Sample records for quietus-quercus petraea ectomycorrhizas

  1. Ellagitannins and complex tannins from Quercus petraea bark.

    PubMed

    König, M; Scholz, E; Hartmann, R; Lehmann, W; Rimpler, H

    1994-10-01

    The ellagitannins 2,3-(S)-hexahydroxydiphenoyl-glucose, pedunculagin, vescalagin, and castalagin; the flavanoellagitannins acutissimin A, acutissimin B, eugenigrandin A, guajavin B, and stenophyllanin C; and the procyanidinoellagitannin mongolicanin have been isolated from the bark of Quercus petraea. The ellagitannin fraction had a weak antisecretory effect.

  2. Light energy partitioning, photosynthetic efficiency and biomass allocation in invasive Prunus serotina and native Quercus petraea in relation to light environment, competition and allelopathy.

    PubMed

    Robakowski, Piotr; Bielinis, Ernest; Sendall, Kerrie

    2018-05-01

    This study addressed whether competition under different light environments was reflected by changes in leaf absorbed light energy partitioning, photosynthetic efficiency, relative growth rate and biomass allocation in invasive and native competitors. Additionally, a potential allelopathic effect of mulching with invasive Prunus serotina leaves on native Quercus petraea growth and photosynthesis was tested. The effect of light environment on leaf absorbed light energy partitioning and photosynthetic characteristics was more pronounced than the effects of interspecific competition and allelopathy. The quantum yield of PSII of invasive P. serotina increased in the presence of a competitor, indicating a higher plasticity in energy partitioning for the invasive over the native Q. petraea, giving it a competitive advantage. The most striking difference between the two study species was the higher crown-level net CO 2 assimilation rates (A crown ) of P. serotina compared with Q. petraea. At the juvenile life stage, higher relative growth rate and higher biomass allocation to foliage allowed P. serotina to absorb and use light energy for photosynthesis more efficiently than Q. petraea. Species-specific strategies of growth, biomass allocation, light energy partitioning and photosynthetic efficiency varied with the light environment and gave an advantage to the invader over its native competitor in competition for light. However, higher biomass allocation to roots in Q. petraea allows for greater belowground competition for water and nutrients as compared to P. serotina. This niche differentiation may compensate for the lower aboveground competitiveness of the native species and explain its ability to co-occur with the invasive competitor in natural forest settings.

  3. Adaptive and plastic responses of Quercus petraea populations to climate across Europe.

    PubMed

    Sáenz-Romero, Cuauhtémoc; Lamy, Jean-Baptiste; Ducousso, Alexis; Musch, Brigitte; Ehrenmann, François; Delzon, Sylvain; Cavers, Stephen; Chałupka, Władysław; Dağdaş, Said; Hansen, Jon Kehlet; Lee, Steve J; Liesebach, Mirko; Rau, Hans-Martin; Psomas, Achilleas; Schneck, Volker; Steiner, Wilfried; Zimmermann, Niklaus E; Kremer, Antoine

    2017-07-01

    How temperate forests will respond to climate change is uncertain; projections range from severe decline to increased growth. We conducted field tests of sessile oak (Quercus petraea), a widespread keystone European forest tree species, including more than 150 000 trees sourced from 116 geographically diverse populations. The tests were planted on 23 field sites in six European countries, in order to expose them to a wide range of climates, including sites reflecting future warmer and drier climates. By assessing tree height and survival, our objectives were twofold: (i) to identify the source of differential population responses to climate (genetic differentiation due to past divergent climatic selection vs. plastic responses to ongoing climate change) and (ii) to explore which climatic variables (temperature or precipitation) trigger the population responses. Tree growth and survival were modeled for contemporary climate and then projected using data from four regional climate models for years 2071-2100, using two greenhouse gas concentration trajectory scenarios each. Overall, results indicated a moderate response of tree height and survival to climate variation, with changes in dryness (either annual or during the growing season) explaining the major part of the response. While, on average, populations exhibited local adaptation, there was significant clinal population differentiation for height growth with winter temperature at the site of origin. The most moderate climate model (HIRHAM5-EC; rcp4.5) predicted minor decreases in height and survival, while the most extreme model (CCLM4-GEM2-ES; rcp8.5) predicted large decreases in survival and growth for southern and southeastern edge populations (Hungary and Turkey). Other nonmarginal populations with continental climates were predicted to be severely and negatively affected (Bercé, France), while populations at the contemporary northern limit (colder and humid maritime regions; Denmark and Norway) will

  4. A Comparative Study on Macro- and Microelement Bioaccumulation Properties of Leaves and Bark of Quercus petraea and Pinus sylvestris.

    PubMed

    Klink, Agnieszka; Polechońska, Ludmiła; Dambiec, Małgorzata; Białas, Kamila

    2018-01-01

    Trees are widely used for biomonitoring and filtering air in industrial, urban, and rural areas. This research was undertaken to examine accumulation capacities of macroelements (Ca, K, Mg, Na) and trace metals (As, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, Zn) in needles and bark of Pinus sylvestris and leaves and bark of Quercus petraea growing in the vicinity of the chlor-alkali plant PCC Rokita in Brzeg Dolny (Lower Silesia, SW Poland). Because Scots pine is well studied and considered a useful bioindicator, we have used this species as a base for comparison of the accumulation ability of sessile oak that shows some features of good bioindicator, but whose biogeochemistry was scarcely studied. Results showed that for both species leaves contained more macroelements (Ca, K, Mg), whereas the bark was richer in most trace metals (Cd, Cr, Cu, Fe, and Pb). However, trees studied differed with respect to element content. Oak bark and leaves were more effective in accumulating macro- and trace elements (bark Cd, Co, Cr, Cu, K, Mg, Mn, Na, Ni, Pb and leaves Ca, Cr, Cu, Fe, K, Mg, Na, Ni) than Scots pine tissues. Nevertheless, foliar metal accumulation index of these species was similar, suggesting that their overall ability to accumulate trace metals was similar.

  5. Seasonal Changes Affect Root Prunasin Concentration in Prunus serotina and Override Species Interactions between P. serotina and Quercus petraea.

    PubMed

    Robakowski, Piotr; Bielinis, Ernest; Stachowiak, Jerzy; Mejza, Iwona; Bułaj, Bartosz

    2016-03-01

    The allocation of resources to chemical defense can decrease plant growth and photosynthesis. Prunasin is a cyanogenic glycoside known for its role in defense against herbivores and other plants. In the present study, fluctuations of prunasin concentrations in roots of Prunus serotina seedlings were hypothesized to be: (1) dependent on light, air temperature, and humidity; (2) affected by competition between Prunus serotina and Quercus petraea seedlings, with mulching with Prunus serotina leaves; (3) connected with optimal allocation of resources. For the first time, we determined prunasin concentration in roots on several occasions during the vegetative season. The results indicate that seasonal changes have more pronounced effects on prunasin concentration than light regime and interspecific competition. Prunus serotina invested more nitrogen in the synthesis of prunasin under highly restricted light conditions than in higher light environments. In full sun, prunasin in roots of Prunus serotina growing in a monoculture was correlated with growth and photosynthesis, whereas these relationships were not found when interspecific competition with mulching was a factor. The study demonstrates that prunasin concentration in Prunus serotina roots is the result of species-specific adaptation, light and temperature conditions, ontogenetic shift, and, to a lesser extent, interspecific plant-plant interactions.

  6. Tuberculate ectomycorrhizae of angiosperms: The interaction between Boletus rubropunctus (Boletaceae) and Quercus species (Fagaceae) in the United States and Mexico.

    PubMed

    Smith, Matthew E; Pfister, Donald H

    2009-09-01

    Tuberculate ectomycorrhizae (TECM) are unique structures in which aggregates of ectomycorrhizal roots are encased in a covering of fungal hyphae. The function of TECM is unknown, but they probably enhance the nitrogen nutrition and disease resistance of host plants. Trees in the Pinaceae form TECM with species of Rhizopogon and Suillus (Suillineae, Boletales). Similar tubercules are found with diverse angiosperms, but their mycobionts have not been phylogenetically characterized. We collected TECM in Mexico and the USA that were similar to TECM in previous reports. We describe these TECM and identify both the plant and fungal symbionts. Plant DNA confirms that TECM hosts are Quercus species. ITS sequences from tubercules and sclerotia (hyphal aggregations that serve as survival structures) matched sporocarps of Boletus rubropunctus. Phylogenetic analyses confirm that this fungus belongs to the suborder Boletineae (Boletales). This is the first published report of TECM formation in the Boletineae and of sclerotia formation by a Boletus species. Our data suggest that the TECM morphology is an adaptive feature that has evolved separately in two suborders of Boletales (Suillineae and Boletineae) and that TECM formation is controlled by the mycobiont because TECM are found on distantly related angiosperm and gymnosperm host plants.

  7. Epicormic ontogeny in Quercus petraea constrains the highly plausible control of epicormic sprouting by water and carbohydrates.

    PubMed

    Morisset, J B; Mothe, F; Bock, J; Bréda, N; Colin, F

    2012-02-01

    There is increasing evidence that suppressed bud burst and thus epicormic shoot emergence (sprouting) are controlled by water-carbohydrate supplies to entire trees and buds. This direct evidence is still lacking for oak. In other respects, recent studies focused on sessile oak, Quercus petraea, have confirmed the important constraints of sprouting by epicormic ontogeny. The main objective of this paper was thus to provide provisional confirmation of the water-carbohydrate control and direct evidence of the ontogenic constraints by bringing together results already published in separate studies on water status and distribution of carbohydrates, and on accompanying vegetation and epicormics, which also quantify epicormic ontogeny. This paper analyses results gained from a sessile oak experiment in which part of the site was free from fairly tall, dense accompanying vegetation. This experiment was initially focused on stand water status and more recently on the carbohydrate distribution of dominant trees. External observations of the epicormic composition and internal observations with X-ray computer tomography were undertaken on 60 and six trees, respectively. Sprouting was more intense in the part of the stand free from accompanying vegetation and on upper trunk segments. A clear effect of epicormic ontogeny was demonstrated as well: the more epicormics a trunk segment bears, the more chances it had to bear sprouts. These results indirectly infer water-carbohydrate control and show direct evidence of constraints by epicormic ontogeny. These results have far-reaching consequences related to the quantification of all functions fulfilled by any type of epicormic structure in any part of the tree.

  8. The changes of the forests dendroproduction in the Carpathian basin - case study: Quercus petraea

    NASA Astrophysics Data System (ADS)

    Berki, Imre; Gulyás, Krisztina; Veperdi, Gábor

    2017-04-01

    There are a lot of publications about the accelerated forest growth in West-and North- Europe due to global climate change, elevated atmospheric carbon-dioxide and nitrogen input. However, in Central-Europe the increasing tendency of extremely dry periods caused mass mortality of forest formed tree species, and triggered slower or indefinite growth trends. In this study our scientific questions were the followings: • Which are the characteristic mechanism in the south-east part of Central -Europe: forest decay, accelerated growth or both? • What are the expected impacts of climate change on sessile oak production? • Are there any differences between a humid and an arid landscapes tree height growth? Method for measuring the changes of growth in humid landscapes: Top height of the stands is a good indicator of the site condition with high stand density. So this indicator can be used to measure the changes of growth in humid stands, where the drought periods caused not considerable tree decay. We have been measured a young and old sessile oak stands next to each other along a humid-arid climatic transect in Hungary. The old stands representing the "pre-climate change" conditions, when the annual temperature means, and the frequency of droughts were lower. The young stands have been lived their whole lifetime in changed atmospheric condition. Compared the top height of the young and old stand to the yield tables we can establish a soft accelerated growth in the last decades in the humid landscapes. Method for measuring the changes of growth in dry landscapes: Top height of thinned forests due to tree decay do not indicate the changed atmospheric condition. Although the volume of the survived trees has been increased (compared to yield tables) due to accelerated diameter growth, the production of the thinned Quercus petraea forests have been decreased. Keywords: tree height growth, nitrogen input, humid-arid climatic transect Acknowledgements: Research is

  9. Early Summer Drought Stress During the First Growing Year Stimulates Extra Shoot Growth in Oak Seedlings (Quercus petraea)

    PubMed Central

    Turcsán, Arion; Steppe, Kathy; Sárközi, Edit; Erdélyi, Éva; Missoorten, Marc; Mees, Ghislain; Mijnsbrugge, Kristine V.

    2016-01-01

    More severe summer droughts are predicted for mid-latitudes in Europe. To evaluate the impact on forest ecosystems and more specifically on forest regeneration, we studied the response to summer drought in oak seedlings (Quercus petraea). Acorns were collected from different mother trees in three stands in Belgium, sown in pots and grown in non-heated greenhouse conditions. We imposed drought on the seedlings in early summer by first watering the pots to saturation and then stopping any watering. Weight of the pots and stomatal conductance were regularly measured. Re-watering followed this drought period of 5 weeks. Height of the seedlings and apical bud development were observed. Stomatal resistance increased toward the end of the experiment in the drought-treated group and was restored after re-watering. The seedlings from the drought treatment displayed a higher probability to produce additional shoot growth after re-watering (p ≤ 0.05). A higher competition for water (two plants per pot) increased this chance. Although this chance was also higher for smaller seedlings, the actual length of the extra growth after re-watering was higher for larger seedlings (p ≤ 0.01). Both in the drought-treated and in the control group the autochthonous provenance growing on a xeric site produced less extra shoots compared to the two other provenances. Finally, stressed plants showed less developed apical buds compared to the control group after re-watering, suggesting a phenological effect on the growth cycle of oaks (p ≤ 0.0001). The higher chance for an extra shoot growth after the drought period can be considered as a compensation for the induced growth arrest during the drought period. PMID:26941760

  10. UV light impact on ellagitannins and wood surface colour of European oak ( Quercus petraea and Quercus robur)

    NASA Astrophysics Data System (ADS)

    Zahri, S.; Belloncle, C.; Charrier, F.; Pardon, P.; Quideau, S.; Charrier, B.

    2007-03-01

    Two European oak species ( Q. petraea and Q. robur) have a high content of phenols which may participate in the alteration of colour upon UV irradiation. To study the photodegradation process of oak surfaces, the two oak species extractives, vescalagin, castalagin, ellagic acid and gallic acid were analysed quantitatively by HPLC before and after UV irradiation. Irradiation time was altered between 3, 24, 72, 96, 120, 144, 192 and 216 h. In parallel, any colour changes of Oak wood surface was followed after 120 h of UV-irradiation by measuring CIELAB parameters (DL*, Da*, Db* and DE*). We observed that 60% of total phenol content of extractives decreased after the maximal exposure time. Our findings also showed that castalagin and gallic acid were destroyed after 216 h and vescalagin and ellagic acid after 72 h. This study proves the photosenibility of oakwood extractives which, supplementary to lignin degradation, would strongly result in the discolouration of oak heartwood.

  11. Surface Properties and Permeability to Calcium Chloride of Fagus sylvatica and Quercus petraea Leaves of Different Canopy Heights

    PubMed Central

    Bahamonde, Héctor A.; Gil, Luis; Fernández, Victoria

    2018-01-01

    Plant surfaces have a considerable degree of chemical and physical variability also in relation to different environmental conditions, organs and state of development. The potential changes on plant surface properties in association with environmental variations have been little explored so far. Using two model tree species (i.e., Quercus petraea, sessile oak and Fagus sylvatica, beech) growing in ‘Montejo de la Sierra Forest,’ we examined various traits of the abaxial and adaxial surface of leaves of both species collected at a height of approximately 15 m (top canopy), versus 3.5–5.5 m for beech and sessile oak, lower canopy leaves. Leaf surface ultra-structure was analyzed by scanning and transmission electron microscopy, and the surface free energy and related parameter were estimated after measuring drops of 3 liquids with different degrees of polarity and apolarity. The permeability of the adaxial and abaxial surface of top and bottom canopy leaves to CaCl2 was estimated by depositing 2 drops of 3–4 μl per cm2 and comparing the concentration of Ca in leaf tissues 24 h after treatment, and also Ca and Cl concentrations in the washing liquid. Higher Ca concentrations were recorded after the application of CaCl2 drops onto the veins and adaxial blade of top canopy beech leaves, while no significant evidence for foliar Ca absorption was gained with sessile oak leaves. Surprisingly, high amounts of Cl were recovered after washing untreated, top canopy beach and sessile oak leaves with deionised water, a phenomenon which was not traced to occur on lower canopy leaves of both species. It is concluded that the surface of the two species analyzed is heterogeneous in nature and may have areas favoring the absorption of water and solutes as observed for the veins of beech leaves. PMID:29720987

  12. Humus characteristics and seasonal changes of soil arthropod communities in a natural sessile oak (Quercus petraea L.) stand and adjacent Austrian pine (Pinus nigra Arnold) plantation.

    PubMed

    Cakir, Meric; Makineci, Ender

    2013-11-01

    In order to assess the effects of conversion of natural stands into plantations, soil invertebrate micro- and macroarthropod communities were evaluated for their abundance and richness in a sessile oak (SO; Quercus petraea L.) stand and adjacent Austrian pine (AP; Pinus nigra Arnold) plantation. Sites were sampled four times a year in 3-month intervals from May 2009 to February 2010. Humus characteristics such as total mass; carbon, lignin, and cellulose contents; and C/N ratio were significantly different between SO and AP. Statistically significant differences were detected on soil pH, carbon and nitrogen contents, and electrical conductivity between the two sites. The number of microarthropods was higher in AP than in the SO site. The annual mean abundance values of microarthropods in a square meter were 67,763 in AP and 50,542 in SO, and the annual mean abundance values of macroarthropods were 921 m(-2) in AP and 427 m(-2) in SO. Among the soil microarthropods, Acari and Collembola were the dominant groups. Shannon's diversity index was more affected by evenness than species number despite the species diversity (H') of soil arthropods being generally higher in the SO stand. The abundance of microarthropods showed clear seasonal trends depending upon the humidity of the soil.

  13. Stand density, tree social status and water stress influence allocation in height and diameter growth of Quercus petraea (Liebl.).

    PubMed

    Trouvé, Raphaël; Bontemps, Jean-Daniel; Seynave, Ingrid; Collet, Catherine; Lebourgeois, François

    2015-10-01

    Even-aged forest stands are competitive communities where competition for light gives advantages to tall individuals, thereby inducing a race for height. These same individuals must however balance this competitive advantage with height-related mechanical and hydraulic risks. These phenomena may induce variations in height-diameter growth relationships, with primary dependences on stand density and tree social status as proxies for competition pressure and access to light, and on availability of local environmental resources, including water. We aimed to investigate the effects of stand density, tree social status and water stress on the individual height-circumference growth allocation (Δh-Δc), in even-aged stands of Quercus petraea Liebl. (sessile oak). Within-stand Δc was used as surrogate for tree social status. We used an original long-term experimental plot network, set up in the species production area in France, and designed to explore stand dynamics on a maximum density gradient. Growth allocation was modelled statistically by relating the shape of the Δh-Δc relationship to stand density, stand age and water deficit. The shape of the Δh-Δc relationship shifted from linear with a moderate slope in open-grown stands to concave saturating with an initial steep slope in closed stands. Maximum height growth was found to follow a typical mono-modal response to stand age. In open-grown stands, increasing summer soil water deficit was found to decrease height growth relative to radial growth, suggesting hydraulic constraints on height growth. A similar pattern was found in closed stands, the magnitude of the effect however lowering from suppressed to dominant trees. We highlight the high phenotypic plasticity of growth in sessile oak trees that further adapt their allocation scheme to their environment. Stand density and tree social status were major drivers of growth allocation variations, while water stress had a detrimental effect on height in the

  14. Ectomycorrhizal fungal communities of native and non-native Pinus and Quercus species in a common garden of 35-year-old trees.

    PubMed

    Trocha, Lidia K; Kałucka, Izabela; Stasińska, Małgorzata; Nowak, Witold; Dabert, Mirosława; Leski, Tomasz; Rudawska, Maria; Oleksyn, Jacek

    2012-02-01

    Non-native tree species have been widely planted or have become naturalized in most forested landscapes. It is not clear if native trees species collectively differ in ectomycorrhizal fungal (EMF) diversity and communities from that of non-native tree species. Alternatively, EMF species community similarity may be more determined by host plant phylogeny than by whether the plant is native or non-native. We examined these unknowns by comparing two genera, native and non-native Quercus robur and Quercus rubra and native and non-native Pinus sylvestris and Pinus nigra in a 35-year-old common garden in Poland. Using molecular and morphological approaches, we identified EMF species from ectomycorrhizal root tips and sporocarps collected in the monoculture tree plots. A total of 69 EMF species were found, with 38 species collected only as sporocarps, 18 only as ectomycorrhizas, and 13 both as ectomycorrhizas and sporocarps. The EMF species observed were all native and commonly associated with a Holarctic range in distribution. We found that native Q. robur had ca. 120% higher total EMF species richness than the non-native Q. rubra, while native P. sylvestris had ca. 25% lower total EMF species richness than non-native P. nigra. Thus, across genera, there was no evidence that native species have higher EMF species diversity than exotic species. In addition, we found a higher similarity in EMF communities between the two Pinus species than between the two Quercus species. These results support the naturalization of non-native trees by means of mutualistic associations with cosmopolitan and novel fungi.

  15. Synthesis of Pisolithus Ectomycorrhizae on Pecan Seedlings in Fumigated Soil

    Treesearch

    Donald H. Marx

    1979-01-01

    Curtis variety of pecan (Carya illinoensis) seedlings were grown for 8 months in fumigated soil infested at sowing with mycelial inoculum of Pisolithus tinctorius. Pisolithus ectomycorrhizae were formed on all inoculated seedlings and significantly improved their growth over control seedlings. Inoculated and control seedlings also formed ectomycorrhizae with naturally...

  16. Chemical characterization of oak heartwood from Spanish forests of Quercus pyrenaica (Wild.). Ellagitannins, low molecular weight phenolic, and volatile compounds.

    PubMed

    Fernandez de Simón, Brígida; Sanz, Miriam; Cadahía, Estrella; Poveda, Pilar; Broto, Miguel

    2006-10-18

    The need for new sources of quality wood supply for cooperage has led to looking into the possibility of utilizing Quercus pyrenaica Wild. oak, a species native to the Iberian peninsula, as an alternative to other European (Quercus robur and Qurecus petraea) and American (Quercus alba) oaks. The low molecular weight phenolic composition, ellagitannins, and volatile compounds (including a wide range of compound families such as volatile phenols, furanic compounds, lactones, phenyl ketones, other lignin-derived compounds, and volatile compounds related to off-flavors) of green heartwood from Spanish forest regions were studied by HPLC and GC, in order to know its enological characteristics. The chemical composition of Q. pyrenaica is similar to that of other species commonly used in cooperage to make barrels, showing only quantitative differences that were more significant with respect to American than to French species. The four provenance regions studied showed similar chemical composition, with high variability among individuals, often higher than the variability among regions of provenance, but in line with that described in other European and American oak woods. Therefore, this species must be considered to be suitable for aging wine.

  17. Repeated Summer Drought and Re-watering during the First Growing Year of Oak (Quercus petraea) Delay Autumn Senescence and Bud Burst in the Following Spring

    PubMed Central

    Vander Mijnsbrugge, Kristine; Turcsán, Arion; Maes, Jorne; Duchêne, Nils; Meeus, Steven; Steppe, Kathy; Steenackers, Marijke

    2016-01-01

    Climate change predicts harsher summer droughts for mid-latitudes in Europe. To enhance our understanding of the putative impacts on forest regeneration, we studied the response of oak seedlings (Quercus petraea) to water deficit. Potted seedlings originating from three locally sourced provenances were subjected to two successive drought periods during the first growing season each followed by a plentiful re-watering. Here, we describe survival and phenological responses after the second drought treatment, applying general linear mixed modeling. From the 441 drought treated seedlings 189 subsisted with higher chances of survival among smaller plants and among single plants per pot compared to doubles. Remarkably, survival was independent of the provenance, although relatively more plants had died off in two provenances compared to the third one with mean plant height being higher in one provenance and standard deviation of plant height being higher in the other. Timing of leaf senescence was clearly delayed after the severe drought treatment followed by re-watering, with two seedlings per pot showing a lesser retardation compared to single plants. This delay can be interpreted as a compensation time in which plants recover before entering the subsequent developmental process of leaf senescence, although it renders seedlings more vulnerable to early autumn frosts because of the delayed hardening of the shoots. Onset of bud flush in the subsequent spring still showed a significant but small delay in the drought treated group, independent of the number of seedlings per pot, and can be considered as an after effect of the delayed senescence. In both phenological models significant differences among the three provenances were detected independent from the treatment. The only provenance that is believed to be local of origin, displayed the earliest leaf senescence and the latest flushing, suggesting an adaptation to the local maritime climate. This provenance also

  18. Phenolic compounds and sensorial characterization of wines aged with alternative to barrel products made of Spanish oak wood (Quercus pyrenaica Willd.).

    PubMed

    Gallego, L; Del Alamo, M; Nevares, I; Fernández, J A; Fernández de Simón, B; Cadahía, E

    2012-04-01

    Wood of Quercus pyrenaica has suitable properties for the wine ageing process. However, the forest available for the barrel making from this particular type of tree is very limited. Nevertheless, it is highly advisable to use this kind of wood in order to manufacture alternative oak products. This study presents the results of ageing the same red wine using different pieces of wood (chips and staves) of Spanish oak (Q. pyrenaica), American oak (Quercus alba) and French oak (Quercus petraea) in conjunction with small, controlled amounts of oxygen. In addition, the phenolic parameters, colour and sensory analysis point out that wines aged with Q. pyrenaica pieces have similar enological characteristics to those aged with American or French oak pieces of wood (chips and staves). Furthermore, the total oxygen consumed and its relation with sensory properties also has been studied in this article in order to know how the oxygen behaves in these processes. Besides, it is going to put forward the fact that chips and staves from Q. pyrenaica oak are suitable for the ageing of red wines and better considered than American or French ones, showing higher aromatic intensity, complexity, woody, balsamic and cocoa. Finally, the tasters valued highly the wines with staves, pointing out its flavour and roundness in mouth.

  19. [Effect of ectomycorrhizae on the growth of Picea koraiensis seedlings].

    PubMed

    Song, Rui-Qing; Wu, Ke

    2005-12-01

    Basidioscarps of Agaricales in different Picea koraiensis forest plantations were collected during August-October, 2000. 36 isolaters of species of Agaricales were obtained by isolating and culturing to the basidioscarps. Through indoor inoculation test on seedlings of Picea koraiensis, 6 ectomycorrhizae fungi cultures were obtained from 36 isolaters. The inoculation results show that the period for ectomycorrhizae inoculation to 1-year seedlings of Picea koraiensis should be about 30 days after seedlings emerging, the suitable temperature for ectomycorrhizae forming is about 20 degrees C. 6 ectomycorrhizae strains all have growth-promoting effect to the seedlings of Picea koraiensis. The contents of chlorophyll a of the seedlings inoculated strains of Agaricus silvaticus, 031 and L15 were significantly higher than other strains and control. The contents of chlorophyll b in the seedlings inoculated strains 009, 004, Agaricus silvaticus and L15 were significantly higher than other strains and control. The weights of seedlings which inoculated strains 009, 025, 031, Agaricus silvaticus and L15 were significantly different to control, the weight of seedlings inoculated strains of Agaricus silvaticus and L15 are 19.23% and 23.08% more than control; The heights of the seedlings inoculated 6 strains all have significant difference to control, the weight of seedlings inoculated strains of Agaricus silvaticus and L15 are 17.83% and 16.37% more than control. The results of outdoor inoculation show that the seedlings inoculated Agaricus silvaticus grow best on height, 9.25% more than control after inoculated 70 days; the seedlings inoculated strain L15 grow best on collar diameter, 9.92% more than control after inoculated 70 days; the lateral root numbers of seedlings inoculated strain 009 is largest, 51.91% more than control after inoculated 70 days; the main roots of seedlings inoculated strain 009 are longest, 3.36% more than control after inoculated 70 days; the

  20. Comparing the intra-annual wood formation of three European species (Fagus sylvatica, Quercus petraea and Pinus sylvestris) as related to leaf phenology and non-structural carbohydrate dynamics.

    PubMed

    Michelot, Alice; Simard, Sonia; Rathgeber, Cyrille; Dufrêne, Eric; Damesin, Claire

    2012-08-01

    Monitoring cambial phenology and intra-annual growth dynamics is a useful approach for characterizing the tree growth response to climate change. However, there have been few reports concerning intra-annual wood formation in lowland temperate forests with high time resolution, especially for the comparison between deciduous and coniferous species. The main objective of this study was to determine how the timing, duration and rate of radial growth change between species as related to leaf phenology and the dynamics of non-structural carbohydrates (NSC) under the same climatic conditions. We studied two deciduous species, Fagus sylvatica L. and Quercus petraea (Matt.) Liebl., and an evergreen conifer, Pinus sylvestris L. During the 2009 growing season, we weekly monitored (i) the stem radial increment using dendrometers, (ii) the xylem growth using microcoring and (iii) the leaf phenology from direct observations of the tree crowns. The NSC content was also measured in the eight last rings of the stem cores in April, June and August 2009. The leaf phenology, NSC storage and intra-annual growth were clearly different between species, highlighting their contrasting carbon allocation. Beech growth began just after budburst, with a maximal growth rate when the leaves were mature and variations in the NSC content were low. Thus, beech radial growth seemed highly dependent on leaf photosynthesis. For oak, earlywood quickly developed before budburst, which probably led to the starch decrease quantified in the stem from April to June. For pine, growth began before the needles unfolding and the lack of NSC decrease during the growing season suggested that the substrates for radial growth were new assimilates of the needles from the previous year. Only for oak, the pattern determined from the intra-annual growth measured using microcoring differed from the pattern determined from dendrometer data. For all species, the ring width was significantly influenced by growth duration

  1. Different bacterial communities in ectomycorrhizae and surrounding soil

    PubMed Central

    Vik, Unni; Logares, Ramiro; Blaalid, Rakel; Halvorsen, Rune; Carlsen, Tor; Bakke, Ingrid; Kolstø, Anne-Brit; Økstad, Ole Andreas; Kauserud, Håvard

    2013-01-01

    Several eukaryotic symbioses have shown to host a rich diversity of prokaryotes that interact with their hosts. Here, we study bacterial communities associated with ectomycorrhizal root systems of Bistorta vivipara compared to bacterial communities in bulk soil using pyrosequencing of 16S rRNA amplicons. A high richness of Operational Taxonomic Units (OTUs) was found in plant roots (3,571 OTUs) and surrounding soil (3,476 OTUs). The community composition differed markedly between these two environments. Actinobacteria, Armatimonadetes, Chloroflexi and OTUs unclassified at phylum level were significantly more abundant in plant roots than in soil. A large proportion of the OTUs, especially those in plant roots, presented low similarity to Sanger 16S rRNA reference sequences, suggesting novel bacterial diversity in ectomycorrhizae. Furthermore, the bacterial communities of the plant roots were spatially structured up to a distance of 60 cm, which may be explained by bacteria using fungal hyphae as a transport vector. The analyzed ectomycorrhizae presents a distinct microbiome, which likely influence the functioning of the plant-fungus symbiosis. PMID:24326907

  2. First Approach to the Analytical Characterization of
Barrel-Aged Grape Marc Distillates Using Phenolic Compounds and Colour Parameters

    PubMed Central

    Rodríguez-Solana, Raquel; Salgado, José Manuel; Domínguez, José Manuel

    2014-01-01

    Summary Phenolic compounds (benzoic and cinnamic acid derivatives) were determined by high-performance liquid chromatography with multiple wavelength detector (HPLC- -MWD) in grape marc distillates aged in Quercus petraea, Quercus robur and Quercus alba wooden barrels. In addition to colour indices and evaluable polyphenols, all samples were described by sensorial analysis. There were significant differences in the mean concentrations of the majority of phenolic compounds among the samples. Gallic and benzoic acids were the most abundant and samples aged in Q. robur from Galicia (NW of Spain) had the highest concentration of most of the determined phenols. Grape marc distillates aged in Q. robur obtained the highest values of all sensorial attributes, whereas samples aged in Q. petraea and Q. alba obtained similar scores. Principal component analysis accounted for 88.32% of total variance, showing a good separation of aged distillates in terms of phenolic compounds and colour characteristics, according to the species and origin of the oak wood used in the ageing process. PMID:27904312

  3. MICROSPOROGENESIS AND EMBRYOGENESIS IN QUERCUS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stairs, G. R.

    1962-01-01

    Representative species from two subgenera in the genus Quercus were examined for floral structure and phenology, microsporogenesis, and embryogenesis. The species selected for investigation were: Quercus alba in the Lepidobalanus subgenera, and Quercus coccinea and Quercus ilicifolia from the Erythrobalanus group. Photographs of flowering and photomicrographs of microsporogensis and embryogenesis are used for illustration. The male flowers of the three species are borne on catkins which develop in the scale leaf axils of the current vegetative bud or in separate male buds. Meiosis occurred in the spring at the beginning of bud enlargement; division figures were regular in all themore » material observed. A haploid chromosome number of 12 was confirmed for the three species. Pollen was shed on May 10, 1962, from trees of Quercus coccinea and Quercus ilicifolia; and on May 26, 1962 from Quercus alba. The female flowers are located in the axils of the new leaves. Seed development requires one growing season in Quercus alba, but two growing seasons are required to mature seed of Quercus coccinea and Quercus ilicifolia. The chronology of embryo development was similar for Quercus coccinea and Quercus ilicifolia; embryo development of Quercus alba was about two weeks behind that of the other two species. Definition of ovule dominance within a seed occurred at the time of early embryo development. Failure of this physiological expression of dominance results in multiseeded acorns. No abnormal embryogenesis per se was observed in relation to multiple embryo development. (auth)« less

  4. Chloroplast genomes of Arabidopsis halleri ssp. gemmifera and Arabidopsis lyrata ssp. petraea: Structures and comparative analysis.

    PubMed

    Asaf, Sajjad; Khan, Abdul Latif; Khan, Muhammad Aaqil; Waqas, Muhammad; Kang, Sang-Mo; Yun, Byung-Wook; Lee, In-Jung

    2017-08-08

    We investigated the complete chloroplast (cp) genomes of non-model Arabidopsis halleri ssp. gemmifera and Arabidopsis lyrata ssp. petraea using Illumina paired-end sequencing to understand their genetic organization and structure. Detailed bioinformatics analysis revealed genome sizes of both subspecies ranging between 154.4~154.5 kbp, with a large single-copy region (84,197~84,158 bp), a small single-copy region (17,738~17,813 bp) and pair of inverted repeats (IRa/IRb; 26,264~26,259 bp). Both cp genomes encode 130 genes, including 85 protein-coding genes, eight ribosomal RNA genes and 37 transfer RNA genes. Whole cp genome comparison of A. halleri ssp. gemmifera and A. lyrata ssp. petraea, along with ten other Arabidopsis species, showed an overall high degree of sequence similarity, with divergence among some intergenic spacers. The location and distribution of repeat sequences were determined, and sequence divergences of shared genes were calculated among related species. Comparative phylogenetic analysis of the entire genomic data set and 70 shared genes between both cp genomes confirmed the previous phylogeny and generated phylogenetic trees with the same topologies. The sister species of A. halleri ssp. gemmifera is A. umezawana, whereas the closest relative of A. lyrata spp. petraea is A. arenicola.

  5. Evolution of ellagitannins in Spanish, French, and American oak woods during natural seasoning and toasting.

    PubMed

    Cadahía, E; Varea, S; Muñoz, L; Fernández De Simón, B; García-Vallejo, M C

    2001-08-01

    The evolution of tannins in Spanish oak heartwood of Quercus robur L., Quercus petraea Liebl.,Quercus pyrenaica Wild., and Quercus faginea Lam. was studied in relation to the processing of wood in barrel cooperage. Their evolution was compared with that of French oak of Q. robur (Limousin, France) and Q. petraea (Allier, France) and American oak of Quercus alba L. (Missouri), which are habitually used in cooperage. Two stages of process were researched: the seasoning of woods during 3 years in natural conditions and toasting. Total phenol and total ellagitannin contents and optical density at 420 nm of wood extracts were determined. The ellagitannins roburins A-E, grandinin, vescalagin, and castalagin were identified and quantified by HPLC, and the molecular weight distribution of ellagitannins was calculated by GPC. During the seasoning process the different ellagitannin concentrations decreased according to the duration of this process and in the same way as those in French and American woods. The toasting process also had an important influence on the ellagitannin composition of wood. Roburins A-E, grandinin, vescalagin, and castalagin decreased during this process in the Spanish wood species, in the same proportion as in the French and American ones. Also, the seasoning and toasting processes lead to qualitative variations in the structure of ellagitannins, especially in the molecular weight distribution, as was evidenced by GPC analysis of their acetylated derivatives.

  6. Reconstruction of palaeoatmospheric carbon dioxide using stomatal densities of various beech plants (Fagaceae): testing and application of a mechanistic model

    NASA Astrophysics Data System (ADS)

    Grein, M.; Roth-Nebelsick, A.; Konrad, W.

    2006-12-01

    A mechanistic model (Konrad &Roth-Nebelsick a, in prep.) was applied for the reconstruction of atmospheric carbon dioxide using stomatal densities and photosynthesis parameters of extant and fossil Fagaceae. The model is based on an approach which couples diffusion and the biochemical process of photosynthesis. Atmospheric CO2 is calculated on the basis of stomatal diffusion and photosynthesis parameters of the considered taxa. The considered species include the castanoid Castanea sativa, two quercoids Quercus petraea and Quercus rhenana and an intermediate species Eotrigonobalanus furcinervis. In the case of Quercus petraea literature data were used. Stomatal data of Eotrigonobalanus furcinervis, Quercus rhenana and Castanea sativa were determined by the authors. Data of the extant Castanea sativa were collected by applying a peeling method and by counting of stomatal densities on the digitalized images of the peels. Additionally, isotope data of leaf samples of Castanea sativa were determined to estimate the ratio of intercellular to ambient carbon dioxide. The CO2 values calculated by the model (on the basis of stomatal data and measured or estimated biochemical parameters) are in good agreement with literature data, with the exception of the Late Eocene. The results thus demonstrate that the applied approach is principally suitable for reconstructing palaeoatmospheric CO2.

  7. Ectomycorrhizae of young and mature Scots pine trees in industrial regions in Poland

    Treesearch

    Barbara Kieliszewska-Rokicka; Maria Rudawska; Tomasz Leski

    1998-01-01

    Ectomycorrhizae of Scots pine (Pinus sylvestris L.) trees grown in forests influenced by different levels of air pollutants were investigated. Total numbers of mycorrhizal root tips in the soil horizons and the frequency of mycorrhizal morphotypes were compared as indicators of ectomycorrhizal status. The studies were conducted in two comparable...

  8. Acquisition of Ophiostoma quercus and Ceratocystis fagacearum by nitidulids from O. quercus-colonized oak wilt mats

    Treesearch

    Jennifer Juzwik; Kory R. Cease; Jason M. Meyer

    1998-01-01

    Field experiments were conducted to determine whether the frequency of Ceratocystis fagacearum and Ophiostoma quercus propagule acquisition by nitidulids visiting oak wilt fungal mats is affected by the presence of O. quercus on the mats. Augmentation sprays with O. quercus were used to achieve...

  9. Tuber indicum shapes the microbial communities of ectomycorhizosphere soil and ectomycorrhizae of an indigenous tree (Pinus armandii)

    PubMed Central

    Li, Qiang; Zhao, Jian; Xiong, Chuan; Li, Xiaolin; Chen, Zuqin; Li, Ping; Huang, Wenli

    2017-01-01

    The aim of this study was to investigate the effect of an ectomycorrhizal fungus (Tuber indicum) on the diversity of microbial communities associated with an indigenous tree, Pinus armandii, and the microbial communities in the surrounding ectomycorhizosphere soil. High-throughput sequencing was used to analyze the richness of microbial communities in the roots or rhizosphere of treatments with or without ectomycorrhizae. The results indicated that the bacterial diversity of ectomycorhizosphere soil was significantly lower compared with the control soil. Presumably, the dominance of truffle mycelia in ectomycorhizosphere soil (80.91%) and ectomycorrhizae (97.64%) was the main factor that resulted in lower diversity and abundance of endophytic pathogenic fungi, including Fusarium, Monographella, Ustilago and Rhizopus and other competitive mycorrhizal fungi, such as Amanita, Lactarius and Boletus. Bacterial genera Reyranena, Rhizomicrobium, Nordella, Pseudomonas and fungal genera, Cuphophyllus, Leucangium, Histoplasma were significantly more abundant in ectomycorrhizosphere soil and ectomycorrhizae. Hierarchical cluster analysis of the similarities between rhizosphere and ectomycorrhizosphere soil based on the soil properties differed significantly, indicating the mycorrhizal synthesis may have a feedback effect on soil properties. Meanwhile, some soil properties were significantly correlated with bacterial and fungal diversity in the rhizosphere or root tips. Overall, this work illustrates the interactive network that exists among ectomycorrhizal fungi, soil properties and microbial communities associated with the host plant and furthers our understanding of the ecology and cultivation of T. indicum. PMID:28410376

  10. Evolution of phenolic compounds of spanish oak wood during natural seasoning. First results.

    PubMed

    Fernández De Simón, B; Cadahía, E; Conde, E; García-Vallejo, M C

    1999-04-01

    Low molecular weight polyphenols and ellagitannins were analyzed by HPLC, and the molecular weight distribution of ellagitannins was calculated by GPC, in oak heartwood of Quercus robur L., Quercus petraea Liebl., Quercus pyrenaica Wild., and Quercus faginea Lam., grown in Spain, before and after 1 year of seasoning, in Bordeaux, France. During this process, the concentrations of low molecular weight polyphenols (acids and aldehydes, benzoic and cinnamic, and coumarins) increased, and those of ellagitannins (castalagin, vescalagin, and roburins A-E) decreased. A similar behavior for the A and B compounds in all species was not found. This modification in the chemical composition was similar in the four Spanish species of Quercus studied and allowed the differentiation between the unseasoned wood and the wood after the first year of seasoning.

  11. Quercus stellata growth and stand characteristics in the Quercus stellata-Quercus marilandica forest type in the Cross Timbers region of Central Oklahoma

    Treesearch

    James F. Rosson

    1994-01-01

    The author reports a baseline forest survey of Central and West Oklahoma to obtain tree and stand growth rates for harvest sustainability, standing volume estimates for biomass assessments, and stand structure to provide other pertinent data for exploring management options. This report focused on the Quercus stellata-Quercus marilandica forest type in the Cross...

  12. Dimeric and trimeric hydrolyzable tannins from Quercus coccifera and Quercus suber.

    PubMed

    Ito, Hideyuki; Yamaguchi, Koji; Kim, Tae-Hoon; Khennouf, Seddik; Gharzouli, Kamel; Yoshida, Takashi

    2002-03-01

    Three new hydrolyzable tannins, cocciferins D(1) (1), D(2) (2), and T(1) (4), were isolated from the leaves of Quercus coccifera. Cocciferin D(2) (2) and two additional new tannins, cocciferins D(3) (3) and T(2) (5), were also obtained from the leaves of Quercus suber. Their oligomeric structures were elucidated on the basis of spectroscopic methods and chemical evidence. Compounds 2, 3, and 5 were rare oligomers possessing glucose cores with both open-chain and pyranose forms.

  13. Monitoring for pests and diseases in native oak woodlands: the case of acute oak decline in the United Kingdom

    Treesearch

    Nathan Brown; Stephen Parnell; Frank van den Bosch; Mike Jeger; Sandra Denman

    2017-01-01

    In recent years, a novel form of decline has been observed in southern and central England. This syndrome has been termed acute oak decline (AOD) and affects native oak, Quercus petraea and Q. robur. Typical symptoms include bark cracks that weep dark exudates, which are caused by necrotic patches in the...

  14. Potential of ultrasonic pulse velocity for evaluating the dimensional stability of oak and chestnut wood

    Treesearch

    Turker Dundar; Xiping Wang; Nusret As; Erkan Avci

    2016-01-01

    The objective of this study was to examine the potential of ultrasonic velocity as a rapid and nondestructive method to predict the dimensional stability of oak (Quercus petraea (Mattuschka) Lieblein) and chestnut (Castanea sativa Mill.) that are commonly used in flooring industry. Ultrasonic velocity, specific gravity, and radial, tangential and volumetric shrinkages...

  15. Influence of weather at time of pollenation on acorn production of Quercus alba and Quercus velutina

    Treesearch

    Robert A. Cecich; Neal H. Sullivan

    1999-01-01

    Pistillate flower development and acorn production were observed in small populations of white oak (Quercus alba L.) and black oak (Quercus velurina Lam.) in central Missouri from 1990 to 1997. There were significant year-year differences in the size of flower crops for both species and significant tree-tree differences in black...

  16. Microsatellite markers reveal the below ground distribution of genets in two species of Rhizopogon forming tuberculate ectomycorrhizas on Douglas-fir.

    Treesearch

    Annette M. Kretzer; Susie Dunham; Randy Molina; Joseph W. Spatafora

    2003-01-01

    We have developed microsatellite markers for two sister species of Rhizopogon, R. vesiculosus and R. vinicolor (Boletales, Basidiomycota), and used selected markers to investigate genet size and distribution from ectomycorrhizal samples. Both species form ectomycorrhizas with tuberculate morphology on Douglas-fir (...

  17. Oaks belowground: mycorrhizas, truffles, and small mammals

    Treesearch

    Jonathan Frank; Seth Barry; Joseph Madden; Darlene Southworth

    2008-01-01

    Oaks depend on hidden diversity belowground. Oregon white oaks (Quercus garryana) form ectomycorrhizas with more than 40 species of fungi at a 25-ha site. Several of the most common oak mycorrhizal fungi form hypogeous fruiting bodies or truffles in the upper layer of mineral soil. We collected 18 species of truffles associated with Oregon white...

  18. First Report on Rare Unifloral Honey of Endemic Moltkia petraea (Tratt.) Griseb. from Croatia: Detailed Chemical Screening and Antioxidant Capacity.

    PubMed

    Jerković, Igor; Marijanović, Zvonimir; Zekić, Marina; Tuberoso, Carlo I G

    2017-03-01

    Rare Moltkia petraea (Tratt.) Griseb. honey from Croatia was first time characterised. The spectrophotometric assays on CIE L*a*b*C ab *h ab ° colour coordinates, total phenol content and antioxidant capacity (FRAP, CUPRAC, DPPH • and ABTS •+ assays) determined higher honey values generally close to dark honeys ranges. Headspace solid-phase microextraction (HS-SPME) on two fibres after GC-FID and GC/MS revealed the major compounds 2-phenylacetaldehyde (12.8%; 15.6%), benzaldehyde (11.1%; 10.0%), octane (9.3%; 7.6%), nonane, propan-2-one, pentan-2-one, pentanal and nonanal (4.9%; 14.5%). Ultrasonic solvent extraction (USE) mainly isolated non-specific higher molecular compounds characteristic of the comb environment. Targeted HLPC-DAD analysis of the honey determined higher concentration of phenylalanine (212.08 mg/kg) and lumichrome (16.25 mg/kg) along with tyrosine and kojic acid. The headspace composition (chemical fingerprint) and high concentration of lumichrome can be considered particular for M. petraea honey. © 2017 Wiley-VHCA AG, Zurich, Switzerland.

  19. The Effect of Raffaelea quercus-mongolicae Inoculations on the Formation of Non-conductive Sapwood of Quercus mongolica.

    PubMed

    Torii, Masato; Matsuda, Yosuke; Seo, Sang Tae; Kim, Kyung Hee; Ito, Shin-Ichiro; Moon, Myung Jin; Kim, Seong Hwan; Yamada, Toshihiro

    2014-06-01

    In Korea, mass mortality of Quercus mongolica trees has become obvious since 2004. Raffaelea quercus-mongolicae is believed to be a causal fungus contributing the mortality. To evaluate the pathogenicity of the fungus to the trees, the fungus was multiple- and single-inoculated to the seedlings and twigs of the mature trees, respectively. In both the inoculations, the fungus was reisolated from more than 50% of inoculated twigs and seedlings. In the single inoculations, proportions of the transverse area of non-conductive sapwood at inoculation points and vertical lengths of discoloration expanded from the points were significantly different between the inoculation treatment and the control. In the multiple inoculations, no mortality was confirmed among the seedlings examined. These results showed that R. quercus-mongolicae can colonize sapwood, contribute to sapwood discoloration and disrupt sap flows around inoculation sites of Q. mongolica, although the pathogenicity of the fungus was not proven.

  20. Development of Chloroplast and Nuclear DNA Markers for Chinese Oaks (Quercus Subgenus Quercus) and Assessment of Their Utility as DNA Barcodes

    PubMed Central

    Yang, Jia; Vázquez, Lucía; Chen, Xiaodan; Li, Huimin; Zhang, Hao; Liu, Zhanlin; Zhao, Guifang

    2017-01-01

    Chloroplast DNA (cpDNA) is frequently used for species demography, evolution, and species discrimination of plants. However, the lack of efficient and universal markers often brings particular challenges for genetic studies across different plant groups. In this study, chloroplast genomes from two closely related species (Quercus rubra and Castanea mollissima) in Fagaceae were compared to explore universal cpDNA markers for the Chinese oak species in Quercus subgenus Quercus, a diverse species group without sufficient molecular differentiation. With the comparison, nine and 14 plastid markers were selected as barcoding and phylogeographic candidates for the Chinese oaks. Five (psbA-trnH, matK-trnK, ycf3-trnS, matK, and ycf1) of the nine plastid candidate barcodes, with the addition of newly designed ITS and a single-copy nuclear gene (SAP), were then tested on 35 Chinese oak species employing four different barcoding approaches (genetic distance-, BLAST-, character-, and tree-based methods). The four methods showed different species identification powers with character-based method performing the best. Of the seven barcodes tested, a barcoding gap was absent in all of them across the Chinese oaks, while ITS and psbA-trnH provided the highest species resolution (30.30%) with the character- and BLAST-based methods, respectively. The six-marker combination (psbA-trnH + matK-trnK + matK + ycf1 + ITS + SAP) showed the best species resolution (84.85%) using the character-based method for barcoding the Chinese oaks. The barcoding results provided additional implications for taxonomy of the Chinese oaks in subg. Quercus, basically identifying three major infrageneric clades of the Chinese oaks (corresponding to Groups Quercus, Cerris, and Ilex) referenced to previous phylogenetic classification of Quercus. While the morphology-based allocations proposed for the Chinese oaks in subg. Quercus were challenged. A low variation rate of the chloroplast genome, and complex

  1. The Effect of Raffaelea quercus-mongolicae Inoculations on the Formation of Non-conductive Sapwood of Quercus mongolica

    PubMed Central

    Matsuda, Yosuke; Seo, Sang Tae; Kim, Kyung Hee; Ito, Shin-ichiro; Moon, Myung Jin; Kim, Seong Hwan; Yamada, Toshihiro

    2014-01-01

    In Korea, mass mortality of Quercus mongolica trees has become obvious since 2004. Raffaelea quercus-mongolicae is believed to be a causal fungus contributing the mortality. To evaluate the pathogenicity of the fungus to the trees, the fungus was multiple- and single-inoculated to the seedlings and twigs of the mature trees, respectively. In both the inoculations, the fungus was reisolated from more than 50% of inoculated twigs and seedlings. In the single inoculations, proportions of the transverse area of non-conductive sapwood at inoculation points and vertical lengths of discoloration expanded from the points were significantly different between the inoculation treatment and the control. In the multiple inoculations, no mortality was confirmed among the seedlings examined. These results showed that R. quercus-mongolicae can colonize sapwood, contribute to sapwood discoloration and disrupt sap flows around inoculation sites of Q. mongolica, although the pathogenicity of the fungus was not proven. PMID:25071395

  2. Interspecific variation in functional traits of oak seedlings (Quercus ilex, Quercus trojana, Quercus virgiliana) grown under artificial drought and fire conditions.

    PubMed

    Chiatante, D; Tognetti, R; Scippa, G S; Congiu, T; Baesso, B; Terzaghi, M; Montagnoli, A

    2015-07-01

    To face summer drought and wildfire in Mediterranean-type ecosystems, plants adopt different strategies that involve considerable rearrangements of biomass allocation and physiological activity. This paper analyses morphological and physiological traits in seedlings of three oak species (Quercus ilex, Quercus trojana and Quercus virgiliana) co-occurring under natural conditions. The aim of this study was to evaluate species-specific characteristics and the response of these oak seedlings to drought stress and fire treatment. Seedlings were kept in a growth chamber that mimicked natural environmental conditions. All three species showed a good degree of tolerance to drought and fire treatments. Differences in specific biomass allocation patterns and physiological traits resulted in phenotypic differences between species. In Q. ilex, drought tolerance depended upon adjustment of the allocation pattern. Q. trojana seedlings undergoing mild to severe drought presented a higher photosystem II (PSII) efficiency than control seedlings. Moreover, Q. trojana showed a very large root system, which corresponded to higher soil area exploitation, and bigger leaf midrib vascular bundles than the other two species. Morphological and physiological performances indicated Q. trojana as the most tolerant to drought and fire. These characteristics contribute to a high recruitment potential of Q. trojana seedlings, which might be the reason for the dominance of this species under natural conditions. Drought increase as a result of climate change is expected to favour Q. trojana, leading to an increase in its spatial distribution.

  3. Assessment of Quercus flowering trends in NW Spain

    NASA Astrophysics Data System (ADS)

    Jato, V.; Rodríguez-Rajo, F. J.; Fernandez-González, M.; Aira, M. J.

    2015-05-01

    This paper sought to chart airborne Quercus pollen counts over the last 20 years in the region of Galicia (NW Spain) with a view to detecting the possible influence of climate change on the Quercus airborne pollen season (APS). Pollen data from Ourense, Santiago de Compostela, Vigo and Lugo were used. The Quercus airborne pollen season was characterized in terms of the following parameters: pollen season start and end dates, peak pollen count, pollen season length and pollen index. Several methods, dates and threshold temperatures for determining the chill and heat requirements needed to trigger flowering were applied. A diverse APS onset timing sequence was observed for the four cities as Quercus flowers few days in advance in Vigo. The variations observed could be related to differences in the meteorological conditions or the thermal requirements needed for flowering. Thermal requirements differed depending on local climate conditions in the study cities: the lowest values for chilling accumulation were recorded in Vigo and the highest in Lugo, whereas the lowest heat accumulation was achieved in Vigo. Differences in APS trends between cities may reflect variations in weather-related trends. A significant trend towards rising Quercus pollen indices and higher maximum daily mean pollen counts was observed in Ourense, linked to the more marked temperature increase across southern Galicia. A non-uniform trend towards increased temperatures was noted over the study period, particularly in late summer and early autumn in all four study cities. Additionally, an increase in spring temperatures was observed in south-western Galicia.

  4. Effects of desiccation on temperate recalcitrant seeds: differential scanning calorimetry, gas chromatography, electron microscopy, and moisture studies on Quercus nigra and Quercus alba

    Treesearch

    K.F. Connor; F.T. Bonner; J.A Vozzo

    1996-01-01

    Investigations into the nature of desiccation-sensitive, or recalcitrant, seed behavior have as yet failed to identify exact causes of this phenomenon. Experiments with Quercus nigra L. and Quercus alba L. were conducted to examine physiological and biochemical changes brought about by seed desiccation and to determine if there...

  5. The oak (Quercus) biodiversity of California and adjacent regions

    Treesearch

    Kevin C. Nixon

    2002-01-01

    Twenty species of oak (Quercus) are known from California. The white oak group is the most diverse, and includes a complex of scrub oak species that are often encountered in chaparral, mixed forest and desert margin habitats. The Protobalanus group (e.g., Quercus chrysolepis) is a unique and distinctive clade of western North...

  6. Growth reduction after defoliation is independent of CO2 supply in deciduous and evergreen young oaks.

    PubMed

    Schmid, Sandra; Palacio, Sara; Hoch, Günter

    2017-06-01

    Reduced productivity of trees after defoliation might be caused by limited carbon (C) availability. We investigated the combined effect of different atmospheric CO 2 concentrations (160, 280 and 560 ppm) and early season defoliation on the growth and C reserves (nonstructural carbohydrates (NSC)) of saplings of two oak species with different leaf habits (deciduous Quercus petraea and evergreen Quercus ilex). In both species, higher CO 2 supply significantly enhanced growth. Defoliation had a strong negative impact on growth (stronger for Q. ilex), but the relative reduction of growth caused by defoliation within each CO 2 treatment was very similar across all three CO 2 concentrations. Low CO 2 and defoliation led to decreased NSC tissue concentrations mainly in the middle of the growing season in Q. ilex, but not in Q. petraea. However, also in Q. ilex, NSC increased in woody tissues in defoliated and low-CO 2 saplings towards the end of the growing season. Although the saplings were C limited under these specific experimental conditions, growth reduction after defoliation was not directly caused by C limitation. Rather, growth of trees followed a strong allometric relationship between total leaf area and conductive woody tissue, which did not change across species, CO 2 concentrations and defoliation treatments. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  7. The ectomycorrhizas of Lactarius cuspidoaurantiacus and Lactarius herrerae associated with Alnus acuminata in Central Mexico.

    PubMed

    Montoya, Leticia; Bandala, Victor M; Garay-Serrano, Edith

    2015-08-01

    Two pure Alnus acuminata stands established in a montane forest in central Mexico (Puebla State) were monitored between 2010 and 2013 to confirm and recognize the ectomycorrhizal (EcM) systems of A. acuminata with Lactarius cuspidoaurantiacus and Lactarius herrerae, two recently described species. Through comparison of internal transcribed spacer (ITS) of nuclear ribosomal DNA sequences from basidiomes and ectomycorrhizas sampled in the forest stands, we confirmed their ectomycorrhizal association. The phytobiont was corroborated by comparing ITS sequences obtained from EcM root tips and leaves collected in the study site and from other sequences of A. acuminata available in Genbank. Detailed morphological and anatomical descriptions of the ectomycorrhizal systems are presented and complemented with photographs.

  8. Iowa's oldest oaks. [Quercus alba

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duvick, D.N.; Blasing, T.J.

    1983-01-01

    Tree-ring analysis revealed 33 living white oaks (Quercus alba) in Iowa that began growing before 1700. Core of wood 4 mm in diameter, each extracted from a radius of a tree trunk were analyzed. The oldest white oak, found in northeastern Warren County, began growing about 1570 and is thus over 410 years old. A chinkapin oak (Quercus muehlenbergii) was also found which was more than 300 years old. Ring widths from the white oaks are well correlated with total precipitation for the twelve months preceding completion of ring formation in July. Reconstructions of annual (August-July) precipitation for 1680-1979, basedmore » on the tree rings, indicate that the driest annual period in Iowa was August 1799-July 1800, and that the driest decade began about 1816. Climatic information of this kind, pre-dating written weather records, can be used to augment those records and provide a longer baseline of information for use by climatologists and hydrologic planners.« less

  9. Airborne Quercus pollen in SW Spain: Identifying favourable conditions for atmospheric transport and potential source areas.

    PubMed

    Maya-Manzano, José María; Fernández-Rodríguez, Santiago; Smith, Matt; Tormo-Molina, Rafael; Reynolds, Andrew M; Silva-Palacios, Inmaculada; Gonzalo-Garijo, Ángela; Sadyś, Magdalena

    2016-11-15

    The pollen grains of Quercus spp. (oak trees) are allergenic. This study investigates airborne Quercus pollen in SW Spain with the aim identifying favourable conditions for atmospheric transport and potential sources areas. Two types of Quercus distribution maps were produced. Airborne Quercus pollen concentrations were measured at three sites located in the Extremadura region (SW Spain) for 3 consecutive years. The seasonal occurrence of Quercus pollen in the air was investigated, as well as days with pollen concentrations ≥80Pm(-3). The distance that Quercus pollen can be transported in appreciable numbers was calculated using clusters of back trajectories representing the air mass movement above the source areas (oak woodlands), and by using a state-of-the-art dispersion model. The two main potential sources of Quercus airborne pollen captured in SW Spain are Q. ilex subsp. ballota and Q. suber. The minimum distances between aerobiological stations and Quercus woodlands have been estimated as: 40km (Plasencia), 66km (Don Benito), 62km (Zafra) from the context of this study. Daily mean Quercus pollen concentration can exceed 1,700Pm(-3), levels reached not less than 24 days in a single year. High Quercus pollen concentration were mostly associated with moderate wind speed events (6-10ms(-1)), whereas that a high wind speed (16-20ms(-1)) seems to be associated with low concentrations. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Geographical variation in the response to nitrogen deposition in Arabidopsis lyrata petraea.

    PubMed

    Vergeer, Philippine; van den Berg, Leon L J; Bulling, Mark T; Ashmore, Mike R; Kunin, William E

    2008-01-01

    The adaptive responses to atmospheric nitrogen deposition for different European accessions of Arabidopsis lyrata petraea were analysed using populations along a strong atmospheric N-deposition gradient. Plants were exposed to three N-deposition rates, reflecting the rates at the different locations, in a full factorial design. Differences between accessions in the response to N were found for important phenological and physiological response variables. For example, plants from low-deposition areas had higher nitrogen-use efficiencies (NUE) and C : N ratios than plants from areas high in N deposition when grown at low N-deposition rates. The NUE decreased in all accessions at higher experimental deposition rates. However, plants from high-deposition areas showed a limited capacity to increase their NUE at lower experimental deposition rates. Plants from low-deposition areas had faster growth rates, higher leaf turnover rates and shorter times to flowering, and showed a greater increase in growth rate in response to N deposition than those from high-deposition areas. Indications for adaptation to N deposition were found, and results suggest that adaptation of plants from areas high in N deposition to increased N deposition has resulted in the loss of plasticity.

  11. Natural forest expansion on reclaimed coal mines in Northern Spain: the role of native shrubs as suitable microsites.

    PubMed

    Alday, Josu G; Zaldívar, Pilar; Torroba-Balmori, Paloma; Fernández-Santos, Belén; Martínez-Ruiz, Carolina

    2016-07-01

    The characterization of suitable microsites for tree seedling establishment and growth is one of the most important tasks to achieve the restoration of native forest using natural processes in disturbed sites. For that, we assessed the natural Quercus petraea forest expansion in a 20-year-old reclaimed open-cast mine under sub-Mediterranean climate in northern Spain, monitoring seedling survival, growth, and recruitment during 5 years in three contrasting environments (undisturbed forest, mine edge, and mine center). Seedling density and proportion of dead branches decreased greatly from undisturbed forest towards the center of the mine. There was a positive effect of shrubs on Q. petraea seedling establishment in both mine environments, which increase as the environment undergoes more stress (from the mine edge to the center of the mine), and it was produced by different shrub structural features in each mine environment. Seedling survival reduction through time in three environments did not lead to a density reduction because there was a yearly recruitment of new seedlings. Seedling survival, annual growth, and height through time were greater in mine sites than in the undisturbed forest. The successful colonization patterns and positive neighbor effect of shrubs on natural seedlings establishment found in this study during the first years support the use of shrubs as ecosystem engineers to increase heterogeneity in micro-environmental conditions on reclaimed mine sites, which improves late-successional Quercus species establishment.

  12. Gymnomyces xerophilus sp. nov. (sequestrate Russulaceae), an ectomycorrhizal associate of Quercus in California.

    Treesearch

    Matthew E. Smith; James M. Trappe; David M. Rizzo; Steven L. Miller

    2006-01-01

    Gymnomyces xerophilus sp. nov., a sequestrate species in the Russulaceae, is characterized and described morphologically as a new species from Quercus-dominated woodlands in California. ITS sequences recovered from healthy, ectomycorrhizal roots of Quercus douglasii and Q....

  13. Plastome data reveal multiple geographic origins of Quercus Group Ilex

    PubMed Central

    Grimm, Guido W.; Papini, Alessio; Vessella, Federico; Cardoni, Simone; Tordoni, Enrico; Piredda, Roberta; Franc, Alain; Denk, Thomas

    2016-01-01

    Nucleotide sequences from the plastome are currently the main source for assessing taxonomic and phylogenetic relationships in flowering plants and their historical biogeography at all hierarchical levels. One major exception is the large and economically important genus Quercus (oaks). Whereas differentiation patterns of the nuclear genome are in agreement with morphology and the fossil record, diversity patterns in the plastome are at odds with established taxonomic and phylogenetic relationships. However, the extent and evolutionary implications of this incongruence has yet to be fully uncovered. The DNA sequence divergence of four Euro-Mediterranean Group Ilex oak species (Quercus ilex L., Q. coccifera L., Q. aucheri Jaub. & Spach., Q. alnifolia Poech.) was explored at three chloroplast markers (rbcL, trnK/matK, trnH-psbA). Phylogenetic relationships were reconstructed including worldwide members of additional 55 species representing all Quercus subgeneric groups. Family and order sequence data were harvested from gene banks to better frame the observed divergence in larger taxonomic contexts. We found a strong geographic sorting in the focal group and the genus in general that is entirely decoupled from species boundaries. High plastid divergence in members of Quercus Group Ilex, including haplotypes shared with related, but long isolated oak lineages, point towards multiple geographic origins of this group of oaks. The results suggest that incomplete lineage sorting and repeated phases of asymmetrical introgression among ancestral lineages of Group Ilex and two other main Groups of Eurasian oaks (Cyclobalanopsis and Cerris) caused this complex pattern. Comparison with the current phylogenetic synthesis also suggests an initial high- versus mid-latitude biogeographic split within Quercus. High plastome plasticity of Group Ilex reflects geographic area disruptions, possibly linked with high tectonic activity of past and modern distribution ranges, that did not

  14. Quercus kelloggii Newb., California black oak

    Treesearch

    P.M. McDonald

    1990-01-01

    California black oak (Quercus kelloggii) exceeds all other California oaks in volume, distribution, and altitudinal range. Yet this deciduous hardwood has had little sustained commercial use and almost no management, even though its wood closely resembles that of its valuable, managed, and heavily used counterpart-northern red oak (...

