Sample records for quiescent x-ray emission

  1. Quiescent thermal emission from neutron stars in low-mass X-ray binaries

    NASA Astrophysics Data System (ADS)

    Turlione, A.; Aguilera, D. N.; Pons, J. A.

    2015-05-01

    Context. We monitored the quiescent thermal emission from neutron stars in low-mass X-ray binaries after active periods of intense activity in X-rays (outbursts). Aims: The theoretical modeling of the thermal relaxation of the neutron star crust may be used to establish constraints on the crust composition and transport properties, depending on the astrophysical scenarios assumed. Methods: We numerically simulated the thermal evolution of the neutron star crust and compared them with inferred surface temperatures for five sources: MXB 1659-29, KS 1731-260, XTE J1701-462, EXO 0748-676 and IGR J17480-2446. Results: We find that the evolution of MXB 1659-29, KS 1731-260 and EXO 0748-676 can be well described within a deep crustal cooling scenario. Conversely, we find that the other two sources can only be explained with models beyond crustal cooling. For the peculiar emission of XTE J1701-462 we propose alternative scenarios such as residual accretion during quiescence, additional heat sources in the outer crust, and/or thermal isolation of the inner crust due to a buried magnetic field. We also explain the very recent reported temperature of IGR J17480-2446 with an additional heat deposition in the outer crust from shallow sources.

  2. The Quiescent Emission Spectrum of Cen X-4 and other X-ray Transients containing Neutron Stars

    E-print Network

    Kristen Menou; Jeffrey E. McClintock

    2001-04-17

    We use the observed optical-UV and X-ray emission spectrum of Cen X-4 during quiescence to constrain models for the accretion flow in this system. We argue that the optical-UV emission is not due to an optically-thick quiescent accretion disk, nor due to synchrotron emission from an Advection-Dominated Accretion Flow (ADAF). Emission from the bright spot could account for the observed optical-UV component if the mass transfer rate in Cen X-4 is >~ 2.10^16 g/s. Although the presence of an ADAF around the neutron star leads to Compton upscattering of the soft X-ray photons radiated from the stellar surface, we find that this process alone cannot account for the power law component seen in the quiescent X-ray spectrum of Cen X-4 and other X-ray transients containing neutron stars; this result is independent of whether the source of soft photons is incandescent thermal emission or accretion-powered emission. We conclude that, in models which invoke the presence of an ADAF and a propeller effect for the quiescence of X-ray transients containing neutron stars, the intrinsic emission from the ADAF must contribute very little to the optical-UV and X-ray emission observed. If these ADAF+propeller models are correct, the X-ray power law component observed must arise from regions where the gas impacts the neutron star surface. Variability studies could greatly help clarify the role of the various emission mechanisms involved.

  3. X-ray and UV correlation in the quiescent emission of Cen X-4, evidence of accretion and reprocessing

    NASA Astrophysics Data System (ADS)

    Bernardini, F.; Cackett, E. M.; Brown, E. F.; D'Angelo, C.; Degenaar, N.; Miller, J. M.; Reynolds, M.; Wijnands, R.

    2014-01-01

    We conducted the first long-term (60 days), multiwavelength (optical, ultraviolet, and X-ray) simultaneous monitoring of Cen X-4 with daily Swift observations, with the goal of understanding variability in the low mass X-ray binary Cen X-4 during quiescence. We found Cen X-4 to be highly variable in all energy bands on timescales from days to months, with the strongest quiescent variability a factor of 22 drop in the X-ray count rate in only 4 days. The X-ray, UV and optical (V band) emission are correlated on timescales down to less than 110 s. The shape of the correlation is a power law with index ? about 0.2-0.6. The X-ray spectrum is well fitted by a hydrogen NS atmosphere (kT = 59 - 80 eV) and a power law (with spectral index ? = 1.4 - 2.0), with the spectral shape remaining constant as the flux varies. Both components vary in tandem, with each responsible for about 50% of the total X-ray flux, implying that they are physically linked. We conclude that the X-rays are likely generated by matter accreting down to the NS surface. Moreover, based on the short timescale of the correlation, we also unambiguously demonstrate that the UV emission can not be due to either thermal emission from the stream impact point, or a standard optically thick, geometrically thin disc. The spectral energy distribution shows a small UV emitting region, too hot to arise from the accretion disk, that we identified as a hot spot on the companion star. Therefore, the UV emission is most likely produced by reprocessing from the companion star, indeed the vertical size of the disc is small and can only reprocess a marginal fraction of the X-ray emission. We also found the accretion disc in quiescence to likely be UV faint, with a minimal contribution to the whole UV flux.

  4. Non-Quiescent X-ray Emission from Neutron Stars and Black Holes

    SciTech Connect

    Tournear, Derek M

    2003-08-18

    X-ray astronomy began with the detection of the persistent source Scorpius X-1. Shortly afterwards, sources were detected that were variable. Centaurus X-2, was determined to be an X-ray transient, having a quiescent state, and a state that was much brighter. As X-ray astronomy progressed, classifications of transient sources developed. One class of sources, believed to be neutron stars, undergo extreme luminosity transitions lasting a few seconds. These outbursts are believed to be thermonuclear explosions occurring on the surface of neutron stars (type I X-ray bursts). Other sources undergo luminosity changes that cannot be explained by thermonuclear burning and last for days to months. These sources are soft X-ray transients (SXTs) and are believed to be the result of instabilities in the accretion of matter onto either a neutron star or black hole. Type I X-ray bursts provide a tool for probing the surfaces of neutron stars. Requiring a surface for the burning has led authors to use the presence of X-ray bursts to rule out the existence of a black hole (where an event horizon exists not a surface) for systems which exhibit type I X-ray bursts. Distinguishing between neutron stars and black holes has been a problem for decades. Narayan and Heyl have developed a theoretical framework to convert suitable upper limits on type I X-ray bursts from accreting black hole candidates (BHCs) into evidence for an event horizon. We survey 2101.2 ks of data from the USA X-ray timing experiment and 5142 ks of data from the Rossi X-ray Timing Explorer (RXTE) experiment to obtain the first formal constraint of this type. 1122 ks of neutron star data yield a population averaged mean burst rate of 1.7 {+-} 0.4 x 10{sup -5} bursts s{sup -1}, while 6081 ks of BHC data yield a 95% confidence level upper limit of 4.9 x 10{sup -7} bursts s{sup -1}. Applying the framework of Narayan and Heyl we calculate regions of luminosity where the neutron stars are expected to burst and the BHCs would be expected to burst if they had a similar surface. In this luminosity region 464 ks of neutron star data yield an averaged mean burst rate of 4.1 {+-} 0.9 x 10{sup -5} bursts s{sup -1}, and 1512 ks of BHC data yield a 95% confidence level upper limit of 2.0 x 10{sup -6} bursts s{sup -1} and a strong limit that BHCs do not burst with a rate similar to the rate of neutron stars in these regions. This gives evidence that BHCs do not have surfaces. In addition to studying type I X-ray bursts, we analyzed the SXT behavior. In particular, 4U 1630-47, was analyzed throughout its 1999 outburst. This source is one of the oldest known SXTs. This source is assumed to be a BHC in a low-mass X-ray binary system. Despite the length of time devoted to studying this source, there is still little known about it. We report the results of timing and spectral analysis on the 1999 outburst, and compare these results to other outbursts of 4U 1630-47. We found this source progressed from a low-hard state to a high-soft state and then rapidly transitioned back into the low-hard state before returning to quiescence. Timing analysis detected a low frequency quasi-periodic oscillation (LFQPO) during the initial rise of the outburst, which disappeared and did not return. The variability in the X-ray flux in the 0.1-2000 Hz frequency range is low during the high state, but increases as the source progresses into the low-hard state. The next generation Gamma Ray Large Area Space Telescope (GLAST), will measure astrophysical phenomena in the 20 MeV--a few TeV energy range. We describe preliminary design and testing of GLAST. The detector is based on a silicon tracker with similar design characteristics of vertex detectors used in high-energy physics experiments at accelerator based facilities. A beam test engineering model was designed, constructed, and tested at SLAC in 1999-2000. We describe this test, and discuss how the results from this test can improve and demonstrate the viability of the GLAST technology.

  5. THE VARIABLE QUIESCENT X-RAY EMISSION OF THE TRANSIENT NEUTRON STAR XTE J1701-462

    SciTech Connect

    Fridriksson, Joel K. [Department of Physics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139 (United States); Homan, Jeroen [MIT Kavli Institute for Astrophysics and Space Research, 77 Massachusetts Avenue, Cambridge, MA 02139 (United States); Wijnands, Rudy; Altamirano, Diego; Degenaar, Nathalie [Astronomical Institute 'Anton Pannekoek', University of Amsterdam, Science Park 904, 1098 XH Amsterdam (Netherlands); Cackett, Edward M. [Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA (United Kingdom); Brown, Edward F. [Department of Physics and Astronomy, Michigan State University, 3250 Biomedical and Physical Sciences Building, East Lansing, MI 48824 (United States); Mendez, Mariano [Kapteyn Astronomical Institute, University of Groningen, P.O. Box 800, 9700 AV Groningen (Netherlands); Belloni, Tomaso M., E-mail: joelkf@mit.edu [INAF-Osservatorio Astronomico di Brera, Via E. Bianchi 46, I-23807 Merate (Italy)

    2011-08-01

    We present the results of continued monitoring of the quiescent neutron star low-mass X-ray binary XTE J1701-462 with Chandra and Swift. A new Chandra observation from 2010 October extends our tracking of the neutron star surface temperature from {approx_equal}800 days to {approx_equal}1160 days since the end of an exceptionally luminous 19 month outburst. This observation indicates that the neutron star crust may still be slowly cooling toward thermal equilibrium with the core; another observation further into quiescence is needed to verify this. The shape of the overall cooling curve is consistent with that of a broken power law, although an exponential decay to a constant level cannot be excluded with the present data. To investigate possible low-level activity, we conducted a monitoring campaign of XTE J1701-462 with Swift during 2010 April-October. Short-term flares-presumably arising from episodic low-level accretion-were observed up to a luminosity of {approx}1 x 10{sup 35} erg s{sup -1}, {approx}20 times higher than the normal quiescent level. We conclude that flares of this magnitude are not likely to have significantly affected the equilibrium temperature of the neutron star and are probably not able to have a measurable impact on the cooling curve. However, it is possible that brighter and longer periods of low-level activity have had an appreciable effect on the equilibrium temperature.

  6. X-rays from Quiescent Low-Mass X-ray Binary Transients

    E-print Network

    Jean-Pierre Lasota

    2000-06-16

    I argue that it is very unlikely that X-rays from quiescent black-hole low-mass X-ray binary transients are emitted by coronae of companion stars. I show that in a simple model in which these X-rays are emitted by an ADAF filling the inner part of an unsteady, dwarf-nova type disc, the X-ray luminosity is correlated with the orbital period. I predict what values of X-ray luminosities from black-hole transient systems should be observed by Chandra and XMM-Newton.

  7. Jovian X-ray emissions

    NASA Technical Reports Server (NTRS)

    Waite, J. H.; Lewis, W. S.; Gladstone, G. R.; Fabian, A. C.; Brandt, W. N.

    1996-01-01

    The Einstein and Rosat observations of X-ray emissions from Jupiter are summarized. Jupiter's soft X-ray emission is observed to originate from the planet's auroral zones, and specifically, from its equatorial region. The processes responsible for these emissions are not established. The brightness distribution of the Jovian X-rays is characterized by the dependence on central meridian longitude and by north-south and morning-afternoon asymmetries. The X-rays observed during the impact of the comet Shoemaker-Levy 9 are believed to be impact-induced brightenings of the X-ray aurora.

  8. GBS-discovered quiescent X-ray binaries: XMM eclipse duration and VLT spectra

    NASA Astrophysics Data System (ADS)

    Jonker, Peter

    2013-10-01

    We propose to use XMM to observe eclipsing probable quiescent low-mass X-ray binaries selected from the Galactic Bulge Survey. The XMM data are crucial to determine the eclipsing duration, one cannot do this as accurately from optical light curves as from X-ray light curves as the X-ray emission region is small compared to the mass donor star. Using the XMM eclipse duration and the VLT spectroscopy we can determine virtually model independent masses of the compact objects. Furthermore, we may select different mass ratio systems favoring low-mass black holes.

  9. The quiescent counterpart of the peculiar X-ray burster SAX J2224.9+5421

    SciTech Connect

    Degenaar, N.; Miller, J. M. [Department of Astronomy, University of Michigan, 500 Church Street, Ann Arbor, MI 48109 (United States); Wijnands, R., E-mail: degenaar@umich.edu [Astronomical Institute Anton Pannekoek, University of Amsterdam, Postbus 94249, 1090 GE Amsterdam (Netherlands)

    2014-05-20

    SAX J2224.9+5421 is an extraordinary neutron star low-mass X-ray binary. It was discovered when it was exhibiting a ? 10 s long thermonuclear X-ray burst, but it had faded to a 0.5-10 keV luminosity of L {sub X} ? 8 × 10{sup 32}(D/7.1 kpc){sup 2} erg s{sup –1} only ? 8 hr later. It is generally assumed that neutron stars are quiescent (i.e., not accreting) at such intensity, raising questions about the trigger conditions of the X-ray burst and the origin of the faint persistent emission. We report on a ?51 ks XMM-Newton observation aimed at finding clues explaining the unusual behavior of SAX J2224.9+5421. We identify a likely counterpart that is detected at L {sub X} ? 5 × 10{sup 31}(D/7.1 kpc){sup 2} erg s{sup –1} (0.5-10 keV) and has a soft X-ray spectrum that can be described by a neutron star atmosphere model with a temperature of kT {sup ?} ? 50 eV. This would suggest that SAX J2224.9+5421 is a transient source that was in quiescence during our XMM-Newton observation and experienced a very faint (ceasing) accretion outburst at the time of the X-ray burst detection. We consider one other potential counterpart that is detected at L {sub X} ? 5 × 10{sup 32}(D/7.1 kpc){sup 2} erg s{sup –1} and displays an X-ray spectrum that is best described by a power law with a photon index of ? ? 1.7. Similarly hard X-ray spectra are seen for a few quiescent neutron stars and may be indicative of a relatively strong magnetic field or the occurrence of low-level accretion.

  10. The quiescent X-ray spectrum of accreting black holes

    NASA Astrophysics Data System (ADS)

    Reynolds, Mark T.; Reis, Rubens C.; Miller, Jon M.; Cackett, Edward M.; Degenaar, Nathalie

    2014-07-01

    The quiescent state is the dominant accretion mode for black holes on all mass scales. Our knowledge of the X-ray spectrum is limited due to the characteristic low luminosity in this state. Herein, we present an analysis of the sample of dynamically confirmed stellar-mass black holes observed in quiescence in the Chandra/XMM-Newton/Suzaku era resulting in a sample of eight black holes with ˜570 ks of observations. In contrast to the majority of active galactic nuclei where observations are limited by contamination from diffuse gas, the stellar-mass systems allow for a clean study of the X-ray spectrum resulting from the accretion flow alone. The data are characterized using simple models. We find a model consisting of a power law or thermal bremsstrahlung to both provide excellent descriptions of the data, where we measure ? = 2.06 ± 0.03 and kT = 5.03^{+0.33}_{-0.31} keV, respectively, in the 0.3-10 keV bandpass, at a median luminosity of Lx ˜ 5.5 × 10-7LEdd. This result in discussed in the context of our understanding of the accretion flow on to stellar and supermassive black holes at low luminosities.

  11. X-ray Emission from Massive Stars

    E-print Network

    Cohen, David

    X-ray Emission from Massive Stars David Cohen Department of Physics and Astronomy Swarthmore be related to the production of X-rays on massive stars. If so, massive stars' X-rays are much different than those found our own Sun and other cooler stars like the Sun that produce X-rays via magnetic activity

  12. X-ray Emission from Massive Stars

    E-print Network

    Cohen, David

    -ray Observatory ­ high-resolution x-ray spectroscopy: measuring Doppler broadening in emission lines Testing pot of water #12;More granulation movies #12;Sinister-looking sunspot, with granulation visible around

  13. X-ray emission from Centaurus A

    SciTech Connect

    Terrell, N.J.

    1981-01-01

    Observations of 3 to 12 keV x-ray emission from NGC 5128 (Cen A) were made by Vela spacecraft over the period 1969 to 1979. These data are in good agreement with previously reported data, but are much more complete. Numerous peaks of x-ray intensity occurred during the period 1973 to 1975, characterized by rapid increases and equally rapid decreases (in less than 10 days). Thus it seems probable that most of the x-ray flux from the nucleus of Cen A came from a single source of small size.

  14. ASCA Observation of the Quiescent X-ray Counterpart to SGR 1627-41

    NASA Technical Reports Server (NTRS)

    Hurley, K.; Strohmayer, T.; Li, P.; Kouveliotou, C.; Woods, P.; VanParadijs, J.; Murakami, T.; Hartmann, D.; Smith, I.; Ando, M.

    2002-01-01

    We present a 2-10 keV ASCA (Advanced Satellite for Cosmology and Astrophysics) observation of the field around the soft gamma repeater SGR 1627-41. A quiescent X-ray source, whose position is consistent both with that of a recently discovered BeppoSAX X-ray source and with the Interplanetary Network localization for this soft gamma repeater, was detected in this observation. In 2-10 keV X-rays, the spectrum of the X-ray source may be fit equally well by a power-law, blackbody, or bremsstrahlung function, with unabsorbed flux equal to approximately 5 x 10(exp -12) ergs cm(exp -2) s(exp -1). We do not confirm a continuation of a fading trend in the flux, and we find no evidence for periodicity, both of which were noted in the earlier BeppoSAX observations.

  15. X-ray emission from Trifid Nebula

    NASA Astrophysics Data System (ADS)

    Rho, J.

    1998-09-01

    The Trifid Nebula is one of the best-studied astrophysical objects, a classical nebula of ionized gas from an O6V star glowing red light, and it is trisected by obscuring dust lanes. Our ROSAT/PSPC image for the first time reveals that the Trifid Nebula emits X-rays and its emitting region is ~ 7' diameter--as large as the HII region itself. %The only previously reported X-ray emission Three main X-ray peaks appear within ~ 4 pc diameter of diffuse emission, roughly spherical. The strongest peak has 2' size near the O star, but the centroid of the X-ray peak appears 25'' away from HD 164492. % which is larger than the PSPC point spread function. Thus the emission may be a shell surrounding the O star as observed in eta Carina, originating from the interaction of a stellar wind with a circumstellar shell. There are a few other X-ray peaks: along the northeastern dust lane and in the east, none of which coincide with any identified optical stars. The PSPC spectrum extracted from the entire Trifid nebula does not clearly distinguish between thermal, bremsstrahlung, and power-law models, due to lack of counts. However, all of these models imply the X-ray luminosity (0.3 - 2.4 keV) is greater than 0.2 - 3*E(34) ergs s(-1) . The diffuse emission is possibly thermal with a temperature of 0.3-1 keV, as in the other HII regions eta Carina and RCW 49. The strong stellar wind from an O star alone can inject an energy of ~ 10(36) ergs s(-1) into ISM; this energy can be converted to heat the ionized gas to X-ray temperature. While the global diffuse X-ray emitting region is similar to the optical HII region, the bright X-ray peaks coincide with the structures in the infrared, suggesting possible embedded stars and their interaction with the circumstellar medium.

  16. X-ray emission from red quasars

    NASA Technical Reports Server (NTRS)

    Bregman, J. N.; Glassgold, A. E.; Huggins, P. J.; Kinney, A. L.

    1985-01-01

    A dozen red quasars were observed with the Einstein Observatory in order to determine their X-ray properties. The observations show that for all these sources, the infrared-optical continuum is so steep that when extrapolated to higher frequencies, it passes orders of magnitude below the measured X-ray flux. The X-ray emission is better correlated with the radio than with the infrared flux, suggesting a connection between the two. By applying the synchrotron-self-Compton model to the data, it is found that the infrared-optical region has a size of 0.01 pc or more and a magnetic field more than 0.1 G, values considerably different than are found in the radio region. Unlike other quasars, the ionizing continuum is dominated by the X-ray emission. The peculiar line ratios seen in these objects can be understood with a photoionization model, provided that the photon to gas density ratio (ionization parameter) is an order of magnitude less than in typical quasars.

  17. Constraining the neutron star equation of state using quiescent low-mass X-ray binaries

    SciTech Connect

    Jonker, P. G. [SRON, Netherlands Institute for Space Research, 3584 CA, Utrecht (Netherlands); Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138, Massachusetts (United States); Astronomical Institute, Utrecht University, 3508 TA, Utrecht (Netherlands)

    2008-02-27

    Chandra or XMM-Newton observations of quiescent low-mass X-ray binaries can provide important constraints on the equation of state of neutron stars. The mass and radius of the neutron star can potentially be determined from fitting a neutron star atmosphere model to the observed X-ray spectrum. For a radius measurement it is of critical importance that the distance to the source is well constrained since the fractional uncertainty in the radius is at least as large as the fractional uncertainty in the distance. Uncertainties in modelling the neutron star atmosphere remain. At this stage it is not yet clear if the soft thermal component in the spectra of many quiescent X-ray binaries is variable on timescales too short to be accommodated by the cooling neutron star scenario. This can be tested with a long XMM-Newton observation of the neutron star X-ray transient Cen X-4 in quiescence. With such an observation one can use the Reflection Grating Spectrometer spectrum to constrain the interstellar extinction to the source. This removes this parameter from the X-ray spectral fitting of the EPIC pn and MOS spectra and allows one to investigate whether the variability observed in the quiescent X-ray spectrum of this source is due to variations in the soft thermal spectral component or variations in the power law spectral component coupled with variations in N{sub H}. This will test whether the soft thermal component can indeed be due to the hot thermal glow of the neutron star. Irrespective of the outcome of such a study, the observed cooling in quiescence in sources for which the crust is significantly out of thermal equilibrium with the core due to a prolonged outburst, such as KS 1731-260, seem excellent candidates for mass and radius determinations through modelling the observed X-rays with a neutron star atmosphere model (the caveats about the source distance and atmosphere modelling do also apply here obviously and presently prevent one from obtaining such constraints). Finally, the fact that the soft thermal glow in sources such as SAX J1808.4-3658 and 1H 1905+000 has not been detected in quiescence means that the neutron star cores of these sources must be cold. The most plausible explanation seems to be that the neutron stars are more massive than 1.4 M{sub {center_dot}} and cool via the direct URCA process.

  18. X-ray emission from Saturn

    E-print Network

    J. -U. Ness; J. H. M. M. Schmitt; S. J. Wolk; K. Dennerl; V. Burwitz

    2004-01-14

    We report the first unambiguous detection of X-ray emission originating from Saturn with a Chandra observation, duration 65.5 ksec with ACIS-S3. Beyond the pure detection we analyze the spatial distribution of X-rays on the planetary surface, the light curve, and some spectral properties. The detection is based on 162 cts extracted from the ACIS-S3 chip within the optical disk of Saturn. We found no evidence for smaller or larger angular extent. The expected background level is 56 cts, i.e., the count rate is (1.6 +- 0.2) 10^-3 cts/s. The extracted photons are rather concentrated towards the equator of the apparent disk, while both polar caps have a relative photon deficit. The inclination angle of Saturn during the observation was -27 degrees, so that the northern hemisphere was not visible during the complete observation. In addition, it was occulted by the ring system. We found a small but significant photon excess at one edge of the ring system. The light curve shows a small dip twice at identical phases, but rotational modulation cannot be claimed at a significant level. Spectral modeling results in a number of statistically, but not necessarily physically, acceptable models. The X-ray flux level we calculate from the best-fit spectral models is 6.8 10^-15 erg/cm^2/s (in the energy interval 0.1-2keV), which corresponds to an X-ray luminosity of 8.7 10^14 erg/s. A combination of scatter processes of solar X-rays requires a relatively high albedo favoring internal processes, but a definitive explanation remains an open issue.

  19. REJECTING PROPOSED DENSE MATTER EQUATIONS OF STATE WITH QUIESCENT LOW-MASS X-RAY BINARIES

    SciTech Connect

    Guillot, Sebastien; Rutledge, Robert E., E-mail: guillots@physics.mcgill.ca, E-mail: rutledge@physics.mcgill.ca [Department of Physics, McGill University, 3600 Rue University, Montreal, QC, H3A-2T8 (Canada)

    2014-11-20

    Neutrons stars are unique laboratories for discriminating between the various proposed equations of state of matter at and above nuclear density. One sub-class of neutron stars—those inside quiescent low-mass X-ray binaries (qLMXBs)—produce a thermal surface emission from which the neutron star radius (R {sub NS}) can be measured, using the widely accepted observational scenario for qLMXBs, assuming unmagnetized H atmospheres. In a combined spectral analysis, this work first reproduces a previously published measurement of the R {sub NS}, assumed to be the same for all neutron stars, using a slightly expanded data set. The radius measured is R{sub NS}=9.4±1.2 km. On the basis of spectral analysis alone, this measured value is not affected by imposing an assumption of causality in the core. However, the assumptions underlying this R {sub NS} measurement would be falsified by the observation of any neutron star with a mass >2.6 M {sub ?}, since radii <11 km would be rejected if causality is assumed, which would exclude most of the R {sub NS} parameter space obtained in this analysis. Finally, this work directly tests a selection of dense matter equations of state: WFF1, AP4, MPA1, PAL1, MS0, and three versions of equations of state produced through chiral effective theory. Two of those, MS0 and PAL1, are rejected at the 99% confidence level, accounting for all quantifiable uncertainties, while the other cannot be excluded at >99% certainty.

  20. Studies on x-ray and UV emissions in electron cyclotron resonance x-ray sourcea)

    NASA Astrophysics Data System (ADS)

    Baskaran, R.; Selvakumaran, T. S.

    2008-02-01

    A novel electron cyclotron resonance x-ray source is constructed based on the ECR technique. In this paper, the possibility of using the ECR x-ray source for producing UV rays by optimizing the plasma parameters is explored. X-ray and UV emissions from the ECR x-ray source are carried out for argon, nitrogen, and CO2 plasma. The x-ray spectral and dose measurements are carried with NaI(Tl) based spectrometer and dosimeter, respectively. For UV measurement, a quartz window arrangement is made at the exit port and the UV intensity is measured at 5cm from the quartz plate using UV meter. The x-ray and UV emissions are carried out for different microwave power levels and gas pressures. The x-ray emission is observed in the pressure range ?10-5Torr, whereas the UV emission is found to be negligible for the gas pressures <10-5Torr and it starts increasing in the pressure range between 10-5 and 10-3Torr. At high-pressure range, collision frequency of electron-atom is large which leads to the higher UV flux. At low pressure, the electron-atom collision frequency is low and hence the electrons reach high energy and by hitting the cavity wall produces higher x-ray flux. By choosing proper experimental conditions and plasma gas species, the same source can be used as either an x-ray source or an UV source.

  1. Models of Quiescent Black Hole Neutron Star Soft X-Ray Transients

    E-print Network

    Insu Yi; Ramesh Narayan; Didier Barret; Jeffrey E. McClintock

    1995-09-27

    When the mass accretion rate onto a black hole (BH) falls below a critical rate, ${\\dot M}_{crit}\\sim \\alpha^2 {\\dot M}_{Edd}$, accretion can occur via a hot optically thin flow where most of the dissipated energy is advected inward. We present such an advection-dominated model for the soft X-ray transient (SXT) A0620-00. This source has a puzzlingly low X-ray luminosity in quiescence, $\\sim 6\\times 10^{30} ~{\\rm erg\\,s^{-1}}$, despite a relatively high mass accretion rate $\\sim10^{-10} ~M_{\\odot}{\\rm yr^{-1}}$ deduced from its optical flux. The accreting gas makes a transition from a standard thin disc at large radii to an advection-dominated flow at small radii. The transition occurs when the effective temperature of the thin disc is $\\sim 10^4$ K. Because of the very low accretion efficiency, $\\sim 10^{-3}-10^{-4}$, in the inner flow, the model fits both the optical and X-ray data. We also present models for V404 Cyg and Nova Mus 1991 in quiescence. Quiescent neutron star (NS) transients are expected to appear very different from BH systems because the advected energy is re-radiated from the NS surface whereas a BH swallows the advected energy. We discuss models for NS SXTs.

  2. X-Ray Emission from "Uranium" Stars

    NASA Technical Reports Server (NTRS)

    Schlegel, Eric; Mushotzky, Richard (Technical Monitor)

    2005-01-01

    The project aims to secure XMM observations of two targets with extremely low abundances of the majority of heavy elements (e.g., log[Fe/H] $\\sim$-4), but that show absorption lines of uranium. The presence of an r-process element such as uranium requires a binary star system in which the companion underwent a supernova explosion. A binary star system raises the distinct possibility of the existence of a compact object, most likely a neutron star, in the binary, assuming it survived the supernova blast. The presence of a compact object then suggests X-ray emission if sufficient matter accretes to the compact object. The observations were completed less than one year ago following a series of reobservations to correct for significant flaring that occurred during the original observations. The ROSAT all-sky survey was used to report on the initial assessment of X-ray emission from these objects; only upper limits were reported. These upper limits were used to justify the XMM observing time, but with the expectation that upper limits would merely be pushed lower. The data analysis hinges critically on the quality and degree of precision with which the background is handled. During the past year, I have spent some time learning the ins and outs of XMM data analysis. In the coming year, I can apply that learning to the analysis of the 'uranium' stars.

  3. Reabsorption of soft x-ray emission at high x-ray free-electron laser fluences.

    PubMed

    Schreck, Simon; Beye, Martin; Sellberg, Jonas A; McQueen, Trevor; Laksmono, Hartawan; Kennedy, Brian; Eckert, Sebastian; Schlesinger, Daniel; Nordlund, Dennis; Ogasawara, Hirohito; Sierra, Raymond G; Segtnan, Vegard H; Kubicek, Katharina; Schlotter, William F; Dakovski, Georgi L; Moeller, Stefan P; Bergmann, Uwe; Techert, Simone; Pettersson, Lars G M; Wernet, Philippe; Bogan, Michael J; Harada, Yoshihisa; Nilsson, Anders; Föhlisch, Alexander

    2014-10-10

    We report on oxygen K-edge soft x-ray emission spectroscopy from a liquid water jet at the Linac Coherent Light Source. We observe significant changes in the spectral content when tuning over a wide range of incident x-ray fluences. In addition the total emission yield decreases at high fluences. These modifications result from reabsorption of x-ray emission by valence-excited molecules generated by the Auger cascade. Our observations have major implications for future x-ray emission studies at intense x-ray sources. We highlight the importance of the x-ray pulse length with respect to the core-hole lifetime. PMID:25375708

  4. X-ray emission properties of galaxies in Abell 3128

    E-print Network

    Russell J. Smith

    2003-07-15

    We use archival Chandra X-ray Observatory data to investigate X-ray emission from early-type galaxies in the rich z=0.06 cluster Abell 3128. By combining the X-ray count-rates from an input list of optically-selected galaxies, we obtain a statistical detection of X-ray flux, unbiased by X-ray selection limits. Using 87 galaxies with reliable Chandra data, X-ray emission is detected for galaxies down to M_B ~ -19.0, with only an upper limit determined for galaxies at M_B ~ -18.3. The ratio of X-ray to optical luminosities is consistent with recent determinations of the low-mass X-ray binary content of nearby elliptical galaxies. Taken individually, in contrast, we detect significant (3sigma) flux for only six galaxies. Of these, one is a foreground galaxy, while two are optically-faint galaxies with X-ray hardness ratios characteristic of active galactic nuclei. The remaining three detected galaxies are amongst the optically-brightest cluster members, and have softer X-ray spectra. Their X-ray flux is higher than that expected from X-ray binaries, by a factor 2-10; the excess suggests these galaxies have retained their hot gaseous haloes. The source with the highest L_X / L_B ratio is of unusual optical morphology with prominent sharp-edged shells. Notwithstanding these few exceptions, the cluster population overall exhibits X-ray properties consistent with their emission being dominated by X-ray binaries. We conclude that in rich cluster environments, interaction with the ambient intra-cluster medium acts to strip most galaxies of their hot halo gas.

  5. X-ray emission properties of galaxies in Abell 3128

    NASA Astrophysics Data System (ADS)

    Smith, Russell J.

    2003-09-01

    We use archival Chandra X-Ray Observatory data to investigate X-ray emission from early-type galaxies in the rich z= 0.06 cluster Abell 3128. By combining the X-ray count rates from an input list of optically selected galaxies, we obtain a statistical detection of X-ray flux, unbiased by X-ray selection limits. Using 87 galaxies with reliable Chandra data, X-ray emission is detected for galaxies down to MB~-19.0, with only an upper limit determined for galaxies at MB~-18.3. The ratio of X-ray to optical luminosities is consistent with recent determinations of the low-mass X-ray binary content of nearby elliptical galaxies. Taken individually, in contrast, we detect significant (3?) flux for only six galaxies. Of these, one is a foreground galaxy, whereas two are optically faint galaxies with X-ray hardness ratios characteristic of active galactic nuclei. The remaining three detected galaxies are amongst the optically brightest cluster members, and have softer X-ray spectra. Their X-ray flux is higher than that expected from X-ray binaries, by a factor of 2-10 the excess suggests that these galaxies have retained their hot gaseous haloes. The source with the highest LX/LB ratio is of unusual optical morphology with prominent sharp-edged shells. Notwithstanding these few exceptions, the cluster population overall exhibits X-ray properties consistent with its emission being dominated by X-ray binaries. We conclude that in rich cluster environments, interaction with the ambient intracluster medium acts to strip most galaxies of their hot halo gas.

  6. Inferring neutron stars crust properties from quiescent thermal emission

    E-print Network

    Aguilera, Deborah N

    2015-01-01

    The observation of thermal emission from isolated neutron stars and the modeling of the corresponding cooling curves has been very useful to get information on the properties of matter at very high densities. More recently, the detection of quiescent thermal emission from neutron stars in low mass X-ray binary systems after active periods opened a new window to the physics of matter at lower densities. Here we analyze a few sources that have been recently monitored and we show how the models can be used to establish constraints on the crust composition and their transport properties, depending on the astrophysical scenarios assumed.

  7. X-RAY POINT-SOURCE POPULATIONS CONSTITUTING THE GALACTIC RIDGE X-RAY EMISSION

    SciTech Connect

    Morihana, Kumiko [Institute of Physical and Chemical Research (RIKEN), 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan)] [Institute of Physical and Chemical Research (RIKEN), 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Tsujimoto, Masahiro; Ebisawa, Ken [Japan Aerospace Exploration Agency, Institute of Space and Astronautical Science, 3-1-1 Yoshino-dai, Chuo-ku, Sagamihara, Kanagawa 252-5210 (Japan)] [Japan Aerospace Exploration Agency, Institute of Space and Astronautical Science, 3-1-1 Yoshino-dai, Chuo-ku, Sagamihara, Kanagawa 252-5210 (Japan); Yoshida, Tessei, E-mail: morihana@crab.riken.jp [National Astronomical Observatory of Japan, 2-21-1, Osawa, Mitaka, Tokyo 181-8588 (Japan)] [National Astronomical Observatory of Japan, 2-21-1, Osawa, Mitaka, Tokyo 181-8588 (Japan)

    2013-03-20

    Apparently diffuse X-ray emission has been known to exist along the central quarter of the Galactic Plane since the beginning of X-ray astronomy; this is referred to as the Galactic Ridge X-ray emission (GRXE). Recent deep X-ray observations have shown that numerous X-ray point sources account for a large fraction of the GRXE in the hard band (2-8 keV). However, the nature of these sources is poorly understood. Using the deepest X-ray observations made in the Chandra bulge field, we present the result of a coherent photometric and spectroscopic analysis of individual X-ray point sources for the purpose of constraining their nature and deriving their fractional contributions to the hard-band continuum and Fe K line emission of the GRXE. Based on the X-ray color-color diagram, we divided the point sources into three groups: A (hard), B (soft and broad spectrum), and C (soft and peaked spectrum). The group A sources are further decomposed spectrally into thermal and non-thermal sources with different fractions in different flux ranges. From their X-ray properties, we speculate that the group A non-thermal sources are mostly active galactic nuclei and the thermal sources are mostly white dwarf (WD) binaries such as magnetic and non-magnetic cataclysmic variables (CVs), pre-CVs, and symbiotic stars, whereas the group B and C sources are X-ray active stars in flares and quiescence, respectively. In the log N-log S curve of the 2-8 keV band, the group A non-thermal sources are dominant above Almost-Equal-To 10{sup -14} erg cm{sup -2} s{sup -1}, which is gradually taken over by Galactic sources in the fainter flux ranges. The Fe K{alpha} emission is mostly from the group A thermal (WD binaries) and the group B (X-ray active stars) sources.

  8. UHURU observations of X-ray emission from Seyfert galaxies

    Microsoft Academic Search

    H. Tananbaum; G. Peters; W. Forman; R. Giacconi; C. Jones; Y. Avni

    1978-01-01

    A point summation technique has been used to analyze systematically the Uhuru data for X-ray emission from the 88 Seyfert galaxies listed by Weedman (1977), plus MCG 8-11-11 reported by the Ariel 5 group. In addition to measuring the average X-ray intensity for 15 sources reported in the 4U and 2A catalogs, three new candidate sources are found. X-ray variability

  9. Hard X-rays emission from active galactic nuclei

    NASA Astrophysics Data System (ADS)

    Ubertini, P.; Bazzano, A.; La Padula, C. D.; Polcaro, V. F.; Zambon, G.; Manchanda, R. K.

    The X-Rays emission from Active Galactic Nuclei has been known since the first observations obtained by Uhuru. their X-Rays spectra are determining to investigate the radiation process and for the diffuse X-Rays background problem. We will present spectral observations of AGN's in the range 20-100 KeV obtained with a one square meter area balloon borne experiment. From the comparison with previous data a clear evidence of flux variability is obtained.

  10. X-ray emission from protostars

    NASA Astrophysics Data System (ADS)

    Koyama, K.

    I present the results of our Chandra deep exposure observations on star form- ing regions, rho-Ophiuchi and Orion Molecular Clouds 2 and 3. The results are; (1) class I protostars are found to exhibit higher temperature plasma than those of T Tauri stars, (2) X-ray spectra of protostars often show the 6.4 keV fluorescent iron line, strong evidence of dense gas or accretion disk around the star, (3) heavily absorbed X-rays are discovered from the cloud cores, candi- dates of class 0 protostars, (4) young brown dwarfs emit X-rays similar to those of low-mass young stars.

  11. Neutron star masses and radii from quiescent low-mass x-ray binaries

    SciTech Connect

    Lattimer, James M. [Department of Physics and Astronomy, State University of New York at Stony Brook, Stony Brook, NY 11794-3800 (United States); Steiner, Andrew W., E-mail: james.lattimer@stonybrook.edu, E-mail: steiner3@uw.edu [Institute for Nuclear Theory, University of Washington, Seattle, WA 98195 (United States)

    2014-04-01

    We perform a systematic analysis of neutron star radius constraints from five quiescent low-mass X-ray binaries and examine how they depend on measurements of their distances and amounts of intervening absorbing material, as well as their assumed atmospheric compositions. We construct and calibrate to published results a semi-analytic model of the neutron star atmosphere which approximates these effects for the predicted masses and radii. Starting from mass and radius probability distributions established from hydrogen-atmosphere spectral fits of quiescent sources, we apply this model to compute alternate sets of probability distributions. We perform Bayesian analyses to estimate neutron star mass-radius curves and equation of state (EOS) parameters that best-fit each set of distributions, assuming the existence of a known low-density neutron star crustal EOS, a simple model for the high-density EOS, causality, and the observation that the neutron star maximum mass exceeds 2 M {sub ?}. We compute the posterior probabilities for each set of distance measurements and assumptions about absorption and composition. We find that, within the context of our assumptions and our parameterized EOS models, some absorption models are disfavored. We find that neutron stars composed of hadrons are favored relative to those with exotic matter with strong phase transitions. In addition, models in which all five stars have hydrogen atmospheres are found to be weakly disfavored. Our most likely models predict neutron star radii that are consistent with current experimental results concerning the nature of the nucleon-nucleon interaction near the nuclear saturation density.

  12. Exploring Diffuse X-ray Emission from Planetary Nebulae

    NASA Astrophysics Data System (ADS)

    Freeman, Marcus

    2014-11-01

    The Chandra Planetary Nebula Survey (ChanPlaNS) has established that diffuse X-ray emission, generated by energetic, nebula-shaping wind shocks, emanates from ~1/4 of planetary nebulae (PNe). Such X-ray emission sources are found only in the youngest, most compact nebulae with the highest nebular densities, implying active PN "sculpting" lifetimes of ?5000 years. The diffuse X-ray detection rate is 100% for the (five) ChanPlaNS sample PNe with Wolf-Rayet ([WR]) type central stars. We present preliminary results from 3D structural reconstructions of PNe that are designed to investigate the apparent systematic differences between the diffuse X-ray emission morphologies of PNe with [WR] vs. non-[WR] central stars, as well as the possibility of enhanced, intranebular X-ray absorption.

  13. X-ray emission from active galactic nuclei

    NASA Technical Reports Server (NTRS)

    Mushotzky, R.

    1985-01-01

    It is often held that the X-ray emission from active galactic nuclei (AGN) arises from a region close to the central energy source. Thus X-ray observations may provide the best constraints on the central engine. In particular, the shape of the X-ray continuum gives information about the mechanism for photon generation, X-ray time variability data can constrain the size and mass of the continuum source, and X-ray occultation data give constraints on the relative sizes of the continuum source and the intervening absorbing material (often assumed to be the broad line clouds). In addition, since a fair fraction of the total energy of an AGN is emitted at X-ray wavelengths, direct measurement of the amount and spectral form of this radiation is important for modeling of the optically emitting clouds.

  14. Evidence for Optical Flares in Quiescent Soft X-Ray Transients

    NASA Astrophysics Data System (ADS)

    Zurita, C.; Casares, J.; Shahbaz, T.

    2003-01-01

    We present the results of high time resolution optical photometry of five quiescent soft X-ray transients (SXTs): V404 Cyg, A0620-00, J0422+32, GS 2000+25, and Cen X-4. We detect fast optical variations superposed on the secondary star's double-humped ellipsoidal modulation. The variability resembles typical flare activity and has amplitudes ranging from 0.06 to 0.6 mag. Flares occur on timescales of minutes to a few hours, with no dependency on orbital phase, and contribute ~19%-46% to the total veiling observed in the R band. We find that the observed level of flaring activity is veiled by the light of the companion star, and therefore, systems with cool companions (e.g., J0422+32) exhibit stronger variability. After correcting for this dilution, we do not find any correlation between the flaring activity and fundamental system parameters. We find no underlying coherent periods in the data, only quasi-periodic variations ranging between 30 and 90 minutes for the short-period SXTs and longer than 1 hr for V404 Cyg. The power-law index of the power spectra is consistent with what is observed at X-rays wavelengths, i.e., a 1/f distribution, which is compatible with the cellular automaton model. Our observed R'-band luminosities, which are in the range 1031-1033 ergs s-1, are too large to be due to chromospheric activity in the rapidly rotating companions. Since the typical timescale of the flares increases with orbital period, they are most likely produced in the accretion disk. The associated dynamical (Keplerian) timescales suggest that flares are produced at ~0.3Rd-0.7Rd. Possible formation mechanisms are magnetic loop reconnection events in the disk or, less likely, optical reprocessing of X-ray flares. In the former scenario, the maximum duration of the flares suggests that the outer disk is responsible for the flare events and so allows us to constrain the sharing timescale to ?~(5-6)?-1K.

  15. Radio emission from an ultraluminous x-ray source.

    PubMed

    Kaaret, Philip; Corbel, Stephane; Prestwich, Andrea H; Zezas, Andreas

    2003-01-17

    The physical nature of ultraluminous x-ray sources is uncertain. Stellar-mass black holes with beamed radiation and intermediate black holes with isotropic radiation are two plausible explanations. We discovered radio emission from an ultraluminous x-ray source in the dwarf irregular galaxy NGC 5408. The x-ray, radio, and optical fluxes as well as the x-ray spectral shape are consistent with beamed relativistic jet emission from an accreting stellar black hole. If confirmed, this would suggest that the ultraluminous x-ray sources may be stellar-mass rather than intermediate-mass black holes. However, interpretation of the source as a jet-producing intermediate-mass black hole cannot be ruled out at this time. PMID:12532009

  16. Gamma-Ray Emission from X-Ray Binaries

    NASA Technical Reports Server (NTRS)

    Shrader, Chris R.

    2007-01-01

    We summarize the current observational picture regarding high-energy emission from Galactic X-ray binaries, reviewing the results of the Compton Gamma Ray Observatory mission. We speculate on the prospects for the GLAST era.

  17. Characterizing the quiescent X-ray variability of the black hole low-mass X-ray binary V404 Cyg

    NASA Astrophysics Data System (ADS)

    Bernardini, F.; Cackett, E. M.

    2014-04-01

    We conducted the first long-term (75 d) X-ray monitoring of the black hole low-mass X-ray binary V404 Cyg, with the goal of understanding and characterizing its variability during quiescence. The X-ray light curve of V404 Cyg shows several flares on time-scales of hours with a count rate change of a factor of about 5-8. The root-mean-square variability is Fvar = 57.0 ± 3.2 per cent. The first-order structure function is consistent with both a power spectrum of index -1 (flicker noise), or with a power spectrum of index 0 (white noise), implying that the light curve is variable on time-scales from days to months. The X-ray spectrum is well fitted by a power law with spectral index ? = 2.10-2.35, and we found that the spectral shape remains roughly constant as the flux changes. A constant spectral shape with respect to a change in the X-ray flux may favour a scenario in which the X-ray emission is dominated by synchrotron radiation produced in a jet.

  18. Diffuse X-ray emissions from dynamic planetary nebulae

    NASA Astrophysics Data System (ADS)

    Lou, Yu-Qing; Zhai, Xiang

    2010-10-01

    We present the theoretical results of a piecewise isothermal shock wind model. This was devised to predict the luminosity and surface brightness profile of diffuse X-ray emissions, primarily from the inner shocked downstream wind zone of a planetary nebula (PN) surrounded by a self-similar shocked dense shell and self-similar outer slow asymptotic giant branch wind envelope, both involving self-gravity. We compare and fit our computational model results with the available observations of a few grossly spherical X-ray emitting PNe. By matching the shocked piecewise isothermal self-similar void solutions with the self-gravity of Lou and Zhai for the outer zone and a stationary isothermal fast tenuous wind with a reverse shock for the inner zone across an expanding contact discontinuity, we can consistently construct dynamic evolution models of PNe with diffuse X-ray emissions. On the basis of such a chosen dynamic wind interaction model, both the X-ray luminosity and the radial X-ray brightness profile are determined by three key parameters: the so-called X-ray parameter, X, and two radii, Rrs and Rc, of the reverse shock and the contact discontinuity. We find that the morphologies of X-ray emissions appear in the forms of either a central luminous sphere or a bright ring embedded within optically bright shells. In contrast to previous adiabatic models, the X-ray brightness peaks around the reverse shock, instead of the contact discontinuity surface just inside the outer shocked dense shell. The diffuse X-ray emissions of a few observed PNe appear to support this piecewise isothermal wind-wind dynamic interaction scenario with shocks.

  19. X-ray emission from supernova remnants

    Microsoft Academic Search

    P. A. Charles

    1976-01-01

    Using data from the Mullard Space Science Laboratory's X-ray telescopes on the satellite OAO-Copernicus, the five supernova remnants, the Crab Nebula, the Cygnus Loop, IC443, Cas A and Pup A, have been studied in detail in the 0.5 - 7.5 keV range. Both spectral and spatial information are available for each remnant, from which the following conclusions may be drawn.

  20. Thermal X-Ray Line Emission from Accreting Black Holes

    E-print Network

    Ramesh Narayan; John Raymond

    1998-11-25

    We present model X-ray spectra of accreting black holes with advection-dominated accretion flows, paying attention to thermal emission lines from the hot plasma. We show that the Advanced X-ray Astrophysical Facility (AXAF) might be able to observe lines from X-ray binaries such as V404 Cyg in quiescence, the Galactic Center black hole Sagittarius A*, and the nuclei of nearby galaxies such as M87. Line intensities can provide new diagnostics to study the accreting plasma in these and related systems.

  1. Theoretical studies of X ray emission from clusters of galaxies

    Microsoft Academic Search

    John C. Tsai

    1992-01-01

    We have studied X-ray emission from clusters of galaxies by adopting two complementary approaches. The first consists of a detailed analysis of the available data on a single cluster. For this we have chosen to study the gas around M87 because it is the best observed cluster X-ray source and because all of the data have hitherto not been considered

  2. X-ray emission of hot massive stars

    NASA Astrophysics Data System (ADS)

    Oskinova, L.

    2014-07-01

    Massive hot stars are important cosmic engines that severely influence their environment by powerful stellar wind and strong ionizing radiation. Modern observations of X-ray emission from massive stars provide deep insight into the structure and dynamics of their winds and allow to study the very hot gas in wind blown bubbles. I will review the recent findings on X-ray emission from OB and Wolf-Rayet stars and massive star clusters. While our knowledge about the X-ray emission from massive stars is increasing, a small fraction of massive stars that have strong magnetic fields are often unusual in their X-ray light. Massive star clusters provide an excellent opportunity to study stellar feedback and the hot gas filling the intracluster medium. The most massive stars are often binaries where the stellar winds collide and produce X-ray or even gamma-ray radiation. Finally, I will discuss the progress towards an unified view of stellar winds in single stars and in high mass X-ray binaries.

  3. Uhuru observations of X-ray emission from Seyfert galaxies

    NASA Technical Reports Server (NTRS)

    Tananbaum, H.; Peters, G.; Forman, W.; Giacconi, R.; Jones, C.; Avni, Y.

    1978-01-01

    A point summation technique has been used to analyze systematically the Uhuru data for X-ray emission from the 88 Seyfert galaxies listed by Weedman (1977), plus MCG 8-11-11 reported by the Ariel 5 group. In addition to measuring the average X-ray intensity for 15 sources reported in the 4U and 2A catalogs, three new candidate sources are found. X-ray variability has previously been reported for NGC 4151, 3C 390.3, and MCG 8-11-11; Mrk 279 is now also found to vary. Furthermore, significant flaring activity from NGC 4151 was observed with as much as a factor of 10 increase in intensity on a time possibly as short as 730 seconds. The local X-ray volume emissivity of Seyfert galaxies is measured, and it is found, with standard assumptions, that from 6% to 25% of the diffuse 2-10-keV X-ray background can be attributed to emission from Seyfert galaxies. The data show that the luminosity function for X-ray Seyferts is rather steep.

  4. ANS hard X-ray experiment development program. [emission from X-ray sources

    NASA Technical Reports Server (NTRS)

    Parsignault, D.; Gursky, H.; Frank, R.; Kubierschky, K.; Austin, G.; Paganetti, R.; Bawdekar, V.

    1974-01-01

    The hard X-ray (HXX) experiment is one of three experiments included in the Dutch Astronomical Netherlands Satellite, which was launched into orbit on 30 August 1974. The overall objective of the HXX experiment is the detailed study of the emission from known X-ray sources over the energy range 1.5-30keV. The instrument is capable of the following measurements: (1) spectral content over the full energy range with an energy resolution of approximately 20% and time resolution down to 4 seconds; (2) source time variability down to 4 milliseconds; (3) silicon emission lines at 1.86 and 2.00keV; (4) source location to a limit of one arc minute in ecliptic latitude; and (5) spatial structure with angular resolution of the arc minutes. Scientific aspects of experiment, engineering design and implementation of the experiment, and program history are included.

  5. X-Ray Emission from M32: X-Ray Binaries or a micro-AGN?

    E-print Network

    Paul B. Eskridge; Raymond E. White III; David S. Davis

    1996-03-19

    We have analysed archival {\\it ROSAT} PSPC data for M32 in order to study the x-ray emission from this nearest elliptical galaxy. We fit spectra from three long exposures with Raymond-Smith, thermal bremsstrahlung, and power-law models. All models give excellent fits. The thermal fits have kT$\\approx$4 keV, the Raymond-Smith iron abundance is $0.4^{+0.7}_{-0.3}$ Solar, the power-law fit has $\\alpha$=1.6$\\pm$0.1, and all fits have $N_H$ consistent with the Galactic column. The source is centered on M32 to an accuracy of 9$''$, and unresolved at 27$''$ FWHM ($\\sim$90 pc). M32 is x-ray variable by a factor of 3--5 on timescales of a decade down to minutes, with evidence for a possible period of $\\sim$1.3 days. There are two plausible interpretations for these results: 1) Emission due to low-mass x-ray binaries; 2) Emission due to accretion onto a massive central black hole. Both of these possibilities are supported by arguments based on previous studies of M32 and other old stellar systems; the {\\it ROSAT} PSPC data do not allow us to unambiguously choose between them. Observations with the {\\it ROSAT} HRI and with {\\it ASCA} are required to determine which of these two very different physical models is correct.

  6. Extended X-Ray Emission around Quasars at Intermediate Redshift

    NASA Technical Reports Server (NTRS)

    Fiore, Fabrizio

    1998-01-01

    We compare the optical to soft X-ray spectral energy distribution (SED) of a sample of bright low-redshift (0.048 less than z less than 0.155), radio-quiet quasars, with a range of thermal models which have been proposed to explain the optical/UV/soft X-ray quasar emission: (a) optically thin emission from an ionized plasma, (b) optically thick emission from the innermost regions of an accretion disk in Schwarzschild and Kerr geometries. We presented ROSAT PSPC observations of these quasars in an earlier paper. Here our goals are to search for the signature of thermal emission in the quasar SED, and to investigate whether a single component is dominating at different frequencies. We find that isothermal optically thin plasma models can explain the observed soft X-ray color and the mean OUV color. However, they predict an ultraviolet (1325 Angstrom) luminosity a factor of 3 to 10 times lower than observed. Pure disk models, even in a Kerr geometry, do not have the necessary flexibility to account for the observed OUV and soft X-ray luminosities. Additional components are needed both in the optical and in the soft X-rays (e.g. a hot corona can explain the soft X-ray color). The most constrained modification of pure disk models, is the assumption of an underlying power law component extending from the infrared (3 micrometers) to the X-ray. This can explain both the OUV and soft X-ray colors and luminosities and does not exceed the 3 micrometers luminosity, where a contribution from hot dust is likely to be important. We also discuss the possibility that the observed soft X-ray color and luminosity are dominated by reflection from the ionized surface of the accretion disk. While modifications of both optically thin plasma models and pure disk models might account for the observed SED, we do not find any strong evidence that the OUV bump and soft X-ray emission are one and the same component. Likewise, we do not find any strong argument which definitely argues in favor of thermal models.

  7. Extended X-ray emission in nearby Seyfert galaxies

    NASA Technical Reports Server (NTRS)

    Elvis, Martin; Fassnacht, C.; Wilson, A. S.; Briel, U.

    1990-01-01

    Asymmetric extended X-ray emission was found to be present in three out of five Seyfert galaxies. This paper discusses various possible origins for this emission, including thermal bremsstrahlung, synchrotron radiation, inverse Compton scattering, and electron-scattered nuclear radiation. It was found that the presently available data cannot discriminate definitively between these possibilities.

  8. Numerical simulation of subpicosecond laser plasma x-ray emission

    Microsoft Academic Search

    A. A. Andreev; I. V. Kurnin

    1996-01-01

    A one-dimensional hydrodynamic code, ION, which takes ionization kinetics into account, was elaborated and used for the calculation of x-ray emission from plasma produced by the action of a subpicosecond laser pulse onto a solid target in vacuum. Calculated intensities for aluminum target emission are in agreement with experimental and theoretical results of other authors. The simple model gives the

  9. Detection of Microwave Emission from Coronal X-Ray Jets

    Microsoft Academic Search

    M. R. Kundu; K. Shibasaki; N. Nitta

    1997-01-01

    We present evidence of the detection of microwave emission at 17 GHz in association with coronal X-ray jets. We present two typical cases--one on the disk (1995 March 31) and the other at the limb (1992 August 25). For the disk event we see 17 GHz emission from the upper part of the jet base (active region loop or loops),

  10. Synchrotron-Radiation Induced X-Ray Emission (SRIXE)

    SciTech Connect

    Jones, Keith W.

    1999-09-01

    Elemental analysis using emission of characteristic x rays is a well-established scientific method. The success of this analytical method is highly dependent on the properties of the source used to produce the x rays. X-ray tubes have long existed as a principal excitation source, but electron and proton beams have also been employed extensively. The development of the synchrotron radiation x-ray source that has taken place during the past 40 years has had a major impact on the general field of x-ray analysis. Even tier 40 years, science of x-ray analysis with synchrotron x-ray beams is by no means mature. Improvements being made to existing synchrotron facilities and the design and construction of new facilities promise to accelerate the development of the general scientific use of synchrotron x-ray sources for at least the next ten years. The effective use of the synchrotron source technology depends heavily on the use of high-performance computers for analysis and theoretical interpretation of the experimental data. Fortunately, computer technology has advanced at least as rapidly as the x-ray technology during the past 40 years and should continue to do so during the next decade. The combination of these technologies should bring about dramatic advances in many fields where synchrotron x-ray science is applied. It is interesting also to compare the growth and rate of acceptance of this particular research endeavor to the rates for other technological endeavors. Griibler [1997] cataloged the time required for introduction, diffusion,and acceptance of technological, economic, and social change and found mean values of 40 to 50 years. The introduction of the synchrotron source depends on both technical and non-technical factors, and the time scale at which this seems to be occurring is quite compatible with what is seen for other major innovations such as the railroad or the telegraph. It will be interesting to see how long the present rate of technological change and increase in scientific use can be maintained for the synchrotron x-ray source. A short summary of the present state of the synchrotron radiation-induced x-ray emission (SRIXE) method is presented here. Basically, SRIXE experiments can include any that depend on the detection. of characteristic x-rays produced by the incident x-ray beam born the synchrotron source as they interact with a sample. Thus, experiments done to measure elemental composition, chemical state, crystal, structure, and other sample parameters can be considered in a discussion of SRIXE. It is also clear that the experimentalist may well wish to use a variety of complementary techniques for study of a given sample. For this reason, discussion of computed microtomography (CMT) and x-ray diffraction is included here. It is hoped that this present discussion will serve as a succinct introduction to the basic ideas of SRIXE for those not working in the field and possibly help to stimulate new types of work by those starting in the field as well as by experienced practitioners of the art. The topics covered include short descriptions of (1) the properties of synchrotron radiation, (2) a description of facilities used for its production, (3) collimated microprobe, (4) focused microprobes, (5) continuum and monoenergetic excitation, (6) detection limits, (7) quantitation, (8) applications of SRIXE, (9) computed microtomography (CMT), and (10)chemical speciation using x-ray absorption near-edge structure (XANES) and extended x-ray absorption fine structure (EXAFS). An effort has been made to cite a wide variety of work from different laboratories to show the vital nature of the field.

  11. X-rayEmissionfromMassiveStars: UsingEmissionLineProfilestoConstrainWind

    E-print Network

    Cohen, David

    X-rayEmissionfromMassiveStars: UsingEmissionLineProfilestoConstrainWind Kinematics Introduction:thecontextofhotstarX-rays Lineprofilediagnostics Whatdotheobservationslooklike? Whattrendsemerge? Pup:windX-rays,butlessabsorptionthanexpected OriandOri:similarsituation,verylittlewind absorption

  12. HST/STIS UV Spectroscopy of Two Quiescent X-ray Novae: A0620-00 and Centaurus X-4

    E-print Network

    Jeffrey E. McClintock; Ronald A. Remillard

    1999-11-08

    In 1998 we made UV spectroscopic observations with HST/STIS of A0620-00 and Cen X-4, which are two X-ray novae (aka soft X-ray transients). These binary systems are similar in all respects except that the former contains a black hole and the latter contains a neutron star. A UV spectrum (1700-3100A) is presented for the quiescent state of each system in the context of previously published UV/optical and X-ray data. The non-stellar, continuum spectrum of black hole A0620-00 has a prominent UV/optical peak centered at about 3500A. In contrast the spectrum of neutron-star Cen X-4 lacks a peak and rises steadily with frequency over the entire UV/optical band. In the optical, the two systems are comparably luminous. However, black hole A0620-00 is about 6 times less luminous at 1700A, and about 40 times less luminous in the X-ray band. The broadband spectrum of A0620-00 is discussed in terms of the advection-dominated accretion flow model.

  13. X-ray Emission from UVLGs and ULXs

    NASA Technical Reports Server (NTRS)

    Cardiff, Ann Hornschemeier

    2007-01-01

    The first topic covered in this talk will be the study of GALEX-selected Ultraviolet-Luminous Galaxies (UVLGs) which appear to include an interesting subset of galaxies that are analogs to the distant (3 < z < 4) Lyman Break Galaxies (LBGs). The 2-10 keV X-ray emission of LBGs appear to be broadly similar to that of galaxies in the local Universe, possibly indicating similarity in the production of accreting binaries over large evolutionary timescales in the Universe. Given the very large distances to the LBGs, we have elected to use the the UVLGs as possible local-Universe LBG analogs. This technique is showing promise; we have detected luminous X-ray emission from one UVLG that permits basic X-ray spectroscopic analysis, and have direct X-ray constraints on a total of 6 UVLGs. The second topic for the talk is MIR diagnostics of accretion activity in Ultraluminous X-ray (ULX) sources. We have determined that the Spitzer IRS mid-infrared emission-line flux ratios for ULX sources bear similarity to those for AGN. We discuss strategies for future development of this technique using archival data and/or future observations.

  14. Study of Diffuse X-ray Emission in Globular Clusters

    NASA Technical Reports Server (NTRS)

    Grindlay, Jonathan E.

    1997-01-01

    This grant supported our analysis of ROSAT x-ray data on globular clusters. Although the grant title referred to our original ROSAT proposal (cycle 1) to study diffuse soft x-ray emission in three globulars (for which time was only granted in that original observing cycle for one cluster, 47 Tuc), the grant has also been maintained through several renewals and funding supplements to support our later ROSAT observations of point sources in globulars. The primary emphasis has been on the study of the dim sources, or low liuminosity globular cluster x-ray sources, which we had originally discovered with the Einstein Observatory and for which ROSAT provided the logical followup. In this Final Report, we summarize the Scientific Objectives of this investigation of both diffuse emission and dim sources in globular clusters and the Results Achieved; and finally the Papers Published.

  15. X-ray emission mechanisms in magnetars

    NASA Astrophysics Data System (ADS)

    Hascoet, Romain; Beloborodov, Andrei

    In the magnetar model, the observed persistent luminosity and outbursts are both powered by dissipation of magnetic energy. The emission mechanisms of persistent and burst emission will be discussed and compared. Observations suggest the presence of hot spots on magnetars. They may result from internal (subsurface) or external (magnetospheric) heating. Both mechanisms appear to be needed to explain the data.

  16. X-ray emission mechanism in magnetars

    NASA Astrophysics Data System (ADS)

    Hascoet, Romain; Beloborodov, Andrei M

    2014-08-01

    In the magnetar model, the observed persistent luminosity and outbursts are both powered by dissipation of magnetic energy. The emission mechanisms of persistent and burst emission will be discussed and compared. Observations suggest the presence of hot spots on magnetars. They may result from internal (subsurface) or external (magnetospheric) heating. Both mechanisms appear to be needed to explain the data.

  17. Diffuse X-Ray Emission in the Milky Way

    NASA Technical Reports Server (NTRS)

    Snowden, Steve

    2011-01-01

    Our understanding of the diffuse X-ray emission from the Milky Way has evolved. extensively with time from when it was first observed in the 1960's, and its origin is still the subject of debate as much now as ever. This presentation will provide an overview of that evolution, the various emission components, emission mechanisms, an assessment of the current state of the field, and implications for eROSITA.

  18. Large Scale Diffuse X-ray Emission from Abell 3571

    NASA Technical Reports Server (NTRS)

    Molnar, Sandor M.; White, Nicholas E. (Technical Monitor)

    2001-01-01

    Observations of the Luman alpha forest suggest that there are many more baryons at high redshift than we can find in the Universe nearby. The largest known concentration of baryons in the nearby Universe is the Shapley supercluster. We scanned the Shapley supercluster to search for large scale diffuse emission with the Rossi X-ray Timing Explorer (RXTE), and found some evidence for such emission. Large scale diffuse emission may be associated to the supercluster, or the clusters of galaxies within the supercluster. In this paper we present results of scans near Abell 3571. We found that the sum of a cooling flow and an isothermal beta model adequately describes the X-ray emission from the cluster. Our results suggest that diffuse emission from A3571 extends out to about two virial radii. We briefly discuss the importance of the determination of the cut off radius of the beta model.

  19. Soft X-ray emission spectroscopy of polycyclic aromatichydrocarbons

    SciTech Connect

    Muramatsu, Yasuji; Tomizawa, Kana; Denlinger, Jonathan D.; Perera, Rupert C.C.

    2004-04-02

    High-resolution CK X-ray emission spectra of polycyclicaromatic hydrocarbons (PAH) were measured using synchrotron radiation.The main peak energies in the PAH X-ray spectra shifted to a higherenergy region as the ratio of hydrogenated outer carbon atoms tothenon-hydrogenated inner carbon atoms increased. Discrete variational(DV)-Xa molecular orbital calculations provided theoretical confirmationthat the spectral features depend on the ratio ofhydrogenated/non-hydrogenated carbon atoms, which suggests that thefeatures around the main peaks provide the information of the degree ofhydrogenation in PAH compounds.

  20. Quiescent thermal emission from neutron stars in LMXBs

    E-print Network

    Anabela Turlione; Deborah N. Aguilera; José A. Pons

    2015-02-19

    We monitored the quiescent thermal emission from neutron stars in low-mass X-ray binaries after active periods of intense activity in x-rays (outbursts). The theoretical modeling of the thermal relaxation of the neutron star crust may be used to establish constraints on the crust composition and transport properties, depending on the astrophysical scenarios assumed. We numerically simulated the thermal evolution of the neutron star crust and compared them with inferred surface temperatures for five sources: MXB 1659-29, KS 1731-260, EXO 0748-676, XTE J1701-462 and IGR J17480-2446. We find that the evolution of MXB 1659-29, KS 1731-260 and EXO 0748-676 can be well described within a deep crustal cooling scenario. Conversely, we find that the other two sources can only be explained with models beyond crustal cooling. For the peculiar emission of XTE J1701-462 we propose alternative scenarios such as residual accretion during quiescence, additional heat sources in the outer crust, and/or thermal isolation of the inner crust due to a buried magnetic field. We also explain the very recent reported temperature of IGR J17480-2446 with an additional heat deposition in the outer crust from shallow sources.

  1. Hard X-ray emission of Sco X-1

    NASA Astrophysics Data System (ADS)

    Revnivtsev, Mikhail G.; Tsygankov, Sergey S.; Churazov, Eugene M.; Krivonos, Roman A.

    2014-12-01

    We study hard X-ray emission of the brightest accreting neutron star Sco X-1 with INTEGRAL observatory. Up to now INTEGRAL have collected ˜4 Ms of deadtime corrected exposure on this source. We show that hard X-ray tail in time average spectrum of Sco X-1 has a power-law shape without cutoff up to energies ˜200-300 keV. An absence of the high energy cutoff does not agree with the predictions of a model, in which the tail is formed as a result of Comptonization of soft seed photons on bulk motion of matter near the compact object. The amplitude of the tail varies with time with factor more than 10 with the faintest tail at the top of the so-called flaring branch of its colour-colour diagram. We show that the minimal amplitude of the power-law tail is recorded when the component, corresponding to the innermost part of optically thick accretion disc, disappears from the emission spectrum. Therefore, we show that the presence of the hard X-ray tail may be related with the existence of the inner part of the optically thick disc. We estimate cooling time for these energetic electrons and show that they cannot be thermal. We propose that the hard X-ray tail emission originates as a Compton upscattering of soft seed photons on electrons, which might have initial non-thermal distribution.

  2. A rocket borne instrument for the study of soft X-ray emission from cosmic X-ray sources

    NASA Technical Reports Server (NTRS)

    Agrawal, P. C.; Moore, W. E.; Garmire, G. P.

    1974-01-01

    Details about a rocket-borne instrument designed for studying the various characteristics of soft X-ray emission from cosmic X-ray sources in the energy range of 0.2 to 3 keV are presented. The X-ray detector consists of a bank of four multilayer, wall-less proportional counters, each with an area of 400 sq cm. The detectors are covered by windows of 1.4-micron polypropylene and are maintained at a constant pressure in flight using a gas control system. Two of the detectors are equipped with 0.4- by 10-deg collimators for mapping the spatial distribution of soft X-rays from extended X-ray sources. A pair of balanced filters consisting of oxygen and CF4 are used for detecting oxygen emission lines.

  3. A laboratory-based hard x-ray monochromator for high-resolution x-ray emission spectroscopy and x-ray absorption near edge structure measurements.

    PubMed

    Seidler, G T; Mortensen, D R; Remesnik, A J; Pacold, J I; Ball, N A; Barry, N; Styczinski, M; Hoidn, O R

    2014-11-01

    We report the development of a laboratory-based Rowland-circle monochromator that incorporates a low power x-ray (bremsstrahlung) tube source, a spherically bent crystal analyzer, and an energy-resolving solid-state detector. This relatively inexpensive, introductory level instrument achieves 1-eV energy resolution for photon energies of ?5 keV to ?10 keV while also demonstrating a net efficiency previously seen only in laboratory monochromators having much coarser energy resolution. Despite the use of only a compact, air-cooled 10 W x-ray tube, we find count rates for nonresonant x-ray emission spectroscopy comparable to those achieved at monochromatized spectroscopy beamlines at synchrotron light sources. For x-ray absorption near edge structure, the monochromatized flux is small (due to the use of a low-powered x-ray generator) but still useful for routine transmission-mode studies of concentrated samples. These results indicate that upgrading to a standard commercial high-power line-focused x-ray tube or rotating anode x-ray generator would result in monochromatized fluxes of order 10(6)-10(7) photons/s with no loss in energy resolution. This work establishes core technical capabilities for a rejuvenation of laboratory-based hard x-ray spectroscopies that could have special relevance for contemporary research on catalytic or electrical energy storage systems using transition-metal, lanthanide, or noble-metal active species. PMID:25430123

  4. Stellar X-ray Emission in the Orion Nebula Region

    NASA Astrophysics Data System (ADS)

    Gagne, M.; Caillault, J.-P.; Stauffer, J. R.

    1993-12-01

    We present results from two comprehensive imaging X-ray surveys of the Orion Nebula star-forming complex. We have analyzed three deep ROSAT High Resolution Imager (HRI) pointings of a 0.8 square degree region around the Trapezium. In addition, we have completed our analysis of 17 Einstein Imaging Proportional Counter and 6 Einstein HRI fields covering roughly 4.5 square degrees, also centered on the Trapezium. In total, more than 450 distinct sources of emission brighter than L_X ~ 10(30) erg s(-1) have been detected; ~ 320 of these have been identified with certain or probable cluster members. The vast majority of the X-ray sources are associated with intermediate and low-mass pre-main sequence (PMS) cluster members. No correlation between X-ray activity and rotation is evident among the handful of stars with measured rotational velocity and/or period. The low-mass PMS stars show signs of saturated X-ray activity, with relative X-ray luminosity L_X/L_bol ~ 10(-3) . We compare these results with those obtained in other star-forming regions such as rho Ophiuchi, Taurus-Aurigae, and Chamaeleon I. Nearly all the O and B-type stars observed by ROSAT were detected with L_X/L_bol in the range 10(-7.3) to 10(-5.3) . Also detected by ROSAT are 5 sources whose only candidate optical counterparts are main-sequence B6-A5 stars. These stars are thought to be incapable of producing detectable X-ray emission. Since only ~ 20% of the observed B6-A5 stars are detected, we argue that the observed emission is probably not produced by the B6-A5 stars but, rather, in the coronae of unseen late-type companions. An X-ray light-curve analysis has been performed on both the Einstein and ROSAT data sets, revealing a total of ~ 25 flaring events. Over the course of the Einstein and ROSAT observations, emission from a number of sources was measured many times, allowing us to examine long-term variability on the time scale of a few months between individual Einstein or ROSAT exposures and on the time scale of a decade between the two missions. Research support has been provided by NASA through grants NAGW-2698, NAG5-1608, and NAG5-1610.

  5. Synchrotron X-ray emission from old pulsars

    NASA Astrophysics Data System (ADS)

    Kisaka, Shota; Tanaka, Shuta J.

    2014-09-01

    We study the synchrotron radiation as the observed non-thermal emission by the X-ray satellites from old pulsars (?1-10 Myr) to investigate the particle acceleration in their magnetospheres. We assume that the power-law component of the observed X-ray spectra is caused by the synchrotron radiation from electrons and positrons in the magnetosphere. We consider two pair-production mechanisms of X-ray emitting particles, the magnetic and the photon-photon pair productions. High-energy photons, which ignite the pair production, are emitted via the curvature radiation of the accelerated particles. We use the analytical description for the radiative transfer and estimate the luminosity of the synchrotron radiation. We find that for pulsars with the spin-down luminosity Lsd ? 1033 erg s-1, the locations of the particle acceleration and the non-thermal X-ray emission are within ?107 cm from the centre of the neutron star, where the magnetic pair production occurs. For pulsars with the spin-down luminosity Lsd ? 1031 erg s-1 such as J0108-1431, the synchrotron radiation is difficult to explain the observed non-thermal component even if we consider the existence of the strong and small-scale surface magnetic field structures.

  6. "X-Ray Transients in Star-Forming Regions" and "Hard X-Ray Emission from X-Ray Bursters"

    NASA Technical Reports Server (NTRS)

    Halpern, Jules P.; Kaaret, Philip

    1999-01-01

    This grant funded work on the analysis of data obtained with the Burst and Transient Experiment (BATSE) on the Compton Gamma-Ray Observatory. The goal of the work was to search for hard x-ray transients in star forming regions using the all-sky hard x-ray monitoring capability of BATSE. Our initial work lead to the discovery of a hard x-ray transient, GRO J1849-03. Follow-up observations of this source made with the Wide Field Camera on BeppoSAX showed that the source should be identified with the previously known x-ray pulsar GS 1843-02 which itself is identified with the x-ray source X1845-024 originally discovered with the SAS-3 satellite. Our identification of the source and measurement of the outburst recurrence time, lead to the identification of the source as a Be/X-ray binary with a spin period of 94.8 s and an orbital period of 241 days. The funding was used primarily for partial salary and travel support for John Tomsick, then a graduate student at Columbia University. John Tomsick, now Dr. Tomsick, received his Ph.D. from Columbia University in July 1999, based partially on results obtained under this investigation. He is now a postdoctoral research scientist at the University of California, San Diego.

  7. X-ray emission from clusters of galaxies

    NASA Technical Reports Server (NTRS)

    Mushotzky, R. F.

