophysics Data System (ADS)

    Krivonos, Roman; NuSTAR

    2015-01-01

    The paradigm of the Galactic Ridge X-ray Emission (GRXE) or hard X-ray background of the Milky Way has been dramatically changed over the past years. The stellar origin of the GRXE has been strongly supported by morphological and spectral studies with RXTE, INTEGRAL and Chandra observatories. The GRXE does not arise from the interaction of cosmic rays with the interstellar medium, as was believed before, but is associated with the (predominantly old) stellar population of the Galaxy, namely with hard X-ray emission from accreting white dwarfs and coronaly active stars. I will present results of the GRXE spectral study with NuSTAR hard X-ray mission launched into the orbit in 2012. The GRXE measurements have been done in a part of the Galactic Center survey program 2012-2014. New data allow us to reconstruct both GRXE spatial distribution and broadband (3-80 keV) spectrum, providing another test for its interpretation.

  3. Association between gradual hard X-ray emission and metric continua during large flares

    NASA Technical Reports Server (NTRS)

    Klein, L.; Pick, M.; Trottet, G.; Vilmer, N.; Anderson, K.; Kane, S.

    1983-01-01

    X-ray radiation is used to study coronal phenomena in conjunction with meter wave observations during some large solar flares. It is found that metric flare continua and moving type IV bursts are associated with gradual and long lasting (a few tens of minutes) microwave and hard X-ray emissions. The detailed temporal analysis reveals that although metric and hard X-ray sources are located at very different heights, both kinds of emission result from a common and continuous/repetitive injection of electrons in the corona. The late part of the metric event (stationary type IV burst) is only associated with soft X-ray radiation. This indicates that the mean energy of the radiating electrons is lower during stationary type IV bursts than during the earlier parts of the event.

  4. A carbon nanotube field emission multipixel x-ray array source for microradiotherapy application

    PubMed Central

    Wang, Sigen; Calderon, Xiomara; Peng, Rui; Schreiber, Eric C.; Zhou, Otto; Chang, Sha

    2011-01-01

    The authors report a carbon nanotube (CNT) field emission multipixel x-ray array source for microradiotherapy for cancer research. The developed multipixel x-ray array source has 50 individually controllable pixels and it has several distinct advantages over other irradiation source including high-temporal resolution (millisecond level), the ability to electronically shape the form, and intensity distribution of the radiation fields. The x-ray array was generated by a CNT cathode array (510) chip with electron field emission. A dose rate on the order of >1.2 Gy?min per x-ray pixel beam is achieved at the center of the irradiated volume. The measured dose rate is in good agreement with the Monte Carlo simulation result. PMID:21691440

  5. Feasibility of Valence-to-Core X-ray Emission Spectroscopy for Tracking Transient Species

    PubMed Central

    2015-01-01

    X-ray spectroscopies, when combined in laser-pump, X-ray-probe measurement schemes, can be powerful tools for tracking the electronic and geometric structural changes that occur during the course of a photoinitiated chemical reaction. X-ray absorption spectroscopy (XAS) is considered an established technique for such measurements, and X-ray emission spectroscopy (XES) of the strongest core-to-core emission lines (K? and K?) is now being utilized. Flux demanding valence-to-core XES promises to be an important addition to the time-resolved spectroscopic toolkit. In this paper we present measurements and density functional theory calculations on laser-excited, solution-phase ferrocyanide that demonstrate the feasibility of valence-to-core XES for time-resolved experiments. We discuss technical improvements that will make valence-to-core XES a practical pumpprobe technique. PMID:26568779

  6. Soft X-Ray Emission and Charged Particles Beams from a Plasma Focus of Hundreds Joules

    SciTech Connect

    Silva, Patricio; Moreno, Jose; Soto, Leopoldo; Pavez, Cristian; Arancibia, Jaime

    2006-12-04

    In a new stage of characterization of our plasma focus devices of hundred and tens of joules (PF-400J and PF-50J), preliminary series of measurements on soft X-ray and ion beams have been performed in the device PF-400J (176-539 J, 880 nF, T/4 {approx}300 ns). The device was operated in hydrogen to 7 mbar of pressure . The temporal and spatial X-ray characteristics are investigated by means filtered PIN diodes and a multipinhole camera. Graphite collectors, operating in the bias ion collector mode, are used to estimate the characteristic ion energy using the time flight across the probe array. The time of the ion beam emission to be correlated with plasma emission events associated with the soft X-ray pulses detected by the probes. Temporal correlations between soft X-ray signals and ion beams are performed.

  7. A carbon nanotube field emission multipixel x-ray array source for microradiotherapy application

    SciTech Connect

    Wang Sigen; Calderon, Xiomara; Peng Rui; Schreiber, Eric C.; Zhou, Otto; Chang, Sha

    2011-05-23

    The authors report a carbon nanotube (CNT) field emission multipixel x-ray array source for microradiotherapy for cancer research. The developed multipixel x-ray array source has 50 individually controllable pixels and it has several distinct advantages over other irradiation source including high-temporal resolution (millisecond level), the ability to electronically shape the form, and intensity distribution of the radiation fields. The x-ray array was generated by a CNT cathode array (5x10) chip with electron field emission. A dose rate on the order of >1.2 Gy/min per x-ray pixel beam is achieved at the center of the irradiated volume. The measured dose rate is in good agreement with the Monte Carlo simulation result.

  8. Studies of x-ray emission properties of photoionized plasmas

    NASA Astrophysics Data System (ADS)

    Wang, Feilu; Han, Bo; Jin, Rui; Salzmann, David; Liang, Guiyun; Wei, Huigang; Zhong, Jiayong; Zhao, Gang; Li, Jia-ming

    2016-03-01

    In this paper three aspects of photoionized plasmas are discussed in both laboratory and astrophysical contexts. First, the importance of accurate atomic/ionic data for the analysis of photoionized plasmas is shown. Second, an overview of present computer codes for the analysis of photoionized plasmas is given. We introduce our computer model, radiative-collisional code based on the flexible atomic code (RCF), for calculations of the properties of such plasmas. RCF uses database generated by the flexible atomic code. Using RCF it is shown that incorporating the satellite lines from doubly excited Li-like ions into the He{}α triplet lines is necessary for reliable analysis of observational spectra from astrophysical objects. Finally, we introduce a proposal to generate photoionized plasmas by x-ray free electron laser, which may facilitate the simulation in lab of astrophysical plasmas in photoionization equilibrium.

  9. XMM Observations of X-Ray Emission from Supernovae

    NASA Technical Reports Server (NTRS)

    Immler, Stefan; Lewin, Walter

    2003-01-01

    Of the six proposed targets, only one observation was performed. The observation resulted in a 28ks observation of SN 1998S. At the time of writing the proposal, our target list only contained previously unknown X-ray supernovae. Between submission of the proposal and the actual observation, a Chandra DDT observation resulted in the detection of SN 1998S. Since SN 1998S was observed with Chandra five times before the XMM-Newton observation was made, the data did not yield enough new information to warrant a separate SN 1998S publication. The key science results of that observation were presented in a review article (by Immler and Lewin); the results were also presented at two conferences.

  10. Chandra Observations and Modeling of Geocoronal Charge Exchange X-Ray Emission During Solar Wind Gusts

    NASA Astrophysics Data System (ADS)

    Kornbleuth, Marc; Wargelin, Bradford J.; Juda, Michael

    2014-06-01

    Solar wind charge exchange (SWCX) X-rays are emitted when highly charged solar wind ions such as O7+ collide with neutral gas. The best known examples of this occur around comets, but SWCX emission also arises in the Earth's tenuous outer atmosphere and throughout the heliosphere as neutral H and He from the interstellar medium flows into the solar system. This geocoronal and heliospheric emission comprises much of the soft X-ray background and is seen in every X-ray observation. Geocoronal emission, although usually weaker than heliospheric emission, arises within a few tens of Earth radii and therefore responds much more quickly (on time scales of less than an hour) to changes in solar wind intensity than the widely distributed heliospheric emission.We have studied a dozen Chandra observations when the flux of solar wind protons and O7+ ions was at its highest. These gusts of wind cause correspondingly abrupt changes in geocoronal SWCX X-ray emission,which may or may not be apparent in Chandra data depending on a given observation's line of sight through the magnetosphere. We compare observed changes in the X-ray background with predictions from a fully 3D analysis of SWCX emission based on magnetospheric simulations using the BATS-R-US model.

  11. THERMAL X-RAY EMISSION FROM THE SHOCKED STELLAR WIND OF PULSAR GAMMA-RAY BINARIES

    SciTech Connect

    Zabalza, V.; Paredes, J. M.; Bosch-Ramon, V.

    2011-12-10

    Gamma-ray-loud X-ray binaries are binary systems that show non-thermal broadband emission from radio to gamma rays. If the system comprises a massive star and a young non-accreting pulsar, their winds will collide producing broadband non-thermal emission, most likely originated in the shocked pulsar wind. Thermal X-ray emission is expected from the shocked stellar wind, but until now it has neither been detected nor studied in the context of gamma-ray binaries. We present a semi-analytic model of the thermal X-ray emission from the shocked stellar wind in pulsar gamma-ray binaries, and find that the thermal X-ray emission increases monotonically with the pulsar spin-down luminosity, reaching luminosities of the order of 10{sup 33} erg s{sup -1}. The lack of thermal features in the X-ray spectrum of gamma-ray binaries can then be used to constrain the properties of the pulsar and stellar winds. By fitting the observed X-ray spectra of gamma-ray binaries with a source model composed of an absorbed non-thermal power law and the computed thermal X-ray emission, we are able to derive upper limits on the spin-down luminosity of the putative pulsar. We applied this method to LS 5039, the only gamma-ray binary with a radial, powerful wind, and obtain an upper limit on the pulsar spin-down luminosity of {approx}6 Multiplication-Sign 10{sup 36} erg s{sup -1}. Given the energetic constraints from its high-energy gamma-ray emission, a non-thermal to spin-down luminosity ratio very close to unity may be required.

  12. Solar flares with similar soft but different hard X-ray emissions: case and statistical studies

    NASA Astrophysics Data System (ADS)

    Sharykin, Ivan N.; Struminsky, Alexei B.; Zimovets, Ivan V.; Gan, Wei-Qun

    2016-01-01

    From the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) catalog we select events which have approximately the same GOES class (high C - low M or 5001200 counts s?1 within the RHESSI 612 keV energy band), but with different maximal energies of detected hard X-rays. The selected events are subdivided into two groups: (1) flares with X-ray emissions observed by RHESSI up to only 50 keV and (2) flares with hard X-ray emission observed also above 50 keV. The main task is to understand observational peculiarities of these two flare groups. We use RHESSI X-ray data to obtain spectral and spatial information in order to find differences between selected groups. Spectra and images are analyzed in detail for six events (case study). For a larger number of samples (85 and 28 flares in the low-energy and high-energy groups respectively) we only make some generalizations. In spectral analysis we use the thick-target model for hard X-ray emission and one temperature assumption for thermal soft X-ray emission. RHESSI X-ray images are used for determination of flare region sizes. Although thermal and spatial properties of these two groups of flares are not easily distinguishable, power law indices of hard X-rays show significant differences. Events from the high-energy group generally have a harder spectrum. Therefore, the efficiency of chromospheric evaporation is not sensitive to the hardness of nonthermal electron spectra but rather depends on the total energy flux of nonthermal electrons.

  13. Solar flares with similar soft and different hard X-ray emissions: case and statistical studies

    NASA Astrophysics Data System (ADS)

    Sharykin, Ivan; Struminsky, Alexei; Zimovets, Ivan

    From the RHESSI catalogue we selected events, which have approximately the same GOES class high C - low M (or 500-1200 counts/s within the RHESSI 6-12 keV energy band), but with different hard X-ray maximal energies. The selected events were divided into two groups: 1) flares with X-ray emission observed by RHESSI only up to 50 keV and 2) flares with X-ray emission observed above energies >50 keV. The main task is to understand observational peculiarities of these two flare groups. We use RHESSI X-ray data to obtain spectral and spatial information and find differences between selected groups. Spectra and images are analyzed in details for 6 events (case-study) and more rough for larger samples (92 events) to make generalizations. In spectral analysis we use thick-target interpretation of hard X-ray emission and single-temperature approach for thermal soft X-ray emission. RHESSI X-ray images are used for determination of flare region sizes. Thermal and spatial properties of these two groups of flares are not very distinguishable, but the calculated distributions of hard X-ray indices show significant differences. Events from the second group have harder spectrum. Chromospheric evaporation efficiency is not sensitive to hardness of nonthermal electron spectra and depends on total flux of nonthermal electrons. Thermal similarity of events from the two groups with different HXR hardness can be explained by means of approximately the same number of electrons to be involved in acceleration process and heating of solar atmosphere. Plasma properties in the acceleration site, where nonthermal electron spectrum is formed, might be the same in two groups of the events.

  14. Solar flares with similar soft but different hard X-ray emissions: case and statistical studies

    NASA Astrophysics Data System (ADS)

    Sharykin, Ivan N.; Struminsky, Alexei B.; Zimovets, Ivan V.; Gan, Wei-Qun

    2016-01-01

    From the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) catalog we select events which have approximately the same GOES class (high C - low M or 500-1200 counts s-1 within the RHESSI 6-12 keV energy band), but with different maximal energies of detected hard X-rays. The selected events are subdivided into two groups: (1) flares with X-ray emissions observed by RHESSI up to only 50 keV and (2) flares with hard X-ray emission observed also above 50 keV. The main task is to understand observational peculiarities of these two flare groups. We use RHESSI X-ray data to obtain spectral and spatial information in order to find differences between selected groups. Spectra and images are analyzed in detail for six events (case study). For a larger number of samples (85 and 28 flares in the low-energy and high-energy groups respectively) we only make some generalizations. In spectral analysis we use the thick-target model for hard X-ray emission and one temperature assumption for thermal soft X-ray emission. RHESSI X-ray images are used for determination of flare region sizes. Although thermal and spatial properties of these two groups of flares are not easily distinguishable, power law indices of hard X-rays show significant differences. Events from the high-energy group generally have a harder spectrum. Therefore, the efficiency of chromospheric evaporation is not sensitive to the hardness of nonthermal electron spectra but rather depends on the total energy flux of nonthermal electrons.

  15. X-Ray Emission from Active Galactic Nuclei with Intermediate-Mass Black Holes

    NASA Astrophysics Data System (ADS)

    Dewangan, G. C.; Mathur, S.; Griffiths, R. E.; Rao, A. R.

    2008-12-01

    We present a systematic X-ray study of eight active galactic nuclei (AGNs) with intermediate-mass black holes (MBH~8-95104 Msolar) based on 12 XMM-Newton observations. The sample includes the two prototype AGNs in this class-NGC 4395 and POX 52 and six other AGNs discovered with the Sloan Digitized Sky Survey. These AGNs show some of the strongest X-ray variability, with the normalized excess variances being the largest and the power density break timescales being the shortest observed among radio-quiet AGNs. The excess-variance-luminosity correlation appears to depend on both the BH mass and the Eddington luminosity ratio. The break timescale-black hole mass relations for AGN with IMBHs are consistent with that observed for massive AGNs. We find that the FWHM of the H?/H? line is uncorrelated with the BH mass, but shows strong anticorrelation with the Eddington luminosity ratio. Four AGNs show clear evidence for soft X-ray excess emission (kTin~150-200 eV). X-ray spectra of three other AGNs are consistent with the presence of the soft excess emission. NGC 4395 with lowest L/LEdd lacks the soft excess emission. Evidently small black mass is not the primary driver of strong soft X-ray excess emission from AGNs. The X-ray spectral properties and optical-to-X-ray spectral energy distributions of these AGNs are similar to those of Seyfert 1 galaxies. The observed X-ray/UV properties of AGNs with IMBHs are consistent with these AGNs being low-mass extensions of more massive AGNs, those with high Eddington luminosity ratio looking more like narrow-line Seyfert 1 s and those with low L/LEdd looking more like broad-line Seyfert 1 galaxies.

  16. X-ray Emission from Pre-Main-Sequence Stars - Testing the Solar Analogy

    NASA Technical Reports Server (NTRS)

    Skinner, Stephen L.

    2000-01-01

    This LTSA award funded my research on the origin of stellar X-ray emission and the validity of the solar-stellar analogy. This research broadly addresses the relevance of our current understanding of solar X-ray physics to the interpretation of X-ray emission from stars in general. During the past five years the emphasis has been on space-based X-ray observations of very young stars in star-forming regions (T Tauri stars and protostars), cool solar-like G stars, and evolved high-mass Wolf-Rayet (WR) stars. These observations were carried out primarily with the ASCA and ROSAT space-based observatories (and most recently with Chandra), supplemented by ground-based observations. This research has focused on the identification of physical processes that are responsible for the high levels of X-ray emission seen in pre-main-sequence (PMS) stars, active cool stars, and WR stars. A related issue is how the X-ray emission of such stars changes over time, both on short timescales of days to years and on evolutionary timescales of millions of years. In the case of the Sun it is known that magnetic fields play a key role in the production of X-rays by confining the coronal plasma in loop-like structures where it is heated to temperatures of several million K. The extent to which the magnetically-confined corona interpretation can be applied to other X-ray emitting stars is the key issue that drives the research summarized here.

  17. Electron optics simulation for designing carbon nanotube based field emission x-ray source

    NASA Astrophysics Data System (ADS)

    Sultana, Shabana

    In this dissertation, electron optics simulation for designing carbon nanotube (CNT) based field emission x-ray source for medical imaging applications will be presented. However, for design optimization of x-ray tubes accurate electron beam optics simulation is essential. To facilitate design of CNT x-ray sources a commercial 3D finite element software has been chosen for extensive simulation. The results show that a simplified model of uniform electron field emission from the cathode surface is not sufficient when compared to experimental measurements. This necessitated the development of a refined model to describe a macroscopic field emission CNT cathode for electron beam optics simulations. The model emulates the random distribution of CNTs and the associated variation of local field enhancement factor. The main parameter of the model has been derived empirically from the experimentally measured I-V characteristics of the CNT cathode. Simulation results based on this model agree well with experiments which include measurements of the transmission rate and focus spot size. The model provides a consistent simulation platform for optimization of electron beam optics in CNT x-ray source design. A systematic study of electron beam optics in CNT x-ray tubes led to the development of a new generation of compact x-ray source with multiple pixels. A micro focus field emission x-ray source with a variable focal spot size has been fully characterized and evaluated. It has been built and successfully integrated into micro-CT scanners which are capable of dynamic cardiac imaging of free-breathing small animals with high spatial and temporal resolutions. In addition a spatially distributed high power multi-beam x-ray source has also been designed and integrated into a stationary digital breast tomosynthesis (s-DBT) configuration. This system has the potential to reduce the total scan time to 4 seconds and yield superior image quality in breast imaging.

  18. Proton-Induced X-Ray Emission Analysis of Crematorium Emissions

    NASA Astrophysics Data System (ADS)

    Ali, Salina; Nadareski, Benjamin; Safiq, Alexandrea; Smith, Jeremy; Yoskowitz, Josh; Labrake, Scott; Vineyard, Michael

    2013-10-01

    There has been considerable concern in recent years about possible mercury emissions from crematoria. We have performed a particle-induced X-ray emission (PIXE) analysis of atmospheric aerosol samples collected on the roof of the crematorium at Vale Cemetery in Schenectady, NY, to address this concern. The samples were collected with a nine-stage cascade impactor that separates the particulate matter according to particle size. The aerosol samples were bombarded with 2.2-MeV protons from the Union College 1.1-MV Pelletron Accelerator. The emitted X-rays were detected with a silicon drift detector and the X-ray energy spectra were analyzed using GUPIX software to determine the elemental concentrations. We measured significant concentrations of sulfur, phosphorus, potassium, calcium, and iron, but essentially no mercury. The lower limit of detection for mercury in this experiment was approximately 0.2 ng/m3. We will describe the experimental procedure, discuss the PIXE analysis, and present preliminary results.

  19. The Morphology of the X-ray Emission above 2 keV from Jupiter's Aurorae

    NASA Technical Reports Server (NTRS)

    Elsner, R.; Branduardi-Raymont, G.; Galand, M.; Grodent, D.; Gladstone, G. R.; Waite, J. H.; Cravens, T.; Ford, P.

    2007-01-01

    The discovery in XMM-Newton X-ray data of X-ray emission above 2 keY from Jupiter's aurorae has led us to reexamine the Chandra ACIS-S observations taken in Feb 2003. Chandra's superior spatial resolution has revealed that the auroral X-rays with E > 2 keV are emitted from the periphery of the region emitting those with E < 1 keV. We are presently exploring the relationship of this morphology to that of the FUV emission from the main auroral oval and the polar cap. The low energy emission has previously been established as due to charge exchange between energetic precipitating ions of oxygen and either sulfur or carbon. It seems likely to us that the higher energy emission is due to precipitation of energetic electrons, possibly the same population of electrons responsible for the FUV emission. We discuss our analysis and interpretation.

  20. The Morphology of the X-ray Emission above 2 keV from Jupiter's Aurorae

    NASA Technical Reports Server (NTRS)

    Elsner, R.; Branduardi-Raymont, G.; Galand, M.; Grodent, D.; Waite, J. H.; Cravens, T.; Ford, P.

    2007-01-01

    The discovery in XMM-Newton X-ray data of X-ray emission above 2 keV from Jupiter's aurorae has led us to reexamine the Chandra ACIS-S observations taken in Feb 2003. Chandra's superior spatial resolution has revealed that the auroral X-rays with E > 2 keV are emitted from the periphery of the region emitting those with E < 1 keV. We are presently exploring the relationship of this morphology to that of the FUV emission from the main auroral oval and the polar cap. The low energy emission has previously been established as due to charge exchange between energetic precipitating ions of oxygen and either sulfur or carbon. It seems likely to us that the higher energy emission is due to precipitation of energetic electrons, possibly the same population of electrons responsible for the FUV emission. We discuss our analysis and interpretation.

  1. Nonthermal X-ray Emission from the Superbubble 30 Doradus C

    NASA Astrophysics Data System (ADS)

    Houck, John C.; Allen, G. E.

    2010-02-01

    The 30 Dor C superbubble in the Large Magellanic Cloud is a large ( 45 pc radius) shell of material swept up by fast stellar winds and supernovae from tens of massive stars in an OB association. Thermal soft X-ray emission is observed, consistent with the predictions of the wind-blown bubble model of Weaver et al (1977). However, that model does not explain the non-thermal X-ray emission observed from this source and a number of other, similar sources. The featureless X-ray spectrum seen from the western rim of 30 Dor C is a well-observed example. Yamaguchi, Bamba and Koyama (2009) interpret this nonthermal emission as synchrotron X-rays from TeV electrons, while Smith and Wang (2004) argue that this explanation is unlikely because the expansion of the bubble is too slow to produce sufficiently energetic particles. We describe some results from our analysis of archival XMM X-ray observations of the western rim of the 30 Dor C superbubble. This work is supported by the contract SV3-73016 between MIT and the Smithsonian Astrophysical Observatory. The Chandra X-Ray Center at the Smithsonian Astrophysical Observatory is operated on behalf of NASA under the contract NAS8-03060.

  2. The X-ray emission of the massive stars population in Cyg OB2

    NASA Astrophysics Data System (ADS)

    Rauw, G.; Naz, Y.; Wright, N.; Drake, J.; Guarcello, M.; Chandra Cygnus OB2 legacy survey Consortium

    2014-07-01

    Cygnus OB2 contains a wealth of massive stars of spectral types O, B and Wolf-Rayet. In the framework of a Chandra legacy program to study the X-ray emission from this important association, we have studied the X-ray properties of its massive stars population. We show that the O-stars in Cyg OB2 follow a well-defined scaling relation between their X-ray and bolometric luminosities: log(Lx/Lbol) = -7.2 0.2. Except for the brightest O-star binaries, there is no general X-ray overluminosity due to colliding winds in O-star binaries. Roughly half of the known B-stars in the surveyed field are detected, but they fail to display a clear relationship between Lx and Lbol. Out of the three WR stars in Cyg OB2, probably only WR144 is itself responsible for the observed level of X-ray emission, at a very low log(Lx/Lbol) = -8.8 0.2. The X-ray emission of the other two WR-stars (WR145 and 146) is most probably due to their O-type companion along with a moderate contribution from a wind-wind interaction zone.

  3. Extended hard-X-ray emission in the inner few parsecs of the Galaxy.

    PubMed

    Perez, Kerstin; Hailey, Charles J; Bauer, Franz E; Krivonos, Roman A; Mori, Kaya; Baganoff, Frederick K; Barrière, Nicolas M; Boggs, Steven E; Christensen, Finn E; Craig, William W; Grefenstette, Brian W; Grindlay, Jonathan E; Harrison, Fiona A; Hong, Jaesub; Madsen, Kristin K; Nynka, Melania; Stern, Daniel; Tomsick, John A; Wik, Daniel R; Zhang, Shuo; Zhang, William W; Zoglauer, Andreas

    2015-04-30

    The Galactic Centre hosts a puzzling stellar population in its inner few parsecs, with a high abundance of surprisingly young, relatively massive stars bound within the deep potential well of the central supermassive black hole, Sagittarius A* (ref. 1). Previous studies suggest that the population of objects emitting soft X-rays (less than 10 kiloelectronvolts) within the surrounding hundreds of parsecs, as well as the population responsible for unresolved X-ray emission extending along the Galactic plane, is dominated by accreting white dwarf systems. Observations of diffuse hard-X-ray (more than 10 kiloelectronvolts) emission in the inner 10 parsecs, however, have been hampered by the limited spatial resolution of previous instruments. Here we report the presence of a distinct hard-X-ray component within the central 4 × 8 parsecs, as revealed by subarcminute-resolution images in the 20-40 kiloelectronvolt range. This emission is more sharply peaked towards the Galactic Centre than is the surface brightness of the soft-X-ray population. This could indicate a significantly more massive population of accreting white dwarfs, large populations of low-mass X-ray binaries or millisecond pulsars, or particle outflows interacting with the surrounding radiation field, dense molecular material or magnetic fields. However, all these interpretations pose significant challenges to our understanding of stellar evolution, binary formation, and cosmic-ray production in the Galactic Centre. PMID:25925477

  4. Discovery of Diffuse Hard X-ray Emission in the Galactic Center

    NASA Astrophysics Data System (ADS)

    Perez, Kerstin

    2014-08-01

    The inner arcminutes of the Galaxy contain one of the highest concentration of high-energy sources in the Milky Way. The supermassive black hole, pulsar wind nebulae, supernova remnants, X-ray binaries, and hot interstellar gas are copious emitters of X-rays and gamma-rays. NuSTAR provides a view of the hard X-ray (3-79 keV) band, a critical bridge between the soft X-ray and gamma-ray emission, with unprecedented sub-arcminute angular resolution. I will present analysis of NuSTARs view of the Galactic Center above 20 keV, which reveals entirely new contributions to the emission from this region. The hard X-ray emission from the Galactic Center is dominated by a strong point-like source, spatially consistent with the ultra-high energy gamma-ray emission detected by HESS, and a previously undetected diffuse emission extending along the Galactic plane, consistent with unresolved emission from a large population of millisecond pulsars, unusually hot intermediate polars, or black hole binaries.

  5. Linking jet emission and X-ray properties in the peculiar neutron star X-ray binary Circinus X-1

    NASA Astrophysics Data System (ADS)

    Soleri, Paolo; Tudose, Valeriu; Fender, Rob; van der Klis, Michiel; Jonker, Peter G.

    2009-10-01

    We present the results of simultaneous X-ray and radio observations of the peculiar Z-type neutron star X-ray binary Cir X-1, observed with the Rossi X-ray Timing Explorer satellite and the Australia Telescope Compact Array in 2000 October and 2002 December. We identify typical Z-source behaviour in the power density spectra as well as characteristic Z patterns drawn in an X-ray hardness-intensity diagram. Power spectra typical of bright atoll sources have also been identified at orbital phases after the periastron passage, while orbital phases before the periastron passage are characterized by power spectra that are typical neither of Z nor of atoll sources. We investigate the coupling between the X-ray and the radio properties, focusing on three orbital phases when an enhancement of the radio flux density has been detected, to test the link between the inflow (X-ray) and the outflow (radio jet) to/from the compact object. In two out of three cases, we associate the presence of the radio jet to a spectral transition in the X-rays, although the transition does not precede the radio flare, as detected in other Z sources. An analogous behaviour has recently been found in the black hole candidate GX 339-4. In the third case, the radio light curve shows a similar shape to the X-ray light curve. We discuss our results in the context of jet models, considering also black hole candidates.

  6. A study of X-ray and infrared emissions from dusty nonradiative shock waves

    NASA Technical Reports Server (NTRS)

    Vancura, Olaf; Raymond, John C.; Dwek, Eli; Blair, William P; Long, Knox S.; Foster, Scott

    1994-01-01

    We have constructed models that predict the dynamic evolution and infrared (IR) emission of grains behind nonradiative shock waves. We present a self-consistent treatment of the effect of grain destruction and heating on the ionization structure and X-ray emission of the postshock gas. Incorporating thermal sputtering, collisional heating, and deceleration of grains in the postshock flow, we predict the IR and X-ray fluxes from the dusty plasma as a function of swept-up column density. Heavy elements such as C, O, Mg, S, Si and Fe are initially depleted from the gas phase but are gradually returned as the grains are destroyed. The injected neutral atoms require some time to 'catch up' with the ionization state of the ambient gas. The nonequilibrium ionization state and gradient in elemental abundances in the postshock flow produces characteristic X-ray signatures that can be related to the age of the shock and amount of grain destruction. We study the effects of preshock density and shock velocity on the X-ray and IR emission from the shock. We show that the effects of graindestruction on the X-ray spectra of shock waves are substantial. In particular, temperatures derived from X-ray spectra of middle-aged remnants are likely to be overestimated by approximately 15% if cosmic abundances are assumed. Due to the long timescales for grain destruction in X-ray gases over a wide range of temperatures, we suggest that future X-ray spectra studies of supernova remnants be based on depleted abundances instead of cosmic abundances. Our model predictions agree reasonably well with IRAS and Einstein IPC observations of the Cygnus Loop.

  7. Searching for methanol megamaser towards galaxies with extended X-ray emission

    NASA Astrophysics Data System (ADS)

    Chen, Xi

    2015-08-01

    We have recently made the first detection of class I methanol megamaser from 36.2 GHz transition towards the prototypical OH megamaser galaxy Arp 220 with the ATCA observations. Comparison of methanol megamaser emission with X-ray emission shows that there is a high degree of correlation between the spatial distribution of the 36.2 GHz methanol and extended soft X-ray emission in Arp 220, suggesting that the production of strong extragalactic class I methanol masers is related to cosmic rays and galactic-scale outflows. For finding much more methanol megamaser sources and investigating the physical conditions for exciting methanol megamaser and determining the role and significance of methanol megamasers for studies of starburst galaxies, we have made the systemic survey for the 36.2 methanol masers towards the extended X-ray galaxies which show megamaser emission from water or OH with the GBT. This paper will report the result from this GBT survey.

  8. X-ray emission from relativistically moving electron density cusps

    NASA Astrophysics Data System (ADS)

    Kando, M.; Pirozhkov, A. S.; Nakamura, T.; Hayashi, Y.; Kotaki, H.; Kawase, K.; Esirkepov, T. Zh.; Fukuda, Y.; Kiriyama, H.; Okada, H.; Daito, I.; Kameshima, T.; Mori, M.; Koga, J. K.; Daido, H.; Faenov, A. Ya.; Pikuz, T.; Ma, J.; Chen, L.-M.; Ragozin, E. N.; Kawachi, T.; Kato, Y.; Tajima, T.; Bulanov, S. V.

    2012-07-01

    We report on novel methods to generate ultra-short, coherent, X-rays using a laserplasma interaction. Nonlinear interaction of intense laser pulses with plasma creates stable, specific structures such as electron cusps. For example, wake waves excited in an underdense plasma by an intense, short-pulse laser become dense and propagate along with the laser pulse. This is called a relativistic flying mirror. The flying mirror can reflect a counter-propagating laser pulse and directly convert it into high-frequency radiation, with a frequency multiplication factor of 4?2 and pulse shortening with the same factor. After the proof-of-principle experiments, we observed that the photon number generated in the flying mirror is close to the theoretical estimate. We present the details of the experiment in which a 9 TW laser pulse focused into a He gas jet generated the Flying Mirror, which partly reflected a 1 TW pulse, giving up to 1010 photons, 60 nJ (1.41012 photons/sr) in the XUV spectral region (12.8-22 nm).

  9. High-energy neutrino emission from x-ray binaries

    SciTech Connect

    Christiansen, Hugo R.; Orellana, Mariana; Romero, Gustavo E.

    2006-03-15

    We show that high-energy neutrinos can be efficiently produced in X-ray binaries with relativistic jets and high-mass primary stars. We consider a system where the star presents a dense equatorial wind and the jet has a small content of relativistic protons. In this scenario, neutrinos and correlated gamma-rays result from pp interactions and the subsequent pion decays. As a particular example we consider the microquasar LS I +61 303. Above 1 TeV, we obtain a mean-orbital {nu}{sub {mu}}-luminosity of {approx}5 10{sup 34} erg/s which can be related to an event rate of 4-5 muon-type neutrinos per kilometer-squared per year after considering the signal attenuation due to maximal neutrino oscillations. The maximal neutrino energies here considered will range between 20 and 85 TeV along the orbit. The local infrared photon field is responsible for opacity effects on the associated gamma radiation at high energies, but below 50 GeV the source could be detected by MAGIC telescope. GLAST observations at E{sub {gamma}}>100 MeV should also reveal a strong source.

  10. Origin of Thermal and Non-Thermal Hard X-Ray Emission from the Galactic Center

    NASA Astrophysics Data System (ADS)

    Dogiel, Vladimir A.; Chernyshov, Dmitrii O.; Yuasa, Takayuki; Prokhorov, Dmitrii; Cheng, Kwong-Sang; Bamba, Aya; Inoue, Hajime; Ko, Chung-Ming; Kokubun, Motohide; Maeda, Yoshitomo; Mitsuda, Kazuhisa; Nakazawa, Kazuhiro; Yamasaki, Noriko Y.

    2009-10-01

    We analyse new results of Chandra and Suzaku Observatories which found a flux of hard X-ray emission from the compact region around Sgr A* (r 100 pc). We suppose that this emission is generated by accretion processes onto the central supermassive blackhole when an unbound part of captured stars obtains an additional momentum. As a result a flux of subrelativistic protons is generated near the galactic center which heats the background plasma up to temperatures about 6-10 keV and produces by inverse bremsstrahlung a flux of non-thermal X-ray emission in the energy range above 10 keV.

  11. Diagnosing residual motion via the x-ray self emission from indirectly driven inertial confinement implosions

    SciTech Connect

    Pak, A. Field, J. E.; Benedetti, L. R.; Caggiano, J.; Hatarik, R.; Izumi, N.; Khan, S. F.; Ma, T.; Spears, B. K.; Town, R. P. J.; Bradley, D. K.; Knauer, J.

    2014-11-15

    In an indirectly driven implosion, non-radial translational motion of the compressed fusion capsule is a signature of residual kinetic energy not coupled into the compressional heating of the target. A reduction in compression reduces the peak pressure and nuclear performance of the implosion. Measuring and reducing the residual motion of the implosion is therefore necessary to improve performance and isolate other effects that degrade performance. Using the gated x-ray diagnostic, the x-ray Bremsstrahlung emission from the compressed capsule is spatially and temporally resolved at x-ray energies of >8.7 keV, allowing for measurements of the residual velocity. Here details of the x-ray velocity measurement and fitting routine will be discussed and measurements will be compared to the velocities inferred from the neutron time of flight detectors.

  12. Ultrafast secondary emission X-ray imaging detectors: A possible application to TRD

    NASA Astrophysics Data System (ADS)

    Akkerman, A.; Breskin, A.; Chechik, R.; Elkind, V.; Gibrekhterman, A.; Majewski, S.

    1992-05-01

    Fist high accuracy, X-ray imaging at high photon flux can be achieved when coupling thin solid convertors to gaseous electron multipliers, operating at low gas pressures. Secondary electrons emitted from the convertor foil are multiplied in several successive amplification elements. The obvious advantages of solid X-ray convertors, as compared to gaseous conversion, are the production of parallax-free images and the fast (subnanosecond) response. These X-ray detectors have many potential applications in basic and applied research. Of particular interest is the possibility of an efficient and ultrafast high resolution imaging of transition radiation (TR), with a reduced d E/d x background. We present experimental results on the operation of secondary emission X-ray (SEX) detectors, their detection efficiency, localization and time resolution. The experimental work is accompanied by mathematical modelling and computer simulation of transition radiation detectors (TRDs) based on CsI TR convertors.

  13. Diagnosing residual motion via the x-ray self emission from indirectly driven inertial confinement implosions.

    PubMed

    Pak, A; Field, J E; Benedetti, L R; Caggiano, J; Hatarik, R; Izumi, N; Khan, S F; Knauer, J; Ma, T; Spears, B K; Town, R P J; Bradley, D K

    2014-11-01

    In an indirectly driven implosion, non-radial translational motion of the compressed fusion capsule is a signature of residual kinetic energy not coupled into the compressional heating of the target. A reduction in compression reduces the peak pressure and nuclear performance of the implosion. Measuring and reducing the residual motion of the implosion is therefore necessary to improve performance and isolate other effects that degrade performance. Using the gated x-ray diagnostic, the x-ray Bremsstrahlung emission from the compressed capsule is spatially and temporally resolved at x-ray energies of >8.7 keV, allowing for measurements of the residual velocity. Here details of the x-ray velocity measurement and fitting routine will be discussed and measurements will be compared to the velocities inferred from the neutron time of flight detectors. PMID:25430351

  14. X-RAY EMISSION FROM THE FU ORIONIS STAR V1735 CYGNI

    SciTech Connect

    Skinner, Stephen L.; Sokal, Kimberly R.; Guedel, Manuel; Briggs, Kevin R.

    2009-05-01

    The variable star V1735 Cyg (=Elias 1-12) lies in the IC 5146 dark cloud and is a member of the class of FU Orionis objects whose dramatic optical brightenings are thought to be linked to episodic accretion. We report the first X-ray detections of V1735 Cyg and a deeply embedded class I protostar lying 24'' to its northeast. X-ray spectra obtained with EPIC on XMM-Newton reveal very high-temperature plasma (kT > 5 keV) in both objects, but no large flares. Such hard X-ray emission is not anticipated from accretion shocks and is a signature of magnetic processes. We place these new results into the context of what is presently known about the X-ray properties of FU Orionis stars and other accreting young stellar objects.

  15. Interrelation of soft and hard X-ray emissions during solar flares. I - Observations

    NASA Technical Reports Server (NTRS)

    Winglee, R. M.; Kiplinger, A. L.; Zarro, D. M.; Dulk, G. A.; Lemen, J. R.

    1991-01-01

    The interrelation between the acceleration and heating of electrons and ions during impulsive solar flares is determined on the basis of simulataneous observations of hard and soft X-ray emission from the Solar Maximum Mission at high time resolution (6 s). For all the flares, the hard X-rays are found to have a power-law spectrum which breaks down during the rise phase and beginning of the decay phase. After that, the spectrum changes to either a single power law or a power law that breaks up at high energies. The characteristics of the soft X-ray are found to depend on the flare position. It is suggested that small-scale quasi-static electric fields are important for determining the acceleration of the X-ray-producing electrons and the outflowing chromospheric ions.

  16. Study of X-ray emission from plasma focus device using vacuum photodiode

    NASA Astrophysics Data System (ADS)

    Talukdar, N.; Borthakur, T. K.; Neog, N. K.

    2013-10-01

    A newly fabricated vacuum photodiode (VPD) is used to measure time resolved X-ray emission and electron temperature from plasma focus device operated in hydrogen medium. The VPD signals are compared with the PIN diode signal and observed to be of similar in nature. The acquired signals from VPD are deduced to measure electron temperature and X-ray radiated power for four different anode tips (cylindrical, diverging, oval and converging). The electron temperatures are found to be 0.64, 1.5, 0.60 and 0.55 keV for cylindrical, diverging, oval and converging anode tips respectively in hydrogen plasma. The X-ray radiated powers are observed to be varying with respect to the shape of the anode tips and it is found highest in case of converging tip and lowest for the diverging one. Results indicate that VPD could efficiently be employed as an X-ray diagnostics in plasma focus device.

  17. X-ray emission from the supernova remnant G287.8-0.5

    NASA Technical Reports Server (NTRS)

    Becker, R. H.; Boldt, E. A.; Holt, S. S.; Pravdo, S. H.; Rothschild, R. E.; Serlemitsos, P. J.; Swank, J. H.

    1976-01-01

    The GSFC Cosmic X-ray spectroscopy experiment on OSO-8 observed a weak galactic X-ray source near theta 2 at 288 deg, b2 at -1 deg. The spectrum for this source between 2-20 keV is well represented by a thermal spectrum of kT = 7.34(+3.6), sub -2.6 keV with an intense iron emission line centered at 6.5 + or - .2 keV. The error box of the Uhuru source 4U1043-59, the only known X-ray source in our field of view, contains the radio supernova remnant G287.8-0.5. The possible association of the X-ray source with this supernova remnant is discussed.

  18. X-Ray Emission from Massive Stars in Cyg OB2

    NASA Astrophysics Data System (ADS)

    Rauw, G.; Nazé, Y.; Wright, N. J.; Drake, J. J.; Guarcello, M. G.; Prinja, R. K.; Peck, L. W.; Albacete Colombo, J. F.; Herrero, A.; Kobulnicky, H. A.; Sciortino, S.; Vink, J. S.

    2015-11-01

    We report on the analysis of the Chandra-ACIS data of O, B, and WR stars in the young association Cyg OB2. X-ray spectra of 49 O-stars, 54 B-stars, and 3 WR-stars are analyzed and for the brighter sources, the epoch dependence of the X-ray fluxes is investigated. The O-stars in Cyg OB2 follow a well-defined scaling relation between their X-ray and bolometric luminosities: {log}\\\\frac{{L}{{X}}}{{L}{bol}}=-7.2+/- 0.2. This relation is in excellent agreement with the one previously derived for the Carina OB1 association. Except for the brightest O-star binaries, there is no general X-ray overluminosity due to colliding winds in O-star binaries. Roughly half of the known B-stars in the surveyed field are detected, but they fail to display a clear relationship between LX and Lbol. Out of the three WR stars in Cyg OB2, probably only WR 144 is itself responsible for the observed level of X-ray emission, at a very low {log}\\\\frac{{L}{{X}}}{{L}{bol}}=-8.8+/- 0.2. The X-ray emission of the other two WR-stars (WR 145 and 146) is most probably due to their O-type companion along with a moderate contribution from a wind-wind interaction zone.

  19. Time Variabilities of Solar Wind Ion Fluxes and of X-ray and EUV Emissions from Comet Hyakutake

    NASA Technical Reports Server (NTRS)

    Neugebauer, M.; Cravens, T.; Lisse, C.; Ipavich, F.; von Steiger, R.; Shah, P.; Armstrong, T.

    1999-01-01

    Observations of X-ray and extreme ultraviolet (EUV) emissions from comet C/Hyakutake 1996 B2 made by the Rontgen X-ray satellite (ROSAT) and the Extreme Ultraviolet Explorer (EUVE) revealed a total X-ray luminosity of about 500 MW.

  20. Early magnetic B-type stars: X-ray emission and wind properties

    NASA Astrophysics Data System (ADS)

    Oskinova, L. M.; Todt, H.; Ignace, R.; Brown, J. C.; Cassinelli, J. P.; Hamann, W.-R.