  15. Determining seed moisture in Quercus

    Treesearch

    F. T. Bonner

    1974-01-01

    The air-oven method with drying times 7 to 8 hours shorter than those now prescribed in the ISTA rules proved adequate for determining moisture contents in acorns of several North American oaks. Schedules of 8 hours at 105°C for Quercus muehlenbergii and 9 hours at 105°C for Q.shumardii and Q.nigra gave moisture contents within three percentage points of those obtained...

  16. Antioxidant Characterization of Oak Extracts Combining Spectrophotometric Assays and Chemometrics

    PubMed Central

    Popović, Boris M.; Štajner, Dubravka; Orlović, Saša; Galić, Zoran

    2013-01-01

    Antioxidant characteristics of leaves, twigs, and acorns from two Serbian oak species Quercus robur L. and Quercus petraea L. from Vojvodina province (northern Serbia) were investigated. 80% ethanol (in water) extracts were used for antiradical power (ARP) determinations against DPPH•, •NO, and O2 •− radicals, ferric reducing antioxidant power (FRAP), total phenol, tannin, flavonoid, and proanthocyanidin contents. Permanganate reducing antioxidant capacity (PRAC) was determined using water extracts. Beside, mentioned parameters, soluble proteins, lipid peroxidation (LP), pigments and proline contents were also determined. The data of different procedures were compared and analyzed by multivariate techniques (correlation matrix calculation and principal component analysis (PCA)). PCA found that investigated organs of two different oak tree species possess similar antioxidant characteristics. The superior antioxidant characteristics showed oak leaves over twigs and acorns and seem to be promising source of antioxidants with possible use in industry and pharmacy. PMID:24453789

  17. Seed Biology and Technology of Quercus

    Treesearch

    F.T. Bonner; John A. Vozzo

    1987-01-01

    The genus Quercus,known as oak, includes worldwide some 500 species with 58 of these species in the United States, making it this country's largest genus of native trees (Little 1979). Oak is therefore an important group of temperate-zone forest trees. In addition, oaks are significant components of many of the major forest types of the South (Burns 1983)and are...

  18. Growth of Oregon white oak (Quercus garryana)

    Treesearch

    Peter J. Gould; Constance A. Harrington; Warren D. Devine

    2011-01-01

    Many land managers are interested in maintaining or restoring plant communities that contain Oregon white oak (OWO, Quercus garryana), yet there is relatively little information available about the species' growth rates and survival to guide management decisions. We used two studies to characterize growth (over multi-year periods and within...

  19. Draft genome sequence of the fungus associated with oak-wilt mortality in South Korea, Raffaelea quercus-mongolicae KACC44405

    Treesearch

    Jongbum Jeon; Ki-Tae Kim; Hyeunjeong Song; Gir-Won Lee; Kyeongchae Cheong; Hyunbin Kim; Gobong Choi; Yong-Hwan Lee; Jane E. Stewart; Ned B. Klopfenstein; Mee-Sook Kim

    2017-01-01

    The fungus Raffaelea quercus-mongolicae is the causal agent of Korean oak wilt, a disease associated with mass mortality of oak trees (e.g., Quercus spp.). The fungus is vectored and dispersed by the ambrosia beetle, Platypus koryoensis. Here, we present the 27.0-Mb draft genome sequence of R. quercus-mongolicae strain KACC44405.

  20. Quercus garryana communities in the Puget Trough, Washington.

    Treesearch

    D.R. Thysell; A.B. Carey

    2001-01-01

    Among the legacies of the Vashon Glaciation are Oregon white oak (Quercus garryana), prairie, wetland, and Douglas-fir (Pseudotsuga menziesii) communities arrayed in a mosaic in the Puget Sound Area (PSA). Much of this mosaic has been destroyed. The largest remaining portion is on Fort Lewis Military Reservation. We examined...

  1. The role of prescribed burning in regenerating Quercus macrocarpa and associated woody plants in stringer woodlands in the Black Hills, South Dakota

    Treesearch

    Carolyn Hull Sieg; Henry A. Wright

    1996-01-01

    Throughout the range of Quercus macrocarpa, fire historically played an important role in maintaining Quercus stands. However, little is known about the role of fire in maintaining stringer Quercus stands on the western edge of its distribution. This research suggests that prescribed burning could be used to rejuvenate woody plants...

  2. First discovery of Quercus feeding Nepticulidae (Lepidoptera) in Central America.

    PubMed

    Stonis, Jonas R; Diškus, Arūnas; Remeikis, Andrius; Schuster, Jack

    2013-11-18

    Despite the high taxonomic diversity of oaks in Mexico and Central America, no Quercus feeding Nepticulidae have ever been recorded from the region. Here, we present seven species whose larvae are leaf-miners of Quercus (section Lobatae) in Guatemala. Except Stigmella nigriverticella (Chambers 1875), which was previously known from the United States, all other discovered species are new. We describe and name five new species (Stigmella jaguari Remeikis & Stonis, sp. nov., S. lauta Diškus & Stonis, sp. nov., S. sublauta Remeikis & Stonis, sp. nov., S. aurifasciata Diškus & Stonis, sp. nov. and S. guatemalensis Diškus & Stonis, sp. nov.); the remaining new species is described but left unnamed because of lack of adults (i. e. moths and genitalia are described from developed pupae). All seven treated species are illustrated with photographs of the leaf-mines, adults, and genitalia.

  3. Mycorrhizas on nursery and field seedlings of Quercus garryana

    Treesearch

    Dariene Southworth; Elizabeth M. Carrington; Jonathan L. Frank; Peter Gould; Connie A. Harrington; Warren D. Devine

    2009-01-01

    Oak woodland regeneration and restoration requires that seedlings develop mycorrhizas, yet the need for this mutualistic association is often overlooked. In this study, we asked whether Quercus garryana seedlings in nursery beds acquire mycorrhizas without artificial inoculation or access to a mycorrhizal network of other ectomycorrhizal hosts. We...

  4. The physiological diversity and similarity of ten Quercus species

    Treesearch

    Shi-Jean S. Sung; M.N. Angelov; R.R. Doong; W.R. Harms; Paul P. Kormanik; C.C. Black

    1994-01-01

    Based on anatomical, photosynthetic, and biochemical data, the range of physiological differences and similarities was defined for ten Quercus species. There were no correlations between species' site adaptability, leaf anatomy and photosynthetic rate (A). It is concluded from these data that each oak species must be treated individually when incorporated into...

  5. Survival and growth of Pinus echinata and Quercus seedlings in response to simulated summer and winter prescribed burns

    Treesearch

    Michael D. Cain; Michael G. Shelton

    2000-01-01

    First-year seedlings of shortleaf pine (Pinus echinata Mill.), southern red oak (Quercus falcata Michx.), and white oak (Quercus alba L.) were subjected to simulated prescribed burns during August (growing season) or January (dormant season) on an Upper Coastal Plain site in southeastern Arkansas, U.S.A. Survival...

  6. Growth overcompensation against O3 exposure in two Japanese oak species, Quercus mongolica var. crispula and Quercus serrata, grown under elevated CO2.

    PubMed

    Kitao, Mitsutoshi; Komatsu, Masabumi; Yazaki, Kenichi; Kitaoka, Satoshi; Tobita, Hiroyuki

    2015-11-01

    To assess the effects of elevated concentrations of carbon dioxide (CO2) and ozone (O3) on the growth of two mid-successional oak species native to East Asia, Quercus mongolica var. crispula and Quercus serrata, we measured gas exchange and biomass allocation in seedlings (initially 1-year-old) grown under combinations of elevated CO2 (550 μmol mol(-1)) and O3 (twice-ambient) for two growing seasons in an open-field experiment in which root growth was not limited. Both the oak species showed a significant growth enhancement under the combination of elevated CO2 and O3 (indicated by total dry mass; over twice of ambient-grown plants, p < .05), which probably resulted from a preferable biomass partitioning into leaves induced by O3 and a predominant enhancement of photosynthesis under elevated CO2. Such an over-compensative response in the two Japanese oak species resulted in greater plant growth under the combination of elevated CO2 and O3 than elevated CO2 alone. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. In vitro propagation of northern red oak (Quercus rubra L.)

    Treesearch

    G. Vengadesan; Paula M. Pijut

    2009-01-01

    In vitro propagation of northern red oak (Quercus rubra) shoots was successful from cotyledonary node explants excised from 8-wk-old in vitro grown seedlings. Initially, four shoots per explant were obtained on Murashige and Skoog (MS) medium supplemented with 4.4 µM 6-benzylaminopurine (BA), 0.45 ...

  8. Effects of prescribed burning on leaves and flowering Quercus garryana

    Treesearch

    David H. Peter; James K. Agee; Douglas G. Sprugel

    2011-01-01

    Many woodland understories are managed with prescribed fire. While prescribed burns intended to manipulate understory vegetation and fuels usually do not cause excessive tree mortality, sublethal canopy damage may occur and can affect tree vigor and reproductive output. We monitored Quercus garryana trees in western Washington, USA with multiple...

  9. Genetic diversity and population structure of Raffaelea quercus-mongolicae, a fungus associated with oak mortality in South Korea

    Treesearch

    M. -S. Kim; P. A. Hohenlohe; K. -H. Kim; S. -T. Seo; Ned Klopfenstein

    2016-01-01

    Raffaelea quercus-mongolicae is a fungus associated with oak wilt and deemed to cause extensive oak mortality in South Korea. Since the discovery of this fungus on a dead Mongolian oak (Quercus mongolica) in 2004, the mortality continued to spread southwards in South Korea. Despite continued expansion of the disease and associated significant impacts on forest...

  10. The denitrification properties of soils under three different shelterbelts and in adjoining cultivated fields

    NASA Astrophysics Data System (ADS)

    Szajdak, L.; Augustin, J.; Gaca, W.; Meysner, T.; Styla, K.

    2009-04-01

    The investigations were carried out in Agroecological Landscape Park in Turew (40 km South-West of Poznań). Intensively agricultural is observed in this region. Characteristic features of this landscape are shelterbelts created in the XIX century by general Dezydery Chlapowski. All shelterbelts and adjoining cultivated fields were introduced on Hapludalfs soils. Three shelterbelts and adjoining cultivated fields were selected for this experiment. Two of them were created approximately 200 years ago. The first shelterbelt consists mainly of Robinia pseudoacacia and small admixture Quercus robur and Quercus petraea. The second one consists of Crataegus monogyna. The third one - a young shelterbelt was created in 1993 and consists of several species of plants such as: Quercus petraea and Quercus robur, Larix deciduas, Pinus sylvestris, Sorbus aucuparia, Sorbus intermedia, Tilia cordata and some other tree species. On soils were determinated: activity of nitrate reductase, activity of peroxidase, activity of urease and activity of xantine oxidase, total iron, Fe+3, Fe+2, total nitrogen, N-NH4+, N-NO3-, total organic carbon (TOC), dissolved organic carbon (DOC), current N2O, N2 and CH4 flux rates, and pH (in 1M KCl). The contents of total organic carbon, dissolved organic carbon, total nitrogen, N-NO3- and N-NH4+ were higher in the soil under old shelterbelts (Robinia pseudoacacia and Crataegus monogyna) than under young one. It points out the highest accumulation of organic matter in soils under two old shelterbelts. The same also applied to the current N2O and N2 fluxes. Unlike this CH4exchange was just low everywhere. Nitrate reductase, urease, xantine oxidase and peroxidase activities participates in the cycle of nitrogen and are sensitive on redox potential in soil. The highest activity of nitrate reductase and xantine oxidase activity were observed in young shelterbelt. Activity of urease and activity of peroxidase were higher under two old shelterbelts Robinia

  11. How much does climate change threaten European forest tree species distributions?

    PubMed

    Dyderski, Marcin K; Paź, Sonia; Frelich, Lee E; Jagodziński, Andrzej M

    2018-03-01

    Although numerous species distribution models have been developed, most were based on insufficient distribution data or used older climate change scenarios. We aimed to quantify changes in projected ranges and threat level by the years 2061-2080, for 12 European forest tree species under three climate change scenarios. We combined tree distribution data from the Global Biodiversity Information Facility, EUFORGEN, and forest inventories, and we developed species distribution models using MaxEnt and 19 bioclimatic variables. Models were developed for three climate change scenarios-optimistic (RCP2.6), moderate (RCP4.5), and pessimistic (RPC8.5)-using three General Circulation Models, for the period 2061-2080. Our study revealed different responses of tree species to projected climate change. The species may be divided into three groups: "winners"-mostly late-successional species: Abies alba, Fagus sylvatica, Fraxinus excelsior, Quercus robur, and Quercus petraea; "losers"-mostly pioneer species: Betula pendula, Larix decidua, Picea abies, and Pinus sylvestris; and alien species-Pseudotsuga menziesii, Quercus rubra, and Robinia pseudoacacia, which may be also considered as "winners." Assuming limited migration, most of the species studied would face a significant decrease in suitable habitat area. The threat level was highest for species that currently have the northernmost distribution centers. Ecological consequences of the projected range contractions would be serious for both forest management and nature conservation. © 2017 John Wiley & Sons Ltd.

  12. Quantitative assessment of the differential impacts of arbuscular and ectomycorrhiza on soil carbon cycling.

    PubMed

    Soudzilovskaia, Nadejda A; van der Heijden, Marcel G A; Cornelissen, Johannes H C; Makarov, Mikhail I; Onipchenko, Vladimir G; Maslov, Mikhail N; Akhmetzhanova, Asem A; van Bodegom, Peter M

    2015-10-01

    A significant fraction of carbon stored in the Earth's soil moves through arbuscular mycorrhiza (AM) and ectomycorrhiza (EM). The impacts of AM and EM on the soil carbon budget are poorly understood. We propose a method to quantify the mycorrhizal contribution to carbon cycling, explicitly accounting for the abundance of plant-associated and extraradical mycorrhizal mycelium. We discuss the need to acquire additional data to use our method, and present our new global database holding information on plant species-by-site intensity of root colonization by mycorrhizas. We demonstrate that the degree of mycorrhizal fungal colonization has globally consistent patterns across plant species. This suggests that the level of plant species-specific root colonization can be used as a plant trait. To exemplify our method, we assessed the differential impacts of AM : EM ratio and EM shrub encroachment on carbon stocks in sub-arctic tundra. AM and EM affect tundra carbon stocks at different magnitudes, and via partly distinct dominant pathways: via extraradical mycelium (both EM and AM) and via mycorrhizal impacts on above- and belowground biomass carbon (mostly AM). Our method provides a powerful tool for the quantitative assessment of mycorrhizal impact on local and global carbon cycling processes, paving the way towards an improved understanding of the role of mycorrhizas in the Earth's carbon cycle. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  13. The role of ectomycorrhizae of Arolla pine in mediating soil priming

    NASA Astrophysics Data System (ADS)

    Menyailo, Oleg; Matvienko, Anastasia; Cheng, Chih-Hsin

    2015-04-01

    Ectomycorhizae is playing a vital role in soil C cycle. However, the role is controversial. Mycorrhizae could be a major source of soil C promoting C sequestration. On the other hand, mycorrhizal fungi could compete with soil free-living microorganisms for resources, accelerating their decomposition of soil organic matter, therefore leading to soil C losses. We studied the contribution of ectomycorrhizae of Arolla pine, a popular tree species in Siberia, in soil priming, a short term changes in decomposition of soil organic matter after addition of glucose. We used in-growth mesh collars where mycorrhizal hyphae could or could not grow in. We applied 13C labeled glucose and measured evolution of CO2 thereafter, and determined 13C-CO2 using Picarro 2131 iCO2 analyzer. The CO2 produced from soil was enriched 13C only during the first 48 hours, thereafter the enrichment declined to the natural abundance level. The maximum δ13C-CO2 was observed during the first 20 min after glucose amendment. It is surprising that not more than 3% of applied C-glucose was recovered as C-CO2 suggesting extremely high C use efficiency (97%). The glucose addition caused CO2 flux to increase by 25-30% during the first two days, the amount of primed C-CO2 was 7 times higher than emitted from applied C. The presence of mycorrhizae shifted both CUE and the priming. Mycorrhizae apparently competed with heterotrophs reducing their CUE by factor of 2, and increasing the priming by factor of 1.5. Overall, mycorrhizae could amplify the priming effect increasing C losses. However, the most part of applied C was incorporated into microbial biomass, resulting at least at the short time scale in net C sequestration. Future studies should be directed to understanding of the long-term fate of C incorporated into microbial biomass.

  14. Apoplastic and symplastic phloem loading in Quercus robur and Fraxinus excelsior

    PubMed Central

    Lohaus, Gertrud

    2014-01-01

    Whereas most of the research on phloem loading is performed on herbaceous plants, less is known about phloem loading strategies in trees. In this study, the phloem loading mechanisms of Quercus robur and Fraxinus excelsior were analysed. The following features were examined: the minor vein structure, the sugar concentrations in phloem sap by the laser–aphid–stylet technique, the distribution of photoassimilates in the mesophyll cells by non-aqueous fractionation, gradients of sugar concentrations and osmotic pressure, and the expression of sucrose transporters. The minor vein configurations of Q. robur and F. excelsior belong to the open type. Quercus robur contained companion cells in the minor veins whereas F. excelsior showed intermediary cells in addition to ordinary companion cells. The main carbon transport form in Q. robur was sucrose (~1M). In F. excelsior high amounts of raffinose and stachyose were also transported. However, in both tree species, the osmolality of phloem sap was higher than the osmolality of the mesophyll cells. The concentration gradients between phloem sap and the cytoplasm of mesophyll cells for sucrose were 16-fold and 14-fold for Q. robur and F. excelsior, respectively. Independent of the type of translocated sugars, sucrose transporter cDNAs were cloned from both species. The results indicate that phloem loading of sucrose and other metabolites must involve active loading steps in both tree species. Quercus robur seems to be an apoplastic phloem loader while F. excelsior shows indications of being a symplastic or mixed symplastic–apoplastic phloem loader. PMID:24591056

  15. Quercus pollen season dynamics in the Iberian peninsula: response to meteorological parameters and possible consequences of climate change.

    PubMed

    Garcia-Mozo, Herminia; Galan, Carmen; Jato, Victoria; Belmonte, Jordina; de la Guardia, Consuelo; Fernandez, Delia; Gutierrez, Montserrat; Aira, M; Roure, Joan; Ruiz, Luis; Trigo, Mar; Dominguez-Vilches, Eugenio

    2006-01-01

    The main characteristics of the Quercus pollination season were studied in 14 different localities of the Iberian Peninsula from 1992-2004. Results show that Quercus flowering season has tended to start earlier in recent years, probably due to the increased temperatures in the pre-flowering period, detected at study sites over the second half of the 20th century. A Growing Degree Days forecasting model was used, together with future meteorological data forecast using the Regional Climate Model developed by the Hadley Meteorological Centre, in order to determine the expected advance in the start of Quercus pollination in future years. At each study site, airborne pollen curves presented a similar pattern in all study years, with different peaks over the season attributable in many cases to the presence of several species. High pollen concentrations were recorded, particularly at Mediterranean sites. This study also proposes forecasting models to predict both daily pollen values and annual pollen emission. All models were externally validated using data for 2001 and 2004, with acceptable results. Finally, the impact of the highly-likely climate change on Iberian Quercus pollen concentration values was studied by applying RCM meteorological data for different future years, 2025, 2050, 2075 and 2099. Results indicate that under a doubled CO(2) scenario at the end of the 21st century Quercus pollination season could start on average one month earlier and airborne pollen concentrations will increase by 50 % with respect to current levels, with higher values in Mediterranean inland areas.

  16. Canopy tree species determine herb layer biomass and species composition on a reclaimed mine spoil heap.

    PubMed

    Rawlik, Mateusz; Kasprowicz, Marek; Jagodziński, Andrzej M; Kaźmierowski, Cezary; Łukowiak, Remigiusz; Grzebisz, Witold

    2018-09-01

    According facilitative models of succession, trees are great forest ecosystem engineers. The strength of tree stand influences on habitat were tested in rather homogenous conditions where heterogeneity of site condition was not an important influence. We hypothesized that canopy composition affects total aboveground vascular herb layer biomass (THB) and species composition of herb layer plant biomass (SCHB) more significantly than primary soil fertility or slope exposure. The study was conducted in 227 randomly selected research plots in seven types of forest stands: pure with Alnus glutinosa, Betula pendula, Pinus sylvestris, Quercus petraea and Robinia pseudoacacia, and mixed with dominance of Acer pseudoplatanus or Betula pendula located on hilltop and northern, eastern, western, and southern slopes on a reclaimed, afforested post-mining spoil heap of the Bełchatów Brown Coal Mine (Poland). Generalized linear models (GLZ) showed that tree stand species were the best predictors of THB. Non-parametric variance tests showed significantly higher (nearly four times) THB under canopies of A. glutinosa, R. pseudoacacia, B. pendula and Q. petraea, compared to the lowest THB found under canopies of P. sylvestris and mixed with A. pseudoplatanus. Redundancy Analysis (RDA) showed that SCHB was significantly differentiated along gradients of light-nutrient herb layer species requirements. RDA and non-parametric variance tests showed that SCHB under canopies of A. glutinosa, R. pseudoacacia and mixed with A. pseudoplatanus had large shares of nitrophilous ruderal species (32%, 31% and 11%, respectively), whereas SCHB under B. pendula, Q. petraea, mixed with B. pendula and P. sylvestris were dominated by light-demanding meadow (49%, 51%, 51% and 36%, respectively) and Poaceae species. The results indicated the dominant role of tree stand composition in habitat-forming processes, and although primary site properties had minor importance, they were also modified by tree stand

  17. Tree litter and forest understorey vegetation: a conceptual framework to understand the effects of tree litter on a perennial geophyte, Anemone nemorosa.

    PubMed

    Baltzinger, Marie; Archaux, Frédéric; Dumas, Yann

    2012-05-01

    Litter is a key factor in structuring plant populations, through positive or negative interactions. The litter layer forms a mechanical barrier that is often strongly selective against individuals lacking hypocotyle plasticity. Litter composition also interacts with plant growth by providing beneficial nutrients or, inversely, by allowing harmful allelopathic leaching. As conspicuous litter fall accumulation is often observed under deciduous forests, interactions between tree litter and understorey plant populations are worthy of study. In a 1-year ex-situ experiment, the effects of tree litter on the growth of Anemone nemorosa, a small perennial forest geophyte, were investigated. Three 'litter quantity' treatments were defined, representative of forest floor litter (199, 356·5 and 514 g m(-2)), which were crossed with five 'litter composition' treatments (Quercus petraea, Fagus sylvatica, Carpinus betulus, Q. petraea + F. sylvatica and Q. petraea + C. betulus), plus a no-litter control. Path analysis was then used to investigate the pathways linking litter characteristics and components of adult plant growth. As expected, the heavier the litter, the longer the petiole; rhizome growth, however, was not depreciated by the litter-induced petiole lengthening. Both rhizome mass increment and number of initiated buds marginally increased with the amount of litter. Rhizome mass increment was in fact determined primarily by leaf area and leaf life span, neither of which was unequivocally correlated with any litter characteristics. However, the presence of litter significantly increased leafing success: following a late frost event, control rhizomes growing in the absence of litter experienced higher leaf mortality before leaf unfolding. The study questions the role of litter as a physical or chemical barrier to ground vegetation; to better understand this role, there is a need for ex-situ, longer-term experiments coupled with in-situ observations in the forest.

  18. Tree litter and forest understorey vegetation: a conceptual framework to understand the effects of tree litter on a perennial geophyte, Anemone nemorosa

    PubMed Central

    Baltzinger, Marie; Archaux, Frédéric; Dumas, Yann

    2012-01-01

    Background and Aims Litter is a key factor in structuring plant populations, through positive or negative interactions. The litter layer forms a mechanical barrier that is often strongly selective against individuals lacking hypocotyle plasticity. Litter composition also interacts with plant growth by providing beneficial nutrients or, inversely, by allowing harmful allelopathic leaching. As conspicuous litter fall accumulation is often observed under deciduous forests, interactions between tree litter and understorey plant populations are worthy of study. Methods In a 1-year ex-situ experiment, the effects of tree litter on the growth of Anemone nemorosa, a small perennial forest geophyte, were investigated. Three ‘litter quantity’ treatments were defined, representative of forest floor litter (199, 356·5 and 514 g m−2), which were crossed with five ‘litter composition’ treatments (Quercus petraea, Fagus sylvatica, Carpinus betulus, Q. petraea + F. sylvatica and Q. petraea + C. betulus), plus a no-litter control. Path analysis was then used to investigate the pathways linking litter characteristics and components of adult plant growth. Key Results As expected, the heavier the litter, the longer the petiole; rhizome growth, however, was not depreciated by the litter-induced petiole lengthening. Both rhizome mass increment and number of initiated buds marginally increased with the amount of litter. Rhizome mass increment was in fact determined primarily by leaf area and leaf life span, neither of which was unequivocally correlated with any litter characteristics. However, the presence of litter significantly increased leafing success: following a late frost event, control rhizomes growing in the absence of litter experienced higher leaf mortality before leaf unfolding. Conclusions The study questions the role of litter as a physical or chemical barrier to ground vegetation; to better understand this role, there is a need for ex-situ, longer

  19. Insect-oak interactions with coast live oak (Quercus agrifolia) and Engelmann oak (Q. engelmannii) at the acorn and seedling stage

    Treesearch

    Connell E. Dunning; Timothy D. Paine; Richard A. Redak

    2002-01-01

    We determined the impact of insects on both acorns and seedlings of coast live oak (Quercus agrifolia Nee) and Engelmann oak (Quercus engelmannii E. Greene). Our goals were to (1) identify insects feeding on acorns and levels of insect damage, and (2) measure performance and preference of a generalist leaf-feeding insect herbivore...

  20. Throughfall chemistry beneath Quercus rubra: atmospheric, foliar, and soil chemistry considerations

    Treesearch

    Theodor D. Leininger; W.E. Winner

    1988-01-01

    Concentrations of inorganic ions were measured in bulk rainfall and bulk throughfall collected beneath northern red oak (Quercus rubra L.) trees growing in fertile, limestone-derived soil and less fertile sandstone/shale-derived soil. Rainfall passing through the crowns at both sites was enriched with SO2-4...

  1. Spatial variations of sapwood chemistry with soil acidity in Appalachian forests. [Quercus rubra; Prunus serotina; Pinus strobus L. ; Tsuga canadensis; Quercus prinus; Carya glabra

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DeWalle, D.R.; Swistock, B.R.; Sharpe, W.E.

    Studies were conducted at five Appalchian sites to determine if chemical element concentrations in sapwood tree rings from six tree species varied with soil and soil leachate acidity. The most recent 5-yr-growth increment was extracted from 10 tree boles of each species at each site and analyzed for chemical content using plasma emission spectroscopy. Sapwood tree rings generally showed higher concentrations of Mn and lower concentrations of Sr at sites with lower soil pH. Differences in tree-ring concentrations for Ca and Mn among sites were also found in soil water samples at these sites. Significant differences in soil leachate Almore » between sites were not duplicated in tree rings. Sapwood tree-ring chemistry in red oak (Quercus rubra L.), black cherry (Prunus serotina Ehrh.), eastern white pine (pinus strobus L.) and eastern hemlock (Tsuga canadensis (L.) Carr.) was generally responsive to differences in soil chemistry between sites. Chestnut oak (Quercus prinus L.) and pignut hickory (Carya glabra (Mill.) Sweet) were the least responsive species tested. Overall, results show that several common tree species and selected elements are potentially useful for studying historic soil acidification trends at these study sites.« less

  2. Quercus kelloggii (Newb.) sprout response to fire severity in northern California

    Treesearch

    Justin S. Crotteau; Martin W. Ritchie; J. Morgan Varner; John-Pascal Berrill

    2015-01-01

    We counted seedlings and assessed crown characteristics and abundance of fire-induced stump sprout regeneration in California black oak (Quercus kelloggii) 11 to 12 years after wildfire. Regeneration was examined across three levels of burn severity (low, moderate, and high) according to the Composite Burn Index. Fire severity affected crown width...

  3. Laboratory evaluation of molluscicidal activity of extracts from Cotula cinerea (L) and Quercus lusitania var. infectoria galls (Oliv.).

    PubMed

    Redwane, A; Markouk, M; Lazrek, H B; Amarouch, H; Jana, M

    1998-01-01

    In this work, we have studied the molluscicidal activity of different extracts obtained from Cotula cinerea and Quercus lusitania var. infectoria galls. The hydroalcoholic extract of Cotula cinerea, acetonic extract and gallotanin of Quercus infectoria galls have presented high activity against Bulinus truncatus. The hydroalcoholic extract of Cotula cinerea was fractionated by chromatography on silica gel column. We have isolated two very active fractions at concentrations respectively of 52.5 and 27.5 ppm.

  4. Competitive Capacity of Quercus rubra L. Planted in Arkansas' Boston Mountains

    Treesearch

    Martin A. Spetich; Daniel C. Dey; Paul S. Johnson; David L. Graney

    2002-01-01

    Abstract. Results of an 11 yr study of the growth and survival of planted northern red oak (Quercus rubra L.) seedlings (2-0 bare-root) are presented. More than 4,000 seedlings were planted under shelterwood overstories that were harvested 3 yr after planting. Results are expressed as planted-tree dominance probabilities. Dominance...

  5. Competitive capacity of Quercus rubra L. planted in Arkansas' Boston Mountains

    Treesearch

    Martin A. Spetich; Daniel C. Dey; Paul S. Johnson; David L. Graney

    2002-01-01

    Results of an 11 yr study of the growth and survival of planted northern red oak (Quercus rubra L.) seedlings (2-0 bare-root) are presented. More than 4,000 seedlings were planted under shelterwood overstories that were harvested 3 yr after planting. Results are expressed as planted-tree dominance probabilities. Dominance probability is the...

  6. Tree mortality 6 years after burning a thinned Quercus chrysolepis stand

    Treesearch

    T.E. Paysen; M.G. Narog

    1993-01-01

    Managers do not currently use prescribed fire in stands of canyon live oak (Quercus chrysolepis Liebm.) because it is highly susceptible to fire injury. A preliminary study investigating the effects of  prescribed burning on this species was initiated on the San Bernardino National Forest in southern California. The purpose was to assess the...

  7. Changes in the Dynamics of Foliar N Metabolites in Oak Saplings by Drought and Air Warming Depend on Species and Soil Type

    PubMed Central

    Hu, Bin; Simon, Judy; Günthardt-Goerg, Madeleine S.; Arend, Matthias; Kuster, Thomas M.; Rennenberg, Heinz

    2015-01-01

    Climate change poses direct or indirect influences on physiological mechanisms in plants. In particular, long living plants like trees have to cope with the predicted climate changes (i.e. drought and air warming) during their life span. The present study aimed to quantify the consequences of simulated climate change for foliar N metabolites over a drought-rewetting-drought course. Saplings of three Central European oak species (i.e. Quercus robur, Q. petraea, Q. pubescens) were tested on two different soil types (i.e. acidic and calcareous). Consecutive drought periods increased foliar amino acid-N and soluble protein-N concentrations at the expense of structural N in all three oak species. In addition, transient effects on foliar metabolite dynamics were observed over the drought-rewetting-drought course. The lowest levels of foliar soluble protein-N, amino acid-N and potassium cation with a minor response to drought and air warming were found in the oak species originating from the driest/warmest habitat (Q. pubescens) compared to Q. robur and Q. petraea. Higher foliar osmolyte-N and potassium under drought and air warming were observed in all oak species when grown on calcareous versus acidic soil. These results indicate that species-specific differences in physiological mechanisms to compensate drought and elevated temperature are modified by soil acidity. PMID:25961713

  8. The phenolic extractives in southern red oak (Quercus falcata Michx. var. falcata)

    Treesearch

    Seiji Ohara; Richard W. Hemingway

    1989-01-01

    The bark of southern red oak (Quercus falcala Michx. var. falcala) is a rich source of quercitrin (quercetin-3-rhamnoside). It contains only low concentrations of (+)-catechin and no significant amounts of epicatechin or gallocatechin. The three major dimeric proanthocyanidins present are epicatechin-(4β→8)-...

  9. Additivity in tree biomass components of Pyrenean oak (Quercus pyrenaica Willd.)

    Treesearch

    Joao P. Carvalho; Bernard R. Parresol

    2003-01-01

    In tree biomass estimations, it is important to consider the property of additivity, i.e., the total tree biomass should equal the sum of the components. This work presents functions that allow estimation of the stem and crown dry weight components of Pyrenean oak (Quercus pyrenaica Willd.) trees. A procedure that considers additivity of tree biomass...

  10. Underplanting to sustain future stocking of oak (Quercus) in temperate deciduous forests

    Treesearch

    Daniel C. Dey; Emile S. Gardiner; Callie J. Schweitzer; John M. Kabrick; Douglass F. Jacobs

    2012-01-01

    Oaks (Quercus spp.) are one of the most important tree taxa in the northern hemisphere. Although they are dominant in mixed species forests and widely distributed, there are frequent reports of regeneration failures. An adequate population of large oak advance reproduction is a critical prerequisite to successful oak regeneration, and hence...

  11. Somatic embryogenesis and plant regeneration of northern red oak (Quercus rubra L.)

    Treesearch

    G. Vengadesan; Paula M. Pijut

    2009-01-01

    A somatic embryogenesis protocol for plant regeneration of northern red oak (Quercus rubra) was established from immature cotyledon explants. Embryogenic callus cultures were induced on Murashige and Skoog medium (MS) containing 3% sucrose, 0.24% Phytagel™, and various concentrations of 2,4-dichlorophenoxyacetic acid (2,4-D) after 4 weeks of...

  12. Factors affecting stress tolerance in recalcitrant embryonic axes from seeds of four Quercus (Fagaceae) species native to the USA or China

    PubMed Central

    Xia, Ke; Hill, Lisa M.; Li, De-Zhu; Walters, Christina

    2014-01-01

    Background and Aims Quercus species are often considered ‘foundation’ components of several temperate and/or subtropical forest ecosystems. However, the populations of some species are declining and there is considerable urgency to develop ex situ conservation strategies. In this study, the storage physiology of seeds within Quercus was explored in order to determine factors that affect survival during cryopreservation and to provide a quantitative assessment of seed recalcitrance to support future studies of this complex trait. Methods Water relations and survival of excised axes in response to water loss and cryo-exposure were compared for four Quercus species from subtropical China (Q. franchetii, Q. schottkyana) and temperate USA (Q. gambelii, Q. rubra). Key Results Seed tissues initially had high water contents and water potentials. Desiccation tolerance of the embryonic axis was not correlated with the post-shedding rainfall patterns where the samples originated. Instead, higher desiccation tolerance was observed in samples growing in areas with colder winters. Survival following cryo-exposure correlated with desiccation tolerance. Among species, plumule tissues were more sensitive than radicles to excision, desiccation and cryo-exposure, and this led to a higher proportion of abnormally developing embryos during recovery following stress. Conclusions Quercus species adapted to arid and semi-humid climates still produce recalcitrant seeds. The ability to avoid freezing rather than drought may be a more important selection factor to increase desiccation tolerance. Cryopreservation of recalcitrant germplasm from temperate species is currently feasible, whilst additional protective treatments are needed for ex situ conservation of Quercus from tropical and subtropical areas. PMID:25326139

  13. Behaviour of Quercus pollen in the air, determination of its sources and transport through the atmosphere of Mexico City and conurbated areas.

    PubMed

    Calderón-Ezquerro, M C; Martinez-Lopez, B; Guerrero-Guerra, C; López-Espinosa, E D; Cabos-Narvaez, W D

    2018-06-15

    Pollen allergies have a remarkable clinical impact all over world. Quercus pollen is the main allergen in many parts of world. Due to the health impacts caused by exposure to oak pollen, the objectives of this study are to characterise the aerobiological behaviour of Quercus pollen and to determine its potential sources as well as their transport through the atmosphere of Mexico City and surrounding areas between January 2012 and June 2015. Airborne Quercus pollen monitoring was carried out simultaneously in five zones of Mexico City. The percentage of Quercus pollen of the total pollen collected from the air showed that the highest concentration was recorded in 2014, followed by 2012. The annual seasonal variation indicated that flowering and pollen emission into the atmosphere began between February and March. The maximum concentration of Quercus pollen was reached at Cuajimalpa. In 2012, the amount of pollen grains was distributed in March and April uniformly, whilst in 2014, the largest amount of pollen was concentrated in March. In 2012 and 2014 (years with the highest pollen concentrations), corresponding intraday variations were quite similar, with a low relative maximum in the morning and the highest concentrations in the evening. The largest values were recorded in 2014, and two processes can explain these. In the afternoon, pollen from secondary forest is carried by southwesterly converging winds, increasing the pollen concentration in Cuajimalpa. In the evening, there is an additional pollen contribution from primary forest via transport by NW winds.

  14. A neighborhood analysis of the consequences of Quercus suber decline for regeneration dynamics in Mediterranean forests.

    PubMed

    Ibáñez, Beatriz; Gómez-Aparicio, Lorena; Stoll, Peter; Ávila, José M; Pérez-Ramos, Ignacio M; Marañón, Teodoro

    2015-01-01

    In forests, the vulnerable seedling stage is largely influenced by the canopy, which modifies the surrounding environment. Consequently, any alteration in the characteristics of the canopy, such as those promoted by forest dieback, might impact regeneration dynamics. Our work analyzes the interaction between canopy neighbors and seedlings in Mediterranean forests affected by the decline of their dominant species (Quercus suber). Our objective was to understand how the impacts of neighbor trees and shrubs on recruitment could affect future dynamics of these declining forests. Seeds of the three dominant tree species (Quercus suber, Olea europaea and Quercus canariensis) were sown in six sites during two consecutive years. Using a spatially-explicit, neighborhood approach we developed models that explained the observed spatial variation in seedling emergence, survival, growth and photochemical efficiency as a function of the size, identity, health, abundance and distribution of adult trees and shrubs in the neighborhood. We found strong neighborhood effects for all the performance estimators, particularly seedling emergence and survival. Tree neighbors positively affected emergence, independently of species identity or health. Alternatively, seedling survival was much lower in neighborhoods dominated by defoliated and dead Q. suber trees than in neighborhoods dominated by healthy trees. For the two oak species, these negative effects were consistent over the three years of the experimental seedlings. These results indicate that ongoing changes in species' relative abundance and canopy trees' health might alter the successional trajectories of Mediterranean oak-forests through neighbor-specific impacts on seedlings. The recruitment failure of dominant late-successional oaks in the gaps opened after Q. suber death would indirectly favor the establishment of other coexisting woody species, such as drought-tolerant shrubs. This could lead current forests to shift into

  15. Involvement of Phythophthora species in white oak (Quercus alba) decline in southern Ohio

    Treesearch

    Y. Balci; R.P. Long; M. Mansfield; D. Balser; W.L. MacDonald

    2010-01-01

    This study was initiated to investigate the possible role of Phytophthora species in white oak decline (Quercus alba) in southern Ohio at Scioto Trail State Forest. Surveys demonstrated the presence of four species of Phytophthora including one novel species. By far, the most common species was P....

  16. Yeast-like microorganisms in the scale insect Kermes quercus (Insecta, Hemiptera, Coccomorpha: Kermesidae). Newly acquired symbionts?

    PubMed

    Podsiadło, Elżbieta; Michalik, Katarzyna; Michalik, Anna; Szklarzewicz, Teresa

    2018-01-01

    Scale insects, like other plant sap-consumers, are host to symbiotic microorganisms which provide them with the substances missing from their diet. In contrast to most scale insects, Kermes quercus (Linnaeus) was regarded as asymbiotic. Our histological and ultrastructural observations show that in the body of the feeding stages of K. quercus collected in two locations (Warsaw and Cracow), numerous yeast-like microorganisms occur. These microorganisms were localized in the cytoplasm of fat body cells. The yeast-like microorganisms were observed neither in other organs of the host insect nor in the eggs. These microorganisms did not cause any damage to the structure of the ovaries and the course of oogenesis of the host insect. The females infected by them produced about 1300 larvae. The lack of these microorganisms in the cytoplasm of eggs indicates that they are not transmitted transovarially from mother to offspring. Molecular analyses indicated that the microorganisms which reside in the body of K. quercus are closely related to the entomopathogenic fungi Cordyceps and Ophiocordyceps, which belong to the Sordariomycetes class within the Ascomycota. The role of yeast-like microorganisms to their host insects remains unknown; however, it has been suggested that they may represent newly acquired symbionts. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Uniting Tricholoma sulphureum and T. bufonium.

    PubMed

    Comandini, Ornella; Haug, Ingeborg; Rinaldi, Andrea C; Kuyper, Thomas W

    2004-10-01

    The taxonomic status and relationship of Tricholoma sulphureum and the similar T. bufonium were investigated using different sets of characters. These included morphological data on fruit bodies, ecological and chorological data, and analysis of the sequence data obtained for the ITS of basidiomes of different ecological and geographic origin. Moreover, the ectomycorrhizas formed by T. bufonium on Abies alba and Quercus sp. were characterised, and anatomical features compared with those of T. sulphureum mycorrhizas on coniferous and broad-leaved host trees. Our results revealed extensive ITS variation in members of the T. sulphureum group, but this variation was not correlated with morphology, ecology, or geographical distribution. We conclude that T. bufonium cannot be maintained as an autonomous taxon and should be treated as an infraspecific variant of T. sulphureum.

  18. Effects of desiccation on the physiology and biochemistry of Quercus alba acorns

    Treesearch

    Kristina F. Connor; Sharon Sowa

    2003-01-01

    Seeds that lose viability when dried to a water content of less than 12% are said to be recalcitrant. We subjected acorns of Quercus alba L., a species with recalcitrant seeds, to desiccation to determine the effects of drying on lipids, proteins and carbohydrates of the embryonic axis and cotyledon tissues. Samples of fresh seed and seed dried for...

  19. Performance of nuttall oak (Quercus Texana Buckl.) provenances in the Western Gulf Region

    Treesearch

    D.P. Gwaze; T.D. Byram; E.M. Raley

    2003-01-01

    Three series of three tests each of Nuttall oak (Quercus texana Buckl. formally Q. nuttallii Palmer) were established by the Western Gulf Forest Tree Improvement Program at three locations: Desha and Lonoke Counties in Arkansas and Sharkey County in Mississippi. The three series included 28-42 different half-sib families from...

  20. Riparian valley oak (Quercus lobata) forest restoration on the middle Sacramento River, California

    Treesearch

    F. Thomas Griggs; Gregory H. Golet

    2002-01-01

    In 1989 The Nature Conservancy initiated a riparian horticultural restoration program on the floodplain of the middle Sacramento River, California. At nearly all restoration sites Valley oak (Quercus lobata Nee) comprised a major component of the planting design. Valley oaks are a keystone tree species of lowland floodplain habitats in California...

  1. Contrasting patterns of historical colonization in white oaks (Quercus spp.) in California and Europe.

    PubMed

    Grivet, Delphine; Deguilloux, Marie-France; Petit, Remy J; Sork, Victoria L

    2006-11-01

    Phylogeography allows the inference of evolutionary processes that have shaped the current distribution of genealogical lineages across a landscape. In this perspective, comparative phylogeographical analyses are useful in detecting common historical patterns by either comparing different species within the same area within a continent or by comparing similar species in different areas. Here, we analyse one taxon (the white oak, genus Quercus, subgenus Quercus, section Quercus) that is widespread worldwide, and we evaluate its phylogeographical pattern on two different continents: western North America and Western Europe. The goals of the present study are: (i) to compare the chloroplast genetic diversity found in one California oak species vs. that found in the extensively studied European oak species (in France and the Iberian Peninsula); (ii) to contrast the geographical structure of haplotypes between these two taxa and test for a phylogeographical structure for the California species. For this purpose, we used the same six maternally inherited chloroplast microsatellite markers and a similar sampling strategy. The haplotype diversity within site as well as the differentiation among sites was alike in both taxa, but the Californian species has higher allelic richness with a greater number of haplotypes (39 vs. 11 in the European white oak complex). Furthermore, in California these 39 haplotypes are distributed locally in patches while in the European oaks haplotypes are distributed into lineages partitioned longitudinally. These contrasted patterns could indicate that gene movement in California oak populations have been more stable in response to past climatic and geological events, in contrast to their European counterparts.

  2. KINETICS OF LEAF TEMPERATURE FLUCTUATION AFFECT ISOPRENE EMISSION FROM RED OAK (QUERCUS RUBRA) LEAVES

    EPA Science Inventory

    Because the rate of isoprene (2-methyl-1,3-butadiene) emission from plants is highly temperature-dependent, we investigated the natural fluctuations on leaf temperature and the effects of rapid temperature change on isoprene emission of red oak (Quercus rubra L.) leaves at the to...

  3. Comparison of Different EO Sensors for Mapping Tree Species- A Case Study in Southwest Germany

    NASA Astrophysics Data System (ADS)

    Enßle, Fabian; Kattenborn, Teja; Koch, Barbara

    2014-11-01

    The variety of different remote sensing sensors and thus the types of data specifications which are available is increasing continuously. Especially the differences in geometric, radiometric and temporal resolutions of different platforms affect their ability for the mapping of forests. These differences hinder the comparability and application of uniform methods of different remotely sensed data across the same region of interest. The quality and quantity of retrieved forest parameters is directly dependent on the data source, and therefore the objective of this project is to analyse the relationship between the data source and its derived parameters. A comparison of different optical EO-data (e.g. spatial resolution and spectral resolution of specific bands) will help to define the optimum data sets to produce a reproducible method to provide additional inputs to the Dragon cooperative project, specifically to method development for woody biomass estimation and biodiversity assessment services. This poster presents the first results on tree species mapping in a mixed temperate forest by satellite imagery taken from four different sensors. Tree species addressed in this pilot study are Scots pine (Pinus sylvestris), sessile oak (Quercus petraea) and red oak (Quercus rubra). The spatial resolution varies from 2m to 30m and the spectral resolutions range from 8bands up to 155bands.

  4. Comparison of Different EO Sensors for Mapping Tree Species- A Case Study in Southwest Germany

    NASA Astrophysics Data System (ADS)

    Enβle, Fabian; Kattenborn, Teja; Koch, Barbara

    2014-11-01

    The variety of different remote sensing sensors and thus the types of data specifications which are available is increasing continuously. Especially the differences in geometric, radiometric and temporal resolutions of different platforms affect their ability for the mapping of forests. These differences hinder the comparability and application of uniform methods of different remotely sensed data across the same region of interest. The quality and quantity of retrieved forest parameters is directly dependent on the data source, and therefore the objective of this project is to analyse the relationship between the data source and its derived parameters. A comparison of different optical EO-data (e.g. spatial resolution and spectral resolution of specific bands) will help to define the optimum data sets to produce a reproducible method to provide additional inputs to the Dragon cooperative project, specifically to method development for woody biomass estimation and biodiversity assessment services. This poster presents the first results on tree species mapping in a mixed temperate forest by satellite imagery taken from four different sensors. Tree species addressed in this pilot study are: Scots pine (Pinus sylvestris), sessile oak (Quercus petraea) and red oak (Quercus rubra). The spatial resolution varies from 2m to 30m and the spectral resolutions range from 8bands up to 155bands.

  5. Stem CO2 efflux in six co-occurring tree species: underlying factors and ecological implications.

    PubMed

    Rodríguez-Calcerrada, Jesús; López, Rosana; Salomón, Roberto; Gordaliza, Guillermo G; Valbuena-Carabaña, María; Oleksyn, Jacek; Gil, Luis

    2015-06-01

    Stem respiration plays a role in species coexistence and forest dynamics. Here we examined the intra- and inter-specific variability of stem CO2 efflux (E) in dominant and suppressed trees of six deciduous species in a mixed forest stand: Fagus sylvatica L., Quercus petraea [Matt.] Liebl, Quercus pyrenaica Willd., Prunus avium L., Sorbus aucuparia L. and Crataegus monogyna Jacq. We conducted measurements in late autumn. Within species, dominants had higher E per unit stem surface area (Es ) mainly because sapwood depth was higher than in suppressed trees. Across species, however, differences in Es corresponded with differences in the proportion of living parenchyma in sapwood and concentration of non-structural carbohydrates (NSC). Across species, Es was strongly and NSC marginally positively related with an index of drought tolerance, suggesting that slow growth of drought-tolerant trees is related to higher NSC concentration and Es . We conclude that, during the leafless period, E is indicative of maintenance respiration and is related with some ecological characteristics of the species, such as drought resistance; that sapwood depth is the main factor explaining variability in Es within species; and that the proportion of NSC in the sapwood is the main factor behind variability in Es among species. © 2014 John Wiley & Sons Ltd.

  6. Consequences of salinity and freezing stress for two populations of Quercus virginiana Mill

    Treesearch

    Cassandra M. Kurtz; Jessica A. Savage; I-Yu Huang; Jeannine Cavender-Bares

    2013-01-01

    Climate change is of increasing concern in coastal forests where rising sea levels could lead to dramatic shifts in ecosystem composition. To investigate how inundation may impact coastal ecosystems, we examined the sensitivity of Quercus virginiana Mill., a dominant tree in the southeastern U.S., to increased soil salinity and examined whether high...

  7. Trunk and root sprouting on residual trees after thinning a Quercus chrysolepis stand

    Treesearch

    Timothy E. Paysen; Marcia G. Narog; Robert G. Tissell; Melody A. Lardner

    1991-01-01

    Canyon live oak (Quercus chrysolepis Liebm.) showed sprouting patterns on root and trunk zones foUowing forest thinning. Root sprouting was heaviest on north and east (downhill) sides of residual trees; bole sprouts were concentrated on the south and west (uphill). Root and bole sprouting appeared to be responding to different stimuli, or...

  8. Factors Limiting the Establishment of a Chaparral Oak, Quercus durata Jeps., in Grassland

    Treesearch

    Kimberlyn Williams; Stephen D. Davis; Barbara L. Gartner; Staffan Karlsson

    1991-01-01

    We studied factors that restrict colonization of grassland by Quercus durata Jeps., an oak commonly found in chaparral on serpentine soils. The study site contained a chaparral/ grassland border that had been stable for at least 50 years. Monitoring of acorns planted in the chaparral understory and grassland revealed that, although initial seedling...

  9. Climatically sensitive tree-ring chronologies from Crimea, Ukraine

    NASA Astrophysics Data System (ADS)

    Solomina, O.; Davi, N.; D Arrigo, R.

    2003-04-01

    Several tree species in Crimea can reach ages of 1000 years or more (Crimea..., 1999), including Taxus baccata L., Arbutus andrachne L., Quercus pubescens Willd, Quercus petraea (Mattuschka) Liebl., Quercus robur L., Juniperus excelsa M.B., and Pistacia mutica Fisch.et Mey. In September 2002, we collected samples from several long-lived tree sites described in the literature (Vulf, 1948, Ivanenko, 1951, Ena, 1983, Podgorniy, 1990), located in the mountains of Central Crimea (Sokolinoye, Chufut-Kale, Chelter) and on the coast of the Black Sea (Ai-Todor, Kharaks, Ai-Petri). The trees sampled generally had 300-350 rings. At Ai-Todor, most oaks, junipers, and pistachio showed decay. However, enough samples of oak, juniper and pine were collected to build three chronologies with good replication over the last 350 years. Long meteorological records (for Sevastopol since 1821, Ai-Petri and Yalta since the 1880's) as well as detailed historical data on extreme climatic events since 1687 (summarized by Borisov 1956) are available for this area and can be used to calibrate and verify the tree growth/climate models. Resulting dendroclimatic reconstructions will be the first from this region. The tree-ring time-series may also be used for archaeological dating of historical wood from several medieval fortresses, towns and palaces. In turn, the archaeological wood could be used to extend the tree-ring time series. Stalactites and stalagmites (Dubliansky, 1977) found in numerous caves, as well as 4000-years old laminated lake sediments (Shostakovich, 1934) are also potentially important sources of paleoclimatic information in the area.

  10. Net production relations of three tree species at Oak Ridge, Tennessee. [Liriodendron tulipifera; Quercus alba; Pinus echinata

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Whittaker, R.H.; Cohen, N.; Olson, J.S.

    Measurement of productivity of forests is a difficult problem which has been variously approached. Results from an exploratory application of one approach (Whittaker 1961) to trees of three species - Liriodendron tulipifera (tulip tree or yellow poplar), Quercus alba (white oak), and Pinus echinata (shortleaf pine) - are reported here. The trees were felled in a logging operation at Oak Ridge National Laboratory in a mature second-growth, mixed oak-pine forest including also Quercus velutina, Q. coccinea, Q. falcata, Pinus virginiana, Acer rubrum, Nyssa sylvatica, Oxydendrum arboreum, and Carya ovalis. The forest grew on slopes of low hills on Knox dolomitemore » at about 300 m elevation. 22 references, 1 figure, 2 tables.« less

  11. Factors affecting stress tolerance in recalcitrant embryonic axes from seeds of four Quercus (Fagaceae) species native to the USA or China.

    PubMed

    Xia, Ke; Hill, Lisa M; Li, De-Zhu; Walters, Christina

    2014-12-01

    Quercus species are often considered 'foundation' components of several temperate and/or subtropical forest ecosystems. However, the populations of some species are declining and there is considerable urgency to develop ex situ conservation strategies. In this study, the storage physiology of seeds within Quercus was explored in order to determine factors that affect survival during cryopreservation and to provide a quantitative assessment of seed recalcitrance to support future studies of this complex trait. Water relations and survival of excised axes in response to water loss and cryo-exposure were compared for four Quercus species from subtropical China (Q. franchetii, Q. schottkyana) and temperate USA (Q. gambelii, Q. rubra). Seed tissues initially had high water contents and water potentials. Desiccation tolerance of the embryonic axis was not correlated with the post-shedding rainfall patterns where the samples originated. Instead, higher desiccation tolerance was observed in samples growing in areas with colder winters. Survival following cryo-exposure correlated with desiccation tolerance. Among species, plumule tissues were more sensitive than radicles to excision, desiccation and cryo-exposure, and this led to a higher proportion of abnormally developing embryos during recovery following stress. Quercus species adapted to arid and semi-humid climates still produce recalcitrant seeds. The ability to avoid freezing rather than drought may be a more important selection factor to increase desiccation tolerance. Cryopreservation of recalcitrant germplasm from temperate species is currently feasible, whilst additional protective treatments are needed for ex situ conservation of Quercus from tropical and subtropical areas. Published by Oxford University Press on behalf of the Annals of Botany Company 2014. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  12. Ex-situ conservation of Quercus oglethorpensis in living collections of arboreta and botanical gardens.

    Treesearch

    Matthew S. Lobdell; Patrick G. Thompson

    2017-01-01

    Quercus oglethorpensis (Oglethorpe oak) is an endangered species native to the southeastern United States. It is threatened by land use changes, competition, and chestnut blight disease caused by Cryphonectria parasitica. The species is distributed sparsely over a linear distance of ca. 950 km. Its range includes several...

  13. Tree diversity and the role of non-host neighbour tree species in reducing fungal pathogen infestation

    PubMed Central

    Hantsch, Lydia; Bien, Steffen; Radatz, Stine; Braun, Uwe; Auge, Harald; Bruelheide, Helge

    2014-01-01

    The degree to which plant pathogen infestation occurs in a host plant is expected to be strongly influenced by the level of species diversity among neighbouring host and non-host plant species. Since pathogen infestation can negatively affect host plant performance, it can mediate the effects of local biodiversity on ecosystem functioning. We tested the effects of tree diversity and the proportion of neighbouring host and non-host species with respect to the foliar fungal pathogens of Tilia cordata and Quercus petraea in the Kreinitz tree diversity experiment in Germany. We hypothesized that fungal pathogen richness increases while infestation decreases with increasing local tree diversity. In addition, we tested whether fungal pathogen richness and infestation are dependent on the proportion of host plant species present or on the proportion of particular non-host neighbouring tree species. Leaves of the two target species were sampled across three consecutive years with visible foliar fungal pathogens on the leaf surface being identified macro- and microscopically. Effects of diversity among neighbouring trees were analysed: (i) for total fungal species richness and fungal infestation on host trees and (ii) for infestation by individual fungal species. We detected four and five fungal species on T. cordata and Q. petraea, respectively. High local tree diversity reduced (i) total fungal species richness and infestation of T. cordata and fungal infestation of Q. petraea and (ii) infestation by three host-specialized fungal pathogen species. These effects were brought about by local tree diversity and were independent of host species proportion. In general, host species proportion had almost no effect on fungal species richness and infestation. Strong effects associated with the proportion of particular non-host neighbouring tree species on fungal species richness and infestation were, however, recorded. Synthesis. For the first time, we experimentally

  14. Tree diversity and the role of non-host neighbour tree species in reducing fungal pathogen infestation.

    PubMed

    Hantsch, Lydia; Bien, Steffen; Radatz, Stine; Braun, Uwe; Auge, Harald; Bruelheide, Helge

    2014-11-01

    The degree to which plant pathogen infestation occurs in a host plant is expected to be strongly influenced by the level of species diversity among neighbouring host and non-host plant species. Since pathogen infestation can negatively affect host plant performance, it can mediate the effects of local biodiversity on ecosystem functioning.We tested the effects of tree diversity and the proportion of neighbouring host and non-host species with respect to the foliar fungal pathogens of Tilia cordata and Quercus petraea in the Kreinitz tree diversity experiment in Germany. We hypothesized that fungal pathogen richness increases while infestation decreases with increasing local tree diversity. In addition, we tested whether fungal pathogen richness and infestation are dependent on the proportion of host plant species present or on the proportion of particular non-host neighbouring tree species.Leaves of the two target species were sampled across three consecutive years with visible foliar fungal pathogens on the leaf surface being identified macro- and microscopically. Effects of diversity among neighbouring trees were analysed: (i) for total fungal species richness and fungal infestation on host trees and (ii) for infestation by individual fungal species.We detected four and five fungal species on T. cordata and Q. petraea , respectively. High local tree diversity reduced (i) total fungal species richness and infestation of T. cordata and fungal infestation of Q. petraea and (ii) infestation by three host-specialized fungal pathogen species. These effects were brought about by local tree diversity and were independent of host species proportion. In general, host species proportion had almost no effect on fungal species richness and infestation. Strong effects associated with the proportion of particular non-host neighbouring tree species on fungal species richness and infestation were, however, recorded. Synthesis . For the first time, we experimentally

  15. Invasive perennial grasses in Quercus garryana meadows of southwestern British Columbia: prospects for restoration

    Treesearch

    Andrew MacDougall

    2002-01-01

    Garry oak (Quercus garryana) meadows of the Pacific Northwest are heavily invaded but the dynamics surrounding this ecosystem transformation are poorly understood. Of particular uncertainty is the role of the invasive species in structuring the community, and the potential stability of this invasive-dominated system when disturbed. Clarifying such...

  16. Agrilus auroguttatus (Coleoptera: Buprestidae) seasonal development within Quercus agrifolia (Fagales: Fagaceae) in southern California

    Treesearch

    L.J. Haavik; T.W. Coleman; M.L. Flint; R.C. Venette; S.J. Seybold

    2013-01-01

    We investigated seasonal development of the goldspotted oak borer, Agrilus auroguttatus Schaeffer (Coleoptera: Buprestidae), and physical conditions of the phloem within a preferred host species, coast live oak, Quercus agrifolia Née. We sampled infested trees on a monthly basis at two sites in southern California throughout...

  17. Influence of gap-scale disturbance on developmental and successional pathways in Quercus-Pinus stands

    Treesearch

    T.A. Weber; J.L. Hart; C. Schweitzer; D.C. Dey

    2014-01-01

    Quercus-Pinus forests of the eastern USA cover millions of hectares and span a variety of ecoregions. Understanding the influence of natural disturbance on developmental and successional pathways is important for managers that wish to sustain Pinus spp. in these mixtures. Quantifying developmental and successional patterns in this...

  18. A suggested approach for design of oak (Quercus L.) regeneration research considering regional differences

    Treesearch

    Daniel C. Dey; Martin A. Spetich; Dale R. Wiegel; David L. Graney; John M. Kabrick

    2009-01-01

    Research on oak (Quercus L.) regeneration has generally consisted of smallscale studies of treatments designed to favor oak, including consideration of site quality and topographic effects on oak regeneration. However, these experiments have not consistently factored in broader-scale ecological differences found in the eastern United States. Oak...

  19. High-light acclimation in Quercus robur L.seedlings upon over-topped a shaded environment

    Treesearch

    Anna M. Jensen; Emile S. Gardiner; Kevin C. Vaughn

    2012-01-01

    High developmental plasticity at the seedling-level during acclimation to the light environment may be an important determinant of seedling establishment and growth in temperate broadleaf forests, especially in dense understories where spatial light availability can vary greatly. Pedunculate oak (Quercus robur L.) seedlings were raised beneath a...

  20. Intraspecific Phenotypic Variation and Ecological Genetics of Blue Oak (Quercus douglasii Hook. & Am.)

    Treesearch

    Kevin J. Rice; Doria R. Gordon; Jeanine L. Hardison; Jeffrey M. Welker

    1991-01-01

    A field experiment was conducted to examine the effects of soil water availability on blue oak (Quercus douglasii) seedling establishment. Acorns were planted either into cleared plots of 0, 10, 20, or 40 cm diameter. The cleared plots were located in two grazed and one ungrazed site. Half of the plots received drip irrigation in a split plot design...

  1. Biodiversity of mycorrhizas on Garry oak (Quercus garryana) in a southern Oregon savanna

    Treesearch

    Lori L. Valentine; Tina L. Fiedler; Stephen R. Haney; Harold K. Berninghausen; Darlene Southworth

    2002-01-01

    Garry oak or Oregon white oak (Quercus garryana) is the dominant vegetation on the Whetstone Savanna in Jackson County, Oregon. The site is located on the western edge of the Agate Desert, an alluvial fan capped with shallow clay loam over a cemented hardpan. The landform exhibits patterned ground with mounds and vernal pools. The oaks are associated...

  2. A bibliography for Quercus garryana and other geographically associated and botanically related oaks.

    Treesearch

    Constance A. Harrington; Melanie A. Kallas

    2002-01-01

    Interest in Quercus garryana Dougl. ex Hook., commonly known as Oregon white oak or Garry oak, has increased in recent years as scientists, resource managers, and the general public focus attention on a forest type in decline. To aid those interested in learning what has previously been reported on this species, we have compiled a comprehensive bibliography for Q....

  3. Viability of litter-stored Quercus falcata Michx. acorns after simulated prescribed winter burns

    Treesearch

    Michael D. Cain; Michael G. Shelton

    1998-01-01

    Partially stratified (11 days) southern red oak (Quercus falcata Michx.) acorns were placed at three depths in a reconstructed forest floor and subjected to simulated prescribed winter burns. Within the forest floor, acorns were placed within the L layer, at the upper-F/ lower-F interface, and at the lower-F/mineral-soil interface. Winds for a...

  4. Acute renal failure in 2 adult llamas after exposure to Oak trees (Quercus spp.)

    PubMed Central

    Chamorro, Manuel F.; Passler, Thomas; Joiner, Kellye; Poppenga, Robert H.; Bayne, Jenna; Walz, Paul H.

    2013-01-01

    Two adult llamas (Lama glama) previously exposed to oak trees (Quercus spp.) were presented with a history of depression and anorexia. Clinicopathological abnormalities included severe gastroenteritis, acute renal failure, and increased liver enzymes. This is believed to be the first report of oak toxicosis in South American camelids. PMID:23814303

  5. Prediction of leaf area in individual leaves of cherrybark oak seedlings (Quercus pagoda Raf.)

    Treesearch

    Yanfei Guo; Brian Lockhart; John Hodges

    1995-01-01

    The prediction of leaf area for cherrybark oak (Quercus pagoda Raf.) seedlings is important for studying the physiology of the species. Linear and polynomial models involving leaf length, width, fresh weight, dry weight, and internodal length were tested independently and collectively to predict leaf area. Twenty-nine cherrybark oak seedlings were...

  6. Sensory-directed identification of taste-active ellagitannins in American (Quercus alba L.) and European oak wood (Quercus robur L.) and quantitative analysis in bourbon whiskey and oak-matured red wines.

    PubMed

    Glabasnia, Arne; Hofmann, Thomas

    2006-05-03

    Aimed at increasing our knowledge on the sensory-active nonvolatiles migrating from oak wood into alcoholic beverages upon cooperaging, an aqueous ethanolic extract prepared from oak wood chips (Quercus alba L.) was screened for its key taste compounds by application of the taste dilution analysis. Purification of the compounds perceived with the highest sensory impacts, followed by liquid chromatography/mass spectrometry as well as one-dimensional and two-dimensional NMR experiments, revealed the ellagitannins vescalagin, castalagin, and grandinin, the roburins A-E, and 33-deoxy-33-carboxyvescalagin as the key molecules imparting an astringent oral sensation. To the best of our knowledge, 33-deoxy-33-carboxyvescalagin has as yet not been reported as a phytochemical in Q. alba L. In addition, the sensory activity of these ellagitannins was determined for the first time on the basis of their human threshold concentrations and dose/response functions. Furthermore, the ellagitannins have been quantitatively determined in extracts prepared from Q. alba L. and Quercus robur L., respectively, as well as in bourbon whiskey and oak-matured red wines, and the sensory contribution of the individual compounds has been evaluated for the first time on the basis of dose/activity considerations.