    1983-01-01

    Some X-ray spectral observations of approximately 30 clusters of galaxies from HEAO-1 are summarized. There exists strong correlations between X-ray luminosity, L(x), and temperature kT in the form L(x)alphaT to the 2.3 power. This result combined with the L(x) central galaxy density relation and the virial theorem indicates that the core dadius of the gas should be roughly independent of L(x) or KT and that more luminous clusters have a greater fraction of their virial mass in gas. The poor correlation of KT and optical velocity dispersion seems to indicate that clusters have a variety of equations of state. There is poor agreement between X-ray imaging observations and optical and X-ray spectral measures of the polytropic index. Most clusters show Fe emission lines with a strong indication that they all have roughly 1/2 solar abundance. The evidence for cooling in the cores of several clusters is discussed based on spectral observations with the Einstein solid state spectrometer.

  8. X-ray emission from clusters of galaxies

    NASA Technical Reports Server (NTRS)

    Mushotzky, R. F.

    1984-01-01

    Some X-ray spectral observations of approximately 30 clusters of galaxies from HEAO-1 are summarized. There exists strong correlation betwen X-ray luminosity, L(x), and temperature kT in the form L(x)alphaT to the 2.3 power. This result combined with the L(x) central galaxy density relation and the virial theorem indicates that the core dadius of the gas should be roughly independent of L(x) or Kt and that more luminous clusters have a greater fraction of their virial mass in gas. The poor correlation of KT and optical velocity dispersion seems to indicate that clusters have a variety of equations of state. There is poor agreement between X-ray imaging observations and optical and X-ray spectral measures of the polytropic index. Most clusters show Fe emission lines with a strong indication that they all have roughly 1/2 solar abundance. The evidence for cooling in the cores several clusters is discussed based on spectral observations with the Einstein solid state spectrometer.

  9. Models for X-Ray Emission from Isolated Pulsars

    NASA Technical Reports Server (NTRS)

    Wang, F. Y.-H.; Ruderman, M.; Halpern, Jules P.; Zhu, T.; Oliversen, Ronald (Technical Monitor)

    2001-01-01

    A model is proposed for the observed combination of power-law and thermal X-rays from rotationally powered pulsars. For gamma-ray pulsars with accelerators very many stellar radii above the neutron star surface, 100 MeV curvature gamma-rays from e(-) or e(+) flowing starward out of such accelerators are converted to e1 pairs on closed field lines all around the star. These pairs strongly affect X-ray emission from near the star in two ways. (1) The pairs are a source of synchrotron emission immediately following their creation in regions where B approx. 10(exp 10) G. This emission, in the photon energy range 0.1 keV less than E(sub X) less than 5 MeV, has a power-law spectrum with energy index 0.5 and X-ray luminosity that depends on the back-flow current, and is typically approx. 10(exp 33) ergs/ s. (2) The pairs ultimately a cyclotron resonance "blanket" surrounding the star except for two holes along the open field line bundles which pass through it. In such a blanket the gravitational pull on e(+,-) pairs toward the star is balanced by the hugely amplified push of outflowing surface emitted X-rays wherever cyclotron resonance occurs. Because of it the neutron star is surrounded by a leaky "hohlraum" of hot blackbody radiation with two small holes, which prevents direct X-ray observation of a heated polar cap of a gamma-ray pulsar. Weakly spin modulated radiation from the blanket together with more strongly spin-modulated radiation from the holes through it would then dominate observed low energy (0.1-10 keV) emission. For non-y-ray pulsars, in which no such accelerators with their accompanying extreme relativistic back-flow toward the star are expected, optically thick e1 resonance blankets should not form (except in special cases very close to the open field line bundle). From such pulsars blackbody radiation from both the warm stellar surface and the heated polar caps should be directly observable. In these pulsars, details of the surface magnetic field evolution, especially of polar cap areas, become relevant to observations. The models are compared to X-ray data from Geminga, PSR 1055-52, PSR 0656+14, PSR 1929+10, and PSR 0950+08.

  10. Theoretical aspects of resonant X-ray emission spectroscopy

    Microsoft Academic Search

    A. Kotani

    2004-01-01

    We report recent theoretical topics for resonant X-ray emission spectroscopy (RXES) in d and f electron systems: (1) RXES in high Tc cuprates, (2) effects of electric quadrupole excitation, and (3) magnetic circular dichroism (MCD) in RXES for ferromagnetic systems. In high Tc cuprates, RXES with Cu 1s excitation detects a 6eV charge transfer excitation whose intensity is affected by

  11. The Large Scale X-Ray Emission from M87

    NASA Technical Reports Server (NTRS)

    Harris, D. E.; Biretta, J. A.; Junor, W.

    1998-01-01

    We describe asymmetrical features in a long exposure X-ray map of M87 made with the ROSAT High Resolution Imager (HRI). A bright triangular region is marked by a linear 'spur' along one edge. The structure of this spur suggests an interpretation of a tangential view of a shock front 18 kpc long. None of the brighter features are spatially coincident with radio or optical structures so we concur with earlier investigators that most of the emission arises from thermal processes.

  12. The Evolution of X-Ray Emission in Young Stars

    NASA Astrophysics Data System (ADS)

    Preibisch, Thomas; Feigelson, Eric D.

    2005-10-01

    The evolution of magnetic activity in late-type stars is part of the intertwined rotation-age-activity relation, which provides an empirical foundation to the theory of magnetic dynamos. We study the age-activity relation in the pre-main-sequence (PMS) regime, for the first time using mass-stratified subsamples. The effort is based on the Chandra Orion Ultradeep Project (COUP), which provides very sensitive and homogenous X-ray data on a uniquely large sample of 481 optically well-characterized low-extinction low-mass members of the Orion Nebula Cluster, for which individual stellar masses and ages could be determined. More than 98% of the stars in this sample are detected as X-ray sources. Within the PMS phase for stellar ages in the range ~0.1-10 Myr, we establish a mild decay in activity with stellar age ? roughly as LX~?-1/3. On longer timescales, when the Orion stars are compared to main-sequence stars, the X-ray luminosity decay law for stars in the 0.5 MsolarX-ray luminosity LX/Lbol and the X-ray surface flux are considered as activity indicators, the decay law index is similarly slow for the first 1-100 Myr but accelerates for older stars. The magnetic activity history for M stars with masses 0.1 MsolarX-ray luminosity, and even a mild increase in LX/Lbol and FX, is seen over the 1-100 Myr range, though the X-ray emission does decay over long timescales on the main sequence. Together with COUP results on the absence of a rotation-activity relation in Orion stars, we find that the activity-age decay is strong across the entire history of solar-type stars but is not attributable to rotational deceleration during the early epochs. A combination of tachocline and distributed convective dynamos may be operative in young solar-type stars. The results for the lowest mass stars are most easily understood by the dominance of convective dynamos during both the PMS and main-sequence phases.

  13. X-ray Emission from the Sombrero Galaxy: Discrete Sources

    NASA Astrophysics Data System (ADS)

    Li, Zhiyuan; Spitler, Lee R.; Jones, Christine; Forman, William R.; Kraft, Ralph P.; Di Stefano, Rosanne; Tang, Shikui; Wang, Q. Daniel; Gilfanov, Marat; Revnivtsev, Mikhail

    2010-10-01

    We present a study of discrete X-ray sources in and around the bulge-dominated, massive Sa galaxy, Sombrero (M104), based on new and archival Chandra observations with a total exposure of ~200 ks. With a detection limit of L X ? 1037 erg s-1 and a field of view covering a galactocentric radius of ~30 kpc (11farcm5), 383 sources are detected. Cross-correlation with Spitler et al.'s catalog of Sombrero globular clusters (GCs) identified from HST/ACS observations reveals 41 X-ray sources in GCs, presumably low-mass X-ray binaries (LMXBs). Metal-rich GCs are found to have a higher probability of hosting these LMXBs, a trend similar to that found in elliptical galaxies. On the other hand, the four most luminous GC LMXBs, with apparently super-Eddington luminosities for an accreting neutron star, are found in metal-poor GCs. We quantify the differential luminosity functions (LFs) for both the detected GC and field LMXBs, whose power-law indices (~1.1 for the GC-LF and ~1.6 for field-LF) are consistent with previous studies for elliptical galaxies. With precise sky positions of the GCs without a detected X-ray source, we further quantify, through a fluctuation analysis, the GC-LF at fainter luminosities down to 1035 erg s-1. The derived index rules out a faint-end slope flatter than 1.1 at a 2? significance, contrary to recent findings in several elliptical galaxies and the bulge of M31. On the other hand, the 2-6 keV unresolved emission places a tight constraint on the field LF, implying a flattened index of ~1.0 below 1037 erg s-1. We also detect 101 sources in the halo of Sombrero. The presence of these sources cannot be interpreted as galactic LMXBs whose spatial distribution empirically follows the starlight. Their number is also higher than the expected number of cosmic active galactic nuclei (52 ± 11 [1?]) whose surface density is constrained by deep X-ray surveys. We suggest that either the cosmic X-ray background is unusually high in the direction of Sombrero, or a distinct population of X-ray sources is present in the halo of Sombrero.

  14. Evidence for X-ray emission from flare stars observed by ANS. [Astronomical Netherlands Satellite

    NASA Technical Reports Server (NTRS)

    Heise, J.; Brinkman, A. C.; Schrijver, J.; Mewe, R.; Gronenschild, E. H. B. M.; Den Boggende, A. J. F.; Grindlay, J.

    1975-01-01

    Observations that detected the first X-ray emission from flare stars are described. An X-ray flare was detected from YZ CMi at 0.28 keV and approximately 1-7 keV, although no optical or radio coverage was available. During a very large optical flare from UV Ceti, X-ray emission at (only) 0.28 keV was detected. Upper limits for X-ray emission from several small optical flares of UV Ceti are presented. Implications for X-ray flare models, the diffuse X-ray background, and low-energy cosmic-ray flux are mentioned.

  15. OPTICAL EMISSION OF THE BLACK HOLE X-RAY TRANSIENT MAXI J1659-152 DURING QUIESCENCE

    SciTech Connect

    Kong, Albert K. H., E-mail: akong@phys.nthu.edu.tw [Institute of Astronomy and Department of Physics, National Tsing Hua University, Hsinchu 30013, Taiwan (China)

    2012-12-01

    We report on the optical detection of the black hole X-ray transient MAXI J1659-152 during its quiescent state. By using the Canada-France-Hawaii Telescope, we observed MAXI J1659-152 about seven months after the end of an X-ray outburst. The optical counterpart of MAXI J1659-152 is clearly detected with an r'-band magnitude of 23.6-23.8. The detection confirms that the optical emission of MAXI J1659-152 during quiescence is relatively bright compared to other black hole X-ray transients. This implies that the distance to MAXI J1659-152 is 4.6-7.5 kpc for an M2 dwarf companion star or 2.3-3.8 kpc for an M5 dwarf companion star. By comparing with other measurements, an M2 dwarf companion is more likely.

  16. Spatially Varying X-ray Synchrotron Emission in SN 1006

    E-print Network

    Kristy Dyer; Stephen Reynolds; Kazik Borkowski; Rob Petre

    2001-01-17

    A growing number of both galactic and extragalactic supernova remnants show non-thermal (non-plerionic) emission in the X-ray band. New synchrotron models, realized as SRESC and SRCUT in XSPEC 11, which use the radio spectral index and flux as inputs and include the full single-particle emissivity, have demonstrated that synchrotron emission is capable of producing the spectra of dominantly non-thermal supernova remnants with interesting consequences for residual thermal abundances and acceleration of particles. In addition, these models deliver a much better-constrained separation between the thermal and non-thermal components, whereas combining an unconstrained powerlaw with modern thermal models can produce a range of acceptable fits. While synchrotron emission can be approximated by a powerlaw over small ranges of energy, the synchrotron spectrum is in fact steepening over the X-ray band. Having demonstrated that the integrated spectrum of SN 1006, a remnant dominated by non-thermal emission, is well described by synchrotron models I now turn to spatially resolved observations of this well studied remnant. The synchrotron models make both spectral and spatial predictions, describing how the non-thermal emission varies across the remnant. Armed with spatially resolved non-thermal models and new thermal models such as VPSHOCK we can now dissect the inner workings of SN 1006.

  17. The Very-Soft X-Ray Emission of X-Ray Faint Early-Type Galaxies

    E-print Network

    S. Pellegrini; G. Fabbiano

    1993-12-19

    A recent re-analysis of Einstein data, and new ROSAT observations, have revealed the presence of at least two components in the X-ray spectra of X-ray faint early-type galaxies: a relatively hard component (kT>1.5 keV), and a very soft component (kT\\sim 0.2-0.3 keV). We address the problem of the nature of the very soft component, and whether it can be due to a hot interstellar medium (ISM), or is most likely originated by the collective emission of very soft stellar sources. To this purpose, hydrodynamical evolutionary sequences for the secular behavior of gas flows in ellipticals have been performed, and the results are compared with the observational X-ray data: the very soft component could be entirely explained with a hot ISM only in galaxies where the depth of the potential well is quite shallow, otherwise the softest contribution to the X-ray emission comes certainly from stellar sources. As stellar soft X-ray emitters, we consider late-type stellar corone, supersoft sources such as those discovered by ROSAT in the Magellanic Clouds and M31, and RSCVn systems. We finally present a model for the X-ray emission of NGC4365, to reproduce in detail the results of the ROSAT pointed observation (PSPC spectrum and radial surface brightness distribution).

  18. Quiescent Burst Evidence for Two Distinct GRB Emission Components

    E-print Network

    Jon Hakkila; Timothy W. Giblin

    2004-03-15

    We have identified two quiescent GRBs (bursts having two or more widely-separated distinct emission episodes) in which the post-quiescent emission exhibits distinctly different characteristics than the pre-quiescent emission. In these two cases (BATSE GRBs 960530 and 980125), the second emission episode has a longer lag, a smoother morphology, and softer spectral evolution than the first episode. Although the pre-quiescent emission satisfies the standard internal shock paradigm, we demonstrate that the post-quiescent emission is more consistent with external shocks. We infer that some observed soft, faint, long-lag GRBs are external shocks in which the internal shock signature is not observed. We further note that the peak luminosity ratio between quiescent episodes is not in agreement with the ratio predicated by the lag vs. peak luminosity relationship. We briefly discuss these observations in terms of current collapsar jet models.

  19. HARD X-RAY EMISSION FROM THE NGC 5044 GROUP

    SciTech Connect

    Henriksen, Mark J. [Physics Department, University of Maryland, Baltimore County, Baltimore, MD 21250 (United States)

    2011-01-01

    Observations made with the Rossi X-ray Timing Explorer Proportional Counter Array (PCA) to constrain the hard X-ray emission in the NGC 5044 group are reported here. Modeling a combined PCA and ROSAT position sensitive proportional counter spectrum with a 0.5-15 keV energy range shows excess hard emission above 4 keV. Addition of a power-law component with a spectral index of 2.6-2.8 and a luminosity of 2.6 x 10{sup 42} erg s{sup -1} within 700 kpc in the observed energy band removes these residuals. Thus, there is a detection of a significant non-thermal component that is 32% of the total X-ray emission. Point-source emission makes up at most 14% of the non-thermal emission from the NGC 5044 group. Therefore, the diffuse, point-source-subtracted, non-thermal component is (2.2-3.0) x 10{sup 42} erg s{sup -1}. The cosmic-ray electron energy density is 3.6 x 10{sup -12} erg cm{sup -3} and the average magnetic field is 0.034 {mu}G in the largest radio emitting region. The ratio of cosmic-ray electron energy density to magnetic field energy density, {approx}2.5 x 10{sup 4}, is significantly out of equipartition and is therefore atypical of radio lobes. In addition, the group's small size and low non-thermal energy density strongly contradicts the size-energy relationship found for radio lobes. Thus, it is unlikely related to the active galaxy and is most likely a relic of the merger. The energy in cosmic rays and magnetic field is consistent with simulations of cosmic-ray acceleration by merger shocks.

  20. Quiescent microwave emission from late-type stars

    Microsoft Academic Search

    Manuel Gudel

    1994-01-01

    A diversity of stellar classes has been detected to be prolific sources of low-level, 'quiescent' microwave radiation. This emission is, in most cases, attributed to the persistent presence of mildly relativistic electrons in the coronae. Frequent or continuous particle acceleration is required to maintain a high level of gyrosynchrotron emission. Observations relevant to our understanding of quiescent microwave emission from

  1. X-ray Emission From Planets Venus and Mars: Theoretical Model and Numerical Simulations

    Microsoft Academic Search

    P. Bryans; V. D. Shapiro; R. Bingham; M. Tourner

    2003-01-01

    Recently X-ray emission from non-magnetic planets Venus and Mars have been discovered by Chandra X-ray telescopes [1,2]. Analysis of observational data shows that either charge exchange model or fluorescent scattering of solar x-rays cannot explain the whole set of observational data. The premise of this paper is that x-ray emission of both planets is a combination of line k-shell radiation

  2. X-ray Emission from Planets Venus and Mars. Theoretical Model and Numerical Simulations

    Microsoft Academic Search

    Paul Bryans; Kevin Quest; Vitali Shapiro; Robert Bingham; Martin Torney

    2003-01-01

    Recently X-ray emission from non-magnetic planets Venus and Mars have been discovered by Chandra X-ray telescopes [1,2]. Analysis of observational data shows that either charge exchange model or fluorescent scattering of solar x-rays cannot explain the whole set of observational data. The premise of this paper is that x-ray emission of both planets is a combination of line k-shell radiation

  3. Thermal X-ray emission of the remnants of ashperical Supernova explosions

    E-print Network

    O. Petruk

    2001-03-26

    Evolution of adiabatic remnants of an aspherical supernova explosion in uniform medium are considered. Thermal X-ray emission of such remnants are investigated. It is shown that integral thermal X-ray characteristics (X-ray luminosity and spectrum) of the objects do not allow us to reveal the assymetry in the explosion because these characteristics are close to their Sedov counterparts. Surface distribution of X-ray emission is sensitive to anisotropy of the explosion and nonuniformity of the interstellar medium.

  4. Solar X-ray physics

    SciTech Connect

    Bornmann, P.L. (USAF, Geophysics Laboratory, Hanscom AFB, MA (United States))

    1991-01-01

    Research on solar X-ray phenomena performed by American scientists during 1987-1990 is reviewed. Major topics discussed include solar images observed during quiescent times, the processes observed during solar flares, and the coronal, interplanetary, and terrestrial phenomena associated with solar X-ray flares. Particular attention is given to the hard X-ray emission observed at the start of the flare, the energy transfer to the soft X-ray emitting plasma, the late resolution of the flare as observed in soft X-ray, and the rate of occurrence of solar flares as a function of time and latitude. Pertinent aspects of nonflaring, coronal X-ray emission and stellar flares are also discussed. 175 refs.

  5. Nonthermal X-ray emission in clusters of galaxies

    NASA Astrophysics Data System (ADS)

    Rephaeli, Y.

    2001-09-01

    Significant new insight on physical conditions in clusters of galaxies will be gained from observations of high energy (>20 keV) X-ray emission. In clusters, this emission is likely to be largely nonthermal radiation, probably resulting from Compton scattering of relativistic electrons by the cosmic microwave background radiation. The presence of relativistic electrons in some ~30 clusters is directly deduced from measurements of extended radio emission. I review previous results from RXTE and BeppoSAX measurements of a small sample of clusters, and report the results of our recent analysis of RXTE measurements of A2319. These measurements directly yield the mean strength of the intracluster magnetic fields and energy density of relativistic electrons. Implications of these results on the origin of the fields and electrons are briefly considered. Observations with the INTEGRAL satellite may prove pivotal in clearly establishing the significance of nonthermal phenomena in clusters.

  6. NEUTRON STAR RADIUS MEASUREMENT WITH THE QUIESCENT LOW-MASS X-RAY BINARY U24 IN NGC 6397

    SciTech Connect

    Guillot, Sebastien; Rutledge, Robert E. [Department of Physics, McGill University, 3600 rue University, Montreal, QC H3A-2T8 (Canada); Brown, Edward F., E-mail: guillots@physics.mcgill.ca, E-mail: rutledge@physics.mcgill.ca [Department of Physics and Astronomy, Michigan State University, 3250 Biomedical Physical Science Building, East Lansing, MI 48824-2320 (United States)

    2011-05-10

    This paper reports the spectral and timing analyses of the quiescent low-mass X-ray binary (qLMXB) U24 observed during five archived Chandra/ACIS exposures of the nearby globular cluster NGC 6397, for a total of 350 ks. We find that the X-ray flux and the parameters of the hydrogen atmosphere spectral model are consistent with those previously published for this source. On short timescales, we find no evidence of aperiodic intensity variability, with 90% confidence upper limits during five observations ranging between <8.6% rms and <19% rms, in the 0.0001-0.1 Hz frequency range (0.5-8.0 keV); and no evidence of periodic variability, with maximum observed powers in this frequency range having a chance probability of occurrence from a Poisson-deviated light curve in excess of 10%. We also report the improved neutron star (NS) physical radius measurement, with statistical accuracy of the order of {approx}10%: R{sub NS} = 8.9{sup +0.9}{sub -0.6} km for M{sub NS} = 1.4 M{sub sun}. Alternatively, we provide the confidence regions in mass-radius space as well as the best-fit projected radius R{sub {infinity}} = 11.9{sup +1.0}{sub -0.8} km, as seen by an observer at infinity. The best-fit effective temperature, kT{sub eff} = 80{sup +4}{sub -5} eV, is used to estimate the NS core temperature which falls in the range T{sub core} = (3.0-9.8) x 10{sup 7} K, depending on the atmosphere model considered. This makes U24 the third most precisely measured NS radius among qLMXBs, after those in {omega} Cen and M13.

  7. A Chandra survey of X-ray emission from radio jets: Correlations of the jet X-ray flux

    NASA Astrophysics Data System (ADS)

    Schwartz, Daniel A.; Marshall, Herman L.; Worrall, Diana M.; Birkinshaw, Mark; Perlman, Eric S.; Lovell, Jim; Jauncey, David L.; Murphy, David William; Gelbord, Jonathan; Godfrey, Leith; Bicknell, Geoffrey V.

    2015-01-01

    We have completed a Chandra survey for X-ray emission from 54 radio jets that are extended on arcsecond scales. These are in flat spectrum radio loud quasars and have redshifts in the range z=0.3 to z=2.1. We detect X-ray emission from 60% of the jets. The study reported here considers the straight part of the jet nearest to the quasar. The X-ray counting rate from this correlates very well to that from the quasar. Correlation with redshift, the jet radio flux, the radio core flux, or visual apparent magnitude is poor or non-existent.This research was supported by NASA contract NAS8-03060, SAO Grant GO9-0121B, and HST Grant HST-GO-11838.04-A

  8. Soft X-ray excess emission from clusters of galaxies

    E-print Network

    Richard Lieu; Jonathan Mittaz

    2004-03-17

    This is the first meeting specifically devoted to the topic of cluster soft excess and related phenomena. It calls together a group of some 40 scientists, mostly experts in the field, to present their findings on the observational aspects of emission from clusters, signature of the WHIM in the cluster, intergalactic, and local environment, theoretical modeling of the WHIM in cosmological hydrodynamic simulations, theory and observations of cluster cosmic rays, magnetic fields, radio data and the use of the Sunyaev-Zeldovich effect as a means of constraining the important parameters. We are particularly grateful to F.J. Lockman and S.L. Snowden for presenting their latest picture of the cold gas distribution in the interstellar medium, as this affects our ability to model extragalactic EUV and soft X-ray data via Galactic absorption by HI and HeI. Papers given on future hardware concepts to further the spatial and spectral diagnosis of diffuse soft X-ray emission in general are also included.

  9. The X-ray Emission of Planetary Nebulae M. Steffen, D. Schnberner

    E-print Network

    The X-ray Emission of Planetary Nebulae M. Steffen, D. Schönberner Planetarische Nebel sind können. X-ray observations of Planetary Nebulae Over the last years, the two large X-ray space Nebulae (PNe) with high spatial and spectral resolution. These observations have shown without doubt

  10. Uhuru observations of short-time-scale variations of the Crab. [X ray emission from pulsar

    NASA Technical Reports Server (NTRS)

    Forman, W.; Giacconi, R.; Jones, C.; Schreier, E.; Tananbaum, H.

    1974-01-01

    We have analyzed Uhuru X-ray observations of the Crab and found statistically significant variability in the intensity on time scales of several tenths of a second. Our results imply either that the X-ray emission from the pulsar NP 0532 is highly variable or that we have observed a previously undetected compact source of X-rays.

  11. Extraordinarily Hot X-ray Emission from the 09 Emission Line Star HD 119682

    E-print Network

    C. E. Rakowski; N. S. Schulz; S. J. Wolk; P. Testa

    2006-08-15

    We present new optical and X-ray observations to show that the X-ray source 1 WGA J1346.5--6255 previously associated with the SNR G309.2--0.6 can be unequivocally identified with the emission line star HD 119682 located in the foreground open cluster NGC 5281. Images from Chandra in the X-ray band as well as from Magellan in the narrow optical H-alpha band show a coincidence of the source positions within 0.5". The X-ray source appears extremely hot for an OB-star identified as of O9.7e type. XMM-Newton spectra show plasma temperatures of 1 keV and >8 keV with an X-ray luminosity of 6.2E32 +/-0.1E32 erg/s. The optical and X-ray properties are very reminiscent of the prototype emission line star Gamma-Cas. We discuss the ramifications of this similarity with respect to very early type emission line stars as a new class of hard X-ray sources.

  12. Development of x-ray emission computed tomography for ICF research

    SciTech Connect

    Nakai, M.; Shinohara, S.; Katayama, M.; Chen, Y.; Kobayashi, S.; Miyanaga, N.; Tanaka, K.A.; Nishihara, K.; Yamanaka, M.; Yamanaka, T.; Nakai, S. (Institute of Laser Engineering, Osaka University, Suita Osaka 565 (Japan))

    1990-10-01

    A computed tomographic (CT) technique has been developed to diagnose laser-irradiated spherical targets using x-ray emissions. The three-dimensional (3-D) x-ray distribution was reconstructed by using an algebraic reconstruction technique (ART) from x-ray pinhole camera images obtained along different sight directions. 3-D distributions of electron temperature and density were measured by use of an absorption filter technique. Time-resolved 3-D x-ray emission images from an imploding hollow shell target were reconstructed with less than 100 ps temporal resolution by using x-ray multiframing cameras.

  13. Hard X-ray emission from IC443: evidence for a shocked molecular clump?

    Microsoft Academic Search

    F. Bocchino; A. M. Bykov

    2000-01-01

    We report BeppoSAX observations of spatially resolved hard X-ray emission from IC 443, a supernova remnant interacting with a molecular cloud. The emission is shown to come from two localized features spatially correlated with bright molecular emission regions. Both hard X-ray features have soft X-ray counterparts, in one case shifted by ~ 2' arcmin toward the remnant interior. The spectra

  14. Emission lines from X-ray-heated accretion disks in low-mass X-ray binaries

    NASA Technical Reports Server (NTRS)

    Ko, Yuan-Kuen; Kallman, Timothy R.

    1994-01-01

    We investigate the structure of accretion disks illuminated by X-rays from a central compact object in a binary system. X-rays can photoionize the upper atmosphere of the disk and form an accretion disk corona (ADC) where emission lines can form. We construct a model to calculate the vertical structure and the emission spectrum of the ADC with parameters appropriate to low-mass X-ray binaries. These models are made by nonlocal thermodynamic equilibrium calculations of ion and level populations and include a large number of atomic processes for 10 cosmically abundant elements. Transfer of radiation is treated by using the escape probability formalism. The vertical temperature profile of the ADC consists of a Compton-heated region and a mid-T zone where the temperature is approximately 10(exp 6) K. A thermal instability occurs close to the disk photosphere and causes the temperature of the ADC to drop abruptly from 10(exp 6) K to several times 10(exp 4) K. The emission spectrum in the optical, ultraviolet, extreme ultraviolet, and X-ray range is discussed and compared with the observations.

  15. Effect of insulator sleeve material on the x-ray emission from a plasma focus device

    SciTech Connect

    Hussain, S.; Badar, M. A. [Department of Physics, University of Sargodha, Sargodha 40100 (Pakistan); Shafiq, M.; Zakaullah, M. [Department of Physics, Quaid-i-Azam University, Islamabad 45320 (Pakistan)

    2010-09-15

    The effect of insulator sleeve material on x-ray emission from a 2.3 kJ Mather type plasma focus device operated in argon-hydrogen mixture is investigated. The time and space resolved x-ray emission characteristics are studied by using a three channel p-i-n diode x-ray spectrometer and a multipinhole camera. The x-ray emission depends on the volumetric ratio of argon-hydrogen mixture as well as the filling pressure and the highest x-ray emission is observed for a volumetric ratio 40% Ar to 60%H{sub 2} at 2.5 mbar filling pressure. The fused silica insulator sleeve produces the highest x-ray emission whereas nonceramic insulator sleeves such as nylon, Perspex, or Teflon does not produce focus or x-rays. The pinhole images of the x-ray emitting zones reveal that the contribution of the Cu K{alpha} line is weak and plasma x-rays are intense. The highest plasma electron temperature is estimated to be 3.3 and 3.6 keV for Pyrex glass and fused silica insulator sleeves, respectively. It is speculated that the higher surface resistivity of fused silica is responsible for enhanced x-ray emission and plasma electron temperature.

  16. X-ray emission of YSOs in the Horsehead Nebula

    NASA Astrophysics Data System (ADS)

    Lopez-Santiago, Javier

    2010-10-01

    The Horsehead Nebula is the nearest bright-rimmed cloud to the Sun. In its interior, star formation is taking place at different scales. Deep mid-infrared observations of the forming stars in this region have revealed a large variety of objects, from class I to class III stars, including transitional disk objects. The stars at the limb of the cloud are exposed to the ultraviolet field of sigma Ori, while stars in the interior of the cloud are forming basically in an isolated scenario. By its proximity, the Horsehead Nebula is an excellent laboratory to study the physics of the X-ray emission in young stellar objects at similar evolutionary stages in different environments.

  17. Modeling X-ray emission from stellar coronae

    E-print Network

    S. G. Gregory; M. Jardine; C. Argiroffi; J. -F. Donati

    2008-09-24

    By extrapolating from observationally derived surface magnetograms of low-mass stars we construct models of their coronal magnetic fields and compare the 3D field geometry with axial multipoles. AB Dor, which has a radiative core, has a very complex field, whereas V374 Peg, which is completely convective, has a simple dipolar field. We calculate global X-ray emission measures assuming that the plasma trapped along the coronal loops is in hydrostatic equilibrium and compare the differences between assuming isothermal coronae, or by considering a loop temperature profiles. Our preliminary results suggest that the non-isothermal model works well for the complex field of AB Dor, but not for the simple field of V374 Peg.

  18. Modeling X-ray emission from stellar coronae

    E-print Network

    Gregory, S G; Argiroffi, C; Donati, J -F

    2008-01-01

    By extrapolating from observationally derived surface magnetograms of low-mass stars we construct models of their coronal magnetic fields and compare the 3D field geometry with axial multipoles. AB Dor, which has a radiative core, has a very complex field, whereas V374 Peg, which is completely convective, has a simple dipolar field. We calculate global X-ray emission measures assuming that the plasma trapped along the coronal loops is in hydrostatic equilibrium and compare the differences between assuming isothermal coronae, or by considering a loop temperature profiles. Our preliminary results suggest that the non-isothermal model works well for the complex field of AB Dor, but not for the simple field of V374 Peg.

  19. SEARCHING FOR NARROW EMISSION LINES IN X-RAY SPECTRA: COMPUTATION AND METHODS Taeyoung Park,1

    E-print Network

    van Dyk, David

    SEARCHING FOR NARROW EMISSION LINES IN X-RAY SPECTRA: COMPUTATION AND METHODS Taeyoung Park,1 David of the high-redshift quasar PG 1634+706. Subject headinggs: methods: statistical -- quasars: emission lines 1 The detection and quantification of narrow emission lines in X-ray spectra is a challenging statistical task

  20. X-Ray, UV, and Optical Observations of Supernova 2006bp with Swift: Detection of Early X-Ray Emission

    E-print Network

    S. Immler; P. J. Brown; P. Milne; L. Dessart; P. A. Mazzali; W. Landsman; N. Gehrels; R. Petre; D. N. Burrows; J. A. Nousek; R. A. Chevalier; C. L. Williams; M. Koss; C. J. Stockdale; M. T. Kelley; K. W. Weiler; S. T. Holland; E. Pian; P. W. A. Roming; D. Pooley; K. Nomoto; J. Greiner; S. Campana; A. M. Soderberg

    2007-03-29

    We present results on the X-ray and optical/UV emission from the type IIP SN 2006bp and the interaction of the SN shock with its environment, obtained with the X-Ray Telescope (XRT) and UV/Optical Telescope (UVOT) on-board the Swift observatory. SN 2006bp is detected in X-rays at a 4.5 sigma level of significance in the merged XRT data from days 1 to 12 after the explosion. If the X-ray luminosity of (1.8+/-0.4)E39 ergs/s is caused by interaction of the SN shock with circumstellar material (CSM), deposited by a stellar wind from the progenitor's companion star, a mass-loss rate of ~E-05 M_sun/yr is inferred. The mass-loss rate is consistent with the non-detection in the radio with the VLA on days 2, 9, and 11 after the explosion and characteristic of a red supergiant progenitor with a mass around 12-15 M_sun prior to the explosion. In combination with a follow-up XMM-Newton observation obtained on day 21 after the explosion, an X-ray rate of decline with index 1.2+/-0.6 is inferred. Since no other SN has been detected in X-rays prior to the optical peak and since type IIP SNe have an extended 'plateau' phase in the optical, we discuss the scenario that the X-rays might be due to inverse Compton scattering of photospheric optical photons off relativistic electrons produced in circumstellar shocks. However, due to the high required value of the Lorentz factor (~10-100) we conclude that Inverse Compton scattering is an unlikely explanation for the observed X-ray emission. The fast evolution of the optical/ultraviolet spectral energy distribution and the spectral changes observed with Swift reveal the onset of metal line-blanketing and cooling of the expanding photosphere during the first few weeks after the outburst.

  1. Theoretical study of the X-ray emission from astrophysical shock waves

    NASA Technical Reports Server (NTRS)

    Raymond, J.

    1986-01-01

    Theoretical X-ray emission spectra are needed to interpret the X-ray emission observed by many low and moderate resolution X-ray instruments, and to provide diagnosis of physical conditions for high resolution spectra. Over the past decade, a set of model codes which compute the X-ray and XUV emission for a wide set of physical conditions, including high or low densities, photoionized gas, and time-dependent ionization balance was developed. In the past year, the atomic rate coefficients in the code was improved. Further capabilities were added, and applied to several astrophysical problems.

  2. Direct and bulk-scattered forward-shock emissions: sources of X-ray afterglow diversity

    SciTech Connect

    Panaitescu, A. [ISR-1, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)

    2008-05-22

    I describe the modifications to the standard forward-shock model required to account for the X-ray light-curve features discovered by Swift in the early afterglow emission and propose that a delayed, pair-enriched, and highly relativistic outflow, which bulk-scatters the forward-shock synchrotron emission, yields sometimes a brighter X-ray emission, producing short-lived X-ray flares, X-ray light-curve plateaus ending with chromatic breaks, and fast post-plateau decays.

  3. Measurements of x-ray emission from rocket-triggered lightning

    Microsoft Academic Search

    J. R. Dwyer; H. K. Rassoul; M. Al-Dayeh; L. Caraway; B. Wright; A. Chrest; M. A. Uman; V. A. Rakov; K. J. Rambo; D. M. Jordan; J. Jerauld; C. Smyth

    2004-01-01

    We report measurements of the x-ray emission from rocket-triggered lightning, made during the summer of 2003, using four instruments placed between 15 and 40 m from the lightning channels. X-rays were measured 0-80 mus just prior to and at the beginning of 73% of the 26 return strokes observed. The emission was composed of multiple, very brief bursts of x-rays

  4. X-ray emission from National Ignition Facility indirect drive targets

    SciTech Connect

    Anderson, A.T.; Managan, R.A.; Tobin, M.T. [Lawrence Livermore National Lab., CA (United States); Peterson, P.F. [California Univ., Berkeley, CA (United States)

    1996-06-04

    We have performed a series of 1-D numerical simulations of the x-ray emission from National Ignition Facility (NIF) targets. Results are presented in terms of total x-ray energy, pulse length, and spectrum. Scaling of x-ray emissions is presented for variations in both target yield and hohlraum thickness. Experiments conducted on the Nova facility provide some validation of the computational tools and methods.

  5. X-ray emission spectroscopy applied for bulk and individual analysis of airborne particulates

    NASA Astrophysics Data System (ADS)

    Valkovic, V.; Dargie, Marina; Jaksic, M.; Markowicz, A.; Tajani, Antonella; Valkovic, O.

    1996-06-01

    It has been shown that filters used for collection of airborne particles by high volume air samplers can yield information on the particles' elemental composition when analyzed by X-ray emission spectroscopy methods. In this work we present some results on trace element characterization (both bulk and individual particles) of air particulates by X-ray fluorescence (in normal and total reflection geometry) and proton induced X-ray emission (in standard and microbeam geometry).

  6. X-ray transients in quiescence

    E-print Network

    Sergio Campana

    2000-12-04

    Transient X-ray binaries remain in their quiescent state for a long time (months to hundred years) and then bright up as the most powerful sources of the X-ray sky. While it is clear that, when in outbursts, transient binaries are powered by accretion, the origin of the low luminosity X-ray emission that has been detected in the quiescent state has different interpretations and provides the unique opportunity for testing different accretion regimes. In this paper we concentrate on the various aspects of the accretion physics at low rates onto compact objects. We describe the observational panorama of quiescent emission for the three classes of X-ray transients and try to interpret these data in light of the different regimes accessible at such low mass inflow rates.

  7. High Resolution Temporal and Spectral Monitoring of Eta Carinae's X-Ray Emission the June Eclipse

    NASA Technical Reports Server (NTRS)

    Corcoran, M. F.; Hamaguchi, K.; Henley, D.; Pittard, J. M.; Gull, T. R.; Davidson, K.; Swank, J. H.; Petre, R.; Ishibashi, K.

    2004-01-01

    The supermassive and luminous star Eta Carinae undergoes strong X-ray variations every 5.5 years when its 2-10 keV X-ray emission brightens rapidly with wild fluctuations before dropping by a factor of 100 to a minimum lasting 3 months. The most recent X-ray "eclipse" began in June 2003 and during this time Eta Carinae was intensely observed throughout the electromagnetic spectrum. Here we report the first results of frequent monitoring of the 2-10 keV band X-ray emission by the Rossi X-ray Timing Explorer along wit high resolution X-ray spectra obtained with the transmission gratings on the Chandra X-ray Observatory. We compare these observations to those results obtained during the previous X-ray eclipse in 1998, and interpret the variations in the X-ray brightness, in the amount of absorption, in the X-ray emission measure and in the K-shell emission lines in terms of a colliding wind binary model.

  8. Hard X-ray emission from IC443 evidence for a shocked molecular clump?

    E-print Network

    Bocchino, F

    2000-01-01

    We report BeppoSAX observations of spatially resolved hard X-ray emission from IC 443, a supernova remnant interacting with a molecular cloud. The emission is shown to come from two localized features spatially correlated with bright molecular emission regions. Both hard X-ray features have soft X-ray counterparts, in one case shifted by ~ 2 arcmin toward the remnant interior. The spectra of X-ray emission from both isolated features have photon index ~2 in the MECS regime. The emission detected from the remnant with PDS detector extends up to 100 keV. We discuss the observed properties of the hard X-ray features in relation to non-thermal emission from shocked molecular clumps and pulsar wind nebula.

  9. Hard X-ray emission from IC443: evidence for a shocked molecular clump?

    E-print Network

    F. Bocchino; A. M. Bykov

    2000-10-09

    We report BeppoSAX observations of spatially resolved hard X-ray emission from IC 443, a supernova remnant interacting with a molecular cloud. The emission is shown to come from two localized features spatially correlated with bright molecular emission regions. Both hard X-ray features have soft X-ray counterparts, in one case shifted by ~ 2 arcmin toward the remnant interior. The spectra of X-ray emission from both isolated features have photon index ~2 in the MECS regime. The emission detected from the remnant with PDS detector extends up to 100 keV. We discuss the observed properties of the hard X-ray features in relation to non-thermal emission from shocked molecular clumps and pulsar wind nebula.

  10. X-ray Emission from Megamaser Galaxy IC 2560

    SciTech Connect

    Madejski, Greg; /SLAC /KIPAC, Menlo Park; Done, Chris; /Durham U.; Zycki, Piotr; /Warsaw, Copernicus Astron. Ctr.; Greenhill, Lincoln; /KIPAC, Menlo Park

    2005-09-12

    Observation of the H{sub 2}O megamaser galaxy IC 2560 with the Chandra Observatory reveals a complex spectrum composed of soft X-ray emission due to multi-temperature thermal plasma, and a hard continuum with strong emission lines. The continuum is most likely a Compton reflection (reprocessing) of primary emission that is completely absorbed at least up to 7 keV. The lines can be identified with fluorescence from Si, S and Fe in the lowest ionization stages. The equivalent widths of the Si and S lines are broadly compatible with those anticipated for reprocessing by optically thick cold plasma of Solar abundances, while the large equivalent width of the Fe line requires some overabundance of iron. A contribution to the line from a transmitted component cannot be ruled out, but the limits on the strength of the Compton shoulder make it less likely. From the bolometric luminosity of the nuclear region, we infer that the source radiates at 1-10% of its Eddington luminosity, for an adopted central mass of 3 x 10{sup 6} M{sub {circle_dot}}. The overall spectrum is consistent with the hypotheses that the central engines powering the detected megamsers in accretion disks are obscured from direct view by the associated accretion disk material itself, and that there is a correlation between the occurrence of megamaser emission and Compton-thick absorption columns. For the 11 known galaxies with both column density measurements and maser emission believed to arise from accretion disks, eight AGN are Compton thick.

  11. Characterization of Al and Mg alloys from their x-ray emission bands

    E-print Network

    their electronic structure Keywords : alloys, intermetallics, electronic structure, valence states, x-ray emission, and intermetallics). Two methods based on x-ray emission spectroscopy are proposed to determine the phases and make the use of automobiles more economical. However, magnesium has a hexagonal closed-packed structure

  12. Accretion, fluorescent X-ray emission and flaring magnetic structures in YSOs

    E-print Network

    F. Favata

    2004-12-20

    I present some recent developments on high-energy phenomena in YSOs, concentrating on the new evidence for accretion-induced X-ray emission in YSOs, for Fe 6.4 keV fluorescent emission from the disks of YSOs and for very long magnetic structures responsible for intense X-ray flares, likely connecting the star and the circumstellar disk.

  13. HARD X-RAY EMISSIONS FROM PARTIALLY OCCULTED SOLAR FLARES Sam Krucker1

    E-print Network

    California at Berkeley, University of

    occulted by the solar limb provide diagnostics of coronal hard X-ray (HXR) emissions in the absence-accelerated electrons and the ambient plasma produce hard X-ray emissions (nonthermal bremsstrahlung), al- lowing in principle the tracing of energetic electrons in the corona. However, the intensity of nonthermal

  14. Is optical Fe II emission related to the soft X-ray properties of quasars?

    NASA Technical Reports Server (NTRS)

    Wilkes, Belinda J.; Elvis, Martin; Mchardy, Ian

    1987-01-01

    Radio-quiet quasars generally show broad, blended multiplets of Fe II emission in their optical and UV spectra. Radio-loud quasars also show UV Fe II emission, but their optical Fe II emission is generally weaker. No satisfactory theory connecting the generation of Fe II and radio emission has been found to explain this effect. A second, well-established distinction between the two clases of quasar is in their X-ray properties: radio-loud quasars are more X-ray luminous, and recent results have shown that they also have systematically flatter soft X-ray slopes. Here it is proposed that the second effect causes the first; i.e., that the primary factor controlling the optical Fe II emission is the soft X-ray spectrum. This proposition is supported by X-ray and optical data for nine quasars, which shows a correlation between the soft X-ray slope and the strength of the optical Fe II emission. One of these quasars (1803+676) is radio-quiet, and yet its optical spectrum shows no evidence for Fe II emission. This quasar is also unusual in that it has a flat X-ray spectrum. This further supports the proposal that the X-ray spectrum is important in determining the relative strengths of UV and optical Fe II emission.

  15. Eclipse and Collapse of the Colliding Wind X-ray Emission from Eta Carinae

    NASA Technical Reports Server (NTRS)

    Hamaguchi, Kenji; Corcoran, Michael F.

    2012-01-01

    X-ray emission from the massive stellar binary system, Eta Carinae, drops strongly around periastron passage; the event is called the X-ray minimum. We launched a focused observing campaign in early 2009 to understand the mechanism of causing the X-ray minimum. During the campaign, hard X-ray emission (<10 keV) from Eta Carinae declined as in the previous minimum, though it recovered a month earlier. Extremely hard X-ray emission between 15-25 keV, closely monitored for the first time with the Suzaku HXD/PIN, decreased similarly to the hard X-rays, but it reached minimum only after hard X-ray emission from the star had already began to recover. This indicates that the X-ray minimum is produced by two composite mechanisms: the thick primary wind first obscured the hard, 2-10 keV thermal X-ray emission from the wind-wind collision (WWC) plasma; the WWC activity then decays as the two stars reach periastron.

  16. X-ray emission from PSR 0355+54

    NASA Technical Reports Server (NTRS)

    Slane, Patrick

    1994-01-01

    We have obtained a 20 ks observation of PSR 0355+54 using the ROSAT position sensitive proportional counter (PSPC). The pulsar is detected with a count rate of 4.2(+/- 1.3) x 10(exp -3)/s above the background. While the approximately 70 source counts are insufficient for spectral fitting, we have derived source parameters for specific cases of power law as well as blackbody spectra. For a Crab-like spectrum (photon index alpha = 2) we find L(sub x)(0.1-2.4 keV) = 1.0 x 10(exp 32) ergs/s, somewhat higher than upper limits reported from Einstein observations but consistent with typical L(sub x) versus E-dot values for other pulsars. For blackbody emission, we derive a temperature upper limit of approximately 9.5 x 10(exp 5) K for emission from the entire neutron star surface, which is consistent with standard models for cooling of the neutron star interior given a characteristic age 10(exp 5.75) yr. No evidence is present for modulation at the 156 ms pulsar period, setting a weak upper limit of approximately 75% for the pulsed fraction of the X-ray signal.

  17. High energy X-ray emission from recurrent novae in quiescence: T CrB

    E-print Network

    Gerardo J. M. Luna; Jennifer L. Sokoloski; Koji Mukai

    2007-11-05

    We present Suzaku X-ray observations of the recurrent nova T CrB in quiescence. T CrB is the first recurrent nova to be detected in the hard-X-ray band (E ~ 40.0 keV) during quiescence. The X-ray spectrum is consistent with cooling-flow emission emanating from an optically thin region in the boundary layer of an accretion disk around the white dwarf. The detection of strong stochastic flux variations in the light curve supports the interpretation of the hard X-ray emission as emanating from a boundary layer.

  18. Beamed and Unbeamed X-ray Emission in FR1 Radio Galaxies

    NASA Technical Reports Server (NTRS)

    Worrall, Diana M.

    1997-01-01

    There is good evidence for X-ray emission associated with AGN jets which are relativistically boosted towards the observer. But to what jet radius does such X-ray emission persist? To attempt to answer this question one can look at radio galaxies; their cores are sufficiently X-ray faint that any unbeamed X-ray emission in the vicinity of the central engine must be obscured. The jets of such sources are at unfavourable angles for relativistic boosting, and so their relatively weak X-ray emission must be carefully separated from the plateau of resolved X-ray emission from a hot interstellar, intragroup, or intracluster medium on which they are expected to sit. This paper presents results arguing that jet X-ray emission is generally detected in radio galaxies, even those of low intrinsic power without hot spots. The levels of emission suggest an extrapolated radio to soft X-ray spectral index, alpha(sub tao x) of about 0.85 at parsec to perhaps kiloparsec distances from the cores.

  19. Mapping the great attractor region in x rays and diffuse x ray emission: A possible galactic wind in the bulge of M31

    NASA Technical Reports Server (NTRS)

    Forman, W. R.

    1992-01-01

    The NASA ADP Program to study the x ray emission in the direction of the Great Attractor and from the core of M31 has resulted in four papers; three on the Shapley Supercluster which is the dominant x ray feature in the Great Attractor region and one on the diffuse emission in M31. The results of these papers are summarized.

  20. Cascade L-shell soft-x-ray emission as incident x-ray photons are tuned across the 1s ionization threshold

    SciTech Connect

    Sokaras, D.; Andrianis, M.; Lagoyannis, A. [Institute of Nuclear Physics, N.C.S.R. 'Demokritos', Aghia Paraskevi, GR-15310, Athens (Greece); Kochur, A. G. [Rostov State University of Transport Communication, 344038, Rostov-na-Donu (Russian Federation); Mueller, M.; Kolbe, M.; Beckhoff, B. [Physikalisch-Technische Bundesanstalt, Abbestrasse 2-12, D-10587, Berlin (Germany); Mantler, M. [Technische Universitaet Wien, A-1040, Vienna (Austria); Zarkadas, Ch. [Institute of Nuclear Physics, N.C.S.R. 'Demokritos', Aghia Paraskevi, GR-15310, Athens (Greece); PANalytical B.V., 7600 AA Almelo (Netherlands); Karydas, A. G. [Institute of Nuclear Physics, N.C.S.R. 'Demokritos', Aghia Paraskevi, GR-15310, Athens (Greece); Nuclear Spectrometry and Applications Laboratory, International Atomic Energy Agency (IAEA), A-2444, Seibersdorf (Austria)

    2011-05-15

    The cascade L-shell x-ray emission as an incident polarized and unpolarized monochromatic radiation overpass the 1s ionization threshold is investigated for the metallic Fe by means of moderate resolution, quantitative x-ray spectrometry. A full ab initio theoretical investigation of the L-shell x-ray emission processes is performed based on a detailed straightforward construction of the cascade decay trees within the Pauli-Fock approximation. The agreement obtained between experiments and the presented theory is indicated and discussed with respect to the accuracy of advanced atomic models as well as its significance for the characterization capabilities of x-ray fluorescence (XRF) analysis.

  1. Variation of soft X-ray emission with gas pressure in a plasma focus

    Microsoft Academic Search

    Chee Mang Ng; Siew Pheng Moo; Chiow San Wong

    1998-01-01

    The variation of the soft X-ray emission in a low energy (3 kJ, 15 kV) plasma focus over a range of pressures is investigated. The working gases are argon and an argon-hydrogen mixture. The X rays are detected using an assembly of PIN-Si diodes with differential filtering and with a multipinhole camera, soft X rays originating from the plasma and

  2. Electronic Structure of In2O3 from Resonant X-ray Emission Spectroscopy

    SciTech Connect

    Piper, L.; DeMasi, A; Cho, S; Smith, K; Fuchs, F; Bechstedt, F; Korber, C; Klein, A; Payne, D; Egdell, R

    2009-01-01

    The valence and conduction band structures of In2O3 have been measured using a combination of valence band x-ray photoemission spectroscopy, O K-edge resonant x-ray emission spectroscopy, and O K-edge x-ray absorption spectroscopy. Excellent agreement is noted between the experimental spectra and O 2p partial density of states calculated within hybrid density functional theory. Our data are consistent with a direct band gap for In2O3.

  3. Determination of 198Au X-rays emission probabilities.

    PubMed

    Moreira, D S; Koskinas, M F; Dias, M S; Yamazaki, I M

    2010-01-01

    This work describes the measurements of the K X-ray and gamma-ray emission probabilities per decay of (198)Au performed at the Nuclear Metrology Laboratory (LMN) at the IPEN, São Paulo. The radioactive sample was obtained by means of (197)Au(n, gamma)(198)Au reaction irradiating an Au foil in a thermal neutron flux near the core of the IPEN 3.5 MW research reactor. The activity of samples was determined in a 4pibeta-gamma coincidence system, setting the gamma window at the 411.80 keV total energy absorption peak. The same samples were measured in two different spectrometers: a HPGe planar spectrometer with Be window, suitable for measurements in the low energy range and a coaxial REGe spectrometer. Both spectrometers were previously calibrated in a well defined geometry by means of standard sources calibrated in a 4pibeta-gamma coincidence system. MCNP4C Monte Carlo code was used for simulating the REGe spectrometer calibration curve, and a new version of code ESQUEMA was adopted for simulating the detection processes in the coincidence system, in order to predict the efficiency extrapolation curve. PMID:20060732

  4. X-ray emissivity from old stellar populations: a Local Group census

    NASA Astrophysics Data System (ADS)

    Li, Zhiyuan

    2014-11-01

    We study the unresolved X-ray emission from three Local Group dwarf elliptical galaxies (NGC147, NGC185 and NGC205), which is thought to originate from a collection of weak X-ray sources primarily consisting of cataclysmic variables and coronally active binaries. The derived 0.5-2 keV X-ray emissivities (per unit stellar mass) of these dwarfs are comparable to that in the Solar neighborhood, but are significantly higher than the average cumulative emissivity of X-ray sources in four Galactic globular clusters, indicating a reduced binary fraction in the latter. Our results are also important for studies of the apparently diffuse X-ray emission in nearby normal galaxies.

  5. Isotope and Temperature Effects in Liquid Water Probed by X-RayAbsorption and Resonant X-Ray Emission Spectroscopy

    SciTech Connect

    Fuchs, O.; Zharnikov, M.; Weinhardt, L.; Blum, M.; Weigand, M.; Zubavichus, Y.; Bar, M.; Maier, F.; Denlinger, J.D.; Heske, C.; Grunze,M.; Umbach, E.

    2007-03-10

    High-resolution x-ray absorption and emission spectra ofliquid water exhibit a strong isotope effect. Further, the emissionspectra show a splitting of the 1b1 emission line, a weak temperatureeffect, and a pronounced excitation-energy dependence. They can bedescribed as a superposition of two independent contributions. Bycomparing with gasphase, ice, and NaOH/NaOD, we propose that the twocomponents are governed by the initial state hydrogen bondingconfiguration and ultrafast dissociation on the time scale of the O 1score hole decay.

  6. Uncovering the Nature of the X-Ray Transient 4U 1730-22: Discovery of X-Ray Emission from a Neutron Star in Quiescence with Chandra

    NASA Astrophysics Data System (ADS)

    Tomsick, John A.; Gelino, Dawn M.; Kaaret, Philip

    2007-07-01

    The X-ray transient 4U 1730-22 has not been detected in outburst since 1972, when a single ~200 day outburst was detected by the Uhuru satellite. This neutron star or black hole X-ray binary is presumably in quiescence now, and here we report on X-ray and optical observations of the 4U 1730-22 field designed to identify the system's quiescent counterpart. Using the Chandra X-ray Observatory, we have found a very likely counterpart. The candidate counterpart, CXOU J173357.5-220156, is close to the center of the Uhuru error region and has a thermal spectrum. The 0.3-8 keV spectrum is well described by a neutron star atmosphere model with an effective temperature of 131+/-21 eV. For a neutron star with a 10 km radius, the implied source distance is 10+12-4 kpc, and the X-ray luminosity is 1.9×1033 (d/10 kpc)2 ergs s-1. Accretion from a companion star is likely required to maintain the temperature of this neutron star, which would imply that it is an X-ray binary, and therefore almost certainly the 4U 1730-22 counterpart. We do not detect an optical source at the position of the Chandra source down to R>22.1, and this is consistent with the system being a low-mass X-ray binary at a distance greater than a few kpc. If our identification is correct, 4U 1730-22 is one of the 5 most luminous of the 20 neutron star transients that have quiescent X-ray luminosity measurements. We discuss the results in the context of neutron star cooling and the comparison between neutron stars and black holes in quiescence.

  7. EVIDENCE OF NON-THERMAL X-RAY EMISSION FROM HH 80

    SciTech Connect

    López-Santiago, J. [Instituto de Matemática Interdisciplinar, S. D. Astronomía y Geodesia, Facultad de Ciencias Matemáticas, Universidad Complutense de Madrid, E-28040 Madrid (Spain)] [Instituto de Matemática Interdisciplinar, S. D. Astronomía y Geodesia, Facultad de Ciencias Matemáticas, Universidad Complutense de Madrid, E-28040 Madrid (Spain); Peri, C. S.; Benaglia, P. [Instituto Argentino de Radioastronomía (IAR), CCT La Plata (CONICET), C.C.5, 1894 Villa Elisa, Buenos Aires (Argentina)] [Instituto Argentino de Radioastronomía (IAR), CCT La Plata (CONICET), C.C.5, 1894 Villa Elisa, Buenos Aires (Argentina); Bonito, R. [Dipartimento di Fisica e Chimica, Università di Palermo, Piazza del Parlamento 1, I-90134 Palermo (Italy)] [Dipartimento di Fisica e Chimica, Università di Palermo, Piazza del Parlamento 1, I-90134 Palermo (Italy); Miceli, M. [INAF-Osservatorio Astronomico di Palermo, Piazza del Parlamento 1, I-90134 Palermo (Italy)] [INAF-Osservatorio Astronomico di Palermo, Piazza del Parlamento 1, I-90134 Palermo (Italy); Albacete-Colombo, J. F. [Universidad Nacional del COMAHUE, Monseñor Esandi y Ayacucho, 8500 Viedma, Río Negro (Argentina)] [Universidad Nacional del COMAHUE, Monseñor Esandi y Ayacucho, 8500 Viedma, Río Negro (Argentina); De Castro, E. [Dpto. de Astrofísica y CC. de la Atmósfera, Universidad Complutense de Madrid, E-28040 Madrid (Spain)] [Dpto. de Astrofísica y CC. de la Atmósfera, Universidad Complutense de Madrid, E-28040 Madrid (Spain)

    2013-10-20

    Protostellar jets appear at all stages of star formation when the accretion process is still at work. Jets travel at velocities of hundreds of km s{sup –1}, creating strong shocks when interacting with the interstellar medium. Several cases of jets have been detected in X-rays, typically showing soft emission. For the first time, we report evidence of hard X-ray emission possibly related to non-thermal processes not explained by previous models of the post-shock emission predicted in the jet/ambient interaction scenario. HH 80 is located at the south head of the jet associated with the massive protostar IRAS 18162-2048. It shows soft and hard X-ray emission in regions that are spatially separated, with the soft X-ray emission region situated behind the region of hard X-ray emission. We propose a scenario for HH 80 where soft X-ray emission is associated with thermal processes from the interaction of the jet with denser ambient matter and hard X-ray emission is produced by synchrotron radiation at the front shock.

  8. Continuum x-ray emission from the Alcator A tokamak

    Microsoft Academic Search

    John E. Rice; Kim Molvig; Heikki I. Helava

    1982-01-01

    X rays from 1 to 25 keV emitted by the Alcator A device have been collected with a Si(Li) detector and pulse-height-analysis system. Under normal operating conditions, spectra are thermal, indicating clean (Zeff~1), Maxwellian distributions. Temperature profiles are provided. When vdvth>~0.03, the x-ray spectra become nonthermal, reflective of non-Maxwellian distributions. The observed nonthermal behavior increases with minor radius and poloidal

  9. X-Ray Emission in the Heliosphere: Ion-Neutral Collisions as a Plasma Diagnostic

    NASA Astrophysics Data System (ADS)

    Cravens, Tom; Sibeck, David; Collier, MIchael

    2015-04-01

    The solar corona is the most powerful source of x-rays in the solar system but x-ray emission has also been observed from planets, including the Earth and Jupiter, from the Moon, from comets, and from interstellar gas entering the heliosphere. Astrophysical x-ray emission primarily comes from hot plasmas, such as in the million degree solar corona. The gas and plasma in planetary atmospheres are rather cold and the x-ray emission is driven by solar radiation and/or the solar wind. For example, x-rays from Venus come from the scattering and K-shell fluorescence of solar x-rays from the neutral atmosphere. Auroral x-ray emission at Earth and Jupiter is produced by energetic electron and ion precipitation from the magnetospheres into the atmospheres. Cometary and heliospheric x-ray emission is caused by charge transfer of high charge state solar wind ions (e.g., O7+, C6+,…) with neutral hydrogen and helium.An important source of solar system x-rays is the solar wind charge exchange (SWCX) mechanism. The solar wind originates in the hot solar corona and species heavier than helium (comprising about 0.1% of the gas) are highly-charged (e.g., O7+, C6+, Fe12+,….). Such ions undergo charge transfer collisions when they encounter neutral gas (e.g., cometary or interstellar gas or the Earth’s geocoronal hydrogen). The product ions are in highly-excited states and, subsequently, emit soft x-ray photons. The SWCX mechanism can explain the observed cometary x-ray emission and can also explain part of the soft x-ray background (the other part of which originates in the hot interstellar medium).The Earth has an extensive hot hydrogen exosphere, or geocorona, that is visible in scattered solar Lyman alpha. X-ray emission is produced in the magnetosheath due to the SWCX mechanism as the solar wind interacts with the exospheric gas. The most intense x-ray emission comes from the subsolar sheath region and from the cusp regions. Imaging of this emission by a spacecraft located outside the magnetosphere would provide a global view of the solar wind interaction with Earth including dayside magnetic reconnection processes.

  10. Search for X-ray emission from the radio lobes of Scorpius X-1

    SciTech Connect

    Geldzahler, B.; Hertz, P.

    1987-11-01

    Images obtained with the low-energy imaging telescope on board the European X-Ray Astronomy Satellite have been searched for X-ray emission from the radio lobes of Sco X-1. After the scattered photons from the image of the central X-ray source in Sco X-1 are taken into account, no significant additional X-ray flux from the radio lobes can be detected above the background. The 3 sigma upper limit is less than 0.7 micro-Jy for the northeast radio lobe and less than 1.0 micro-J for the southwest radio lobe. This eliminates the embedded source model of Kundt and Gopal-Krishna as a viable model of the radio emission. These limits are three orders of magnitude too high to constrain models of synchrotron or inverse Compton X-ray emission. 22 references.

  11. A Search for X-ray emission from Saturn, Uranus and Neptune

    E-print Network

    Jan-Uwe Ness; Juergen H. M. M. Schmitt

    2000-01-08

    We present an analysis of X-ray observations of the trans-Jovian planets Saturn, Uranus and Neptune with the ROSAT PSPC in comparison with X-ray observations of Jupiter. For the first time a marginal X-ray detection of Saturn was found and 95% confidence upper limits for Uranus and Neptune were obtained. These upper limits show that Jupiter-like X-ray luminosities can be excluded for all three planets, while they are consistent assuming intrinsic Saturn-like X-ray luminosities. Similar X-ray production mechanisms on all trans-Jovian planets can therefore not be ruled out, and spectral shape and total luminosity observed from Saturn are consistent with thick-target bremsstrahlung caused by electron precipitation as occurring in auroral emission from the Earth.

  12. Field Emission Scanning Electron Microscopy (FE-SEM) and Energy Dispersive X-Ray (EDX) Spectroscopy

    E-print Network

    Gelfond, Michael

    system with 30 take-off angle for quantitative analysis, digital imaging, and X-ray mapping. The EDAXField Emission Scanning Electron Microscopy (FE-SEM) and Energy Dispersive X-Ray (EDX) Spectroscopy of objective aperture. Dual SE detectors allow versatile imaging. The FE-SEM is equipped with fully digital

  13. Two component model for X-ray emission of radio selected QSO's

    NASA Technical Reports Server (NTRS)

    Isobe, T.; Feigelson, E. D.; Singh, K. P.; Kembhavi, A.

    1986-01-01

    Using a large database of radio, optical, and x ray luminosities of AGNs with survival analysis, it was found that the x ray emission of the radio selected quasars has two components. One is related to the optical luminosity and the other is related to the radio luminosity.

  14. The nature of the luminous X-ray emission of NGC 6240

    E-print Network

    Stefanie Komossa; Hartmut Schulz

    1999-02-22

    We briefly review and extend our discussion of the ROSAT detection of the extraordinarily luminous (> 10^{42} erg/s) partly extended (> 30 kpc diameter) X-ray emission from the ultraluminous infrared galaxy NGC 6240. The `standard'-model of starburst outflow is contrasted with alternatives and a comparison with the X-ray properties of ellipticals is performed.

  15. Hard X-ray emission from high-intensity femtosecond laser plasma and its application to X-ray diffraction

    Microsoft Academic Search

    S. Grantham; C. Kim; C. DePriest; M. Richardson

    1998-01-01

    We present Laue diffraction experiments using a fs laser plasma X-ray ultrashort pulse source as preliminary experiments for time resolved X-ray Laue diffraction. The Laue method in X-ray diffraction experiments employs an X-ray beam consisting of a range of wavelengths to illuminate a stationary crystal

  16. X-RAY EMISSION FROM MAGNETIC MASSIVE STARS

    SciTech Connect

    Nazé, Yaël [GAPHE, Département AGO, Université de Liège, Allée du 6 Août 17, Bat. B5C, B-4000 Liège (Belgium); Petit, Véronique [Department of Physics and Space Sciences, Florida Institute of Technology, Melbourne, FL 32901 (United States); Rinbrand, Melanie; Owocki, Stan [Department of Physics and Astronomy, University of Delaware, Bartol Research Institute, Newark, DE 19716 (United States); Cohen, David [Department of Physics and Astronomy, Swarthmore College, Swarthmore, PA 19081 (United States); Ud-Doula, Asif [Penn State Worthington Scranton, Dunmore, PA 18512 (United States); Wade, Gregg A., E-mail: naze@astro.ulg.ac.be [Department of Physics, Royal Military College of Canada, PO Box 17000, Station Forces, Kingston, ON K7K 4B4 (Canada)

    2014-11-01

    Magnetically confined winds of early-type stars are expected to be sources of bright and hard X-rays. To clarify the systematics of the observed X-ray properties, we have analyzed a large series of Chandra and XMM-Newton observations, corresponding to all available exposures of known massive magnetic stars (over 100 exposures covering ?60% of stars compiled in the catalog of Petit et al.). We show that the X-ray luminosity is strongly correlated with the stellar wind mass-loss rate, with a power-law form that is slightly steeper than linear for the majority of the less luminous, lower- M-dot B stars and flattens for the more luminous, higher- M-dot O stars. As the winds are radiatively driven, these scalings can be equivalently written as relations with the bolometric luminosity. The observed X-ray luminosities, and their trend with mass-loss rates, are well reproduced by new MHD models, although a few overluminous stars (mostly rapidly rotating objects) exist. No relation is found between other X-ray properties (plasma temperature, absorption) and stellar or magnetic parameters, contrary to expectations (e.g., higher temperature for stronger mass-loss rate). This suggests that the main driver for the plasma properties is different from the main determinant of the X-ray luminosity. Finally, variations of the X-ray hardnesses and luminosities, in phase with the stellar rotation period, are detected for some objects and they suggest that some temperature stratification exists in massive stars' magnetospheres.

  17. Characteristics of x-ray emission from optically thin high-Z plasmas in the soft x-ray region

    NASA Astrophysics Data System (ADS)

    Ohashi, Hayato; Higashiguchi, Takeshi; Suzuki, Yuhei; Arai, Goki; Li, Bowen; Dunne, Padraig; O’Sullivan, Gerry; Sakaue, Hiroyuki A.; Kato, Daiji; Murakami, Izumi; Tamura, Naoki; Sudo, Shigeru; Koike, Fumihiro; Suzuki, Chihiro

    2015-07-01

    The characteristics of soft x-ray emission from optically thin high-Z plasmas of gold, lead and bismuth were investigated with the large helical device. Compared to optically thicker laser-produced plasmas, significantly different spectral structures were observed due to the difference in opacities and electron temperatures. Peak structures appearing in unresolved transition arrays were identified by calculations using atomic structure codes. The main contributors of discrete line emission in each case were Pd-, Ag-, and Rh-like ion stages. The present calculations point to the overestimation of contributions for 4p–4d transitions based on intensity estimates arising purely from gA distributions that predict strong emission from 4p–4d transitions. Understanding of such spectral emission is not only important for the completion of databases of high-Z highly ion charge states but also the development of promising high brightness sources for biological imaging applications.

  18. Stellar Wind Induced Soft X-Ray Emission from Close-in Exoplanets

    NASA Astrophysics Data System (ADS)

    Kislyakova, K. G.; Fossati, L.; Johnstone, C. P.; Holmström, M.; Zaitsev, V. V.; Lammer, H.

    2015-02-01

    In this Letter, we estimate the X-ray emission from close-in exoplanets. We show that the Solar/Stellar Wind Charge Exchange Mechanism (SWCX), which produces soft X-ray emission, is very effective for hot Jupiters. In this mechanism, X-ray photons are emitted as a result of the charge exchange between heavy ions in the solar wind and the atmospheric neutral particles. In the solar system, comets produce X-rays mostly through the SWCX mechanism, but it has also been shown to operate in the heliosphere, in the terrestrial magnetosheath, and on Mars, Venus, and the Moon. Since the number of emitted photons is proportional to the solar wind mass flux, this mechanism is not very effective for the solar system giants. Here we present a simple estimate of the X-ray emission intensity that can be produced by close-in extrasolar giant planets due to charge exchange with the heavy ions of the stellar wind. Using the example of HD 209458b, we show that this mechanism alone can be responsible for an X-ray emission of ?1022 erg s-1, which is 106 times stronger than the emission from the Jovian aurora. We discuss also the possibility of observing the predicted soft X-ray flux of hot Jupiters and show that despite high emission intensities they are unobservable with current facilities.

  19. Soft X--Ray and Gyroresonance Emission Above Sunspots A. Nindos, M. R. Kundu, S. M. White

    E-print Network

    White, Stephen

    Soft X--Ray and Gyroresonance Emission Above Sunspots A. Nindos, M. R. Kundu, S. M. White Astronomy and Nobeyama 17 GHz data, we have studied the soft X--ray and microwave emission above several stable, large sunspots near central meridian passage. Our study confirms the well known fact that soft X--ray emission

  20. An improved model for ultraviolet-and x-ray-induced electron emission from CsI

    E-print Network

    efficiency QE and x-ray-induced secondary electron emission SEE quantum yield QY from CsI is crucialAn improved model for ultraviolet- and x-ray-induced electron emission from CsI T. Boutboul,a) A and x-ray secondary electron emission induced from CsI photoconverters. This approach is based

  1. Uncovering the Nature of the X-ray Transient 4U 1730-22: Discovery of X-ray Emission from a Neutron Star in Quiescence with Chandra

    E-print Network

    John A. Tomsick; Dawn M. Gelino; Philip Kaaret

    2007-03-19

    The X-ray transient, 4U 1730-22, has not been detected in outburst since 1972, when a single outburst was detected by the Uhuru satellite. This neutron star or black hole X-ray binary is presumably in quiescence now, and here, we report on X-ray and optical observations of the 4U 1730-22 field designed to identify the system's quiescent counterpart. Using Chandra, we have found a very likely counterpart. The candidate counterpart is close to the center of the Uhuru error region and has a thermal spectrum. The 0.3-8 keV spectrum is well-described by a neutron star atmosphere model with an effective temperature of 131+/-21 eV. For a neutron star with a 10 km radius, the implied source distance is 10(+12)(-4) kpc, and the X-ray luminosity is 1.9E33 ergs/s assuming a distance of 10 kpc. Accretion from a companion star is likely required to maintain the temperature of this neutron star, which would imply that it is an X-ray binary and therefore, almost certainly the 4U 1730-22 counterpart. We do not detect an optical source at the position of the Chandra source down to R > 22.1, and this is consistent with the system being a Low-Mass X-ray Binary at a distance greater than a few kpc. If our identification is correct, 4U 1730-22 is one of the 5 most luminous of the 20 neutron star transients that have quiescent X-ray luminosity measurements.

  2. X-Ray Emission from the Halo of M31

    NASA Technical Reports Server (NTRS)

    Mushotzky, Richard (Technical Monitor); DiStefano, Rosanne

    2004-01-01

    Our goal was to use short (10 ksec) observations of selected fields in the halo of M31, to determine the size and characteristics of its X-ray population and to study the connection between globular clusters and X-ray sources. The program of observations has yet to be successfully completed. We received acceptable data from just 2 of the 5 approved fields. Nevertheless, the results were intriguing and we have submitted a paper based on this data to Nature. We find that the X-ray source density is significantly enhanced in the vicinity of one GC, providing the first observational evidence supporting the ejection hypothesis. We also find additional X-ray sources, including some which are very soft, in large enough numbers to suggest that not all could have been formed in GCs. That is, some must be descended from the same primordial halo population that produced any compact stars comprising part of the halo's dark matter. Extrapolating fiom the X-ray source population, we estimate that stellar remnants and dim old stars in the halo could comprise as much as 25% of the estimated mass (approx. 10(exp 12) Solar Mass) of the halo. These results suggest that the other approved fields should be observed soon and also provide strong motivation for the future XMM-Newton programs.

  3. Making use of x-ray optical effects in photoelectron-, Auger electron-, and x-ray emission spectroscopies: Total reflection, standing-wave excitation,

    E-print Network

    Fadley, Charles

    spectroscopies: Total reflection, standing-wave excitation, and resonant effects S.-H. Yang, A. X. Gray, A. M spectroscopies: Total reflection, standing-wave excitation, and resonant effects S.-H. Yang,1 A. X. Gray,2,3,4 AMaking use of x-ray optical effects in photoelectron-, Auger electron-, and x-ray emission

  4. A SEARCH FOR IRON EMISSION LINES IN THE CHANDRA X-RAY SPECTRA OF NEUTRON STAR LOW-MASS X-RAY BINARIES

    E-print Network

    Cackett, E. M.

    While iron emission lines are well studied in black hole systems, both in X-ray binaries and active galactic nuclei, there has been less of a focus on these lines in neutron star low-mass X-ray binaries (LMXBs). However, ...

  5. Eclipse and Collapse of the Colliding Wind X-ray Emission from Eta Carinae

    NASA Astrophysics Data System (ADS)

    Hamaguchi, Kenji; Corcoran, M. F.; Eta Carinae Team

    2011-09-01

    X-ray emission from the massive colliding wind binary system, Eta Carinae, plunges sharply around periastron passage, which corresponds to a minimum in X-ray emission. An X-ray observing campaign of Eta Carinae around periastron passage in 2003 presented two different scenarios for the mechanism --- (i) eclipse of X-ray emitting plasma by the thick primary wind and (ii) decay of the colliding wind activity by a change in the wind collision structure near periastron. We launched another focused observing campaign on Eta Carinae around the 2009 periastron passage with RXTE, Chandra, XMM-Newton, Suzaku and Swift. X-ray emission from Eta Carinae declined as in the previous minimum, though it recovered a month earlier than expected. Changes in X-ray absorption and spectral normalization suggest that the early part of the X-ray minimum would be driven by an X-ray eclipse, while the latter part is caused by an activity decay. We present the results, mainly focusing on the Suzaku observation, and discuss the stellar and binary properties of Eta Carinae.