    2011-09-01

    We present a comprehensive study of X-ray emission by, and wind properties of, massive magnetic early B-type stars. Dedicated XMM-Newton observations were obtained for three early-type B-type stars, ?1 CMa, V2052 Oph and ? Cas, with recently discovered magnetic fields. We report the first detection of X-ray emission from V2052 Oph and ? Cas. The latter is one the softest X-ray sources among the early-type stars, while the former is one of the X-ray faintest. The observations show that the X-ray spectra of our programme stars are quite soft with the bulk of X-ray emitting material having a temperature of about 1 MK. We compile the complete sample of early B-type stars with detected magnetic fields to date and existing X-ray measurements, in order to study whether the X-ray emission can be used as a general proxy for stellar magnetism. We find that the X-ray properties of early massive B-type magnetic stars are diverse, and that hard and strong X-ray emission does not necessarily correlate with the presence of a magnetic field, corroborating similar conclusions reached earlier for the classical chemically peculiar magnetic Bp-Ap stars. We analyse the ultraviolet (UV) spectra of five non-supergiant B stars with magnetic fields (? Sco, ? Cep, ?1 CMa, V2052 Oph and ? Cas) by means of non-local thermodynamic equilibrium (non-LTE) iron-blanketed model atmospheres. The latter are calculated with the Potsdam Wolf-Rayet (PoWR) code, which treats the photosphere as well as the wind, and also accounts for X-rays. With the exception of ? Sco, this is the first analysis of these stars by means of stellar wind models. Our models accurately fit the stellar photospheric spectra in the optical and the UV. The parameters of X-ray emission, temperature and flux are included in the model in accordance with observations. We confirm the earlier findings that the filling factors of X-ray emitting material are very high. Our analysis reveals that the magnetic early-type B stars studied here have weak winds with velocities not significantly exceeding vesc. The mass-loss rates inferred from the analysis of UV lines are significantly lower than predicted by hydrodynamically consistent models. We find that, although the X-rays strongly affect the ionization structure of the wind, this effect is not sufficient in reducing the total radiative acceleration. When the X-rays are accounted for at the intensity and temperatures observed, there is still sufficient radiative acceleration to drive a stronger mass-loss than we empirically infer from the UV spectral lines.

  1. Discovery of Diffuse Hard X-ray Emission associated with Jupiter

    NASA Astrophysics Data System (ADS)

    Ezoe, Y.; Miyoshi, Y.; Ishikawa, K.; Ohashi, T.; Terada, N.; Uchiyama, Y.; Negoro, H.

    2009-12-01

    Our discovery of diffuse hard (1-5 keV) X-ray emission around Jupiter is reported. Recent Chandra and XMM-Newton observations revealed several types of X-rays in the vicinity of Jupiter such as auroral and disk emission from Jupiter and faint diffuse X-rays from the Io Plasma Torus (see Bhardwaj et al. 2007 for review). To investigate possible diffuse hard X-ray emission around Jupiter with the highest sensitivity, we conducted data analysis of Suzaku XIS observations of Jupiter on Feb 2006. After removing satellite and planetary orbital motions, we detected a significant diffuse X-ray emission extending to ~6 x 3 arcmin with the 1-5 keV X-ray luminosity of ~3e15 erg/s. The emitting region very well coincided with the Jupiter's radiation belts. The 1-5 keV X-ray spectrum was represented by a simple power law model with a photon index of 1.4. Such a flat continuum strongly suggests non-thermal origin. Although such an emission can be originated from multiple background point sources, its possibility is quite low. We hence examined three mechanisms, assuming that the emission is truly diffuse: bremsstrahlung by keV electrons, synchrotron emission by TeV electrons, and inverse Compton scattering of solar photons by MeV electrons. The former two can be rejected because of the X-ray spectral shape and implausible existence of TeV electrons around Jupiter, respectively. The last possibility was found to be possible because tens MeV electrons, which have been confirmed in inner radiation belts (Bolton et al. 2002), can kick solar photons to the keV energy range and provide a simple power-law continuum. We estimated an average electron density from the X-ray luminosity assuming the oblate spheroid shaped emitting region with 8 x 8 x 4 Jovian radii. The necessary density was 0.02 1/cm3 for 50 MeV electrons. Hence, our results may suggest a new particle acceleration phenomenon around Jupiter.

  2. Observation and Modeling of Geocoronal Charge Exchange X-Ray Emission during Solar Wind Gusts

    NASA Astrophysics Data System (ADS)

    Wargelin, B. J.; Kornbleuth, M.; Martin, P. L.; Juda, M.

    2014-11-01

    Solar wind charge exchange (SWCX) X-rays are emitted when highly charged solar wind ions such as O7 + collide with neutral gas, including the Earth's tenuous outer atmosphere (exosphere or geocorona) and hydrogen and helium from the local interstellar medium drifting through the heliosphere. This geocoronal and heliospheric emission comprises a significant and varying fraction of the soft X-ray background (SXRB) and is seen in every X-ray observation, with the intensity dependent on solar wind conditions and observation geometry. Under the right conditions, geocoronal emission can increase the apparent SXRB by roughly an order of magnitude for an hour or more. In this work, we study a dozen occasions when the near-Earth solar wind flux was exceptionally high. These gusts of wind lead to abrupt changes in SWCX X-ray emission around Earth, which may or may not be seen by X-ray observatories depending on their line of sight. Using detailed three-dimensional magnetohydrodynamical simulations of the solar wind's interaction with the Earth's magnetosphere, and element abundances and ionization states measured by ACE, we model the time-dependent brightness of major geocoronal SWCX emission lines during those gusts and compare with changes in the X-ray background measured by the Chandra X-ray Observatory. We find reasonably good agreement between model and observation, with measured geocoronal line brightnesses averaged over 1 hr of up to 136 photons s-1 cm-2 sr-1 in the O VII Kα triplet around 564 eV.

  3. Observation and modeling of geocoronal charge exchange X-ray emission during solar wind gusts

    SciTech Connect

    Wargelin, B. J.; Kornbleuth, M.; Juda, M.; Martin, P. L.

    2014-11-20

    Solar wind charge exchange (SWCX) X-rays are emitted when highly charged solar wind ions such as O{sup 7{sup +}} collide with neutral gas, including the Earth's tenuous outer atmosphere (exosphere or geocorona) and hydrogen and helium from the local interstellar medium drifting through the heliosphere. This geocoronal and heliospheric emission comprises a significant and varying fraction of the soft X-ray background (SXRB) and is seen in every X-ray observation, with the intensity dependent on solar wind conditions and observation geometry. Under the right conditions, geocoronal emission can increase the apparent SXRB by roughly an order of magnitude for an hour or more. In this work, we study a dozen occasions when the near-Earth solar wind flux was exceptionally high. These gusts of wind lead to abrupt changes in SWCX X-ray emission around Earth, which may or may not be seen by X-ray observatories depending on their line of sight. Using detailed three-dimensional magnetohydrodynamical simulations of the solar wind's interaction with the Earth's magnetosphere, and element abundances and ionization states measured by ACE, we model the time-dependent brightness of major geocoronal SWCX emission lines during those gusts and compare with changes in the X-ray background measured by the Chandra X-ray Observatory. We find reasonably good agreement between model and observation, with measured geocoronal line brightnesses averaged over 1 hr of up to 136 photons s{sup –1} cm{sup –2} sr{sup –1} in the O VII Kα triplet around 564 eV.

  4. CHANDRA REVEALS VARIABLE MULTI-COMPONENT X-RAY EMISSION FROM FU ORIONIS

    SciTech Connect

    Skinner, Stephen L.; Guedel, Manuel; Briggs, Kevin R.; Lamzin, Sergei A.

    2010-10-20

    FU Orionis is the prototype of a class of eruptive young stars ('FUors') characterized by strong optical outbursts. We recently completed an exploratory survey of FUors using XMM-Newton to determine their X-ray properties, about which little was previously known. The prototype FU Ori and V1735 Cyg were detected. The X-ray spectrum of FU Ori was found to be unusual, consisting of a cool moderately absorbed component plus a hotter component viewed through an absorption column density that is an order of magnitude higher. We present here a sensitive (99 ks) follow-up X-ray observation of FU Ori obtained at higher angular resolution with Chandra ACIS-S. The unusual multi-component spectrum is confirmed. The hot component is centered on FU Ori and dominates the emission above 2 keV. It is variable (a signature of magnetic activity) and is probably coronal emission originating close to FU Ori's surface viewed through cool gas in FU Ori's strong wind or accretion stream. In contrast, the X-ray centroid of the soft emission below 2 keV is offset 0.''20 to the southeast of FU Ori, toward the near-IR companion (FU Ori S). This offset amounts to slightly less than half the separation between the two stars. The most likely explanation for the offset is that the companion contributes significantly to the softer X-ray emission below 2 keV (and weakly above 2 keV). The superimposed X-ray contributions from FU Ori and the companion resolve the paradox posed by XMM-Newton of an apparently single X-ray source viewed through two different absorption columns.

  5. Low- to Middle-Latitude X-Ray Emission from Jupiter

    NASA Technical Reports Server (NTRS)

    Bhardwaj, Anil; Elsner, Ronald F.; Gladstone, G. Randall; Waite, J. Hunter, Jr.; Branduardi-Raymont, Graziella; Cravens, Thomas E.; Ford, Peter G.

    2006-01-01

    The Chandra X-ray Observatory (CXO) observed Jupiter during the period 24-26 February 2003 for approx. 40 hours (4 Jupiter rotations), using both the spectroscopy array of the Advanced CCD Imaging Spectrometer (ACIS-S) and the imaging array of the High-Resolution Camera (HRC-I). Two ACIS-S exposures, each -8.5 hours long, were separated by an HRC-I exposure of approx. 20 hours. The low- to middle-latitude nonauroral disk X-ray emission is much more spatially uniform than the auroral emission. However, the low- to middle-latitude X-ray count rate shows a small but statistically significant hour angle dependence and depends on surface magnetic field strength. In addition, the X-ray spectra from regions corresponding to 3-5 gauss and 5-7 gauss surface fields show significant differences in the energy band 1.26-1.38 keV, perhaps partly due to line emission occurring in the 3-5 gauss region but not the 5-7 gauss region. A similar correlation of surface magnetic field strength with count rate is found for the 18 December 2000 HRC-I data, at a time when solar activity was high. The low- to middle-latitude disk X-ray count rate observed by the HRC-I in the February 2003 observation is about 50% of that observed in December 2000, roughly consistent with a decrease in the solar activity index (F10.7 cm flux) by a similar amount over the same time period. The low- to middle-latitude X-ray emission does not show any oscillations similar to the approx. 45 min oscillations sometimes seen from the northern auroral zone. The temporal variation in Jupiter's nonauroral X-ray emission exhibits similarities to variations in solar X-ray flux observed by GOES and TIMED/SEE. The two ACIS-S 0.3-2.0 keV low- to middle-latitude X-ray spectra are harder than the auroral spectrum and are different from each other at energies above 0.7 keV, showing variability in Jupiter's nonauroral X-ray emission on a timescale of a day. The 0.3-2.0 keV X-ray power emitted at low to middle latitudes is 0.21 GW and 0.39 GW for the first and second ACIS-S exposures, respectively. We suggest that X-ray emission from Jupiter's disk may be largely generated by the scattering and fluorescence of solar X rays in its upper atmosphere, especially at times of high incident solar X-ray flux. However, the dependence of count rate on surface magnetic-field strength may indicate the presence of some secondary component, possibly ion precipitation from radiation belts close to the planet.

  6. Morphology and spectral characteristics of the X-ray emission of M33

    NASA Technical Reports Server (NTRS)

    Trinchieri, G.; Fabbiano, G.; Peres, G.

    1988-01-01

    A previous analysis of the X-ray data on M33 has been extended to include a detailed study of the morpholgoy and spectral characteristics of the X-ray emission, and the results are reported. A low surface brightness, extended emission in the plane of the galaxy is detected. The X-ray luminosity of this component, about 10 to the 38th egs/s, is comparable to the total luminosity of the bright sources observed in the same region. Its radial distribution is similar to that of the blue light. The spectrum of the extended emission shows two distinct components: a hard one, with a temperature above 3 keV and a soft one with a temperature below 1 keV. The X-ray spectrum of the nuclear source, which is inconsistent with any of the known spectra of X-ray binary sources, can be fitted with either a low-temperature thermal emission or a steep power law model.

  7. Modeling Diffuse X-ray Emission around the Galactic Center from Colliding Stellar Winds

    NASA Astrophysics Data System (ADS)

    Russell, Christopher Michael Post; Cuadra, Jorge; Wang, Q. Daniel; Owocki, Stanley P.

    2015-01-01

    The Galactic center is a hotbed of astrophysical phenomena. The ~30 evolved massive stars orbiting the SMBH on scales <10" inject a large fraction of the matter that accretes onto the SMBH, and potentially creates large swaths of hot, X-ray emitting material around Sgr A* from their wind-wind collisions. Using the Gadget-2 SPH simulations of these evolved stars ejecting their winds over the last 1100 years from Cuadra et al. 2008, we solve the formal solution to the equation of radiative transfer for a grid of rays through the 6"x6" simulation volume to calculate the thermal X-ray emission from the diffuse hot gas. We then fold each of these energy-dependent pixel maps through the Chandra ACIS-S response function to directly compare with the recent 3Ms X-ray Visionary Program observations of the Galactic center (Wang et al. 2013). The model X-ray flux, in absolute units, agrees well with the observations just outside the SMBH (whose emission is not included in this modeling), indicating that the shocked wind material from the evolved massive stars is indeed the source of diffuse X-ray emission at the Galactic center. The emission of the IRS13 cluster, though, is overestimated by two orders of magnitude, indicating a potential revision in the cluster stellar parameters. We will conclude by discussing future work, such as implementing the 'pressure-entropy' formulation of SPH for this calculation and including O stars and closely orbiting binaries.

  8. Differential rotation, magnetic activity and X-ray emission of late type giants

    NASA Astrophysics Data System (ADS)

    Belvedere, G.; Chiuderi, C.; Paterno, L.

    1982-01-01

    The observations of X-ray emission from late type main sequence and giant stars show that a coronal heating due to acoustic waves is unlikely. As suggested by Vaiana and Rosner, the conversion of magnetic into thermal energy may be responsible for the X-ray emission from such a kind of stars. The proposed ingredients in our analysis are the differential rotation and dynamo action which are able to generate a magnetic activity at the star's surface which in turn gives rise to the observed X-ray emission. We assume that the interaction of rotation with convection, in stars possessing outer convective envelopes, is the dominant mechanism for generating differential rotation and dynamo action, and that the stressing of the coronal magnetic flux tubes by the surface turbulence, converting magnetic into thermal energy, determine the level of X-ray emission. Therefore we compute a series of models of luminosity class III giant stars, and determine the surface X-ray flux. Comparing these results with those concerning the late type main sequence star models, previously computed by the same authors, and with observations, it appears that the proposed mechanism is plausible.

  9. X-RAY EMISSION FROM SN 2004dj: A TALE OF TWO SHOCKS

    SciTech Connect

    Chakraborti, Sayan; Yadav, Naveen; Ray, Alak; Smith, Randall; Chandra, Poonam; Pooley, David

    2012-12-20

    Type IIP (Plateau) supernovae are the most commonly observed variety of core-collapse events. They have been detected in a wide range of wavelengths from radio, through optical to X-rays. The standard picture of a Type IIP supernova has the blastwave interacting with the progenitor's circumstellar matter to produce a hot region bounded by a forward and a reverse shock. This region is thought to be responsible for most of the X-ray and radio emission from these objects. Yet the origin of X-rays from these supernovae is not well understood quantitatively. The relative contributions of particle acceleration and magnetic field amplification in generating the X-ray and radio emission need to be determined. In this work, we analyze archival Chandra observations of SN 2004dj, one of the nearest supernovae since SN 1987A, along with published radio and optical information. We determine the pre-explosion mass-loss rate, blastwave velocity, electron acceleration, and magnetic field amplification efficiencies. We find that a greater fraction of the thermal energy goes into accelerating electrons than into amplifying magnetic fields. We conclude that the X-ray emission arises out of a combination of inverse Compton scattering by non-thermal electrons accelerated in the forward shock and thermal emission from supernova ejecta heated by the reverse shock.

  10. Observation of solar high energy gamma and X-ray emission and solar energetic particles

    NASA Astrophysics Data System (ADS)

    Struminsky, A.; Gan, W.

    2015-08-01

    We considered 18 solar flares observed between June 2010 and July 2012, in which high energy >100 MeV ?-emission was registered by the Large Area Telescope (LAT) aboard FermiGRO. We examined for these ?-events soft X-ray observations by GOES, hard X-ray observations by the Anti-Coincidence Shield of the SPectrometer aboard INTEGRAL (ACS SPI) and the Gamma-Ray burst Monitor (GBM) aboard FermiGRO. Hard X-ray and ?0-decay ?-ray emissions are used as tracers of electron and proton acceleration, respectively. Bursts of hard X-ray were observed by ACS SPI during impulsive phase of 13 events. Bursts of hard X- ray >100 keV were not found during time intervals, when prolonged hard y-emission was registered by LAT/FermiGRO. Those events showing prolonged high-energy gamma-ray emission not accompanied by >100 keV hard X-ray emission are interpreted as an indication of either different acceleration processes for protons and electrons or as the presence of a proton population accelerated during the impulsive phase of the flare and subsequently trapped by some magnetic structure. In-situ energetic particle measurements by GOES and STEREO (High Energy Telescope, HET) shows that five of these y-events were not accompanied by SEP events at 1 AU, even when multi-point measurements including STEREO are taken into account. Therefore accelerated protons are not always released into the heliosphere. A longer delay between the maximum temperature and the maximum emission measure characterises flares with prolonged high energy ?-emission and solar proton events.

  11. Resonant soft x-ray inelastic scattering and soft x-ray emission study of the electronic structure of ?-MoO3

    NASA Astrophysics Data System (ADS)

    Learmonth, T.; McGuinness, C.; Glans, P.-A.; Kennedy, B.; St. John, J.; Guo, J.-H.; Greenblatt, M.; Smith, K. E.

    2009-01-01

    The electronic structure of quasi-low-dimensional solids is a topic of enduring interest due to the complex many-body interactions that exist in such materials and their resulting exotic physical properties. A well studied class of such materials is the quasi-low-dimensional metals known collectively as molybdenum oxide bronzes. These materials are all derived from the band insulator ?-MoO3 . We report here a study of the electronic structure of ?-MoO3 using resonant inelastic x-ray scattering and soft x-ray emission spectroscopy. We observe significant variation in x-ray scattering as a function of the relative orientation of the polarization vector of the incident light and the crystal axes. We interpret our data using a model of k -selective soft x-ray scattering.

  12. Soft X-ray emission in kink-unstable coronal loops

    NASA Astrophysics Data System (ADS)

    Pinto, R. F.; Vilmer, N.; Brun, A. S.

    2015-04-01

    Context. Solar flares are associated with intense soft X-ray emission generated by the hot flaring plasma in coronal magnetic loops. Kink-unstable twisted flux-ropes provide a source of magnetic energy that can be released impulsively and may account for the heating of the plasma in flares. Aims: We investigate the temporal, spectral, and spatial evolution of the properties of the thermal continuum X-ray emission produced in such kink-unstable magnetic flux-ropes and discuss the results of the simulations with respect to solar flare observations. Methods: We computed the temporal evolution of the thermal X-ray emission in kink-unstable coronal loops based on a series of magnetohydrodynamical numerical simulations. The numerical setup consisted of a highly twisted loop embedded in a region of uniform and untwisted background coronal magnetic field. We let the kink instability develop, computed the evolution of the plasma properties in the loop (density, temperature) without accounting for mass exchange with the chromosphere. We then deduced the X-ray emission properties of the plasma during the whole flaring episode. Results: During the initial (linear) phase of the instability, plasma heating is mostly adiabatic (as a result of compression). Ohmic diffusion takes over as the instability saturates, leading to strong and impulsive heating (up to more than 20 MK), to a quick enhancement of X-ray emission, and to the hardening of the thermal X-ray spectrum. The temperature distribution of the plasma becomes broad, with the emission measure depending strongly on temperature. Significant emission measures arise for plasma at temperatures higher than 9 MK. The magnetic flux-rope then relaxes progressively towards a lower energy state as it reconnects with the background flux. The loop plasma suffers smaller sporadic heating events, but cools down globally by thermal conduction. The total thermal X-ray emission slowly fades away during this phase, and the high-temperature component of the emission measure distribution converges to the power-law distribution EM ? T-4.2. The twist deduced directly from the X-ray emission patterns is considerably lower than the highest magnetic twist in the simulated flux-ropes. Movies associated to Figs. 4 and 5 are available in electronic form at http://www.aanda.org

  13. The Chandra planetary nebula survey (CHANPLANS). II. X-ray emission from compact planetary nebulae

    SciTech Connect

    Freeman, M.; Kastner, J. H.; Montez, R. Jr.; Balick, B.; Frew, D. J.; De Marco, O.; Parker, Q. A.; Jones, D.; Miszalski, B.; Sahai, R.; Blackman, E.; Frank, A.; Chu, Y.-H.; Guerrero, M. A.; Zijlstra, A.; Bujarrabal, V.; Corradi, R. L. M.; Nordhaus, J.; and others

    2014-10-20

    We present results from the most recent set of observations obtained as part of the Chandra X-ray observatory Planetary Nebula Survey (CHANPLANS), the first comprehensive X-ray survey of planetary nebulae (PNe) in the solar neighborhood (i.e., within ∼1.5 kpc of the Sun). The survey is designed to place constraints on the frequency of appearance and range of X-ray spectral characteristics of X-ray-emitting PN central stars and the evolutionary timescales of wind-shock-heated bubbles within PNe. CHANPLANS began with a combined Cycle 12 and archive Chandra survey of 35 PNe. CHANPLANS continued via a Chandra Cycle 14 Large Program which targeted all (24) remaining known compact (R {sub neb} ≲ 0.4 pc), young PNe that lie within ∼1.5 kpc. Results from these Cycle 14 observations include first-time X-ray detections of hot bubbles within NGC 1501, 3918, 6153, and 6369, and point sources in HbDs 1, NGC 6337, and Sp 1. The addition of the Cycle 14 results brings the overall CHANPLANS diffuse X-ray detection rate to ∼27% and the point source detection rate to ∼36%. It has become clearer that diffuse X-ray emission is associated with young (≲ 5 × 10{sup 3} yr), and likewise compact (R {sub neb} ≲ 0.15 pc), PNe with closed structures and high central electron densities (n{sub e} ≳ 1000 cm{sup –3}), and is rarely associated with PNe that show H{sub 2} emission and/or pronounced butterfly structures. Hb 5 is one such exception of a PN with a butterfly structure that hosts diffuse X-ray emission. Additionally, two of the five new diffuse X-ray detections (NGC 1501 and NGC 6369) host [WR]-type central stars, supporting the hypothesis that PNe with central stars of [WR]-type are likely to display diffuse X-ray emission.

  14. Discovery of X-ray emission associated with the Gum Nebula

    NASA Technical Reports Server (NTRS)

    Leahy, D. A.; Nousek, J.; Garmire, G.

    1992-01-01

    The Gum Nebula was observed by the A-2 LED proportional counters on the HEAO-1 satellite as part of the all-sky survey. The first detection of X-ray emission associated with the Gum Nebula is reported. Soft X-ray spectra were constructed from the A-2 LED PHA data. Single temperature Raymond-Smith models were fitted to the observed spectra to yield temperature, column density and emission measure. The temperature is 6 x 10 exp 5 K, the column density 4 x 10 exp 20/sq cm, and the emission measure 5 cm exp-6 pc. The X-ray and optical properties of the Gum Nebula are consistent with a supernova remnant in the shell stage of evolution, which was the product of an energetic (3 x 10 exp 51 ergs) supernova explosion which occurred about 2 x 10 exp 6 yr ago.

  15. X-RAY EMISSION AND ABSORPTION FEATURES DURING AN ENERGETIC THERMONUCLEAR X-RAY BURST FROM IGR J17062-6143

    SciTech Connect

    Degenaar, N.; Miller, J. M.; Wijnands, R.; Altamirano, D.; Fabian, A. C.

    2013-04-20

    Type-I X-ray bursts are thermonuclear explosions occurring in the surface layers of accreting neutron stars. These events are powerful probes of the physics of neutron stars and their surrounding accretion flow. We analyze a very energetic type-I X-ray burst from the neutron star low-mass X-ray binary IGR J17062-6143 that was detected with Swift on 2012 June 25. The light curve of the {approx_equal}18 minute long X-ray burst tail shows an episode of {approx_equal}10 minutes during which the intensity is strongly fluctuating by a factor of {approx_equal}3 above and below the underlying decay trend on a timescale of seconds. The X-ray spectrum reveals a highly significant emission line around {approx_equal}1 keV, which can be interpreted as an Fe-L shell line caused by the irradiation of cold gas. We also detect significant absorption lines and edges in the Fe-K band, which are strongly suggestive of the presence of hot, highly ionized gas along the line of sight. None of these features are present in the persistent X-ray spectrum of the source. The timescale of the strong intensity variations, the velocity width of the Fe-L emission line (assuming Keplerian motion), and photoionization modeling of the Fe-K absorption features each independently point to gas at a radius of {approx_equal} 10{sup 3} km as the source of these features. The unusual X-ray light curve and spectral properties could have plausibly been caused by a disruption of the accretion disk due to the super-Eddington fluxes reached during the X-ray burst.

  16. REBIRTH OF X-RAY EMISSION FROM THE BORN-AGAIN PLANETARY NEBULA A30

    SciTech Connect

    Guerrero, M. A.; Ruiz, N.; Toala, J. A.; Chu, Y.-H.; Gruendl, R. A.; Schoenberner, D.; Steffen, M.; Blair, W. P.

    2012-08-20

    The planetary nebula A30 is believed to have undergone a very late thermal pulse resulting in the ejection of knots of hydrogen-poor material. Using multi-epoch Hubble Space Telescope images, we have detected the angular expansion of these knots and derived an age of 850{sup +280}{sub -150} yr. To investigate the spectral and spatial properties of the soft X-ray emission detected by ROSAT, we have obtained Chandra and XMM-Newton deep observations of A30. The X-ray emission from A30 can be separated into two components: a point source at the central star and diffuse emission associated with the hydrogen-poor knots and the cloverleaf structure inside the nebular shell. To help us assess the role of the current stellar wind in powering this X-ray emission, we have determined the stellar parameters and wind properties of the central star of A30 using a non-LTE model fit to its optical and UV spectra. The spatial distribution and spectral properties of the diffuse X-ray emission are highly suggestive that it is generated by the post-born-again and present fast stellar winds interacting with the hydrogen-poor ejecta of the born-again event. This emission can be attributed to shock-heated plasma, as the hydrogen-poor knots are ablated by the stellar winds, under which circumstances the efficient mass loading of the present fast stellar wind raises its density and damps its velocity to produce the observed diffuse soft X-rays. Charge transfer reactions between the ions of the stellar winds and material of the born-again ejecta have also been considered as a possible mechanism for the production of diffuse X-ray emission, and upper limits on the expected X-ray production by this mechanism have been derived. The origin of the X-ray emission from the central star of A30 is puzzling: shocks in the present fast stellar wind and photospheric emission can be ruled out, while the development of a new, compact hot bubble confining the fast stellar wind seems implausible.

  17. New Chandra observations of the jet in 3C273. 1. Softer X-ray than radio spectra and the X-ray emission mechanism

    SciTech Connect

    Jester, Sebastian; Harris, D.E.; Marshall, H.L.; Meisenheimer, K.; /Heidelberg, Max Planck Inst. Astron.

    2006-05-01

    The jet in 3C273 is a high-power quasar jet with radio, optical and X-ray emission whose size and brightness allow a detailed study of the emission processes acting in it. We present deep Chandra observations of this jet and analyze the spectral properties of the jet emission from radio through X-rays. We find that the X-ray spectra are significantly softer than the radio spectra in all regions of the bright part of the jet except for the first bright ''knot A'', ruling out a model in which the X-ray emission from the entire jet arises from beamed inverse-Compton scattering of cosmic microwave background photons in a single-zone jet flow. Within two-zone jet models, we find that a synchrotron origin for the jet's X-rays requires fewer additional assumptions than an inverse-Compton model, especially if velocity shear leads to efficient particle acceleration in jet flows.

  18. DISCOVERY OF EXTENDED X-RAY EMISSION AROUND THE HIGHLY MAGNETIC RRAT J1819-1458

    SciTech Connect

    Rea, N.; McLaughlin, M. A.; Gaensler, B. M.; Slane, P. O.; Stella, L.; Israel, G. L.; Reynolds, S. P.; Burgay, M.; Possenti, A.; Chatterjee, S.

    2009-09-20

    We report on the discovery of extended X-ray emission around the high magnetic field rotating radio transient J1819-1458. Using a 30 ks Chandra ACIS-S observation, we found significant evidence for extended X-ray emission with a peculiar shape: a compact region out to {approx}5.''5, and more diffuse emission extending out to {approx}13'' from the source. The most plausible interpretation is a nebula somehow powered by the pulsar, although the small number of counts prevents a conclusive answer on the nature of this emission. RRAT J1819-1458's spin-down energy loss rate (E-dot{sub rot}{approx}3 x 10{sup 32} erg s{sup -1}) is much lower than that of other pulsars with observed spin-down-powered pulsar wind nebulae (PWNe), and implies a rather high X-ray efficiency of eta{sub X}ident toL{sub pwn:0.5-8keV}/E-dot{sub rot}{approx}0.2 at converting spin-down power into the PWN X-ray emission. This suggests the need of an additional source of energy rather than the spin-down power alone, such as the high magnetic energy of this source. Furthermore, this Chandra observation allowed us to refine the positional accuracy of RRAT J1819-1458 to a radius of {approx}0.''3, and confirms the presence of X-ray pulsations and the {approx}1 keV absorption line, previously observed in the X-ray emission of this source.

  19. X-Ray Emission from the Wolf-Rayet Bubble S 308

    NASA Technical Reports Server (NTRS)

    Toala, J. A.; Guerrero, M. A.; Chu, Y.-H.; Gruendl, R. A.; Arthur, S. J.; Smith, R. C.; Snowden, S. L.

    2012-01-01

    The Wolf-Rayet (WR) bubble S 308 around the WR star HD 50896 is one of the only two WR bubbles known to possess X-ray emission. We present XMM-Newton observations of three fields of this WR bubble that, in conjunction with an existing observation of its Northwest quadrant (Chu et al. 2003), map most of the nebula. The X-ray emission from S 308 displays a limb-brightened morphology, with a 22' in size central cavity and a shell thickness of approx. 8'. This X-ray shell is confined by the optical shell of ionized material. The spectrum is dominated by the He-like triplets of N VI at approx.0.43 keV and O VII at approx.0.5 keV, and declines towards high energies, with a faint tail up to 1 keV. This spectrum can be described by a two-temperature optically thin plasma emission model (T1 approx.1.1 x 10(exp 6) K, T2 approx.13 x 10(exp 6) K), with a total X-ray luminosity approx.3 x 10(exp 33) erg/s at the assumed distance of 1.8 kpc. Qualitative comparison of the X-ray morphology of S 308 with the results of numerical simulations of wind-blown WR bubbles suggests a progenitor mass of 40 Stellar mass and an age in the WR phase approx.20,000 yrs. The X-ray luminosity predicted by simulatioms including the effects of heat conduction is in agreement with the observations, however, the simulated X-ray spectrum indicates generally hotter gas than is derived from the observations. We suggest that non-equilibrium ionization (NEI) may provide an explanation for this discrepancy.

  20. X-RAY INSIGHTS INTO THE NATURE OF WEAK EMISSION-LINE QUASARS AT HIGH REDSHIFT

    SciTech Connect

    Shemmer, Ohad; Brandt, W. N.; Schneider, Donald P.; Anderson, Scott F.; Diamond-Stanic, Aleksandar M.; Fan Xiaohui; Richards, Gordon T.; Strauss, Michael A.

    2009-05-01

    We present Chandra observations of nine high-redshift quasars (z = 2.7-5.9) discovered by the Sloan Digital Sky Survey with weak or undetectable high-ionization emission lines in their UV spectra (WLQs). Adding archival X-ray observations of six additional sources of this class has enabled us to place the strongest constraints yet on the X-ray properties of this remarkable class of active galactic nuclei (AGNs). Although our data cannot rule out the possibility that the emission lines are overwhelmed by a relativistically boosted continuum, as manifested by BL Lac objects, we find that WLQs are considerably weaker in the X-ray and radio bands than the majority of BL Lacs found at much lower redshifts. If WLQs are high-redshift BL Lacs, then it is difficult to explain the lack of a large parent population of X-ray and radio bright weak-lined sources at high redshift. We also consider the possibility that WLQs are quasars with extreme properties, and in particular that the emission lines are suppressed by high accretion rates. Using joint spectral fitting of the X-ray spectra of 11 WLQs, we find that the mean photon index in the hard X-ray band is consistent with those observed in typical radio-quiet AGNs with no hint of an unusually steep hard-X-ray spectrum. This result poses a challenge to the hypothesis that WLQs have extremely high accretion rates, and we discuss additional observations required to test this idea.

  1. Ultraviolet/X-ray Variability and the Extended X-ray Emission of the Radio-loud Broad Absorption Line Quasar PG 1004+130

    NASA Astrophysics Data System (ADS)

    Scott, A. E.; Brandt, W. N.; Miller, B. P.; Luo, B.; Gallagher, S. C.

    2015-06-01

    We present the results of recent Chandra, XMM-Newton, and Hubble Space Telescope observations of the radio-loud (RL), broad absorption line (BAL) quasar PG 1004+130. We compare our new observations to archival X-ray and UV data, creating the most comprehensive, high signal-to-noise, multi-epoch, spectral monitoring campaign of a RL BAL quasar to date. We probe for variability of the X-ray absorption, the UV BAL, and the X-ray jet, on month-year timescales. The X-ray absorber has a low column density of {N}H=8 {10}20-4 {10}21 {{cm}}-2 when it is assumed to be fully covering the X-ray emitting region, and its properties do not vary significantly between the four observations. This suggests that the observed absorption is not related to the typical shielding gas commonly invoked in BAL quasar models, but is likely due to material further from the central black hole. In contrast, the C iv BAL shows strong variability. The equivalent width (EW) in 2014 is {EW}=11.24+/- 0.56 \\AA, showing a fractional increase of ? {EW}/< {EW}> =1.16+/- 0.11 from the 2003 observation, 3183 days earlier in the rest-frame. This places PG 1004+130 among the most highly variable BAL quasars. By combining Chandra observations we create an exposure that is 2.5 times deeper than studied previously, with which to investigate the nature of the X-ray jet and extended diffuse X-ray emission. An X-ray knot, likely with a synchrotron origin, is detected in the radio jet 8\\prime\\prime (30 kpc) from the central X-ray source with a spatial extent of 4\\prime\\prime (15 kpc). No similar X-ray counterpart to the counterjet is detected. Asymmetric, non-thermal diffuse X-ray emission, likely due to inverse Compton scattering of Cosmic Microwave Background photons, is also detected.

  2. Field-emission-type x-ray source using carbon-nanofibers

    SciTech Connect

    Kita, S.; Watanabe, Y.; Ogawa, A.; Ogura, K.; Sakai, Y.; Matsumoto, Y.; Isokane, Y.; Okuyama, F.; Nakazato, T.; Otsuka, T.

    2008-03-15

    An x-ray irradiation system of field-emission type has been constructed using carbon-nanofibers (CNFs) grown on a palladium wire that is 50 {mu}m in diameter. The electron current emitted from the CNFs was approximately 1 mA and was stable within 10% for a long time t>5000 h. The electrons passing through a slit in the gate electrode were accelerated to the desired energy, and were made to impinge on the metal target (Ti, Cu, Mo, and W) for generating x rays. The x-rays transmitted through Be-window were characterized using energy analyzers and a dosimeter. At an acceleration voltage of V{sub a}=50 kV, the energy spectra of the x-rays were exclusively composed of characteristic signals except for the Mo-target, and the dose rates of x-rays were D=2.5-14 Gy/min, depending on the target metals. This system also provides sharp x-ray images of both biological and nonbiological materials.

  3. X-ray Emission from Ionized Wind-Bubbles around Wolf-Rayet Stars

    NASA Astrophysics Data System (ADS)

    Dwarkadas, V. V.; Rosenberg, D.

    Using a code that employs a self-consistent method for computing the effects of photoionization on circumstellar gas dynamics, we model the formation of wind-driven nebulae around massive Wolf-Rayet (W-R) stars. Our algorithm incorporates a simplified model of the photo-ionization source, computes the fractional ionization of hydrogen due to the photoionizing flux and recombination, and determines self-consistently the energy balance due to ionization, photo-heating and radiative cooling. We take into account changes in stellar properties and mass-loss over the star's evolution. Our multi-dimensional simulations clearly reveal the presence of strong ionization front instabilities. Using various X-ray emission models, and abundances consistent with those derived for W-R nebulae, we compute the X-ray flux and spectra from our wind bubble models. We show the evolution of the X-ray spectral features with time over the evolution of the star, taking the absorption of the X-rays by the ionized bubble into account. Our simulated X-ray spectra compare reasonably well with observed spectra of Wolf-Rayet bubbles. They suggest that X-ray nebulae around massive stars may not be easily detectable, consistent with observations.?

  4. Exceptional X-ray Weak Quasars: Implications for Accretion Flows and Emission-Line Formation

    NASA Astrophysics Data System (ADS)

    Brandt, W. Niel; Luo, Bin; Hall, Patrick B.; Wu, Jianfeng; Anderson, Scott F.; Garmire, Gordon; Gibson, Robert; Plotkin, Richard; Richards, Gordon T.; Schneider, Donald P.; Shemmer, Ohad; Shen, Yue

    2016-01-01

    Actively accreting supermassive black holes are found, nearly universally, to create luminous X-ray emission, and this point underlies the utility of X-ray surveys for finding active galactic nuclei throughout the Universe. However, there are apparent X-ray weak exceptions to this rule that are now providing novel insights, including weak-line quasars (WLQs) and especially analogs of the extreme WLQ, PHL 1811. We have been systematically studying such X-ray weak quasars with Chandra and near-infrared spectroscopy, and I will report results on their remarkable properties and describe implications for models of the accretion disk/corona and emission-line formation. We have found evidence that many of these quasars may have geometrically thick inner accretion disks, likely due to high accretion rates, that shield the high-ionization broad line region from the relevant ionizing continuum. This model can explain, in a simple and unified manner, their weak lines and diverse X-ray properties. Such shielding may, more generally, play a role in shaping the broad distributions of quasar emission-line equivalent widths and blueshifts.

  5. MODELING THE THERMAL DIFFUSE SOFT AND HARD X-RAY EMISSION IN M17

    SciTech Connect

    Velazquez, P. F.; Rodriguez-Gonzalez, A.; Esquivel, A.; Rosado, M.; Reyes-Iturbide, J. E-mail: ary@nucleares.unam.mx E-mail: margarit@astro.unam.mx

    2013-04-10

    We present numerical models of very young wind driven superbubbles. The parameters chosen for the simulations correspond to the particular case of the M17 nebula, but are appropriate for any young superbubble in which the wind sources have not completely dispersed their parental cloud. From the simulations, we computed the diffuse emission in the soft ([0.5-1.5] keV) and hard ([1.5-5] keV) X-ray bands. The total luminosity in our simulations agrees with the observations of Hyodo et al., about two orders of magnitude below the prediction of the standard model of Weaver et al.. The difference with respect to the standard (adiabatic) model is the inclusion of radiative cooling, which is still important in such young bubbles. We show that for this type of object the diffuse hard X-ray luminosity is significant compared to that of soft X-rays, contributing as much as 10% of the total luminosity, in contrast with more evolved bubbles where the hard X-ray emission is indeed negligible, being at least four orders of magnitude lower than the soft X-ray emission.

  6. Effect of anode shape on pinch structure and X-ray emission of plasma focus device

    NASA Astrophysics Data System (ADS)

    Talukdar, N.; Neog, N. K.; Borthkur, T. K.

    The effect of anode shapes on pinch structure and X-ray emission of plasma focus device operated with cylindrical, diverging, oval and converging anode tips is reported. The pinch structure in the radial compression phase has been investigated by employing a triple pinhole camera. It has been observed that pinch structure as well as the X-ray emission of PF device strongly depends upon anode tip designs. For the first time the studies were carried out in two new shapes of anode tips that is the oval and the divergent one. It has been observed that the oval and diverging anode tips are more conducive for the formation of instabilities and hotspot generation. The studies of X-ray emission were also carried out by employing three channels of a p-i-n diode X-ray spectrometer in entire anode designs to corroborate the results of a triple pinhole camera. Additionally, the effective hard X-ray photon energy was also estimated by the radiography method for all the anode tip designs, which indirectly provide a qualitative idea of the generation of induced accelerating field in the pinched column during compression.

  7. Search for X-ray emission from a sample of luminous O-type subdwarfs

    NASA Astrophysics Data System (ADS)

    La Palombara, Nicola

    2012-09-01

    While many hot subdwarf stars have been deeply investigated in the optical and UV domain, only two sdO stars, HD49798 and BD+37 442, have been detected at X-rays. In both cases the observed emission shows a fast periodic modulation, indicating the presence of a WD or NS companion, likely powered by accretion. We propose the first systematic search for X-ray emission from a complete flux-limited sample of sdO stars, in order to constrain the presence of compact companions.

  8. Nanop: An x-ray to gold nanoparticle electron and photon emission software

    NASA Astrophysics Data System (ADS)

    Casta, R.; Champeaux, J.-P.; Sence, M.; Moretto-Capelle, P.; Cafarelli, P.

    2015-08-01

    Nanoparticles have been explored as radiosensitizers for cancer radiotherapy. While the nanoparticle radiotherapy improvement has been clearly observed, there is still a debate over the physical and biological mechanisms leading to this result. In particular, the role of electrons and photons emitted by nanoparticle after x-ray absorption is not well understood and their energies are not well known. Therefore, we developed in this paper a new model to determine the electron and photon emission spectra of nanoparticles irradiated by x-ray photons. This model is implemented, for a gold nanoparticle, in a newly available software called Nanop which allows anyone to determine gold nanoparticle photon and electron emissions.

  9. Long-term X-ray studies of Sco X-1. [emission spectra of constellations

    NASA Technical Reports Server (NTRS)

    Holt, S. S.; Boldt, E. A.; Serlemitsos, P. J.; Kaluzienski, L. J.

    1975-01-01

    No modulation of the 3-6 keV X-ray intensity of Sco X-1 at a level of excess of 1% was observed at the optical period of .787313d. Evidence is found for shot-noise character in a large fraction of the X-ray emission. Almost all of the Sco X-1 emission can be synthesized in terms of approximately 200 shots per day, each with a duration of approximately 1/3 day. A pinhole camera was used to obtain data and the data were statistically analyzed.