  7. [Storage of carbon and nitrogen in Quercus and Platycladus orientalis plantations at different ages in the hilly area of western Henan Province, China.

    PubMed

    Wang, Yan Fang; Liu, Ling; Li, Zhi Chao; Shi, Xiao Feng; Yang, Xiao Yan; ShangGuan, Zhou Ping

    2018-01-01

    In the study, the method of space substituting time was used to investigate the distribution pattern of carbon and nitrogen storages in Quercus and Platycladus orientalis plantation ecosystems at different ages in hilly area of western Henan Province, China. We also analyzed the dynamic changes of soil carbon and nitrogen storages in different soil layers in the two plantation ecosystems. The results showed that the carbon storage in the arbor and litter layers increased with the increasing tree age. The storage of carbon and nitrogen in soil aggregated mainly in the surface layer and showed a trend of decrease-increase-decrease with the increasing tree age in all soil layers. The ranges of carbon and nitrogen storage in the surface soil were 20.31-50.07 and 1.68-2.12 t·hm -2 in Quercus plantation, and 23.99-48.76 and 1.59-2.34 t·hm -2 in P. orientalis plantation, respectively. Carbon storage ranges in Quercus and P. orientalis plantation ecosystems at different ages were 52.04-275.82 and 62.18-279.81 t·hm -2 , respectively. The carbon sequestration capacity in P. orientalis plantation was a little higher than that in Quercus plantation. Soil C/N increased with the increase of afforestation age.

  8. The effect of seed size variation in Quercus pacifica on seedling establishment and growth

    Treesearch

    Mario B. Pesendorfer

    2015-01-01

    Quercus pacifica, the island scrub-oak, is the dominant species in oak chaparral on the three largest California Channel Islands. While the population on Santa Cruz Island has experienced a strong recovery, the populations on Santa Rosa and Santa Catalina islands are of conservation concern, and managers are actively restoring oak habitat by...

  9. Whole-transcriptome response to water stress in a California endemic oak, Quercus lobata

    Treesearch

    Paul F. Gugger; Juan Manuel Peñaloza-Ramírez; Jessica W. Wright; Victoria L. Sork; Jörg-Peter Schnitzler

    2016-01-01

    Reduced water availability during drought can create major stress for many plant species. Within a species, populations with a history of seasonal drought may have evolved the ability to tolerate drought more than those in areas of high precipitation and low seasonality. In this study, we assessed response to water stress in a California oak species, Quercus lobata Née...

  10. Particulate Matter deposition on Quercus ilex leaves in an industrial city of central Italy.

    PubMed

    Sgrigna, G; Sæbø, A; Gawronski, S; Popek, R; Calfapietra, C

    2015-02-01

    A number of studies have focused on urban trees to understand their mitigation capacity of air pollution. In this study particulate matter (PM) deposition on Quercus ilex leaves was quantitatively analyzed in four districts of the City of Terni (Italy) for three periods of the year. Fine (between 0.2 and 2.5 μm) and Large (between 2.5 and 10 μm) PM fractions were analyzed. Mean PM deposition value on Quercus ilex leaves was 20.6 μg cm(-2). Variations in PM deposition correlated with distance to main roads and downwind position relatively to industrial area. Epicuticular waxes were measured and related to accumulated PM. For Fine PM deposited in waxes we observed a higher value (40% of total Fine PM) than Large PM (4% of total Large PM). Results from this study allow to increase our understanding about air pollution interactions with urban vegetation and could be hopefully taken into account when guidelines for local urban green management are realized. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Comparison of the carbon stock in forest soil of sessile oak and beech forests

    NASA Astrophysics Data System (ADS)

    Horváth, Adrienn; Bene, Zsolt; Bidló, András

    2016-04-01

    Forest ecosystems are the most important carbon sinks. The forest soils play an important role in the global carbon cycle, because the global climate change or the increase of atmospheric CO2 level. We do not have enough data about the carbon stock of soils and its change due to human activities, which have similar value to carbon content of biomass. In our investigation we measured the carbon stock of soil in 10 stands of Quercus petraea and Fagus sylvatica. We took a 1.1 m soil column with soil borer and divided to 11 samples each column. The course organic and root residues were moved. After evaluation, we compared our results with other studies and the carbon stock of forests to each other. Naturally, the amount of SOC was the highest in the topsoil layers. However, we found significant difference between forest stands which stayed on the same homogenous bedrock, but very close to each other (e.g. distance was 1 or 2 km). We detected that different forest utilizations and tree species have an effect on the forest carbon as the litter as well (amount, composition). In summary, we found larger amount (99.1 C t/ha on average) of SOC in soil of stands, where sessile oak were the main stand-forming tree species. The amount of carbon was the least in turkey oak-sessile oak stands (85.4 C t/ha on average). We found the highest SOC (118.3 C t/ha) in the most mixed stand (silver lime-beech-red oak). In the future, it will be very important: How does climate change affect the spread of tree species or on carbon storage? Beech is more sensitive, but even sessile oak. These species are expected to replace with turkey oak, which is less sensitive to drought. Thus, it is possible in the future that we can expect to decrease of forest soil carbon stock capacity, which was confirmed by our experiment. Keywords: carbon sequestration, mitigation, Fagus sylvatica, Quercus petraea, litter Acknowledgements: Research is supported by the "Agroclimate.2" (VKSZ_12-1-2013-0034) EU

  12. Photosynthetic light response of flooded cherrybark oak (Quercus pagoda) seedlings grown in two light regimes

    Treesearch

    Emile S. Gardiner; Ken W. Krauss

    2001-01-01

    Two-year-old cherrybark oak (Quercus pagoda Raf.) seedlings raised in full or partial (27 percent) sunlight were flooded for 30 days to study the effects of light availability and root inundation on photosynthetic light response. Compared with seedlings receiving full sunlight, seedlings receiving partial sunlight developed leaves...

  13. Phenology, dichogamy, and floral synchronization in a northern red oak (Quercus rubra) seed orchard

    Treesearch

    Lisa W. Alexander; Keith E. Woeste

    2016-01-01

    We developed a novel scoring system to assess spring phenology in a northern red oak (Quercus rubra L.) clonal seed orchard. The system was used to score from 304 to 364 ramets for three reproductive seasons and to place clones into early, intermediate, and late phenology classes. Although the absolute number of clones in each phenological class...

  14. Growth and Seed Production of Sawtooth Oak (Quercus acutissima) 22 Years After Direct Seeding

    Treesearch

    J.C.G. Goelz; D.W. Carlson

    1997-01-01

    Sawtooth oak (Quercus acutissima Carruth.) was direct seeded at two locations, one with a poorly drained clay soil and the other with a well-drained silty clay loam. For comparison, Nuttall oak (Q. nuttallii Palmer) was direct seeded on the poorly drained clay soil. On the well-drained silty clay loam, sawtooth oak was 18 ft...

  15. Larvicidal activity of extracts from Quercus lusitania var. infectoria galls (Oliv.).

    PubMed

    Redwane, A; Lazrek, H B; Bouallam, S; Markouk, M; Amarouch, H; Jana, M

    2002-02-01

    The present study indicates the efficacy of extracts and fractions of Quercus lusitania var. infectoria galls (Oliv.) as larvicidal agents and their possible use in biological control of Culex pipiens, the urban nuisance mosquito. Extracts and fractions were tested against second and fourth instar larvae. The LC(50) values of gallotannins were 335 and 373 ppm, respectively for the 2nd and 4th instar period. The most interesting value of LC(50) (24 h) is obtained with the fraction F(2) (60 ppm).

  16. Ecological significance of seed desiccation sensitivity in Quercus ilex

    PubMed Central

    Joët, Thierry; Ourcival, Jean-Marc; Dussert, Stéphane

    2013-01-01

    Background and Aims Several widespread tree species of temperate forests, such as species of the genus Quercus, produce recalcitrant (desiccation-sensitive) seeds. However, the ecological significance of seed desiccation sensitivity in temperate regions is largely unknown. Do seeds of such species suffer from drying during the period when they remain on the soil, between shedding in autumn and the return of conditions required for germination in spring? Methods To test this hypothesis, the Mediterranean holm oak (Quercus ilex) forest was used as a model system. The relationships between the climate in winter, the characteristics of microhabitats, acorn morphological traits, and the water status and viability of seeds after winter were then investigated in 42 woodlands sampled over the entire French distribution of the species. Key Results The percentages of germination and normal seedling development were tightly linked to the water content of seeds after the winter period, revealing that in situ desiccation is a major cause of mortality. The homogeneity of seed response to drying suggests that neither intraspecific genetic variation nor environmental conditions had a significant impact on the level of desiccation sensitivity of seeds. In contrast, the water and viability status of seeds at the time of collection were dramatically influenced by cumulative rainfall and maximum temperatures during winter. A significant effect of shade and of the type of soil cover was also evidenced. Conclusions The findings establish that seed desiccation sensitivity is a key functional trait which may influence the success of recruitment in temperate recalcitrant seed species. Considering that most models of climate change predict changes in rainfall and temperature in the Mediterranean basin, the present work could help foresee changes in the distribution of Q. ilex and other oak species, and hence plant community alterations. PMID:23388882

  17. Regeneration of red oak (Quercus rubra L.) using shelterwood systems: Ecophysiology, silviculture and management recommendations

    Treesearch

    Daniel C. Dey; William C. parker

    1996-01-01

    There is considerable interest in developing relaible methods for regenerating red oak (Quercus rubra) in Ontario. Traditional silviculture methods have not been successful in maintaining the curent levels of oak growing stock. In this paper, we review the ecology, physiology and reproductive biology of red oak. This discussion stresses the...

  18. 40 CFR 180.1179 - Plant extract derived from Opuntia lindheimeri, Quercus falcata, Rhus aromatica, and Rhizophoria...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Plant extract derived from Opuntia...) PESTICIDE PROGRAMS TOLERANCES AND EXEMPTIONS FOR PESTICIDE CHEMICAL RESIDUES IN FOOD Exemptions From Tolerances § 180.1179 Plant extract derived from Opuntia lindheimeri, Quercus falcata, Rhus aromatica, and...

  19. 40 CFR 180.1179 - Plant extract derived from Opuntia lindheimeri, Quercus falcata, Rhus aromatica, and Rhizophoria...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 25 2012-07-01 2012-07-01 false Plant extract derived from Opuntia...) PESTICIDE PROGRAMS TOLERANCES AND EXEMPTIONS FOR PESTICIDE CHEMICAL RESIDUES IN FOOD Exemptions From Tolerances § 180.1179 Plant extract derived from Opuntia lindheimeri, Quercus falcata, Rhus aromatica, and...

  20. 40 CFR 180.1179 - Plant extract derived from Opuntia lindheimeri, Quercus falcata, Rhus aromatica, and Rhizophoria...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 24 2011-07-01 2011-07-01 false Plant extract derived from Opuntia...) PESTICIDE PROGRAMS TOLERANCES AND EXEMPTIONS FOR PESTICIDE CHEMICAL RESIDUES IN FOOD Exemptions From Tolerances § 180.1179 Plant extract derived from Opuntia lindheimeri, Quercus falcata, Rhus aromatica, and...

  1. 40 CFR 180.1179 - Plant extract derived from Opuntia lindheimeri, Quercus falcata, Rhus aromatica, and Rhizophoria...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 24 2014-07-01 2014-07-01 false Plant extract derived from Opuntia...) PESTICIDE PROGRAMS TOLERANCES AND EXEMPTIONS FOR PESTICIDE CHEMICAL RESIDUES IN FOOD Exemptions From Tolerances § 180.1179 Plant extract derived from Opuntia lindheimeri, Quercus falcata, Rhus aromatica, and...

  2. 40 CFR 180.1179 - Plant extract derived from Opuntia lindheimeri, Quercus falcata, Rhus aromatica, and Rhizophoria...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 25 2013-07-01 2013-07-01 false Plant extract derived from Opuntia...) PESTICIDE PROGRAMS TOLERANCES AND EXEMPTIONS FOR PESTICIDE CHEMICAL RESIDUES IN FOOD Exemptions From Tolerances § 180.1179 Plant extract derived from Opuntia lindheimeri, Quercus falcata, Rhus aromatica, and...

  3. Analyses of Sporocarps, Morphotyped Ectomycorrhizae, Environmental ITS and LSU Sequences Identify Common Genera that Occur at a Periglacial Site

    PubMed Central

    Jumpponen, Ari; Brown, Shawn P.; Trappe, James M.; Cázares, Efrén; Strömmer, Rauni

    2015-01-01

    Periglacial substrates exposed by retreating glaciers represent extreme and sensitive environments defined by a variety of abiotic stressors that challenge organismal establishment and survival. The simple communities often residing at these sites enable their analyses in depth. We utilized existing data and mined published sporocarp, morphotyped ectomycorrhizae (ECM), as well as environmental sequence data of internal transcribed spacer (ITS) and large subunit (LSU) regions of the ribosomal RNA gene to identify taxa that occur at a glacier forefront in the North Cascades Mountains in Washington State in the USA. The discrete data types consistently identified several common and widely distributed genera, perhaps best exemplified by Inocybe and Laccaria. Although we expected low diversity and richness, our environmental sequence data included 37 ITS and 26 LSU operational taxonomic units (OTUs) that likely form ECM. While environmental surveys of metabarcode markers detected large numbers of targeted ECM taxa, both the fruiting body and the morphotype datasets included genera that were undetected in either of the metabarcode datasets. These included hypogeous (Hymenogaster) and epigeous (Lactarius) taxa, some of which may produce large sporocarps but may possess small and/or spatially patchy genets. We highlight the importance of combining various data types to provide a comprehensive view of a fungal community, even in an environment assumed to host communities of low species richness and diversity. PMID:29376900

  4. Winter variation in physiological status of cold stored and freshly lifted semi-evergreen quercus nigra seedlings

    Treesearch

    Rosa C. Goodman; Douglass F. Jacobs; Kent G. Apostol; Barrett C. Wilson; Emile S. Gardiner

    2009-01-01

    Water oak (Quercus nigra L.) is a tardily deciduous species commonly planted in afforestation projects in the Lower Mississippi River Alluvial Valley, USA. Field performance is often marked by low survival rates and top dieback, which may be associated with poor physiological quality of planting stock.

  5. Heritability of first-order-lateral roots in five Quercus species: effect on 1-0 seedling quality evaluation

    Treesearch

    Paul P. Kormanik; Shi-Jean S. Sung; Taryn L. Kormanik; Stanley J. Zarnoch; Scott Schlarbaum

    1997-01-01

    Heritability estimates (h2) were calculated for first-order lateral root (FOLR) numbers on a family plot mean basis for 5 Quercus species: Q. alba, Q. falcata, Q, michauxii, Q. pagoda, and Q. rubra. All species were grown with the...

  6. Heritability of first-order lateral root number in Quercus: implication for artificial regeneration of stands

    Treesearch

    Paul P. Kormanik; Shi-Jean S. Sung; Taryn L. Kormanik; Stanley L. Zarnoch; Scott Schlarbaum

    2000-01-01

    Natural regeneration of oak (Quercus) species in the USA has been easy to obtain on the lower quality xeric sites (site index less than or equal to 20 m at age 50) by developing advanced oak reproduction before stands are harvested. This approach has not been successful with Q. rubra, Q. pagoda, or Q. alba...

  7. A site model for Pyrenean oak (Quercus pyrenaica) stands using a dynamic algebraic difference equation

    Treesearch

    Joao P. Carvalho; Bernard R. Parresol

    2005-01-01

    This paper presents a growth model for dominant-height and site-quality estimations for Pyrenean oak (Quercus pyrenaica Willd.) stands. The Bertalanffy–Richards function is used with the generalized algebraic difference approach to derive a dynamic site equation. This allows dominant-height and site-index estimations in a compatible way, using any...

  8. First discovery of Quercus-feeding Nepticulidae (Lepidoptera) in South America, with description of new species and designation of the S. nigriverticella complex in the S. saginella group.

    PubMed

    Remeikis, Andrius; Stonis, Jonas R

    2015-12-11

    We describe three new species: Stigmella crassifoliae Remeikis & Stonis, sp. nov. (a leaf-miner on Quercus crassifolia and Q. crispipilis from the highlands of Guatemala), S. robleae Remeikis & Stonis, sp. nov., and S. humboldti Remeikis & Stonis, sp. nov. (leaf-miners on Quercus humboldtii from the Colombian Andes). No Quercus-feeding Nepticulidae species were previously known from South America. All new species are illustrated with photographs of the leaf-mines, cocoons, adults, and genitalia. In the S. saginella species group, for the species possessing in male genitalia M-shaped gnathos with caudal processes closely juxtaposed and phallus without cornuti, a new species complex (the S. nigriverticella complex) is defined. We also provide a pictorial key to the species of the new complex.

  9. Underplanting cherrybark oak (Quercus pagoda Raf.) seedlings on a bottomland site in the southern United States

    Treesearch

    Emile S. Gardiner; Jimmie L. Yeiser

    2006-01-01

    We initiated a study on a bottomland site in the southern United States to examine the effects of Japanese honeysuckle (Lonicera japonica Thunberg) control and seedlings of two root classes on survival and growth of underplanted cherrybark oak (Quercus pagoda Raf.) seedlings. Three honeysuckle control treatments were assigned to...

  10. Early results from a newly-established provenance test in Valley Oak (Quercus lobata) show significant population differentiation

    Treesearch

    Jessica W. Wright; Victoria L. Sork

    2017-01-01

    Valley oak (Quercus lobata) is a majestic, endemic California native oak, found throughout California's foothills, valleys and flood plains. It is threatened because: Contracted range due to housing and agriculture.Low recruitment in existing stands as a function of land use and...

  11. In vitro and in vivo assessment of anti-hyperglycemic and antioxidant effects of Oak leaves (Quercus convallata and Quercus arizonica) infusions and fermented beverages.

    PubMed

    Gamboa-Gómez, Claudia I; Simental-Mendía, Luis E; González-Laredo, Rubén F; Alcantar-Orozco, Esteban J; Monserrat-Juarez, Victor H; Ramírez-España, Julio C; Gallegos-Infante, Jose Alberto; Moreno-Jiménez, Martha R; Rocha-Guzmán, Nuria E

    2017-12-01

    The aim of this study was to evaluate the anti-hyperglycemic and antioxidant effects of oak leaves infusions and fermented beverages from Quercus convallata and Q. arizonica in vitro and in vivo. Female C57BL/6 mice fed with high saturated fat and fructose diet-induced obesity were treated with oak leaves beverages (200 μL/per day equivalent to 15mg of lyophilized sample/Kg of body weight for infusions and 31mg of lyophilized sample/Kg of body weight for fermented beverages) for 3months and an oral glucose tolerance test (OGTT) was performed. Blood plasma was obtained for determination of glucose, lipid profile, and oxidative stress markers (ABTS, nitric oxide, and ORAC assays). Insulin resistance was estimated using the product of triglycerides and glucose (TyG). Oak leaves infusions and fermented beverages exhibited exerted inhibition of α-amylase (8-15% and 5-9%, respectively) and α-glucosidase (98% and 99%, respectively) enzymes. After OGTT, the groups treated with either oak leaves infusions or fermented beverages showed lower glucose levels compared with the obesity control group (18%) and a similar glucose tolerance to healthy control group. On long-term evaluation, intervention groups showed a significant reduction in fasting glucose concentrations (41-50% for oak leaves infusions and 52-66% for fermented beverages) and TyG index (4.2-4.6% for oak leaves infusions and 5.9-7.5% for fermented beverages) compared with the obese control group. Oak leaves infusions and fermented beverages had antioxidant potential in vitro and scavenging activity for radicals such as peroxyl and peroxynitrite anions. Our results suggest anti-hyperglycemic and antioxidant effects of beverages prepared with leaves of Quercus species in vitro and in vivo. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. An analysis of phenotypic selection in natural stands of northern red oak (Quercus rubra L.)

    Treesearch

    Jeffery W. Stringer; David B. Wagner; Scott E. Schlarbaum; Daniel B. Houston

    1995-01-01

    Comparison of growth and stem quality parameters of 19-year-old progeny from superior and comparison trees indicates that rigorous phenotypic selection of trees in natural stands may not be an efficient method of parent tree selection for Quercus rubra L. Total tree height, dbh, number of branches in the butt log, fork height, and number of mainstem...

  13. Age structure and growth of California black oak (Quercus kelloggii) in the central Sierra Nevada, California

    Treesearch

    Barrett A. Garrison; Christopher D. otahal; Matthew L. Triggs

    2002-01-01

    Age structure and growth of California black oak (Quercus kelloggii) was determined from tagged trees at four 26.1-acre study stands in Placer County, California. Stands were dominated by large diameter (>20 inch dbh) California black oak and ponderosa pine (Pinus ponderosa). Randomly selected trees were tagged in June-August...

  14. CANOPY CONDUCTANCE OF PINUS TAEDA, LIQUIDAMBAR STYRACIFLUA AND QUERCUS PHELLOS UNDER VARYING ATMOSPHERIC AND SOIL WATER CONDITION

    EPA Science Inventory

    Sap flow, and atmospheric and soil water data were collected in closed-top chambers under conditions of high soil water potential for saplings of Liquidambar styraciflua L., Quercus phellos L., and Pinus taeda L., three co-occurring species in the southeastern USA. Responses of c...

  15. Artificial regeneration of major oak (Quercus) species in the eastern United States - a review of the literature

    Treesearch

    Daniel C. Dey; Douglass Jacobs; Ken McNabb; Gary W. Miller; V. Baldwin; G. Foster

    2008-01-01

    Although natural regeneration is often the best method for establishing new oak (Quercus spp.) stands, there are increasingly more situations in which high potential for oak regeneration failure dictates the use of artificial regeneration including direct seeding and planting seedlings. Additionally, afforestation planting programs frequently...

  16. Predicting the height growth of oak species (Quercus) reproduction over a 23-year period following clearcutting

    Treesearch

    J. Travis Swaim; Daniel C. Dey; Michael R. Saunders; Dale R. Weigel; Christopher D. Thornton; John M. Kabrick; Michael A. Jenkins

    2016-01-01

    We resampled plots from a repeated measures study implemented on the Hoosier National Forest (HNF) in southern Indiana in 1988 to investigate the influence of site and seedling physical attributes on height growth and establishment success of oak species (Quercus spp.) reproduction in stands regenerated by the clearcut method. Before harvest, an...

  17. Field performance of Quercus bicolor established as repeatedly air-root-pruned container and bareroot planting stock

    Treesearch

    J.W." Jerry" Van Sambeek; Larry D. Godsey; William D. Walter; Harold E. Garrett; John P. Dwyer

    2016-01-01

    Benefits of repeated air-root-pruning of seedlings when stepping up to progressively larger containers include excellent lateral root distribution immediately below the root collar and an exceptionally fibrous root ball. To evaluate long-term field performance of repeatedly air-root-pruned container stock, three plantings of swamp white oak (Quercus bicolor...

  18. The allelopathic influence of post oak (Quercus stellata) on plant species in southern U.S

    Treesearch

    Nicollette A. Baldwin; Michael K. Crosby

    2016-01-01

    Post oak (Quercus stellata) is a commonly occurring tree in the southeastern United States, offering forage and shelter for a variety of wildlife as well as having commercial uses. This species is often planted in parks and urban green-spaces for the shade it offers. Previous studies have found that parts of the plant can be toxic to livestock and...

  19. Shoot Development and Extension of Quercus serrata Saplings in Response to Insect Damage and Nutrient Conditions

    PubMed Central

    MIZUMACHI, ERI; MORI, AKIRA; OSAWA, NAOYA; AKIYAMA, REIKO; TOKUCHI, NAOKO

    2006-01-01

    • Background and Aims Plants have the ability to compensate for damage caused by herbivores. This is important to plant growth, because a plant cannot always avoid damage, even if it has developed defence mechanisms against herbivores. In previous work, we elucidated the herbivory-induced compensatory response of Quercus (at both the individual shoot and whole sapling levels) in both low- and high-nutrient conditions throughout one growing season. In this study, we determine how the compensatory growth of Quercus serrata saplings is achieved at different nutrient levels. • Methods Quercus serrata saplings were grown under controlled conditions. Length, number of leaves and percentage of leaf area lost on all extension units (EUs) were measured. • Key Results Both the probability of flushing and the length of subsequent EUs significantly increased with an increase in the length of the parent EU. The probability of flushing increased with an increase in leaf damage of the parent EU, but the length of subsequent EUs decreased. This indicates that EU growth is fundamentally regulated at the individual EU level. The probabilities of a second and third flush were significantly higher in plants in high-nutrient soil than those in low-nutrient soil. The subsequent EUs of damaged saplings were also significantly longer at high-nutrient conditions. • Conclusions An increase in the probability of flushes in response to herbivore damage is important for damaged saplings to produce new EUs; further, shortening the length of EUs helps to effectively reproduce foliage lost by herbivory. The probability of flushing also varied according to soil nutrient levels, suggesting that the compensatory growth of individual EUs in response to local damage levels is affected by the nutrients available to the whole sapling. PMID:16709576

  20. Physiological Responses of Beech and Sessile Oak in a Natural Mixed Stand During a Dry Summer

    PubMed Central

    RAFTOYANNIS, YANNIS; RADOGLOU, KALLIOPI

    2002-01-01

    Responses of CO2 assimilation and stomatal conductance to decreasing leaf water potential, and to environmental factors, were analysed in a mixed natural stand of sessile oak (Quercus petraea ssp. medwediewii) and beech (Fagus sylvatica L.) in Greece during the exceptionally dry summer of 1998. Seasonal courses of leaf water potential were similar for both species, whereas mean net photosynthesis and stomatal conductance were always higher in sessile oak than in beech. The relationship between net photosynthesis and stomatal conductance was strong for both species. Sessile oak had high rates of photosynthesis even under very low leaf water potentials and high air temperatures, whereas the photosynthetic rate of beech decreased at low water potentials. Diurnal patterns were similar in both species but sessile oak had higher rates of CO2 assimilation than beech. Our results indicate that sessile oak is more tolerant of drought than beech, due, in part, to its maintenance of photosynthesis at low water potential. PMID:12102528

  1. Axial and radial water flow in the trunks of oak trees: a quantitative and qualitative analysis.

    PubMed

    Granier, A; Anfodillo, T; Sabatti, M; Cochard, H; Dreyer, E; Tomasi, M; Valentini, R; Bréda, N

    1994-12-01

    Axial water flow in the trunks of mature oak trees (Quercus petraea (Matt.) Liebl. and Q. robur L.) was studied by four independent techniques: water absorption from a cut trunk, sap flowmeters, heat pulse velocity (HPV) and thermoimaging. Estimation of the total water flow with sap flowmeters, HPV and water absorption yielded comparable results. We concluded from dye colorations, thermograms and axial profiles of sap flow and heat pulse velocity that, in intact trunks, most of the flow occurred in the current-year ring, where early-wood vessels in the outermost ring were still functional. Nevertheless, there was significant flow in the older rings of the xylem. Total water flow through the trunk was only slightly reduced when air embolisms were artificially induced in early-wood vessels, probably because there was little change in hydraulic conductance in the root-leaf sap pathway. Embolization of the current-year vessels reactivated transport in the older rings.

  2. Effects of moisture and nitrogen stress on gas exchange and nutrient resorption in Quercus rubra seedlings

    Treesearch

    K. Francis Salifu; Douglass F. Jacobs

    2008-01-01

    The effects of simulated soil fertility at three levels (poor, medium, and rich soils) and moisture stress at two levels (well watered versus moisture stressed) on gas exchange and foliar nutrient resorption in 1+0 bareroot northern red oak (Quercus rubra) seedlings were evaluated. Current nitrogen (N) uptake was labeled with the stable isotope

  3. Patterns in root traits of woody species hosting arbuscular and ectomycorrhizas: implications for the evolution of belowground strategies.

    PubMed

    Comas, Louise H; Callahan, Hilary S; Midford, Peter E

    2014-08-01

    Root traits vary enormously among plant species but we have little understanding of how this variation affects their functioning. Of central interest is how root traits are related to plant resource acquisition strategies from soil. We examined root traits of 33 woody species from northeastern US forests that form two of the most common types of mutualisms with fungi, arbuscular mycorrhizas (AM) and ectomycorrhizas (EM). We examined root trait distribution with respect to plant phylogeny, quantifying the phylogenetic signal (K statistic) in fine root morphology and architecture, and used phylogenetically independent contrasts (PICs) to test whether taxa forming different mycorrhizal associations had different root traits. We found a pattern of species forming roots with thinner diameters as species diversified across time. Given moderate phylogenetic signals (K = 0.44-0.68), we used PICs to examine traits variation among taxa forming AM or EM, revealing that hosts of AM were associated with lower branching intensity (r PIC = -0.77) and thicker root diameter (r PIC = -0.41). Because EM evolved relatively more recently and intermittently across plant phylogenies, significant differences in root traits and colonization between plants forming AM and EM imply linkages between the evolution of these biotic interactions and root traits and suggest a history of selection pressures, with trade-offs for supporting different types of associations. Finally, across plant hosts of both EM and AM, species with thinner root diameters and longer specific root length (SRL) had less colonization (r PIC = 0.85, -0.87), suggesting constraints on colonization linked to the evolution of root morphology.

  4. Comparative of Quercus spp. and Salix spp. for phytoremediation of Pb/Zn mine tailings.

    PubMed

    Shi, Xiang; Wang, Shufeng; Sun, Haijing; Chen, Yitai; Wang, Dongxue; Pan, Hongwei; Zou, Yazhu; Liu, Jianfeng; Zheng, Linyu; Zhao, Xiulian; Jiang, Zeping

    2017-02-01

    A pot experiment was conducted to evaluate the feasibility of using tree seedlings for the phytoremediation of lead/zinc (Pb/Zn) mine tailings. Seedlings of three Quercus spp. (Q. shumardii, Q. phellos, and Q. virginiana) and rooted cuttings of two Salix spp. (S. matsudana and S. integra) were transplanted into pots containing 50 and 100 % Pb/Zn mine tailings to evaluate their tolerance of heavy metals. The five species showed different tolerance levels to the Pb/Zn tailings treatments. Q. virginiana was highly tolerant to heavy metals and grew normally in the Pb/Zn tailings. The root systems showed marked differences between the Quercus spp. and Salix spp., indicating that different mechanisms operated to confer tolerance of heavy metals. The maximum efficiency of photosystem II photochemistry value of the five species showed no differences among the treatments, except for Q. shumardii. All species showed low metal translocation factors (TFs). However, S. integra had significantly higher TF values for Zn (1.42-2.18) and cadmium (1.03-1.45) than did the other species. In this respect, Q. virginiana showed the highest tolerance and a low TF, implying that it is a candidate for phytostabilization of mine tailings in southern China. S. integra may be useful for phytoextraction of tailings in temperate regions.

  5. Draft genome sequence of Xylella fastidiosa supsp. multiplex strain Griffin-1 from Quercus rubra in Georgia

    USDA-ARS?s Scientific Manuscript database

    The draft genome sequence of Xylella fastidiosa subsp. multiplex Strain Griffin-1 isolated from a red oak tree (Quercus rubra) in Georgia, U.S.A. is reported. The bacterium has a genome size of 2,387,314 bp with 51.7% G+C content and comprises 2,903 predicted open reading frames (ORFs), and 50 RNA g...

  6. Size Class Distribution of Quercus engelmannii (Engelmann Oak) on the Santa Rosa Plateau, Riverside County, California

    Treesearch

    Earl W. Lathrop; Chris Osborne; Anna Rochester; Kevin Yeung; Samuel Soret; Rochelle Hopper

    1991-01-01

    Size class distribution of Quercus engelmannii (Engelmann oak) on the Santa Rosa Plateau was studied to understand whether current recruitment of young oaks is sufficient to maintain the population in spite of high natural mortality and impacts of development in some portions of the plateau woodland. Sapling-size oaks (1-10 cm dbh) made up 5.56 pct...

  7. Post-fire monitoring of coast live oaks (Quercus agrifolia) burned in the 1993 Old Topanga Fire

    Treesearch

    Rosi Dagit

    2002-01-01

    The intensity of the 1993 Old Topanga Fire raised many concerns about the recovery and response of the coast live oak trees (Quercus agrifolia) and their understory vegetation. Preliminary information on the status of the trees 6 months post-fire has been previously reported. This report provides follow up assessment of the condition of the 90 trees...

  8. Growth and biomass distribution of cherrybark oak (Quercus pagoda Raf.) seedlings as influenced by light availability

    Treesearch

    Emile S. Gardiner; John D. Hodges

    1998-01-01

    Cherrybark oak (Quercus pagoda Raf.) seedlings were established and raised in the field under four light levels (100 percent. 53 percent, 27 percent or 8 percent of full sunlight) to study the effects of light availability on their shoot growth, biomass accumulation. and biomass distribution. After two growing seasons, greatest stem growth was observed on seedlings...

  9. Comparative gas-exchange in leaves of intact and clipped, natural and planted cherybark oak (Quercus pagoda Raf.) seedlings

    Treesearch

    Brian R. Lockhart; John D. Hodges

    1994-01-01

    Gas-exchange measurements, including CO2-exchange rate (net photosynthesis), stomatal conductance, and transpiration, were conducted on intact and clipped cherrybark oak (Quercus pagoda Raf.) seedlings growing inthe field and in a nursery bed. Seedlings inthe field, released frommidstory and understory woody competition, showed...

  10. The effects of silvicultural thinning and Lymantria dispar L. defoliation on wood volume growth of Quercus spp.

    Treesearch

    Mary Ann Fajvan; Kurt W. Gottschalk

    2012-01-01

    Pre- and post-defoliation radial growth rates were used to examine the effects of silvicultural thinning and two consecutive years of gypsy moth (Lymantria dispar L.) defoliation on Quercus spp. wood volume production. In the first phase of the study, tree rings from 65 dissected stems, were used to develop polynomial models to...

  11. Distribution of Quercus agrifolia mycorrhizae deep within weathered bedrock: a potential mechanism for transport of stored water

    Treesearch

    M. Bornyasz; R. Graham; M. Allen

    2002-01-01

    In southwestern California, Quercus agrifolia distribution closely matches regions of granitic regolith. High annual evapotranspiration demand and inherent shallow soil conditions lead to a dependence on a deep rooting system and an ability to access water from deep within the regolith. Most of the plant available water in weathered granitic rock is...

  12. Influence of winter-spring livestock grazing on survival and growth of Quercus lobata and Q. agrifolia seedlings

    Treesearch

    Claudia M. Tyler; Bruce E. Mahall; Frank W. Davis

    2008-01-01

    The relative importance of livestock grazing in limiting or enhancing oak recruitment remains unclear because results from previous studies have been contradictory. In Santa Barbara County, we have replicated large-scale planting experiments from 1997 to 2001 to determine the effects of cattle and other factors on seedling establishment of valley oak (Quercus...

  13. Historical jigsaw puzzles: piecing together the understory of Garry Oak (Quercus garryana) ecosystems and the implications for restoration

    Treesearch

    Carrina Maslovat

    2002-01-01

    Ecosystem restoration requires a set of reference vegetation conditions which are difficult to find for Garry oak (Quercus garryana) ecosystems in Canada because contemporary sites have been drastically altered. A survey of historical information provides only limited clues about the original understory vegetation. Although there is considerable...

  14. Potential effects of sudden oak death on small mammals and herpetofauna in coast live oak (Quercus agrifolia woodlands

    Treesearch

    Douglas J. Tempel; William D. Tietje

    2006-01-01

    Within San Luis Obispo County, California, coast live oak (Quercus agrifolia) woodlands provide important habitat for many wildlife species (see Tietje and others, this volume). Unfortunately, many of these woodlands are at high risk of sudden oak death (SOD) infection should the pathogen (Phytophthora ramorum) become established...

  15. Comparative gas-exchange in leaves of intact and clipped, natural and planted cherrybark oak (Quercus pagoda Raf.) seedlings

    Treesearch

    Brian R. Lockhart; John D. Hodges

    2005-01-01

    Gas-exchange measurements, including C022-exchange rate (net photosynthesis), stomatal conductance, and transpiration, were conducted on intact and clipped cherrybark oak (Quercus pagoda Raf.) seedlings growing in the field and in a nursery bed. Seedlings in the field, released from midstory and understory woody competition,...

  16. Pyrosequencing of the northern red oak (Quercus rubra L.) chloroplast genome reveals high quality polymorphisms for population management

    Treesearch

    Lisa W. Alexander; Keith E. Woeste

    2014-01-01

    Given the low intraspecific chloroplast diversity detected in northern red oak (Quercus rubra L.), more powerful genetic tools are necessary to accurately characterize Q. rubra chloroplast diversity and structure. We report the sequencing, assembly, and annotation of the chloroplast genome of northern red oak via pyrosequencing and...

  17. Evidence of the photosynthetic origin of monoterpenes emitted by quercus ilex L. leaves by {sup 13}C labeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Loreto, F.; Ciccioli, P.; Cecinato, A.

    1996-04-01

    The carbon of the four main monoterpenes emitted by Quercus ilex L. leaves was completely labeled with {sup 13}C after a 20-min feeding with 99% {sup 13}CO{sub 2}. This labeling time course is comparable with the labeling time course of isoprene, the terpenoid emitted by other Quercus species and synthesized in leaf chloroplasts. It is also comparable with that of phosphoglyceric acid. Our experiment therefore provides evidence that monoterpenes emitted by Q. ilex are formed photosynthesis intermediates and may share the same synthetic pathway with isoprene. By analyzing the rate and the distribution of labeling in the different fragments, wemore » looked for evidence of differential carbon labeling in the {alpha}-pinene emitted. However, the labeling pattern was quite uniform in the different fragments, suggesting that the carbon skeleton of the emitted monoterpenes comes from a unique carbon source. 16 refs., 3 figs., 1 tab.« less

  18. Tree ring-based reconstruction of annual precipitation in the South-Central United State from 1750 to 1980. [Quercus stellata; Quercus alba

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blasing, T.J.; Stahle, D.W.; Duvick, D.N.

    1988-01-01

    A 231-year reconstruction of annual precipitation, from 1750 through 1980 A.D., was developed from 10 tree ring chronologies (9 post oak, Quercus stellata, and 1 white oak, Q. alba, series) in the south-central United States. Straight line regression was used to calibrate regionally averaged precipitation with ring width data, and the derived reconstruction was verified with independent climatic data and historical evidence. A variance trend in the tree ring data, which may have resulted from nonclimatic factors, was removed. The reconstructed precipitation series indicates that (1) a drought which appears to have been more severe than any in the instrumentalmore » record occurred about 1860 and (2) severe and prolonged droughts comparable to twentieth century events have occurred at roughly 15- to 25-years intervals throughout the past 231 years. It follows that serious droughts in the south-central United States could be expected to recur even in the absence of projected CO/sub 2/-induced warming.« less

  19. Influence of Soil Type and Drainage on Growth of Swamp Chestnut Oak (Quercus Michauxii Nutt.) Seedlings

    Treesearch

    Donald D. Hook

    1969-01-01

    Swamp chestnut oak (Quercus michauxii Nutt.) seedlings were grown for 2 years in five soil types in drained and undrained pots. First-year height growth was related to soil type and pot drainage, but second-year height growth was related only to soil type. Results suggest that swamp chestnut oak is site-sensitive. But slow growth, a maximum of 2...

  20. The influence of cultural treatments of the long-term survival and growth of planted Quercus rubra

    Treesearch

    James J. Zaczek; Kim C. Steiner

    2011-01-01

    A northern red oak (Quercus rubra L.) plantation testing 20 nursery stock and planting methods was used to evaluate treatments 3, 6, 10, and 17 years after planting. Survival over all treatments was 92 percent at age 3 and declined to 74 percent, 56 percent, and 39 percent at ages 6, 10, and 17, respectively. At age 17, survival was highest for...

  1. Foliage response of young central European oaks to air warming, drought and soil type.

    PubMed

    Günthardt-Goerg, M S; Kuster, T M; Arend, M; Vollenweider, P

    2013-01-01

    Three Central European oak species, with four provenances each, were experimentally tested in 16 large model ecosystem chambers for their response to passive air warming (AW, ambient +1-2 °C), drought (D, -43 to -60% irrigation) and their combination (AWD) for 3 years on two forest soil types of pH 4 or 7. Throughout the entire experiment, the influence of the different ambient and experimental climates on the oak trees was strong. The morphological traits of the Quercus species were affected in opposing ways in AW and D treatments, with a neutral effect in the AWD treatment. Biochemical parameters and LMA showed low relative plasticity compared to the morphological and growth parameters. The high plasticity in physiologically important parameters of the three species, such as number of intercalary veins or leaf size, indicated good drought acclimation properties. The soil type influenced leaf chlorophyll concentration, C/N and area more than drought, whereas foliage mass was more dependent on drought than on soil type. Through comparison of visible symptom development with the water deficits, a drought tolerance threshold of -1.3 MPa was determined. Although Q. pubescens had xeromorphic leaf characteristics (small leaf size, lower leaf water content, high LMA, pilosity, more chlorophyll, higher C/N) and less response to the treatments than Q. petraea and Q. robur, it suffered more leaf drought injury and shedding of leaves than Q. petraea. However, if foliage mass were used as the criterion for sustainable performance under a future climate, Q. robur would be the most appropriate species. © 2012 German Botanical Society and The Royal Botanical Society of the Netherlands.

  2. Effect of simulated insect damage on growth and survival of northern red oak (Quercus rubra L.) seedlings

    Treesearch

    Susan L. Wright; Richard W. Hall; John W. Peacock

    1989-01-01

    Effects of simulated insect damage—artificial defoliation and root damage in combination with two levels of watering—were studied to determine the potential effect on northern red oak seedlings (Quercus rubra L.). Treatments and treatment combinations caused significant differences in stem diameter, percentage of stem dieback, and mortality....

  3. Coast live oak, Quercus agrifolia, susceptibility and response to goldspotted oak borer, Agrilus auroguttatus, injury in southern California

    Treesearch

    Tom W. Coleman; Nancy E. Grulke; Miles Daly; Cesar Godinez; Susan L. Schilling; Philip J. Riggan; Steven J. Seybold

    2011-01-01

    Oak mortality is often associated with a complex of decline factors. We describe the morphological and physiological responses of coast live oak, Quercus agrifolia Née, in California to an invasive insect, the goldspotted oak borer (GSOB), Agrilus auroguttatus Schaeffer (Coleoptera: Buprestidae), and evaluate drought as a...

  4. Photosynthesis and water relations of the mistletoe, Phoradendron villosum, and its host, the California valley oak, Quercus lobata

    Treesearch

    David Y. Hollinger

    1983-01-01

    Water vapor and CO2 exchange characteristics were studied in Phoradendron villosum, a hemiparasitic mistletoe and its host, Quercus lobata. The hemiparasite had stomatal conductances equal to or higher than the host but a much lower capacity to fix carbon. Respiration was high in the mistletoe relative to...

  5. Antioxidant activity of oak (Quercus) leaves infusions against free radicals and their cardioprotective potential.

    PubMed

    Rivas-Arreola, M J; Rocha-Guzmán, N E; Gallegos-Infante, J A; González-Laredo, R F; Rosales-Castro, M; Bacon, J R; Cao, Rong; Proulx, A; Intriago-Ortega, P

    2010-06-01

    The aim of present study was to evaluate antioxidant capacity and cardioprotective potential of leaves infusions and partially purified fractions of Quercus sideroxyla and Q. eduardii (red oaks) and Q. resinosa (white oak). Consumption of polyphenol-rich beverages derived from plants, such as oak may represent a beneficial diet in terms of cardiovascular protection. Infusions from Oak leaves were obtained and probed for total phenolics by Folin-Ciocalteu, DPPH and hydroxyl radicals scavenging by DPPH test and Deoxy-D-ribose method, the antioxidant capacity was evaluated by FRAP and ORAC tests, inhibitions of Low Density Lipoproteins (LDL) oxidation and Angiotensin Converting Enzyme (ACE) activity were measured. A HPLC analysis was performed by HPLC-MS. Bioactive polyphenols such as gallic and ellagic acids, catechin, quercetin and derivatives: naringenin and naringin were detected in Quercus infusions. A distinctive HPLC profile was observed among the red and white oak samples. Q. resinosa infusions have exhibited the highest antioxidant activity in comparison with the other species, although in the inhibition of LDL oxidation no differences were observed. In the inhibition of the ACE, Q. resinosa was more effective (IC50, 18 ppm) than Q. sideroxyla, showing same effect as the control Captopril. From the results it is possible to postulate that not only chelating activity is important in these infusions, especially in Q. resinosa.

  6. Patterns in root traits of woody species hosting arbuscular and ectomycorrhizas: implications for the evolution of belowground strategies

    PubMed Central

    Comas, Louise H; Callahan, Hilary S; Midford, Peter E

    2014-01-01

    Root traits vary enormously among plant species but we have little understanding of how this variation affects their functioning. Of central interest is how root traits are related to plant resource acquisition strategies from soil. We examined root traits of 33 woody species from northeastern US forests that form two of the most common types of mutualisms with fungi, arbuscular mycorrhizas (AM) and ectomycorrhizas (EM). We examined root trait distribution with respect to plant phylogeny, quantifying the phylogenetic signal (K statistic) in fine root morphology and architecture, and used phylogenetically independent contrasts (PICs) to test whether taxa forming different mycorrhizal associations had different root traits. We found a pattern of species forming roots with thinner diameters as species diversified across time. Given moderate phylogenetic signals (K = 0.44–0.68), we used PICs to examine traits variation among taxa forming AM or EM, revealing that hosts of AM were associated with lower branching intensity (rPIC = −0.77) and thicker root diameter (rPIC = −0.41). Because EM evolved relatively more recently and intermittently across plant phylogenies, significant differences in root traits and colonization between plants forming AM and EM imply linkages between the evolution of these biotic interactions and root traits and suggest a history of selection pressures, with trade-offs for supporting different types of associations. Finally, across plant hosts of both EM and AM, species with thinner root diameters and longer specific root length (SRL) had less colonization (rPIC = 0.85, −0.87), suggesting constraints on colonization linked to the evolution of root morphology. PMID:25247056

  7. Effects of above- and below-ground competition from shrubs on photosynthesis, transpiration and growth in Quercus robur L

    Treesearch

    Anna M. Jensen; Magnus Lof; Emile S. Gardiner

    2011-01-01

    For a tree seedling to successfully establish in dense shrubbery, it must maintain function under heterogeneous resource availability. We evaluated leaf-level acclimation in photosynthetic capacity, seedling-level transpiration, and seedling morphology and growth to gain an understanding of the effects of above- and below-ground competition on Quercus robur seedlings....

  8. Tissue Culture as a Source of Replicates in Nonmodel Plants: Variation in Cold Response in Arabidopsis lyrata ssp. petraea.

    PubMed

    Kenta, Tanaka; Edwards, Jessica E M; Butlin, Roger K; Burke, Terry; Quick, W Paul; Urwin, Peter; Davey, Matthew P

    2016-12-07

    While genotype-environment interaction is increasingly receiving attention by ecologists and evolutionary biologists, such studies need genetically homogeneous replicates-a challenging hurdle in outcrossing plants. This could be potentially overcome by using tissue culture techniques. However, plants regenerated from tissue culture may show aberrant phenotypes and "somaclonal" variation. Here, we examined somaclonal variation due to tissue culturing using the response to cold treatment of photosynthetic efficiency (chlorophyll fluorescence measurements for F v /F m , F v '/F m ', and Φ PSII , representing maximum efficiency of photosynthesis for dark- and light-adapted leaves, and the actual electron transport operating efficiency, respectively, which are reliable indicators of photoinhibition and damage to the photosynthetic electron transport system). We compared this to variation among half-sibling seedlings from three different families of Arabidopsis lyrata ssp. petraea Somaclonal variation was limited, and we could detect within-family variation in change in chlorophyll fluorescence due to cold shock successfully with the help of tissue-culture derived replicates. Icelandic and Norwegian families exhibited higher chlorophyll fluorescence, suggesting higher performance after cold shock, than a Swedish family. Although the main effect of tissue culture on F v /F m , F v '/F m ', and Φ PSII was small, there were significant interactions between tissue culture and family, suggesting that the effect of tissue culture is genotype-specific. Tissue-cultured plantlets were less affected by cold treatment than seedlings, but to a different extent in each family. These interactive effects, however, were comparable to, or much smaller than the single effect of family. These results suggest that tissue culture is a useful method for obtaining genetically homogenous replicates for studying genotype-environment interaction related to adaptively-relevant phenotypes, such

  9. Relationship between fine-root exudation and respiration of two Quercus species in a Japanese temperate forest.

    PubMed

    Sun, Lijuan; Ataka, Mioko; Kominami, Yuji; Yoshimura, Kenichi

    2017-08-01

    Plants allocate a considerable amount of carbon (C) to fine roots as respiration and exudation. Fine-root exudation could stimulate microbial activity, which further contributes to soil heterotrophic respiration. Although both root respiration and exudation are important components of belowground C cycling, how they relate to each other is less well known. In this study, we aimed to explore this relationship on mature trees growing in the field. The measurements were performed on two canopy species, Quercus serrata Thunb. and Quercus glauca, in a warm temperate forest. The respiration and exudation rates of the same fine-root segment were measured in parallel with a syringe-basis incubation and a closed static chamber, respectively. We also measured root traits and ectomycorrhizal colonization ratio because these indexes commonly relate to root respiration and reflect root physiology. The microbial activity enhanced by root exudation was investigated by comparing the dissolved organic carbon (DOC) and microbial biomass carbon (MBC) between rhizosphere soils and bulk soils. Mean DOC concentration and MBC were ca two times higher in the rhizosphere soils and positively related to exudation rates, indicating that exudation further relates to the C dynamics in the soils. Flux rates of exudation and respiration were positively correlated with each other. Both root exudation and respiration rates positively related to ectomycorrhizal colonization and root tissue nitrogen, and therefore the relationship between the two fluxes may be attributed to fine-root activity. The flux rates of root respiration were 8.7 and 10.5 times as much as those of exudation on a root-length basis and a root-weight basis, respectively. In spite of the fact that flux rates of respiration and exudation varied enormously among the fine-root segments of the two Quercus species, exudation was in proportion to respiration. This result gives new insight into the fine-root C-allocation strategy and

  10. Interactive effects of O3 exposure on California black oak (Quercus kelloggii Newb.) seedlings with and without N amendment

    Treesearch

    T. Handley; Nancy Grulke

    2008-01-01

    We examined the short-term separate and combined effects of simulated nitrogen (N) deposition (fertilization) and ozone (O3) exposure on California black oak seedlings (Quercus kelloggii Newb.), an ecologically important tree of the San Bernardino Mountains downwind of Los Angeles. Realistic concentrations of O3...

  11. Recalcitrant Behavior of Cherrybark Oak Seed: An FT-IR Study of Desiccation Sensitivity in Quercus pagoda Raf. Acorns

    Treesearch

    Sharon Sowa; Kristina F. Connor

    2003-01-01

    The recalcitrant behavior of cherrybark oak (Quercus pagoda Raf.) acorns was examined in terms of effects of moisture content on seed storage longevity and (short term) seed germination. Seed samples collected over two consecutive years were fully hydrated, then subjected to drying under ambient conditions of temperature and relative humidity on the...

  12. Composition, structure, and dendroecology of an old-growth Quercus forest on the tablelands of the Cumberland Plateau, USA.

    Treesearch

    Justin L. Hart; Stacy L. Clark; Scott J. Torreano; Megan L. Buchanan

    2011-01-01

    Forest reconstructions provide information on the processes that influence forest development and successional patterns. In this study, we quantified woody species composition, stand structure, and radial growth patterns of individual Quercus trees to document the processes that shaped a forest on the Cumberland Plateau in Tennessee over the past three centuries. The...

  13. Establishing a range-wide provenance test in valley oak (Quercus lobata Née) at two California sites

    Treesearch

    Annette Delfino-Mix; Jessica W. Wright; Paul F. Gugger; Christina Liang; Victoria L. Sork

    2015-01-01

    We present the methods used to establish a provenance test in valley oak, Quercus lobata. Nearly 11,000 acorns were planted and 88 percent of those germinated. The resulting seedlings were measured after 1 and 2 years of growth, and were outplanted in the field in the winter of 2014-2015. This test represents a long-term resource for both research...

  14. Shade, leaf growth, and crown development of Quercus rubra, Q. velutina, Prunus serotina, and Acer rubrum seedlings

    Treesearch

    Kurt W. Gottschalk

    1994-01-01

    The study was conducted in an open field to detennine the optimum irradiance for establishment and growth of two oak species and two major associated woody species. Half-sib seedlings of black cherry (Prunus serotina Ehrh.), red maple (Acer rubrum L.), northern red oak (Quercus rubra L.) and black oak (Q. velutina Lam.) were grown for two years under shade-clotht...

  15. To prune or not to prune: responses of coast live oaks (Quercus agrifolia to canopy retention during transplanting

    Treesearch

    Rosi Dagit; A. James Downer

    2002-01-01

    A total of 62 coast live oaks (Quercus agrifolia) were monitored since they were initially boxed for transplantation in 1993. At that time, only branches injured during the moving process and deadwood were removed, leaving the entire canopy intact. This was a departure from the usual transplanting methodology that traditionally removes up to 70...

  16. Previously unrecorded damage to oak, Quercus spp., in southern California by the goldspotted oak borer, Agrilus coxalis Waterhouse (Coleoptera: Buprestidae)

    Treesearch

    Tom W. Coleman; Steven Seybold

    2008-01-01

    A new and potentially devastating pest of oaks, Quercus spp., has been discovered in southern California. The goldspotted oak borer, Agrilus coxalis Waterhouse (Coleoptera: Buprestidae), colonizes the sapwood surface and phloem of the main stem and larger branches of at least three species of...

  17. Midstory shelterwood to promote natural Quercus reproduction on the Mid-Cumberland Plateau, Alabama: Status four years after final harvest

    Treesearch

    Callie J. Schweitzer; Daniel C. Dey

    2017-01-01

    In 2001, we initiated a study in Jackson County, AL, to examine shelterwood prescriptions in mixed mesophytic upland hardwood forests located on the escarpment of the mid-Cumberland Plateau. We were particularly interested in testing a shelterwood method that was successfully applied in other upland hardwood systems to recruit Quercus into...

  18. Photosynthesis and xanthophyll cycle-mediated photoprotection in leaves of Quercus rubra and Q. alba seedlings of different light environments

    Treesearch

    Shi-Jean S. Sung; Dianpeng Xu; Paul P. Kormanik; Clanton C. Black

    1997-01-01

    Two and three years after the outplanting of 1-0 northern red oak (Quercus rubra, NRO) and white oak (Q. alba, WO) nursery stocks, the highest net photosynthetic rates (Amax) were observed from seedlings growing on a clearcut site, followed by those under a pine stand. Both NRO and WO...

  19. Progress report on the evaluation of the susceptibility of the holm oak (Quercus ilex) forest ecosystem to Phytophthora ramorum

    Treesearch

    Eduardo Moralejo; Enrique Descals

    2006-01-01

    In preliminary studies on the susceptibility of plant members of the holm oak (Quercus ilex) forest, detached leaves of several woody species were highly susceptible when inoculated with zoospore suspensions of local isolates of Phytophthora ramorum (Moralejo and Hernández 2002). Since then, there have been reports of natural...

  20. Root desiccation and drought stress responses of bareroot Quercus rubra seedlings treated with a hydrophilic polymer root dip

    Treesearch

    Kent G. Apostol; Douglass F. Jacobs; R. Kasten Dumroese

    2009-01-01

    Root hydrogel, a hydrophilic polymer, has been used to improve transplanting success of bareroot conifer seedlings through effects on water holding capacity. We examined mechanisms by which Terra-sorb Fine Hydrogel reduces damage that occurs when roots of 1-year old, dormant northern red oak (Quercus rubra L.) were subjected to shortterm (1, 3, and 5...

  1. Historical Mortality of Valley Oak (Quercus lobata, Nee) in the Santa Ynez Valley, Santa Barbara County, 1938-1989

    Treesearch

    Rodney W. Brown; Frank W. Davis

    1991-01-01

    The range and abundance of valley oak (Quercus lobata, Nee) have steadily decreased in the last 100 years due to low rates of regeneration during this period. Documented low rates of sapling recruitment must be compared to adult mortality rates in order to evaluate the severity of this decline. The purpose of this research is to measure and analyze...

  2. Container volume and subirrigation schedule influence Quercus variabilis seedling growth and nutrient status in the nursery and field

    Treesearch

    Qiaoyu Sun; R. Kasten Dumroese; Yong Liu

    2018-01-01

    Container volume and irrigation management affect seedling growth in the nursery and field. We evaluated the effects of container volumes (D40, 656 ml; D60, 983 ml) and subirrigation schedules (85%, 75%, 65%, and 55% of 100% total substrate moisture content, TSMC) on seedling growth in a greenhouse and outplanting performance of Chinese cork oak (Quercus variabilis...

  3. Species Boundaries Between Three Sympatric Oak Species: Quercus aliena, Q. dentata, and Q. variabilis at the Northern Edge of Their Distribution in China.

    PubMed

    Lyu, Jia; Song, Jia; Liu, Yuan; Wang, Yuyao; Li, Junqing; Du, Fang K

    2018-01-01

    Oaks are important timber trees with wide distributions in China, but few genetic studies have been conducted on a fine scale. In this study, we seek to investigate the genetic diversity and differentiation of three sympatric oak species ( Quercus aliena Blume, Quercus dentata Thunb. ex Murray, and Quercus variabilis Blume) in their northern distribution in China using 17 bi-parentally inherited nSSRs markers and five maternally inherited chloroplast DNA (cpDNA) fragments. Both the cpDNA and the nSSRs show a high level of genetic differentiation between different oak sections. The chloroplast haplotypes are clustered into two lineages. Clear species boundaries are detected between Q. variabilis and either Q. aliena or Q. dentata . The sharing of chloroplast haplotype H1 between Q. aliena and Q. dentata suggests very recent speciation and incomplete lineage sorting or introgression of H1 from one species to another. The nSSRs data indicate a complete fixation of variation within sites for all three oak species, and that extensive gene flow occurs within species whereas only limited gene flow is detected between Q. aliena and Q. dentata and nearly no gene flow can be detected between Q. aliena and Q. variabilis and between Q. dentata and Q. variabilis . Prezygotic isolation may have contributed to the species boundaries of these three sympatric oak species.

  4. Species Boundaries Between Three Sympatric Oak Species: Quercus aliena, Q. dentata, and Q. variabilis at the Northern Edge of Their Distribution in China

    PubMed Central

    Lyu, Jia; Song, Jia; Liu, Yuan; Wang, Yuyao; Li, Junqing; Du, Fang K.

    2018-01-01

    Oaks are important timber trees with wide distributions in China, but few genetic studies have been conducted on a fine scale. In this study, we seek to investigate the genetic diversity and differentiation of three sympatric oak species (Quercus aliena Blume, Quercus dentata Thunb. ex Murray, and Quercus variabilis Blume) in their northern distribution in China using 17 bi-parentally inherited nSSRs markers and five maternally inherited chloroplast DNA (cpDNA) fragments. Both the cpDNA and the nSSRs show a high level of genetic differentiation between different oak sections. The chloroplast haplotypes are clustered into two lineages. Clear species boundaries are detected between Q. variabilis and either Q. aliena or Q. dentata. The sharing of chloroplast haplotype H1 between Q. aliena and Q. dentata suggests very recent speciation and incomplete lineage sorting or introgression of H1 from one species to another. The nSSRs data indicate a complete fixation of variation within sites for all three oak species, and that extensive gene flow occurs within species whereas only limited gene flow is detected between Q. aliena and Q. dentata and nearly no gene flow can be detected between Q. aliena and Q. variabilis and between Q. dentata and Q. variabilis. Prezygotic isolation may have contributed to the species boundaries of these three sympatric oak species. PMID:29662501

  5. The Geographic Distribution of a Tropical Montane Bird Is Limited by a Tree: Acorn Woodpeckers (Melanerpes formicivorus) and Colombian Oaks (Quercus humboldtii) in the Northern Andes

    PubMed Central

    2015-01-01

    Species distributions are limited by a complex array of abiotic and biotic factors. In general, abiotic (climatic) factors are thought to explain species’ broad geographic distributions, while biotic factors regulate species’ abundance patterns at local scales. We used species distribution models to test the hypothesis that a biotic interaction with a tree, the Colombian oak (Quercus humboldtii), limits the broad-scale distribution of the Acorn Woodpecker (Melanerpes formicivorus) in the Northern Andes of South America. North American populations of Acorn Woodpeckers consume acorns from Quercus oaks and are limited by the presence of Quercus oaks. However, Acorn Woodpeckers in the Northern Andes seldom consume Colombian oak acorns (though may regularly drink sap from oak trees) and have been observed at sites without Colombian oaks, the sole species of Quercus found in South America. We found that climate-only models overpredicted Acorn Woodpecker distribution, suggesting that suitable abiotic conditions (e.g. in northern Ecuador) exist beyond the woodpecker’s southern range margin. In contrast, models that incorporate Colombian oak presence outperformed climate-only models and more accurately predicted the location of the Acorn Woodpecker’s southern range margin in southern Colombia. These findings support the hypothesis that a biotic interaction with Colombian oaks sets Acorn Woodpecker’s broad-scale geographic limit in South America, probably because Acorn Woodpeckers rely on Colombian oaks as a food resource (possibly for the oak’s sap rather than for acorns). Although empirical examples of particular plants limiting tropical birds’ distributions are scarce, we predict that similar biotic interactions may play an important role in structuring the geographic distributions of many species of tropical montane birds with specialized foraging behavior. PMID:26083262

  6. Does habitat matter in an urbanized landscape? The birds of the Garry oak (Quercus garryana) ecosystem of southeastern Vancouver Island

    Treesearch

    Richard E. Feldman; Pamela G. Krannitz

    2002-01-01

    Garry oak (Quercus garryana) was once a dominant habitat type on southeastern Vancouver Island, British Columbia but urbanization has severely fragmented and reduced its occurrence. This study tests whether bird abundance in remnant patches of Garry oak and adjacent Douglas-fir (Pseudotsuga menziesii) is related to Garry oak volume...

  7. Seasonal photosynthetic responses of European oaks to drought and elevated daytime temperature.

    PubMed

    Arend, M; Brem, A; Kuster, T M; Günthardt-Goerg, M S

    2013-01-01

    Oaks are commonly considered as drought- and heat-tolerant trees that might benefit from a warmer and drier climate. Their tolerance to drought has been frequently studied in the past, whereas studies dealing with elevated temperature or its combination with drought are very limited in number. In this study we investigated seasonal photosynthetic patterns in three European oak species (Quercus robur, Q. petraea, Q. pubescens) exposed in lysimeter-based open-top chambers (OTC) to elevated daytime temperature, drought and their combination. Stomatal and non-stomatal traits of photosynthesis were followed over an entire growing season and related to changes in daytime temperature, soil moisture and pre-dawn leaf water potential (Ψ(PD) ). Elevated daytime temperature enhanced net photosynthesis (P(N) ) in a season-dependent manner, with higher mid-summer rates than in controls exposed to ambient temperature. Drought imposed in early and mid-summer reduced the soil moisture content and caused a gradual decline in Ψ(PD) , stomatal conductance (g(S) ) and P(N) . Drought effects on Ψ(PD) and P(N) were exacerbated when drought was combined with elevated daytime temperature. In general, P(N) tended to be more affected by low soil moisture content or low Ψ(PD) in Q. robur than in Q. petraea and Q. pubescens. Non-stomatal limitations may have contributed to the drought-induced decline of P(N) in Q. robur, as indicated by a down-regulation of PSII photochemistry (F(V) /F(M) ) and decreased chlorophyll content. Taken together, our findings show that European oaks may benefit from elevated temperature, but detrimental effects can be expected when elevated temperature occurs simultaneously with drought. © 2012 German Botanical Society and The Royal Botanical Society of the Netherlands.

  8. Assessment of physicochemical and antioxidant characteristics of Quercus pyrenaica honeydew honeys.

    PubMed

    Shantal Rodríguez Flores, M; Escuredo, Olga; Carmen Seijo, M

    2015-01-01

    Consumers are exhibiting increasing interest in honeydew honey, principally due to its functional properties. Some plants can be sources of honeydew honey, but in north-western Spain, this honey type only comes from Quercus pyrenaica. In the present study, the melissopalynological and physicochemical characteristics and the antioxidant properties of 32 honeydew honey samples are described. Q. pyrenaica honeydew honey was defined by its colour, high pH, phenols and flavonoids. Multivariate statistical techniques were used to analyse the influence of the production year on the honey's physicochemical parameters and polyphenol content. Differences among the honey samples were found, showing that weather affected the physicochemical composition of the honey samples. Optimal conditions for oak growth favoured the production of honeydew honey. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Agrilus auroguttatus exit hole distributions on Quercus agrifolia boles and a sampling method to estimate their density on individual trees

    Treesearch

    Laurel J. Haavik; Tom W. Coleman; Mary Louise Flint; Robert C. Venette; Steven J. Seybold

    2012-01-01

    In recent decades, invasive phloem and wood borers have become important pests in North America. To aid tree sampling and survey efforts for the newly introduced goldspotted oak borer, Agrilus auroguttatus Schaeffer (Coleoptera: Buprestidae), we examined spatial patterns of exit holes on the boles (trunks) of 58 coast live oak, Quercus...