  6. Detection of x-ray emission in a nanosecond discharge in air at atmospheric pressure

    SciTech Connect

    Zhang Cheng; Yu Yang; Niu Zheng; Yan Ping [Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190 (China); Shao Tao [Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190 (China); State Key Laboratory of Control and Simulation of Power Systems and Generation Equipments, Electrical Engineering Department, Tsinghua University, Beijing 100084 (China); Zhou Yuanxiang [State Key Laboratory of Control and Simulation of Power Systems and Generation Equipments, Electrical Engineering Department, Tsinghua University, Beijing 100084 (China)

    2010-11-15

    Measurement of x-ray emission is an important parameter to investigate runaway behavior of fast electrons produced in nanosecond-pulse gas discharge. An online detection system of x rays is described in this paper, and the system consists of an x-ray detector with NaI (Tl) scintillator and photomultiplier tube, and an integrated multichannel analyzer. The system is responsible for detecting x-ray emission signal, processing the detected signals, and scaling the energy distribution. The calibration results show that every channel of the detection system represents a given x-ray energy and various x rays can be divided into different energy ranges between 10 and 130 keV. For a repetitive nanosecond-pulse breakdown between highly nonuniform gaps in open air, an energy distribution is obtained using the online detection system. It shows that the x-ray emission is a continuous spectrum and the x rays of above 60 keV dominate in the detected energy distribution.

  7. Hard X-ray Emission and Efficient Particle Acceleration by Supernova Remnants

    NASA Astrophysics Data System (ADS)

    Vink, Jacco

    2009-05-01

    I discuss the non-thermal X-ray emission from young supernova remnants. Over the last decade it has become clear from both X-ray and ?-ray observations that young supernovae accelerate particles up to 100 TeV. In soft X-rays the accelerated >10 TeV electrons produce synchrotron radiation, coming from narrow filaments located at the shock fronts. The width of these filaments shows that the magnetic fields are relatively high, thus providing evidence for magnetic field amplification. The synchrotron radiation of several remnants is known to extend into the hard X-ray regime. In particular Cas A, has a spectrum that appears as a power law up to almost 100 TeV. This is very surprising, as a steepening is expected going from the soft to the hard X-ray band. The spectrum is likely a result of many superimposed individual spectra, each steepening at different energies. This implies considerable spatial variation in hard X-rays, an obvious target for Simbol-X. The variations will be important to infer local shock acceleration properties, but also magnetic field fluctuations may cause spatial and temporal variations. Finally, I draw the attention to super bubbles and supernovae as sources of cosmic rays. As such they may be sources of hard X-ray emission. In particular, supernovae exploding inside the dense red supergiants winds of their progenitors ares promising candidates for hard X-ray emission.

  8. A Comparison of X-Ray and Optical Emission in Cassiopeia A

    NASA Astrophysics Data System (ADS)

    Patnaude, Daniel J.; Fesen, Robert A.

    2014-07-01

    Broadband optical and narrowband Si XIII X-ray images of the young Galactic supernova remnant Cassiopeia A (Cas A) obtained over several decades are used to investigate spatial and temporal emission correlations on both large and small angular scales. The data examined consist of optical and near-infrared ground-based and Hubble Space Telescope images taken between 1951 and 2011, and of X-ray images from Einstein, ROSAT, and Chandra taken between 1979 and 2013. We find weak spatial correlations between the remnant's X-ray and optical emission features on large scales, but several cases of good optical/X-ray correlations on small scales for features which have brightened due to recent interactions with the reverse shock. We also find instances (1) where a time delay is observed between the appearance of a feature's optical and X-ray emissions, (2) of displacements of several arcseconds between a feature's X-ray and optical emission peaks, and (3) of regions showing no corresponding X-ray or optical emissions. To explain this behavior, we propose a highly inhomogeneous density model for Cas A's ejecta consisting of small, dense optically emitting knots (n ~102-3 cm–3) and a much lower density (n ~0.1-1 cm–3) diffuse X-ray emitting component often spatially associated with optical emission knots. The X-ray emitting component is sometimes linked to optical clumps through shock-induced mass ablation generating trailing material leading to spatially offset X-ray/optical emissions. A range of ejecta densities can also explain the observed X-ray/optical time delays since the remnant's ?5000 km s–1 reverse shock heats dense ejecta clumps to temperatures around 3 × 104 K relatively quickly, which then become optically bright while more diffuse ejecta become X-ray bright on longer timescales. Highly inhomogeneous ejecta as proposed here for Cas A may help explain some of the X-ray/optical emission features seen in other young core-collapse supernova remnants.

  9. X-ray jets and nuclear emission in low redshift early-type galaxies

    NASA Astrophysics Data System (ADS)

    Jones, Christine; Forman, William; Churazov, Eugene; Nulsen, Paul

    2015-03-01

    Due to its high angular resolution, the Chandra Observatory has allowed the discovery and detailed study of extragalactic X-ray jets. Although supermassive black holes are regularly found in the cores of massive galaxies and X-ray emission is detected from ~80% of these, X-ray and radio jets are only detected in a small fraction of ``normal'' galaxies. X-ray jets are either single-sided or double-sided and, with only one possible exception, are found to have radio emission. However many radio jets are not detected in current X-ray observations. The expanding jets produce cavities in the surrounding hot gas in the galaxy halos. By determining how much gas has been pushed out of these cavities, we can determine the mechanical energy and power of the jet.

  10. X-Ray Emission from Ultraviolet Luminous Galaxies and Lyman Break Galaxies

    NASA Technical Reports Server (NTRS)

    Hornschemeier, Ann; Ptak, A. F.; Salim, S.; Heckman, T. P.; Overzier, R.; Mallery, R.; Rich, M.; Strickland, D.; Grimes, J.

    2009-01-01

    We present results from an XMM mini-survey of GALEX-selected Ultraviolet-Luminous Galaxies (UVLGs) that appear to include an interesting subset that are analogs to the distant (3X-ray emission of LBGs appear to be broadly similar to that of galaxies in the local Universe, possibly indicating similarity in the production of accreting binaries over large evolutionary timescales in the Universe. We have detected luminous X-ray emission from one UVLG that permits basic X-ray spectroscopic analysis, and have direct X-ray constraints on a total of 6 UVLGs. We find evidence for likely large scatter in the assumed X-ray/star-formation rate relation for LBGs.

  11. On the diffuse X-ray emission from the Wolf-Rayet bubble NGC 2359

    NASA Astrophysics Data System (ADS)

    Toalá, J. A.; Guerrero, M. A.; Chu, Y.-H.; Gruendl, R. A.

    2015-01-01

    A recent XMM-Newton observation has revealed diffuse X-ray emission inside the nebula NGC 2359 around the Wolf-Rayet star WR 7. Taking advantage of an improved point-source rejection and background subtraction, and a detailed comparison of optical and X-ray morphology, we have reanalysed these X-ray observations. Our analysis reveals diffuse X-ray emission from a blowout and the presence of emission at energies from 1.0 to 2.0 keV. The X-ray emission from NGC 2359 can be described by an optically thin plasma emission model, but contrary to previous analysis, we find that the chemical abundances of this plasma are similar to those of the optical nebula, with no magnesium enhancement, and that two components at temperatures T1 = 2 × 106 K and T2 = 5.7 × 107 K are required. The estimated X-ray luminosity in the 0.3-2.0 keV energy range is LX = 2 × 1033 erg s-1. The averaged rms electron density of the X-ray-emitting gas (ne ? 0.6 cm-3) reinforces the idea of mixing of material from the outer nebula into the hot bubble.

  12. The Chandra Planetary Nebula Survey (CHANPLANS). II. X-Ray Emission from Compact Planetary Nebulae

    NASA Astrophysics Data System (ADS)

    Freeman, M.; Montez, R., Jr.; Kastner, J. H.; Balick, B.; Frew, D. J.; Jones, D.; Miszalski, B.; Sahai, R.; Blackman, E.; Chu, Y.-H.; De Marco, O.; Frank, A.; Guerrero, M. A.; Lopez, J. A.; Zijlstra, A.; Bujarrabal, V.; Corradi, R. L. M.; Nordhaus, J.; Parker, Q. A.; Sandin, C.; Schönberner, D.; Soker, N.; Sokoloski, J. L.; Steffen, M.; Toalá, J. A.; Ueta, T.; Villaver, E.

    2014-10-01

    We present results from the most recent set of observations obtained as part of the Chandra X-ray observatory Planetary Nebula Survey (CHANPLANS), the first comprehensive X-ray survey of planetary nebulae (PNe) in the solar neighborhood (i.e., within ~1.5 kpc of the Sun). The survey is designed to place constraints on the frequency of appearance and range of X-ray spectral characteristics of X-ray-emitting PN central stars and the evolutionary timescales of wind-shock-heated bubbles within PNe. CHANPLANS began with a combined Cycle 12 and archive Chandra survey of 35 PNe. CHANPLANS continued via a Chandra Cycle 14 Large Program which targeted all (24) remaining known compact (R neb <~ 0.4 pc), young PNe that lie within ~1.5 kpc. Results from these Cycle 14 observations include first-time X-ray detections of hot bubbles within NGC 1501, 3918, 6153, and 6369, and point sources in HbDs 1, NGC 6337, and Sp 1. The addition of the Cycle 14 results brings the overall CHANPLANS diffuse X-ray detection rate to ~27% and the point source detection rate to ~36%. It has become clearer that diffuse X-ray emission is associated with young (lsim 5 × 103 yr), and likewise compact (R neb <~ 0.15 pc), PNe with closed structures and high central electron densities (ne >~ 1000 cm-3), and is rarely associated with PNe that show H2 emission and/or pronounced butterfly structures. Hb 5 is one such exception of a PN with a butterfly structure that hosts diffuse X-ray emission. Additionally, two of the five new diffuse X-ray detections (NGC 1501 and NGC 6369) host [WR]-type central stars, supporting the hypothesis that PNe with central stars of [WR]-type are likely to display diffuse X-ray emission.

  13. Soft x-ray emission spectroscopy studies of the electronic structure of silicon supersaturated with sulfur

    E-print Network

    Sullivan, Joseph Timothy

    We apply soft x-ray emission spectroscopy (XES) to measure the electronic structure of crystalline silicon supersaturated with sulfur (up to 0.7 at. %), a candidate intermediate-band solar cell material. Si L[subscript ...

  14. Characterization of nuclear physics targets using Rutherford backscattering and particle induced x-ray emission

    E-print Network

    Th. Rubehn; G. J. Wozniak; L. Phair; L. G. Moretto; Kin M. Yu

    1996-09-23

    Rutherford backscattering and particle induced x-ray emission have been utilized to precisely characterize targets used in nuclear fission experiments. The method allows for a fast and non destructive determination of target thickness, homogeneity and element composition.

  15. Extended X-ray emission from a quasar-driven superbubble

    SciTech Connect

    Greene, Jenny E.; Sun, Ai-Lei [Department of Astrophysics, Princeton University, Princeton, NJ 08540 (United States); Pooley, David [Department of Physics, Sam Houston State University, Huntsville, TX 77341 (United States); Zakamska, Nadia L. [Center for Astrophysical Sciences, Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD 21218 (United States); Comerford, Julia M. [Department of Astrophysical and Planetary Sciences, University of Colorado, Boulder, CO 80309 (United States)

    2014-06-10

    We present observations of extended, 20 kpc scale soft X-ray gas around a luminous obscured quasar hosted by an ultraluminous infrared galaxy caught in the midst of a major merger. The extended X-ray emission is well fit as a thermal gas with a temperature of kT ?280 eV and a luminosity of L {sub X} ? 10{sup 42} erg s{sup –1} and is spatially coincident with a known ionized gas outflow. Based on the X-ray luminosity, a factor of ?10 fainter than the [O III] emission, we conclude that the X-ray emission is either dominated by photoionization, or by shocked emission from cloud surfaces in a hot quasar-driven wind.

  16. The Evolution of Coronal X-ray Emission

    E-print Network

    . The magnetic field is produced by an interaction between rotation, differential rotation and convective motions material from beneath. The Sun of course looks different at X-ray wavelengths. Loops of magnetic field constrain plasmas at millions of degrees. The footpoints of these loops cover at most a few percent

  17. X-ray emission from supernova remnants observed with ROSAT

    Microsoft Academic Search

    B. Aschenbach

    1993-01-01

    Spectrally resolved X-ray images of galactic supernova remnants (SNRs) have been obtained both from the ROSAT all-sky survey and a number of pointed observations. There is substantial evidence for significant spatial variation in temperature, density and pressure across the older, thermal remnants like the Vela SNR, the Cygnus Loop and the North Polar Spur. Both the brightness distribution and the

  18. Chandra Observations of Nuclear X-ray Emission from a Sample of Radio Sources

    E-print Network

    Gambill, J K; Chartas, G; Cheung, C C; Maraschi, L; Tavecchio, F; Urry, C M; Pesce, J E

    2003-01-01

    We present the X-ray properties of a sample of 17 radio sources observed with the Chandra X-ray Observatory as part of a project aimed at studying the X-ray emission from their radio jets. In this paper, we concentrate on the X-ray properties of the unresolved cores. The sample includes 16 quasars (11 core-dominated and 5 lobe-dominated) in the redshift range z=0.30--1.96, and one low-power radio-galaxy at z=0.064. No diffuse X-ray emission is present around the cores of the quasars, except for the nearby low-power galaxy that has diffuse emission on a scale and with a luminosity consistent with other FRIs. No high-amplitude, short-term variability is detected within the relatively short Chandra exposures. However, 1510-089 shows low-amplitude flux changes with a timescale of $\\sim$25 minutes. The X-ray spectra of the quasar cores are generally well described by a single power law model with Galactic absorption. However, in six quasars we find soft X-ray excess emission below 1.6 keV. Interestingly, we detect...

  19. The PG X-ray QSO sample: Links between the UV-X-ray Continuum and Emission Lines

    E-print Network

    Beverley J. Wills; M. S. Brotherton; A. Laor; D. Wills; B. J. Wilkes; G. J. Ferland; Zhaohui Shang

    1999-05-07

    The UV to soft X-rays of luminous AGNs dominate their bolometric luminosity, driven by an accretion-powered dynamo at the center. These photons ionize the surrounding gas, thereby providing clues to fueling and exhaust. Two sets of important relationships - neither of them understood - link the continuum and gas properties. (i) Boroson & Green's `eigenvector 1' relationships: Steeper soft X-ray spectra are clearly related to narrower Hbeta emission and stronger optical Fe II emission from the BLR, and weaker [O III] 5007 from the NLR. We show that these relationships extend to UV spectra: narrower C III] 1909, stronger low ionization lines, larger Si III] 1892/C III] 1909 (a density indicator), weaker C IV 1549 but stronger higher-ionization N V 1240. We speculate that high accretion rates are linked to high columns of dense (1e10 - 1e11 cm-3), nitrogen-enhanced, low-ionization gas from nuclear starbursts. Linewidth, inverse Fe II-[O III] and inverse Fe II-C IV relationships hint at the geometrical arrangement of this gas. (ii) The Baldwin effect (inverse equivalent width - luminosity relationships): Our correlation analyses suggest that these are independent of the above eigenvector 1 relationships. The eigenvector 1 relationships can therefore be used in future work, to reduce scatter in the Baldwin relationships, perhaps fulfilling the dream of using the Baldwin effect for cosmological studies.

  20. Soft X-ray, microwave, and hard X-ray emission from a solar flare - Implications for electron heating and acceleration in current channels

    NASA Technical Reports Server (NTRS)

    Holman, Gordon D.; Kundu, Mukul R.; Kane, Sharad R.

    1989-01-01

    The soft X-ray, microwave, and hard X-ray emissions from the solar flare of May 14, 1980 are studied. The flare consists of a gradual component in soft X-rays and microwaves and a superposed impulsive burst accompanied by hard X-ray emission. The impulsive phase of the flare appears in the soft X-ray emission as a temperature spike and as an increased rate of energy dissipation into the plasma. A new, spatially and spectrally distinct, microwave component appears during the impulsive burst. The data are interpreted in terms of Joule heating and the electric field acceleration of electrons in one or more current sheets. It is found that all three emissions can be generated with sub-Dreicer electric fields. The soft X-ray emitting plasma can be heated by a single current sheet only if the resistivity in the sheet is well above the classical, collisional resistivity. Conditions are also given for the hard X-ray emission to be from nonthermal electrons with classical resistivity.

  1. Laboratory simulation of charge exchange-produced X-ray emission from comets.

    PubMed

    Beiersdorfer, P; Boyce, K R; Brown, G V; Chen, H; Kahn, S M; Kelley, R L; May, M; Olson, R E; Porter, F S; Stahle, C K; Tillotson, W A

    2003-06-01

    In laboratory experiments using the engineering spare microcalorimeter detector from the ASTRO-E satellite mission, we recorded the x-ray emission of highly charged ions of carbon, nitrogen, and oxygen, which simulates charge exchange reactions between heavy ions in the solar wind and neutral gases in cometary comae. The spectra are complex and do not readily match predictions. We developed a charge exchange emission model that successfully reproduces the soft x-ray spectrum of comet Linear C/1999 S4, observed with the Chandra X-ray Observatory. PMID:12791989

  2. Sulfur chemical state analysis of diesel emissions of vehicles using X-ray absorption

    NASA Astrophysics Data System (ADS)

    Matsumoto, Satoshi; Tanaka, Yoichi; Ishii, Hideshi; Tanabe, Teruo; Kitajima, Yoshinori; Kawai, Jun

    2006-08-01

    Soft X-ray absorption spectra of sulfur K edge were measured for diesel exhaust particles from three different vehicles. The X-ray spectra were measured using a synchrotron radiation beamline. The spectra were measured by surface sensitive total electron yield method and bulk sensitive X-ray fluorescence yield method. One vehicle concentrated the S 2- on the surface of the emission particles; the others did not concentrate S 2-. This type of chemical state analysis method is useful for the process analysis such as diesel emissions.

  3. Laboratory experiments on soft x-ray emissions from the solar wind

    Microsoft Academic Search

    T. Kanda; H. Ohashi; S. Maeno; T. Ishida; H. Tanuma; H. Akamatsu; Y. Abe; W. Yokota; K. Henmi; Y. Ishisaki; Y. Ezoe; T. Ohashi; K. Shinozaki; K. Mitsuda

    2011-01-01

    We have observed emission spectra in collisions of hydrogen-like oxygen and nitrogen ions with a helium target gas in the soft x-ray region using a window-less Si(Li) detector at collision energies of about 100 keV. The dominant soft x-ray emission is the 1s2-1s2p transition of helium-like ions produced by a single-electron capture reaction. We indicate that the cascades from the

  4. X-ray emission from high-Z spherical laser plasmas: Implications for plasma dynamics

    Microsoft Academic Search

    P. D. Goldstone; J. A. Cobble; A. Hauer; G. Stradling; W. C. Mead; S. R. Goldman; S. Coggeshall; M. C. Richardson; P. A. Jaanimagi; O. Barnouin

    1987-01-01

    Conversion of 351-nm laser light to soft x-rays has been studied using spherical gold targets irradiated at 5 x 10¹² - 4 x 10¹⁵ W\\/cm². Spectra and time histories of sub-keV and M-band emission are presented. Results have been compared to detailed models (LASNEX) to better determine the dynamics of the plasma processes which lead to x-ray emission. 10 refs.

  5. Uniting the Quiescent Emission and Burst Spectra of Magnetar Candidates

    E-print Network

    Yujin E. Nakagawa; Atsumasa Yoshida; Kazutaka Yamaoka; Noriaki Shibazaki

    2009-04-10

    Spectral studies of quiescent emission and bursts of magnetar candidates using XMM-Newton, Chandra and Swift data are presented. Spectra of both the quiescent emission and the bursts for most magnetar candidates are reproduced by a photoelectrically absorbed two blackbody function (2BB). There is a strong correlation between lower and higher temperatures of 2BB (kT_LT and kT_HT) for the magnetar candidates of which the spectra are well reproduced by 2BB. In addition, a square of radius for kT_T (R_LT^2) is well correlated with a square of radius for kT_HT (R_HT^2). A ratio kT_LT/kT_HT ~ 0.4 is nearly constant irrespective of objects and/or emission types (i.e., the quiescent emission and the bursts). This would imply a common emission mechanism among the magnetar candidates. The relation between the quiescent emission and the bursts might be analogous to a relation between microflares and solar flares of the sun. Three AXPs (4U 0142+614, 1RXS J170849.0-400910 and 1E 2259+586) seem to have an excess above ~7 keV which well agrees with a non-thermal hard component discovered by INTEGRAL.

  6. Enhancement of x-ray line emission from plasmas produced by short high-intensity laser double pulses

    E-print Network

    Limpouch, Jiri

    Enhancement of x-ray line emission from plasmas produced by short high-intensity laser double laser-produced plasmas are bright ultrafast line x-ray sources potentially suitable for different onto a solid target into the x-ray emission is significantly enhanced when a laser prepulse precedes

  7. The X-ray flaring emission from High Mass X-ray Binaries: the effects of wind inhomogeneities

    E-print Network

    Ducci, L; Romano, P; Paizis, A; Mereghetti, S

    2010-01-01

    We have developed a clumpy stellar wind model for OB supergiants in order to compare predictions of this model with the X-ray behaviour of both classes of persistent and transient High Mass X-ray Binaries (HMXBs).

  8. X-Ray Synchrotron Emission and Magnetic Fields in SNRs

    NASA Astrophysics Data System (ADS)

    Vink, Jacco

    2006-02-01

    Due to Chandra's capabilities for imaging spectroscopy with very highspatial resolution, it has become clear over the last five years thatvirtually all young supernova remnants emit X-ray synchrotron radiationfrom a region close to the shock front. The X-ray synchrotron radiation isconfined to a region close to the shock front, because the X-ray radiationcomes from the highest energy electrons for which radiation loss timescales are short. The width of the X-ray synchrotron region varies, for example it is small(few arcsec) for Cas A and Tycho, but quite extended for RCW 86 andSN1006. These widths have been interpreted in two ways, both of which canbe used to obtain an estimate of the downstream magnetic fieldstrength: 1) The widths corresponds to the time scale over which theadvected electrons lose so much energy that they stop emitting X-rayradiation (the advection length scale); i.e. width = v_p *t_x, with v_p theplasma velocity and t_xthe X-ray loss time scale. 2) Alternatively, one can assume that the widthscorrespond the the diffusion length scale. For the advection length scaleone has to assume a plasma velocity based on the (sometimes measured) shockvelocity, usually v_p = 1/4v_s, but high shock compression may changethis. For the diffusion length scale method one has to assume a diffusioncoefficient; usually the diffusion is assumed to be at the Bohmlimit, which is the fastest diffusion possible. However, I will show thatfor the highest electron energiesin the loss limited case the two differentlength scales should be roughly equal. This is in agreement with the factthat both methods give similar values for the magnetic field strength nearthe shock front, and that the spectra are steep. However, the insistency ofthe results also suggests that the assumptions made, i.e. Bohmdiffusion, are indeed valid. The high magnetic field strength estimated in conjunction with the evidencefor Bohm diffusion indicates that young supernova remnants must be capableof acceleration ions well above the cosmic ray "knee" (3x10^15eV). Moreover, the rough scaling of B with the density and shock velocitysuggests that the highest energies are reached early in the life of a SNRand preferentially inshocks moving through a red supergiant wind. Finally, I will show evidence that a simple extrapolation of the radiosynchrotron spectrum including an exponential cut-off cannot describe theX-ray synchrotron spectra of Cas A and RCW 86. Instead a flattening of thespectrum has to be assumed in agreement with non-linear shock accelerationtheory.

  9. X ray emission from dynamical shock models in hot-star winds

    NASA Technical Reports Server (NTRS)

    Owocki, Stanley P.

    1991-01-01

    The principal aim of this project was to determine whether x ray emission from instability-generated shocks in dynamical models of highly unstable hot-star winds could explain the x ray flux spectrum observed from such hot stars by Einstein and other x ray satellites. Our initial efforts focused on extending the earlier isothermal simulations of wind instabilities to include an explicit treatment of the energy balance between shock heating and simplified radiative cooling. It was found, however, that direct resolution of cooling regions behind shocks is often impractical, and thus additional, indirect methods for determining this shock x ray emission were also developed. The results indicate that the reverse shocks that dominate simple 1-D instability models typically have too little material undergoing a strong shock to produce the observed x ray emission. Other models with more strongly driven variability from the wind base sometimes show high-speed collisions between relatively dense clumps, and in these instances the computed x ray flux spectrum matches the observed spectrum quite well. This suggests that collisions between relatively large scale wind streams of different speeds may be more suited to producing the observed x rays than the reverse shocks arising from small-scale instabilities.

  10. Discovery of Oxygen Kalpha X-ray Emission from the Rings of Saturn

    E-print Network

    Anil Bhardwaj; Ronald F. Elsner; J. Hunter Waite, Jr.; G. Randall Gladstone; Thomas E. Cravens; Peter G. Ford

    2005-05-19

    Using the Advanced CCD Imaging Spectrometer (ACIS), the Chandra X-ray Observatory (CXO) observed the Saturnian system for one rotation of the planet (~37 ks) on 20 January, 2004, and again on 26-27 January, 2004. In this letter we report the detection of X-ray emission from the rings of Saturn. The X-ray spectrum from the rings is dominated by emission in a narrow (~130 eV wide) energy band centered on the atomic oxygen K-alpha fluorescence line at 0.53 keV. The X-ray power emitted from the rings in the 0.49-0.62 keV band is 84 MW, which is about one-third of that emitted from Saturn disk in the photon energy range 0.24-2.0 keV. Our analysis also finds a clear detection of X-ray emission from the rings in the 0.49-0.62 keV band in an earlier (14-15 April, 2003) Chandra ACIS observation of Saturn. Fluorescent scattering of solar X-rays from oxygen atoms in the H2O icy ring material is the likely source mechanism for ring X-rays, consistent with the scenario of solar photo-production of a tenuous ring oxygen atmosphere and ionosphere recently discovered by Cassini.

  11. X-Ray Emission in Non-AGN Galaxies at z &8771 1

    NASA Astrophysics Data System (ADS)

    Chatterjee, Suchetana; Newman, Jeffrey A.; Jeltema, Tesla; Myers, Adam D.; Aird, James; Bundy, Kevin; Conselice, Christopher; Cooper, Michael; Laird, Elise; Nandra, Kirpal; Willmer, Christopher

    2015-06-01

    Using data from the DEEP2 galaxy redshift survey and the All Wavelength Extended Groth Strip International Survey we obtain stacked X-ray maps of galaxies at 0.7?slant z?slant 1.0 as a function of stellar mass. We compute the total X-ray counts of these galaxies and show that in the soft band (0.5–2 kev) there exists a significant correlation between galaxy X-ray counts and stellar mass at these redshifts. The best-fit relation between X-ray counts and stellar mass can be characterized by a power law with a slope of 0.58 ± 0.1. We do not find any correlation between stellar mass and X-ray luminosities in the hard (2–7 kev) and ultra-hard (4–7 kev) bands. The derived hardness ratios of our galaxies suggest that the X-ray emission is degenerate between two spectral models, namely point-like power-law emission and extended plasma emission in the interstellar medium. This is similar to what has been observed in low redshift galaxies. Using a simple spectral model where half of the emission comes from power-law sources and the other half from the extended hot halo we derive the X-ray luminosities of our galaxies. The soft X-ray luminosities of our galaxies lie in the range 1039–8× {{10}40} erg s?1. Dividing our galaxy sample by the criteria U-B\\gt 1, we find no evidence that our results for X-ray scaling relations depend on optical color.

  12. Generation Mechanisms UV and X-ray Emissions During SL9 Impact

    NASA Technical Reports Server (NTRS)

    Waite, J. Hunter, Jr.

    1997-01-01

    The purpose of this grant was to study the ultraviolet and X-ray emissions associated with the impact of comet Shoemaker-Levy 9 with Jupiter. The University of Michigan task was primarily focused on theoretical calculations. The NAGW-4788 subtask was to be largely devoted to determining the constraints placed by the X-ray observations on the physical mechanisms responsible for the generation of the X-rays. Author summarized below the ROSAT observations and suggest a physical mechanism that can plausibly account for the observed emissions. It is hoped that the full set of activities can be completed at a later date. Further analysis of the ROSAT data acquired at the time of the impact was necessary to define the observational constraints on the magnetospheric-ionospheric processes involved in the excitation of the X-ray emissions associated with the fragment impacts. This analysis centered around improvements in the pointing accuracy and improvements in the timing information. Additional pointing information was made possible by the identification of the optical counterparts to the X-ray sources in the ROSAT field-of-view. Due to the large number of worldwide observers of the impacts, a serendipitous visible plate image from an observer in Venezuela provided a very accurate location of the present position of the X-ray source, virtually eliminating pointing errors in the data. Once refined, the pointing indicated that the two observed X-ray brightenings that were highly correlated in time with the K and P2 events were brightenings of the X-ray aurora (as identified in images prior to the impact).Appendix A "ROSAT observations of X-ray emissions from Jupiter during the impact of comet Shoemaker-Levy 9' also included.

  13. Gas flow and generation of x ray emission in WR+OB binaries

    NASA Technical Reports Server (NTRS)

    Usov, V. V.

    1991-01-01

    The supersonic flow of the ionized gas in WR+OB binaries and X-ray generation are considered. X-ray emission is caused by gas heating up to temperatures of 10(exp 7) to 10(exp 8) K behind the front of shock waves. These are found in the collision of gas flowing out from the WR star with either the OB star's surface or the gas of the OB star's wind. The distribution of temperature and concentration behind the shock front are obtained. Using these distributions, the spectral power of bremsstrahlung X-ray emission of hot gas is calculated. Possible reasons that lead to a considerable difference between the observed parameters of X-ray emission of the WR binary of V 444 Cygni and the theoretically expected are discussed.

  14. Non-thermal Hard X-Ray Emission from Coma and Several Abell Clusters

    SciTech Connect

    Correa, C

    2004-02-05

    We report results of hard X-Ray observations of the clusters Coma, Abell 496, Abell754, Abell 1060, Abell 1367, Abell2256 and Abell3558 using RXTE data from the NASA HEASARC public archive. Specifically we searched for clusters with hard x-ray emission that can be fitted by a power law because this would indicate that the cluster is a source of non-thermal emission. We are assuming the emission mechanism proposed by Vahk Petrosian where the inter cluster space contains clouds of relativistic electrons that by themselves create a magnetic field and emit radio synchrotron radiation. These relativistic electrons Inverse-Compton scatter Microwave Background photons up to hard x-ray energies. The clusters that were found to be sources of non-thermal hard x-rays are Coma, Abell496, Abell754 and Abell 1060.

  15. Waiting in the Wings: Reflected X-ray Emission from the Homunculus Nebula

    NASA Technical Reports Server (NTRS)

    Corcoran, M. F.; Hamaguchi, K.; Gull, T.; Davidson, K.; Petre, R.; Hillier, D. J.; Smith, N.; Damineli, A.; Morse, J. A.; Walborn, N. R.

    2004-01-01

    We report the first detection of X-ray emission associated with the Homunculus Nebula which surrounds the supermassive star eta Carinae. The emission is characterized by a temperature in excess of 100 MK, and is consistent with scattering of the time-delayed X-ray flux associated with the star. The nebular emission is bright in the northwestern lobe and near the central regions of the Homunculus, and fainter in the southeastern lobe. We also report the detection of an unusually broad Fe K fluorescent line, which may indicate fluorescent scattering off the wind of a companion star or some other high velocity outflow. The X-ray Homunculus is the nearest member of the small class of Galactic X-ray reflection nebulae, and the only one in which both the emitting and reflecting sources are distinguishable.

  16. An XMM-Newton Survey of the Soft X-Ray Background. III. The Galactic Halo X-Ray Emission

    NASA Astrophysics Data System (ADS)

    Henley, David B.; Shelton, Robin L.

    2013-08-01

    We present measurements of the Galactic halo's X-ray emission for 110 XMM-Newton sight lines selected to minimize contamination from solar wind charge exchange emission. We detect emission from few million degree gas on ~4/5 of our sight lines. The temperature is fairly uniform (median = 2.22 × 106 K, interquartile range = 0.63 × 106 K), while the emission measure and intrinsic 0.5-2.0 keV surface brightness vary by over an order of magnitude (~(0.4-7) × 10-3 cm-6 pc and ~(0.5-7) × 10-12 erg cm-2 s-1 deg-2, respectively, with median detections of 1.9 × 10-3 cm-6 pc and 1.5 × 10-12 erg cm-2 s-1 deg-2, respectively). The high-latitude sky contains a patchy distribution of few million degree gas. This gas exhibits a general increase in emission measure toward the inner Galaxy in the southern Galactic hemisphere. However, there is no tendency for our observed emission measures to decrease with increasing Galactic latitude, contrary to what is expected for a disk-like halo morphology. The measured temperatures, brightnesses, and spatial distributions of the gas can be used to place constraints on models for the dominant heating sources of the halo. We provide some discussion of such heating sources, but defer comparisons between the observations and detailed models to a later paper.

  17. X-ray emission lines from three Galactic bulge sources

    NASA Technical Reports Server (NTRS)

    Vrtilek, S. D.; Helfand, D. J.; Halpern, J. P.; Kahn, S. M.; Seward, F. D.

    1986-01-01

    X-ray spectroscopic observations obtained with the Einstein objective grating spectrometer (OGS) and monitor proportional counter (MPC) instruments of three Galactic bulge sources, the globular cluster burst source 1820-30, the burster Serpens X-1, and the GX 9+9 are presented. Joint spectral fits to the OGS and MPC data are consistent for all three sources with either a thermal bremsstrahlung model with temperature ranging from 6 to 10 keV or with a two-component blackbody model, where one component may be associated with the neutron star and one with the accretion disk. The spectra of Serpens X-1 and 1820-30 harden with increases in intensity. The implications of the results for recent models of low-mass X-ray binaries are discussed.

  18. Continuum x-ray emission from the Alcator A tokamak

    SciTech Connect

    Rice, J.E.; Molvig, K.; Helava, H.I.

    1982-03-01

    X rays from 1 to 25 keV emitted by the Alcator A device have been collected with a Si(Li) detector and pulse-height-analysis system. Under normal operating conditions, spectra are thermal, indicating clean (Z/sub eff/approx.1), Maxwellian distributions. Temperature profiles are provided. When v/sub d//v/sub th/> or approx. =0.03, the x-ray spectra become nonthermal, reflective of non-Maxwellian distributions. The observed nonthermal behavior increases with minor radius and poloidal symmetry, is correlated with poor energy confinement, and cannot be accounted for by classical electric-field-driven perturbation theory. Radial electron diffusion is discussed.

  19. X-ray emission from clusters and groups of galaxies

    NASA Technical Reports Server (NTRS)

    Mushotzky, R.

    1998-01-01

    Recent major advances in x-ray imaging and spectroscopy of clusters have allowed the determination of their mass and mass profile out to approximately 1/2 the virial radius. In rich clusters, most of the baryonic mass is in the gas phase, and the ratio of mass in gas/stars varies by a factor of 2-4. The baryonic fractions vary by a factor of approximately 3 from cluster to cluster and almost always exceed 0.09 h50-[3/2] and thus are in fundamental conflict with the assumption of Omega = 1 and the results of big bang nucleosynthesis. The derived Fe abundances are 0.2-0.45 solar, and the abundances of O and Si for low redshift systems are 0.6-1.0 solar. This distribution is consistent with an origin in pure type II supernova. The amount of light and energy produced by these supernovae is very large, indicating their importance in influencing the formation of clusters and galaxies. The lack of evolution of Fe to a redshift of z approximately 0.4 argues for very early enrichment of the cluster gas. Groups show a wide range of abundances, 0.1-0.5 solar. The results of an x-ray survey indicate that the contribution of groups to the mass density of the universe is likely to be larger than 0.1 h50-2. Many of the very poor groups have large x-ray halos and are filled with small galaxies whose velocity dispersion is a good match to the x-ray temperatures.

  20. X-Ray Emission from the Warm Hot Intergalactic Medium

    E-print Network

    E. Ursino; M. Galeazzi

    2006-04-10

    The number of detected baryons in the Universe at z<0.5 is much smaller than predicted by standard big bang nucleosynthesis and by the detailed observation of the Lyman alpha forest at red-shift z=2. Hydrodynamical simulations indicate that a large fraction of the baryons today is expected to be in a ``warm-hot'' (10^5-10^7K) filamentary gas, distributed in the intergalactic medium. This gas, if it exists, should be observable only in the soft X-ray and UV bands. Using the predictions of a particular hydrodynamic model, we simulated the expected X-ray flux as a function of energy in the 0.1-2 keV band due to the Warm-Hot Intergalactic Medium (WHIM), and compared it with the flux from local and high red-shift diffuse components. Our results show that as much as 20% of the total diffuse X-ray background (DXB) in the energy range 0.37-0.925keV could be due to X-ray flux from the WHIM, 70% of which comes from filaments at redshift z between 0.1 and 0.6. Simulations done using a FOV of 3', comparable with that of Suzaku and Constellation-X, show that in more than 20% of the observations we expect the WHIM flux to contribute to more than 20% of the DXB. These simulations also show that in about 10% of all the observations a single bright filament in the FOV accounts, alone, for more than 20% of the DXB flux. Red-shifted oxygen lines should be clearly visible in these observations.

  1. SphinX MEASUREMENTS OF THE 2009 SOLAR MINIMUM X-RAY EMISSION

    SciTech Connect

    Sylwester, J.; Kowalinski, M.; Gburek, S.; Siarkowski, M.; Bakala, J.; Gryciuk, M.; Podgorski, P.; Sylwester, B. [Space Research Centre, Polish Academy of Sciences, 51-622, Kopernika 11, Wroclaw (Poland); Kuzin, S. [P. N. Lebedev Physical Institute (FIAN), Russian Academy of Sciences, Leninsky Prospect 53, Moscow 119991 (Russian Federation); Farnik, F. [Astronomical Institute, Ondrejov Observatory (Czech Republic); Reale, F. [Dipartimento di Fisica, Universita di Palermo, Palermo, Italy, and INAF, Osservatorio Astronomico di Palermo, Palermo (Italy); Phillips, K. J. H., E-mail: js@cbk.pan.wroc.pl [Mullard Space Science Laboratory, University College London, Holmbury St. Mary, Dorking, Surrey RH5 6NT (United Kingdom)

    2012-06-01

    The SphinX X-ray spectrophotometer on the CORONAS-PHOTON spacecraft measured soft X-ray emission in the 1-15 keV energy range during the deep solar minimum of 2009 with a sensitivity much greater than GOES. Several intervals are identified when the X-ray flux was exceptionally low, and the flux and solar X-ray luminosity are estimated. Spectral fits to the emission at these times give temperatures of 1.7-1.9 MK and emission measures between 4 Multiplication-Sign 10{sup 47} cm{sup -3} and 1.1 Multiplication-Sign 10{sup 48} cm{sup -3}. Comparing SphinX emission with that from the Hinode X-ray Telescope, we deduce that most of the emission is from general coronal structures rather than confined features like bright points. For one of 27 intervals of exceptionally low activity identified in the SphinX data, the Sun's X-ray luminosity in an energy range roughly extrapolated to that of ROSAT (0.1-2.4 keV) was less than most nearby K and M dwarfs.

  2. Uncovering the Nature of the X-ray Transient 4U 1730-22: Discovery of X-ray Emission from a Neutron Star in Quiescence with Chandra

    E-print Network

    Tomsick, J A; Kaaret, Philip; Tomsick, John A.; Gelino, Dawn M.; Kaaret, Philip

    2007-01-01

    The X-ray transient, 4U 1730-22, has not been detected in outburst since 1972, when a single outburst was detected by the Uhuru satellite. This neutron star or black hole X-ray binary is presumably in quiescence now, and here, we report on X-ray and optical observations of the 4U 1730-22 field designed to identify the system's quiescent counterpart. Using Chandra, we have found a very likely counterpart. The candidate counterpart is close to the center of the Uhuru error region and has a thermal spectrum. The 0.3-8 keV spectrum is well-described by a neutron star atmosphere model with an effective temperature of 131+/-21 eV. For a neutron star with a 10 km radius, the implied source distance is 10(+12)(-4) kpc, and the X-ray luminosity is 1.9E33 ergs/s assuming a distance of 10 kpc. Accretion from a companion star is likely required to maintain the temperature of this neutron star, which would imply that it is an X-ray binary and therefore, almost certainly the 4U 1730-22 counterpart. We do not detect an opti...

  3. Influence of resonant Raman scattering in the elemental analysis using X-ray emission based techniques

    NASA Astrophysics Data System (ADS)

    Kumar, Sunil; Singh, Gurjeet; Kumar, Sanjeev; Mehta, D.; Singh, Nirmal

    2010-08-01

    A tabulation of characteristic X-ray energies across the periodic table are provided where those X-rays are expected to result in a significant fractional resonant Raman scattering (RRS) contribution to the X-ray attenuation from a particular shell/subshell of the same or another element. The tabulations can be considered as guideline so as to know what can be expected due to RRS in typical photon- and particle-induced X-ray emission spectrometry. The RRS contribution is not included in the available theoretical attenuation coefficients, which are generally used in estimation of the matrix corrections in routine quantitative elemental analysis based on various X-ray emission techniques. The radiative RRS peaks can also interfere with normal X-ray spectrum and influence the elemental analysis. The RRS cross-section depends upon the energy difference of the X-ray energy and the shell/subshell ionization threshold taken in the units of the shell/subshell energy width, density of available states near the Fermi level, and the band structure in case the element is in the solid form. Some aspects of the dependence of the RRS contribution on the chemical forms of the elements are also discussed.

  4. Stellar wind induced soft X-ray emission from close-in exoplanets

    E-print Network

    Kislyakova, K G; Johnstone, C P; Holmström, M; Zaitsev, V V; Lammer, H

    2015-01-01

    In this paper, we estimate the X-ray emission from close-in exoplanets. We show that the Solar/Stellar Wind Charge Exchange Mechanism (SWCX) which produces soft X-ray emission is very effective for hot Jupiters. In this mechanism, X-ray photons are emitted as a result of the charge exchange between heavy ions in the solar wind and the atmospheric neutral particles. In the Solar System, comets produce X-rays mostly through the SWCX mechanism, but it has also been shown to operate in the heliosphere, in the terrestrial magnetosheath, and on Mars, Venus and Moon. Since the number of emitted photons is proportional to the solar wind mass flux, this mechanism is not very effective for the Solar system giants. Here we present a simple estimate of the X-ray emission intensity that can be produced by close-in extrasolar giant planets due to charge exchange with the heavy ions of the stellar wind. Using the example of HD~209458b, we show that this mechanism alone can be responsible for an X-ray emission of $\\approx 10...

  5. Absorption of X-ray Emission of T Tauri Stars by Circumstellar Material

    NASA Astrophysics Data System (ADS)

    Neuhäuser, Ralph; Sterzik, Michael F.; Schmitt, Jürgen H. M. M.

    1995-02-01

    The study of star forming regions (SFR) allows us to observe many young stellar objects with both the same metallicities and distances but with different masses. Because of its close distance (˜ 140pc) Taurus-Auriga is one of the best studied SFR with more than 100 well-studied, low-mass, pre-main sequence stars, T Tauri stars (TTS). A motivation for studying X-ray emission of T associations is to understand the origin of X-rays and coronal activity. The large sample observed with the ROSAT All-Sky Survey (RASS) also enables us to compare different types of young stars. Other primary goals include star formation efficiency and the interaction of young stars with their intermediate environment (probed by absorption of X-rays). RASS detection rates are comparable withEinstein Observatory results: 43 out of 65 (66%) weak-lined TTS (WTTS) and 9 out of 79 (11%) classical TTS (CTTS) exhibit X-ray emission above RASS detection limit. A strong correlation between X-ray surface flux and stellar rotation indicates that WTTS are intrinsically more X-ray active than CTTS, because WTTS rotate faster. However, rotation is not the only parameter that determines X-ray activity. Also, we compare Taurus-Auriga TTS with TTS of southern SFR like ScoCen, Lupus, Chamaeleon, and CrA. A new result is that CTTS and WTTS can be discriminated reliably by their X-ray spectral hardness ratios. X-ray emission of CTTS appears to be harder, partly because of circumstellar absorption. Spectral fits give results consistent with Raymond-Smith spectra and emission temperatures of ˜ 1.0 keV for both WTTS and CTTS. However, we find that CTTS and WTTS have significantly different X-ray luminosity functions. Medians of absorption corrected X-ray luminosities (logL X in cgs units) are 29.701 ± 0.045 for WTTS and 29.091 ± 0.032 for CTTS. WTTS are intrinsically more luminous than CTTS, most likely because WTTS rotate on average faster than CTTS and are less absorbed. This paper concentrates on differences between CTTS and WTTS and indirect clues to be drawn from X-ray absorption and hardness ratios about circumstellar material around TTS.

  6. Technique to obtain positron emission mammography images in registration with x-ray mammograms

    E-print Network

    Thompson, Chris

    Technique to obtain positron emission mammography images in registration with x-ray mammograms of suspicious lesions or tumors. Our PEM-1 positron emission mammography system detects metabolic activity frame is visible on the film image. During a positron emission metabolic scan, detectors acquire a 49 59

  7. Can Charge Exchange Explain Anomalous Soft X-Ray Emission in the Cygnus Loop?

    NASA Astrophysics Data System (ADS)

    Cumbee, R. S.; Henley, D. B.; Stancil, P. C.; Shelton, R. L.; Nolte, J. L.; Wu, Y.; Schultz, D. R.

    2014-06-01

    Recent X-ray studies have shown that supernova shock models are unable to satisfactorily explain X-ray emission in the rim of the Cygnus Loop. In an attempt to account for this "anomalously" enhanced X-ray flux, we fit the region with a model including theoretical charge exchange (CX) data along with shock and background X-ray models. The model includes the CX collisions of O8 +, O7 +, N7 +, N6 +, C6 +, and C5 + with H with an energy of 1 keV u-1 (438 km s-1). The observations reveal a strong emission feature near 0.7 keV that cannot fully be accounted for by a shock model, nor the current CX data. Inclusion of CX, specifically O7 + + H, does provide for a statistically significant improvement over a pure shock model.

  8. Chandra Observations and Modeling of Geocoronal Charge Exchange X-Ray Emission During Solar Wind Gusts

    NASA Astrophysics Data System (ADS)

    Kornbleuth, Marc; Wargelin, Bradford J.; Juda, Michael

    2014-06-01

    Solar wind charge exchange (SWCX) X-rays are emitted when highly charged solar wind ions such as O7+ collide with neutral gas. The best known examples of this occur around comets, but SWCX emission also arises in the Earth's tenuous outer atmosphere and throughout the heliosphere as neutral H and He from the interstellar medium flows into the solar system. This geocoronal and heliospheric emission comprises much of the soft X-ray background and is seen in every X-ray observation. Geocoronal emission, although usually weaker than heliospheric emission, arises within a few tens of Earth radii and therefore responds much more quickly (on time scales of less than an hour) to changes in solar wind intensity than the widely distributed heliospheric emission.We have studied a dozen Chandra observations when the flux of solar wind protons and O7+ ions was at its highest. These gusts of wind cause correspondingly abrupt changes in geocoronal SWCX X-ray emission,which may or may not be apparent in Chandra data depending on a given observation's line of sight through the magnetosphere. We compare observed changes in the X-ray background with predictions from a fully 3D analysis of SWCX emission based on magnetospheric simulations using the BATS-R-US model.

  9. THERMAL X-RAY EMISSION FROM THE SHOCKED STELLAR WIND OF PULSAR GAMMA-RAY BINARIES

    SciTech Connect

    Zabalza, V.; Paredes, J. M. [Departament d'Astronomia i Meteorologia, Institut de Ciencies del Cosmos (ICC), Universitat de Barcelona (IEEC-UB), Marti i Franques 1, E08028 Barcelona (Spain); Bosch-Ramon, V., E-mail: vzabalza@am.ub.es [Dublin Institute for Advanced Studies, 31 Fitzwilliam Place, Dublin 2 (Ireland)

    2011-12-10

    Gamma-ray-loud X-ray binaries are binary systems that show non-thermal broadband emission from radio to gamma rays. If the system comprises a massive star and a young non-accreting pulsar, their winds will collide producing broadband non-thermal emission, most likely originated in the shocked pulsar wind. Thermal X-ray emission is expected from the shocked stellar wind, but until now it has neither been detected nor studied in the context of gamma-ray binaries. We present a semi-analytic model of the thermal X-ray emission from the shocked stellar wind in pulsar gamma-ray binaries, and find that the thermal X-ray emission increases monotonically with the pulsar spin-down luminosity, reaching luminosities of the order of 10{sup 33} erg s{sup -1}. The lack of thermal features in the X-ray spectrum of gamma-ray binaries can then be used to constrain the properties of the pulsar and stellar winds. By fitting the observed X-ray spectra of gamma-ray binaries with a source model composed of an absorbed non-thermal power law and the computed thermal X-ray emission, we are able to derive upper limits on the spin-down luminosity of the putative pulsar. We applied this method to LS 5039, the only gamma-ray binary with a radial, powerful wind, and obtain an upper limit on the pulsar spin-down luminosity of {approx}6 Multiplication-Sign 10{sup 36} erg s{sup -1}. Given the energetic constraints from its high-energy gamma-ray emission, a non-thermal to spin-down luminosity ratio very close to unity may be required.

  10. The Morphology of the X-ray Emission above 2 keV from Jupiter's Aurorae

    NASA Technical Reports Server (NTRS)

    Elsner, R.; Branduardi-Raymont, G.; Galand, M.; Grodent, D.; Waite, J. H.; Cravens, T.; Ford, P.

    2007-01-01

    The discovery in XMM-Newton X-ray data of X-ray emission above 2 keV from Jupiter's aurorae has led us to reexamine the Chandra ACIS-S observations taken in Feb 2003. Chandra's superior spatial resolution has revealed that the auroral X-rays with E > 2 keV are emitted from the periphery of the region emitting those with E < 1 keV. We are presently exploring the relationship of this morphology to that of the FUV emission from the main auroral oval and the polar cap. The low energy emission has previously been established as due to charge exchange between energetic precipitating ions of oxygen and either sulfur or carbon. It seems likely to us that the higher energy emission is due to precipitation of energetic electrons, possibly the same population of electrons responsible for the FUV emission. We discuss our analysis and interpretation.

  11. Weak Hard X-ray Emission from Broad Absorption Line Quasars Observed with NuSTAR: Evidence for Intrinsic X-ray Weakness

    NASA Astrophysics Data System (ADS)

    Luo, Bin; Brandt, W. Niel; Alexander, David M; Stern, Daniel; Teng, Stacy H.; Arevalo, Patricia; Bauer, Franz E.; Boggs, Steven E.; Christensen, Finn; Comastri, Andrea; Craig, William W.; Farrah, Duncan; Gandhi, Poshak; Hailey, Charles James; Harrison, Fiona; Koss, Michael; Ogle, Patrick M.; Puccetti, Simonetta; Saez, Cristian; Scott, Amy; Walton, Dom; Zhang, William

    2014-08-01

    We report NuSTAR observations of a sample of six X-ray weak broad absorption line (BAL) quasars. These targets, at z=0.148-1.223, are among the optically brightest and most luminous BAL quasars known at z<1.3. However, their rest-frame 2 keV luminosities are 14 to >330 times weaker than expected for typical quasars. Our results from a pilot NuSTAR study of two low-redshift BAL quasars, a Chandra stacking analysis of a sample of high-redshift BAL quasars, and a NuSTAR spectral analysis of the local BAL quasar Mrk 231 have already suggested the existence of intrinsically X-ray weak BAL quasars, i.e., quasars not emitting X-rays at the level expected from their optical/UV emission. The aim of the current program is to extend the search for such extraordinary objects. Three of the six new targets are weakly detected by NuSTAR with <45 counts in the 3-24 keV band, and the other three are not detected. The hard X-ray (8-24 keV) weakness observed by NuSTAR requires Compton-thick absorption if these objects have nominal underlying X-ray emission. However, a soft stacked effective photon index (? 1.8) for this sample disfavors Compton-thick absorption in general. The uniform hard X-ray weakness observed by NuSTAR for this and the pilot samples selected with <10 keV weakness also suggests that the X-ray weakness is intrinsic in at least some of the targets. We conclude that the NuSTAR observations have likely discovered a significant population (>33%) of intrinsically X-ray weak objects among the BAL quasars with significantly weak <10 keV emission. We suggest that intrinsically X-ray weak quasars might be preferentially observed as BAL quasars.

  12. Coronal X-Ray Emission from the Stellar Companions to Transiently Accreting Black Holes

    Microsoft Academic Search

    Lars Bildsten; Robert E. Rutledge

    2000-01-01

    Many neutron stars and black holes are in binaries where the mass transfer rate onto the compact object is highly variable. X-ray observations of these transients in quiescence (LX<1034 ergs s-1) have found that the binaries harboring black holes are much fainter than those that contain a neutron star. Narayan and collaborators postulated that the faint X-ray emission from black

  13. Femtosecond laser induced X-ray emission from metal alloys, polymers and color filters

    Microsoft Academic Search

    Koji Hatanaka; Ken-Ichiro Yomogihata; Hiroshi Ono; Hiroshi Fukumura

    2005-01-01

    Various material surfaces were irradiated on a moving stage with focused laser pulses from a conventional 1kHz femtosecond laser system, and X-ray emission spectra were measured during the laser ablation of the materials. Sharp K or L characteristic X-ray lines from the elements contained in the materials were clearly observed in a range of 2–15keV. Signals due to copper and

  14. Evidence for X-ray emission from superclusters of galaxies determined from UHURU

    Microsoft Academic Search

    S. S. Murray; W. Forman; C. Jones; R. Giacconi

    1978-01-01

    X-ray emission from three class 2 clusters of rich clusters of galaxies has been detected. A definition for these objects based in part on Abell's (1961) description is used, and 12 candidate superclusters of distance class 5 and six clusters are found within the area of sky covered by the 4U catalog. The probability that these three X-ray sources accidentally

  15. Soft X-ray Emission Spectroscopy at ESRF Beamline 26 Based on a Helical Undulator.

    PubMed

    Dallera, C; Puppin, E; Trezzi, G; Incorvaia, N; Fasana, A; Braicovich, L; Brookes, N B; Goedkoop, J B

    1996-09-01

    A new soft X-ray spectrograph for X-ray emission spectroscopy excited by synchrotron radiation is presented. The apparatus is now installed on beamline 26 at the ESRF in Grenoble. A brief description of the beamline is given and then several components of the spectrograph are covered in more detail. Results of experiments performed both with direct non-monochromated undulator radiation and with monochromated radiation are reported. PMID:16702684

  16. X-ray Emission from Pre-Main-Sequence Stars - Testing the Solar Analogy

    NASA Technical Reports Server (NTRS)

    Skinner, Stephen L.

    2000-01-01

    This LTSA award funded my research on the origin of stellar X-ray emission and the validity of the solar-stellar analogy. This research broadly addresses the relevance of our current understanding of solar X-ray physics to the interpretation of X-ray emission from stars in general. During the past five years the emphasis has been on space-based X-ray observations of very young stars in star-forming regions (T Tauri stars and protostars), cool solar-like G stars, and evolved high-mass Wolf-Rayet (WR) stars. These observations were carried out primarily with the ASCA and ROSAT space-based observatories (and most recently with Chandra), supplemented by ground-based observations. This research has focused on the identification of physical processes that are responsible for the high levels of X-ray emission seen in pre-main-sequence (PMS) stars, active cool stars, and WR stars. A related issue is how the X-ray emission of such stars changes over time, both on short timescales of days to years and on evolutionary timescales of millions of years. In the case of the Sun it is known that magnetic fields play a key role in the production of X-rays by confining the coronal plasma in loop-like structures where it is heated to temperatures of several million K. The extent to which the magnetically-confined corona interpretation can be applied to other X-ray emitting stars is the key issue that drives the research summarized here.

  17. Xe(L) x-ray emission from laser-cluster interaction* , O.Gobert4

    E-print Network

    .50.Jm, 34.80.Kw, 36.40.c, 52.38.Ph Keywords: Laser, Clusters, x-rays, xenon * Experiment performedXe(L) x-ray emission from laser-cluster interaction* L. Adoui2 , O.Gobert4 , P. Indelicato3 , E femtoseconds 800 nm IR and 160 femtoseconds 400 nm UV laser pulses of 1015 ­ 1017 W cm-2 peak intensity

  18. Thermal X-Ray Emission and Cosmic-Ray Production in Young Supernova Remnants

    Microsoft Academic Search

    Anne Decourchelle; Donald C. Ellison; Jean Ballet

    2000-01-01

    We have developed a simple model to investigate the modifications of the hydrodynamics and nonequilibrium ionization X-ray emission in young supernova remnants due to nonlinear particle acceleration. In nonlinear, diffusive shock acceleration, the heating of the gas to X-ray-emitting temperatures is strongly coupled to the acceleration of cosmic-ray ions. If the acceleration is efficient and a significant fraction of the

  19. Copernicus - The spatial distribution of the X-ray emission from IC443

    Microsoft Academic Search

    P. A. Charles; J. L. Culhane; C. G. Rapley

    1975-01-01

    The MSSL X-ray instrumentation on the Copernicus satellite has observed the spatial structure of the supernova remnant IC 443. The soft (0.5-1.4 keV) X-ray emission is found to be strongly correlated with the bright optical filaments in the northeast. The total intensity is consistent with previous observations of the remnant. An upper limit of 4 by 10 to the -11th

  20. Models for X-Ray Emission from Isolated Pulsars

    Microsoft Academic Search

    M. Ruderman; J. P. Halpern; T. Zhu

    1997-01-01

    A model is proposed for the observed combination of power-law and thermal\\u000aemission of keV X-rays from rotationally powered pulsars. For gamma-ray pulsars\\u000awith accelerators very many stellar radii above the neutron star surface, 100\\u000aMeV curvature gamma-rays from $e^{-}$ or $e^{+}$ flowing starward out of such\\u000aaccelerators are converted to electron-positron pairs on closed field lines all\\u000aaround the

  1. CHANDRA OBSERVATION OF QUIESCENT LOW-MASS X-RAY BINARIES IN THE GLOBULAR CLUSTER NGC 6304

    SciTech Connect

    Guillot, Sebastien; Rutledge, Robert E. [Department of Physics, McGill University, 3600 rue University, Montreal, QC H2X-3R4 (Canada); Brown, Edward F. [Department of Physics and Astronomy, Michigan State University, 3250 Biomedical Physical Science Building, East Lansing, MI 48824-2320 (United States); Pavlov, George G. [Pennsylvania State University, 512 Davey Lab, University Park, PA 16802 (United States); Zavlin, Vyacheslav E. [Space Science Laboratory, Universities Space Research Association, NASA MSFC VP62, Huntsville, AL 35805 (United States)], E-mail: guillots@physics.mcgill.ca, E-mail: rutledge@physics.mcgill.ca

    2009-07-10

    This paper presents the analysis of candidate low-mass X-ray binaries in quiescence (qLMXBs) observed during a short Chandra/ACIS observation of the globular cluster (GC) NGC 6304. Two out of the three candidate qLMXBs of this cluster, XMMU 171433-292747 and XMMU 171421-292917, lie within the field of view. This permits comparison with the discovery observation of these sources. The one in the GC core-XMMU 171433-292747-is spatially resolved into two separate X-ray sources, one of which is consistent with a pure H-atmosphere qLMXB, and the other is an X-ray power-law spectrum source. These two spectral components separately account for those observed from XMMU 171433-292747 in its discovery observation. We find that the observed flux and spectral parameters of the H-atmosphere spectral components are consistent with the previous observation, as expected from a qLMXB powered by deep crustal heating. XMMU 171421-292917 also has neutron star atmosphere spectral parameters consistent with those in the XMM-Newton observation and the observed flux has decreased by a factor 0.54{sup +0.30}{sub -0.24}.

  2. Extended hard-X-ray emission in the inner few parsecs of the Galaxy.

    PubMed

    Perez, Kerstin; Hailey, Charles J; Bauer, Franz E; Krivonos, Roman A; Mori, Kaya; Baganoff, Frederick K; Barrière, Nicolas M; Boggs, Steven E; Christensen, Finn E; Craig, William W; Grefenstette, Brian W; Grindlay, Jonathan E; Harrison, Fiona A; Hong, Jaesub; Madsen, Kristin K; Nynka, Melania; Stern, Daniel; Tomsick, John A; Wik, Daniel R; Zhang, Shuo; Zhang, William W; Zoglauer, Andreas

    2015-04-30

    The Galactic Centre hosts a puzzling stellar population in its inner few parsecs, with a high abundance of surprisingly young, relatively massive stars bound within the deep potential well of the central supermassive black hole, Sagittarius A* (ref. 1). Previous studies suggest that the population of objects emitting soft X-rays (less than 10 kiloelectronvolts) within the surrounding hundreds of parsecs, as well as the population responsible for unresolved X-ray emission extending along the Galactic plane, is dominated by accreting white dwarf systems. Observations of diffuse hard-X-ray (more than 10 kiloelectronvolts) emission in the inner 10 parsecs, however, have been hampered by the limited spatial resolution of previous instruments. Here we report the presence of a distinct hard-X-ray component within the central 4 × 8 parsecs, as revealed by subarcminute-resolution images in the 20-40 kiloelectronvolt range. This emission is more sharply peaked towards the Galactic Centre than is the surface brightness of the soft-X-ray population. This could indicate a significantly more massive population of accreting white dwarfs, large populations of low-mass X-ray binaries or millisecond pulsars, or particle outflows interacting with the surrounding radiation field, dense molecular material or magnetic fields. However, all these interpretations pose significant challenges to our understanding of stellar evolution, binary formation, and cosmic-ray production in the Galactic Centre. PMID:25925477

  3. JUXTA: A new probe of X-ray emission from the Jupiter system

    NASA Astrophysics Data System (ADS)

    Ezoe, Yuichiro; Kimura, Tomoki; Kasahara, Satoshi; Yamazaki, Atsushi; Mitsuda, Kazuhisa; Fujimoto, Masaki; Miyoshi, Yoshizumi; Branduardi-Raymont, Graziella; Ishikawa, Kumi; Mitsuishi, Ikuyuki; Ogawa, Tomohiro; Kakiuchi, Takuya; Ohashi, Takaya

    2013-05-01

    For the future Japanese exploration mission of the Jupiter's magnetosphere (JMO: Jupiter Magnetospheric Orbiter), a unique instrument named JUXTA (Jupiter X-ray Telescope Array) is being developed. It aims at the first in-situ measurement of X-ray emission associated with Jupiter and its neighborhood. Recent observations with Earth-orbiting satellites have revealed various X-ray emission from the Jupiter system. X-ray sources include Jupiter's aurorae, disk emission, inner radiation belts, the Galilean satellites and the Io plasma torus. X-ray imaging spectroscopy can be a new probe to reveal rotationally driven activities, particle acceleration and Jupiter-satellite binary system. JUXTA is composed of an ultra-light weight X-ray telescope based on micromachining technology and a radiation-hard semiconductor pixel detector. It covers 0.3-2 keV with the energy resolution of <100 eV at 0.6 keV. Because of proximity to Jupiter (˜30 Jovian radii at periapsis), the image resolution of <5 arcmin and the on-axis effective area of >3 cm2 at 0.6 keV allow extremely high photon statistics and high resolution observations.

  4. Extended hard-X-ray emission in the inner few parsecs of the Galaxy

    NASA Astrophysics Data System (ADS)

    Perez, Kerstin; Hailey, Charles J.; Bauer, Franz E.; Krivonos, Roman A.; Mori, Kaya; Baganoff, Frederick K.; Barrière, Nicolas M.; Boggs, Steven E.; Christensen, Finn E.; Craig, William W.; Grefenstette, Brian W.; Grindlay, Jonathan E.; Harrison, Fiona A.; Hong, Jaesub; Madsen, Kristin K.; Nynka, Melania; Stern, Daniel; Tomsick, John A.; Wik, Daniel R.; Zhang, Shuo; Zhang, William W.; Zoglauer, Andreas

    2015-04-01

    The Galactic Centre hosts a puzzling stellar population in its inner few parsecs, with a high abundance of surprisingly young, relatively massive stars bound within the deep potential well of the central supermassive black hole, Sagittarius A* (ref. 1). Previous studies suggest that the population of objects emitting soft X-rays (less than 10 kiloelectronvolts) within the surrounding hundreds of parsecs, as well as the population responsible for unresolved X-ray emission extending along the Galactic plane, is dominated by accreting white dwarf systems. Observations of diffuse hard-X-ray (more than 10 kiloelectronvolts) emission in the inner 10 parsecs, however, have been hampered by the limited spatial resolution of previous instruments. Here we report the presence of a distinct hard-X-ray component within the central 4 × 8 parsecs, as revealed by subarcminute-resolution images in the 20-40 kiloelectronvolt range. This emission is more sharply peaked towards the Galactic Centre than is the surface brightness of the soft-X-ray population. This could indicate a significantly more massive population of accreting white dwarfs, large populations of low-mass X-ray binaries or millisecond pulsars, or particle outflows interacting with the surrounding radiation field, dense molecular material or magnetic fields. However, all these interpretations pose significant challenges to our understanding of stellar evolution, binary formation, and cosmic-ray production in the Galactic Centre.

  5. A study of X-ray and infrared emissions from dusty nonradiative shock waves

    NASA Technical Reports Server (NTRS)

    Vancura, Olaf; Raymond, John C.; Dwek, Eli; Blair, William P; Long, Knox S.; Foster, Scott

    1994-01-01

    We have constructed models that predict the dynamic evolution and infrared (IR) emission of grains behind nonradiative shock waves. We present a self-consistent treatment of the effect of grain destruction and heating on the ionization structure and X-ray emission of the postshock gas. Incorporating thermal sputtering, collisional heating, and deceleration of grains in the postshock flow, we predict the IR and X-ray fluxes from the dusty plasma as a function of swept-up column density. Heavy elements such as C, O, Mg, S, Si and Fe are initially depleted from the gas phase but are gradually returned as the grains are destroyed. The injected neutral atoms require some time to 'catch up' with the ionization state of the ambient gas. The nonequilibrium ionization state and gradient in elemental abundances in the postshock flow produces characteristic X-ray signatures that can be related to the age of the shock and amount of grain destruction. We study the effects of preshock density and shock velocity on the X-ray and IR emission from the shock. We show that the effects of graindestruction on the X-ray spectra of shock waves are substantial. In particular, temperatures derived from X-ray spectra of middle-aged remnants are likely to be overestimated by approximately 15% if cosmic abundances are assumed. Due to the long timescales for grain destruction in X-ray gases over a wide range of temperatures, we suggest that future X-ray spectra studies of supernova remnants be based on depleted abundances instead of cosmic abundances. Our model predictions agree reasonably well with IRAS and Einstein IPC observations of the Cygnus Loop.

  6. AN XMM-NEWTON SURVEY OF THE SOFT X-RAY BACKGROUND. III. THE GALACTIC HALO X-RAY EMISSION

    SciTech Connect

    Henley, David B.; Shelton, Robin L., E-mail: dbh@physast.uga.edu [Department of Physics and Astronomy, University of Georgia, Athens, GA 30602 (United States)

    2013-08-20

    We present measurements of the Galactic halo's X-ray emission for 110 XMM-Newton sight lines selected to minimize contamination from solar wind charge exchange emission. We detect emission from few million degree gas on {approx}4/5 of our sight lines. The temperature is fairly uniform (median = 2.22 Multiplication-Sign 10{sup 6} K, interquartile range = 0.63 Multiplication-Sign 10{sup 6} K), while the emission measure and intrinsic 0.5-2.0 keV surface brightness vary by over an order of magnitude ({approx}(0.4-7) Multiplication-Sign 10{sup -3} cm{sup -6} pc and {approx}(0.5-7) Multiplication-Sign 10{sup -12} erg cm{sup -2} s{sup -1} deg{sup -2}, respectively, with median detections of 1.9 Multiplication-Sign 10{sup -3} cm{sup -6} pc and 1.5 Multiplication-Sign 10{sup -12} erg cm{sup -2} s{sup -1} deg{sup -2}, respectively). The high-latitude sky contains a patchy distribution of few million degree gas. This gas exhibits a general increase in emission measure toward the inner Galaxy in the southern Galactic hemisphere. However, there is no tendency for our observed emission measures to decrease with increasing Galactic latitude, contrary to what is expected for a disk-like halo morphology. The measured temperatures, brightnesses, and spatial distributions of the gas can be used to place constraints on models for the dominant heating sources of the halo. We provide some discussion of such heating sources, but defer comparisons between the observations and detailed models to a later paper.

  7. Resonant x-ray scattering beyond the Born-Oppenheimer approximation: Symmetry breaking in the oxygen resonant x-ray emission spectrum of carbon dioxide

    Microsoft Academic Search

    Amary Cesar; Faris Gel'Mukhanov; Yi Luo; Hans Ågren; Per I. Skytt; Peter Glans; Jinghua Guo; Kerstin M. Gunnelin; Joseph E. Nordgren

    1997-01-01

    Although resonant x-ray scattering of molecules fulfills strict electronic symmetry selection rules, as now firmly proven by spectra of diatomic molecules, the accumulated body of data for polyatomic molecules indicates that an apparent breaking of these rules represents the common situation rather than the exception. The CO2 molecule provides a good example of symmetry breaking, with the oxygen x-ray emission

  8. Beamed and Unbeamed X-Ray Emission in FR1 Radio Galaxies

    NASA Technical Reports Server (NTRS)

    Worrall, Diana M.

    2000-01-01

    The research exploited ROSAT's sensitivity, together with its spatial and spectral resolution, to separate X-ray emission components in the sources. Prior to ROSAT, the dominant X-ray emission mechanism in radio galaxies as a class was unclear, with correlations between the X-ray and radio emission used on one hand to argue for a nuclear origin for the X-rays, and on the other hand for a thermal origin. Our observations (normally between 10 and 25 ks in length) routinely detected the target sources, and demonstrated that both resolved (thermal) and unresolved X-ray emission are typically present. Highlights of our work included two of the first detections of high-power radio galaxies at high redshift, 3C 280 and 3C 220.1. When combined with the work of two other groups, we find that of the 38 radio galaxies at z > 0.6 in the 3CRR sample, 12 were observed in ROSAT pointed observations and 9 were detected with the four most significant detections exhibiting source extent, including 3C 280 and 3C 220.1. Moreover, we discovered extended emission around five 3CRR quasars at redshift greater than about 0.4, one of which is at z > 0.6. Unification predicts that the X-ray environments of powerful radio galaxies and quasars should be similar, and our results show that powerful radio sources are finding some of the highest-redshift X-ray clusters known to date, pointing to deep gravitational potential wells early in the Universe.

  9. Ultrafast secondary emission X-ray imaging detectors: A possible application to TRD

    NASA Astrophysics Data System (ADS)

    Akkerman, A.; Breskin, A.; Chechik, R.; Elkind, V.; Gibrekhterman, A.; Majewski, S.

    1992-05-01

    Fist high accuracy, X-ray imaging at high photon flux can be achieved when coupling thin solid convertors to gaseous electron multipliers, operating at low gas pressures. Secondary electrons emitted from the convertor foil are multiplied in several successive amplification elements. The obvious advantages of solid X-ray convertors, as compared to gaseous conversion, are the production of parallax-free images and the fast (subnanosecond) response. These X-ray detectors have many potential applications in basic and applied research. Of particular interest is the possibility of an efficient and ultrafast high resolution imaging of transition radiation (TR), with a reduced d E/d x background. We present experimental results on the operation of secondary emission X-ray (SEX) detectors, their detection efficiency, localization and time resolution. The experimental work is accompanied by mathematical modelling and computer simulation of transition radiation detectors (TRDs) based on CsI TR convertors.

  10. Diagnosing residual motion via the x-ray self emission from indirectly driven inertial confinement implosions

    SciTech Connect

    Pak, A., E-mail: pak5@llnl.gov; Field, J. E.; Benedetti, L. R.; Caggiano, J.; Hatarik, R.; Izumi, N.; Khan, S. F.; Ma, T.; Spears, B. K.; Town, R. P. J.; Bradley, D. K. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Knauer, J. [Laboratory for Laser Energetics, Rochester, New York 14623 (United States)

    2014-11-15

    In an indirectly driven implosion, non-radial translational motion of the compressed fusion capsule is a signature of residual kinetic energy not coupled into the compressional heating of the target. A reduction in compression reduces the peak pressure and nuclear performance of the implosion. Measuring and reducing the residual motion of the implosion is therefore necessary to improve performance and isolate other effects that degrade performance. Using the gated x-ray diagnostic, the x-ray Bremsstrahlung emission from the compressed capsule is spatially and temporally resolved at x-ray energies of >8.7 keV, allowing for measurements of the residual velocity. Here details of the x-ray velocity measurement and fitting routine will be discussed and measurements will be compared to the velocities inferred from the neutron time of flight detectors.

  11. Extended X-ray Emission From a Quasar-driven Superbubble

    NASA Astrophysics Data System (ADS)

    Greene, Jenny

    2014-09-01

    We propose to look for the X-ray component of a bona-fide quasar-driven wind, manifested as a 20 kpc-scale superbubble in the warm ionized gas. With ALMA and JVLA observations, we have ruled out star formation or a radio jet as the source of the outflow, and we have detected very soft (<1 keV) X-ray photons spatially coincident with the superbubble. With our existing 20 ks observation, we cannot determine whether the X-rays arise from the hot outflow or photoionized gas. With an additional 80ks observation (100 ks total), we will use the X-ray morphology and spectrum to distinguish these two possibilities. A single-orbit HST observation will allow us to both build a pure emission line map of the outflow and (via scattered light) teach us about the ambient density in the outflow.

  12. X-RAY EMISSION FROM THE FU ORIONIS STAR V1735 CYGNI

    SciTech Connect

    Skinner, Stephen L.; Sokal, Kimberly R. [Center for Astrophysics and Space Astronomy (CASA), University of Colorado, Boulder, CO 80309-0389 (United States); Guedel, Manuel; Briggs, Kevin R. [Institute of Astronomy, ETH Zurich, Wolfgang-Pauli-Str. 27, 8093 Zurich (Switzerland)

    2009-05-01

    The variable star V1735 Cyg (=Elias 1-12) lies in the IC 5146 dark cloud and is a member of the class of FU Orionis objects whose dramatic optical brightenings are thought to be linked to episodic accretion. We report the first X-ray detections of V1735 Cyg and a deeply embedded class I protostar lying 24'' to its northeast. X-ray spectra obtained with EPIC on XMM-Newton reveal very high-temperature plasma (kT > 5 keV) in both objects, but no large flares. Such hard X-ray emission is not anticipated from accretion shocks and is a signature of magnetic processes. We place these new results into the context of what is presently known about the X-ray properties of FU Orionis stars and other accreting young stellar objects.

  13. X-ray emission from the supernova remnant G287.8-0.5

    NASA Technical Reports Server (NTRS)

    Becker, R. H.; Boldt, E. A.; Holt, S. S.; Pravdo, S. H.; Rothschild, R. E.; Serlemitsos, P. J.; Swank, J. H.

    1976-01-01

    The GSFC Cosmic X-ray spectroscopy experiment on OSO-8 observed a weak galactic X-ray source near theta 2 at 288 deg, b2 at -1 deg. The spectrum for this source between 2-20 keV is well represented by a thermal spectrum of kT = 7.34(+3.6), sub -2.6 keV with an intense iron emission line centered at 6.5 + or - .2 keV. The error box of the Uhuru source 4U1043-59, the only known X-ray source in our field of view, contains the radio supernova remnant G287.8-0.5. The possible association of the X-ray source with this supernova remnant is discussed.