  10. Low- to Mid-Latitude X-Ray Emission from Jupiter

    NASA Technical Reports Server (NTRS)

    Bhardwaj, Anil; Elsner, Ronald F.; Gladstone, G. Randall; Waite, J. Hunter, Jr.; Branduardi-Raymont, Graziella; Cravens, Thomas E.; Ford, Peter

    2006-01-01

    The Chandra X-ray Observatory (CXO) observed Jupiter during the period 2003 February 24-26 for approx.40 hours (4 Jupiter rotations), using both the spectroscopy array of the Advanced CCD Imaging Spectrometer (ACIS-S) and the imaging array of the High-Resolution Camera (HRC-I). Two ACIS-S exposures, each approx.8.5 hr long, were separated by an HRC-I exposure of approx.20 hr. The low- to mid-latitude non-auroral disk X-ray emission is much more spatially uniform than the auroral emission. However, the low- to mid-latitude X-ray count rate shows a small but statistically significant hour angle dependence, and is higher in regions of relatively low surface magnetic field strength, confirming ROSAT results. In addition, the spectrum from the low surface field region shows an enhancement in the energy band 1.14- 1.38 keV, perhaps partly due to line emission from that region. Correlation of surface magnetic field strength with count rate is not found for the 2000 December HRC-I data, at a time when solar activity was high. The low- to mid-latitude disk X-ray count rate observed by the HRC-I in the 2003 February observation is about 50% of that observed in 2000 December, roughly consistent with a decrease in the solar activity index (F10.7 cm flux) by a similar amount over the same time period. The low- to mid-latitude X-ray emission does not show any oscillations similar to the -45 minute oscillations sometimes seen from the northern auroral zone. The temporal variation in Jupiter's non-auroral X-ray emission exhibits similarities to variations in solar X-ray flux observed by GOES and TIMED/SEE. The two ACIS-S 0.3-2 keV low- to mid-latitude X-ray spectra are harder than the auroral spectrum, and are different from each other at energies above 0.7 keV, showing variability in Jupiter s non-auroral X-ray emission on a time scale of a day. The 0.3-2.0 keV X-ray power emitted at low- to mid-latitudes is 0.21 GW and 0.39 GW for the first and second ACIS-S exposures, respectively. We suggest that X-ray emission from Jupiter's disk may be largely generated by solar X-rays resonantly and fluorescently scattered in its upper atmosphere, especially at times of high incident solar X-ray flux. However, the correlation of higher count rate with low surface magnetic-field strength indicates the presence of some secondary component, possibly ion precipitation from radiation belts closer to the planet than elsewhere at low- to mid-latitudes.

  11. An X-Ray Reprocessing Model of Disk Thermal Emission in Type 1 Seyfert Galaxies

    NASA Technical Reports Server (NTRS)

    Chiang, James; White, Nicholas E. (Technical Monitor)

    2002-01-01

    Using a geometry consisting of a hot central Comptonizing plasma surrounded by a thin accretion disk, we model the optical through hard X-ray spectral energy distributions of the type 1 Seyfert. galaxies NGC 3516 and NGC 7469. As in the model proposed by Poutanen, Krolik, and Ryde for the X-ray binary Cygnus X-1 and later applied to Seyfert galaxies by Zdziarski, Lubifiski, and Smith, feedback between the radiation reprocessed by the disk and the thermal Comptonization emission from the hot central plasma plays a pivotal role in determining the X-ray spectrum, and as we show, the optical and ultraviolet spectra as well. Seemingly uncorrelated optical/UV and X-ray light curves, similar to those which have been observed from these objects can, in principle, be explained by variations in the size, shape, and temperature of the Comptonizing plasma. Furthermore, by positing a disk mass accretion rate which satisfies a condition for global energy balance between the thermal Comptonization luminosity and the power available from accretion, one can predict the spectral properties of the heretofore poorly measured hard X-ray continuum above approximately 50 keV in type 1 Seyfert galaxies. Conversely, forthcoming measurements of the hard X-ray continuum by more sensitive hard X-ray and soft gamma-ray telescopes, such as those aboard the International Gamma-Ray Astrophysics Laboratory (INTEGRAL) in conjunction with simultaneous optical, UV, and soft X-ray monitoring, will allow the mass accretion rates to be directly constrained for these sources in the context of this model.

  12. Study of X-ray emission from the old open cluster, M67

    NASA Astrophysics Data System (ADS)

    Mooley, K. P.; Singh, K. P.

    2015-10-01

    We present an X-ray analysis of a 4 Gyr old open cluster, M67, using archival XMM-Newton data. The aim of this study was to find new X-ray members of M67, and to use the updated member list for studying X-ray variability, and derive the X-ray luminosity functions (XLFs) of different stellar types and compare them with other star clusters of similar age. We report the detection of X-ray emission from 25 members of M67, with membership based primarily on their proper motion, of which one X-ray source is a new member. Supplementing this study with previous ROSAT and Chandra studies of M67, and using the most recent proper motion study by Vereshchagin et al., we have compiled a revised list of X-ray emitting members of M67 consisting of 43 stars. 16 of these are known RS CVn type binaries having orbital periods <10 d, and near-circular orbits, five are contact binaries with orbital periods <6 h, five are yellow and blue stragglers, two are Algol-type binaries, and one source is a cataclysmic variable. 14 members do not have any orbital information and cannot be classified. 14 of the X-ray sources detected do not have any optical counterpart down to a magnitude of V ≃ 22, and their membership is uncertain. Finally, we report the XLFs of RS CVn type and other types of stars in M67 and compare them with other open clusters of intermediate-to-old age.

  13. Low Luminosity Cataclysmic Variables and Fe Emission Lines of Galactic Ridge X-ray Emission

    NASA Astrophysics Data System (ADS)

    Xu, Xiaojie; Wang, Q. Daniel

    2015-08-01

    Cataclysmic variables (CVs) has been proposed to be one of the main contributors of the Galactic Ridge X-ray Emission (GRXE). However, previous studies on the spectra of local CVs suggested that the I6.7keV/I7.0keV line intensity ratios of CVs are not consistent with that of GRXE. Utilizing the archival Suzaku observations on local CVs, we confirm that luminous local CVs like intermediate polars, symbiotic stars and polars have lower I6.7keV/I7.0keV values, thus are unable to explain the Fe emission line ratios of GRXE. On the other hand, dimmer CVs like dwarf novae (DNe) have I6.7keV/I7.0keV values consitent with that of GRXE. Given the potential huge population, DNe could be one of the main resources of GRXE Fe line emission.

  14. X-ray Emission From Eta Carinae near Periastron in 2009 I: A Two State Solution

    NASA Technical Reports Server (NTRS)

    Hamaguchi, Kenji; Corcoran, Michael F.; Russell, Christopher; Pollock, Andrew M. T.; Gull, Theodore R.; Teodoro, Mairan; Madura, Thomas I.; Damineli, Augusto; Pittard, Julian M.

    2014-01-01

    X-ray emission from the supermassive binary system Eta Carinae declines sharply around periastron. This X-ray minimum has two distinct phases the lowest flux phase in the first 3 weeks and a brighter phase thereafter. In 2009, the Chandra X-ray Observatory monitored the first phase five times and found the lowest observed flux at 1.91012 ergs/sq cm/s (38 keV). The spectral shape changed such that the hard band above 4 keV dropped quickly at the beginning and the soft band flux gradually decreased to its lowest observed value in 2 weeks. The hard band spectrum had begun to recover by that time. This spectral variation suggests that the shocked gas producing the hottest X-ray gas near the apex of the wind-wind collision (WWC) is blocked behind the dense inner wind of the primary star, which later occults slightly cooler gas down-stream. Shocked gas previously produced by the system at earlier orbital phases is suggested to produce the faint residual X-ray emission seen when the emission near the apex is completely blocked by the primary wind. The brighter phase is probably caused by the re-appearance of the WWC plasma, whose emissivity significantly declined during the occultation. We interpret this to mean that the X-ray minimum is produced by a hybrid mechanism of an occultation and a decline in emissivity of the WWC shock. We constrain timings of superior conjunction and periastron based on these results.

  15. The optical emission lines of type 1 X-ray bright Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    La Mura, G.; Berton, M.; Ciroi, S.; Cracco, V.; Di Mille, F.; Rafanelli, P.

    2014-10-01

    A strong X-ray emission is one of the defining signatures of nuclear activity in galaxies. According to the Unified Model for Active Galactic Nuclei (AGN), both the X-ray radiation and the prominent broad emission lines, characterizing the optical and UV spectra of Type 1 AGNs, are originated in the innermost regions of the sources, close to the Super Massive Black Holes (SMBH), which power the central engine. Since the emission is concentrated in a very compact region (with typical size r⩽0.1 pc) and it is not possible to obtain resolved images of the source, spectroscopic studies of this radiation represent the only valuable key to constrain the physical properties of matter and its structure in the center of active galaxies. Based on previous studies on the physics of the Broad Line Region (BLR) and on the X-ray spectra of broad (FWHMHβ ⩾ 2000 km s-1) and narrow line (1000 km s-1 ⩽FWHMHβ ⩽ 2000 km s-1) emitting objects, it has been observed that the kinematic and ionization properties of matter close to the SMBHs are related together, and, in particular, that ionization is higher in narrow line sources. Here we report on the study of the optical and X-ray spectra of a sample of Type 1 AGNs, selected from the Sloan Digital Sky Survey (SDSS) database, within an upper redshift limit of z=0.35, and detected at X-ray energies. We present analysis of the broad emission line fluxes and profiles, as well as the properties of the X-ray continuum and Fe Kα emission and we use these parameters to assess the consistency of our current AGN understanding.

  16. Weak Hard X-Ray Emission from Two Broad Absorption Line Quasars Observed with NuStar: Compton-Thick Absorption or Intrinsic X-Ray Weakness?

    NASA Technical Reports Server (NTRS)

    Luo, B.; Brandt, W. N.; Alexander, D. M.; Harrison, F. A.; Stern, D.; Bauer, F. E.; Boggs, S. E.; Christensen, F. E.; Comastri, A.; Craig, W. W..; Fabian, A. C.; Farrah, D.; Fiore, F.; Fuerst, F.; Grefenstette, B. W.; Hailey, C. J.; Hickox, R.; Madsen, K. K.; Matt, G.; Ogle, P.; Risaliti, G.; Saez, C.; Teng, S. H.; Walton, D. J.; Zhang, W. W.

    2013-01-01

    We present Nuclear Spectroscopic Telescope Array (NuSTAR) hard X-ray observations of two X-ray weak broad absorption line (BAL) quasars, PG 1004+130 (radio loud) and PG 1700+518 (radio quiet). Many BAL quasars appear X-ray weak, probably due to absorption by the shielding gas between the nucleus and the accretion-disk wind. The two targets are among the optically brightest BAL quasars, yet they are known to be significantly X-ray weak at rest-frame 2-10 keV (16-120 times fainter than typical quasars). We would expect to obtain approx. or equal to 400-600 hard X-ray (is greater than or equal to 10 keV) photons with NuSTAR, provided that these photons are not significantly absorbed N(sub H) is less than or equal to 10(exp24) cm(exp-2). However, both BAL quasars are only detected in the softer NuSTAR bands (e.g., 4-20 keV) but not in its harder bands (e.g., 20-30 keV), suggesting that either the shielding gas is highly Compton-thick or the two targets are intrinsically X-ray weak. We constrain the column densities for both to be N(sub H) 7 × 10(exp 24) cm(exp-2) if the weak hard X-ray emission is caused by obscuration from the shielding gas. We discuss a few possibilities for how PG 1004+130 could have Compton-thick shielding gas without strong Fe Ka line emission; dilution from jet-linked X-ray emission is one likely explanation. We also discuss the intrinsic X-ray weakness scenario based on a coronal-quenching model relevant to the shielding gas and disk wind of BAL quasars. Motivated by our NuSTAR results, we perform a Chandra stacking analysis with the Large Bright Quasar Survey BAL quasar sample and place statistical constraints upon the fraction of intrinsically X-ray weak BAL quasars; this fraction is likely 17%-40%.

  17. X-ray emission from SN 1986J in NGC 891

    NASA Technical Reports Server (NTRS)

    Bregman, Joel N.; Pildis, Rachel A.

    1992-01-01

    Using the Position Sensitive Proportional Counter on ROSAT, we detected soft X-ray emission from SN 1986J in NGC 891 approximately nine years after the supernova event. The X-ray emission is characterized by L(x) (0.1-2.5 keV) = 1.6-7 x 10 exp 40 ergs/s, T(x) = 1.0-3.9 keV, and an absorbing column of 5-14 x 10 exp 21/sq cm. The X-ray luminosity, temperature, and absorption column are reproduced surprisingly well in a model where a reverse shock propagates into the outer layers of the exploded star. The large absorbing column is probably intrinsic to the supernova and represents the cooled gas created by a radiative reverse shock.

  18. K{beta} resonant x-ray emission spectra in MnF{sub 2}

    SciTech Connect

    Taguchi, M.; Parlebas, J. C.; Uozumi, T.; Kotani, A.; Kao, C.-C.

    2000-01-15

    We report experimental and theoretical results on Mn K{beta} resonant x-ray emission spectra (K{beta} RXES) at the pre-edge region of K-edge x-ray absorption spectroscopy in a powdered MnF{sub 2} sample. The experimental results are studied theoretically in terms of coherent second-order optical process, using a MnF{sub 6}{sup -4} cluster model with the effects of intra-atomic multiplet coupling and interatomic hybridization in the space of three configurations and taking into account both the Mn 1s-3d quadrupole excitation and the Mn 1s-4p dipole excitation. The agreement between theory and experiment is good. Moreover, we show that if the sample is a single crystal the resonant x-ray emission spectroscopy caused by the quadrupole excitation has a strong sensitivity to the angle of the incident photon. (c) 2000 The American Physical Society.

  19. X-RAY EMISSION FROM NITROGEN-TYPE WOLF-RAYET STARS

    SciTech Connect

    Skinner, Stephen L.; Sokal, Kimberly R.; Zhekov, Svetozar A.; Guedel, Manuel; Schmutz, Werner

    2010-03-15

    We summarize new X-ray detections of four nitrogen-type Wolf-Rayet (WR) stars obtained in a limited survey aimed at establishing the X-ray properties of WN stars across their full range of spectral subtypes. None of the detected stars is so far known to be a close binary. We report Chandra detections of WR 2 (WN2), WR 18 (WN4), and WR 134 (WN6), and an XMM-Newton detection of WR79a (WN9ha). These observations clearly demonstrate that both WNE and WNL stars are X-ray sources. We also discuss Chandra archive detections of the WN6h stars WR 20b, WR 24, and WR 136 and ROSAT non-detections of WR 16 (WN8h) and WR 78 (WN7h). The X-ray spectra of all WN detections show prominent emission lines and an admixture of cool (kT < 1 keV) and hot (kT > 2 keV) plasma. The hotter plasma is not predicted by radiative wind shock models and other as yet unidentified mechanisms are at work. Most stars show X-ray absorption in excess of that expected from visual extinction (A {sub V}), likely due to their strong winds or cold circumstellar gas. Existing data suggest a falloff in X-ray luminosity toward later WN7-9 subtypes, which have higher L {sub bol} but slower, denser winds than WN2-6 stars. This provides a clue that wind properties may be a more crucial factor in determining emergent X-ray emission levels than bolometric luminosity.

  20. X-ray emissivities from well characterized underdense, laser-heated gas targets

    NASA Astrophysics Data System (ADS)

    Fournier, K. B.; Constantin, C.; Back, C. A.; Miller, M. C.; Suter, L. J.; Chung, H.-K.

    2004-11-01

    We have performed experiments with laser-irradiated gas-filled targets that produce efficient, bright L-shell x-rays from Kr ions (h? ? 1.8keV). These experiments were carried out at the OMEGA laser (?=351nm) at the University of Rochester. Targets with different fill pressures yielded plasma electron densities in the range 3 to 5% n_Cr, where n_ Cr=910^21cm-3 for 3? light. The plasmas were well diagnosed with gated x-ray framing cameras, which show homogeneity of the x-ray emission, and 4? Thomson scattering, which shows the electron temperature at the center of the bag. The conversion efficiency of these targets is measured with an absolute-flux-calibrated Bragg crystal spectrometer. The results demonstrate record x-ray production. Detailed collisional-radiatve (CR) models for the emitted spectra have been made with the HULLAC suite of codes. The models fully account for the dielectronic recombination channels that determine the ionization balance for L-shell Kr ions. The charge-state distribution and detailed x-ray spectra are compared to the observed spectra. The resulting line-by-line CR emissivity from the model is compared to the measured x-ray output from the gas targets. X-ray radiative-cooling rates are benchmarked against measurements from plasmas with known temperature and density conditions. This work was performed under the auspices of the U.S. Department of Energy by UC Lawrence Livermore National Laboratory under contract No.W-7405-Eng-48.

  1. The quiescent emission of the first low-B soft gamma repeater

    NASA Astrophysics Data System (ADS)

    Rea, Nanda

    2013-10-01

    Soft gamma repeaters (SGRs) are part of a rapidly increasing group of X-ray sources exhibiting sporadic and powerful emission of short bursts and outbursts, believed to be magnetars, i.e. neutron stars powered by extreme magnetic fields (Bsim10(14}-10({15)) G). We have recently discovered the first SGR with a low magnetic field (Rea et al. 2010, Science, 330, 944; Rea et al. 2013, ApJ 770, 65), SGR 0418+5729 discovered in outburst after it emitted bursts similar to those of magnetars. We ask for a 120,ks XMM observation to measure SGR 0418+5729 's quiescent flux and surface temperature, crucial for tuning the magnetar model as well as predict how many "hidden" magnetars there might be within the pulsar population (abridged).

  2. DISCOVERY OF DIFFUSE HARD X-RAY EMISSION AROUND JUPITER WITH SUZAKU

    SciTech Connect

    Ezoe, Y.; Ishikawa, K.; Ohashi, T.; Miyoshi, Y.; Terada, N.; Uchiyama, Y.; Negoro, H.

    2010-02-01

    We report the discovery of diffuse hard (1-5 keV) X-ray emission around Jupiter in a deep 160 ks Suzaku X-ray Imaging Spectrometer data. The emission is distributed over {approx}16 x 8 Jovian radius and spatially associated with the radiation belts and the Io Plasma Torus (IPT). It shows a flat power-law spectrum with a photon index of 1.4 {+-} 0.2 with the 1-5 keV X-ray luminosity of (3.3 {+-} 0.5)x10{sup 15} erg s{sup -1}. We discussed its origin and concluded that it seems to be truly diffuse, although a possibility of multiple background point sources cannot be completely rejected with a limited angular resolution. If it is diffuse, the flat continuum indicates that X-rays arise by the nonthermal electrons in the radiation belts and/or the IPT. The synchrotron and bremsstrahlung models can be rejected from the necessary electron energy and X-ray spectral shape, respectively. The inverse-Compton scattering off solar photons by ultra-relativistic (several tens MeV) electrons can explain the energy and the spectrum but the necessary electron density is {approx}>10 times larger than the value estimated from the empirical model of Jovian charge particles.

  3. θ Car: X-ray Emission from Low Density Radiation-Driven Winds

    NASA Astrophysics Data System (ADS)

    Doyle (Mizusawa), Trisha; Petit, Veronique; Held Cohen, David; Fullerton, Alexander W.; Gagne, Marc; Leutenegger, Maurice A.; Li, Zequn; Owocki, Stanley P.; Sundqvist, Jon; Wade, Gregg

    2016-01-01

    We present Chandra X-ray grating spectroscopy (and IUE spectroscopy) of the B0.2 V star, θ Carina. θ Car is in a critical transition region between the earliest B stars and the latest O stars, where the density of the wind is observed to decrease more than theoretically expected. In general, X-ray emission in this low-density wind regime should be less prominent, but observations have shown that there is a higher than expected production of X-ray emission from the winds of these stars; this severely challenges predictions of radiatively driven wind theory. We measure the f/i ratio, widths, and velocities of several Helium-like lines in the X-ray spectrum. The f/i ratio is a diagnostic of the radial location of the X-ray emitting plasma, which is sensitive to the specific transition of each He-like ion. We use θ Car to study the radiatively-driven mass-loss of early B-type stars.

  4. Accretion shocks in young stars: the role of local absorption on the X-ray emission

    NASA Astrophysics Data System (ADS)

    Bonito, R.; Argiroffi, C.; Orlando, S.; Miceli, M.

    2014-07-01

    We analyze the X-ray emission from accretion shocks formed where the infalling material impact the surface of young stars. Several aspects in observations and in models of accretion are still debated: the density vs temperature structure of the shocked plasma is opposite of what expected from simple accretion shock models and the X-ray luminosity detected from post-shock plasma is below the predicted value. To address these open issues we performed numerical simulations describing the impact of an accretion stream onto the stellar surface (exploring different configurations of the magnetic field) and taken into account the local absorption due to the surrounding medium. We investigated the effects of absorption for different viewing angles and wavelengths. From the model results we synthesize the X-ray emission from the accretion shock and perform density and temperature diagnostics on the synthetic spectra. By comparing our results with the observations, we find that the X-ray fluxes detected are lower than expected because of the local absorption. The emerging spectra suggest higher density for higher temperature as derived from the observations, proving that a detailed model accounting for a realistic treatment of the local absorption is needed to interpret the observations of X-ray emitting accretion shocks.

  5. Accretion Shocks in Young Stars: the Role of Local Absorption on the X-ray Emission

    NASA Astrophysics Data System (ADS)

    Bonito, R.; Argiroffi, C.; Orlando, S.; Miceli, M.; Peres, G.; Matsakos, T.; Stehle, C.; Ibgui, L.

    2015-01-01

    We investigate the X-ray emission from accretion shocks in classical T Tauri stars, due to the infalling material impacting the stellar surface. Several aspects in both observations and models of the accretion process are still unclear: the observed X-ray luminosity of the post-shock plasma is below the predicted value, the density vs temperature structure of the shocked plasma, with increasing densities at higher temperature, is opposite of what expected from simple accretion shock models. To address these issues we performed numerical magnetohydrodynamic simulations describing the impact of an accretion stream onto the stellar surface and considered the local absorption due to the surrounding medium. We explored the effects of absorption for different viewing angles and for the He-like line triplets commonly used for density diagnostic. From the model results we synthesize the X-ray emission from the accretion shock, producing maps and spectra. We perform density and temperature diagnostics on the synthetic spectra, and we directly compare our results with the observations. Our model shows that the X-ray fluxes detected are lower than expected because of the local absorption. The emerging spectra suggest a complex density vs temperature distribution proving that a detailed model accounting for a realistic treatment of the local absorption is needed to interpret the observations of X-ray emitting accretion shocks.

  6. Development of an X-ray tube for irradiation experiments using a field emission electron gun

    NASA Astrophysics Data System (ADS)

    Kato, Hidetoshi; O`Rourke, Brian E.; Suzuki, Ryoichi; Wang, Jiayu; Ooi, Takashi; Nakajima, Hidetoshi

    2016-01-01

    A new X-ray tube using a ring-shaped emitter as a field emission electron source has been developed. By using a ring shaped cathode, X-rays can be extracted along the axial direction through the central hole. This cylindrically symmetrical design allows for the tube to be arranged in the axial direction with the high voltage target at one end and the X-ray beam at the other. The newly developed X-ray tube can operate at a tube voltage of more than 100 kV and at a tube current of more than 4 mA, and can be used for irradiation experiments with an irradiation dose range from mGy up to kGy. The X-ray tube can be used immediately after turning on (i.e. there is no stand-by time). In the experimental model, we demonstrated stable electron emission at a tube voltage of 100 kV and at a tube current of 4 mA during a 560 h continuous test.

  7. Anisotropic X-ray emission in active galactic nucleus accretion discs

    NASA Astrophysics Data System (ADS)

    Nayakshin, Sergei

    2007-03-01

    Straightforward models of X-ray reflection in the inner region of accretion discs predict that the primary X-ray flux and the flux reflected off the surface of the disc should vary together, albeit with a short light traveltime delay. Most of the observations, however, show that the X-ray flux can vary while the reflected features remain constant. Here we propose a simple explanation for this. In all likelihood, the emission of a moderately optically thick magnetic flare atop an accretion disc is anisotropic. A constant energy release rate in a flare will appear to produce a variable X-ray flux as the flare rotates with the accretion disc anchoring the magnetic tube. The reflector, on the other hand, receives a constant X-ray flux from the flare. Since the reflected emission is azimuthally symmetric, the observer will see a roughly constant reflected flux (neglecting relativistic effects). The model does not produce quasi-periodic oscillations if magnetic flux tubes are sheared out faster than they complete one orbit.

  8. Enhancing soft X-ray emission with depleted uranium in neon plasma focus

    NASA Astrophysics Data System (ADS)

    Khan, H. U.; Shafiq, M.; Hussain, S. S.; Zakaullah, M.

    2009-11-01

    Depleted uranium (U238) is used for pre-ionization in the neon gas to study the soft X-ray emission in a Mather type plasma focus of 3.3 kJ. The X-rays are detected using an assembly of Quantrad Si pin diodes, masked with differential Ross fitters, and with a multi pinhole camera. The X-ray yield and pinhole images are found strongly influenced by the preionization and the pressure of the working gas. The soft X-ray yield of 82.5 ± 4.0 J in 1.3-1.56 keV energy window is obtained in the case of preionization of neon gas at the optimum pressure of 5 mbar, leading to the conversion efficiency of 2.5% of the stored energy. The total yield with preionization is 195 ± 9.0 J in 4π geometry measured at the optimum pressure of 5 mbar giving conversion efficiency of 5.9%. The time integrated images indicate the broadening of X-ray emission zone with preionization. in here

  9. The Sun's X-ray Emission During the Recent Solar Minimum

    NASA Astrophysics Data System (ADS)

    Sylwester, Janusz; Kowalinski, Mirek; Gburek, Szymon; Siarkowski, Marek; Kuzin, Sergey; Farnik, Frantisek; Reale, Fabio; Phillips, Kenneth J. H.

    2010-02-01

    The Sun recently underwent a period of a remarkable lack of major activity such as large flares and sunspots, without equal since the advent of the space age a half century ago. A widely used measure of solar activity is the amount of solar soft X-ray emission, but until recently this has been below the threshold of the X-ray-monitoring Geostationary Operational Environmental Satellites (GOES). There is thus an urgent need for more sensitive instrumentation to record solar X-ray emission in this range. Anticipating this need, a highly sensitive spectrophotometer called Solar Photometer in X-rays (SphinX) was included in the solar telescope/spectrometer TESIS instrument package on the third spacecraft in Russia's Complex Orbital Observations Near-Earth of Activity of the Sun (CORONAS-PHOTON) program, launched 30 January 2009 into a near-polar orbit. SphinX measures X-rays in a band similar to the GOES longer-wavelength channel.

  10. Einstein X-ray survey of the Pleiades - The dependence of X-ray emission on stellar age

    NASA Technical Reports Server (NTRS)

    Micela, G.; Sciortino, S.; Serio, S.; Vaiana, G. S.; Bookbinder, J.; Golub, L.; Harnden, F. R., Jr.; Rosner, R.

    1985-01-01

    The data obtained with two pointed observations of 1 deg by 1 deg fields of the Pleiades region have been analyzed, and the results are presented. The maximum-likelihood X-ray luminosity functions for the Pleiades G and K stars in the cluster are derived, and it is shown that, for the G stars, the Pleiades X-ray luminosity function is significantly brighter than the corresponding function for Hyades G dwarf stars. This finding indicates a dependence of X-ray luminosity on stellar age, which is confirmed by comparison of the same data with median X-ray luminosities of pre-main sequence and local disk population dwarf G stars. It is suggested that the significantly larger number of bright X-ray sources associated with G stars than with K stars, the lack of detection of M stars, and the relatively rapid rotation of the Pleiades K stars can be explained in terms of the onset of internal differential rotation near the convective envelope-radidative core interface after the spin-up phase during evolution to the main sequence.

  11. Einstein X-ray survey of the Pleiades - the dependence of X-ray emission on stellar age

    SciTech Connect

    Micela, G.; Sciortino, S.; Serio, S.; Vaiana, G.S.; Bookbinder, J.; Golub, L.; Harnden, F.R.,JR.; Rosner, R.

    1985-05-01

    The data obtained with two pointed observations of 1 deg by 1 deg fields of the Pleiades region have been analyzed, and the results are presented. The maximum-likelihood X-ray luminosity functions for the Pleiades G and K stars in the cluster are derived, and it is shown that, for the G stars, the Pleiades X-ray luminosity function is significantly brighter than the corresponding function for Hyades G dwarf stars. This finding indicates a dependence of X-ray luminosity on stellar age, which is confirmed by comparison of the same data with median X-ray luminosities of pre-main sequence and local disk population dwarf G stars. It is suggested that the significantly larger number of bright X-ray sources associated with G stars than with K stars, the lack of detection of M stars, and the relatively rapid rotation of the Pleiades K stars can be explained in terms of the onset of internal differential rotation near the convective envelope-radidative core interface after the spin-up phase during evolution to the main sequence. 48 references.

  12. Investigating the hard X-ray emission from the hottest Abell cluster A2163 with Suzaku

    NASA Astrophysics Data System (ADS)

    Ota, N.; Nagayoshi, K.; Pratt, G. W.; Kitayama, T.; Oshima, T.; Reiprich, T. H.

    2014-02-01

    Context. We present the results from Suzaku of the hottest Abell galaxy cluster A2163 at z = 0.2. Aims: To study the physics of gas heating in cluster mergers, we investigated hard X-ray emission from the merging cluster A2163, which hosts the brightest synchrotron radio halo. Methods: We analyzed hard X-ray emission spectra accumulated from two-pointed Suzaku observations. Non-thermal hard X-ray emission should result from the inverse Compton scattering of relativistic electrons by photons in the cosmic microwave background. To measure this emission, the dominant thermal emission in the hard X-ray band must be modeled in detail. To this end, we analyzed the combined broadband X-ray data of A2163 collected by Suzaku and XMM-Newton, assuming single- and multi-temperature models for thermal emission and the power-law model for non-thermal emission. Comparing the non-thermal hard X-ray flux to radio synchrotron emission, we also estimated the magnetic field in the cluster. Results: From the Suzaku data, we detected significant hard X-ray emission from A2163 in the 12-60 keV band at the 28σ level (or at the 5.5σ level if a systematic error of the non-X-ray background model is considered). The Suzaku HXD spectrum alone is consistent with the single-temperature thermal model of gas temperature kT = 14 keV. From the XMM-Newton data, we constructed a multi-temperature model including a very hot (kT = 18 keV) component in the north-east region. Incorporating the multi-temperature and the power-law models into a two-component model with a radio-band photon index, where Γ = 2.18, the 12-60 keV energy flux of non-thermal emission is constrained within 5.3 ± 0.9 (±3.8) × 10-12 erg s-1cm-2 (the first and second errors refer to the 1σ statistical and systematic uncertainties, respectively). The 90% upper limit of detected inverse Compton emission is marginal (FNT < 1.2 × 10-11 erg s-1cm-2 in the 12-60 keV band). The estimated magnetic field in A2163 is B > 0.098 μG. While the present results represent a three-fold increase in the accuracy of the broadband (0.3-60 keV) spectral model of A2163, more sensitive hard X-ray observations are needed to decisively test for the presence of hard X-ray emission due to inverse Compton emission.

  13. Determination of the texture of arrays of aligned carbon nanotubes from the angular dependence of the X-ray emission and X-ray absorption spectra

    SciTech Connect

    Okotrub, A. V. Belavin, V. V.; Bulusheva, L. G.; Gusel'nikov, A. V.; Kudashov, A. G.; Vyalikh, D. V.; Molodtsov, S. L.

    2008-09-15

    The properties of materials containing carbon nanotubes depend on the degree of alignment and the internal structure of nanotubes. It is shown that the degree of misorientation of carbon nanotubes in samples can be evaluated from the measurements of the angular dependences of the carbon X-ray emission and carbon X-ray absorption spectra. The CK{sub {alpha}} emission and CK X-ray absorption spectra of the array of multiwalled carbon nanotubes synthesized by catalytic thermolysis of a mixture of fullerene and ferrocene are measured. A comparison of the calculated model dependences of the relative intensities of the {pi} and {sigma} bands in the spectra with the experimental results makes it possible to evaluate the degree of misorientation of nanotubes in the sample and their internal texture.

  14. Quiescent Diffusive and Fumarolic Volcanic Bromocarbon Emissions

    NASA Astrophysics Data System (ADS)

    Schwandner, F. M.; Gi?e, A. P.; Seward, T. M.; Hall, P. A.; Dietrich, V. J.

    2002-12-01

    Future scenarios of declining atmospheric burdens of Ozone Depleting Substances (ODS) such as halocarbons after phase-out following international regulation (Montreal Protocol) vary strongly depending on what contribution from natural sources is taken into account. In addition, current and pre-industrial global atmospheric budgets of ODS are poorly balanced by known natural and anthropogenic sources of halocarbons (Butler, 2000). Brominated halocarbons have a high Ozone Depletion Potential, Br is at least 40x as efficient as Cl in polar stratospheric ozone destruction (Solomon et al., 1992). CH3Br is the dominant Br carrier to the stratosphere with sources being ca.: 32% anthropogenic, 39% natural, but ca. 29% unaccounted for (WMO, 1998). Natural sources have been reviewed recently (Gribble, 2000, Butler, 2000), including magmatic inorganic (Bureau, 2000) and volcanic organic sources (Rassmussen et al., 1980; Schwandner et al., 2002). CH3Br and other bromocarbons have been reported in non-eruptive volcanic gases previously (Jordan et al., 2000; Schwandner et al., 2000). Due to its capability to extremely rapidly hydrolyse (Gan et al., 1995), CH3Br should not be sampled by the caustic soda bottle technique as used by Jordan et al. (2000) whose samples also show signs of air contamination, but by cryogenic separation of steam with subsequent sorbent trapping, as used by Isidorov (1990), Wahrenberger (1996) and Schwandner et al. (2000, 2001). To contribute significantly to the natural Br budget, volcanic gases would have to at least contain 2 ppmv (dry gas) CH3Br, scaled to a global CO2 emission of 66 Tgy-1 (Stoiber, 1995) based on CO2 flux to halocarbon concentration correlations (e.g. CFC-11: R2=0.91, Schwandner et al., 2002). However, CH3Br is not the only volcanogenic bromocarbon. Analysis of diffusive flank and crater degassing on Vulcano island (Italy) showed a strong diffusive component of CH3Br and C2H5Br emissions in 60-100C hot pristine unvegetated volcanic "soil" close to high-temperature fumaroles. Other ODS found significantly above air, field and analytical system blanks include CH3Cl, CH3I, chlorophenols and chlorobenzenes. Abundances range from upper pptv to ppmv (e.g. CFC-11: max. 1200 pptv diffusive, 3700 pptv fumarolic/dry gas, dry air: 268 pptv). References\\ Bureau H. et al. (2000), EPSL 183 (1-2):51-60.\\Butler J.H. (2000), Nature 403:560-261.\\Gan J. Y. et al. (1995), J. Agric. Food Chem. 43:1361-1367.\\Gribble G. W. (2000), Environ. Sci. Pollut. Res. 7(1), 37-49.\\Isidorov V. A. et al. (1990), J. Atmos. Chem. 10(3):329-340.\\Jordan A. et al.(2000), ES&T 34:1122-1124.\\Rasmussen R. A. et al. (1980), EOS Transact. 61(6):67.\\Schwandner F. M. et al. (2000), J. Conf. Abs. 5(2):898.\\Schwandner F. M. et al. (2001), Chimia 55(7-8):590.\\Schwandner F.M. et al. (2002), Geoch. Soc. Spec. Publ. 8 (subm.).\\Solomon S. et al. (1992), JGR-A. 97:825-842.\\Stoiber R. E. (1995), In: A handbook of physical constants, AGU Reference Shelf 1:308-319.\\Wahrenberger C. et al. (1996), EOS Trans. 77(46):804.\\WMO (1998) Scientific assessment of ozone depletion. WMO Rep. No. 44, World Meteorological Organisation (WMO), Geneva.

  15. RX J1301.9+2747: A HIGHLY VARIABLE SEYFERT GALAXY WITH EXTREMELY SOFT X-RAY EMISSION

    SciTech Connect

    Sun Luming; Shu Xinwen; Wang Tinggui E-mail: xwshu@mail.ustc.edu.cn

    2013-05-10

    In this paper we present a temporal and spectral analysis of X-ray data from XMM-Newton and Chandra observations of the ultrasoft and variable Seyfert galaxy RX J1301.9+2747. In both observations the source clearly displays two distinct states in the X-ray band: a long quiescent state and a short flare (or eruptive) state which differs in count rates by a factor of 5-7. The transition from the quiescent to the flare state occurs in 1-2 ks. We have observed that the quiescent state spectrum is unprecedentedly steep with a photon index {Gamma} {approx} 7.1, and the spectrum of the flare state is flatter with {Gamma} {approx} 4.4. X-rays above 2 keV were not significantly detected in either state. In the quiescent state, the spectrum appears to be dominated by a blackbody component of temperature about {approx}30-40 eV, which is comparable to the expected maximum effective temperature from the inner accretion disk. The quiescent state, however, requires an additional steep power law, presumably arising from Comptonization by transient heated electrons. The optical spectrum from the Sloan Digital Sky Survey shows Seyfert-like narrow lines for RX J1301.9+2747, while Hubble Space Telescope imaging reveals a central point source for the object. In order to precisely determine the hard X-ray component, future longer X-ray observations are required. This will help constrain the accretion disk model for RX J1301.9+2747, and shed new light on the characteristics of the corona and accretion flows around black holes.

  16. The Detection of Circumnuclear X-Ray Emission from the Seyfert Galaxy NGC 3516

    NASA Technical Reports Server (NTRS)

    George, I. M.; Turner, T. J.; Netzer, H.; Kraemer, S. B.; Ruiz, J.; Chelouche, D.; Crenshaw, D. M.; Yaqoob, T.; Nandra, K.; Mushotzky, R. F.; White, Nicholas E. (Technical Monitor)

    2001-01-01

    We present the first high-resolution, X-ray image of the circumnuclear regions of the Seyfert 1 galaxy NGC 3516, using the Chandra X-ray Observatory (CXO). All three of the CXO observations reported were performed with one of the two grating assemblies in place, and here we restrict our analysis to undispersed photons (i.e. those detected in the zeroth-order). A previously-unknown X-ray source is detected approximately 6 arcsec (1.1h(sub 75)(exp -1) kpc) NNE of the nucleus (position angle approximately 29 degrees) which we designate CXOU 110648.1 + 723412. Its spectrum can be characterized as a power law with a photon index (Gamma) approximately 1.8 - 2.6, or as thermal emission with a temperature kT approximately 0.7 - 3 keV. Assuming a location within NGC 3516, isotropic emission implies a luminosity L approximately 2 - 8 x 10(exp 39)h(sub 75)(exp-2) erg s(exp -1) in the 0.4 - 2 keV band. If due to a single point source, the object is super-Eddington for a 1.4 solar mass neutron star. However, multiple sources or a small, extended source cannot be excluded using the current data. Large-scale extended S-ray emission is also detected out to approximately 10 arcsec (approximately 2h(sub 75)(exp -1) kpc) from the nucleus to the NE and SW, and is approximately aligned with the morphologies of the radio emission and extended narrow emission line region (ENLR). The mean luminosity of this emission is 1 - 5 x 10(exp 37)h(sub 75)(exp -2) erg s(exp -1) arcsec(exp -2), in the 0.4 - 2 keV band. Unfortunately the current data cannot usefully constrain its spectrum. These results are consistent with earlier suggestions of circumnuclear X-ray emissi in NGC 3516 based on ROSAT observations, and thus provide the first clear detection of extended X-ray emission in a Seyfert 1.0 galaxy. If the extended emission is due to scattering of the nuclear X-ray continuum, then the pressure in the X-ray emitting gas is at least two orders of magnitude too small to provide the confining medium for the ENLR clouds.

  17. X-ray emission associated with radio galaxies in the Perseus cluster

    NASA Technical Reports Server (NTRS)

    Rhee, George; Burns, Jack O.; Kowalski, Michael P.

    1994-01-01

    In this paper, we report on new x-ray observations of the Perseus cluster made using four separate pointings of the Roentgen Satellite (ROSAT) Positron Sensitive Proportional Counter (PSPC). We searched for x-ray emission associated with 16 radio galaxies and detected six above 3 sigma. We made use of the PSPC spectra to determine if the x-ray emission associated with radio galaxies in Perseus is thermal or nonthermal in origin (i.e., hot gas or an active galactic nuclei (AGN)). For the head-tail radio galaxy IC 310, we find that the data are best fit by a power law model with an unusually large spectral index alpha = 2.7. This is consistent with its unresolved spatial structure. On the other hand, a second resolved x-ray source associated with another radio galaxy 2.3 Mpc from the Perseus center (V Zw 331) is best fit by a thermal model. For three sources with insufficient flux for a full spectral analysis, we calculated hardness ratios. On this basis, the x-ray emission associated with the well known head-tail source NGC 1265 is consistent with thermal radiation. The x-ray spectra of UGC 2608 and UGC 2654 probably arise from hot gas, although very steep power-law spectra (alpha greater than 3.2) are also possible. The spectrum of NGC 1275 is quite complex due to the presence of an AGN and the galaxy's location at the center of a cluster cooling flow.

  18. X-Ray and Radio Emission from Type IIn Supernova SN 2010jl

    NASA Astrophysics Data System (ADS)

    Chandra, Poonam; Chevalier, Roger A.; Chugai, Nikolai; Fransson, Claes; Soderberg, Alicia M.

    2015-09-01

    We present all X-ray and radio observations of the Type IIn supernova SN 2010jl. The X-ray observations cover a period up to day 1500 with Chandra, XMM-Newton, NuSTAR, and Swift-X-ray Telescope (XRT). The Chandra observations after 2012 June, the XMM-Newton observation in 2013 November, and most of the Swift-XRT observations until 2014 December are presented for the first time. All the spectra can be fitted by an absorbed hot thermal model except for Chandra spectra on 2011 October and 2012 June when an additional component is needed. Although the origin of this component is uncertain, it is spatially coincident with the supernova and occurs when there are changes to the supernova spectrum in the energy range close to that of the extra component, indicating that the emission is related to the supernova. The X-ray light curve shows an initial plateau followed by a steep drop starting at day 300. We attribute the drop to a decrease in the circumstellar density. The column density to the X-ray emission drops rapidly with time, showing that the absorption is in the vicinity of the supernova. We also present Very Large Array radio observations of SN 2010jl. Radio emission was detected from SN 2010jl from day 570 onwards. The radio light curves and spectra suggest that the radio luminosity was close to its maximum at the first detection. The velocity of the shocked ejecta derived assuming synchrotron self-absorption is much less than that estimated from the optical and X-ray observations, suggesting that free-free absorption dominates.

  19. THE MULTIELEMENTAL ANALYSIS OF DRINKING WATER USING PROTON-INDUCED X-RAY EMISSION (PIXE)

    EPA Science Inventory

    A new, rapid, and economical method for the multielemental analysis of drinking water samples is described. The concentrations of 76 elements heavier than aluminum are determined using proton-induced x-ray emission (PIXE) technology. The concentration of sodium is evaluated using...

  20. 14th International Conference on Particle Induced X-ray Emission ("PIXE 2015")

    NASA Astrophysics Data System (ADS)

    Przyby?owicz, Wojciech Jzef; Pineda-Vargas, Carlos

    2015-11-01

    This special issue of Nuclear Instruments and Methods in Physics Research B contains the proceedings of the 14th International Conference on Particle Induced X-ray Emission ("PIXE 2015") that was held in Somerset West (South Africa) from 25th February to 3rd March 2015.

  1. Charge-transfer induced EUV and soft X-ray emissions in the heliosphere

    NASA Astrophysics Data System (ADS)

    Koutroumpa, D.; Lallement, R.; Kharchenko, V.; Dalgarno, A.; Pepino, R.; Izmodenov, V.; Quémerais, E.

    2006-12-01

    Aims.We study the EUV/soft X-ray emission generated by charge transfer between solar wind heavy ions and interstellar neutral atoms and variations of the X-ray intensities and spectra with the line of sight direction, the observer location, the solar cycle phase and the solar wind anisotropies, and a temporary enhancement of the solar wind similar to the event observed by Snowden et al. (2004) during the XMM-Hubble Deep Field North exposure. Methods: .Using recent observations of the neutral atoms combined with updated cross-sections and cascading photon spectra we have computed self-consistent distributions of interstellar hydrogen, helium and highly charged solar wind ions for a stationary solar wind and we have constructed monochromatic emission maps and spectra. We have evaluated separately the contribution of the heliosheath and heliotail, and included X-ray emission of the excited solar wind ions produced in sequential collisions to the signal. Results: .In most practicable observations, the low and medium latitude X-ray emission is significantly higher at minimum activity than at maximum, especially around December. This occurs due to a strong depletion of neutrals during the high activity phase, which is not compensated by an increase of the solar wind flux. For high latitudes the emission depends on the ion species in a complex way. Intensity maps are in general significantly different for observations separated by six-month intervals. Secondary ions are found to make a negligible contribution to the X-ray line of sight intensities, because their density becomes significant only at large distances. The contribution of the heliosheath-heliotail is always smaller than 5%. We can reproduce both the intensity range and the temporal variation of the XMM-HDFN emission lines in the 0.52-0.75 keV interval, using a simple enhanced solar wind spiral stream. This suggests a dominant heliospheric origin for these lines, before, during and also after the event.