  10. Rooting stem cuttings of northern red oak (Quercus rubra L.) utilizing hedged stump sprouts formed on recently felled trees

    Treesearch

    Matthew H. Gocke; Daniel J. Robinson

    2010-01-01

    The ability to root stem cuttings collected from hedged stump sprouts formed on recently felled trees was evaluated for 26 codominant northern red oak (Quercus rubra L.) trees growing in Durham County, NC. Sprouting occurred, the same year as felling, on 23 of the 26 tree stumps and sprout number was significantly and positively correlated with stump diameter. The...

  11. Genetic differentiation of two California red oak species, Quercus parvula var. shreveii and Q. wislizeni, based on AFLP genetic markers

    Treesearch

    Nasser Kashani; Richard S. Dodd

    2002-01-01

    Oaks are renowned for posing problems in defining species boundaries. One example is the case of the interior live oak complex that is usually taken to include two varieties of Quercus wislizeni from the Coast Ranges of California and the Sierra Nevada, and Q. parvula var. shreveii from the central coast of...

  12. Performance of loblolly, Virginia, and shortleaf pine on a reclaimed surface mine as affected by Pisolithus tinctorius ectomycorrhizae and fertilization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walker, R.F.; West, D.C.; McLaughlin, S.B.

    1985-01-01

    The effects of an induced Pisolithus tinctorius infection and broadcast fertilization were studied on the survival and growth of loblolly (Pinus taeda), Virginia (Pinus virginiana), and shortleaf (Pinus echinata) pine outplanted on a reclaimed east Tennessee coal surface mine site. The study site had been previously regraded and hydroseeded with a mixture of ground cover species. After six years, the survival and growth of loblolly pine with P. tinctorius ectomycorrhizae were signficantly improved in comparison with control loblolly pine infected by other ectomycorrhizal symbionts. The response of the Virginia pine to the infection by P. tinctorius was negligible after fivemore » years. Fertilization at outplanting significantly reduced the survival of both loblolly and Virginia pine. Fertilization of the shortleaf pine at the start of the third growing season did not result in the drastic mortality exhibited by the loblolly pine, and to a lesser extent the Virginia pine, in response to fertilization at outplanting, but this treatment was still detrimental to the survival of the shortleaf pine after five years. There was a marginal improvement in the survival and growth of the shortleaf pine in response to the infection by P. tinctorius. The effect of fertilization on the growth of all three species was negligible, and the increase in mortality associated with this treatment appeared to be primarily the result of increased competition with the ground cover species. These results indicate that the magnitude of the response exhibited by pines on harsh sites to an ectomycorrhizal infection by P. tinctorius is species dependent. Also, broadcast fertilization is inefficient on surface-mined sites where a vegetative ground cover has been established. 11 refs., 3 tabs.« less

  13. The architecture of Norway spruce ectomycorrhizae: three-dimensional models of cortical cells, fungal biomass, and interface for potential nutrient exchange.

    PubMed

    Stögmann, Bernhard; Marth, Andreas; Pernfuß, Barbara; Pöder, Reinhold

    2013-08-01

    Gathering realistic data on actual fungal biomass in ectomycorrhized fine root systems is still a matter of concern. Thus far, observations on architecture of ectomycorrhizae (ECMs) have been limited to analyses of two-dimensional (2-D) images of tissue sections. This unavoidably causes stereometrical problems that lead to inadequate assumptions about actual size of cells and their arrangement within ECM's functional compartments. Based on extensive morphological investigations of field samples, we modeled the architectural components of an average-sized Norway spruce ECM. In addition to our comprehensive and detailed quantitative data on cell sizes, we studied actual shape and size, in vivo arrangement, and potential nutrient exchange area of plant cortical cells (CCs) using computer-aided three-dimensional (3-D) reconstructions based on semithin serial sections. We extrapolated a factual fungal biomass in ECMs (Hartig net (HN) included) of 1.71 t ha(-1) FW (0.36 t ha(-1) DW) for the top 5 cm of soil for an autochthonous, montane, optimum Norway spruce stand in the Tyrolean Alps. The corresponding potential nutrient exchange area in ECMs including main axes of ECM systems, which is defined as the sum of interfaces between plant CCs and the HN, amounts to at least 3.2 × 10(5) m(2) ha(-1). This is the first study that determines the contribution of the HN to the total fungal biomass in ECMs as well as the quantification of its contact area. Our results may stimulate future research on fungal below-ground processes and their impact on the global carbon cycle.

  14. Antibacterial activity of methanol extract of Ruta chalapensis (L), Quercus infectoria (Oliver) and Canthium parviflorum (Lam)

    PubMed Central

    Priya, P. Sathiya; Sasikumar, J.M.; Gowsigan, G.

    2009-01-01

    The present study aimed at evaluating the antibacterial activity of methanol extract of Ruta chalapensis, L., (Rutaceae), Quercus infectoria Oliver., (Fagaceae) and Canthium parviflorum Lam., (Rubiaceae) against Staphylococcus aureus, Pseudomonas aeruginosa, Enterococcus faecalis, Klebsiella oxytocoa, Klebsiella pneumoniae and Proteus mirabilis. The experiment was carried out using disc diffusion method. The results revealed that the methanol extract of aerial parts of Ruta chalepensis (L) presented the highest zone of inhibition against tested pathogens. Other plants showed significant zone of inhibition. PMID:22557348

  15. Effects of drought and shade on growth and water use of Quercus alba, Q. bicolor, Q. imbricaria and Q. palustris seedlings

    Treesearch

    Joseph J. McCarthy; Jeffrey O. Dawson

    1991-01-01

    Growth and water use efficiency were determined for 2-year-old white oak (Quercus alba), swamp white oak (Q. imbricaria) and pin oak (Q. palustris) seedlings grown under three shade treatments (30, 55 and 73%) and two irrigation regimes (container capacity and mild drought). With species and water regimes...

  16. Dry deposition of sulfate to Quercus rubra and Liriodendron tulipifera foliage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vandenberg, J.J.

    1987-01-01

    Estimates were made of the rate of dry deposition to red oak (Quercus rubra) and tulip poplar (Liriodendron tulipifera) foliage. In the laboratory, radioactive ammonium sulfate aerosols were generated in an exposure chamber. These aerosols were dry deposited onto leaves that were sequentially washed to examine the efficacy of washing procedures in removal of surface deposits. Over 90% of dry deposited sulfate was removed after a 30 second wash duration. Laboratory procedures also estimated the magnitude of foliar sulfur that leached into leaf wash solutions. The majority of laboratory leaves demonstrated no leaching of sulfur from the internal pool. However,more » some leaves showed significant sulfur leaching. It was concluded that leaching of internal sulfur was highly leaf specific. This indicated that each leaf used in field experiments needed to be individually examined for leaching.« less

  17. Influence of overstory density on ecophysiology of red oak (Quercus rubra) and sugar maple (Acer saccharum) seedlings in central Ontario shelterwoods

    Treesearch

    William C. Parker; Daniel C. Dey

    2008-01-01

    A field experiment was established in a secondgrowth hardwood forest dominated by red oak (Quercus rubra L.) to examine the effects of shelterwood overstory density on leaf gas exchange and seedling water status of planted red oak, naturally regenerated red oak and sugar maple (Acer saccharum Marsh.) seedlings during the first...

  18. Hydrologic effects on diameter growth phenology for Celtis laevigata and Quercus lyrata in the floodplain of the lower White River, Arkansas

    Treesearch

    Scott T. Allen; Ken W. Krauss; Richard F. Keim

    2016-01-01

    Bottomland hardwood (BLH) forests represent an extensive wetland system in the Mississippi Alluvial Valley and southeastern USA, and it is currently undergoing widespread transition in species composition. One such transition involves increased establishment of sugarberry (Celtis laevigata), and decreased establishment of overcup oak (Quercus lyrata). The ecological...

  19. Autumnal resorption and accretion of trace metals in gallery forest tree. [Quercus macrocarpa, Quercus muehlenbergii, Fraxinus pennsylvanica, Celtis occidentalis, and Ulmus rubra

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Killingbeck, K.T.

    1985-02-01

    Autumnal resorption and accretion of copper (Cu), iron (Fe), zinc (Zn), and manganese (Mn) were measured in the foliage of five gallery forest trees species on the Konza Prairie Research Natural Area. Presenescence and postabscission leaves from five trees each of Quercus macrocarpa, Q. muehlenbergii, Fraxinus pennsylvanica, Celtis occidentalis, and Ulmus rubra, were sampled. Three species resorbed 19, 25, and 26%, respectively, of their presenescence foliar Zn, and one species resorbed 35% of its presenescence foliar Fe. This validates the prediction made by others that Zn and Fe are withdrawn from the senescing foliage of at least some deciduous species.more » Net accretions of Cu (43, 44, 69%), Fe (36, 40%), and Mn (19, 57%) occurred during the same period. The two oak species were responsible for most of the resorption, while the three non-oak species accounted for all of the significant accretions. Such well-defined differences in element conservation may influence interspecific competition by accentuating, or compensating for, species differences in element uptake ability and element use efficiency. Demand:availability ratios proved useful in predicting the likelihood that a given element would be conserved through resorption.« less

  20. Characterizing water use strategies of Acer saccharum, Liriodendron tulipifera, and Quercus spp. during a severe drought

    NASA Astrophysics Data System (ADS)

    Yi, K.; Novick, K. A.; Dragoni, D.; Moore, W.; Roman, D. T.

    2014-12-01

    In many areas, drought is expected to occur more frequently and intensely in the future due to climate change; however, drought effects on ecosystem-scale fluxes in diverse forests will reflect the diversity of water use strategies among the dominant tree species. For three years (2011-2013) that included a severe drought event (in 2012), we measured the sap flow densities along the sapwood profiles (four radial depths: 1, 2, 3, 4 cm) in Acer saccharum, Liriodendron tulipifera, and Quercus spp. using the compensation heat pulse technique at the Morgan-Monroe State Forest (Indiana, USA). Sap flow velocity varies along the radial profile of the stem, and thus characterizing its pattern is important for estimating whole tree sap flow, and for characterizing the extent to which water stress alters the radial pattern of flow. We also focused on the nocturnal sap flow, which may be used to replenish stored water depleted during the daytime, in order to assess the extent to which the three species rely on hydraulic capacitance to cope with water stress. Sap flow densities along the sapwood profile of all three species tended to increase toward the cambium under moderate climate, while the tendency was reversed under severe drought. This shift may indicate greater reliance on stored water in the inner sapwood or cavitation of outer sapwood during the drought. It was also noticeable that Quercus spp. showed lower maximum sap flow density and narrower range (1.5 - 4.6 cm h-1) than other species (A. saccharum: 1.0 - 20.8 cm h-1, L. tulipifera: < 0.1 - 45.2 cm h-1) during 3 years of measurements. In addition, nocturnal/diurnal ratios of volumetric sap flows were significantly higher in the drought year for A. saccharum (0.140.01 in 2011 and 0.200.01 in 2013 vs. 0.290.01 in 2012) and L. tulipifera (0.140.00 in 2011 and 0.090.01 in 2013 vs. 0.300.01 in 2012), while Quercus spp. didn't show a significant difference between moderate and drought years. This may be due to the

  1. Mycorrhizal synthesis between Boletus edulis species complex and rockroses (Cistus sp.).

    PubMed

    Águeda, Beatriz; Parladé, Javier; Fernández-Toirán, Luz Marina; Cisneros, Óscar; de Miguel, Ana María; Modrego, María Pilar; Martínez-Peña, Fernando; Pera, Joan

    2008-10-01

    Ectomycorrhizas of Boletus aereus, Boletus edulis, and Boletus reticulatus were synthesized with Cistus sp. under laboratory conditions using synthesis tubes filled with a mixture of sterilized peat-vermiculite and nutrient solution. The fungal strains isolated from sporocarps were identified by molecular techniques. The inoculated seedlings were grown for 4-5 months. The ectomycorrhizas formed were described based on standard morphological and anatomical characters. The three ectomycorrhizas described were very similar, with white monopodial-pinnate morphology, a three-layered plectenchymatous mantle on plan view and boletoid rhizomorphs.

  2. Evaluation of Analgesic Activity of the Methanol Extract from the Galls of Quercus infectoria (Olivier) in Rats

    PubMed Central

    Ali, Noraisah Akbar

    2014-01-01

    The present study aims to investigate the analgesic activity of the methanol extract of the galls of Quercus infectoria in rats using hot plate and tail-flick methods. The extract was administered intraperitoneally at a dose of 20 mg/kg while morphine sulfate and sodium salicylate (10 mg/kg) served as standards. The methanol extract exhibited significant analgesic activity in the tail-flick model (P < 0.05) by increasing the reaction time of the rats to 8.0 sec at 30 min after treatment in comparison to control (4.4 sec). Morphine sulfate produced a reaction time of 11.9 sec in the same test. At the peak of activity (30 min), the extract produced maximum possible analgesia (MPA) of 34.2%, whilst morphine sulfate achieved a peak MPA of 70.9%. No analgesic effects have been observed using sodium salicylate in the tail-flick model. In the same model, the extract and sodium salicylate demonstrated comparable reaction times. Tail-flick is a better method to evaluate analgesic activity as no significant results were observed for all treatments using hot plate with the exception of morphine sulfate, which showed significant results only at 45 and 60 min after treatment. In conclusion, the methanol extract of the galls of Quercus infectoria displayed analgesic activity. PMID:25254062

  3. Reduced translocation of current photosynthate precedes changes in gas exchange for Quercus rubra seedlings under flooding stress.

    PubMed

    Sloan, Joshua L; Islam, M Anisul; Jacobs, Douglass F

    2016-01-01

    Northern red oak (Quercus rubra L.) seedlings are frequently planted on suboptimal sites in their native range in North America, subjecting them to environmental stresses, such as flooding, for which they may not be well adapted. Members of the genus Quercus exhibit a wide range of responses to flooding, and responses of northern red oak to flooding remain inadequately described. To better understand the physiological effects of root system inundation in post-transplant northern red oak seedlings and the effects of flooding on endogenous patterns of resource allocation within the plant, we observed the effects of short-term flooding initiated at the linear shoot growth stage on net photosynthetic rates, dark respiration, chlorophyll fluorescence (Fv/Fm) and translocation of (13)C-labeled current photosynthate. Downward translocation of current photosynthate declined after 4 days of flooding and was the first measured physiological response to flooding; net photosynthetic rates decreased and dark respiration rates increased after 7 days of flooding. Short-term flooding did not affect maximal potential efficiency of photosystem II (Fv/Fm). The finding that decreased downward translocation of (13)C-labeled current photosynthate preceded reduced net photosynthesis and increased dark respiration during flooding suggests the occurrence of sink-limited photosynthesis under these conditions. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  4. Chemical composition of barks from Quercus faginea trees and characterization of their lipophilic and polar extracts.

    PubMed

    Ferreira, Joana P A; Miranda, Isabel; Sousa, Vicelina B; Pereira, Helena

    2018-01-01

    The bark from Quercus faginea mature trees from two sites was chemically characterized for the first time. The barks showed the following composition: ash 14.6%, total extractives 13.2%, suberin 2.9% and lignin 28.2%. The polysaccharides were composed mainly of glucose and xylose (50.3% and 35.1% of all monosaccharides respectively) with 4.8% of uronic acids. The suberin composition was: ω-hydroxyacids 46.3% of total compounds, ɑ,ω-alkanoic diacids 22.3%, alkanoic acids 5.9%, alkanols 6.7% and aromatics 6.9% (ferulic acid 4.0%). Polar extracts (ethanol-water) had a high phenolic content of 630.3 mg of gallic acid equivalents (GAE)/g of extract, condensed tannins 220.7 mg of catechin equivalents (CE)/g extract, and flavonoids 207.7 mg CE/g of extract. The antioxidant activity was very high corresponding to 1567 mg Trolox equivalents/g of extract, and an IC50 of 2.63 μg extract/ml. The lipophilic extracts were constituted mainly by glycerol and its derivatives (12.3% of all compounds), alkanoic acids (27.8%), sterols (11.5%) and triterpenes (17.8%). In view of an integrated valorization, Quercus faginea barks are interesting sources of polar compounds including phenols and polyphenols with possible interesting bioactivities, while the sterols and triterpenes contained in the lipophilic extracts are also valuable bioactive compounds or chemical intermediates for specific high-value market niches, such as cosmetics, pharmaceuticals and biomedicine.

  5. Chemical composition of barks from Quercus faginea trees and characterization of their lipophilic and polar extracts

    PubMed Central

    2018-01-01

    The bark from Quercus faginea mature trees from two sites was chemically characterized for the first time. The barks showed the following composition: ash 14.6%, total extractives 13.2%, suberin 2.9% and lignin 28.2%. The polysaccharides were composed mainly of glucose and xylose (50.3% and 35.1% of all monosaccharides respectively) with 4.8% of uronic acids. The suberin composition was: ω-hydroxyacids 46.3% of total compounds, ɑ,ω-alkanoic diacids 22.3%, alkanoic acids 5.9%, alkanols 6.7% and aromatics 6.9% (ferulic acid 4.0%). Polar extracts (ethanol-water) had a high phenolic content of 630.3 mg of gallic acid equivalents (GAE)/g of extract, condensed tannins 220.7 mg of catechin equivalents (CE)/g extract, and flavonoids 207.7 mg CE/g of extract. The antioxidant activity was very high corresponding to 1567 mg Trolox equivalents/g of extract, and an IC50 of 2.63 μg extract/ml. The lipophilic extracts were constituted mainly by glycerol and its derivatives (12.3% of all compounds), alkanoic acids (27.8%), sterols (11.5%) and triterpenes (17.8%). In view of an integrated valorization, Quercus faginea barks are interesting sources of polar compounds including phenols and polyphenols with possible interesting bioactivities, while the sterols and triterpenes contained in the lipophilic extracts are also valuable bioactive compounds or chemical intermediates for specific high-value market niches, such as cosmetics, pharmaceuticals and biomedicine. PMID:29763441

  6. Tree-ring growth and wood chemistry response to manipulated precipitation variation for two temperate Quercus species

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wagner, Rebekah J.; Kaye, Margot W.; Abrams, Marc D.

    2012-01-01

    We examined the relationship among ambient and manipulated precipitation, wood chemistry, and their relationship with radial growth for two oak species in eastern Tennessee. The study took place on the Walker Branch Throughfall Displacement Experiment (TDE) site, located at the Oak Ridge National Laboratory in Oak Ridge, TN. Two dominant species, white oak (Quercus alba) and chestnut oak (Quercus prinus), were selected for study from a 13-year experiment of whole-stand precipitation manipulation (wet, ambient and dry). The relationships between tree-ring width and climate were compared for both species to determine the impact of precipitation manipulations on ring width index. Thismore » study used experimental spectroscopy techniques to measure the sensitivity of tree-ring responses to directional changes in precipitation over 13 years, and the results suggest that oaks at this study site are resilient to imposed changes, but sensitive to inter-annual variations in climate. Laser-induced breakdown spectroscopy (LIBS) allowed us to measure nutrient intensities (similar to element concentrations) at 0.5-1.0 mm spacing along the radial growth axis of trees growing in the wet, ambient, and dry treatment sites. A difference in stemwood nutrient levels was observed between the two oak species and among the three treatments. Significant variation in element intensity was observed across treatments for some elements (Ca, K, Mg, Na, N and P) suggesting the potential for long-term impacts on growth under a changing climate regimes for southeastern oaks.« less

  7. Does Habitat Matter in an Urbanized Landscape? The Birds of the Garry Oak (Quercus garryana) Ecosystem of Southeastern Vancouver Island, British Columbia

    Treesearch

    Richard E. Feldman; Pam G. Krannitz

    2005-01-01

    The Garry oak (Quercus garryana) ecosystem was once a dominant habitat type on southeastern Vancouver Island, British Columbia, but urbanization has lead to massive habitat loss and fragmentation (Hebda 1993). Most bird species are expected to respond negatively to urbanization because of increased patch isolation, increased predation pressure, and negative edge...

  8. Aluminum and temperature alteration of cell membrane permeability of Quercus rubra

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Junping Chen; Sucoff, E.I.; Stadelmann, E.J.

    1991-06-01

    Al toxicity is the major factor limiting plant growth in acid soils. This report extends research on Al-induced changes in membrane behavior of intact root cortex cells of Northern red oak (Quercus rubra). Membrane permeability was determined by the plasmometric method for individual intact cells at temperatures from 2 or 4 to 35 C. Al (0.37 millimolar) significantly increased membrane permeability to urea and monoethyl urea and decreased permeability to water. Al significantly altered the activation energy required to transport water (+ 32%), urea (+ 9%), and monoethyl urea ({minus}7%) across cell membranes. Above 9 C, Al increased the lipidmore » partiality of the cell membranes; below 7 C, Al decreased it. Al narrowed by 6 C the temperature range over which plasmolysis occurred without membrane damage. These changes in membrane behavior are explainable if Al reduced membrane lipid fluidity and kink frequency and increases packing density and the occurrence of straight lipid chains.« less

  9. A comparative study of oak (Quercus, Fagaceae) seedling physiology during summer drought in southern California.

    PubMed

    Mahall, Bruce E; Tyler, Claudia M; Cole, E Shelly; Mata, Catarina

    2009-04-01

    Natural recruitment of oaks appears to be declining throughout the northern hemisphere. Summer drought poses a potentially important barrier to oak recruitment in southern California. To evaluate this barrier, we grew evergreen Quercus agrifolia and deciduous Q. lobata from seeds near parental trees. We measured water relations, chlorophyll fluorescence, and gas exchange during these seedlings' fourth and fifth summers and compared them to neighboring adults. Most seedlings had substantially lower values for predawn xylem pressure potential (Ψ(pd)), minimum photosystem II (PSII) quantum efficiency (Φ(PSIIMIN)), maximum quantum efficiency for PSII under dark-adapted leaf conditions (Fv/Fm), and maximum photosynthetic assimilation (Amax), and higher values for maximum nonphotochemical quenching (NPQmax) than did conspecific adults. The high, unvarying Ψ(pd) values of the adults suggest they use perennially available groundwater. Quercus lobata seedlings commonly had lower values for Ψ(pd) than did Q. agrifolia, and values for Ψ(pd) and Φ(PSIIMIN) were significantly related to size in Q. lobata but not in Q. agrifolia. These data suggest important interspecific differences in root architecture. Lower values for Φ(PSIIMIN), Fv/Fm, and higher NPQmax in Q. agrifolia indicate that Q. agrifolia seedlings were usually under more stress than Q. lobata, which typically had higher Amax rates than did Q. agrifolia seedlings. Diurnal photosynthesis curves were quite flat for Q. agrifolia, but they peaked in the morning for Q. lobata. Established seedlings appeared to be under more stress than adults, but this stress did not appear severe enough to cause death. Access to perennially available groundwater may be crucial for the seedling to sapling transition.

  10. Molecular Organization of the 25S–18S rDNA IGS of Fagus sylvatica and Quercus suber: A Comparative Analysis

    PubMed Central

    Inácio, Vera; Rocheta, Margarida; Morais-Cecílio, Leonor

    2014-01-01

    The 35S ribosomal DNA (rDNA) units, repeated in tandem at one or more chromosomal loci, are separated by an intergenic spacer (IGS) containing functional elements involved in the regulation of transcription of downstream rRNA genes. In the present work, we have compared the IGS molecular organizations in two divergent species of Fagaceae, Fagus sylvatica and Quercus suber, aiming to comprehend the evolution of the IGS sequences within the family. Self- and cross-hybridization FISH was done on representative species of the Fagaceae. The IGS length variability and the methylation level of 18 and 25S rRNA genes were assessed in representatives of three genera of this family: Fagus, Quercus and Castanea. The intergenic spacers in Beech and Cork Oak showed similar overall organizations comprising putative functional elements needed for rRNA gene activity and containing a non-transcribed spacer (NTS), a promoter region, and a 5′-external transcribed spacer. In the NTS: the sub-repeats structure in Beech is more organized than in Cork Oak, sharing some short motifs which results in the lowest sequence similarity of the entire IGS; the AT-rich region differed in both spacers by a GC-rich block inserted in Cork Oak. The 5′-ETS is the region with the higher similarity, having nonetheless different lengths. FISH with the NTS-5′-ETS revealed fainter signals in cross-hybridization in agreement with the divergence between genera. The diversity of IGS lengths revealed variants from ∼2 kb in Fagus, and Quercus up to 5.3 kb in Castanea, and a lack of correlation between the number of variants and the number of rDNA loci in several species. Methylation of 25S Bam HI site was confirmed in all species and detected for the first time in the 18S of Q. suber and Q. faginea. These results provide important clues for the evolutionary trends of the rDNA 25S-18S IGS in the Fagaceae family. PMID:24893289

  11. Rates of Water Loss and Uptake in Recalcitrant Fruits of Quercus Species Are Determined by Pericarp Anatomy

    PubMed Central

    Xia, Ke; Daws, Matthew I.; Stuppy, Wolfgang; Zhou, Zhe-Kun; Pritchard, Hugh W.

    2012-01-01

    Desiccation-sensitive recalcitrant seeds and fruits are killed by the loss of even moderate quantities of water. Consequently, minimizing the rate of water loss may be an important ecological factor and evolutionary driver by reducing the risk of mortality during post-dispersal dry-spells. For recalcitrant fruits of a range of Quercus species, prolonged drying times have been observed previously. However, the underlying mechanism(s) for this variation is unknown. Using nine Quercus species we investigated the major route(s) of water flow into and out of the fruits and analysed the relative importance of the different pericarp components and their anatomy on water uptake/loss. During imbibition (rehydration), the surface area of the cupule scar and the frequency and area of the vascular bundles contained therein were significantly correlated with the rates of water uptake across the scar. The vascular bundles serving the apex of the fruit were a minor contributor to overall water. Further, the rate of water uptake across the remainder of the pericarp surface was significantly correlated with the thickness of the vascularised inner layer in the pericarp. Fruits of Q. franchetii and Q. schottkyana dried most slowly and had a comparatively small scar surface area with few vascular bundles per unit area. These species inhabit drier regions than the other species studied, suggesting these anatomical features may have ecological value by reducing the risk of desiccation stress. However, this remains to be tested in the field. PMID:23071795

  12. Quantification of extraradical soil mycelium and ectomycorrhizas of Boletus edulis in a Scots pine forest with variable sporocarp productivity.

    PubMed

    De la Varga, Herminia; Agueda, Beatriz; Martínez-Peña, Fernando; Parladé, Javier; Pera, Joan

    2012-01-01

    concentration of soil mycelium or with the presence or abundance of ectomycorrhizas.

  13. Photoperiod and temperature responses of bud swelling and bud burst in four temperate forest tree species.

    PubMed

    Basler, David; Körner, Christian

    2014-04-01

    Spring phenology of temperate forest trees is optimized to maximize the length of the growing season while minimizing the risk of freezing damage. The release from winter dormancy is environmentally mediated by species-specific responses to temperature and photoperiod. We investigated the response of early spring phenology to temperature and photoperiod at different stages of dormancy release in cuttings from four temperate tree species in controlled environments. By tracking bud development, we were able to identify the onset of bud swelling and bud growth in Acer pseudoplatanus L., Fagus sylvatica L., Quercus petraea (Mattuschka) Liebl. and Picea abies (L.) H. Karst. At a given early stage of dormancy release, the onset and duration of the bud swelling prior to bud burst are driven by concurrent temperature and photoperiod, while the maximum growth rate is temperature dependent only, except for Fagus, where long photoperiods also increased bud growth rates. Similarly, the later bud burst was controlled by temperature and photoperiod (in the photoperiod sensitive species Fagus, Quercus and Picea). We conclude that photoperiod is involved in the release of dormancy during the ecodormancy phase and may influence bud burst in trees that have experienced sufficient chilling. This study explored and documented the early bud swelling period that precedes and defines later phenological stages such as canopy greening in conventional phenological works. It is the early bud growth resumption that needs to be understood in order to arrive at a causal interpretation and modelling of tree phenology at a large scale. Classic spring phenology events mark visible endpoints of a cascade of processes as evidenced here.

  14. Three-year bole response of white oak (Quercus alba L.) crop trees to fertilizer and crown release on a Tennessee upland site

    Treesearch

    G. Richard Schaertl; Allan E. Houston; Edward R. Buckner; James S. Meadows

    1997-01-01

    Bole diameter responses to fertilization, crown release, and fertilization x release treatments with untreated controls and treatment-by-year interactions were studied in pole-sized (approx. 43 years old) white oak (Quercus alba L.) crop trees. In the main study, fertilizer was applied by broadcast to plots at a rate of 150 lbs N and 35 lbs P

  15. A field-to-desktop toolchain for X-ray CT densitometry enables tree ring analysis

    PubMed Central

    De Mil, Tom; Vannoppen, Astrid; Beeckman, Hans; Van Acker, Joris; Van den Bulcke, Jan

    2016-01-01

    Background and Aims Disentangling tree growth requires more than ring width data only. Densitometry is considered a valuable proxy, yet laborious wood sample preparation and lack of dedicated software limit the widespread use of density profiling for tree ring analysis. An X-ray computed tomography-based toolchain of tree increment cores is presented, which results in profile data sets suitable for visual exploration as well as density-based pattern matching. Methods Two temperate (Quercus petraea, Fagus sylvatica) and one tropical species (Terminalia superba) were used for density profiling using an X-ray computed tomography facility with custom-made sample holders and dedicated processing software. Key Results Density-based pattern matching is developed and able to detect anomalies in ring series that can be corrected via interactive software. Conclusions A digital workflow allows generation of structure-corrected profiles of large sets of cores in a short time span that provide sufficient intra-annual density information for tree ring analysis. Furthermore, visual exploration of such data sets is of high value. The dated profiles can be used for high-resolution chronologies and also offer opportunities for fast screening of lesser studied tropical tree species. PMID:27107414

  16. Drivers of radial growth and carbon isotope discrimination of bur oak (Quercus macrocarpa Michx.) across continental gradients in precipitation, vapour pressure deficit and irradiance

    Treesearch

    Steven L. Voelker; Frederick C. Meinzer; Barbara Lachenbruch; J. Renee Brooks; Richard P. Guyette

    2014-01-01

    Tree-ring characteristics are commonly used to reconstruct climate variables, but divergence from the assumption of a single biophysical control may reduce the accuracy of these reconstructions. Here, we present data from bur oaks (Quercus macrocarpa Michx.) sampled within and beyond the current species bioclimatic envelope to identify the primary...

  17. CASIROZ: Root parameters and types of ectomycorrhiza of young beech plants exposed to different ozone and light regimes.

    PubMed

    Zeleznik, P; Hrenko, M; Then, C; Koch, N; Grebenc, T; Levanic, T; Kraigher, H

    2007-03-01

    Tropospheric ozone (O(3)) triggers physiological changes in leaves that affect carbon source strength leading to decreased carbon allocation below-ground, thus affecting roots and root symbionts. The effects of O(3) depend on the maturity-related physiological state of the plant, therefore adult and young forest trees might react differently. To test the applicability of young beech plants for studying the effects of O(3) on forest trees and forest stands, beech seedlings were planted in containers and exposed for two years in the Kranzberg forest FACOS experiment (Free-Air Canopy O(3) Exposure System, http://www.casiroz.de ) to enhanced ozone concentration regime (ambient [control] and double ambient concentration, not exceeding 150 ppb) under different light conditions (sun and shade). After two growing seasons the biomass of the above- and below-ground parts, beech roots (using WinRhizo programme), anatomical and molecular (ITS-RFLP and sequencing) identification of ectomycorrhizal types and nutrient concentrations were assessed. The mycorrhization of beech seedlings was very low ( CA. 5 % in shade, 10 % in sun-grown plants), no trends were observed in mycorrhization (%) due to ozone treatment. The number of Cenococcum geophilum type of ectomycorrhiza, as an indicator of stress in the forest stands, was not significantly different under different ozone treatments. It was predominantly occurring in sun-exposed plants, while its majority share was replaced by Genea hispidula in shade-grown plants. Different light regimes significantly influenced all parameters except shoot/root ratio and number of ectomycorrhizal types. In the ozone fumigated plants the number of types, number of root tips per length of 1 to 2 mm root diameter, root length density per volume of soil and concentration of Mg were significantly lower than in control plants. Trends to a decrease were found in root, shoot, leaf, and total dry weights, total number of root tips, number of vital

  18. [Effects of simulating acid rain on photosynthesis and chlorophyll fluorescence parameters of Quercus glauca Quercus glauca].

    PubMed

    Wang, Sai; Yi, Li-Ta; Yu, Shu-Quan; Zhang, Chao; Shi, Jing-Jing

    2014-08-01

    At three levels of simulated acid rainfall intensities with pH values of 2.5 (severe), 40 (medium) and 5.6 (light) respectively, the responses of chlorophyll fluorescence and photosynthetic parameters of Quercus glauca seedlings were studied in three acid rainfall treatments, i. e. only the aboveground of seedlings exposed to acid rain (T1), both of the seedlings and soil exposed to acid rain (T2), only the soil exposed to acid rain (T3) compared with blank control (CK). Under the severe acid rainfall, T1 significantly inhibited chlorophyll synthesis, and thus reduced the primary photochemical efficiency of PS II ( F(v)/F(m)), potential activity of PS II (F(v)/F(o)) , apparent quantum (Y), net photosynthetic rate (P(n)), and transpiration rate (T(r)), but increased the light compensation point (LCP) and dark respiration rate (R(d)) of Q. glauca seedlings. T2 inhibited, but T3 played a little enhancement on the aforementioned parameters of Q. glauca seedlings. Under the conditions of medium and light acid rainfall intensities, the above parameters in the three treatments were higher than that of CK, except with lower R(d). The chlorophyll fluorescence and photosynthetic parameters showed a similar tendency in the three treatments, i. e. T2>T3 >T1. It indicated that T1 had the strongest inhibition on seedlings in condition of the severe acid rainfall, while T2 had the most dramatic facilitating effect on seedlings under the medium and light acid rainfall. Intensity of acid rainfall had significant influences on SPAD, F(v)/F(m), F(v)/F(o), Y, P(n), T(r), and maximum photosynthetic rate (A(max)), whereas treatments of acid rainfall affected SPAD, F(v)/F(m), Y, P(n), T(r), A(max) and light saturation point (LSP). The interaction of acid rainfall intensities and treatments played significant effects on SPAD, F(v)/F(m), Y, P(n) and A(max).

  19. Using common mycorrhizal networks for controlled inoculation of Quercus spp. with Tuber melanosporum: the nurse plant method.

    PubMed

    Pereira, Guillermo; Palfner, Götz; Chávez, Daniel; Suz, Laura M; Machuca, Angela; Honrubia, Mario

    2013-07-01

    The high cost and restricted availability of black truffle spore inoculum for controlled mycorrhiza formation of host trees produced for truffle orchards worldwide encourage the search for more efficient and sustainable inoculation methods that can be applied globally. In this study, we evaluated the potential of the nurse plant method for the controlled inoculation of Quercus cerris and Quercus robur with Tuber melanosporum by mycorrhizal networks in pot cultures. Pine bark compost, adjusted to pH 7.8 by liming, was used as substrate for all assays. Initially, Q. robur seedlings were inoculated with truffle spores and cultured for 12 months. After this period, the plants presenting 74 % mycorrhizal fine roots were transferred to larger containers. Nurse plants were used for two treatments of two different nursling species: five sterilized acorns or five 45-day-old, axenically grown Q. robur or Q. cerris seedlings, planted in containers around the nurse plant. After 6 months, colonized nursling plant root tips showed that mycorrhiza formation by T. melanosporum was higher than 45 % in the seedlings tested, with the most successful nursling combination being Q. cerris seedlings, reaching 81 % colonization. Bulk identification of T. melanosporum mycorrhizae was based on morphological and anatomical features and confirmed by sequencing of the internal transcribed spacer region of the ribosomal DNA of selected root tips. Our results show that the nurse plant method yields attractive rates of mycorrhiza formation by the Périgord black truffle and suggest that establishing and maintaining common mycorrhizal networks in pot cultures enables sustained use of the initial spore inoculum.

  20. Triterpenoid Components from Oak Heartwood (Quercus robur) and Their Potential Health Benefits.

    PubMed

    Pérez, Andy J; Pecio, Łukasz; Kowalczyk, Mariusz; Kontek, Renata; Gajek, Gabriela; Stopinsek, Lidija; Mirt, Ivan; Oleszek, Wiesław; Stochmal, Anna

    2017-06-14

    For centuries oak wood (Quercus robur) has been used in aging of wines and spirits, which is based on pleasant flavors given to beverages by phenolics transferred to the liquid during the maturation process. Other metabolites, such as triterpenoids, can also be released. Searching for extractable triterpenoids in oak heartwood, 12 new, 1-12, and five known, 13-17, oleanane types were isolated and characterized. Their cytotoxicities were tested against cancer cells (PC3 and MCF-7) and lymphocytes. Breast cancer cells (MCF-7) were the most affected by triterpenoids, with roburgenic acid, 4, being the most active compound (IC 50 = 19.7 μM). Selectivity was observed for compounds 1-3, 8, 9, and 16, exhibiting an IC 50 > 200 μM against lymphocytes, while active against cancer cells. A galloyl unit attached to the triterpenoid moiety was established as the key feature for such effect. These results highlight the occurrence of triterpenoids in oak heartwood and their relevance for chemoprevention of breast cancer.

  1. Planting sentinel European trees in eastern Asia as a novel method to identify potential insect pest invaders.

    PubMed

    Roques, Alain; Fan, Jian-Ting; Courtial, Béatrice; Zhang, Yan-Zhuo; Yart, Annie; Auger-Rozenberg, Marie-Anne; Denux, Olivier; Kenis, Marc; Baker, Richard; Sun, Jiang-Hua

    2015-01-01

    Quarantine measures to prevent insect invasions tend to focus on well-known pests but a large proportion of the recent invaders were not known to cause significant damage in their native range, or were not even known to science before their introduction. A novel method is proposed to detect new potential pests of woody plants in their region of origin before they are introduced to a new continent. Since Asia is currently considered to be the main supplier of insect invaders to Europe, sentinel trees were planted in China during 2007-2011 as an early warning tool to identify the potential for additional Asian insect species to colonize European trees. Seedlings (1-1.5 m tall) of five broadleaved (Quercus petraea, Q. suber, Q. ilex, Fagus sylvatica, and Carpinus betulus) and two conifer species (Abies alba and Cupressus sempervirens) were planted in blocks of 100 seedlings at two widely separated sites (one in a nursery near Beijing and the other in a forest environment near Fuyang in eastern China), and then regularly surveyed for colonization by insects. A total of 104 insect species, mostly defoliators, were observed on these new hosts, and at least six species were capable of larval development. Although a number of the insects observed were probably incidental feeders, 38 species had more than five colonization events, mostly infesting Q. petraea, and could be considered as being capable of switching to European trees if introduced to Europe. Three years was shown to be an appropriate duration for the experiment, since the rate of colonization then tended to plateau. A majority of the identified species appeared to have switched from agricultural crops and fruit trees rather than from forest trees. Although these results are promising, the method is not appropriate for xylophagous pests and other groups developing on larger trees. Apart from the logistical problems, the identification to species level of the specimens collected was a major difficulty. This

  2. Planting Sentinel European Trees in Eastern Asia as a Novel Method to Identify Potential Insect Pest Invaders

    PubMed Central

    Roques, Alain; Fan, Jian-ting; Courtial, Béatrice; Zhang, Yan-zhuo; Yart, Annie; Auger-Rozenberg, Marie-Anne; Denux, Olivier; Kenis, Marc; Baker, Richard; Sun, Jiang-hua

    2015-01-01

    Quarantine measures to prevent insect invasions tend to focus on well-known pests but a large proportion of the recent invaders were not known to cause significant damage in their native range, or were not even known to science before their introduction. A novel method is proposed to detect new potential pests of woody plants in their region of origin before they are introduced to a new continent. Since Asia is currently considered to be the main supplier of insect invaders to Europe, sentinel trees were planted in China during 2007-2011 as an early warning tool to identify the potential for additional Asian insect species to colonize European trees. Seedlings (1-1.5 m tall) of five broadleaved (Quercus petraea, Q. suber, Q. ilex, Fagus sylvatica, and Carpinus betulus) and two conifer species (Abies alba and Cupressus sempervirens) were planted in blocks of 100 seedlings at two widely separated sites (one in a nursery near Beijing and the other in a forest environment near Fuyang in eastern China), and then regularly surveyed for colonization by insects. A total of 104 insect species, mostly defoliators, were observed on these new hosts, and at least six species were capable of larval development. Although a number of the insects observed were probably incidental feeders, 38 species had more than five colonization events, mostly infesting Q. petraea, and could be considered as being capable of switching to European trees if introduced to Europe. Three years was shown to be an appropriate duration for the experiment, since the rate of colonization then tended to plateau. A majority of the identified species appeared to have switched from agricultural crops and fruit trees rather than from forest trees. Although these results are promising, the method is not appropriate for xylophagous pests and other groups developing on larger trees. Apart from the logistical problems, the identification to species level of the specimens collected was a major difficulty. This

  3. Effects of visual grading on northern red oak (Quercus rubra L.) seedlings planted in two shelterwood stands on the Cumberland Plateau of Tennessee, USA

    Treesearch

    Stacy Clark; Scott Schlarbaum; Callie Schweitzer

    2015-01-01

    Artificial regeneration of oak has been generally unsuccessful in maintaining the oak component in productive upland forests of eastern North America. We tested visual grading effects on quality-grown northern red oak (Quercus rubra) seedlings planted in two submesic stands on the Cumberland Plateau escarpment of Tennessee, USA. Seedlings were grown for one year using...

  4. Sap flow measurements combining sap-flux density radial profiles with punctual sap-flux density measurements in oak trees (Quercus ilex and Quercus pyrenaica) - water-use implications in a water-limited savanna-

    NASA Astrophysics Data System (ADS)

    Reyes, J. Leonardo; Lubczynski1, Maciek W.

    2010-05-01

    Sap flow measurement is a key aspect for understanding how plants use water and their impacts on the ecosystems. A variety of sensors have been developed to measure sap flow, each one with its unique characteristics. When the aim of a research is to have accurate tree water use calculations, with high temporal and spatial resolution (i.e. scaled), a sensor with high accuracy, high measurement efficiency, low signal-to-noise ratio and low price is ideal, but such has not been developed yet. Granier's thermal dissipation probes (TDP) have been widely used in many studies and various environmental conditions because of its simplicity, reliability, efficiency and low cost. However, it has two major flaws when is used in semi-arid environments and broad-stem tree species: it is often affected by high natural thermal gradients (NTG), which distorts the measurements, and it cannot measure the radial variability of sap-flux density in trees with sapwood thicker than two centimeters. The new, multi point heat field deformation sensor (HFD) is theoretically not affected by NTG, and it can measure the radial variability of the sap flow at different depths. However, its high cost is a serious limitation when simultaneous measurements are required in several trees (e.g. catchment-scale studies). The underlying challenge is to develop a monitoring schema in which HFD and TDP are combined to satisfy the needs of measurement efficiency and accuracy in water accounting. To assess the level of agreement between TDP and HFD methods in quantifying sap flow rates and temporal patterns on Quercus ilex (Q.i ) and Quercus pyrenaica trees (Q.p.), three measurement schemas: standard TDP, TDP-NTG-corrected and HFD were compared in dry season at the semi-arid Sardon area, near Salamanca in Spain in the period from June to September 2009. To correct TDP measurements with regard to radial sap flow variability, a radial sap flux density correction factor was applied and tested by adjusting TDP

  5. Effects of tornado damage, prescribed fire, and salvage logging on natural oak (Quercus spp.) regeneration in a xeric southern USA Coastal Plain oak/pine forest

    Treesearch

    Jeffery B. Cannon; J. Stephen Brewer

    2013-01-01

    Due in large part to fire exclusion, many oak-dominated (Quercus spp.) forests, woodlands, and savannas throughout eastern North America are being replaced by less diverse forest ecosystems. In the interior coastal plain of the southern United States, these forests are dominated in the mid- and understory by mesophytic species such as Acer...

  6. Isotopic Analysis of Sporocarp Protein and Structural Material Improves Resolution of Fungal Carbon Sources

    PubMed Central

    Chen, Janet; Hofmockel, Kirsten S.; Hobbie, Erik A.

    2016-01-01

    Fungal acquisition of resources is difficult to assess in the field. To determine whether fungi received carbon from recent plant photosynthate, litter or soil-derived organic (C:N bonded) nitrogen, we examined differences in δ13C among bulk tissue, structural carbon, and protein extracts of sporocarps of three fungal types: saprotrophic fungi, fungi with hydrophobic ectomycorrhizae, or fungi with hydrophilic ectomycorrhizae. Sporocarps were collected from experimental plots of the Duke Free-air CO2 enrichment experiment during and after CO2 enrichment. The differential 13C labeling of ecosystem pools in CO2 enrichment experiments was tracked into fungi and provided novel insights into organic nitrogen use. Specifically, sporocarp δ13C as well as δ15N of protein and structural material indicated that fungi with hydrophobic ectomycorrhizae used soil-derived organic nitrogen sources for protein carbon, fungi with hydrophilic ectomycorrhizae used recent plant photosynthates for protein carbon and both fungal groups used photosynthates for structural carbon. Saprotrophic fungi depended on litter produced during fumigation for both protein and structural material. PMID:28082951

  7. Symbiosis-regulated expression of an acetyl-CoA acetyltransferase gene in the ectomycorrhizal fungus Laccaria bicolor

    Treesearch

    Shiv T. Hiremath; Sujata Balasubramanian; Jun Zheng; Gopi K. Podila

    2006-01-01

    The ectomycorrhiza is a symbiotic organ generated from the intricate association of fungal hyphae and plant root. The establishment of the ectomycorrhiza is a coordinated process of cross-talk between plant and fungus, followed by metabolic, developmental, and structural changes in the fungus, resulting in its growth toward the root. The initial stages of the symbiotic...

  8. Chemical composition and antimicrobial activity of fatty acid methyl ester of Quercus leucotrichophora fruits.

    PubMed

    Sati, Ankita; Sati, Sushil Chandra; Sati, Nitin; Sati, O P

    2017-03-01

    Natural fats and dietary oils are chief source of fatty acids and are well known to have antimicrobial activities against various microbes. The chemical composition and antimicrobial activities of fatty acids from fruits of white Oak (Quercus leucotrichophora) are yet unexplored and therefore the present study for the first time determines the fatty acid composition, and the antibacterial and antifungal activities of fatty acid methyl esters (FAME) of the white Oak plant found along the Himalayan region of Uttarakhand, India. The GCMS analysis revealed the presence of higher amount of saturated fatty acids than unsaturated fatty acids. FAME extract of fruits of Q. leucotrichophora demonstrated better antibacterial activity against Gram-positive bacteria than the Gram-negative bacteria. The present studies clearly establish the potential of the fruits of Q. leucotrichophora for use in soap, cosmetics and pharmaceutical industries.

  9. Leaf physiological versus morphological acclimation to high-light exposure at different stages of foliar development in oak.

    PubMed

    Rodríguez-Calcerrada, J; Reich, P B; Rosenqvist, E; Pardos, J A; Cano, F J; Aranda, I

    2008-05-01

    We investigated light acclimation in seedlings of the temperate oak Quercus petraea (Matt.) Liebl. and the co-occurring sub-Mediterranean oak Quercus pyrenaica Willd. Seedlings were raised in a greenhouse for 1 year in either 70 (HL) or 5.3% (LL) of ambient irradiance of full sunlight, and, in the following year, subsets of the LL-grown seedlings were transferred to HL either before leaf flushing (LL-HLBF plants) or after full leaf expansion (LL-HLAF plants). Gas exchange, chlorophyll a fluorescence, nitrogen fractions in photosynthetic components and leaf anatomy were examined in leaves of all seedlings 5 months after plants were moved from LL to HL. Differences between species in the acclimation of LL-grown plants to HL were minor. For LL-grown plants in HL, area-based photosynthetic capacity, maximum rate of carboxylation, maximum rate of electron transport and the effective photochemical quantum yield of photosystem II were comparable to those for plants grown solely in HL. A rapid change in nitrogen distribution among photosynthetic components was observed in LL-HLAF plants, which had the highest photosynthetic nitrogen-use efficiency. Increases in mesophyll thickness and dry mass per unit area governed leaf acclimation in LL-HLBF plants, which tended to have less nitrogen in photosynthetic components and a lower assimilation potential per unit of leaf mass or nitrogen than LL-HLAF plants. The data indicate that the phenological state of seedlings modified the acclimatory response of leaf attributes to increased irradiance. Morphological adaptation of leaves of LL-HLBF plants enhanced photosynthetic capacity per unit leaf area, but not per unit leaf dry mass, whereas substantial redistribution of nitrogen among photosynthetic components in leaves of LL-HLAF plants enhanced both mass- and area-based photosynthetic capacity.

  10. Comparative mapping in the Fagaceae and beyond with EST-SSRs

    PubMed Central

    2012-01-01

    Background Genetic markers and linkage mapping are basic prerequisites for comparative genetic analyses, QTL detection and map-based cloning. A large number of mapping populations have been developed for oak, but few gene-based markers are available for constructing integrated genetic linkage maps and comparing gene order and QTL location across related species. Results We developed a set of 573 expressed sequence tag-derived simple sequence repeats (EST-SSRs) and located 397 markers (EST-SSRs and genomic SSRs) on the 12 oak chromosomes (2n = 2x = 24) on the basis of Mendelian segregation patterns in 5 full-sib mapping pedigrees of two species: Quercus robur (pedunculate oak) and Quercus petraea (sessile oak). Consensus maps for the two species were constructed and aligned. They showed a high degree of macrosynteny between these two sympatric European oaks. We assessed the transferability of EST-SSRs to other Fagaceae genera and a subset of these markers was mapped in Castanea sativa, the European chestnut. Reasonably high levels of macrosynteny were observed between oak and chestnut. We also obtained diversity statistics for a subset of EST-SSRs, to support further population genetic analyses with gene-based markers. Finally, based on the orthologous relationships between the oak, Arabidopsis, grape, poplar, Medicago, and soybean genomes and the paralogous relationships between the 12 oak chromosomes, we propose an evolutionary scenario of the 12 oak chromosomes from the eudicot ancestral karyotype. Conclusions This study provides map locations for a large set of EST-SSRs in two oak species of recognized biological importance in natural ecosystems. This first step toward the construction of a gene-based linkage map will facilitate the assignment of future genome scaffolds to pseudo-chromosomes. This study also provides an indication of the potential utility of new gene-based markers for population genetics and comparative mapping within and beyond the

  11. Soil development in OSL dated sandy dune substrates under Quercus robur Forest (Netherlands)

    NASA Astrophysics Data System (ADS)

    van Mourik, J. M.; Nierop, Ir. K.; Verstraten, J. M.

    2009-04-01

    Coastal dune landscapes are very dynamic. The present distribution of vegetation and soil is the result of over 2000 years of natural processes and human management. The initial soil development was controlled by an increase of the organic matter content, which consisted mainly of decomposed roots of grasses (rhizomull), and a decrease of the soil pH to 3-4 by decalcification. This stage was followed by the development of a deciduous forest, which was dominated by Quercus robur. Since 1600 AD, a large part of the deciduous forest that dominated the east side of the coastal dune landscape transferred in expensive residential areas and urbanizations. Nevertheless some parts of the oak forest belt remained. The present forest soils are acid and the controlling soil processes are leaching of sesquioxides and storage of organic matter in mormoder humus forms. The sustainability of ecosystems is closely related to the quality of the humus form, controlling nutrient cycling and water supply. Therefore, improve of knowledge of humus form development and properties is important. We applied soil micromorphology and pyrolysis-gas chromatography/mass spectrometry (GC/MS) to investigate more details of humus form development at two locations (Duivendrift and Hoek van Klaas) in the coastal dune area of the Amsterdamse Waterleidingduinen (near Haarlem, the Netherlands). However, to understand forest soil development, including the organic matter composition in the humus form, the age of the substrate and the forest is required. Therefore, we used tradition techniques as pollen analysis and radiocarbon dating but also the recently introduced optical stimulated luminescence (OSL) dating technique. OSL dating works excellent for aeolian sandy deposits with a high percentage of quartz grains. The OSL age is defined as the time after the last bleaching by solar radiation of mineral grains. Or in other words, the start of a stable period without sand drifting. In the Ah horizons we

  12. Effects of the goldspotted oak borer, Agrilus auroguttatus, on the health of coast live oak, Quercus agrifolia, in southern California before and after treatment with two systemic insecticides

    Treesearch

    Yigen Chen; Mary L. Flint; Tom W. Coleman; Joseph J. Doccola; Donald M. Grosman; David L. Wood; Steven J. Seybold

    2015-01-01

    The invasive goldspotted oak borer, Agrilus auroguttatus (Coleoptera: Buprestidae), is threatening the health and survival of oak trees in San Diego County, California (Flint and others 2013). The primary oak species colonized and killed in this area include coast live oak (Quercus agrifolia), California black oak (...

  13. Spatial Segregation and Aggregation of Ectomycorrhizal and Root-Endophytic Fungi in the Seedlings of Two Quercus Species

    PubMed Central

    Yamamoto, Satoshi; Sato, Hirotoshi; Tanabe, Akifumi S.; Hidaka, Amane; Kadowaki, Kohmei; Toju, Hirokazu

    2014-01-01

    Diverse clades of mycorrhizal and endophytic fungi are potentially involved in competitive or facilitative interactions within host-plant roots. We investigated the potential consequences of these ecological interactions on the assembly process of root-associated fungi by examining the co-occurrence of pairs of fungi in host-plant individuals. Based on massively-parallel pyrosequencing, we analyzed the root-associated fungal community composition for each of the 249 Quercus serrata and 188 Quercus glauca seedlings sampled in a warm-temperate secondary forest in Japan. Pairs of fungi that co-occurred more or less often than expected by chance were identified based on randomization tests. The pyrosequencing analysis revealed that not only ectomycorrhizal fungi but also endophytic fungi were common in the root-associated fungal community. Intriguingly, specific pairs of these ectomycorrhizal and endophytic fungi showed spatially aggregated patterns, suggesting the existence of facilitative interactions between fungi in different functional groups. Due to the large number of fungal pairs examined, many of the observed aggregated/segregated patterns with very low P values (e.g., < 0.005) turned non-significant after the application of a multiple comparison method. However, our overall results imply that the community structures of ectomycorrhizal and endophytic fungi could influence each other through interspecific competitive/facilitative interactions in root. To test the potential of host-plants' control of fungus–fungus ecological interactions in roots, we further examined whether the aggregated/segregated patterns could vary depending on the identity of host plant species. Potentially due to the physiological properties shared between the congeneric host plant species, the sign of hosts' control was not detected in the present study. The pyrosequencing-based randomization analyses shown in this study provide a platform of the high-throughput investigation of

  14. Soil moisture availability as a factor affecting valley oak (Quercus lobata Neé) seedling establishment and survival in a riparian habitat, Cosumnes River Preserve, Sacramento County, California

    Treesearch

    Virginia C. Meyer

    2002-01-01

    The lack of valley oak (Quercus lobata Neé) regeneration throughout much of its historical range appears to be related to both habitat destruction and soil moisture availability. The water relations, growth and survival of greenhouse potted seedlings, field-planted and natural seedlings were monitored through the growing season, 1989. The age...

  15. Growing, selecting, and establishing 1-0 Quercus rubra and Q alba seedlings for rapid growth and early acorn production on forested lands in the southeastern United States.

    Treesearch

    Paul P. Kormanik; Shi-Jean S. Sung; Taryn L. Kormanik

    2004-01-01

    Northern red oak (Quercus rubra L., NRO) and white oak (Q. alba L., WO) are among the most valuable oak species in the eastern Untied States and throughout the eastern provinces of Canada. They have a broad geographic distribution: yet no single regeneration mechanism can explain their presence in current stands. Both species...

  16. Nitrogen Ion Form and Spatio-temporal Variation in Root Distribution Mediate Nitrogen Effects on Lifespan of Ectomycorrhizal Roots

    NASA Astrophysics Data System (ADS)

    Kou, L.; McCormack, M. L.; Chen, W.; Guo, D.; Wang, H.; Li, S.; Gao, W.; Yang, H.

    2017-12-01

    Background and Aims Absorptive roots active in soil resource uptake are often intimately associated with mycorrhizal fungi, yet it remains unclear how nitrogen (N) loading affects lifespan of absorptive roots associating with ectomycorrhizal (ECM) fungi. Methods Through a three-year minirhizotron experiment, we investigated the responses of ECM lifespan to different rates of N addition and examined the roles of N ion form, rooting depth, seasonal root cohort, and ECM morphotype in mediating the N effects on ECM lifespan in a slash pine (Pinus elliottii) forest in subtropical China. Results High rates of NH4Cl significantly decreased foliar P concentrations and increased foliar N: P ratios, and mean ECM lifespan was negatively correlated to foliar P concentration. N additions generally increased the lifespan of most ectomycorrhizas, but the specific differences were context dependent. N rates and forms exerted significant positive effects on ECM lifespan with stronger effects occurring at high N rates and under ammonium N addition. N additions extended lifespan of ectomycorrhizas in shallower soil and born in spring and autumn, but shortened lifespan of ectomycorrhizas in deeper soil and born in summer and winter. N additions reduced lifespan of dichotomous ectomycorrhizas, but increased lifespan of coralloid ectomycorrhizas. Conclusions The increased ECM lifespan in response to N additions may primarily be driven by the persistent and aggravated P limitation to plants. Our findings highlight the importance of environmental contexts in controlling ECM lifespan and the need to consider potential differences among mycorrhizal morphotypes when studying N—lifespan relationships of absorptive roots in the context of N deposition.

  17. A Phenological Timetable of Oak Growth under Experimental Drought and Air Warming

    PubMed Central

    Kuster, Thomas M.; Dobbertin, Matthias; Günthardt-Goerg, Madeleine S.; Schaub, Marcus; Arend, Matthias

    2014-01-01

    Climate change is expected to increase temperature and decrease summer precipitation in Central Europe. Little is known about how warming and drought will affect phenological patterns of oaks, which are considered to possess excellent adaptability to these climatic changes. Here, we investigated bud burst and intra-annual shoot growth of Quercus robur, Q. petraea and Q. pubescens grown on two different forest soils and exposed to air warming and drought. Phenological development was assessed over the course of three growing seasons. Warming advanced bud burst by 1–3 days °C−1 and led to an earlier start of intra-annual shoot growth. Despite this phenological shift, total time span of annual growth and shoot biomass were not affected. Drought changed the frequency and intensity of intra-annual shoot growth and advanced bud burst in the subsequent spring of a severe summer drought by 1–2 days. After re-wetting, shoot growth recovered within a few days, demonstrating the superior drought tolerance of this tree genus. Our findings show that phenological patterns of oaks are modified by warming and drought but also suggest that ontogenetic factors and/or limitations of water and nutrients counteract warming effects on the biomass and the entire span of annual shoot growth. PMID:24586988

  18. A field-to-desktop toolchain for X-ray CT densitometry enables tree ring analysis.

    PubMed

    De Mil, Tom; Vannoppen, Astrid; Beeckman, Hans; Van Acker, Joris; Van den Bulcke, Jan

    2016-06-01

    Disentangling tree growth requires more than ring width data only. Densitometry is considered a valuable proxy, yet laborious wood sample preparation and lack of dedicated software limit the widespread use of density profiling for tree ring analysis. An X-ray computed tomography-based toolchain of tree increment cores is presented, which results in profile data sets suitable for visual exploration as well as density-based pattern matching. Two temperate (Quercus petraea, Fagus sylvatica) and one tropical species (Terminalia superba) were used for density profiling using an X-ray computed tomography facility with custom-made sample holders and dedicated processing software. Density-based pattern matching is developed and able to detect anomalies in ring series that can be corrected via interactive software. A digital workflow allows generation of structure-corrected profiles of large sets of cores in a short time span that provide sufficient intra-annual density information for tree ring analysis. Furthermore, visual exploration of such data sets is of high value. The dated profiles can be used for high-resolution chronologies and also offer opportunities for fast screening of lesser studied tropical tree species. © The Author 2016. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  19. Growth enhancement of Quercus alba saplings by CO[sub 2] enrichment under field conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Norby, R.J.; O'Neill, E.G.; Wullschleger, S.D.

    1993-06-01

    White oak (Quercus alba L.) trees were grown in soil under field conditions for four growing seasons in open-top chambers containing ambient air continuously enriched with 0, 150, or 300 [mu]mol/mol CO[sub 2]. The trees were significantly larger in elevated CO[sub 2]: whole-tree mass (including woody roots) was 36% greater in +150 and 140% greater in +300 compared to ambient-grown trees. There were no significant effects of CO[sub 2] concentration on root-to-shoot or leaf area ratios. The stimulatory effect of CO[sub 2] occurred during seedling establishment, and there was no effect of CO[sub 2] on relative growth rate after themore » first field season. However, photosynthesis remained consistently higher in elevated CO[sub 2], foliar respiration was reduced, and fine root density and CO[sub 2] efflux from the soil were higher, as previously reported with yellow- poplar trees.« less

  20. Influence of late Quaternary climate change on present patterns of genetic variation in valley oak, Quercus lobata Née.

    PubMed

    Gugger, Paul F; Ikegami, Makihiko; Sork, Victoria L

    2013-07-01

    Phylogeography and ecological niche models (ENMs) suggest that late Quaternary glacial cycles have played a prominent role in shaping present population genetic structure and diversity, but have not applied quantitative methods to dissect the relative contribution of past and present climate vs. other forces. We integrate multilocus phylogeography, climate-based ENMs and multivariate statistical approaches to infer the effects of late Quaternary climate change on contemporary genetic variation of valley oak (Quercus lobata Née). ENMs indicated that valley oak maintained a stable distribution with local migration from the last interglacial period (~120 ka) to the Last Glacial Maximum (~21 ka, LGM) to the present compared with large-scale range shifts for an eastern North American white oak (Quercus alba L.). Coast Range and Sierra Nevada foothill populations diverged in the late Pleistocene before the LGM [104 ka (28-1622)] and have occupied somewhat distinct climate niches, according to ENMs and coalescent analyses of divergence time. In accordance with neutral expectations for stable populations, nuclear microsatellite diversity positively correlated with niche stability from the LGM to present. Most strikingly, nuclear and chloroplast microsatellite variation significantly correlated with LGM climate, even after controlling for associations with geographic location and present climate using partial redundancy analyses. Variance partitioning showed that LGM climate uniquely explains a similar proportion of genetic variance as present climate (16% vs. 11-18%), and together, past and present climate explains more than geography (19%). Climate can influence local expansion-contraction dynamics, flowering phenology and thus gene flow, and/or impose selective pressures. These results highlight the lingering effect of past climate on genetic variation in species with stable distributions. © 2013 John Wiley & Sons Ltd.

  1. Can compost improve Quercus pubescens Willd establishment in a Mediterranean post-fire shrubland?

    PubMed

    Larchevêque, Marie; Montès, Nicolas; Baldy, Virginie; Ballini, Christine

    2008-06-01

    The aim of the study was to evaluate the effects of sewage sludge compost (control, 20 kg m(-2), 40 kg m(-2)) supplied to Quercus pubescens Willd seedlings planted in a post-fire calcareous site in Provence (France). Changes in soil properties, seedling survival, growth and nutrition were monitored 7 months, 1.5 years and 2.5 years after amendment, and possible trace metal contamination of soil and seedlings by compost was also evaluated. Compost improved overall soil fertility by increasing organic matter, cation exchange capacity, total N and exchangeable P, K, Mg and B concentrations, but 40 kg m(-2) induced a more significant and more durable effect than 20 kg m(-2). However, the compost had no effect on seedling survival and growth, but increased foliar P and B concentrations at 40 kg m(-2). No foliar contamination of seedlings by trace metals occurred, although amendment increased exchangeable Cu and Zn concentrations in soil. Compost P and exchangeable Cu and Zn concentrations could induce eutrophication and water pollution, and limit rates that can be applied without environmental hazard.

  2. [Age structure and dynamics of Quercus wutaishanica population in Lingkong Mountain of Shanxi Province, China].

    PubMed

    Zhang, Jie; Shangguan, Tie-Liang; Duan, Yi-Hao; Guo, Wei; Liu, Wei-Hua; Guo, Dong-Gang

    2014-11-01

    Using the plant survivorship theory, the age structure, and the relationship between tree height and diameter (DBH) of Quercus wutaishanica population in Lingkong Mountain were analyzed, and the static life table was compiled and the survival curve plotted. The shuttle shape in age structure of Q. wutaishanica population suggested its temporal stability. The linear regression significantly fitted the positive correlation between tree height and DBH. The maximal life expectancy was observed among the trees beyond the age of the highest mortality and coincided with the lowest point of mortality density, suggesting the strong vitality of the seedlings and young trees that survived in the natural selection and intraspecific competition. The population stability of the Q. wutaishanica population was characterized by the Deevey-II of the survival curve. The dynamic pattern was characterized by the recession in the early phase, growth in the intermediate phase, and stability in the latter phase.