  14. Diagnosing residual motion via the x-ray self emission from indirectly driven inertial confinement implosions.

    PubMed

    Pak, A; Field, J E; Benedetti, L R; Caggiano, J; Hatarik, R; Izumi, N; Khan, S F; Knauer, J; Ma, T; Spears, B K; Town, R P J; Bradley, D K

    2014-11-01

    In an indirectly driven implosion, non-radial translational motion of the compressed fusion capsule is a signature of residual kinetic energy not coupled into the compressional heating of the target. A reduction in compression reduces the peak pressure and nuclear performance of the implosion. Measuring and reducing the residual motion of the implosion is therefore necessary to improve performance and isolate other effects that degrade performance. Using the gated x-ray diagnostic, the x-ray Bremsstrahlung emission from the compressed capsule is spatially and temporally resolved at x-ray energies of >8.7 keV, allowing for measurements of the residual velocity. Here details of the x-ray velocity measurement and fitting routine will be discussed and measurements will be compared to the velocities inferred from the neutron time of flight detectors. PMID:25430351

  15. The quiescent emission of the first low-B soft gamma repeater

    NASA Astrophysics Data System (ADS)

    Rea, Nanda

    2013-10-01

    Soft gamma repeaters (SGRs) are part of a rapidly increasing group of X-ray sources exhibiting sporadic and powerful emission of short bursts and outbursts, believed to be magnetars, i.e. neutron stars powered by extreme magnetic fields (Bsim10(14}-10({15)) G). We have recently discovered the first SGR with a low magnetic field (Rea et al. 2010, Science, 330, 944; Rea et al. 2013, ApJ 770, 65), SGR 0418+5729 discovered in outburst after it emitted bursts similar to those of magnetars. We ask for a 120,ks XMM observation to measure SGR 0418+5729 's quiescent flux and surface temperature, crucial for tuning the magnetar model as well as predict how many "hidden" magnetars there might be within the pulsar population (abridged).

  16. Thermal and Nonthermal X-Ray Emission in SNR RCW 86

    E-print Network

    K. J. Borkowski; J. Rho; S. P. Reynolds; K. K. Dyer

    2000-06-10

    Supernova remnants may exhibit both thermal and nonthermal X-ray emission. Such remnants can be distinguished by the weakness of their X-ray lines, because of the presence of a strong nonthermal X-ray continuum. RCW 86 is a remnant with weak lines, resulting in low and peculiar abundances when thermal models alone are used to interpret its X-ray spectrum. This indicates the presence of a strong nonthermal synchrotron continuum. We analyze ASCA X-ray spectra of RCW 86 with the help of both nonequilibrium ionization thermal models and nonthermal synchrotron models. A two-temperature thermal model and a simple nonthermal model with an exponential cutoff (plus interstellar absorption) give reasonable results. We obtain blast wave velocity of 800 km/s, the shock ionization age of 1-3x10^11 s/cm^3, and the break in nonthermal spectra at 2-4x10^16 Hz. The strength of nonthermal continuum correlates well with the radio brightness in the bright SW section of the remnant. This is convincing evidence for X-ray synchrotron emission in RCW 86.

  17. Superluminous X-ray emission from the interaction of supernova ejecta with dense circumstellar shells

    NASA Astrophysics Data System (ADS)

    Pan, Tony; Patnaude, Daniel; Loeb, Abraham

    2013-07-01

    For supernova (SN) powered by the conversion of kinetic energy into radiation due to the interactions of the ejecta with a dense circumstellar shell, we show that there could be X-ray analogues of optically superluminous SNe with comparable luminosities and energetics. We consider X-ray emission from the forward shock of SN ejecta colliding into an optically thin circumstellar material (CSM) shell, derive simple expressions for the X-ray luminosity as a function of the circumstellar shell characteristics, and discuss the different regimes in which the shock will be radiative or adiabatic, and whether the emission will be dominated by free-free radiation or line cooling. We find that even with normal SN explosion energies of 1051 erg, there exist CSM shell configurations that can liberate a large fraction of the explosion energy in X-rays, producing unabsorbed X-ray luminosities approaching 1044 erg s-1 events lasting a few months, or even 1045 erg s-1 flashes lasting days. Although the large column density of the circumstellar shell can absorb most of the flux from the initial shock, the most luminous events produce hard X-rays that are less susceptible to photoelectric absorption, and can counteract such losses by completely ionizing the intervening material. Regardless, once the shock traverses the entire circumstellar shell, the full luminosity could be available to observers.

  18. X-ray emission from hot accretion flows

    E-print Network

    Niedzwiecki, Andrzej; Stepnik, Agnieszka

    2014-01-01

    Radiatively inefficient, hot accretion flows are widely considered as a relevant accretion mode in low-luminosity AGNs. We study spectral formation in such flows using a refined model with a fully general relativistic description of both the radiative (leptonic and hadronic) and hydrodynamic processes, as well as with an exact treatment of global Comptonization. We find that the X-ray spectral index--Eddington ratio anticorrelation as well as the cut-off energy measured in the best-studied objects favor accretion flows with rather strong magnetic field and with a weak direct heating of electrons. Furthermore, they require a much stronger source of seed photons than considered in previous studies. The nonthermal synchrotron radiation of relativistic electrons seems to be the most likely process capable of providing a sufficient flux of seed photons. Hadronic processes, which should occur due to basic properties of hot flows, provide an attractive explanation for the origin of such electrons.

  19. X-ray emission from hot accretion flows

    NASA Astrophysics Data System (ADS)

    Nied?wiecki, Andrzej; Xie, Fu-Guo; St?pnik, Agnieszka

    2014-07-01

    Radiatively inefficient, hot accretion flows are widely considered as a relevant accretion mode in low-luminosity AGNs. We study spectral formation in such flows using a refined model with a fully general relativistic description of both the radiative (leptonic and hadronic) and hydrodynamic processes, as well as with an exact treatment of global Comptonization. We find that the X-ray spectral index-Eddington ratio anticorrelation as well as the cut-off energy measured in the best-studied objects favor accretion flows with rather strong magnetic field and with a weak direct heating of electrons. Furthermore, they require a much stronger source of seed photons than considered in previous studies. The nonthermal synchrotron radiation of relativistic electrons seems to be the most likely process capable of providing a sufficient flux of seed photons. Hadronic processes, which should occur due to basic properties of hot flows, provide an attractive explanation for the origin of such electrons.

  20. XMM Observations of X-Ray Emission from Supernovae

    NASA Technical Reports Server (NTRS)

    Immler, Stefan; Lewin, Walter

    2003-01-01

    Of the six proposed targets, only one observation was performed. The observation resulted in a 28ks observation of SN 1998S. At the time of writing the proposal, our target list only contained previously unknown X-ray supernovae. Between submission of the proposal and the actual observation, a Chandra DDT observation resulted in the detection of SN 1998S. Since SN 1998S was observed with Chandra five times before the XMM-Newton observation was made, the data did not yield enough new information to warrant a separate SN 1998S publication. The key science results of that observation were presented in a review article (by Immler and Lewin); the results were also presented at two conferences.

  1. Weak Hard X-ray Emission from Two Broad Absorption Line Quasars Observed with NuSTAR: Compton-thick Absorption or Intrinsic X-ray Weakness?

    E-print Network

    Luo, B; Alexander, D M; Harrison, F A; Stern, D; Bauer, F E; Boggs, S E; Christensen, F E; Comastri, A; Craig, W W; Fabian, A C; Farrah, D; Fiore, F; Fuerst, F; Grefenstette, B W; Hailey, C J; Hickox, R; Madsen, K K; Matt, G; Ogle, P; Risaliti, G; Saez, C; Teng, S H; Walton, D J; Zhang, W W

    2013-01-01

    We present NuSTAR hard X-ray observations of two X-ray weak broad absorption line (BAL) quasars, PG 1004+130 (radio loud) and PG 1700+518 (radio quiet). Many BAL quasars appear X-ray weak, probably due to absorption by the shielding gas between the nucleus and the accretion-disk wind. The two targets are among the optically brightest BAL quasars, yet they are known to be significantly X-ray weak at rest-frame 2-10 keV (16-120 times fainter than typical quasars). We would expect to obtain ~400-600 hard X-ray (>10 keV) photons with NuSTAR, provided that these photons are not significantly absorbed (NHquasars are only detected in the softer NuSTAR bands (e.g., 4-20 keV) but not in its harder bands (e.g., 20-30 keV), suggesting that either the shielding gas is highly Compton-thick or the two targets are intrinsically X-ray weak. We constrain the column densities for both to be NH~7E24 cm^{-2} if the weak hard X-ray emission is caused by obscuration from the shielding gas. We d...

  2. X-Rays from NGC 3256: High-Energy Emission in Starburst Galaxies and Their Contribution to the Cosmic X-Ray Background

    NASA Astrophysics Data System (ADS)

    Moran, Edward C.; Lehnert, Matthew D.; Helfand, David J.

    1999-12-01

    The infrared-luminous galaxy NGC 3256 is a classic example of a merger-induced nuclear starburst system. We find here that it is the most X-ray-luminous star-forming galaxy yet detected (L0.5-10keV=1.6×1042 ergs s-1). Long-slit optical spectroscopy and a deep, high-resolution ROSAT X-ray image show that the starburst is driving a ``superwind'' which accounts for ~20% of the observed soft X-ray emission. Analysis of X-ray spectral data from ASCA indicates this gas has a characteristic temperature of kT~0.3 keV. Our model for the broadband X-ray emission of NGC 3256 contains two additional components: a warm thermal plasma (kT~0.8 keV) associated with the central starburst, and a hard power-law component with an energy index of ?X~0.7. We discuss the energy budget for the two thermal plasmas and find that the input of mechanical energy from the starburst is more than sufficient to sustain the observed level of emission. We also examine possible origins for the power-law component, concluding that neither a buried AGN nor the expected population of high-mass X-ray binaries can account for this emission. Inverse Compton scattering, involving the galaxy's copious flux of infrared photons and the relativistic electrons produced by supernovae, is likely to make a substantial contribution to the hard X-ray flux. Such a model is consistent with the observed radio and IR fluxes and the radio and X-ray spectral indices. We explore the role of X-ray-luminous starbursts in the production of the cosmic X-ray background radiation. The number counts and spectral index distribution of the faint radio source population, thought to be dominated by star-forming galaxies, suggest that a significant fraction of the hard X-ray background could arise from starbursts at moderate redshift.

  3. Space and time-resolved soft x-ray emission from laser-produced magnesium plasma

    Microsoft Academic Search

    S. S. Harilal; C. V. Bindhu; H.-J. Kunze

    2001-01-01

    Soft x-ray emission from plasmas produced by ablation from a magnesium target employing a ruby laser is studied using a grazing incidence spectrograph in the spectral region 3-12 nm. Emission intensities are investigated for different ionic lines as a function of position, time after the maximum of the laser pulse and laser irradiance. A gated pinhole camera is employed for

  4. Observation and Modeling of Geocoronal Charge Exchange X-Ray Emission during Solar Wind Gusts

    NASA Astrophysics Data System (ADS)

    Wargelin, B. J.; Kornbleuth, M.; Martin, P. L.; Juda, M.

    2014-11-01

    Solar wind charge exchange (SWCX) X-rays are emitted when highly charged solar wind ions such as O7 + collide with neutral gas, including the Earth's tenuous outer atmosphere (exosphere or geocorona) and hydrogen and helium from the local interstellar medium drifting through the heliosphere. This geocoronal and heliospheric emission comprises a significant and varying fraction of the soft X-ray background (SXRB) and is seen in every X-ray observation, with the intensity dependent on solar wind conditions and observation geometry. Under the right conditions, geocoronal emission can increase the apparent SXRB by roughly an order of magnitude for an hour or more. In this work, we study a dozen occasions when the near-Earth solar wind flux was exceptionally high. These gusts of wind lead to abrupt changes in SWCX X-ray emission around Earth, which may or may not be seen by X-ray observatories depending on their line of sight. Using detailed three-dimensional magnetohydrodynamical simulations of the solar wind's interaction with the Earth's magnetosphere, and element abundances and ionization states measured by ACE, we model the time-dependent brightness of major geocoronal SWCX emission lines during those gusts and compare with changes in the X-ray background measured by the Chandra X-ray Observatory. We find reasonably good agreement between model and observation, with measured geocoronal line brightnesses averaged over 1 hr of up to 136 photons s-1 cm-2 sr-1 in the O VII K? triplet around 564 eV.

  5. Detection of X-ray Emission from the Arches Cluster Near the Galactic Center

    E-print Network

    F. Yusef-Zadeh; C. Law; M. Wardle; Q. D. Wang; A. Fruscione; C. C. Lang; A. Cotera

    2001-08-10

    The Arches cluster is an extraordinarily compact massive star cluster with a core radius of about 10$''$ ($\\sim$0.4 pc) and consisting of more than 150 O star candidates with initial stellar masses greater than 20~M$_\\odot$ near G0.12-0.02. X-ray observations of the radio Arc near the Galactic center at l$\\sim0.2^0$ which contains the Arches cluster have been carried out with the Advanced CCD Imaging Spectrometer (ACIS) on board Chandra X-ray Observatory. We report the detection of two X-ray sources from the Arches cluster embedded within a bath of diffuse X-ray emission extending beyond the edge of the cluster to at least 90$''\\times60''$ (3.6 pc $\\times$ 2.4 pc). The brightest component of the X-ray emission coincides with the core of the cluster and can be fitted with two-temperature thermal spectrum with a soft and hard component of 0.8 and 6.4 keV, respectively. The core of the cluster coincides with several ionized stellar wind sources that have previously been detected at radio wavelengths, suggesting that the X-ray emission from the core arises from stellar wind sources. The diffuse emission beyond the boundary of the cluster is discussed in the context of combined shocked stellar winds escaping from the cluster. We argue that the expelled gas from young clusters such as the Arches cluster may be responsible for the hot and extended X-ray emitting gas detected throughout the inner degree of the Galactic center.

  6. CHANDRA REVEALS VARIABLE MULTI-COMPONENT X-RAY EMISSION FROM FU ORIONIS

    SciTech Connect

    Skinner, Stephen L. [CASA, University of Colorado, Boulder, CO 80309-0389 (United States); Guedel, Manuel [Department of Astronomy, University of Vienna, Tuerkenschanzstr. 17, A-1180 Vienna (Austria); Briggs, Kevin R. [Institute of Astronomy, ETH Zuerich, Wolfgang-Pauli-Strasse 27, 8093 Zuerich (Switzerland); Lamzin, Sergei A., E-mail: stephen.skinner@colorado.ed [Sternberg Astronomical Institute, Universitetski Pr. 13, Moscow 119992 (Russian Federation)

    2010-10-20

    FU Orionis is the prototype of a class of eruptive young stars ('FUors') characterized by strong optical outbursts. We recently completed an exploratory survey of FUors using XMM-Newton to determine their X-ray properties, about which little was previously known. The prototype FU Ori and V1735 Cyg were detected. The X-ray spectrum of FU Ori was found to be unusual, consisting of a cool moderately absorbed component plus a hotter component viewed through an absorption column density that is an order of magnitude higher. We present here a sensitive (99 ks) follow-up X-ray observation of FU Ori obtained at higher angular resolution with Chandra ACIS-S. The unusual multi-component spectrum is confirmed. The hot component is centered on FU Ori and dominates the emission above 2 keV. It is variable (a signature of magnetic activity) and is probably coronal emission originating close to FU Ori's surface viewed through cool gas in FU Ori's strong wind or accretion stream. In contrast, the X-ray centroid of the soft emission below 2 keV is offset 0.''20 to the southeast of FU Ori, toward the near-IR companion (FU Ori S). This offset amounts to slightly less than half the separation between the two stars. The most likely explanation for the offset is that the companion contributes significantly to the softer X-ray emission below 2 keV (and weakly above 2 keV). The superimposed X-ray contributions from FU Ori and the companion resolve the paradox posed by XMM-Newton of an apparently single X-ray source viewed through two different absorption columns.

  7. X-RAY EMISSION FROM SN 2004dj: A TALE OF TWO SHOCKS

    SciTech Connect

    Chakraborti, Sayan; Yadav, Naveen; Ray, Alak [Tata Institute of Fundamental Research, 1 Homi Bhabha Road, Colaba, Mumbai 400 005 (India); Smith, Randall [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Chandra, Poonam [Department of Physics, Royal Military College of Canada, Kingston, ON K7K 7B4 (Canada); Pooley, David, E-mail: schakraborti@fas.harvard.edu [Department of Physics, Sam Houston State University, Huntsville, TX (United States)

    2012-12-20

    Type IIP (Plateau) supernovae are the most commonly observed variety of core-collapse events. They have been detected in a wide range of wavelengths from radio, through optical to X-rays. The standard picture of a Type IIP supernova has the blastwave interacting with the progenitor's circumstellar matter to produce a hot region bounded by a forward and a reverse shock. This region is thought to be responsible for most of the X-ray and radio emission from these objects. Yet the origin of X-rays from these supernovae is not well understood quantitatively. The relative contributions of particle acceleration and magnetic field amplification in generating the X-ray and radio emission need to be determined. In this work, we analyze archival Chandra observations of SN 2004dj, one of the nearest supernovae since SN 1987A, along with published radio and optical information. We determine the pre-explosion mass-loss rate, blastwave velocity, electron acceleration, and magnetic field amplification efficiencies. We find that a greater fraction of the thermal energy goes into accelerating electrons than into amplifying magnetic fields. We conclude that the X-ray emission arises out of a combination of inverse Compton scattering by non-thermal electrons accelerated in the forward shock and thermal emission from supernova ejecta heated by the reverse shock.

  8. Morphology and spectral characteristics of the X-ray emission of M33

    NASA Technical Reports Server (NTRS)

    Trinchieri, G.; Fabbiano, G.; Peres, G.

    1988-01-01

    A previous analysis of the X-ray data on M33 has been extended to include a detailed study of the morpholgoy and spectral characteristics of the X-ray emission, and the results are reported. A low surface brightness, extended emission in the plane of the galaxy is detected. The X-ray luminosity of this component, about 10 to the 38th egs/s, is comparable to the total luminosity of the bright sources observed in the same region. Its radial distribution is similar to that of the blue light. The spectrum of the extended emission shows two distinct components: a hard one, with a temperature above 3 keV and a soft one with a temperature below 1 keV. The X-ray spectrum of the nuclear source, which is inconsistent with any of the known spectra of X-ray binary sources, can be fitted with either a low-temperature thermal emission or a steep power law model.

  9. X-ray Emission from the Host Clusters of Powerful AGN

    E-print Network

    Hall, P B; Green, R F; Hall, Patrick B.; Ellingson, Erica; Green, Richard F.

    1996-01-01

    (Abridged) We report the detection of X-ray emission from the host cluster of the radio-quiet quasar H1821+643 with the ROSAT HRI, and the non-detection of the host cluster of the radio-loud quasar 3C206 using the EINSTEIN HRI. CL1821+643 has a rest-frame 0.1-2.4 keV luminosity of 3.74$\\pm$0.57 h$_{50}^{-2}$ 10^45 ergs/sec, 38% from a barely resolved cooling flow component, which places it among the most X-ray luminous clusters known. The cluster emission complicates interpretation of previous X-ray spectra of this field; in particular, the observed FeK$\\alpha$ emission can probably be attributed entirely to the cluster, and either the quasar is relatively X-ray quiet for its optical luminosity or the cluster has a relatively low temperature for its luminosity. We combine these data with the recent detection of X-ray emission from the host cluster of the `buried' radio-quiet quasar IRAS 09104+4109, our previous upper limits for the host clusters of two z$\\sim$0.7 RLQs, and literature data on FR II radio galax...

  10. Modeling Diffuse X-ray Emission around the Galactic Center from Colliding Stellar Winds

    NASA Astrophysics Data System (ADS)

    Russell, Christopher Michael Post; Cuadra, Jorge; Wang, Q. Daniel; Owocki, Stanley P.

    2015-01-01

    The Galactic center is a hotbed of astrophysical phenomena. The ~30 evolved massive stars orbiting the SMBH on scales <10" inject a large fraction of the matter that accretes onto the SMBH, and potentially creates large swaths of hot, X-ray emitting material around Sgr A* from their wind-wind collisions. Using the Gadget-2 SPH simulations of these evolved stars ejecting their winds over the last 1100 years from Cuadra et al. 2008, we solve the formal solution to the equation of radiative transfer for a grid of rays through the 6"x6" simulation volume to calculate the thermal X-ray emission from the diffuse hot gas. We then fold each of these energy-dependent pixel maps through the Chandra ACIS-S response function to directly compare with the recent 3Ms X-ray Visionary Program observations of the Galactic center (Wang et al. 2013). The model X-ray flux, in absolute units, agrees well with the observations just outside the SMBH (whose emission is not included in this modeling), indicating that the shocked wind material from the evolved massive stars is indeed the source of diffuse X-ray emission at the Galactic center. The emission of the IRS13 cluster, though, is overestimated by two orders of magnitude, indicating a potential revision in the cluster stellar parameters. We will conclude by discussing future work, such as implementing the 'pressure-entropy' formulation of SPH for this calculation and including O stars and closely orbiting binaries.

  11. Constraints on Off-Axis X-Ray Emission from Beamed GRBs

    E-print Network

    Eric Woods; Abraham Loeb

    1999-03-24

    We calculate the prompt x-ray emission as a function of viewing angle for beamed Gamma-Ray Burst (GRB) sources. Prompt x-rays are inevitable due to the less highly blueshifted photons emitted at angles greater than 1/gamma relative to the beam symmetry axis, where gamma is the expansion Lorentz factor. The observed flux depends on the combinations (gamma Delta theta) and (gamma theta_v), where (Delta theta) is the beaming angle and theta_v is the viewing angle. We use the observed source counts of gamma-ray-selected GRBs to predict the minimum detection rate of prompt x-ray bursts as a function of limiting sensitivity. We compare our predictions with the results from the Ariel V catalog of fast x-ray transients, and find that Ariel's sensitivity is not great enough to place significant constraints on gamma and (Delta theta). We estimate that a detector with fluence limit ~10^{-7} erg/cm^2 in the 2-10 keV channel will be necessary to distinguish between geometries. Because the x-ray emission is simultaneous with the GRB emission, our predicted constraints do not involve any model assumptions about the emission physics but simply follow from special-relativistic considerations.

  12. X-ray Spontaneous Emission Control By 1D-PBG Structure

    SciTech Connect

    Andre, Jean-Michel; Jonnard, Philippe [Laboratoire de Chimie Physique-Matiere et Rayonnement, CNRS, Universite Paris 6, UMR 7614, 11 rue Pierre et Marie Curie, F-75231 Paris CEDEX 05 (France)

    2010-04-06

    The control of the decay rate of an excited atom through the photonic mode density (PMD) was pointed out at radiofrequency by Purcell in 1946. Nowadays the development of sophisticated photonic band structures makes it possible to monitor the PMD at shorter radiation wavelengths and then to manipulate the spontaneous emission of atoms in the hard region of the electromagnetic spectrum especially in the visible domain. In this communication we study the possibility of monitoring the x-ray emission by means of one-dimensional photonic band structures such as periodic multilayer systems. Enhancement or inhibition of soft x-ray emissions seems now to be feasible by means of the state-of-the art in x-ray optics.

  13. Discovery of X-ray emission associated with the Gum Nebula

    NASA Technical Reports Server (NTRS)

    Leahy, D. A.; Nousek, J.; Garmire, G.

    1992-01-01

    The Gum Nebula was observed by the A-2 LED proportional counters on the HEAO-1 satellite as part of the all-sky survey. The first detection of X-ray emission associated with the Gum Nebula is reported. Soft X-ray spectra were constructed from the A-2 LED PHA data. Single temperature Raymond-Smith models were fitted to the observed spectra to yield temperature, column density and emission measure. The temperature is 6 x 10 exp 5 K, the column density 4 x 10 exp 20/sq cm, and the emission measure 5 cm exp-6 pc. The X-ray and optical properties of the Gum Nebula are consistent with a supernova remnant in the shell stage of evolution, which was the product of an energetic (3 x 10 exp 51 ergs) supernova explosion which occurred about 2 x 10 exp 6 yr ago.

  14. Inverse Compton X-ray emission from the superluminal quasar 3C 345

    NASA Technical Reports Server (NTRS)

    Unwin, S. C.; Wehrle, A. E.; Urry, C. M.; Gilmore, D. M.; Barton, E. J.; Kjerulf, B. C.; Zensus, J. A.; Rabaca, C. R.

    1994-01-01

    In quasars with strong radio cores, the inverse-Compton process is believed to be the dominant source X-ray emission. For objects with parsec-scale radio jets, simple models have predicted that components in the jet emerging from the quasar nucleus generate the observed X-ray emission. We have tested this hypothesis in detail for the quasar 3C 345 using a ROSAT X-ray observation in 1990 July, together with quasi-simultaneous very long base interferometry (VLBI) imaging of the parsec-scale jet at five frequencies. The ROSAT spectrum is well fitted by a power law with index alpha = -0.96 +/- -0.13, consistent with models in which the X-ray emission results from inverse-Compton scattering of radio radiation from high-energy electrons in compact components. We show that the radio properties of brightest `knot' in the jet (`C5') can be fitted with a homogeneous sphere model whose parameters require bulk relativistic motion of the emitting material; otherwise the predicted model whose parameters require bulk relativistic motion of the emitting material; otherwise the predicted inverse-Compton X-ray emission exceeds the observed flux. If C5 is the origin of the X-ray emission, then it has a Doppler factor delta = 7.5((sup +3 sub -2)). If the nucleus or other components contribute to the X-ray emission, then this becomes a firm lower limit to delta. The inhomogeneous jet model of Koenigl is a good fit both to the barely resolved (less than 1 pc) flat-spectrum nucleus in the radio, and also to the ROSAT X-ray spectrum. The synchrotron and inverse-Compton emitting fluid moves down a narrow cone (opening angle 2 phi approximately 5 deg) nucleus relativistically, with delta approximately 4.6. Doppler factors for the nucleus and C5, derived from our ROSAT observation, provide evidence for bulk relativistic motion in the jet. By combining these constraints with well-known superluminal motion of jet components, we can deduce geometry. For epoch 1990.5 we infer the Lorentz factor gamma = 7.5 ((sup +1.0 sub -1.5)) and angle to the line of sight theta = 8((sup +2 deg sub -3 deg)) for H(sub 0) = 100 km/s/Mpc. These values are the most reliable yet derived using this method, because of the near-simultaneity of our X-ray and VLBI observations and the quality of the multifrequency of VLBI images and component radio spectra.

  15. HARD X-RAY AND ULTRAVIOLET EMISSION DURING THE 2011 JUNE 7 SOLAR FLARE

    SciTech Connect

    Inglis, A. R.; Gilbert, H. R. [Solar Physics Laboratory, Heliophysics Science Division, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States)

    2013-11-01

    The relationship between X-ray and UV emission during flares, particularly in the context of quasi-periodic pulsations, remains unclear. To address this, we study the impulsive X-ray and UV emission during an eruptive flare on 2011 June 7 utilizing X-ray imaging from RHESSI and UV 1700 Å imaging from SDO/AIA. This event is associated with quasi-periodic pulsations in X-ray and possibly UV emission, as well as substantial parallel and perpendicular motion in the hard X-ray footpoints. The motion of the footpoints parallel to the flare ribbons is unusual; it reverses direction on at least two occasions. However, there is no associated short timescale motion of the UV bright regions. Over the same time interval, the footpoints also gradually move apart at v ? 12 km s{sup –1}, consistent with the gradual outward expansion of the UV ribbons and the standard flare model. Additionally, we find that the locations of the brightest X-ray and UV regions are different, particularly during the early portion of the flare impulsive phase, despite their integrated emission being strongly correlated in time. Correlation analysis of measured flare properties, such as the footpoint separation, flare shear, photospheric magnetic field, and coronal reconnection rate, reveals that—in the impulsive phase—the 25-50 keV hard X-ray flux is only weakly correlated with these properties, in contrast with previous studies. We characterize this event in terms of long-term behavior, where the X-ray non-thermal, thermal, and UV emission sources appear temporally and spatially consistent, and short-term behavior, where the emission sources are inconsistent and quasi-periodic pulsations are a dominant feature requiring explanation. We suggest that the short timescale behavior of hard X-ray footpoints and the nature of the observed quasi-periodic pulsations are determined by fundamental, as yet unobserved properties of the reconnection region and particle acceleration sites. This presents a challenge for current three-dimensional flare reconnection models.

  16. REBIRTH OF X-RAY EMISSION FROM THE BORN-AGAIN PLANETARY NEBULA A30

    SciTech Connect

    Guerrero, M. A.; Ruiz, N.; Toala, J. A. [Instituto de Astrofisica de Andalucia, IAA-CSIC, c/Glorieta de la Astronomia s/n, 18008 Granada (Spain); Hamann, W.-R.; Todt, H.; Oskinova, L. [Institute for Physics and Astronomy, Universitaet Potsdam, 14476 Potsdam (Germany); Chu, Y.-H.; Gruendl, R. A. [Department of Astronomy, University of Illinois, 1002 West Green Street, Urbana, IL 61801 (United States); Schoenberner, D.; Steffen, M. [Leibniz-Institut Fuer Astrophysik Potsdam (AIP), An der Sternwarte 16, 14482 Potsdam (Germany); Blair, W. P., E-mail: mar@iaa.es [Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD 21218 (United States)

    2012-08-20

    The planetary nebula A30 is believed to have undergone a very late thermal pulse resulting in the ejection of knots of hydrogen-poor material. Using multi-epoch Hubble Space Telescope images, we have detected the angular expansion of these knots and derived an age of 850{sup +280}{sub -150} yr. To investigate the spectral and spatial properties of the soft X-ray emission detected by ROSAT, we have obtained Chandra and XMM-Newton deep observations of A30. The X-ray emission from A30 can be separated into two components: a point source at the central star and diffuse emission associated with the hydrogen-poor knots and the cloverleaf structure inside the nebular shell. To help us assess the role of the current stellar wind in powering this X-ray emission, we have determined the stellar parameters and wind properties of the central star of A30 using a non-LTE model fit to its optical and UV spectra. The spatial distribution and spectral properties of the diffuse X-ray emission are highly suggestive that it is generated by the post-born-again and present fast stellar winds interacting with the hydrogen-poor ejecta of the born-again event. This emission can be attributed to shock-heated plasma, as the hydrogen-poor knots are ablated by the stellar winds, under which circumstances the efficient mass loading of the present fast stellar wind raises its density and damps its velocity to produce the observed diffuse soft X-rays. Charge transfer reactions between the ions of the stellar winds and material of the born-again ejecta have also been considered as a possible mechanism for the production of diffuse X-ray emission, and upper limits on the expected X-ray production by this mechanism have been derived. The origin of the X-ray emission from the central star of A30 is puzzling: shocks in the present fast stellar wind and photospheric emission can be ruled out, while the development of a new, compact hot bubble confining the fast stellar wind seems implausible.

  17. On the Nature of the X-ray Emission from the Galactic Center Region

    E-print Network

    Q. D. Wang; E. V. Gotthelf; C. C. Lang

    2002-01-05

    The origin of the X-ray emission from the central region of the Galaxy has remained a mystery, despite extensive study over the past two decades. A fundamental question is the relative contribution of the point-source and diffuse components of this emission, which is critical to understanding the high-energy phenomena and processes unique to this Galactic nuclear environment. Here, we report on results from a large-scale imaging survey of the Galactic center with sufficient spatial resolution to allow a clean separation of the two components. The highly-ionized Fe emission, previously attributed to the diffuse emission, is found largely due to the discrete X-ray source population. The number and spectrum of such sources indicate the presence of numerous accreting white dwarfs, neutron stars, and/or black holes in the region. The diffuse X-ray emission dominates over the contribution from the faint discrete sources and is shown to be associated with distinct interstellar structures observed at radio and mid-infrared wavelengths, suggesting that it arises from the recent formation of massive stars. We have also mapped out the 6.4-keV fluorescence line emission from neutral to moderately ionized irons. The ubiquitous association of the emission with molecular gas indicates that either the X-ray radiation from the Galactic center was substantially more intense in the past than at present or non-relativistic cosmic-rays are important in producing Fe K shell vacancies.

  18. The Relationship Between Solar Radio and Hard X-ray Emission

    NASA Astrophysics Data System (ADS)

    White, S. M.; Benz, A. O.; Christe, S.; Fárník, F.; Kundu, M. R.; Mann, G.; Ning, Z.; Raulin, J.-P.; Silva-Válio, A. V. R.; Saint-Hilaire, P.; Vilmer, N.; Warmuth, A.

    2011-09-01

    This review discusses the complementary relationship between radio and hard X-ray observations of the Sun using primarily results from the era of the Reuven Ramaty High Energy Solar Spectroscopic Imager satellite. A primary focus of joint radio and hard X-ray studies of solar flares uses observations of nonthermal gyrosynchrotron emission at radio wavelengths and bremsstrahlung hard X-rays to study the properties of electrons accelerated in the main flare site, since it is well established that these two emissions show very similar temporal behavior. A quantitative prescription is given for comparing the electron energy distributions derived separately from the two wavelength ranges: this is an important application with the potential for measuring the magnetic field strength in the flaring region, and reveals significant differences between the electrons in different energy ranges. Examples of the use of simultaneous data from the two wavelength ranges to derive physical conditions are then discussed, including the case of microflares, and the comparison of images at radio and hard X-ray wavelengths is presented. There have been puzzling results obtained from observations of solar flares at millimeter and submillimeter wavelengths, and the comparison of these results with corresponding hard X-ray data is presented. Finally, the review discusses the association of hard X-ray releases with radio emission at decimeter and meter wavelengths, which is dominated by plasma emission (at lower frequencies) and electron cyclotron maser emission (at higher frequencies), both coherent emission mechanisms that require small numbers of energetic electrons. These comparisons show broad general associations but detailed correspondence remains more elusive.

  19. Crushing of interstellar gas clouds in supernova remnants II. X-ray emission

    E-print Network

    S. Orlando; F. Bocchino; G. Peres; F. Reale; T. Plewa; R. Rosner

    2006-07-12

    AIMS. We study and discuss the time-dependent X-ray emission predicted by hydrodynamic modeling of the interaction of a SNR shock wave with an interstellar gas cloud. The scope includes: 1) to study the correspondence between modeled and X-ray emitting structures, 2) to explore two different physical regimes in which either thermal conduction or radiative cooling plays a dominant role, and 3) to investigate the effects of the physical processes at work on the emission of the shocked cloud in the two different regimes. METHODS. We use a detailed hydrodynamic model, including thermal conduction and radiation, and explore two cases characterized by different Mach numbers of the primary shock: M = 30 in which the cloud dynamics is dominated by radiative cooling and M = 50 dominated by thermal conduction. From the simulations, we synthesize the expected X-ray emission, using available spectral codes. RESULTS. The morphology of the X-ray emitting structures is significantly different from that of the flow structures originating from the shock-cloud interaction. The hydrodynamic instabilities are never clearly visible in the X-ray band. Shocked clouds are preferentially visible during the early phases of their evolution. Thermal conduction and radiative cooling lead to two different phases of the shocked cloud: a cold cooling dominated core emitting at low energies and a hot thermally conducting corona emitting in the X-ray band. The thermal conduction makes the X-ray image of the cloud smaller, more diffuse, and shorter-lived than that observed when thermal conduction is neglected.

  20. X-RAY EMISSION AND ABSORPTION FEATURES DURING AN ENERGETIC THERMONUCLEAR X-RAY BURST FROM IGR J17062-6143

    SciTech Connect

    Degenaar, N.; Miller, J. M. [Department of Astronomy, University of Michigan, 500 Church Street, Ann Arbor, MI 48109 (United States); Wijnands, R.; Altamirano, D. [Astronomical Institute ''Anton Pannekoek'', University of Amsterdam, Postbus 94249, 1090 GE Amsterdam (Netherlands); Fabian, A. C., E-mail: degenaar@umich.edu [Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 OHA (United Kingdom)

    2013-04-20

    Type-I X-ray bursts are thermonuclear explosions occurring in the surface layers of accreting neutron stars. These events are powerful probes of the physics of neutron stars and their surrounding accretion flow. We analyze a very energetic type-I X-ray burst from the neutron star low-mass X-ray binary IGR J17062-6143 that was detected with Swift on 2012 June 25. The light curve of the {approx_equal}18 minute long X-ray burst tail shows an episode of {approx_equal}10 minutes during which the intensity is strongly fluctuating by a factor of {approx_equal}3 above and below the underlying decay trend on a timescale of seconds. The X-ray spectrum reveals a highly significant emission line around {approx_equal}1 keV, which can be interpreted as an Fe-L shell line caused by the irradiation of cold gas. We also detect significant absorption lines and edges in the Fe-K band, which are strongly suggestive of the presence of hot, highly ionized gas along the line of sight. None of these features are present in the persistent X-ray spectrum of the source. The timescale of the strong intensity variations, the velocity width of the Fe-L emission line (assuming Keplerian motion), and photoionization modeling of the Fe-K absorption features each independently point to gas at a radius of {approx_equal} 10{sup 3} km as the source of these features. The unusual X-ray light curve and spectral properties could have plausibly been caused by a disruption of the accretion disk due to the super-Eddington fluxes reached during the X-ray burst.

  1. Chandra Observation of an X-ray Flare at Saturn: Evidence for Direct Solar Control on Saturn's Disk X-ray Emissions

    NASA Technical Reports Server (NTRS)

    Bhardwaj, Anil; Elsner, Ronald F.; Waite, J. Hunter, Jr.; Gladstone, G. Randall; Cravens, Thomas E.; Ford, Peter G.

    2005-01-01

    Saturn was observed by Chandra ACIS-S on 20 and 26-27 January 2004 for one full Saturn rotation (10.7 hr) at each epoch. We report here the first observation of an X-ray flare from Saturn s non-auroral (low-latitude) disk, which is seen in direct response to an M6-class flare emanating from a sunspot that was clearly visible from both Saturn and Earth. Saturn s X-ray emissions are found to be highly variable on time scales of tens of minutes to weeks. Unlike Jupiter, X-rays from Saturn s polar (auroral) region have characteristics similar to those from its disk and varies in brightness inversely to the FUV auroral emissions observed by the Hubble Space Telescope. This report establishes that disk X-ray emissions of the giant planets Saturn and Jupiter are directly regulated by processes happening on the Sun. We suggest that these emissions could be monitored to study X-ray flaring from solar active regions when they are on the far side and not visible to Near-Earth space weather satellites.

  2. The detection of X-ray emission from the OB associations of the Large Magellanic Cloud

    NASA Technical Reports Server (NTRS)

    Wang, Q.; Helfand, D. J.

    1991-01-01

    A systematic study of the X-ray properties of OB associations in the Large Magellanic Cloud has been carried out using data from the Einstein Observatory. An excess of young, X-ray-bright supernova remnants is found in the vicinity of the associations. In addition, diffuse X-ray emission is detected from over two dozen other associations; luminosities in the 0.16-3.5 keV band range from 2 x 10 to the 34th (the detection threshold) to 10 to the 36th ergs/s. For several of the more luminous examples, it is shown that emission from interstellar bubbles created by the OB stellar winds alone is insufficient to explain the emission. It is concluded that transient heating of the bubble cavities by recent supernovae may be required to explain the observed X-rays and that such a scenario is consistent with the number of X-ray-bright associations and the expected supernova rate from the young stars they contain.

  3. [C II] emission from galactic nuclei in the presence of X-rays

    E-print Network

    Langer, William D

    2015-01-01

    The luminosity of [C II] is used to probe the star formation rate in galaxies, but the correlation breaks down in some active galactic nuclei (AGNs). Models of the [C II] emission from galactic nuclei do not include the influence of X-rays on the carbon ionization balance, which may be a factor in reducing the [C II] luminosity. We calculate the [C II] luminosity in galactic nuclei under the influence of bright sources of X-rays. We solve the balance equation of the ionization states of carbon as a function of X-ray flux, electron, atomic hydrogen, and molecular hydrogen density. These are input to models of [CII] emission from the interstellar medium (ISM) in galactic nuclei. We also solve the distribution of the ionization states of oxygen and nitrogen in highly ionized regions. We find that the dense warm ionized medium (WIM) and dense photon dominated regions (PDRs) dominate the [C II] emission when no X-rays are present. The X-rays in galactic nuclei can affect strongly the C$^+$ abundance in the WIM con...

  4. Detection of soft X-ray emission from SMC X-1

    NASA Technical Reports Server (NTRS)

    Bunner, A. N.; Sanders, W. T.

    1979-01-01

    The observation of 0.25-keV X-rays from SMC X-1 by a soft X-ray experiment aboard OSO 8 is reported. The variable soft X-ray source observed is identified with the hard X-ray source SMC X-1 on the basis of a rather abrupt ending to the emission (fall time about 2.5 hr) at the time SMC X-1 was expected to enter eclipse. A source luminosity of about 5 x 10 to the 38th erg/s in the 0.18-0.28-keV range is derived by assuming a distance of 68 kpc and correcting for attenuation by 3.4 x 10 to the 20th H atoms per sq cm of intervening galactic gas; this luminosity is shown to be about a factor of 40 greater than the observed coincident luminosity in the 0.8-3-keV band. The soft X-ray intensity upon emergence from eclipse is found to be reduced by a factor of at least 20 from the peak intensity prior to eclipse. It is suggested that this asymmetry may reflect a geometry in which the soft X-ray source trails the compact star as in an accretion-stream model.

  5. Field-emission-type x-ray source using carbon-nanofibers

    SciTech Connect

    Kita, S.; Watanabe, Y.; Ogawa, A.; Ogura, K.; Sakai, Y.; Matsumoto, Y.; Isokane, Y.; Okuyama, F. [Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555 (Japan); Nakazato, T.; Otsuka, T. [Department of Musculoskeletal Medicine, Graduate School of Medical Sciences, Nagoya City University, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601 (Japan)

    2008-03-15

    An x-ray irradiation system of field-emission type has been constructed using carbon-nanofibers (CNFs) grown on a palladium wire that is 50 {mu}m in diameter. The electron current emitted from the CNFs was approximately 1 mA and was stable within 10% for a long time t>5000 h. The electrons passing through a slit in the gate electrode were accelerated to the desired energy, and were made to impinge on the metal target (Ti, Cu, Mo, and W) for generating x rays. The x-rays transmitted through Be-window were characterized using energy analyzers and a dosimeter. At an acceleration voltage of V{sub a}=50 kV, the energy spectra of the x-rays were exclusively composed of characteristic signals except for the Mo-target, and the dose rates of x-rays were D=2.5-14 Gy/min, depending on the target metals. This system also provides sharp x-ray images of both biological and nonbiological materials.

  6. Capture and loss correlated to x-ray emission in O^5+ on Ar collisions

    NASA Astrophysics Data System (ADS)

    Elkafrawy, T.; Kayani, A.; Tanis, J. A.

    2010-03-01

    K x rays emitted from projectile and target atoms correlated to projectile capture and loss charge states were investigated for 18 and 25 MeV O^5+ on Ar collisions. Single capture coincidences are of interest as they translate to a target electron transferred to the projectile ion causing excitation followed by x-ray emission. Such a process is the signature for resonant charge transfer and excitation followed by x-ray emission (RTEX). We plan to cover the energy range for such RTEX cross sections. Heavy targets like Ar are not commonly used so we seek to test RTE theory for such targets. It is also planned to run for O^7+ to increase the capture probability. We are planning to measure single loss coincidences as well so we can study projectile ionization associated with projectile and target K-x-ray emission. In the case of Li-like O, K emission correlated with O^6+ can be obtained by K-shell ionization accompanied by 2s -> 2p (or higher) excitation followed by a 2p ->1s decay, or the same emission line can be obtained from K-shell excitation to 2p (or higher) accompanied by ionization of the 2s electron. On the other hand, Ar K emission can be obtained by K-shell ionization followed by 2p ->1s or 3p ->1s decay, or possibly by K-shell excitation to 3d or higher levels.

  7. Femtosecond laser induced X-ray emission from metal alloys, polymers and color filters

    NASA Astrophysics Data System (ADS)

    Hatanaka, Koji; Yomogihata, Ken-ichiro; Ono, Hiroshi; Fukumura, Hiroshi

    2005-07-01

    Various material surfaces were irradiated on a moving stage with focused laser pulses from a conventional 1 kHz femtosecond laser system, and X-ray emission spectra were measured during the laser ablation of the materials. Sharp K or L characteristic X-ray lines from the elements contained in the materials were clearly observed in a range of 2-15 keV. Signals due to copper and zinc were recognizable within a few minutes when a brass surface was irradiated. Poly(vinyl chloride) gave a marked emission originating from chlorine. When a color glass filter was irradiated, the detection of cobalt and arsenic was possible even though the amounts of these components were estimated to be less than 1 wt.% by using an electron probe microanalyzer. Time-integrated emission spectra in the visible region were also monitored during the femtosecond laser ablation of these materials. The emission spectra in the visible region were complicated owing to peaks originating from air components and white continuum emissions. Thus, the elemental analysis by femtoseond laser induced X-ray is considered to be useful for some samples. The etched trenches left at the surfaces after the laser ablation were examined with an optical microscope. The trench width varied with the materials, which may be attributed to changes in the irradiation area giving maximum counts of X-ray emission.

  8. X-ray emission from ? Carinae near periastron in 2009. I. A two-state solution

    SciTech Connect

    Hamaguchi, Kenji; Corcoran, Michael F. [CRESST and X-ray Astrophysics Laboratory, NASA/GSFC, Greenbelt, MD 20771 (United States); Russell, Christopher M. P. [Faculty of Engineering, Hokkai-Gakuen University, Toyohira-ku, Sapporo 062-8605 (Japan); Pollock, A. M. T. [European Space Agency, Apartado 78, Villanueva de la Cañada, E-28691 Madrid (Spain); Gull, Theodore R.; Teodoro, Mairan; Madura, Thomas I. [Astrophysics Science Division, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Damineli, Augusto [Instituto de Astronomia, Geofísica e Ciências Atmosféricas, Universidade de São Paulo, Rua do Matão 1226, Cidade Universitária, São Paulo 05508-900 (Brazil); Pittard, Julian M. [School of Physics and Astronomy, The University of Leeds, Woodhouse Lane, Leeds LS2 9JT (United Kingdom)

    2014-04-01

    X-ray emission from the supermassive binary system ? Car declines sharply around periastron. This X-ray minimum has two distinct phases—the lowest flux phase in the first ?3 weeks and a brighter phase thereafter. In 2009, the Chandra X-ray Observatory monitored the first phase five times and found the lowest observed flux at ?1.9 × 10{sup –12} erg cm{sup –2} s{sup –1} (3-8 keV). The spectral shape changed such that the hard band above ?4 keV dropped quickly at the beginning and the soft band flux gradually decreased to its lowest observed value in ?2 weeks. The hard band spectrum had begun to recover by that time. This spectral variation suggests that the shocked gas producing the hottest X-ray gas near the apex of the wind-wind collision (WWC) is blocked behind the dense inner wind of the primary star, which later occults slightly cooler gas downstream. Shocked gas previously produced by the system at earlier orbital phases is suggested to produce the faint residual X-ray emission seen when the emission near the apex is completely blocked by the primary wind. The brighter phase is probably caused by the re-appearance of the WWC plasma, whose emissivity significantly declined during the occultation. We interpret this to mean that the X-ray minimum is produced by a hybrid mechanism of an occultation and a decline in the emissivity of the WWC shock. We constrain timings of superior conjunction and periastron based on these results.

  9. Ultraviolet/X-ray Variability and the Extended X-ray Emission of the Radio-loud Broad Absorption Line Quasar PG 1004+130

    NASA Astrophysics Data System (ADS)

    Scott, A. E.; Brandt, W. N.; Miller, B. P.; Luo, B.; Gallagher, S. C.

    2015-06-01

    We present the results of recent Chandra, XMM-Newton, and Hubble Space Telescope observations of the radio-loud (RL), broad absorption line (BAL) quasar PG 1004+130. We compare our new observations to archival X-ray and UV data, creating the most comprehensive, high signal-to-noise, multi-epoch, spectral monitoring campaign of a RL BAL quasar to date. We probe for variability of the X-ray absorption, the UV BAL, and the X-ray jet, on month–year timescales. The X-ray absorber has a low column density of {N}H=8× {10}20-4× {10}21 {{cm}}-2 when it is assumed to be fully covering the X-ray emitting region, and its properties do not vary significantly between the four observations. This suggests that the observed absorption is not related to the typical “shielding gas” commonly invoked in BAL quasar models, but is likely due to material further from the central black hole. In contrast, the C iv BAL shows strong variability. The equivalent width (EW) in 2014 is {EW}=11.24+/- 0.56 \\AA, showing a fractional increase of ? {EW}/< {EW}> =1.16+/- 0.11 from the 2003 observation, 3183 days earlier in the rest-frame. This places PG 1004+130 among the most highly variable BAL quasars. By combining Chandra observations we create an exposure that is 2.5 times deeper than studied previously, with which to investigate the nature of the X-ray jet and extended diffuse X-ray emission. An X-ray knot, likely with a synchrotron origin, is detected in the radio jet ? 8\\prime\\prime (30 kpc) from the central X-ray source with a spatial extent of ? 4\\prime\\prime (15 kpc). No similar X-ray counterpart to the counterjet is detected. Asymmetric, non-thermal diffuse X-ray emission, likely due to inverse Compton scattering of Cosmic Microwave Background photons, is also detected.

  10. X-ray continuum and iron K emission line from the radio galaxy 3C 390.3

    NASA Technical Reports Server (NTRS)

    Inda, M.; Makishima, K.; Kohmura, Y.; Tashiro, M.; Ohashi, T.; Barr, P.; Hayashida, K.; Palumbo, G. G. C.; Trinchieri, G.; Elvis, M.

    1994-01-01

    X-ray properties of the radio galaxy 3C 390.3 were investigated using the European X-ray Observatory Satellite (EXOSAT) and Ginga satellites. Long-term, large-amplitude X-ray intensity changes were detected over a period extending from 1984 through 1991, and high-quality X-ray spectra were obtained especially with Ginga. The X-ray continuum spectra were described with power-law model with photon slope in the range 1.5-1.8, and the slope flattened as the 2-20 keV luminosity decreased by 40%. There was a first detection of the iron emission line from this source at the 90% confidence level. An upper limit was derived on the thermal X-ray component. X-ray emission mechanisms and possible origins of the long-term variation are discussed.

  11. X-ray emission in heavy-ion collisions. Progress report, April 1, 1979-March 31, 1980

    SciTech Connect

    Watson, R.L.

    1980-04-01

    Recent research in the cyclotron institute and department of chemistry at Texas A and M University on the x-ray emission in heavy-ion collisions is described. Areas covered include: spectra of Ka x-rays from 64 MeV sulfur ions traveling in solids; foil-excited Ka x-ray transitions in few-electron sulfur ions; high-resolution study of the target thickness dependence of x-ray emission from 65 MeV sulfur ions; dynamic screening of highly stripped sulfur ions in solids; Mg Ka x-ray satellites excited by ion bombardment, multiplet structure and dependence on projectile and chemical environment; angular distributions of beam and target Ka x-rays; chemical effects on K x-ray satellites of fluorine compounds; and a non-linear least-squares peak-fitting program employing Voight functions. (GHT)

  12. Quiescent Diffusive and Fumarolic Volcanic Bromocarbon Emissions

    NASA Astrophysics Data System (ADS)

    Schwandner, F. M.; Gi?e, A. P.; Seward, T. M.; Hall, P. A.; Dietrich, V. J.

    2002-12-01

    Future scenarios of declining atmospheric burdens of Ozone Depleting Substances (ODS) such as halocarbons after phase-out following international regulation (Montreal Protocol) vary strongly depending on what contribution from natural sources is taken into account. In addition, current and pre-industrial global atmospheric budgets of ODS are poorly balanced by known natural and anthropogenic sources of halocarbons (Butler, 2000). Brominated halocarbons have a high Ozone Depletion Potential, Br is at least 40x as efficient as Cl in polar stratospheric ozone destruction (Solomon et al., 1992). CH3Br is the dominant Br carrier to the stratosphere with sources being ca.: 32% anthropogenic, 39% natural, but ca. 29% unaccounted for (WMO, 1998). Natural sources have been reviewed recently (Gribble, 2000, Butler, 2000), including magmatic inorganic (Bureau, 2000) and volcanic organic sources (Rassmussen et al., 1980; Schwandner et al., 2002). CH3Br and other bromocarbons have been reported in non-eruptive volcanic gases previously (Jordan et al., 2000; Schwandner et al., 2000). Due to its capability to extremely rapidly hydrolyse (Gan et al., 1995), CH3Br should not be sampled by the caustic soda bottle technique as used by Jordan et al. (2000) whose samples also show signs of air contamination, but by cryogenic separation of steam with subsequent sorbent trapping, as used by Isidorov (1990), Wahrenberger (1996) and Schwandner et al. (2000, 2001). To contribute significantly to the natural Br budget, volcanic gases would have to at least contain 2 ppmv (dry gas) CH3Br, scaled to a global CO2 emission of 66 Tgy-1 (Stoiber, 1995) based on CO2 flux to halocarbon concentration correlations (e.g. CFC-11: R2=0.91, Schwandner et al., 2002). However, CH3Br is not the only volcanogenic bromocarbon. Analysis of diffusive flank and crater degassing on Vulcano island (Italy) showed a strong diffusive component of CH3Br and C2H5Br emissions in 60-100°C hot pristine unvegetated volcanic "soil" close to high-temperature fumaroles. Other ODS found significantly above air, field and analytical system blanks include CH3Cl, CH3I, chlorophenols and chlorobenzenes. Abundances range from upper pptv to ppmv (e.g. CFC-11: max. 1200 pptv diffusive, 3700 pptv fumarolic/dry gas, dry air: 268 pptv). References\\ Bureau H. et al. (2000), EPSL 183 (1-2):51-60.\\Butler J.H. (2000), Nature 403:560-261.\\Gan J. Y. et al. (1995), J. Agric. Food Chem. 43:1361-1367.\\Gribble G. W. (2000), Environ. Sci. Pollut. Res. 7(1), 37-49.\\Isidorov V. A. et al. (1990), J. Atmos. Chem. 10(3):329-340.\\Jordan A. et al.(2000), ES&T 34:1122-1124.\\Rasmussen R. A. et al. (1980), EOS Transact. 61(6):67.\\Schwandner F. M. et al. (2000), J. Conf. Abs. 5(2):898.\\Schwandner F. M. et al. (2001), Chimia 55(7-8):590.\\Schwandner F.M. et al. (2002), Geoch. Soc. Spec. Publ. 8 (subm.).\\Solomon S. et al. (1992), JGR-A. 97:825-842.\\Stoiber R. E. (1995), In: A handbook of physical constants, AGU Reference Shelf 1:308-319.\\Wahrenberger C. et al. (1996), EOS Trans. 77(46):804.\\WMO (1998) Scientific assessment of ozone depletion. WMO Rep. No. 44, World Meteorological Organisation (WMO), Geneva.

  13. Expressions to determine temperatures and emission measures for solar X-ray events from GOES measurements

    NASA Technical Reports Server (NTRS)

    Thomas, R. J.; Starr, R.; Crannell, C. J.

    1984-01-01

    Expressions which give the effective color temperatures and corresponding emission measures for solar X-ray events observed with instruments onboard any of the GOES satellites are developed. Theoretical spectra were used to simulate the solar X-ray input at a variety of plasma temperatures. These spectra were folded through the wavelength dependent transfer functions for the two GOES detectors. The resulting detector responses and their ratio as a function of plasma temperature were then fit with simple analytic curves. Over the entire range between 5 and 30 million degrees, these fits reproduce the calculated color temperatures within 2% and the calculated emission measures within 5%. With the theoretical spectra, similar expressions for any pair of broadband X-ray detectors whose sensitivities are limited to wavelengths between 0.2 and 100 A are calculable.

  14. Charge-Transfer induced EUV and Soft X-ray emissions in the Heliosphere

    E-print Network

    D. Koutroumpa; R. Lallement; V. Kharchenko; A. Dalgarno; R. Pepino; V. Izmodenov; E. Quémerais

    2006-09-08

    We study the EUV/soft X-ray emission generated by charge transfer between solar wind heavy ions and interstellar H and He neutral atoms in the inner Heliosphere. We present heliospheric maps and spectra for stationary solar wind, depending on solar cycle phase, solar wind anisotropies and composition, line of sight direction and observer position. A time-dependant simulation of the X-ray intensity variations due to temporary solar wind enhancement is compared to XMM Newton recorded data of the Hubble Deep Field North observation (Snowden et al. 2004). Results show that the heliospheric component can explain a large fraction of the line intensity below 1.3 keV, strongly attenuating the need for soft X-ray emission from the Local Interstellar Bubble.

  15. A search for X-ray emission from rich clusters, extended halos around clusters, and superclusters

    NASA Technical Reports Server (NTRS)

    Pravdo, S. H.; Boldt, E. A.; Marshall, F. E.; Mckee, J.; Mushotzky, R. F.; Smith, B. W.; Reichert, G.

    1979-01-01

    The all-sky data base acquired with the HEAO A-2 experiment was searched for X-ray emission on a variety of metagalactic size scales which were either predicted or previously detected. Results in the 0.2-60 keV energy range are presented. The optically richest clusters, including those from which a microwave decrement were observed, appear to be relatively underluminous in X-rays. Observations of Abell 576 show its luminosity to be less than earlier estimates, and moreover less than the luminosity predicted from its microwave decrement, unless the intracluster gas is a factor of approximately 10 hotter than in typical clusters. Near SC0627 there are two X-ray sources, and the identification of the dominant source with SCO627 is probably incorrect. New spectral observations of Abell 401 and 2147, possible superclusters, reveal that they have typical cluster spectra with iron line emission.

  16. Water maser emission from X-ray-heated circumnuclear gas in active galaxies

    NASA Technical Reports Server (NTRS)

    Neufeld, David A.; Maloney, Philip R.; Conger, Sarah

    1994-01-01

    We have modeled the physical and chemical conditions present within dense circumnuclear gas that is irradiated by X-rays from an active galactic nucleus. Over a wide range of X-ray fluxes and gas pressures, the effects of X-ray heating give rise to a molecular layer at temperatures of 400-1000 K within which the water abundance is large. The physical conditions within this molecular layer naturally give rise to collisionally pumped maser emission in the 6(sub 16) - 5(sub 23) 22 GHz transition of ortho-water, with predicted maser luminosities of 10(exp 2 +/- 0.5) solar luminosity per sq. pc of illuminated area. Given plausible assumptions about the geometry of the source and about the degree to which the maser emission is anisotropic, such surface luminosities are sufficient to explain the large apparent luminosities observed in water maser sources that are associated with active galactic nuclei.

  17. X-RAY EMISSION FROM NITROGEN-TYPE WOLF-RAYET STARS

    SciTech Connect

    Skinner, Stephen L.; Sokal, Kimberly R. [Center for Astrophysics and Space Astronomy (CASA), University of Colorado, Boulder, CO 80309-0389 (United States); Zhekov, Svetozar A. [JILA, University of Colorado, Boulder, CO 80309-0440 (United States); Guedel, Manuel [Institute of Astronomy, ETH Zuerich, Wolfgang-Pauli-Str. 27, 8093 Zuerich (Switzerland); Schmutz, Werner [Physikalisch-Meteorologisches Observatorium Davos and World Radiation Center (PMOD/WRC), Dorfstrasse 33, CH-7260 Davos Dorf (Switzerland)], E-mail: Stephen.Skinner@colorado.edu

    2010-03-15

    We summarize new X-ray detections of four nitrogen-type Wolf-Rayet (WR) stars obtained in a limited survey aimed at establishing the X-ray properties of WN stars across their full range of spectral subtypes. None of the detected stars is so far known to be a close binary. We report Chandra detections of WR 2 (WN2), WR 18 (WN4), and WR 134 (WN6), and an XMM-Newton detection of WR79a (WN9ha). These observations clearly demonstrate that both WNE and WNL stars are X-ray sources. We also discuss Chandra archive detections of the WN6h stars WR 20b, WR 24, and WR 136 and ROSAT non-detections of WR 16 (WN8h) and WR 78 (WN7h). The X-ray spectra of all WN detections show prominent emission lines and an admixture of cool (kT < 1 keV) and hot (kT > 2 keV) plasma. The hotter plasma is not predicted by radiative wind shock models and other as yet unidentified mechanisms are at work. Most stars show X-ray absorption in excess of that expected from visual extinction (A {sub V}), likely due to their strong winds or cold circumstellar gas. Existing data suggest a falloff in X-ray luminosity toward later WN7-9 subtypes, which have higher L {sub bol} but slower, denser winds than WN2-6 stars. This provides a clue that wind properties may be a more crucial factor in determining emergent X-ray emission levels than bolometric luminosity.

  18. Weak Hard X-Ray Emission from Two Broad Absorption Line Quasars Observed with NuStar: Compton-Thick Absorption or Intrinsic X-Ray Weakness?

    NASA Technical Reports Server (NTRS)

    Luo, B.; Brandt, W. N.; Alexander, D. M.; Harrison, F. A.; Stern, D.; Bauer, F. E.; Boggs, S. E.; Christensen, F. E.; Comastri, A.; Craig, W. W..; Fabian, A. C.; Farrah, D.; Fiore, F.; Fuerst, F.; Grefenstette, B. W.; Hailey, C. J.; Hickox, R.; Madsen, K. K.; Matt, G.; Ogle, P.; Risaliti, G.; Saez, C.; Teng, S. H.; Walton, D. J.; Zhang, W. W.

    2013-01-01

    We present Nuclear Spectroscopic Telescope Array (NuSTAR) hard X-ray observations of two X-ray weak broad absorption line (BAL) quasars, PG 1004+130 (radio loud) and PG 1700+518 (radio quiet). Many BAL quasars appear X-ray weak, probably due to absorption by the shielding gas between the nucleus and the accretion-disk wind. The two targets are among the optically brightest BAL quasars, yet they are known to be significantly X-ray weak at rest-frame 2-10 keV (16-120 times fainter than typical quasars). We would expect to obtain approx. or equal to 400-600 hard X-ray (is greater than or equal to 10 keV) photons with NuSTAR, provided that these photons are not significantly absorbed N(sub H) is less than or equal to 10(exp24) cm(exp-2). However, both BAL quasars are only detected in the softer NuSTAR bands (e.g., 4-20 keV) but not in its harder bands (e.g., 20-30 keV), suggesting that either the shielding gas is highly Compton-thick or the two targets are intrinsically X-ray weak. We constrain the column densities for both to be N(sub H) 7 × 10(exp 24) cm(exp-2) if the weak hard X-ray emission is caused by obscuration from the shielding gas. We discuss a few possibilities for how PG 1004+130 could have Compton-thick shielding gas without strong Fe Ka line emission; dilution from jet-linked X-ray emission is one likely explanation. We also discuss the intrinsic X-ray weakness scenario based on a coronal-quenching model relevant to the shielding gas and disk wind of BAL quasars. Motivated by our NuSTAR results, we perform a Chandra stacking analysis with the Large Bright Quasar Survey BAL quasar sample and place statistical constraints upon the fraction of intrinsically X-ray weak BAL quasars; this fraction is likely 17%-40%.

  19. WEAK HARD X-RAY EMISSION FROM TWO BROAD ABSORPTION LINE QUASARS OBSERVED WITH NuSTAR: COMPTON-THICK ABSORPTION OR INTRINSIC X-RAY WEAKNESS?

    SciTech Connect

    Luo, B.; Brandt, W. N. [Department of Astronomy and Astrophysics, 525 Davey Lab, The Pennsylvania State University, University Park, PA 16802 (United States); Alexander, D. M.; Hickox, R. [Department of Physics, Durham University, South Road, Durham DH1 3LE (United Kingdom); Harrison, F. A.; Fuerst, F.; Grefenstette, B. W.; Madsen, K. K. [Cahill Center for Astronomy and Astrophysics, California Institute of Technology, Pasadena, CA 91125 (United States); Stern, D. [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States); Bauer, F. E. [Departamento de Astronomia y Astrofisica, Pontificia Universidad Catolica de Chile, Casilla 306, Santiago 22 (Chile); Boggs, S. E.; Craig, W. W. [Space Sciences Laboratory, University of California, Berkeley, CA 94720 (United States); Christensen, F. E. [DTU Space-National Space Institute, Technical University of Denmark, Elektrovej 327, DK-2800 Lyngby (Denmark); Comastri, A. [INAF-Osservatorio Astronomico di Bologna, Via Ranzani 1, I-40127 Bologna (Italy); Fabian, A. C. [Institute of Astronomy, Madingley Road, Cambridge CB3 0HA (United Kingdom); Farrah, D. [Department of Physics, Virginia Tech, Blacksburg, VA 24061 (United States); Fiore, F. [Osservatorio Astronomico di Roma, via Frascati 33, I-00040 Monteporzio Catone (Italy); Hailey, C. J. [Columbia Astrophysics Laboratory, Columbia University, New York, NY 10027 (United States); Matt, G. [Dipartimento di Matematica e Fisica, Universita degli Studi Roma Tre, via della Vasca Navale 84, I-00146 Roma (Italy); Ogle, P. [IPAC, California Institute of Technology, Mail Code 220-6, Pasadena, CA 91125 (United States); and others

    2013-08-01

    We present Nuclear Spectroscopic Telescope Array (NuSTAR) hard X-ray observations of two X-ray weak broad absorption line (BAL) quasars, PG 1004+130 (radio loud) and PG 1700+518 (radio quiet). Many BAL quasars appear X-ray weak, probably due to absorption by the shielding gas between the nucleus and the accretion-disk wind. The two targets are among the optically brightest BAL quasars, yet they are known to be significantly X-ray weak at rest-frame 2-10 keV (16-120 times fainter than typical quasars). We would expect to obtain Almost-Equal-To 400-600 hard X-ray ({approx}> 10 keV) photons with NuSTAR, provided that these photons are not significantly absorbed (N{sub H} {approx}< 10{sup 24} cm{sup -2}). However, both BAL quasars are only detected in the softer NuSTAR bands (e.g., 4-20 keV) but not in its harder bands (e.g., 20-30 keV), suggesting that either the shielding gas is highly Compton-thick or the two targets are intrinsically X-ray weak. We constrain the column densities for both to be N{sub H} Almost-Equal-To 7 Multiplication-Sign 10{sup 24} cm{sup -2} if the weak hard X-ray emission is caused by obscuration from the shielding gas. We discuss a few possibilities for how PG 1004+130 could have Compton-thick shielding gas without strong Fe K{alpha} line emission; dilution from jet-linked X-ray emission is one likely explanation. We also discuss the intrinsic X-ray weakness scenario based on a coronal-quenching model relevant to the shielding gas and disk wind of BAL quasars. Motivated by our NuSTAR results, we perform a Chandra stacking analysis with the Large Bright Quasar Survey BAL quasar sample and place statistical constraints upon the fraction of intrinsically X-ray weak BAL quasars; this fraction is likely 17%-40%.

  20. Chandra Observation of an X-ray Flare at Saturn: Evidence for Direct Solar Control on Saturn's Disk X-ray Emissions

    E-print Network

    Anil Bhardwaj; Ronald F. Elsner; J. Hunter Waite Jr; G. Randall Gladstone; Thomas E. Cravens; Peter G. Ford

    2005-04-05

    Saturn was observed by Chandra ACIS-S on 20 and 26-27 January 2004 for one full Saturn rotation (10.7 hr) at each epoch. We report here the first observation of an X-ray flare from Saturn's non-auroral (low-latitude) disk, which is seen in direct response to an M6-class flare emanating from a sunspot that was clearly visible from both Saturn and Earth. Saturn's disk X-ray emissions are found to be variable on time scales of hours to weeks to months, and correlated with solar F10.7 cm flux. Unlike Jupiter, X-rays from Saturn's polar (auroral) region have characteristics similar to those from its disk. This report, combined with earlier studies, establishes that disk X-ray emissions of the giant planets Saturn and Jupiter are directly regulated by processes happening on the Sun. We suggest that these emissions could be monitored to study X-ray flaring from solar active regions when they are on the far side and not visible to Near-Earth space weather satellites.

  1. Optical Outflows and Emission Line Properties in X-ray Obscured AGNs

    NASA Astrophysics Data System (ADS)

    Winter, Lisa; Veilleux, Sylvain; Rupke, David; Krug, Hannah

    2012-08-01

    Mass outflows from AGN are believed to affect their host galaxy's evolution - enriching their local ISM and potentially IGM with metals from supernova explosions and quenching epochs of star formation - however, the properties of these outflows are poorly understood. Even the fraction of outflows is not known, particularly for obscured AGN, where reddening inhibits the use of the typical outflow signatures (in the UV/soft X-ray spectra). To determine the outflow properties of absorbed AGN, we propose to obtain optical spectroscopy with the SOAR GHTS of a sample of 54 X-ray absorbed/type 2 AGN selected in the very hard X-rays with Swift. The X-ray properties of this sample are known (Winter et al. 2009) and we already observed the companion sample of 51 type 1 sources from the same survey. We will study both the ionized (i.e., shifts in [O III] emission) and the neutral (i.e., the Na ID doublet) outflows in the southern sources, as a complementary program to our accepted APO observations of the northern sources. This will provide the first measurement of the covering fraction of outflows in absorbed AGN and provide an important comparison to our analysis of optical/X-ray outflows of the unabsorbed sample. Additionally, uniform optical spectra are not available for the southern BAT-detected sources. These spectra will unveil important properties of the AGN, including optical luminosities and emission line properties/classifications.

  2. The Sun's X-ray Emission During the Recent Solar Minimum

    NASA Astrophysics Data System (ADS)

    Sylwester, Janusz; Kowalinski, Mirek; Gburek, Szymon; Siarkowski, Marek; Kuzin, Sergey; Farnik, Frantisek; Reale, Fabio; Phillips, Kenneth J. H.

    2010-02-01

    The Sun recently underwent a period of a remarkable lack of major activity such as large flares and sunspots, without equal since the advent of the space age a half century ago. A widely used measure of solar activity is the amount of solar soft X-ray emission, but until recently this has been below the threshold of the X-ray-monitoring Geostationary Operational Environmental Satellites (GOES). There is thus an urgent need for more sensitive instrumentation to record solar X-ray emission in this range. Anticipating this need, a highly sensitive spectrophotometer called Solar Photometer in X-rays (SphinX) was included in the solar telescope/spectrometer TESIS instrument package on the third spacecraft in Russia's Complex Orbital Observations Near-Earth of Activity of the Sun (CORONAS-PHOTON) program, launched 30 January 2009 into a near-polar orbit. SphinX measures X-rays in a band similar to the GOES longer-wavelength channel.

  3. Intense Non-Linear Soft X-Ray Emission from a Hydride Target during Pulsed D Bombardment

    Microsoft Academic Search

    George H. Miley; Yang Yang; Andrei Lipson; Munima Haque; Ian Percel; Michael Romer

    2006-01-01

    Radiation emission from low-energy nuclear radiation (LENR) electrodes (both charged-particle and X-rays) represents an important feature of LENR in general. Here, calibration, measurement techniques, and soft X-ray emission results from deuterium bombardment of a Pd target (cathode) placed in a pulsed deuterium glow discharge (PGD) are described. An X-ray intensity of 13.4 mW\\/cm2 and a dose of 3.3 muJ\\/cm2 were

  4. X-ray emission line profile modeling of hot stars Roban H. Kramer

    E-print Network

    Cohen, David

    plasma confined in an equatorial disk by a dipole magnetic field. © 2003 American Institute of Physics . These stars are detected to have soft-x-ray luminosities of 10 7 times their total bolometric luminosities.1, the observer sees blueshifted emission from the ap- proaching material on the near side of the wind and red

  5. Detection of Excess Hard X-ray Emission from the Group of Galaxies HCG62

    E-print Network

    Fukazawa, Y; Isobe, N; Makishima, K; Matsushita, K; Ohashi, T; Kamae, T; Fukazawa, Yasushi; Nakazawa, Kazuhiro; Isobe, Naoki; Makishima, Kazuo; Matsushita, Kyoko; Ohashi, Takaya; Kamae, Tsuneyoshi

    2000-01-01

    From the group of galaxies HCG62, we detected an excess hard X-ray emission in energies above $\\sim 4$ keV with \\A SCA. The excess emission is spatially extended up to $\\sim10'$ from the group center, and somewhat enhanced toward north. Its spectrum can be represented by either a power-law of photon index 0.8-2.7, or a Bremsstrahlung of temperature $>6.3$ keV. In the 2-10 keV range, the observed hard X-ray flux, $(1.0\\pm0.3)\\times10^{-12}$ erg cm$^{-2}$ s$^{-1}$, implies a luminosity of $(8.0\\pm2.0)\\times10^{41}$ erg s$^{-1}$ for a Hubble constant of 50 km s$^{-1}$ Mpc$^{-1}$. The emission is thus too luminous to be attributed to X-ray binaries in the memb er galaxies. We discuss possible origin of the hard X-ray emission.

  6. Resolved X-ray emission line profiles Clumping in Hot Star Winds

    E-print Network

    Cohen, David

    Resolved X-ray emission line profiles Clumping in Hot Star Winds W.-R. Hamann, A. Feldmeier & L and wind porosity. We find that reducing the mass-loss rate of Pup by roughly a factor of four, to 1.5 × 10-6 M yr-1 , enables simple non-porous wind models to provide good fits to the data. If

  7. THE MULTIELEMENTAL ANALYSIS OF DRINKING WATER USING PROTON-INDUCED X-RAY EMISSION (PIXE)

    EPA Science Inventory

    A new, rapid, and economical method for the multielemental analysis of drinking water samples is described. The concentrations of 76 elements heavier than aluminum are determined using proton-induced x-ray emission (PIXE) technology. The concentration of sodium is evaluated using...

  8. The Relationship Between Solar Radio and Hard X-Ray Emission

    NASA Technical Reports Server (NTRS)

    White, S. M.; Benz, A. O.; Christe, S.; Farnik, F.; Kundu, M. R.; Mann, G.; Ning, Z.; Raulin, J.-P.; Silva-Valio, A. V. R.; Saint-Hilaire, P.; Vilmer, N.; Warmuth, A.

    2011-01-01

    This review discusses the complementary relationship between radio and hard Xray observations of the Sun using primarily results from the era of the Reuven Ramaty High Energy Solar Spectroscopic Imager satellite. A primary focus of joint radio and hard X-ray studies of solar flares uses observations of nonthermal gyrosynchrotron emission at radio wavelengths and bremsstrahlung hard X-rays to study the properties of electrons accelerated in the main flare site, since it is well established that these two emissions show very similar temporal behavior. A quantitative prescription is given for comparing the electron energy distributions derived separately from the two wavelength ranges: this is an important application with the potential for measuring the magnetic field strength in the flaring region, and reveals significant differences between the electrons in different energy ranges. Examples of the use of simultaneous data from the two wavelength ranges to derive physical conditions are then discussed, including the case of microflares, and the comparison of images at radio and hard X-ray wavelengths is presented. There have been puzzling results obtained from observations of solar flares at millimeter and submillimeter wavelengths, and the comparison of these results with corresponding hard X-ray data is presented. Finally, the review discusses the association of hard X-ray releases with radio emission at decimeter and meter wavelengths, which is dominated by plasma emission (at lower frequencies) and electron cyclotron maser emission (at higher frequencies), both coherent emission mechanisms that require small numbers of energetic electrons. These comparisons show broad general associations but detailed correspondence remains more elusive.