  2. Disentangling X-Ray Emission Processes in Vela-Like Pulsars

    NASA Technical Reports Server (NTRS)

    Gaensler, Bryan; Mushotzky, Richard (Technical Monitor)

    2003-01-01

    We present a deep observation with the X-Ray Multimirror Mission of PSR B1823-13, a young pulsar with similar properties to the Vela pulsar. We detect two components to the X-ray emission associated with PSR B1823-13: an elongated core of extent 30 min immediately surrounding the pulsar embedded in a fainter, diffuse component of emission 5 sec in extent, seen only on the southern side of the pulsar. The pulsar itself is not detected, either as a point source or through its pulsations. Both components of the X-ray emission are well fitted by a power-law spectrum, with photon index Gamma approx. 1.6 and X-ray luminosity (0.5-10 keV) L(sub X) approx. 9 x 10(exp 32) ergs/s for the core and Gamma approx. 2.3 and L(sub X) approx. 3 x 10(exp 33) ergs/s for the diffuse emission, for a distance of 4 kpc. We interpret both components of emission as corresponding to a pulsar wind nebula, which we designate G18.0-0.7. We argue that the core region represents the wind termination shock of this nebula, while the diffuse component indicates the shocked downstream wind. We propose that the asymmetric morphology of the diffuse emission with respect to the pulsar is the result of a reverse shock from an associated supernova remnant, which has compressed and distorted the pulsar-powered nebula. Such an interaction might be typical for pulsars at this stage in their evolution. The associated supernova remnant is not detected directly, most likely being too faint to be seen in existing X-ray and radio observations.

  3. The Relationship Between Solar Radio and Hard X-Ray Emission

    NASA Technical Reports Server (NTRS)

    White, S. M.; Benz, A. O.; Christe, S.; Farnik, F.; Kundu, M. R.; Mann, G.; Ning, Z.; Raulin, J.-P.; Silva-Valio, A. V. R.; Saint-Hilaire, P.; Vilmer, N.; Warmuth, A.

    2011-01-01

    This review discusses the complementary relationship between radio and hard Xray observations of the Sun using primarily results from the era of the Reuven Ramaty High Energy Solar Spectroscopic Imager satellite. A primary focus of joint radio and hard X-ray studies of solar flares uses observations of nonthermal gyrosynchrotron emission at radio wavelengths and bremsstrahlung hard X-rays to study the properties of electrons accelerated in the main flare site, since it is well established that these two emissions show very similar temporal behavior. A quantitative prescription is given for comparing the electron energy distributions derived separately from the two wavelength ranges: this is an important application with the potential for measuring the magnetic field strength in the flaring region, and reveals significant differences between the electrons in different energy ranges. Examples of the use of simultaneous data from the two wavelength ranges to derive physical conditions are then discussed, including the case of microflares, and the comparison of images at radio and hard X-ray wavelengths is presented. There have been puzzling results obtained from observations of solar flares at millimeter and submillimeter wavelengths, and the comparison of these results with corresponding hard X-ray data is presented. Finally, the review discusses the association of hard X-ray releases with radio emission at decimeter and meter wavelengths, which is dominated by plasma emission (at lower frequencies) and electron cyclotron maser emission (at higher frequencies), both coherent emission mechanisms that require small numbers of energetic electrons. These comparisons show broad general associations but detailed correspondence remains more elusive.

  4. Soft X-ray emission from the radio pulsar PSR 0656 + 14

    NASA Technical Reports Server (NTRS)

    Cordova, F. A.; Middleditch, J.; Hjellming, R. M.; Mason, K. O.

    1989-01-01

    A radio source with a flux density of a few mJy was found in the error region of the soft X-ray source E0656 + 14, and identified as the radio pulsar PSR 0656 + 14. The radio source has a steep, nonthermal spectrum and a high degree of linear (62 percent) and circular (19 percent) polarization. The X-ray spectrum of the pulsar is among the softest sources observed with the Einstein Observatory. The X-ray data taken with the Einstein imaging proportional counter (IPC) permit a range of blackbody temperatures of 3-6 x 10 to the 5th K, and an equivalent column density of hydrogen smaller than 4 x 10 to the 20th/sq cm. If the assumption is made that the X-ray flux is thermal radiation from surface of the neutron star, then the pulsar must be at a distance smaller than 550 pc, consistent with the low dispersion measure of PSR 0656 + 14. The X-ray timing data suggest that the X-ray emission is modulated at the pulsar's 0.385-s spin period with an amplitude of 18 percent + or - 6 percent, and that there is a 0.0002 probability that this is spurious. It was noted that PSR 0656 + 14 is close to the geometric center of a 20-deg diameter soft X-ray emitting ring called the Gemini-Monoceros enhancement. The close distance of the pulsar, together with its relatively young age of 1.1 x 10 to the 5th yr, makes it possible that the ring is a supernova remnant from the explosion of the pulsar's progenitor. A radio source extending over a region 1.2 to 3.3 arcmin south of the pulsar is a candidate for association with the pulsar.

  5. X-Ray Emission from the Taffy (VV254) Galaxies and Bridge

    NASA Astrophysics Data System (ADS)

    Appleton, P. N.; Lanz, L.; Bitsakis, T.; Wang, J.; Peterson, B. W.; Lisenfeld, U.; Alatalo, K.; Guillard, P.; Boulanger, F.; Cluver, M.; Gao, Y.; Helou, G.; Ogle, P.; Struck, C.

    2015-10-01

    We present the first X-ray observations of the Taffy galaxies (UGC 12914/5) with the Chandra observatory and detect soft X-ray emission in the region of the gas-rich, radio-continuum-emitting Taffy bridge. The results are compared to Herschel observations of dust and diffuse [C ii] line-emitting gas. The diffuse component of the Taffy bridge has an X-ray luminosity of {L}{{X}(0.5-8 {keV})} = 5.4 1039 erg s-1, which accounts for 19% of the luminosity of the sum for the two galaxies. The total mass in hot gas is (0.8-1.3) 108 M?, which is approximately 1% of the total (H i + H2) gas mass in the bridge, and 11% of the mass of warm molecular hydrogen discovered by Spitzer. The soft X-ray and dense CO-emitting gas in the bridge have offset distributions, with the X-rays peaking along the northwestern side of the bridge in the region where stronger far-IR dust and diffuse [C ii] gas is observed by Herschel. We detect nine Ultra Luminous X-ray sources in the system, the brightest of which is found in the bridge, associated with an extragalactic H ii region. We suggest that the X-ray-emitting gas has been shockedheated to high temperatures and splashed into the bridge by the collision. The large amount of gas stripped from the galaxies into the bridge and its very long gas depletion timescale (>10 Gyr) may explain why this system, unlike most major mergers, is not a powerful IR emitter.

  6. X ray emission from Wolf-Rayet stars with recurrent dust formation

    NASA Technical Reports Server (NTRS)

    Rawley, Gayle L.

    1993-01-01

    We were granted a ROSAT observation of the Wolf-Rayet star WR 137 (equals HD 192641) to test a proposed mechanism for producing the infrared variability reported by Williams et al. (1987). These studies showed one clear infrared outburst preceded by what may be the dimming of a previous outburst. The recurrent dust formation model was put forward by Williams et al. (1990) to account for similar variability seen in WR 140, which varies in both the infrared and X-ray bands. The detected X-ray flux from WR 140 was observed to decrease from its normally high (for Wolf-Rayet stars) level as the infrared flux increased. Observation of two apparently-periodic infrared outbursts led to the hypothesis that WR 140 had an O star companion in an eccentric orbit, and that the increase in infrared flux came from a dust formation episode triggered by the compression of the O star and Wolf-Rayet star winds. The absorption of the X-rays by the increased material explained the decrease in flux at those wavelengths. If the infrared variability in WR 137 were caused by a similar interaction of the Wolf-Rayet star with a companion, we might expect that WR 137 would show corresponding X-ray variability and an X-ray luminosity somewhat higher than typical WC stars, as well as a phase-dependent non-thermal X-ray spectrum. Our goals in this study were to obtain luminosity estimates from our counting rates for comparison with previous observations of WR 137 and other WC class stars, especially WR 140; to compare the luminosity with the IR lightcurve; and to characterize the spectral shape of the X-ray emission, including the column density.

  7. X-ray emission from PSR J0108-1431 and other old pulsars

    NASA Astrophysics Data System (ADS)

    Pavlov, George

    This proposal is devoted to analysis of the data that will be obtained in the XMM-Newton observations of PSR J0108-1431 (scheduled for June 15, 2011) and work on archival X- ray data on old pulsars. PSR J0108-1431, a 170 Myr old, very faint radio pulsar at a distance of 240 pc, is among the nearest neutron stars to Earth. Thanks to its proximity, PSR J0108-1431 offers a unique opportunity to study X-ray emission from a very old, almost dead pulsar. A short Chandra observation has shown that it is much brighter in X-rays than one could expect for such an old pulsar with a very low spin-down power. However, the number of detected counts was too small to definitively characterize its spectrum, and the time resolution too low to detect pulsations. The proposed study of the X-ray spectrum and pulsations of PSR J0108-1431 will provide first definitive results on the X-ray properties of very old pulsars. In addition to PSR J0108-1431, we will also investigate the X-ray properties of the entire sample of old pulsars observed in X-rays. This will allow us to study old pulsar properties, compare them with properties of young pulsars, and test the pulsar evolution models. The proposed research addresses Objective 2.4.2 of the NASA's Strategic Goal 2 of the 2011 NASA Strategic Plan: "Improve understanding of the many phenomena and processes associated with galaxy, stellar, and planetary system formation and evolution from the earliest epochs to today".

  8. Broad M-band multi-keV x-ray emission from plasmas created by short laser pulses

    SciTech Connect

    Harmand, M.; Dorchies, F.; Peyrusse, O.; Descamps, D.; Fourment, C.; Hulin, S.; Petit, S.; Santos, J. J.

    2009-06-15

    The investigation of the broad M-band x-ray emission from high-Z plasmas created by a laser, with a 30 fs to 3 ps pulse duration and achieving 10{sup 15-17} W/cm{sup 2} on target, is reported. Experimental emission spectra are measured in the energy range from 1.50 to 1.75 keV and discussed as potential backlighting x-ray sources for time-resolved x-ray absorption spectroscopy studies. They are compared with theoretical nonlocal thermodynamic equilibrium calculations of x-ray emission.

  9. Study of x-ray emission from an intense relativistic electron beam using nuclear emulsions and thermoluminescent detectors

    SciTech Connect

    Gordeev, E.M.; Grebenshchikov, V.L.; Drygin, V.N.; Kuksov, P.V.; Kushin, V.V.; Lyapidevskii, V.K.; Meshcherin, B.N.; Smirnova, E.A.; Fanchenko, S.D.; Khokhlov, N.B.

    1984-03-01

    It is shown experimentally that nuclear emulsions can be used to determine the x-ray emission spectra of relativistic electron beams with good spatial resolution. X-ray emission spectra were recorded for the first time in different focusing regions of an electron beam produced by the ''Kal'mar-1'' high-current REB generator. The spectra were found to differ: the hardest x-rays were emitted at the center of the focal spot.

  10. ROSAT PSPC spectra of X-ray selected narrow emission line galaxies

    NASA Technical Reports Server (NTRS)

    Colmenero, E. Romero; Carrera, F. J.; Branduardi-Raymont, G.; Mittaz, J. P. D.; McHardy, I. M.; Jones, L. R.

    1996-01-01

    The Rosat Position Sensitive Proportional Counter (PSPC) spectra of a sample of 35 X-ray selected Narrow Emission Line Galaxies (NELGs) are presented. Of these 35 objects, 16 are from the Rosat International X-ray Optical Survey (RIXOS) and the remaining 19 were discovered during the optical identification of Rosat U.K. deep survey sources. A power law model with low energy absorption set at the Galactic value is found to be a good fit for all sources. The results indicate that the spectral slope of NELGs is flatter than that of active galactic nuclei.

  11. Chandra X-ray Grating Spectrometry of Eta Carinae near X-ray Minimum: I. Variability of the Sulfur and Silicon Emission Lines

    NASA Technical Reports Server (NTRS)

    Henley, D. B.; Corcoran, M. F.; Pittard, J. M.; Stevens, I. R.; Hamaguchi, K.; Gull, T. R.

    2008-01-01

    We report on variations in important X-ray emission lines in a series of Chandra grating spectra of the supermassive colliding wind binary star eta Car, including key phases around the X-ray minimum/periastron passage in 2003.5. The X-rays arise from the collision of the slow, dense wind of eta Car with the fast, low-density wind of an otherwise hidden companion star. The X-ray emission lines provide the only direct measure of the flow dynamics of the companion's wind along the wind-wind collision zone. We concentrate here on the silicon and sulfur lines, which are the strongest and best resolved lines in the X-ray spectra. Most of the line profiles can be adequately fit with symmetric Gaussians with little significant skewness. Both the silicon and sulfur lines show significant velocity shifts and correlated increases in line widths through the observations. The R = forbidden-to-intercombination ratio from the Si XIII and S XV triplets is near or above the low-density limit in all observations, suggesting that the line-forming region is > 1.6 stellar radii from the companion star, and that the emitting plasma may be in a non-equilibrium state. We show that simple geometrical models cannot simultaneously fit both the observed centroid variations and changes in line width as a function of phase. We show that the observed profiles can be fitted with synthetic profiles with a reasonable model of the emissivity along the wind-wind collision boundary. We use this analysis to help constrain the line formation region as a function of orbital phase, and the orbital geometry. Subject headings: X-rays: stars -stars: early-type-stars: individual (q Car)

  12. The X-ray emission of the sdO star BD+37 1977

    NASA Astrophysics Data System (ADS)

    La Palombara, Nicola

    2013-10-01

    While several hot subdwarf stars have been deeply investigated in the optical and UV domain, up to very recent times only the sdO stars HD49798 and BD+37 442 had been detected at X-rays. Both sources are characterized by comparable spectral and timing properties; in particular, the flux shows a fast periodic modulation, likely due to wind accretion from the sdO star onto a WD or NS companion. In the latest months the first systematic search for X-ray emission from a complete flux-limited sample of sdO stars, performed by Chandra, has provided a detection also of the sdO star BD+37 1977. Now we propose to observe this star with XMM: our aim is to characterize in detail its spectral X-ray properties and to investigate if it is intrinsic or due to an accreting compact companion.

  13. Nanoparticle characterization by means of scanning free grazing emission X-ray fluorescence

    NASA Astrophysics Data System (ADS)

    Kayser, Yves; Sá, Jacinto; Szlachetko, Jakub

    2015-05-01

    Nanoparticles are considered for applications in domains as various as medical and pharmaceutical sciences, opto- and microelectronics, catalysis, photovoltaics, spintronics or nano- and biotechnology. The applications realized with nanocrystals depend strongly on the physical dimensions (shape and size) and elemental constitution. We demonstrate here that grazing emission X-ray fluorescence (GEXRF) is an element sensitive technique that presents the potential for a reliable and accurate determination of the morphology of nanoparticles deposited on a flat substrate (ready-to-use devices). Thanks to the scanning-free approach of the used GEXRF setup, the composition, shape and average size of nanoparticles are determined in short time intervals, minimizing the exposure to radiation. The (scanning-free) GEXRF technique allows for in situ investigations of the nanoparticulate systems thanks to the penetration properties of both the probe X-ray beam and the emitted X-ray fluorescence signal.

  14. X-RAY EMISSION FROM SUPERNOVAE IN DENSE CIRCUMSTELLAR MATTER ENVIRONMENTS: A SEARCH FOR COLLISIONLESS SHOCKS

    SciTech Connect

    Ofek, E. O.; Gal-Yam, A.; Yaron, O.; Arcavi, I.; Fox, D.; Cenko, S. B.; Filippenko, A. V.; Bloom, J. S.; Sullivan, M.; Gnat, O.; Frail, D. A.; Horesh, A.; Kulkarni, S. R.; Corsi, A.; Quimby, R. M.; Gehrels, N.; Nugent, P. E.; Kasliwal, M. M.; Bildsten, L.; Poznanski, D.; and others

    2013-01-20

    The optical light curve of some supernovae (SNe) may be powered by the outward diffusion of the energy deposited by the explosion shock (the so-called shock breakout) in optically thick ({tau} {approx}> 30) circumstellar matter (CSM). Recently, it was shown that the radiation-mediated and radiation-dominated shock in an optically thick wind must transform into a collisionless shock and can produce hard X-rays. The X-rays are expected to peak at late times, relative to maximum visible light. Here we report on a search, using Swift/XRT and Chandra, for X-ray emission from 28 SNe that belong to classes whose progenitors are suspected to be embedded in dense CSM. Our sample includes 19 Type IIn SNe, one Type Ibn SN, and eight hydrogen-poor superluminous SNe (SLSN-I such as SN 2005ap). Two SNe (SN 2006jc and SN 2010jl) have X-ray properties that are roughly consistent with the expectation for X-rays from a collisionless shock in optically thick CSM. However, the X-ray emission from SN 2006jc can also be explained as originating in an optically thin region. Thus, we propose that the optical light curve of SN 2010jl is powered by shock breakout in CSM. We suggest that two other events (SN 2010al and SN 2011ht) were too X-ray bright during the SN maximum optical light to be explained by the shock-breakout model. We conclude that the light curves of some, but not all, SNe IIn/Ibn are powered by shock breakout in CSM. For the rest of the SNe in our sample, including all of the SLSN-I events, our X-ray limits are not deep enough and were typically obtained too early (i.e., near the SN maximum light) for definitive conclusions about their nature. Late-time X-ray observations are required in order to further test whether these SNe are indeed embedded in dense CSM. We review the conditions required for a shock breakout in a wind profile. We argue that the timescale, relative to maximum light, for the SN to peak in X-rays is a probe of the column density and the density profile above the shock region. In SNe whose X-ray emission slowly rises, and peaks at late times, the optical light curve is likely powered by the diffusion of shock energy in a dense CSM. We note that if the CSM density profile falls faster than a constant-rate wind-density profile, then X-rays may escape at earlier times than estimated for the wind-profile case. Furthermore, if the CSM has a region in which the density profile is very steep relative to a steady wind-density profile, or if the CSM is neutral, then the radio free-free absorption may be sufficiently low for radio emission to be detected.

  15. X-Ray Emission from Supernovae in Dense Circumstellar Matter Environments: A Search for Collisionless Shocks

    NASA Astrophysics Data System (ADS)

    Ofek, E. O.; Fox, D.; Cenko, S. B.; Sullivan, M.; Gnat, O.; Frail, D. A.; Horesh, A.; Corsi, A.; Quimby, R. M.; Gehrels, N.; Kulkarni, S. R.; Gal-Yam, A.; Nugent, P. E.; Yaron, O.; Filippenko, A. V.; Kasliwal, M. M.; Bildsten, L.; Bloom, J. S.; Poznanski, D.; Arcavi, I.; Laher, R. R.; Levitan, D.; Sesar, B.; Surace, J.

    2013-01-01

    The optical light curve of some supernovae (SNe) may be powered by the outward diffusion of the energy deposited by the explosion shock (the so-called shock breakout) in optically thick (τ >~ 30) circumstellar matter (CSM). Recently, it was shown that the radiation-mediated and radiation-dominated shock in an optically thick wind must transform into a collisionless shock and can produce hard X-rays. The X-rays are expected to peak at late times, relative to maximum visible light. Here we report on a search, using Swift/XRT and Chandra, for X-ray emission from 28 SNe that belong to classes whose progenitors are suspected to be embedded in dense CSM. Our sample includes 19 Type IIn SNe, one Type Ibn SN, and eight hydrogen-poor superluminous SNe (SLSN-I such as SN 2005ap). Two SNe (SN 2006jc and SN 2010jl) have X-ray properties that are roughly consistent with the expectation for X-rays from a collisionless shock in optically thick CSM. However, the X-ray emission from SN 2006jc can also be explained as originating in an optically thin region. Thus, we propose that the optical light curve of SN 2010jl is powered by shock breakout in CSM. We suggest that two other events (SN 2010al and SN 2011ht) were too X-ray bright during the SN maximum optical light to be explained by the shock-breakout model. We conclude that the light curves of some, but not all, SNe IIn/Ibn are powered by shock breakout in CSM. For the rest of the SNe in our sample, including all of the SLSN-I events, our X-ray limits are not deep enough and were typically obtained too early (i.e., near the SN maximum light) for definitive conclusions about their nature. Late-time X-ray observations are required in order to further test whether these SNe are indeed embedded in dense CSM. We review the conditions required for a shock breakout in a wind profile. We argue that the timescale, relative to maximum light, for the SN to peak in X-rays is a probe of the column density and the density profile above the shock region. In SNe whose X-ray emission slowly rises, and peaks at late times, the optical light curve is likely powered by the diffusion of shock energy in a dense CSM. We note that if the CSM density profile falls faster than a constant-rate wind-density profile, then X-rays may escape at earlier times than estimated for the wind-profile case. Furthermore, if the CSM has a region in which the density profile is very steep relative to a steady wind-density profile, or if the CSM is neutral, then the radio free-free absorption may be sufficiently low for radio emission to be detected.

  16. X-ray Emission from Supernovae in Dense Circumstellar Matter Environments: a Search for Collisionless Shocks

    NASA Technical Reports Server (NTRS)

    Ofek, E. O.; Fox, D.; Cenko, Stephen B.; Sullivan, M; Gnat, O.; Frail, D. A.; Horesh, A.; Corsi, A.; Quimby, R. M.; Gehrels, N.; Kulkarni, S. R.; Gal-Yam, A.; Nugent, P. E.; Yaron, O.; Fillippenko, A. V; Kasliwal, M. M.; Bildsten, L.; Bloom, J. S.; Poznanski, D.; Arcavi, I.; Laher, R. R.; Levitan, D.; Sesar, B.; Surace, J..

    2013-01-01

    The optical light curve of some supernovae (SNe) may be powered by the outward diffusion of the energy deposited by the explosion shock (the so-called shock breakout) in optically thick (Tau approx > 30) circumstellar matter (CSM). Recently, it was shown that the radiation-mediated and radiation-dominated shock in an optically thick wind must transform into a collisionless shock and can produce hard X-rays. The X-rays are expected to peak at late times, relative to maximum visible light. Here we report on a search, using Swift/XRT and Chandra, for X-ray emission from 28 SNe that belong to classes whose progenitors are suspected to be embedded in dense CSM. Our sample includes 19 Type IIn SNe, one Type Ibn SN, and eight hydrogen-poor superluminous SNe (SLSN-I such as SN 2005ap). Two SNe (SN 2006jc and SN 2010jl) have X-ray properties that are roughly consistent with the expectation for X-rays from a collisionless shock in optically thick CSM. However, the X-ray emission from SN 2006jc can also be explained as originating in an optically thin region. Thus, we propose that the optical light curve of SN 2010jl is powered by shock breakout in CSM. We suggest that two other events (SN 2010al and SN 2011ht) were too X-ray bright during the SN maximum optical light to be explained by the shock-breakout model.We conclude that the light curves of some, but not all, SNe IIn/Ibn are powered by shock breakout in CSM. For the rest of the SNe in our sample, including all of the SLSN-I events, our X-ray limits are not deep enough and were typically obtained too early (i.e., near the SN maximum light) for definitive conclusions about their nature. Late-time X-ray observations are required in order to further test whether these SNe are indeed embedded in dense CSM. We review the conditions required for a shock breakout in a wind profile. We argue that the timescale, relative to maximum light, for the SN to peak in X-rays is a probe of the column density and the density profile above the shock region. In SNe whose X-ray emission slowly rises, and peaks at late times, the optical light curve is likely powered by the diffusion of shock energy in a dense CSM. We note that if the CSM density profile falls faster than a constant-rate wind-density profile, then X-rays may escape at earlier times than estimated for the wind-profile case. Furthermore, if the CSM has a region in which the density profile is very steep relative to a steady wind-density profile, or if the CSM is neutral, then the radio free-free absorption may be sufficiently low for radio emission to be detected.

  17. Photospheric soft X-ray emission from hot DA white dwarfs

    NASA Technical Reports Server (NTRS)

    Wesemael, F.; Raymond, J. C.; Kahn, S. M.; Liebert, J.; Steiner, J. E.; Shipman, H. L.

    1984-01-01

    The Einstein Observatory's imaging proportional counter has detected 150-eV soft X-ray radiation from the four hot DA white dwarfs EG 187, Gr 288 and 289, and LB 1663. The observed pulse height spectra suggest that the emission is generated by hot photospheres whose T(eff) lie in the 30,000-60,000 K range. The IUE spacecraft UV spectra and H-beta line profiles for the four stars have been fitted, along with the X-ray fluxes, with a grid of hot, high gravity, homogeneous model atmospheres of mixed H-He composition. In all cases, the data require the presence of some X-ray opacity in the photosphere. Attention is given to the implications of this result in the context of white dwarf surface layer diffusion theories. Also noted are the limits imposed on the hot white dwarf population by the Einstein Medium Sensitivity Survey.

  18. Nanoparticle characterization by means of scanning free grazing emission X-ray fluorescence.

    PubMed

    Kayser, Yves; S, Jacinto; Szlachetko, Jakub

    2015-05-28

    Nanoparticles are considered for applications in domains as various as medical and pharmaceutical sciences, opto- and microelectronics, catalysis, photovoltaics, spintronics or nano- and biotechnology. The applications realized with nanocrystals depend strongly on the physical dimensions (shape and size) and elemental constitution. We demonstrate here that grazing emission X-ray fluorescence (GEXRF) is an element sensitive technique that presents the potential for a reliable and accurate determination of the morphology of nanoparticles deposited on a flat substrate (ready-to-use devices). Thanks to the scanning-free approach of the used GEXRF setup, the composition, shape and average size of nanoparticles are determined in short time intervals, minimizing the exposure to radiation. The (scanning-free) GEXRF technique allows for in situ investigations of the nanoparticulate systems thanks to the penetration properties of both the probe X-ray beam and the emitted X-ray fluorescence signal. PMID:25946258

  19. Periodicities in the X-ray emission from the solar corona

    SciTech Connect

    Chowdhury, Partha; Jain, Rajmal; Awasthi, Arun K. E-mail: parthares@gmail.com E-mail: awasthi@prl.res.in

    2013-11-20

    We have studied the time series of full disk integrated soft and hard X-ray emission from the solar corona during 2004 January to 2008 December, covering the entire descending phase of solar cycle 23 from a global point of view. We employ the daily X-ray index derived from 1 s cadence X-ray observations from the Si and CZT detectors of the 'Solar X-ray Spectrometer' mission in seven different energy bands ranging between 6 and 56 keV. X-ray data in the energy bands 6-7, 7-10, 10-20, and 4-25 keV from the Si detector are considered, while 10-20, 20-30, and 30-56 keV high energy observations are taken from the CZT detector. The daily time series is subjected to power spectrum analysis after appropriate correction for noise. The Lomb-Scargle periodogram technique has shown prominent periods of ?13.5 days, ?27 days, and a near-Rieger period of ?181 days and ?1.24 yr in all energy bands. In addition to this, other periods like ?31, ?48, ?57, ?76, ?96, ?130, ?227, and ?303 days are also detected in different energy bands. We discuss our results in light of previous observations and existing numerical models.

  20. Correlation of Hard X-Ray and White Light Emission in Solar Flares

    NASA Astrophysics Data System (ADS)

    Kuhar, Matej; Krucker, Säm; Martínez Oliveros, Juan Carlos; Battaglia, Marina; Kleint, Lucia; Casadei, Diego; Hudson, Hugh S.

    2016-01-01

    A statistical study of the correlation between hard X-ray and white light emission in solar flares is performed in order to search for a link between flare-accelerated electrons and white light formation. We analyze 43 flares spanning GOES classes M and X using observations from the Reuven Ramaty High Energy Solar Spectroscopic Imager and Helioseismic and Magnetic Imager. We calculate X-ray fluxes at 30 keV and white light fluxes at 6173 Å summed over the hard X-ray flare ribbons with an integration time of 45 s around the peak hard-X ray time. We find a good correlation between hard X-ray fluxes and excess white light fluxes, with a highest correlation coefficient of 0.68 for photons with energy of 30 keV. Assuming the thick target model, a similar correlation is found between the deposited power by flare-accelerated electrons and the white light fluxes. The correlation coefficient is found to be largest for energy deposition by electrons above ∼50 keV. At higher electron energies the correlation decreases gradually while a rapid decrease is seen if the energy provided by low-energy electrons is added. This suggests that flare-accelerated electrons of energy ∼50 keV are the main source for white light production.

  1. The X-ray spectrum and time variability of narrow emission line galaxies

    NASA Technical Reports Server (NTRS)

    Mushotzky, R.

    1981-01-01

    X-ray spectral and temporal observations are reported for six narrow emission line galaxies (NELGs), all of which are fitted by power-law X-ray spectra of energy slope 0.8 and have column densities in the line of sight greater than 1 x 10 to the 22nd atoms/sq cm. Three of the objects, NGC 526a, NGC 2110 and MCG-5-23-16 are variable in their X-ray flux, and the latter two, along with NGC 5506 and NGC 7582, showed detectable variability in at least one observation. The measured X-ray properties of these NELGs, which also included NGC 2992, strongly resemble those of previously-measured type 1 Seyferts of the same X-ray luminosity and lead to the conclusion of great similarity between the NELGs and low-luminosity type 1 Seyferts. The implications of these observations for the optical line-emitting region structure of these galaxies are discussed.

  2. X-ray emission processes in stars and their immediate environment

    PubMed Central

    Testa, Paola

    2010-01-01

    A decade of X-ray stellar observations with Chandra and XMM-Newton has led to significant advances in our understanding of the physical processes at work in hot (magnetized) plasmas in stars and their immediate environment, providing new perspectives and challenges, and in turn the need for improved models. The wealth of high-quality stellar spectra has allowed us to investigate, in detail, the characteristics of the X-ray emission across the Hertzsprung-Russell (HR) diagram. Progress has been made in addressing issues ranging from classical stellar activity in stars with solar-like dynamos (such as flares, activity cycles, spatial and thermal structuring of the X-ray emitting plasma, and evolution of X-ray activity with age), to X-ray generating processes (e.g., accretion, jets, magnetically confined winds) that were poorly understood in the preChandra/XMM-Newton era. I will discuss the progress made in the study of high energy stellar physics and its impact in a wider astrophysical context, focusing on the role of spectral diagnostics now accessible. PMID:20360562

  3. Circumstellar emission in Be/X-ray binaries of the Magellanic Clouds and the Milky Way

    NASA Astrophysics Data System (ADS)

    Riquelme, M. S.; Torrejn, J. M.; Negueruela, I.

    2012-03-01

    Aims: We study the optical and near-infrared colour excesses produced by circumstellar emission in a sample of Be/X-ray binaries. Our main goals are exploring whether previously published relations, valid for isolated Be stars, are applicable to Be/X-ray binaries and computing the distance to these systems after correcting for the effects of the circumstellar contamination. Methods: Simultaneous UBVRI photometry and spectra in the 3500-7000 spectral range were obtained for 11 optical counterparts to Be/X-ray binaries in the LMC, 5 in the SMC and 12 in the Milky Way. As a measure of the amount of circumstellar emission we used the H? equivalent width corrected for photospheric absorption. Results: We find a linear relationship between the strength of the H? emission line and the component of E(B - V) originating from the circumstellar disk. This relationship is valid for stars with emission lines weaker than EW ? -15 . Beyond this point, the circumstellar contribution to E(B - V) saturates at a value ?0.17 mag. A similar relationship is found for the (V - I) near infrared colour excess, albeit with a steeper slope and saturation level. The circumstellar excess in (B - V) is found to be about five times higher for Be/X-ray binaries than for isolated Be stars with the same equivalent width EW(H?), implying significant differences in the physical properties of their circumstellar envelopes. The distance to Be/X-ray binaries (with non-shell Be star companions) can only be correctly estimated by taking into account the excess emission in the V band produced by free-free and free-bound transitions in the circumstellar envelope. We provide a simple method to determine the distances that includes this effect. Partially based on observations collected at the European Southern Observatory, La Silla, Chile (66.D-0292; 074.D-0529) and the Nordic Optical Telescope.

  4. Modeling of the EUV and X-Ray Emission Spectra Induced by the Solar Winds Ions in the Heliosphere

    NASA Technical Reports Server (NTRS)

    Kharchenko, Vasili

    2005-01-01

    We have carried out investigation of the EUV and X-ray emission spectra induced in interaction between the Solar Wind (SW) and interstellar neutral gas. The spectra of most important SW ions have been computed for the charge-exchange mechanism of X-ray emission using new accurate spectroscopic data from recent laboratory measurements and theoretical calculations. Total spectra have been constructed as a sum of spectra induced in the charge-exchange collisions by individual O(exp q+), C(exp q+), N(exp q+), Ne(exp q+), Mg (exp q+) and Fe(exp q+) ions. Calculations have been performed for X-ray emission from the heliospheric hydrogen and helium gas. X-ray maps of the heliosphere have been computed. The power density of X-ray sources in the heliospheric ecliptic plane is shown for the H gas and for the He gas. Distances from the Sun (0,0) are given in AU. The helium cone is clear seen in the X-ray map of the charge-exchange emission induced by the solar wind. X-ray emission spectra detected by the Chandra X-ray telescope from the "dark" side of Moon has been identified as a X-ray background emission induced by the solar wind from the geocorona. Spectra and intensities of this charge-exchange X-rays have been compared with the heliospheric component of the X-ray background. Observations and modeling of the SW spectra induced from the geocorona indicate a strong presence of emission lines of highly charged oxygen ions. Anisotropy in distribution of heliospheric X-rays has been predicted and calculated for the regions of the fast and slow solar winds.

  5. DETECTION OF DIFFUSE X-RAY EMISSION FROM PLANETARY NEBULAE WITH NEBULAR O VI

    SciTech Connect

    Ruiz, N.; Guerrero, M. A.; Jacob, R.; Schoenberner, D.; Steffen, M.

    2013-04-10

    The presence of O VI ions can be indicative of plasma temperatures of a few Multiplication-Sign 10{sup 5} K that are expected in heat conduction layers between the hot shocked stellar wind gas at several 10{sup 6} K and the cooler (10{sup 4} K) nebular gas of planetary nebulae (PNe). We have used FUSE observations of PNe to search for nebular O VI emission or absorption as a diagnostic of the conduction layer to ensure the presence of hot interior gas. Three PNe showing nebular O VI, namely IC 418, NGC 2392, and NGC 6826, have been selected for Chandra observations and diffuse X-ray emission is indeed detected in each of these PNe. Among the three, NGC 2392 has peculiarly high diffuse X-ray luminosity and plasma temperature compared with those expected from its stellar wind's mechanical luminosity and terminal velocity. The limited effects of heat conduction on the plasma temperature of a hot bubble at the low terminal velocity of the stellar wind of NGC 2392 may partially account for its high plasma temperature, but the high X-ray luminosity needs to be powered by processes other than the observed stellar wind, probably the presence of an unseen binary companion of the central star of the PN (CSPN) of NGC 2392. We have compiled relevant information on the X-ray, stellar, and nebular properties of PNe with a bubble morphology and found that the expectations of bubble models including heat conduction compare favorably with the present X-ray observations of hot bubbles around H-rich CSPNe, but have notable discrepancies for those around H-poor [WR] CSPNe. We note that PNe with more massive central stars can produce hotter plasma and higher X-ray surface brightness inside central hot bubbles.

  6. The Origin of the Puzzling Hard-X-Ray Emission of ? Cassiopeiae

    NASA Astrophysics Data System (ADS)

    Motch, Christian; Lopes de Oliveira, Raimundo; Smith, Myron A.

    2015-06-01

    Massive B and Be stars produce X-rays from shocks in high-velocity winds with temperatures of a few million degrees and maximum X-ray luminosities of ?1031 erg s-1. Surprisingly, a sub-group of early Be stars exhibits ?20 times hotter X-ray temperatures and ?10 times higher X-ray luminosities than normal. This group of Be stars, dubbed ?-Cas analogs, contains about 10 known objects. The origin of this bizarre behavior has been extensively debated in the past decades. Two mechanisms have been put forward: accretion of circumstellar disk matter onto an orbiting white dwarf, or magnetic field interaction between the star and the circumstellar disk. We show here that the X-ray and optical emissions of the prototype of the class, ?-Cas, are very well correlated on year timescales with no significant time delay. Since the expected migration time from internal disk regions that emit most of the optical flux to the orbit of the companion star is several years, the simultaneity of the high energy and optical flux variations indicates that X-ray emission arises from close to the star. The systematic lack of magnetic field detection reported in recent spectro-polarimetric surveys of Be stars is consistent with the absence of strong magnetic wind braking in these fast spinning stars but place strong constraints on the possible origin of the magnetic field. We propose that in ?-Cas, the magnetic field emerges from equatorially condensed subsurface convecting layers, the thickness of which steeply increases with rotation rate, and that ?-Cas and its analogs are the most massive and closest to critical rotation Be stars.

  7. Charge exchange x-ray emission: Astrophysical observations and potential diagnostics

    NASA Astrophysics Data System (ADS)

    Morgan, K.; Andrianarijaona, V.; Draganic, I. N.; Defay, X.; Fogle, M.; Galindo-Uribarri, A.; Guillen, C. I.; Havener, C. C.; Hokin, M.; McCammon, D.; Nader, D. J.; Romano, S. L.; Carcoba, F. Salces; Sauter, P.; Seely, D.; Stancil, P. C.; Vane, C. R.; Vassantachart, A. K.; Wulf, D.

    2013-04-01

    Interest in astrophysical sources of charge exchange X-rays has been growing steadily since the discovery of X-ray emission from the comet Hyakutake with ROSAT in 1996. Since then, charge exchange has been observed between solar wind ions and neutrals in the geocorona and in the atmospheres of Mars and Jupiter. Charge exchange with interstellar neutrals within the heliosphere between solar wind ions and neutral hydrogen and helium from the interstellar medium is now acknowledged as contributing a considerable (although currently unknown) fraction of the soft X-ray background. We make a brief survey of the heliospheric, Galactic, and extragalactic systems in which charge exchange has been observed or is predicted to take place. Experiments measuring velocity dependent cross-section and line ratios for Lyman-series lines and He-like triplets are needed to check current theoretical models of charge exchange emission and aid interpretation of observations. We point out a number of systems that are of astrophysical interest that could be the subject of future laboratory investigations, particularly velocity dependent line ratios of the X-ray emission produced by charge exchange between highly ionized common elements (such as O, C, Ne, and Fe) and atomic hydrogen and helium. To begin to address the need for laboratory data we have measured velocity dependent Ly-series line ratios for C6+ ions interacting with H2, He, and Kr gas targets at Oak Ridge National Laboratory's Ion-Atom Merged-Beams Apparatus.

  8. Structure of the X-Ray Emission from the Jet of 3C 273

    NASA Technical Reports Server (NTRS)

    Marshall, H. L.; Lee, J. C.; Ogle, P. M.; Drake, J. J.; Fruscione, A.; Grimes, J.; Harris, D.; Kraft, R.; Pease, D.; Schwartz, D.; Siemiginowska, A.; Lavoie, Anthony R. (Technical Monitor)

    2000-01-01

    We present images from four Chandra observations of the quasar 3C 273. The zeroth order images from two grating observations using the AXAF CCD Imaging Spectrometer (ACIS-S) detector are used to examine the structure and spectrum of the jet. The jet has at least four distinct features which are not resolved in previous observations. Using jet feature nomenclature based on HST observations, we find that knot Al is very bright in X-rays. We have measured the X-ray spectrum of this X-ray knot for the first time, obtaining a photon index of 1.36 +/- 0.11 and a flux density of 37 +/- 4 nJy at 1 keV. Combining this measurement with lower frequency data shows that a pure synchrotron model can fit the spectrum of knot Al from 4 GHz to 5 keV (over nine decades in energy) without a change of spectral slope. Knot A2 is also detected and is somewhat blended with knot B1 but synchrotron emission is not likely to explain the X-ray emission due to the spectral turnover observed in the optical-UV band. No other knots are clearly detected but there is an indication of weak emission from the eastern portion of knot H3. near the "head," which is radio-bright. There is diffuse flux which extends from 14 arcsec to 20 arcsec which shows curvature that is comparable to the optical flux found by Bahcall, et al.

  9. Hard X-ray Emission by Resonant Compton Upscattering in Magnetars

    NASA Astrophysics Data System (ADS)

    Wadiasingh, Zorawar; Baring, M. G.; Gonthier, P. L.; Harding, A. K.

    2012-01-01

    For inner magnetospheric models of hard X-ray and gamma-ray emission in high-field pulsars and magnetars, resonant Compton upscattering is anticipated to be the most efficient process for generating continuum radiation. For magnetars, this is due in part to the proximity of a hot soft photon bath from the stellar surface. Moreover, the scattering cross section becomes resonant at the cyclotron frequency, exceeding the classical Thomson value by over two orders of magnitude and thereby enhancing the efficiency of continuum production and the cooling of relativistic electrons. We present angle-dependent hard X-ray upscattering model spectra for uncooled monoenergetic relativistic electrons injected in inner regions of pulsar magnetospheres. These spectra are integrated over closed field lines and obtained for different observing perspectives. Electron cooling rates for resonant Compton interactions are also presented, in preparation for future radiation-reaction limited acceleration and emission models of non-thermal magnetar X-rays. Our research employs a new Sokolov and Ternov (ST) formulation of the QED Compton scattering cross section in strong magnetic fields. Such an ST formalism is formally correct for treating spin-dependent effects that are important in the cyclotron resonance, and has not been addressed before in the context of Compton upscattering models of magnetar hard X-ray tail emission.

  10. X-ray emission from the local hot bubble and solar wind charge exchange

    NASA Astrophysics Data System (ADS)

    Uprety, Youaraj

    DXL (Diffuse X-rays from the Local galaxy) is a sounding rocket mission to quantify the Solar Wind Charge Exchange (SWCX) X-ray emission in the interplanetary medium, and separate its contribution from the Local Hot Bubble (LHB) emission. The first launch of DXL took place in December 2012. This thesis will describe the DXL instrumentation and calibrations, and discuss the results obtained. The mission uses two large area proportional counters to scan through the Helium Focusing Cone (HFC), a high helium density region in the solar system emitting excess X-rays due to SWCX. Using well determined models of the interplanetary neutral distribution and comparing the DXL results with data from the same region obtained by the ROSAT satellite away from the cone, we calculated that SWCX contributes at most 36% to the keV ROSAT band and 13% to the keV ROSAT band, in the galactic plane. This provides a firm proof for existence of a LHB which dominates the Diffuse X-ray Background (DXB) at keV, while raising new questions on the origin of the keV emission.

  11. X-RAY EMISSION FROM THE WOLF-RAYET BUBBLE S 308

    SciTech Connect

    Toala, J. A.; Guerrero, M. A.; Arthur, S. J.; Smith, R. C.