  3. Presence of understory shrubs constrains carbon gain in sunflecks by advance-regeneration seedlings: evidence from Quercus Rubra seedling grouwing in understory forest patches with or without evergreen shrubs present

    Treesearch

    E.T. Nilsen; T.T. Lei; S.W. Semones

    2009-01-01

    We investigated whether dynamic photosynthesis of understory Quercus rubra L. (Fagaceae) seedlings can acclimate to the altered pattern of sunflecks in forest patches with Rhododendron maximum L. (Ericaceae), an understory evergreen shrub. Maximum photosynthesis (A) and total CO2 accumulated during lightflecks was greatest for 400-s lightflecks, intermediate for 150-s...

  4. [Effects of fire recurrence on fire behaviour in cork oak woodlands (Quercus suber L.) and Mediterranean shrublands over the last fifty years].

    PubMed

    Schaffhauser, Alice; Pimont, François; Curt, Thomas; Cassagne, Nathalie; Dupuy, Jean-Luc; Tatoni, Thierry

    2015-12-01

    Past fire recurrence impacts the vegetation structure, and it is consequently hypothesized to alter its future fire behaviour. We examined the fire behaviour in shrubland-forest mosaics of southeastern France, which were organized along a range of fire frequency (0 to 3-4 fires along the past 50 years) and had different time intervals between fires. The mosaic was dominated by Quercus suber L. and Erica-Cistus shrubland communities. We described the vegetation structure through measurements of tree height, base of tree crown or shrub layer, mean diameter, cover, plant water content and bulk density. We used the physical model Firetec to simulate the fire behaviour. Fire intensity, fire spread, plant water content and biomass loss varied significantly according to fire recurrence and vegetation structure, mainly linked to the time since the last fire, then the number of fires. These results confirm that past fire recurrence affects future fire behaviour, with multi-layered vegetation (particularly high shrublands) producing more intense fires, contrary to submature Quercus woodlands that have not burnt since 1959 and that are unlikely to reburn. Further simulations, with more vegetation scenes according to shrub and canopy covers, will complete this study in order to discuss the fire propagation risk in heterogeneous vegetation, particularly in the Mediterranean area, with a view to a local management of these ecosystems. Copyright © 2015 Académie des sciences. Published by Elsevier SAS. All rights reserved.

  5. Factors limiting regeneration of Quercus alba and Cornus florida in formerly cultivated coastal plain sites, South Carolina.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Riley, Joseph, M., Jr.; Jones, Robert, H.

    2003-01-01

    Riley, J.M. Jr., and R.H.Jones. 2003. Factors limiting regeneration of Quercus alba and Cornus florida in formerly cultivated coastal plain sites, South Carolina. For. Ecol., and Mgt. 177:571-586. To determine the extent that resources, conditions, and herbivoryy limit regeneration of Quercus alba L. and Cornus florida L. in formerly cultivated coastal plain uplands, we planted seedlings of the two species in two pine and one pine-hardwood forest understory and three adjacent clearcuts. Soil carbon and moisture, available nitrogen and phosphorous, and gap light index (GLI) were measured next to each seedling. Over two growing seasons, stem and leaf herbivory weremore » estimated and survival was recorded. At the end of 2 years, all surviving stems were harvested to determine total leaf area and 2-year biomass growth. Survival to the end of the study was not significantly different between clearcuts and understories. However, clearcuts led to significantly greater biomass growth and leaf area for both Q. alba and C. florida. Soil moisture and available nutrients were also greater in the clearcuts. Using separate multiple linear (growth) or logistic (survival) regressions for each combination of three sites, two cutting treatments and two species, we found that soil moisture significantly affected survival in 12.5% and biomass growth in 8.3% of the regressions. Light availability significantly impacted biomass growth in 16.7% of the regressions. Stem and leaf herbivory had very little impact on survival (8.3%), but when combined, these two factors significantly impacted leaf area or biomass growth in 33.3% of the regressions. Seedling responses were highly variable, and no regression model accounted for more that 70.0% of this variation. In our study, stand-scalevariation in seedling responses (especially the difference between clearcut and understory) was much greater than within-stand variation. Of the within stand factors measured, herbivory was clearly the most

  6. Application of plant DNA markers in forensic botany: genetic comparison of Quercus evidence leaves to crime scene trees using microsatellites.

    PubMed

    Craft, Kathleen J; Owens, Jeffrey D; Ashley, Mary V

    2007-01-05

    As highly polymorphic DNA markers become increasingly available for a wide range of plant and animal species, there will be increasing opportunities for applications to forensic investigations. To date, however, relatively few studies have reported using DNA profiles of non-human species to place suspects at or near crime scenes. Here we describe an investigation of a double homicide of a female and her near-term fetus. Leaf material taken from a suspect's vehicle was identified to be that of sand live oak, Quercus geminata, the same tree species that occurred near a shallow grave where the victims were found. Quercus-specific DNA microsatellites were used to genotype both dried and fresh material from trees located near the burial site and from the material taken from the suspect's car. Samples from the local population of Q. geminata were also collected and genotyped in order to demonstrate that genetic variation at four microsatellite loci was sufficient to assign leaves to an individual tree with high statistical certainty. The cumulative average probability of identity for these four loci was 2.06x10(-6). DNA was successfully obtained from the dried leaf material although PCR amplification was more difficult than amplification of DNA from fresh leaves. The DNA profiles of the dried leaves from the suspect's car did not match those of the trees near the crime scene. Although this investigation did not provide evidence that could be used against the suspect, it does demonstrate the potential for plant microsatellite markers providing physical evidence that links plant materials to live plants at or near crime scenes.

  7. Weak trophic interactions among birds, insects and white oak saplings (Quercus alba)

    USGS Publications Warehouse

    Lichtenberg, J.S.; Lichtenberg, D.A.

    2002-01-01

    We examined the interactions among insectivorous birds, arthropods and white oak saplings (Quercus alba L.) in a temperate deciduous forest under 'open' and 'closed' canopy environments. For 2 y, we compared arthropod densities, leaf damage and sapling growth. Saplings from each canopy environment were assigned to one of four treatments: (1) reference, (2) bird exclosure, (3) insecticide and (4) exclosure + insecticide. Sap-feeding insects were the most abundant arthropod feeding guild encountered and birds reduced sap-feeder densities in 1997, but not in 1998. Although there was no detectable influence of birds on leaf-chewer densities in either year, leaf damage to saplings was greater within bird exclosures than outside of bird exclosures in 1997. Insecticide significantly reduced arthropod densities and leaf damage to saplings, but there was no corresponding increase in sapling growth. Growth and biomass were greater for saplings in more open canopy environments for both years. Sap-feeder densities were higher on closed canopy than open canopy saplings in 1997, but canopy environment did not influence the effects of birds on lower trophic levels. Although previous studies have found birds to indirectly influence plant growth and biomass, birds did not significantly influence the growth or biomass of white oak saplings during our study.

  8. Antioxidant and biological properties of bioactive phenolic compounds from Quercus suber L.

    PubMed

    Fernandes, Ana; Fernandes, Iva; Cruz, Luís; Mateus, Nuno; Cabral, Miguel; de Freitas, Victor

    2009-12-09

    Phenolic compounds, namely, hydrolyzable tannins and low molecular weight phenolic compounds, were isolated and purified from Portuguese cork from Quercus suber L. Some of these compounds were studied to evaluate their antioxidant activity, including free-radical scavenging capacity (DPPH method) and reducing capacity (FRAP method). All compounds tested showed significant antioxidant activity, namely, antiradical and reducing properties. The antiradical capacity seemed to increase with the presence of galloyl groups. Regarding the reducing capacity, this structure-activity relationship was not so clear. These compounds were also studied to evaluate the growth inhibitory effect on the estrogen responsive human breast cancer cell line (ER+) MCF-7 and two other colon cancer cell lines (Caco-2 and HT-29). Generally, all the compounds tested exhibited, after a continuous exposure during a 48 h period, a dose-dependent growth inhibitory effect. Relative inhibitory activity was primarily related to the number of phenolic hydroxyl groups (galloyl and HHDP moieties) found in the active structures, with more groups generally conferring increased effects, except for HHDP-di-galloyl-glucose. Mongolicain B showed a greater potential to inhibit the growth of the three cell lines tested, identical to the effect observed with castalagin. Since these compounds are structurally related with each other, this activity might be based within the C-glycosidic ellagitannin moiety.

  9. Isoprene emission rates and fluxes measured above a Mediterranean oak ( Quercus pubescens) forest

    NASA Astrophysics Data System (ADS)

    Simon, V.; Dumergues, L.; Bouchou, P.; Torres, L.; Lopez, A.

    2005-03-01

    The present work, carried out as part of the European fiEld experimentS to COnstrain Models of atmospheric Pollution and Transport of Emissions project (ESCOMPTE), brings a new contribution to the inventory of the main natural hydrocarbons sources that are liable to participate in the production of ozone. The measurement campaign was conducted in Montmeyan, a site close to Marseilles (France), with the aim of quantifying the terpenic emission pattern and the behaviour of Quercus pubescens, an important Mediterranean tree species. Biogenic emissions by Q. pubescens were determined by the enclosure of an intact branch of this tree in a Teflon cuvette. The total monoterpenic emission rates thus recorded were found to reach maximum values ranged between 40 and 350 μg g Dry Weight-1 h -1. Emissions were correlated strongly with leaf temperature and Photosynthetic Active Radiation (PAR). The fluxes were also determined by extrapolating the results of the enclosure method and by using aerodynamic gradient method. They reach around 73 mg m -2 h -1 with the first method and 55 mg m -2 h -1 with the second one. The obtained values fit with a maximal ratio of 2.

  10. Evaluation of Hypoglycemic and Genotoxic Effect of Polyphenolic Bark Extract from Quercus sideroxyla

    PubMed Central

    Soto-García, Marcela; Rosales-Castro, Martha; Escalona-Cardoso, Gerardo N.

    2016-01-01

    Quercus sideroxyla is a wood species whose bark has phenolic compound and should be considered to be bioactive; the hypoglycemic and genotoxic properties of Q. sideroxyla bark were evaluated in this study. Total phenolic compound was determined in crude extract (CE) and organic extract (OE). The OE has the highest amount of phenols (724.1 ± 12.0 GAE/g). Besides, both CE and OE demonstrated effect over the inhibition of α-amylase in vitro. Hypoglycemic activity was assessed by glucose tolerance curve and the area under curve (UAC); OE showed the highest hypoglycemic activity. In addition, diabetes was induced by streptozotocin (65 mg/kg) and the extracts (50 mg/kg) were administered for 10 days; OE showed hypoglycemic effect compared with diabetic control and decreased hepatic lipid peroxidation. Acute toxicity and genotoxicity were evaluated in CE; results of acute toxicity did not show any mortality. Besides, the comet assay showed that CE at a dose of 100 mg/kg did not show any genotoxic effect when evaluated at 24 h, whereas it induced slight damage at 200 mg/kg, with the formation of type 1 comets. PMID:27867402

  11. [Aboveground architecture and biomass distribution of Quercus variabilis].

    PubMed

    Yu, Bi-yun; Zhang, Wen-hui; Hu, Xiao-jing; Shen, Jia-peng; Zhen, Xue-yuan; Yang, Xiao-zhou

    2015-08-01

    The aboveground architecture, biomass and its allocation, and the relationship between architecture and biomass of Quercus variabilis of different diameter classes in Shangluo, south slope of Qinling Mountains were researched. The results showed that differences existed in the aboveground architecture and biomass allocation of Q. variabilis of different diameter classes. With the increase of diameter class, tree height, DBH, and crown width increased gradually. The average decline rate of each diameter class increased firstly then decreased. Q. variabilis overall bifurcation ratio and stepwise bifurcation ratio increased then declined. The specific leaf areas of Q. variabilis of all different diameter classes at vertical direction were 0.02-0.03, and the larger values of leaf mass ratio, LAI and leaf area ratio at vertical direction in diameter level I , II, III appeared in the middle and upper trunk, while in diameter level IV, V, VI, they appeared in the central trunk, with the increase of diameter class, there appeared two peaks in vertical direction, which located in the lower and upper trunk. The trunk biomass accounted for 71.8%-88.4% of Q. variabilis aboveground biomass, while the branch biomass accounted for 5.8%-19.6%, and the leaf biomass accounted for 4.2%-8.6%. With the increase of diameter class, stem biomass proportion of Q. variabilis decreased firstly then increased, while the branch and leaf biomass proportion showed a trend that increased at first then decreased, and then increased again. The aboveground biomass of Q. variabilis was significantly positively correlated to tree height, DBH, crown width and stepwise bifurcation ratio (R2:1), and positively related to the overall bifurcation ratio and stepwise bifurcation ratio (R3:2), but there was no significant correlation. Trunk biomass and total biomass aboveground were negatively related to the trunk decline rate, while branch biomass and leaf biomass were positively related to trunk decline

  12. Combined effects of cotyledon excision and nursery fertilization on root growth, nutrient status and outplanting performance of Quercus variabilis container seedlings.

    PubMed

    Shi, Wenhui; Bloomberg, Mark; Li, Guolei; Su, Shuchai; Jia, Liming

    2017-01-01

    Artificial excision of the distal part of acorns in order to promote germination is well researched in oak seedling cultivation studies. However, studies of combined effects of cotyledon excision and nursery fertilization on container seedlings are lacking, especially for seedling root growth and outplanting performance. This study aimed to explore the main effects of cotyledon excision on Quercus variabilis seedling emergence characteristics and demonstrated the combined effects of cotyledon excision and nursery fertilization on seedling quality to improve Quercus variabilis seedling outplanting performance. Four cotyledon excision treatments and two classes of nursery fertilization were implemented. Seedling emergence was noted every week after sowing. Seedling dry mass, morphology, and nutrient status were assessed at the end of the nursery season. After the first outplanting season, the aforementioned measurements along with seedling survival were determined once again. The results showed that cotyledon excision generally induced greater and more rapid seedling emergence, but did not affect shoot emergence synchronicity. The highest total emergence and emergence rate occurred with Intermediate excision (1/2 of the distal end of acorn was excised). Effects of nutrient loss due to cotyledon excision on seedling quality and outplanting performance were somewhat compensated by nursery fertilization. Nursery fertilization promoted dry mass increment (the net increment from T0 to T2 for dry mass) for excised seedlings after outplanting, resulting in better performance for Slight (1/3 of the distal end of acorn was excised) and Intermediate excision treatments in the field. Thus we conclude Intermediate excision combined with reasonable nursery fertilization can be recommended for production of nursery grown seedlings for afforestation.

  13. Combined effects of cotyledon excision and nursery fertilization on root growth, nutrient status and outplanting performance of Quercus variabilis container seedlings

    PubMed Central

    Shi, Wenhui; Bloomberg, Mark; Li, Guolei; Su, Shuchai; Jia, Liming

    2017-01-01

    Artificial excision of the distal part of acorns in order to promote germination is well researched in oak seedling cultivation studies. However, studies of combined effects of cotyledon excision and nursery fertilization on container seedlings are lacking, especially for seedling root growth and outplanting performance. This study aimed to explore the main effects of cotyledon excision on Quercus variabilis seedling emergence characteristics and demonstrated the combined effects of cotyledon excision and nursery fertilization on seedling quality to improve Quercus variabilis seedling outplanting performance. Four cotyledon excision treatments and two classes of nursery fertilization were implemented. Seedling emergence was noted every week after sowing. Seedling dry mass, morphology, and nutrient status were assessed at the end of the nursery season. After the first outplanting season, the aforementioned measurements along with seedling survival were determined once again. The results showed that cotyledon excision generally induced greater and more rapid seedling emergence, but did not affect shoot emergence synchronicity. The highest total emergence and emergence rate occurred with Intermediate excision (1/2 of the distal end of acorn was excised). Effects of nutrient loss due to cotyledon excision on seedling quality and outplanting performance were somewhat compensated by nursery fertilization. Nursery fertilization promoted dry mass increment (the net increment from T0 to T2 for dry mass) for excised seedlings after outplanting, resulting in better performance for Slight (1/3 of the distal end of acorn was excised) and Intermediate excision treatments in the field. Thus we conclude Intermediate excision combined with reasonable nursery fertilization can be recommended for production of nursery grown seedlings for afforestation. PMID:28545103

  14. Climatic origins predict variation in photoprotective leaf pigments in response to drought and low temperatures in live oaks (Quercus series Virentes).

    PubMed

    Ramírez-Valiente, Jose A; Koehler, Kari; Cavender-Bares, Jeannine

    2015-05-01

    Climate is a major selective force in nature. Exploring patterns of inter- and intraspecific genetic variation in functional traits may explain how species have evolved and may continue evolving under future climate change. Photoprotective pigments play an important role in short-term responses to climate stress in plants but knowledge of their long-term role in adaptive processes is lacking. In this study, our goal was to determine how photoprotective mechanisms, morphological traits and their plasticity have evolved in live oaks (Quercus series Virentes) in response to different climatic conditions. For this purpose, seedlings originating from 11 populations from four live oak species (Quercus virginiana, Q. geminata, Q. fusiformis and Q. oleoides) were grown under contrasting common environmental conditions of temperature (tropical vs temperate) and water availability (droughted vs well-watered). Xanthophyll cycle pigments, anthocyanin accumulation, chlorophyll fluorescence parameters and leaf anatomical traits were measured. Seedlings originating from more mesic source populations of Q. oleoides and Q. fusiformis increased the xanthophyll de-epoxidation state under water-limiting conditions and showed higher phenotypic plasticity for this trait, suggesting adaptation to local climate. Likewise, seedlings originating from warmer climates had higher anthocyanin concentration in leaves under cold winter conditions but not higher de-epoxidation state. Overall, our findings suggest that (i) climate has been a key factor in shaping species and population differences in stress tolerance for live oaks, (ii) anthocyanins are used under cold stress in species with limited freezing tolerance and (iii) xanthophyll cycle pigments are used when photoprotection under drought conditions is needed. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  15. Anatomical basis of the change in leaf mass per area and nitrogen investment with relative irradiance within the canopy of eight temperate tree species

    NASA Astrophysics Data System (ADS)

    Aranda, I.; Pardo, F.; Gil, L.; Pardos, J. A.

    2004-05-01

    Changes in leaf mass per area (LMA), nitrogen content on a mass-basis (N m) and on an area basis (N a) with relative irradiance were assessed in leaves of eight temperate species harvested at different depths in a canopy. Relative irradiance (GSF) at the points of leaf sampling was estimated by hemispheric photographs. There was a strong species-dependent positive relationship between LMA and GSF for all species. Shade-tolerant species such as Fagus sylvatica showed lower LMA for the same GSF than less tolerant species as Quercus pyrenaica or Quercus petraea. The only evergreen species in the study, Ilex aquifollium, had the highest LMA, independent of light environment, with minimum values much higher than the rest of the broad-leaved species studied. There was no relation between N m and GSF for most species studied and only a very weak relation for the relative shade-intolerant species Q. pyrenaica. Within each species, the pattern of N a investment with regard to GSF was linked mainly to LMA. At the same relative irradiance, differences in N a among species were conditioned both by the LMA-GSF relationship and by the species N m value. The lowest N m value was measured in I. aquifollium (14.3 ± 0.6 mg g -1); intermediate values in Crataegus monogyna (16.9 ± 0.6 mg g -1) and Prunus avium (19.1 ± 0.6 mg g -1) and higher values, all in a narrow range (21.3 ± 0.6 to 23 ± 0.6 mg g -1), were measured for the other five species. Changes in LMA with the relative irradiance were linked both to lamina thickness (LT) and to palisade/spongy parenchyma ratio (PP/SP). In the second case, the LMA changes may be related to an increase in lamina density as palisade parenchyma involves higher cell packing than spongy parenchyma. However, since PP/SP ratio showed a weak species-specific relationship with LMA, the increase in LT should be the main cause of LMA variation.

  16. Assessment of forest nutrient pools in view of biomass potentials - a case study from Austria oak stands

    NASA Astrophysics Data System (ADS)

    Yan, S.; Bruckman, V. J.; Glatzel, G.; Hochbichler, E.

    2012-04-01

    As one of the renewable energy forms, bio-energy could help to relieve the pressure which is caused by growing global energy demand. In Austria, large area of forests, traditional utilization of biomass and people's desire to live in a sound environment have supported the positive development of bio-energy. Soil nutrient status is in principle linked with the productivity of the aboveground biomass. This study focuses on K, Ca and Mg pools in soils and aboveground biomass in order to learn more on the temporal dynamics of plant nutrients as indicators for biomass potentials in Quercus dominated forests in northeastern Austria. Three soil types (according to WRB: eutric cambisol, calcic chernozem and haplic luvisol) were considered representative for the area and sampled. We selected nine Quercus petraea dominated permanent plots for this study. Exchangeable cations K, Ca and Mg in the soils were quantified in our study plots. Macronutrients pools of K, Ca and Mg in aboveground biomass were calculated according to inventory data and literature review. The exchangeable cations pool in the top 50 cm of the soil were 882 - 1,652 kg ha-1 for K, 2,661 to 16,510 kg ha-1 for Ca and 320 - 1,850 kg ha-1 for Mg. The nutrient pool in aboveground biomass ranged from 29 to 181 kg ha-1 for K, from 56 to 426 kg ha-1 for Ca and from 4 to 26 kg ha-1 for Mg. The underground exchangeable pools of K, Ca and Mg are generally 10, 22 and 58 times higher than aboveground biomass nutrient pools. Our results showed that the nutrient pools in the mineral soil are sufficient to support the tree growth. The levels of soil nutrients in particular K, Ca and Mg in our study areas are reasonably high and do not indicate the necessity for additional fertilization under current silvicultural practices and biomass extraction rate. The forest in our study areas is in favorable condition to supply biomass as raw material for energy utilization.

  17. The Effects of Pre-Fermentative Addition of Oenological Tannins on Wine Components and Sensorial Qualities of Red Wine.

    PubMed

    Chen, Kai; Escott, Carlos; Loira, Iris; Del Fresno, Juan Manuel; Morata, Antonio; Tesfaye, Wendu; Calderon, Fernando; Benito, Santiago; Suárez-Lepe, Jose Antonio

    2016-10-31

    Today in the wine industry, oenological tannins are widely used to improve wine quality and prevent oxidation in wine aging. With the development of tannin products, new oenological tannins are developed with many specific functions, such as modifying antioxidant effect, colour stabilization and aroma modifications. The aim of this work is to investigate effects of pre-fermentative addition of oenological tannins on wine colour, anthocyanins, volatile compounds and sensorial properties. In this case, Syrah juice was extracted with classic flash thermovinification from fresh must in order to release more colour and tannins. Three types of oenological tannins, which are, respectively, derived from grape skin, seed ( Vitis vinifera ) and French oak ( Quercus robur and Querrus petraea ), were selected to carry out the experiments with seven treatments. Results indicated that tannin treatments significantly improved wine aroma complexity and sensorial properties. However, the concentration of some stable pigments such as Vitisin A, Vitisin A-Ac and Vitisin B was negatively affected by tannin additions. Nevertheless, by means of cluster analysis and principal component analysis, it was observed that higher alcohols were significantly promoted by grape seed tannin while most anthocyanins can be improved by addition of grape tannins. In conclusion, low amount of oenological tannin derived from grape seed is a promising method to be applied especially for young red wine making.

  18. High-resolution isotope measurements resolve rapid ecohydrological dynamics at the soil-plant interface.

    PubMed

    Volkmann, Till H M; Haberer, Kristine; Gessler, Arthur; Weiler, Markus

    2016-05-01

    Plants rely primarily on rainfall infiltrating their root zones - a supply that is inherently variable, and fluctuations are predicted to increase on most of the Earth's surface. Yet, interrelationships between water availability and plant use on short timescales are difficult to quantify and remain poorly understood. To overcome previous methodological limitations, we coupled high-resolution in situ observations of stable isotopes in soil and transpiration water. We applied the approach along with Bayesian mixing modeling to track the fate of (2) H-labeled rain pulses following drought through soil and plants of deciduous tree ecosystems. We resolve how rainwater infiltrates the root zones in a nonequilibrium process and show that tree species differ in their ability to quickly acquire the newly available source. Sessile oak (Quercus petraea) adjusted root uptake to vertical water availability patterns under drought, but readjustment toward the rewetted topsoil was delayed. By contrast, European beech (Fagus sylvatica) readily utilized water from all soil depths independent of water depletion, enabling faster uptake of rainwater. Our results demonstrate that species-specific plasticity and responses to water supply fluctuations on short timescales can now be identified and must be considered to predict vegetation functional dynamics and water cycling under current and future climatic conditions. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  19. In situ assessment of the velocity of carbon transfer by tracing 13 C in trunk CO2 efflux after pulse labelling: variations among tree species and seasons.

    PubMed

    Dannoura, Masako; Maillard, Pascale; Fresneau, Chantal; Plain, Caroline; Berveiller, Daniel; Gerant, Dominique; Chipeaux, Christophe; Bosc, Alexandre; Ngao, Jérôme; Damesin, Claire; Loustau, Denis; Epron, Daniel

    2011-04-01

    Phloem is the main pathway for transferring photosynthates belowground. In situ(13) C pulse labelling of trees 8-10 m tall was conducted in the field on 10 beech (Fagus sylvatica) trees, six sessile oak (Quercus petraea) trees and 10 maritime pine (Pinus pinaster) trees throughout the growing season. Respired (13) CO2 from trunks was tracked at different heights using tunable diode laser absorption spectrometry to determine time lags and the velocity of carbon transfer (V). The isotope composition of phloem extracts was measured on several occasions after labelling and used to estimate the rate constant of phloem sap outflux (kP ). Pulse labelling together with high-frequency measurement of the isotope composition of trunk CO2 efflux is a promising tool for studying phloem transport in the field. Seasonal variability in V was predicted in pine and oak by bivariate linear regressions with air temperature and soil water content. V differed among the three species consistently with known differences in phloem anatomy between broadleaf and coniferous trees. V increased with tree diameter in oak and beech, reflecting a nonlinear increase in volumetric flow with increasing bark cross-sectional area, which suggests changes in allocation pattern with tree diameter in broadleaf species. Discrepancies between V and kP indicate vertical changes in functional phloem properties. © 2011 The Authors. New Phytologist © 2011 New Phytologist Trust.

  20. Diplodia quercivora sp. nov.: a new species of Diplodia found on declining Quercus canariensis trees in Tunisia.

    PubMed

    Linaldeddu, Benedetto T; Franceschini, Antonio; Alves, Artur; Phillips, Alan J L

    2013-01-01

    During a study of the species of Botryosphaeriaceae associated with oak decline in Tunisia, a large collection of Diplodia strains were isolated from Quercus afares, Q. canariensis and Q. suber trees showing a progressive dieback of shoots and branches, trunk canker and exudates and collar rot. Most of the isolates were identified as Diplodia corticola, while two isolates from Q. canariensis were morphologically and phylogenetically (ITS and tef1-α sequences data) distinct from all other known species of Diplodia. They are described here as Diplodia quercivora sp. nov. In addition, phylogenetic analyses showed for the first time the existence of two distinct lineages within D. corticola. In artificial inoculation experiments, D. quercivora caused necrotic lesions on bark and wood of three Mediterranean oak species, Q. ilex, Q. pubescens and Q. suber. In particular, among the oak species tested, Q. pubescens was the most susceptible.

  1. Seawater spray injury to Quercus acutissima leaves: crystal deposition, stomatal clogging, and chloroplast degeneration.

    PubMed

    Kim, Ki Woo; Koo, Kyosang; Kim, Pan-Gi

    2011-05-01

    Effects of seawater spray on leaf structure were investigated in Quercus acutissima by electron microscopy and X-ray microanalysis. Two-year-old seedlings of Q. acutissima were sprayed with seawater and kept in a greenhouse maintained at 25°C. The most recognizable symptoms of seawater-sprayed seedlings included leaf necrosis, crystal deposition, stomatal clogging, and chloroplast degeneration. Field emission scanning electron microscopy revealed that the leaf surface was covered with additional layers of remnants of seawater spray. Composed of sodium and chloride, cube-shaped crystals (halite) were prevalently found on trichomes and epidermis, and formed aggregates. Meanwhile, wedge-shaped crystals were deposited on epidermis and consisted of calcium and sulfur. As a result of stomatal clogging by crystal deposition on the abaxial surface, it was conceivable that plant respiration became severely hampered. Transmission electron microscopy showed degenerated cytoplasm of seawater-sprayed leaves. It was common to observe severe plasmolysis and disrupted chloroplasts with a reduced number of thylakoids in grana. These results indicate that foliar applications of seawater were sufficient to induce necrosis of Q. acutissima seedlings as an abiotic disturbance factor. Copyright © 2010 Wiley-Liss, Inc.

  2. Temporal variation in leaf nitrogen partitioning of a broad-leaved evergreen tree, Quercus myrsinaefolia.

    PubMed

    Yasumura, Yuko; Ishida, Atsushi

    2011-01-01

    We examined temporal changes in the amount of nitrogenous compounds in leaves from the outer and inner parts of the crown of Quercus myrsinaefolia growing in a seasonal climate. Throughout the leaf life span, metabolic protein and Rubisco content closely correlated with total nitrogen content, while structural protein content was relatively stable after full leaf expansion. Chlorophyll content was affected by shading as well as total nitrogen content in outer leaves that were overtopped by new shoots in the second year. Outer leaves showed a large seasonal variation in photosynthetic nitrogen-use efficiency (PNUE; the light-saturated photosynthetic rate per unit leaf nitrogen content) during the first year of their life, with PNUE decreasing from the peak in summer towards winter. Outer and inner leaves both showed age-related decline in PNUE in the second year. There were no such drastic changes in leaf nitrogen partitioning that could explain seasonal and yearly variations in PNUE. Nitrogen resorption occurred in overwintering leaves in spring. Metabolic protein explained the majority of nitrogen being resorbed, whereas structural protein, which was low in degradability, contributed little to nitrogen resorption.

  3. Application of Quercus infectoria extract as a natural antimicrobial agent for chicken egg decontamination.

    PubMed

    Tayel, Ahmed A; El-Sedfy, Mahmoud A; Ibrahim, Ahmed I; Moussa, Shaaban H

    2018-04-21

    Egg contamination with microbial pathogens is an enduring worldwide concern. Natural products are frequently recommended as ideal alternatives to substitute synthetic and chemical antimicrobials. Oak galls (Quercus infectoria) are aberrant growths on oak trees that have many medicinal and pharmaceutical applications. Q. infectoria extract (QIE) antimicrobial action was assessed against many microbial species, and used for eggshell decontamination. QIE antimicrobial activity was evidenced against Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, Salmonella Typhimurium and Candida albicans, using different assay methods. Disinfection of eggshell microbial contamination, by immersion in 1% QIE solution, sharply reduced total colony count, yeasts and molds, Enterobacteriaceae. E. coli and S. aureus were completely inhibited after 60min of immersion in QIE. QIE biochemical analysis revealed elevated contents of phenolic and flavonoid compounds. The captured micrographs of S. aureus cells treated with QIE showed strong alterations in cell morphology; cells were entirely lysed and ruptured after 6h of treatment. QIE can be recommended as an effective and natural disinfectant for decontaminating eggshells from pathogenic microorganisms. Copyright © 2018 Asociación Argentina de Microbiología. Publicado por Elsevier España, S.L.U. All rights reserved.

  4. Tropospheric ozone effects on chemical composition and decomposition rate of Quercus ilex L. leaves.

    PubMed

    Baldantoni, Daniela; Fagnano, Massimo; Alfani, Anna

    2011-02-01

    We determined the effects of tropospheric ozone on the chemical composition of Quercus ilex L. leaves and their decomposition, with a view to assessing the influence of ozone on nutrient cycling and the sustainability of Mediterranean holm oak forests. Forming one of the most widespread thermophilous vegetation communities in the area, Q. ilex is a dominant and widespread evergreen oak in the Mediterranean, where concentrations of tropospheric ozone are particularly high. The dynamics of carbon, nitrogen, lignin and cellulose concentrations were monitored for six months during the decomposition of leaves from plants subjected to controlled ozone exposure in open-top chambers. Ozone-exposed leaves, compared to unexposed leaves, showed no significant differences in C, N, lignin and cellulose concentrations prior to the incubation in mesocosms. However, during decomposition, leaves from plants exposed to ozone lost C significantly more slowly and showed a higher C/N ratio than unexposed leaves. Ozone exposure significantly slowed down the decomposition rate, indicating a negative effect of tropospheric ozone on nutrient cycling, which may reduce long-term sustainability of the holm oak forest. Copyright © 2010 Elsevier B.V. All rights reserved.

  5. Alteration of foliar flavonoid chemistry induced by enhanced UV-B radiation in field-grown Pinus ponderosa, Quercus rubra and Pseudotsuga menziesii.

    PubMed

    Warren, Jeffrey M; Bassman, John H; Mattinson, D Scott; Fellman, John K; Edwards, Gerald E; Robberecht, Ronald

    2002-03-01

    Chromatographic analyses of foliage from several tree species illustrate the species-specific effects of UV-B radiation on both quantity and composition of foliar flavonoids. Pinus ponderosa, Quercus rubra and Pseudotsuga menziesii were field-grown under modulated ambient (1x) and enhanced (2x) biologically effective UV-B radiation. Foliage was harvested seasonally over a 3-year period, extracted, purified and the flavonoid fraction applied to a mu Bondapak/C(18) column HPLC system sampling at 254 nm. Total flavonoid concentrations in Quercus rubra foliage were more than twice (leaf area basis) that of the other species; Pseudotsuga menziesii foliage had intermediate levels and P. ponderosa had the lowest concentrations of total flavonoids. No statistically significant UV-B radiation-induced effects were found in total foliar flavonoid concentrations for any species; however, concentrations of specific compounds within each species exhibited significant treatment effects. Higher (but statistically insignificant) levels of flavonoids were induced by UV-B irradiation in 1- and 2-year-old P. ponderosa foliage. Total flavonoid concentrations in 2-year-old needles increased by 50% (1x ambient UV-B radiation) or 70% (2x ambient UV-B radiation) from that of 1-year-old tissue. Foliar flavonoids of Q. rubra under enhanced UV-B radiation tended to shift from early-eluting compounds to less polar flavonoids eluting later. There were no clear patterns of UV-B radiation effects on 1-year-old P. menziesii foliage. However, 2-year-old tissue had slightly higher foliar flavonoids under the 2x UV-B radiation treatment compared to ambient levels. Results suggest that enhanced UV-B radiation will alter foliar flavonoid composition and concentrations in forest tree species, which could impact tissue protection, and ultimately, competition, herbivory or litter decomposition.

  6. Mycorrhization of pecan trees (Carya illinoinensis) with commercial truffle species: Tuber aestivum Vittad. and Tuber borchii Vittad.

    PubMed

    Benucci, Gian Maria Niccolò; Bonito, Gregory; Baciarelli Falini, Leonardo; Bencivenga, Mattia

    2012-07-01

    Pecan (Carya illinoinensis) is an economically important nut tree native to the Mississippi basin and cultivated worldwide. In North America, species of truffles are regularly found fruiting in productive pecan orchards and the truffle genus Tuber appears to be abundant in pecan ectomycorrhizal (EM) communities. As an initial step to determine the feasibility of co-cropping European truffle species with pecan, we evaluated whether mycorrhizae of highly esteemed European truffle species (Tuber aestivum Vittad. T. borchii and T. macrosporum) could be formed on pecan seedlings. Seedlings were inoculated with truffle spores and were grown in a greenhouse for 10 months. Levels of EM colonization were estimated visually and quantified by counting EM tips. Ectomycorrhizae were identified both morphologically and molecularly with species-specific amplification and by sequencing of the ITS region of the nuclear ribosomal DNA (nrDNA). Both T. borchii and T. aestivum spores produced well-formed ectomycorrhizae on pecan seedlings with average root colonization levels of about 62% and 42%, respectively, whereas no ectomycorrhizae of T. macrosporum were formed. The anatomy and morphology of these truffle ectomycorrhizae on pecan was characterized. The co-cropping of T. aestivum and T. borchii may hold promise as an additional stream of revenue to pecan growers, although, further studies are needed to assess whether this symbiosis is maintained after planting in the field and whether truffle production can be supported by this host species.

  7. Morphological and molecular identification of the ectomycorrhizal association of Lactarius fumosibrunneus and Fagus grandifolia var. mexicana trees in eastern Mexico.

    PubMed

    Garay-Serrano, Edith; Bandala, Victor Manuel; Montoya, Leticia

    2012-11-01

    A population of Fagus grandifolia var. mexicana (covering ca. 4.7 ha) is established in a montane cloud forest refuge at Acatlan Volcano in eastern Mexico (Veracruz State), and it represents one of only ten populations of this species known to occur in the country (each stand covers ca. 2-35 ha in extension) and one of the southernmost in the continent. Sporocarps of several ectomycorrhizal macrofungi have been observed in the area, and among them, individuals of the genus Lactarius are common in the forest. However, the morphological and molecular characterization of ectomycorrhizae is still in development. Currently, two species of Lactarius have been previously documented in the area. Through the phylogenetic analysis of the internal transcribed spacer (ITS) region from basidiomes and ectomycorrhizae, we identified the Lactarius fumosibrunneus ectomycorrhiza. The host, F. grandifolia var. mexicana, was determined comparing the amplified ITS sequence from ectomycorrhizal root tips in the GenBank database with Basic Local Alignment Search Tool. The mycorrhizal system of L. fumosibrunneus is monopodial-pyramidal, characterized by its shiny, white to silver and pruinose surface, secreting a white latex when damaged, composed of three plectenchymatous mantle layers, with diverticulated terminal elements at the outer mantle. It lacks emanating hyphae, rhizomorphs, and sclerotia. A detailed morphological and anatomical description, illustrations, and photographs of the ectomycorrhiza are presented. The comparison of L. fumosibrunneus and other Lactarius belonging to subgenus Plinthogalus is presented.

  8. De novo post-illumination monoterpene burst in Quercus ilex (holm oak).

    PubMed

    Srikanta Dani, K G; Marino, Giovanni; Taiti, Cosimo; Mancuso, Stefano; Atwell, Brian J; Loreto, Francesco; Centritto, Mauro

    2017-02-01

    Explicit proof for de novo origin of a rare post-illumination monoterpene burst and its consistency under low O 2 , shows interaction of photorespiration, photosynthesis, and isoprenoid biosynthesis during light-dark transitions. Quercus ilex L (holm oak) constitutively emits foliar monoterpenes in an isoprene-like fashion via the methyl erythritol phosphate (MEP) pathway located in chloroplasts. Isoprene-emitting plants are known to exhibit post-illumination isoprene burst, a transient emission of isoprene in darkness. An analogous post-illumination monoterpene burst (PiMB) had remained elusive and is reported here for the first time in Q. ilex. Using 13 CO 2 labelling, we show that PiMB is made from freshly fixed carbon. PiMB is rare at ambient (20%) O 2 , absent at high (50%) O 2 , and becomes consistent in leaves exposed to low (2%) O 2 . PiMB is stronger and occurs earlier at higher temperatures. We also show that primary and secondary post-illumination CO 2 bursts (PiCO 2 B) are sensitive to O 2 in Q. ilex. The primary photorespiratory PiCO 2 B is absent under both ambient and low O 2 , but is induced under high (>50%) O 2 , while the secondary PiCO 2 B (of unknown origin) is absent under ambient, but present at low and high O 2 . We propose that post-illumination recycling of photorespired CO 2 competes with the MEP pathway for photosynthetic carbon and energy, making PiMB rare under ambient O 2 and absent at high O 2 . PiMB becomes consistent when photorespiration is suppressed in Q. ilex.

  9. Anaerobic co-digestion of steam-treated Quercus serrata chips and sewage sludge under mesophilic and thermophilic conditions.

    PubMed

    Wang, Feng; Hidaka, Taira; Sakurai, Kensuke; Tsumori, Jun

    2014-08-01

    The biodegradation of Quercus serrata chips was evaluated by anaerobic digestion under various steam explosion conditions. In continuous experiments, untreated chips (W₀) and chips steam-treated at less than 1.0 MPa (W₁) and 2.0 MPa (W₄) were co-digested with sewage sludge (S₁ and S₂) taken from two different wastewater treatment plants. The apparent methane yield of W₁ and W₄ co-digested with S₁ (thermophilic) was 261 dm(3)/kgVS (volatile solids) and 248 dm(3)/kgVS, respectively. The apparent methane yield of W₄ co-digested with S₂ was 258 dm(3)/kgVS (mesophilic) and 271 dm(3)/kgVS (thermophilic). Methane production was inhibited by W₀ due to components released during hydrolysis. The methane conversion ratio of pretreated chips obtained in batch experiments varied from 40.5% to 53.8% (mesophilic) and from 49.0% to 63.7% (thermophilic). The methane conversion ratio increased with decreasing acid-soluble lignin content in the chips. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Seasonal photosynthate allocation and leaf chemistry in relation to herbivory in the coast live oak, Quercus agrifolia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mauffette, Y.

    1987-01-01

    The coast live oak (Quercus agrifolia Nee) is an evergreen tree species distributed along the coastal range of California. The seasonal photosynthate allocation and leaf chemistry were studied on fifteen oak trees from spring 1982 to spring 1984. Branches of Q. agrifolia were labeled with /sup 14/CO/sub 2/ at monthly intervals, to determine photosynthate allocation to growth and to defensive compounds throughout the year. Labeled leaves were chemically analyzed to determine the activity present in various metabolic fractions (sugar, lipid, starch, phenolic, tannin, protein, organic and amino acid, and cell wall material). The utilization of photosynthate for the different chemicalmore » fractions varied during the seasons. New leaves allocated a significant proportion of carbon to phenolics early in the growing season, whereas later in the season more carbon was allocated to cell wall material. Old leaves maintained more consistent allocation patterns throughout seasons, and a large proportion of carbon was devoted to storage products.« less

  11. Mycorrhizae and their potential use in the agricultural and forestry industries.

    PubMed

    Peterson, R L; Piché, Y; Plenchette, C

    1984-01-01

    Mycorrhizal fungi associated with plant roots increase the absorption of nutrients, particularly phosphorus, and thus enhance the growth of crop plants and trees. Vesicular-arbuscular mycorrhizae (VAM) occur in approximately 90% of all vascular plants including most of the important agricultural species, whereas ectomycorrhizae are found in most of the economically important tree species of the temperate regions of the world, and in some tropical trees. These symbiotic associations are, therefore, important in crop and biomass production. For this reason they are receiving considerable attention in agriculture and forestry. Currently, VAM are utilized in fumigated soils, greenhouse crops, and in the reclamation of disturbed sites. Ectomycorrhizae are employed in the establishment of trees in nurseries, in reforestation programs, and in the production of containerized seedlings. Production of VAM and ectomycorrhiza inoculum for large scale projects is now feasible but many basic questions related to persistence of these fungi in field situations, competition with other microorganisms, and particularly the most efficient fungi to use for particular hosts remain largely unanswered.

  12. Using isotopic patterns of ectomycorrhizal and saprotrophic fungi to elucidate fungal sources of carbon and nitrogen in a Norway spruce stand

    NASA Astrophysics Data System (ADS)

    Chen, Janet; Rinne-Garmston, Katja; Penttilä, Reijo; Hobbie, Erik; Mäkipää, Raisa

    2016-04-01

    To predict effects of global change on fungal community structure and the consequential effects on carbon (C) and nitrogen (N) cycling, we first need to understand different fungal sources of C and N. We determined sources of C and N by measuring δ15N and δ13C of an extensive collection of ectomycorrhizal and saprotrophic sporocarps and their potential substrates from Norway spruce (Picea abies) stands in southern Finland. The substrates included organic soil, roots in organic soil, mineral soil, roots in mineral soil, moss, needles, needles in litter, branches, twigs in litter, wood and decay wood from stages I-V. Notably, δ15N and δ13C analysis of wood in decay stages I-V was a novel measurement, as were our associations between wood decay fungi and the decay stage of trees. Decay stage of wood significantly correlated with the δ15N and δ13C of associated saprotrophic wood decay fungi species. Fungi were lower in δ15N by 0.3-0.7‰ when associated with decay wood in stages II and III compared to I and IV and higher in δ13C by 0.9-1.2‰ when associated with decay stage I compared to decay stages II-IV. The ectomycorrhizal fungi, Piloderma fallax, was significantly correlated with 15N enrichment of decay wood upon its introduction in decay stages III and IV that continued to the later decay stage V, with δ15N of decay stage V 1.5‰ higher than decay stage IV. These results indicate that wood decay fungi rely on C and N from various wood decay stages and influence C and N pools of wood as well. Litter decay fungi were lower in δ13C than wood decay fungi by 1.9‰ and higher in δ15N by 3‰ and isotopically tracked their C and N sources. Calocera viscosa, Gymnopus acervatus, and Leotia lubrica were highly 15N-enriched compared to other saprotrophic fungi and they had δ15N values similar to fungi with hydrophobic ectomycorrhizae indicating function more similar to ectomycorrhizal fungi or N sources similar to this functional group. Similar to other

  13. Quercus rubra-associated ectomycorrhizal fungal communities of disturbed urban sites and mature forests.

    PubMed

    Karpati, Amy S; Handel, Steven N; Dighton, John; Horton, Thomas R

    2011-08-01

    The presence and quality of the belowground mycorrhizal fungal community could greatly influence plant community structure and host species response. This study tests whether mycorrhizal fungal communities in areas highly impacted by anthropogenic disturbance and urbanization are less species rich or exhibit lower host root colonization rates when compared to those of less disturbed systems. Using a soil bioassay, we sampled the ectomycorrhizal fungal (EMF) communities associating with Quercus rubra (northern red oak) seedlings in soil collected from seven sites: two mature forest reference sites and five urban sites of varying levels of disturbance. Morphological and polymerase chain reaction-restriction fragment length polymorphism analyses of fungi colonizing root tips revealed that colonization rates and fungal species richness were significantly lower on root systems of seedlings grown in disturbed site soils. Analysis of similarity showed that EMF community composition was not significantly different among several urban site soils but did differ significantly between mature forest sites and all but one urban site. We identified a suite of fungal species that occurred across several urban sites. Lack of a diverse community of belowground mutualists could be a constraint on urban plant community development, especially of late-successional woodlands. Analysis of urban EMF communities can add to our understanding of urban plant community structure and should be addressed during ecological assessment before pragmatic decisions to restore habitats are framed.

  14. Identification of quantitative trait loci affecting ectomycorrhizal symbiosis in an interspecific F1 poplar cross and differential expression of genes in ectomycorrhizas of the two parents: Populus deltoides and Populus trichocarpa

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Labbe, Jessy L; Jorge, Veronique; Vion, Patrice

    A Populus deltoides Populus trichocarpa F1 pedigree was analyzed for quantitative trait loci (QTLs) affecting ectomycorrhizal development and for microarray characterization of gene networks involved in this symbiosis. A 300 genotype progeny set was evaluated for its ability to form ectomycorrhiza with the basidiomycete Laccaria bicolor. The percentage of mycorrhizal root tips was determined on the root systems of all 300 progeny and their two parents. QTL analysis identified four significant QTLs, one on the P. deltoides and three on the P. trichocarpa genetic maps. These QTLs were aligned to the P. trichocarpa genome and each contained several megabases andmore » encompass numerous genes. NimbleGen whole-genome microarray, using cDNA from RNA extracts of ectomycorrhizal root tips from the parental genotypes P. trichocarpa and P. deltoides, was used to narrow the candidate gene list. Among the 1,543 differentially expressed genes (p value 0.05; 5.0-fold change in transcript level) having different transcript levels in mycorrhiza of the two parents, 41 transcripts were located in the QTL intervals: 20 in Myc_d1, 14 in Myc_t1, and seven in Myc_t2, while no significant differences among transcripts were found in Myc_t3. Among these 41 transcripts, 25 were overrepresented in P. deltoides relative to P. trichocarpa; 16 were overrepresented in P. trichocarpa. The transcript showing the highest overrepresentation in P. trichocarpa mycorrhiza libraries compared to P. deltoides mycorrhiza codes for an ethylene-sensitive EREBP-4 protein which may repress defense mechanisms in P. trichocarpa while the highest overrepresented transcripts in P. deltoides code for proteins/genes typically associated with pathogen resistance.« less

  15. Foliage nitrogen turnover: differences among nitrogen absorbed at different times by Quercus serrata saplings

    PubMed Central

    Ueda, Miki U.; Mizumachi, Eri; Tokuchi, Naoko

    2011-01-01

    Background and Aims Nitrogen turnover within plants has been intensively studied to better understand nitrogen use strategies. However, differences among the nitrogen absorbed at different times are not completely understood and the fate of nitrogen absorbed during winter is largely uncharacterized. In the present study, nitrogen absorbed at different times of the year (growing season, winter and previous growing season) was traced, and the within-leaf nitrogen turnover of a temperate deciduous oak Quercus serrata was investigated. Methods The contributions of nitrogen absorbed at the three different times to leaf construction, translocation during the growing season, and the leaf-level resorption efficiency during leaf senescence were compared using 15N. Key Results Winter- and previous growing season-absorbed nitrogen significantly contributed to leaf construction, although the contribution was smaller than that of growing season-absorbed nitrogen. On the other hand, the leaf-level resorption efficiency of winter- and previous growing season-absorbed nitrogen was higher than that of growing season-absorbed nitrogen, suggesting that older nitrogen is better retained in leaves than recently absorbed nitrogen. Conclusions The results demonstrate that nitrogen turnover in leaves varies with nitrogen absorption times. These findings are important for understanding plant nitrogen use strategies and nitrogen cycles in forest ecosystems. PMID:21515608

  16. Quercus Suber L. Cork Extracts Induce Apoptosis in Human Myeloid Leukaemia HL-60 Cells.

    PubMed

    Bejarano, Ignacio; Godoy-Cancho, Belén; Franco, Lourdes; Martínez-Cañas, Manuel A; Tormo, María A

    2015-08-01

    Quercus suber L. cork contains a diversity of phenolic compounds, mostly low molecular weight phenols. A rising number of reports support with convergent findings that polyphenols evoke pro-apoptotic events in cancerous cells. However, the literature related to the anti-cancer bioactivity of Q. suber L. cork extractives (QSE) is still limited. Herein, we aim to describe the antitumor potential displayed by cork extractives obtained by different extraction methods in the human promyelocytic leukaemia cells. In order to quantify the effects of QSE on cancer cells viability, phosphatidylserine exposure, caspase-3 activity, mitochondrial membrane potential and cell cycle were evaluated. The results indicated that the QSE present a time-dependent and dose-dependent cytotoxicity in the human promyelocytic leukaemia cells. Such a noxious effect leads these leukaemia cells to their death through apoptotic processes by altering the mitochondrial outer membrane potential, activating caspase-3 and externalizing phosphatidylserine. However, cells cycle progression was not affected by the treatments. This study contributes to open a new way to use this natural resource by exploiting its anti-cancer properties. Moreover, it opens new possibilities of application of cork by-products, being more efficient in the sector of cork-based agriculture. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  17. Metabolic responses of Quercus ilex seedlings to wounding analysed with nuclear magnetic resonance profiling.

    PubMed

    Sardans, J; Gargallo-Garriga, A; Pérez-Trujillo, M; Parella, T J; Seco, R; Filella, I; Peñuelas, J

    2014-03-01

    Plants defend themselves against herbivory at several levels. One of these is the synthesis of inducible chemical defences. Using NMR metabolomic techniques, we studied the metabolic changes of plant leaves after a wounding treatment simulating herbivore attack in the Mediterranean sclerophyllous tree Quercus ilex. First, an increase in glucose content was observed in wounded plants. There was also an increase in the content of C-rich secondary metabolites such as quinic acid and quercitol, both related to the shikimic acid pathway and linked to defence against biotic stress. There was also a shift in N-storing amino acids, from leucine and isoleucine to asparagine and choline. The observed higher content of asparagine is related to the higher content of choline through serine that was proved to be the precursor of choline. Choline is a general anti-herbivore and pathogen deterrent. The study shows the rapid metabolic response of Q. ilex in defending its leaves, based on a rapid increase in the production of quinic acid, quercitol and choline. The results also confirm the suitability of (1)H NMR-based metabolomic profiling studies to detect global metabolome shifts after wounding stress in tree leaves, and therefore its suitability in ecometabolomic studies. © 2013 German Botanical Society and The Royal Botanical Society of the Netherlands.

  18. [Effects of precipitation and interspecific competition on Quercus mongolica and pinus koraiensis seedlings growth].

    PubMed

    Wu, Jing-Lian; Wang, Miao; Lin, Fei; Hao, Zhan-Qing; Ji, Lan-Zhu; Liu, Ya-Qin

    2009-02-01

    Aiming at the variation of precipitation pattern caused by global warming, a field simulation experiment was conducted to study the effects of 30% increase (+W) and decrease (-W) of precipitation on the morphology, growth, and biomass partitioning of mono- and mixed cultured seedlings of Quercus mongolica and Pinus koraiensis, the two dominant tree species in temperate broad-leaved Korean pine mixed forest in Changbai Mountains. Comparing with monoculture, mixed culture increased the canopy width and main root length of Q. mongolica seedlings, but decreased the basal diameter, plant height, leaf number, and dry masses of root, stem, leaf and whole plant of P. koraiensis seedlings significantly. Treatment (-W) increased the stem/mass ratio while decreased the main root length of Q. mongolica seedlings, and decreased the main root length, leaf number, dry masses of leaf and whole plant, and leaf/mass ratio, while increased the stem/mass ratio of P. koraiensis seedlings significantly, compared with treatment CK. Treatment (+W) had no significant effect on these indices of the two species. At early growth stage, interspecific competition and precipitation pattern had significant effects on the morphology and growth of the seedlings, and the responses were much stronger for P. koraiensis than for Q. mongolica.

  19. Antiviral activity of Quercus persica L.: High efficacy and low toxicity

    PubMed Central

    Karimi, Ali; Moradi, Mohammad-Taghi; Saeedi, Mojtaba; Asgari, Sedigheh; Rafieian-kopaei, Mahmoud

    2013-01-01

    Background: Drug-resistant strain of Herpes simplex virus type 1 (HSV-I) has increased the interest in the use of natural substances. Aims: This study was aimed to determine minimum inhibitory concentration of hydroalchoholic extract of a traditionally used herbal plant, Quercus persica L., on HSV-1 replication on baby hamster kidney (BHK) cells. Setting: The study was conducted in Shahrekord University of Medical Sciences, Iran. Design: This was an experimental study. Materials and Methods: BHK cells were grown in monolayer culture with Dulbecco's modified Eagle's medium (DMEM) supplemented with 5% fetal calf serum and plated onto 48-well culture plates. Fifty percent cytotoxic concentration (CC50%) of Q. persica L. on BHK cells was determined. Subsequently, 50% inhibitory concentration (IC50%) of the extract on replication of HSV-1 both in interacellular and exteracellular cases was assessed. Statistical Analysis: Statistic Probit model was used for statistical analysis. The dose-dependent effect of antiviral activity of the extracts was determined by linear regression. Results: Q. persica L. had no cytotoxic effect on this cell line. There was significant relationship between the concentration of the extract and cell death (P<0.01). IC50s of Q. persica L. on HSV-1, before and after attachment to BHK cells were 1.02 and 0.257 μg/mL, respectively. There was significant relationship between the concentration of this extract and inhibition of cytopathic effect (CPE) (P<0.05). Antioxidant capacity of the extract was 67.5%. Conclusions: The hydroalchoholic extract of Q. persica L. is potentially an appropriate and promising anti herpetic herbal medicine. PMID:24516836

  20. Sewage sludge effects on mesofauna and cork oak (Quercus suber L.) leaves decomposition in a Mediterranean forest firebreak.

    PubMed

    Pernin, Céline; Cortet, Jérôme; Joffre, Richard; Le Petit, Jean; Torre, Franck

    2006-01-01

    Effects of sewage sludge on litter mesofauna communities (Collembola and Acari) and cork oak (Quercus suber L.) leaf litter decomposition have been studied during 18 mo using litterbags in an in situ experimental forest firebreak in southeastern France. The sludge (2.74 t DM ha(-1) yr(-1)) was applied to fertilize and maintain a pasture created on the firebreak. Litterbag colonization had similar dynamics on both the control and fertilized plots and followed a typical Mediterranean pattern showing a greater abundance in spring and autumn and a lower abundance in summer. After 9 mo of litter colonization, Collembola and Acari, but mainly Oribatida, were more abundant on the sludge-fertilized plot. Leaf litter decomposition showed a similar pattern on both plots, but it was faster on the control plot. Furthermore, leaves from the fertilized plot were characterized by greater nitrogen content. Both chemical composition of leaves and sludges and the decomposition state of leaves have significantly affected the mesofauna community composition from each plot.

  1. Fine root morphological traits determine variation in root respiration of Quercus serrata.

    PubMed

    Makita, Naoki; Hirano, Yasuhiro; Dannoura, Masako; Kominami, Yuji; Mizoguchi, Takeo; Ishii, Hiroaki; Kanazawa, Yoichi

    2009-04-01

    Fine root respiration is a significant component of carbon cycling in forest ecosystems. Although fine roots differ functionally from coarse roots, these root types have been distinguished based on arbitrary diameter cut-offs (e.g., 2 or 5 mm). Fine root morphology is directly related to physiological function, but few attempts have been made to understand the relationships between morphology and respiration of fine roots. To examine relationships between respiration rates and morphological traits of fine roots (0.15-1.4 mm in diameter) of mature Quercus serrata Murr., we measured respiration of small fine root segments in the field with a portable closed static chamber system. We found a significant power relationship between mean root diameter and respiration rate. Respiration rates of roots<0.4 mm in mean diameter were high and variable, ranging from 3.8 to 11.3 nmol CO2 g(-1) s(-1), compared with those of larger diameter roots (0.4-1.4 mm), which ranged from 1.8 to 3.0 nmol CO2 g(-1) s(-1). Fine root respiration rate was positively correlated with specific root length (SRL) as well as with root nitrogen (N) concentration. For roots<0.4 mm in diameter, SRL had a wider range (11.3-80.4 m g(-1)) and was more strongly correlated with respiration rate than diameter. Our results indicate that a more detailed classification of fine roots<2.0 mm is needed to represent the heterogeneity of root respiration and to evaluate root biomass and root morphological traits.

  2. Detecting Sulfuric and Nitric Acid Rain Stresses on Quercus glauca through Hyperspectral Responses

    PubMed Central

    Wang, Shanqian; Zhang, Xiuying; Ma, Yuandan; Li, Xinhui; Zhang, Xiaomin; Liu, Lei

    2018-01-01

    Acid rain, which has become one of the most severe global environmental issues, is detrimental to plant growth. However, effective methods for monitoring plant responses to acid rain stress are currently lacking. The hyperspectral technique provides a cost-effective and nondestructive way to diagnose acid rain stresses. Taking a widely distributed species (Quercus glauca) in Southern China as an example, this study aims to monitor the hyperspectral responses of Q. glauca to simulated sulfuric acid rain (SAR) and nitric acid rain (NAR). A total of 15 periods of leaf hyperspectral data under four pH levels of SAR and NAR were obtained during the experiment. The results showed that hyperspectral information could be used to distinguish plant responses under acid rain stress. An index (green peak area index, GPAI) was proposed to indicate acid rain stresses, based on the significantly variations in the region of 500–660 nm. Light acid rain (pH 4.5 SAR and NAR) promoted Q. glauca growth relative to the control groups (pH 5.6 SAR and NAR); moderate acid rain (pH 3.0 SAR) firstly promoted and then inhibited plant growth, while pH 3.0 NAR showed mild inhibitory effects during the experiment; and heavy acid rain (pH 2.0) significantly inhibited plant growth. Compared with NAR, SAR induced more serious damages to Q. glauca. These results could help monitor acid rain stress on plants on a regional scale using remote sensing techniques. PMID:29522488

  3. Detecting Sulfuric and Nitric Acid Rain Stresses on Quercus glauca through Hyperspectral Responses.

    PubMed

    Wang, Shanqian; Zhang, Xiuying; Ma, Yuandan; Li, Xinhui; Cheng, Min; Zhang, Xiaomin; Liu, Lei

    2018-03-09

    Acid rain, which has become one of the most severe global environmental issues, is detrimental to plant growth. However, effective methods for monitoring plant responses to acid rain stress are currently lacking. The hyperspectral technique provides a cost-effective and nondestructive way to diagnose acid rain stresses. Taking a widely distributed species ( Quercus glauca ) in Southern China as an example, this study aims to monitor the hyperspectral responses of Q. glauca to simulated sulfuric acid rain (SAR) and nitric acid rain (NAR). A total of 15 periods of leaf hyperspectral data under four pH levels of SAR and NAR were obtained during the experiment. The results showed that hyperspectral information could be used to distinguish plant responses under acid rain stress. An index (green peak area index, GPAI) was proposed to indicate acid rain stresses, based on the significantly variations in the region of 500-660 nm. Light acid rain (pH 4.5 SAR and NAR) promoted Q. glauca growth relative to the control groups (pH 5.6 SAR and NAR); moderate acid rain (pH 3.0 SAR) firstly promoted and then inhibited plant growth, while pH 3.0 NAR showed mild inhibitory effects during the experiment; and heavy acid rain (pH 2.0) significantly inhibited plant growth. Compared with NAR, SAR induced more serious damages to Q. glauca . These results could help monitor acid rain stress on plants on a regional scale using remote sensing techniques.

  4. PAH detection in Quercus robur leaves and Pinus pinaster needles: A fast method for biomonitoring purpose.

    PubMed

    De Nicola, F; Concha Graña, E; Aboal, J R; Carballeira, A; Fernández, J Á; López Mahía, P; Prada Rodríguez, D; Muniategui Lorenzo, S

    2016-06-01

    Due to the complexity and heterogeneity of plant matrices, new procedure should be standardized for each single biomonitor. Thus, here is described a matrix solid-phase dispersion extraction method, previously used for moss samples, improved and modified for the analyses of PAHs in Quercus robur leaves and Pinus pinaster needles, species widely used in biomonitoring studies across Europe. The improvements compared to the previous procedure are the use of Florisil added with further clean-up sorbents, 10% deactivated silica for pine needles and PSA for oak leaves, being these matrices rich in interfering compounds, as shown by the gas chromatography-mass spectrometry analyses acquired in full scan mode. Good trueness, with values in the range 90-120% for the most of compounds, high precision (intermediate precision between 2% and 12%) and good sensitivity using only 250mg of samples (limits of quantification lower than 3 and 1.5ngg(-1), respectively for pine and oak) were achieved by the selected procedures. These methods proved to be reliable for PAH analyses and, having advantage of fastness, can be used in biomonitoring studies of PAH air contamination. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Organic matter and nutrients associated with fine root turnover in a white oak stand. [Quercus albus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Joslin, J.D.; Henderson, G.S.

    1987-06-01

    Organic matter and nutrients cycled by fine root turnover were quantified in a mature white oak (Quercus alba L.) stand and compared to contributions from litterfall. The budget method, a revised version of the traditional repeated sampling method, was used to measure root turnover. The magnitude of the live and dead pools of three size classes of fine (<5 mm diameter) roots were monitored bimonthly for 14 months. Decomposition rates over these intervals were also measured, while production and mortality were calculated. Litterfall was collected simultaneously, and the nutrient concentrations of the various detritus components determined. Root pools fluctuated less,more » and total root turnover biomass (220 g m/sup -2/ yr/sup -1/) was also less than previously noted in most other stands studied. Fine root turnover accounted for 30% of the total detritus production and 20-40% of the turnover of the five macronutrients (N, P, K, Ca, Mg) studied. Differences with previous studies suggest that there may be rather large species and/or site-related differences in the amount of energy various stands allocate for fine root maintenance. For. Sci. 33(2):330-346.« less

  6. Seventy-five years of masting and rodent population peaks in Norway: Why do wood mice not follow the rules?

    PubMed

    Selås, Vidar

    2016-09-01

    Wood mouse (Apodemus sylvaticus) populations are expected to show a peak in autumn in the year after a mast year of sessile oak (Quercus petraea), because stored acorns increase winter survival. In Aust-Agder, South Norway, only 16 of 34 mast years from 1939-2014 were followed by a year with a peak in the wood mouse population. For many of the remaining instances, there rather was a minor peak 2 or 3 years after the mast. In multiple logistic regression models, the probability of a wood mouse population peak after a mast year of sessile oak was positively related to a snow-corrected temperature index of the previous winter and negatively to a small rodent population index of the previous autumn. The present study thus supports the hypothesis that longer periods with snow-free ground and subzero temperatures negatively affect wood mouse winter survival. Because it may be difficult for wood mice to survive on a diet consisting of acorns alone, the negative relationship with the rodent population index of the previous year is most likely caused by an over-exploitation of necessary alternative food resources, such as other plant seeds and arthropods. Stored acorns not utilized during one winter are assumed to benefit wood mice in a succeeding winter, giving a delayed population peak relative to the mast year. © 2016 International Society of Zoological Sciences, Institute of Zoology/Chinese Academy of Sciences and John Wiley & Sons Australia, Ltd.