  9. Disentangling X-Ray Emission Processes in Vela-Like Pulsars

    NASA Technical Reports Server (NTRS)

    Gaensler, Bryan; Mushotzky, Richard (Technical Monitor)

    2003-01-01

    We present a deep observation with the X-Ray Multimirror Mission of PSR B1823-13, a young pulsar with similar properties to the Vela pulsar. We detect two components to the X-ray emission associated with PSR B1823-13: an elongated core of extent 30 min immediately surrounding the pulsar embedded in a fainter, diffuse component of emission 5 sec in extent, seen only on the southern side of the pulsar. The pulsar itself is not detected, either as a point source or through its pulsations. Both components of the X-ray emission are well fitted by a power-law spectrum, with photon index Gamma approx. 1.6 and X-ray luminosity (0.5-10 keV) L(sub X) approx. 9 x 10(exp 32) ergs/s for the core and Gamma approx. 2.3 and L(sub X) approx. 3 x 10(exp 33) ergs/s for the diffuse emission, for a distance of 4 kpc. We interpret both components of emission as corresponding to a pulsar wind nebula, which we designate G18.0-0.7. We argue that the core region represents the wind termination shock of this nebula, while the diffuse component indicates the shocked downstream wind. We propose that the asymmetric morphology of the diffuse emission with respect to the pulsar is the result of a reverse shock from an associated supernova remnant, which has compressed and distorted the pulsar-powered nebula. Such an interaction might be typical for pulsars at this stage in their evolution. The associated supernova remnant is not detected directly, most likely being too faint to be seen in existing X-ray and radio observations.

  10. South-West extension of the hard X-ray emission from the Coma cluster

    E-print Network

    D. Eckert; A. Neronov; T. J. -L. Courvoisier; N. Produit

    2007-09-03

    We explore the morphology of hard (18-30 keV) X-ray emission from the Coma cluster of galaxies. We analyze a deep (1.1 Ms) observation of the Coma cluster with the ISGRI imager on board the \\emph{INTEGRAL} satellite. We show that the source extension in the North-East to South-West (SW) direction ($\\sim 17'$) significantly exceeds the size of the point spread function of ISGRI, and that the centroid of the image of the source in the 18-30 keV band is displaced in the SW direction compared to the centroid in the 1-10 keV band. To test the nature of the SW extension we fit the data assuming different models of source morphology. The best fit is achieved with a diffuse source of elliptical shape, although an acceptable fit can be achieved assuming an additional point source SW of the cluster core. In the case of an elliptical source, the direction of extension of the source coincides with the direction toward the subcluster falling onto the Coma cluster. If the SW excess is due to the presence of a point source with a hard spectrum, we show that there is no obvious X-ray counterpart for this additional source, and that the closest X-ray source is the quasar EXO 1256+281, which is located $6.1'$ from the centroid of the excess. The observed morphology of the hard X-ray emission clarifies the nature of the hard X-ray "excess" emission from the Coma cluster, which is due to the presence of an extended hard X-ray source SW of the cluster core.

  11. What's important at z>5? X-ray Emission from Starbursts!

    NASA Astrophysics Data System (ADS)

    Hornschemeier, Ann E.; Basu-Zych, Antara; Yukita, Mihoko; Mineo, Stefano; Lehmer, Bret; Ptak, Andrew; Fragos, Tassos; Zezas, Andreas

    2014-08-01

    There has recently been quite a bit of excitement on the role of X-ray emission from galaxies in reionization. It turns out that the X-ray output from X-ray binaries and hot gas are both likely important and may rival the ionizing output of AGN at z>5, particularly for Hydrogen reionization. Here we present our research on constraining the X-ray SED of high-redshift galaxies using an important local universe analog population, the Lyman Break Galaxy Analogs. We have established a relationship between the 2-10 keV X-ray luminosity, assumed to originate from X-ray binaries (XRBs), and star formation rate (SFR) in rest-frame UV-selected galaxies across cosmic time -- ranging from Lyman break galaxies (LBGs) in the early Universe (z=1.5-4) to Lyman break analogs (LBAs) in the present-day Universe ( 0.1). We present results from the 4Ms Chandra Deep Field South (CDF-S) observations of ~4000 z=1.5-4 LBGs as well as in-depth studies of a sample of six nearby GALEX-selected 0.1 LBAs, which are individually X-ray detected. Both populations may yield a larger output in collective HMXB luminosity per unit SFR than that observed in local (z=0) star-forming galaxies. We also discuss the properties of the hot gas in these galaxies, particularly what we hope to learn with next generation facilities such as the Athena calorimeter.

  12. The X-ray emission of the most luminous 3CR radio sources

    NASA Astrophysics Data System (ADS)

    Salvati, M.; Risaliti, G.; Véron, P.; Woltjer, L.

    2008-01-01

    Context: Although many radio-loud quasars and galaxies have been observed in X-rays, systematic studies of well defined samples are rare. Aims: We investigate the X-ray properties of the most luminous radio sources in the 3CR catalogue, in order to assess whether they are similar to the most luminous radio-quiet quasars, for instance in the X-ray normalization with respect to the optical luminosity, or in the distribution of the absorption column density. Methods: We have selected the (optically identified) 3CR radio sources whose 178-MHz monochromatic luminosity lies in the highest factor-of-three bin. The 4 most luminous objects had already been observed in X-rays. Of the remaining 16, we observed 8 randomly chosen ones with XMM-Newton, with the only requirement that half were of type 1 and half of type 2 according to the optical identification. Results: All targets were detected. The optical-to-X-ray spectral index, ?_ox, can be computed only for the type 1s and, in agreement with previous studies, is found to be flatter than in radio-quiet quasars of similar luminosity. However, the Compton-thin type 2s have an absorption-corrected X-ray luminosity systematically lower than the type 1s, by a factor which makes them consistent with the radio-quiet ?_ox. Within the limited statistics, the Compton-thick objects seem to have a reflected component more luminous than the Compton-thin ones. Conclusions: The extra X-ray component observed in type 1 radio-loud quasars is beamed for intrinsic causes, and is not collimated by the absorbing torus as is the case for the (intrinsically isotropic) disk emission. The extra component can be associated with a relativistic outflow, provided that the flow opening angle and the Doppler beaming factor are ~1/5-1/7 radians.

  13. Grazing-emission X-ray fluorescence spectrometry; principles and applications

    NASA Astrophysics Data System (ADS)

    de Bokx, P. K.; Kok, Chr.; Bailleul, A.; Wiener, G.; Urbach, H. P.

    1997-07-01

    In grazing-emission X-ray fluorescence spectrometry (GEXRF), the sample is irradiated at approximately normal incidence, and only that part of the fluorescence radiation is detected that is emitted at grazing angles. This configuration allows the use of wavelength-dispersive detection. This type of detection has the advantages of substantially better energy resolution at longer wavelengths (light elements, L and M lines of heavier elements) and a much larger dynamic range than the energy-dispersive detectors currently used in grazing X-ray techniques. Typical examples are presented of applications that are made possible by this new technique.

  14. X-ray emission from the terrestrial magnetosheath

    E-print Network

    Robertson, Ina Picket; Cravens, Thomas Edward

    2003-04-29

    in this model. Simulated images were created as seen from an observation point outside the geocorona. The locations of the bow shock and magnetopause are evident in these images. Perhaps this Xray emission can be used to remotely sense the solar wind flow around...

  15. Soft x ray emission spectra from laser-irradiated high-Z targets

    NASA Astrophysics Data System (ADS)

    Mehlman, G.; Burkhalter, P. G.; Newman, D. A.; Ripin, B. H.

    1990-06-01

    X ray data were acquired from mass-limited targets with the Pharos III laser system. Targets, mounted at the tip of thin glass stalks, were microscopic pieces of single or multiple high-Z element composition. The laser irradiance was 4 x 10(exp 14) W/sq cm with about 300J of focused 1.05 microns wavelength laser beam. A convex KAP crystal spectrograph was used for its capability to collect high resolution spectra in the 4 to 20 A soft x ray region. The recorded spectral film densities were microdensitometered and converted by computer-processing to absolute continuum and emission line intensities. The spectral features were identified with the aid of ab-initio atomic structure calculations. The continuum background was evaluated as a source of pseudo-continua for absorption studies of soft x rays.

  16. Nanoparticle characterization by means of scanning free grazing emission X-ray fluorescence.

    PubMed

    Kayser, Yves; Sá, Jacinto; Szlachetko, Jakub

    2015-05-14

    Nanoparticles are considered for applications in domains as various as medical and pharmaceutical sciences, opto- and microelectronics, catalysis, photovoltaics, spintronics or nano- and biotechnology. The applications realized with nanocrystals depend strongly on the physical dimensions (shape and size) and elemental constitution. We demonstrate here that grazing emission X-ray fluorescence (GEXRF) is an element sensitive technique that presents the potential for a reliable and accurate determination of the morphology of nanoparticles deposited on a flat substrate (ready-to-use devices). Thanks to the scanning-free approach of the used GEXRF setup, the composition, shape and average size of nanoparticles are determined in short time intervals, minimizing the exposure to radiation. The (scanning-free) GEXRF technique allows for in situ investigations of the nanoparticulate systems thanks to the penetration properties of both the probe X-ray beam and the emitted X-ray fluorescence signal. PMID:25946258

  17. Nanoparticle characterization by means of scanning free grazing emission X-ray fluorescence

    NASA Astrophysics Data System (ADS)

    Kayser, Yves; Sá, Jacinto; Szlachetko, Jakub

    2015-05-01

    Nanoparticles are considered for applications in domains as various as medical and pharmaceutical sciences, opto- and microelectronics, catalysis, photovoltaics, spintronics or nano- and biotechnology. The applications realized with nanocrystals depend strongly on the physical dimensions (shape and size) and elemental constitution. We demonstrate here that grazing emission X-ray fluorescence (GEXRF) is an element sensitive technique that presents the potential for a reliable and accurate determination of the morphology of nanoparticles deposited on a flat substrate (ready-to-use devices). Thanks to the scanning-free approach of the used GEXRF setup, the composition, shape and average size of nanoparticles are determined in short time intervals, minimizing the exposure to radiation. The (scanning-free) GEXRF technique allows for in situ investigations of the nanoparticulate systems thanks to the penetration properties of both the probe X-ray beam and the emitted X-ray fluorescence signal.

  18. A waveguide electron cyclotron resonance source of X-ray emission for low-dose introscopy

    NASA Astrophysics Data System (ADS)

    Sergeichev, K. F.; Ionidi, V. Yu.; Karfidov, D. M.; Lukina, N. A.

    2013-12-01

    It is shown that a "point" target in a conventional evacuated waveguide in the magnetic field of a mirror trap formed by two disk magnets axially magnetized in the direction perpendicular to the electric field vector represents a source of X-ray bremsstrahlung of electrons accelerated in an ECR discharge with a broad range of photon energies up to 0.8 MeV. The dosage rate of the source is ˜1 R/h. The source fed from a conventional microwave oven has small dimensions and a low weight. It is easy-to-use and is suitable as a laboratory tool, in particular, in radiobiology and introscopy. After passing through the object, X-ray emission is recorded by a digital camera with the help of a highly sensitive X-ray fluorescent screen, which converts it into an optical image.

  19. X-RAY EMISSION FROM SUPERNOVAE IN DENSE CIRCUMSTELLAR MATTER ENVIRONMENTS: A SEARCH FOR COLLISIONLESS SHOCKS

    SciTech Connect

    Ofek, E. O.; Gal-Yam, A.; Yaron, O.; Arcavi, I. [Benoziyo Center for Astrophysics, Weizmann Institute of Science, 76100 Rehovot (Israel)] [Benoziyo Center for Astrophysics, Weizmann Institute of Science, 76100 Rehovot (Israel); Fox, D. [Department of Astronomy and Astrophysics, Pennsylvania State University, University Park, PA 16802 (United States)] [Department of Astronomy and Astrophysics, Pennsylvania State University, University Park, PA 16802 (United States); Cenko, S. B.; Filippenko, A. V.; Bloom, J. S. [Department of Astronomy, University of California, Berkeley, CA 94720-3411 (United States)] [Department of Astronomy, University of California, Berkeley, CA 94720-3411 (United States); Sullivan, M. [Department of Physics, University of Oxford, Denys Wilkinson Building, Keble Road, Oxford OX1 3RH (United Kingdom)] [Department of Physics, University of Oxford, Denys Wilkinson Building, Keble Road, Oxford OX1 3RH (United Kingdom); Gnat, O. [Racah Institute of Physics, The Hebrew University of Jerusalem, 91904 Jerusalem (Israel)] [Racah Institute of Physics, The Hebrew University of Jerusalem, 91904 Jerusalem (Israel); Frail, D. A. [National Radio Astronomy Observatory, P.O. Box O, Socorro, NM 87801 (United States)] [National Radio Astronomy Observatory, P.O. Box O, Socorro, NM 87801 (United States); Horesh, A.; Kulkarni, S. R. [Division of Physics, Mathematics, and Astronomy, California Institute of Technology, Pasadena, CA 91125 (United States)] [Division of Physics, Mathematics, and Astronomy, California Institute of Technology, Pasadena, CA 91125 (United States); Corsi, A. [LIGO Laboratory, Division of Physics, California Institute of Technology, MS 100-36, Pasadena, CA 91125 (United States)] [LIGO Laboratory, Division of Physics, California Institute of Technology, MS 100-36, Pasadena, CA 91125 (United States); Quimby, R. M. [Kavli IPMU, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa-shi, Chiba 277-8583 (Japan)] [Kavli IPMU, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa-shi, Chiba 277-8583 (Japan); Gehrels, N. [NASA-Goddard Space Flight Center, Greenbelt, MD 20771 (United States)] [NASA-Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Nugent, P. E. [Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 (United States)] [Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 (United States); Kasliwal, M. M. [Observatories of the Carnegie Institution for Science, 813 Santa Barbara Street, Pasadena, CA 91101 (United States)] [Observatories of the Carnegie Institution for Science, 813 Santa Barbara Street, Pasadena, CA 91101 (United States); Bildsten, L. [Kavli Institute for Theoretical Physics, Kohn Hall, University of California, Santa Barbara, CA 93106 (United States)] [Kavli Institute for Theoretical Physics, Kohn Hall, University of California, Santa Barbara, CA 93106 (United States); Poznanski, D. [School of Physics and Astronomy, Tel Aviv University, Tel Aviv (Israel)] [School of Physics and Astronomy, Tel Aviv University, Tel Aviv (Israel); and others

    2013-01-20

    The optical light curve of some supernovae (SNe) may be powered by the outward diffusion of the energy deposited by the explosion shock (the so-called shock breakout) in optically thick ({tau} {approx}> 30) circumstellar matter (CSM). Recently, it was shown that the radiation-mediated and radiation-dominated shock in an optically thick wind must transform into a collisionless shock and can produce hard X-rays. The X-rays are expected to peak at late times, relative to maximum visible light. Here we report on a search, using Swift/XRT and Chandra, for X-ray emission from 28 SNe that belong to classes whose progenitors are suspected to be embedded in dense CSM. Our sample includes 19 Type IIn SNe, one Type Ibn SN, and eight hydrogen-poor superluminous SNe (SLSN-I such as SN 2005ap). Two SNe (SN 2006jc and SN 2010jl) have X-ray properties that are roughly consistent with the expectation for X-rays from a collisionless shock in optically thick CSM. However, the X-ray emission from SN 2006jc can also be explained as originating in an optically thin region. Thus, we propose that the optical light curve of SN 2010jl is powered by shock breakout in CSM. We suggest that two other events (SN 2010al and SN 2011ht) were too X-ray bright during the SN maximum optical light to be explained by the shock-breakout model. We conclude that the light curves of some, but not all, SNe IIn/Ibn are powered by shock breakout in CSM. For the rest of the SNe in our sample, including all of the SLSN-I events, our X-ray limits are not deep enough and were typically obtained too early (i.e., near the SN maximum light) for definitive conclusions about their nature. Late-time X-ray observations are required in order to further test whether these SNe are indeed embedded in dense CSM. We review the conditions required for a shock breakout in a wind profile. We argue that the timescale, relative to maximum light, for the SN to peak in X-rays is a probe of the column density and the density profile above the shock region. In SNe whose X-ray emission slowly rises, and peaks at late times, the optical light curve is likely powered by the diffusion of shock energy in a dense CSM. We note that if the CSM density profile falls faster than a constant-rate wind-density profile, then X-rays may escape at earlier times than estimated for the wind-profile case. Furthermore, if the CSM has a region in which the density profile is very steep relative to a steady wind-density profile, or if the CSM is neutral, then the radio free-free absorption may be sufficiently low for radio emission to be detected.

  20. X-ray Emission from Supernovae in Dense Circumstellar Matter Environments: a Search for Collisionless Shocks

    NASA Technical Reports Server (NTRS)

    Ofek, E. O.; Fox, D.; Cenko, Stephen B.; Sullivan, M; Gnat, O.; Frail, D. A.; Horesh, A.; Corsi, A.; Quimby, R. M.; Gehrels, N.; Kulkarni, S. R.; Gal-Yam, A.; Nugent, P. E.; Yaron, O.; Fillippenko, A. V; Kasliwal, M. M.; Bildsten, L.; Bloom, J. S.; Poznanski, D.; Arcavi, I.; Laher, R. R.; Levitan, D.; Sesar, B.; Surace, J..

    2013-01-01

    The optical light curve of some supernovae (SNe) may be powered by the outward diffusion of the energy deposited by the explosion shock (the so-called shock breakout) in optically thick (Tau approx > 30) circumstellar matter (CSM). Recently, it was shown that the radiation-mediated and radiation-dominated shock in an optically thick wind must transform into a collisionless shock and can produce hard X-rays. The X-rays are expected to peak at late times, relative to maximum visible light. Here we report on a search, using Swift/XRT and Chandra, for X-ray emission from 28 SNe that belong to classes whose progenitors are suspected to be embedded in dense CSM. Our sample includes 19 Type IIn SNe, one Type Ibn SN, and eight hydrogen-poor superluminous SNe (SLSN-I such as SN 2005ap). Two SNe (SN 2006jc and SN 2010jl) have X-ray properties that are roughly consistent with the expectation for X-rays from a collisionless shock in optically thick CSM. However, the X-ray emission from SN 2006jc can also be explained as originating in an optically thin region. Thus, we propose that the optical light curve of SN 2010jl is powered by shock breakout in CSM. We suggest that two other events (SN 2010al and SN 2011ht) were too X-ray bright during the SN maximum optical light to be explained by the shock-breakout model.We conclude that the light curves of some, but not all, SNe IIn/Ibn are powered by shock breakout in CSM. For the rest of the SNe in our sample, including all of the SLSN-I events, our X-ray limits are not deep enough and were typically obtained too early (i.e., near the SN maximum light) for definitive conclusions about their nature. Late-time X-ray observations are required in order to further test whether these SNe are indeed embedded in dense CSM. We review the conditions required for a shock breakout in a wind profile. We argue that the timescale, relative to maximum light, for the SN to peak in X-rays is a probe of the column density and the density profile above the shock region. In SNe whose X-ray emission slowly rises, and peaks at late times, the optical light curve is likely powered by the diffusion of shock energy in a dense CSM. We note that if the CSM density profile falls faster than a constant-rate wind-density profile, then X-rays may escape at earlier times than estimated for the wind-profile case. Furthermore, if the CSM has a region in which the density profile is very steep relative to a steady wind-density profile, or if the CSM is neutral, then the radio free-free absorption may be sufficiently low for radio emission to be detected.

  1. X-ray emission processes in stars and their immediate environment

    PubMed Central

    Testa, Paola

    2010-01-01

    A decade of X-ray stellar observations with Chandra and XMM-Newton has led to significant advances in our understanding of the physical processes at work in hot (magnetized) plasmas in stars and their immediate environment, providing new perspectives and challenges, and in turn the need for improved models. The wealth of high-quality stellar spectra has allowed us to investigate, in detail, the characteristics of the X-ray emission across the Hertzsprung-Russell (HR) diagram. Progress has been made in addressing issues ranging from classical stellar activity in stars with solar-like dynamos (such as flares, activity cycles, spatial and thermal structuring of the X-ray emitting plasma, and evolution of X-ray activity with age), to X-ray generating processes (e.g., accretion, jets, magnetically confined winds) that were poorly understood in the preChandra/XMM-Newton era. I will discuss the progress made in the study of high energy stellar physics and its impact in a wider astrophysical context, focusing on the role of spectral diagnostics now accessible. PMID:20360562

  2. The origin of the puzzling hard X-ray emission of $\\gamma$ Cassiopeiae

    E-print Network

    Motch, Christian; Smith, Myron A

    2015-01-01

    Massive B and Be stars produce X-rays from shocks in high velocity winds with temperatures of a few million degrees and maximum X-ray luminosities of $\\approx$ 10$^{31}$ erg/s. Surprisingly, a sub-group of early Be stars exhibits > 20 times hotter X-ray temperatures and > 10 times higher X-ray luminosities than normal. This group of Be stars, dubbed Gamma-Cas analogs, contains about 10 known objects. The origin of this bizarre behavior has been extensively debated in the past decades. Two mechanisms have been put forward, accretion of circumstellar disk matter onto an orbiting white dwarf, or magnetic field interaction between the star and the circumstellar disk (Smith & Robinson 1999). We show here that the X-ray and optical emissions of the prototype of the class, Gamma-Cas, are very well correlated on year time scales with no significant time delay. Since the expected migration time from internal disk regions that emit most of the optical flux to the orbit of the companion star is of several years, the...

  3. Periodicities in the X-ray emission from the solar corona

    SciTech Connect

    Chowdhury, Partha [University College of Science and Technology, Calcutta University, Kolkata 700 009 West Bengal (India); Jain, Rajmal; Awasthi, Arun K., E-mail: partha240@yahoo.co.in, E-mail: parthares@gmail.com, E-mail: rajmal@prl.res.in, E-mail: awasthi@prl.res.in [Physical Research Laboratory, Deptartment of Space, Government of India, Navrangpura, Ahmedabad 380 009 (India)

    2013-11-20

    We have studied the time series of full disk integrated soft and hard X-ray emission from the solar corona during 2004 January to 2008 December, covering the entire descending phase of solar cycle 23 from a global point of view. We employ the daily X-ray index derived from 1 s cadence X-ray observations from the Si and CZT detectors of the 'Solar X-ray Spectrometer' mission in seven different energy bands ranging between 6 and 56 keV. X-ray data in the energy bands 6-7, 7-10, 10-20, and 4-25 keV from the Si detector are considered, while 10-20, 20-30, and 30-56 keV high energy observations are taken from the CZT detector. The daily time series is subjected to power spectrum analysis after appropriate correction for noise. The Lomb-Scargle periodogram technique has shown prominent periods of ?13.5 days, ?27 days, and a near-Rieger period of ?181 days and ?1.24 yr in all energy bands. In addition to this, other periods like ?31, ?48, ?57, ?76, ?96, ?130, ?227, and ?303 days are also detected in different energy bands. We discuss our results in light of previous observations and existing numerical models.

  4. The X-ray spectrum and time variability of narrow emission line galaxies

    NASA Technical Reports Server (NTRS)

    Mushotzky, R.

    1981-01-01

    X-ray spectral and temporal observations are reported for six narrow emission line galaxies (NELGs), all of which are fitted by power-law X-ray spectra of energy slope 0.8 and have column densities in the line of sight greater than 1 x 10 to the 22nd atoms/sq cm. Three of the objects, NGC 526a, NGC 2110 and MCG-5-23-16 are variable in their X-ray flux, and the latter two, along with NGC 5506 and NGC 7582, showed detectable variability in at least one observation. The measured X-ray properties of these NELGs, which also included NGC 2992, strongly resemble those of previously-measured type 1 Seyferts of the same X-ray luminosity and lead to the conclusion of great similarity between the NELGs and low-luminosity type 1 Seyferts. The implications of these observations for the optical line-emitting region structure of these galaxies are discussed.

  5. X-ray emission processes in stars and their immediate environment

    NASA Astrophysics Data System (ADS)

    Testa, Paola

    2010-04-01

    A decade of X-ray stellar observations with Chandra and XMM-Newton has led to significant advances in our understanding of the physical processes at work in hot (magnetized) plasmas in stars and their immediate environment, providing new perspectives and challenges, and in turn the need for improved models. The wealth of high-quality stellar spectra has allowed us to investigate, in detail, the characteristics of the X-ray emission across the Hertzsprung-Russell (HR) diagram. Progress has been made in addressing issues ranging from classical stellar activity in stars with solar-like dynamos (such as flares, activity cycles, spatial and thermal structuring of the X-ray emitting plasma, and evolution of X-ray activity with age), to X-ray generating processes (e.g., accretion, jets, magnetically confined winds) that were poorly understood in the preChandra/XMM-Newton era. I will discuss the progress made in the study of high energy stellar physics and its impact in a wider astrophysical context, focusing on the role of spectral diagnostics now accessible.

  6. X-ray emission processes in stars and their immediate environment

    NASA Astrophysics Data System (ADS)

    Testa, Paola

    2009-09-01

    A decade of X-ray stellar observations with Chandra and XMM-Newton has led to significant advances in our understanding of the physical processes at work in hot (magnetized) plasmas in stars and their immediate environment, providing new perspectives and challenges, and in turn the need for improved models. The wealth of high-quality stellar spectra has allowed us to investigate, in detail, the characteristics of the X-ray emission across the HR diagram. Progress has been made in addressing issues ranging from classical stellar activity in stars with solar-like dynamos (such as, flares, activity cycles, spatial and thermal structuring of the X-ray emitting plasma, evolution of X-ray activity with age,...), to X-ray generating processes (e.g. accretion, jets, magnetically confined winds,..) that were poorly understood in the pre-Chandra/XMM-Newton era. I will discuss the progress made in the study of high energy stellar physics and its impact in a wider astrophysics context, focusing on the role of spectral diagnostics now accessible.

  7. X-ray emission processes in stars and their immediate environment.

    PubMed

    Testa, Paola

    2010-04-20

    A decade of X-ray stellar observations with Chandra and XMM-Newton has led to significant advances in our understanding of the physical processes at work in hot (magnetized) plasmas in stars and their immediate environment, providing new perspectives and challenges, and in turn the need for improved models. The wealth of high-quality stellar spectra has allowed us to investigate, in detail, the characteristics of the X-ray emission across the Hertzsprung-Russell (HR) diagram. Progress has been made in addressing issues ranging from classical stellar activity in stars with solar-like dynamos (such as flares, activity cycles, spatial and thermal structuring of the X-ray emitting plasma, and evolution of X-ray activity with age), to X-ray generating processes (e.g., accretion, jets, magnetically confined winds) that were poorly understood in the preChandra/XMM-Newton era. I will discuss the progress made in the study of high energy stellar physics and its impact in a wider astrophysical context, focusing on the role of spectral diagnostics now accessible. PMID:20360562

  8. DISCOVERY OF X-RAY EMISSION IN THE OLD CLASSICAL NOVA DK LACERTAE

    SciTech Connect

    Takei, D.; Drake, J. J. [Smithsonian Astrophysical Observatory, 60 Garden Street, Cambridge, MA 02138 (United States); Sakamoto, T., E-mail: dtakei@head.cfa.harvard.edu [Department of Physics and Mathematics, College of Science and Engineering, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara-shi, Kanagawa 252-5258 (Japan)

    2013-01-01

    We report the discovery of X-ray emission at the position of the old classical nova DK Lacertae using the Swift satellite. Three observations were conducted using the X-Ray Telescope 62 years after the discovery of the nova, yielding 46 source signals in an exposure time of 4.8 ks. A background-subtracted count rate was 9 {+-} 2 Multiplication-Sign 10{sup -3} counts s{sup -1}, corresponding to a detection significance level of 5{sigma}. The X-ray spectrum was characterized by a continuum extending up to about 7 keV, which can be modeled by a power-law component with a photon index of 1.4-5.6, or by a thermal bremsstrahlung component with a temperature of 0.7-13.3 keV, convolved with interstellar absorption with an equivalent hydrogen column density of 0.3-2.4 Multiplication-Sign 10{sup 22} cm{sup -2}. Assuming a distance of 3900 pc to the source, the luminosity was 10{sup 32}-10{sup 34} erg s{sup -1} in the 0.3-10 keV energy band. The origin of X-rays is considered to be either mass accretion on the white dwarf or adiabatic shocks in nova ejecta, with the former appearing much more likely. In either case, DK Lacertae represents a rare addition to the exclusive club of X-ray emitting old novae.

  9. Elemental and mineralogical study of earth-based pigments using particle induced X-ray emission and X-ray diffraction

    Microsoft Academic Search

    P. Nel; P. A. Lynch; J. S. Laird; H. M. Casey; L. J. Goodall; C. G. Ryan; R. J. Sloggett

    2010-01-01

    Artwork and precious artefacts demand non-destructive analytical methodologies for art authentication, attribution and provenance assessment. However, structural and chemical characterisation represents a challenging problem with existing analytical techniques. A recent authentication case based on an Australian Aboriginal artwork, indicate there is substantial benefit in the ability of particle induced X-ray emission (PIXE), coupled with dynamic analysis (DA) to characterise pigments

  10. Charge exchange x-ray emission: Astrophysical observations and potential diagnostics

    NASA Astrophysics Data System (ADS)

    Morgan, K.; Andrianarijaona, V.; Draganic, I. N.; Defay, X.; Fogle, M.; Galindo-Uribarri, A.; Guillen, C. I.; Havener, C. C.; Hokin, M.; McCammon, D.; Nader, D. J.; Romano, S. L.; Carcoba, F. Salces; Sauter, P.; Seely, D.; Stancil, P. C.; Vane, C. R.; Vassantachart, A. K.; Wulf, D.

    2013-04-01

    Interest in astrophysical sources of charge exchange X-rays has been growing steadily since the discovery of X-ray emission from the comet Hyakutake with ROSAT in 1996. Since then, charge exchange has been observed between solar wind ions and neutrals in the geocorona and in the atmospheres of Mars and Jupiter. Charge exchange with interstellar neutrals within the heliosphere between solar wind ions and neutral hydrogen and helium from the interstellar medium is now acknowledged as contributing a considerable (although currently unknown) fraction of the soft X-ray background. We make a brief survey of the heliospheric, Galactic, and extragalactic systems in which charge exchange has been observed or is predicted to take place. Experiments measuring velocity dependent cross-section and line ratios for Lyman-series lines and He-like triplets are needed to check current theoretical models of charge exchange emission and aid interpretation of observations. We point out a number of systems that are of astrophysical interest that could be the subject of future laboratory investigations, particularly velocity dependent line ratios of the X-ray emission produced by charge exchange between highly ionized common elements (such as O, C, Ne, and Fe) and atomic hydrogen and helium. To begin to address the need for laboratory data we have measured velocity dependent Ly-series line ratios for C6+ ions interacting with H2, He, and Kr gas targets at Oak Ridge National Laboratory's Ion-Atom Merged-Beams Apparatus.

  11. Charge Exchange Induced X-Ray Emission of Fe XXVI and Fe XXV

    NASA Astrophysics Data System (ADS)

    Mullen, Patrick Dean; Cumbee, Renata; Lyons, David; Stancil, Phillip C.; B. J. Wargelin

    2015-01-01

    Charge exchange is a vital process to consider in the modeling of X-ray spectra obtained by the Chandra, XMM Newton and Suzaku X-ray Space Observatories. The process is largely relevant in many astrophysical environments including comets (whose emission is primarily a product of charge exchange alone), the heliosphere, astropheres of stars, supernova remnants, the Galactic Center and the Galactic Ridge. The understanding of the X-ray spectra produced by these environments is crippled by the current lack of atomic and molecular data- especially for charge exchange. Here, we apply the Landau-Zener method to calculate total, n-resolved, n?-resolved and S-resolved cross sections for Fe26+ and Fe25+ collisions with H, He, H2, N2, H2O and CO. Using this data in a cascade model for X-ray emission, theoretical spectra for each system are predicted. The resulting spectra are then compared to experimental data for Fe26+ and Fe25+ collisions with N2. Fe XXVI and Fe XXV have been selected for study as iron emission lines have been detected in the galactic plane. Further, these systems illustrate computational difficulties for high projectile charges. In the Landau-Zener calculations, several ?-distribution models have been tested for the electron capture by the bare ion, Fe26+. Quantum defect methods are also employed to estimate excitation energies and transition probabilities for high-lying Rydberg levels of the He-like Fe24+.

  12. VizieR Online Data Catalog: Galactic ridge X-ray emission (Molaro+, 2014)

    NASA Astrophysics Data System (ADS)

    Molaro, M.; Khatri, R.; Sunyaev, R. A.

    2014-06-01

    We predict a thin diffuse component of the Galactic ridge X-ray emission (GRXE) arising from the scattering of the radiation of bright X-ray binaries (XBs) by the interstellar medium. This scattered component has the same scale height as that of the gaseous disk (~80pc) and is therefore thinner than the GRXE of stellar origin (scale height ~130pc). The morphology of the scattered component is furthermore expected to trace the clumpy molecular and HI clouds. We calculate this contribution to the GRXE from known Galactic XBs assuming that they are all persistent. The known XBs sample is incomplete, however, because it is flux limited and spans the lifetime of X-ray astronomy (~50-years), which is very short compared with the characteristic time of 1000-10000 years that would have contributed to the diffuse emission observed today due to time delays. We therefore also use a simulated sample of sources, to estimate the diffuse emission we should expect in an optimistic case assuming that the X-ray luminosity of our Galaxy is on average similar to that of other galaxies. In the calculations we also take into account the enhancement of the total scattering cross-section due to coherence effects in the elastic scattering from multi-electron atoms and molecules. (2 data files).

  13. Crushing of interstellar gas clouds in supernova remnants II. X-ray emission

    E-print Network

    Orlando, S; Peres, G; Reale, F; Plewa, T; Rosner, R

    2006-01-01

    AIMS. We study and discuss the time-dependent X-ray emission predicted by hydrodynamic modeling of the interaction of a SNR shock wave with an interstellar gas cloud. The scope includes: 1) to study the correspondence between modeled and X-ray emitting structures, 2) to explore two different physical regimes in which either thermal conduction or radiative cooling plays a dominant role, and 3) to investigate the effects of the physical processes at work on the emission of the shocked cloud in the two different regimes. METHODS. We use a detailed hydrodynamic model, including thermal conduction and radiation, and explore two cases characterized by different Mach numbers of the primary shock: M = 30 in which the cloud dynamics is dominated by radiative cooling and M = 50 dominated by thermal conduction. From the simulations, we synthesize the expected X-ray emission, using available spectral codes. RESULTS. The morphology of the X-ray emitting structures is significantly different from that of the flow structure...

  14. X-RAY EMISSION FROM THE WOLF-RAYET BUBBLE S 308

    SciTech Connect

    Toala, J. A.; Guerrero, M. A. [Instituto de Astrofisica de Andalucia, IAA-CSIC, Glorieta de la Astronomia s/n, 18008 Granada (Spain); Chu, Y.-H.; Gruendl, R. A. [Department of Astronomy, University of Illinois, 1002 West Green Street, Urbana, IL 61801 (United States); Arthur, S. J. [Centro de Radioastronomia y Astrofisica, Universidad Nacional Autonoma de Mexico, Campus Morelia, Apartado Postal 3-72, 58090, Morelia, Michoacan (Mexico); Smith, R. C. [NOAO/CTIO, 950 N. Cherry Avenue, Tucson, AZ 85719 (United States); Snowden, S. L., E-mail: toala@iaa.es [NASA Goddard Space Flight Center, Code 662, Greenbelt, MD 20771 (United States)

    2012-08-10

    The Wolf-Rayet (WR) bubble S 308 around the WR star HD 50896 is one of the only two WR bubbles known to possess X-ray emission. We present XMM-Newton observations of three fields of this WR bubble that, in conjunction with an existing observation of its northwest quadrant, map most of the nebula. The X-ray emission from S 308 displays a limb-brightened morphology, with a central cavity {approx}22' in size and a shell thickness of {approx}8'. This X-ray shell is confined by the optical shell of ionized material. The spectrum is dominated by the He-like triplets of N VI at 0.43 keV and O VII at 0.57 keV, and declines toward high energies, with a faint tail up to 1 keV. This spectrum can be described by a two-temperature optically thin plasma emission model (T{sub 1} {approx} 1.1 Multiplication-Sign 10{sup 6} K, T{sub 2} {approx} 13 Multiplication-Sign 10{sup 6} K), with a total X-ray luminosity {approx}2 Multiplication-Sign 10{sup 33} erg s{sup -1} at the assumed distance of 1.5 kpc.

  15. X-ray-emission measurements following charge exchange between C6+ and H2

    NASA Astrophysics Data System (ADS)

    Fogle, M.; Wulf, D.; Morgan, K.; McCammon, D.; Seely, D. G.; Dragani?, I. N.; Havener, C. C.

    2014-04-01

    Lyman x-ray spectra following charge exchange between C6+ and H2 are presented for collision velocities between 400 and 2300 km/s (1-30 keV/amu). Spectra were measured by a microcalorimeter x-ray detector capable of fully resolving the C vi Lyman series emission lines though Lyman-?. The ratios of the measured emission lines are sensitive to the angular momentum l states populated during charge exchange and are used to gauge the effectiveness of different l-distribution models in predicting Lyman emission due to charge exchange. At low velocities, we observe that both single-electron-capture and double-electron-capture autoionization contribute to Lyman emission and that a statistical l distribution best describes the measured line ratios. At higher velocities single-electron capture dominates with the l distribution peaked at the maximum l.

  16. X-ray Emission Processes in Extragalactic Jets, Lobes and Hot Spots

    E-print Network

    Andrew S. Wilson

    2003-01-07

    This paper is a brief review of the processes responsible for X-ray emission from radio jets, lobes and hot spots. Possible photons in inverse Compton scattering models include the radio synchrotron radiation itself (i.e. synchrotron self-Compton [SSC] emission), the cosmic microwave background (CMB), the galaxy starlight and radiation from the active nucleus. SSC emission has been detected from a number of hot spots. Scattering of the CMB is expected to dominate for jets (and possibly hot spots) undergoing bulk relativistic motion close to the direction towards the observer. Scattering of infrared radiation from the AGN should be observable from radio lobes, especially if they are close to the active nucleus. Synchrotron radiation is detected in some sources, most notably the jet of M87. I briefly discuss why different hot spots emit X-rays by different emission mechanisms and the nature of the synchrotron spectra.

  17. Electronic emission of radio-sensitizing gold nanoparticles under X-ray irradiation : experiment and simulations

    E-print Network

    Casta, R; Sence, M; Moretto-Capelle, P; Cafarelli, P; Amsellem, A; Sicard-Roselli, C

    2014-01-01

    In this paper we present new results on electronic emission of Gold Nanoparticles (GNPs) using X-ray photoelectron spectroscopy (XPS) and compare them to the gold bulk electron emission. This subject has undergone new interest within the perspective of using GNPs as a radiotherapy enhancer. The experimental results were simulated using various models (Livermore and PENELOPE) of the Geant 4 simulation toolkit dedicated to the calculation of the transportation of particles through the matter. Our results show that the GNPs coating is a key parameter to correctly construe the experimental GNPs electronic emission after X-ray irradiation and point out some limitations of the PENELOPE model. Using XPS spectra and Geant4 Livermore simulations,we propose a method to determine precisely the coating surface density of the GNPs. We also show that the expected intrinsic nano-scale electronic emission enhancement effect - suspected to contribute to the GNPs radio-sensitizing properties - participates at most for a few pe...

  18. The Origin of the Puzzling Hard-X-Ray Emission of ? Cassiopeiae

    NASA Astrophysics Data System (ADS)

    Motch, Christian; Lopes de Oliveira, Raimundo; Smith, Myron A.

    2015-06-01

    Massive B and Be stars produce X-rays from shocks in high-velocity winds with temperatures of a few million degrees and maximum X-ray luminosities of ?1031 erg s?1. Surprisingly, a sub-group of early Be stars exhibits ?20 times hotter X-ray temperatures and ?10 times higher X-ray luminosities than normal. This group of Be stars, dubbed ?-Cas analogs, contains about 10 known objects. The origin of this bizarre behavior has been extensively debated in the past decades. Two mechanisms have been put forward: accretion of circumstellar disk matter onto an orbiting white dwarf, or magnetic field interaction between the star and the circumstellar disk. We show here that the X-ray and optical emissions of the prototype of the class, ?-Cas, are very well correlated on year timescales with no significant time delay. Since the expected migration time from internal disk regions that emit most of the optical flux to the orbit of the companion star is several years, the simultaneity of the high energy and optical flux variations indicates that X-ray emission arises from close to the star. The systematic lack of magnetic field detection reported in recent spectro-polarimetric surveys of Be stars is consistent with the absence of strong magnetic wind braking in these fast spinning stars but place strong constraints on the possible origin of the magnetic field. We propose that in ?-Cas, the magnetic field emerges from equatorially condensed subsurface convecting layers, the thickness of which steeply increases with rotation rate, and that ?-Cas and its analogs are the most massive and closest to critical rotation Be stars.

  19. The Discovery of X-ray Emission from Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Elvis, Martin

    2013-01-01

    Back in 1974 the UHURU catalog (3U) had been published with many UHGLS - unidentified high galactic latitude sources. Identifications were hampered by the square degree sized error boxes (positional uncertainties). Could these explain the cosmic X-ray background? Could UHGLS be "X-ray galaxies"? Only three active galaxies (AGNs) had been found as X-ray sources: 3C273, Cen A and NGC 4151, while others had upper limits. What was the difference between X-ray and non-X-ray AGNs? It turned out that the slightly better positioning capability and slightly deeper sensitivity of the Ariel V Sky Survey Instrument (SSI), launched in October 1974, were just enough to show that the UHGLS were Seyfert galaxies. And I was lucky enough that I'd joined the Leicester X-ray group and had taken on the UHGLS for my PhD thesis, with Ken Pounds as my supervisor. With the SSI we made a catalog of high latitude sources, the "2A" catalog, including about a dozen known Seyfert galaxies (lowish luminosity nearby AGNs) and, with Mike Penston and Martin Ward, we went on to identify many of them with both newly discovered normal broad emission line AGNs and a few new "narrow emission line galaxies", or NELGs, as we called them. We are now convinced that it is summation of many obscured NELGs that produce the flat spectrum of the X-ray background, and we are still searching for them in Chandra deep surveys and at higher energies with NuSTAR. There was an obvious connection between the X-ray obscuration and the optical reddening, which must lie outside the region emitting the broad optical spectral lines. Andy Lawrence and I, following a clue from Bill Keel, put this together into what we now call the Unified Scheme for AGN structure. This idea of a flattened torus obscuring the inner regions of the AGN was so dramatically confirmed a few years later -- by Ski Antonucci and Joe Miller's discovery of polarized broad emission lines in NGC1068 -- that the precursor papers became irrelevant. But Ariel V had provided the seeds for this advance too. Not bad for 100cm2 and 1/2 degree collimators.

  20. Energy-dispersive X-ray emission spectroscopy using an X-ray free-electron laser in a shot-by-shot mode.

    PubMed

    Alonso-Mori, Roberto; Kern, Jan; Gildea, Richard J; Sokaras, Dimosthenis; Weng, Tsu-Chien; Lassalle-Kaiser, Benedikt; Tran, Rosalie; Hattne, Johan; Laksmono, Hartawan; Hellmich, Julia; Glöckner, Carina; Echols, Nathaniel; Sierra, Raymond G; Schafer, Donald W; Sellberg, Jonas; Kenney, Christopher; Herbst, Ryan; Pines, Jack; Hart, Philip; Herrmann, Sven; Grosse-Kunstleve, Ralf W; Latimer, Matthew J; Fry, Alan R; Messerschmidt, Marc M; Miahnahri, Alan; Seibert, M Marvin; Zwart, Petrus H; White, William E; Adams, Paul D; Bogan, Michael J; Boutet, Sébastien; Williams, Garth J; Zouni, Athina; Messinger, Johannes; Glatzel, Pieter; Sauter, Nicholas K; Yachandra, Vittal K; Yano, Junko; Bergmann, Uwe

    2012-11-20

    The ultrabright femtosecond X-ray pulses provided by X-ray free-electron lasers open capabilities for studying the structure and dynamics of a wide variety of systems beyond what is possible with synchrotron sources. Recently, this "probe-before-destroy" approach has been demonstrated for atomic structure determination by serial X-ray diffraction of microcrystals. There has been the question whether a similar approach can be extended to probe the local electronic structure by X-ray spectroscopy. To address this, we have carried out femtosecond X-ray emission spectroscopy (XES) at the Linac Coherent Light Source using redox-active Mn complexes. XES probes the charge and spin states as well as the ligand environment, critical for understanding the functional role of redox-active metal sites. K?(1,3) XES spectra of Mn(II) and Mn(2)(III,IV) complexes at room temperature were collected using a wavelength dispersive spectrometer and femtosecond X-ray pulses with an individual dose of up to >100 MGy. The spectra were found in agreement with undamaged spectra collected at low dose using synchrotron radiation. Our results demonstrate that the intact electronic structure of redox active transition metal compounds in different oxidation states can be characterized with this shot-by-shot method. This opens the door for studying the chemical dynamics of metal catalytic sites by following reactions under functional conditions. The technique can be combined with X-ray diffraction to simultaneously obtain the geometric structure of the overall protein and the local chemistry of active metal sites and is expected to prove valuable for understanding the mechanism of important metalloproteins, such as photosystem II. PMID:23129631

  1. Energy-dispersive X-ray emission spectroscopy using an X-ray free-electron laser in a shot-by-shot mode

    PubMed Central

    Alonso-Mori, Roberto; Kern, Jan; Gildea, Richard J.; Sokaras, Dimosthenis; Weng, Tsu-Chien; Lassalle-Kaiser, Benedikt; Tran, Rosalie; Hattne, Johan; Laksmono, Hartawan; Hellmich, Julia; Glöckner, Carina; Echols, Nathaniel; Sierra, Raymond G.; Schafer, Donald W.; Sellberg, Jonas; Kenney, Christopher; Herbst, Ryan; Pines, Jack; Hart, Philip; Herrmann, Sven; Grosse-Kunstleve, Ralf W.; Latimer, Matthew J.; Fry, Alan R.; Messerschmidt, Marc M.; Miahnahri, Alan; Seibert, M. Marvin; Zwart, Petrus H.; White, William E.; Adams, Paul D.; Bogan, Michael J.; Boutet, Sébastien; Williams, Garth J.; Zouni, Athina; Messinger, Johannes; Glatzel, Pieter; Sauter, Nicholas K.; Yachandra, Vittal K.; Yano, Junko; Bergmann, Uwe

    2012-01-01

    The ultrabright femtosecond X-ray pulses provided by X-ray free-electron lasers open capabilities for studying the structure and dynamics of a wide variety of systems beyond what is possible with synchrotron sources. Recently, this “probe-before-destroy” approach has been demonstrated for atomic structure determination by serial X-ray diffraction of microcrystals. There has been the question whether a similar approach can be extended to probe the local electronic structure by X-ray spectroscopy. To address this, we have carried out femtosecond X-ray emission spectroscopy (XES) at the Linac Coherent Light Source using redox-active Mn complexes. XES probes the charge and spin states as well as the ligand environment, critical for understanding the functional role of redox-active metal sites. K?1,3 XES spectra of MnII and Mn2III,IV complexes at room temperature were collected using a wavelength dispersive spectrometer and femtosecond X-ray pulses with an individual dose of up to >100 MGy. The spectra were found in agreement with undamaged spectra collected at low dose using synchrotron radiation. Our results demonstrate that the intact electronic structure of redox active transition metal compounds in different oxidation states can be characterized with this shot-by-shot method. This opens the door for studying the chemical dynamics of metal catalytic sites by following reactions under functional conditions. The technique can be combined with X-ray diffraction to simultaneously obtain the geometric structure of the overall protein and the local chemistry of active metal sites and is expected to prove valuable for understanding the mechanism of important metalloproteins, such as photosystem II. PMID:23129631

  2. Proton-induced X-ray and gamma ray emission analysis of biological samples

    NASA Astrophysics Data System (ADS)

    Hall, Gene S.; Navon, Eliahu

    1986-04-01

    A 4.1 MeV external proton beam was employed to simultaneously induce X-ray emission (PIXE) and gamma ray emission (PIGE) in biological samples that included human colostrum, spermatozoa, teeth, tree-rings, and follicular fluids. The analytical method was developed to simultaneously determine the elements lithium (Z = 3) through uranium (Z = 92) in the samples. PIXE-PIGE experimental design is described as well as applications in environmental and medical fields.

  3. Search for millimeter-wave emission from UHURU X-ray sources and radio binary stars

    Microsoft Academic Search

    G. H. McDonald

    1975-01-01

    A search has been made for radio emission at wavelengths of 9.6 and 3.5 mm from 28 X-ray sources listed in the Uhuru catalog and the three radio binary stars, beta Persei (Algol), beta Lyrae and Antares B. No emission was detected from any object to a flux density limit of 10 to the minus 26 W per sq m

  4. Soft X-ray emission spectra and electronic structure of some copper-beryllium alloys

    Microsoft Academic Search

    A. I. Kozlenkov; A. I. Shulgin; A. V. Postnikov; A. I. Ivanovskii; V. A. Gubanov

    1985-01-01

    The method of ultrasoft X-ray grating spectroscopy with electron microprobe excitation was used to obtain the Be K emission spectra of pure Be and some Cu-Be alloys. The experimental results are compared with those of electronic structure calculations performed in the cluster approximation. The two-peaked structure of the Be K emission band in alloys is due to the interaction between

  5. Search for soft X-ray emission from SN 1987A with a CCD X-ray imaging spectrometer

    NASA Astrophysics Data System (ADS)

    Burrows, D. N.; Nousek, J. A.; Berthiaume, G. D.; Garmire, G. P.

    1989-12-01

    The results of soft X-ray observations of SN 1987A over the energy band 0.65-2.0 keV are reported. The upper limits on the soft X-ray flux are inconsistent with an extrapolation of the spectrum measured by the Ginga Satellite to the energy band and require a turnover in the X-ray spectrum between 2 and 4 keV. If this turnover is due to absorption by intervening material, a neutral column density associated with the supernova of at least 2.8 x 10 to the 21st/sq cm is required. The background rate for the Texas Instruments 800 x 800 pixel CCD, measured between 150 and 285 km altitude, was 1.1 counts/sq cm s. The background spectrum has a broad peak at 350 electrons, corresponding to charge deposited in the detector by minimally ionizing particles.

  6. Search for soft X-ray emission from SN 1987A with a CCD X-ray imaging spectrometer

    NASA Technical Reports Server (NTRS)

    Burrows, D. N.; Nousek, J. A.; Berthiaume, G. D.; Garmire, G. P.

    1989-01-01

    The results of soft X-ray observations of SN 1987A over the energy band 0.65-2.0 keV are reported. The upper limits on the soft X-ray flux are inconsistent with an extrapolation of the spectrum measured by the Ginga Satellite to the energy band and require a turnover in the X-ray spectrum between 2 and 4 keV. If this turnover is due to absorption by intervening material, a neutral column density associated with the supernova of at least 2.8 x 10 to the 21st/sq cm is required. The background rate for the Texas Instruments 800 x 800 pixel CCD, measured between 150 and 285 km altitude, was 1.1 counts/sq cm s. The background spectrum has a broad peak at 350 electrons, corresponding to charge deposited in the detector by minimally ionizing particles.

  7. X-Ray Emission from the Host Clusters of Powerful AGN

    NASA Astrophysics Data System (ADS)

    Hall, Patrick B.; Ellingson, Erica; Green, Richard F.

    1997-04-01

    We report the detection of X-ray emission from the host cluster of the unusual radio-quiet quasar \\1821\\ using the ROSAT HRI, and the non-detection of X-ray emission from the host cluster of the radio-loud quasar 3C 206 (3sigma \\ upper limit of 1.63 10(44) ergs s(-1) ) using the EINSTEIN HRI. The host cluster of \\1821\\ is one of the most X-ray luminous clusters known, with a rest-frame 0.1-2.4 keV luminosity of 3.74+/-0.57 h50(-2) 10(45) ergs s(-1) , %(\\qo=0.5), 38% of which is from a barely resolved cooling flow component. The cluster emission complicates interpretation of previous X-ray spectra of this field. In particular, the observed Fe Kalpha emission can probably be attributed entirely to the cluster and either the quasar is relatively X-ray quiet for its optical luminosity or the cluster has a relatively low temperature for its luminosity. We combine these data with the recent detection of X-ray emission from the host cluster of the `buried' radio-quiet quasar \\9104 (\\cite{fc95}), our previous upper limits for the host clusters of two z ~ 0.7 radio-loud quasars, and literature data on FR II radio galaxies. We compare this dataset to the predictions of three models for the presence and evolution of powerful AGN in clusters: the low-velocity-dispersion model, the low-ICM-density model, and the cooling flow model. Neither the low-ICM-density model nor the cooling flow model can explain all the observations. We suggest that strong interactions with gas-containing galaxies may be the only mechanism needed to explain the presence and evolution of powerful AGN in clusters, a scenario consistent with the far-IR and optical properties of the host galaxies studied here, all of which show some evidence for past interactions. However, the cooling flow model cannot be ruled out for at least some objects, and it is likely that both processes are at work in creating and fueling powerful AGN in clusters. Each scenario makes testable predictions for future observations. It is likely that both processes are at work in creating powerful AGN in clusters; the relative importance of each process can be tested with future X-ray and optical observations.

  8. THE SIZES OF THE X-RAY AND OPTICAL EMISSION REGIONS OF RXJ 1131-1231

    SciTech Connect

    Dai, X. [Department of Astronomy, University of Michigan, 500 Church Street, Ann Arbor, MI 48109 (United States); Kochanek, C. S.; Kozlowski, S. [Department of Astronomy, The Ohio State University, 140 West 18th Avenue, Columbus, OH 43210 (United States); Chartas, G.; Garmire, G. [Department of Astronomy and Astrophysics, Pennsylvania State University, University Park, PA 16802 (United States); Morgan, C. W. [Department of Physics, United States Naval Academy, 572C Holloway Road, Annapolis, MD 21402 (United States); Agol, E. [Department of Astronomy, University of Washington, 3910 15th Avenue, Seattle, WA 98105 (United States)

    2010-01-20

    We use gravitational microlensing of the four images of the z = 0.658 quasar RXJ 1131-1231 to measure the sizes of the optical and X-ray emission regions of the quasar. The (face-on) scale length of the optical disk at rest frame 400 nm is R{sub l}ambda{sub ,O} = 1.3 x 10{sup 15} cm, while the half-light radius of the rest frame 0.3-17 keV X-ray emission is R{sub 1/2,X} = 2.3 x 10{sup 14} cm. The formal uncertainties are factors of 1.6 and 2.0, respectively. With the exception of the lower limit on the X-ray size, the results are very stable against any changes in the priors used in the analysis. Based on the Hbeta line width, we estimate that the black hole mass is M{sub 1131} approx = 10{sup 8} M{sub sun}, which corresponds to a gravitational radius of r{sub g} approx = 2 x 10{sup 13} cm. Thus, the X-ray emission is emerging on scales of approx10r{sub g} and the 400 nm emission on scales of approx70r{sub g} . A standard thin disk of this size should be significantly brighter than observed. Possible solutions are to have a flatter temperature profile or to scatter a large fraction of the optical flux on larger scales after it is emitted. While our calculations were not optimized to constrain the dark matter fraction in the lens galaxy, dark matter-dominated models are favored. With well-sampled optical and X-ray light curves over a broad range of frequencies, there will be no difficulty in extending our analysis to completely map the structure of the accretion disk as a function of wavelength.

  9. Solar Control on Jupiter's Equatorial X-ray Emissions: 26-29 November 2003 XMM-Newton Observation

    NASA Technical Reports Server (NTRS)

    Bhardwaj, Anil; Branduardi-Raymont, Graziella; Elsner, Ronald F.; Gladstone, G. Randall; Ramsay, G.; Rodriquez, P.; Soria, R.; Waite, J. Hunter, Jr.; Cravens, Thomas E.

    2004-01-01

    During November 26-29,2003 XMM-Newton observed X-ray emissions from Jupiter for 69 hours. The 0.7-2.0 keV X-ray disk of Jupiter is observed to be brightest at the subsolar point, and limb darkening is seen in the 0.2-2.0 keV and 0.7-2.0 keV images. We present simultaneous lightcurves of Jovian equatorial X-rays and solar X-rays measured by the GOES, SOHO/SEM, and TIMED/SEE satellites. The solar X-ray flares occurring on the Jupiter-facing side of the Sun are matched by corresponding features in the Jovian X- rays. These results support the hypothesis that X-ray emissions from Jovian low-latitudes are solar X-rays scattered and fluoresced from the planet's upper atmosphere, and confirm that the Sun directly controls the non-auroral X-rays fiom Jupiter's disk. Our study suggest that Jovian equatorial X-rays; during certain Jupiter phase, can be used to predict the occurrence of solar flare on the hemisphere of the Sun that is invisible to space weather satellites.

  10. A thin diffuse component of the Galactic ridge X-ray emission and heating of the interstellar medium contributed by the radiation of Galactic X-ray binaries

    NASA Astrophysics Data System (ADS)

    Molaro, Margherita; Khatri, Rishi; Sunyaev, Rashid A.

    2014-04-01

    We predict a thin diffuse component of the Galactic ridge X-ray emission (GRXE) arising from the scattering of the radiation of bright X-ray binaries (XBs) by the interstellar medium. This scattered component has the same scale height as that of the gaseous disk (~80 pc) and is therefore thinner than the GRXE of stellar origin (scale height ~130 pc). The morphology of the scattered component is furthermore expected to trace the clumpy molecular and HI clouds. We calculate this contribution to the GRXE from known Galactic XBs assuming that they are all persistent. The known XBs sample is incomplete, however, because it is flux limited and spans the lifetime of X-ray astronomy (~50 years), which is very short compared with the characteristic time of 1000-10 000 years that would have contributed to the diffuse emission observed today due to time delays. We therefore also use a simulated sample of sources, to estimate the diffuse emission we should expect in an optimistic case assuming that the X-ray luminosity of our Galaxy is on average similar to that of other galaxies. In the calculations we also take into account the enhancement of the total scattering cross-section due to coherence effects in the elastic scattering from multi-electron atoms and molecules. This scattered emission can be distinguished from the contribution of low X-ray luminosity stars by the presence of narrow fluorescent K-? lines of Fe, Si, and other abundant elements present in the interstellar medium and by directly resolving the contribution of low X-ray luminosity stars. We find that within 1° latitude of the Galactic plane the scattered emission contributes on average 10 - 30% of the GRXE flux in the case of known sources and over 50% in the case of simulated sources. In the latter case, the scattered component is found to even dominate the stellar emission in certain parts of the Galactic plane. X-rays with energies ?1 keV from XBs should also penetrate deep inside the HI and molecular clouds, where they are absorbed and heat the interstellar medium. We find that this heating rate dominates the heating by cosmic rays (assuming a solar neighborhood energy density) in a considerable part of the Galaxy. Appendices are available in electronic form at http://www.aanda.org

  11. EVIDENCE FOR ELEVATED X-RAY EMISSION IN LOCAL LYMAN BREAK GALAXY ANALOGS

    SciTech Connect

    Basu-Zych, Antara R.; Lehmer, Bret D.; Hornschemeier, Ann E.; Ptak, Andrew F. [NASA Goddard Space Flight Center, Code 662, Greenbelt, MD 20771 (United States); Goncalves, Thiago S. [Observatorio do Valongo, Universidade Federal do Rio de Janeiro, Ladeira Pedro Antonio 43, Saude, Rio de Janeiro-RJ, CEP 22240-060 (Brazil); Fragos, Tassos [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Heckman, Timothy M. [Department of Physics and Astronomy, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218 (United States); Overzier, Roderik A. [Department of Astronomy, University of Texas at Austin, 1 University Station C1400, Austin, TX 78712 (United States); Schiminovich, David, E-mail: antara.r.basu-zych@nasa.gov [Department of Astronomy, Columbia University, 550 West 120th Street, New York, NY 10027 (United States)

    2013-09-10

    Our knowledge of how X-ray emission scales with star formation at the earliest times in the universe relies on studies of very distant Lyman break galaxies (LBGs). In this paper, we study the relationship between the 2-10 keV X-ray luminosity (L{sub X}), assumed to originate from X-ray binaries (XRBs), and star formation rate (SFR) in ultraviolet (UV) selected z < 0.1 Lyman break analogs (LBAs). We present Chandra observations for four new Galaxy Evolution Explorer selected LBAs. Including previously studied LBAs, Haro 11 and VV 114, we find that LBAs demonstrate L{sub X}/SFR ratios that are elevated by {approx}1.5{sigma} compared to local galaxies, similar to the ratios found for stacked LBGs in the early universe (z > 2). Unlike some of the composite LBAs studied previously, we show that these LBAs are unlikely to harbor active galactic nuclei, based on their optical and X-ray spectra and the spatial distribution of the X-rays in three spatially extended cases. Instead, we expect that high-mass X-ray binaries (HMXBs) dominate the X-ray emission in these galaxies, based on their high specific SFRs (sSFRs {identical_to} SFR/M{sub *} {>=} 10{sup -9} yr{sup -1}), which suggest the prevalence of young stellar populations. Since both UV-selected populations (LBGs and LBAs) have lower dust attenuations and metallicities compared to similar samples of more typical local galaxies, we investigate the effects of dust extinction and metallicity on the L{sub X}/SFR for the broader population of galaxies with high sSFRs (>10{sup -10} yr{sup -1}). The estimated dust extinctions (corresponding to column densities of N{sub H} < 10{sup 22} cm{sup -2}) are expected to have insignificant effects on observed L{sub X}/SFR ratio for the majority of galaxy samples. We find that the observed relationship between L{sub X}/SFR and metallicity appears consistent with theoretical expectations from XRB population synthesis models. Therefore, we conclude that lower metallicities, related to more luminous HMXBs such as ultraluminous X-ray sources, drive the elevated L{sub X}/SFR observed in our sample of z < 0.1 LBAs. The relatively metal-poor, active mode of star formation in LBAs and distant z > 2 LBGs may yield higher total HMXB luminosity than found in typical galaxies in the local universe.

  12. A thin diffuse component of the Galactic Ridge X-ray emission and heating of the interstellar medium contributed by the radiation of Galactic X-ray binaries

    E-print Network

    Molaro, Margherita; Sunyaev, Rashid

    2013-01-01

    We suggest a thin (scale height ~80 pc) diffuse component to the Galactic Ridge X-ray emission (GRXE) arising from the scattering of the radiation of bright X-ray binaries (XBs) by the interstellar medium. The morphology of the scattered component is expected to trace the clumpy molecular and HI clouds. We calculate this contribution to the GRXE from known Galactic XBs assuming that they are all persistent. The known XBs sample is however incomplete as it is flux-limited and spans the small lifetime of X-ray astronomy (~50 years), compared to the characteristic time of 1000-10000 years that would contribute to the diffuse emission observed today due to time delays. We therefore also use a simulated sample of sources, to estimate the diffuse emission we should expect in an optimistic case assuming that the X-ray luminosity of our Galaxy is on average similar to that of other galaxies. In the calculations we also take into account the enhancement of the total scattering cross section due to coherence effects in...

  13. X-Ray emission from SN 2004dj: A Tale of Two Shocks

    E-print Network

    Chakraborti, Sayan; Ray, Alak; Smith, Randall; Chandra, Poonam

    2012-01-01

    Type IIP (Plateau) Supernovae are the most commonly observed variety of core collapse events. They have been detected in a wide range of wavelengths from radio, through optical to X-rays. The standard picture of a type IIP supernova has the blastwave interacting with the progenitor's circumstellar matter to produce a hot region bounded by a forward and a reverse shock. This region is thought to be responsible for most of the X-ray and radio emission from these objects. Yet the origin of X-rays from these supernovae is not well understood quantitatively. The relative contributions of particle acceleration and magnetic field amplification in generating the X-ray and radio emission need to be determined. In this work we analyze archival Chandra observations of SN 2004dj, the nearest supernova since SN 1987A, along with published radio and optical information. We determine the pre-explosion mass loss rate, blastwave velocity, electron acceleration and magnetic field amplification efficiencies. We find that a grea...

  14. Chandra detection of extended X-ray emission from the recurrent nova RS Ophiuchi

    E-print Network

    Luna, G J M; Sokoloski, J L; Mukai, K; Kästner, J H

    2009-01-01

    Radio, infrared, and optical observations of the 2006 eruption of the symbiotic recurrent nova RS Ophiuchi (RS Oph) showed that the explosion produced non-spherical ejecta. Some of this ejected material was in the form of bipolar jets to the east and west of the central source. Here we describe Xray observations taken with the Chandra X-ray Observatory one and a half years after the beginning of the outburst that reveal narrow, extended structure with a position angle of approximately 300 degrees (east of north). Although the orientation of the extended feature in the X-ray image is consistent with the readout direction of the CCD detector, extensive testing suggests that the feature is not an artifact. Assuming it is not an instrumental effect, the extended X-ray structure shows hot plasma stretching more than 1,900 AU from the central binary (taking a distance of 1.6 kpc). The X-ray emission is elongated in the northwest direction - in line with the extended infrared emission and some minor features in the ...

  15. Transient supersoft X-ray emission from V751 Cyg during the optical low-state

    E-print Network

    J. Greiner; G. H. Tovmassian; R. DiStefano; A. Prestwich; R. González-Riestra; L. Szentasko; C. Chavarria

    1998-12-02

    We have observed V751 Cyg with the ROSAT HRI during its recent optical low state and clearly detect it at a count rate of 0.015 cts/s. The X-ray intensity is a factor of ~20 higher than the upper limit obtained with the ROSAT PSPC during the optical high state. Spectral investigations suggest a very soft X-ray spectrum. We investigate archival IUE data of V751 Cyg and derive a distance of V751 Cyg of d~500 pc based on the extinction estimate of E(B-V)=0.25+-0.05. This implies that the X-ray emission is very luminous, on the order of 10^34-10^36 erg/s. The spectrum during the optical low-state is characterized by a very blue continuum and the presence of strong emission lines of the Balmer series and HeI. Also, HeII 4686 A is clearly detected. We establish that V751 Cyg is a transient supersoft X-ray source and speculate that other VY Scl stars may also be of similar type.

  16. X-ray Line Emission from Evaporating and Condensing Accretion Disk Atmospheres

    E-print Network

    M. A. Jimenez-Garate; J. C. Raymond; D. A. Liedahl; C. J. Hailey

    2001-05-02

    We model the X-rays reprocessed by an accretion disk in a fiducial low-mass X-ray binary system with a neutron star primary. An atmosphere, or the intermediate region between the optically thick disk and a Compton-temperature corona, is photoionized by the neutron star continuum. X-ray lines from the recombination of electrons with ions dominate the atmosphere emission and should be observable with the Chandra and XMM-Newton high-resolution spectrometers. The self-consistent disk geometry agrees well with optical observations of these systems, with the atmosphere shielding the companion from the neutron star. At a critical depth range, the disk gas has one thermally unstable and two stable solutions. A clear difference between the model spectra exists between evaporating and condensing disk atmospheres. This difference should be observable in high-inclination X-ray binaries, or whenever the central continuum is blocked by absorbing material and the extended disk emission is not.

  17. X-ray secondary heating and ionization in quasar emission-line clouds

    NASA Technical Reports Server (NTRS)

    Shull, J. M.; Van Steenberg, M. E.

    1985-01-01

    Accurate Monte Carlo computations of the X-ray secondary electron heating, ionization, and excitation of H and He gas in interstellar space and in quasar emission-line clouds, are presented. The fraction of energy deposited in each form is sensitive to the background ionization fraction, x = n(H+)/n(Htot), and can affect the temperature, ionization state, and line emissivities at large depths in X-ray photoionized clouds. Analytic fits are provided for these energy fractions over the range 0.0001-1 for primary electron energies up to many keV. In both broad-line and narrow-line clouds, emission lines sensitive to the energy budget and electron density may be strongly affected.

  18. X-ray secondary heating and ionization in quasar emission-line clouds

    SciTech Connect

    Shull, J.M.; Van Steenberg, M.E.

    1985-11-01

    Accurate Monte Carlo computations of the X-ray secondary electron heating, ionization, and excitation of H and He gas in interstellar space and in quasar emission-line clouds, are presented. The fraction of energy deposited in each form is sensitive to the background ionization fraction, x = n(H+)/n(Htot), and can affect the temperature, ionization state, and line emissivities at large depths in X-ray photoionized clouds. Analytic fits are provided for these energy fractions over the range 0.0001-1 for primary electron energies up to many keV. In both broad-line and narrow-line clouds, emission lines sensitive to the energy budget and electron density may be strongly affected. 21 references.

  19. X-ray emission from an adolescent classical T Tauri star

    NASA Astrophysics Data System (ADS)

    Maggio, Antonio

    2005-10-01

    We propose to perform high-resolution X-ray spectroscopy of MP Muscae, a classical T Tauri star with an age of about 10 Myr, and hence quite old for its class. In fact, MP Mus is the only known star of this age with evidence of an accretion disk, found in a survey of the Lower Centaurus-Crux subgroup in the Scorpius- Centaurus association. Moreover, this star also shows evidence of a cold dusty disk, as indicated by excess emission at IR and mm wavelengths. The proposed observation will allow us to address several issues concerning the evolution of the X-ray emission in pre-main-sequence stars, the mechanism(s) of such emission, the element abundances of the emitting plasma, and the influence of high-energy radiation on the surrounding medium where planetary formation is likely occurring.

  20. Search for X-Ray Emission in the Nearest Known Brown Dwarf

    NASA Technical Reports Server (NTRS)

    Martin, Eduardo

    2003-01-01

    The XMM observation were obtained on 2001 January 07-08 for 51767 s. The Optical Monitor (OM) was used with the V filter for 4 exposures of 5000 s each in imaging mode. We used the data given by the OM to confirm the presence of the source in the field of view. The European Photon Imaging Camera (EPIC) MOS 1 and MOS2 were used 48724 s each in prime full window mode with 2.5 s time resolution. The EPIC PN was used 46618 s in prime full window mode with 73.4 ms time resolution. The X-ray source closest to the expected position of our target is offset by delta R.A=2.5 arcsec and delta Dec=-28.37 arcsec. This offset is high in comparison with the 0.4 arcsec observed with the optical data. So at this point we already knew that the target was not detected. To confirm that conclusion, we performed the identification of all X-ray sources in the field of view by comparing source to source our image with the one obtained by Rutledge et al. with Chandra. This allowed us to identify all the X-ray sources in our field of view in an area of 20 arcsec times 10 arcsec centered on the expected coordinates of LP944-20. We were then able to conclude that the target was not detected during this observation. This result allowed us to determine a new and better 3 sigma upper limit of X-Ray emission for this object. We have also derived duty cycles for X-ray flares as a function of X-ray luminosity by comparing the XMM data with Chandra and ROSAT data. One student has been supported with the grant during four months (Herve Bouy). A Sun workstation was purchased for him.

  1. X-Ray Emission from Supernovae in Dense Circumstellar Matter Environments: A Search for Collisionless Shock

    NASA Technical Reports Server (NTRS)

    Ofek, E.O; Fox, D.; Cenko, B.; Sullivan, M.; Gnat, O.; Frail A.; Horesh, A.; Corsi, A; Quimby, R. M.; Gehrels, N.; Kulkarni, S. R.; Gal-Yam, A.; Nugent, P. E.; Yaron, O.; Filippenko, A. V.; Kasliwal, M. M.; Bildsten, L.; Bloom, J. S.; Poznanski, D; Arcavi, L.; Laher, R. R.; Levitan, D.; Sesar, B.; Surace, J.

    2012-01-01

    The optical light curve of some supernovae (SNe) may be powered by the outward diffusion of the energy deposited by the explosion shock (so-called shock breakout) in optically thick (tau approx > 30) circumstellar matter (CSM). Recently, it was shown that the radiation-mediated and -dominated shock in an optically thick wind must transform into 8. collisionless shock and can produce hard X-rays. The X-rays are expected to peak at late times, relative to maximum visible light. Here we report on a search, using Swift-XRT and Chandra, for X-ray emission from 28 SNe that belong to classes whose progenitors are suspected to be embedded in dense CSM. Our sample includes 19 type-IIn SNe, one type-Ibn SN and eiht hydrogen-poor super-luminous SNe (SLSN-I; SN 2005ap like). Two SNe (SN 2006jc and SN 2010jl) have X-ray properties that are roughly consistent with the expectation for X-rays from a collisionless shock in optically thick CSl\\l. Therefore, we suggest that their optical light curves are powered by shock breakout in CSM. We show that two other events (SN 2010al and SN 2011ht) were too X-ray bright during the SN maximum optical light to be explained by the shock breakout model. We conclude that the light curves of some, but not all, type-IIn/Ibn SNe are powered by shock breakout in CSM. For the rest of the SNe in our sample, including all the SLSN-I events, our X-ray limits are not deep enough and were typically obtained at too early times (i.e., near the SN maximum light) to conclude about their nature. Late time X-ray observations are required in order to further test if these SNe are indeed embedded in dense CSM. We review the conditions required for a shock breakOut in a wind profile. We argue that the time scale, relative to maximum light, for the SN to peak in X-rays is a probe of the column density and the density profile above the shock region. The optical light curves of SNe, for which the X-ray emission peaks at late times, are likely powered by the diffusion of shock energy from a dense CSM. We note that if the CSM density profile falls faster than a constant-rate wind density profile, then X-rays may escape at earlier times than estimated for the wind profile case. Furthermore, if the CSM have a region in which the density profile is very steep, relative to a steady wind density profile, or the CSM is neutral, then the radio free-free absorption may be low enough, and radio emission may be detected.

  2. X-ray emission cross sections following charge exchange by multiply charged ions of astrophysical interest

    SciTech Connect

    Otranto, S.; Olson, R. E. [Physics Department, University of Missouri-Rolla, Rolla Missouri 65401 (United States); Beiersdorfer, P. [Department of Physics, Lawrence Livermore National Laboratory, Livermore, California 94550 (United States)

    2006-02-15

    State selective nl-electron capture cross sections are presented for highly charged ions with Z=6-10 colliding with atoms and molecules. The energy range investigated was from 1 eV/amu(v=0.006 a.u.)to 100 keV/amu(v=2.0 a.u.). The energy dependence of the l-level populations is investigated. The K shell x-ray emission cross sections are determined by using the calculated state-selective electron capture results as input and then applying hydrogenic branching and cascading values for the photon emission. A major shift in the line emission from being almost solely Lyman-{alpha} transitions at the highest collisions energies to strong high-n to 1s transitions at the lowest energies is observed. The calculated cross sections are in reasonable accord with measurements made by Greenwood et al. [Phys. Rev. A 63, 062707 (2001)], using O{sup 8+} and Ne{sup 10+} on various targets at 3 keV/amu. The calculations are also in accord with x-ray emission cross section data obtained on the EBIT machine at Lawrence Livermore National Laboratory (LLNL) where O{sup 8+} and Ne{sup 10+} high resolution measurements were made at a temperature of 10 eV/amu for a series of targets with varying ionization potentials. The Ne{sup 10+} data clearly shows the contribution from multiple capture followed by Auger autoionization in the line emission spectra. Our calculated line emission cross sections are used to provide an ab initio determination of the soft x-ray spectrum of comet C/Linear 1999 S4 that was observed on the Chandra X-ray Observatory. The calculations show that the spectrum is due to the charge exchange of the neutral gases in the comet's coma with the ions of the slow solar wind.