    2012-08-10

    The Wolf-Rayet (WR) bubble S 308 around the WR star HD 50896 is one of the only two WR bubbles known to possess X-ray emission. We present XMM-Newton observations of three fields of this WR bubble that, in conjunction with an existing observation of its northwest quadrant, map most of the nebula. The X-ray emission from S 308 displays a limb-brightened morphology, with a central cavity {approx}22' in size and a shell thickness of {approx}8'. This X-ray shell is confined by the optical shell of ionized material. The spectrum is dominated by the He-like triplets of N VI at 0.43 keV and O VII at 0.57 keV, and declines toward high energies, with a faint tail up to 1 keV. This spectrum can be described by a two-temperature optically thin plasma emission model (T{sub 1} {approx} 1.1 Multiplication-Sign 10{sup 6} K, T{sub 2} {approx} 13 Multiplication-Sign 10{sup 6} K), with a total X-ray luminosity {approx}2 Multiplication-Sign 10{sup 33} erg s{sup -1} at the assumed distance of 1.5 kpc.

  12. The Physics of X-ray Emission from Accreting Millisecond Pulsars

    NASA Astrophysics Data System (ADS)

    Poutanen, Juri

    2004-07-01

    By analyzing the Rossi X-ray Timing Explorer data on SAX J1808.4-3658, we show that the X-ray emission in accretion powered millisecond pulsars can be produced by Comptonization in a hot slab (radiative shock) of Thomson optical depth ?es ~ 1 at the neutron star surface. The escaping radiation consists of two components: a black body and a hard Comptonized tail. These components have very different angular distribution: the black body peaks along the slab normal (a ``pencil-like'' emission pattern), while the tail has a broader angular distribution (a ``fan''-like pattern). This results in very different variability properties. We construct a detailed model of the X-ray production accounting for the Doppler boosting, relativistic aberration and gravitational light bending. We are able to reproduce the pulse profiles at different energies, corresponding phase lags, as well as the time-averaged spectrum. We obtain constraints on the neutron star radius: R ~ 11 km if its mass M = 1.6Msolar, and R ~ 8.5 km if M = 1.4Msolar. We present simple analytical formulae for computing the light curves and oscillation amplitudes expected from hot spots in X-ray bursters and accretion powered millisecond pulsars. We also propose an analytical expression that can be used to determine the size of the black body emission region from the observed properties.

  13. The X-ray emission of M81 and its nucleus

    NASA Technical Reports Server (NTRS)

    Fabbiano, G.

    1988-01-01

    X-ray observations of M81 made with the Einstein satellite are analyzed, and the results are reported. Eight bright sources other than the nucleus were detected, with luminosities in excess of about 2 x 10 to the 38th ergs/s. These are probably young, massive, accreting binary systems. A comparison of M81 with the morphologically similar galaxy M31 shows that the former is overluminous in both the radio continuum and the X-ray emission and to a lesser extent the far-infared emission, relative to the optical luminosity. This points to a difference in the star-formation histories of the two galaxies. The individual X-ray sources detected in M81 are all more luminous than the most luminous sources of M31. The nuclear source in M81 has a very soft and absorbed X-ray spectrum which cannot be explained by either inverse Compton radiation of the compact nuclear radio source or by an extension of the radio synchrotron emission.

  14. The velocity dependence of X-ray emission due to Charge Exchange in the Cygnus Loop

    NASA Astrophysics Data System (ADS)

    Cumbee, Renata; Lyons, David; Mullen, Patrick Dean; Shelton, Robin L.; Stancil, Phillip C.; Schultz, David R.

    2016-01-01

    The fundamental collisional process of charge exchange (CX) has been been established as a primary source of X-ray emission from the heliosphere [1], planetary exospheres [2], and supernova remnants [3,4]. In this process, X-ray emission results from the capture of an electron by a highly charged ion from a neutral atom or molecule, to form a highly-excited, high charge state ion. As the captured electron cascades down to the lowest energy level, photons are emitted, including X-rays.To provide reliable CX-induced X-ray spectral models to realistically simulate these environments, line ratios and spectra are computed using theoretical CX cross-sections obtained with the multi-channel Landau-Zener, atomic-orbital close-coupling, and classical-trajectory Monte Carlo methods for various collisional velocities relevant to astrophysics for collisions of bare and H-like C to Al ions with H, He, and H2. Using these line ratios, XSPEC models of CX emission in the northeast rim of the Cygnus Loop supernova remnant will be shown as an example with ion velocity dependence.[1] Henley, D. B. & Shelton, R. L. 2010, ApJSS, 187, 388[2] Dennerl, K. et al. 2002, A&A 386, 319[3] Katsuda, S. et al. 2011, ApJ 730 24[4] Cumbee, R. S. et al. 2014, ApJ 787 L31This work was partially supported by NASA grant NNX09AC46G.

  15. RECONNECTION ELECTRIC FIELD AND HARDNESS OF X-RAY EMISSION OF SOLAR FLARES

    SciTech Connect

    Liu Chang; Wang Haimin E-mail: haimin@flare.njit.edu

    2009-05-01

    Magnetic reconnection is believed to be the prime mechanism that triggers solar flares and accelerates electrons up to energies of MeV. In the classical two-dimensional reconnection model, the separation motion of chromospheric ribbons, manifests the successive reconnection that takes place higher up in the corona. Meanwhile, downward traveling energetic electrons bombard the dense chromosphere and create hard X-ray (HXR) emissions, which provide a valuable diagnostic of electron acceleration. Analyses of ribbon dynamics and the HXR spectrum have been carried out separately. In this Letter, we report a study of the comparison of reconnection electric field measured from ribbon motion and hardness (spectral index) of X-ray emission derived from X-ray spectrum. Our survey of the maximum average reconnection electric field and the minimum overall spectral index for 13 two-ribbon flares shows that they are strongly anticorrelated. The former is also strongly correlated with flare magnitude measured using the peak flux of soft X-ray emissions. These provide strong support for electron acceleration models based on the electric field generated at reconnecting current sheet during flares.

  16. Detection of X-ray Emission From Galaxies Inside The Bootes Void

    NASA Technical Reports Server (NTRS)

    Kim, Chulhee; Boller, Thomas; Ghosh, Kajal K.; Swartz, Douglas A.; Ramsey, Brian D.; Rose, M. Franklin (Technical Monitor)

    2000-01-01

    We report the x-ray properties of Bootes void galaxies detected by the ROSAT All-Sky Survey (RASS). By searching the fields of 26 radio and 27 emission-line-selected void galaxies, we have detected 9 x-ray emitting void galaxies at >2.7-sigma confidence level. Five of these 9 galaxies are in the IP,AS subsample. We expect 2 detections at the redshift of the Bootes void based on previous positional cross-correlation studies of the RASS and IRAS Point Source Catalogue sources. Three of the x-ray emitting galaxies are AGNs (IRAS14288+5255, Mrk845, and IRAS 15195+5050), and the remaining 6 are all likely emission line galaxies (PC1357+4641, CG547, CG922, IRAS14SOO+4804, CG637, and IRAS15092+3940). The far infrared flux levels of the AGN sources implies most of the observed x-ray emissivity is from starburst activity. We have carried out timing and spectral analysis for the narrow-line Seyfert 1 galaxy Mrk845. Poor statistics prevents detailed analysis of the remaining sources. only two galaxies in our sample, BHI 1514+3819 and FSS 1515+3823, were observed during ROSAT pointed observations resulting in a nondetection at the 1-sigma level.

  17. X-Ray Emission Characteristics of Vacuum Spark Plasmas Operated with Aluminium, Copper and Tin as Anode Materials

    NASA Astrophysics Data System (ADS)

    Saboohi, Solmaz; San Wong, Chiow; Yap, Seong Ling

    The X-ray emission characteristics of a vacuum spark device operated with anode materials of various atomic numbers were studied. The temporal evolution of the X-ray emission was recorded by using five channels of high-speed PIN X-ray diodes. A time-integrated X-ray spectrometer was used to record the spectral distribution of the X-ray emission. The electron temperatures of the aluminium, copper and tin vacuum spark plasmas were determined by using the X-ray absorption ratio method and were found to be in the range of 1 to 3 keV for aluminium plasma, 5 to 9 keV for copper plasma and 12 to 14 keV for tin plasma.

  18. The Discovery of X-ray Emission from Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Elvis, Martin

    2013-01-01

    Back in 1974 the UHURU catalog (3U) had been published with many UHGLS - unidentified high galactic latitude sources. Identifications were hampered by the square degree sized error boxes (positional uncertainties). Could these explain the cosmic X-ray background? Could UHGLS be "X-ray galaxies"? Only three active galaxies (AGNs) had been found as X-ray sources: 3C273, Cen A and NGC 4151, while others had upper limits. What was the difference between X-ray and non-X-ray AGNs? It turned out that the slightly better positioning capability and slightly deeper sensitivity of the Ariel V Sky Survey Instrument (SSI), launched in October 1974, were just enough to show that the UHGLS were Seyfert galaxies. And I was lucky enough that I'd joined the Leicester X-ray group and had taken on the UHGLS for my PhD thesis, with Ken Pounds as my supervisor. With the SSI we made a catalog of high latitude sources, the "2A" catalog, including about a dozen known Seyfert galaxies (lowish luminosity nearby AGNs) and, with Mike Penston and Martin Ward, we went on to identify many of them with both newly discovered normal broad emission line AGNs and a few new "narrow emission line galaxies", or NELGs, as we called them. We are now convinced that it is summation of many obscured NELGs that produce the flat spectrum of the X-ray background, and we are still searching for them in Chandra deep surveys and at higher energies with NuSTAR. There was an obvious connection between the X-ray obscuration and the optical reddening, which must lie outside the region emitting the broad optical spectral lines. Andy Lawrence and I, following a clue from Bill Keel, put this together into what we now call the Unified Scheme for AGN structure. This idea of a flattened torus obscuring the inner regions of the AGN was so dramatically confirmed a few years later -- by Ski Antonucci and Joe Miller's discovery of polarized broad emission lines in NGC1068 -- that the precursor papers became irrelevant. But Ariel V had provided the seeds for this advance too. Not bad for 100cm2 and 1/2 degree collimators.

  19. Comparative study of x ray and microwave emissions during solar flares

    NASA Technical Reports Server (NTRS)

    Winglee, Robert M.

    1993-01-01

    The work supported by the grant consisted of two projects. The first project involved making detailed case studies of two flares using SMM data in conjunction with ground based observations. The first flare occurred at 1454 UT on June 20, 1989 and involved the eruption of a prominence near the limb. In the study we used data from many wavelength regimes including the radio, H-alpha, hard X-rays, and soft X-rays. We used a full gyrosynchrotron code to model the apparent presence of a 1.4 GHz source early in the flare that was in the form of a large coronal loop. The model results lead us to conclude that the initial acceleration occurs in small, dense loops which also produced the flare's hard X-ray emission. We also found evidence that a source at 1.4 GHz later in the event was due to second harmonic plasma emission. This source was adjacent to a leg of the prominence and comes from a dense column of material in the magnetic structure supporting the prominence. Finally, we investigated a source of microwaves and soft X-rays, occurring approximately 10 min after the hard X-ray peak, and calculate a lower limit for the density of the source. The second flare that was studied occurred at 2156 UT on June 20, 1989 and was observed with the VLA and the Owens Valley Radio Observatory (OVRO) Frequency Agile Array. We have developed a gyrosynchrotron model of the sources at flare peak using a new gyrosynchrotron approximation which is valid at very low harmonics of the gyrofrequency. We found that the accelerated particle densities of the sources decreased much more with radius from the source center than had been supposed in previous work, while the magnetic field varied less. We also used the available data to analyze a highly polarized source which appeared late in the flare. The second project involved compiling a statistical base for the relative timing of the hard X-ray peak, the turbulent and blue-shift velocities inferred from soft X-ray line emissions observed by SMM and the microwave peak as determined from ground-based observations. This timing was then used to aid the testing of newly developed global models for flares that incorporate the global magnetic topology as well as the electron dynamics that are responsible for the hard X-rays and microwaves.

  20. The evolution of planetary nebulae. V. The diffuse X-ray emission

    NASA Astrophysics Data System (ADS)

    Steffen, M.; Schnberner, D.; Warmuth, A.

    2008-10-01

    Context: Observations with space-borne X-ray telescopes revealed the existence of soft, diffuse X-ray emission from the inner regions of planetary nebulae. Although the existing images support the idea that this emission arises from the hot shocked central-star wind which fills the inner cavity of a planetary nebula, existing models have difficulties to explain the observations consistently. Aims: We investigate how the inclusion of thermal conduction changes the physical parameters of the hot shocked wind gas and the amount of X-ray emission predicted by time-dependent hydrodynamical models of planetary nebulae with central stars of normal, hydrogen-rich surface composition. Methods: We upgraded our 1D hydrodynamics code NEBEL by to account for energy transfer due to heat conduction, which is of importance at the interface separating the hot shocked wind gas (hot bubble) from the much cooler nebular material. With this new version of NEBEL we recomputed a selection of our already existing hydrodynamical sequences and obtained synthetic X-ray spectra for representative models along the evolutionary tracks by means of the freely available CHIANTI package. Results: Heat conduction leads to lower temperatures and higher densities within a bubble and brings the physical properties of the X-ray emitting domain into close agreement with the values derived from observations. The amount of X-rays emitted during the course of evolution depends on the energy dumped into the bubble by the fast stellar wind, on the efficiency of evaporating cool nebular gas via heat conduction, and on the bubble's expansion rate. We find from our models that the X-ray luminosity of a planetary nebula increases during its evolution across the HR diagram until stellar luminosity and wind power decline. Depending on the central-star mass and the evolutionary phase, our models predict X-ray [ 0.45-2.5 keV] luminosities between 10-8 and 10-4 of the stellar bolometric luminosities, in good agreement with the observations. Less than 1% of the wind power is radiated away in this X-ray band. Although temperature, density, and also the mass of the hot bubble is significantly altered by heat conduction, the dynamics of the whole system remains practically the same. Conclusions: Heat conduction allows the construction of nebular models which predict the correct amount of X-ray emission and at the same time are fully consistent with the observed mass-loss rate and wind speed. Thermal conduction must be considered as a viable physical process for explaining the diffuse X-ray emission from planetary nebulae with closed inner cavities. Magnetic fields must then be absent or extremely weak. Dedicated to the memory of M. Perinotto, a dear friend and esteemed colleague who died unexpectedly and much too early on August 15, 2007.

  1. Glancing Angle Dependence of the X-Ray Emission Measured under Total Reflection Angle X-Ray Spectroscopy (TRAXS) Condition during Reflection High Energy Electron Diffraction Observation

    NASA Astrophysics Data System (ADS)

    Yamanaka, Toshiro; Hanada, Takashi; Ino, Shozo; Daimon, Hiroshi

    1992-10-01

    We measured the glancing angle (?g) dependence of the X-ray emission from Si(111)-\\sqrt{3}\\sqrt{3}-Ag and ?-\\sqrt{3}\\sqrt{3}-Au surfaces during Reflection High Energy Electron Diffraction observation under the Total Reflection Angle X-ray Spectroscopy condition. The characteristic X-rays AgL and AuM decreased according to 1/sin ?g. The function 1/\\sin?g is easily understood in terms of Ag and Au atoms located at the top layer of the surface. The SiK and the bremsstrahlung showed broad peaks around 8. These trends of the curves are explained by an analysis using Monte Carlo electron trajectory simulation. By measuring the glancing angle dependence we can easily distinguish whether or not a specific kind of atom is confined at the top layer of the surface.

  2. Making use of x-ray optical effects in photoelectron-, Auger electron-, and x-ray emission spectroscopies: Total reflection, standing-wave excitation, and resonant effects

    SciTech Connect

    Yang, S.-H.; Gray, A. X.; Kaiser, A. M.; Mun, B. S.; Sell, B. C.; Kortright, J. B.; Fadley, C. S.

    2013-02-21

    We present a general theoretical methodology and related open-access computer program for carrying out the calculation of photoelectron, Auger electron, and x-ray emission intensities in the presence of several x-ray optical effects, including total reflection at grazing incidence, excitation with standing-waves produced by reflection from synthetic multilayers and at core-level resonance conditions, and the use of variable polarization to produce magnetic circular dichroism. Calculations illustrating all of these effects are presented, including in some cases comparisons to experimental results. Sample types include both semi-infinite flat surfaces and arbitrary multilayer configurations, with interdiffusion/roughness at their interfaces. These x-ray optical effects can significantly alter observed photoelectron, Auger, and x-ray intensities, and in fact lead to several generally useful techniques for enhancing surface and buried-layer sensitivity, including layer-resolved densities of states and depth profiles of element-specific magnetization. The computer program used in this study should thus be useful for a broad range of studies in which x-ray optical effects are involved or are to be exploited in next-generation surface and interface studies of nanoscale systems.

  3. X-Ray Emission from the Host Clusters of Powerful AGN

    NASA Astrophysics Data System (ADS)

    Hall, Patrick B.; Ellingson, Erica; Green, Richard F.

    1997-04-01

    We report the detection of X-ray emission from the host cluster of the unusual radio-quiet quasar \\1821\\ using the ROSAT HRI, and the non-detection of X-ray emission from the host cluster of the radio-loud quasar 3C 206 (3sigma \\ upper limit of 1.63 10(44) ergs s(-1) ) using the EINSTEIN HRI. The host cluster of \\1821\\ is one of the most X-ray luminous clusters known, with a rest-frame 0.1-2.4 keV luminosity of 3.74+/-0.57 h50(-2) 10(45) ergs s(-1) , %(\\qo=0.5), 38% of which is from a barely resolved cooling flow component. The cluster emission complicates interpretation of previous X-ray spectra of this field. In particular, the observed Fe Kalpha emission can probably be attributed entirely to the cluster and either the quasar is relatively X-ray quiet for its optical luminosity or the cluster has a relatively low temperature for its luminosity. We combine these data with the recent detection of X-ray emission from the host cluster of the `buried' radio-quiet quasar \\9104 (\\cite{fc95}), our previous upper limits for the host clusters of two z ~ 0.7 radio-loud quasars, and literature data on FR II radio galaxies. We compare this dataset to the predictions of three models for the presence and evolution of powerful AGN in clusters: the low-velocity-dispersion model, the low-ICM-density model, and the cooling flow model. Neither the low-ICM-density model nor the cooling flow model can explain all the observations. We suggest that strong interactions with gas-containing galaxies may be the only mechanism needed to explain the presence and evolution of powerful AGN in clusters, a scenario consistent with the far-IR and optical properties of the host galaxies studied here, all of which show some evidence for past interactions. However, the cooling flow model cannot be ruled out for at least some objects, and it is likely that both processes are at work in creating and fueling powerful AGN in clusters. Each scenario makes testable predictions for future observations. It is likely that both processes are at work in creating powerful AGN in clusters; the relative importance of each process can be tested with future X-ray and optical observations.

  4. Proton-induced X-ray and gamma ray emission analysis of biological samples

    NASA Astrophysics Data System (ADS)

    Hall, Gene S.; Navon, Eliahu

    1986-04-01

    A 4.1 MeV external proton beam was employed to simultaneously induce X-ray emission (PIXE) and gamma ray emission (PIGE) in biological samples that included human colostrum, spermatozoa, teeth, tree-rings, and follicular fluids. The analytical method was developed to simultaneously determine the elements lithium (Z = 3) through uranium (Z = 92) in the samples. PIXE-PIGE experimental design is described as well as applications in environmental and medical fields.

  5. INTRAGROUP AND GALAXY-LINKED DIFFUSE X-RAY EMISSION IN HICKSON COMPACT GROUPS

    SciTech Connect

    Desjardins, Tyler D.; Gallagher, Sarah C.; Tzanavaris, Panayiotis; Hornschemeier, Ann E.; Brandt, William N.; Charlton, Jane C.; Garmire, Gordon P.; Gronwall, Caryl; Konstantopoulos, Iraklis S.; Johnson, Kelsey E.; Zabludoff, Ann I.

    2013-02-15

    Isolated compact groups (CGs) of galaxies present a range of dynamical states, group velocity dispersions, and galaxy morphologies with which to study galaxy evolution, particularly the properties of gas both within the galaxies and in the intragroup medium. As part of a large, multiwavelength examination of CGs, we present an archival study of diffuse X-ray emission in a subset of nine Hickson compact groups (HCGs) observed with the Chandra X-Ray Observatory. We find that seven of the groups in our sample exhibit detectable diffuse emission. However, unlike large-scale emission in galaxy clusters, the diffuse features in the majority of the detected groups are linked to the individual galaxies, in the form of both plumes and halos likely as a result of vigourous star formation or activity in the galaxy nucleus, as well as in emission from tidal features. Unlike previous studies from earlier X-ray missions, HCGs 31, 42, 59, and 92 are found to be consistent with the L{sub X} -T relationship from clusters within the errors, while HCGs 16 and 31 are consistent with the cluster L{sub X} -{sigma} relation, though this is likely coincidental given that the hot gas in these two systems is largely due to star formation. We find that L{sub X} increases with decreasing group H I to dynamical-mass ratio with tentative evidence for a dependence in X-ray luminosity on H I morphology whereby systems with intragroup H I indicative of strong interactions are considerably more X-ray luminous than passively evolving groups. We also find a gap in the L{sub X} of groups as a function of the total group specific star formation rate. Our findings suggest that the hot gas in these groups is not in hydrostatic equilibrium and these systems are not low-mass analogs of rich groups or clusters, with the possible exception of HCG 62.

  6. Broadband spectrum of the total X-ray emission from the galaxy M31

    NASA Astrophysics Data System (ADS)

    Revnivtsev, M. G.; Sunyaev, R. A.; Krivonos, R. A.; Tsygankov, S. S.; Molkov, S. V.

    2014-01-01

    We present the results of measurements of the total X-ray flux from the Andromeda galaxy (M31) in the 3-100 keV band based on data from the RXTE/PCA, INTEGRAL/ISGRI, and SWIFT/BAT space experiments. We show that the total emission from the galaxy has a multicomponent spectrum whose main characteristics are specified by binaries emitting in the optically thick and optically thin regimes. The galaxy's luminosity at energies 20-100 keV gives about 6% of its total luminosity in the 3-100 keV band. The emissivity of the stellar population in M31 is L 2-20 keV 1.1 1029 erg s-1 M {?/-1} in the 2-20 keV band and L 20-100 keV 8 1027 erg s-1 M {?/-1} in the 20-100 keV band. Since low-mass X-ray binaries at high luminosities pass into a soft state with a small fraction of hard X-ray emission, the detection of individual hard X-ray sources in M31 requires a sensitivity that is tens of times better (up to 10-13 erg s-1 cm-2) than is needed to detect the total hard X-ray emission from the entire galaxy. Allowance for the contribution from the hard spectral component of the galaxy changes the galaxy's effective Compton temperature approximately by a factor of 2, from 1.1 to 2.1 keV.

  7. Intragroup and Galaxy-linked Diffuse X-ray Emission In Hickson Compact Groups

    NASA Technical Reports Server (NTRS)

    Desjardins, Tyler D.; Gallagher, Sarah C.; Tzanavaris, Panayiotis; Mulchaey, John S.; Brandt, William N.; Charlton, Jane C.; Garmire, Gordon P.; Gronwall, Caryl; Cardiff, Ann; Johnson, Kelsey E.; Konstantopoulos, Iraklis, S.; Zabludoff, Ann I.

    2013-01-01

    Isolated compact groups (CGs) of galaxies present a range of dynamical states, group velocity dispersions, and galaxy morphologies with which to study galaxy evolution, particularly the properties of gas both within the galaxies and in the intragroup medium. As part of a large, multiwavelength examination of CGs, we present an archival study of diffuse X-ray emission in a subset of nine Hickson compact groups (HCGs) observed with the Chandra X-Ray Observatory. We find that seven of the groups in our sample exhibit detectable diffuse emission. However, unlike large-scale emission in galaxy clusters, the diffuse features in the majority of the detected groups are linked to the individual galaxies, in the form of both plumes and halos likely as a result of vigourous star formation or activity in the galaxy nucleus, as well as in emission from tidal features. Unlike previous studies from earlier X-ray missions, HCGs 31, 42, 59, and 92 are found to be consistent with the L(sub X-Tau) relationship from clusters within the errors, while HCGs 16 and 31 are consistent with the cluster L(sub X-sigma) relation, though this is likely coincidental given that the hot gas in these two systems is largely due to star formation. We find that L(sub X) increases with decreasing group Hi to dynamical-mass ratio with tentative evidence for a dependence in X-ray luminosity on Hi morphology whereby systems with intragroup Hi indicative of strong interactions are considerably more X-ray luminous than passively evolving groups. We also find a gap in the L(sub X) of groups as a function of the total group specific star formation rate. Our findings suggest that the hot gas in these groups is not in hydrostatic equilibrium and these systems are not low-mass analogs of rich groups or clusters, with the possible exception of HCG 62.

  8. EVIDENCE FOR ELEVATED X-RAY EMISSION IN LOCAL LYMAN BREAK GALAXY ANALOGS

    SciTech Connect

    Basu-Zych, Antara R.; Lehmer, Bret D.; Hornschemeier, Ann E.; Ptak, Andrew F.; Goncalves, Thiago S.; Fragos, Tassos; Heckman, Timothy M.; Overzier, Roderik A.; Schiminovich, David

    2013-09-10

    Our knowledge of how X-ray emission scales with star formation at the earliest times in the universe relies on studies of very distant Lyman break galaxies (LBGs). In this paper, we study the relationship between the 2-10 keV X-ray luminosity (L{sub X}), assumed to originate from X-ray binaries (XRBs), and star formation rate (SFR) in ultraviolet (UV) selected z < 0.1 Lyman break analogs (LBAs). We present Chandra observations for four new Galaxy Evolution Explorer selected LBAs. Including previously studied LBAs, Haro 11 and VV 114, we find that LBAs demonstrate L{sub X}/SFR ratios that are elevated by {approx}1.5{sigma} compared to local galaxies, similar to the ratios found for stacked LBGs in the early universe (z > 2). Unlike some of the composite LBAs studied previously, we show that these LBAs are unlikely to harbor active galactic nuclei, based on their optical and X-ray spectra and the spatial distribution of the X-rays in three spatially extended cases. Instead, we expect that high-mass X-ray binaries (HMXBs) dominate the X-ray emission in these galaxies, based on their high specific SFRs (sSFRs {identical_to} SFR/M{sub *} {>=} 10{sup -9} yr{sup -1}), which suggest the prevalence of young stellar populations. Since both UV-selected populations (LBGs and LBAs) have lower dust attenuations and metallicities compared to similar samples of more typical local galaxies, we investigate the effects of dust extinction and metallicity on the L{sub X}/SFR for the broader population of galaxies with high sSFRs (>10{sup -10} yr{sup -1}). The estimated dust extinctions (corresponding to column densities of N{sub H} < 10{sup 22} cm{sup -2}) are expected to have insignificant effects on observed L{sub X}/SFR ratio for the majority of galaxy samples. We find that the observed relationship between L{sub X}/SFR and metallicity appears consistent with theoretical expectations from XRB population synthesis models. Therefore, we conclude that lower metallicities, related to more luminous HMXBs such as ultraluminous X-ray sources, drive the elevated L{sub X}/SFR observed in our sample of z < 0.1 LBAs. The relatively metal-poor, active mode of star formation in LBAs and distant z > 2 LBGs may yield higher total HMXB luminosity than found in typical galaxies in the local universe.

  9. Non-detection of X-ray emission from sterile neutrinos in stacked galaxy spectra

    NASA Astrophysics Data System (ADS)

    Anderson, Michael E.; Churazov, Eugene; Bregman, Joel N.

    2015-10-01

    We conduct a comprehensive search for X-ray emission lines from sterile neutrino dark matter, motivated by recent claims of unidentified emission lines in the stacked X-ray spectra of galaxy clusters and the centres of the Milky Way and M31. Since the claimed emission lines lie around 3.5 keV, we focus on galaxies and galaxy groups (masking the central regions), since these objects emit very little radiation above ˜2 keV and offer a clean background against which to detect emission lines. We develop a formalism for maximizing the signal-to-noise of decaying dark matter emission lines by weighing each X-ray event according to the expected dark matter profile. In total, we examine 81 and 89 galaxies with Chandra and XMM-Newton, respectively, totalling 15.0 and 14.6 Ms of integration time. We find no significant evidence of any emission lines, placing strong constraints on the mixing angle of sterile neutrinos with masses between 4.8 and 12.4 keV. In particular, if the 3.57 keV feature from Bulbul et al. were due to 7.1 keV sterile neutrino emission, we would have detected it at 4.4σ and 11.8σ in our two samples. The most conservative estimates of the systematic uncertainties reduce these constraints to 4.4σ and 7.8σ, or letting the line energy vary between 3.50 and 3.60 keV reduces these constraints to 2.7σ and 11.0σ, respectively. Unlike previous constraints, our measurements do not depend on the model of the X-ray background or on the assumed logarithmic slope of the centre of the dark matter profile.

  10. High-sensitivity search for transient solar X-ray emission with NuSTAR

    NASA Astrophysics Data System (ADS)

    Marsh, Andrew; Hannah, Iain; Glesener, Lindsay; Smith, David M.; Grefenstette, Brian; Madsen, Kristin; Krucker, Sam; Hudson, Hugh; White, Stephen; Caspi, Amir; Christe, Steven; Shih, Albert; Mewaldt, Richard; Pivovaroff, Michael; Vogel, Julia

    2015-04-01

    We present the first results of a search for transient X-ray emission in quiet solar regions with the NuSTAR astrophysics satellite. Transient brightenings of 1024-1027 ergs, or "nanoflares," have been observed as thermal emission in EUV and soft X-rays, but never in hard X-rays (HXRs) due to lack of sensitivity. Frequent nanoflares could account for a significant fraction of the energy release needed to heat the corona to >1 MK. NuSTAR directly images X-rays from ~2-80 keV, with much higher sensitivity than dedicated solar HXR instruments. More importantly it can point at the Sun without suffering damage, a rare capability for an astrophysics instrument. We have developed an algorithm to search the NuSTAR data in space and time for transient events, while taking into account instrumental and systematic effects. Preliminary analysis yields a sensitivity to events ~0.001 times as bright as an typical RHESSI microflare (Hannah et al. 2008), for linear scaling and event duration of 10 seconds. Future observations at full-Sun flux levels below GOES ~B5 will increase our sensitivity by an order of magnitude or more.

  11. X-RAY EMISSION FROM THE SUPERGIANT SHELL IN IC 2574

    SciTech Connect

    Yukita, Mihoko; Swartz, Douglas A.

    2012-05-01

    The M81 group member dwarf galaxy IC 2574 hosts a supergiant shell of current and recent star formation activity surrounding a 1000 Multiplication-Sign 500 pc hole in the ambient H I gas distribution. Chandra X-ray Observatory imaging observations reveal a luminous, L{sub X} {approx} 6.5 Multiplication-Sign 10{sup 38} erg s{sup -1} in the 0.3-8.0 keV band, point-like source within the hole but offset from its center and fainter diffuse emission extending throughout and beyond the hole. The star formation history at the location of the point source indicates a burst of star formation beginning {approx}25 Myr ago and currently weakening and there is a young nearby star cluster, at least 5 Myr old, bracketing the likely age of the X-ray source at between 5 and {approx}25 Myr. The source is thus likely a bright high-mass X-ray binary-either a neutron star or black hole accreting from an early B star undergoing thermal-timescale mass transfer through Roche lobe overflow. The properties of the residual diffuse X-ray emission are consistent with those expected from hot gas associated with the recent star formation activity in the region.

  12. Shock-generated X-ray emission in radiatively driven winds - A model for Tau Scorpii

    NASA Technical Reports Server (NTRS)

    Macfarlane, Joseph J.; Cassinelli, Joseph P.

    1989-01-01

    A one-dimensional radiation-hydrodynamics code is used to numerically investigate the structure and evolution of shocks in the winds of hot stars. Results are presented for the specific case of Tau Sco, a well-studied main-sequence B star for which there are X-ray data from the Einstien satellite's Solid State Spectrometer. A phenomenological radiative acceleration term and a mass-loss rate consistent with UV observations, are used to determine the time dependence of the temperatures within and X-ray emission from an isolated shock region. The driving acceleration leads to the formation of a two-component shock zone with 'forward' and 'reverse' shocks, each with their own characteristic temperature. A denser cold region forms between the two shocks, which could potentially account for the presence of narrow absorption features that are observed in the UV P Cygni profiles of many hot stars. The X-ray emission spectra from the shocks in the calculations are in good general agreement with two-temperature model fits to Einstein X-ray observations.

  13. Co-registration of Positron Emission Mammography (PEM) images and x-ray mammograms

    SciTech Connect

    Bergman, A.M.; Robar, J.L.; Thompson, C.J.

    1996-12-31

    Accurate co-registration of metabolic and X-ray images of the breast is important when acquiring information about the location and diagnosis of suspicious lesions or tumors. X-ray mammograms reveal abnormal tissue densities, while metabolic images identify regions of abnormal metabolism. Conventional nuclear medicine and radiologic breast images must be acquired at different times with different patient positions making co-registration difficult. Positron Emission Mammography (PEM) simplifies the image registration process by acquiring both an X-ray density image and a metabolic image consecutively, without moving the patient between scans. We have integrated PEM detectors into a conventional mammographic unit and we have developed a co-registration tool. The tool is a thin sheet of plexiglass (130 x 95 x 3 mm) with a 49 x 39 mm{sup 2} window. The tool protrudes from the side of the upper PEM detector. The suspicious area of the breast is imaged through this tool during a magnified X-ray mammogram, producing a radio-lucent region on the resulting film image. During a positron emission scan, detectors acquire an image of the same region. The PEM detectors can be positioned anywhere along the width of the breast to provide a complete scan.

  14. Discovery of X-ray emission lines from the RS CVn binary sigma CrB

    NASA Astrophysics Data System (ADS)

    Agrawal, P. C.; White, N. E.; Riegler, G. R.

    1981-09-01

    X-ray observations of the RS CVn binary sigma CrB were carried out with a solid state spectrometer on board the Einstein Observatory in 1979. X-ray emission lines due to Mg XI, Si XIII, S XV and a blend of L-transition lines due to Fe XVII and Fe XVIII were detected in the sigma CrB spectrum. The observed X-ray spectrum is described by a two-temperature coronal X-ray emission model: the dominant low temperature component originates in a plasma at a temperature of 5.9 + or 0.5 x 10 to the 6th K; the weaker higher temperature arises from a plasma of not less than 35 x 10 to the 6th K. Intensity variations over a period of a few hours are also recorded and thought to be due to a variation in the number of loops concentrated around active regions on the star surface. Implications of the results are discussed in terms of the constant-pressure coronal loop model (Rosner, Tucker, Vaiana, 1978).

  15. Multibeam field emission x-ray system with half-scan reconstruction algorithm

    SciTech Connect

    Lu Yang; Yu Hengyong; Cao Guohua; Zhao Jun; Wang Ge; Zhou, Otto

    2010-07-15

    Purpose: In this article, the authors propose a multibeam field emission x-ray (MBFEX) system along with a half-scan fan-beam reconstruction algorithm. Methods: The proposed system consists of a linear CNT-based MBFEX source array, a single large area detector that is divided into same number of segments as the number of x-ray beams, a multihole collimator that aligns each beam with a corresponding detector segment, and a sample rotation stage. The collimator is placed between the source and the object to restrict the x-ray radiations through the target object only. In this design, all the x-ray beams are activated simultaneously to provide multiple projection views of the object. The detector is virtually segmented and synchronized with the x-ray exposure and the physiological signals when gating is involved. The transmitted x-ray intensity from each beam is collected by the corresponding segment on the detector. After each exposure, the object is rotated by a step angle until sufficient data set is collected. The half-scan reconstruction formula for MBFEX system is derived from the conventional filtered backprojection algorithm. To demonstrate the advantages of the system and method in reducing motion artifacts, the authors performed simulations with both standard and dynamic Shepp-Logan phantoms. Results: The numerical results indicate that the proposed multibeam system and the associated half-scan algorithm can effectively reduce the scanning time and improve the image quality for a time-varying object. Conclusions: The MBFEX technique offers an opportunity for the innovation of multisource imaging system.

  16. Search for X-Ray Emission in the Nearest Known Brown Dwarf

    NASA Technical Reports Server (NTRS)

    Martin, Eduardo

    2003-01-01

    The XMM observation were obtained on 2001 January 07-08 for 51767 s. The Optical Monitor (OM) was used with the V filter for 4 exposures of 5000 s each in imaging mode. We used the data given by the OM to confirm the presence of the source in the field of view. The European Photon Imaging Camera (EPIC) MOS 1 and MOS2 were used 48724 s each in prime full window mode with 2.5 s time resolution. The EPIC PN was used 46618 s in prime full window mode with 73.4 ms time resolution. The X-ray source closest to the expected position of our target is offset by delta R.A=2.5 arcsec and delta Dec=-28.37 arcsec. This offset is high in comparison with the 0.4 arcsec observed with the optical data. So at this point we already knew that the target was not detected. To confirm that conclusion, we performed the identification of all X-ray sources in the field of view by comparing source to source our image with the one obtained by Rutledge et al. with Chandra. This allowed us to identify all the X-ray sources in our field of view in an area of 20 arcsec times 10 arcsec centered on the expected coordinates of LP944-20. We were then able to conclude that the target was not detected during this observation. This result allowed us to determine a new and better 3 sigma upper limit of X-Ray emission for this object. We have also derived duty cycles for X-ray flares as a function of X-ray luminosity by comparing the XMM data with Chandra and ROSAT data. One student has been supported with the grant during four months (Herve Bouy). A Sun workstation was purchased for him.

  17. COMPARISON OF MILLIMETER-WAVE AND X-RAY EMISSION IN SEYFERT GALAXIES

    SciTech Connect

    Monje, R. R.; Blain, A. W.; Phillips, T. G.

    2011-08-01

    We compare the emission at multiple wavelengths of an extended Seyfert galaxy sample, including both types of Seyfert nuclei. We use the Caltech Submillimeter Observatory to observe the CO J = 2-1 transition line in a sample of 45 Seyfert galaxies and detect 35 of them. The galaxies are selected by their joint soft X-ray (0.1-2.4 keV) and far-infrared ({lambda} = 60-100 {mu}m) emission from the ROSAT/IRAS sample. Since the CO line widths (W{sub CO}) reflect the orbital motion in the gravitational potential of the host galaxy, we study how the kinematics are affected by the central massive black hole (BH), using the X-ray luminosity. A significant correlation is found between the CO line width and hard (0.3-8 keV from Chandra and XMM-Newton) X-ray luminosity for both types of Seyfert nuclei. Assuming an Eddington accretion to estimate the BH mass (M{sub BH}) from the X-ray luminosity, the W{sub CO}-L{sub X} relation establishes a direct connection between the kinematics of the molecular gas of the host galaxy and the nuclear activity, and corroborates the previous studies that show that the CO is a good surrogate for the bulge mass. We also find a tight correlation between the (soft and hard) X-ray and the CO luminosities for both Seyfert types. These results indicate a direct relation between the molecular gas (i.e., star formation activity) of the host galaxy and the nuclear activity. To establish a clear causal connection between molecular gas and the fueling of nuclear activity, high-resolution maps (<100 pc) of the CO emission of our sample will be required and provided in a forthcoming Atacama Large Millimeter Array observation.

  18. Thermal X-ray emission from a baryonic jet: a self-consistent multicolour spectral model

    NASA Astrophysics Data System (ADS)

    Khabibullin, I.; Medvedev, P.; Sazonov, S.

    2016-01-01

    We present a publicly available spectral model for thermal X-ray emission from a baryonic jet in an X-ray binary system, inspired by the microquasar SS 433. The jet is assumed to be strongly collimated (half-opening angle Θ ˜ 1°) and mildly relativistic (bulk velocity β = Vb/c ˜ 0.03-0.3). Its X-ray spectrum is found by integrating over thin slices of constant temperature, radiating in optically thin coronal regime. The temperature profile along the jet and corresponding differential emission measure distribution are calculated with full account for gas cooling due to expansion and radiative losses. Since the model predicts both the spectral shape and luminosity of the jet's emission, its normalization is not a free parameter if the source distance is known. We also explore the possibility of using simple X-ray observables (such as flux ratios in different energy bands) to constrain physical parameters of the jet (e.g. gas temperature and density at its base) without broad-band fitting of high-resolution spectra. We demonstrate this approach in application to Chandra High Energy Transmission Grating Spectrometer spectra of SS 433 in its `edge-on' precession phase, when the contribution from non-jet spectral components is expected to be low. Our model provides a reasonable fit to the 1-3 keV data, while some residuals remain at higher energies, which may be partially attributed to a putative reflection component. Besides SS 433, the model might be used for describing jet components in spectra of other Galactic X-ray binary systems (e.g. 4U 1630-47), ULXs (e.g. Holmberg II X-1), and candidate SS 433 analogues like S26 in NGC 7793 and the radio transient in M82.

  19. X-ray Emission from Young Stars in the TW Hya Association

    NASA Astrophysics Data System (ADS)

    Brown, Alexander; Herczeg, Gregory J.; Ayres, Thomas R.; France, Kevin; Brown, Joanna M.

    2015-01-01

    The 9 Myr old TW Hya Association (TWA) is the nearest group (typical distances of 50 pc) of pre-main-sequence (PMS) stars with ages less than 10 Myr and contains stars with both actively accreting disks and debris disks. We have studied the coronal X-ray emission from a group of low mass TWA common proper motion binaries using the Chandra and Swift satellites. Our aim is to understand better their coronal properties and how high energy photons affect the conditions around young stars and their role in photo-exciting atoms, molecules and dust grains in circumstellar disks and lower density circumstellar gas. Once planet formation is underway, this emission influences protoplanetary evolution and the atmospheric conditions of the newly-formed planets. The X-ray properties for 7 individual stars (TWA 13A, TWA 13B, TWA 9A, TWA 9B, TWA 8A, TWA 8B, and TWA 7) and 2 combined binary systems (TWA 3AB and TWA 2AB) have been measured. All the stars with sufficient signal require two-component fits to their CCD-resolution X-ray spectra, typically with a dominant hot (~2 kev (25 MK)) component and a cooler component at ~0.4 keV (4 MK). The brighter sources all show significant X-ray variability (at a level of 50-100% of quiescence) over the course of 5-15 ksec observations due to flares. We present the X-ray properties for each of the stars and find that the coronal emission is in the super-saturated rotational domain.

  20. The Ecology of the Cygnus Loop: Panoramic Views in X-Rays and Optical Emission Lines

    NASA Astrophysics Data System (ADS)

    Levenson, N. A.

    1996-12-01

    The Cygnus Loop presents an outstanding case study of a supernova remnant, being nearby, bright, and relatively unobscured by dust. At both optical and X-ray wavelengths, it appears nearly circular, yet it also exhibits complex structure on smaller scales. High-resolution soft X-ray observations obtained with the ROSAT-HRI and complete optical images in Hα , [S II], and [O III] help resolve this apparent paradox. Rather than restrict investigation to regions that are are exceptionally bright or otherwise peculiar, such an unbiased multi-wavelength survey allows a global view of this supernova remnant and its environment. The dominant features in X-ray and optical emission are the result of blast wave interactions with large inhomogeneities in the interstellar medium. X-ray emission is enhanced both in high-density regions and as the result of secondary shocks that are reflected off of clouds. High density clouds also slow shocks, allowing radiative cooling zones to develop. These are detected in optical line emission. Non-radiative shocks, observed as Balmer-dominated filaments, directly trace the shock front in atomic gas over half of the perimeter. The blast wave has encountered density enhancements over more than 80% of its projected edge. These data provide evidence that the Cygnus Loop is the result of a cavity explosion. The stellar supernova progenitor homogenized the cavity interior and modified clouds on the periphery. Currently the blast wave propagates through the walls of the cavity, which is comprised of an atomic shell and denser clouds. The surrounding interstellar medium, which the progenitor has processed, fundamentally determines the remnant's appearance at X-ray and optical wavelengths. The observed features are expected rather than surprising in the context of stellar evolution that preceded the supernova.