  7. Temporal changes of soil respiration under different tree species.

    PubMed

    Akburak, Serdar; Makineci, Ender

    2013-04-01

    Soil respiration rates were measured monthly (from April 2007 to March 2008) under four adjacent coniferous plantation sites [Oriental spruce (Picea orientalis L.), Austrian pine (Pinus nigra Arnold), Turkish fir (Abies bornmulleriana L.), and Scots pine (Pinus sylvestris L.)] and adjacent natural Sessile oak forest (Quercus petraea L.) in Belgrad Forest-Istanbul/Turkey. Also, soil moisture, soil temperature, and fine root biomass were determined to identify the underlying environmental variables among sites which are most likely causing differences in soil respiration. Mean annual soil moisture was determined to be between 6.3 % and 8.1 %, and mean annual temperature ranged from 13.0°C to 14.2°C under all species. Mean annual fine root biomass changed between 368.09 g/m(2) and 883.71 g/m(2) indicating significant differences among species. Except May 2007, monthly soil respiration rates show significantly difference among species. However, focusing on tree species, differences of mean annual respiration rates did not differ significantly. Mean annual soil respiration ranged from 0.56 to 1.09 g C/m(2)/day. The highest rates of soil respiration reached on autumn months and the lowest rates were determined on summer season. Soil temperature, soil moisture, and fine root biomass explain mean annual soil respiration rates at the highest under Austrian pine (R (2) = 0.562) and the lowest (R (2) = 0.223) under Turkish fir.

  8. Tree height growth indicating drought and nitrogen deposition

    NASA Astrophysics Data System (ADS)

    Gulyás, Krisztina; Berki, Imre

    2016-04-01

    Several studies have been reported the increasing trends of forest growth in Europe in the last decades. Sites, where the water is not limiting factor, the increasing carbon dioxide (CO2) concentration and high nitrogen deposition influenced accelerated tree height growth. However few researches show that the drying climate conditions and water deficit cause slow/not definite trend of tree height growth in forests. The aim of our study presents the effects of drying climate and surplus nitrogen on height growth of sessile oak (Quercus petraea). Almost 50 sessile oak stands (with zonal site condition) have been measured along a humid-arid climatic transect in Hungary. Top heights of the trees are the best dendrometric parameter for indicating the changing site conditions. Observed top heights dates were compared with 50-years climate condition along the humid-arid climatic transect. Tree height growth in the dry and mesic section of climatic gradient slowed at the last 4 decades, because of the increasing frequency of dry periods. Accelerated height growth were measured in the mesic and humid section of transect, where the nitrogen deposition due to local air pollution were higher than the background deposition. These results draw attention to the importance of the drying climate and surplus nitrogen in the global changes. Keywords: climate change impacts, drought periods, surplus deposition, tree height growth Acknowledgements: Research is supported by the "Agroclimate.2" (VKSZ_12-1-2013-0034) EU-national joint funded research project.

  9. The effects of gap size on some microclimate variables during late summer and autumn in a temperate broadleaved deciduous forest.

    PubMed

    Abd Latif, Zulkiflee; Blackburn, George Alan

    2010-03-01

    The creation of gaps can strongly influence forest regeneration and habitat diversity within forest ecosystems. However, the precise characteristics of such effects depend, to a large extent, upon the way in which gaps modify microclimate and soil water content. Hence, the aim of this study was to understand the effects of gap creation and variations in gap size on forest microclimate and soil water content. The study site, in North West England, was a mixed temperate broadleaved deciduous forest dominated by mature sessile oak (Quercus petraea), beech (Fagus sylvatica) and ash (Fraxinus excelsior) with some representatives of sycamore (Acer pseudoplatanus). Solar radiation (I), air temperature (T(A)), soil temperature (T(S)), relative humidity (h), wind speed (v) and soil water content (Psi) were measured at four natural treefall gaps created after a severe storm in 2006 and adjacent sub-canopy sites. I, T(A), T(S), and Psi increased significantly with gap size; h was consistently lower in gaps than the sub-canopy but did not vary with gap size, while the variability of v could not be explained by the presence or size of gaps. There were systematic diurnal patterns in all microclimate variables in response to gaps, but no such patterns existed for Psi. These results further our understanding of the abiotic and consequent biotic responses to gaps in broadleaved deciduous forests created by natural treefalls, and provide a useful basis for evaluating the implications of forest management practices.

  10. Nitrogen partitioning in oak leaves depends on species, provenance, climate conditions and soil type.

    PubMed

    Hu, B; Simon, J; Kuster, T M; Arend, M; Siegwolf, R; Rennenberg, H

    2013-01-01

    Climate-tolerant tree species and/or provenances have to be selected to ensure the high productivity of managed forests in Central Europe under the prognosticated climate changes. For this purpose, we studied the responses of saplings from three oak species (i.e. Quercus robur, Q. petraea and Q. pubescens) and provenances of different climatic origin (i.e. low or high rainfall, low or high temperature habitats) with regard to leaf nitrogen (N) composition as a measure of N nutrition. Saplings were grown in model ecosystems on either calcareous or acidic soil and subjected to one of four treatments (control, drought, air warming or a combination of drought and air warming). Across species, oak N metabolism responded to the influence of drought and/or air warming with an increase in leaf amino acid N concentration at the expense of structural N. Moreover, provenances or species from drier habitats were more tolerant to the climate conditions applied, as indicated by an increase in amino acid N (comparing species) or soluble protein N (comparing provenances within a species). Furthermore, amino acid N concentrations of oak leaves were significantly higher on calcareous compared to acidic soil. From these results, it can be concluded that seeds from provenances or species originating from drier habitats and - if available - from calcareous soil types may provide a superior seed source for future forest establishment. © 2012 German Botanical Society and The Royal Botanical Society of the Netherlands.

  11. Seasonally dynamic fungal communities in the Quercus macrocarpa phyllosphere differ between urban and nonurban environments.

    PubMed

    Jumpponen, A; Jones, K L

    2010-04-01

    *The fungal richness, diversity and community composition in the Quercus macrocarpa phyllosphere were compared across a growing season in trees located in six stands within and outside a small urban center using 454-sequencing and DNA tagging. The approaches did not differentiate between endophytic and epiphytic fungal communities. *Fungi accumulated in the phyllosphere rapidly and communities were temporally dynamic, with more than a third of the analyzed operational taxonomic units (OTUs) and half of the BLAST-inferred genera showing distinct seasonal patterns. The seasonal patterns could be explained by fungal life cycles or environmental tolerances. *The communities were hyperdiverse and differed between the urban and nonurban stands, albeit not consistently across the growing season. Foliar macronutrients (nitrogen (N), potassium (K) and sulfur (S)), micronutrients (boron (B), manganese (Mn) and selenium (Se)) and trace elements (cadmium (Cd), lead (Pb) and zinc (Zn)) were enriched in the urban trees, probably as a result of anthropogenic activities. Because of correlations with the experimental layout, these chemical elements should not be considered as community drivers without further empirical studies. *We suggest that a combination of mechanisms leads to differences between urban and nonurban communities. Among those are stand isolation and size, nutrient and pollutant accumulation plus stand management, including fertilization and litter removal.

  12. Carbon transfer from photosynthesis to below ground fine root/hyphae respiration in Quercus serrata using stable carbon isotope pulse labeling

    NASA Astrophysics Data System (ADS)

    Dannoura, M.; Kominami, Y.; Takanashi, S.; Takahashi, K.

    2013-12-01

    Studying carbon allocation in trees is a key to better understand belowground carbon cycle and its response to climate change. Tracing 13C in tree and soil compartments after pulse labeling is one of powerful tool to study the fate of carbon in forest ecosystems. This experiment was conducted in Yamashiro experimental forest, Kyoto, Japan. Annual mean temperature and precipitation from 1994 to 2009 are 15.5 ° C and 1,388 mm respectively. The branch pulse labeling were done 7 times in 2011 using same branch of Quercus serrata (H:11.7 m, DBH; 33.7 cm) to see seasonal variations of carbon velocity. Whole crown labeling of Quercus serrata (H:9 m, DBH; 13.7 cm) was done in 2012 to study carbon allocation and to especially focus on belowground carbon flux until to the hyphae respiration. Pure 13CO2 (99.9%) was injected to the labeling chamber which was set to branch or crown. Then, after one hour of branch labeling and 3.5 hour for crown labeling, the chamber was opened. Trunk respiration chambers, fine root chambers and hyphae chambers were set to the target tree to trace labeled carbon in the CO2 efflux. 41 μm mesh was used to exclude ingrowth of roots into hyphae chambers. The results show that the velocity of carbon through the tree varied seasonally, with higher velocity in summer than autumn, averaging 0.47 m h-1. Half-lives of labeled carbon in autotrophic respiration were similar above and below ground during the growing season, but they were twice longer in trunk than in root in autumn. From the whole crown labeling done end of growing season, the 13CO2 signal was observed 25 hours after labeling in trunk chamber and 34-37.7 hours after labeling in fine root and hyphae respiration almost simultaneously. Half-lives of 13 was longer in trunk than below ground. Trunk respiration was still using labelled carbon during winter suggesting that winter trunk respiration is partly fueled by carbon stored in the trunk at the end of the growing season.

  13. Growth and seed production of sawtooth oak (`quercus acutissima`) 22 years after direct seeding. Forest Service research note

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goelz, J.C.G.; Carlson, D.W.

    Sawtooth oak (Quercus acutissima Carruth) was direct seeded at two locations, one with a poorly drained clay soil and the other with a well-drained silty clay loam. For comparison, Nuttall oak (Q. nuttallii Palmer) was direct seeded on the poorly drained clay soil. On the well-drained silty clay loam, sawtooth oak was 18 ft taller and 2.4 inches larger in d.b.h. at age 22 than on the poorly drained clay soil. On the clay, sawtooth oak grew faster than Nuttall oak, but survival was lower. Almost all sawtooth oaks were producing acorns on both sites; however, no developing acorns weremore » found on the Nuttall oaks. Sawtooth oak is a viable alternative for planting on a wide range of Mississippi Delta forest types. Because sawtooth oak has a poorer form than Nuttal oak, its primary use is as a source of wildlife food. Sawtooth oak could be included in plantings with the multiple objectives of timber production and wildlife use because it grows well and could potentially be used for pulpwood.« less

  14. Is variation in susceptibility to Phytophthora ramorum correlated with population genetic structure in coast live oak (Quercus agrifolia)?

    PubMed

    Dodd, Richard S; Hüberli, Daniel; Douhovnikoff, Vlad; Harnik, Tamar Y; Afzal-Rafii, Zara; Garbelotto, Matteo

    2005-01-01

    California coastal woodlands are suffering severe disease and mortality as a result of infection from Phytophthora ramorum. Quercus agrifolia is one of the major woodland species at risk. This study investigated within- and among-population variation in host susceptibility to inoculation with P. ramorum and compared this with population genetic structure using molecular markers. Susceptibility was assessed using a branch-cutting inoculation test. Trees were selected from seven natural populations in California. Amplified fragment length polymorphism molecular markers were analysed for all trees used in the trials. Lesion sizes varied quantitatively among individuals within populations, with up to an eightfold difference. There was little support for population differences in susceptibility. Molecular structure also showed a strong within-population, and weaker among-population, pattern of variation. Our data suggest that susceptibility of Q. agrifolia to P. ramorum is variable and is under the control of several gene loci. This variation exists within populations, so that less susceptible local genotypes may provide the gene pool for regeneration of woodlands where mortality is high.

  15. Impact of wildfire return interval on the ectomycorrhizal resistant propagules communities of a Mediterranean open forest.

    PubMed

    Buscardo, Erika; Rodríguez-Echeverría, Susana; Martín, María P; De Angelis, Paolo; Pereira, João Santos; Freitas, Helena

    2010-08-01

    Ectomycorrhizal (ECM) fungi, in particular their spores and other resistant propagules, play an important role in secondary succession processes that facilitate regeneration after disturbance events. In this study, the effects of high and low wildfire frequencies (respectively short and long fire return intervals) on the resistant propagules communities (RPCs) of a Mediterranean open pine forest were compared. Soil samples were collected in four mountain sites with different fire return intervals and used to test ectomycorrhiza development in two hosts, Pinus pinaster and Quercus suber. RPCs were characterized by direct sequencing of fungal internal transcribed spacer (ITS) regions from individual ECM root tips. Eighteen ECM species were detected in the bioassay. The most frequently found fungi were Cenococcum geophilum, Inocybe jacobi, Thelephora terrestris, Tomentella ellisii on both hosts and Rhizopogon luteolus and R. roseolus on maritime pine. A short fire return interval reduced the species richness of the ECM community found on Q. suber, promoted species like R. roseolus and reduced the abundance of other species (e.g. R. luteolus). The abundance of I. jacobi was positively affected by long fire return interval, but decreased significantly with recurrent fires. These results indicate that changes in fire frequency can alter the structure, composition and diversity of ECM communities, which could compromise the resilience of the ecosystem in highly disturbed areas. Copyright © 2010 The British Mycological Society. Published by Elsevier Ltd. All rights reserved.

  16. Influence of environmental factors and air composition on the emission of {alpha}-pinene from Quercus ilex leaves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Loreto, F.; Tricoli, D.; Ciccioli, P.

    1996-01-01

    We studied the emission of {alpha}-pinene from Quercus ilex leaves. Only the abaxial side of the hypostomatous Q. ilex leaf emits {alpha}-pinene. Light induced photosynthesis and {alpha}-pinene emission. However, the response of photosynthesis to dark-to-light transitions was faster than that of {alpha}-pinene, suggesting that ATP controls the emission. The emission was higher at 30 than at 20{degrees}C, whereas photosynthesis did not change. Therefore, the relationship between photosynthesis and {alpha}-pinene emission does not always hold. When CO{sub 2} was removed from the air, transpiration was stimulated and transpiration was reduced, but {alpha}-pinene emission was unaffected. Therefore, the emission depends on themore » availability of photosynthetic carbon, is not saturated at ambient CO{sub 2}, and is not dependent on stomatal opening. The pattern of {alpha}-pinene emission from Q. ilex is different from that of plants having specialized structures for storage and emission of terpenes. We suggest that {alpha}-pinene emitted by Q. ilex leaves is synthesized in the chloroplasts and shares the same biochemical pathway with isoprene emitted by isoprene-emitting oak species. 28 refs., 8 figs., 1 tab.« less

  17. Effect of Hydro-alcoholic Extract of Persian Oak (Quercus brantii) in Experimentally Gastric Ulcer

    PubMed Central

    Azizi, Shahrzad; Ghasemi Pirbalouti, Abdollah; Amirmohammadi, Mahdi

    2014-01-01

    Persian oak (Quercus brantii Lindl.) belongs the family Fagaceae, is a medicinal plant which seed flour is used to treat inflammatory and gastric ulcers by the tribes in south western Iran. The current study was done to evaluate the effect of hydro-alcoholic extract of Q. brantii seed flour for treatment of gastric ulcers induced by ethanol in Wistar rats. The hydro-alcoholic extract of Q. brantii was tested orally at doses of 250, 500, and 1000 mg/Kg, control group and standard drug (omperazole) on experimentally gastric ulceration. At the 3, 6, 9, and 14th days, ulcer index in mm2 and histopathological findings were evaluated. Results indicated the size of ulcers significantly reduced at 9, and 14 days after of Q. brantii extract treatment. Curative effect in the hydro-alcoholic induced gastric damage was 100% at 1000 mg/Kg and omeprazole, 99.8 % at 500 mg/Kg, and 95.4% at 250 mg/Kg after 14 days. Results of histopathological investigation showed the thickness of ulcerated mucosa was similar to the normal mucosa with 1000 mg/Kg of Q. brantii hydro-alcoholic extract after 14 days but in the groups treated by 250, and 500 mg/Kg, superficial erosions were visible in the central portion of the healed ulcers. In conclusion, the hydro-alcoholic extract of Q. brantii had active components (tannin = 8.2%) that accelerates ulcer healing and thus supported its traditional use. PMID:25276198

  18. Photosynthesis and Photosynthetic Electron Flow in the Alpine Evergreen Species Quercus guyavifolia in Winter

    PubMed Central

    Huang, Wei; Hu, Hong; Zhang, Shi-Bao

    2016-01-01

    Alpine evergreen broadleaf tree species must regularly cope with low night temperatures in winter. However, the effects of low night temperatures on photosynthesis in alpine evergreen broadleaf tree species are unclear. We measured the diurnal photosynthetic parameters before and after cold snap for leaves of Quercus guyavifolia growing in its native habitat at 3290 m. On 11 and 12 December 2013 (before cold snap), stomatal and mesophyll conductances (gs and gm), CO2 assimilation rate (An), and total electron flow through PSII (JPSII) at daytime were maintained at high levels. The major action of alternative electron flow was to provide extra ATP for primary metabolisms. On 20 December 2013 (after cold snap), the diurnal values of gs, gm, An, and JPSII at daytime largely decreased, mainly due to the large decrease in night air temperature. Meanwhile, the ratio of photorespiration and alternative electron flow to JPSII largely increased on 20 December. Furthermore, the high levels of alternative electron flow were accompanied with low rates of extra ATP production. A quantitative limitation analysis reveals that the gm limitation increased on 20 December with decreased night air temperature. Therefore, the night air temperature was an important determinant of stomatal/mesophyll conductance and photosynthesis. When photosynthesis is inhibited following freezing night temperatures, photorespiration and alternative electron flow are important electron sinks, which support the role of photorespiration and alternative electron flow in photoportection for alpine plants under low temperatures. PMID:27812359

  19. Effect of Hydro-alcoholic Extract of Persian Oak (Quercus brantii) in Experimentally Gastric Ulcer.

    PubMed

    Azizi, Shahrzad; Ghasemi Pirbalouti, Abdollah; Amirmohammadi, Mahdi

    2014-01-01

    Persian oak (Quercus brantii Lindl.) belongs the family Fagaceae, is a medicinal plant which seed flour is used to treat inflammatory and gastric ulcers by the tribes in south western Iran. The current study was done to evaluate the effect of hydro-alcoholic extract of Q. brantii seed flour for treatment of gastric ulcers induced by ethanol in Wistar rats. The hydro-alcoholic extract of Q. brantii was tested orally at doses of 250, 500, and 1000 mg/Kg, control group and standard drug (omperazole) on experimentally gastric ulceration. At the 3, 6, 9, and 14(th) days, ulcer index in mm(2) and histopathological findings were evaluated. Results indicated the size of ulcers significantly reduced at 9, and 14 days after of Q. brantii extract treatment. Curative effect in the hydro-alcoholic induced gastric damage was 100% at 1000 mg/Kg and omeprazole, 99.8 % at 500 mg/Kg, and 95.4% at 250 mg/Kg after 14 days. Results of histopathological investigation showed the thickness of ulcerated mucosa was similar to the normal mucosa with 1000 mg/Kg of Q. brantii hydro-alcoholic extract after 14 days but in the groups treated by 250, and 500 mg/Kg, superficial erosions were visible in the central portion of the healed ulcers. In conclusion, the hydro-alcoholic extract of Q. brantii had active components (tannin = 8.2%) that accelerates ulcer healing and thus supported its traditional use.

  20. [Predicting the impact of global warming on the geographical distribution pattern of Quercus variabilis in China].

    PubMed

    Li, Yao; Zhang, Xing-wang; Fang, Yan-ming

    2014-12-01

    The geographical distribution of Quercus variabilis in China with its climate characteristics was analyzed based on DIVA-GIS which was also used to estimate the response of future potential distribution to global warming by Bioclim and Domain models. Analysis results showed the geographical distribution of Q. variabilis could be divided into 7 subregions: Henduan Mountains, Yunnan-Guizhou Plateau, North China, East China, Liaodong-Shandong Peninsula, Taiwan Island, and Qinling-Daba Mountains. These subregions are across 7 temperature zones, 2 moisture regions and 17 climatic subregions, including 8 climate types. The modern abundance center of Q. variabilis is Qinling, Daba and Funiu mountains. The condition of mean annual temperature 7.5-19.8 degrees C annual precipitation 471-1511 mm, is suitable for Q. variabilis. Areas under the receiver operating characteristic curve (AUC values), of Domain and Boiclim models were 0.910, 0.779; the former predicted that the potential regions of high suitability for Q. variabilis are Qinling, Daba, Funiu, Tongbai, and Dabie mountains, eastern and western Yunnan-Guizhou Plateau, hills of southern Jiangsu and Anhui, part of the mountains in North China. Global warming might lead to the shrinking in suitable region and retreating from the south for Q. variabilis.

  1. Photosynthetic and stomatal acclimation to elevated CO{sub 2} depends on soil type in Quercus prinus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bunce, J.A.

    1995-06-01

    Quercus prinus (L.) seedlings grown outdoors at ambient and elevated (ambient + 350 ppm) CO{sub 2} with a fertile soil had no photosynthetic acclimation to elevated CO{sub 2} and no stomatal response to growth or measurement CO{sub 2}. In contrast, seedlings grown with soil collected from a Q. prinus stand had photosynthetic and stomatal acclimation, and stomatal conductance was sensitive to measurement CO{sub 2}. In plants grown with the native soil, light-saturated stomatal conductance measured at the growth CO{sub 2} was reduced by 54% at elevated CO{sub 2}, compared to the short-term reduction of 36%. Photosynthetic acclimation in plants grownmore » with the native soil reduced the stimulation of light-saturated photosynthesis at elevated CO{sub 2} from a factor of 1.9 to a factor of 1.3. In contrast to the dependence of photosynthetic and stomatal acclimation on soil type, the response of leaf respiration to elevated CO{sub 2} was the same for both soils. Respiration of leaves was reduced in the elevated CO{sub 2} treatment by 41 % on a leaf area basis. However, this effect was immediately reversible by altering the measurement CO{sub 2}, indicating that no acclimation of respiration occurred.« less

  2. Taxonomic and Functional Diversity of a Quercus pyrenaica Willd. Rhizospheric Microbiome in the Mediterranean Mountains

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cobo-Díaz, Jose F.; Fernández-González, Antonio J.; Villadas, Pablo J.

    Altitude significantly affects vegetation growth and distribution, including the developmental stages of a forest. We used shotgun Illumina sequencing to analyze microbial community composition and functional potential in melojo-oak ( Quercus pyrenaica Willd.) rhizospheric soil for three different development stages along an altitudinal gradient: (a) a low altitude, non-optimal site for forest maintenance; (b) an intermediate altitude, optimal site for a forest; and (c) a high altitude, expansion site with isolated trees but without a real forest canopy. We observed that, at each altitude, the same microbial taxa appear both in the taxonomic analysis of the whole metagenome and inmore » the functional analysis of the methane, sulfur and nitrogen metabolisms. Although there were no major differences at the functional level, there were significant differences in the abundance of each taxon at the phylogenetic level between the rhizospheres of the forest (low and intermediate altitudes) and the expansion site. Proteobacteria and Actinobacteria were the most differentially abundant phyla in forest soils compared to the expansion site rhizosphere. Moreover, Verrucomicrobia, Bacteroidetes and Nitrospirae phyla were more highly represented in the non-forest rhizosphere. Our study suggests that rhizospheric microbial communities of the same tree species may be affected by development stage and forest canopy cover via changes in soil pH and the C/N ratio.« less

  3. Taxonomic and Functional Diversity of a Quercus pyrenaica Willd. Rhizospheric Microbiome in the Mediterranean Mountains

    DOE PAGES

    Cobo-Díaz, Jose F.; Fernández-González, Antonio J.; Villadas, Pablo J.; ...

    2017-10-12

    Altitude significantly affects vegetation growth and distribution, including the developmental stages of a forest. We used shotgun Illumina sequencing to analyze microbial community composition and functional potential in melojo-oak ( Quercus pyrenaica Willd.) rhizospheric soil for three different development stages along an altitudinal gradient: (a) a low altitude, non-optimal site for forest maintenance; (b) an intermediate altitude, optimal site for a forest; and (c) a high altitude, expansion site with isolated trees but without a real forest canopy. We observed that, at each altitude, the same microbial taxa appear both in the taxonomic analysis of the whole metagenome and inmore » the functional analysis of the methane, sulfur and nitrogen metabolisms. Although there were no major differences at the functional level, there were significant differences in the abundance of each taxon at the phylogenetic level between the rhizospheres of the forest (low and intermediate altitudes) and the expansion site. Proteobacteria and Actinobacteria were the most differentially abundant phyla in forest soils compared to the expansion site rhizosphere. Moreover, Verrucomicrobia, Bacteroidetes and Nitrospirae phyla were more highly represented in the non-forest rhizosphere. Our study suggests that rhizospheric microbial communities of the same tree species may be affected by development stage and forest canopy cover via changes in soil pH and the C/N ratio.« less

  4. [Effects of light intensity on Quercus liaotungensis seed germination and seedling growth].

    PubMed

    Yan, Xing-fu; Wang, Jian-li; Zhou, Li-biao

    2011-07-01

    This paper studied the effects of different shading (55.4%, 18.9%, 5.5%, 2.2%, 0.5% , and 0.3% natural sunlight) on the seed germination and seedling growth of Quercus liaotungensis. The seed germination rate and germination index were the highest (72.5% and 0.22, respectively) at 55.4% natural sunlight, declined with decreasing light intensity, and were the lowest (42.5% and 0.11, respectively) at 0.3% natural sunlight. Strong light had definite delaying effect on the germination. The index of germination vigor increased with decreasing light intensity, being the maximum at 0.5% natural sunlight. The delay of seed germination under strong light could be the selective tradeoff on varied seed fates. Strong light benefited the basal stem diameter and root system growth and dry mass accumulation of Q. liaotunensis seedling, but resulted in the minimum seedlings height (6.06 cm). Greater morphological plasticity was observed for the seedlings under different shading, which lent support to the higher adaptability of the seedlings to light environment. For example, the specific leaf area, specific shoot length, specific root length, and chlorophyll b and total chlorophyll contents were the maximum at 0.5% natural sunlight, being 142.57 cm2 x g(-1), 156.86 cm x g(-1), 271.87 cm x g(-1), 0.07 g x cm(-2), and 0.24 g x cm(-2), respectively, and the minimum at 55.4% natural sunlight, being 44.89 cm2 x g(-1), 52.84 cm x g(-1), 101.98 cm x g(-1), 0.04 g x cm(-2), and 0.15 g x cm(-2), respectively. The variation of the root/shoot ratio of Q. liaotungensis seedlings under different shading could be the effects of the combination of light intensity and water availability.

  5. Chemical characterization and extractives composition of heartwood and sapwood from Quercus faginea.

    PubMed

    Miranda, Isabel; Sousa, Vicelina; Ferreira, Joana; Pereira, Helena

    2017-01-01

    Heartwood and sapwood of Quercus faginea were evaluated in relation to summative chemical composition and non-polar and polar extracts composition, including an assessment of antioxidant properties (DPPH and FRAP). Twenty trees from two sites in Portugal were analysed. Heartwood had approximately two times more solvent extractible compounds than sapwood (on average 19.0% and 9.5%). The lipophilic extractible compounds were below 1%, and most of them were polar e.g. ethanol-soluble compounds corresponded to 65% of total extractives in heartwood and 43% in sapwood. Lignin content was similar in sapwood and heartwood (28.1% and 28.6% of extractive-free wood respectively) as well as the sugar composition. Site did not influence the chemical composition. The lipophilic extractible compounds from both sapwood and heartwood included mainly saturated fatty acids (23.0% and 36.9% respectively) and aromatic compounds were also abundant in sapwood (22.9%). The ethanol-water extractibles had a high content of phenolic substances (558.0 and 319.4 mg GAE/g extract, respectively of heartwood and sapwood). The polyphenolic composition was similar in heartwood and sapwood with higher content of ellagitannins (168.9 and 153.5 mg tannic acid/g of extract in sapwood and heartwood respectively) and very low content of condensed tannins. The antioxidant activity was very high with IC50 of 2.6 μg/ml and 3.3 μg/ml for sapwood and heartwood respectively, as compared to standard antioxidants (IC50 of 3.8 μg/ml for Trolox). The ferric reducing ability was 2.8 and 2.0 mMol Trolox equivalents/g extract of heartwood and sapwood respectively. The variability between trees was low and no differences between the two sites were found. Q. faginea showed a very good potential for cooperage and other applications for which a source of compounds with antioxidant properties is desirable.

  6. [Effects of simulated acid rain on Quercus glauca seedlings photosynthesis and chlorophyll fluorescence].

    PubMed

    Li, Jia; Jiang, Hong; Yu, Shu-quan; Jiang, Fu-wei; Yin, Xiu-min; Lu, Mei-juan

    2009-09-01

    Taking the seedlings of Quercus glauca, a dominant evergreen broadleaf tree species in subtropical area, as test materials, this paper studied their photosynthesis, chlorophyll fluorescence, and chlorophyll content under effects of simulated acid rain with pH 2.5, 4.0, and 5.6 (CK). After 2-year acid rain stress, the net photosynthetic rate of Q. glauca increased significantly with decreasing pH of acid rain. The acid rain with pH 2.5 and 4.0 increased the stomatal conductance and transpiration rate, and the effect was more significant under pH 2.5. The intercellular CO2 concentration decreased in the order of pH 2.5 > pH 5.6 > pH 4.0. The maximum photosynthetic rate, light compensation point, light saturation point, and dark respiration rate were significantly higher under pH 2.5 and 4.0 than under pH 5.6, while the apparent quantum yield was not sensitive to acid rain stress. The maximal photochemical efficiency of PS II and the potential activity of PS II under pH 2.5 and 4.0 were significantly higher than those under pH 5.6. The relative chlorophyll content was in the order of pH 2.5 > pH 5.6 > pH 4.0, and there was a significant difference between pH 2.5 and 4.0. All the results suggested that the photosynthesis and chlorophyll fluorescence of Q. glauca increased under the effects of acid rain with pH 2.5 and 4.0, and the acid rain with pH 2.5 had more obvious effects.

  7. Recurrent fires and environment shape the vegetation in Quercus suber L. woodlands and maquis.

    PubMed

    Schaffhauser, Alice; Curt, Thomas; Véla, Errol; Tatoni, Thierry

    2012-06-01

    The effects of fire recurrence on vegetation patterns in Quercus suber L. and Erica-Cistus communities in Mediterranean fire-prone ecosystems of south-eastern France were examined on stands belonging to 5 fire classes, corresponding to different numbers of fires (from 0 to 4) and time intervals between fires since 1959. A common pool of species was identified among the plots, which was typical of both open and closed maquis. Fire recurrence reduced the abundance of trees and herbs, whereas it increased the abundance of small shrubs. Richness differed significantly between the most contrasting classes of fire recurrence, with maximal values found in control plots and minimal values in plots that had burned recurrently and recently. Equitability indices did not vary significantly, in contrast to Shannon's diversity index which mostly correlated with richness. Forest ecosystems that have burnt once or twice in the last 50 years were resilient; that is to say they recovered a biomass and composition similar to that of the pre-fire state. However, after more than 3-4 fires, shrubland communities displayed lower species richness and diversity indices than unburned plots. The time since the last fire and the number of fires were the most explanatory fire variables, governing the structure of post-fire plant communities. However, environmental factors, such as slope or exposure, also made a significant contribution. Higher rates of fire recurrence can affect the persistence or expansion of shrublands in the future, as observed in other Mediterranean areas. Copyright © 2012 Académie des sciences. Published by Elsevier SAS. All rights reserved.

  8. Sweets for the foe - effects of nonstructural carbohydrates on the susceptibility of Quercus robur against Phytophthora quercina.

    PubMed

    Angay, Oguzhan; Fleischmann, Frank; Recht, Sabine; Herrmann, Sylvie; Matyssek, Rainer; Oßwald, Wolfgang; Buscot, François; Grams, Thorsten E E

    2014-09-01

    The root-rot pathogen Phytophthora quercina is a key determinant of oak decline in Europe. The susceptibility of pedunculate oak (Quercus robur) to this pathogen has been hypothesized to depend on the carbon availability in roots as an essential resource for defense. Microcuttings of Q. robur undergo an alternating rhythm of root and shoot growth. Inoculation of mycorrhizal (Piloderma croceum) and nonmycorrhizal oak roots with P. quercina was performed during both growth phases, that is, root flush (RF) and shoot flush (SF). Photosynthetic and morphological responses as well as concentrations of nonstructural carbohydrates (NSC) were analyzed. Infection success was quantified by the presence of pathogen DNA in roots. Concentrations of NSC in roots depended on the alternating root/shoot growth rhythm, being high and low during RF and SF, respectively. Infection success was high during RF and low during SF, resulting in a significantly positive correlation between pathogen DNA and NSC concentration in roots, contrary to the hypothesis. The alternating growth of roots and shoots plays a crucial role for the susceptibility of lateral roots to the pathogen. NSC availability in oak roots has to be considered as a benchmark for susceptibility rather than resistance against P. quercina. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.

  9. Differential DNA Methylation Patterns Are Related to Phellogen Origin and Quality of Quercus suber Cork

    PubMed Central

    Costa, Augusta; Roussado, Cristóvão; Gonçalves, Elsa; Costa, Rita; Graça, José; Oliveira, M. Margarida

    2017-01-01

    DNA methylation is thought to influence Quercus suber cork quality, which is the main constraint for its economic valorisation. However, a deep knowledge of the cytosine methylation patterns disclosing the epigenetic variability of trees with different cork quality types is totally missing. This study investigates the hypothesis that variations in DNA methylation contribute to differences in cork cellular characteristics directly related to original or traumatic phellogen activity. We used MSAPs (Methylation Sensitive Amplified Polymorphism) to assess DNA methylation patterns of cork and leaf tissues of Q. suber adult trees growing in three cork oak stands. The relationship between the detected polymorphisms and the diversity of cork quality traits was explored by a marker-trait analysis focusing on the most relevant quality characteristics. Populations differed widely in cork quality, but only slightly in degree of epigenetic differentiation. Four MSAP markers (1.3% of the total) were significantly associated with the most noteworthy quality traits: wood inclusions (nails) and porosity. This evidence supports the potential role of cytosine methylation in the modulation of differential phellogen activity either involved in localized cell death or in pore production, resulting in different cork qualities. Although, the underlying basis of the methylation polymorphism of loci affecting cork quality traits remain unclear, the disclosure of markers statistically associated with cork quality strengthens the potential role of DNA methylation in the regulation of these traits, namely at the phellogen level. PMID:28045988

  10. Differential DNA Methylation Patterns Are Related to Phellogen Origin and Quality of Quercus suber Cork.

    PubMed

    Inácio, Vera; Barros, Pedro M; Costa, Augusta; Roussado, Cristóvão; Gonçalves, Elsa; Costa, Rita; Graça, José; Oliveira, M Margarida; Morais-Cecílio, Leonor

    2017-01-01

    DNA methylation is thought to influence Quercus suber cork quality, which is the main constraint for its economic valorisation. However, a deep knowledge of the cytosine methylation patterns disclosing the epigenetic variability of trees with different cork quality types is totally missing. This study investigates the hypothesis that variations in DNA methylation contribute to differences in cork cellular characteristics directly related to original or traumatic phellogen activity. We used MSAPs (Methylation Sensitive Amplified Polymorphism) to assess DNA methylation patterns of cork and leaf tissues of Q. suber adult trees growing in three cork oak stands. The relationship between the detected polymorphisms and the diversity of cork quality traits was explored by a marker-trait analysis focusing on the most relevant quality characteristics. Populations differed widely in cork quality, but only slightly in degree of epigenetic differentiation. Four MSAP markers (1.3% of the total) were significantly associated with the most noteworthy quality traits: wood inclusions (nails) and porosity. This evidence supports the potential role of cytosine methylation in the modulation of differential phellogen activity either involved in localized cell death or in pore production, resulting in different cork qualities. Although, the underlying basis of the methylation polymorphism of loci affecting cork quality traits remain unclear, the disclosure of markers statistically associated with cork quality strengthens the potential role of DNA methylation in the regulation of these traits, namely at the phellogen level.

  11. An evaluation of bur oak (Quercus macrocarpa) decline in the urban forest of Winnipeg, Manitoba, Canada

    USGS Publications Warehouse

    Catton, H.A.; St., George; Remphrey, W.R.

    2007-01-01

    Winnipeg, Manitoba, Canada, has a large, indigenous population of bur oak (Quercus macrocarpa Michx.). In the 1980s, many of these trees were showing signs of decline, a disease caused by a complex of abiotic and secondary biotic stressing agents. Potential causal factors were investigated by comparing various aspects of 120 bur oaks visually rated as healthy or declined based on crown dieback levels. The results indicated that many selected bur oak trees predated surrounding urban development and that declined trees were significantly older with more severe stem wounds and competition from surrounding trees than healthy specimens. Average annual growth ring widths of healthy and declined trees were similar in the early part of the 20th century. However, decline actually began decades before symptoms were noticed, coinciding with a period of in tense city-wide urban development, as growth of declined trees was slower than that of healthy trees beginning sporadically in the 1940s and consistently from 1974 to 2001. During the early years of decline, the year-by-year separation in ring width between the two categories was significantly positively related to precipitation levels. This suggested that in wet years, declined trees may have been surrounded by unfavorable water-logged soils, possibly as a result of natural drainage patterns being impeded by urban development. ?? 2007 International Society of Arboriculture.

  12. Function of defensive volatiles in pedunculate oak (Quercus robur) is tricked by the moth Tortrix viridana.

    PubMed

    Ghirardo, Andrea; Heller, Werner; Fladung, Matthias; Schnitzler, Jörg-Peter; Schroeder, Hilke

    2012-12-01

    The indirect defences of plants are comprised of herbivore-induced plant volatiles (HIPVs) that among other things attract the natural enemies of insects. However, the actual extent of the benefits of HIPV emissions in complex co-evolved plant-herbivore systems is only poorly understood. The observation that a few Quercus robur L. trees constantly tolerated (T-oaks) infestation by a major pest of oaks (Tortrix viridana L.), compared with heavily defoliated trees (susceptible: S-oaks), lead us to a combined biochemical and behavioural study. We used these evidently different phenotypes to analyse whether the resistance of T-oaks to the herbivore was dependent on the amount and scent of HIPVs and/or differences in non-volatile polyphenolic leaf constituents (as quercetin-, kaempferol- and flavonol glycosides). In addition to non-volatile metabolic differences, typically defensive HIPV emissions differed between S-oaks and T-oaks. Female moths were attracted by the blend of HIPVs from S-oaks, showing significantly higher amounts of (E)-4,8-dimethyl-1,3,7-nonatriene (DMNT) and (E)-β-ocimene and avoid T-oaks with relative high fraction of the sesquiterpenes α-farnesene and germacrene D. Hence, the strategy of T-oaks exhibiting directly herbivore-repellent HIPV emissions instead of high emissions of predator-attracting HIPVs of the S-oaks appears to be the better mechanism for avoiding defoliation. © 2012 Blackwell Publishing Ltd.

  13. Crown condition dynamics of oak in southern Sweden 1988-1999.

    PubMed

    Drobyshev, Igor; Anderson, Stefan; Sonesson, Kerstin

    2007-11-01

    Crown defoliation of oak (Quercus robur and Q. petraea) was analysed in 808 trees during three forest condition surveys (1988, 1993, and 1999) in the southern Sweden. From 1988 to 1999 crown defoliation increased by more than 20%. Changes in crown defoliation were related to the pH in the upper 20-30 cm of the mineral soils, which was closely connected to other measures of soil fertility (cation exchange capacity, CEC and C/N ratio). Trees growing on soils with a high pH (> or =4.00, in BaCl2 filtrate), high CEC and low C/N ratio had significantly lower crown defoliation than trees growing on more acid soils (pH <4.00), indicating that less favourable soil conditions may further enhance oak decline. Age did not differentiate trees with respect to crown defoliation, indicating that decline in crown condition was not due to an age-related increase in crown transparency. Considering only trees younger than 100 years, a significant interaction was observed between changes in crown defoliation and soil pH. Trees younger than 100 years old growing on more acidic soils had a greater increase in crown transparency than trees on more basic soils between 1988 and 1999. Trees > or =100 years old had significantly higher defoliation on more acidic than on more basic soils, however defoliation dynamics of these trees over 1988-99 was not related to soil acidity. Two biotic agents (insect and fungal leaf infections) evaluated in this study did not prove to be important drivers of defoliation dynamics.

  14. Resistance of European tree species to drought stress in mixed versus pure forests: evidence of stress release by inter-specific facilitation.

    PubMed

    Pretzsch, H; Schütze, G; Uhl, E

    2013-05-01

    While previous studies focused on tree growth in pure stands, we reveal that tree resistance and resilience to drought stress can be modified distinctly through species mixing. Our study is based on tree ring measurement on cores from increment boring of 559 trees of Norway spruce (Picea abies [L.] Karst.), European beech (Fagus sylvatica [L.]) and sessile oak (Quercus petraea (Matt.) Liebl.) in South Germany, with half sampled in pure, respectively, mixed stands. Indices for resistance, recovery and resilience were applied for quantifying the tree growth reaction on the episodic drought stress in 1976 and 2003. The following general reaction patterns were found. (i) In pure stands, spruce has the lowest resistance, but the quickest recovery; oak and beech were more resistant, but recover was much slower and they are less resilient. (ii) In mixture, spruce and oak perform as in pure stands, but beech was significantly more resistant and resilient than in monoculture. (iii) Especially when mixed with oak, beech is facilitated. We hypothesise that the revealed water stress release of beech emerges in mixture because of the asynchronous stress reaction pattern of beech and oak and a facilitation of beech by hydraulic lift of water by oak. This facilitation of beech in mixture with oak means a contribution to the frequently reported overyield of beech in mixed versus pure stands. We discuss the far-reaching implications that these differences in stress response under intra- and inter-specific environments have for forest ecosystem dynamics and management under climate change. © 2012 German Botanical Society and The Royal Botanical Society of the Netherlands.

  15. Effects of cadmium on cork oak (Quercus suber L.) plants grown in hydroponics.

    PubMed

    Gogorcena, Yolanda; Larbi, Ajmi; Andaluz, Sofia; Carpena, Ramón O; Abadía, Anunciación; Abadía, Javier

    2011-12-01

    Cork oak (Quercus suber L.) is an autochthonous tree species that is being used for reforestation in heavy-metal-contaminated areas in Spain. A hydroponics experiment was carried out to characterize the effects of Cd on several morphological and physiological parameters in this species, including shoot length, nutrient concentrations and allocation in different organs, leaf pigment concentrations, photosynthetic efficiency, root ferric chelate reductase (FCR) activity and organic acid concentrations in xylem sap. Four different Cd treatments were applied, adding Cd chelated with EDTA or as chloride salt at two different concentrations (10 and 50 µM Cd). After 1 month of Cd treatment, plant growth was significantly inhibited in all treatments. Results indicate that Cd accumulates in all organs 7- to 500-fold when compared with control plants. The highest Cd concentration was found in the 50 µM CdCl(2) treatment, which led to concentrations of ~30, 123 and 1153 µg Cd g(-1) dry weight in leaves, stems and roots, respectively. In the strongest Cd treatments the concentrations of P and Ca decreased in some plant parts, whereas the Mn leaf concentrations decreased with three of the four Cd treatments applied. The concentrations of chlorophyll and carotenoids on an area basis decreased, whereas the (zeaxanthin plus antheraxanthin)/(total violaxanthin cycle carotenoids) ratio and the non-photochemical quenching increased significantly in all Cd treatments. Cadmium treatments caused significant increases in the activity of the enzyme FCR in roots and in the concentrations of organic acids in xylem sap. Some of the physiological changes found support the fact that Cd induces a deficiency of Fe in cork oak, although the plant Fe concentrations were not reduced significantly. At higher concentrations the effects of Cd were more pronounced, and were more marked when Cd was in the free ion form than when present in the form of Cd-EDTA.

  16. Conservation biogeography of red oaks (Quercus, section Lobatae) in Mexico and Central America.

    PubMed

    Torres-Miranda, Andrés; Luna-Vega, Isolda; Oyama, Ken

    2011-02-01

    Oaks are dominant trees and key species in many temperate and subtropical forests in the world. In this study, we analyzed patterns of distribution of red oaks (Quercus, section Lobatae) occurring in Mexico and Central America to determine areas of species richness and endemism to propose areas of conservation. Patterns of richness and endemism of 75 red oak species were analyzed using three different units. Two complementarity algorithms based on species richness and three algorithms based on species rarity were used to identify important areas for conservation. A simulated annealing analysis was performed to evaluate and formulate effective new reserves for red oaks that are useful for conserving the ecosystems associated with them after the systematic conservation planning approach. Two main centers of species richness were detected. The northern Sierra Madre Oriental and Serranías Meridionales of Jalisco had the highest values of endemism. Fourteen areas were considered as priorities for conservation of red oak species based on the 26 priority political entities, 11 floristic units and the priority grid-cells obtained in the complementarity analysis. In the present network of Natural Protected Areas in Mexico and Central America, only 41.3% (31 species) of the red oak species are protected. The simulated annealing analysis indicated that to protect all 75 species of red oaks, 12 current natural protected areas need to be expanded by 120000 ha of additional land, and 26 new natural protected areas with 512500 ha need to be created. Red oaks are a useful model to identify areas for conservation based on species richness and endemism as a result of their wide geographic distribution and a high number of species. We evaluated and reformulated new reserves for red oaks that are also useful for the conservation of ecosystems associated with them.

  17. Biomonitoring of PAHs by using Quercus ilex leaves: Source diagnostic and toxicity assessment

    NASA Astrophysics Data System (ADS)

    De Nicola, Flavia; Claudia, Lancellotti; MariaVittoria, Prati; Giulia, Maisto; Anna, Alfani

    2011-03-01

    Quercus ilex L. leaves were sampled at nineteen urban sites and two remote sites in order to evaluate PAH contamination degree. One-, two- and three-year-old leaves were collected and leaf lipid content was measured to investigate the influence of leaf age and lipids in PAH accumulation. Some PAH diagnostic ratios, such as Ant/Ant + Phen, Flt/Flt + Pyr, B[a]A/B[a]A + Crys and IP/IP + B[g,h,i]P, were calculated. The results suggest that Q. ilex leaves are effective biomonitors of PAH air contamination: in fact, a great PAH accumulation in leaves from the urban areas, until 30-time higher compared to those from the remote sites, has been observed. At each site, the similar total PAH concentrations in leaves of different age, probably due to a canopy effect, indicate an ability of all leaf age classes to monitor local PAH concentrations in air, remarking practical implications for air biomonitoring. The findings suggest that PAH adsorption in Q. ilex leaves does not result limited by leaf lipid content. Moreover, this study demonstrates the source-diagnostic potential of Q. ilex leaves, because, in particular, the Flt/Flt + Pyr and IP/IP + B[g,h,i]P ratios indicate vehicular traffic as the main source of PAHs in the urban areas and wood combustion in the remote areas. Moreover, to distinguish biomass combustion source, a promising tracer PAH as DB[a,h]A could be used. The high contribution of DB[a,h]A to total PAH concentrations at the remote sites determines a high carcinogenic potential in this area, similar to that calculated for the urban area where the carcinogenic PAH concentrations in absolute values are often higher.

  18. Chemical characterization and extractives composition of heartwood and sapwood from Quercus faginea

    PubMed Central

    Miranda, Isabel; Sousa, Vicelina; Ferreira, Joana; Pereira, Helena

    2017-01-01

    Heartwood and sapwood of Quercus faginea were evaluated in relation to summative chemical composition and non-polar and polar extracts composition, including an assessment of antioxidant properties (DPPH and FRAP). Twenty trees from two sites in Portugal were analysed. Heartwood had approximately two times more solvent extractible compounds than sapwood (on average 19.0% and 9.5%). The lipophilic extractible compounds were below 1%, and most of them were polar e.g. ethanol-soluble compounds corresponded to 65% of total extractives in heartwood and 43% in sapwood. Lignin content was similar in sapwood and heartwood (28.1% and 28.6% of extractive-free wood respectively) as well as the sugar composition. Site did not influence the chemical composition. The lipophilic extractible compounds from both sapwood and heartwood included mainly saturated fatty acids (23.0% and 36.9% respectively) and aromatic compounds were also abundant in sapwood (22.9%). The ethanol-water extractibles had a high content of phenolic substances (558.0 and 319.4 mg GAE/g extract, respectively of heartwood and sapwood). The polyphenolic composition was similar in heartwood and sapwood with higher content of ellagitannins (168.9 and 153.5 mg tannic acid/g of extract in sapwood and heartwood respectively) and very low content of condensed tannins. The antioxidant activity was very high with IC50 of 2.6 μg/ml and 3.3 μg/ml for sapwood and heartwood respectively, as compared to standard antioxidants (IC50 of 3.8 μg/ml for Trolox). The ferric reducing ability was 2.8 and 2.0 mMol Trolox equivalents/g extract of heartwood and sapwood respectively. The variability between trees was low and no differences between the two sites were found. Q. faginea showed a very good potential for cooperage and other applications for which a source of compounds with antioxidant properties is desirable. PMID:28614371

  19. Effect of elevated atmospheric CO2 concentration on growth and leaf litter decomposition of Quercus acutissima and Fraxinus rhynchophylla

    PubMed Central

    Cha, Sangsub; Chae, Hee-Myung; Lee, Sang-Hoon; Shim, Jae-Kuk

    2017-01-01

    The atmospheric carbon dioxide (CO2) level is expected to increase substantially, which may change the global climate and carbon dynamics in ecosystems. We examined the effects of an elevated atmospheric CO2 level on the growth of Quercus acutissima and Fraxinus rhynchophylla seedlings. We investigated changes in the chemical composition of leaf litter, as well as litter decomposition. Q. acutissima and F. rhynchophylla did not show differences in dry weight between ambient CO2 and enriched CO2 treatments, but they exhibited different patterns of carbon allocation, namely, lower shoot/root ratio (S/R) and decreased specific leaf area (SLA) under CO2-enriched conditions. The elevated CO2 concentration significantly reduced the nitrogen concentration in leaf litter while increasing lignin concentrations and carbon/nitrogen (C/N) and lignin/N ratios. The microbial biomass associated with decomposing Q. acutissima leaf litter was suppressed in CO2 enrichment chambers, while that of F. rhynchophylla was not. The leaf litter of Q. acutissima from the CO2-enriched chambers, in contrast with F. rhynchophylla, contained much lower nutrient concentrations than that of the litter in the ambient air chambers. Consequently, poorer litter quality suppressed decomposition. PMID:28182638

  20. Oak mistletoe (Phoradendron villosum) is linked to microhabitat availability and avian diversity in Oregon white oak (Quercus garryana) woodlands

    USGS Publications Warehouse

    Pritchard, Kyle R.; Hagar, Joan; Shaw, David C.

    2016-01-01

    Mistletoes are parasitic or hemi-parasitic flowering plants that parasitize woody plants around the globe. Important food and cover resources provided by mistletoes have been related to strong patterns of positive association between wildlife diversity and mistletoe density. Mistletoes also create microhabitat features known to be important to wildlife by causing deformations in their host trees. However, links between availability of mistletoe-formed microhabitat and wildlife diversity has not been well studied. We investigated this relationship by quantifying microhabitat features and avian abundance and diversity related to infection by Oak Mistletoe (Phoradendron villosum) in Oregon White Oak (Quercus garryana). Q. garryana woodlands support several avian species of conservation concern, so an understanding of the influence of mistletoe on wildlife habitat is critical. Our results suggest that 1) structural heterogeneity within tree crowns; 2) avian species richness and abundance are positively associated with mistletoe load; and 3) P. villosum fruit, available is an important food for western bluebird (Sialia mexicana) and other wildlife in late autumn and early winter. If a goal of restoration is to maintain habitat for oak-associated bird species, managers should consider the retention of some oaks hosting mistletoe.

  1. Ectomycorrhizal diversity and community structure in stands of Quercus oleoides in the seasonally dry tropical forests of Costa Rica

    NASA Astrophysics Data System (ADS)

    Desai, Nikhilesh S.; Wilson, Andrew W.; Powers, Jennifer S.; Mueller, Gregory M.; Egerton-Warburton, Louise M.

    2016-12-01

    Most conservation efforts in seasonally dry tropical forests have overlooked less obvious targets for conservation, such as mycorrhizal fungi, that are critical to plant growth and ecosystem structure. We documented the diversity of ectomycorrhizal (EMF) and arbuscular mycorrhizal (AMF) fungal communities in Quercus oleoides (Fagaceae) in Guanacaste province, Costa Rica. Soil cores and sporocarps were collected from regenerating Q. oleoides plots differing in stand age (early vs late regeneration) during the wet season. Sequencing of the nuclear ribosomal ITS region in EMF root tips and sporocarps identified 37 taxa in the Basidiomycota; EMF Ascomycota were uncommon. The EMF community was dominated by one species (Thelephora sp. 1; 70% of soil cores), more than half of all EMF species were found only once in an individual soil core, and there were few conspecific taxa. Most EMF taxa were also restricted to either Early or Late plots. Levels of EMF species richness and diversity, and AMF root colonization were similar between plots. Our results highlight the need for comprehensive spatiotemporal samplings of EMF communities in Q. oleoides to identify and prioritize rare EMF for conservation, and document their genetic and functional diversity.

  2. Effect of elevated atmospheric CO2 concentration on growth and leaf litter decomposition of Quercus acutissima and Fraxinus rhynchophylla.

    PubMed

    Cha, Sangsub; Chae, Hee-Myung; Lee, Sang-Hoon; Shim, Jae-Kuk

    2017-01-01

    The atmospheric carbon dioxide (CO2) level is expected to increase substantially, which may change the global climate and carbon dynamics in ecosystems. We examined the effects of an elevated atmospheric CO2 level on the growth of Quercus acutissima and Fraxinus rhynchophylla seedlings. We investigated changes in the chemical composition of leaf litter, as well as litter decomposition. Q. acutissima and F. rhynchophylla did not show differences in dry weight between ambient CO2 and enriched CO2 treatments, but they exhibited different patterns of carbon allocation, namely, lower shoot/root ratio (S/R) and decreased specific leaf area (SLA) under CO2-enriched conditions. The elevated CO2 concentration significantly reduced the nitrogen concentration in leaf litter while increasing lignin concentrations and carbon/nitrogen (C/N) and lignin/N ratios. The microbial biomass associated with decomposing Q. acutissima leaf litter was suppressed in CO2 enrichment chambers, while that of F. rhynchophylla was not. The leaf litter of Q. acutissima from the CO2-enriched chambers, in contrast with F. rhynchophylla, contained much lower nutrient concentrations than that of the litter in the ambient air chambers. Consequently, poorer litter quality suppressed decomposition.

  3. Seasonal Dynamics of Mobile Carbon Supply in Quercus aquifolioides at the Upper Elevational Limit

    PubMed Central

    Zhu, Wan-Ze; Cao, Min; Wang, San-Gen; Xiao, Wen-Fan; Li, Mai-He

    2012-01-01

    Many studies have tried to explain the physiological mechanisms of the alpine treeline phenomenon, but the debate on the alpine treeline formation remains controversial due to opposite results from different studies. The present study explored the carbon-physiology of an alpine shrub species (Quercus aquifolioides) grown at its upper elevational limit compared to lower elevations, to test whether the elevational limit of alpine shrubs (<3 m in height) are determined by carbon limitation or growth limitation. We studied the seasonal variations in non-structural carbohydrate (NSC) and its pool size in Q. aquifolioides grown at 3000 m, 3500 m, and at its elevational limit of 3950 m above sea level (a.s.l.) on Zheduo Mt., SW China. The tissue NSC concentrations along the elevational gradient varied significantly with season, reflecting the season-dependent carbon balance. The NSC levels in tissues were lowest at the beginning of the growing season, indicating that plants used the winter reserve storage for re-growth in the early spring. During the growing season, plants grown at the elevational limit did not show lower NSC concentrations compared to plants at lower elevations, but during the winter season, storage tissues, especially roots, had significantly lower NSC concentrations in plants at the elevational limit compared to lower elevations. The present results suggest the significance of winter reserve in storage tissues, which may determine the winter survival and early-spring re-growth of Q. aquifolioides shrubs at high elevation, leading to the formation of the uppermost distribution limit. This result is consistent with a recent hypothesis for the alpine treeline formation. PMID:22479567

  4. Effect of controlled inoculation with specific mycorrhizal fungi from the urban environment on growth and physiology of containerized shade tree species growing under different water regimes.

    PubMed

    Fini, Alessio; Frangi, Piero; Amoroso, Gabriele; Piatti, Riccardo; Faoro, Marco; Bellasio, Chandra; Ferrini, Francesco

    2011-11-01

    The aim of this work was to evaluate the effects of selected mycorrhiza obtained in the urban environment on growth, leaf gas exchange, and drought tolerance of containerized plants growing in the nursery. Two-year-old uniform Acer campestre L., Tilia cordata Mill., and Quercus robur L. were inoculated with a mixture of infected roots and mycelium of selected arbuscular (maple, linden) and/or ectomycorrhiza (linden, oak) fungi and grown in well-watered or water shortage conditions. Plant biomass and leaf area were measured 1 and 2 years after inoculation. Leaf gas exchange, chlorophyll fluorescence, and water relations were measured during the first and second growing seasons after inoculation. Our data suggest that the mycelium-based inoculum used in this experiment was able to colonize the roots of the tree species growing in the nursery. Plant biomass was affected by water shortage, but not by inoculation. Leaf area was affected by water regime and, in oak and linden, by inoculation. Leaf gas exchange was affected by inoculation and water stress. V(cmax) and J(max) were increased by inoculation and decreased by water shortage in all species. F(v)/F(m) was also generally higher in inoculated plants than in control. Changes in PSII photochemistry and photosynthesis may be related to the capacity of inoculated plants to maintain less negative leaf water potential under drought conditions. The overall data suggest that inoculated plants were better able to maintain physiological activity during water stress in comparison to non-inoculated plants.

  5. Seedling tree responses to nutrient stress under atmospheric CO/sub 2/ enrichment. [Quercus alba; Liriodendron tulipifera; Pinus virginiana

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luxmoore, R.J.; Norby, R.J.; O'Neill, E.G.

    1986-01-01

    Three species of seedling trees were grown in pots containing low-nutrient soil for periods of up to 40 weeks under a range of atmospheric CO/sub 2/ concentrations. In all cases, total dry weight increased with CO/sub 2/ enrichment, with a greater relative increase in root weight than shoot weight. In an experiment with Pinus virginiana in open-top field chambers, phosphorus and potassium uptake did not increase with an increase in CO/sub 2/ from 365 to 690 ..mu..L/L, even though dry matter gain increased by 37% during the exposure period. In experiments with Quercus alba and Liriodendron tulipifera under controlled environmentmore » conditions there were obvious symptoms of nitrogen deficiency and total nitrogen uptake did not increase with CO/sub 2/ enrichment. However, dry weight gain was more than 90% higher at 690 ..mu..L/L CO/sub 2/. The three experiments with CO/sub 2/ enrichment treatments demonstrate that increases in plant dry weight can occur without increased uptake of some nutrients from the low-nutrient soil. A mechanism for these responses may involve increased mobilization of nutrients in association with increased sucrose transport under elevated CO/sub 2/ conditions.« less

  6. Variation in sclerophylly among Iberian populations of Quercus coccifera L. is associated with genetic differentiation across contrasting environments.

    PubMed

    Rubio de Casas, R; Vargas, P; Pérez-Corona, E; Cano, E; Manrique, E; García-Verdugo, C; Balaguer, L

    2009-05-01

    Evergreen oaks are an emblematic element of the Mediterranean vegetation and have a leaf phenotype that seems to have remained unchanged since the Miocene. We hypothesise that variation of the sclerophyll phenotype among Iberian populations of Quercus coccifera is partly due to an ulterior process of ecotypic differentiation. We analysed the genetic structure of nine Iberian populations using ISSR fingerprints, and their leaf phenotypes using mean and intracanopy plasticity values of eight morphological (leaf angle, area, spinescence, lobation and specific area) and biochemical traits (VAZ pool, chlorophyll and beta-carotene content). Climate and soil were also characterised at the population sites. Significant genetic and phenotypic differences were found among populations and between NE Iberia and the rest of the populations of the peninsula. Mean phenotypes showed a strong and independent correlation with both genetic and geographic distances. Northeastern plants were smaller, less plastic, with smaller, spinier and thicker leaves, a phenotype consistent with the stressful conditions that prevailed in the steppe environments of the refugia within this geographic area during glaciations. These genetic, phenotypic, geographic and environmental patterns are consistent with previously reported palaeoecological and common evidence. Such consistency leads us to conclude that there has been a Quaternary divergence within the sclerophyllous syndrome that was at least partially driven by ecological factors.

  7. Paisang ( Quercus griffithii): A Keystone Tree Species in Sustainable Agroecosystem Management and Livelihoods in Arunachal Pradesh, India

    NASA Astrophysics Data System (ADS)

    Singh, Ranjay K.; Singh, Anshuman; Garnett, Stephen T.; Zander, Kerstin K.; Lobsang; Tsering, Darge

    2015-01-01

    In a study of the traditional livelihoods of 12 Monpa and Brokpa villages in Arunachal Pradesh, India using social-ecological and participatory rural appraisal techniques, we found that the forest tree species paisang ( Quercus griffithii, a species of oak) is vital to agroecosystem sustainability. Paisang trees are conserved both by individuals and through community governance, because their leaves play a crucial role in sustaining 11 traditional cropping systems of the Monpa peoples. An Indigenous institution, Chhopa, regulates access to paisang leaves, ensuring that the relationship between paisang and traditional field crop species within Monpa agroecosystems is sustainable. The Monpa farmers also exchange leaves and agricultural products for yak-based foods produced by the transhumant Brokpa, who are primarily yak herders. Yak herds also graze in paisang groves during winter. These practices have enabled the conservation of about 33 landraces, yak breeds, and a number of wild plants. Paisang thus emerged as a culturally important keystone species in the cultures and livelihoods of both Monpa and Brokpa. Ecological and conservation knowledge and ethics about paisang vary with gender, social systems, and altitudes. Labor shortages, however, have already caused some changes to the ways in which paisang leaves are used and yak grazing patterns are also changing in the face of changes in attitude among local landowners. Given new competing interests, incentives schemes are now needed to conserve the ecologically sustainable traditional livelihoods.

  8. Morphological and physiological divergences within Quercus ilex support the existence of different ecotypes depending on climatic dryness

    PubMed Central

    Peguero-Pina, José Javier; Sancho-Knapik, Domingo; Barrón, Eduardo; Camarero, Julio Jesús; Vilagrosa, Alberto; Gil-Pelegrín, Eustaquio

    2014-01-01

    Background and Aims Several studies show apparently contradictory findings about the functional convergence within the Mediterranean woody flora. In this context, this study evaluates the variability of functional traits within holm oak (Quercus ilex) to elucidate whether provenances corresponding to different morphotypes represent different ecotypes locally adapted to the prevaling stress levels. Methods Several morphological and physiological traits were measured at leaf and shoot levels in 9-year-old seedlings of seven Q. ilex provenances including all recognized morphotypes. Plants were grown in a common garden for 9 years under the same environmental conditions to avoid possible biases due to site-specific characteristics. Key Results Leaf morphometry clearly separates holm oak provenances into ‘ilex’ (more elongated leaves with low vein density) and ‘rotundifolia’ (short and rounded leaves with high vein density) morphotypes. Moreover, these morphotypes represent two consistent and very contrasting functional types in response to dry climates, mainly in terms of leaf area, major vein density, leaf specific conductivity, resistance to drought-induced cavitation and turgor loss point. Conclusions The ‘ilex’ and ‘rotundifolia’ morphotypes correspond to different ecotypes as inferred from their contrasting functional traits. To the best of our knowledge, this is the first time that the combined use of morphological and physiological traits has provided support for the concept of these two holm oak morphotypes being regarded as two different species. PMID:24941998

  9. Antifungal activity of acetone extracts from Punica granatum L., Quercus suber L. and Vicia faba L.

    PubMed

    Akroum, S

    2017-03-01

    Human and animal mycoses become more frequent and more resistant to traditional treatments. In this work, we tested the in vitro antifungal activity of acetonic extracts of Punica granatum L., Quercus suber L. and Vicia faba L. against seven pathogen fungi and the in vivo antifungal activity against Candida albicans and Trichophyton mentagrophytes. The phytochemical screening was also carried out and showed that the extracts contained mainly proanthocyanidins. Other polyphenols were also present but in low quantity. The acetone extract of V. faba L. gave a good in vitro inhibition of yeasts and was the most active for treating candidiasis in mice. It decreased the percentage of mortality with only 20μg. But the in vivo antifungal activity of this extract on T. mentagrophytes was low. It only showed a small diminution of crusting and erythema after the administration of 100μg. On the contrary, the acetone extracts of P. granatum L. had a poor activity against yeasts and a better one against moulds. It gave the best in vivo antifungal activity against T. mentagrophytes by healing animals with 40μg. The extract of P. granatum L. gave also an interesting in vivo antifungal activity against T. mentagrophytes with an active dose of 80μg. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  10. Association of Pinus banksiana Lamb. and Populus tremuloides Michx. seedling fine roots with Sistotrema brinkmannii (Bres.) J. Erikss. (Basidiomycotina)

    Treesearch

    Lynette R. Potvin; Dana L. Richter; Martin F. Jurgensen; R. Kasten Dumroese

    2012-01-01

    Sistotrema brinkmannii (Bres.) J. Erikss. (Basidiomycotina, Hydanaceae), commonly regarded as a wood decay fungus, was consistently isolated from bareroot nursery Pinus banksiana Lamb. seedlings. S. brinkmannii was found in ectomycorrhizae formed by Thelephora terrestris Ehrh., ...