  3. Possible Charge-Exchange X-Ray Emission in the Cygnus Loop Detected with Suzaku

    NASA Technical Reports Server (NTRS)

    Katsuda, Satoru; Tsunemi, Hiroshi; Mori, Koji; Uchida, Hiroyuki; Kosugi, Hiroko; Kimura, Masashi; Nakajima, Hiroshi; Takakura, Satoru; Petre, Robert; Hewitt. John W.; Yamaguchi, Hiroya

    2011-01-01

    X-ray spectroscopic measurements of the Cygnus Loop supernova remnant indicate that metal abundances throughout most of the remnant s rim are depleted to approx.0.2 times the solar value. However, recent X-ray studies have revealed in some narrow regions along the outermost rim anomalously "enhanced" abundances (up to approx. 1 solar). The reason for these anomalous abundances is not understood. Here, we examine X-ray spectra in annular sectors covering nearly the entire rim of the Cygnus Loop using Suzaku (21 pointings) and XMM-Newton (1 pointing). We find that spectra in the "enhanced" abundance regions commonly show a strong emission feature at approx.0.7 keV. This feature is likely a complex of He-like O K(gamma + delta + epsilon), although other possibilities cannot be fully excluded. The intensity of this emission relative to He-like O K(alpha) appears to be too high to be explained as thermal emission. This fact, as well as the spatial concentration of the anomalous abundances in the outermost rim, leads us to propose an origin from charge-exchange processes between neutrals and H-like O. We show that the presence of charge-exchange emission could lead to the inference of apparently "enhanced" metal abundances using pure thermal emission models. Accounting for charge-exchange emission, the actual abundances could be uniformly low throughout the rim. The overall abundance depletion remains an open question. Subject headings: ISM: abundances ISM: individual objects (Cygnus Loop) ISM: supernova remnants X-rays: ISM atomic processes

  4. Suzaku Observations of the Diffuse X-Ray Emission across the Fermi Bubbles' Edges

    NASA Astrophysics Data System (ADS)

    Kataoka, J.; Tahara, M.; Totani, T.; Sofue, Y.; Stawarz, ?.; Takahashi, Y.; Takeuchi, Y.; Tsunemi, H.; Kimura, M.; Takei, Y.; Cheung, C. C.; Inoue, Y.; Nakamori, T.

    2013-12-01

    We present Suzaku X-ray observations along two edge regions of the Fermi Bubbles, with eight ~= 20 ks pointings across the northern part of the North Polar Spur (NPS) surrounding the north bubble and six across the southernmost edge of the south bubble. After removing compact X-ray features, diffuse X-ray emission is clearly detected and is well reproduced by a three-component spectral model consisting of unabsorbed thermal emission (temperature kT ~= 0.1 keV) from the Local Bubble, absorbed kT ~= 0.3 keV thermal emission related to the NPS and/or Galactic halo (GH), and a power-law component at a level consistent with the cosmic X-ray background. The emission measure (EM) of the 0.3 keV plasma decreases by ~= 50% toward the inner regions of the northeast bubble, with no accompanying temperature change. However, such a jump in the EM is not clearly seen in the south bubble data. While it is unclear whether the NPS originates from a nearby supernova remnant or is related to previous activity within or around the Galactic center, our Suzaku observations provide evidence that suggests the latter scenario. In the latter framework, the presence of a large amount of neutral matter absorbing the X-ray emission as well as the existence of the kT ~= 0.3 keV gas can be naturally interpreted as a weak shock driven by the bubbles' expansion in the surrounding medium, with velocity v exp ~ 300 km s-1 (corresponding to shock Mach number {M} \\simeq 1.5), compressing the GH gas to form the NPS feature. We also derived an upper limit for any non-thermal X-ray emission component associated with the bubbles and demonstrate that, in agreement with the aforementioned findings, the non-thermal pressure and energy estimated from a one-zone leptonic model of its broadband spectrum, are in rough equilibrium with that of the surrounding thermal plasma.

  5. Diffuse X-ray emission from the superbubbles N70 and N185 in the Large Magellanic Cloud

    SciTech Connect

    Reyes-Iturbide, J.; Rodríguez-González, A.; Velázquez, P. F. [Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Apdo. Postal 70–543, D.F. México (Mexico); Rosado, M.; Sánchez-Cruces, M. [Instituto de Astronomía, Universidad Nacional Autónoma de México, Apdo. Postal 70–264, C.P. 04510, México, D.F. (Mexico); Ambrocio-Cruz, P. [Instituto de Ciencias Básicas e Ingeniería, Universidad Autónoma del Estado de Hidalgo, Ciudad Universitaria, Km 4.5 Carretera Pachuca-Tulancingo, Col. Carboneras, C.P. 42184, Mineral de la Reforma, Hgo. (Mexico)

    2014-11-01

    We present a study of the diffuse X-ray emission from superbubbles (SBs) N70 (DEM L301) and N185 (DEM L25) located in the Large Magellanic Cloud, based on data from the XMM-Newton Satellite. We obtained spectra and images of these objects in the soft X-ray energy band. These X-ray spectra were fitted by a thermal plasma model, with temperatures of 2.6×10{sup 6} K and 2.3×10{sup 6} K, for N70 and N185, respectively. For N70, images show that X-ray emission comes from the inner regions of the SB when we compare the distribution of the X-ray and the optical emission, while for N185, the X-ray emission is partially confined by the optical shell. We suggest that the observed X-ray emission is caused by shock-heated gas, inside of the optical shells. We also obtained X-ray luminosities which exceed the values predicted by the standard analytical model. This fact shows that, in addition to the winds of the interior stars, it is necessary to consider another ingredient in the description, such as a supernova explosion, as has been proposed in previous numerical models.

  6. A von Hamos x-ray spectrometer based on a segmented-type diffraction crystal for single-shot x-ray emission spectroscopy and time-resolved resonant inelastic x-ray scattering studies

    NASA Astrophysics Data System (ADS)

    Szlachetko, J.; Nachtegaal, M.; de Boni, E.; Willimann, M.; Safonova, O.; Sa, J.; Smolentsev, G.; Szlachetko, M.; van Bokhoven, J. A.; Dousse, J.-Cl.; Hoszowska, J.; Kayser, Y.; Jagodzinski, P.; Bergamaschi, A.; Schmitt, B.; David, C.; Lücke, A.

    2012-10-01

    We report on the design and performance of a wavelength-dispersive type spectrometer based on the von Hamos geometry. The spectrometer is equipped with a segmented-type crystal for x-ray diffraction and provides an energy resolution in the order of 0.25 eV and 1 eV over an energy range of 8000 eV-9600 eV. The use of a segmented crystal results in a simple and straightforward crystal preparation that allows to preserve the spectrometer resolution and spectrometer efficiency. Application of the spectrometer for time-resolved resonant inelastic x-ray scattering and single-shot x-ray emission spectroscopy is demonstrated.

  7. A von Hamos x-ray spectrometer based on a segmented-type diffraction crystal for single-shot x-ray emission spectroscopy and time-resolved resonant inelastic x-ray scattering studies

    SciTech Connect

    Szlachetko, J. [Paul Scherrer Institut, 5232 Villigen PSI (Switzerland); Institute of Physics, Jan Kochanowski University, 25-406 Kielce (Poland); Nachtegaal, M.; Boni, E. de; Willimann, M.; Safonova, O.; Sa, J.; Smolentsev, G.; Szlachetko, M.; Bergamaschi, A.; Schmitt, B.; David, C.; Luecke, A. [Paul Scherrer Institut, 5232 Villigen PSI (Switzerland); Bokhoven, J. A. van [Paul Scherrer Institut, 5232 Villigen PSI (Switzerland); Institute for Chemical and Bioengineering, ETH Zurich, 8093 Zuerich (Switzerland); Dousse, J.-Cl.; Hoszowska, J.; Kayser, Y. [Department of Physics, University of Fribourg, 1700 Fribourg (Switzerland); Jagodzinski, P. [University of Technology, Kielce (Poland)

    2012-10-15

    We report on the design and performance of a wavelength-dispersive type spectrometer based on the von Hamos geometry. The spectrometer is equipped with a segmented-type crystal for x-ray diffraction and provides an energy resolution in the order of 0.25 eV and 1 eV over an energy range of 8000 eV-9600 eV. The use of a segmented crystal results in a simple and straightforward crystal preparation that allows to preserve the spectrometer resolution and spectrometer efficiency. Application of the spectrometer for time-resolved resonant inelastic x-ray scattering and single-shot x-ray emission spectroscopy is demonstrated.

  8. A SUZAKU SEARCH FOR NONTHERMAL EMISSION AT HARD X-RAY ENERGIES IN THE COMA CLUSTER

    SciTech Connect

    Wik, Daniel R.; Sarazin, Craig L. [Department of Astronomy, University of Virginia, P. O. Box 400325 Charlottesville, VA 22904-4325 (United States); Finoguenov, Alexis [Max-Planck-Institute fuer Extraterrestrische Physik, Giessenbachstrasse, 85748 Garching (Germany); Matsushita, Kyoko [Department of Physics, Tokyo University of Science, Tokyo (Japan); Nakazawa, Kazuhiro [Physics Department, University of Tokyo, Tokyo (Japan); Clarke, Tracy E. [Naval Research Laboratory, Code 7213, 4555 Overlook Ave. SW, Washington, DC 20375 (United States)], E-mail: drw2x@virginia.edu

    2009-05-10

    The brightest cluster radio halo known resides in the Coma cluster of galaxies. The relativistic electrons producing this diffuse synchrotron emission should also produce inverse Compton emission that becomes competitive with thermal emission from the intracluster medium (ICM) at hard X-ray energies. Thus far, claimed detections of this emission in Coma are controversial. We present a Suzaku HXD-PIN observation of the Coma cluster in order to nail down its nonthermal hard X-ray content. The contribution of thermal emission to the HXD-PIN spectrum is constrained by simultaneously fitting thermal and nonthermal models to it and a spatially equivalent spectrum derived from an XMM-Newton mosaic of the Coma field. We fail to find statistically significant evidence for nonthermal emission in the spectra which are better described by only a single- or multitemperature model for the ICM. Including systematic uncertainties, we derive a 90% upper limit on the flux of nonthermal emission of 6.0 x 10{sup -12} erg s{sup -1} cm{sup -2} (20-80 keV, for {gamma} = 2.0), which implies a lower limit on the cluster-averaged magnetic field of B>0.15 {mu}G. Our flux upper limit is 2.5 times lower than the detected nonthermal flux from RXTE and BeppoSAX. However, if the nonthermal hard X-ray emission in Coma is more spatially extended than the observed radio halo, the Suzaku HXD-PIN may miss some fraction of the emission. A detailed investigation indicates that {approx}50%-67% of the emission might go undetected, which could make our limit consistent with that of Rephaeli and Gruber and Fusco-Femiano et al. The thermal interpretation of the hard Coma spectrum is consistent with recent analyses of INTEGRAL and Swift data.

  9. Proton-Induced X-Ray Emission Analysis of Crematorium Emissions

    NASA Astrophysics Data System (ADS)

    Ali, Salina; Nadareski, Benjamin; Yoskowitz, Joshua; Labrake, Scott; Vineyard, Michael

    2014-09-01

    There has been considerable debate in recent years about possible mercury emissions from crematoria due to amalgam tooth restorations. We have performed a proton-induced X-ray emission (PIXE) analysis of aerosol and soil samples taken near the Vale Cemetery Crematorium in Schenectady, NY, to address this concern. The aerosol samples were collected on the roof of the crematorium using a nine-stage, cascade impactor that separates the particulate matter by aerodynamic diameter and deposits it onto thin Kapton foils. The soil samples were collected at several different distances from the crematorium and compressed into pellets with a hydraulic press. The Kapton foils containing the aerosol samples and the soil pellets were bombarded with 2.2-MeV protons from the 1.1-MV tandem Pelletron accelerator in the Union College Ion-Beam Analysis Laboratory. We measured significant concentrations of sulfur, phosphorus, potassium, calcium, and iron, but essentially no mercury in the aerosol samples. The lower limit of detection for airborne mercury in this experiment was approximately 0.2 ng / m3. The PIXE analysis of the soil samples showed the presence of elements commonly found in soil (Si, K, Ca, Ti, Mn, Fe), but no trace of mercury. There has been considerable debate in recent years about possible mercury emissions from crematoria due to amalgam tooth restorations. We have performed a proton-induced X-ray emission (PIXE) analysis of aerosol and soil samples taken near the Vale Cemetery Crematorium in Schenectady, NY, to address this concern. The aerosol samples were collected on the roof of the crematorium using a nine-stage, cascade impactor that separates the particulate matter by aerodynamic diameter and deposits it onto thin Kapton foils. The soil samples were collected at several different distances from the crematorium and compressed into pellets with a hydraulic press. The Kapton foils containing the aerosol samples and the soil pellets were bombarded with 2.2-MeV protons from the 1.1-MV tandem Pelletron accelerator in the Union College Ion-Beam Analysis Laboratory. We measured significant concentrations of sulfur, phosphorus, potassium, calcium, and iron, but essentially no mercury in the aerosol samples. The lower limit of detection for airborne mercury in this experiment was approximately 0.2 ng / m3. The PIXE analysis of the soil samples showed the presence of elements commonly found in soil (Si, K, Ca, Ti, Mn, Fe), but no trace of mercury. Union College Department of Physics and Astronomy.

  10. Iron line and diffuse hard X-ray emission from the starburst galaxy M82

    E-print Network

    D. K. Strickland; T. M. Heckman

    2006-11-28

    We examine the properties of the diffuse hard X-ray emission in the classic starburst galaxy M82. We use new Chandra ACIS-S observations in combination with reprocessed archival Chandra ACIS-I and XMM-Newton observations. We find E~6.7 keV Fe He-alpha emission is present in the central |r| iron line fluxes in the 2004 April 21 XMM-Newton observation are consistent with those of the Chandra-derived diffuse component, but in the 2001 May 6 XMM-Newton observation they are significantly higher and also both E=6.4 and E=6.9 keV iron lines are detected. We attribute the excess iron line emission to the Ultra-Luminous X-ray source in its high state. In general the iron K-shell luminosity of M82 is dominated by the diffuse component. The total X-ray luminosity of the diffuse hard X-ray emission (corrected for emission by unresolved low luminosity compact objects) is L_X ~ 4.4 x 10^39 erg/s in the E=2-8 keV energy band, and the 6.7 keV iron line luminosity is L_X ~ (1.1 -- 1.7) x 10^38 erg/s. The 6.7 keV iron line luminosity is consistent with that expected from the previously unobserved metal-enriched merged supernova ejecta that is thought to drive the larger-scale galactic superwind. The iron line luminosity implies a thermal pressure within the starburst region of P/k ~ 2 x 10^7 K/cm^3, which is consistent with independent observational estimates of the starburst region pressure [Abstract abridged].

  11. Evidence for X-ray emission from superclusters of galaxies determined from Uhuru

    NASA Technical Reports Server (NTRS)

    Murray, S. S.; Forman, W.; Jones, C.; Giacconi, R.

    1978-01-01

    X-ray emission from three class 2 clusters of rich clusters of galaxies has been detected. A definition for these objects based in part on Abell's (1961) description is used, and 12 candidate superclusters of distance class 5 and six clusters are found within the area of sky covered by the 4U catalog. The probability that these three X-ray sources accidentally coincide with the superclusters is less than 0.003. Equally low probabilities are found that the X-ray emission is due to either a single luminous cluster or to the combined emission of all members of the supercluster. A possible explanation of these sources is thermal bremsstrahlung emission from a hot tenuous gas pervading the supercluster. The mass of the gas can be as much as 10 times the mass of the galaxies in the supercluster and comparable to the virial mass necessary to bind the supercluster gravitationally. Should such regions of enhanced gas density be found to be associated with all groups of clusters (multiplicity of at least 2), this gas may provide a significant fraction of the mass required to close the universe.

  12. A novel paradigm for short gamma-ray bursts with extended X-ray emission

    E-print Network

    Luciano Rezzolla; Pawan Kumar

    2015-01-21

    The merger of a binary of neutron stars provides natural explanations for many of the features of short gamma-ray bursts (SGRBs), such as the generation of a hot torus orbiting a rapidly rotating black hole, which can then build a magnetic jet and provide the energy reservoir to launch a relativistic outflow. Yet, this scenario has problems explaining the recently discovered long-term and sustained X-ray emission associated with the afterglows of a subclass of SGRBs. We propose a new model that explains how an X-ray afterglow can be sustained by the product of the merger and how the X-ray emission is produced before the corresponding emission in the gamma-band, although it is observed to follow it. Overall, our paradigm combines in a novel manner a number of well-established features of the emission in SGRBs and results from simulations. Because it involves the propagation of an ultra-relativistic outflow and its interaction with a confining medium, the paradigm also highlights a unifying phenomenology between short and long GRBs.

  13. Cause of the localized maximum of X-ray emission in the morning sector: A comparison with electron measurements

    E-print Network

    Bergen, Universitetet i

    and electron measurements for both these events. Comparison of measured electron spectra and electron spectra for deriving electron characteristics from the X-ray measurements are described and discussed. We find. The electron spectra measured in the early stage of the localized morning maximum of X-ray emission strongly

  14. Correlation of magnetic dichroism in x-ray absorption and photoelectron emission using ultrathin magnetic alloy films

    SciTech Connect

    Tobin, J.G.; Goodman, K.W. [Lawrence Livermore National Lab., CA (United States); Mankey, G.J.; Willis, R.F. [Pennsylvania State Univ., University Park, PA (United States). Dept. of Physics; Denlinger, J.D.; Rotenberg, E.; Warwick, A. [Lawrence Berkeley Lab., CA (United States)

    1996-04-01

    We have begun a program to characterize magnetic alloy overlays using both magnetic x-ray circular dichroism (MXCD) and magnetic x-ray linear dichroism (MXLD). This will allow a direct comparison of MXCD-absorption and MXLD-photoelectron emission. First results from the Advanced Light Source will be presented.

  15. Correlation of magnetic dichroism in x-ray absorption and photoelectron emission using ultrathin magnetic alloy films

    SciTech Connect

    Tobin, J.G.; Goodman, K.W. [Lawrence Livermore National Lab., CA (United States). Chemistry and Materials Science Directorate; Mankey, G.J.; Willis, R.F. [Pennsylvania State Univ., University Park, PA (United States). Dept. of Physics; Denlinger, J.D.; Rotenberg, E.; Warwick, A. [Lawrence Berkeley Lab., CA (United States). Advanced Light Source

    1996-12-31

    The authors have begun a program to characterize magnetic alloy overlayers using both magnetic x-ray circular dichroism (MXCD) and magnetic x-ray linear dichroism (MXLD). This will allow a direct comparison of MXCD-absorption and MXLD-photoelectron emission. First results from the Advanced Light Source will be presented.

  16. PAPER 5Localized maximum of X-ray emission in the morning sector caused by drifting electrons

    E-print Network

    Østgaard, Nikolai

    PAPER 5Localized maximum of X-ray emission in the morning sector caused by drifting electrons N of the patterns of electron precipitation through imaging of the atmospheric X-ray bremsstrahlung. While other-energy electrons (electrons of energy above 3 ke

  17. THE EFFECT OF POROSITY ON X-RAY EMISSION-LINE PROFILES FROM HOT-STAR WINDS Stanley P. Owocki

    E-print Network

    Cohen, David

    THE EFFECT OF POROSITY ON X-RAY EMISSION-LINE PROFILES FROM HOT-STAR WINDS Stanley P. Owocki Bartol be explained by the possibly porous nature of their spatially structured stellar winds. Such porosity could effectively reduce the bound-free absorption of X-rays emitted by embedded wind shocks, and thus allow a more

  18. On the X-ray Baldwin effect for narrow Fe Kalpha emission line

    E-print Network

    P. Jiang; J. X. Wang; T. G. Wang

    2006-03-14

    Most Active Galactic Nuclei (AGN) exhibit a narrow Fe Kalpha line at ~ 6.4 keV in the X-ray spectra, due to the fluorescent emission from cold material far from the inner accretion disk. Using XMM-Newton observations, Page et al. found that the equivalent width (EW) of the narrow Fe Kalpha line decreases with increasing luminosity (EW ~ L^-0.17pm0.08), suggesting a decrease in the covering factor of the material emitting the line (presumably the torus). By combining the archival Chandra HETG observations of 34 type 1 AGNs with XMM observations in literature, we build a much large sample with 101 AGNs. We find a similar X-ray Baldwin effect in the sample (EW ~ L^-0.2015pm0.0426), however, we note that the anti-correlation is dominated by the radio loud AGN in the sample, whose X-ray spectra might be contaminated by the relativistic jet. Excluding the radio loud AGN, we find a much weaker anti-correlation (EW ~ L^-0.1019pm0.0524). We present Monte-Carlo simulations showing that such a weak anti-correlation can be attributed to the relative short time scale variations of the X-ray continuum.

  19. Diffuse X-ray emission from the spiral galaxy NGC 2403 discovered with Chandra

    E-print Network

    Filippo Fraternali; Massimo Cappi; Renzo Sancisi; Tom Oosterloo

    2002-06-18

    We have detected diffuse soft X-ray emission (0.4-1 keV) from the disk of the spiral galaxy NGC 2403 with Chandra. This diffuse emission (with a total luminosity of 2.1 x 10^38 erg/s and a gas temperature of 2-8 x 10^6 K) is well separated from the numerous bright point sources. NGC 2403 is a luminous spiral galaxy with a high rate of star formation. Recent HI observations have revealed an extended HI halo with anomalous velocities and a general inflow towards the central regions of the galaxy. This result and the present detection of a diffuse, hot X-ray emitting gas point at a very active disk-halo connection and galactic fountain types of phenomena.

  20. X-ray Emission from the Host Clusters of Powerful AGN

    E-print Network

    Patrick B. Hall; Erica Ellingson; Richard F. Green

    1996-12-31

    (Abridged) We report the detection of X-ray emission from the host cluster of the radio-quiet quasar H1821+643 with the ROSAT HRI, and the non-detection of the host cluster of the radio-loud quasar 3C206 using the EINSTEIN HRI. CL1821+643 has a rest-frame 0.1-2.4 keV luminosity of 3.74$\\pm$0.57 h$_{50}^{-2}$ 10^45 ergs/sec, 38% from a barely resolved cooling flow component, which places it among the most X-ray luminous clusters known. The cluster emission complicates interpretation of previous X-ray spectra of this field; in particular, the observed FeK$\\alpha$ emission can probably be attributed entirely to the cluster, and either the quasar is relatively X-ray quiet for its optical luminosity or the cluster has a relatively low temperature for its luminosity. We combine these data with the recent detection of X-ray emission from the host cluster of the `buried' radio-quiet quasar IRAS 09104+4109, our previous upper limits for the host clusters of two z$\\sim$0.7 RLQs, and literature data on FR II radio galaxies and compare to the predictions of three models for the presence and evolution of powerful AGN in clusters: the low-velocity-dispersion model, the low-ICM-density model, and the cooling flow model. Neither of the latter two models can explain all the observations. We suggest that strong interactions with gas-containing galaxies may be the only mechanism needed to explain the presence and evolution of powerful AGN in clusters, consistent with the far-IR and optical properties of the host galaxies studied here. However, the cooling flow model cannot be ruled out for at least some objects, and it is likely that both processes are at work. Each scenario makes predictions for future X-ray and optical observations which can test their relative importance.

  1. X-RAY EMISSION FROM NEUTRON STARS:. Some personal reflections and recent developments

    NASA Astrophysics Data System (ADS)

    Trümper, Joachim

    2000-09-01

    After a few remarks about the early history of the subject we present a short review of the present observational situation regarding the X-ray emission from isolated neutron stars. In total 32 objects have been detected with ROSAT, the majority of which are radio pulsars showing non -thermal (magnetospheric) emission. For three radio pulsars and three point sources in SNRs thermal emission has been seen which probably comes from the photospheric of the cooling neutron star. A third class comprising the objects represents neutron stars according matter from the interstellar medium.

  2. Proton-induced X-ray emission analysis of munitions disposal residues

    Microsoft Academic Search

    N. W. Lytle; M. W. Hill; K. E. Lambert; N. F. Mangelson; S. S. W. Kwak

    1985-01-01

    Residues from several unservicible munitions and chemical agents disposed of by incineration and chemical conversion have been quantitatively analyzed for elemental content using proton-induced X-ray emission (PIXE). Carbonaceous residues were first digested by a single-acid, wet-oxidation procedure and silicious residues were prepared using a lithium metaborate fusion-acid dissolution procedure. The resulting solutions were applied to a polycarbonate film and analyzed

  3. Chandra measurements of complex X-ray emission from massive, merging, radio-halo clusters

    Microsoft Academic Search

    E. T. Million; S. W. Allen

    We report the discovery of spatially-extended, non-thermal or hot, quasi-thermal emis- sion components in Chandra X-ray spectra for ve of a sample of seven massive, merg- ing galaxy clusters with powerful radio halos: Abell 665, 2163, 2255, 2319, and 1E 0657- 56. The emission components can be tted by power-law models with mean photon indices in the range 1:4 <

  4. Real-time secondary electron emission detector for high-rate x-ray crystallography

    SciTech Connect

    Chechik, R.; Breskin, A. [Weizmann Inst. of Science, Rehovot (Israel)] [Weizmann Inst. of Science, Rehovot (Israel); Frumkin, I. [Technion, Haifa (Israel)] [Technion, Haifa (Israel); Gabriel, A. [European Molecular Biology Lab., Grenoble (France)] [European Molecular Biology Lab., Grenoble (France); Kocsis, M. [European Synchrotron Radiation Facility, Grenoble (France)] [European Synchrotron Radiation Facility, Grenoble (France)

    1996-06-01

    The authors present the first results of the application of a novel digital X-ray imaging detector, based on secondary electron emission from a solid converter, to high-rate crystallographic studies. Results from diffraction and small-angle scattering experiments from several crystallized proteins, performed at the European Synchrotron Radiation Facility, ESRF, Grenoble, are presented and compared with a phosphor-based imaging system. Future developments of this detector system are proposed.

  5. Multiphoton-induced X-ray emission and amplification from clusters

    Microsoft Academic Search

    A. McPherson; T. S. Luk; B. D. Thompson; K. Boyer; C. K. Rhodes

    1993-01-01

    The development of a unified picture of short-pulse high-intensity multiphoton processes, embracing atoms, molecules, and solids, appears possible through the study of clusters. Of particular significance are possible intra-cluster processes that can influence the mechanism of ionization and lead to the production of inner-shell vacancies. Inner-shell excitation leading to prompt X-ray emission is specifically considered and the treatment leads to

  6. Proton-induced X-ray emission analysis of atherosclerotic plaques of the carotid bifurcation

    Microsoft Academic Search

    M. Peltomaa; K. Mattila; J. Wolf; M. Hyvönen-Dabek

    1992-01-01

    The trace elements of both calcified atherosclerotic plaques and plaque-free vessel walls of the carotid bifurcation from\\u000a 31 autopsies were investigated using the proton-induced X-ray emission (PIXE) method. The trace elements studied were phosphorus\\u000a (P), calcium (Ca), chrome (Cr), iron (Fe), copper (Cu), zinc (Zn), lead (Pb), selenium (Se), bromine (Br), strontium (Sr),\\u000a and rubidium (Rb). All samples contained Fe

  7. Bulk band gaps in divalent hexaborides: A soft x-ray emission study

    SciTech Connect

    Denlinger, Jonathan D.; Gweon, Gey-Hong; Allen, James W.; Bianchi, Andrea D.; Fisk, Zachary

    2001-10-03

    Boron K-edge soft x-ray emission and absorption are used to address the fundamental question of whether divalent hexaborides are intrinsic semimetals or defect-doped bandgap insulators. These bulk sensitive measurements, complementary and consistent with surface-sensitive angle-resolved photoemission experiments, confirm the existence of a bulk band gap and the location of the chemical potential at the bottom of the conduction band.

  8. Impurities in extruded cables: A proton-induced x-ray emission diagnostic study

    Microsoft Academic Search

    J. P. Crine; P. F. Hinrichsen; A. Houdayer

    1990-01-01

    The impurity contents and distributions in electrical trees grown in various field-aged XLPE distribution cables were measured by micro-Proton Induced X-ray Emission (PIXE). The objectives pursued in this preliminary study were the following. Determination of any possible correlation between electrical tree initiation and the nature of some specific impurities. Evaluation of micro-PIXE as a reliable analytical technique to measure impurities

  9. Application of CVD diamonds as dosimeters of soft X-ray emission from plasma sources

    Microsoft Academic Search

    J. Krása; L. Juha; V. Vorl???ek; A. Cejnarová

    2004-01-01

    The thermoluminescent properties of polycrystalline chemical vapour deposition (CVD) diamond, as free-standing CVD cutting tool material, type CVDITE-CDM (De Beers Company), were studied with respect to its use in the dosimetry of soft X-ray emission from laser-produced plasma. The range of linearity for 5.9-keV radiation was measured to be only two orders of magnitude, ranging from a sensitivity threshold of

  10. Correlated optical and X-ray variability in CTTS. Indications of absorption-modulated emission

    Microsoft Academic Search

    E. Flaccomio; G. Micela; F. Favata; S. P. H. Alencar

    2010-01-01

    Aims: Optical and X-ray emission from classical T Tauri stars (CTTSs) has long been known to be highly variable. Our long, uninterrupted optical observation of the NGC 2264 region with CoRoT [The CoRoT space mission was developed and is operated by the French space agency CNES, with participation of ESA's RSSD and Science Programs, Austria, Belgium, Brazil, Germany, and Spain.

  11. High Resolution Spectroscopy of the X-Ray Emission of GRBs by IMBOSS on the ISS

    Microsoft Academic Search

    L. Colasanti; L. Piro; L. Pacciani; E. Costa; G. Gandolfi; P. Soffitta; F. Gatti; D. Pergolesi; M. Razeti; R. Vaccarone; G. Testera; M. Pallavicini; A. Ferrari; E. Trussoni; M. Orio; D. McCammon; T. Sanders; M. Galeazzi; A. Szymkowiak; S. Porter; R. Kelley

    2003-01-01

    The IMBOSS (Interstellar\\/Intergalactic Medium and gamma-ray Burst Observatory and Spectroscopy Survey) is an experiment proposed to fly on the ISS (International Space Station), in order to perform an all-sky survey to study the diffuse X-ray emission and to measure the spectra of Gamma-Ray Bursts (GRB) with high energy resolution in the 0.1-10 keV energy range. In a 3-year mission, the

  12. Revised Results for Non-thermal Recombination Flare Hard X-Ray Emission

    Microsoft Academic Search

    J. C. Brown; P. C. V. Mallik; N. R. Badnell

    2009-01-01

    Brown and Mallik (BM) recently showed that, for hot sources, recombination of\\u000anon-thermal electrons (NTR) onto highly ionised heavy ions is not negligible\\u000acompared to non-thermal bremsstrahlung (NTB) as a source of flare hard X-rays\\u000a(HXRs) and so should be included in modelling non-thermal HXR flare emission.\\u000aIn view of major discrepancies between BM results for the THERMAL continua and

  13. Revised Results for Non-thermal Recombination Flare Hard X-Ray Emission

    Microsoft Academic Search

    J. C. Brown; P. C. V. Mallik; N. R. Badnell

    2009-01-01

    Brown and Mallik (BM) recently showed that, for hot sources, recombination of non-thermal electrons (NTR) onto highly ionised heavy ions is not negligible compared to non-thermal bremsstrahlung (NTB) as a source of flare hard X-rays (HXRs) and so should be included in modelling non-thermal HXR flare emission. In view of major discrepancies between BM results for the THERMAL continua and

  14. Elemental analysis of agricultural soil samples by particle induced X-ray emission (PIXE) technique

    Microsoft Academic Search

    Paulo E. Cruvinel; Robert G. Flocchini; Paulo Artaxo; Silvio Crestana; Paulo S. P. Herrmann Jr.

    1999-01-01

    In agriculture, elements essential to vital processes are also called nutrients. A suitable and reliable particle induced X-ray emission (PIXE) methodology for content determination of essential nutrients in soil samples was developed and its effectiveness proved. The PIXE method is applied to intermediate thickness samples, whose mass per area unit are smaller than 1 ?g\\/cm2. Precision and accuracy of the

  15. What Can be Learned from the Absence of Auroral X-Ray Emission from Saturn?

    SciTech Connect

    Hui, Yawei [ORNL; Cravens, Thomas E. E. [University of Kansas; Ozak, Nataly [University of Kansas; Schultz, David Robert [ORNL

    2010-01-01

    To understand the origin and magnitude of the present upper limit observations of Saturn's auroral X-ray emission, we use simple models based on the mechanism that leads to analogous emission at Jupiter, charge transfer between ion precipitation and atmospheric gas. Several putative sources and characteristics of the precipitation are considered, namely, (1) highly charged solar wind ions with additional acceleration and (2) ambient, thermal ion population originating, for example, from Saturn's satellites, and then accelerated to high energies. Estimates obtained for each of these sources show the need for acceleration, either to focus the highly charged solar wind ions into the atmosphere or to enable stripping of the initially low-charge state ambient ions to higher charges. The former yields a constraint on the existing accelerating potentials present at Saturn but can only account for about a tenth of the observed upper limit to the auroral luminosity, while the latter requires extremely low limits on the area (i.e., less than 100 km{sup 2}) over which field-aligned potentials are active and needed to produce the acceleration to generate the observational upper limit on the X-ray luminosity. We therefore narrow the range of possible ion sources, the accelerating potentials required that are consistent with the present understanding of the magnetosphere, and model upper limit of X-ray emission from ion precipitation.

  16. Discrete sources as the origin of the Galactic X-ray ridge emission

    E-print Network

    Revnivtsev, M; Churazov, E; Forman, W; Vikhlinin, A; Sunyaev, R

    2009-01-01

    An unresolved X-ray glow (at energies above a few kiloelectronvolts) was discovered about 25 years ago and found to be coincident with the Galactic disk -the Galactic ridge X-ray emission. This emission has a spectrum characteristic of a 1e8 K optically thin thermal plasma, with a prominent iron emission line at 6.7 keV. The gravitational well of the Galactic disk, however, is far too shallow to confine such a hot interstellar medium; instead, it would flow away at a velocity of a few thousand kilometres per second, exceeding the speed of sound in gas. To replenish the energy losses requires a source of 10^{43} erg/s, exceeding by orders of magnitude all plausible energy sources in the Milky Way. An alternative is that the hot plasma is bound to a multitude of faint sources, which is supported by the recently observed similarities in the X-ray and near-infrared surface brightness distributions (the latter traces the Galactic stellar distribution). Here we report that at energies of 6-7 keV, more than 80 per c...

  17. Changes in the X-Ray Emission from the Magnetar Candidate 1E 2259+586 During its 2002 Outburst

    NASA Technical Reports Server (NTRS)

    Woods, P. M.; Kaspi, V. M.; Thompson, C.; Gavrill, F. P.; Marshall, H. L.; Chakrabarty, D.; Flanagan, K.; Heyl, J.; Hernquist, L.

    2004-01-01

    An outburst of more than 80 individual bursts, similar to those seen from Soft Gamma Repeaters (SGRs), was detected from the anomalous X-ray pulsar (AXP) 1E 2259+586 in 2002 June. Coincident with this burst activity were gross changes in the pulsed flux, persistent flux, energy spectrum, pulse profile, and spin-down of the underlying X-ray source. We present Rossi X-Ray Timing Explorer and X-Ray Multi-Mirror Mission observations of 1E 2259+586 that show the evolution of the aforementioned source parameters during and following this episode and identify recovery timescales for each. Specifically, we observe an X-ray flux increase (pulsed and phase-averaged) by more than an order of magnitude having two distinct components. The first component is linked to the burst activity and decays within approx. 2 days, during which the energy spectrum is considerably harder than during the quiescent state of the source. The second component decays over the year following the glitch according to a power law in time with an exponent -0.22 +/- 0.01. The pulsed fraction decreased initially to approx. 15% rms but recovered rapidly to the preoutburst level of approx. 23% within the first 3 days. The pulse profile changed significantly during the outburst and recovered almost fully within 2 months of the outburst. A glitch of size Delta(sib (nu)max) = (4.24 +/- 0.11) x 10(exp -6) was observed in 1E 2259+586, which preceded the observed burst activity. The glitch could not be well fitted with a simple partial exponential recovery. An exponential rise of approx. 20% of the frequency jump with a timescale of approx. 14 days results in a significantly better fit to the data; however, contamination from a systematic drift in the phase of the pulse profile cannot be excluded. A fraction of the glitch (approx. 19%) was recovered in a quasi-exponential manner having a recovery timescale of approx. 16 days. The long-term postglitch spin-down rate decreased in magnitude relative to the preglitch value. The changes in the source properties of 1E 2259+586 during its 2002 outburst are shown to be qualitatively similar to changes seen during or following burst activity in two SGRs, thus further solidifying the common nature of SGRs and AXP's as magnetars. The changes in persistent emission properties of 1E 2259+586 suggest that the star underwent a plastic deformation of the crust that simultaneously impacted the superfluid interior (crustal and possibly core superfluid) and the magnetosphere. Finally, the changes in persistent emission properties coincident with burst activity in 1E 2259+586 enabled us to infer previous burst-active episodes from this and other AXP's. The nondetection of these outbursts by all-sky gamma-ray instruments suggests that the number of active magnetar candidates in our Galaxy is larger than previously thought.

  18. X-RAY EMISSION LINE PROFILES FROM WIND CLUMP BOW SHOCKS IN MASSIVE STARS

    SciTech Connect

    Ignace, R. [Department of Physics and Astronomy, East Tennessee State University, Johnson City, TN 37614 (United States); Waldron, W. L. [Eureka Scientific Inc., 2452 Delmer Street, Oakland, CA 94602 (United States); Cassinelli, J. P. [Department of Astronomy, University of Wisconsin-Madison, Madison, WI 53711 (United States); Burke, A. E., E-mail: ignace@etsu.edu, E-mail: wwaldron@satx.rr.com, E-mail: cassinelli@astro.wisc.edu, E-mail: burke.alexander@gmail.com [990 Washington Street 317, Dedham, MA 02026 (United States)

    2012-05-01

    The consequences of structured flows continue to be a pressing topic in relating spectral data to physical processes occurring in massive star winds. In a preceding paper, our group reported on hydrodynamic simulations of hypersonic flow past a rigid spherical clump to explore the structure of bow shocks that can form around wind clumps. Here we report on profiles of emission lines that arise from such bow shock morphologies. To compute emission line profiles, we adopt a two-component flow structure of wind and clumps using two 'beta' velocity laws. While individual bow shocks tend to generate double-horned emission line profiles, a group of bow shocks can lead to line profiles with a range of shapes with blueshifted peak emission that depends on the degree of X-ray photoabsorption by the interclump wind medium, the number of clump structures in the flow, and the radial distribution of the clumps. Using the two beta law prescription, the theoretical emission measure and temperature distribution throughout the wind can be derived. The emission measure tends to be power law, and the temperature distribution is broad in terms of wind velocity. Although restricted to the case of adiabatic cooling, our models highlight the influence of bow shock effects for hot plasma temperature and emission measure distributions in stellar winds and their impact on X-ray line profile shapes. Previous models have focused on geometrical considerations of the clumps and their distribution in the wind. Our results represent the first time that the temperature distribution of wind clump structures are explicitly and self-consistently accounted for in modeling X-ray line profile shapes for massive stars.

  19. PHYSICAL CONDITIONS IN THE X-RAY EMISSION-LINE GAS IN NGC 1068

    SciTech Connect

    Kraemer, S. B. [Institute for Astrophysics and Computational Sciences, Department of Physics, The Catholic University of America, Washington, DC 20064 (United States); Sharma, N.; Turner, T. J.; George, Ian M. [Department of Physics, University of Maryland Baltimore County, Baltimore, MD 21250 (United States); Crenshaw, D. Michael, E-mail: kraemer@yancey.gsfc.nasa.gov [Department of Physics and Astronomy, Georgia State University, Astronomy Offices, One Park Place South SE, Suite 700, Atlanta, GA 30303 (United States)

    2015-01-01

    We present a detailed, photoionization modeling analysis of XMM-Newton/Reflection Grating Spectrometer observations of the Seyfert 2 galaxy NGC 1068. The spectrum, previously analyzed by Kinkhabwala et al., reveals a myriad of soft X-ray emission lines, including those from H- and He-like carbon, nitrogen, oxygen, and neon, and M- and L-shell iron. As noted in the earlier analysis, based on the narrowness of the radiative recombination continua, the electron temperatures in the emission-line gas are consistent with photoionization, rather than collisional ionization. The strengths of the carbon and nitrogen emission lines, relative to those of oxygen, suggest unusual elemental abundances, which we attribute to the star formation history of the host galaxy. Overall, the emission lines are blueshifted with respect to systemic, with radial velocities ?160 km s{sup –1}, similar to that of [O III] ?5007, and thus consistent with the kinematics and orientation of the optical emission-line gas and, hence, likely part of an active galactic nucleus driven outflow. We were able to achieve an acceptable fit to most of the strong emission lines with a two-component photoionization model, generated with CLOUDY. The two components have ionization parameters and column densities of logU = –0.05 and 1.22 and logN {sub H} = 20.85 and 21.2 and covering factors of 0.35 and 0.84, respectively. The total mass of the X-ray gas is roughly an order of magnitude greater than the mass of ionized gas determined from optical and near-IR spectroscopy, which indicates that it may be the dominant component of the narrow-line region. Furthermore, we suggest that the medium that produces the scattered/polarized optical emission in NGC 1068 possesses similar physical characteristics to those of the more highly ionized of the X-ray model components.

  20. X-ray emission from star-forming galaxies - signatures of cosmic rays and magnetic fields

    NASA Astrophysics Data System (ADS)

    Schober, J.; Schleicher, D. R. G.; Klessen, R. S.

    2015-01-01

    The evolution of magnetic fields in galaxies is still an open problem in astrophysics. In nearby galaxies the far-infrared-radio correlation indicates the coupling between magnetic fields and star formation. The correlation arises from the synchrotron emission of cosmic ray electrons travelling through the interstellar magnetic fields. However, with an increase of the interstellar radiation field (ISRF), inverse Compton scattering becomes the dominant energy loss mechanism of cosmic ray electrons with a typical emission frequency in the X-ray regime. The ISRF depends on the one hand on the star formation rate and becomes stronger in starburst galaxies, and on the other hand increases with redshift due to the higher temperature of the cosmic microwave background. With a model for the star formation rate of galaxies, the ISRF, and the cosmic ray spectrum, we can calculate the expected X-ray luminosity resulting from the inverse Compton emission. Except for galaxies with an active galactic nucleus the main additional contribution to the X-ray luminosity comes from X-ray binaries. We estimate this contribution with an analytical model as well as with an observational relation, and compare it to the pure inverse Compton luminosity. Using data from the Chandra Deep Field Survey and far-infrared observations from Atacama Large Millimeter/Submillimeter Array, we then determine upper limits for the cosmic ray energy. Assuming that the magnetic energy in a galaxy is in equipartition with the energy density of the cosmic rays, we obtain upper limits for the magnetic field strength. Our results suggest that the mean magnetic energy of young galaxies is similar to the one in local galaxies. This points towards an early generation of galactic magnetic fields, which is in agreement with current dynamo evolution models.

  1. The Galactic Central Diffuse X-ray Enhancement: A Differential Absorption/Emission Analysis

    E-print Network

    Yangsen Yao; Q. Daniel Wang

    2007-07-26

    The soft X-ray background shows a general enhancement toward the inner region of the Galaxy. But whether this enhancement is a local feature (e.g., a superbubble within a distance of <= 200 pc) and/or a phenomenon related to energetic outflows from the Galactic center/bulge remains unclear. Here we report a comparative X-ray emission and absorption study of diffuse hot gas along the sight lines toward 3C 273 and Mrk 421, on and off the enhancement, but at similar Galactic latitudes. The diffuse 3/4-keV emission intensity, as estimated from the ROSAT All Sky Survey, is about three times higher toward 3C 273 than toward Mrk 421. Based on archival \\chandra grating observations of these two AGNs, we detect X-ray absorption lines (e.g., OVII Kalpha, Kbeta, and OVIII Kalpha transitions at z~0) and find that the mean hot gas thermal and kinematic properties along the two sight lines are significantly different. By subtracting the foreground and background contribution, as determined along the Mrk 421 sight line, we isolate the net X-ray absorption and emission produced by the hot gas associated with the enhancement in the direction of 3C 273. From a joint analysis of these differential data sets, we obtain the temperature, dispersion velocity, and hydrogen column density as 2.0(1.6, 2.3)E6 K, 216(104,480) km/s, and 2.2(1.4, 4.1)E19 cm^{-2}, respectively (90% confidence intervals), assuming that the gas is approximately isothermal, solar in metal abundances, and equilibrium in collisional ionization. We also constrain the effective line-of-sight extent of the gas to be 3.4(1.0, 10.1) kpc, strongly suggesting that the enhancement most likely represents a Galactic central phenomenon.

  2. X-raying Extended emission and rapid decay of short gamma-ray bursts

    E-print Network

    Kagawa, Yasuaki; Sawano, Tatsuya; Toyanago, Asuka; Nakamura, Takashi; Takahashi, Keitaro; Kashiyama, Kazumi; Ioka, Kunihito

    2015-01-01

    Extended emission is a mystery in short gamma-ray bursts (SGRBs). By making time resolved spectral analyses of brightest eight events observed by {\\it Swift} XRT, we obviously classify the early X-ray emission of SGRBs into two types. One is the extended emission with exponentially rapid decay, which shows significant spectral softening during hundreds seconds since the SGRB trigger and is also detected by {\\it Swift}-BAT. The other is a dim afterglow only showing power-law decay over $10^4$ s. The correlations between the temporal decay and spectral indices of the extended emissions are inconsistent with the $\\alpha$-$\\beta$ correlation expected for the high-latitude curvature emission from a uniform jet. The observed too-rapid decay suggests the emission from a photosphere or a patchy surface, and manifests the stopping central engine via such as magnetic reconnection at the black hole.

  3. Charge Exchange Signatures in X-Ray Line Emission Accompanying Plasma-Wall Interaction

    NASA Astrophysics Data System (ADS)

    Renner, O.; Dalimier, E.; Liska, R.; Oks, E.; Šmíd, M.

    2012-12-01

    Directional flows of well-collimated energetic ions produced at laser-burnt-through foils were used to investigate transient phenomena accompanying the plasma interaction with surfaces of solid targets (generally known as plasma-wall interaction, PWI). The plasma jet launched from the rear surface of the 0.8-um-thick Al foil irradiated at oblique laser incidence with an intensity of 3×1014 W/cm2 was incident on the quasi-massive C target. The plasma x-ray self-emission was analyzed by focusing survey and high-dispersion spectrometers. The time-integrated, spatially resolved narrow-band spectra recorded close to the C surface exhibit a dip structure in the red-wing profiles of the hydrogenic Al Ly? line which was attributed to the charge exchange between two stationary Coulomb centers represented by the Al XIII and fully stripped C ions. This identification of the charge exchange signatures in x-ray line emission is supported by hydrodynamic simulations of environmental conditions in the near-wall plasma and by predictions of the dips positions following from complementary theoretical models. The agreement between the experiment and theory validates the first high precision x-ray spectroscopic identification of charge exchange phenomena accompanying the PWI.

  4. Proton-induced x-ray emission analysis of deep-sea ferromanganese nodules

    SciTech Connect

    Kirchner, S.J. (Univ. of Arizona, Tucson); Oona, H.; Perron, S.J.; Fernando, Q.; Lee, J.J.H.; Zeitlin, H.

    1980-11-01

    Seven samples of deep-sea ferromanganese nodules from the Pacific and Atlantic Oceans were analyzed by proton-induced X-ray emission (PIXE). The concentrations of Na, Mg, Al, Si, K, Ca, Ti, V, Mn, Fe, Co, Ni, Cu, Zn, As, Rb, Sr, Mo, Ba, Tl and Pb in the nodules were determined, and the accuracy of the determinations was verified independently by flame atomic absorption and emission techniques. Thin sample targets on Nuclepore filter disks backed with Kapton were used with 1-MeV protons for the low-energy region (0 to 8 keV) and 2-MeV protons and a 0.004-in. al filter for the high-energy region (5 to 35 keV) of the X-ray spectrum. X-ray yield data were obtained for elements from Na to U (11 < Z < 92), with standards of 99.999% purity and the thin target technqiue. Five different NBS standard reference materials (orchard leaves, pine needles, bovine liver, coal, and coal fly ash) were analyzed by this method to determine the precision and accuracy that could be achieved under the operating conditions of the PIXE system. 4 figures, 6 tables.

  5. Potential Gamma-Ray Emissions from Low-mass X-Ray Binary Jets

    NASA Astrophysics Data System (ADS)

    Zhang, Jian-Fu; Gu, Wei-Min; Liu, Tong; Xue, Li; Lu, Ju-Fu

    2015-06-01

    By proposing a pure leptonic radiation model, we study the potential gamma-ray emissions from the jets of low-mass X-ray binaries. In this model, the relativistic electrons that are accelerated in the jets are responsible for radiative outputs. Nevertheless, jet dynamics are dominated by magnetic and proton–matter kinetic energies. The model involves all kinds of related radiative processes and considers the evolution of relativistic electrons along the jet by numerically solving the kinetic equation. Numerical results show that the spectral energy distributions can extend up to TeV bands, in which synchrotron radiation and synchrotron self-Compton scattering are dominant components. As an example, we apply the model to the low-mass X-ray binary GX 339–4. The results not only can reproduce the currently available observations from GX 339–4, but also predict detectable radiation at GeV and TeV bands by the Fermi and CTA telescopes. Future observations with Fermi and CTA can be used to test our model, which could be employed to distinguish the origin of X-ray emissions.

  6. Accelerated electrons and hard X-ray emission from X-pinches

    SciTech Connect

    Shelkovenko, T. A.; Pikuz, S. A.; Mingaleev, A. R.; Agafonov, A. V.; Romanova, V. M.; Ter-Oganes'yan, A. E.; Tkachenko, S. I. [Russian Academy of Sciences, Lebedev Physical Institute (Russian Federation); Blesener, I. C.; Mitchell, M. D.; Chandler, K. M.; Kusse, B. R.; Hammer, D. A. [Cornell University (United States)

    2008-09-15

    The generation of accelerated electrons in the X-pinch minidiode is studied experimentally. It is well known that the explosion of an X-pinch consisting of two or more wires is accompanied by the formation of a minidiode, in which electrons are accelerated. The subsequent slowing down of electrons in the products of wire explosion causes the generation of hard X-ray (HXR) emission with photon energies higher than 10 keV. In this work, the spatial and temporal characteristics of X-pinch HXR emission are studied, the specific features of HXR generation are discussed, and the capability of applying this radiation to point-projection X-ray imaging of various plasma and biological objects is considered. The parameters of the electron beam produced in the X-pinch are measured using a Faraday cup and X-ray diagnostics. The experiments were performed with the XP generator (550 kA, 100 ns) at Cornell University (United States) and the BIN generator (270 kA, 150 ns) at the Lebedev Physical Institute (Russia).

  7. X-RAY EMISSION FROM TRANSIENT JET MODEL IN BLACK HOLE BINARIES

    SciTech Connect

    Pe'er, Asaf [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Markoff, Sera [Astronomical Institute 'Anton Pannekoek', University of Amsterdam, P.O. Box 94249, 1090 GE Amsterdam (Netherlands)

    2012-07-10

    While the non-thermal radio through at least near-infrared emission in the hard state in X-ray binaries (XRBs) is known to originate in jets, the source of the non-thermal X-ray component is still uncertain. We introduce a new model for this emission, which takes into account the transient nature of outflows, and show that it can explain the observed properties of the X-ray spectrum. Rapid radiative cooling of the electrons naturally accounts for the break often seen below around 10 keV, and for the canonical spectral slope F{sub {nu}}{proportional_to}{nu}{sup -1/2} observed below the break. We derive the constraints set by the data for both synchrotron- and Compton-dominated models. We show that for the synchrotron-dominated case, the jet should be launched at radii comparable to the inner radius of the disk ({approx}few 100 r{sub s} for the 2000 outburst of XTE J1118+480), with typical magnetic field B {approx}> 10{sup 6} G. We discuss the consequences of our results for the possible connection between the inflow and outflow in the hard state of XRBs.

  8. Emissive mechanism of radio flat spectrum on X-ray binaries

    E-print Network

    Jiancheng Wang

    2001-01-20

    We present that the radio emission with flat spectrum in X-ray binaries comes from the synchrotron emission of relativistic electrons in the high energy tail of hot electrons in continuous conical jet. The jet is assumed to be produced by the advection-dominated accretion flow (ADAF) and maintains ion and electron temperatures constant in the case of adiabatic steady conical expansion. The flat spectrum is result of self-absorbed synchrotron emission by relativistic thermal electrons. We find that the critical frequency at which the radiation becomes optically thin declines along the jet. The emission observed at higher frequencies originates at smaller distance, closer to the base of the jet. The highest cut-off frequency of the flat spectrum is at the base of the jet, and is determined by the physics of the ADAF and the position of the jet formation. We assert that it is a characteristic of the ADAF in black hole X-ray binaries that a continuous steady outflow is formed and causes the observed flat spectrum in the low/hard state. The observed synchrotron emission consists of the flat spectral component from the jet and the steep spectral component from the ADAF. The flat spectral component extends from infrared to radio wavelengths, while the steep spectral component with the 2/5 spectral slope extends from infrared to shorter wavelengths, it will be dominated by the thermal emission from companion star.

  9. On the persistent X-ray emission from the soft gamma-ray repeaters

    E-print Network

    V. V. Usov

    1996-12-10

    It is suggested that the persistent X-ray emission from the soft gamma-ray repeaters is the thermal radiation of neutron stars which is enhanced by a factor of 10 or more due to the effect of a very strong magnetic field on the thermal structure of the neutron star envelope. For the thermal luminosity to be consistent with the persistent X-ray luminosity, the field strength at the neutron star surface has to be of the order of $10^{15}$ G. If it is confirmed that the soft gamma-ray repeaters are neutron stars with negligible accretion, then the presence of such a strong magnetic field is inevitable.

  10. Cometary X-Rays: Line Emission Cross Sections for Multiply Charged Solar Wind Ion Charge Exchange

    SciTech Connect

    Otranto, S; Olson, R E; Beiersdorfer, P

    2006-12-22

    Absolute line emission cross sections are presented for 1 keV/amu charge exchange collisions of multiply charged solar wind ions with H{sub 2}O, H, O, CO{sub 2}, and CO cometary targets. The present calculations are contrasted with available laboratory data. A parameter-free model is used to successfully predict the recently observed x-ray spectra of comet C/LINEAR 1999 S4. We show that the resulting spectrum is extremely sensitive to the time variations of the solar wind composition. Our results suggest that orbiting x-ray satellites may be a viable way to predict the solar wind intensities and composition on the Earth many hours before the ions reach the earth.

  11. Soft X-ray emissions, meter-wavelength radio bursts, and particle acceleration in solar flares

    NASA Technical Reports Server (NTRS)

    Cane, H. V.; Reames, D. V.

    1988-01-01

    A detailed study of the relationship between metric radio bursts and soft X-ray flares has been made using an extensive data set covering 15 yr. It is found that type IV emission is mainly associated with long-duration 1-8 A events that are known to be well associated with coronal mass ejections. In contrast, type II and type III bursts originate primarily in impulsive soft X-ray events that are not necessarily accompanied by mass ejection. Strong type III bursts, in particular, appear to occur only in association with relatively impulsive flares. It is suggested that coronal shocks responsible for type II bursts are blast waves generated in impulsive energy releases.

  12. Modeling the radio and hard X-ray emission of pulsar wind nebulae

    NASA Astrophysics Data System (ADS)

    Gelfand, Joseph; Slane, Patrick

    2012-07-01

    The study of pulsar wind nebulae (PWNe) offer important insight into the properties of the central neutron star, the content of its pulsar wind, and progenitor supernova. Recent work has demonstrated that by modeling the broadband spectrum of a PWN it is possible to determine the magnetization and energy spectrum of particles in the pulsar wind. Of particular importance are the PWN's radio and hard X-ray spectrum, since they provide crucial information on the strength of the PWN's magnetic field and the lowest- and highest-energy particles in the PWN. In this talk, I will discuss the implications of improved measured of a PWN's radio and hard X-ray emission on our understanding of the physics in PWNe, in particular the spectral shape of particles accelerated at the pulsar wind termination shock.

  13. Three dimensional time-dependent hydrodynamic and propagation modeling of x-ray laser emission

    SciTech Connect

    Ratowsky, R.P.; Feit, M.D.; London, R.A.; Walling, R.S.; Shimkaveg, G.M.; Osterheld, A.L.; Carter, M.R. (Lawrence Livermore National Lab., CA (United States)); Craxton, R.S. (Rochester Univ., NY (United States). Lab. for Laser Energetics)

    1992-06-01

    We have carried out three dimensional time-dependent calculations of x-ray emission in exploding foil line focus produced plasmas relevant to neon-like yttrium experiments at the Lawrence Livermore National Laboratory (LLNL). Hydrodynamic simulations using LASNEX and a simple gain profile based on XRASER are input into CASER, which solves the radiation transport equation along three dimensional ray orbits. Experimental observables such as farfield patterns and x-ray signal vs. laser length are then computed and compared with experiment. Similar two dimensional calculations have also been performed using the wave optics code WAVE to calculate coherence and confirm the accuracy of the ray optics treatment. We have found good agreement between both experiment and simulation and between the ray and wave optics codes.

  14. X-ray Fluorescence Emission Tomography (XFET) with Novel Imaging Geometries – A Monte Carlo Study

    PubMed Central

    Meng, L. J.; Li, Nan; La Riviere, P. J.

    2011-01-01

    This paper presents a feasibility study for using two new imaging geometries for synchrotron X-ray fluorescence emission tomography (XFET) applications. In the proposed approaches, the object is illuminated with synchrotron X-ray beams of various cross-sectional dimensions. The resultant fluorescence photons are detected by high-resolution imaging-spectrometers coupled to collimation apertures. To verify the performance benefits of the proposed methods over the conventional line-by-line scanning approach, we have used both Monte Carlo simulations and an analytical system performance index to compare several different imaging geometries. This study has demonstrated that the proposed XFET approach could lead to a greatly improved imaging speed, which is critical for making XFET a practical imaging modality for a wide range of applications. PMID:22228913

  15. The Hard X-Ray Emission from Scorpius X-1 as seen by INTEGRAL

    NASA Technical Reports Server (NTRS)

    Sturner, Steve; Weidenspointner, G.; Shrader, C. R.

    2007-01-01

    We present the results of our hard X-ray and gamma-ray study of the LMXB Sco X-1 utilizing INTEGRAL IBIS/ISGRI and SPI data as well as contemporaneous RXTE PCA data. We have concentrated on investigating the high-energy spectral properties of the Sco X-1 including the nature of the high-energy spectrum and its possible correlations with the location of the source on the color-color diagram. We also present the results of a search for positron-electron annihilation line emission from Sco X-1, as it is the brightest of a bulge X-ray binary population which approximately traces the 511-keV spatial distribution inferred from SPI.

  16. Electronic state interferences in resonant x-ray emission after K-shell excitation in HCl.

    PubMed

    Kavcic, M; Zitnik, M; Bucar, K; Mihelic, A; Carniato, S; Journel, L; Guillemin, R; Simon, M

    2010-09-10

    We have measured a series of high-resolution x-ray spectra emitted upon resonant photoexcitation of HCl. The photon energy was tuned across the dissociative 1s?6?* resonance and the Rydberg states converging to the Cl 1s(-1) threshold, and inelastic photon scattering was observed in the region of KL emission lines. Excellent agreement is found between fully ab initio calculated and measured spectra if interferences between different excitation-emission paths are taken into account. The effect of electronic state interferences is enhanced due to dynamical broadening of the 6?* resonance in HCl. PMID:20867570

  17. X-ray emission from a nanosecond-pulse discharge in an inhomogeneous electric field at atmospheric pressure

    SciTech Connect

    Zhang Cheng; Shao Tao; Ren Chengyan; Zhang Dongdong [Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190 (China); Key Laboratory of Power Electronics and Electric Drive, Chinese Academy of Sciences, Beijing 100190 (China); Tarasenko, Victor; Kostyrya, Igor D. [Institute of High Current Electronics, Russian Academy of Science, Tomsk 634055 (Russian Federation); Ma Hao [Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190 (China); Yan Ping [Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190 (China); Key Laboratory of Power Electronics and Electric Drive, Chinese Academy of Sciences, Beijing 100190 (China); State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an 710049 (China)

    2012-12-15

    This paper describes experimental studies of the dependence of the X-ray intensity on the anode material in nanosecond high-voltage discharges. The discharges were generated by two nanosecond-pulse generators in atmospheric air with a highly inhomogeneous electric field by a tube-plate gap. The output pulse of the first generator (repetitive pulse generator) has a rise time of about 15 ns and a full width at half maximum of 30-40 ns. The output of the second generator (single pulse generator) has a rise time of about 0.3 ns and a full width at half maximum of 1 ns. The electrical characteristics and the X-ray emission of nanosecond-pulse discharge in atmospheric air are studied by the measurement of voltage-current waveforms, discharge images, X-ray count and dose. Our experimental results showed that the anode material rarely affects electrical characteristics, but it can significantly affect the X-ray density. Comparing the density of X-rays, it was shown that the highest x-rays density occurred in the diffuse discharge in repetitive pulse mode, then the spark discharge with a small air gap, and then the corona discharge with a large air gap, in which the X-ray density was the lowest. Therefore, it could be confirmed that the bremsstrahlung at the anode contributes to the X-ray emission from nanosecond-pulse discharges.

  18. X-ray emission from a nanosecond-pulse discharge in an inhomogeneous electric field at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Zhang, Cheng; Shao, Tao; Tarasenko, Victor; Ma, Hao; Ren, Chengyan; Kostyrya, Igor D.; Zhang, Dongdong; Yan, Ping

    2012-12-01

    This paper describes experimental studies of the dependence of the X-ray intensity on the anode material in nanosecond high-voltage discharges. The discharges were generated by two nanosecond-pulse generators in atmospheric air with a highly inhomogeneous electric field by a tube-plate gap. The output pulse of the first generator (repetitive pulse generator) has a rise time of about 15 ns and a full width at half maximum of 30-40 ns. The output of the second generator (single pulse generator) has a rise time of about 0.3 ns and a full width at half maximum of 1 ns. The electrical characteristics and the X-ray emission of nanosecond-pulse discharge in atmospheric air are studied by the measurement of voltage-current waveforms, discharge images, X-ray count and dose. Our experimental results showed that the anode material rarely affects electrical characteristics, but it can significantly affect the X-ray density. Comparing the density of X-rays, it was shown that the highest x-rays density occurred in the diffuse discharge in repetitive pulse mode, then the spark discharge with a small air gap, and then the corona discharge with a large air gap, in which the X-ray density was the lowest. Therefore, it could be confirmed that the bremsstrahlung at the anode contributes to the X-ray emission from nanosecond-pulse discharges.

  19. Discovery of the double Doppler-shifted emission-line systems in the X-ray spectrum of SS 433

    NASA Technical Reports Server (NTRS)

    Kotani, Taro; Kawai, Nobuyuki; Aoki, Takashi; Doty, John; Matsuoka, Masaru; Mitsuda, Kazuhisa; Nagase, Fumiaki; Ricker, George; White, Nick E.

    1994-01-01

    We have used the CCD X-ray spectrometers on ASCA and resolved the X-ray emission line from the jet of SS 433 both into Doppler-shifted components with two distinct velocities, and into emission from different ionization states of iron, i.e., Fe XXV and Fe XXVI. This is the first direct detection of the two Doppler shifted beams in the X-ray spectra of SS 433 and allows the radial velocity of the jet along the line of sight to be determined with an accuracy comparable to the optical spectroscopy. We also found pairs of emission lines from other atomic species, such as ionized silicon and sulfur, with the Doppler shifts consistent with each other. This confirms the origin of the X-ray emission in the high temperature plasma in the jets.

  20. Stellar X-ray Emission And The Decay Of Dynamo Activity

    NASA Astrophysics Data System (ADS)

    Wright, Nicholas James; Drake, J. J.; Mamajek, E. E.

    2011-09-01

    Stellar activity and angular momentum operate in a feedback loop via the magnetic dynamo and coronally-driven stellar winds. Despite far-reaching implications of this from Solar activity and stellar chronology to the formation of close binaries and Supernova 1a progenitors we are far from a complete understanding of how these properties evolve over a stellar lifetime as well as the form of the underlying dynamo. We present the results of multiple studies designed to probe the stellar activity-rotation relationship. Using both an unbiased sample of stars with X-ray luminosities and rotation periods, and the results of a new Galactic X-ray population model we find a steep decay of X-ray activity with Rossby number that is inconsistent with a distributed dynamo model. This argues for an additional term in the dynamo number equation. Based on a scaling analysis for an interface dynamo we find this additional term implies that the fractional differential rotaiton of solar-type stars scales with the angular rotation rate to the power of two-thirds. Using our sample of high activity stars we conclusively observe supersaturation in the fastest rotators and show that it correlates with both the corotation radius and excess polar updraft. The latter theory (Stepien 2001) offers a stronger correlation, and is supported by other observations. Finally, the color-dependent form of the saturation threshold are used to show that coronal stripping is unlikely to be responsible for this effect. Instead we suggest that a different dynamo configuration is actually at work in stars with saturated coronal emission, resulting in a different parameterization of the X-ray emission level (causing apparent saturation under certain parameters). This assertion is backed up by the correlation between the empirically-determined saturation threshold and the time at which stars transition from the convective to the interface sequences in models of rotation spin-down.

  1. X-ray emission from plasmas created by smoothed KrF laser irradiation

    SciTech Connect

    Aglitskiy, Y.; Lehecka, T.; Deniz, A.; Hardgrove, J. [Science Applications International Corporation, McLean, Virginia 22102 (United States)] [Science Applications International Corporation, McLean, Virginia 22102 (United States); Seely, J.; Brown, C.; Feldman, U. [Space Science Division, Naval Research Laboratory, Washington, D.C. 20375 (United States)] [Space Science Division, Naval Research Laboratory, Washington, D.C. 20375 (United States); Pawley, C.; Gerber, K.; Bodner, S.; Obenschain, S.; Lehmberg, R.; McLean, E.; Pronko, M.; Sethian, J.; Stamper, J.; Schmitt, A.; Sullivan, C. [Plasma Physics Division, Naval Research Laboratory, Washington, D.C. 20375 (United States)] [Plasma Physics Division, Naval Research Laboratory, Washington, D.C. 20375 (United States); Holland, G.; Laming, M. [SFA Inc., 1401 McCormick Drive, Landover, Maryland 20785 (United States)] [SFA Inc., 1401 McCormick Drive, Landover, Maryland 20785 (United States)

    1996-09-01

    The x-ray emission from plasmas created by the Naval Research Laboratory Nike KrF laser [Phys. Plasmas {bold 3}, 2098 (1996) ] was characterized using imaging and spectroscopic instruments. The laser wavelength was 1/4 {mu}m, and the beams were smoothed by induced spatial incoherence (ISI). The targets were thin foils of CH, aluminum, titanium, and cobalt and were irradiated by laser energies in the range 100{endash}1500 J. A multilayer mirror microscope operating at an energy of 95 eV recorded images of the plasma with a spatial resolution of 2 {mu}m. The variation of the 95 eV emission across the 800 {mu}m focal spot was 1.3{percent} rms. Using a curved crystal imager operating in the 1{endash}2 keV x-ray region, the density, temperature, and opacity of aluminum plasmas were determined with a spatial resolution of 10 {mu}m perpendicular to the target surface. The spectral line ratios indicated that the aluminum plasmas were relatively dense, cool, and optically thick near the target surface. The absolute radiation flux was determined at 95 eV and in x-ray bandpasses covering the 1{endash}8 keV region. The electron temperature inferred from the slope of the x-ray flux versus energy data in the 5{endash}8 keV region was 900 eV for an incident laser energy of 200 J and an intensity of {approx_equal}10{sup 13} W/cm{sup 2}.

  2. Modulated X-ray emission of the magnetic O8.5V-star Tr16-22

    NASA Astrophysics Data System (ADS)

    Nazé, Yaël; Wade, Gregg A.; Petit, Véronique

    2014-09-01

    Using an extensive X-ray dataset, we analyzed the X-ray emission of the massive O-star Tr16-22, which was recently found to be magnetic. Its bright X-ray emission is found to be modulated with a ~54 d period. This timescale should represent the rotational timescale of the star, as it does for other magnetic massive stars. In parallel, new spectropolarimetric data confirm the published magnetic detection. Based on observations collected with the ESA science mission XMM-Newton, Chandra, and ESO-FORS2 instrument.Tables 1-3 are available in electronic form at http://www.aanda.org

  3. Soft X-ray Emission from the Spiral Galaxy NGC 1313

    E-print Network

    E. J. M. Colbert; R. Petre; E. M. Schlegel; S. D. Ryder

    1995-01-31

    The nearby barred spiral galaxy NGC 1313 has been observed with the PSPC instr- ument on board the ROSAT X-ray satellite. Ten individual sources are found. Three sources (X-1, X-2 and X-3 [SN~1978K]) are very bright (~10^40 erg/s) and are unusual in that analogous objects do not exist in our Galaxy. We present an X-ray image of NGC~1313 and \\xray spectra for the three bright sources. The emission from the nuclear region (R ~images do not indicate the presence of an active galactic nucleus at that position; however, the compact nature of the \\xray source (X-1) suggests that it is an accretion-powered object with central mass M >~ 10^3 Msun. Additional emission (L_X ~ 10^39 erg/s) in the nuclear region extends out to ~2.6 kpc and roughly follows the spiral arms. This emission is from 4 sources with luminosity of several x 10^38 erg/s, two of which are consistent with emission from population I sources (e.g., supernova remnants, and hot interstellar gas which has been heated by supernova remnants). The other two sources could be emission from population II sources (e.g., low-mass \\xray binaries). The bright sources X-2 and SN~1978K are positioned in the southern disk of NGC~1313. X-2 is variable and has no optical counterpart brighter than 20.8 mag (V-band). It is likely that it is an accretion-powered object in NGC~1313. The type-II supernova SN~1978K (Ryder \\etal 1993) has become extra- ordinarily luminous in X-rays $\\sim$13 years after optical maximum.

  4. Analysis of sawtooth oscillations using simultaneous measurement of electron cyclotron emission imaging and x-ray tomography on TFTR

    Microsoft Academic Search

    Y. Nagayama; K. M. McGuire; M. Bitter; A. Cavallo; E. D. Fredrickson; K. W. Hill; H. Hsuan; A. Janos; G. Taylor; M. Yamada

    1991-01-01

    High-resolution electron cyclotron emission and x-ray image reconstructions have been made simultaneously during the sawtooth crash in the fast rotating plasma with neutral beam injection heating on TFTR. The measured x-ray emission is identical as metal impurity radiation. The results suggest that the sawtooth crash is a full reconnection process of the TFTR sawteeth. The crescent shaped ``hot spot'' in

  5. Soft X-ray emission from the spiral galaxy NGC 1313

    E-print Network

    Colbert, E J M; Schlegel, E M; Ryder, S D; Colbert, Edward J M; Petre, R; Schlegel, E M; Ryder, S D

    1995-01-01

    The nearby barred spiral galaxy NGC 1313 has been observed with the PSPC instr- ument on board the ROSAT X-ray satellite. Ten individual sources are found. Three sources (X-1, X-2 and X-3 [SN~1978K]) are very bright (~10^40 erg/s) and are unusual in that analogous objects do not exist in our Galaxy. We present an X-ray image of NGC~1313 and \\xray spectra for the three bright sources. The emission from the nuclear region (R ~~ 10^3 Msun. Additional emission (L_X ~ 10^39 erg/s) in the nuclear region extends out to ~2.6 kpc and roughly follows the spiral arms. This emission is from 4 sources with luminosity of several x 10^38 erg/s, two of which are consistent with emission from population I sources (e.g., supernova remnants, and hot interstellar gas which has been heated by supernova remnants). The other two sources could be emission from population II sources (e.g., low-mass \\xray binaries). The bright sources X-2 and SN~1978K are positioned in the southern disk of NGC~1313. X-2 is variable and has no optical ...

  6. Emission Lines between 1 and 2 keV in Cometary X-Ray Spectra

    NASA Astrophysics Data System (ADS)

    Ewing, Ian; Christian, Damian J.; Bodewits, Dennis; Dennerl, Konrad; Lisse, Carey M.; Wolk, Scott J.

    2013-01-01

    We present the detection of new cometary X-ray emission lines in the 1.0-2.0 keV range using a sample of comets observed with the Chandra X-Ray Observatory and ACIS spectrometer. We have selected five comets from the Chandra sample with good signal-to-noise spectra. The surveyed comets are C/1999 S4 (LINEAR), C/1999 T1 (McNaught-Hartley), 153P/2002 (Ikeya-Zhang), 2P/2003 (Encke), and C/2008 8P (Tuttle). We modeled the spectra with an extended version of our solar wind charge exchange (SWCX) emission model. Above 1 keV, we find Ikeya-Zhang to have strong emission lines at 1340 and 1850 eV which we identify as being created by SWCX lines of Mg XI and Si XIII, respectively, and weaker emission lines at 1470, 1600, and 1950 eV formed by SWCX of Mg XII, Mg XI, and Si XIV, respectively. The Mg XI and XII and Si XIII and XIV lines are detected at a significant level for the other comets in our sample (LS4, MH, Encke, 8P), and these lines promise additional diagnostics to be included in SWCX models. The silicon lines in the 1700-2000 eV range are detected for all comets, but with the rising background and decreasing cometary emission, we caution that these detections need further confirmation with higher resolution instruments.