  1. Optical Emission Lines and the X-ray Properties of Type 1 Seyfert Galaxies

    NASA Astrophysics Data System (ADS)

    La Mura, G.; Ciroi, S.; Cracco, V.; Ili?, D.; Popovi?, L. ?.; Rafanelli, P.

    2011-08-01

    In this contribution we report on the study of the optical emission lines and X-ray spectra of a sample of Type 1 AGNs, collected from the SDSS database and observed by the XMM-Newton satellite. Using different instruments onboard XMM, we identify the spectral components of the soft and hard energy bands (in the range from 0.3 keV to 10 keV). The properties of the X-ray continuum and of the Fe K? line feature are related to the optical broad emission line profiles and intensity ratios. The resulting picture of emission, absorption and reflection processes is interpreted by means of a structural model of the broad line region, developed on the basis of independent optical and radio observations.

  2. Structural conformation in a poly (ethylene oxide) film obta inedfrom X-ray emission spectroscopy (XES)

    SciTech Connect

    Kashtanov, S.; Zhuang, G.V.; Augustsson, A.; Guo, J.-H.; Nordgren, J.; Luo, Y.; Ross, P.N.

    2007-03-16

    The electronic structure of poly(ethylene oxide) (PEO) in a thin (< 1 {micro}) film sample was experimentally probed by X-ray emission spectroscopy. The emission spectra from this film were much sharper with more resolved fine structure than the spectra from the bulk polymer from which it was cast. Both non-resonant and resonant X-ray emission spectra were simulated using density functional theory (DFT) applied to four different models representing different conformations in the polymer. Calculated spectra were compared with experimental results for the PEO film. It was found that the best fit was obtained with the polymer conformation in PEO electrolytes from which the salt (LiMF6, M=P, As, or Sb) had been removed. This conformation is different from that in the crystalline bulk polymer and implies that film casting, commonly used to form electrolytes for Li polymer batteries, induces the same conformation in the polymer with or without the salt present.

  3. X-ray secondary heating and ionization in quasar emission-line clouds

    NASA Technical Reports Server (NTRS)

    Shull, J. M.; Van Steenberg, M. E.

    1985-01-01

    Accurate Monte Carlo computations of the X-ray secondary electron heating, ionization, and excitation of H and He gas in interstellar space and in quasar emission-line clouds, are presented. The fraction of energy deposited in each form is sensitive to the background ionization fraction, x = n(H+)/n(Htot), and can affect the temperature, ionization state, and line emissivities at large depths in X-ray photoionized clouds. Analytic fits are provided for these energy fractions over the range 0.0001-1 for primary electron energies up to many keV. In both broad-line and narrow-line clouds, emission lines sensitive to the energy budget and electron density may be strongly affected.

  4. Hard X-ray and radio emission at the onset of great solar flares

    NASA Technical Reports Server (NTRS)

    Klein, K.-L.; Pick, M.; Magun, A.; Dennis, B. R.

    1987-01-01

    A study of the onset phase of ten great hard X-ray bursts is presented. It is shown from hard X-ray and radio observations in different wavelength ranges that the energization of the electrons proceeds on a global time-scale for some tens of seconds. In nine of the bursts, two phases of emission can be distinguished during the onset phase: the preflash phase (during which emission up to an energy limit ranging from some tens of keV to 200 keV is observed) followed ten to some tens of seconds later by the flash phase (where the count rate in all detector channels rises simultaneously to within some seconds). For two of the events, strong gamma-ray line emission is observed and is shown to start close to the onset of the flash phase.

  5. Development of soft X-ray emission spectrometer for EPMA/SEM and its application

    NASA Astrophysics Data System (ADS)

    Takahashi, H.; Murano, T.; Takakura, M.; Asahina, S.; Terauchi, M.; Koike, M.; Imazono, T.; Koeda, M.; Nagano, T.

    2016-02-01

    A newly developed wavelength-dispersive soft X-ray emission spectrometer (WD-SXES) with two kinds of gratings, JS50XL and JS200N, were installed on electron probe microanalysers (EPMA) and scanning electron microscopes (SEM). The new detector covers the energy range from 50 to 210 eV with an energy resolution of better than 0.2 eV at Al-L emission on Al metal. With this low energy range and high energy resolution, various kinds of X-ray lines of K, L, M, N emission spectra from lithium to uranium could be observed and chemical state analysis carried out. This WD-SXES has also a high potential for analysing trace light elements under 100 ppm. The design, having no mechanically scanning components, allows parallel spectral acquisition over the entire energy range of each grating (50 to 170 eV and 70 to 210 eV).

  6. X-Ray Emission from Supernovae in Dense Circumstellar Matter Environments: A Search for Collisionless Shock

    NASA Technical Reports Server (NTRS)

    Ofek, E.O; Fox, D.; Cenko, B.; Sullivan, M.; Gnat, O.; Frail A.; Horesh, A.; Corsi, A; Quimby, R. M.; Gehrels, N.; Kulkarni, S. R.; Gal-Yam, A.; Nugent, P. E.; Yaron, O.; Filippenko, A. V.; Kasliwal, M. M.; Bildsten, L.; Bloom, J. S.; Poznanski, D; Arcavi, L.; Laher, R. R.; Levitan, D.; Sesar, B.; Surace, J.

    2012-01-01

    The optical light curve of some supernovae (SNe) may be powered by the outward diffusion of the energy deposited by the explosion shock (so-called shock breakout) in optically thick (tau approx > 30) circumstellar matter (CSM). Recently, it was shown that the radiation-mediated and -dominated shock in an optically thick wind must transform into 8. collisionless shock and can produce hard X-rays. The X-rays are expected to peak at late times, relative to maximum visible light. Here we report on a search, using Swift-XRT and Chandra, for X-ray emission from 28 SNe that belong to classes whose progenitors are suspected to be embedded in dense CSM. Our sample includes 19 type-IIn SNe, one type-Ibn SN and eiht hydrogen-poor super-luminous SNe (SLSN-I; SN 2005ap like). Two SNe (SN 2006jc and SN 2010jl) have X-ray properties that are roughly consistent with the expectation for X-rays from a collisionless shock in optically thick CSl\\l. Therefore, we suggest that their optical light curves are powered by shock breakout in CSM. We show that two other events (SN 2010al and SN 2011ht) were too X-ray bright during the SN maximum optical light to be explained by the shock breakout model. We conclude that the light curves of some, but not all, type-IIn/Ibn SNe are powered by shock breakout in CSM. For the rest of the SNe in our sample, including all the SLSN-I events, our X-ray limits are not deep enough and were typically obtained at too early times (i.e., near the SN maximum light) to conclude about their nature. Late time X-ray observations are required in order to further test if these SNe are indeed embedded in dense CSM. We review the conditions required for a shock breakOut in a wind profile. We argue that the time scale, relative to maximum light, for the SN to peak in X-rays is a probe of the column density and the density profile above the shock region. The optical light curves of SNe, for which the X-ray emission peaks at late times, are likely powered by the diffusion of shock energy from a dense CSM. We note that if the CSM density profile falls faster than a constant-rate wind density profile, then X-rays may escape at earlier times than estimated for the wind profile case. Furthermore, if the CSM have a region in which the density profile is very steep, relative to a steady wind density profile, or the CSM is neutral, then the radio free-free absorption may be low enough, and radio emission may be detected.

  7. Solar Control on Jupiter's Equatorial X-ray Emissions: 26-29 November 2003 XMM-Newton Observation

    NASA Technical Reports Server (NTRS)

    Bhardwaj, Anil; Branduardi-Raymont, Graziella; Elsner, Ronald F.; Gladstone, G. Randall; Ramsay, G.; Rodriquez, P.; Soria, R.; Waite, J. Hunter, Jr.; Cravens, Thomas E.

    2004-01-01

    During November 26-29,2003 XMM-Newton observed X-ray emissions from Jupiter for 69 hours. The 0.7-2.0 keV X-ray disk of Jupiter is observed to be brightest at the subsolar point, and limb darkening is seen in the 0.2-2.0 keV and 0.7-2.0 keV images. We present simultaneous lightcurves of Jovian equatorial X-rays and solar X-rays measured by the GOES, SOHO/SEM, and TIMED/SEE satellites. The solar X-ray flares occurring on the Jupiter-facing side of the Sun are matched by corresponding features in the Jovian X- rays. These results support the hypothesis that X-ray emissions from Jovian low-latitudes are solar X-rays scattered and fluoresced from the planet's upper atmosphere, and confirm that the Sun directly controls the non-auroral X-rays fiom Jupiter's disk. Our study suggest that Jovian equatorial X-rays; during certain Jupiter phase, can be used to predict the occurrence of solar flare on the hemisphere of the Sun that is invisible to space weather satellites.

  8. X-Ray and Optical Emission From a New Black Widow Binary

    NASA Astrophysics Data System (ADS)

    Pavlov, George

    This proposal requests funding for analysis of an accepted XMM-Newton AO-11 observation of a recently discovered radio and gamma-ray recycled pulsar PSR J1446- 4701 in a tight binary with a binary period of 6.6 hours. The very low minimum companion mass, 0.019 Msol, suggests that this pulsar is a "black widow", whose wind and radiation are evaporating its companion. X-ray emission from such systems comes from the pulsar (thermal emission from polar caps plus nonthermal emission from the magnetosphere), from the intrabinary shock formed by the interaction of the pulsar wind with the companion and the evaporated matter, and from an extended pulsar wind nebula. The XMM-Newton observation will cover two binary orbits. Spatial, spectral and timing analyses of the EPIC (X-ray) and OM (optical) data will allow us to separate the X-ray emission components, identify the optical companion, and study the properties of the pulsar, its relativistic wind, and the ablated companion. We will also use the Fermi LAT data on this target to understand the multiwavelength nature of the pulsar emission. We will compare the properties of this binary with those of other black widow systems. The proposed research addresses Objective 2.4.2 of the NASA's Strategic Goal 2 of the 2011 NASA Strategic Plan: "Improve understanding of the many phenomena and processes associated with galaxy, stellar, and planetary system formation and evolution from the earliest epochs to today."

  9. Chandra Observations of Extended X-Ray Emission in ARP 220

    NASA Technical Reports Server (NTRS)

    McDowell, J. C.; Clements, D. L.; Lamb, S. A.; Shaked, S.; Hearn, N. C.; Colina, L.; Mundell, C.; Borne, K.; Baker, A. C.; Arribas, S.

    2003-01-01

    We resolve the extended X-ray emission from the prototypical ultraluminous infrared galaxy Arp 220. Extended, faint, edge-brightened, soft X-ray lobes outside the optical galaxy are observed to a distance of 1CL 15 kpc on each side of the nuclear region. Bright plumes inside the optical isophotes coincide with the optical line emission and extend 1 1 kpc from end to end across the nucleus. The data for the plumes cannot be fitted by a single-temperature plasma and display a range of temperatures from 0.2 to 1 keV. The plumes emerge from bright, diffuse circumnuclear emission in the inner 3 kpc centered on the Ha peak, which is displaced from the radio nuclei. There is a close morphological correspondence between the Ha and soft X-ray emission on all spatial scales. We interpret the plumes as a starburst-driven superwind and discuss two interpretations of the emission from the lobes in the context of simulations of the merger dynamics of Arp 220.

  10. The Soft X-Ray Emission in a Large Sample of Galaxy Clusters with ROSAT PSPC

    NASA Technical Reports Server (NTRS)

    Bonamente, Massimiliano; Lieu, Richard; Joy, Marshall K.; Nevalainen, Jukka H.; Six, N. Frank (Technical Monitor)

    2002-01-01

    The study of soft X-ray emission of 38 X-ray selected galaxy clusters observed by ROSAT PSPC indicates that the soft excess phenomenon may be a common occurrence in galaxy clusters. Excess soft X-ray radiation, above the contribution from the hot intra-cluster medium, is evident in a large fraction of sources, and is clearly detected with large statistical significance in the deepest observations. The investigation relies on new, high resolution 21 cm HI observations. The sample selection also features analysis of infrared images, to further ensure reliability of results with respect to the characteristics of Galactic absorption. The possibility of background or calibration effects as cause of the excess emission is likewise investigated; a detailed analysis of the distribution of the excess emission with respect to detector position and Galactic HI column density shows that the excess emission is a genuine celestial phenomenon. We find evidence for a preferential distribution of the soft excess emission at distances larger than approx. 150-200 kpc from the centers of clusters; this behavior may be naturally explained in the context of a non-thermal Inverse-Compton scenario. Alternatively, we propose that the phenomenon maybe caused by thermal emission of very large-scale 'warm' filaments seen in recent hydrodynamic simulations. This new interpretation relieves the very demanding requirements of either the traditional intra-cluster 'warm' gas and the non-thermal scenarios. We also investigate the possibility of the soft excess originating from unresolved, X-ray faint cluster galaxies.

  11. Possible Charge-Exchange X-Ray Emission in the Cygnus Loop Detected with Suzaku

    NASA Technical Reports Server (NTRS)

    Katsuda, Satoru; Tsunemi, Hiroshi; Mori, Koji; Uchida, Hiroyuki; Kosugi, Hiroko; Kimura, Masashi; Nakajima, Hiroshi; Takakura, Satoru; Petre, Robert; Hewitt. John W.; Yamaguchi, Hiroya

    2011-01-01

    X-ray spectroscopic measurements of the Cygnus Loop supernova remnant indicate that metal abundances throughout most of the remnant s rim are depleted to approx.0.2 times the solar value. However, recent X-ray studies have revealed in some narrow regions along the outermost rim anomalously "enhanced" abundances (up to approx. 1 solar). The reason for these anomalous abundances is not understood. Here, we examine X-ray spectra in annular sectors covering nearly the entire rim of the Cygnus Loop using Suzaku (21 pointings) and XMM-Newton (1 pointing). We find that spectra in the "enhanced" abundance regions commonly show a strong emission feature at approx.0.7 keV. This feature is likely a complex of He-like O K(gamma + delta + epsilon), although other possibilities cannot be fully excluded. The intensity of this emission relative to He-like O K(alpha) appears to be too high to be explained as thermal emission. This fact, as well as the spatial concentration of the anomalous abundances in the outermost rim, leads us to propose an origin from charge-exchange processes between neutrals and H-like O. We show that the presence of charge-exchange emission could lead to the inference of apparently "enhanced" metal abundances using pure thermal emission models. Accounting for charge-exchange emission, the actual abundances could be uniformly low throughout the rim. The overall abundance depletion remains an open question. Subject headings: ISM: abundances ISM: individual objects (Cygnus Loop) ISM: supernova remnants X-rays: ISM atomic processes

  12. Suzaku observations of the diffuse X-ray emission across the Fermi bubbles' edges

    SciTech Connect

    Kataoka, J.; Tahara, M.; Takahashi, Y.; Takeuchi, Y.; Totani, T.; Sofue, Y.; Stawarz, ?.; Kimura, M.; Takei, Y.; Tsunemi, H.; Cheung, C. C.; Inoue, Y.; Nakamori, T.

    2013-12-10

    We present Suzaku X-ray observations along two edge regions of the Fermi Bubbles, with eight ? 20 ks pointings across the northern part of the North Polar Spur (NPS) surrounding the north bubble and six across the southernmost edge of the south bubble. After removing compact X-ray features, diffuse X-ray emission is clearly detected and is well reproduced by a three-component spectral model consisting of unabsorbed thermal emission (temperature kT ? 0.1 keV) from the Local Bubble, absorbed kT ? 0.3 keV thermal emission related to the NPS and/or Galactic halo (GH), and a power-law component at a level consistent with the cosmic X-ray background. The emission measure (EM) of the 0.3 keV plasma decreases by ? 50% toward the inner regions of the northeast bubble, with no accompanying temperature change. However, such a jump in the EM is not clearly seen in the south bubble data. While it is unclear whether the NPS originates from a nearby supernova remnant or is related to previous activity within or around the Galactic center, our Suzaku observations provide evidence that suggests the latter scenario. In the latter framework, the presence of a large amount of neutral matter absorbing the X-ray emission as well as the existence of the kT ? 0.3 keV gas can be naturally interpreted as a weak shock driven by the bubbles' expansion in the surrounding medium, with velocity v {sub exp} ? 300 km s{sup 1} (corresponding to shock Mach number M?1.5), compressing the GH gas to form the NPS feature. We also derived an upper limit for any non-thermal X-ray emission component associated with the bubbles and demonstrate that, in agreement with the aforementioned findings, the non-thermal pressure and energy estimated from a one-zone leptonic model of its broadband spectrum, are in rough equilibrium with that of the surrounding thermal plasma.

  13. MEASUREMENT OF THE RADIUS OF NEUTRON STARS WITH HIGH SIGNAL-TO-NOISE QUIESCENT LOW-MASS X-RAY BINARIES IN GLOBULAR CLUSTERS

    SciTech Connect

    Guillot, Sebastien; Rutledge, Robert E.; Servillat, Mathieu; Webb, Natalie A. E-mail: rutledge@physics.mcgill.ca

    2013-07-20

    This paper presents the measurement of the neutron star (NS) radius using the thermal spectra from quiescent low-mass X-ray binaries (qLMXBs) inside globular clusters (GCs). Recent observations of NSs have presented evidence that cold ultra dense matter-present in the core of NSs-is best described by ''normal matter'' equations of state (EoSs). Such EoSs predict that the radii of NSs, R{sub NS}, are quasi-constant (within measurement errors, of {approx}10%) for astrophysically relevant masses (M{sub NS}>0.5 M{sub Sun }). The present work adopts this theoretical prediction as an assumption, and uses it to constrain a single R{sub NS} value from five qLMXB targets with available high signal-to-noise X-ray spectroscopic data. Employing a Markov chain Monte-Carlo approach, we produce the marginalized posterior distribution for R{sub NS}, constrained to be the same value for all five NSs in the sample. An effort was made to include all quantifiable sources of uncertainty into the uncertainty of the quoted radius measurement. These include the uncertainties in the distances to the GCs, the uncertainties due to the Galactic absorption in the direction of the GCs, and the possibility of a hard power-law spectral component for count excesses at high photon energy, which are observed in some qLMXBs in the Galactic plane. Using conservative assumptions, we found that the radius, common to the five qLMXBs and constant for a wide range of masses, lies in the low range of possible NS radii, R{sub NS}=9.1{sup +1.3}{sub -1.5} km (90%-confidence). Such a value is consistent with low-R{sub NS} equations of state. We compare this result with previous radius measurements of NSs from various analyses of different types of systems. In addition, we compare the spectral analyses of individual qLMXBs to previous works.

  14. An X-ray Survey of FU Orionis Stars andUnusual X-ray Emission from Embedded YoungStars in NGC 2071

    NASA Astrophysics Data System (ADS)

    Skinner, Steve L.; Simmons, A. E.; Audard, M.; Briggs, K. R.; Guedel, M.; Meyer, M. R.

    2006-12-01

    We present new results from the first X-ray survey of accreting FU Orionis stars (FUors) and a pointed X-ray observation of the infrared cluster near the reflection nebula NGC 2071 in the Orion B cloud. Both observations reveal unusual X-ray spectra that challenge interpretive models. FUors are low-mass pre-main sequence (PMS) stars that have undergone optical eruptions attributed to a large increase in the disk accretion rate. The prototype FU Ori and V1735 Cyg were both detected and show high temperature plasma typical of magnetic (e.g. coronal) emission. FU Ori also reveals a cooler component at kT = 0.7 keV viewed through lower absorption that could be shock-related, but a magnetic origin seems more likely (Skinner et al. 2006, ApJ, 643, 995). The IR cluster in NGC 2071 is one of the closest star-forming regions known to contain young high-mass stars. We have detected an unusual X-ray source within 1 arcsec of IRS-1, which is thought to be an embedded high-mass star. It drives a powerful outflow and is surrounded by a dense molecular disk or ring. The X-ray spectrum shows a hard continuum extending up to at least 8 keV and a broad fluorescent Fe line at 6.43 keV. The fluorescent line likely originates in cold nearby material (possibly the surrounding disk) illuminated by the heavily-absorbed X-ray source. This work is supported by NASA grants NNG05GJ15G, NNG05GK52G, and NNX06AE93G.

  15. DIFFUSE HARD X-RAY EMISSION IN STARBURST GALAXIES AS SYNCHROTRON FROM VERY HIGH ENERGY ELECTRONS

    SciTech Connect

    Lacki, Brian C.; Thompson, Todd A.

    2013-01-01

    The origin of the diffuse hard X-ray (2-10 keV) emission from starburst galaxies is a long-standing problem. We suggest that synchrotron emission of 10-100 TeV electrons and positrons (e {sup {+-}}) can contribute to this emission, because starbursts have strong magnetic fields. We consider three sources of e {sup {+-}} at these energies: (1) primary electrons directly accelerated by supernova remnants, (2) pionic secondary e {sup {+-}} created by inelastic collisions between cosmic ray (CR) protons and gas nuclei in the dense interstellar medium of starbursts, and (3) pair e {sup {+-}} produced between the interactions between 10 and 100 TeV {gamma}-rays and the intense far-infrared (FIR) radiation fields of starbursts. We create one-zone steady-state models of the CR population in the Galactic center (R {<=} 112 pc), NGC 253, M82, and Arp 220's nuclei, assuming a power-law injection spectrum for electrons and protons. We consider different injection spectral slopes, magnetic field strengths, CR acceleration efficiencies, and diffusive escape times, and include advective escape, radiative cooling processes, and secondary and pair e {sup {+-}}. We compare these models to extant radio and GeV and TeV {gamma}-ray data for these starbursts, and calculate the diffuse synchrotron X-ray and inverse Compton (IC) luminosities of these starbursts in the models which satisfy multiwavelength constraints. If the primary electron spectrum extends to {approx}PeV energies and has a proton/electron injection ratio similar to the Galactic value, we find that synchrotron emission contributes 2%-20% of their unresolved, diffuse hard X-ray emission. However, there is great uncertainty in this conclusion because of the limited information on the CR electron spectrum at these high energies. IC emission is likewise a minority of the unresolved X-ray emission in these starbursts, from 0.1% in the Galactic center to 10% in Arp 220's nuclei, with the main uncertainty being the starbursts' magnetic field. We also model generic starbursts, including submillimeter galaxies, in the context of the FIR-X-ray relation, finding that anywhere between 0% and 16% of the total hard X-ray emission is synchrotron for different parameters, and up to 2% in the densest starbursts assuming an E {sup -2.2} injection spectrum and a diffusive escape time of 10 Myr (E/3 GeV){sup -1/2} (h/100 pc). Neutrino observations by IceCube and TeV {gamma}-ray data from HESS, VERITAS, and CTA can further constrain the synchrotron X-ray emission of starbursts. Our models do not constrain the possibility of hard, second components of primary e {sup {+-}} from sources like pulsars in starbursts, which could enhance the synchrotron X-ray emission further.

  16. Proton-Induced X-Ray Emission Analysis of Crematorium Emissions

    NASA Astrophysics Data System (ADS)

    Ali, Salina; Nadareski, Benjamin; Yoskowitz, Joshua; Labrake, Scott; Vineyard, Michael

    2014-09-01

    There has been considerable debate in recent years about possible mercury emissions from crematoria due to amalgam tooth restorations. We have performed a proton-induced X-ray emission (PIXE) analysis of aerosol and soil samples taken near the Vale Cemetery Crematorium in Schenectady, NY, to address this concern. The aerosol samples were collected on the roof of the crematorium using a nine-stage, cascade impactor that separates the particulate matter by aerodynamic diameter and deposits it onto thin Kapton foils. The soil samples were collected at several different distances from the crematorium and compressed into pellets with a hydraulic press. The Kapton foils containing the aerosol samples and the soil pellets were bombarded with 2.2-MeV protons from the 1.1-MV tandem Pelletron accelerator in the Union College Ion-Beam Analysis Laboratory. We measured significant concentrations of sulfur, phosphorus, potassium, calcium, and iron, but essentially no mercury in the aerosol samples. The lower limit of detection for airborne mercury in this experiment was approximately 0.2 ng / m3. The PIXE analysis of the soil samples showed the presence of elements commonly found in soil (Si, K, Ca, Ti, Mn, Fe), but no trace of mercury. There has been considerable debate in recent years about possible mercury emissions from crematoria due to amalgam tooth restorations. We have performed a proton-induced X-ray emission (PIXE) analysis of aerosol and soil samples taken near the Vale Cemetery Crematorium in Schenectady, NY, to address this concern. The aerosol samples were collected on the roof of the crematorium using a nine-stage, cascade impactor that separates the particulate matter by aerodynamic diameter and deposits it onto thin Kapton foils. The soil samples were collected at several different distances from the crematorium and compressed into pellets with a hydraulic press. The Kapton foils containing the aerosol samples and the soil pellets were bombarded with 2.2-MeV protons from the 1.1-MV tandem Pelletron accelerator in the Union College Ion-Beam Analysis Laboratory. We measured significant concentrations of sulfur, phosphorus, potassium, calcium, and iron, but essentially no mercury in the aerosol samples. The lower limit of detection for airborne mercury in this experiment was approximately 0.2 ng / m3. The PIXE analysis of the soil samples showed the presence of elements commonly found in soil (Si, K, Ca, Ti, Mn, Fe), but no trace of mercury. Union College Department of Physics and Astronomy.

  17. Dynamics and X-ray emission of a galactic superwind interacting with disk and halo gas

    NASA Technical Reports Server (NTRS)

    Suchkov, Anatoly A.; Balsara, Dinshaw S.; Heckman, Timothy M.; Leitherner, Claus

    1994-01-01

    There is a general agreement that the conspicuous extranuclear X-ray, optical-line, and radio-contiuum emission of starbursts is associated with powerful galactic superwinds blowing from their centers. However, despite the significant advances in observational studies of superwinds, there is no consensus on the nature of the emitting material and even on the emission mechanisms themselves. This is to a great extent a consequence of a poor understanding of dynamical processes in the starburst superwind regions. To address this issue, we have conducted two-dimensional hydrodynamical simulations of galactic superwinds. While previous similar studies have used a single (disk) component to represent the ISM of the starburst galaxy, we analyze the interaction of the wind with a two-component disk-halo ambient interstellar medium and argue that this two-component representation is crucial for adequate modeling of starbursts. The emphasis of this study is on the geometry and structure of the wind region and the X-ray emission arising in the wind material and the shocked gas in the disk and the halo of the galaxy. The simulation results have shown that a clear-cut bipolar wind can easily develop under a range of very different conditions. On the other hand, a complex 'filamentary' structure associated with the entrained dense disk material is found to arise within the hot bubble blown out by the wind. The flow pattern within the bubble is dominated equally by the central biconic outflow and a system of whirling motions r elated to the origin and development of the 'filaments'. The filament parameters make them a good candidate for optical-emission-line filamentary gas observed in starburst halos. We find that the history of mass and energy deposition in the starburst region of the galaxy is crucial for wind dynamics. A 'mild' early wind, which arises as a result of the cumulative effect of stellar winds from massive stars, produces a bipolar vertical cavity in the disk and halo gas without strongly affecting the gaseous disk, thus creating conditions for virtually free vertical escape of the hot gas at the later, much more violent supernova-dominated phases of the starburst. We calculate the luminosity, mass, and effective temperature of the X-ray emitting gas in the 'soft' (0.1 to 0.7 keV, 0.7 to 2.2 keV, and 0.1 to 2.2 keV) and 'hard' (1.6 to 8.3 keV) energy bands and estimate the contribution of different gaseous components to the X-ray flux in these bands. Analysis of these parameters enables us to make conclusions regarding the nature of the X-ray-emitting material. We have inferred that the bulk of the soft thermal X-ray emission from starbursts arises in the wind-shocked material of the disk and halo gas rather than in the wind material itself. This enables us to predict that the integrated soft X-ray spectra of starbursts need not show an overabundance of heavy elements which are believed to be produced copiously in the centers of starbursts. Unlike soft X-ray emission, the hard component of thermal X-ray emission is found to originate in the wind material ejected from the starburst region. However, the derived ratio of hard-to-soft X-ray luminosities is too small compared to that observed in starbursts. We conclude therefore that the observed hard X-ray emission of starbursts is probably not associated with the thermal emission of hot wind or ambient shocked gas. Typical temperatures of the bulk of the soft X-ray-emitting material in our very different models have been found to agree well with the ones estimated on the basis of the ROSAT data for the soft component of X-ray emission of nearby starbursts. We predict that temperatures of the extranuclear soft X-ray-emitting gas in starburst galaxies with heavy element abundances near solar should be close to T(sub Xs = 2 to 5 x 10(exp 6)K.

  18. Optimization of neon soft X-ray emission from 200 J plasma focus device for application in soft X-ray lithography

    NASA Astrophysics Data System (ADS)

    Kalaiselvi, S. M. P.; Tan, T. L.; Talebitaher, A.; Lee, P.; Rawat, R. S.

    2014-08-01

    The Fast Miniature Plasma Focus (FMPF) device is basically made up of coaxial electrodes with centrally placed anode and six cathode rods surrounding them concentrically. They are enclosed in a vacuum chamber, filled with low pressure operating gas. However, in our experiments, these cathode rods were removed to investigate the influence of them on neon soft X-ray (SXR) and hard X-ray (HXR) emission from the device. On removal of cathode rods, the cathode base plate serves as cathode and the plasma sheath is formed between the anode and the base plate of cathode. Neon was used as the operating gas for our experiments and the FMPF device used is of 235 J energy capacities. The experimental results showed that the FMPF device was able to focus better and the SXR emission efficiency was five times higher without cathode rods than with cathode rods. On the contrary, HXR emission did not vary with and without cathode rods. This observed phenomenon was further cross-checked through imaging of plasma dynamics, with and without cathode rods. FMPF device consists of 4 Pseudo Spark Gap (PSG) switches, which need to operate synchronously to deliver high voltage from capacitors to the anode. It was also seen that, the presence or absence of cathode rods also influence the synchronous operation of PSG switches. It also implies that this is one definite way to optimize the SXR emission from the FMPF device. This study reveals an important finding that, cathode rods play a vital role in the formation of plasma sheath with consequential influence on the radiation emission from plasma focus devices. Enhancement of the X-ray emission from this device is definitely a stepping stone in the realization of this device for industrial applications such as X-ray lithography for semiconductor industries.

  19. A SUZAKU SEARCH FOR NONTHERMAL EMISSION AT HARD X-RAY ENERGIES IN THE COMA CLUSTER

    SciTech Connect

    Wik, Daniel R.; Sarazin, Craig L.; Finoguenov, Alexis; Matsushita, Kyoko; Nakazawa, Kazuhiro; Clarke, Tracy E.

    2009-05-10

    The brightest cluster radio halo known resides in the Coma cluster of galaxies. The relativistic electrons producing this diffuse synchrotron emission should also produce inverse Compton emission that becomes competitive with thermal emission from the intracluster medium (ICM) at hard X-ray energies. Thus far, claimed detections of this emission in Coma are controversial. We present a Suzaku HXD-PIN observation of the Coma cluster in order to nail down its nonthermal hard X-ray content. The contribution of thermal emission to the HXD-PIN spectrum is constrained by simultaneously fitting thermal and nonthermal models to it and a spatially equivalent spectrum derived from an XMM-Newton mosaic of the Coma field. We fail to find statistically significant evidence for nonthermal emission in the spectra which are better described by only a single- or multitemperature model for the ICM. Including systematic uncertainties, we derive a 90% upper limit on the flux of nonthermal emission of 6.0 x 10{sup -12} erg s{sup -1} cm{sup -2} (20-80 keV, for {gamma} = 2.0), which implies a lower limit on the cluster-averaged magnetic field of B>0.15 {mu}G. Our flux upper limit is 2.5 times lower than the detected nonthermal flux from RXTE and BeppoSAX. However, if the nonthermal hard X-ray emission in Coma is more spatially extended than the observed radio halo, the Suzaku HXD-PIN may miss some fraction of the emission. A detailed investigation indicates that {approx}50%-67% of the emission might go undetected, which could make our limit consistent with that of Rephaeli and Gruber and Fusco-Femiano et al. The thermal interpretation of the hard Coma spectrum is consistent with recent analyses of INTEGRAL and Swift data.

  20. Population synthesis of accreting white dwarfs - II. X-ray and UV emission

    NASA Astrophysics Data System (ADS)

    Chen, Hai-Liang; Woods, T. E.; Yungelson, L. R.; Gilfanov, M.; Han, Zhanwen

    2015-11-01

    Accreting white dwarfs (WDs) with non-degenerate companions are expected to emit in soft X-rays and the UV, if accreted H-rich material burns stably. They are an important component of the unresolved emission of elliptical galaxies, and their combined ionizing luminosity may significantly influence the optical line emission from warm interstellar medium (ISM). In an earlier paper, we modelled populations of accreting WDs, first generating WD with main-sequence, Hertzsprung gap and red giant companions with the population synthesis code BSE, and then following their evolution with a grid of evolutionary tracks computed with MESA. Now we use these results to estimate the soft X-ray (0.3-0.7 keV), H- and He II-ionizing luminosities of nuclear burning WDs and the number of supersoft X-ray sources for galaxies with different star formation histories. For the starburst case, these quantities peak at ˜1 Gyr and decline by ˜1-3 orders of magnitude by the age of 10 Gyr. For stellar ages of ˜10 Gyr, predictions of our model are consistent with soft X-ray luminosities observed by Chandra in nearby elliptical galaxies and He II 4686 Å/H β line ratio measured in stacked Sloan Digital Sky Survey spectra of retired galaxies, the latter characterizing the strength and hardness of the UV radiation field. However, the soft X-ray luminosity and He II 4686 Å/H β ratio are significantly overpredicted for stellar ages of ≲4-8 Gyr. We discuss various possibilities to resolve this discrepancy and tentatively conclude that it may be resolved by a modification of the typically used criteria of dynamically unstable mass-loss for giant stars.

  1. Characterization of X-ray Emission from Natural and Rocket-and-Wire Triggered Lightning

    NASA Astrophysics Data System (ADS)

    Saleh, Z. H.; Dwyer, J. R.; Rassoul, H.; Schaal, M.; Cramer, E. S.; Hill, J. D.; Biagi, C. J.; Jordan, D. M.; Stapleton, M. V.; Uman, M. A.

    2009-12-01

    x-ray emission has been observed in both rocket-and-wire triggered and natural lightning. These energetic radiations have been associated with leader step formation and may be due to high electric fields present in the vicinity of the downward propagating negative leader tip. Studies have shown that these x-rays are emitted in discrete bursts lasting for about a micro second with energies that can extend up to few MeV. During the 2009 campaign, the Thunderstorm Energetic Radiation Array (TERA) and the Multiple Station Experiment (MSE) for electric and magnetic field measurements at the University of Florida/Florida Tech International Center for Lightning Research and Testing (ICLRT) at Camp Blanding, FL recorded 18 rocket-and-wire triggered events with return strokes and one natural flash that terminated on site. The array contains eight plastic, two Lanthanum Bromide (LaBr3) and 36 Sodium Iodide (NaI) detectors distributed over 25 stations covering the ~1 km2 facility. A subset of the array and the MSE, consisting of 9 stations, is operated as a time of arrival network. We use a detailed Monte Carlo simulation, which fully models the Bremsstrahlung production and x-ray propagation as well as the instrument response function for the different detectors, to characterize the energy spectrum of the x-ray emission and the size of the source region. Waveforms of simultaneous x-ray and electric field radiation vs. time at individual measuring stations will be presented on a sub-microsecond and microsecond time scale.

  2. X-ray emission from charge exchange in the Cygnus Loop SNR

    NASA Astrophysics Data System (ADS)

    Roberts, Shawn R.; Wang, Q. Daniel

    2015-05-01

    The Cygnus Loop has been the focus of substantial debate concerning the contribution of charge exchange (CX) to supernova remnant (SNR) X-ray emission. We take advantage of a distinct feature of CX, enhanced K? forbidden line emission, and employ the energy centroid of the O VII K? triplet as a diagnostic. Based on X-ray spectra extracted from an extensive set of Suzaku observations, we measure the energy centroid shifts of the triplet on and off the shock rim of the remnant. We find that enhanced forbidden to resonance line emission exists throughout much of the rim and this enhancement azimuthally correlates with non-radiative H? filaments, a tracer of strong neutral-plasma interaction in the optical. We also show that alternative mechanisms cannot explain the observed enhancement. These results demonstrate the need to model the CX contribution to the X-ray emission of SNRs, particularly for shocks propagating in a partially neutral medium. Such modelling may be critically important to the correct measurements of the ionization, thermal, and chemical properties of SNRs.

  3. Plasma code for astrophysical charge exchange emission at X-ray wavelengths

    NASA Astrophysics Data System (ADS)

    Gu, Liyi; Kaastra, Jelle; Raassen, A. J. J.

    2016-04-01

    Charge exchange X-ray emission provides unique insight into the interactions between cold and hot astrophysical plasmas. Besides its own profound science, this emission is also technically crucial to all observations in the X-ray band, since charge exchange with the solar wind often contributes a significant foreground component that contaminates the signal of interest. By approximating the cross sections resolved to n and l atomic subshells and carrying out complete radiative cascade calculation, we have created a new spectral code to evaluate the charge exchange emission in the X-ray band. Compared to collisional thermal emission, charge exchange radiation exhibits enhanced lines from large-n shells to the ground, as well as large forbidden-to-resonance ratios of triplet transitions. Our new model successfully reproduces an observed high-quality spectrum of comet C/2000 WM1 (LINEAR), which emits purely by charge exchange between solar wind ions and cometary neutrals. It demonstrates that a proper charge exchange model will allow us to probe the ion properties remotely, including charge state, dynamics, and composition, at the interface between the cold and hot plasmas.

  4. Evidence for X-ray emission from superclusters of galaxies determined from Uhuru

    NASA Technical Reports Server (NTRS)

    Murray, S. S.; Forman, W.; Jones, C.; Giacconi, R.

    1978-01-01

    X-ray emission from three class 2 clusters of rich clusters of galaxies has been detected. A definition for these objects based in part on Abell's (1961) description is used, and 12 candidate superclusters of distance class 5 and six clusters are found within the area of sky covered by the 4U catalog. The probability that these three X-ray sources accidentally coincide with the superclusters is less than 0.003. Equally low probabilities are found that the X-ray emission is due to either a single luminous cluster or to the combined emission of all members of the supercluster. A possible explanation of these sources is thermal bremsstrahlung emission from a hot tenuous gas pervading the supercluster. The mass of the gas can be as much as 10 times the mass of the galaxies in the supercluster and comparable to the virial mass necessary to bind the supercluster gravitationally. Should such regions of enhanced gas density be found to be associated with all groups of clusters (multiplicity of at least 2), this gas may provide a significant fraction of the mass required to close the universe.

  5. Soft X-Ray Emission Analysis Of A Pulsed Capillary Discharge Operated In Nitrogen

    NASA Astrophysics Data System (ADS)

    Valdivia, M. P.; Valenzuela, J. C.; Wyndham, E. S.; Favre, M.; Chuaqui, H.; Bhuyan, H.

    2014-05-01

    We present results from a pulsed capillary ns discharge source, operated in Nitrogen and N/He mixtures, in an alumina capillary 2.1mm long with outer diameter of 6.3mm and inner diameter of 1.6mm. The electrical energy stored is 0.5J with peak current of 6kA. Fast charging from an IGBT based pulsed power circuit allows operation at 35-600 Hz with voltages in the range of 18-24kV. Characteristic time-integrated N/He spectra were recorded and analyzed for values of 20-200 , with clear evidence of He-like Nitrogen emission at 28.8, which represents a possible source for water window soft x-ray microscopy. Filtered diode measurements reveal the influence of axial electron beams, generated by hollow cathode dynamics, on the x-ray emission in the range of 300-450 eV. We discuss optimal voltage applied and pressure conditions for soft x-ray generation. Time-integrated MCP images of a filtered slit-wire system delivered clear evidence of full wall detachment with ~500?m in radial size for the entire emission range and ~200?m for the emission in the 300-450 eV range.

  6. Experimental study of hard-X ray emission from laboratory sparks

    NASA Astrophysics Data System (ADS)

    Marisaldi, Martino; Rizzi, Rolando; Levi, Giuseppe; Malgesini, Roberto; Villa, Andrea; Mazza, Paolo; Labanti, Claudio; Fuschino, Fabio; Campana, Riccardo; Bianchini, David; Brancaccio, Rossella; Montanari, Alessandro; Patrizii, Laura

    2014-05-01

    We present the characterization of hard-X rays produced by meter-long laboratory sparks carried out at the high-voltage laboratory of RSE, Milano, Italy. Sparks are known to emit X-rays when positive and negative streamers connect, before breakdown. Numerical simulations suggest that X-rays are produced by Bremsstrahlung in air by electrons accelerated to the runaway regime in the high electric field at the streamers tip. Positive meter-long discharges are produced by a Marx generator loaded by a meter-long air gap formed by a spherical anode and a conical-shaped cathode. Maximum voltage at breakdown is about 1 MV. We investigate the production of X-rays by means of an array of scintillation detectors deployed around the cathode. Each detector is a 2'' NaI(Tl) scintillating crystal coupled to a photomultiplier tube (PMT). Each detector is battery-powered and enclosed in a metallic housing for EM shielding. Analog signal output is trasmitted to a shielded control room by means of optical fibre tranceivers, and then collected by a fast digitizer. We present the experimental setup and first results concerning detection efficiency, energy spectra, and geometrical distribution of the emission.

  7. Diffuse X-ray emission from the superbubbles N70 and N185 in the Large Magellanic Cloud

    SciTech Connect

    Reyes-Iturbide, J.; Rodríguez-González, A.; Velázquez, P. F.; Rosado, M.; Sánchez-Cruces, M.; Ambrocio-Cruz, P.

    2014-11-01

    We present a study of the diffuse X-ray emission from superbubbles (SBs) N70 (DEM L301) and N185 (DEM L25) located in the Large Magellanic Cloud, based on data from the XMM-Newton Satellite. We obtained spectra and images of these objects in the soft X-ray energy band. These X-ray spectra were fitted by a thermal plasma model, with temperatures of 2.6×10{sup 6} K and 2.3×10{sup 6} K, for N70 and N185, respectively. For N70, images show that X-ray emission comes from the inner regions of the SB when we compare the distribution of the X-ray and the optical emission, while for N185, the X-ray emission is partially confined by the optical shell. We suggest that the observed X-ray emission is caused by shock-heated gas, inside of the optical shells. We also obtained X-ray luminosities which exceed the values predicted by the standard analytical model. This fact shows that, in addition to the winds of the interior stars, it is necessary to consider another ingredient in the description, such as a supernova explosion, as has been proposed in previous numerical models.

  8. X-ray and optical emission from a new black widow binary

    NASA Astrophysics Data System (ADS)

    Pavlov, George

    2011-10-01

    PSR J1446-4701 is a recently discovered radio and gamma-ray recycled pulsar in a tight binary (binary period P_b=6.6 hr, projected separation of companions a sin i = 1.7 Rsol). The very low minimum companion mass, 0.019 Msol, suggests that the pulsar is a "black widow", whose wind and radiation are evaporating its companion. X-ray emission from such systems comes from the pulsar (thermal from polar caps plus nonthermal from the magnetosphere), from the intrabinary shock formed by the interaction of the pulsar wind with the companion and the evaporated matter, and from an extended pulsar wind nebula. We propose observations of this system to separate the X-ray emission components, identify the optical companion, and study the properties of the pulsar, its relativistic wind, and the ablated companion.

  9. Electrochemical flowcell for in-situ investigations by soft x-ray absorption and emission spectroscopy

    NASA Astrophysics Data System (ADS)

    Schwanke, C.; Golnak, R.; Xiao, J.; Lange, K. M.