  11. A comprehensive assessment of the transcriptome of cork oak (Quercus suber) through EST sequencing.

    PubMed

    Pereira-Leal, José B; Abreu, Isabel A; Alabaça, Cláudia S; Almeida, Maria Helena; Almeida, Paulo; Almeida, Tânia; Amorim, Maria Isabel; Araújo, Susana; Azevedo, Herlânder; Badia, Aleix; Batista, Dora; Bohn, Andreas; Capote, Tiago; Carrasquinho, Isabel; Chaves, Inês; Coelho, Ana Cristina; Costa, Maria Manuela Ribeiro; Costa, Rita; Cravador, Alfredo; Egas, Conceição; Faro, Carlos; Fortes, Ana M; Fortunato, Ana S; Gaspar, Maria João; Gonçalves, Sónia; Graça, José; Horta, Marília; Inácio, Vera; Leitão, José M; Lino-Neto, Teresa; Marum, Liliana; Matos, José; Mendonça, Diogo; Miguel, Andreia; Miguel, Célia M; Morais-Cecílio, Leonor; Neves, Isabel; Nóbrega, Filomena; Oliveira, Maria Margarida; Oliveira, Rute; Pais, Maria Salomé; Paiva, Jorge A; Paulo, Octávio S; Pinheiro, Miguel; Raimundo, João A P; Ramalho, José C; Ribeiro, Ana I; Ribeiro, Teresa; Rocheta, Margarida; Rodrigues, Ana Isabel; Rodrigues, José C; Saibo, Nelson J M; Santo, Tatiana E; Santos, Ana Margarida; Sá-Pereira, Paula; Sebastiana, Mónica; Simões, Fernanda; Sobral, Rómulo S; Tavares, Rui; Teixeira, Rita; Varela, Carolina; Veloso, Maria Manuela; Ricardo, Cândido P P

    2014-05-15

    Cork oak (Quercus suber) is one of the rare trees with the ability to produce cork, a material widely used to make wine bottle stoppers, flooring and insulation materials, among many other uses. The molecular mechanisms of cork formation are still poorly understood, in great part due to the difficulty in studying a species with a long life-cycle and for which there is scarce molecular/genomic information. Cork oak forests are of great ecological importance and represent a major economic and social resource in Southern Europe and Northern Africa. However, global warming is threatening the cork oak forests by imposing thermal, hydric and many types of novel biotic stresses. Despite the economic and social value of the Q. suber species, few genomic resources have been developed, useful for biotechnological applications and improved forest management. We generated in excess of 7 million sequence reads, by pyrosequencing 21 normalized cDNA libraries derived from multiple Q. suber tissues and organs, developmental stages and physiological conditions. We deployed a stringent sequence processing and assembly pipeline that resulted in the identification of ~159,000 unigenes. These were annotated according to their similarity to known plant genes, to known Interpro domains, GO classes and E.C. numbers. The phylogenetic extent of this ESTs set was investigated, and we found that cork oak revealed a significant new gene space that is not covered by other model species or EST sequencing projects. The raw data, as well as the full annotated assembly, are now available to the community in a dedicated web portal at http://www.corkoakdb.org. This genomic resource represents the first trancriptome study in a cork producing species. It can be explored to develop new tools and approaches to understand stress responses and developmental processes in forest trees, as well as the molecular cascades underlying cork differentiation and disease response.

  12. Lignin Composition and Structure Differs between Xylem, Phloem and Phellem in Quercus suber L.

    PubMed Central

    Lourenço, Ana; Rencoret, Jorge; Chemetova, Catarina; Gominho, Jorge; Gutiérrez, Ana; del Río, José C.; Pereira, Helena

    2016-01-01

    The composition and structure of lignin in different tissues—phellem (cork), phloem and xylem (wood)—of Quercus suber was studied. Whole cell walls and their respective isolated milled lignins were analyzed by pyrolysis coupled with gas chromatography/mass spectrometry (Py-GC/MS), two-dimensional nuclear magnetic resonance spectroscopy (2D-NMR) and derivatization followed by reductive cleavage (DFRC). Different tissues presented varied p-hydroxyphenyl:guaiacyl:syringyl (H:G:S) lignin compositions. Whereas lignin from cork has a G-rich lignin (H:G:S molar ratio 2:85:13), lignin from phloem presents more S-units (H:G:S molar ratio of 1:58:41) and lignin from xylem is slightly enriched in S-lignin (H:G:S molar ratio 1:45:55). These differences were reflected in the relative abundances of the different interunit linkages. Alkyl-aryl ethers (β–O–4′) were predominant, increasing from 68% in cork, to 71% in phloem and 77% in xylem, as consequence of the enrichment in S-lignin units. Cork lignin was enriched in condensed structures such as phenylcoumarans (β-5′, 20%), dibenzodioxocins (5–5′, 5%), as corresponds to a lignin enriched in G-units. In comparison, lignin from phloem and xylem presented lower levels of condensed linkages. The lignin from cork was highly acetylated at the γ-OH of the side-chain (48% lignin acetylation), predominantly over G-units; while the lignins from phloem and xylem were barely acetylated and this occurred mainly over S-units. These results are a first time overview of the lignin structure in xylem, phloem (generated by cambium), and in cork (generated by phellogen), in agreement with literature that reports that lignin biosynthesis is flexible and cell specific. PMID:27833631

  13. Physiological Adjustments of Leaf Respiration to Atmospheric Warming in Betula alleghaniensis and Quercus rubra

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vollmar, A.; Gunderson, C.

    2006-01-01

    Global air temperatures are predicted to rise 1° to 4.5° Celsius by the year 2100. This climatic change is expected to have a great effect on the succession and migration of temperate deciduous forest species. Most physiologically based models of forest response to climatic change focus on the ecosystems as a whole instead of on individual tree species, assuming that the effects of warming on respiration are generally the same for each species, and that processes can not adjust to a changing climate. Experimental data suggest that physiological adjustments are possible, but there is a lack of data in deciduousmore » species. In order to correctly model the effects of climate change on temperate species, species-specific respiration acclimation (adjustment) to rising temperatures is being determined in this experiment. Two temperate deciduous tree species Betula alleghaniensis (BA) and Quercus rubra (QR) were grown over a span of four years in open-top chambers and subjected to two different temperature treatments; ambient and ambient plus 4° Celsius (E4). Between 0530 hours and 1100 hours, respiration was measured over a range of leaf temperatures on several comparable, fully expanded leaves in each treatment. Circular punches were taken from the leaves and dried at 60°C to determine leaf mass per area (LMA). Respiration rates at a common temperature decreased by 15-18% in both species, and the entire resperation versus temperature curve shifted by at least 4°C, indicating a large degree of physiological acclimation. Foliar mass per area decreased with increasing growth temperature for both species. It can be concluded that there is a relationship between leaf respiration and foliar mass as it relates to respiratory acclimation, and that these two species had similar patterns of adjustment to warming.« less

  14. Community composition of root-associated fungi in a Quercus-dominated temperate forest: “codominance” of mycorrhizal and root-endophytic fungi

    PubMed Central

    Toju, Hirokazu; Yamamoto, Satoshi; Sato, Hirotoshi; Tanabe, Akifumi S; Gilbert, Gregory S; Kadowaki, Kohmei

    2013-01-01

    In terrestrial ecosystems, plant roots are colonized by various clades of mycorrhizal and endophytic fungi. Focused on the root systems of an oak-dominated temperate forest in Japan, we used 454 pyrosequencing to explore how phylogenetically diverse fungi constitute an ecological community of multiple ecotypes. In total, 345 operational taxonomic units (OTUs) of fungi were found from 159 terminal-root samples from 12 plant species occurring in the forest. Due to the dominance of an oak species (Quercus serrata), diverse ectomycorrhizal clades such as Russula, Lactarius, Cortinarius, Tomentella, Amanita, Boletus, and Cenococcum were observed. Unexpectedly, the root-associated fungal community was dominated by root-endophytic ascomycetes in Helotiales, Chaetothyriales, and Rhytismatales. Overall, 55.3% of root samples were colonized by both the commonly observed ascomycetes and ectomycorrhizal fungi; 75.0% of the root samples of the dominant Q. serrata were so cocolonized. Overall, this study revealed that root-associated fungal communities of oak-dominated temperate forests were dominated not only by ectomycorrhizal fungi but also by diverse root endophytes and that potential ecological interactions between the two ecotypes may be important to understand the complex assembly processes of belowground fungal communities. PMID:23762515

  15. The increasing sacrcity of red oaks in Mississippi river floodplain forestS: Influence of the residual overstory

    Treesearch

    Chadwick Dearing Oliver; E.C. Burkhardt; Daniel A. Skojac

    2005-01-01

    Red oaks - cherrybark oak (Quercus pagoda Raf.) willow oak (Quercus phellos L.), water oak (Quercus nigra L.), and Nuttall oak (Quercus texana Buckley; aka: Quercus nuttallii Palmer) - are not regrowing in Mississippi Delta river floodplain forests in the southeastern United...

  16. Molecular and morphological analyses confirm Rhizopogon verii as a widely distributed ectomycorrhizal false truffle in Europe, and its presence in South America.

    PubMed

    Sulzbacher, Marcelo A; Grebenc, Tine; García, Miguel Á; Silva, Bianca D; Silveira, Andressa; Antoniolli, Zaida I; Marinho, Paulo; Münzenberger, Babette; Telleria, M Teresa; Baseia, Iuri G; Martín, María P

    2016-07-01

    The genus Rhizopogon includes species with hypogeous or subepigeus habit, forming ectomycorrhizae with naturally occurring or planted pines (Pinaceae). Species of the genus Rhizopogon can be distinguished easily from the other hypogeous basidiomycetes by their lacunose gleba without columella and their smooth elliptical spores; however, the limit between species is not always easy to establish. Rhizopogon luteolus, the type species of the genus, has been considered one of the species that are more abundant in Europe, as well as it has been cited in pine plantation of North and South America, different parts of Africa, Australia, and New Zealand. However, in this study, based on molecular analyses of the ITS nuclear ribosomal DNA (nrDNA) sequences (19 new sequences; 37 sequences from GenBank/UNITE, including those from type specimens), we prove that many GenBank sequences under R. luteolus were misidentified and correspond to Rhizopogon verii, a species described from Tunisia. Also, we confirm that basidiomes and ectomycorrhizae recently collected in Germany under Pinus sylvestris, as well as specimens from South of Brazil under Pinus taeda belong to R. verii. Thanks to the numerous ectomycorrhizal tips collected in Germany, a complete description of R. verii/P. sylvestris ectomycorrhiza is provided. Moreover, since in this paper the presence of R. verii in South America is here reported for the first time, a short description of basidiomes collected in Brazil, compared with collections located in different European herbaria, is included.

  17. The Roles of Dispersal, Fecundity, and Predation in the Population Persistence of an Oak (Quercus engelmannii) under Global Change

    PubMed Central

    Conlisk, Erin; Lawson, Dawn; Syphard, Alexandra D.; Franklin, Janet; Flint, Lorraine; Flint, Alan; Regan, Helen M.

    2012-01-01

    A species’ response to climate change depends on the interaction of biotic and abiotic factors that define future habitat suitability and species’ ability to migrate or adapt. The interactive effects of processes such as fire, dispersal, and predation have not been thoroughly addressed in the climate change literature. Our objective was to examine how life history traits, short-term global change perturbations, and long-term climate change interact to affect the likely persistence of an oak species - Quercus engelmannii (Engelmann oak). Specifically, we combined dynamic species distribution models, which predict suitable habitat, with stochastic, stage-based metapopulation models, which project population trajectories, to evaluate the effects of three global change factors – climate change, land use change, and altered fire frequency – emphasizing the roles of dispersal and seed predation. Our model predicted dramatic reduction in Q. engelmannii abundance, especially under drier climates and increased fire frequency. When masting lowers seed predation rates, decreased masting frequency leads to large abundance decreases. Current rates of dispersal are not likely to prevent these effects, although increased dispersal could mitigate population declines. The results suggest that habitat suitability predictions by themselves may under-estimate the impact of climate change for other species and locations. PMID:22623955

  18. Climate change effect on Betula (birch) and Quercus (oak) pollen seasons in US

    PubMed Central

    Zhang, Yong; Bielory, Leonard; Georgopoulos, Panos G.

    2013-01-01

    Climatic change is expected to affect the spatiotemporal patterns of airborne allergenic pollen, which has been found to act synergistically with common air pollutants, such as ozone, to cause Allergic Airway Disease (AAD). Observed airborne pollen data from six stations from 1994 to 2011 at Fargo (North Dakota), College Station (Texas), Omaha (Nebraska), Pleasanton (California), Cherry Hill and Newark (New Jersey) in the US were studied to examine climate change effects on trends of annual mean and peak value of daily concentrations, annual production, season start, and season length of Betula (birch) and Quercus (oak) pollen. The Growing Degree Hour (GDH) model was used to establish a relationship between start/end dates and differential temperature sums using observed hourly temperatures from surrounding meteorology stations. Optimum GDH models were then combined with meteorological information from the Weather Research and Forecasting (WRF) model, and land use land coverage data from the Biogenic Emissions Land use Database, version 3.1 (BELD3.1), to simulate start dates and season lengths of birch and oak pollen for both past and future years across the contiguous US (CONUS). For most of the studied stations, comparison of mean pollen indices between the periods of 1994–2000 and 2001–2011 showed that birch and oak trees were observed to flower 1–2 weeks earlier; annual mean and peak value of daily pollen concentrations tended to increase by 13.6%–248%. The observed pollen season lengths varied for birch and for oak across the different monitoring stations. Optimum initial date, base temperature, and threshold GDH for start date was found to be March 1, 8°C, and 1879 hours respectively for birch; March 1, 5°C, and 4760 hours respectively for oak. Simulation results indicated that responses of birch and oak pollen seasons to climate change are expected to vary for different regions. PMID:23793955

  19. Climate signal detected in sub-fossil and living oak trees data. An analysis of signal frequency components

    NASA Astrophysics Data System (ADS)

    Constantin, Nechita; Francisca, Chiriloaei; Maria, Radoane; Ionel, Popa; Nicoae, Radoane

    2016-04-01

    This study is focused on analysis the frequency components of the signal detected in living and sub-fossil tree ring series from different time periods. The investigation is oriented to analyze signal frequency components (low and high) of the two categories of trees. The interpretation technique of tree ring width is the instrument most often used to elaborate past climatic reconstructions. The annual resolution, but also, the high capacity of trees to accumulate climatic information are attributes which confer to palaeo-environmental reconstructions the biggest credibility. The main objective of the study refers to the evaluation of climatic signal characteristics, both present day climate and palaeo-climate (last 7000 years BP). Modern dendrochronological methods were applied on 350 samples of sub-fossil trees and 400 living trees. The subfossil trunks were sampled from different fluvial environments (Siret, Suceava, Moldova). Their age was determined using radiocarbon, varying from under 100 years to almost 7000 years BP. The subfossil tree species investigated were Quercus, Alnus, Ulmus. Considering living trees, these were identified on eastern part of Romania, in different actual physico-geographical conditions. The studied living tree species consisted in Quercus species (robur and petraea). Each site was investigated regarding stress factors of the sampled tree. The working methods were applied to the total wood series, both late and early, to detect intra-annual level climate information. Each series has been tested to separate individual trees with climatic signal of other trees with different signals (noises determined by competition between individuals or site stress, or anthropic impact). Comparing dendrochronological series (sub-fossil and living trees) we want to identify what significant causes determined the difference in the signal frequencies. Especially, the human interventions registered in the last 2 centuries will be evaluated by these

  20. Landscape genomic analysis of candidate genes for climate adaptation in a California endemic oak, Quercus lobata.

    PubMed

    Sork, Victoria L; Squire, Kevin; Gugger, Paul F; Steele, Stephanie E; Levy, Eric D; Eckert, Andrew J

    2016-01-01

    The ability of California tree populations to survive anthropogenic climate change will be shaped by the geographic structure of adaptive genetic variation. Our goal is to test whether climate-associated candidate genes show evidence of spatially divergent selection in natural populations of valley oak, Quercus lobata, as preliminary indication of local adaptation. Using DNA from 45 individuals from 13 localities across the species' range, we sequenced portions of 40 candidate genes related to budburst/flowering, growth, osmotic stress, and temperature stress. Using 195 single nucleotide polymorphisms (SNPs), we estimated genetic differentiation across populations and correlated allele frequencies with climate gradients using single-locus and multivariate models. The top 5% of FST estimates ranged from 0.25 to 0.68, yielding loci potentially under spatially divergent selection. Environmental analyses of SNP frequencies with climate gradients revealed three significantly correlated SNPs within budburst/flowering genes and two SNPs within temperature stress genes with mean annual precipitation, after controlling for multiple testing. A redundancy model showed a significant association between SNPs and climate variables and revealed a similar set of SNPs with high loadings on the first axis. In the RDA, climate accounted for 67% of the explained variation, when holding climate constant, in contrast to a putatively neutral SSR data set where climate accounted for only 33%. Population differentiation and geographic gradients of allele frequencies in climate-associated functional genes in Q. lobata provide initial evidence of adaptive genetic variation and background for predicting population response to climate change. © 2016 Botanical Society of America.

  1. Word-wide meta-analysis of Quercus forests ectomycorrhizal fungal diversity reveals southwestern Mexico as a hotspot.

    PubMed

    García-Guzmán, Olimpia Mariana; Garibay-Orijel, Roberto; Hernández, Edith; Arellano-Torres, Elsa; Oyama, Ken

    2017-11-01

    Quercus is the most diverse genus of ectomycorrhizal (ECM) host plants; it is distributed in the Northern and Southern Hemispheres, from temperate to tropical regions. However, their ECM communities have been scarcely studied in comparison to those of conifers. The objectives of this study were to determine the richness of ECM fungi associated with oak forests in the Cuitzeo basin in southwestern Mexico; and to determine the level of richness, potential endemism and species similarity among ECM fungal communities associated with natural oak forests worldwide through a meta-analysis. The ITS DNA sequences of ECM root tips from 14 studies were included in the meta-analysis. In total, 1065 species of ECM fungi have been documented worldwide; however, 812 species have been only found at one site. Oak forests in Europe contain 416 species, Mexico 307, USA 285, and China 151. Species with wider distributions are Sebacinaceae sp. SH197130, Amanita subjunquillea, Cenococcum geophilum, Cortinarius decipiens, Russula hortensis, R. risigallina, R. subrubescens, Sebacinaceae sp. SH214607, Tomentella ferruginea, and T. lapida. The meta-analysis revealed (1) that Mexico is not only a hotspot for oak species but also for their ECM mycobionts. (2) There is a particularly high diversity of ECM Pezizales in oak seasonal forests from western USA to southwestern Mexico. (3) The oak forests in southwestern Mexico have the largest number of potential endemic species. (4) Globally, there is a high turnover of ECM fungal species associated with oaks, which indicates high levels of alpha and beta diversity in these communities.

  2. The effect of climate on the phenology, acorn crop and radial increment of pedunculate oak (Quercus robur) in the middle Volga region, Tatarstan, Russia.

    PubMed

    Askeyev, O V; Tischin, D; Sparks, T H; Askeyev, I V

    2005-03-01

    Our data, collected in the extreme east of Europe, show that a significant biological effect of climate change has been experienced even in territories where temperature increase has been the lowest. This study documents the climatic response of pedunculate oak (Quercus robur) growing near its north-eastern limits in Europe. It demonstrates the potential of oak trees in old-growth forest to act as proxy climate indicators. Many factors may influence the temporal stability of the growth-climate, acorn crop-climate and first leafing-climate relationships. Climate data, climatic fluctuations, reproduction, genetics and tree-age may relate to this instability. Our results stress that an increase in climate variability or climatic warming resulting from warmer winters or summers could affect the oak population in eastern Europe in a similar way to that in western Europe. These findings, from remnants of oak forest in the middle Volga region of Russia, allow a further understanding of how species could be affected by future climates.

  3. Stem hydraulic capacitance decreases with drought stress: implications for modelling tree hydraulics in the Mediterranean oak Quercus ilex.

    PubMed

    Salomón, Roberto L; Limousin, Jean-Marc; Ourcival, Jean-Marc; Rodríguez-Calcerrada, Jesús; Steppe, Kathy

    2017-08-01

    Hydraulic modelling is a primary tool to predict plant performance in future drier scenarios. However, as most tree models are validated under non-stress conditions, they may fail when water becomes limiting. To simulate tree hydraulic functioning under moist and dry conditions, the current version of a water flow and storage mechanistic model was further developed by implementing equations that describe variation in xylem hydraulic resistance (R X ) and stem hydraulic capacitance (C S ) with predawn water potential (Ψ PD ). The model was applied in a Mediterranean forest experiencing intense summer drought, where six Quercus ilex trees were instrumented to monitor stem diameter variations and sap flow, concurrently with measurements of predawn and midday leaf water potential. Best model performance was observed when C S was allowed to decrease with decreasing Ψ PD . Hydraulic capacitance decreased from 62 to 25 kg m -3  MPa -1 across the growing season. In parallel, tree transpiration decreased to a greater extent than the capacitive water release and the contribution of stored water to transpiration increased from 2.0 to 5.1%. Our results demonstrate the importance of stored water and seasonality in C S for tree hydraulic functioning, and they suggest that C S should be considered to predict the drought response of trees with models. © 2017 John Wiley & Sons Ltd.

  4. Paisang (Quercus griffithii): a keystone tree species in sustainable agroecosystem management and livelihoods in Arunachal Pradesh, India.

    PubMed

    Singh, Ranjay K; Singh, Anshuman; Garnett, Stephen T; Zander, Kerstin K; Lobsang; Tsering, Darge

    2015-01-01

    In a study of the traditional livelihoods of 12 Monpa and Brokpa villages in Arunachal Pradesh, India using social-ecological and participatory rural appraisal techniques, we found that the forest tree species paisang (Quercus griffithii, a species of oak) is vital to agroecosystem sustainability. Paisang trees are conserved both by individuals and through community governance, because their leaves play a crucial role in sustaining 11 traditional cropping systems of the Monpa peoples. An Indigenous institution, Chhopa, regulates access to paisang leaves, ensuring that the relationship between paisang and traditional field crop species within Monpa agroecosystems is sustainable. The Monpa farmers also exchange leaves and agricultural products for yak-based foods produced by the transhumant Brokpa, who are primarily yak herders. Yak herds also graze in paisang groves during winter. These practices have enabled the conservation of about 33 landraces, yak breeds, and a number of wild plants. Paisang thus emerged as a culturally important keystone species in the cultures and livelihoods of both Monpa and Brokpa. Ecological and conservation knowledge and ethics about paisang vary with gender, social systems, and altitudes. Labor shortages, however, have already caused some changes to the ways in which paisang leaves are used and yak grazing patterns are also changing in the face of changes in attitude among local landowners. Given new competing interests, incentives schemes are now needed to conserve the ecologically sustainable traditional livelihoods.

  5. Atmospheric pollutants in peri-urban forests of Quercus ilex: evidence of pollution abatement and threats for vegetation.

    PubMed

    García-Gómez, Héctor; Aguillaume, Laura; Izquieta-Rojano, Sheila; Valiño, Fernando; Àvila, Anna; Elustondo, David; Santamaría, Jesús M; Alastuey, Andrés; Calvete-Sogo, Héctor; González-Fernández, Ignacio; Alonso, Rocío

    2016-04-01

    Peri-urban vegetation is generally accepted as a significant remover of atmospheric pollutants, but it could also be threatened by these compounds, with origin in both urban and non-urban areas. To characterize the seasonal and geographical variation of pollutant concentrations and to improve the empirical understanding of the influence of Mediterranean broadleaf evergreen forests on air quality, four forests of Quercus ilex (three peri-urban and one remote) were monitored in different areas in Spain. Concentrations of nitrogen dioxide (NO2), ammonia (NH3), nitric acid (HNO3) and ozone (O3) were measured during 2 years in open areas and inside the forests and aerosols (PM10) were monitored in open areas during 1 year. Ozone was the only air pollutant expected to have direct phytotoxic effects on vegetation according to current thresholds for the protection of vegetation. The concentrations of N compounds were not high enough to directly affect vegetation but could be contributing through atmospheric N deposition to the eutrophization of these ecosystems. Peri-urban forests of Q. ilex showed a significant below-canopy reduction of gaseous concentrations (particularly NH3, with a mean reduction of 29-38%), which indicated the feasibility of these forests to provide an ecosystem service of air quality improvement. Well-designed monitoring programs are needed to further investigate air quality improvement by peri-urban ecosystems while assessing the threat that air pollution can pose to vegetation.

  6. Tree competition and species coexistence in a Quercus--Betula forest in the Dongling Mountains in northern China

    NASA Astrophysics Data System (ADS)

    Hou, Ji-hua; Mi, Xiang-cheng; Liu, Can-ran; Ma, Ke-ping

    2006-09-01

    The population size structure, growth dynamics and mode of competition among adult trees (≥ 4 cm DBH) of six abundant tree species in a 5 ha study plot of a temperate deciduous forest in the Dongling Mountains in northern China were investigated using diffusion and growth dynamics models. In the year of 2000, two dominant species, Quercus liaotungensis and Betula dahurica accounted for ca. 68.69% of the total basal area and 52.71% of the total density of adult plants. Q. liaotungensis, Populus davidiana and Acer mono exhibited inverse J-shaped DBH distributions whereas Betula dahurica, B. platyphylla and Salix caprea had unimodal DBH distributions. One-sided interspecific competition was detected between some species combinations at the scale of the 5 ha study plot, and the competitive effect was mainly size-dependent rather than from species-specific interactions with large individuals in the canopy layer out competing smaller individuals in the understory. Symmetric competition was found between Q. liaotungensis and A. mono only. However, considering the straight line relationship of G ( t, x) - √{D(t, x)}, which suggests that competitive asymmetry is very low or absent, combined with the relatively low mortality of trees with a DBH larger than 4 cm, we speculate that asymmetric interspecific competition was not important in structuring this tree community. Regeneration characteristics of each species are most likely important in regulating species coexistence and stand dynamics in this forest.

  7. Drought tolerance and transplanting performance of holm oak (Quercus ilex) seedlings after drought hardening in the nursery.

    PubMed

    Villar-Salvador, Pedro; Planelles, Rosa; Oliet, Juan; Peñuelas-Rubira, Juan L; Jacobs, Douglass F; González, Magdalena

    2004-10-01

    Drought stress is the main cause of mortality of holm oak (Quercus ilex L.) seedlings in forest plantations. We therefore assessed if drought hardening, applied in the nursery at the end of the growing season, enhanced the drought tolerance and transplanting performance of holm oak seedlings. Seedlings were subjected to three drought hardening intensities (low, moderate and severe) for 2.5 and 3.5 months, and compared with control seedlings. At the end of the hardening period, water relations, gas exchange and morphological attributes were determined, and survival and growth under mesic and xeric transplanting conditions were assessed. Drought hardening increased drought tolerance primarily by affecting physiological traits, with no effect on shoot/root ratio or specific leaf mass. Drought hardening reduced osmotic potential at saturation and at the turgor loss point, stomatal conductance, residual transpiration (RT) and new root growth capacity (RGC), but enhanced cell membrane stability. Among treated seedlings, the largest response occurred in seedlings subjected to moderate hardening. Severe hardening reduced shoot soluble sugar concentration and increased shoot starch concentration. Increasing the duration of hardening had no effect on water relations but reduced shoot mineral and starch concentrations. Variation in cell membrane stability, RT and RGC were negatively related to osmotic adjustment. Despite differences in drought tolerance, no differences in mortality and relative growth rate were observed between hardening treatments when the seedlings were transplanted under either mesic or xeric conditions.

  8. Disparity in elevational shifts of European trees in response to recent climate warming.

    PubMed

    Rabasa, Sonia G; Granda, Elena; Benavides, Raquel; Kunstler, Georges; Espelta, Josep M; Ogaya, Romá; Peñuelas, Josep; Scherer-Lorenzen, Michael; Gil, Wojciech; Grodzki, Wojciech; Ambrozy, Slawomir; Bergh, Johan; Hódar, José A; Zamora, Regino; Valladares, Fernando

    2013-08-01

    Predicting climate-driven changes in plant distribution is crucial for biodiversity conservation and management under recent climate change. Climate warming is expected to induce movement of species upslope and towards higher latitudes. However, the mechanisms and physiological processes behind the altitudinal and latitudinal distribution range of a tree species are complex and depend on each tree species features and vary over ontogenetic stages. We investigated the altitudinal distribution differences between juvenile and adult individuals of seven major European tree species along elevational transects covering a wide latitudinal range from southern Spain (37°N) to northern Sweden (67°N). By comparing juvenile and adult distributions (shifts on the optimum position and the range limits) we assessed the response of species to present climate conditions in relation to previous conditions that prevailed when adults were established. Mean temperature increased by 0.86 °C on average at our sites during the last decade compared with previous 30-year period. Only one of the species studied, Abies alba, matched the expected predictions under the observed warming, with a maximum abundance of juveniles at higher altitudes than adults. Three species, Fagus sylvatica, Picea abies and Pinus sylvestris, showed an opposite pattern while for other three species, such as Quercus ilex, Acer pseudoplatanus and Q. petraea, we were no able to detect changes in distribution. These findings are in contrast with theoretical predictions and show that tree responses to climate change are complex and are obscured not only by other environmental factors but also by internal processes related to ontogeny and demography. © 2013 John Wiley & Sons Ltd.

  9. Forest floor leachate fluxes under six different tree species on a metal contaminated site.

    PubMed

    Van Nevel, Lotte; Mertens, Jan; De Schrijver, An; Baeten, Lander; De Neve, Stefaan; Tack, Filip M G; Meers, Erik; Verheyen, Kris

    2013-03-01

    Trees play an important role in the biogeochemical cycling of metals, although the influence of different tree species on the mobilization of metals is not yet clear. This study examined effects of six tree species on fluxes of Cd, Zn, DOC, H(+) and base cations in forest floor leachates on a metal polluted site in Belgium. Forest floor leachates were sampled with zero-tension lysimeters in a 12-year-old post-agricultural forest on a sandy soil. The tree species included were silver birch (Betula pendula), oak (Quercus robur and Q. petraea), black locust (Robinia pseudoacacia), aspen (Populus tremula), Scots pine (Pinus sylvestris) and Douglas fir (Pseudotsuga menziesii). We show that total Cd fluxes in forest floor leachate under aspen were slightly higher than those in the other species' leachates, yet the relative differences between the species were considerably smaller when looking at dissolved Cd fluxes. The latter was probably caused by extremely low H(+) amounts leaching from aspen's forest floor. No tree species effect was found for Zn leachate fluxes. We expected higher metal leachate fluxes under aspen as its leaf litter was significantly contaminated with Cd and Zn. We propose that the low amounts of Cd and Zn leaching under aspen's forest floor were possibly caused by high activity of soil biota, for example burrowing earthworms. Furthermore, our results reveal that Scots pine and oak were characterized by high H(+) and DOC fluxes as well as low base cation fluxes in their forest floor leachates, implying that those species might enhance metal mobilization in the soil profile and thus bear a potential risk for belowground metal dispersion. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. High Rates of Gene Flow by Pollen and Seed in Oak Populations across Europe

    PubMed Central

    Gerber, Sophie; Chadœuf, Joël; Gugerli, Felix; Lascoux, Martin; Buiteveld, Joukje; Cottrell, Joan; Dounavi, Aikaterini; Fineschi, Silvia; Forrest, Laura L.; Fogelqvist, Johan; Goicoechea, Pablo G.; Jensen, Jan Svejgaard; Salvini, Daniela; Vendramin, Giovanni G.; Kremer, Antoine

    2014-01-01

    Gene flow is a key factor in the evolution of species, influencing effective population size, hybridisation and local adaptation. We analysed local gene flow in eight stands of white oak (mostly Quercus petraea and Q. robur, but also Q. pubescens and Q. faginea) distributed across Europe. Adult trees within a given area in each stand were exhaustively sampled (range [239, 754], mean 423), mapped, and acorns were collected ([17,147], 51) from several mother trees ([3], [47], 23). Seedlings ([65,387], 178) were harvested and geo-referenced in six of the eight stands. Genetic information was obtained from screening distinct molecular markers spread across the genome, genotyping each tree, acorn or seedling. All samples were thus genotyped at 5–8 nuclear microsatellite loci. Fathers/parents were assigned to acorns and seedlings using likelihood methods. Mating success of male and female parents, pollen and seed dispersal curves, and also hybridisation rates were estimated in each stand and compared on a continental scale. On average, the percentage of the wind-borne pollen from outside the stand was 60%, with large variation among stands (21–88%). Mean seed immigration into the stand was 40%, a high value for oaks that are generally considered to have limited seed dispersal. However, this estimate varied greatly among stands (20–66%). Gene flow was mostly intraspecific, with large variation, as some trees and stands showed particularly high rates of hybridisation. Our results show that mating success was unevenly distributed among trees. The high levels of gene flow suggest that geographically remote oak stands are unlikely to be genetically isolated, questioning the static definition of gene reserves and seed stands. PMID:24454802

  11. Hydrologic effects on diameter growth phenology for Celtis laevigata and Quercus lyrata in the floodplain of the lower White River, Arkansas

    USGS Publications Warehouse

    Allen, Scott T.; Cochran, Wesley; Krauss, Ken W.; Keim, Richard F.; King, Sammy L.; Schweitzer, Callie Jo; Clatterbuck, Wayne K.; Oswalt, Christopher M.

    2016-01-01

    Bottomland hardwood (BLH) forests represent an extensive wetland system in the Mississippi Alluvial Valley and southeastern USA, and it is currently undergoing widespread transition in species composition. One such transition involves increased establishment of sugarberry (Celtis laevigata), and decreased establishment of overcup oak (Quercus lyrata). The ecological mechanisms that control this transition are not well understood. We measured monthly diameter growth with dendrometer bands on 86 sugarberry and 42 overcup oak trees at eight sites in the floodplain of the White River (AR, USA) with differing hydrologic regimes. For both species, growth attenuated earlier at drier sites compared to wetter sites. Overcup oak grew slightly longer through late August, suggesting its growth period extends across both wet and dry periods. In contrast, sugarberry growth rate decreased substantially by mid-July. While these results did not necessarily indicate a mechanism for increased prominence of sugarberry, they suggest sugarberry growing season does not as much coincide with the typically drier period of late summer and may be less affected by these conditions. Overcup oak grows later into the dry season and water table conditions during this period may determine if overcup oak benefits from this relatively extended growth period.

  12. Effects of temperature and light on photosynthesis of dominant species of a northern hardwood forest. [Populus grandidentata, Quercus rubra, Betula papyrifera

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jurik, T.W.; Weber, J.A.; Gates, D.M.

    1988-06-01

    The response of CO{sub 2} exchange rate (CER) to temperature and light was determined for 14 dominant plant species of a northern deciduous hardwood forest in northern lower Michigan. Leaves at the top of the canopy had temperature optima near 25 C for CER, whereas leaves in the understory had optima near 20 C. There was no change in optimum temperature over the growing season, and overall shapes of response curves were similar among species. The lack of change in temperature optima may be a result of little change in growing conditions rather than a lack of ability to acclimatize.more » Nine of 11 species in the understory had no significant differences in light-saturated, maximum CERs, whereas at the top of the canopy Populus grandidentata had a higher maximum CER than Quercus rubra and Betula papyrifera. The species in the understory also differed little in light-saturation points for CER. Species at the top of the canopy had higher values for maximum CER, light-saturation point for CER, and maximum conductance than did species in the understory.« less

  13. The role of forest fire severity on vegetation recovery after 18 years. Implications for forest management of Quercus suber L. in Iberian Peninsula

    NASA Astrophysics Data System (ADS)

    Francos, Marcos; Úbeda, Xavier; Tort, Joan; Panareda, Josep María; Cerdà, Artemio

    2016-10-01

    Wildfires are a widespread phenomenon in Mediterranean environments. Wildfires result in different fire severities, and then in contrasting plant cover and floristic composition. This paper analyses the recovery of the vegetation eighteen years after a wildfire in Catalonia. The Pinus pinaster ssp. forest was affected by three different severities in July 1994, and studied the spring of 1995 and again in 2008. After eighteen years (2012), our research found that burnt sites constitute a dense forest with a broad variety of species, including many young pines, shrubs and herbaceous plants, but that the risk of fire remains very high, due to the large quantity of fuel and the flammability of the species. The management of the post-fire is critical when high severity fires take places, and it is recommended that high-severity fires must be avoided for a sustainable forest management. We recommend that once the timber (Pinus plantations) production is not profitable, Quercus suber L. and Pinus pinaster ssp. forest should be promoted, and pine plantations avoided.

  14. Quercus suber range dynamics by ecological niche modelling: from the Last Interglacial to present time

    NASA Astrophysics Data System (ADS)

    Vessella, Federico; Simeone, Marco Cosimo; Schirone, Bartolomeo

    2015-07-01

    Ecological Niche Modelling (ENM) is widely used to depict species potential occurrence according to environmental variables under different climatic scenarios. We tested the ENM approach to infer past range dynamics of cork oak, a keystone species of the Mediterranean Biome, from 130 ka to the present time. Hindcasting implications would deal with a better species risk assessment and conservation management for the future. We modelled present and past occurrence of cork oak using seven ENM algorithms, starting from 63,733 spatially unique presence points at 30 arc-second resolution. Fourteen environmental variables were used and four time slices were considered (Last Interglacial, Last Glacial Maximum, mid-Holocene and present time). A threshold-independent evaluation of the goodness-of-fit of the models was evaluated by means of ROC curve and fossil or historical evidences were used to validate the results. Four weighted average maps depicted the dynamics of area suitability for cork oak in the last 130 ka. The derived species autoecology allowed its long-term occurrence in the Mediterranean without striking range reduction or shifting. Fossil and historical post-processing validation support the modelled past spatial extension and a neglected species presence at Levantine until the recent time. Despite the severe climatic oscillation since the Last Glacial Maximum, cork oak potential distribution area experienced limited range changes, confirming its strong link with the Mediterranean Basin. The ecological amplitude of Quercus suber could be therefore adopted as a reference to trace the Mediterranean bioclimate area. A better knowledge of the past events of Mediterranean vegetation, a wider range of study species and environmental determinants are essential to inform us about its current state, its sensitivity to human impact and the potential responses to future changes.

  15. Molecular characterization of Quercus suber MYB1, a transcription factor up-regulated in cork tissues.

    PubMed

    Almeida, Tânia; Menéndez, Esther; Capote, Tiago; Ribeiro, Teresa; Santos, Conceição; Gonçalves, Sónia

    2013-01-15

    The molecular processes associated with cork development in Quercus suber L. are poorly understood. A previous molecular approach identified a list of genes potentially important for cork formation and differentiation, providing a new basis for further molecular studies. This report is the first molecular characterization of one of these candidate genes, QsMYB1, coding for an R2R3-MYB transcription factor. The R2R3-MYB gene sub-family has been described as being involved in the phenylpropanoid and lignin pathways, both involved in cork biosynthesis. The results showed that the expression of QsMYB1 is putatively mediated by an alternative splicing (AS) mechanism that originates two different transcripts (QsMYB1.1 and QsMYB1.2), differing only in the 5'-untranslated region, due to retention of the first intron in one of the variants. Moreover, within the retained intron, a simple sequence repeat (SSR) was identified. The upstream regulatory region of QsMYB1 was extended by a genome walking approach, which allowed the identification of the putative gene promoter region. The relative expression pattern of QsMYB1 transcripts determined by reverse transcription quantitative polymerase chain reaction (RT-qPCR) revealed that both transcripts were up-regulated in cork tissues; the detected expression was several times higher in newly formed cork harvested from trees producing virgin, second or reproduction cork when compared with wood. Moreover, the expression analysis of QsMYB1 in several Q. suber organs showed very low expression in young branches and roots, whereas in leaves, immature acorns or male flowers, no expression was detected. These preliminary results suggest that QsMYB1 may be related to secondary growth and, in particular, with the cork biosynthesis process with a possible alternative splicing mechanism associated with its regulatory function. Copyright © 2012 Elsevier GmbH. All rights reserved.

  16. Canopy structural alterations to nitrogen functions of the soil microbial community in a Quercus virginiana forest

    NASA Astrophysics Data System (ADS)

    Moore, L. D.; Van Stan, J. T., II; Rosier, C. L.; Gay, T. E.; Wu, T.

    2014-12-01

    Forest canopy structure controls the timing, amount and chemical character of precipitation supply to soils through interception and drainage along crown surfaces. Yet, few studies have examined forest canopy structural connections to soil microbial communities (SMCs), and none have measured how this affects SMC N functions. The maritime Quercus virginiana Mill. (southern live oak) forests of St Catherine's Island, GA, USA provide an ideal opportunity to examine canopy structural alterations to SMCs and their functioning, as their throughfall varies substantially across space due to dense Tillandsia usneoides L. (spanish moss) mats bestrewn throughout. To examine the impact of throughfall variability on SMC N functions, we examined points along the canopy coverage continuum: large canopy gaps (0%), bare canopy (50-60%), and canopy of heavy T. usneoides coverage (>=85%). Five sites beneath each of the canopy cover types were monitored for throughfall water/ions and soil leachates chemistry for one storm each month over the growing period (7 months, Mar-2014 to Sep-2014) to compare with soil chemistry and SMC communities sampled every two months throughout that same period (Mar, May, Jul, Sep). DGGE and QPCR analysis of the N functioning genes (NFGs) to characterize the ammonia oxidizing bacterial (AOB-amoA), archaea (AOA-amoA), and ammonification (chiA) communities were used to determine the nitrification and decomposition potential of these microbial communities. PRS™-probes (Western Ag Innovations Inc., Saskatoon, Canada) were then used to determine the availability of NO3-N and NH4+N in the soils over a 6-week period to evaluate whether the differing NFG abundance and community structures resulted in altered N cycling.

  17. Changes in DNA methylation fingerprint of Quercus ilex trees in response to experimental field drought simulating projected climate change.

    PubMed

    Rico, L; Ogaya, R; Barbeta, A; Peñuelas, J

    2014-03-01

    Rapid genetic changes in plants have been reported in response to current climate change. We assessed the capacity of trees in a natural forest to produce rapid acclimation responses based on epigenetic modifications. We analysed natural populations of Quercus ilex, the dominant tree species of Mediterranean forests, using the methylation-sensitive amplified polymorphism (MSAP) technique to assess patterns and levels of methylation in individuals from unstressed forest plots and from plots experimentally exposed to drought for 12 years at levels projected for the coming decades. The percentage of hypermethylated loci increased, and the percentage of fully methylated loci clearly decreased in plants exposed to drought. Multivariate analyses exploring the status of methylation at MSAP loci also showed clear differentiation depending on stress. The PCA scores for the MSAP profiles clearly separated the genetic from the epigenetic structure, and also significantly separated the samples within each group in response to drought. Changes in DNA methylation highlight the large capacity of plants to rapidly acclimate to changing environmental conditions, including trees with long life spans, and our results demonstrate those changes. These changes, although unable to prevent the decreased growth and higher mortality associated with this experimental drought, occurred together with a dampening in such decreases as the long-term treatment progressed. © 2013 German Botanical Society and The Royal Botanical Society of the Netherlands.

  18. Continuous Spectrum LEDs Promote Seedling Quality Traits and Performance of Quercus ithaburensis var. macrolepis

    PubMed Central

    Smirnakou, Sonia; Ouzounis, Theoharis; Radoglou, Kalliopi M.

    2017-01-01

    Regulation of the growth, development, and quality of plants by the control of light quality has attracted extensive attention worldwide. The aim of this study was to examine the effects of continuous LED spectrum for indoor plant pre-cultivation and to investigate the morphological and physiological responses of a common broadleaved tree species in Mediterranean environment, Quercus ithaburensis var. macrolepis at seedling developmental stage. Thus, the seedlings were pre-cultivated for 28 days, under five different LED light qualities: (1) Fluorescent (FL) as control light (2) L20AP67 (high in green and moderate in far-red), (3) AP673L (high in green and red), (4) G2 (highest in red and far-red), AP67 (high in blue, red, and far-red), and (5) NS1 (highest in blue and green and lowest in far-red) LEDs. Further examination was held at the nursery for 1 year, on several seedling quality traits. Indeed, AP67 and AP673L triggered higher leaf formation, while L20AP67 positively affected seedling shoot development. NS1 and AP67 LED pre-cultivated seedlings showed significantly higher root fibrosity than those of FL light. Furthermore, NS1 and AP673L LEDs induced fourfold increase on seedling root dry weight than FL light. Hence, evaluating the seedling nursery performance attributes, most of those photomorphogenetic responses previously obtained were still detectable. Even more so, LED pre-cultivated seedlings showed higher survival and faster growth indicating better adaptation even under natural light conditions, a fact further reinforced by the significantly higher Dickson’s quality index acquired. In conclusion, the goal of each nursery management program is the production of high quality seedlings with those desirable traits, which in turn satisfy the specific needs for a particular reforestation site. Thus, the enhanced oak seedling quality traits formed under continuous LEDs spectrum especially of NS1 and AP673L pre-cultivation may potentially fulfill this goal

  19. An ontological system based on MODIS images to assess ecosystem functioning of Natura 2000 habitats: A case study for Quercus pyrenaica forests

    NASA Astrophysics Data System (ADS)

    Pérez-Luque, A. J.; Pérez-Pérez, R.; Bonet-García, F. J.; Magaña, P. J.

    2015-05-01

    The implementation of the Natura 2000 network requires methods to assess the conservation status of habitats. This paper shows a methodological approach that combines the use of (satellite) Earth observation with ontologies to monitor Natura 2000 habitats and assess their functioning. We have created an ontological system called Savia that can describe both the ecosystem functioning and the behaviour of abiotic factors in a Natura 2000 habitat. This system is able to automatically download images from MODIS products, create indicators and compute temporal trends for them. We have developed an ontology that takes into account the different concepts and relations about indicators and temporal trends, and the spatio-temporal components of the datasets. All the information generated from datasets and MODIS images, is stored into a knowledge base according to the ontology. Users can formulate complex questions using a SPARQL end-point. This system has been tested and validated in a case study that uses Quercus pyrenaica Willd. forests as a target habitat in Sierra Nevada (Spain), a Natura 2000 site. We assess ecosystem functioning using NDVI. The selected abiotic factor is snow cover. Savia provides useful data regarding these two variables and reflects relationships between them.

  20. Ontogenetic patterns of CO sub 2 exchange of Quercus rubra L. leaves during three flushes of shoot growth I. median flush leaves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hanson, P.J.; Isebrands, J.G.; Dickson, R.E.

    1988-03-01

    Oak (Quercus) seedlings exhibit a pattern of shoot growth known to place demands on carbohydrate and nutrient reserves. This study was designed to determine ontogenetic patterns in CO{sub 2} exchanges properties of red oak leaves, and to determine if individual leaf CO{sub 2} exchange rates (CER) increase in response to the assimilate demand placed on a seedling during flushing. Northern red oak (Q. rubra L.) seedlings were grown in environments favorable for multiple flushes of shoot growth. Measurements of CER on single, attached, median leaves from each flush were made over a range of photosynthetic photon flux densities on plantsmore » at nine stages of seedling development through three flushes of growth. Carbon dioxide exchange rate of red oak leaves increased during leaf development up to and beyond full leaf expansion before decreasing an unusual pattern of photosynthesis during leaf ontogeny. Furthermore, first- and second-flush leaf CER initially decreased and then increased in conjunction with the third flush of shoot growth. These patterns indicate that red oak leaves have a capacity for CER adjustment in response to increase sink demand.« less

  1. Mycorrhizal associations of trees have different indirect effects on organic matter decomposition

    Treesearch

    Melanie K. Taylor; Richard A. Lankau; Nina Wurzburger; Franciska de Vries

    2016-01-01

    1. Organic matter decomposition is the main process by which carbon (C) is lost from terrestrialecosystems, and mycorrhizal associations of plants (i.e. arbuscular mycorrhizas (AM) and ectomycorrhizas(ECM)) may have different indirect effects on this loss pathway. AM and ECM plants differin the soil...

  2. Arabinogalactan proteins and pectin distribution during female gametogenesis in Quercus suber L.

    PubMed Central

    Lopes, Ana Lúcia; Costa, Mário Luís; Sobral, Rómulo; Costa, Maria Manuela; Amorim, Maria Isabel; Coimbra, Sílvia

    2016-01-01

    Background and Aims Quercus suber L. (cork oak) is one of the most important monoecious tree species in semi-arid regions of Southern Europe, with a high ecological value and economic potential. However, as a result of its long reproductive cycle, complex reproductive biology and recalcitrant seeds, conventional breeding is demanding. In its complex reproductive biology, little is known about the most important changes that occur during female gametogenesis. Arabinogalactan proteins (AGPs) and pectins are the main components of plant cell walls and have been reported to perform common functions in cell differentiation and organogenesis of reproductive plant structures. AGPs have been shown to serve as important molecules in several steps of the reproductive process in plants, working as signalling molecules, associated with the sporophyte–gametophyte transition, and pectins have been implicated in pollen–pistil interactions before double fertilization. In this study, the distribution of AGP and pectin epitopes was assessed during female gametogenesis. Methods Immunofluorescence labelling of female flower cells was performed with a set of monoclonal antibodies (mAbs) directed to the carbohydrate moiety of AGPs (JIM8 and JIM13) and pectic homogalacturonans (HGs) (mAbs JIM5 and JIM7). Key Results The selective labelling obtained with AGP and pectin mAbs JIM8, JIM13, JIM5 and JIM7 during Q. suber female gametogenesis shows that AGPs and pectic HG can work as markers for mapping gametophytic cell differentiation in this species. Pectic HG showed different distribution patterns, depending on their levels of methyl esterification. Methyl-esterified HGs showed a uniform distribution in the overall female flower cells before fertilization and a more specific pattern after fertilization. A low methyl-ester pectin distribution pattern during the different developmental stages appears to be related to the pathway that pollen tubes follow to reach the embryo sac. AGPs

  3. Whole-transcriptome response to water stress in a California endemic oak, Quercus lobata.

    PubMed

    Gugger, Paul F; Peñaloza-Ramírez, Juan Manuel; Wright, Jessica W; Sork, Victoria L

    2017-05-01

    Reduced water availability during drought can create major stress for many plant species. Within a species, populations with a history of seasonal drought may have evolved the ability to tolerate drought more than those in areas of high precipitation and low seasonality. In this study, we assessed response to water stress in a California oak species, Quercus lobata Née, by measuring changes in gene expression profiles before and after a simulated drought stress treatment through water deprivation of seedlings in a greenhouse setting. Using whole-transcriptome sequencing from nine samples from three collection localities, we identified which genes are involved in response to drought stress and tested the hypothesis that seedlings sampled from climatically different regions of the species range respond to water stress differently. We observed a surprisingly massive transcriptional response to drought: 35,347 of 68,434 contigs (52%) were differentially expressed before versus after drought treatment, of which 18,111 were down-regulated and 17,236 were up-regulated. Genes functionally associated with abiotic stresses and death were enriched among the up-regulated genes, whereas metabolic and cell part-related genes were enriched among the down-regulated. We found 56 contigs that exhibited significantly different expression responses to the drought treatment among the three populations (treatment × population interaction), suggesting that those genes may be involved in local adaptation to drought stress. These genes have stress response (e.g., WRKY DNA-binding protein 51 and HSP20-like chaperones superfamily protein), metabolic (e.g., phosphoglycerate kinase and protein kinase superfamily protein), transport/transfer (e.g., cationic amino acid transporter 7 and K+ transporter) and regulatory functions (e.g., WRKY51 and Homeodomain-like transcriptional regulator). Baseline expression levels of 1310 unique contigs also differed among pairs of populations, and they were

  4. Individual tree, merchantable stem green weight and volume equations for four bottomland hardwood oak species in southeast Arkansas

    Treesearch

    Paul F. Doruska; David W. Patterson; Matthew B. Hurd; Jonathan I. Hartley

    2013-01-01

    Equations were developed to estimate outside-bark, merchantable stem green weight (lb) and inside-bark merchantable stem volume (ft3) for sawtimber-sized Nuttall oak (Quercus texana Buckley), overcup oak (Quercus lyrata Walt.), water oak (Quercus nigra L.), and willow oak (Quercus...

  5. Inhibition of matrix metalloproteinase-1 and type-I procollagen expression by phenolic compounds isolated from the leaves of Quercus mongolica in ultraviolet-irradiated human fibroblast cells.

    PubMed

    Kim, Han Hyuk; Kim, Dong Hee; Oh, Myeong Hwan; Park, Kwang Jun; Heo, Jun Hyeok; Lee, Min Won

    2015-01-01

    The aim of this study was to investigate the effect of Quercus mongolica (QM) which induce anti-photoaging process of skin in vitro. Bioassay-guided isolation of 80 % Me2CO extract of the leaves of QM led to the isolation and identification of six known phenolic compounds: pedunculagin (1), (-)-epigallocatechin (2), (+)-catechin (3), quercetin 3-O-(6″-O-galloyl)-β-D-glucopyranoside (4), kaempferol-3-O-β-D-glucopyranoside-7-O-α-L-rhamnopyranoside (5) and kaempferol 3-O-(6″-galloyl)-β-D-glucopyranoside (6). The effects of compounds 1-6 on expression of matrix metalloproteinase-1 (MMP-1) and type-I procollagen were further evaluated. Among them, compound 1 showed potent inhibitory effect on MMP-1 and the increased type-I procollagen synthesis in ultraviolet B-induced human fibroblast. These results suggest that pedunculagin, an ellagitannin, is a potential candidate for the prevention and treatment of skin aging.

  6. Managing coarse woody debris in forests of the Rocky Mountains

    Treesearch

    Russell T. Graham; Alan E. Harvey; Martin F. Jurgensen; Theresa B. Jain; Jonalea R. Tonn; Deborah S. Page-Dumroese

    1994-01-01

    Recommendations for managing coarse woody debris after timber harvest were developed for 14 habitat types, ranging from ponderosa pine (Pinus ponderosa) habitat types of Arizona to subalpine fir (Abies lasiocarpa) habitat types of western Montana. Ectomycorrhizae were used as a bioindicator of healthy, productive forest soils....

  7. A RAPID DNA EXTRACTION METHOD IS SUCCESSFULLY APPLIED TO ITS-RFLP ANALYSIS OF MYCORRHIZAL ROOT TIPS

    EPA Science Inventory

    A rapid method for extracting DNA from intact, single root tips using a Xanthine solution was developed to handle very large numbers of analyses of ectomycorrhizas. By using an extraction without grinding we have attempted to bias the extraction towards the fungal DNA in the man...

  8. Hypogeous fungi at tree line in the Australian Alps

    Treesearch

    James M. Trappe; Andrew W Claridge

    2006-01-01

    The tree line of the continental Australian Alps yielded eighteen species of hypogeous fungi, all probably . forming ectomycorrhizae with Eucalyptus niphophila, the tree species characteristic of that habitat. Six of the species were undescribed. These collections represented six families and twelve genera: Boletaceae (with Chamonixia), Gallaceaceae...

  9. Root hydraulic conductivity and xylem sap levels of zeatin riboside and abscisic acid in ectomycorrhizal Douglas fir seedlings

    Treesearch

    Mark D. Coleman; Caroline S. Bledsoe; Barbara A. Smit

    1990-01-01

    Mechanistic hypotheses to explain mycorrhizal enhancement of root hydraulic conductivity (Lp) suggest that phosphorus (P) nutrition, plant growth substances and/or altered morphology may be responsible. Such ideas are based on work with VA (vesicular-arbuscular) mycorrhizas. Since VA mycorrhizas and ectomycorrhizas differ in many respects, they...

  10. Inoculation of Loblolly Pine Seedlings at Planting with Basidiospores of Ectomycorrhizal Fungi in Chip Form

    Treesearch

    Peter R. Beckjord; Marla S. McIntosh; Edward Hacskaylo; John H. Jr. Melhuish; John H. Jr. Melhuish

    1984-01-01

    Basidiospores of the ectomycorrhizae-forming fungi Pisolithus tinctorius and Scleroderma auranteum incorporated into an organic hydrocolloid can be used successfully in field inoculation. Containerized loblolly pine seedlings were inoculated during outplanting by this method. This study showed that basidiospore chips were effective inocula in this investigation.

  11. Characterisation of seven Inocybe ectomycorrhizal morphotypes from a semiarid woody steppe.

    PubMed

    Seress, Diána; Dima, Bálint; Kovács, Gábor M

    2016-04-01

    Ectomycorrhizas (ECM) of Inocybe species (Inocybaceae, Basidiomycota) formed by three host plant species (Populus alba, Salix rosmarinifolia and Pinus nigra) in a semiarid woody steppe of Hungary were studied. To identify the fungal partners, we performed phylogenetic analyses of nucleotide sequences for the internal transcribed spacer region of nuclear DNA (nrDNA ITS) together with sequences gained from public databases. Seven Inocybe ectomycorrhiza morphotypes were morpho-anatomically characterised. Five morphotypes were identified (I. phaeoleuca, I. psammophila, I. semifulva, I. splendens and I. subporospora), whereas two morphotypes represented unidentified Inocybe species. Differences were discernible among the morphotypes, and they showed general anatomical characteristics of Inocybe ECM, such as the slightly organised plectenchymatic mantle (types A, B and E and the gelatinous C). The ECM of I. subporospora and I. phaeoleuca were detected from the introduced Pinus nigra. These two fungi are probably native to the area but capable of forming a novel ectomycorrhizal association with the invasive host.

  12. Ectomycorrhizal Specificity Patterns in a Mixed Pinus contorta and Picea engelmannii Forest in Yellowstone National Park

    PubMed Central

    Cullings, Kenneth W.; Vogler, Detlev R.; Parker, Virgil T.; Finley, Sara Katherine

    2000-01-01

    We used molecular genetic methods to test two hypotheses, (i) that host plant specificity among ectomycorrhizal fungi would be common in a closed-canopy, mixed Pinus contorta-Picea engelmannii forest in Yellowstone National Park and (ii) that specificity would be more common in the early successional tree species, P. contorta, than in the invader, P. engelmannii. We identified 28 ectomycorrhizal fungal species collected from 27 soil cores. The proportion of P. engelmannii to P. contorta ectomycorrhizae was nearly equal (52 and 48%, respectively). Of the 28 fungal species, 18 composed greater than 95% of the fungal community. No species was associated exclusively with P. contorta, but four species, each found in only one core, and one species found in two cores were associated exclusively with P. engelmannii. These fungi composed less than 5% of the total ectomycorrhizae. Thus, neither hypothesis was supported, and hypothesized benefits of ectomycorrhizal specificity to both trees and fungi probably do not exist in this system. PMID:11055953

  13. Ectomycorrhizal specificity patterns in a mixed Pinus contorta and Picea engelmannii forest in Yellowstone National Park

    NASA Technical Reports Server (NTRS)

    Cullings, K. W.; Vogler, D. R.; Parker, V. T.; Finley, S. K.

    2000-01-01

    We used molecular genetic methods to test two hypotheses, (i) that host plant specificity among ectomycorrhizal fungi would be common in a closed-canopy, mixed Pinus contorta-Picea engelmannii forest in Yellowstone National Park and (ii) that specificity would be more common in the early successional tree species, P. contorta, than in the invader, P. engelmannii. We identified 28 ectomycorrhizal fungal species collected from 27 soil cores. The proportion of P. engelmannii to P. contorta ectomycorrhizae was nearly equal (52 and 48%, respectively). Of the 28 fungal species, 18 composed greater than 95% of the fungal community. No species was associated exclusively with P. contorta, but four species, each found in only one core, and one species found in two cores were associated exclusively with P. engelmannii. These fungi composed less than 5% of the total ectomycorrhizae. Thus, neither hypothesis was supported, and hypothesized benefits of ectomycorrhizal specificity to both trees and fungi probably do not exist in this system.

  14. Influence of Pericarp, Cotyledon and Inhibitory Substances on Sharp Tooth Oak (Quercus aliena var. acuteserrata) Germination

    PubMed Central

    Liu, Yan; Liu, Guangquan; Li, Qingmei; Liu, Yong; Hou, Longyu; Li, GuoLei

    2012-01-01

    In order to explore the mechanism of delayed and uneven germination in sharp tooth oak (Quercus aliena var. acuteserrata) (STO), mechanical scarification techniques were used to study STO root and shoot germination and growth. The techniques used were: removing cup scar (RS), removing the pericarp (RP), and cutting off 1/2 (HC) and 2/3 (TC) cotyledons. Germination percentage and root and shoot length for Chinese cabbage (Beassica pekinensis) seeds (CCS) were also investigated for CCS cultivated in a Sanyo growth cabinet watered by distilled water and 80% methanol extracts from the acorn embryo, cotyledon and pericarp with concentrations of 1.0 g, 0.8 g, 0.6 g and 0.4 g dry acorn weight per ml methanol. The results showed that the majority of roots and shoots from acorns with RP and HC treatment emerged two weeks earlier, more simultaneously, and their total emergences were more than 46% and 28% higher, respectively. TC accelerated root and shoot emergence time and root length, but root and shoot germination rate and shoot height had no significant difference from the control. Positive consequences were not observed on all indices of RS treatment. The germination rates of CCS watered by 1.0 g·ml−1 methanol extracts from the embryo and cotyledon were significantly lower than those from the pericarp, and all concentrations resulted in decreased growth of root and shoot. Methanol extracts from pericarp significantly reduced root length of CCS, but presented little response in germination percentage and shoot length. The inhibitory effect was gradually increased with the increasing concentration of the methanol extract. We conclude that both the mechanical restriction of the pericarp and the presence of germination inhibitors in the embryo, cotyledon and pericarp are the causes for delayed and asynchronous germination of STO acorns. PMID:23133517

  15. Experimentally reduced root-microbe interactions reveal limited plasticity in functional root traits in Acer and Quercus.

    PubMed

    Lee, Mei-Ho; Comas, Louise H; Callahan, Hilary S

    2014-02-01

    Interactions between roots and soil microbes are critical components of below-ground ecology. It is essential to quantify the magnitude of root trait variation both among and within species, including variation due to plasticity. In addition to contextualizing the magnitude of plasticity relative to differences between species, studies of plasticity can ascertain if plasticity is predictable and whether an environmental factor elicits changes in traits that are functionally advantageous. To compare functional traits and trait plasticities in fine root tissues with natural and reduced levels of colonization by microbial symbionts, trimmed and surface-sterilized root segments of 2-year-old Acer rubrum and Quercus rubra seedlings were manipulated. Segments were then replanted into satellite pots filled with control or heat-treated soil, both originally derived from a natural forest. Mycorrhizal colonization was near zero in roots grown in heat-treated soil; roots grown in control soil matched the higher colonization levels observed in unmanipulated root samples collected from field locations. Between-treatment comparisons revealed negligible plasticity for root diameter, branching intensity and nitrogen concentration across both species. Roots from treated soils had decreased tissue density (approx. 10-20 %) and increased specific root length (approx. 10-30 %). In contrast, species differences were significant and greater than treatment effects in traits other than tissue density. Interspecific trait differences were also significant in field samples, which generally resembled greenhouse samples. The combination of experimental and field approaches was useful for contextualizing trait plasticity in comparison with inter- and intra-specific trait variation. Findings that root traits are largely species dependent, with the exception of root tissue density, are discussed in the context of current literature on root trait variation, interactions with symbionts and recent

  16. Experimentally reduced root–microbe interactions reveal limited plasticity in functional root traits in Acer and Quercus

    PubMed Central

    Lee, Mei-Ho; Comas, Louise H.; Callahan, Hilary S.

    2014-01-01

    Background and Aims Interactions between roots and soil microbes are critical components of below-ground ecology. It is essential to quantify the magnitude of root trait variation both among and within species, including variation due to plasticity. In addition to contextualizing the magnitude of plasticity relative to differences between species, studies of plasticity can ascertain if plasticity is predictable and whether an environmental factor elicits changes in traits that are functionally advantageous. Methods To compare functional traits and trait plasticities in fine root tissues with natural and reduced levels of colonization by microbial symbionts, trimmed and surface-sterilized root segments of 2-year-old Acer rubrum and Quercus rubra seedlings were manipulated. Segments were then replanted into satellite pots filled with control or heat-treated soil, both originally derived from a natural forest. Mycorrhizal colonization was near zero in roots grown in heat-treated soil; roots grown in control soil matched the higher colonization levels observed in unmanipulated root samples collected from field locations. Key Results Between-treatment comparisons revealed negligible plasticity for root diameter, branching intensity and nitrogen concentration across both species. Roots from treated soils had decreased tissue density (approx. 10–20 %) and increased specific root length (approx. 10–30 %). In contrast, species differences were significant and greater than treatment effects in traits other than tissue density. Interspecific trait differences were also significant in field samples, which generally resembled greenhouse samples. Conclusions The combination of experimental and field approaches was useful for contextualizing trait plasticity in comparison with inter- and intra-specific trait variation. Findings that root traits are largely species dependent, with the exception of root tissue density, are discussed in the context of current literature on root

  17. The effect of induced heat waves on Pinus taeda and Quercus rubra seedlings in ambient and elevated CO2 atmospheres.

    PubMed

    Ameye, Maarten; Wertin, Timothy M; Bauweraerts, Ingvar; McGuire, Mary Anne; Teskey, Robert O; Steppe, Kathy

    2012-10-01

    Here, we investigated the effect of different heat-wave intensities applied at two atmospheric CO2 concentrations ([CO2]) on seedlings of two tree species, loblolly pine (Pinus taeda) and northern red oak (Quercus rubra). Seedlings were assigned to treatment combinations of two levels of [CO2] (380 or 700 μmol mol(-1)) and four levels of air temperature (ambient, ambient +3°C, or 7-d heat waves consisting of a biweekly +6°C heat wave, or a monthly +12°C heat wave). Treatments were maintained throughout the growing season, thus receiving equal heat sums. We measured gas exchange and fluorescence parameters before, during and after a mid-summer heat wave. The +12°C heat wave, significantly reduced net photosynthesis (Anet) in both species and [CO2] treatments but this effect was diminished in elevated [CO2]. The decrease in Anet was accompanied by a decrease in Fv'/Fm' in P. taeda and ΦPSII in Q. rubra. Our findings suggest that, if soil moisture is adequate, trees will experience negative effects in photosynthetic performance only with the occurrence of extreme heat waves. As elevated [CO2] diminished these negative effects, the future climate may not be as detrimental to plant communities as previously assumed. © 2012 The Authors. New Phytologist © 2012 New Phytologist Trust.