  7. CORONAL THICK TARGET HARD X-RAY EMISSIONS AND RADIO EMISSIONS

    SciTech Connect

    Lee, Jeongwoo [Physics Department, New Jersey Institute of Technology, Newark, NJ 07102 (United States); Lim, Daye; Choe, G. S.; Kim, Kap-Sung [School of Space Research, Kyung Hee University, Yongin 446-701 (Korea, Republic of); Jang, Minhwan [Department of Astronomy and Space Science, Kyung Hee University, Yongin 446-701 (Korea, Republic of)

    2013-05-20

    A distinctive class of hard X-ray (HXR) sources located in the corona was recently found, which implies that the collisionally thick target model (CTTM) applies even to the corona. We investigated whether this idea can be independently verified by microwave radiations which have been known as the best companion to HXRs. This study is conducted on the GOES M2.3 class flare which occurred on 2002 September 9 and was observed by the Reuven Ramaty High-Energy Solar Spectroscopic Imager and the Owens Valley Solar Array. Interpreting the observed energy-dependent variation of HXR source size under the CTTM, the coronal density should be as high as 5 Multiplication-Sign 10{sup 11} cm{sup -3} over a distance of up to 12''. To explain the cutoff feature of the microwave spectrum at 3 GHz, however, we require a density no higher than 1 Multiplication-Sign 10{sup 11} cm{sup -3}. Additional constraints must be placed on the temperature and magnetic field of the coronal source in order to reproduce the microwave spectrum as a whole. First, a spectral feature called the Razin suppression requires a magnetic field in a range of 250-350 G along with high viewing angles around 75 Degree-Sign . Second, to avoid excess fluxes at high frequencies due to the free-free emission that was not observed, we need a high temperature {>=}2 Multiplication-Sign 10{sup 7} K. These two microwave spectral features, Razin suppression and free-free emissions, become more significant at regions of high thermal plasma density and are essential for validating and determining additional parameters of the coronal HXR sources.

  8. "PIN"-ning Down a Nonthermal Component in the Hard X-ray Emission of the Coma Cluster with Suzaku HXD/XIS and XMM-Newton Observations

    E-print Network

    Sarazin, Craig

    "PIN"-ning Down a Nonthermal Component in the Hard X-ray Emission of the Coma Cluster with Suzaku halo known resides in the Coma cluster of galaxies, which is also the X-ray brightest non-cooling core at hard X-ray energies. Thus far, claimed detections of this emission in the Coma cluster

  9. Evaluation of high-resolution X-ray absorption and emission spectroscopy for the chemical speciation of binary titanium compounds.

    PubMed

    Reinhardt, F; Beckhoff, B; Eba, H; Kanngiesser, B; Kolbe, M; Mizusawa, M; Müller, M; Pollakowski, B; Sakurai, K; Ulm, G

    2009-03-01

    For the chemical speciation of binary compounds of tri- and tetravalent titanium, high-resolution X-ray absorption and emission spectra were recorded in different energy regimes in order to evaluate and to qualify both near-edge X-ray absorption fine structure (NEXAFS or XANES) spectroscopy and wavelength-dispersive X-ray emission spectroscopy (WDXES) as spectroscopic methods for this analytical task. A high resolving power in the excitation channel was ensured by use of monochromatic synchrotron radiation provided by BESSY II, where the soft X-ray emission spectra were recorded as well. In the hard X-ray range, emission measurements were performed at SPring-8. For a comparison of the information gained from the various methods, the titanium compounds were classified according to the bonded titanium's oxidation state. Thus, it was possible to distinguish between inner atomic effects due to different oxidation states and external effects related to the respective ligand and the surrounding structure. It becomes evident, that certain compounds, while hardly distinguishable in their Ti-K XANES spectra, still show significant differences in their emission characteristics. On the other hand, some compounds with little difference in their emission spectra are easily distinguished by their NEXAFS structures. Only the combined use of the complementary methods both in the soft and the hard X-ray range allows for a reliable speciation of tri- and tetravalent titanium compounds. PMID:19203285

  10. X-RAY SPECTRAL CUTOFF AND THE LACK OF HARD X-RAY EMISSION FROM TWO ULTRALUMINOUS X-RAY SOURCES M81 X-6 AND HOLMBERG IX X-1

    SciTech Connect

    Dewangan, G. C.; Misra, R. [IUCAA, Post Bag 4, Ganeshkhind, Pune 411007 (India); Jithesh, V.; Ravikumar, C. D., E-mail: gulabd@iucaa.ernet.in [Department of Physics, University of Calicut, Malappuram 673635 (India)

    2013-07-10

    We present broadband X-ray spectral study of two ultraluminous X-ray sources (ULXs), M81 X-6 and Holmberg IX X-1, based on Suzaku and XMM-Newton observations. We perform joint broadband spectral analysis of the brightest sources in the field, i.e., the two ULXs and the active galactic nucleus (AGN) in M81, and demonstrate that the X-ray spectra of the ULXs cut off at energies {approx}> 3 keV with negligible contribution at high energies in the Suzaku HXD/PIN band. The 90% upper limit on the 10-30 keV band luminosity of an underlying broadband power-law component is 3.5 Multiplication-Sign 10{sup 38} erg s{sup -1} for M81 X-6 and 1.2 Multiplication-Sign 10{sup 39} erg s{sup -1} for Holmberg IX X-1. These limits are more than an order of magnitude lower than the bolometric (0.1-30 keV) luminosity of 6.8 Multiplication-Sign 10{sup 39} erg s{sup -1} for M81 X-6 and 1.9 Multiplication-Sign 10{sup 40} erg s{sup -1} for Holmberg IX X-1. Our results confirm earlier indications of spectral cutoffs inferred from the XMM-Newton observations of bright ULXs and show that there is not an additional high-energy power-law component contributing significantly to the X-ray emission. The spectral form of the two ULXs are very different from those of Galactic black hole X-ray binaries (BHBs) or AGNs. This implies that the ULXs are neither simply scaled-up versions of stellar-mass BHBs nor scaled-down versions of AGNs.

  11. X-ray and optical continua of active galactic nuclei with extreme Fe II emission

    NASA Astrophysics Data System (ADS)

    Lawrence, A.; Elvis, M.; Wilkes, B. J.; McHardy, I.; Brandt, N.

    1997-03-01

    We present the results of ROSAT PSPC observations of three active galactic nuclei (AGN) with extremely strong FeII emission (PHL 1092, IRAS 07598+6508 and IZw1) and two AGN with very weak FeII emission (Mrk 10 and 110). The weak FeII emitters have X-ray spectra typical of Type 1 AGN (alpha=1.35 and 1.41, where alpha is the spectral energy index). Of the strong FeII emitters, two have steep spectra (PHL 1092 has alpha=3.5, and IZw1 has Upsilon=2.0) and the third, IRAS 07598+6508, is barely detected and so is extremely X-ray-quiet (alpha_ox=2.45). During our observations, PHL 1092 varied by a factor of 4, unusually fast for such a high-luminosity object, and requiring an efficiency of matter-to-energy conversion of 2 per cent or more. Compiling recently published data on other strong FeII emitters, we find that they are always X- ray-quiet, and usually X-ray-steep. Adding these data to the complete UVX-selected quasar sample of Laor et al., we find a statistical connection of FeII/H? with alpha_x but not a simple relationship: weak FeII emitters always have flat spectra, but strong FeII emitters can be either flat or steep. A much cleaner relationship exists between FeII strength and X-ray loudness, as quantified by alpha_ix, the spectral index between 1mum and 2keV. We also confirm that FeII/H? anticorrelates with Balmer line velocity width, which in turn correlates well with both alpha_x and alpha_ix in the sense that AGN with narrow lines are X-ray-quiet. There is also marginal evidence that FeII/H? correlates with both optical continuum slope and the curvature of the optical-UV-X-ray continuum: strong FeII objects tend to have steeper continua and weaker `blue bumps'. The amount of extinction required to explain the optical steepening compared to normal quasars [E(B-V) in the range 0.2 to 0.6] suggests absorbing columns in the range (1-3)x10^21 cm^-2, just about the right amount to reduce the ROSAT-band X-ray flux by enough to explain the correlation with alpha_ix. However, the spectral shapes observed in the ROSAT band are not consistent with a simple absorption model. Three objects in our total sample of 19 stand out persistently in all correlations: Mrk 231, IRAS 07598+6508 and Mrk 507. Interestingly, two out of the three are known to have low-ionization, broad absorption lines in the UV, and the third (Mrk 507) has no UV spectrum available. Furthermore, low-ionization, broad absorption lines are at least an order of magnitude more common in strong FeII emitters than in quasars in general. Overall, continuum shape and blueshifted absorption should be added to the intriguing cluster of properties which all vary loosely together, and which has been isolated as `eigenvector 1' by Boroson & Green: FeII strength, velocity width, narrow-line strength and line asymmetry. We suggest that the underlying parameter is the density of an outflowing wind.

  12. A Statistical Investigation of the Connection between X-ray and Water Maser Emission in Galaxy Centers

    NASA Astrophysics Data System (ADS)

    Nutter, Andrew; Constantin, A.

    2014-01-01

    Previous studies reveal a potential intimate connection between maser emission and X-ray obscuring columns in galaxy centers, with higher obscuration for more pronounced water maser activity. The number statistics involved in these investigations remain small, however. Currently, there are 151 confirmed maser detections and over 3300 surveyed non-maser galaxies. A careful crossmatch with public data from five X-ray telescope survey catalogs (the 2XMMi-DR3 from the XMM-Newton telescope, the Chandra Source Catalog, the ROSAT All-Sky Survey bright and faint source catalogs, the Swift Burst Alert Telescope 70 month survey, and the Integral IBIS 7-year All-Sky Survey) reveals X-ray information for 103 detected maser galaxies and ~650 non-detections, offering a clear statistical advantage over previous work. We are thus able to conduct a statistical comparison of the X-ray properties of the largest sample of X-ray active galaxies surveyed for water vapor emission at 22 GHz. We find that the X-ray detection rate of masers is on average 3.5 times greater than that of non-masers, with the rates increasing in harder X-ray bands. The X-ray apparent brightness of maser and non-maser detections are similar at soft X-rays, but the maser galaxies are increasingly brighter than the non-masers in the harder bands. The X-ray luminosities calculated without correction for intrinsic absorption are lower for maser galaxies, which supports previous results showing generally higher neutral hydrogen column densities (NH) in these sources. We statistically test the potential evidence for greater obscuration in increasingly more luminous maser galaxies via monte carlo simulations of various NH distributions that are motivated by previous studies, and explore the possible physical connections that could govern them.

  13. X-ray emission from the extended emission-line region of the powerful radio galaxy 3C171

    E-print Network

    Hardcastle, M J; Harris, D E

    2009-01-01

    We present Chandra X-ray observations of the powerful radio galaxy 3C171, which reveal an extended region of X-ray emission spatially associated with the well-known 10-kpc scale optical emission-line region around the radio jets. We argue that the X-ray emission comes from collisionally ionized material, originally cold gas that has been shock-heated by the passage of the radio jet, rather than being photoionized by nuclear radiation. This hot plasma is also responsible for the depolarization at low frequencies of the radio emission from the jet and hotspots, which allows us to estimate the magnetic field strength in the external medium. We show that it is likely that both the cold emission-line gas and the hot plasma in which it is embedded are being driven out of the host galaxy of 3C171 at supersonic speeds. A significant fraction of the total energy budget of the central AGN must have been expended in driving this massive outflow. We argue that 3C171, with its unusual radio morphology and the strong relat...

  14. Chemical State Analysis of Phosphorus Performed by X-ray Emission Spectroscopy.

    PubMed

    Petric, Marko; Bohinc, Rok; Bu?ar, Klemen; Žitnik, Matjaž; Szlachetko, Jakub; Kav?i?, Matjaž

    2015-06-01

    An experimental and theoretical study of phosphorus electronic structure based on high energy resolution X-ray emission spectroscopy was performed. The K? and K? emission spectra of several phosphorus compounds were recorded using monochromatic synchrotron radiation and megaelectronvolt (MeV) proton beam for target excitation. Measured spectra are compared to the results of ab initio quantum chemical calculations based on density functional theory (DFT). Clear correlation between energy position of the K? emission line and the phosphorus formal oxidation state as well as DFT-calculated number of valence electrons is obtained; measured energy shifts are reproduced by the calculations. Chemical sensitivity is increased further by looking at the K? emission spectra probing directly the structure of occupied molecular orbitals. Energies and relative intensities of main components are given together with the calculated average atomic character of the corresponding molecular orbitals involved in transitions. PMID:25927339

  15. X-Ray Emission from Stellar Jets by Collision against High-density Molecular Clouds: an Application to HH 248

    NASA Astrophysics Data System (ADS)

    López-Santiago, J.; Bonito, R.; Orellana, M.; Miceli, M.; Orlando, S.; Ustamujic, S.; Albacete-Colombo, J. F.; de Castro, E.; Gómez de Castro, A. I.

    2015-06-01

    We investigate the plausibility of detecting X-ray emission from a stellar jet that impacts a dense molecular cloud, a scenario that may be typical for classical T Tauri stars with jets in dense star-forming complexes. We first model the impact of a jet against a dense cloud using two-dimensional axisymmetric hydrodynamic simulations, exploring different configurations of the ambient environment. Then, we compare our results with XMM-Newton observations of the Herbig–Haro object HH 248, where extended X-ray emission aligned with the optical knots is detected at the edge of the nearby IC 434 cloud. Our simulations show that a jet can produce plasma with temperatures up to 107 K, consistent with production of X-ray emission, after impacting a dense cloud. We find that jets denser than the ambient medium but less dense than the cloud produce detectable X-ray emission only at impact with the cloud. From an exploration of the model parameter space, we constrain the physical conditions (jet density and velocity and cloud density) that reproduce the intrinsic luminosity and emission measure of the X-ray source possibly associated with HH 248 well. Thus, we suggest that the extended X-ray source close to HH 248 corresponds to a jet impacting a dense cloud.

  16. Plasma heating in solar flares and their soft and hard X-ray emissions

    SciTech Connect

    Falewicz, R., E-mail: falewicz@astro.uni.wroc.pl [Astronomical Institute, University of Wroc?aw, 51-622 Wroc?aw, ul. Kopernika 11 (Poland)

    2014-07-01

    In this paper, the energy budgets of two single-loop-like flares observed in X-ray are analyzed under the assumption that nonthermal electrons (NTEs) are the only source of plasma heating during all phases of both events. The flares were observed by RHESSI and GOES on 2002 February 20 and June 2, respectively. Using a one-dimensional (1D) hydrodynamic code for both flares, the energy deposited in the chromosphere was derived applying RHESSI observational data. The use of the Fokker-Planck formalism permits the calculation of distributions of the NTEs in flaring loops and thus spatial distributions of the X-ray nonthermal emissions and integral fluxes for the selected energy ranges that were compared with the observed ones. Additionally, a comparative analysis of the spatial distributions of the signals in the RHESSI images was conducted for the footpoints and for all the flare loops in selected energy ranges with these quantities' fluxes obtained from the models. The best compatibility of the model and observations was obtained for the 2002 June 2 event in the 0.5-4 Å GOES range and total fluxes in the 6-12 keV, 12-25 keV, 20-25 keV, and 50-100 keV energy bands. Results of photometry of the individual flaring structures in a high energy range show that the best compliance occurred for the 2002 June 2 flare, where the synthesized emissions were at least 30% higher than the observed emissions. For the 2002 February 20 flare, synthesized emission is about four times lower than the observed one. However, in the low energy range the best conformity was obtained for the 2002 February 20 flare, where emission from the model is about 11% lower than the observed one. The larger inconsistency occurs for the 2002 June 2 solar flare, where synthesized emission is about 12 times greater or even more than the observed emission. Some part of these differences may be caused by inevitable flaws of the applied methodology, like by an assumption that the model of the flare is symmetric and there are no differences in the emissions originating from the feet of the flares loop and by relative simplicity of the applied numerical 1D code and procedures. No doubt a significant refinement of the applied numerical models and more sophisticated implementation of the various physical mechanisms involved are required to achieve a better agreement. Despite these problems, a collation of modeled results with observations shows that soft and hard X-ray emissions observed for analyzed single-loop-like events may be fully explained by electron-beam-driven evaporation only.

  17. Plasma Heating in Solar Flares and their Soft and Hard X-Ray Emissions

    NASA Astrophysics Data System (ADS)

    Falewicz, R.

    2014-07-01

    In this paper, the energy budgets of two single-loop-like flares observed in X-ray are analyzed under the assumption that nonthermal electrons (NTEs) are the only source of plasma heating during all phases of both events. The flares were observed by RHESSI and GOES on 2002 February 20 and June 2, respectively. Using a one-dimensional (1D) hydrodynamic code for both flares, the energy deposited in the chromosphere was derived applying RHESSI observational data. The use of the Fokker-Planck formalism permits the calculation of distributions of the NTEs in flaring loops and thus spatial distributions of the X-ray nonthermal emissions and integral fluxes for the selected energy ranges that were compared with the observed ones. Additionally, a comparative analysis of the spatial distributions of the signals in the RHESSI images was conducted for the footpoints and for all the flare loops in selected energy ranges with these quantities' fluxes obtained from the models. The best compatibility of the model and observations was obtained for the 2002 June 2 event in the 0.5-4 Å GOES range and total fluxes in the 6-12 keV, 12-25 keV, 20-25 keV, and 50-100 keV energy bands. Results of photometry of the individual flaring structures in a high energy range show that the best compliance occurred for the 2002 June 2 flare, where the synthesized emissions were at least 30% higher than the observed emissions. For the 2002 February 20 flare, synthesized emission is about four times lower than the observed one. However, in the low energy range the best conformity was obtained for the 2002 February 20 flare, where emission from the model is about 11% lower than the observed one. The larger inconsistency occurs for the 2002 June 2 solar flare, where synthesized emission is about 12 times greater or even more than the observed emission. Some part of these differences may be caused by inevitable flaws of the applied methodology, like by an assumption that the model of the flare is symmetric and there are no differences in the emissions originating from the feet of the flares loop and by relative simplicity of the applied numerical 1D code and procedures. No doubt a significant refinement of the applied numerical models and more sophisticated implementation of the various physical mechanisms involved are required to achieve a better agreement. Despite these problems, a collation of modeled results with observations shows that soft and hard X-ray emissions observed for analyzed single-loop-like events may be fully explained by electron-beam-driven evaporation only.

  18. Height structure of X-ray, EUV, and white-light emission in a solar flare

    NASA Astrophysics Data System (ADS)

    Battaglia, M.; Kontar, E. P.

    2011-09-01

    Context. The bulk of solar flare emission originates from very compact sources located in the lower solar atmosphere and observable at a broad range of wavelengths such as near optical, UV, EUV, soft and hard X-rays, and gamma-rays. Nevertheless, very few spatially resolved imaging observations have been performed to determine the structure of these compact regions. Aims: We investigate the above-the-photosphere heights of hard X-ray (HXR), EUV, and white-light (6173 Å) continuum sources in the low atmosphere and the corresponding densities at these heights. By considering the collisional transport of solar energetic electrons, we also determine where and how much energy is deposited and compare these values with the emissions observed in HXR, EUV, and the continuum. Methods: Simultaneous EUV/continuum images from AIA/HMI on-board SDO and HXR RHESSI images are compared to study a well-observed gamma-ray limb flare. Using RHESSI X-ray visibilities, we determine the height of the HXR sources as a function of energy above the photosphere. Co-aligning AIA/SDO and HMI/SDO images with RHESSI, we infer, for the first time, the heights and characteristic densities of HXR, EUV, and continuum (white-light) sources in the flaring footpoint of the magnetic loop. Results: We find 35-100 keV HXR sources at heights of between 1.7 and 0.8 Mm above the photosphere, below the 6173 Å continuum emission that appears at heights 1.5-3 Mm and the peak of EUV emission originating near 3 Mm. Conclusions: The EUV emission locations are consistent with energy deposition from low energy electrons of ~12 keV occurring in the top layers of the fully ionized chromosphere/low corona and not by ? 20 keV electrons that produce HXR footpoints in the lower neutral chromosphere. The maximum of white-light continuum emission appears between the HXR and EUV emission, presumably in the transition between ionized and neutral atmospheres, implying that it consists of free-bound and free-free continuum emission. We note that the energy deposited by low energy electrons is sufficient to explain the energetics of both the optical and UV emissions. Two movies are available in electronic form at http://www.aanda.org

  19. High-pressure X-ray diffraction and X-ray emission studies on iron-bearing silicate perovskite under high pressures

    SciTech Connect

    Lin, Jung-Fu; Speciale, Sergio; Prakapenka, Vitali B.; Dera, Przemek; Lavina, Babara; Watson, Heather C. (NIU); (UC); (Texas); (GFZ)

    2010-06-22

    Iron-bearing silicate perovskite is believed to be the most abundant mineral of the Earth's lower mantle. Recent studies have shown that Fe{sup 2+} exists predominantly in the intermediate-spin state with a total spin number of 1 in silicate perovskite in the lower part of the lower mantle. Here we have measured the spin states of iron and the pressure-volume relation in silicate perovskite [(Mg{sub 0.6},Fe{sub 0.4})SiO{sub 3}] at pressure conditions relevant to the lowermost mantle using in situ X-ray emission and X-ray diffraction in a diamond cell. Our results showed that the intermediate-spin Fe{sup 2+} is stable in the silicate perovskite up to {approx} 125 GPa but starts to transition to the low-spin state at approximately 135 GPa. Concurrent X-ray diffraction measurements showed a decrease of approximately 1% in the unit cell volume in the silicate perovskite [(Mg{sub 0.6},Fe{sub 0.4})SiO{sub 3}], which is attributed to the intermediate-spin to the low-spin transition. The transition pressure coincides with the pressure conditions of the lowermost mantle, raising the possibility of the existence of the silicate perovskite phase with the low-spin Fe{sup 2+} across the transition from the post-perovskite to the perovskite phases in the bottom of the D{double_prime} layer.

  20. Ultrafast Core-Hole Induced Dynamics in Water probed by X-ray Emission Spectroscopy

    SciTech Connect

    Odelius, Michael; Ogasawara, Hirohito; Nordlund, Dennis; Fuchs, Oliver; Weinhardt, Lothar; Maier, Florian; Umbach, Eberhard; Heske, Clemens; Zubavichus, Yan; Grunze, Michael; Denlinger, Jonathan D.; Pettersson, Lars G.M.; Nilsson, Anders

    2004-11-09

    The isotope effect and excitation-energy dependence have been measured in the oxygen K-edge x-ray emission spectrum (XES). The use of XES to monitor core decay processes provides information about molecular dynamics (MD) on an ultrafast time scale through the O1s lifetime of a few femtoseconds. Different nuclear masses give rise to differences in the dynamics and the observed isotope effect in XES is direct evidence of the importance of such processes. MD simulations show that even the excitation-energy dependence in the XES is mainly related to differences in core-excited-state dynamics.

  1. Ultrafast Core-Hole-Induced Dynamics in Water Probed by X-Ray Emission Spectroscopy

    SciTech Connect

    Odelius, Michael; Nordlund, Dennis; Pettersson, Lars G.M. [FYSIKUM, Stockholm University, Albanova, S-106 91 Stockholm (Sweden); Ogasawara, Hirohito [Stanford Synchrotron Radiation Laboratory, Post Office Box 20450, Stanford, California 94309 (United States); Fuchs, Oliver; Weinhardt, Lothar; Maier, Florian; Umbach, Eberhard [Experimentelle Physik II, Universitaet Wuerzburg, Am Hubland, 97074 Wuerzburg (Germany); Heske, Clemens [Department of Chemistry, University of Nevada, Las Vegas, Nevada 89154-4003 (United States); Zubavichus, Yan; Grunze, Michael [Angewandte Physikalische Chemie, Universitaet Heidelberg, INF 253, 69120 Heidelberg (Germany); Denlinger, Jonathan D. [Advanced Light Source, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720 (United States); Nilsson, Anders [FYSIKUM, Stockholm University, Albanova, S-106 91 Stockholm (Sweden); Stanford Synchrotron Radiation Laboratory, Post Office Box 20450, Stanford, California 94309 (United States)

    2005-06-10

    The isotope effect and excitation-energy dependence have been measured in the oxygen K-edge x-ray emission spectrum (XES). The use of XES to monitor core decay processes provides information about molecular dynamics (MD) on an ultrafast time scale through the O1s lifetime of a few femtoseconds. Different nuclear masses give rise to differences in the dynamics and the observed isotope effect in XES is direct evidence of the importance of such processes. MD simulations show that even the excitation-energy dependence in the XES is mainly related to differences in core-excited-state dynamics.

  2. A survey of X-ray emission from 100 kpc radio jets

    NASA Astrophysics Data System (ADS)

    Schwartz, D. A.; Marshall, H. L.; Worrall, D. M.; Birkinshaw, M.; Perlman, E.; Lovell, J. E. J.; Jauncey, D.; Murphy, D.; Gelbord, J.; Godfrey, L.; Bicknell, G.

    2015-03-01

    We have completed a Chandra snapshot survey of 54 radio jets that are extended on arcsec scales. These are associated with flat spectrum radio quasars spanning a redshift range z=0.3 to 2.1. X-ray emission is detected from the jet of approximately 60% of the sample objects. We assume minimum energy and apply conditions consistent with the original Felten-Morrison calculations in order to estimate the Lorentz factors and the apparent Doppler factors. This allows estimates of the enthalpy fluxes, which turn out to be comparable to the radiative luminosities.

  3. New evidence of hard X-ray emission from 4U0515+38

    NASA Astrophysics Data System (ADS)

    Polcaro, V. F.; Bazzano, A.; La Padula, C.; Ubertini, P.; Manchanda, R. K.

    1984-02-01

    The region of sky containing the unidentified Uhuru source 4U0515+38 was scanned during a deep sky survey performed by means of one-square meter balloon-borne hard X-rays telescope, flown the 21st July 1981. A statistically significant excess, corresponding to about 16?, was detected and the spectrum was found to be in good agreement with a previous measurement made in 1980 with a similar detector. On the basis of the error boxes from these two flights and the Uhuru satellite, a possible association with the emission line star GG329 is suggested.

  4. Chandra detection of X-ray emission lines from the blast wave of V745 Sco

    NASA Astrophysics Data System (ADS)

    Drake, J. J.; Starrfield, S.; Osborne, J.-U. Ness J. P.; Page, K.; Shore, S. N.; Wagner, R. M.; Woodward, C. E.

    2014-02-01

    The recurrent nova V745 Sco was discovered in outburst on 2014 Feb 6 (CBET #3803) and was observed by the Chandra X-ray Observatory Low-Energy (LETG) grating on 2014 February 22.52 and 23.43 UT, and by the High-Energy (HETG; HEG and MEG) gratings on February 23.59 UT. The total net exposures were 45ks and 39ks for the LETG and HETG, respectively. The LETG spectra obtained with the HRC-S detector are dominated by emission lines in the 5-15 A range, with a first order count rate of 0.29 count/s.

  5. Investigation of surface structure with X-ray absorption and electron emission spectroscopies

    NASA Astrophysics Data System (ADS)

    Pauli, Mark Daniel

    The use of electron spectromicroscopy for the study of the chemical composition and electronic properties of surfaces, overlayers, and interfaces has become widely accepted. Improvements to the optics of instruments such as the X-ray photo electron emission microscope have pushed spectroscopic microscopies into the realm of very high spatial resolution, at and below 1 micrometer [1]. Coupled with the high spectral resolution available from third generation synchrotron sources, this spatial resolution allows the measurement of micro-X-ray absorption near-edge spectra in addition to the more typical electron emission spectra and diffraction patterns. Complementary to the experimental developments is the development of improved theoretical methods for computational modeling of X-ray absorption and emission spectroscopies. In the field of tribochemistry, zinc dialkyl dithiophosphate (ZDDP) has long been a topic of much study. ZDDP is widely used as an anti-wear additive in engine oils and there is interest in determining the decomposition products of ZDDP that provide this protection against friction. An analysis of X-ray absorption near-edge spectra of thermal films from ZDDP samples is presented, including a comparison of the Zinc L-edge spectra with model calculations [2]. It was found essential to carry out self-consistent calculations of the electronic structure for the modeling. For the techniques of electron diffraction, a new method for a full multiple-scattering calculation of diffraction patterns from crystals with two-dimensional periodicity parallel to the surface is presented [3]. The calculation makes use of Helmholtz's reciprocity principle to compute the path-reversed process of the back propagation of a photoelectron from the position of a distant detector to that of the emitting atom. Early application is demonstrated with simulations of 64 eV M2,3VV and 914 eV L 2,3VV Auger electron diffraction from a Cu(001) surface. The functionality of the path-reversed calculation is greatly increased by extension to photoelectron diffraction for crystal surfaces with many atoms per unit cell [4]. The results are essentially indistinguishable from those of a conventional forward-path calculation. Application to photoelectron diffraction for 955 eV O 1s emission from a MgO(001) surface shows good agreement with experiment.

  6. X-ray emission spectra and valence band structure of the 3d transition metal oxides

    Microsoft Academic Search

    V. R. Galakhov; S. M. Butorin; E. Z. Kurmaev; M. A. Korotin

    1991-01-01

    X-ray emission oxygen Kalpha and 3d transition metal Lalpha spectra for MnO, FeO, CoO, NiO, and CuO have been compared in the same energy scale by using Me 2p and O 1s binding energies. In the valence band of CuO the so-called d-p resonance between Cu 3d and O 2p states was observed. The 3d metal Lalpha-spectra for these oxides

  7. Application of resonant X-ray emissions for molecular\\/electronic structure analysis of boron nitrides

    Microsoft Academic Search

    Y. Muramatsu; H. Kouzuki; T. Kaneyoshi; M. Motoyama; A. Agui; S. Shin; H. Kato; J. Kawai

    1997-01-01

    *  –B1s-1 transitions were observed in w-BN composed of four-fold boron atoms and in h-BN composed of three-fold boron atoms, when\\u000a the photon energy of the incident undulator beams coincided with the B1s–B2p?* absorption energy. However, no resonance was observed in c-BN composed of four-fold boron atoms. The resonant X-ray emission\\u000a reflects the electronic structure of unoccupied molecular orbitals which strongly

  8. Some aspects of radio and hard X-ray emissions of solar flares

    NASA Astrophysics Data System (ADS)

    Karlický, Marian

    2001-06-01

    Two examples of the 1-2 GHz radio observations made by the Ondrejov radiospectrograph are shown: a) The October 5, 1992 drifting pulsation structure, and b) the November 9, 1998 high-frequency type II-like burst. We propose a model in which the drifting pulsations are caused by quasi-periodic particle accelerations in the magnetic reconnection in space under the ejected plasmoid. Then a new model of the electron component heating during the neutral beam bombardment of the dense atmospheric layers is presented and its relevance to the hard X-ray emission is discussed.

  9. X-ray and EUV Emission Studies of Copper Vacuum Spark Plasma

    NASA Astrophysics Data System (ADS)

    Chan, L. S.; Ghomeishi, M.; Yap, S. L.; Wong, C. S.

    2010-07-01

    A vacuum spark system with a copper anode and electrode of gap 1.5 mm is investigated for the purpose of developing it as a possible radiation source for Next Generation Lithography (NGL). At discharge voltage in the range of 10 to 15 kV and an ambient pressure of about 10-3 mbar, both X-ray (measured by PIN diode) and extreme ultraviolet, EUV (measured by SXUV5A with integrated filter) can be measured simultaneously when good pinching discharge as indicated by sharp dip in the waveform of the rate of current is achieved. For discharge with mild pinching, only EUV emission is observed.

  10. Anatomy of the AGN in NGC 5548: the X-ray narrow emission lines

    NASA Astrophysics Data System (ADS)

    Whewell, M.; Branduardi-Raymont, G.; Kaastra, J.; Mehdipour, M.; Bianchi, S.; NGC 5548 Collaboration

    2014-07-01

    After a very successful multi-satellite campaign on Mrk 509 in 2009, we conducted a similar campaign on the AGN NGC 5548 in 2013. During the latter the source appeared unusually strongly absorbed in the soft X-rays, and signatures of strong outflows were also present in the UV. While a talk giving an overview of the campaign (PI: J. Kaastra) is also proposed at this conference, we will focus here on the data obtained from the XMM-RGS, resulting in a stacked spectrum of 660 ks. Narrow emission lines, including He-like triplets of Oxygen, Nitrogen and Neon, and radiative recombination (RRC) features dominate this spectrum due to the low soft X-ray continuum flux. All emission features are consistent with having constant flux over our campaign. The O VII triplet has been one focus of our analysis, especially due to unexpected differences of ˜300 km s^{-1} among the measured outflow velocities of its individual lines. The RRCs allow us to directly calculate a temperature of the emitting gas of a few eV (˜10^{4}K), favouring photoionised conditions. We have modelled the emission lines and features using the photoionisation code Cloudy, to attempt to construct a self-consistent picture of the physical environment of the AGN.

  11. Hard X-ray emission from the galaxy cluster A2256

    E-print Network

    Fusco-Femiano, R; De Grandi, S; Feretti, L; Giovannini, G; Grandi, P; Malizia, A; Matt, G; Molendi, S

    2000-01-01

    After the positive detection by BeppoSAX of hard X-ray radiation up to ~80 keV in the Coma cluster spectrum, we present evidence for nonthermal emission from A2256 in excess of thermal emission at a 4.6sigma confidence level. In addition to this power law component, a second nonthermal component already detected by ASCA could be present in the X-ray spectrum of the cluster, not surprisingly given the complex radio morphology of the cluster central region. The spectral index of the hard tail detected by the PDS onboard BeppoSAX is marginally consistent with that expected by the inverse Compton model. A value of ~0.05 microG is derived for the intracluster magnetic field of the extended radio emission in the northern regions of the cluster, while a higher value of \\~0.5 microG could be present in the central radio halo, likely related to the hard tail detected by ASCA.

  12. Hard X-ray emission from the galaxy cluster A2256

    E-print Network

    R. Fusco-Femiano; D. Dal Fiume; S. De Grandi; L. Feretti; G. Giovannini; P. Grandi; A. Malizia; G. Matt; S. Molendi

    2000-03-13

    After the positive detection by BeppoSAX of hard X-ray radiation up to ~80 keV in the Coma cluster spectrum, we present evidence for nonthermal emission from A2256 in excess of thermal emission at a 4.6sigma confidence level. In addition to this power law component, a second nonthermal component already detected by ASCA could be present in the X-ray spectrum of the cluster, not surprisingly given the complex radio morphology of the cluster central region. The spectral index of the hard tail detected by the PDS onboard BeppoSAX is marginally consistent with that expected by the inverse Compton model. A value of ~0.05 microG is derived for the intracluster magnetic field of the extended radio emission in the northern regions of the cluster, while a higher value of \\~0.5 microG could be present in the central radio halo, likely related to the hard tail detected by ASCA.

  13. Generation of isolated single attosecond hard X-ray pulse in enhanced self-amplified spontaneous emission scheme.

    PubMed

    Kumar, Sandeep; Kang, Heung-Sik; Kim, Dong Eon

    2011-04-11

    The generation of isolated attosecond hard x-ray pulse has been studied under the enhanced self-amplified spontaneous emission (ESASE) scheme with the density and energy modulation of an electron bunch. It is demonstrated in simulation that an isolated attosecond hard x-ray pulse of a high contrast ratio can be produced by adjusting a driver laser wavelength and the energy distribution of an electron bunch. An isolated attosecond pulse of ~146 attosecond full-width half-maximum (FWHM) at 0.1 nm wavelength is obtained with a saturation length of 34 meter for the electron beam parameters of Korean X-ray Free Electron laser. PMID:21503061

  14. COMPARISON OF LEAD CONCENTRATION IN SURFACE SOIL BY INDUCTED COUPLED PLASMA/OPTICAL EMISSION SPECTROMETRY AND X-RAY FLUORESCENCE

    E-print Network

    Boyer, Edmond

    COMPARISON OF LEAD CONCENTRATION IN SURFACE SOIL BY INDUCTED COUPLED PLASMA/OPTICAL EMISSION by Inducted Coupled Plasma/Optical Emission Spectrometry (ICP/OES) and by X-ray fluorescence (XRF). During of composite soil samples and analyses at laboratory by the Inducted Coupled Plasma/Optical Emission

  15. X-ray Emission from the Sombrero Galaxy: A Galactic-scale Outflow

    NASA Astrophysics Data System (ADS)

    Li, Zhiyuan; Jones, Christine; Forman, William R.; Kraft, Ralph P.; Lal, Dharam V.; Di Stefano, Rosanne; Spitler, Lee R.; Tang, Shikui; Wang, Q. Daniel; Gilfanov, Marat; Revnivtsev, Mikhail

    2011-04-01

    Based on new and archival Chandra observations of the Sombrero galaxy (M 104 = NGC 4594), we study the X-ray emission from its nucleus and the extended X-ray emission in and around its massive stellar bulge. We find that the 0.3-8 keV luminosity of the nucleus appears constant at ~2.4 × 1040 erg s-1, or ~10-7 of its Eddington luminosity, on three epochs between 1999 December and 2008 April, but drops by a factor of two in the 2008 November observation. The 2-6 keV unresolved emission from the bulge region closely follows the K-band starlight and most likely arises from unresolved stellar sources. At lower energies, however, the unresolved emission reaches a galactocentric radius of at least 23 kpc, significantly beyond the extent of the starlight, clearly indicating the presence of diffuse hot gas. We isolate the emission of the gas by properly accounting for the emission from unresolved stellar sources, predominantly cataclysmic variables and coronally active binaries, whose quasi-universal X-ray emissivity was recently established. We find a gas temperature of ~0.6 keV with little variation across the field of view, except for a lower temperature of ~0.3 keV along the stellar disk. The metal abundance is not well constrained due to the limited counting statistics, but is consistent with metal enrichment by Type Ia supernovae (SNe Ia). We measure a total intrinsic 0.3-2 keV luminosity of ~2 × 1039 erg s-1, which corresponds to only 1% of the available energy input by SNe Ia in the bulge, but is comparable to the prediction by the latest galaxy formation models for disk galaxies as massive as Sombrero. However, such numerical models do not fully account for internal feedback processes, such as nuclear feedback and stellar feedback, against accretion from the intergalactic medium. On the other hand, we find no evidence for either the nucleus or the very modest star-forming activities in the disk to be a dominant heating source for the diffuse gas. We also show that neither the expected energy released by SNe Ia nor the expected mass returned by evolved stars is recovered by observations. We argue that in Sombrero a galactic-scale subsonic outflow of hot gas continuously removes much of the "missing" energy and mass input from the bulge region. The observed density and temperature distributions of such an outflow, however, continue to pose challenges to theoretical studies.

  16. THE SOFT X-RAY AND NARROW-LINE EMISSION OF Mrk 573 ON KILOPARSEC SCALES

    SciTech Connect

    Gonzalez-Martin, O. [IESL, Foundation for Research and Technology, 71110 Heraklion, Crete (Greece); Acosta-Pulido, J. A.; Garcia, A. M. Perez [Instituto de Astrofisica de Canarias (IAC), C/VIa Lactea, s/n E-38205, La Laguna, Tenerife (Spain); Ramos Almeida, C., E-mail: omaira@physics.uoc.g, E-mail: jap@iac.e, E-mail: apg@iac.e, E-mail: C.Ramos@sheffield.ac.u [Department of Physics and Astronomy, University of Sheffield, Sheffield, S3 7RH (United Kingdom)

    2010-11-10

    We present a study of the circumnuclear region of the nearby Seyfert galaxy Mrk 573 using Chandra, XMM-Newton, and Hubble Space Telescope (HST) data. We have studied the morphology of the soft (<2 keV) X-rays comparing it with the [O III] and H{alpha} HST images. The soft X-ray emission is resolved into a complex extended region. The X-ray morphology shows a biconical region extending up to 12 arcsec (4 kpc) in projection from the nucleus. A strong correlation between the X-rays and the highly ionized gas seen in the [O III]{lambda}5007 A image is reported. Moreover, we have studied the line intensities detected with the XMM-Newton Reflection Grating Spectrometer (RGS) and used them to fit the low-resolution EPIC/XMM-Newton and ACIS/Chandra spectra. The RGS/XMM-Newton spectrum is dominated by emission lines of C VI, O VII, O VIII, Fe XVII, and Ne IX, among other highly ionized species. A good fit is obtained using these emission lines found in the RGS/XMM-Newton spectrum as a template for Chandra spectra of the nucleus and extended emission, coincident with the cone-like structures seen in the [O III]/H{alpha} map. The photoionization model Cloudy provides a reasonable fit for both the nuclear region and the cone-like structures showing that the dominant excitation mechanism is photoionization. For the nucleus the emission is modeled using two phases: a high ionization [log (U) = 1.23] and a low ionization [log (U) = 0.13]. For the high-ionization phase the transmitted and reflected components are in a 1:2 ratio, whereas for the low ionization the reflected component dominates. For the extended emission, we successfully reproduced the emission with two phases. The first phase shows a higher ionization parameter for the northwest (log (U) = 0.9) than for the southeast cone (log (U) = 0.3). Moreover, this phase is transmission dominated for the southeast cone and reflection dominated for the northwest cone. The second phase shows a low-ionization parameter (log (U) = -3) and is rather uniform for northwest and southeast cones and equally distributed in reflection and transmission components. In addition, we have also derived the optical/infrared spectral energy distribution (SED) of the nucleus from high spatial resolution images of Mrk 573. The nuclear optical/infrared SED of the nucleus has been modeled by a clumpy torus model. The torus bolometric luminosity agrees very well with the active galactic nucleus (AGN) luminosity inferred from the observed hard X-ray spectrum. The optical depth along the line of sight expected from the torus modeling indicates a high neutral hydrogen column density in agreement with the classification of the nucleus of Mrk 573 as a Compton-thick AGN.

  17. Direct Comparison of the X-Ray Emission and Absorption of Cerium Oxide

    SciTech Connect

    Tobin, J G; Yu, S W; Chung, B W; Waddill, G D; Denlinger, J D

    2010-11-24

    Bremstrahlung Isochromat Spectroscopy (BIS). The XES spectra were collected using a Specs electron gun for the excitation and the XES 350 grating monochromator and channel plate system from Scienta as the photon detection. Spectra were collected in 'normal mode,' where the electron gun kinetic energy (KE) and the energy position of the center of the channel plate were both fixed and the energy distribution in the photon (hv) spectrum was derived from the intensities distributed across the channel plate detector in the energy dispersal direction. The polycrystalline Ce sample was oxidized by exposure to air at ambient pressures. After introduction to the ultra-high vacuum system, the oxidized sample was bombarded with Ar, to clean the topmost surface region and stabilize the surface and near surface regions. Although CeO{sub 2} would be the thermodynamically preferred composition in an oxygen rich environment, the combination of a vacuum environment and ion etching may have driven the near surface region into a Ce{sub 2}O{sub 3} stoichiometry. XES data collection occurred with the sample at or near room temperature. The base pressure of the system was 3 x 10{sup -10} torr, but the pressure changed depending the energy and current of the electron gun. For example, with the XES measurements at KE = 3KeV, the pressure was approximately 8 to 9 x 10{sup -10} torr and the excitation current to the sample was typically 0.01 mA. More detail of the sample preparation and analysis can be found in Reference 1. The XAS experiments were performed at Beamline 8 of the Advance Light Source, as part of a larger collaboration. The ex situ sample used at the ALS was prepared in a fashion similar to that described above. X-ray Emission Spectroscopy (XES) and X-ray Absorption Spectroscopy (XAS), have been used to investigate the photon emission and absorption associated with the Ce3d{sub 5/2} and Ce3d{sub 3/2} core-levels in CeOxide. A comparison of the two processes and their spectra will be made. Recently, we reported the observation of a very strong resonant effect in the Resonant Inverse Photoelectron Spectroscopy of CeOxide. It has now become apparent that there is a utility in a direct comparison of the X-ray Emission Spectroscopy (XES) and X-ray Absorption Spectroscopy (XAS) of similarly prepared CeOxide samples. That comparison is made in this Brief Report/Comment.

  18. Spectral Modeling of the Charge-exchange X-Ray Emission from M82

    NASA Astrophysics Data System (ADS)

    Zhang, Shuinai; Wang, Q. Daniel; Ji, Li; Smith, Randall K.; Foster, Adam R.; Zhou, Xin

    2014-10-01

    It has been proposed that the charge-exchange (CX) process at the interface between hot and cool interstellar gases could contribute significantly to the observed soft X-ray emission in star-forming galaxies. We analyze the XMM-Newton/reflection grating spectrometer (RGS) spectrum of M82 using a newly developed CX model combined with a single-temperature thermal plasma to characterize the volume-filling hot gas. The CX process is largely responsible for not only the strongly enhanced forbidden lines of the K? triplets of various He-like ions but also good fractions of the Ly? transitions of C VI (~87%), O VIII, and N VII (gsim50%) as well. In total about a quarter of the X-ray flux in the RGS 6-30 Å band originates in the CX. We infer an ion incident rate of 3 × 1051 s-1 undergoing CX at the hot and cool gas interface and an effective area of the interface of ~2 × 1045 cm2 that is one order of magnitude larger than the cross section of the global biconic outflow. With the CX contribution accounted for, the best-fit temperature of the hot gas is 0.6 keV, and the metal abundances are approximately solar. We further show that the same CX/thermal plasma model also gives an excellent description of the EPIC-pn spectrum of the outflow Cap, projected at 11.6 kpc away from the galactic disk of M82. This analysis demonstrates that the CX is potentially an important contributor to the X-ray emission from starburst galaxies and also an invaluable tool to probe the interface astrophysics.

  19. Package for Interactive Analysis of Line Emission (Analysis of UV-X-Ray High-Resolution Emission Spectra)

    NASA Technical Reports Server (NTRS)

    Hunter, Paul (Technical Monitor); Kashyap, Vinay

    2004-01-01

    The Package for Interactive Analysis of Line Emission (PINTofALE) is a suite of IDL routines designed to carry out spectroscopic analysis of high-resolution X-ray spectra. The current version is 1.5, and will shortly be upgraded to v2. A detailed description of the package, together with detailed documentation, example walk-throughs, science threads, and downloadable tar files, are available on-line.

  20. The 300 kpc Long X-Ray Jet in PKS 1127-145, z = 1.18 Quasar: Constraining X-Ray Emission Models

    Microsoft Academic Search

    Aneta Siemiginowska; Lukasz Stawarz; C. C. Cheung; D. E. Harris; Marek Sikora; Thomas L. Aldcroft; Jill Bechtold

    2007-01-01

    We present a ~100 ks Chandra X-ray observation and new VLA radio data of the large-scale, 300 kpc long X-ray jet in PKS 1127-145, a radio-loud quasar at redshift z=1.18. With this deep X-ray observation we now clearly discern the complex X-ray jet morphology and see substructure within the knots. The X-ray and radio jet intensity profiles are seen to

  1. Non-local-thermodynamical-equilibrium effects in the x-ray emission of radiatively heated materials of different atomic numbers.

    PubMed

    Földes, I B; Eidmann, K; Veres, G; Bakos, J S; Witte, K

    2001-07-01

    X-ray self-emission of radiatively heated materials with different values of Z has been investigated. Thin foils were uniformly heated by a 120-eV Hohlraum radiation of 400-ps duration in order to study the self-emission of a homogeneous, optically thin material. The x-ray emission spectra were followed for more than 2 ns. The spectrally integrated emission shows not only a strong Z dependence, but different temporal behaviors for different values of Z. The lower is the value of Z of the x-ray heated matter, the longer is the duration of self-emission. Theoretical comparison with a hydrocode and FLY post-processing shows a non-local-thermal equilibrium behavior caused by direct photoionization due to the thermal pumping radiation, which has a higher brightness temperature than the matter temperature of the heated material. PMID:11461413

  2. Time Evolution of Optical Emission Spectrum of a Hg-HID Lamp Exposed to X-ray

    Microsoft Academic Search

    N. A. Harabor; A. Harabor; I. Palarie; I. M. Popescu; G. Zissis

    2010-01-01

    Time variation of optical emission lines for Hg, and other elements detected in a mercury HID lamp before and during X-ray\\u000a irradiation were analyzed. Various irradiation conditions are causing differences in time dependencies of all Hg spectral\\u000a line intensities (including that of 253.73 nm resonance line not completely self-absorbed). The X-ray optical depths are smaller\\u000a in the case of Hg gas

  3. High resolution spectroscopy of the X-ray emission of GRBs by IMXS-BOSS on the ISS

    Microsoft Academic Search

    L. Piro; L. Colasanti; E. Costa; G. Gandolfi; P. Soffitta; F. Gatti; D. Pergolesi; M. Razeti; R. Vaccarone; G. Testera; M. Pallavicini; A. Ferrari; E. Trussoni; M. Orio; D. McCammon; W. T. Sanders; M. Galeazzi; A. E. Szymkowiak; F. S. Porter; R. Kelley

    2002-01-01

    The IMXS (Interstellar and intergalactic Medium X-ray Survey)-BOSS (gamma-ray Burst Observatory and Spectroscopy Survey) is an experiment proposed to fly on the ISS (International Space Station), in order to perform an all-sky survey to study the diffuse X-ray emission and to measure the spectra of Gamma-Ray Bursts (GRB) with high energy resolution in the 0.1-10 keV energy range. In a

  4. A search for iron emission lines in the Chandra X-ray spectra of neutron star low-mass X-ray binaries

    E-print Network

    E. M. Cackett; J. M. Miller; J. Homan; M. van der Klis; W. H. G. Lewin; M. Mendez; J. Raymond; D. Steeghs; R. Wijnands

    2008-09-18

    While iron emission lines are well studied in black hole systems, both in X-ray binaries and Active Galactic Nuclei, there has been less of a focus on these lines in neutron star low-mass X-ray binaries (LMXBs). However, recent observations with Suzaku and XMM-Newton have revealed broad asymmetric iron line profiles in 4 neutron star LMXBs, confirming an inner disk origin for these lines in neutron star systems. Here, we present a search for iron lines in 6 neutron star LMXBs. For each object we have simultaneous Chandra and RXTE observations at 2 separate epochs, allowing for both a high resolution spectrum, as well as broadband spectral coverage. Out of the six objects in the survey, we only find significant iron lines in two of the objects, GX 17+2 and GX 349+2. However, we cannot rule out that there are weak, broad lines present in the other sources. The equivalent width of the line in GX 17+2 is consistent between the 2 epochs, while in GX 349+2 the line equivalent width increases by a factor of ~3 between epochs as the source flux decreases by a factor of 1.3. This suggests that the disk is highly ionized, and the line is dominated by recombination emission. We find that there appears to be no specific locations in the long-term hardness-intensity diagrams where iron emission lines are formed, though more sources and further observations are required.

  5. Constraint of Non-thermal X-ray Emission from the On-going Merger Cluster Abell 3376 with Suzaku

    E-print Network

    Naomi Kawano; Yasushi Fukazawa; Sho Nishino; Kazuhiro Nakazawa; Takao Kitaguchi; Kazuo Makishima; Tadayuki Takahashi; Motohide Kokubun; Naomi Ota; Takaya Ohashi; Naoki Isobe; J. Patrick Henry; Ann Hornschemeier

    2008-05-23

    Clusters of galaxies are among the best candidates for particle acceleration sources in the universe, a signature of which is non-thermal hard X-ray emission from the accelerated relativistic particles. We present early results on Suzaku observations of non-thermal emission from Abell 3376, which is a nearby on-going merger cluster. Suzaku observed the cluster twice, focusing on the cluster center containing the diffuse radio emission to the east, and cluster peripheral region to the west. For both observations, we detect no excess hard X-ray emission above the thermal cluster emission. An upper limit on the non-thermal X-ray flux of $2.1\\times10^{-11}$ erg cm$^{-2}$ s$^{-1}$ (15--50 keV) at the 3$\\sigma$ level from a $34\\times34$ arcmin$^2$ region, derived with the Hard X-ray Detector (HXD), is similar to that obtained with the BeppoSAX/PDS. Using the X-ray Imaging Spectrometer (XIS) data, the upper limit on the non-thermal emission from the West Relic is independently constrained to be $microwave background (CMB) photons, the intracluster magnetic field $B$ is limited to be $>0.03\\mu$G (HXD) and $>0.10\\mu$G (XIS).

  6. High-resolution X-ray emission spectroscopy with transition-edge sensors: present performance and future potential.

    PubMed

    Uhlig, J; Doriese, W B; Fowler, J W; Swetz, D S; Jaye, C; Fischer, D A; Reintsema, C D; Bennett, D A; Vale, L R; Mandal, U; O'Neil, G C; Miaja-Avila, L; Joe, Y I; El Nahhas, A; Fullagar, W; Parnefjord Gustafsson, F; Sundström, V; Kurunthu, D; Hilton, G C; Schmidt, D R; Ullom, J N

    2015-05-01

    X-ray emission spectroscopy (XES) is a powerful element-selective tool to analyze the oxidation states of atoms in complex compounds, determine their electronic configuration, and identify unknown compounds in challenging environments. Until now the low efficiency of wavelength-dispersive X-ray spectrometer technology has limited the use of XES, especially in combination with weaker laboratory X-ray sources. More efficient energy-dispersive detectors have either insufficient energy resolution because of the statistical limits described by Fano or too low counting rates to be of practical use. This paper updates an approach to high-resolution X-ray emission spectroscopy that uses a microcalorimeter detector array of superconducting transition-edge sensors (TESs). TES arrays are discussed and compared with conventional methods, and shown under which circumstances they are superior. It is also shown that a TES array can be integrated into a table-top time-resolved X-ray source and a soft X-ray synchrotron beamline to perform emission spectroscopy with good chemical sensitivity over a very wide range of energies. PMID:25931095

  7. A vacuum-sealed compact x-ray tube based on focused carbon nanotube field-emission electrons.

    PubMed

    Jeong, Jin-Woo; Kim, Jae-Woo; Kang, Jun-Tae; Choi, Sungyoul; Ahn, Seungjoon; Song, Yoon-Ho

    2013-03-01

    We report on a fully vacuum-sealed compact x-ray tube based on focused carbon nanotube (CNT) field-emission electrons for various radiography applications. The specially designed two-step brazing process enabled us to accomplish a good vacuum level for the stable and reliable operation of the x-ray tube without any active vacuum pump. Also, the integrated focusing electrodes in the field-emission electron gun focused electron beams from the CNT emitters onto the anode target effectively, giving a small focal spot of around 0.3 mm with a large current of above 50 mA. The active-current control through the cathode electrode of the x-ray tube led a fast digital modulation of x-ray dose with a low voltage of below 5 V. The fabricated compact x-ray tube showed a stable and reliable operation, indicating good maintenance of a vacuum level of below 5 × 10(-6) Torr and the possibility of field-emission x-ray tubes in a stand-alone device without an active pumping system. PMID:23376878

  8. Elemental analysis of renal slices by proton-induced X-ray emission.

    PubMed Central

    Lowe, T; Chen, Q; Fernando, Q; Keith, R; Gandolfi, A J

    1993-01-01

    We optimized proton-induced X-ray emission (PIXE) for tissue analysis in a toxicity-disposition study. We used cultured rabbit renal slices as the biological system to demonstrate the use of PIXE analysis. The renal slices were exposed to HgCl2, CdCl2, K2Cr2O7, or NaAsO2 alone or in a mixture. The PIXE analysis provides information on concentrations of elements above atomic number 11, and it is the only analytical technique that can determine 20-30 elements nondestructively in a single, small sample (approximately 5 mg) with detection limits of 1-5 ppm (dry weight). The renal slices are thin targets that yield X-ray emission spectra with low backgrounds and high elemental sensitivities. The nondestructive nature of PIXE and the ability to simultaneously measure uptake of multiple metals and endogenous elements are unique to this methodology. Images p302-a Figure 1. Figure 2. Figure 3. Figure 4. Figure 5. Figure 6. A Figure 6. B Figure 6. C Figure 6. D Figure 7. A Figure 7. B Figure 7. C Figure 7. D p307-a PMID:8275986

  9. On the diffuse soft X-ray emission from the nuclear region of M51

    E-print Network

    Liu, Jiren

    2015-01-01

    We present an analysis of the diffuse soft X-ray emission from the nuclear region of M51 combining both XMM-Newton RGS and Chandra data. Most of the RGS spectrum of M51 can be fitted with a thermal model with a temperature of $\\sim0.5$ keV except for the OVII triplet, which is forbidden-line dominated. The Fe L-shell lines peak around the southern cloud, where the OVIII and NVII Lya lines also peak. In contrast, the peak of the OVII forbidden line is about 10$"$ offset from that of the other lines, indicating that it is from a spatially distinct component. The spatial distribution of the OVII triplet mapped by the Chandra data shows that most of the OVII triplet flux is located at faint regions near edges, instead of the southern cloud where other lines peak. This distribution of the OVII triplet is inconsistent with the photoionization model. Other mechanisms that could produce the anomalous OVII triplet, including a recombining plasma and charge exchange X-ray emission, are discussed.

  10. X-ray emission and photoluminescence spectroscopy of nanostructured silica with implanted copper ions

    NASA Astrophysics Data System (ADS)

    Zatsepin, D. A.; Kortov, V. S.; Kurmaev, É. Z.; Gavrilov, N. V.; Wilks, R. G.; Moewes, A.

    2008-12-01

    Quartz glass samples and compacted SiO2 nanopowders have been studied by x-ray emission (Cu L 2, 3 transition 3 d4 s ? 2 p 1/2, 3/2) and photoluminescence spectroscopy following pulsed Cu+ ion implantation (energy, 30 keV; pulse current up to 0.5 A; pulse duration, 400 ?s; irradiation doses, 1015, 1016, and 2 × 1017 cm-2). It has been established that ion irradiation gives rise to the formation of glassy and compacted SiO2 samples of nanosized metallic and oxide phases in the structure. An analysis of Cu L x-ray emission spectra has shown that copper nanoparticles are thermodynamically metastable and chemically active because ion beam bombardment transfers them readily to the oxide form. This results from the radiation-stimulated fracture of regular Si-O-Si bonds in amorphous SiO2 and the formation of defective Si-Si bonds, followed by capture of oxygen by copper atoms. The enhanced degree of oxidation of copper ions in SiO2 nanostructured pellets can be reduced by coimplantation and thermal annealing. Optical spectroscopy studies suggest that, in glasses and SiO2 nanostructured pellets, there exist metallic Cu{/n 0} nanoclusters, which at low temperatures exhibit quantum-confined photoluminescence with a characteristic stepped excitation spectrum.

  11. Profile Shapes for Optically Thick X-ray Emission Lines from Stellar Winds

    E-print Network

    R. Ignace; K. G. Gayley

    2001-11-28

    We consider the consequences of appreciable line optical depth for the profile shape of X-ray emission lines formed in stellar winds. The hot gas is thought to arise in distributed wind shocks, and the line formation is predominantly via collisional excitation followed by radiative decay. Such lines are often modelled as optically thin, but the theory has difficulty matching resolved X-ray line profiles. We suggest that for strong lines of abundant metals, newly created photons may undergo resonance scattering, modifying the emergent profile. Using Sobolev theory in a spherically symmetric wind, we show that thick-line resonance scattering leads to emission profiles that still have blueshifted centroids like the thin lines, but which are considerably less asymmetric in appearance. We focus on winds in the constant-expansion domain, and derive an analytic form for the profile shape in the limit of large line and photoabsorptive optical depths. Our theory is applied to published {\\it Chandra} observations of the O star $\\zeta$ Pup.

  12. Suzaku Monitoring of Hard X-Ray Emission from ? Carinae over a Single Binary Orbital Cycle

    NASA Astrophysics Data System (ADS)

    Hamaguchi, Kenji; Corcoran, Michael F.; Takahashi, Hiromitsu; Yuasa, Takayuki; Ishida, Manabu; Gull, Theodore R.; Pittard, Julian M.; Russell, Christopher M. P.; Madura, Thomas I.

    2014-11-01

    The Suzaku X-ray observatory monitored the supermassive binary system ? Carinae 10 times during the whole 5.5 yr orbital cycle between 2005 and 2011. This series of observations presents the first long-term monitoring of this enigmatic system in the extremely hard X-ray band between 15 and 40 keV. During most of the orbit, the 15-25 keV emission varied similarly to the 2-10 keV emission, indicating an origin in the hard energy tail of the kT ~ 4 keV wind-wind collision (WWC) plasma. However, the 15-25 keV emission declined only by a factor of three around periastron when the 2-10 keV emission dropped by two orders of magnitude due probably to an eclipse of the WWC plasma. The observed minimum in the 15-25 keV emission occurred after the 2-10 keV flux had already recovered by a factor of ~3. This may mean that the WWC activity was strong, but hidden behind the thick primary stellar wind during the eclipse. The 25-40 keV flux was rather constant through the orbital cycle, at the level measured with INTEGRAL in 2004. This result may suggest a connection of this flux component to the ?-ray source detected in this field. The helium-like Fe K? line complex at ~6.7 keV became strongly distorted toward periastron as seen in the previous cycle. The 5-9 keV spectra can be reproduced well with a two-component spectral model, which includes plasma in collision equilibrium and a plasma in non-equilibrium ionization (NEI) with ? ~ 1011 cm-3 s-1. The NEI plasma increases in importance toward periastron.

  13. Physical constraints on X-ray absorption and emission regions of NGC 4151

    NASA Astrophysics Data System (ADS)

    Armentrout, Bryan Keith

    2009-06-01

    I present the results of spectral analysis and modeling of nine Chandra and XMM-Newton X-ray observations of NGC 4151, spanning the period 2000-2007. The complex and highly variable spectrum is characterized by attenuation of the intrinsic power-law continuum by nested absorption components, which contribute both broadband curvature in the 1-5 keV continuum, and individual line absorption. Significant and variable narrow line emission and radiative recombination continua dominate energies below ~1.5 keV. The modeling process made extensive use of absorption tables produced by a newly-available Cloudy- XSPEC interface. Observed spectral evolution could not be explained entirely by simple changes in absorber ionization states in response to variations in the level of incident continuum, but required additional variations in absorber column densities. This fact implies transverse motion of the absorbers across the line of sight. The transverse velocity, coupled with observed absorber outflow determined from line energies, suggest a possible helical motion for the absorbers. Scattered incident continuum flux was also indicated. Model results predict that the absorbers may also serve as substantial emitters of observed soft X-ray narrow line emission. However, additional emission components, not represented by absorbers, were required. Narrow emission line modeling of a single observation required three separate components, two of which may be represented by model absorbers. A strong Fe Ka fluorescent line was present in all observations, with highly-variable equivalent width. While photoionization model results predicted contributions to Fe Ka line flux by all absorbers, the absorber contributions to emission were minor. High-energy feature analysis revealed the presence of an additional, highly-ionized absorber in at least one observation.

  14. Searching for Narrow Emission Lines in X-ray Spectra: Computation and Methods

    E-print Network

    Taeyoung Park; David A. van Dyk; Aneta Siemiginowska

    2008-08-23

    The detection and quantification of narrow emission lines in X-ray spectra is a challenging statistical task. The Poisson nature of the photon counts leads to local random fluctuations in the observed spectrum that often results in excess emission in a narrow band of energy resembling a weak narrow line. From a formal statistical perspective, this leads to a (sometimes highly) multimodal likelihood. Many standard statistical procedures are based on (asymptotic) Gaussian approximations to the likelihood and simply cannot be used in such settings. Bayesian methods offer a more direct paradigm for accounting for such complicated likelihood functions but even here multimodal likelihoods pose significant computational challenges. The new Markov chain Monte Carlo (MCMC) methods developed in 2008 by van Dyk and Park, however, are able to fully explore the complex posterior distribution of the location of a narrow line, and thus provide valid statistical inference. Even with these computational tools, standard statistical quantities such as means and standard deviations cannot adequately summarize inference and standard testing procedures cannot be used to test for emission lines. In this paper, we use new efficient MCMC algorithms to fit the location of narrow emission lines, we develop new statistical strategies for summarizing highly multimodal distributions and quantifying valid statistical inference, and we extend the method of posterior predictive p-values proposed by Protassov et al. (2002) to test for the presence of narrow emission lines in X-ray spectra. We illustrate and validate our methods using simulation studies and apply them to the Chandra observations of the high redshift quasar PG1634+706.

  15. X-ray emission from young stars in Taurus-Auriga-Perseus: Luminosity functions and the rotation - activity - age - relation

    NASA Astrophysics Data System (ADS)

    Stelzer, B.; Neuhäuser, R.

    2001-10-01

    We report on a systematic search for X-ray emission from pre-main sequence and young main sequence stars in the Taurus-Auriga-Perseus region. Our stellar sample consists of all T Tauri stars from the Taurus-Auriga region, and all late-type stars from the Pleiades and Hyades clusters which have been observed by the ROSAT PSPC in pointed observations. We present the X-ray parameters for all observed stars in tables. Next to the basic results of the data analysis (such as count rates, exposure time, and off-axis angle) we give X-ray luminosities and hardness ratios for all detected stars. Upper limits are given for non-detections. Detection rates for different spectral types are compiled. We use these results to study the connection between coronal X-ray activity and stellar parameters for different subgroups of our sample. In particular we compile X-ray luminosity functions (XLF), and discuss the relations between X-ray emission and spectral type, age, and rotation, which have been disputed extensively in the past. Here, we study these questions with the largest sample so far. The XLF for classical and weak-line T Tauri stars are different, with weak-lines being the stronger X-ray emitters. Proceeding towards the main-sequence (Pleiades, Hyades) the X-ray luminosity declines for all spectral types examined (G, K, and M stars). Within an age group Lx decreases towards later spectral types, while Lx/Lbol remains constant or even increases, reflecting the opposed influence of stellar radius, i.e. emitting area, and convection zone depth. For a given spectral type the fastest rotators show the highest X-ray luminosity. Rotation rate and X-ray emission are clearly correlated for all groups of stars with power law indices for log(Lx/Lbol) versus lg{Prot} of ~ -0.7 to -1.5. The study of XLF for binary stars shows that the known unresolved secondaries likely contribute a significant amount to the X-ray emission. Tables 2 to 7 are only available in electronic form at http://www.edpsciences.org

  16. A Multi-Frequency Study of an X-ray Selected Sample of AGN II: Line Emission Studies and the X-ray Luminosity Function

    NASA Astrophysics Data System (ADS)

    Grossan, B.; Remillard, R.; Bradt, H.

    1992-12-01

    We carried out a multi-frequency study of a flux-limited (0.95 mu Jy @ 5 keV) sample of 96 emission-line AGN taken from the HEAO-1 LASS/MC survey. Preliminary results of this study were presented at the Jan. 1992 meeting. Here we present new results from line emission and continuum studies and more details regarding the AGN X-ray luminosity functions (XLFs). We find that narrow [OIII] flux correlates well with X-ray flux. This result is consistent with a simple picture where the photoionizing continuum is distributed over a large solid angle in the narrow line region, and is closely related to the X-ray continuum. Broad Balmer lines do not demonstrate a strong correlation with X-ray flux. The UV continuum ( ~ 1400 Angstroms) does not correlate with any optical line emission we measured, but UV variability could have affected this result. In contrast, we find very strong correlations of high-ionization UV broad line fluxes and the simultaneously measured UV continuum. The geometry and/or obscuration effects in the broad line region may therefore be different than those in the narrow line region. A very large spread in the value of broad line Balmer decrements (H? /H? = 0.13 - 0.40) was observed among objects determined to be un-reddened by the lack of an absorption feature at 2175 Angstroms. If there were an intrinsic Balmer decrement for the broad line regions in AGN, the smallest H? /H? values would correspond to extreme values of reddening (E(B-V) > 1 mag). Therefore, we conclude that the broad line Balmer decrement cannot be used in determining continuum reddening in most AGN. We find that the AGN 2-10 keV XLF is roughly a power law, but steepens with increasing luminosity, and turns over below 10(42) erg s(-1) . The XLF of Seyfert 2's resembles a power law from 10(42) - 10(43.5) erg s(-1) , but at higher luminosity, the XLF steepens. In this sample, the cumulative fraction of Seyfert 2's falls rapidly with luminosity, and the overall fraction of Seyfert 2's is much lower than that reported for unbiased optical, IR, or radio samples. These observations provide a constraint for Seyfert 2 obscuration models.

  17. Spectral analysis of x-ray emission created by intense laser irradiation of copper materials

    SciTech Connect

    Huntington, C. M.; Kuranz, C. C.; Drake, R. P. [Atmospheric, Oceanic, Space Science, University of Michigan, Ann Arbor, Michigan 48103 (United States); Malamud, G. [Atmospheric, Oceanic, Space Science, University of Michigan, Ann Arbor, Michigan 48103 (United States); Department of Physics, Nuclear Research Center - Negev, 84190 Beer-Sheva (Israel); Park, H.-S.; Maddox, B. R. [Lawrence Livermore National Laboratory, Livermore, California 94551 (United States)

    2012-10-15

    We have measured the x-ray emission, primarily from K{sub {alpha}},K{sub {beta}}, and He{sub {alpha}} lines, of elemental copper foil and 'foam' targets irradiated with a mid-10{sup 16} W/cm{sup 2} laser pulse. The copper foam at 0.1 times solid density is observed to produce 50% greater He{sub {alpha}} line emission than copper foil, and the measured signal is well-fit by a sum of three synthetic spectra generated by the atomic physics code FLYCHK. Additionally, spectra from both targets reveal characteristic inner shell K{sub {alpha}} transitions from hot electron interaction with the bulk copper. However, only the larger-volume foam target produced significant K{sub {beta}} radiation, confirming a lower bulk temperature in the higher volume sample.

  18. Spectrometer for X-ray emission experiments at FERMI free-electron-laser

    SciTech Connect

    Poletto, L., E-mail: poletto@dei.unipd.it; Frassetto, F.; Miotti, P. [CNR - Institute of Photonics and Nanotechnologies (CNR-IFN), via Trasea 7, I-35131 Padova (Italy); Di Cicco, A.; Iesari, F. [Physics Division, School of Science and Technology, Università di Camerino, I-62032 Camerino (Italy); Finetti, P. [ELETTRA - Sincrotrone Trieste, Basovizza Area Science Park, S. S. 14 - km 163,5, I-34149, Basovizza (TS) (Italy); Grazioli, C. [Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via L. Giorgieri 1, I-34127 Trieste (Italy); CNR-Istituto Officina dei Materiali (CNR-IOM), Laboratorio TASC, I-34149 Trieste (Italy); Kivimäki, A. [CNR-Istituto Officina dei Materiali (CNR-IOM), Laboratorio TASC, I-34149 Trieste (Italy); Stagira, S. [Politecnico di Milano – Department of Physics, I-20133 Milano (Italy); Coreno, M. [ELETTRA - Sincrotrone Trieste, Basovizza Area Science Park, S. S. 14 - km 163,5, I-34149, Basovizza (TS) (Italy); CNR – Istituto di Struttura della Materia (CNR-ISM), UOS Basovizza, I-34149 Trieste (Italy)

    2014-10-15

    A portable and compact photon spectrometer to be used for photon in-photon out experiments, in particular x-ray emission spectroscopy, is presented. The instrument operates in the 25–800 eV energy range to cover the full emissions of the FEL1 and FEL2 stages of FERMI. The optical design consists of two interchangeable spherical varied-lined-spaced gratings and a CCD detector. Different input sections can be accommodated, with/without an entrance slit and with/without an additional relay mirror, that allow to mount the spectrometer in different end-stations and at variable distances from the target area both at synchrotron and at free-electron-laser beamlines. The characterization on the Gas Phase beamline at ELETTRA Synchrotron (Italy) is presented.

  19. Spectral analysis of x-ray emission created by intense laser irradiation of copper materialsa)

    NASA Astrophysics Data System (ADS)

    Huntington, C. M.; Kuranz, C. C.; Malamud, G.; Drake, R. P.; Park, H.-S.; Maddox, B. R.

    2012-10-01

    We have measured the x-ray emission, primarily from K?,K?, and He? lines, of elemental copper foil and "foam" targets irradiated with a mid-1016 W/cm2 laser pulse. The copper foam at 0.1 times solid density is observed to produce 50% greater He? line emission than copper foil, and the measured signal is well-fit by a sum of three synthetic spectra generated by the atomic physics code FLYCHK. Additionally, spectra from both targets reveal characteristic inner shell K? transitions from hot electron interaction with the bulk copper. However, only the larger-volume foam target produced significant K? radiation, confirming a lower bulk temperature in the higher volume sample.

  20. Spectral analysis of x-ray emission created by intense laser irradiation of copper materials.

    PubMed

    Huntington, C M; Kuranz, C C; Malamud, G; Drake, R P; Park, H-S; Maddox, B R

    2012-10-01

    We have measured the x-ray emission, primarily from K(?),K(?), and He(?) lines, of elemental copper foil and "foam" targets irradiated with a mid-10(16) W/cm(2) laser pulse. The copper foam at 0.1 times solid density is observed to produce 50% greater He(?) line emission than copper foil, and the measured signal is well-fit by a sum of three synthetic spectra generated by the atomic physics code FLYCHK. Additionally, spectra from both targets reveal characteristic inner shell K(?) transitions from hot electron interaction with the bulk copper. However, only the larger-volume foam target produced significant K(?) radiation, confirming a lower bulk temperature in the higher volume sample. PMID:23126936

  1. ORIGIN OF THE GeV EMISSION DURING THE X-RAY FLARING ACTIVITY IN GRB 100728A

    SciTech Connect

    He Haoning; Wang Xiangyu [School of Astronomy and Space Science, Nanjing University, Nanjing 210093 (China); Zhang Binbin; Meszaros, Peter [Department of Astronomy and Astrophysics, Pennsylvania State University, University Park, PA 16802 (United States); Li Zhuo [Department of Astronomy, Peking University, Beijing 100871 (China)

    2012-07-10

    Recently, Fermi-LAT detected GeV emission during the X-ray flaring activity in GRB 100728A. We study various scenarios for its origin. The hard spectrum of the GeV emission favors the external inverse Compton (EIC) origin in which X-ray flare photons are up-scattered by relativistic electrons in the external forward shock. This EIC scenario, with anisotropic scattering effect taken into account, can reproduce the temporal and spectral properties of the GeV emission in GRB 100728A.

  2. XMM-Newton observations of the supernova remnant IC443: I. soft X-ray emission from shocked interstellar medium

    E-print Network

    Troja, E; Reale, F

    2006-01-01

    The shocked interstellar medium around IC443 produces strong X-ray emission in the soft energy band (EIC443 shock gives rise to 2MASS-K emission in the southeast. The measured density of emitting X-ray shocked plasma increases toward the northeastern limb, where the remnant is interacting with an atomic cloud. We found an excellent correlation between emission in the 0.3-0.5 keV band and bright optical/radio filament on large spatial scales. The partial shell structure seen in this band...

  3. Anomalous X-Ray emission in GRB060904B: a Nickel line?

    E-print Network

    R. Margutti; A. Moretti; F. Pasotti; S. Campana; G. Chincarini; S. Covino; C. Guidorzi; P. Romano; G. Tagliaferri

    2007-12-10

    The detection of an extra component in GRB060904B X-ray spectra in addition to the standard single power-law behaviour has recently been reported in the literature. This component can be fit with different models; in particular the addition of a spectral line provides the best representation.In this paper we investigate the physical properties that the surrounding medium must have in order to produce a spectral feature that can explain the detected emission. We analyse and discuss how and if the detected spectral excess fits in different theoretical models developed to explain the nature of line emission during the afterglow phase of Gamma-Ray Bursts (GRBs). Trasmission and reflection models have been considered. Given the high value (>>1) of the Thomson optical depth, the emission is likely to arise in a reflection scenario. Within reflection models, the external reflection geometry fails to predict the observed luminosity. On the contrary, the detected feature can be explained in a funnel scenario with typical opening angle theta of 5 degrees, Nickel mass of the order of 0.1 M_o and T=10^6 K. For theta=20 degrees, assuming the reprocessing material to be the SN shell, the detected emission implies a Nickel mass of 0.4 M_o at T=10^7 K and a metallicity 10 times the solar value. If the giant X-ray flare that dominates the early XRT light curve is identified with the ionizing source, the SN expansion began 3000 s before the GRB event.