    2014-10-01

    A new liquid flow-cell designed for electronic structure investigations at the liquid-solid interface by soft X-ray absorption and emission spectroscopy is presented. A thin membrane serves simultaneously as a substrate for the working electrode and solid state samples as well as for separating the liquid from the surrounding vacuum conditions. In combination with counter and reference electrodes this approach allows in-situ studies of electrochemical deposition processes and catalytic reactions at the liquid-solid interface in combination with potentiostatic measurements. As model system in-situ monitoring of the deposition process of Co metal from a 10 mM CoCl2 aqueous solution by X-ray absorption and emission spectroscopy is presented.

  10. Electrochemical flowcell for in-situ investigations by soft x-ray absorption and emission spectroscopy

    SciTech Connect

    Schwanke, C.; Lange, K. M.; Golnak, R.; Xiao, J.

    2014-10-15

    A new liquid flow-cell designed for electronic structure investigations at the liquid-solid interface by soft X-ray absorption and emission spectroscopy is presented. A thin membrane serves simultaneously as a substrate for the working electrode and solid state samples as well as for separating the liquid from the surrounding vacuum conditions. In combination with counter and reference electrodes this approach allows in-situ studies of electrochemical deposition processes and catalytic reactions at the liquid-solid interface in combination with potentiostatic measurements. As model system in-situ monitoring of the deposition process of Co metal from a 10 mM CoCl{sub 2} aqueous solution by X-ray absorption and emission spectroscopy is presented.

  11. Spatial and temporal evolution of soft and hard X-ray emission in a solar flare

    NASA Technical Reports Server (NTRS)

    Machado, M. E.; Duijveman, A.; Dennis, B. R.

    1982-01-01

    Hard X-ray burst spectrometer and imaging spectrometer data are used to study the spatial and temporal characteristics of the 3.5-30.0 keV emission in an Apr. 10, 1980 solar flare. It is found that: (1) continuous energy release is needed to sustain the increase of the emission through the flare's rising phase, before and after the impulsive phase in hard X-rays, and the release is characterized by the production of 50 million-150 million K thermal regions within the flare loop structures; (2) the observational parameters which characterize the impulsive burst indicate that it is probably associated with nonthermal processes, such as particle acceleration; and (3) the continuous energy release is associated with strong chromospheric evaporation, in view of spectral line behavior. Both particle acceleration and chromospheric evaporation stop just before flare maximum, and the subsequent evolution is probably governed by the radiative cooling of the flare plasma.

  12. Bulk band gaps in divalent hexaborides: A soft x-ray emission study

    SciTech Connect

    Denlinger, Jonathan D.; Gweon, Gey-Hong; Allen, James W.; Bianchi, Andrea D.; Fisk, Zachary

    2001-10-03

    Boron K-edge soft x-ray emission and absorption are used to address the fundamental question of whether divalent hexaborides are intrinsic semimetals or defect-doped bandgap insulators. These bulk sensitive measurements, complementary and consistent with surface-sensitive angle-resolved photoemission experiments, confirm the existence of a bulk band gap and the location of the chemical potential at the bottom of the conduction band.

  13. Structure of the X-ray Emission from the Jet of 3C 273

    NASA Astrophysics Data System (ADS)

    Marshall, H. L.; Lee, J. C.; Ogle, P. M.; Drake, J. J.; Fruscione, A.; Grimes, J.; Harris, D.; Kraft, R.; Pease, D.; Schwartz, D.; Siemiginowska, A.; Vrtilek, S.; Wargelin, B.

    2000-05-01

    We present images from four Chandra observations of the quasar 3C 273. The zeroth order images from two grating observations using the ACIS-S detector are used to examine the structure and spectrum of the jet. The jet has at least four distinct features which are not resolved in previous observations (e.g. Roeser et al. 2000, A&A submitted). Using jet feature nomenclature based on HST observations (cf. Bahcall et al. 1995, Ap.J., 452, L91), we find that knot A1 is very bright in X-rays. We have measured the X-ray spectrum of this X-ray knot for the first time, obtaining a photon index of 1.86 +/- 0.11 and a flux density of 37 +/- 4 nJy at 1 keV. Combining this measurement with lower frequency data shows that a pure synchrotron model can fit the spectrum of knot A1 from 4 GHz to 5 keV (over nine decades in energy) without a change of spectral slope. Knot A2 is also detected and is somewhat blended with knot B1 but synchrotron emission is not likely to explain the X-ray emission due to the spectral turnover observed in the optical-UV band (Roeser et al. 2000). No other knots are clearly detected but there is an indication of weak emission from the eastern portion of knot H3, near the ``head'', which is radio-bright. There is diffuse flux which extends from 14" to 20" which shows curvature that is comparable to the optical flux found by Bahcall et al. (1995). The dispersed spectra of the core of 3C 273 appears to be devoid of spectral intrinsic absorption edges or emission or absorption lines. This work was funded in part by contract SAO SV1-61010 and NASA contract NAS8-39073.

  14. Correlation of solar radio pulsations with hard X-ray emission

    NASA Technical Reports Server (NTRS)

    Aschwanden, M. J.; Benz, A. O.; Kane, S. R.

    1990-01-01

    A systematic study of the correlation of quasi-periodic broad-band decimetric pulsations with hard X-ray (HXR) emission is carried out. It is found that, in 11 out of 56 simultaneously observed events, the decimetric quasi-periodic pulsations in the impulsive phase of flares are correlated. If events with concurring type III bursts are included, 19 cases of radio pulsations are correlated with HXR.

  15. X-ray continuum emission spectroscopy from hot dense matter at Gbar pressures.

    PubMed

    Kraus, D; Dppner, T; Kritcher, A L; Bachmann, B; Chapman, D A; Collins, G W; Glenzer, S H; Hawreliak, J A; Landen, O L; Ma, T; Le Pape, S; Neumayer, P; Swift, D C; Falcone, R W

    2014-11-01

    We have measured the time-resolved x-ray continuum emission spectrum of ?30 times compressed polystyrene created at stagnation of spherically convergent shock waves within the Gbar fundamental science campaign at the National Ignition Facility. From an exponential emission slope between 7.7 keV and 8.1 keV photon energy and using an emission model which accounts for reabsorption, we infer an average electron temperature of 375 21 eV, which is in good agreement with HYDRA-1D simulations. PMID:25430182

  16. X-ray continuum emission spectroscopy from hot dense matter at Gbar pressures

    SciTech Connect

    Kraus, D. Falcone, R. W.; Döppner, T.; Kritcher, A. L.; Bachmann, B.; Collins, G. W.; Hawreliak, J. A.; Landen, O. L.; Ma, T.; Le Pape, S.; Swift, D. C.; Chapman, D. A.; Glenzer, S. H.; Neumayer, P.

    2014-11-15

    We have measured the time-resolved x-ray continuum emission spectrum of ∼30 times compressed polystyrene created at stagnation of spherically convergent shock waves within the Gbar fundamental science campaign at the National Ignition Facility. From an exponential emission slope between 7.7 keV and 8.1 keV photon energy and using an emission model which accounts for reabsorption, we infer an average electron temperature of 375 ± 21 eV, which is in good agreement with HYDRA-1D simulations.

  17. X-RAY EMISSION FROM NEUTRON STARS:. Some personal reflections and recent developments

    NASA Astrophysics Data System (ADS)

    Trmper, Joachim

    2000-09-01

    After a few remarks about the early history of the subject we present a short review of the present observational situation regarding the X-ray emission from isolated neutron stars. In total 32 objects have been detected with ROSAT, the majority of which are radio pulsars showing non -thermal (magnetospheric) emission. For three radio pulsars and three point sources in SNRs thermal emission has been seen which probably comes from the photospheric of the cooling neutron star. A third class comprising the objects represents neutron stars according matter from the interstellar medium.

  18. Accretion and Outflows in X-ray Binaries: What's Really Going on During X-ray Quiescence

    NASA Astrophysics Data System (ADS)

    MacDonald, Rachel K. D.; Bailyn, Charles D.; Buxton, Michelle

    2015-01-01

    X-ray binaries, consisting of a star and a stellar-mass black hole, are wonderful laboratories for studying accretion and outflows. They evolve on timescales quite accessible to us, unlike their supermassive cousins, and allow the possibility of gaining a deeper understanding of these two common astrophysical processes. Different wavelength regimes reveal different aspects of the systems: radio emission is largely generated by outflows and jets, X-ray emission by inner accretion flows, and optical/infrared (OIR) emission by the outer disk and companion star. The search for relationships between these different wavelengths is thus an area of active research, aiming to reveal deeper connections between accretion and outflows.Initial evidence for a strong, tight correlation between radio and X-ray emission has weakened as further observations and newly-discovered sources have been obtained. This has led to discussions of multiple tracks or clusters, or the possibility that no overall relation exists for the currently-known population of X-ray binaries. Our ability to distinguish among these options is hampered by a relative lack of observations at lower luminosities, and especially of truly X-ray quiescent (non-outbursting) systems. Although X-ray binaries spend the bulk of their existence in quiescence, few quiescent sources have been observed and multiple observations of individual sources are largely nonexistent. Here we discuss new observations of the lowest-luminosity quiescent X-ray binary, A0620-00, and the place this object occupies in investigations of the radio/X-ray plane. For the first time, we also incorporate simultaneous OIR data with the radio and X-ray data.In December 2013 we took simultaneous observations of A0620-00 in the X-ray (Chandra), the radio (EVLA), and the OIR (SMARTS 1.3m). These X-ray and radio data allowed us to investigate similarities among quiescent X-ray binaries, and changes over time for this individual object, in the radio/X-ray plane. In addition, our OIR observations allowed us to examine the radio and X-ray information in relation to the different OIR states of behavior (passive and active) known to exist during X-ray quiescence.

  19. Suzaku Observation of Diffuse X-ray Emission from the Carina Nebula

    NASA Technical Reports Server (NTRS)

    Hamaguchi, Kenji; Petre, Robert; Matsumoti, Hironori; Tsujimoto, Masahiro; Holt, Stephan S.; Ezoe, Yuichiro; Ozawa, Hideki; Tsuboi, Yohko; Soong, Yang; Kitamoto, Shunji; Sekiguchi, Akiko; Kokubun, Motohide

    2007-01-01

    We studied extended X-ray emission from the Carina Nebula taken with the Suzaku CCD camera XIS on 2005 Aug. 29. The X-ray morphology, plasma temperature and absorption to the plasma are consistent with the earlier Einstein results. The Suzaku spectra newly revealed emission lines from various spices including oxygen, but not from nitrogen. This result restricts the N/O ratio significantly low, compared with evolved massive stellar winds, suggesting that the diffuse emission is originated in an old supernova remnant or a super shell produced by multiple supernova remnants. The X-ray spectra from the north and south of eta Car showed distinct differences between 0.3-2 keV. The south spectrum shows strong L-shell lines of iron ions and K-shell lines of silicon ions, while the north spectrum shows them weak in intensity. This means that silicon and iron abundances are a factor of 2-4 higher in the south region than in the north region. The abundance variation may be produced by an SNR ejecta, or relate to the dust formation around the star forming core.

  20. X-ray photo-emission and energy dispersive spectroscopy of HA coated titanium

    SciTech Connect

    Drummond, J.L.; Steinberg, A.D.; Krauss, A.R.

    1997-08-01

    The purpose of this study was to determine the chemical composition changes of hydroxyapatite (HA) coated titanium using surface analysis (x-ray photo-emission) and bulk analysis (energy dispersive spectroscopy). The specimens examined were controls, 30 minutes and 3 hours aged specimens in distilled water or 0.2M sodium phosphate buffer (pH 7.2) at room temperature. Each x-ray photo-emission cycle consisted of 3 scans followed by argon sputtering for 10 minutes for a total of usually 20 cycles, corresponding to a sampling depth of {approximately} 1500 {angstrom}. The energy dispersive spectroscopy analysis was on a 110 by 90 {mu}m area for 500 sec. Scanning electron microscopy examination showed crystal formation (3P{sub 2}O{sub 5}*2CAO*?H{sub 2}O by energy dispersive spectroscopy analysis) on the HA coating for the specimens aged in sodium phosphate buffer. The x-ray photo-emission results indicated the oxidation effect of water on the titanium (as TiO{sub 2}) and the effect of the buffer to increase the surface concentration of phosphorous. No differences in the chemical composition were observed by energy dispersive spectroscopy analysis. The crystal growth was only observed for the sodium phosphate buffer specimens and only on the HA surface.

  1. Evidence for Intermediate Polars as the origin of the Galactic Center hard X-ray emission

    NASA Astrophysics Data System (ADS)

    Hailey, Charles James; NuSTAR Galactic Plane Survey Working Group

    2016-01-01

    Recently, NuSTAR has discovered an unresolved hard (20-40 keV) X-ray emission within the central 10 pc of the Galaxy, possibly indicating a large population of intermediate polars (IPs). Chandra and XMM-Newton measurements of both point sources and diffuse emission in the surrounding ~50 pc imply a population of magnetic CVs with white dwarf mass ~ 0.5 M⊙. We present NuSTAR broad-band (3-79 keV) spectroscopy of two nearby IPs (TV Columbae and IGR J17303-0601) as well as our investigation of various spectral models and previous X-ray observations. We argue that the observations of both the inner 10 pc and the surrounding 50 pc can be accounted for by IPs with mean white dwarf mass ~ 0.9 M⊙. We find that the lower mass derived by Chandra and XMM-Newton is an artifact of narrow energy band fitting, and the spectral features associated with these measurements naturally arise in a heavier IP population. We also discuss implications for the X-ray emission and source population in the Galactic ridge and bulge.

  2. What Can be Learned from the Absence of Auroral X-Ray Emission from Saturn?

    SciTech Connect

    Hui, Yawei; Cravens, Thomas E. E.; Ozak, Nataly; Schultz, David Robert

    2010-01-01

    To understand the origin and magnitude of the present upper limit observations of Saturn's auroral X-ray emission, we use simple models based on the mechanism that leads to analogous emission at Jupiter, charge transfer between ion precipitation and atmospheric gas. Several putative sources and characteristics of the precipitation are considered, namely, (1) highly charged solar wind ions with additional acceleration and (2) ambient, thermal ion population originating, for example, from Saturn's satellites, and then accelerated to high energies. Estimates obtained for each of these sources show the need for acceleration, either to focus the highly charged solar wind ions into the atmosphere or to enable stripping of the initially low-charge state ambient ions to higher charges. The former yields a constraint on the existing accelerating potentials present at Saturn but can only account for about a tenth of the observed upper limit to the auroral luminosity, while the latter requires extremely low limits on the area (i.e., less than 100 km{sup 2}) over which field-aligned potentials are active and needed to produce the acceleration to generate the observational upper limit on the X-ray luminosity. We therefore narrow the range of possible ion sources, the accelerating potentials required that are consistent with the present understanding of the magnetosphere, and model upper limit of X-ray emission from ion precipitation.

  3. Temporal variations of geocoronal and heliospheric X-ray emission associated with the solar wind interaction with neutrals

    NASA Astrophysics Data System (ADS)

    Cravens, T. E.; Robertson, I. P.; Snowden, S. L.

    2001-11-01

    X-ray emission due to charge transfer collisions between heavy solar wind ions and neutrals has been predicted to exist both in the heliosphere and in the geocorona. The heliospheric X-ray emission can account for roughly half of the observed soft X-ray background intensity. It was also suggested that temporal variations in the heliospheric and geocoronal soft X-ray intensities will result from solar wind variations. In this paper, a simple model of the charge exchange X-ray emission mechanism is combined with measured solar wind parameters as a function of time and used to generate predictions of the temporal variation of the X-ray intensity observed at Earth for the time periods 1990-1993 and 1996-1998. Measured solar wind proton fluxes are also directly compared with the ``long-term enhancement'' part of the soft X-ray background measured by the Rntgen Satellite (ROSAT). A significant positive correlation exists, which supports the existence of X-ray emission associated with the solar wind interaction with either interstellar neutrals and/or with geocoronal neutral hydrogen.

  4. Correlated optical and X-ray variability in CTTS. Indications of absorption-modulated emission

    NASA Astrophysics Data System (ADS)

    Flaccomio, E.; Micela, G.; Favata, F.; Alencar, S. P. H.

    2010-06-01

    Aims: Optical and X-ray emission from classical T Tauri stars (CTTSs) has long been known to be highly variable. Our long, uninterrupted optical observation of the NGC 2264 region with CoRoT [The CoRoT space mission was developed and is operated by the French space agency CNES, with participation of ESA's RSSD and Science Programs, Austria, Belgium, Brazil, Germany, and Spain.] allows the optical variability in CTTS to be studied with unprecedented accuracy and time coverage. Two short Chandra observations obtained during the CoRoT pointing with a separation of 16 days allow us to study whether there is a correlation between optical and X-ray variability on this timescale, thus probing the physical mechanisms driving the variability in both bands. Methods: We have computed the optical and X-ray fractional variability between the two 30 ks duration windows covered by both the Chandra and CoRoT observations, for a sample of classical and weak line T Tauri stars (WTTSs) in NGC 2264. A scatter plot clearly shows that the variability of CTTSs in the optical and soft X-ray (0.5-1.5 keV) bands is correlated, while no correlation is apparent in the hard (1.5-8.0 keV) band. Also, no correlation in either band is present for WTTSs. Results: We show that the correlation between soft X-ray and optical variability of CTTSs can be naturally explained in terms of time-variable shading (absorption) from circumstellar material orbiting the star, in a scenario rather similar to the one invoked to explain the observed phenomenology in the CTTS AA Tau. The slope of the observed correlation implies (in the hypothesis of homogeneous shading) a significant dust depletion in the circumstellar material (with a gas-to-dust ratio approximately 5 times lower than the standard value for interstellar material).

  5. Non-thermal x-ray emission from wire array z-pinches

    SciTech Connect

    Ampleford, David; Hansen, Stephanie B.; Jennings, Christopher Ashley; Webb, Timothy Jay; Harper-Slaboszewicz, V.; Loisel, Guillaume Pascal; Flanagan, Timothy McGuire; Bell, Kate Suzanne; Jones, Brent M.; McPherson, Leroy A.; Rochau, Gregory A.; Chittenden, Jeremy P.; Sherlock, Mark; Appelbe, Brian; Giuliani, John; Ouart, Nicholas; Seely, John

    2015-12-01

    We report on experiments demonstrating the transition from thermally-dominated K-shell line emission to non-thermal, hot-electron-driven inner-shell emission for z pinch plasmas on the Z machine. While x-ray yields from thermal K-shell emission decrease rapidly with increasing atomic number Z, we find that non-thermal emission persists with favorable Z scaling, dominating over thermal emission for Z=42 and higher (hn ≥ 17keV). Initial experiments with Mo (Z=42) and Ag (Z=47) have produced kJ-level emission in the 17-keV and 22-keV Kα lines respectively. We will discuss the electron beam properties that could excite these non - thermal lines. We also report on experiments that have attempted to control non - thermal K - shell line emission by modifying the wire array or load hardware setup.

  6. TRANSIENT EXTREMELY SOFT X-RAY EMISSION FROM THE UNUSUALLY BRIGHT CATACLYSMIC VARIABLE IN THE GLOBULAR CLUSTER M3: A NEW CV X-RAY LUMINOSITY RECORD?

    SciTech Connect

    Stacey, W. S.; Heinke, C. O.; Elsner, R. F.; Weisskopf, M. C.; Edmonds, P. D.; Grindlay, J. E.

    2011-05-01

    We observed the accreting white dwarf (WD) 1E1339.8+2837 (1E1339) in the globular cluster M3 in 2003 November, 2004 May, and 2005 January, using the Chandra ACIS-S detector. The source was observed in 1992 to possess traits of a supersoft X-ray source (SSS), with a 0.1-2.4 keV luminosity as large as 2 x 10{sup 35} erg s{sup -1}, after which time the source's luminosity fell by roughly two orders of magnitude, adopting a hard X-ray spectrum more typical of cataclysmic variables (CVs). Our observations confirm 1E1339's hard CV-like spectrum, with photon index {Gamma} = 1.3 {+-} 0.2. We found 1E1339 to be highly variable, with a 0.5-10 keV luminosity ranging from (1.4 {+-} 0.3) x 10{sup 34} erg s{sup -1} to 8.5{sup +4.9}{sub -4.6} x 10{sup 32} erg s{sup -1}, with 1E1339's maximum luminosity being perhaps the highest yet recorded for hard X-ray emission from a WD. In 2005 January, 1E1339 displayed substantial low-energy emission below {approx}0.3 keV. Although current Chandra responses cannot properly model this emission, its bolometric luminosity appears comparable to or greater than that of the hard spectral component. This raises the possibility that the supersoft X-ray emission seen from 1E1339 in 1992 may have shifted to the far-UV.

  7. DISCOVERY OF X-RAY EMISSION FROM THE FIRST Be/BLACK HOLE SYSTEM

    SciTech Connect

    Munar-Adrover, P.; Paredes, J. M.; Ribó, M.; Iwasawa, K.; Zabalza, V.; Casares, J.

    2014-05-10

    MWC 656 (=HD 215227) was recently discovered to be the first binary system composed of a Be star and a black hole (BH). We observed it with XMM-Newton, and detected a faint X-ray source compatible with the position of the optical star, thus proving it to be the first Be/BH X-ray binary. The spectrum analysis requires a model fit with two components, a blackbody plus a power law, with k{sub B}T=0.07{sub −0.03}{sup +0.04} keV and a photon index Γ = 1.0 ± 0.8, respectively. The non-thermal component dominates above ≅0.8 keV. The obtained total flux is F(0.3-5.5 keV)=(4.6{sub −1.1}{sup +1.3})×10{sup −14} erg cm{sup –2} s{sup –1}. At a distance of 2.6 ± 0.6 kpc the total flux translates into a luminosity L {sub X} = (3.7 ± 1.7) × 10{sup 31} erg s{sup –1}. Considering the estimated range of BH masses to be 3.8-6.9 M {sub ☉}, this luminosity represents (6.7 ± 4.4) × 10{sup –8} L {sub Edd}, which is typical of stellar-mass BHs in quiescence. We discuss the origin of the two spectral components: the thermal component is associated with the hot wind of the Be star, whereas the power-law component is associated with emission from the vicinity of the BH. We also find that the position of MWC 656 in the radio versus X-ray luminosity diagram may be consistent with the radio/X-ray correlation observed in BH low-mass X-ray binaries. This suggests that this correlation might also be valid for BH high-mass X-ray binaries (HMXBs) with X-ray luminosities down to ∼10{sup –8} L {sub Edd}. MWC 656 will allow the accretion processes and the accretion/ejection coupling at very low luminosities for BH HMXBs to be studied.

  8. Coronal Accretion: the origin of X-ray Emission in AGN

    NASA Astrophysics Data System (ADS)

    Liu, Bifang; Taam, Ronald E.; Qiao, Erlin; Yuan, Weimin

    2015-08-01

    It is commonly believed that the optical/UV and X-ray emissions in luminous AGN are produced in an accretion disk and an embedded hot corona respectively. In luminous AGN the strong inverse Compton scattering of disk photons by hot electrons in the corona can effectively cool the coronal gas if the mass supply is similar to that in BHXRBs. Thus, the application of such a model to AGNs fails to produce their observed X-ray emission. As a consequence, a fraction of disk accretion energy is usually assumed to be transferred to the corona. To avoid assuming this energy input to the corona, we propose that gas in a vertically extended distribution is supplied to a supermassive black hole by the gravitational capture of interstellar medium or stellar wind material in the very innermost regions of a galaxy. In this picture, the gas partially condenses to an underlying cool disk as it flows toward the black hole, releasing accretion energy as X-ray emission and supplying mass for the disk accretion. Such a picture avoids assumption of energy input from the disk to the corona for high luminosity AGN, and provides a natural interpretation of ADAF/RIAF for low luminosity AGN where condensation is absent at low mass accretion rates and hence no disk exists. Our numerical calculations reveal that the X-ray luminosity can reach a few tens of percent of the bolometric luminosity at high accretion rates. The value of ?_ox, which is calculated from the luminosities at 2500 and 2keV, varies from 0.9 to 1.2 for the mass supply rate ranging from 0.03 to 0.1 times the Eddington value. The corresponding photon index in the 2-10 keV energy band varies from 1.9 to 2.3. These results are roughly in agreement with observations in AGN.

  9. Coronal Accretion: the origin of X-ray Emission in AGN

    NASA Astrophysics Data System (ADS)

    Liu, Bifang; Taam, Ronald E.; Qiao, Erlin; Yuan, Weimin

    2015-08-01

    It is commonly believed that the optical/UV and X-ray emissions in luminous AGN are produced in an accretion disk and an embedded hot corona respectively. In luminous AGN the strong inverse Compton scattering of disk photons by hot electrons in the corona can effectively cool the coronal gas if the mass supply is similar to that in BHXRBs. Thus, the application of such a model to AGNs fails to produce their observed X-ray emission. As a consequence, a fraction of disk accretion energy is usually assumed to be transferred to the corona. To avoid assuming this energy input to the corona, we propose that gas in a vertically extended distribution is supplied to a supermassive black hole by the gravitational capture of interstellar medium or stellar wind material in the very innermost regions of a galaxy. In this picture, the gas partially condenses to an underlying cool disk as it flows toward the black hole, releasing accretion energy as X-ray emission and supplying mass for the disk accretion. Such a picture avoids assumption of energy input from the disk to the corona for high luminosity AGN, and provides a natural interpretation of ADAF/RIAF for low luminosity AGN where condensation is absent at low mass accretion rates and hence no disk exists. Our numerical calculations reveal that the X-ray luminosity can reach a few tens of percent of the bolometric luminosity at high accretion rates. The value of ?ox, which is calculated from the luminosities at 2500 ?A and 2keV, varies from 0.9 to 1.2 for the mass supply rate ranging from 0.03 to 0.1 times the Eddington value. The corresponding photon index in the 2-10 keV energy band varies from 1.9 to 2.3. These results are roughly in agreement with observations in AGN.

  10. The height of flare emissions in white light and in hard X-rays

    NASA Astrophysics Data System (ADS)

    Hudson, H. S.; Martinez Oliveros, J.; Glesener, L.; Krucker, S.; Bogart, R. S.; Couvidat, S. P.; Prochnow, B.; Scherrer, P. H.

    2013-12-01

    Hard X-ray emission has long been known to correlate well with white-light continuum emission by a solar flare, providing support for the thick-target model of interactions by nonthermal electrons accelerated in the impulsive phase of a solar flare. This model makes specific predictions for the height, in the solar atmosphere, where such emissions can form. In this presentation we extend our earlier work (Martinez Oliveros et al., ApJ 753, 26, 2012) on the determination of the absolute heights of white-light flares and their associated hard X-ray sources. The new work makes use of surveys of the HMI flare observations, which provide a new database with excellent properties for this purpose in conjunction with STEREO and RHESSI. In the earlier work, based on the flare SOL2011-02-24, we found the white-light and hard X-ray sources to coincide, and to occur close to their minimum possible heights in terms of model optical depth. This conclusion is now confirmed with three additional flares: SOL2011-01-28T01:03 (M1.3), SOL2013-05-13T02:17 (X1.7), and SOL2013-05-13T16:01 (X2.8). The relatively low absolute altitude of the hard X-ray sources (of order 500 km above the level of the photosphere, at 500 nm optical depth unity) presents a puzzle for the standard thick-target model, and we discuss some possible explanations.

  11. Modelling the Central Constant Emission X-ray component of η Carinae

    NASA Astrophysics Data System (ADS)

    Russell, Christopher M. P.; Corcoran, Michael F.; Hamaguchi, Kenji; Madura, Thomas I.; Owocki, Stanley P.; Hillier, D. John

    2016-02-01

    The X-ray emission of η Carinae shows multiple features at various spatial and temporal scales. The central constant emission (CCE) component is centered on the binary and arises from spatial scales much smaller than the bipolar Homunculus nebula, but likely larger than the central wind-wind collision region between the stars as it does not vary over the ˜2-3 month X-ray minimum when it can be observed. Using large-scale 3D smoothed particle hydrodynamics (SPH) simulations we model both the colliding-wind region between the stars, and the region where the secondary wind collides with primary wind ejected from the previous periastron passage. The simulations extend out to one hundred semi-major axes and make two limiting assumptions (strong coupling and no coupling) about the influence of the primary radiation field on the secondary wind. We perform 3D radiative transfer calculations on the SPH output to synthesize the X-ray emission, with the aim of reproducing the CCE spectrum. For the preferred primary mass loss rate ṀA ≈ 8.5 × 10-4 M⊙ yr-1, the model spectra well reproduce the observation as the strong- and no-coupling spectra bound the CCE observation for longitude of periastron ω ≈ 252°, and bound/converge on the observation for ω ≈ 90°. This suggests that η Carinae has moderate coupling between the primary radiation and secondary wind, that both the region between the stars and the co-moving collision on the backside of the secondary generate the CCE, and that the CCE cannot place constraints on the binary's line of sight. We also discuss comparisons with common X-ray fitting parameters.

  12. Physical Conditions in the X-Ray Emission-line Gas in NGC 1068

    NASA Astrophysics Data System (ADS)

    Kraemer, S. B.; Sharma, N.; Turner, T. J.; George, Ian M.; Crenshaw, D. Michael

    2015-01-01

    We present a detailed, photoionization modeling analysis of XMM-Newton/Reflection Grating Spectrometer observations of the Seyfert 2 galaxy NGC 1068. The spectrum, previously analyzed by Kinkhabwala et al., reveals a myriad of soft X-ray emission lines, including those from H- and He-like carbon, nitrogen, oxygen, and neon, and M- and L-shell iron. As noted in the earlier analysis, based on the narrowness of the radiative recombination continua, the electron temperatures in the emission-line gas are consistent with photoionization, rather than collisional ionization. The strengths of the carbon and nitrogen emission lines, relative to those of oxygen, suggest unusual elemental abundances, which we attribute to the star formation history of the host galaxy. Overall, the emission lines are blueshifted with respect to systemic, with radial velocities ~160 km s-1, similar to that of [O III] ?5007, and thus consistent with the kinematics and orientation of the optical emission-line gas and, hence, likely part of an active galactic nucleus driven outflow. We were able to achieve an acceptable fit to most of the strong emission lines with a two-component photoionization model, generated with CLOUDY. The two components have ionization parameters and column densities of logU = -0.05 and 1.22 and logN H = 20.85 and 21.2 and covering factors of 0.35 and 0.84, respectively. The total mass of the X-ray gas is roughly an order of magnitude greater than the mass of ionized gas determined from optical and near-IR spectroscopy, which indicates that it may be the dominant component of the narrow-line region. Furthermore, we suggest that the medium that produces the scattered/polarized optical emission in NGC 1068 possesses similar physical characteristics to those of the more highly ionized of the X-ray model components.

  13. PHYSICAL CONDITIONS IN THE X-RAY EMISSION-LINE GAS IN NGC1068

    SciTech Connect

    Kraemer, S. B.; Sharma, N.; Turner, T. J.; George, Ian M.; Crenshaw, D. Michael

    2015-01-01

    We present a detailed, photoionization modeling analysis of XMM-Newton/Reflection Grating Spectrometer observations of the Seyfert 2 galaxy NGC1068. The spectrum, previously analyzed by Kinkhabwala et al., reveals a myriad of soft X-ray emission lines, including those from H- and He-like carbon, nitrogen, oxygen, and neon, and M- and L-shell iron. As noted in the earlier analysis, based on the narrowness of the radiative recombination continua, the electron temperatures in the emission-line gas are consistent with photoionization, rather than collisional ionization. The strengths of the carbon and nitrogen emission lines, relative to those of oxygen, suggest unusual elemental abundances, which we attribute to the star formation history of the host galaxy. Overall, the emission lines are blueshifted with respect to systemic, with radial velocities ?160kms{sup 1}, similar to that of [O III] ?5007, and thus consistent with the kinematics and orientation of the optical emission-line gas and, hence, likely part of an active galactic nucleus driven outflow. We were able to achieve an acceptable fit to most of the strong emission lines with a two-component photoionization model, generated with CLOUDY. The two components have ionization parameters and column densities of logU = 0.05 and 1.22 and logN {sub H} = 20.85 and 21.2 and covering factors of 0.35 and 0.84, respectively. The total mass of the X-ray gas is roughly an order of magnitude greater than the mass of ionized gas determined from optical and near-IR spectroscopy, which indicates that it may be the dominant component of the narrow-line region. Furthermore, we suggest that the medium that produces the scattered/polarized optical emission in NGC1068 possesses similar physical characteristics to those of the more highly ionized of the X-ray model components.

  14. Impulsive thermal x-ray emission from a low-lying coronal loop

    SciTech Connect

    Liu, Siming; Li, Youping; Fletcher, Lyndsay

    2013-06-01

    Understanding the relationship among different emission components plays an essential role in the study of particle acceleration and energy conversion in solar flares. In flares where gradual and impulsive emission components can be readily identified, the impulsive emission has been attributed to non-thermal particles. We carry out detailed analysis of Hα and X-ray observations of a GOES class B microflare loop on the solar disk. The impulsive hard X-ray emission, however, is found to be consistent with a hot, quasi-thermal origin, and there is little evidence of emission from chromospheric footpoints, which challenges conventional models of flares and reveals a class of microflares associated with dense loops. Hα observations indicate that the loop lies very low in the solar corona or even in the chromosphere and both emission and absorption materials evolve during the flare. The enhanced Hα emission may very well originate from the photosphere when the low-lying flare loop heats up the underlying chromosphere and reduces the corresponding Hα opacity. These observations may be compared with detailed modeling of flare loops with the internal kink instability, where the mode remains confined in space without apparent change in the global field shape, to uncover the underlying physical processes and to probe the structure of solar atmosphere.

  15. Changes in the X-Ray Emission from the Magnetar Candidate 1E 2259+586 During its 2002 Outburst

    NASA Technical Reports Server (NTRS)

    Woods, P. M.; Kaspi, V. M.; Thompson, C.; Gavrill, F. P.; Marshall, H. L.; Chakrabarty, D.; Flanagan, K.; Heyl, J.; Hernquist, L.

    2004-01-01

    An outburst of more than 80 individual bursts, similar to those seen from Soft Gamma Repeaters (SGRs), was detected from the anomalous X-ray pulsar (AXP) 1E 2259+586 in 2002 June. Coincident with this burst activity were gross changes in the pulsed flux, persistent flux, energy spectrum, pulse profile, and spin-down of the underlying X-ray source. We present Rossi X-Ray Timing Explorer and X-Ray Multi-Mirror Mission observations of 1E 2259+586 that show the evolution of the aforementioned source parameters during and following this episode and identify recovery timescales for each. Specifically, we observe an X-ray flux increase (pulsed and phase-averaged) by more than an order of magnitude having two distinct components. The first component is linked to the burst activity and decays within approx. 2 days, during which the energy spectrum is considerably harder than during the quiescent state of the source. The second component decays over the year following the glitch according to a power law in time with an exponent -0.22 +/- 0.01. The pulsed fraction decreased initially to approx. 15% rms but recovered rapidly to the preoutburst level of approx. 23% within the first 3 days. The pulse profile changed significantly during the outburst and recovered almost fully within 2 months of the outburst. A glitch of size Delta(sib (nu)max) = (4.24 +/- 0.11) x 10(exp -6) was observed in 1E 2259+586, which preceded the observed burst activity. The glitch could not be well fitted with a simple partial exponential recovery. An exponential rise of approx. 20% of the frequency jump with a timescale of approx. 14 days results in a significantly better fit to the data; however, contamination from a systematic drift in the phase of the pulse profile cannot be excluded. A fraction of the glitch (approx. 19%) was recovered in a quasi-exponential manner having a recovery timescale of approx. 16 days. The long-term postglitch spin-down rate decreased in magnitude relative to the preglitch value. The changes in the source properties of 1E 2259+586 during its 2002 outburst are shown to be qualitatively similar to changes seen during or following burst activity in two SGRs, thus further solidifying the common nature of SGRs and AXP's as magnetars. The changes in persistent emission properties of 1E 2259+586 suggest that the star underwent a plastic deformation of the crust that simultaneously impacted the superfluid interior (crustal and possibly core superfluid) and the magnetosphere. Finally, the changes in persistent emission properties coincident with burst activity in 1E 2259+586 enabled us to infer previous burst-active episodes from this and other AXP's. The nondetection of these outbursts by all-sky gamma-ray instruments suggests that the number of active magnetar candidates in our Galaxy is larger than previously thought.

  16. HCO emission toward the X-ray reflexion nebula Sgr B2 in the Galactic Center

    NASA Astrophysics Data System (ADS)

    Armijos Abendao, Jairo

    The Galactic Center (GC) with its relative proximity (8.5 Kpc) is an excellent laboratory to study physical processes in a galactic nucleus with an incomparable high angular resolution. The GC hosts a supermassive black hole, Sgr A*, with a mass of 410(6) M?. The interstellar medium in the GC reveal a harsh environment since it is affected by large scale shocks, star formation activity and high energy phenomena. Furthermore, time-variability of X-ray emission is observed toward the molecular cloud complexes of Sgr A and Sgr B2 located in the GC. To explain this time-variability the X-ray reflection nebula scenario has been proposed. This scenario suggests that an enhanced activity of Sgr A* occurred 100 years ago, generating a huge X-ray flare that illuminated both cloud complexes in the GC. It is believed that HCO increases its abundance in Photo-Dominated Regions (PDRs) and X-ray Dominated Regions (XDRs). Furthermore, the Fe Kalpha line at 6.4 keV is an excellent tracer of XDRs. This line is produced by fluorescence when X-rays and/or high energy particles (>7.1 keV) interact with neutral or partially ionized iron atoms. The Sgr B2 complex hosts a large amount of regions with ionized hydrogen (HII regions) by UV radiation from nearby stars. These HII regions should illuminate a large number of PDRs in the environment of Sgr B2. Thus, the Sgr B2 complex is unique since PDRs and XDRs can clearly be resolved with the angular resolutions achieved by using actual single dish radio telescopes. HCO observations at 3 mm wavelengths were obtained with the IRAM 30 meter telescope at Pico Veleta (Spain) in 2006. The general aim of this work is to study the spatial distribution of the HCO(1-0) emission toward a 36x32 pc(2) region of the Sgr B2 complex in order to disentangle if this molecule is preferentially synthesized toward PDRs or/and XDRs. We found a good correlation between the HCO(1-0) emission and the Fe Kalpha line emission rather than the emission from HII regions, suggesting that the HCO abundance is enhanced toward XDRs.

  17. Modeling Diffuse X-ray Emission around the Galactic Center from Colliding Stellar Winds

    NASA Astrophysics Data System (ADS)

    Post Russell, Christopher Michael; Cuadra, Jorge; Wang, Q. Daniel; Kallman, Timothy R.

    2016-01-01

    The Galactic center is a hotbed of astrophysical phenomena. The ~30 evolved massive stars orbiting the super massive black hole (SMBH) on scales <10" inject a large fraction of the matter that accretes onto the SMBH, and their wind-wind collisions create large swaths of shocked, hot, X-ray emitting material around Sgr A*. The 3Ms Chandra X-ray Visionary Program of the Galactic center provided unprecedented detail of this region by resolving the diffuse thermal emission around the SMBH, and also revealed the presence of SMBH feedback into its immediate surroundings. With the original intent of computing the accretion onto the SMBH, smoothed particle hydrodynamics (SPH) simulations with various feedback prescriptions modeled the 30 Wolf-Rayet (WR) stars orbiting the SMBH over 1100 years while ejecting their stellar winds, thus providing various descriptions of the hot shocked gas around Sgr A*. In this work, we perform 3D X-ray radiative transfer calculations on these hydrodynamic simulations with the goal of reproducing the Chandra observations in the central ±6" around Sgr A*. The model spectral shape from the 2"-5" ring agrees very well with the observations for all feedback models, and the X-ray flux levels of the no or weak feedback models agree with the observation for r<~3". The model flux is too low beyond this radius, while the strong feedback models produce too low a flux throughout the entire simulation region. This is because the strong outflow emanating from the SMBH clears out much of the hot, X-ray emitting gas from its vicinity. These strong feedback simulations are thus excluded from describing Sgr A*. We will conclude by discussing ways to improve the no and weak feedback models, such as by including the O stars and their winds, which should cause the WR-wind X-ray emission to increase as these adiabatic shocks (whose strength is inversely proportional to the distance to the shock) will occur closer to their WR stars.

  18. On binary-driven hypernovae and their nested late X-ray emission

    NASA Astrophysics Data System (ADS)

    Ruffini, R.; Muccino, M.; Bianco, C. L.; Enderli, M.; Izzo, L.; Kovacevic, M.; Penacchioni, A. V.; Pisani, G. B.; Rueda, J. A.; Wang, Y.

    2014-05-01

    Context. The induced gravitational collapse (IGC) paradigm addresses the very energetic (1052-1054 erg) long gamma-ray bursts (GRBs) associated to supernovae (SNe). Unlike the traditional "collapsar" model, an evolved FeCO core with a companion neutron star (NS) in a tight binary system is considered as the progenitor. This special class of sources, here named "binary-driven hypernovae" (BdHNe), presents a composite sequence composed of four different episodes with precise spectral and luminosity features. Aims: We first compare and contrast the steep decay, the plateau, and the power-law decay of the X-ray luminosities of three selected BdHNe (GRB 060729, GRB 061121, and GRB 130427A). Second, to explain the different sizes and Lorentz factors of the emitting regions of the four episodes, for definiteness, we use the most complete set of data of GRB 090618. Finally, we show the possible role of r-process, which originates in the binary system of the progenitor. Methods: We compare and contrast the late X-ray luminosity of the above three BdHNe. We examine correlations between the time at the starting point of the constant late power-law decay t*a, the average prompt luminosity ⟨ Liso ⟩, and the luminosity at the end of the plateau La. We analyze a thermal emission (~ 0.97-0.29 keV), observed during the X-ray steep decay phase of GRB 090618. Results: The late X-ray luminosities of the three BdHNe, in the rest-frame energy band 0.3-10 keV, show a precisely constrained "nested" structure. In a space-time diagram, we illustrate the different sizes and Lorentz factors of the emitting regions of the three episodes. For GRB 090618, we infer an initial dimension of the thermal emitter of ~ 7 × 1012 cm, expanding at Γ ≈ 2. We find tighter correlations than the Dainotti-Willingale ones. Conclusions: We confirm a constant slope power-law behavior for the late X-ray luminosity in the source rest frame, which may lead to a new distance indicator for BdHNe. These results, as well as the emitter size and Lorentz factor, appear to be inconsistent with the traditional afterglow model based on synchrotron emission from an ultra-relativistic (Γ ~ 102-103) collimated jet outflow. We argue, instead, for the possible role of r-process, originating in the binary system, to power the mildly relativistic X-ray source.

  19. Thermal and Nonthermal X-ray Emission from the Forward Shock in Tycho's Supernova Remnant

    NASA Technical Reports Server (NTRS)

    Hwang, Una; Decourchelle, Anne; Holt, Stephen S.; Petre, Robert; White, Nicholas E. (Technical Monitor)

    2002-01-01

    We present Chandra CCD images of Tycho's supernova remnant that delineate its outer shock, seen as a thin, smooth rim along the straight northeastern edge and most of the circular western half. The images also show that the Si and S ejecta are highly clumpy, and have reached the forward shock at numerous locations. Most of the X-ray spectra that we examine along the rim show line emission from Si and S, which in some cases must come from ejecta; the continuum is well represented by either thermal or nonthermal models. In the case that the continuum is assumed to be thermal, the temperatures at the rim are all similar at about 2 keV, and the ionization ages are very low because of the overall weakness of the line emission. Assuming shock velocities inferred from radio and X-ray expansion measurements, these temperatures are substantially below those expected for equilibration of the electron and ion temperatures; electron to mean temperature ratios of approximately less than 0.1 - 0.2 indicate at most modest collisionless heating of the electrons at the shock. The nonthermal contribution to these spectra may be important, however, and may account for as many as half of the counts in the 4-6 keV energy range, based on an extrapolation of the hard X-ray spectrum above 10 keV.