  4. X-ray inverse Compton emission from the radio halo of M87. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Wood, P. A. D.

    1985-01-01

    M87 has been observed in the 0.2-4 KeV X-ray band using the High Resolution Imager on the Einstein Observatory, and at 1.452 GHz using the Very Large Array. The radio map showed that the halo contained prominent asymmetries to the east and southwest. The X-ray map indicated similar asymmetries, but they were imbedded in the diffuse hot gas that surrounds the core out to a radius of several arcminutes. The hot X-ray emitting gas was assumed to be spherically symmetric and could, therefore, be subtracted from the image. The resultant image was asymmetric with major lobes to the east and southwest that coincide approximately with the asymmetries in the radio halo. The data indicates that inverse Compton emission is a plausible model for the X-rays coming from the asymmetric component.

  5. On the origin of the X-ray emission towards the early Herbig Be star MWC 297

    NASA Astrophysics Data System (ADS)

    Vink, Jorick S.; O'Neill, P. M.; Els, S. G.; Drew, J. E.

    2005-08-01

    We present high resolution (?0.2) AO-corrected coronographic near-infrared imaging on the early-type Herbig Be star MWC 297. X-ray flaring has been reported towards this young object, however this has been difficult to reconcile with its early spectral type (B1.5) and relatively high mass (~10 M?). Our infrared and X-ray analysis shows that the X-ray flaring is likely due to a late-type star in the same field. The case of MWC 297 emphasizes the need for coronographic imaging to address the reality of X-ray emission towards Herbig Ae/Be stars, which is needed to understand the differences between low and high-mass star formation.

  6. Chandra ACIS Survey of M33 (ChASeM33): The Enigmatic X-Ray Emission from IC131

    NASA Astrophysics Data System (ADS)

    Tüllmann, Ralph; Long, Knox S.; Pannuti, Thomas G.; Winkler, P. Frank; Plucinsky, Paul P.; Gaetz, Terrance J.; Williams, Ben; Kuntz, Kip D.; Pietsch, Wolfgang; Blair, William P.; Haberl, Frank; Smith, Randall K.

    2009-12-01

    We present the first X-ray analysis of the diffuse hot ionized gas and the point sources in IC131, after NGC604 the second most X-ray luminous giant H II region (GHR) in M33. The X-ray emission is detected only in the south eastern part of IC131 (named IC131-se) and is limited to an elliptical region of ~200 pc in extent. This region appears to be confined toward the west by a hemispherical shell of warm ionized gas and only fills about half that volume. Although the corresponding X-ray spectrum has 1215 counts, it cannot conclusively be told whether the extended X-ray emission is thermal, non-thermal, or a combination of both. A thermal plasma model of kTe = 4.3 keV or a single power law of ? sime 2.1 fit the spectrum equally well. If the spectrum is purely thermal (non-thermal), the total unabsorbed X-ray luminosity in the 0.35-8 keV energy band amounts to LX = 6.8(8.7) × 1035 erg s-1. Among other known H II regions IC131-se seems to be extreme regarding the combination of its large extent of the X-ray plasma, the lack of massive O stars, its unusually high electron temperature (if thermal), and the large fraction of LX emitted above 2 keV (~40%-53%). A thermal plasma of ~4 keV poses serious challenges to theoretical models, as it is not clear how high electron temperatures can be produced in H II regions in view of mass-proportional and collisionless heating. If the gas is non-thermal or has non-thermal contributions, synchrotron emission would clearly dominate over inverse Compton emission. It is not clear if the same mechanisms which create non-thermal X-rays or accelerate cosmic rays in supernova remnants can be applied to much larger scales of 200 pc. In both cases the existing theoretical models for GHRs and superbubbles do not explain the hardness and extent of the X-ray emission in IC131-se. We also detect a variable source candidate in IC131. It seems that this object (CXO J013315.10+304453.0) is a high mass X-ray binary whose optical counterpart is a B2-type star with a mass of ~9 M sun.

  7. Solar Magnetic Reconnection at Low Altitudes and Associated Type III Solar Radio Bursts and X-Ray Emission

    NASA Astrophysics Data System (ADS)

    Cairns, I. H.; Lobzin, V. V.; Donea, A.; Tingay, S. J.; Oberoi, D.; Reiner, M. J.; Melrose, D. B.

    2014-12-01

    Magnetic reconnection events are identified definitively in Solar Dynamics Observatory (SDO) data on 25 September 2011, with double-sided jets, current sheets and cusp-like geometries on top of loops, and strong outflows at 200 km/s along pairs of open magnetic field lines. Strong type III bursts observed by the Learmonth radio spectrograph and imaged by the MurchisonWidefield Array (MWA) are demonstrated to be in very good temporal and spatial coincidence with specic SDO magnetic reconnection events and with bursts of nonthermal 3-35 keV X-rays observed by the RHESSI spacecraft. The reconnection sites are low, near heights of 5-10 Mm or 0.01 solar radii, alleviating the number problem for producing the energetic electrons and X-rays. These data, especially the images and event timings, provide direct evidence for the long-unproven but standard model for type III bursts: semi-relativistic electrons energized in magnetic reconnection regions produce radio emission as they move away from the Sun and X-rays as they move into the chromosphere. Since not all SDO events produce X-ray or type III events, different special conditions must exist for the production of strong radio, X-ray, or UV bursts by reconnection events. These conditions are both on the production of suitable energetic electrons and on the production of observable radio, X-ray, and UV emissions from these electrons.

  8. DISCOVERY OF X-RAY EMISSION FROM SUPERNOVA 1970G WITH CHANDRA: FILLING THE VOID BETWEEN SUPERNOVAE AND SUPERNOVA REMNANTS

    NASA Technical Reports Server (NTRS)

    Immler, Stefan; Kuntz, K. D.

    2005-01-01

    We report the discovery of X-ray emission from SN 1970G in M101, 35 yr after its outburst, using deep X-ray imaging with the Chundra X-Ray Observatory. The Chandra ACIS spectrum shows that the emission is soft (52 keV) and characteristic of the reverse-shock region. The X-ray luminosity, Lo,,, = (1.1 3 0.2) x lo3# ergs s-1, is likely caused by the interaction of the supernova shock with dense circumstellar matter. If the material was deposited by the stellar wind from the progenitor, a mass-loss rate of M = (2.6 ? 0.4) x M, yr-I (v,/lO km s-I) is inferred. Utilizing the high-resolution Chandra ACIS data of SN 1970G and its environment, we reconstruct the X-ray lightcurve from previous ROSAT HRI, PSPC, and XMM-Newton EPIC observations, and find a best-fit linear rate of decline of L cc t-# with index s = 2.7 t 0.9 over a period of -20-35 yr after the outburst. As the oldest supernova detected in X-rays, SN 1970G allows, for the first time, direct observation of the transition from a supenova to its supernova remnant phase.

  9. The White Dwarf Mass and the Accretion Rate of Recurrent Novae: An X-ray Perspective

    NASA Technical Reports Server (NTRS)

    Mukai, Koji; Sokoloski, Jennifer L.; Nelson, Thomas; Luna, Gerardo J. M.

    2011-01-01

    We present recent results of quiescent X-ray observations of recurrent novae (RNe) and related objects. Several RNe are luminous hard X-ray sources in quiescence, consistent with accretion onto a near Chandrasekhar mass white dwarf. Detection of similar hard X-ray emissions in old novae and other cataclysmic variables may lead to identification of additional RN candidates. On the other hand, other RNe are found to be comparatively hard X-ray faint. We present several scenarios that may explain this dichotomy, which should be explored further.

  10. WAITING IN THE WINGS: REFLECTED X-RAY EMISSION FROM THE HOMUNCULUS NEBULA M. F. Corcoran,1, 2

    E-print Network

    Pittard, Julian

    WAITING IN THE WINGS: REFLECTED X-RAY EMISSION FROM THE HOMUNCULUS NEBULA M. F. Corcoran,1, 2 K associated with the Homunculus nebula that surrounds the supermassive star Car. The emission the central regions of the Homunculus, and fainter in the southeastern lobe. We also report the detection

  11. Exploring X-ray and radio emission of type 1 AGN up to z ~ 2.3

    NASA Astrophysics Data System (ADS)

    Ballo, L.; Heras, F. J. H.; Barcons, X.; Carrera, F. J.

    2012-09-01

    Context. X-ray emission from active galactic nuclei (AGN) is dominated by the accretion disk around a supermassive black hole. The radio luminosity, however, has not such a clear origin except in the most powerful sources where jets are evident. The origin (and even the very existence) of the local bi-modal distribution in radio-loudness is also a debated issue. Aims: By analysing X-ray, optical and radio properties of a large sample of type 1 AGN and quasars (QSOs) up to z > 2, where the bulk of this population resides, we aim to explore the interplay between radio and X-ray emission in AGN, in order to further our knowledge on the origin of radio emission, and its relation to accretion. Methods: We analyse a large (~800 sources) sample of type 1 AGN and QSOs selected from the 2XMMi XMM-Newton X-ray source catalogue, cross-correlated with the SDSS DR7 spectroscopic catalogue, covering a redshift range from z ~ 0.3 to z ~ 2.3. Supermassive black hole masses are estimated from the Mg ii emission line, bolometric luminosities from the X-ray data, and radio emission or upper limits from the FIRST catalogue. Results: Most of the sources accrete close to the Eddington limit and the distribution in radio-loudness does not appear to have a bi-modal behaviour. We confirm that radio-loud AGN are also X-ray loud, with an X-ray-to-optical ratio up to twice that of radio-quiet objects, even excluding the most extreme strongly jetted sources. By analysing complementary radio-selected control samples, we find evidence that these conclusions are not an effect of the X-ray selection, but are likely a property of the dominant QSO population. Conclusions: Our findings are best interpreted in a context where radio emission in AGN, with the exception of a minority of beamed sources, arises from very close to the accretion disk and is therefore heavily linked to X-ray emission. We also speculate that the radio-loud/radio-quiet dichotomy might either be an evolutionary effect that developed well after the QSO peak epoch, or an effect of incompleteness in small samples. Full Tables 3-5 are only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/545/A66

  12. Chandra measurements of non-thermal-like X-ray emission from massive, merging, radio-halo clusters

    NASA Astrophysics Data System (ADS)

    Million, Evan; Allen, Steve

    2009-09-01

    We report the discovery of spatially-extended, non-thermal-like emission components in Chandra X-ray spectra for five of a sample of seven massive, merging galaxy clusters with powerful radio halos. The emission components can be fitted by power-law models with mean photon indices in the range 1.5 < ? < 2.0. A control sample of regular, dynamically relaxed clusters, without radio halos but with comparable mean thermal temperatures and luminosities, shows no compelling evidence for similar components. Detailed X-ray spectral mapping reveals the complex thermodynamic states of the radio halo clusters. Our deepest observations, of the Bullet Cluster 1E0657-56, demonstrate a spatial correlation between the strongest power-law X-ray emission, highest thermal pressure, and brightest 1.34GHz radio halo emission in this cluster. We confirm the presence of a shock front in the 1E0657-56 and report the discovery of a clear, large-scale shock front in Abell 2219. We explore possible origins for the power-law X-ray components. One explanation of particular interest is that the power-law signatures may be due to complex temperature and/or metallicity structure in clusters particularly in the presence of metallicity gradients. In this case, an important distinguishing characteristic between the radio halo clusters and control sample of predominantly cool-core clusters is the relatively low central X-ray surface brightness of the former. Our results highlight the importance of further deep X-ray and radio mapping, coupled with new hard X-ray, ?-ray and TeV observations, for improving our understanding of the non-thermal particle populations in these systems.

  13. X-ray emission spectroscopy of bulk liquid water in "no-man's land".

    PubMed

    Sellberg, Jonas A; McQueen, Trevor A; Laksmono, Hartawan; Schreck, Simon; Beye, Martin; DePonte, Daniel P; Kennedy, Brian; Nordlund, Dennis; Sierra, Raymond G; Schlesinger, Daniel; Tokushima, Takashi; Zhovtobriukh, Iurii; Eckert, Sebastian; Segtnan, Vegard H; Ogasawara, Hirohito; Kubicek, Katharina; Techert, Simone; Bergmann, Uwe; Dakovski, Georgi L; Schlotter, William F; Harada, Yoshihisa; Bogan, Michael J; Wernet, Philippe; Föhlisch, Alexander; Pettersson, Lars G M; Nilsson, Anders

    2015-01-28

    The structure of bulk liquid water was recently probed by x-ray scattering below the temperature limit of homogeneous nucleation (TH) of ?232 K [J. A. Sellberg et al., Nature 510, 381-384 (2014)]. Here, we utilize a similar approach to study the structure of bulk liquid water below TH using oxygen K-edge x-ray emission spectroscopy (XES). Based on previous XES experiments [T. Tokushima et al., Chem. Phys. Lett. 460, 387-400 (2008)] at higher temperatures, we expected the ratio of the 1b1' and 1b1? peaks associated with the lone-pair orbital in water to change strongly upon deep supercooling as the coordination of the hydrogen (H-) bonds becomes tetrahedral. In contrast, we observed only minor changes in the lone-pair spectral region, challenging an interpretation in terms of two interconverting species. A number of alternative hypotheses to explain the results are put forward and discussed. Although the spectra can be explained by various contributions from these hypotheses, we here emphasize the interpretation that the line shape of each component changes dramatically when approaching lower temperatures, where, in particular, the peak assigned to the proposed disordered component would become more symmetrical as vibrational interference becomes more important. PMID:25637993

  14. X-ray emission spectroscopy of bulk liquid water in "no-man's land"

    NASA Astrophysics Data System (ADS)

    Sellberg, Jonas A.; McQueen, Trevor A.; Laksmono, Hartawan; Schreck, Simon; Beye, Martin; DePonte, Daniel P.; Kennedy, Brian; Nordlund, Dennis; Sierra, Raymond G.; Schlesinger, Daniel; Tokushima, Takashi; Zhovtobriukh, Iurii; Eckert, Sebastian; Segtnan, Vegard H.; Ogasawara, Hirohito; Kubicek, Katharina; Techert, Simone; Bergmann, Uwe; Dakovski, Georgi L.; Schlotter, William F.; Harada, Yoshihisa; Bogan, Michael J.; Wernet, Philippe; Föhlisch, Alexander; Pettersson, Lars G. M.; Nilsson, Anders

    2015-01-01

    The structure of bulk liquid water was recently probed by x-ray scattering below the temperature limit of homogeneous nucleation (TH) of ˜232 K [J. A. Sellberg et al., Nature 510, 381-384 (2014)]. Here, we utilize a similar approach to study the structure of bulk liquid water below TH using oxygen K-edge x-ray emission spectroscopy (XES). Based on previous XES experiments [T. Tokushima et al., Chem. Phys. Lett. 460, 387-400 (2008)] at higher temperatures, we expected the ratio of the 1b1' and 1b1? peaks associated with the lone-pair orbital in water to change strongly upon deep supercooling as the coordination of the hydrogen (H-) bonds becomes tetrahedral. In contrast, we observed only minor changes in the lone-pair spectral region, challenging an interpretation in terms of two interconverting species. A number of alternative hypotheses to explain the results are put forward and discussed. Although the spectra can be explained by various contributions from these hypotheses, we here emphasize the interpretation that the line shape of each component changes dramatically when approaching lower temperatures, where, in particular, the peak assigned to the proposed disordered component would become more symmetrical as vibrational interference becomes more important.

  15. X-Ray, EUV, UV and Optical Emissivities of Astrophysical Plasmas

    NASA Technical Reports Server (NTRS)

    Raymond, John C.; West, Donald (Technical Monitor)

    2000-01-01

    This grant primarily covered the development of the thermal X-ray emission model code called APEC, which is meant to replace the Raymond and Smith (1977) code. The new code contains far more spectral lines and a great deal of updated atomic data. The code is now available (http://hea-www.harvard.edu/APEC), though new atomic data is still being added, particularly at longer wavelengths. While initial development of the code was funded by this grant, current work is carried on by N. Brickhouse, R. Smith and D. Liedahl under separate funding. Over the last five years, the grant has provided salary support for N. Brickhouse, R. Smith, a summer student (L. McAllister), an SAO predoctoral fellow (A. Vasquez), and visits by T. Kallman, D. Liedahl, P. Ghavamian, J.M. Laming, J. Li, P. Okeke, and M. Martos. In addition to the code development, the grant supported investigations into X-ray and UV spectral diagnostics as applied to shock waves in the ISM, accreting black holes and white dwarfs, and stellar coronae. Many of these efforts are continuing. Closely related work on the shock waves and coronal mass ejections in the solar corona has grown out of the efforts supported by the grant.

  16. Potential Gamma-ray Emissions from Low-Mass X-ray Binary Jets

    E-print Network

    Zhang, Jian-Fu; Liu, Tong; Xue, Li; Lu, Ju-Fu

    2015-01-01

    By proposing a pure leptonic radiation model, we study the potential gamma-ray emissions from jets of the low-mass X-ray binaries. In this model, the relativistic electrons that are accelerated in the jets are responsible for radiative outputs. Nevertheless, dynamics of jets are dominated by the magnetic and proton-matter kinetic energies. The model involves all kinds of related radiative processes and considers the evolution of relativistic electrons along the jet by numerically solving the kinetic equation. Numerical results show that the spectral energy distributions can extend up to TeV bands, in which synchrotron radiation and synchrotron self-Compton scattering are dominant components. As an example, we apply the model to the low-mass X-ray binary GX 339-4. The results can not only reproduce the currently available observations from GX 339-4, but also predict detectable radiation at GeV and TeV bands by Fermi and CTA telescopes. The future observations with Fermi and CTA can be used to test our model, w...

  17. Quantitative analysis of resolved X-ray emission line profiles of O stars

    E-print Network

    David H. Cohen; Maurice A. Leutenegger; Richard H. D. Townsend

    2007-12-06

    By quantitatively fitting simple emission line profile models that include both atomic opacity and porosity to the Chandra X-ray spectrum of $\\zeta$ Pup, we are able to explore the trade-offs between reduced mass-loss rates and wind porosity. We find that reducing the mass-loss rate of $\\zeta$ Pup by roughly a factor of four, to 1.5 \\times 10^{-6} M_sun/yr, enables simple non-porous wind models to provide good fits to the data. If, on the other hand, we take the literature mass-loss rate of 6 \\times 10^{-6} M_sun/yr, then to produce X-ray line profiles that fit the data, extreme porosity lengths -- of $h_{\\infty} \\approx 3$ Rstar -- are required. Moreover, these porous models do not provide better fits to the data than the non-porous, low optical depth models. Additionally, such huge porosity lengths do not seem realistic in light of 2-D numerical simulations of the wind instability.

  18. ROSAT observations of pulsed soft X-ray emission from PSR 1055-52

    NASA Technical Reports Server (NTRS)

    Oegelman, Hakki; Finley, John P.

    1993-01-01

    Utilizing the position-sensitive proportional counter and the high-resolution imager aboard the orbiting X-ray observatory ROSAT, we have detected pulsations at the radio period from the pulsar PSR 1055-52. The pulse shapes are energy-dependent and show a transition at about 0.5 keV where the phase angle of the pulse peak changes by about -120 deg and the pulsed fraction increases from 11 percent to 63 percent toward larger energies. Simple spectral models are found to be unsatisfactory, while multicomponent models, such as a soft blackbody and hard power-law tail, yield better fits to the pulse-height data. The hard power-law tail is consistent with the extension of the recently reported EGRET results and may indicate a common emission mechanism for the X-ray through GeV gamma-ray regime. The soft blackbody component with T(infinity) = (7.5 +/- 0.6) x 10 exp 5 K, if interpreted as the initial cooling of a neutron star, is consistent with standard cooling models and does not require the presence of exotic components.

  19. ASCA observations of the coronal X-ray emission of Algol

    NASA Technical Reports Server (NTRS)

    Antunes, A.; Nagase, F.; White, N. E.

    1994-01-01

    We report a 1.7 day ASCA X-ray observation of the 2.87 day binary Algol (Beta Per), centered on the secondary eclipse. Spectra accumulated for different intensity states show a prominent He-like iron K line at 6.7 keV. A two-temperature variable abundance plasma model applied to the spectra yielded temperatures of approximately 8 and approximately 30 MK. The modeled coronal abundances of Fe, O, Mg, Si, S, Ar, and Ca were a factor of 2-3 below the solar photospheric value, and N less than 0.1. These model abundance anomalies are similar to those found from the ASCA spectra of other late-type stars and may indicate either true deviations from solar abundances or problems with the assumptions and atomic physics of the plasma models. The X-ray light curve shows a factor of 2 increase in flux over 13 hr beginning in the middle of the secondary eclipse, with a shallow eclipse centered on phase 0.45. The orbital light curve is similar to that observed by ROSAT 1 year earlier. The rise in flux is caused by an increase in the emission measure of the higher temperature component. The intensity variation is not associated with any major change in the abundances or temperature of the two components.

  20. X-ray emission from the region of gamma 195 plus 5

    NASA Technical Reports Server (NTRS)

    Worrall, D. M.; Laub, R. C.

    1979-01-01

    X-ray emission from the vicinity of the MeV gamma ray source, gamma 195+5, was observed with the HEAO-A2 detectors. A source with an intensity of (1.5 + pr - 0.5) x 10 to the -11th power erg/sq cm s (2-6 keV) was seen in each of two separate observations at a combined confidence level of 3.1 sigma. The location of the source is l2 = 194.56 degrees, b2 = 4.92 degrees with a 90% confidence error box of 1.4 square degrees, significantly smaller than the positional uncertainty of the gamma ray source, and consistent with its location. The chance overlap of such an X-ray source with the gamma ray region is estimated to be 9% and, therefore, they may be 9% and therefore they may be associated. The spectrum appears too steep to extrapolate simply to the 100 MeV flux value for gamma 195+5.

  1. The jet-disk symbiosis; 1, radio to x-ray emission models for quasars

    E-print Network

    Falcke, H; Falcke, Heino; Biermann, Peter L

    1994-01-01

    Starting from the assumption that radio jets and accretion disks are symbiotic features present in radio loud and radio quiet quasars we scale the bulk power of radio jets with the accretion power by adding mass- and energy conservation of the whole jet-disk system to the standard Blandford \\& K\\"onigl theory for compact radio cores. The model depends on only few parameters and can be constrained by observations. Thus we are able to show that radio and X-ray fluxes (SSC emission) of cores and lobes and typical dimensions of radio loud quasars are consistent with a jet being produced in the central engine. We present a synthetic broadband spectrum from radio to X-ray for a jet-disk system. The only way to explain the high efficiency of radio loud objects is to postulate that these objects consist of `maximal jets' with `total equipartition' where the magnetic energy flow of the jet is comparable to the kinetic jet power and the total jet power is a large fraction of the disk power. As the number of electro...

  2. Intense Non-Linear Soft X-Ray Emission from a Hydride Target during Pulsed D Bombardment

    NASA Astrophysics Data System (ADS)

    Miley, George H.; Yang, Yang; Lipson, Andrei; Haque, Munima; Percel, Ian; Romer, Michael

    Radiation emission from low-energy nuclear radiation (LENR) electrodes (both charged-particle and X-rays) represents an important feature of LENR in general. Here, calibration, measurement techniques, and soft X-ray emission results from deuterium bombardment of a Pd target (cathode) placed in a pulsed deuterium glow discharge (PGD) are described. An X-ray intensity of 13.4 mW/cm2 and a dose of 3.3 ?J/cm2 were calculated over a 0.5 ms pulse time from AXUV photodiode radiation detector measurements. A most striking feature is that X-ray energies >600 V are observed with a discharge voltage only about half of that value. To further investigate this phenomenon, emission during room temperature D-desorption from electrolytically loaded Pd:Dx cathodes was also studied. The X-ray emission energy observed was quite similar to the PGD case. However, the intensity in this case was almost 13 orders of magnitude lower due to the much lower deuterium fluxes involved.

  3. Global Structure of Isothermal Diffuse X-Ray Emission along the Fermi Bubbles

    NASA Astrophysics Data System (ADS)

    Kataoka, J.; Tahara, M.; Totani, T.; Sofue, Y.; Inoue, Y.; Nakashima, S.; Cheung, C. C.

    2015-07-01

    In our previous works, we found absorbed thermal X-ray plasma with kT ? 0.3 keV observed ubiquitously near the edges of the Fermi bubbles and interpreted this emission as weakly shock-heated Galactic halo gas. Here we present a systematic and uniform analysis of archival Suzaku (29 pointings; 6 newly presented) and Swift (68 pointings; 49 newly presented) data within Galactic longitudes | l| < 20° and latitude 5°? | b| < 60°, covering the whole extent of the Fermi bubbles. We show that the plasma temperature is constant at kT ? 0.30 ± 0.07 keV, while the emission measure (EM) varies by an order of magnitude, increasing toward the Galactic center (i.e., low | b| ) with enhancements at the North Polar Spur (NPS), SE-claw, and NW-clump features. Moreover, the EM distribution of kT ? 0.30 keV plasma is highly asymmetric in the northern and southern bubbles. Although the association of the X-ray emission with the bubbles is not conclusive, we compare the observed EM properties with simple models assuming (i) a filled halo without bubbles, whose gas density follows a hydrostatic isothermal model (King profile), and (ii) a bubble-in-halo in which two identical bubbles expand into the halo, forming thick shells of swept halo gas. We argue that the EM profile in the north (b > 0°) favors (ii), whereas that of the south (b < 0°) is rather close to (i), but a weak excess signature is clearly detected also in the south like NPS (South Polar Spur). Such an asymmetry, if due to the bubbles, cannot be fully understood only by the inclination of bubbles’ axis against the Galactic disk normal, thus suggesting asymmetric outflow due to different environmental/initial conditions.

  4. Soft X-ray and VUV emission from REB-heated plasma in REBEX 1 amd REBEX 1 machines

    NASA Astrophysics Data System (ADS)

    Piffl, V.; Raus, V.

    1981-10-01

    The measurements of soft X-ray spectra in REB-heated plasma experiments by means of a conventional scintillation technique is difficult due to the intense bremsstrahlung originating from interaction of beam electrons with a plasma and chamber walls. In the experiments with the REBEX 1 machine, predominantly radiation from a decaying plasma long after the beam injections pulse (t 0,5 micro sec.) could be measured in this way, although very thin plastic scintillators were used. The absorption characteristics of X-ray emission from a plasma are measured and compared with calculated Maxwellian plasma emission for several temperatures. To detect ultrasoft X-ray and VUV emission two types of photoemission detectors were developed.

  5. Fast-electron refluxing effects on anisotropic hard-x-ray emission from intense laser-plasma interactions.

    PubMed

    McKeever, K; Makita, M; Nersisyan, G; Dzelzainis, T; White, S; Kettle, B; Dromey, B; Zepf, M; Sarri, G; Doria, D; Ahmed, H; Lewis, C L S; Riley, D; Robinson, A P L

    2015-03-01

    Fast-electron generation and dynamics, including electron refluxing, is at the core of understanding high-intensity laser-plasma interactions. This field is itself of strong relevance to fast ignition fusion and the development of new short-pulse, intense, x-ray, ?-ray, and particle sources. In this paper, we describe experiments that explicitly link fast-electron refluxing and anisotropy in hard-x-ray emission. We find the anisotropy in x-ray emission to be strongly correlated to the suppression of refluxing. In contrast to some previous work, the peak of emission is directly along the rear normal to the target rather than along either the incident laser direction or the specular reflection direction. PMID:25871224

  6. Masked-backlighter technique used to simultaneously image x-ray absorption and x-ray emission from an inertial confinement fusion plasma

    SciTech Connect

    Marshall, F. J., E-mail: fredm@lle.rochester.edu; Radha, P. B. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623 (United States)

    2014-11-15

    A method to simultaneously image both the absorption and the self-emission of an imploding inertial confinement fusion plasma has been demonstrated on the OMEGA Laser System. The technique involves the use of a high-Z backlighter, half of which is covered with a low-Z material, and a high-speed x-ray framing camera aligned to capture images backlit by this masked backlighter. Two strips of the four-strip framing camera record images backlit by the high-Z portion of the backlighter, while the other two strips record images aligned with the low-Z portion of the backlighter. The emission from the low-Z material is effectively eliminated by a high-Z filter positioned in front of the framing camera, limiting the detected backlighter emission to that of the principal emission line of the high-Z material. As a result, half of the images are of self-emission from the plasma and the other half are of self-emission plus the backlighter. The advantage of this technique is that the self-emission simultaneous with backlighter absorption is independently measured from a nearby direction. The absorption occurs only in the high-Z backlit frames and is either spatially separated from the emission or the self-emission is suppressed by filtering, or by using a backlighter much brighter than the self-emission, or by subtraction. The masked-backlighter technique has been used on the OMEGA Laser System to simultaneously measure the emission profiles and the absorption profiles of polar-driven implosions.

  7. X-ray emission from the Wolf-Rayet bubble NGC 6888. I. Chandra ACIS-S observations

    SciTech Connect

    Toalá, J. A.; Guerrero, M. A. [Instituto de Astrofísica de Andalucía, IAA-CSIC, Glorieta de la Astronomía s/n, E-18008 Granada (Spain); Gruendl, R. A.; Chu, Y.-H. [Department of Astronomy, University of Illinois, 1002 West Green Street, Urbana, IL 61801 (United States)

    2014-02-01

    We analyze Chandra observations of the Wolf-Rayet (W-R) bubble NGC 6888. This W-R bubble presents similar spectral and morphological X-ray characteristics to those of S 308, the only other W-R bubble also showing X-ray emission. The observed spectrum is soft, peaking at the N VII line emission at 0.5 keV, with additional line emission at 0.7-0.9 keV and a weak tail of harder emission up to ?1.5 keV. This spectrum can be described by a two-temperature optically thin plasma emission model (T {sub 1} ? 1.4 × 10{sup 6} K, T {sub 2} ? 7.4 × 10{sup 6} K). We confirm the results of previous X-ray observations that no noticeable temperature variations are detected in the nebula. The X-ray-emitting plasma is distributed in three apparent morphological components: two caps along the tips of the major axis and an extra contribution toward the northwest blowout not reported in previous analyses of the X-ray emission toward this W-R nebula. Using the plasma model fits of the Chandra ACIS spectra for the physical properties of the hot gas and the ROSAT PSPC image to account for the incomplete coverage of Chandra observations, we estimate a luminosity of L {sub X} = (7.7 ± 0.1) ×10{sup 33} erg s{sup –1} for NGC 6888 at a distance of 1.26 kpc. The average rms electron density of the X-ray-emitting gas is ? 0.4 cm{sup –3} for a total mass ? 1.2 M {sub ?}.

  8. THE JET OF 3C 17 AND THE USE OF JET CURVATURE AS A DIAGNOSTIC OF THE X-RAY EMISSION PROCESS

    SciTech Connect

    Massaro, F.; Harris, D. E. [Harvard, Smithsonian Astrophysical Observatory, 60 Garden Street, Cambridge, MA 02138 (United States); Chiaberge, M.; Macchetto, F. D. [Space Telescope Science Institute, 3700 San Martine Drive, Baltimore, MD 21218 (United States); Grandi, P. [INAF-IASF, Istituto di Astrofisica Spaziale e fisica cosmica di Bologna, Via P. Gobetti 101, 40129 Bologna (Italy); Baum, S. A. [Carlson Center for Imaging Science 76-3144, 84 Lomb Memorial Drive, Rochester, NY 14623 (United States); O'Dea, C. P. [Department of Physics, Rochester Institute of Technology, Carlson Center for Imaging Science 76-3144, 84 Lomb Memorial Drive, Rochester, NY 14623 (United States); Capetti, A. [INAF, Osservatorio Astronomico di Torino, Strada Osservatorio 20, I-10025 Pino Torinese (Italy)

    2009-05-01

    We report on the X-ray emission from the radio jet of 3C 17 from Chandra observations and compare the X-ray emission with radio maps from the VLA archive and with the optical-IR archival images from the Hubble Space Telescope. X-ray detections of two knots in the 3C 17 jet are found and both of these features have optical counterparts. We derive the spectral energy distribution for the knots in the jet and give source parameters required for the various X-ray emission models, finding that both inverse Compton (IC)/cosmic microwave background (CMB) and synchrotron are viable to explain the high energy emission. A curious optical feature (with no radio or X-ray counterparts) possibly associated with the 3C 17 jet is described. We also discuss the use of curved jets for the problem of identifying IC X-ray emission via scattering on CMB photons.

  9. Elemental and mineralogical study of earth-based pigments using particle induced X-ray emission and X-ray diffraction

    NASA Astrophysics Data System (ADS)

    Nel, P.; Lynch, P. A.; Laird, J. S.; Casey, H. M.; Goodall, L. J.; Ryan, C. G.; Sloggett, R. J.

    2010-07-01

    Artwork and precious artefacts demand non-destructive analytical methodologies for art authentication, attribution and provenance assessment. However, structural and chemical characterisation represents a challenging problem with existing analytical techniques. A recent authentication case based on an Australian Aboriginal artwork, indicate there is substantial benefit in the ability of particle induced X-ray emission (PIXE), coupled with dynamic analysis (DA) to characterise pigments through trace element analysis. However, this information alone is insufficient for characterising the mineralogical residence of trace elements. For this reason a combined methodology based on PIXE and X-ray diffraction (XRD) has been performed to explore the benefits of a more comprehensive data set. Many Aboriginal paintings and artefacts are predominantly earth pigment based. This makes these cultural heritage materials an ideal case study for testing the above combined methodological approach on earth-based pigments. Samples of synthetic and naturally occurring earth-based pigments were obtained from a range of sources, which include Indigenous communities within Australia's Kimberley region. PIXE analyses using a 3 MeV focussed proton beam at the CSIRO nuclear microprobe, as well as laboratory-based XRD was carried out on the above samples. Elemental signature spectra as well as mineralogical data were used to assess issues regarding synthetic and naturally occurring earth pigments with the ultimate aim of establishing provenance.

  10. X-RAY EMISSION FROM THE BINARY CENTRAL STARS OF THE PLANETARY NEBULAE HFG 1, DS 1, AND LOTR 5

    SciTech Connect

    Montez, Rodolfo; Kastner, Joel H. [Rochester Institute of Technology, Rochester, NY 14623 (United States); De Marco, Orsola [Macquarie University, Sydney, NSW 2109 (Australia); Chu, You-Hua [University of Illinois at Urbana-Champaign, Urbana, IL 61801 (United States)

    2010-10-01

    Close binary systems undergoing mass transfer or common envelope interactions can account for the morphological properties of some planetary nebulae. The search for close binary companions in planetary nebulae is hindered by the difficulty of detecting cool, late-type, main-sequence companions in binary systems with hot pre-white-dwarf primaries. However, models of binary planetary nebula progenitor systems predict that mass accretion or tidal interactions can induce rapid rotation in the companion, leading to X-ray-emitting coronae. To test such models, we have searched for, and detected, X-ray emission from three binary central stars within planetary nebulae: the post-common envelope close binaries in HFG 1 and DS 1 consisting of O-type subdwarfs with late-type, main-sequence companions and the binary system in LoTr 5 consisting of O-type subdwarf and rapidly rotating, late-type giant companion. The X-ray emission in each case is best characterized by spectral models consisting of two optically thin thermal plasma components with characteristic temperatures of {approx}10 MK and 15-40 MK and total X-ray luminosities {approx}10{sup 30} erg s{sup -1}. We consider the possible origin of the X-ray emission from these binary systems and conclude that the most likely origin is, in each case, a corona around the late-type companion, as predicted by models of interacting binaries.

  11. Variable Hard-X-Ray Emission from the Candidate Accreting Black Hole in Dwarf Galaxy Henize 2–10

    NASA Astrophysics Data System (ADS)

    Whalen, Thomas J.; Hickox, Ryan C.; Reines, Amy E.; Greene, Jenny E.; Sivakoff, Gregory R.; Johnson, Kelsey E.; Alexander, David M.; Goulding, Andy D.

    2015-06-01

    We present an analysis of the X-ray spectrum and long-term variability of the nearby dwarf starburst galaxy Henize 2–10. Recent observations suggest that this galaxy hosts an actively accreting black hole (BH) with mass ?106 {{M}? }. The presence of an active galactic nucleus (AGN) in a low-mass starburst galaxy marks a new environment for AGNs, with implications for the processes by which “seed” BHs may form in the early universe. In this paper, we analyze four epochs of X-ray observations of Henize 2–10, to characterize the long-term behavior of its hard nuclear emission. We analyze observations with Chandra from 2001 and XMM-Newton from 2004 and 2011, as well as an earlier, less sensitive observation with ASCA from 1997. Based on a detailed analysis of the source and background, we find that the hard (2–10 keV) flux of the putative AGN has decreased by approximately an order of magnitude between the 2001 Chandra observation and exposures with XMM-Newton in 2004 and 2011. The observed variability confirms that the emission is due to a single source. It is unlikely that the variable flux is due to a supernova or ultraluminous X-ray source, based on the observed long-term behavior of the X-ray and radio emission, while the observed X-ray variability is consistent with the behavior of well-studied AGNs.

  12. Outer jet X-ray and radio emission in R Aquarii: 1999.8 to 2004.0

    E-print Network

    E. Kellogg; C. Anderson; K. Korreck; J. DePasquale; J. Nichols; J. L. Sokoloski; M. Krauss; J. Pedelty

    2007-05-17

    Chandra and VLA observations of the symbiotic star R Aqr in 2004 reveal significant changes over the three to four year interval between these observations and previous observations taken with the VLA in 1999 and with Chandra in 2000. This paper reports on the evolution of the outer thermal X-ray lobe-jets and radio jets. The emission from the outer X-ray lobe-jets lies farther away from the central binary than the outer radio jets, and comes from material interpreted as being shock heated to ~10^6 K, a likely result of collision between high speed material ejected from the central binary and regions of enhanced gas density. Between 2000 and 2004, the Northeast (NE) outer X-ray lobe-jet moved out away from the central binary, with an apparent projected motion of ~580 km s^-1. The Southwest (SW) outer X-ray lobe-jet almost disappeared between 2000 and 2004, presumably due to adiabatic expansion and cooling. The NE radio bright spot also moved away from the central binary between 2000 and 2004, but with a smaller apparent velocity than of the NE X-ray bright spot. The SW outer lobe-jet was not detected in the radio in either 1999 or 2004. The density and mass of the X-ray emitting material is estimated. Cooling times, shock speeds, pressure and confinement are discussed.

  13. Proton-induced X-ray emission analysis of munitions disposal residues

    NASA Astrophysics Data System (ADS)

    Lytle, N. W.; Hill, M. W.; Lambert, K. E.; Mangelson, N. F.; Kwak, S. S. W.

    1985-05-01

    Residues from several unservicible munitions and chemical agents disposed of by incineration and chemical conversion have been quantitatively analyzed for elemental content using proton-induced X-ray emission (PIXE). Carbonaceous residues were first digested by a single-acid, wet-oxidation procedure and silicious residues were prepared using a lithium metaborate fusion-acid dissolution procedure. The resulting solutions were applied to a polycarbonate film and analyzed using 2 MeV protons. Recoveries of trace elements were determined and were acceptable. Samples include oxidation residues from white phosphorus rockets and projectiles, products from the controlled combustion of bulk ammonium picrate, baghouse and cyclone dust samples. Agent FS conversion samples, and electrolyte solutions from a warhead power supply.

  14. Probing electron acceleration and x-ray emission in laser-plasma accelerators

    SciTech Connect

    Thaury, C.; Ta Phuoc, K.; Corde, S.; Brijesh, P.; Lambert, G.; Malka, V. [Laboratoire d'Optique Appliquée, ENSTA ParisTech—CNRS UMR7639—École Polytechnique ParisTech, Chemin de la Hunière, 91761 Palaiseau (France)] [Laboratoire d'Optique Appliquée, ENSTA ParisTech—CNRS UMR7639—École Polytechnique ParisTech, Chemin de la Hunière, 91761 Palaiseau (France); Mangles, S. P. D.; Bloom, M. S.; Kneip, S. [Blackett Laboratory, Imperial College, London SW7 2AZ (United Kingdom)] [Blackett Laboratory, Imperial College, London SW7 2AZ (United Kingdom)

    2013-06-15

    While laser-plasma accelerators have demonstrated a strong potential in the acceleration of electrons up to giga-electronvolt energies, few experimental tools for studying the acceleration physics have been developed. In this paper, we demonstrate a method for probing the acceleration process. A second laser beam, propagating perpendicular to the main beam, is focused on the gas jet few nanosecond before the main beam creates the accelerating plasma wave. This second beam is intense enough to ionize the gas and form a density depletion, which will locally inhibit the acceleration. The position of the density depletion is scanned along the interaction length to probe the electron injection and acceleration, and the betatron X-ray emission. To illustrate the potential of the method, the variation of the injection position with the plasma density is studied.

  15. Ultrahigh resolution soft x-ray emission spectrometer at BL07LSU in SPring-8

    SciTech Connect

    Harada, Yoshihisa [Department of Applied Chemistry, Graduate School of Engineering, University of Tokyo, Hongo, Bunkyo, Tokyo 113-8656 (Japan); Synchrotron Radiation Research Organization, University of Tokyo, Koto, Shingu-cho, Tatsuno, Hyogo 679-5165 (Japan); RIKEN/SPring-8, Sayo-cho, Sayo, Hyogo 679-5148 (Japan); CREST, Japan Science and Technology (JST), Kawaguchi, Saitama 332-0012 (Japan); Kobayashi, Masaki [Department of Applied Chemistry, Graduate School of Engineering, University of Tokyo, Hongo, Bunkyo, Tokyo 113-8656 (Japan); Synchrotron Radiation Research Organization, University of Tokyo, Koto, Shingu-cho, Tatsuno, Hyogo 679-5165 (Japan); RIKEN/SPring-8, Sayo-cho, Sayo, Hyogo 679-5148 (Japan); Niwa, Hideharu [Department of Applied Chemistry, Graduate School of Engineering, University of Tokyo, Hongo, Bunkyo, Tokyo 113-8656 (Japan); Synchrotron Radiation Research Organization, University of Tokyo, Koto, Shingu-cho, Tatsuno, Hyogo 679-5165 (Japan); Senba, Yasunori; Ohashi, Haruhiko [Japan Synchrotron Radiation Research Institute (JASRI), Koto, Sayo-cho, Sayo, Hyogo 679-5198 (Japan); Tokushima, Takashi; Horikawa, Yuka [RIKEN/SPring-8, Sayo-cho, Sayo, Hyogo 679-5148 (Japan); Shin, Shik [RIKEN/SPring-8, Sayo-cho, Sayo, Hyogo 679-5148 (Japan); CREST, Japan Science and Technology (JST), Kawaguchi, Saitama 332-0012 (Japan); Institute for Solid State Physics, University of Tokyo, Kashiwa, Chiba 277-8581 (Japan); Oshima, Masaharu [Department of Applied Chemistry, Graduate School of Engineering, University of Tokyo, Hongo, Bunkyo, Tokyo 113-8656 (Japan); Synchrotron Radiation Research Organization, University of Tokyo, Koto, Shingu-cho, Tatsuno, Hyogo 679-5165 (Japan); CREST, Japan Science and Technology (JST), Kawaguchi, Saitama 332-0012 (Japan)

    2012-01-15

    An extremely high resolution flat field type slit less soft x-ray emission spectrometer has been designed and constructed for the long undulator beamline BL07LSU in SPring-8. By optimizing the ruling parameters of two cylindrical gratings, a high energy resolution {Delta}E < 100 meV and/or an E/{Delta}E{approx} 10 000 are expected for the energy range of 350 eV - 750 eV taking into account the broadening by the spatial resolution (25 {mu}m) of a CCD detector. A coma-free operation mode proposed by Strocov et al., is also applied to eliminate both defocus and coma aberrations. The spectrometer demonstrated experimentally that E/{Delta}E= 10 050 and 8046 for N 1s (402.1 eV) and Mn 2p (641.8 eV) edges, respectively.

  16. Comparative study of bandwidths in copper delafossites from x-ray emission spectroscopy

    NASA Astrophysics Data System (ADS)

    Shin, D.; Foord, J. S.; Payne, D. J.; Arnold, T.; Aston, D. J.; Egdell, R. G.; Godinho, K. G.; Scanlon, D. O.; Morgan, B. J.; Watson, G. W.; Mugnier, E.; Yaicle, C.; Rougier, A.; Colakerol, L.; Glans, P. A.; Piper, L. F. J.; Smith, K. E.

    2009-12-01

    The widths of the valence bands in the copper (I) delafossites CuGaO2 , CuInO2 , and CuScO2 have been measured by OK -shell x-ray emission spectroscopy and are compared with previous experimental work on CuAlO2 and CuCrO2 . In agreement with recent density-functional theory calculations it is found that the bandwidth decreases in the series CuAlO2>CuGaO2>CuInO2>CuScO2 . It is shown that states at the top of the valence band are of dominant Cu3dz2 atomic character but with significant mixing with O2p states.

  17. Power-law X-ray and gamma-ray emission from relativistic thermal plasmas

    NASA Technical Reports Server (NTRS)

    Zdziarski, A. A.

    1985-01-01

    A common characteristic of cosmic sources is power-law X-ray emission. Extragalactic sources of this type include compact components of active galactic nuclei (AGN). The present study is concerned with a theoretical model of such sources, taking into account the assumption that the power-law spectra are produced by repeated Compton scatterings of soft photons by relativistic thermal electrons. This is one of several possible physical mechanisms leading to the formation of a power-law spectrum. Attention is given to the Comptonization of soft photon sources, the rates of pair processes, the solution of the pair equilibrium equation, and the constraints on a soft photon source and an energy source. It is concluded that the compactness parameters L/R of most of the cosmic sources observed to date lie below the maximum luminosity curves considered.

  18. Detecting X-ray Synchrotron Emission in Supernova Remnants: Implications for Abundances and Cosmic Rays

    E-print Network

    Kristy K. Dyer; Stephen P. Reynolds; Kazik J. Borkowski; Robert Petre

    2000-11-30

    The 10^51 ergs released in a supernova have far reaching consequences in the galaxy, determining elemental abundances, accelerating cosmic rays, and affecting the makeup of the interstellar medium. Recently the spectra of several supernova remnants have been found to be dominated by nonthermal emission. Separating the thermal and nonthermal components is important not only for the understanding of cosmic-ray acceleration and shock microphysics properties but for accurate assessment of the temperatures and line strengths. New models designed to model spatially resolved synchrotron X-rays from type Ia supernovae can contribute to the understanding of both the thermal physics (dynamics, abundances) and nonthermal physics (shock acceleration, magnetic-field amplification) of supernova remnants. I will describe model fits to SN 1006, emphasizing the physical constraints that can be placed on SNRs, abundances, and the cosmic-ray acceleration process.

  19. Global structure of isothermal X-ray emission along the Fermi bubbles

    E-print Network

    Kataoka, J; Totani, T; Sofue, Y; Inoue, Y; Nakashima, S; Cheung, C C

    2015-01-01

    In our previous works (Kataoka et al. 2013, Tahara et al. 2015), we found absorbed thermal X-ray plasma with kT ~ 0.3 keV observed ubiquitously near the edges of the Fermi bubbles and interpreted this emission as weakly shock-heated Galactic halo (GH) gas. Here we present a systematic and uniform analysis of archival Suzaku (29 pointings; 6 newly presented) and Swift (68 pointings; 49 newly presented) data within Galactic longitudes |l| 0 deg) favors (ii), whereas that of the south (b < 0 deg) is rather close to (i), but weak excess signature is clearly detected also in the south like NPS (South Polar Spur; SPS). Such an asymmetry, if due to the bubbles, cannot be fully understood only by the inclination of bubbles' axis against the Galactic disk normal, thus suggesting asymmetric outflow due to different environmental/initial condition.

  20. A novel von Hamos spectrometer for efficient X-ray emission spectroscopy in the laboratory.

    PubMed

    Anklamm, Lars; Schlesiger, Christopher; Malzer, Wolfgang; Grötzsch, Daniel; Neitzel, Michael; Kanngießer, Birgit

    2014-05-01

    We present a novel, highly efficient von Hamos spectrometer for X-ray emission spectroscopy (XES) in the laboratory using highly annealed pyrolitic graphite crystals as the dispersive element. The spectrometer covers an energy range from 2.5 keV to 15 keV giving access to chemical speciation and information about the electronic configuration of 3d transition metals by means of the K? multiplet. XES spectra of Ti compounds are presented to demonstrate the speciation capabilities of the instrument. A spectral resolving power of E/?E = 2000 at 8 keV was achieved. Typical acquisition times range from 10?min for bulk material to hours for thin samples below 1??m. PMID:24880356

  1. Resonant X-ray emission study of the lower-mantle ferropericlase at high pressures

    SciTech Connect

    Lin, Jung-Fu; Mao, Zhu; Jarrige, Ignace; Xiao, Yuming; Chow, Paul; Okuchi, Takuo; Hiraoka, Nozomu; Jacobsen, Steven D. (JAERI); (NSRRC); (NWU); (CIW); (Texas); (Okayama)

    2010-11-12

    Electronic states of iron in Earth's mantle minerals including ferropericlase, silicate perovskite, and post-perovskite have been previously investigated at high pressures and/or temperatures using various experimental techniques, including X-ray emission and Moessbauer spectroscopies. Although such methods have been used to infer changes in the electronic spin and valence states of iron in lower mantle minerals, they do not directly probe the 3d electronic states quantitatively. Here we use 1s2p resonant X-ray emission spectroscopy (RXES) at the Fe K pre-edge to directly probe and assess the 3d electronic states and the crystal-field splittings of Fe{sup 2+} in the lower-mantle ferropericlase [(Mg{sub 0.75},Fe{sub 0.25})O] at pressures up to 90 GPa. The pre-edge features from X-ray absorption spectroscopy in the partial fluorescence yield (PFY-XAS) and RXES results explicitly show three excited states for high-spin Fe{sup 2+} (a lower-energy {sup 4}T{sub 1g} state, a {sup 4}T{sub 2g} state, and a higher-energy {sup 4}T{sub 1g} state) and a single {sup 2}E{sub g} state for low-spin Fe{sup 2+}, attributed to the (t{sub 2g}){sup 0}(e{sub g}){sup 3} excited configuration. This latter feature begins to appear at 48 GPa and grows with pressure, while the peaks related to high-spin Fe{sup 2+} vanish above 80 GPa. The observed pre-edge features are consistent with purely quadrupolar transitions resulting from the centrosymmetric character of the Fe{sup 2+} site. The K pre-edge RXES spectra at the incident energy of 7112 eV, which are similar to the Fe L-edge spectra, are also used successfully to quantitatively obtain consistent results on the spin transition of Fe{sup 2+} in ferropericlase under high pressures. Owing to the superior sensitivity of the RXES technique, the observed electronic states and their energy separations provide direct information on the local electronic structures and crystal-field splitting energies of the 3d electronic shells of Fe{sup 2+} in ferropericlase at relevant pressures of the Earth's lower mantle.

  2. Therapeutic application of metallic nanoparticles combined with particle-induced x-ray emission effect

    NASA Astrophysics Data System (ADS)

    Kim, Jong-Ki; Seo, Seung-Jun; Kim, Ki-Hong; Kim, Tae-Jeong; Chung, Myung-Hwan; Kim, Kye-Ryung; Yang, Tae-Keun

    2010-10-01

    Metallic nanoparticles (MNP) are able to release localized x-rays when activated with a high energy proton beam by the particle-induced x-ray emission (PIXE) effect. The exploitation of this phenomenon in the therapeutic irradiation of tumors has been investigated. PIXE-based x-ray emission directed at CT26 tumor cells in vitro, when administered with either gold (average diameter 2 and 13 nm) or iron (average diameter 14 nm) nanoparticles (GNP or SNP), increased with MNP solution concentration over the range of 0.1-2 mg ml - 1. With irradiation by a 45 MeV proton therapy (PT) beam, higher concentrations had a decreased cell survival fraction. An in vivo study in CT26 mouse tumor models with tumor regression assay demonstrated significant tumor dose enhancement, thought to be a result of the PIXE effect when compared to conventional PT without MNP (radiation-only group) using a 45 MeV proton beam (p < 0.02). Those receiving GNP or SNP injection doses of 300 mg kg - 1 body weight before proton beam therapy demonstrated 90% or 75% tumor volume reduction (TVR) in 20 days post-PT while the radiation-only group showed only 18% TVR and re-growth of tumor volume after 20 days. Higher complete tumor regression (CTR) was observed in 14-24 days after a single treatment of PT with an average rate of 33-65% for those receiving MNP compared with 25% for the radiation-only group. A lower bound of therapeutic effective MNP concentration range, in vivo, was estimated as 30-79 µg g - 1 tissue for both gold and iron nanoparticles. The tumor dose enhancement may compensate for an increase in entrance dose associated with conventional PT when treating large, solid tumors with a spread-out Bragg peak (SOBP) technique. The use of a combined high energy Bragg peak PT with PIXE generated by MNP, or PIXE alone, may result in new treatment options for infiltrative metastatic tumors and other diffuse inflammatory diseases.

  3. K(alpha) X-ray Emission Spectra from Highly Charged Fe Ions in EBIT

    SciTech Connect

    Jacobs, V; Beiersdorfer, P

    2007-03-29

    A detailed spectral model has been developed for the computer simulation of the 2p {yields} 1s K{alpha} X-ray emission from highly charged Fe ions in the Electron Beam Ion Trap (EBIT). The spectral features of interest occur in the range from 1.84 {angstrom} to 1.94 {angstrom}. The fundamental radiative emission processes associated with radiationless electron capture or dielectronic recombination, inner-shell electron collisional excitation, and inner-shell electron collisional ionization are taken in account. For comparison, spectral observations and simulations for high-temperature magnetic-fusion (Tokamak) plasmas are reviewed. In these plasmas, small departures from steady-state corona-model charge-state distributions can occur due to ion transport processes, while the assumption of equilibrium (Maxwellian) electron energy distributions is expected to be valid. Our investigations for EBIT have been directed at the identification of spectral features that can serve as diagnostics of extreme non-equilibrium or transient-ionization conditions, and allowance has been made for general (non-Maxwellian) electron energy distributions. For the precise interpretation of the high-resolution X-ray observations, which may involve the analysis of blended spectral features composed of many lines, it has been necessary to take into account the multitude of individual fine-structure components of the K{alpha} radiative transitions in the ions from Fe XVIII to Fe XXV. At electron densities higher than the validity range of the corona-model approximation, collisionally induced transitions among low-lying excited states can play an important role. It is found that inner-shell electron excitation and ionization processes involving the complex intermediate ions from Fe XVIII to Fe XXI produce spectral features, in the wavelength range from 1.89 {angstrom} to 1.94 {angstrom}, which are particularly sensitive to density variations and transient ionization conditions.

  4. Revisiting He-like X-ray Emission Line Plasma Diagnostics

    E-print Network

    R. L. Porter; G. J. Ferland

    2007-04-20

    A complete model of helium-like line and continuum emission has been incorporated into the plasma simulation code Cloudy. All elements between He and Zn are treated, any number of levels can be considered, and radiative and collisional processes are included. This includes photoionization from all levels, line transfer including continuum pumping and destruction by background opacities, scattering, and collisional processes. The model is calculated self-consistently along with the ionization and thermal structure of the surrounding nebula. The result is a complete line and continuum spectrum of the plasma. Here we focus on the ions of the He I sequence and reconsider the standard helium-like X-ray diagnostics. We first consider semi-analytical predictions and compare these with previous work in the low-density, optically-thin limit. We then perform numerical calculations of helium-like X-ray emission (such as is observed in some regions of Seyferts) and predict line ratios as a function of ionizing flux, hydrogen density, and column density. In particular, we demonstrate that, in photoionized plasmas, the $R$-ratio, a density indicator in a collisional plasma, depends on the ionization fraction and is strongly affected by optical depth for large column densities. We also introduce the notion that the $R$-ratio is a measure of the incident continuum at UV wavelengths. The $G$-ratio, which is temperature-sensitive in a collisional plasma, is also discussed, and shown to be strongly affected by continuum pumping and optical depth as well. These distinguish a photoionized plasma from the more commonly studied collisional case.

  5. The jet-disk symbiosis. I. Radio to X-ray emission models for quasars

    E-print Network

    Heino Falcke; Peter L. Biermann

    1994-11-23

    Starting from the assumption that radio jets and accretion disks are symbiotic features present in radio loud and radio quiet quasars we scale the bulk power of radio jets with the accretion power by adding mass- and energy conservation of the whole jet-disk system to the standard Blandford \\& K\\"onigl theory for compact radio cores. The model depends on only few parameters and can be constrained by observations. Thus we are able to show that radio and X-ray fluxes (SSC emission) of cores and lobes and typical dimensions of radio loud quasars are consistent with a jet being produced in the central engine. We present a synthetic broadband spectrum from radio to X-ray for a jet-disk system. The only way to explain the high efficiency of radio loud objects is to postulate that these objects consist of `maximal jets' with `total equipartition' where the magnetic energy flow of the jet is comparable to the kinetic jet power and the total jet power is a large fraction of the disk power. As the number of electrons is limited by the accretion flow, this is only possible when the minimum Lorentz factor of the electron distribution is $\\gamma_{\\rm e,min}\\ga100$ ($E\\ga 50 {\\rm MeV}$) or/and a large number of pairs are present. Such an electron/positron population would be a necessary consequence of hadronic interactions and may lead to some interesting effects in the low frequency self-absorbed spectrum. Emission from radio weak quasars can be explained with an initially identical jet. The difference between radio loud and radio weak could be due to a different efficiency in accelerating relativistic electrons on the sub-parsec scale. Finally we demonstrate that in order to appease the ravenous hunger of radio loud jets its production must be somehow linked to the dissipation process in the inner part of the disk.

  6. Emerging Trends Gleaned from Central Star and Hot Bubble X-ray Emission of ChanPlaNS Planetary Nebulae

    NASA Astrophysics Data System (ADS)

    Montez, Rodolfo; Kastner, Joel H.; Freeman, Marcus; ChanPlaNS Team

    2015-01-01

    The X-ray imaging-spectrometry of planetary nebulae (PNe) provided by the Chandra X-ray Observatory reveals compact point-like sources and extended diffuse sources. Utilizing the spatial and spectral capabilities of our observations, we have studied 59 PNe that are part of the Chandra Planetary Nebulae Survey (ChanPlaNS). We present their spatial and spectral features and emerging trends in the characteristics, origins, and longevity of X-ray emission from PNe across the evolutionary sequence. Amongst the point-like sources we find a tendency for harder (>0.5 keV) than expected emission from the most luminous central stars, indicating an origin in self-shocking stellar winds. However, we find that known and suspected short-period binary systems tend to feature the hardest (>1 keV) point-like sources of X-ray emission, indicating the role of binary evolution and, perhaps, renewed activity from spun-up late-type companions. Diffuse sources of X-ray emission originate from the collision of stellar winds that fill the PN cavity with shocked gas, called the "hot bubble". Our analysis confirms previous trends that suggest hot bubbles are well-regulated to temperatures of a few MK. Such low temperatures can be explained by several processes: (a) formative winds of a few hundreds of km/s versus extant winds of a few thousands of km/s, (b) heat conduction between the nebular gas and the hot bubble gas, or (c) moderate-velocity PN-sculpting collimated winds and outflows. Altogether, the point-like and diffuse sources of X-ray emission from PNe provide footholds for theory and corroborative multiwavelength studies that can enhance our ability to constrain models of PN shaping.

  7. CORRELATED X-RAY AND VERY HIGH ENERGY EMISSION IN THE GAMMA-RAY BINARY LS I +61 303

    SciTech Connect

    Anderhub, H.; Biland, A. [ETH Zurich, CH-8093 (Switzerland); Antonelli, L. A. [INAF National Institute for Astrophysics, I-00136 Rome (Italy); Antoranz, P.; Balestra, S.; Barrio, J. A. [Universidad Complutense, E-28040 Madrid (Spain); Backes, M.; Becker, J. K. [Technische Universitaet Dortmund, D-44221 Dortmund (Germany); Baixeras, C. [Universitat Autonoma de Barcelona, E-08193 Bellaterra (Spain); Bastieri, D.; Bock, R. K. [Universita di Padova and INFN, I-35131 Padova (Italy); Gonzalez, J. Becerra [Inst. de Astrofisica de Canarias, E-38200 La Laguna, Tenerife (Spain); Bednarek, W.; Berger, K. [University of Lodz, PL-90236 Lodz (Poland); Bernardini, E. [Deutsches Elektronen-Synchrotron (DESY), D-15738 Zeuthen (Germany); Bigas, O. Blanch [IFAE, Edifici Cn., Campus UAB, E-08193 Bellaterra (Spain); Bonnoli, G. [Universita di Siena, and INFN Pisa, I-53100 Siena (Italy); Bordas, P.; Bosch-Ramon, V. [Universitat de Barcelona (ICC/IEEC), E-08028 Barcelona (Spain); Tridon, D. Borla, E-mail: neus@ifae.e, E-mail: jogler@mppmu.mpg.d, E-mail: mribo@am.ub.e [Max-Planck-Institut fuer Physik, D-80805 Muenchen (Germany)

    2009-11-20

    The discovery of very high energy (VHE) gamma-ray emitting X-ray binaries has triggered an intense effort to better understand the particle acceleration, absorption, and emission mechanisms in compact binary systems, which provide variable conditions along eccentric orbits. Despite this, the nature of some of these systems, and of the accelerated particles producing the VHE emission, is unclear. To answer some of these open questions, we conducted a multiwavelength campaign of the VHE gamma-ray emitting X-ray binary LS I +61 303 including the MAGIC telescope, XMM-Newton, and Swift during 60% of an orbit in 2007 September. We detect a simultaneous outburst at X-ray and VHE bands, with the peak at phase 0.62 and a similar shape at both wavelengths. A linear fit to the simultaneous X-ray/VHE pairs obtained during the outburst yields a correlation coefficient of r = 0.97, while a linear fit to all simultaneous pairs provides r = 0.81. Since a variable absorption of the VHE emission towards the observer is not expected for the data reported here, the correlation found indicates a simultaneity in the emission processes. Assuming that they are dominated by a single particle population, either hadronic or leptonic, the X-ray/VHE flux ratio favors leptonic models. This fact, together with the detected photon indices, suggests that in LS I +61 303 the X-rays are the result of synchrotron radiation of the same electrons that produce VHE emission as a result of inverse Compton scattering of stellar photons.

  8. Microphysics of shock acceleration from observations of X-ray synchrotron emission from supernova remnants

    NASA Astrophysics Data System (ADS)

    Reynolds, S.

    Several supernova remnants are known to show X-ray synchrotron emission, from electron distributions that are the rolling-off tail of the distributions responsible for radio emission. These electron populations are presumably produced in the remnant blast wave (or reverse shock, if one is still present) by diffusive shock acceleration. Simple models have been used to confirm the synchrotron interpretation. However, new Chandra and XMM-Newton observations have allowed the comparison of data and models at a much higher degree of detail. Model parameters now include both macroscopic quantities (remnant age, shock speed and shock history, mean magneticfield strength) and microphysical parameters (magnitude and energy-dependence of the electron diffusion coefficient, shock obliquity angle between the upstream magnetic field and shock normal, ionization fraction). These models make both spectral and morphological predictions. As more remnants are found in which synchrotron Xray emission is likely to be important, a better understanding of the process is essential for the correct interpretation of either the thermal or the nonthermal emission. I shall describe the current status of synchrotron modeling from SNR blast waves, focusing on the dependence on the microphysical parameters, and shall describe the constraints provided by observations of SN 1006, RCW 86, and other remnants.

  9. X-Ray Emission from O6-B5 and B6-A5 Stars in Orion

    NASA Astrophysics Data System (ADS)

    Gagne, M.; Caillault, J.-P.; Stauffer, J. R.

    1993-05-01

    We have made three ROSAT HRI observations of the Orion Nebula region, ranging in exposure time from ~ 10 to ~ 50 ksecs. Over 300 X-ray sources have been detected, including stars whose spectral types range from the hot, massive O stars to the coolest PMS stars. In this paper we discuss how the data have helped us address the problem of the late B, early A stars' X-ray emission. About 15 of 20 O6-B5 stars and ~ 6 of 25 B6-A5 stars which fell within our fields of view were detected. The fraction of detections for the former group was limited by the sensitivity threshold, since the L_x/LBol ratios for the O6-B5 stars are consistent with those found in all other studies of X-ray emission from these stars. This emission is thought to arise from radiation-driven shocks in the strong stellar winds (Lucy 1982). Numerous X-ray studies of the B6-A5 stars have now been done (Walter et al. 1988, Caillault & Zoonematkermani 1989, Strom et al. 1990, Schmitt et al. 1993) that seem to indicate that these stars do emit X-rays, albeit at a low level. X-ray emission from low-mass companions (from coronae generated via a magnetic- dynamo [cf Rosner et al. 1985]) is certainly a possible explanation. However, there is little positive evidence to suggest that the X-ray detected B6-A5 stars are indeed binaries. Other possible explanations for their emission may be that shell burning of residual deuterium drives the requisite convection for dynamo action (Palla & Stahler 1990) or that the emission is attributable in some other way to their extreme youth, e.g., they may be Herbig Ae/Be stars, whose activity is manifested at other wavelengths. We present our ROSAT data and examine whether these models adequately explain the observed X-ray emission. This research was supported by NASA Grants NAG5-1608 & NAG5-1610 to the University of Georgia.

  10. An unexpectedly rapid decline in the X-ray afterglow emission of long gamma-ray bursts.

    PubMed

    Tagliaferri, G; Goad, M; Chincarini, G; Moretti, A; Campana, S; Burrows, D N; Perri, M; Barthelmy, S D; Gehrels, N; Krimm, H; Sakamoto, T; Kumar, P; Mészáros, P I; Kobayashi, S; Zhang, B; Angelini, L; Banat, P; Beardmore, A P; Capalbi, M; Covino, S; Cusumano, G; Giommi, P; Godet, O; Hill, J E; Kennea, J A; Mangano, V; Morris, D C; Nousek, J A; O'Brien, P T; Osborne, J P; Pagani, C; Page, K L; Romano, P; Stella, L; Wells, A

    2005-08-18

    'Long' gamma-ray bursts (GRBs) are commonly accepted to originate in the explosion of particularly massive stars, which give rise to highly relativistic jets. Inhomogeneities in the expanding flow result in internal shock waves that are believed to produce the gamma-rays we see. As the jet travels further outward into the surrounding circumstellar medium, 'external' shocks create the afterglow emission seen in the X-ray, optical and radio bands. Here we report observations of the early phases of the X-ray emission of five GRBs. Their X-ray light curves are characterised by a surprisingly rapid fall-off for the first few hundred seconds, followed by a less rapid decline lasting several hours. This steep decline, together with detailed spectral properties of two particular bursts, shows that violent shock interactions take place in the early jet outflows. PMID:16107840

  11. Effects of the halo concentration distribution on strong-lensing optical depth and X-ray emission

    E-print Network

    C. Fedeli; M. Bartelmann; M. Meneghetti; L. Moscardini

    2007-09-24

    We use simulated merger trees of galaxy-cluster halos to study the effect of the halo concentration distribution on strong lensing and X-ray emission. Its log-normal shape typically found in simulations favors outliers with high concentration. Since, at fixed mass, more concentrated halos tend to be more efficient lenses, the scatter in the concentration increases the strong-lensing optical depth by $\\lesssim50%$. Within cluster samples, mass and concentration have counteracting effects on strong lensing and X-ray emission because the concentration decreases for increasing mass. Selecting clusters by concentration thus has no effect on the lensing cross section. The most efficiently lensing and hottest clusters are typically the \\textit{least} concentrated in samples with a broad mass range. Among cluster samples with a narrow mass range, however, the most strongly lensing and X-ray brightest clusters are typically 10% to 25% more concentrated.

  12. Temporal and spectral dependence of samariuom x-ray emission in subpicosecond and nanosecond laser-produced plasmas

    NASA Astrophysics Data System (ADS)

    Chenais-Popovics, Claude J.; Audebert, Patrick; Fajardo, M.; Shepherd, Ronnie L.; Peyrusse, Olivier; Gauthier, Jean-Claude J.

    2001-11-01

    Ultra-short x-ray sources are generated by focusing sub- picosecond lasers on massive targets. The emission duration of a samarium x-ray source produced with a 100 TW sub- picosecond laser was measured using an ultra-fast X-ray streak camera. The spectral range was limited around 7.5-8.5 angstrom, the range in which samarium can be used as a backlighter for K(alpha) aluminum absorption experiments. The spectral time-evolution and the duration of samarium emission were measured. Preliminary calculations performed with non-local-thermodynamic equilibrium atomic physics show the plasma cooling which occurs with a characteristic time longer than predicted by radiative hydrocode simulations.

  13. X-RAY EMISSION AND DYNAMICS FROM LARGE DIAMETER SUPERBUBBLES: THE CASE OF THE N70 SUPERBUBBLE

    SciTech Connect

    Rodriguez-Gonzalez, A.; Velazquez, P. F.; Esquivel, A.; Toledo-Roy, J. C. [Instituto de Ciencias Nucleares, Universidad Nacional Autonoma de Mexico, Apartado Postal 70-543, 04510 D.F. (Mexico); Rosado, M. [Instituto de Astronomia, Universidad Nacional Autonoma de Mexico, Apartado Postal 70-264, 04510 D.F. (Mexico); Reyes-Iturbide, J., E-mail: ary@nucleares.unam.mx [Escuela Superior de Fisica y Matematicas, IPN, U.P. Adolfo Lopez Mateos, C.P. 07738 D.F. (Mexico)

    2011-05-20

    The morphology, dynamics, and thermal X-ray emission of the superbubble N70 are studied by means of three-dimensional hydrodynamic simulations carried out with the YGUAZU-A code. We consider three possible scenarios: the superbubble being the product of a single supernova remnant, of the stellar winds from an OB association, or of the joint action of stellar winds and a supernova (SN) event. Our results show that, in spite of the fact that all scenarios produce bubbles with the observed physical size, only those in which the bubble is driven by stellar winds and an SN event successfully explain the general morphology, dynamics, and X-ray luminosity of N70. Our models predict temperatures in excess of 10{sup 8} K at the interior of the superbubble; however, the density is too low and thermal X-ray emission above 2 keV is too faint to be detected.

  14. Solar Wind Charge Exchange and Local Hot Bubble X-Ray Emission with the DXL Sounding Rocket Experiment

    NASA Technical Reports Server (NTRS)

    Galeazzi, M.; Collier, M. R.; Cravens, T.; Koutroumpa, D.; Kuntz, K. D.; Lepri, S.; McCammon, D.; Porter, F. S.; Prasai, K.; Robertson, I.; Snowden, S.; Thomas, N. E.; Uprety, Y.

    2012-01-01

    The Diffuse X-ray emission from the Local Galaxy (DXL) sounding rocket is a NASA approved mission with a scheduled first launch in December 2012. Its goal is to identify and separate the X-ray emission of the SWCX from that of the Local Hot Bubble (LHB) to improve our understanding of both. To separate the SWCX contribution from the LHB. DXL will use the SWCX signature due to the helium focusing cone at 1=185 deg, b=-18 deg, DXL uses large area propostionai counters, with an area of 1.000 sq cm and grasp of about 10 sq cm sr both in the 1/4 and 3/4 keY bands. Thanks to the large grasp, DXL will achieve in a 5 minule flight what cannot be achieved by current and future X-ray satellites.

  15. Chandra measurements of non-thermal-like X-ray emission from massive, merging, radio halo clusters

    NASA Astrophysics Data System (ADS)

    Million, E. T.; Allen, S. W.

    2009-11-01

    We report the discovery of spatially extended, non-thermal-like emission components in Chandra X-ray spectra for five of a sample of seven massive, merging galaxy clusters with powerful radio haloes. The emission components can be fitted by power-law models with mean photon indices in the range 1.5 < ? < 2.0. A control sample of regular, dynamically relaxed clusters, without radio haloes but with comparable mean thermal temperatures and luminosities, shows no compelling evidence for similar components. Detailed X-ray spectral mapping reveals the complex thermodynamic states of the radio halo clusters. Our deepest observations, of the Bullet Cluster 1E0657-56, demonstrate a spatial correlation between the strongest power-law X-ray emission, highest thermal pressure and brightest 1.34 GHz radio halo emission in this cluster. We confirm the presence of a shock front in the 1E0657-56 and report the discovery of a new, large-scale shock front in Abell 2219. We explore possible origins for the power-law X-ray components. These include inverse-Compton scattering of cosmic microwave background photons by relativistic electrons in the clusters; bremsstrahlung from suprathermal electrons energized by Coulomb collisions with an energetic, non-thermal proton population; and synchrotron emission associated with ultrarelativistic electrons. Interestingly, we show that the power-law signatures may also be due to complex temperature and/or metallicity structure in clusters particularly in the presence of metallicity gradients. In this case, an important distinguishing characteristic between the radio halo clusters and control sample of predominantly cool-core clusters is the relatively low central X-ray surface brightness of the former. Our results have implications for previous discussions of soft excess X-ray emission from clusters and highlight the importance of further deep X-ray and radio mapping, coupled with new hard X-ray, ?-ray and TeV observations, for improving our understanding of the non-thermal particle populations in these systems.

  16. XMM-Newton observations of the supernova remnant IC443: I. soft X-ray emission from shocked interstellar medium

    E-print Network

    E. Troja; F. Bocchino; F. Reale

    2006-06-13

    The shocked interstellar medium around IC443 produces strong X-ray emission in the soft energy band (E<1.5 keV). We present an analysis of such emission as observed with the EPIC MOS cameras on board the XMM-Newotn observatory, with the purpose to find clear signatures of the interactions with the interstellar medium (ISM) in the X-ray band, which may complement results obtained in other wavelenghts. We found that the giant molecular cloud mapped in CO emission is located in the foreground and gives an evident signature in the absorption of X-rays. This cloud may have a torus shape and the part of torus interacting with the IC443 shock gives rise to 2MASS-K emission in the southeast. The measured density of emitting X-ray shocked plasma increases toward the northeastern limb, where the remnant is interacting with an atomic cloud. We found an excellent correlation between emission in the 0.3-0.5 keV band and bright optical/radio filament on large spatial scales. The partial shell structure seen in this band therefore traces the encounter with the atomic cloud.

  17. Reply to Comment on"Isotope and Temperature Effects in Liquid Water Probed by X-ray Absorption and Resonant X-ray Emission Spectroscopy"

    SciTech Connect

    Heske, C.; Zharnikov, M.; Weinhardt, L.; Blum, M.; Weigand, M.; Zubavichus, Y.; Bar, M.; Maier, F.; Denlinger, J. D.; Fuchs, O.; Grunze, M.; Umbach, E.

    2008-05-14

    In Ref. [1], we present and analyze experimental high resolution x-ray emission spectra (XES) of liquid water which exhibit a splitting of the 1b1 l