  20. X-RAY EMISSION FROM TRANSIENT JET MODEL IN BLACK HOLE BINARIES

    SciTech Connect

    Pe'er, Asaf; Markoff, Sera

    2012-07-10

    While the non-thermal radio through at least near-infrared emission in the hard state in X-ray binaries (XRBs) is known to originate in jets, the source of the non-thermal X-ray component is still uncertain. We introduce a new model for this emission, which takes into account the transient nature of outflows, and show that it can explain the observed properties of the X-ray spectrum. Rapid radiative cooling of the electrons naturally accounts for the break often seen below around 10 keV, and for the canonical spectral slope F{sub {nu}}{proportional_to}{nu}{sup -1/2} observed below the break. We derive the constraints set by the data for both synchrotron- and Compton-dominated models. We show that for the synchrotron-dominated case, the jet should be launched at radii comparable to the inner radius of the disk ({approx}few 100 r{sub s} for the 2000 outburst of XTE J1118+480), with typical magnetic field B {approx}> 10{sup 6} G. We discuss the consequences of our results for the possible connection between the inflow and outflow in the hard state of XRBs.

  1. A Thermal Model for the Featureless X-Ray Emission from SN 1006?

    NASA Astrophysics Data System (ADS)

    Laming, J. Martin

    1998-05-01

    I discuss a thermal model for the continuous X-ray emission from SN 1006, which is also applicable to other supernova remnants (e.g., Cas A, IC 443) where power-law tails are observed at the high-energy end of the X-ray spectrum. It is essentially an updated version of the work of Hamilton and company. The mechanism for producing high-energy continua is thermal bremsstrahlung at the reverse shock, where the electron temperature might be considerably higher than at the forward shock if collisionless heating can occur, and line emission in the ASCA bandpass can be suppressed if the shocked material is carbon. For reasonable values of electron density and temperature, such as might be produced by shocks, the observed X-ray spectra of SN 1006 can be simulated, but morphological arguments and the mass of C required present difficulties for this model. The interpretation of the observed power-law continuum in SN 1006 as synchrotron radiation from cosmic-ray electrons is unchanged. For the other remnants, though, the mechanism discussed here might be much more viable and should certainly be considered.

  2. Solar energetic particle events, hard X-ray and radio emissions - the SEPServer project

    NASA Astrophysics Data System (ADS)

    Klein, K.-L.

    2012-04-01

    Solar energetic particle (SEP) events are a rare occasion to measure directly energetic particles accelerated in an astrophysical environement, and they are a major space hazard. Understanding where and how the particles are accelerated and how they propagate through interplanetary space is a challenge in heliophysics. The SEPServer project, funded since December 2010 by the European Union under the FP7 scheme, aims at building a database of SEP events and associated electromagnetic emissions of energetic particles, especially hard X-rays and radio waves. In early 2012 a prototype database is running and holding data of the 23rd and early 24th solar activity cycles from different particle (SoHO, ACE, Wind, Ulysses, STEREO), hard X-ray (INTEGRAL, RHESSI) and radio instruments (Potsdam, Athens, Nanay and the Wind spacecraft). In this contribution the SEPServer concept will be briefly presented, the present status described, and the relationship between the early phases of some SEP events and the associated radio and hard X-ray emissions will be illustrated for a few events.

  3. Potential Gamma-Ray Emissions from Low-mass X-Ray Binary Jets

    NASA Astrophysics Data System (ADS)

    Zhang, Jian-Fu; Gu, Wei-Min; Liu, Tong; Xue, Li; Lu, Ju-Fu

    2015-06-01

    By proposing a pure leptonic radiation model, we study the potential gamma-ray emissions from the jets of low-mass X-ray binaries. In this model, the relativistic electrons that are accelerated in the jets are responsible for radiative outputs. Nevertheless, jet dynamics are dominated by magnetic and proton-matter kinetic energies. The model involves all kinds of related radiative processes and considers the evolution of relativistic electrons along the jet by numerically solving the kinetic equation. Numerical results show that the spectral energy distributions can extend up to TeV bands, in which synchrotron radiation and synchrotron self-Compton scattering are dominant components. As an example, we apply the model to the low-mass X-ray binary GX 339-4. The results not only can reproduce the currently available observations from GX 339-4, but also predict detectable radiation at GeV and TeV bands by the Fermi and CTA telescopes. Future observations with Fermi and CTA can be used to test our model, which could be employed to distinguish the origin of X-ray emissions.

  4. SCO X-1: Origin of the radio and hard X-ray emissions

    NASA Technical Reports Server (NTRS)

    Ramaty, R.; Cheng, C. C.; Tsuruta, S.

    1973-01-01

    The consequences of models for the central radio source and the hard X-ray ( 30 keV) emitting region in Sco X-1 are examined. It was found that the radio emission could result from noncoherent synchrotron radiation and that the X-rays may be produced by bremsstrahlung. It is shown that both mechanisms require a mass outflow from Sco X-1. The radio source is located at r approximately 3x10 to the 12th power cm from the center of the star, and its linear dimensions do not exceed 3x10 to the 13th power cm. The magnetic field in the radio source is on the order of 1 gauss. If the hard X-rays are produced by thermal bremsstrahlung, their source is located at 10 to the 9th power approximately r approximately 5x10 to the 9th power cm, the temperature is 2x10 to the 9th power K, and the emission measure is 2x10 to the 56th power/cu cm. This hot plasma loses energy inward by conduction and outward by supersonic expansion. The rates of energy loss for both processes are about 10 to the 36th power erg/s, comparable to the total luminosity of Sco X-1.

  5. THE BURSTY NATURE OF SOLAR FLARE X-RAY EMISSION. II. THE NEUPERT EFFECT

    SciTech Connect

    McAteer, R. T. James; Bloomfield, D. Shaun

    2013-10-20

    We carry out a novel statistical test of the Neupert effect based on multifractal spectra. The multifractal spectrum is the number distribution of the strengths (i.e., the Hölder exponents) of bursts in a signal. This is tested on simulations and carried out on RHESSI X-ray data from a well observed GOES X4.8 magnitude flare. The multifractal spectra is ideally suited to quantifying the relative smooth and bursty signals typically found in (thermal) soft X-ray and (non-thermal) hard X-ray data of solar flares. We show that light curves from all energies between 3 keV and 25 keV are statistically similar, suggesting that all these signals are dominated by the same (presumably thermal) emission. Emission lying between 25 keV and 100 keV probably contains some contribution from both thermal and non-thermal sources. The multifractal spectrum of a signal and that of its (cumulative) temporal integration are statistically similar (i.e., low residuals upon subtraction), but shifted by one in the peak Hölder exponent. We find the pairs of 3-6 keV and 100-300 keV emissions, the 6-12 keV and 100-300 keV emissions and the 12-25 keV and 100-300 keV emissions are all consistent with the Neupert effect. The best agreement with the Neupert effect is between the 12-25 keV and 100-300 keV pair, although possibly with some secondary source of thermal emission present.

  6. X-Raying Extended Emission and Rapid Decay of Short Gamma-Ray Bursts

    NASA Astrophysics Data System (ADS)

    Kagawa, Yasuaki; Yonetoku, Daisuke; Sawano, Tatsuya; Toyanago, Asuka; Nakamura, Takashi; Takahashi, Keitaro; Kashiyama, Kazumi; Ioka, Kunihito

    2015-09-01

    Extended emission in short gamma-ray bursts (SGRBs) is a mystery. By conducting time-resolved spectral analyses of the nine brightest events observed by the Swift-XRT, we classify the early X-ray emission of SGRBs into two types. One is the extended emission with exponentially rapid decay, which shows significant spectral softening for hundreds of seconds after the SGRB trigger and is also detected by the Swift-BAT. The other is a dim afterglow that only shows power-law decay over 104 s. The correlations between the temporal decay and spectral indices of the extended emissions are inconsistent with the ?-? correlation expected for the high-latitude curvature emission from a uniform jet. The observed too-rapid decay suggests that the emission is from a photosphere or a patchy surface, and manifests the stopping via a central engine such as magnetic reconnection at the black hole.

  7. The Hard X-Ray Emission from Scorpius X-1 as seen by INTEGRAL

    NASA Technical Reports Server (NTRS)

    Sturner, Steve; Weidenspointner, G.; Shrader, C. R.

    2007-01-01

    We present the results of our hard X-ray and gamma-ray study of the LMXB Sco X-1 utilizing INTEGRAL IBIS/ISGRI and SPI data as well as contemporaneous RXTE PCA data. We have concentrated on investigating the high-energy spectral properties of the Sco X-1 including the nature of the high-energy spectrum and its possible correlations with the location of the source on the color-color diagram. We also present the results of a search for positron-electron annihilation line emission from Sco X-1, as it is the brightest of a bulge X-ray binary population which approximately traces the 511-keV spatial distribution inferred from SPI.

  8. Chemical Analysis of Impurity Boron Atoms in Diamond Using Soft X-ray Emission Spectroscopy

    SciTech Connect

    Muramatsu, Yasuji; Iihara, Junji; Takebe, Toshihiko; Denlinger, Jonathan D.

    2008-03-29

    To analyze the local structure and/or chemical states of boron atoms in boron-doped diamond, which can be synthesized by the microwave plasma-assisted chemical vapor deposition method (CVD-B-diamond) and the temperature gradient method at high pressure and high temperature (HPT-B-diamond), we measured the soft X-ray emission spectra in the CK and BK regions of B-diamonds using synchrotron radiation at the Advanced Light Source (ALS). X-ray spectral analyses using the fingerprint method and molecular orbital calculations confirm that boron atoms in CVD-B-diamond substitute for carbon atoms in the diamond lattice to form covalent B-C bonds, while boron atoms in HPT-B-diamond react with the impurity nitrogen atoms to form hexagonal boron nitride. This suggests that the high purity diamond without nitrogen impurities is necessary to synthesize p-type B-diamond semiconductors.

  9. Standardization of proton-induced x-ray emission technique for analysis of thick samples

    NASA Astrophysics Data System (ADS)

    Ali, Shad; Zeb, Johar; Ahad, Abdul; Ahmad, Ishfaq; Haneef, M.; Akbar, Jehan

    2015-09-01

    This paper describes the standardization of the proton-induced x-ray emission (PIXE) technique for finding the elemental composition of thick samples. For the standardization, three different samples of standard reference materials (SRMs) were analyzed using this technique and the data were compared with the already known data of these certified SRMs. These samples were selected in order to cover the maximum range of elements in the periodic table. Each sample was irradiated for three different values of collected beam charges at three different times. A proton beam of 2.57 MeV obtained using 5UDH-II Pelletron accelerator was used for excitation of x-rays from the sample. The acquired experimental data were analyzed using the GUPIXWIN software. The results show that the SRM data and the data obtained using the PIXE technique are in good agreement.

  10. A Versatile Medium-Resolution X-ray Emission Spectrometer for Diamond Anvil Cell Applications

    SciTech Connect

    Mortensen, Devon R.; Seidler, G. T.; Bradley, J. A.; Lipp, M. J.; Evans, W. J.; Chow, P.; Xiao, Y. M.; Boman, G.; Bowden, Mark E.

    2013-08-28

    We present design and performance details for a polycapillary-coupled x-ray spectrometer that provides very high collection efficiency at a moderate energy resolution suitable for many studies of nonresonant x-ray emission spectroscopy, especially for samples of heavy elements under high pressures. Using a single Bragg analyzer operating close to a backscattering so as to minimize the effect of the weak divergence of the quasicollimated exit beam from the polycapillary optic, this instrument can maintain a typical energy resolution of 5 eV over photon energies from 5 keV to 10 keV. We find dramatically improved count rates as compared to a traditional higher-resolution instrument based on a single spherically-bent crystal analyzer.

  11. Interrelation of soft and hard X-ray emissions during solar flares. II - Simulation model

    NASA Technical Reports Server (NTRS)

    Winglee, R. M.; Dulk, G. A.; Bornmann, P. L.; Brown, J. C.

    1991-01-01

    Two-dimensional electrostatic particle simulations are presented which incorporate the effect of quasi-static electric fields on particle dynamics as well as effects associated with wave-particle interactions induced by the accelerated particles. The properties of the soft and hard X-ray and microwave emissions from such systems are examined. In particular, it is shown that acceleration by quasi-static electric fields and heating via wave-particle interactions produces electron distributions with a broken-power law, similar to those inferred from hard X-ray spectra. Also, heating of the ambient plasma gives rise to a region of hot plasma propagating down to the chromosphere at about the ion sound speed.

  12. A versatile medium-resolution x-ray emission spectrometer for diamond anvil cell applications

    NASA Astrophysics Data System (ADS)

    Mortensen, D. R.; Seidler, G. T.; Bradley, J. A.; Lipp, M. J.; Evans, W. J.; Chow, P.; Xiao, Y.-M.; Boman, G.; Bowden, M. E.

    2013-08-01

    We present design and performance details for a polycapillary-coupled x-ray spectrometer that provides very high collection efficiency at a moderate energy resolution suitable for many studies of nonresonant x-ray emission spectroscopy, especially for samples of heavy elements under high pressures. Using a single Bragg analyzer operating close to backscattering geometry so as to minimize the effect of the weak divergence of the quasicollimated exit beam from the polycapillary optic, this instrument can maintain a typical energy resolution of 5 eV over photon energies from 5 keV to 10 keV. We find dramatically improved count rates as compared to a traditional higher-resolution instrument based on a single spherically bent crystal analyzer.

  13. Cometary X-Rays: Line Emission Cross Sections for Multiply Charged Solar Wind Ion Charge Exchange

    SciTech Connect

    Otranto, S; Olson, R E; Beiersdorfer, P

    2006-12-22

    Absolute line emission cross sections are presented for 1 keV/amu charge exchange collisions of multiply charged solar wind ions with H{sub 2}O, H, O, CO{sub 2}, and CO cometary targets. The present calculations are contrasted with available laboratory data. A parameter-free model is used to successfully predict the recently observed x-ray spectra of comet C/LINEAR 1999 S4. We show that the resulting spectrum is extremely sensitive to the time variations of the solar wind composition. Our results suggest that orbiting x-ray satellites may be a viable way to predict the solar wind intensities and composition on the Earth many hours before the ions reach the earth.

  14. Soft X-ray emissions, meter-wavelength radio bursts, and particle acceleration in solar flares

    NASA Technical Reports Server (NTRS)

    Cane, H. V.; Reames, D. V.

    1988-01-01

    A detailed study of the relationship between metric radio bursts and soft X-ray flares has been made using an extensive data set covering 15 yr. It is found that type IV emission is mainly associated with long-duration 1-8 A events that are known to be well associated with coronal mass ejections. In contrast, type II and type III bursts originate primarily in impulsive soft X-ray events that are not necessarily accompanied by mass ejection. Strong type III bursts, in particular, appear to occur only in association with relatively impulsive flares. It is suggested that coronal shocks responsible for type II bursts are blast waves generated in impulsive energy releases.

  15. X-ray emission and absorption studies of silicides in relation to their electronic structure

    NASA Astrophysics Data System (ADS)

    Weijs, P. J. W.; Wiech, G.; Zahorowski, W.; Speier, W.; Goedkoop, J. B.; Czyzyk, M.; van Acker, J. F.; van Leuken, E.; de Groot, R. A.; van der Laan, G.; Sarma, D. D.; Kumar, L.; Buschow, K. H. J.; Fuggle, J. C.

    1990-04-01

    The valence bands and conduction bands of about 30 transition metal silicides (of which we concentrate on 4 here) have been investigated by measurements of Si X-ray emission bandsspectra, X-ray absorption spectra near the Si K (1s) edge, photoemission spectra, and Bremsstrahlung Isochromat spectra. The densities of states have also been calculated for the materials in their real crystal structures. The influence of the core hole on some spectra has been investigated using supercell calculations, a (Greens function) generalized Clogston-Wolff model, and Auger spectroscopy. A selection of results is presented to illustrate the utility of site and selective methods in investigations of the electronic structure of silicides and the nature of the "quasi-gap" of the partial density of Si p states in the region of the transition metal d bands.

  16. Soft X-ray emission from plasma channel created by wire explosion in water

    NASA Astrophysics Data System (ADS)

    Prukner, Vaclav; Kolacek, Karel; Schmidt, Jiri; Frolov, Oleksandr; Straus, Jaroslav

    2007-11-01

    This year it was designed and built a new apparatus SHOW-WEX (SHOck Wave -- Wire Explosion), which is designed as a soft X-ray source of coherent radiation with wavelength below 20 nm. The radiation will be produced in a plasma channel created by a wire explosion in a liquid where the proximity of liquid wall stabilizes plasma channel similarly as proximity of solid wall stabilizes a Z-pinch in a capillary. Moreover, if the pressure in a liquid is increased (or locally increased by focused shock wave, which is more efficient and a higher pressure can be reached), then the plasma expansion is slowed down, the stability of plasma is enhanced, and the requirements on the driver can be softened. The first experimental data on wire explosions i.e. time dependences of charging voltage, discharge current, and soft X-ray radiation emission (measured by vacuum photo diode) are presented.

  17. Discovery of Nonthermal X-ray Emission from the Embedded Massive Star Forming Region RCW 38

    NASA Astrophysics Data System (ADS)

    Wolk, S.; Bourke, T.; Smith, R. K.; Spitzbart, B.; Alves, J.

    2002-12-01

    We report on results of a 96.7 ks Chandra observation of one of the youngest, most embedded and massive young stellar clusters studied to date in X-rays -- RCW 38. We find a region of extended emission about 1.25 pc x 1.75 pc. The emission is consistent with synchrotron emission. The power index of the emission steepens toward the cluster core implying that the magnetic field originates there. This is the first evidence of synchrotron emission filling a region of active star formation. The source of the necessary magnetic field is unclear. We measure the hydrogen column to the emission and find NH increases from 7.6 x 1021 cm-2 to 1.61 x 1022 cm-2 increasing from the northwest to the southeast quadrants of the cluster, consistent with near-infrared extinction data. The work is supported by the Chandra X-ray Center NASA Contract NAS8-39073 and by Chandra guest observer grant G02-3015X.

  18. Carbon and oxygen X-ray line emission from the interstellar medium

    NASA Technical Reports Server (NTRS)

    Schnopper, H. W.; Delvaille, J. P.; Rocchia, R.; Blondel, C.; Cheron, C.; Christy, J. C.; Ducros, R.; Koch, L.; Rothenflug, R.

    1982-01-01

    A soft X-ray, 0.3-1.0 keV spectrum from a 1 sr region which includes a portion of the North Polar Spur, obtained by three rocketborne lithium-drifted silicon detectors, shows the C V, C VI, O VII and O VIII emission lines. The spectrum is well fitted by a two-component, modified Kato (1976) model, where the coronal emission is in collisional equilibrium, with interstellar medium and North Polar Spur temperatures of 1.1 and 3.8 million K, respectively.

  19. X-ray emission from plasmas created by smoothed KrF laser irradiation

    SciTech Connect

    Aglitskiy, Y.; Lehecka, T.; Deniz, A.; Hardgrove, J.; Seely, J.; Brown, C.; Feldman, U.; Pawley, C.; Gerber, K.; Bodner, S.; Obenschain, S.; Lehmberg, R.; McLean, E.; Pronko, M.; Sethian, J.; Stamper, J.; Schmitt, A.; Sullivan, C.; Holland, G.; Laming, M.

    1996-09-01

    The x-ray emission from plasmas created by the Naval Research Laboratory Nike KrF laser [Phys. Plasmas {bold 3}, 2098 (1996) ] was characterized using imaging and spectroscopic instruments. The laser wavelength was 1/4 {mu}m, and the beams were smoothed by induced spatial incoherence (ISI). The targets were thin foils of CH, aluminum, titanium, and cobalt and were irradiated by laser energies in the range 100{endash}1500 J. A multilayer mirror microscope operating at an energy of 95 eV recorded images of the plasma with a spatial resolution of 2 {mu}m. The variation of the 95 eV emission across the 800 {mu}m focal spot was 1.3{percent} rms. Using a curved crystal imager operating in the 1{endash}2 keV x-ray region, the density, temperature, and opacity of aluminum plasmas were determined with a spatial resolution of 10 {mu}m perpendicular to the target surface. The spectral line ratios indicated that the aluminum plasmas were relatively dense, cool, and optically thick near the target surface. The absolute radiation flux was determined at 95 eV and in x-ray bandpasses covering the 1{endash}8 keV region. The electron temperature inferred from the slope of the x-ray flux versus energy data in the 5{endash}8 keV region was 900 eV for an incident laser energy of 200 J and an intensity of {approx_equal}10{sup 13} W/cm{sup 2}.

  20. Star Formation and X-Ray Emission in Distant Star-Forming Galaxies

    NASA Astrophysics Data System (ADS)

    Cohen, Judith G.

    2003-11-01

    About 45% of the point sources detected in the 2 Ms Chandra exposure of the Hubble Deep Field-North (HDF-N) can be matched with moderately bright galaxies with z<1.4 that have been studied by the Caltech Faint Galaxy Redshift Survey. Although the optical spectra of these galaxies appear normal, based on their X-ray properties ~20% of them appear to contain weak active galactic nuclei (AGNs). More than 90% of the X-ray photons detected by Chandra from galaxies within the redshift regime 0.4X-ray-emitting galaxies are not those with the highest rest-frame equivalent width in this emission line, but rather are among those with the highest SFRs. With SFRs corrected for inclination effects, the distant galaxies show an LX-SFR relationship that is comparable to that of local galaxies. The HDF sample has a significantly higher median SFR and median SFR/galaxy stellar mass than does a sample of local star-forming galaxies. We demonstrate that the observed SFR for most of the galaxies at z~1 in the HDF sample, if maintained as constant over their ages, suffices to produce the stellar mass observed in these galaxies. A rise in SFR at still earlier times is not required. We provide further evidence to support the conclusion that, once AGNs are eliminated, X-ray emission in these distant star-forming galaxies is related to the SFR through the same physical mechanisms that prevail locally. Based in part on observations obtained at the W. M. Keck Observatory, which is operated jointly by the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration.

  1. X-Ray Absorption, Nuclear Infrared Emission, and Dust Covering Factors of AGNs: Testing Unification Schemes

    NASA Astrophysics Data System (ADS)

    Mateos, S.; Carrera, F. J.; Alonso-Herrero, A.; Hernán-Caballero, A.; Barcons, X.; Asensio Ramos, A.; Watson, M. G.; Blain, A.; Caccianiga, A.; Ballo, L.; Braito, V.; Ramos Almeida, C.

    2016-03-01

    We present the distributions of the geometrical covering factors of the dusty tori (f2) of active galactic nuclei (AGNs) using an X-ray selected complete sample of 227 AGNs drawn from the Bright Ultra-hard XMM-Newton Survey. The AGNs have z from 0.05 to 1.7, 2–10 keV luminosities between 1042 and 1046 erg s‑1, and Compton-thin X-ray absorption. Employing data from UKIDSS, 2MASS, and the Wide-field Infrared Survey Explorer in a previous work, we determined the rest-frame 1–20 μm continuum emission from the torus, which we model here with the clumpy torus models of Nenkova et al. Optically classified type 1 and type 2 AGNs are intrinsically different, with type 2 AGNs having, on average, tori with higher f2 than type 1 AGNs. Nevertheless, ∼20% of type 1 AGNs have tori with large covering factors, while ∼23%–28% of type 2 AGNs have tori with small covering factors. Low f2 are preferred at high AGN luminosities, as postulated by simple receding torus models, although for type 2 AGNs the effect is certainly small. f2 increases with the X-ray column density, which implies that dust extinction and X-ray absorption take place in material that share an overall geometry and most likely belong to the same structure, the putative torus. Based on our results, the viewing angle, AGN luminosity, and also f2 determine the optical appearance of an AGN and control the shape of the rest-frame ∼1–20 μm nuclear continuum emission. Thus, the torus geometrical covering factor is a key ingredient of unification schemes.

  2. LATE-TIME RADIO EMISSION FROM X-RAY-SELECTED TIDAL DISRUPTION EVENTS

    SciTech Connect

    Bower, Geoffrey C.; Cenko, S. Bradley; Silverman, Jeffrey M.; Bloom, Joshua S.; Metzger, Brian D.

    2013-02-15

    We present new observations with the Karl G. Jansky Very Large Array of seven X-ray-selected tidal disruption events (TDEs). The radio observations were carried out between 9 and 22 years after the initial X-ray discovery, and thus probe the late-time formation of relativistic jets and jet interactions with the interstellar medium in these systems. We detect a compact radio source in the nucleus of the galaxy IC 3599 and a compact radio source that is a possible counterpart to RX J1420.4+5334. We find no radio counterparts for five other sources with flux density upper limits between 51 and 200 {mu}Jy (3{sigma}). If the detections truly represent late radio emission associated with a TDE, then our results suggest that a fraction, {approx}> 10%, of X-ray-detected TDEs are accompanied by relativistic jets. We explore several models for producing late radio emission, including interaction of the jet with gas in the circumnuclear environment (blast wave model), and emission from the core of the jet itself. Upper limits on the radio flux density from archival observations suggest that the jet formation may have been delayed for years after the TDE, possibly triggered by the accretion rate dropping below a critical threshold of {approx}10{sup -2}-10{sup -3} M-dot {sub Edd}. The non-detections are also consistent with this scenario; deeper radio observations can determine whether relativistic jets are present in these systems. The emission from RX J1420.4+5334 is also consistent with the predictions of the blast wave model; however, the radio emission from IC 3599 is substantially underluminous, and its spectral slope is too flat, relative to the blast wave model expectations. Future radio monitoring of IC 3599 and RX J1420.4+5334 will help to better constrain the nature of the jets in these systems.

  3. Investigation of magnetic field manipulated electrons produced from laser-driven ultrafast x-ray sources using x-ray emission spectroscopy

    NASA Astrophysics Data System (ADS)

    Lee, Changju; Davidson, R. Andrew; Guo, Ting

    2015-03-01

    We used x-ray emission spectroscopy to study energetic electrons (10-100?keV) generated at the laser focus of an intense ultrafast laser interacting with a primary thin film tape target. The electrons penetrated the tape and reached a secondary target of thin metal foils as the probe. The trajectories of these electrons were manipulated with an external magnetic field generated from a home-made Halbach magnet. The interaction of these energetic electrons with the probe produced characteristic x-rays, which were used to infer the flux and temperature of the electrons emitted from the laser focus at the primary tape target. A potential application using these energetic electrons is discussed.

  4. X-RAY SPECTRAL CUTOFF AND THE LACK OF HARD X-RAY EMISSION FROM TWO ULTRALUMINOUS X-RAY SOURCES M81 X-6 AND HOLMBERG IX X-1

    SciTech Connect

    Dewangan, G. C.; Misra, R.; Jithesh, V.; Ravikumar, C. D.

    2013-07-10

    We present broadband X-ray spectral study of two ultraluminous X-ray sources (ULXs), M81 X-6 and Holmberg IX X-1, based on Suzaku and XMM-Newton observations. We perform joint broadband spectral analysis of the brightest sources in the field, i.e., the two ULXs and the active galactic nucleus (AGN) in M81, and demonstrate that the X-ray spectra of the ULXs cut off at energies {approx}> 3 keV with negligible contribution at high energies in the Suzaku HXD/PIN band. The 90% upper limit on the 10-30 keV band luminosity of an underlying broadband power-law component is 3.5 Multiplication-Sign 10{sup 38} erg s{sup -1} for M81 X-6 and 1.2 Multiplication-Sign 10{sup 39} erg s{sup -1} for Holmberg IX X-1. These limits are more than an order of magnitude lower than the bolometric (0.1-30 keV) luminosity of 6.8 Multiplication-Sign 10{sup 39} erg s{sup -1} for M81 X-6 and 1.9 Multiplication-Sign 10{sup 40} erg s{sup -1} for Holmberg IX X-1. Our results confirm earlier indications of spectral cutoffs inferred from the XMM-Newton observations of bright ULXs and show that there is not an additional high-energy power-law component contributing significantly to the X-ray emission. The spectral form of the two ULXs are very different from those of Galactic black hole X-ray binaries (BHBs) or AGNs. This implies that the ULXs are neither simply scaled-up versions of stellar-mass BHBs nor scaled-down versions of AGNs.

  5. CORONAL THICK TARGET HARD X-RAY EMISSIONS AND RADIO EMISSIONS

    SciTech Connect

    Lee, Jeongwoo; Lim, Daye; Choe, G. S.; Kim, Kap-Sung; Jang, Minhwan

    2013-05-20

    A distinctive class of hard X-ray (HXR) sources located in the corona was recently found, which implies that the collisionally thick target model (CTTM) applies even to the corona. We investigated whether this idea can be independently verified by microwave radiations which have been known as the best companion to HXRs. This study is conducted on the GOES M2.3 class flare which occurred on 2002 September 9 and was observed by the Reuven Ramaty High-Energy Solar Spectroscopic Imager and the Owens Valley Solar Array. Interpreting the observed energy-dependent variation of HXR source size under the CTTM, the coronal density should be as high as 5 Multiplication-Sign 10{sup 11} cm{sup -3} over a distance of up to 12''. To explain the cutoff feature of the microwave spectrum at 3 GHz, however, we require a density no higher than 1 Multiplication-Sign 10{sup 11} cm{sup -3}. Additional constraints must be placed on the temperature and magnetic field of the coronal source in order to reproduce the microwave spectrum as a whole. First, a spectral feature called the Razin suppression requires a magnetic field in a range of 250-350 G along with high viewing angles around 75 Degree-Sign . Second, to avoid excess fluxes at high frequencies due to the free-free emission that was not observed, we need a high temperature {>=}2 Multiplication-Sign 10{sup 7} K. These two microwave spectral features, Razin suppression and free-free emissions, become more significant at regions of high thermal plasma density and are essential for validating and determining additional parameters of the coronal HXR sources.

  6. Unique Properties of Thermally Tailored Copper: Magnetically Active Regions and Anomalous X-ray Fluorescence Emissions

    PubMed Central

    2009-01-01

    When high-purity copper (≥99.98%wt) is melted, held in its liquid state for a few hours with iterative thermal cycling, then allowed to resolidify, the ingot surface is found to have many small regions that are magnetically active. X-ray fluorescence analysis of these regions exhibit remarkably intense lines from “sensitized elements” (SE), including in part or fully the contiguous series V, Cr, Mn, Fe, and Co. The XRF emissions from SE are far more intense than expected from known impurity levels. Comparison with blanks and standards show that the thermal “tailoring” also introduces strongly enhanced SE emissions in samples taken from the interior of the copper ingots. For some magnetic regions, the location as well as the SE emissions, although persistent, vary irregularly with time. Also, for some regions extraordinarily intense “sensitized iron” (SFe) emissions occur, accompanied by drastic attenuation of Cu emissions. PMID:20037657

  7. A Compact X-ray Generator Using a Nanostructured Field Emission Cathode and a Microstructured Transmission Anode

    NASA Astrophysics Data System (ADS)

    Cheng, S.; Hill, F. A.; Heubel, E. V.; Velás quez-García, L. F.

    2013-12-01

    We report the design, fabrication, and preliminary characterization of a compact X-ray generator for improved X-ray absorption imaging that uses a nanostructured field emission cathode (FEC) as the electron source and a microstructured transmission anode as the X-ray generating element. FECs consume less power, respond faster, and tolerate lower vacuum than thermionic cathodes used in conventional X-ray generators. The use of a transmission anode, instead of a conventional reflection anode, allows filtering of the background radiation (brems strahlung) while allowing efficient generation of X-rays at lower voltages by exciting atomic shell transitions, resulting in emission of X-rays with narrow spectral linewidth for sharper imaging of biological tissue. The fabricated FEC contains arrays of self-aligned, gated field emitters that turn on at bias voltages under 30 V and transmit 99.5% of the electrons to the anode. The FEC emits a maximum current of 1.2 μA per field emitter (588 μA total array current) at a bias voltage of 85 V. A facility is built and tested to generate X-rays with an FEC and a transmission anode. Using the facility, we obtained an X-ray absorption image of an ex-vivos ample that clearly shows softtissue and fine bone structures.

  8. X-ray emission from a nanosecond-pulse discharge in an inhomogeneous electric field at atmospheric pressure

    SciTech Connect

    Zhang Cheng; Shao Tao; Ren Chengyan; Zhang Dongdong; Tarasenko, Victor; Kostyrya, Igor D.; Ma Hao; Yan Ping

    2012-12-15

    This paper describes experimental studies of the dependence of the X-ray intensity on the anode material in nanosecond high-voltage discharges. The discharges were generated by two nanosecond-pulse generators in atmospheric air with a highly inhomogeneous electric field by a tube-plate gap. The output pulse of the first generator (repetitive pulse generator) has a rise time of about 15 ns and a full width at half maximum of 30-40 ns. The output of the second generator (single pulse generator) has a rise time of about 0.3 ns and a full width at half maximum of 1 ns. The electrical characteristics and the X-ray emission of nanosecond-pulse discharge in atmospheric air are studied by the measurement of voltage-current waveforms, discharge images, X-ray count and dose. Our experimental results showed that the anode material rarely affects electrical characteristics, but it can significantly affect the X-ray density. Comparing the density of X-rays, it was shown that the highest x-rays density occurred in the diffuse discharge in repetitive pulse mode, then the spark discharge with a small air gap, and then the corona discharge with a large air gap, in which the X-ray density was the lowest. Therefore, it could be confirmed that the bremsstrahlung at the anode contributes to the X-ray emission from nanosecond-pulse discharges.

  9. BAT AGN spectroscopic survey-II. X-ray emission and high-ionization optical emission lines

    NASA Astrophysics Data System (ADS)

    Berney, Simon; Koss, Michael; Trakhtenbrot, Benny; Ricci, Claudio; Lamperti, Isabella; Schawinski, Kevin; Baloković, Mislav; Crenshaw, D. Michael; Fischer, Travis; Gehrels, Neil; Harrison, Fiona; Hashimoto, Yasuhiro; Ichikawa, Kohei; Mushotzky, Richard; Oh, Kyuseok; Stern, Daniel; Treister, Ezequiel; Ueda, Yoshihiro; Veilleux, Sylvain; Winter, Lisa

    2015-12-01

    We investigate the relationship between X-ray and optical line emission in 340 nearby (z ≃ 0.04) AGN selected above 10 keV using Swift BAT. We find a weak correlation between the extinction corrected [O III] and hard X-ray luminosity (L_[O III]^{int} ∝ L_{14-195}) with a large scatter (RPear = 0.64, σ = 0.62 dex) and a similarly large scatter with the intrinsic 2-10 keV to [O III] luminosities (RPear = 0.63, σ = 0.63 dex). Correlations of the hard X-ray fluxes with the fluxes of high-ionization narrow lines ([O III], He II, [Ne III] and [Ne V]) are not significantly better than with the low-ionization lines (H α, [S II]). Factors like obscuration or physical slit size are not found to be a significant part of the large scatter. In contrast, the optical emission lines show much better correlations with each other (σ = 0.3 dex) than with the X-ray flux. The inherent large scatter questions the common usage of narrow emission lines as AGN bolometric luminosity indicators and suggests that other issues such as geometrical differences in the scattering of the ionized gas or long-term AGN variability are important.

  10. Discovery of the double Doppler-shifted emission-line systems in the X-ray spectrum of SS 433

    NASA Technical Reports Server (NTRS)

    Kotani, Taro; Kawai, Nobuyuki; Aoki, Takashi; Doty, John; Matsuoka, Masaru; Mitsuda, Kazuhisa; Nagase, Fumiaki; Ricker, George; White, Nick E.

    1994-01-01

    We have used the CCD X-ray spectrometers on ASCA and resolved the X-ray emission line from the jet of SS 433 both into Doppler-shifted components with two distinct velocities, and into emission from different ionization states of iron, i.e., Fe XXV and Fe XXVI. This is the first direct detection of the two Doppler shifted beams in the X-ray spectra of SS 433 and allows the radial velocity of the jet along the line of sight to be determined with an accuracy comparable to the optical spectroscopy. We also found pairs of emission lines from other atomic species, such as ionized silicon and sulfur, with the Doppler shifts consistent with each other. This confirms the origin of the X-ray emission in the high temperature plasma in the jets.

  11. Discovery of the double Doppler-shifted emission-line systems in the X-ray spectrum of SS 433

    NASA Astrophysics Data System (ADS)

    Kotani, Taro; Kawai, Nobuyuki; Aoki, Takashi; Doty, John; Matsuoka, Masaru; Mitsuda, Kazuhisa; Nagase, Fumiaki; Ricker, George; White, Nick E.

    1994-08-01

    We have used the CCD X-ray spectrometers on ASCA and resolved the X-ray emission line from the jet of SS 433 both into Doppler-shifted components with two distinct velocities, and into emission from different ionization states of iron, i.e., Fe XXV and Fe XXVI. This is the first direct detection of the two Doppler shifted beams in the X-ray spectra of SS 433 and allows the radial velocity of the jet along the line of sight to be determined with an accuracy comparable to the optical spectroscopy. We also found pairs of emission lines from other atomic species, such as ionized silicon and sulfur, with the Doppler shifts consistent with each other. This confirms the origin of the X-ray emission in the high temperature plasma in the jets.

  12. Wind Bubbles around Massive Stars: Ionization-Gasdynamics Modelling and X-ray Emission Calculations

    NASA Astrophysics Data System (ADS)

    Dwarkadas, Vikram; Rosenberg, D.

    2011-01-01

    Using a code that employs a self-consistent method for computing the effects of photo-ionization on circumstellar gas dynamics, we model the formation of wind-driven nebulae around massive stars. Our algorithm incorporates a simplified model of the photo-ionization source, computes the fractional ionization of hydrogen due to the photo-ionizing flux and recombination, and determines self-consistently the energy balance due to ionization, photo-heating and radiative cooling. We take into account changes in stellar properties and mass-loss over the star's evolution. Our multi-dimensional simulations clearly reveal the presence of strong ionization front instabilities, similar to those seen in galactic ionization fronts. In this poster we describe the code, and show how inclusion of photo-ionization affects the wind bubble structure and dynamics. Using various X-ray emission models, we compute the X-ray flux and spectra from our wind bubble models, and compare to observed data. VVD's research is supported by grant TM9-0001X provided by NASA through the Chandra X-ray Observatory Center, which is operated by the Smithsonian Astrophysical Observatory for and on behalf of the National Aeronautics Space Administration under contract NAS8-03060.

  13. Intravenous coronary angiography utilizing K-emission and bremsstrahlung X-rays produced by electron bombardment

    SciTech Connect

    1992-12-31

    The screening of the general population for coronary artery disease would be practical if a method existed for visualizing the extent of occlusion after an intravenous injection of contrast agent. Measurements performed with synchrotron radiation at SSRL and NSLS have shown that such an intravenous angiography procedure would be possible with an intense source of monochromatic X-rays. Because of the high cost of an electron synchrotron, theoretical analysis and experiments using inanimate phantoms has been undertaken to demonstrate the feasibility of using the spectrum produced by two appropriately chosen anode materials when bombarded with electrons in the 100--500 keV energy range for angiography. By using the X-rays emitted at 120{degree} to the incident electron direction, about 20--30% of the X-ray intensity would be due to K-emission lines. Calculations using the TIGERP Monte Carlo Code, have shown that high quality angiograms of human coronary arteries should be possible with a contrast agent containing ytterbium, if an electron beam pulses of 16 kJ were used for each anode target. The experimental program supported in part by the DOE has consisted of these theoretical calculations and experiments at the Dynamitron Electron Accelerator Facility at BNL.

  14. Transition-Edge Sensors for Particle Induced X-ray Emission Measurements

    NASA Astrophysics Data System (ADS)

    Palosaari, M. R. J.; Kinnunen, K. M.; Julin, J.; Laitinen, M.; Napari, M.; Sajavaara, T.; Doriese, W. B.; Fowler, J.; Reintsema, C.; Swetz, D.; Schmidt, D.; Ullom, J.; Maasilta, I. J.

    2014-08-01

    In this paper we present a new measurement setup, where a transition-edge sensor detector array is used to detect X-rays in particle induced X-ray emission (PIXE) measurements with a 2 MeV proton beam. Transition-edge sensors offer orders of magnitude improvement in energy resolution compared to conventional silicon or germanium detectors, making it possible to recognize spectral lines in materials analysis that have previously been impossible to resolve, and to get chemical information from the elements. Our sensors are cooled to the operation temperature (65 mK) with a cryogen-free adiabatic demagnetization refrigerator, which houses a specially designed X-ray snout that has a vacuum tight window to couple in the radiation. For the best pixel, the measured instrumental energy resolution was 3.06 eV full width at half maximum at 5.9 keV. We discuss the current status of the project, benefits of transition-edge sensors when used in PIXE spectroscopy, and the results from the first measurements.

  15. Observation of iron spin-states using tabletop x-ray emission spectroscopy and microcalorimeter sensors

    NASA Astrophysics Data System (ADS)

    Joe, Y. I.; ONeil, G. C.; Miaja-Avila, L.; Fowler, J. W.; Jimenez, R.; Silverman, K. L.; Swetz, D. S.; Ullom, J. N.

    2016-01-01

    X-ray emission spectroscopy (XES) is a powerful probe of the electronic and chemical state of elemental species embedded within complex compounds. X-ray sensors that combine high resolving power and high collecting efficiency are desirable for photon-starved XES experiments such as measurements of dilute, gaseous, and radiation-sensitive samples, time-resolved measurements, and in-laboratory XES. To assess whether arrays of cryogenic microcalorimeters will be useful in photon-starved XES scenarios, we demonstrate that these emerging energy-dispersive sensors can detect the spin-state of 3d electrons of iron in two different compounds, Fe2O3 and FeS2. The measurements were conducted with a picosecond pulsed laser-driven plasma as the exciting x-ray source. The use of this tabletop source suggests that time-resolved in-laboratory XES will be possible in the future. We also present simulations of {{K}}? and {{K}}? spectra that reveal the spin-state sensitivity of different combinations of sensor resolution and accumulated counts. These simulations predict that our current experimental apparatus can perform time-resolved XES measurements on some samples with a measurement time of a few 10 s of hours per time delay.

  16. The Discovery of Localized Hard X-ray Emission in the Supernova Remnant IC 443

    NASA Astrophysics Data System (ADS)

    Keohane, J. W.; Gotthelf, E. V.; Petre, R.; Ozaki, M.; Koyama, K.

    1996-05-01

    We present ASCA GIS data that show a hard X-ray source located at 06(h) 17(m) 05(s) ,{+22deg 21arcmin 30arcsec }(J2000), which is on the southern shell of the supernova remnant IC 443 \\@. We also present ROSAT HRI data which show emission of approximately 1' in extent and no strong periodicity from 0.1 to 1000 Hz\\@. The ASCA spectrum of this feature can be characterized by a power-law of energy spectral index alpha = 1.5 +/- 0.3\\@. The hard source is coincident with a unique region of flat radio spectral index (alpha < 0.24). Linking the radio and X-ray spectra yields an upper limit of 10(16) Hz on the break frequency\\@. The source is near a region of known interactions between shocks and molecular clouds. Moreover, the hard source lies on the 99% confidence error circle of the gamma ray source 2EG J0618+2234\\@. However, the Digitized Sky Survey and the VLA D Array Sky Survey show no obvious optical nor radio counterparts. From the current data, we conclude that this source is most likely a site of ongoing particle acceleration producing X-ray synchrotron radiation. http://lheawww.gsfc.nasa.gov/users/jonathan/AAS_188 _IC443

  17. Suzaku Spectral Study of the Galactic Ridge X-Ray Emission

    NASA Astrophysics Data System (ADS)

    Ebisawa, K.; Yamauchi, S.; Tanaka, Y.; Koyama, K.; Suzaku Team

    We have observed a typical Galactic plane blank field with Suzaku for 100 ksec to carry out spectral study of the Galactic Ridge X-ray Emissio