  18. Specific polyphenols and tannins are associated with defense against insect herbivores in the tropical oak Quercus oleoides.

    PubMed

    Moctezuma, Coral; Hammerbacher, Almuth; Heil, Martin; Gershenzon, Jonathan; Méndez-Alonzo, Rodrigo; Oyama, Ken

    2014-05-01

    The role of plant polyphenols as defenses against insect herbivores is controversial. We combined correlative field studies across three geographic regions (Northern Mexico, Southern Mexico, and Costa Rica) with induction experiments under controlled conditions to search for candidate compounds that might play a defensive role in the foliage of the tropical oak, Quercus oleoides. We quantified leaf damage caused by four herbivore guilds (chewers, skeletonizers, leaf miners, and gall forming insects) and analyzed the content of 18 polyphenols (including hydrolyzable tannins, flavan-3-ols, and flavonol glycosides) in the same set of leaves using high performance liquid chromatography and mass spectrometry. Foliar damage ranged from two to eight percent per region, and nearly 90% of all the damage was caused by chewing herbivores. Damage due to chewing herbivores was positively correlated with acutissimin B, catechin, and catechin dimer, and damage by mining herbivores was positively correlated with mongolinin A. By contrast, gall presence was negatively correlated with vescalagin and acutissimin B. By using redundancy analysis, we searched for the combinations of polyphenols that were associated to natural herbivory: the combination of mongolinin A and acutissimin B had the highest association to herbivory. In a common garden experiment with oak saplings, artificial damage increased the content of acutissimin B, mongolinin A, and vescalagin, whereas the content of catechin decreased. Specific polyphenols, either individually or in combination, rather than total polyphenols, were associated with standing leaf damage in this tropical oak. Future studies aimed at understanding the ecological role of polyphenols can use similar correlative studies to identify candidate compounds that could be used individually and in biologically meaningful combinations in tests with herbivores and pathogens.

  19. Effects of Temperature and Moisture Content on the Storability of Hardwoods Seeds

    Treesearch

    Kristina F. Connor; Franklin T. Bonner

    1999-01-01

    Experimental results have been inconclusive about low temperature storage of recalcitrant seeds from temperate zone trees. Experiments were conducted on four species of oak - chinkapin (Quercus muehlenbergii Engelm.), water (Quercus nigra L.), Shumard (Quercus shumardii Buckl.), and northern red (Quercus rubra L.). Storage temperatures were -1.5 DC and 3 DC, and...

  20. Ostryopsis davidiana seedlings inoculated with ectomycorrhizal fungi facilitate formation of mycorrhizae on Pinus tabulaeformis seedlings

    Treesearch

    Shu-Lan Bai; Guo-Lei Li; Yong Liu; R. Kasten Dumroese; Rui-Heng Lv

    2009-01-01

    Reforestation in China is important for reversing anthropogenic activities that degrade the environment. Pinus tabulaeformis is desired for these activities, but survival and growth of seedlings can be hampered by lack of ectomycorrhizae. When outplanted in association with Ostryopsis davidiana plants on reforestation sites, P. tabulaeformis seedlings become...

  1. Patterns of vegetative growth and gene flow in Rhizopogon vinicolor and R. vesiculosus (Boletales, Basidiomycota).

    Treesearch

    Annette M. Kretzer; Susie Dunham; Randy Molina; Joseph W. Spatafora

    2005-01-01

    We have collected sporocarps and tuberculate ectomycorrhizae of both Rhizopogon vinicolor and Rhizopogon vesiculosus from three 50 x 100 m plots located at Mary's Peak in the Oregon Coast Range (USA); linear map distances between plots ranged from c. 1 km to c. 5.5 km. Six and...

  2. Integrating inter- and intra-annual tree-ring width, carbon isotopes and anatomy: responses to climate variability in a temperate oak forest

    NASA Astrophysics Data System (ADS)

    Granda, Elena; Bazot, Stéphane; Fresneau, Chantal; Boura, Anaïs; Faccioni, Georgia; Damesin, Claire

    2015-04-01

    While many forests are experiencing strong tree declines due to climate change in temperate ecosystems, others nearby to those declining show no apparent signs of decline. This could be due to particular microsite conditions or, for instance, to a higher plasticity of given traits that allow a better performance under stressful conditions. We studied oak functional mechanisms (Quercus petraea) leading to the apparently healthy status of the forest and their relation to the observed climatic variability. This study was conducted in the Barbeau Forest (northern France), where cores from mature trees were collected. Three types of functional traits (secondary growth, physiological variables - δ13C and derived Δ13C and iWUE- and several anatomical ones -e.g. vessel area, density-) were recorded for each ring for the 1991-2011 period, distinguishing EW from LW in all measured traits. Among the three types of functional traits, those related to growth experienced the highest variability both between years and between individuals, followed by anatomical and physiological ones. Secondary growth maintained a constant trend during the study period. Instead, ring, EW and LW δ13C slightly declined from 1991 to 2011. Additional intra-ring δ13C analyses allowed for a more detailed understanding of the seasonal dynamics within each year. In particular, the year 2007 (an especially favorable climatic year during the growing season) showed the lowest δ13C values during the EW-LW transition for the whole study period. Inter-annual anatomical traits varied in their responses, but in general, no temporal trends were found. The results from structural equation modeling (SEM) showed direct relationships of seasonal climate and growth, as well as indirect relationships mediated by anatomical and physiological traits. We further discuss the implications of these results on future forest responses to ongoing climate changes.

  3. Intra- and interspecific variability of carbon isotope composition (d13C) and water-use efficiency in 5 deciduous tree species growing a mixed stand in North-Eastern France

    NASA Astrophysics Data System (ADS)

    Zapater, M.; Breda, N.; Storchi, G.; Granier, A.

    2005-12-01

    Intra and interspecific variability in leaf gas exchange (net assimilation, stomatal conductance, transpiration, water use efficiency: WUE), in carbon isotope composition (d13C) and leaf characteristics related to photosynthesis was assessed in 5 trees species growing in a young broad-leaved mixed forest in North-Eastern France (Hesse, Lorraine). The studied species belong to contrasted functional groups of light tolerance: European beech (Fagus sylvatica) as shade tolerant species; sessile oak (Quercus petraea) and hornbeam (Carpinus betulus) as semitolerant species; silver birch (Betula pendula) and European aspen (Populus tremula) as shade intolerant species (pioneer species). Gas exchange was measured at leaf level in the upper and the lower canopy layers using a portable system (LI-6200, Licor). d13C signatures were determined in the sun and shade leaves in both bulk material and soluble sugars. Clear differences in bulk leaves and soluble sugars d13C and intrinsic WUEint were found among the investigated species, whatever the leaf location in the canopy. Within each tree species, shade leaves exhibited lower WUEint and more negative d13C than sun leaves. Little variability among trees was found for a given species. The 3 functional groups were separated by their leaf carbon content. Nevertheless each of the variables d13C, leaf mass area and nitrogen content, alone, could not separate the groups. A linear relationship was found between WUEint and d13C at the intraspecific level (r2 = 0.87 for leaves; r2 =0.89 for sugars) and at the interspecific level (r2 = 0.72 for bulk leaves). Nevertheless, this relationship differed from that of Farquhar et al. (1982), due to a different intercept, while the slope was the same. The causes of these variations are discussed. Key words: d13C; deciduous; mixed forest; WUEint; shade tolerance.

  4. Does Forest Continuity Enhance the Resilience of Trees to Environmental Change?

    PubMed

    von Oheimb, Goddert; Härdtle, Werner; Eckstein, Dieter; Engelke, Hans-Hermann; Hehnke, Timo; Wagner, Bettina; Fichtner, Andreas

    2014-01-01

    There is ample evidence that continuously existing forests and afforestations on previously agricultural land differ with regard to ecosystem functions and services such as carbon sequestration, nutrient cycling and biodiversity. However, no studies have so far been conducted on possible long-term (>100 years) impacts on tree growth caused by differences in the ecological continuity of forest stands. In the present study we analysed the variation in tree-ring width of sessile oak (Quercus petraea (Matt.) Liebl.) trees (mean age 115-136 years) due to different land-use histories (continuously existing forests, afforestations both on arable land and on heathland). We also analysed the relation of growth patterns to soil nutrient stores and to climatic parameters (temperature, precipitation). Tree rings formed between 1896 and 2005 were widest in trees afforested on arable land. This can be attributed to higher nitrogen and phosphorous availability and indicates that former fertilisation may continue to affect the nutritional status of forest soils for more than one century after those activities have ceased. Moreover, these trees responded more strongly to environmental changes - as shown by a higher mean sensitivity of the tree-ring widths - than trees of continuously existing forests. However, the impact of climatic parameters on the variability in tree-ring width was generally small, but trees on former arable land showed the highest susceptibility to annually changing climatic conditions. We assume that incompletely developed humus horizons as well as differences in the edaphon are responsible for the more sensitive response of oak trees of recent forests (former arable land and former heathland) to variation in environmental conditions. We conclude that forests characterised by a long ecological continuity may be better adapted to global change than recent forest ecosystems.

  5. Does Forest Continuity Enhance the Resilience of Trees to Environmental Change?

    PubMed Central

    von Oheimb, Goddert; Härdtle, Werner; Eckstein, Dieter; Engelke, Hans-Hermann; Hehnke, Timo; Wagner, Bettina; Fichtner, Andreas

    2014-01-01

    There is ample evidence that continuously existing forests and afforestations on previously agricultural land differ with regard to ecosystem functions and services such as carbon sequestration, nutrient cycling and biodiversity. However, no studies have so far been conducted on possible long-term (>100 years) impacts on tree growth caused by differences in the ecological continuity of forest stands. In the present study we analysed the variation in tree-ring width of sessile oak (Quercus petraea (Matt.) Liebl.) trees (mean age 115–136 years) due to different land-use histories (continuously existing forests, afforestations both on arable land and on heathland). We also analysed the relation of growth patterns to soil nutrient stores and to climatic parameters (temperature, precipitation). Tree rings formed between 1896 and 2005 were widest in trees afforested on arable land. This can be attributed to higher nitrogen and phosphorous availability and indicates that former fertilisation may continue to affect the nutritional status of forest soils for more than one century after those activities have ceased. Moreover, these trees responded more strongly to environmental changes – as shown by a higher mean sensitivity of the tree-ring widths – than trees of continuously existing forests. However, the impact of climatic parameters on the variability in tree-ring width was generally small, but trees on former arable land showed the highest susceptibility to annually changing climatic conditions. We assume that incompletely developed humus horizons as well as differences in the edaphon are responsible for the more sensitive response of oak trees of recent forests (former arable land and former heathland) to variation in environmental conditions. We conclude that forests characterised by a long ecological continuity may be better adapted to global change than recent forest ecosystems. PMID:25494042

  6. Powdery Mildew Decreases the Radial Growth of Oak Trees with Cumulative and Delayed Effects over Years

    PubMed Central

    Bert, Didier; Lasnier, Jean-Baptiste; Capdevielle, Xavier; Dugravot, Aline; Desprez-Loustau, Marie-Laure

    2016-01-01

    Quercus robur and Q. petraea are major European forest tree species. They have been affected by powdery mildew caused by Erysiphe alphitoides for more than a century. This fungus is a biotrophic foliar pathogen that diverts photosynthetate from the plant for its own nutrition. We used a dendrochronological approach to investigate the effects of different levels of infection severity on the radial growth of young oak trees. Oak infection was monitored at individual tree level, at two sites in southwestern France, over a five-year period (2001–2005). Mean infection severity was almost 75% (infected leaf area) at the end of the 2001 growing season, at both sites, but only about 40% in 2002, and 8%, 5% and 2% in 2003, 2004 and 2005, respectively. Infection levels varied considerably between trees and were positively related between 2001 and 2002. Increment cores were taken from each tree to assess annual ring widths and increases in basal area. Annual radial growth was standardised to take the effect of tree size into account. Annual standardised radial growth was significantly and negatively correlated with infection severity in the same year, for both 2001 and 2002, and at both sites. The decrease in growth reached 70–90% for highly infected trees. The earlywood width was poorly correlated with infection severity, but the proportion of latewood in tree rings was lower in highly infected trees (60%) than in less heavily infected trees (85%). Infection in 2001 and 2002 was found to have a cumulative effect on radial growth in these years, together with a delayed effect detectable in 2003. Thus, even non-lethal pathogens like powdery mildew can have a significant impact on tree functioning. This impact should be taken into account in growth and yield models, to improve predictions of forest net primary production. PMID:27177029

  7. Three pools of zeaxanthin in Quercus coccifera leaves during light transitions with different roles in rapidly reversible photoprotective energy dissipation and photoprotection

    PubMed Central

    Morales, Fermín

    2013-01-01

    Under excess light, the efficient PSII light-harvesting antenna is switched into a photoprotected state in which potentially harmful absorbed energy is thermally dissipated. Changes occur rapidly and reversibly, enhanced by de-epoxidation of violaxanthin (V) to zeaxanthin (Z). This process is usually measured as non-photochemical quenching (NPQ) of chlorophyll (Chl) fluorescence. Using instrumentation for instantaneous leaf freezing, NPQ, spectral reflectance, and interconversions within the xanthophyll cycle with time resolution of seconds were recorded from Quercus coccifera leaves during low light (LL) to high light (HL) transitions, followed by relaxation at LL. During the first 30 s of both the LL to HL and HL to LL transitions, no activity of the xanthophyll cycle was detected, whereas 70–75% of the NPQ was formed and relaxed, respectively, by that time, the latter being traits of a rapidly reversible photoprotective energy dissipation. Three different Z pools were identified, which play different roles in energy dissipation and photoprotection. In conclusion, ΔpH was crucial to NPQ formation and relaxation in Q. coccifera during light transitions. Only a minor fraction of Z was associated to quenching, whereas the largest Z pool was not related to thermal dissipation. The latter is proposed to participate in photoprotection acting as antioxidant. PMID:23390289

  8. Physiological Responses to Prolonged Drought Differ Among Three Oak (Quercus) Species

    NASA Astrophysics Data System (ADS)

    Cooper, C. E.; Moore, G. W.; Vogel, J. G.; Muir, J. P.

    2015-12-01

    The physiological response of plants to water stress provides insights into which species may survive in exceptional drought conditions. This study conducted on a remnant post oak savanna site in College Station, Texas, examined how drought affected the physiology of three native oak species. In June 2014, after a period of equal watering, we subjected three year old Quercus shumardii (Shumard oak; SO), Q. virginiana (live oak; LO), and Q. macrocarpa (bur oak; BO) saplings to one of two watering treatments: 1) watered, receiving the equivalent of theaverage precipitation rate and 2) droughted, receiving a 100% reduction in precipitation. We measured predawn (ΨPD) and midday (ΨMD) leaf water potential; midday gas exchange (MGE) parameters including photosynthesis (Al), transpiration (T), stomatal conductance (gsw); and leaf soluble (SS) and non-soluble sugar (NSS) concentrations monthly between June and October 2014. Drought stress responses were evident after only one month of induced drought. Droughted saplings showed reduced ΨPD, ΨMD, and MGE (P ≤ 0.05) in comparison to watered saplings of the same species. LO saplings exhibited greater MGE (P ≤ 0.05) while maintaining similar LWP to their respective watered and droughted BO and SO counterparts. Droughted LO exhibited MGE rates similar to those of watered BO and SO (P ≤ 0.05), while watered LO adjusted its MGE rates to changes in water availability better than BO and LO during short-term drought. Compared to water saplings, droughted saplings had greater leaf SS (P = 0.08) and lower NSS concentrations (P = 0.10), possibly due to the conversion of NSS to SS and other simple compounds and reduced consumption of SS for growth by the droughted saplings. Although SO and BO exhibited similar photosynthesis rates, leaf total sugar (SS+NSS) concentration was greater in SO (P ≤ 0.05). By displaying the greatest average photosynthesis rate (P ≤ 0.05), LO should have accumulated the greatest amount of carbon

  9. Trappeindia himalayensis gen. et sp. nov., a sequestrate fungus with potential affinity to Strobilomyces (Basidiomycotina, Boletales)

    Treesearch

    M.A. Castellano; S.L. Miller; L. Singh; T.N. Lakhanpal

    2012-01-01

    An unusual sequestrate fungus forming ectomycorrhizae with Cedrus deodora (Roxb.) Laud. forms sporocarps in the northwestern Himalayas of India during spring. It has a dark brown to black peridium with a solid, white to brown, loculate gleba containing spherical, reticulate spores. It resembles no described genus and is described here as ...

  10. Short-term effects of seasonal prescribed burning on the ectomycorrhizal fungal community and fine root biomass in ponderosa pine stands in the Blue Mountains of Oregon.

    Treesearch

    J.E. Smith; D. McKay; C.G. Niwa; W.G. Thies; G. Brenner; J.W. Spatafora

    2004-01-01

    The effects of seasonal prescribed fire on the belowground ectomycorrhizal community and live fine root biomass were investigated before, 1 year after, and 2 years after prescribed underburning. Ectomycorrhizas were sampled from four replications of three treatments (fall underburning, spring underburning, and a nonburned.control) in a randomized complete block design...

  11. Role of mycorrhizae in forestation of surface mines

    Treesearch

    Donald H. Marx

    1980-01-01

    A brief introduction to ecto- and endomycorrhizae and their importance to plants is presented. Recent findings confirm the significance of ectomycorrhizae, particularly those formed by Pisolithus tinctorius in nurseries, to survival and growth of pine seedlings on strip-mined lands. Commercial inoculum of this fungus may be available in 1981. Recent...

  12. Evidence for a freezing tolerance-growth rate trade-off in the live oaks (Quercus series Virentes) across the tropical-temperate divide.

    PubMed

    Koehler, Kari; Center, Alyson; Cavender-Bares, Jeannine

    2012-02-01

    • It has long been hypothesized that species are limited to the north by minimum temperature and to the south by competition, resulting in a trade-off between freezing tolerance and growth rate. We investigated the extent to which the climatic origins of populations from four live oak species (Quercus series Virentes) were associated with freezing tolerance and growth rate, and whether species fitted a model of locally adapted populations, each with narrow climatic tolerances, or of broadly adapted populations with wide climatic tolerances. • Acorns from populations of four species across a tropical-temperate gradient were grown under common tropical and temperate conditions. Growth rate, seed mass, and leaf and stem freezing traits were compared with source minimum temperatures. • Maximum growth rates under tropical conditions were negatively correlated with freezing tolerance under temperate conditions. The minimum source temperature predicted the freezing tolerance of populations under temperate conditions. The tropical species Q. oleoides was differentiated from the three temperate species, and variation among species was greater than among populations. • The trade-off between freezing tolerance and growth rate supports the range limit hypothesis. Limited variation within species indicates that the distributions of species may be driven more strongly by broad climatic factors than by highly local conditions. © 2011 The Authors. New Phytologist © 2011 New Phytologist Trust.

  13. Ontogenetic patterns of CO sub 2 exchange of Quercus rubra L. leaves during three flushes of shoot growth II. insertion gradients of leaf photosynthesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hanson, P.J.; Isebrands, J.G.; Dickson, R.E.

    1988-03-01

    Carbon dioxide exchange rates (CERs) of all leaves along the stem of northern red oak (Quercus rubra L.) seedlings (a leaf insertion gradient of profile) were determined at several stages of ontogeny. Seedlings were grown and measured under growth chamber conditions favorable for the production of multiple flushes of shoot growth. The CERs were measured with a portable closed-circuit CO{sub 2} analyzer at ambient photosynthetic photon flux densities and were determined for every leaf of each seedling. Carbon dioxide exchange rates per unit projected area of individual leaves (CERA) increased along leaf-maturation gradients in expanding flushes. After flush growth wasmore » completed, all leaves of a flush has similar CERA. However, because median flush leaves were the largest, they accounted for the greatest proportion of an expanded-flush's CER. First-flush leaves were the major contributors to total seedling CER through the second flush of growth-encompassing half of the period required to produce a three-flush oak seedling. This study's data, based on short-term CER measurements, showed ontogenetic pattern of CO{sub 2} exchange similar to those reported for northern red oak under steady state laboratory conditions.« less

  14. The transformation of nitrogen in soil under Robinia Pseudacacia shelterbelt and in adjoining cultivated field

    NASA Astrophysics Data System (ADS)

    Szajdak, L.; Gaca, W.

    2009-04-01

    The shelterbelts perform more than twenty different functions favorable to the environment, human economy, health and culture. The most important for agricultural landscape is increase of water retention, purification of ground waters and prevent of pollution spread in the landscape, restriction of wind and water erosion effects, isolation of polluting elements in the landscape, preservation of biological diversity in agricultural areas and mitigation of effects of unfavorable climatic phenomena. Denitrification is defined as the reduction of nitrate or nitrite coupled to electron transport phosphorylation resulting in gaseous N either as molecular N2 or as an oxide of N. High content of moisture, low oxygen, neutral and basic pH favour the denitrification. Nitrate reductase is an important enzyme involved in the process of denitrification. The reduction of nitrate to nitrite is catalyzed by nitrate reductase. Nitrite reductase is catalyzed reduction nitrite to nitrous oxide. The conversion of N2O to N2 is catalyzed by nitrous oxide reductase. This process leads to the lost of nitrogen in soil mainly in the form of N2 and N2O. Nitrous oxide is a greenhouse gas which cause significant depletion of the Earth's stratospheric ozone layer. The investigations were carried out in Dezydery Chlapowski Agroecological Landscape Park in Turew (40 km South-West of Poznań, West Polish Lowland). Our investigations were focused on the soils under Robinia pseudacacia shelterbelt and in adjoining cultivated field. The afforestation was created 200 years ago and it is consist of mainly Robinia pseudacacia with admixture of Quercus petraea and Quercus robur. This shelterbelt and adjoining cultivated field are located on grey-brown podzolic soil. The aim of this study is to present information on the changes of nitrate reductase activity in soil with admixture urea (organic form of nitrogen) in two different concentrations 0,25% N and 0,5% N. Our results have shown that this process

  15. Assessing the influence of biogeographical region and phylogenetic history on chemical defences and herbivory in Quercus species.

    PubMed

    Moreira, Xoaquín; Abdala-Roberts, Luis; Galmán, Andrea; Francisco, Marta; Fuente, María de la; Butrón, Ana; Rasmann, Sergio

    2018-06-07

    Biogeographical factors and phylogenetic history are key determinants of inter-specific variation in plant defences. However, few studies have conducted broad-scale geographical comparisons of plant defences while controlling for phylogenetic relationships, and, in doing so, none have separated constitutive from induced defences. This gap has limited our understanding of how historical or large-scale processes mediate biogeographical patterns in plant defences since these may be contingent upon shared evolutionary history and phylogenetic constraints. We conducted a phylogenetically-controlled experiment testing for differences in constitutive leaf chemical defences and their inducibility between Palearctic and Nearctic oak species (Quercus, total 18 species). We induced defences in one-year old plants by inflicting damage by gypsy moth larvae (Lymantria dispar), estimated the amount of leaf area consumed, and quantified various groups of phenolic compounds. There was no detectable phylogenetic signal for constitutive or induced levels of most defensive traits except for constitutive condensed tannins, as well as no phylogenetic signal in leaf herbivory. We did, however, find marked differences in defence levels between oak species from each region: Palearctic species had higher levels of constitutive condensed tannins, but less constitutive lignins and less constitutive and induced hydrolysable tannins compared with Nearctic species. Additionally, Palearctic species had lower levels of leaf damage compared with Nearctic species. These differences in leaf damage, lignins and hydrolysable (but not condensed) tannins were lost after accounting for phylogeny, suggesting that geographical structuring of phylogenetic relationships mediated biogeographical differences in defences and herbivore resistance. Together, these findings suggest that historical processes and large-scale drivers have shaped differences in allocation to constitutive defences (and in turn

  16. [Effect of thinning intensities on fruiting regularities of Quercus liaotungensis forests in Huang-long and Qiaoshan mountains.

    PubMed

    Huang, Cai Zhi; Zhang, Wen Hui; Li, Gang; Yu, Shi Chuan; You, Jian Jian

    2016-11-18

    In order to clarify the impact of thinning intensities on fruiting regularity of Quercus liaotungensis forests, we took the Q. liaotungensis half-mature forests in Huanglong and Qiaoshan mountains on south of the Loess Plateau as the object of study, which were under close-to-natural management of different thinning intensities (CK, 10%, 20% and 30%). An analysis was made on stand density and percent of seed trees, seed number of sample tree and unit area, seed spatial distributions, seed characteristics of the Q. liaotungensis forests after 5 years of thinning. The results showed that, percent of seed trees, seed number per sample tree and percent of developed seeds of Q. liaotungensis forests increased with the increasing intensity, and showed a pattern of 30%>20%>10%>CK. Seed number per area reached the maximum number under 20% thinning, and showed a pattern of 20%>30%>CK>10%. From the seed spatial distribution in the canopy, the upper accounted for 73.6%, while the lower had 26.4%. The sunny side of canopy layer set relatively the most fruits of 65.8%, shady side only had 34.2%. Under thinning, further improving was geater under lower canopy than under upper canopy and so was on shady side than on sunny side. The seed long diameter, seed short diameter and 1000-seed mass of Q. liaotungensis forests increased with the increasing intensity, which reached the maximum under 30% thinning. 10% thinning did not significantly impact Q. liaotungensis fruiting, the thinning intensity of 20% was most conducive to the seed quantity and quality improvement of Q. liaotungensis, while the thinning intensity of 30% did not improve the fruiting, and lowered the total number of seeds. It was proposed that 20% thinning should be chosen (canopy density of 0.7) to effectively improve fruiting and quality of Q. liaotungensis.

  17. Persisting soil drought reduces leaf specific conductivity in Scots pine (Pinus sylvestris) and pubescent oak (Quercus pubescens).

    PubMed

    Sterck, Frank J; Zweifel, Roman; Sass-Klaassen, Ute; Chowdhury, Qumruzzaman

    2008-04-01

    Leaf specific conductivity (LSC; the ratio of stem conductivity (K(P)) to leaf area (A(L))), a measure of the hydraulic capacity of the stem to supply leaves with water, varies with soil water content. Empirical evidence for LSC responses to drought is ambiguous, because previously published results were subject to many confounding factors. We tested how LSC of similar-sized trees of the same population, under similar climatic conditions, responds to persistently wet or dry soil. Scots pine (Pinus sylvestris L.) and pubescent oak (Quercus pubescens Willd.) trees were compared between a dry site and a wet site in the Valais, an inner alpine valley in Switzerland. Soil water strongly influenced A(L) and K(P) and the plant components affecting K(P), such as conduit radius, conduit density and functional sapwood area. Trees at the dry site had lower LSC than trees with the same stem diameter at the wet site. Low LSC in trees at the dry site was associated with a smaller functional sapwood area and narrower conduits, resulting in a stronger reduction in K(P) than in A(L). These observations support the hypothesis that trees maintain a homeostatic water pressure gradient. An alternative hypothesis is that relatively high investments in leaves compared with sapwood contribute to carbon gain over an entire season by enabling rapid whole-plant photosynthesis during periods of high water availability (e.g., in spring, after rain events and during morning hours when leaf-to-air vapor pressure deficit is small). Dynamic data and a hydraulic plant growth model are needed to test how investments in leaves versus sapwood and roots contribute to transpiration and to maximizing carbon gain throughout entire growth seasons.

  18. [Impact of cork oak management on the ectomycorrhizal fungal diversity associated with Quercus suber in the Mâamora forest (Morocco)].

    PubMed

    Maghnia, Fatima Z; Sanguin, Hervé; Abbas, Younes; Verdinelli, Marcello; Kerdouh, Benaissa; El Ghachtouli, Naima; Lancellotti, Enrico; Bakkali Yakhlef, Salah Eddine; Duponnois, Robin

    2017-05-01

    The cork oak forest is an ecosystem playing a major role in Moroccan socio-economy and biodiversity conservation. However, this ecosystem is negatively impacted by extensive human- and climate-driven pressures, causing a strong decrease in its distribution and a worsening of the desertification processes. This study aims at characterising the impact of cork oak forest management on a major actor of its functioning, the ectomycorrhizal (EcM) fungal community associated with Quercus suber, and the determination of EcM bio-indicators. The EcM fungal community has been monitored during spring and winter seasons in two sites of the Moroccan Mâamora forest, corresponding to a forest site either impacted by human activities or protected. A significant impact of cork oak forest management on the EcM fungal community has been revealed, with major differences during the summer season. The results confirmed the potential ecological significance of several EcM fungi (e.g., Cenococcum) in the sustainability of the cork oak forest functioning, but also the significant association of certain EcM fungi (Pachyphloeus, Russula, Tomentella) with a perturbation or a season, and consequently to the cork oak forest status or to climatic conditions, respectively. The development of study at the Mediterranean scale may improve the robustness of ecological models to predict the impact of global changes on this emblematic ecosystem of Mediterranean basin. Copyright © 2017 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

  19. Dark respiration and carbohydrate status of two forest species grown in elevated carbon dioxide. [Liriodendron tulipifera L. ; Quercus alba L

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wullschleger, S.D.; Norby, R.J.; Hendrix, D.L.

    1991-05-01

    Carbon assimilation is often increased by CO{sub 2} enrichment, but the response of dark respiration and carbohydrate metabolism to elevated CO{sub 2} is less well documented. The authors examined the diurnal response of these two processes in yellow-poplar (Liriodendron tulipifera L.) and white oak (Quercus alba L.) seedling exposed to CO{sub 2} enrichment under field conditions. One-year-old seedlings of yellow-poplar and white oak were grown in open-top chambers and exposed to ambient, +150 {mu}mol mol{sup {minus}1}, or +300 {mu}mol mol{sup {minus}1} CO{sub 2} concentrations. After 24 weeks, mature leaves of yellow-poplar and white oak seedlings grown at high CO{sub 2}more » showed a 37% and 52% reduction in nighttime respiration, respectively. Morning starch levels for yellow-poplar and white oak grown at +300 {mu}mol mol{sup {minus}1} increased 72% and 40%, respectively, compared to ambient-grown plants. Yellow-poplar and white oak seedlings grown at high CO{sub 2} contained 17% and 27% less morning sucrose, respectively than did plants grown at ambient CO{sub 2} concentration. Starch accumulation and the subsequent depletion of sucrose for plants grown under CO{sub 2} enrichment, resulted in a pronounced rise in the starch/sucrose ratio with increasing CO{sub 2} concentration. The diurnal pattern of dark respiration suggested that a relationship with carbohydrate status might exist.« less

  20. Carbon-nutrient interactions in response to CO/sub 2/ enrichment: physiological and long-term perspectives. [Quercus alba L

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Norby, R.J.; Pastor, J.; Melillo, J.M.

    1985-01-01

    The responses of forest trees to atmospheric CO/sub 2/ enrichment will depend in part on carbon-nutrient linkages. Insights into the possible long-term ecological consequences of CO/sub 2/ enrichment can be gained from studying physiological responses in short-term experiments. One-year-old white oak (Quercus alba L.) seedlings were grown in an unfertilized forest soil for 40 weeks in controlled-environment chambers with ambient (362 ..mu..L.L/sup -1/) or elevated (690 ..mu..L.L/sup -1/) CO/sub 2/. Seedling dry weight was 85% greater in the elevated CO/sub 2/ environment, despite a severe nitrogen deficiency in all seedlings. The increase in growth occurred without a concomitant increase inmore » nitrogen uptake, indicating an increase in nitrogen-use efficiency in elevated CO/sub 2/. The weight of new buds was greater in elevated CO/sub 2/, suggesting that shoot growth in the next year would have been enhanced relative to that of seedlings in ambient CO/sub 2/. However, there was a lower amount of translocatable nitrogen in perennial woody tissue in elevated CO/sub 2/; thus, further increases in nitrogen-use efficiency may not be possible. The leaves that abscised from seedlings in elevated CO/sub 2/ contained higher amounts of soluble sugars and tannin and a lower amount of lignin compared with amounts in abscised leaves in ambient CO/sub 2/. Based on lignin to N and lignin to P ratios, the rates of litter decomposition might not be greatly affected by CO/sub 2/ enrichment, but the total amount of nitrogen returned to soil would be lower in elevated CO/sub 2/.« less

  1. Conservative decrease in water potential in existing leaves during new leaf expansion in temperate and tropical evergreen Quercus species.

    PubMed

    Saito, Takami; Naiola, B Paul; Terashima, Ichiro

    2007-12-01

    This study aimed at clarifying how the water potential gradient (deltapsi) is maintained in the shoots of evergreen trees with expanding leaves, whose leaf water potentials at the turgor loss point (psi(tlp)) are generally high. The water relations were examined in current-year expanding (CEX) and 1-year-old (OLD) leaves on the same shoots in temperate (Osaka, Japan) and tropical (Bogor, Indonesia) areas. A temperate evergreen species, Quercus glauca growing in both sites, was compared with a temperate deciduous species, Q. serrata, in Osaka, and two tropical evergreen species, Q. gemelliflora and Q. subsericea, in Bogor. (1) In Osaka, the midday leaf water potential (psi(midday)) was slightly higher in OLD (-0.5 MPa) than in CEX leaves (-0.6 MPa), whereas psi(tlp) was significantly lower in OLD (-2.9 MPa) than in CEX leaves (-1.0 MPa). In Bogor, psi(midday) was also higher in OLD leaves (-1.0 MPa) despite the low psi(tlp) (-1.9 MPa), although stomatal conductance was not always low in OLD leaves. In the branch bearing CEX and OLD leaves, most of the hydraulic resistance (86 %) exists in the current-year branch, leading to differences in water supply between CEX and OLD leaves. The removal of buds just before breaking did not affect the high psi(midday) in OLD leaves after 1 month. Psi(midday) in OLD leaves thus appears to be independent of that in CEX leaves. The moderate decrease in psi(midday) in OLD leaves would contribute to maintenance of deltapsi in the shoots during leaf expansion.

  2. Effect of mid-term drought on Quercus pubescens BVOCs' emission seasonality and their dependency on light and/or temperature

    NASA Astrophysics Data System (ADS)

    Saunier, Amélie; Ormeño, Elena; Boissard, Christophe; Wortham, Henri; Temime-Roussel, Brice; Lecareux, Caroline; Armengaud, Alexandre; Fernandez, Catherine

    2017-06-01

    Biogenic volatile organic compounds (BVOCs) emitted by plants represent a large source of carbon compounds released into the atmosphere, where they account for precursors of tropospheric ozone and secondary organic aerosols. Being directly involved in air pollution and indirectly in climate change, understanding what factors drive BVOC emissions is a prerequisite for modeling their emissions and predict air pollution. The main algorithms currently used to model BVOC emissions are mainly light and/or temperature dependent. Additional factors such as seasonality and drought also influence isoprene emissions, especially in the Mediterranean region, which is characterized by a rather long drought period in summer. These factors are increasingly included in models but only for the principal studied BVOC, namely isoprene, but there are still some discrepancies in estimations of emissions. In this study, the main BVOCs emitted by Quercus pubescens - isoprene, methanol, acetone, acetaldehyde, formaldehyde, MACR, MVK and ISOPOOH (these three last compounds detected under the same m/z) - were monitored with a PTR-ToF-MS over an entire seasonal cycle during both in situ natural and amplified drought, which is expected with climate change. Amplified drought impacted all studied BVOCs by reducing emissions in spring and summer while increasing emissions in autumn. All six BVOCs monitored showed daytime light and temperature dependencies while three BVOCs (methanol, acetone and formaldehyde) also showed emissions during the night despite the absence of light under constant temperature. Moreover, methanol and acetaldehyde burst in the early morning and formaldehyde deposition and uptake were also punctually observed, which were not assessed by the classical temperature and light models.

  3. Do Quercus ilex woodlands undergo abrupt non-linear functional changes in response to human disturbance along a climatic gradient?

    NASA Astrophysics Data System (ADS)

    Bochet, Esther; García-Fayos, Patricio; José Molina, Maria; Moreno de las Heras, Mariano; Espigares, Tíscar; Nicolau, Jose Manuel; Monleon, Vicente

    2017-04-01

    Theoretical models predict that drylands are particularly prone to suffer critical transitions with abrupt non-linear changes in their structure and functions as a result of the existing complex interactions between climatic fluctuations and human disturbances. However, so far, few studies provide empirical data to validate these models. We aim at determining how holm oak (Quercus ilex) woodlands undergo changes in their functions in response to human disturbance along an aridity gradient (from semi-arid to sub-humid conditions), in eastern Spain. For that purpose, we used (a) remote-sensing estimations of precipitation-use-efficiency (PUE) from enhanced vegetation index (EVI) observations performed in 231x231 m plots of the Moderate Resolution Imaging Spectroradiometer (MODIS); (b) biological and chemical soil parameter determinations (extracellular soil enzyme activity, soil respiration, nutrient cycling processes) from soil sampled in the same plots; (c) vegetation parameter determinations (ratio of functional groups) from vegetation surveys performed in the same plots. We analyzed and compared the shape of the functional change (in terms of PUE and soil and vegetation parameters) in response to human disturbance intensity for our holm oak sites along the aridity gradient. Overall, our results evidenced important differences in the shape of the functional change in response to human disturbance between climatic conditions. Semi-arid areas experienced a more accelerated non-linear decrease with an increasing disturbance intensity than sub-humid ones. The proportion of functional groups (herbaceous vs. woody cover) played a relevant role in the shape of the functional response of the holm oak sites to human disturbance.

  4. Identification of a small heat-shock protein associated with a ras-mediated signaling pathway in ectomycorrhizal symbiosis

    Treesearch

    Shiv Hiremath; Kirsten Lehtoma; Gopi K. Podila

    2009-01-01

    Initiation, development, and establishment of a functional ectomycorrhiza involve a series of biochemical events mediated by a number of genes from the fungus as well as the host plant. We have identified a heat shock protein gene from Laccaria bicolor (Lbhsp) that appears to play a role in these events. The size and...

  5. Seasonal ectomycorrhizal fungal biomass development on loblolly pine (Pinus taeda L.) seedlings

    Treesearch

    Shi-Jean S. Sung; L.M. White; D.H. Marx; W.J. Otrosina

    1995-01-01

    Ergosterol, a membrane sterol found in fungi but not in plants, was used to estimate live mycelia biomass in ectomycorrhizae. Loblolly pine (Pinus taeda L.) seeds were sown in April 1993 and grown with standard nursery culture ractices. Correlations between total seedling ergosterol and visual assessment of mycorrhizal colonization were high during...

  6. Effects of fire temperature on the physical and chemical characteristics of the ash from two plots of Cork oak (Quercus Suber)

    USGS Publications Warehouse

    Ubeda, X.; Pereira, P.; Outeiro, L.; Martin, D.A.

    2009-01-01

    Cork oak, (Quercus suber) is widely distributed in the Mediterranean region, an area subject to frequent fires. The ash produced by burning can have impacts on the soil status and water resources that can differ according to the temperature reached during fire and the characteristics of the litter, defined as the dead organic matter accumulated on the soil surface prior to the fire. The aim of this work is to determine the physical and chemical characteristics of ash produced in laboratory experiments to approximate conditions typical of fires in this region. The litter of Quercus suber collected from two different plots on the Iberian Peninsula, Mas Bassets (Catalonia) and Albufeira (Portugal), was combusted at different temperatures for 2h. We measured Mass Loss (ML per cent), ash colour and CaCO3 content, pH, Electrical Conductivity (EC) and the major cations (Ca2+, Mg2+, K+ and Na+) released from ash slurries created by mixing ash with deionized water. The results showed that ML per cent is higher at all temperatures in Albufeira samples compared to Mas Bassets samples, except at 550??C, and the rate of loss increases faster with temperature than the Mas Bassets samples. At 150??C the ash colour is yellowish, becoming reddish at 200- 250??C and black at 300??C. Above 400??C the ash is grey/white. This thermal degradation is mostly observed in Albufeira litter. The formation of CaCO3 was identified at a lower temperature in Albufeira litter. At temperatures <300??C, pH and EC values are lower, rising at higher temperatures, especially in Albufeira slurries. The concentration of cations at lower temperatures does not differ substantially from the unburned sample except for Mg2+. The cation concentration increases at medium temperatures and decrease at higher temperatures, especially the concentration of divalent cations. The monovalent cations showed a larger concentration at moderate temperatures, mainly in Albufeira ash slurries. The analysis of the Ca:Mg ratio

  7. An investigation on forage yield capacity of kermes oak (Quercus coccifera L.) and grazing planning of Mediterranean maquis scrublands for traditional goat farming.

    PubMed

    Tolunay, Ahmet; Adıyaman, Elif; Akyol, Ayhan; İnce, Duygu; Türkoğlu, Türkay; Ayhan, Veysel

    2014-01-01

    This study investigated grazing capacities of maquis scrubland and preparation principles of grazing management in forest resources. Kermes oak (Quercus coccifera L.), which is widespread as a main shrub species in maquis vegetation in Turkey, and pure hair goats (Capra hircus L.) feeding on shoots and leaves of this shrub were selected for study. The study was conducted in two stages. Green leaf and shoot samples were taken from kermes oaks in the first stage and the amount of green herbage yield (g ∗ m(-1)) and dry matter yield (kg ∗ ha(-1)) that may be obtained per unit area from these samples was identified. The considered amount of dry matter consumed by pure hair goats daily and the number of goats being fed within 1 year on land of 1 ha according to different land coverage rates of kermes oaks (goat head ∗ ha ∗ yr) were calculated. In the second stage, grazing capacities of sample areas where kermes oak spread were identified and compared with the grazing plan prepared by the forestry administration for this area. Forage yield variance according to land coverage rates of maquis scrublands should be considered when determining optimum animal numbers for grazing per area for sustainable goat farming.

  8. An Investigation on Forage Yield Capacity of Kermes Oak (Quercus coccifera L.) and Grazing Planning of Mediterranean Maquis Scrublands for Traditional Goat Farming

    PubMed Central

    Tolunay, Ahmet; Adıyaman, Elif; İnce, Duygu; Ayhan, Veysel

    2014-01-01

    This study investigated grazing capacities of maquis scrubland and preparation principles of grazing management in forest resources. Kermes oak (Quercus coccifera L.), which is widespread as a main shrub species in maquis vegetation in Turkey, and pure hair goats (Capra hircus L.) feeding on shoots and leaves of this shrub were selected for study. The study was conducted in two stages. Green leaf and shoot samples were taken from kermes oaks in the first stage and the amount of green herbage yield (g∗m−1) and dry matter yield (kg∗ha−1) that may be obtained per unit area from these samples was identified. The considered amount of dry matter consumed by pure hair goats daily and the number of goats being fed within 1 year on land of 1 ha according to different land coverage rates of kermes oaks (goat head∗ha∗yr) were calculated. In the second stage, grazing capacities of sample areas where kermes oak spread were identified and compared with the grazing plan prepared by the forestry administration for this area. Forage yield variance according to land coverage rates of maquis scrublands should be considered when determining optimum animal numbers for grazing per area for sustainable goat farming. PMID:25379526

  9. Effects of a low severity prescribed fire on water-soluble elements in ash from a cork oak (Quercus suber) forest located in the northeast of the Iberian Peninsula

    USGS Publications Warehouse

    Pereira, P.; beda, X.; Martin, D.; Mataix-Solera, J.; Guerrero, C.

    2011-01-01

    Wildfire is the major disturbance in Mediterranean forests. Prescribed fire can be an alternative to reduce the amount of fuel and hence decrease the wildfire risk. However the effects of prescribed fire must be studied, especially on ash properties, because ash is an important nutrient source for ecosystem recovery. The aim of this study is to determine the effects of a low severity prescribed fire on water-soluble elements in ash including pH, electrical conductivity (EC), calcium (Ca), magnesium (Mg), sodium (Na), potassium (K), aluminum (Al), manganese (Mn), iron (Fe), zinc (Zn), silica (SiO2) and total sulphur (TS). A prescribed fire was conducted in a cork oak (Quercus suber) (Q.S) forest located in the northeast part of the Iberian Peninsula. Samples were collected from a flat plot of 40??70m mainly composed of Q.S and Quercus robur (Q.R) trees. In order to understand the effects of the prescribed fire on the soluble elements in ash, we conducted our data analysis on three data groups: all samples, only Q.S samples and only Q.R samples. All three sample groups exhibited a significant increase in pH, EC (p<0.001), water-soluble Ca, Mg, Na, SiO2 and TS and a decrease in water-soluble Mn, Fe and Zn. Differences were identified between oak species for water-soluble K, Al and Fe. In Q.S samples we registered a significant increase in the first two elements p<0.001 and p<0.01, respectively, and a non-significant impact in the third, at p<0.05. In Q.R data we identified a non-significant impact on water-soluble K and Al and a significant decrease in water-soluble Fe (p<0.05). These differences are probably due to vegetation characteristics and burn severity. The fire induced a higher variability in the ash soluble elements, especially in Q.S samples, that at some points burned with higher severity. The increase of pH, EC, Ca, Mg, Na and K will improve soil fertility, mainly in the study area where soils are acidic. The application of this low severity prescribed

  10. Effects of a low severity prescribed fire on water-soluble elements in ash from a cork oak (Quercus suber) forest located in the northeast of the Iberian Peninsula.

    PubMed

    Pereira, Paulo; Ubeda, Xavier; Martin, Deborah; Mataix-Solera, Jorge; Guerrero, César

    2011-02-01

    Wildfire is the major disturbance in Mediterranean forests. Prescribed fire can be an alternative to reduce the amount of fuel and hence decrease the wildfire risk. However the effects of prescribed fire must be studied, especially on ash properties, because ash is an important nutrient source for ecosystem recovery. The aim of this study is to determine the effects of a low severity prescribed fire on water-soluble elements in ash including pH, electrical conductivity (EC), calcium (Ca), magnesium (Mg), sodium (Na), potassium (K), aluminum (Al), manganese (Mn), iron (Fe), zinc (Zn), silica (SiO(2)) and total sulphur (TS). A prescribed fire was conducted in a cork oak (Quercus suber) (Q.S) forest located in the northeast part of the Iberian Peninsula. Samples were collected from a flat plot of 40×70m mainly composed of Q.S and Quercus robur (Q.R) trees. In order to understand the effects of the prescribed fire on the soluble elements in ash, we conducted our data analysis on three data groups: all samples, only Q.S samples and only Q.R samples. All three sample groups exhibited a significant increase in pH, EC (p<0.001), water-soluble Ca, Mg, Na, SiO(2) and TS and a decrease in water-soluble Mn, Fe and Zn. Differences were identified between oak species for water-soluble K, Al and Fe. In Q.S samples we registered a significant increase in the first two elements p<0.001 and p<0.01, respectively, and a non-significant impact in the third, at p<0.05. In Q.R data we identified a non-significant impact on water-soluble K and Al and a significant decrease in water-soluble Fe (p<0.05). These differences are probably due to vegetation characteristics and burn severity. The fire induced a higher variability in the ash soluble elements, especially in Q.S samples, that at some points burned with higher severity. The increase of pH, EC, Ca, Mg, Na and K will improve soil fertility, mainly in the study area where soils are acidic. The application of this low severity

  11. BVOC emissions from English oak (Quercus robur) and European beech (Fagus sylvatica) along a latitudinal gradient

    NASA Astrophysics Data System (ADS)

    van Meeningen, Ylva; Schurgers, Guy; Rinnan, Riikka; Holst, Thomas

    2016-11-01

    English oak (Quercus robur) and European beech (Fagus sylvatica) are amongst the most common tree species growing in Europe, influencing the annual biogenic volatile organic compound (BVOC) budget in this region. Studies have shown great variability in the emissions from these tree species, originating from both genetic variability and differences in climatic conditions between study sites. In this study, we examine the emission patterns for English oak and European beech in genetically identical individuals and the potential variation within and between sites. Leaf scale BVOC emissions, net assimilation rates and stomatal conductance were measured at the International Phenological Garden sites of Ljubljana (Slovenia), Grafrath (Germany) and Taastrup (Denmark). Sampling was conducted during three campaigns between May and July 2014. Our results show that English oak mainly emitted isoprene whilst European beech released monoterpenes. The relative contribution of the most emitted compounds from the two species remained stable across latitudes. The contribution of isoprene for English oak from Grafrath and Taastrup ranged between 92 and 97 % of the total BVOC emissions, whilst sabinene and limonene for European beech ranged from 30.5 to 40.5 and 9 to 15 % respectively for all three sites. The relative contribution of isoprene for English oak at Ljubljana was lower (78 %) in comparison to the other sites, most likely caused by frost damage in early spring. The variability in total leaf-level emission rates from the same site was small, whereas there were greater differences between sites. These differences were probably caused by short-term weather events and plant stress. A difference in age did not seem to affect the emission patterns for the selected trees. This study highlights the significance of within-genotypic variation of BVOC emission capacities for English oak and European beech, the influence of climatic variables such as temperature and light on emission

  12. How drought severity constrains GPP and its partitioning among carbon pools in a Quercus ilex coppice?

    NASA Astrophysics Data System (ADS)

    Rambal, S.; Lempereur, M.; Limousin, J. M.; Martin-StPaul, N. K.; Ourcival, J. M.; Rodríguez-Calcerrada, J.

    2014-06-01

    The partitioning of photosynthates toward biomass compartments has a crucial role in the carbon sink function of forests. Few studies have examined how carbon is allocated toward plant compartments in drought prone forests. We analyzed the fate of GPP in relation to yearly water deficit in an old evergreen Mediterranean Quercus ilex coppice severely affected by water limitations. Gross and net carbon fluxes between the ecosystem and the atmosphere were measured with an eddy-covariance flux tower running continuously since 2001. Discrete measurements of litterfall, stem growth and fAPAR allowed us to derive annual productions of leaves, wood, flowers and acorns and an isometric relationship between stem and belowground biomass has been used to estimate perennial belowground growth. By combining eddy-covariance fluxes with annual productions we managed to close a C budget and derive values of autotrophic and heterotrophic respirations, NPP and carbon use efficiency (CUE, the ratio between NPP and GPP). Average values of yearly NEP, GPP and Reco were 282, 1259 and 977 g C m-2. The corresponding ANPP components were 142.5, 26.4 and 69.6 g C m-2 for leaves, reproductive effort (flowers and fruits) and stems. Gross and net carbon exchange between the ecosystem and the atmosphere were affected by annual water deficit. Partitioning to the different plant compartments was also impacted by drought, with a hierarchy of responses going from the most affected, the stem growth, to the least affected, the leaf production. The average CUE was 0.40, which is well in the range for Mediterranean-type forest ecosystems. CUE tended to decrease more slightly in response to drought than GPP and NPP, probably due to drought-acclimation of autotrophic respiration. Overall, our results provide a baseline for modeling the inter-annual variations of carbon fluxes and allocation in this widespread Mediterranean ecosystem and highlight the value of maintaining continuous experimental

  13. The Genome of Laccaria Bi color Provides Insights into Mycorrhizal Symbiosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martin, F; Aerts, A.; Ahren, D

    Mycorrhizal symbioses the union of roots and soil fungi are universal in terrestrial ecosystems and may have been fundamental to land colonization by plants1,2. Boreal, temperate and montane forests all depend on ectomycorrhizae1. Identification of the primary factors that regulate symbiotic development and metabolic activity will therefore open the door to understanding the role of ectomycorrhizae in plant development and physiology, allowing the full ecological significance of this symbiosis to be explored. Here we report the genome sequence of the ectomycorrhizal basidiomycete Laccaria bicolor (Fig. 1) and highlight gene sets involved in rhizosphere colonization and symbiosis. This 65-megabase genome assemblymore » contains 20,000 predicted protein-encoding genes and a very large number of transposons and repeated sequences. We detected unexpected genomic features, most notably a battery of effector-type small secreted proteins (SSPs) with unknown function, several of which are only expressed in symbiotic tissues. The most highly expressed SSP accumulates in the proliferating hyphae colonizing the host root. The ectomycorrhizae-specific SSPs probably have a decisive role in the establishment of the symbiosis. The unexpected observation that the genome of L. bicolor lacks carbohydrate-active enzymes involved in degradation of plant cell walls, but maintains the ability to degrade non-plant cell wall polysaccharides, reveals the dual saprotrophic and biotrophic lifestyle of the mycorrhizal fungus that enables it to grow within both soil and living plant roots. The predicted gene inventory of the L. bicolor genome, therefore, points to previously unknown mechanisms of symbiosis operating in biotrophic mycorrhizal fungi. The availability of this genome provides an unparalleled opportunity to develop a deeper understanding of the processes by which symbionts interact with plants within their ecosystem to perform vital functions in the carbon and nitrogen cycles

  14. The genome of Laccaria bicolor provides insights into

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martin, F; Aerts, A.; Ahren, D

    Mycorrhizal symbioses the union of roots and soil fungi are universal in terrestrial ecosystems and may have been fundamental to land colonization by plants1,2. Boreal, temperate and montane forests all depend on ectomycorrhizae1. Identification of the primary factors that regulate symbiotic development and metabolic activity will therefore open the door to understanding the role of ectomycorrhizae in plant development and physiology, allowing the full ecological significance of this symbiosis to be explored. Here we report the genome sequence of the ectomycorrhizal basidiomycete Laccaria bicolor (Fig. 1) and highlight gene sets involved in rhizosphere colonization and symbiosis. This 65-megabase genome assemblymore » contains 20,000 predicted protein-encoding genes and a very large number of transposons and repeated sequences. We detected unexpected genomic features, most notably a battery of effector-type small secreted proteins (SSPs) with unknown function, several of which are only expressed in symbiotic tissues. The most highly expressed SSP accumulates in the proliferating hyphae colonizing the host root. The ectomycorrhizae-specific SSPs probably have a decisive role in the establishment of the symbiosis. The unexpected observation that the genome of L. bicolor lacks carbohydrate-active enzymes involved in degradation of plant cell walls, but maintains the ability to degrade non-plant cell wall polysaccharides, reveals the dual saprotrophic and biotrophic lifestyle of the mycorrhizal fungus that enables it to grow within both soil and living plant roots. The predicted gene inventory of the L. bicolor genome, therefore, points to previously unknown mechanisms of symbiosis operating in biotrophic mycorrhizal fungi. The availability of this genome provides an unparalleled opportunity to develop a deeper understanding of the processes by which symbionts interact with plants within their ecosystem to perform vital functions in the carbon and nitrogen cycles

  15. The genome of Laccaria bicolor provides insights into mycorrhizal symbiosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martin, F.; Aerts, A.; Ahren, D.

    Mycorrhizal symbioses the union of roots and soil fungi are universal in terrestrial ecosystems and may have been fundamental to land colonization by plants 1, 2. Boreal, temperate and montane forests all depend on ectomycorrhizae1. Identification of the primary factors that regulate symbiotic development and metabolic activity will therefore open the door to understanding the role of ectomycorrhizae in plant development and physiology, allowing the full ecological significance of this symbiosis to be explored. Here we report the genome sequence of the ectomycorrhizal basidiomycete Laccaria bicolor (Fig. 1) and highlight gene sets involved in rhizosphere colonization and symbiosis. This 65-megabasemore » genome assembly contains 20,000 predicted protein-encoding genes and a very large number of transposons and repeated sequences. We detected unexpected genomic features, most notably a battery of effector-type small secreted proteins (SSPs) with unknown function, several of which are only expressed in symbiotic tissues. The most highly expressed SSP accumulates in the proliferating hyphae colonizing the host root. The ectomycorrhizae-specific SSPs probably have a decisive role in the establishment of the symbiosis. The unexpected observation that the genome of L. bicolor lacks carbohydrate-active enzymes involved in degradation of plant cell walls, but maintains the ability to degrade non-plant cell wall polysaccharides, reveals the dual saprotrophic and biotrophic lifestyle of the mycorrhizal fungus that enables it to grow within both soil and living plant roots. The predicted gene inventory of the L. bicolor genome, therefore, points to previously unknown mechanisms of symbiosis operating in biotrophic mycorrhizal fungi. The availability of this genome provides an unparalleled opportunity to develop a deeper understanding of the processes by which symbionts interact with plants within their ecosystem to perform vital functions in the carbon and nitrogen cycles

  16. Foliar nutrients explain goldspotted oak borer, Agrilus auroguttatus, adult feeding preference among four California oak species

    Treesearch

    Yigen Chen; Tom. W. Coleman; Michael. I. Jones; Mary. L. Flint; Steven. J. Seybold

    2013-01-01

    Adults of the invasive goldspotted oak borer, Agrilus auroguttatus Schaeffer (Coleoptera: Buprestidae), consumed foliar weight in no-choice feeding tests of, in descending order, California black oak Quercus kelloggii Newb., Engelmann oak, Quercus engelmannii Greene, coast live oak, Quercus...

  17. Inhibition of Rat 5α-Reductase Activity and Testosterone-Induced Sebum Synthesis in Hamster Sebocytes by an Extract of Quercus acutissima Cortex

    PubMed Central

    Koseki, Junichi; Matsumoto, Takashi; Matsubara, Yosuke; Tsuchiya, Kazuaki; Mizuhara, Yasuharu; Sekiguchi, Kyoji; Nishimura, Hiroaki; Watanabe, Junko; Kaneko, Atsushi; Hattori, Tomohisa; Maemura, Kazuya; Kase, Yoshio

    2015-01-01

    Objective. Bokusoku (BK) is an extract from the Quercus cortex used in folk medicine for treatment of skin disorders and convergence, and is present in jumihaidokuto, a traditional Japanese medicine that is prescribed for purulent skin diseases like acne vulgaris. The excess of sebum production induced by androgen is involved in the development of acne. Our aim is to examine whether BK and its constituents inhibit testosterone metabolism and testosterone-induced sebum synthesis. Methods. Measurements of 5α-reductase activity and lipogenesis were performed using rat liver microsomes and hamster sebocytes, respectively. Results. BK dose-dependently reduced the conversion of testosterone to a more active androgen, dihydrotestosterone in a 5α-reductase enzymatic reaction. Twenty polyphenols in BK categorized as gallotannin, ellagitannin, and flavonoid were identified by LC-MS/MS. Nine polyphenols with gallate group, tetragalloyl glucose, pentagalloyl glucose, eugeniin, 1-desgalloyl eugeniin, casuarinin, castalagin, stenophyllanin C, (−)-epicatechin gallate, and (−)-epigallocatechin gallate, inhibited testosterone metabolism. In particular, pentagalloyl glucose showed the strongest activity. BK and pentagalloyl glucose suppressed testosterone-induced lipogenesis, whereas they weakly inhibited the lipogenic action of insulin. Conclusions. BK inhibited androgen-related pathogenesis of acne, testosterone conversion, and sebum synthesis, partially through 5α-reductase inhibition, and has potential to be a useful agent in the therapeutic strategy of acne. PMID:25709710

  18. The effects of girdling on the ectomycorrhizal fungal community associated with tanoak (Lithocarpus densiflorus)

    Treesearch

    Sarah Bergermann; Nicholas Kordesch; Matteo Garbelotto; Timothy Metz

    2006-01-01

    Phytophthora ramorum was identified as the lethal agent of tanoak (Lithocarpus densiflorus), black oak (Quercus kelloggii) and coast live oak (Quercus agrifolia) in central areas of California. Although the geographic origin remains unknown, its severe impact on tanoaks and Quercus...

  19. Where the woodland ends: How edges affect landscape structure and physiological responses of Quercus agrifolia

    NASA Astrophysics Data System (ADS)

    de Chant, Timothy Paul

    Forests and woodlands are integral parts of ecosystems across the globe, but they are threatened by a variety of factors, including urbanization and introduced forest pathogens. These two forces are fundamentally altering ecosystems, both by removing forest cover and reshaping landscapes. Comprehending how these two processes have changed forest ecosystems is an important step toward understanding how the affected systems will function in the future. I investigated the range of edge effects that result from disturbance brought about by forest pathogens and urbanization in two coastal oak woodlands in Marin County, California. Oak woodlands are a dynamic part of California's landscape, reacting to changes in their biotic and abiotic environments across a range of spatial and temporal scales. Sudden Oak Death, caused by the introduced forest pathogen Phytophthora ramorum, has led to widespread mortality of many tree species in California's oak woodlands. I investigated how the remaining trees respond to such rapid changes in canopy structure (Chapter 2), and my results revealed a forest canopy quick to respond to the new openings. Urbanization, another disturbance regime, operates on a longer time scale. Immediately following urban development, forest edges are strikingly linear, but both forest processes and homeowner actions likely work in concert to disrupt the straight edge (Chapter 3). Forest edges grew more sinuous within 14 years of the initial disturbance, and continued to do so for the remainder of the study, another 21 years. Individual Quercus agrifolia trees also respond to urban edges decades after disturbance (Chapter 4), and their reaction is reflected in declining stable carbon isotope values (delta13C). This change suggests trees may have increased their stomatal conductance in response to greater water availability, reduced their photosynthetic rate as a result of stress, or some combination of both. Edges have far reaching and long lasting effects

  20. Spatial Patterns of Irradiance and Advanced Reproduction along a Canopy Disturbance Severity Gradient in an Upland Hardwood Stand

    Treesearch

    Amanda Keasberry; Justin Hart; Daniel C. Dey; Callie Schweitzer

    2016-01-01

    Regeneration failure of Quercus in mature Quercus-dominated forests has been reported throughout the temperate zone. Quercus seedlings are often abundant in these forests, yet frequently fail to recruit to larger size classes despite canopy disturbances. To examine intra-stand patterns of advanced...

  1. Losing the Warning Signal: Drought Compromises the Cross-Talk of Signaling Molecules in Quercus ilex Exposed to Ozone.

    PubMed

    Cotrozzi, Lorenzo; Pellegrini, Elisa; Guidi, Lucia; Landi, Marco; Lorenzini, Giacomo; Massai, Rossano; Remorini, Damiano; Tonelli, Mariagrazia; Trivellini, Alice; Vernieri, Paolo; Nali, Cristina

    2017-01-01

    Understanding the interactions between drought and acute ozone (O 3 ) stress in terms of signaling molecules and cell death would improve the predictions of plant responses to climate change. The aim was to investigate whether drought stress influences the responses of plants to acute episodes of O 3 exposure. In this study, the behavior of 84 Mediterranean evergreen Quercus ilex plants was evaluated in terms of cross-talk responses among signaling molecules. Half of the sample was subjected to drought (20% of the effective daily evapotranspiration, for 15 days) and was later exposed to an acute O 3 exposure (200 nL L -1 for 5 h). First, our results indicate that in well-water conditions, O 3 induced a signaling pathway specific to O 3 -sensitive behavior. Second, different trends and consequently different roles of phytohormones and signaling molecules (ethylene, ET; abscisic acid, ABA; salycilic acid, SA and jasmonic acid, JA) were observed in relation to water stress and O 3 . A spatial and functional correlation between these signaling molecules was observed in modulating O 3 -induced responses in well-watered plants. In contrast, in drought-stressed plants, these compounds were not involved either in O 3 -induced signaling mechanisms or in leaf senescence (a response observed in water-stressed plants before the O 3 -exposure). Third, these differences were ascribable to the fact that in drought conditions, most defense processes induced by O 3 were compromised and/or altered. Our results highlight how Q. ilex plants suffering from water deprivation respond differently to an acute O 3 episode compared to well-watered plants, and suggest new effect to be considered in plant responses to environmental changes. This poses the serious question as to whether or not multiple high-magnitude O 3 events (as predicted) can change these cross-talk responses, thus opening it up possible further investigations.

  2. Balance between carbon gain and loss under long-term drought: impacts on foliar respiration and photosynthesis in Quercus ilex L.

    PubMed

    Sperlich, D; Barbeta, A; Ogaya, R; Sabaté, S; Peñuelas, J

    2016-02-01

    Terrestrial carbon exchange is a key process of the global carbon cycle consisting of a delicate balance between photosynthetic carbon uptake and respiratory release. We have, however, a limited understanding how long-term decreases in precipitation induced by climate change affect the boundaries and mechanisms of photosynthesis and respiration. We examined the seasonality of photosynthetic and respiratory traits and evaluated the adaptive mechanism of the foliar carbon balance of Quercus ilex L. experiencing a long-term rainfall-exclusion experiment. Day respiration (Rd) but not night respiration (Rn) was generally higher in the drought treatment leading to an increased Rd/Rn ratio. The limitation of mesophyll conductance (gm) on photosynthesis was generally stronger than stomatal limitation (gs) in the drought treatment, reflected in a lower gm/gs ratio. The peak photosynthetic activity in the drought treatment occurred in an atypical favourable summer in parallel with lower Rd/Rn and higher gm/gs ratios. The plant carbon balance was thus strongly improved through: (i) higher photosynthetic rates induced by gm; and (ii) decreased carbon losses mediated by Rd. Interestingly, photosynthetic potentials (Vc,max, Jmax, and TPU) were not affected by the drought treatment, suggesting a dampening effect on the biochemical level in the long term. In summary, the trees experiencing a 14-year-long drought treatment adapted through higher plasticity in photosynthetic and respiratory traits, so that eventually the atypical favourable growth period was exploited more efficiently. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  3. Balance between carbon gain and loss under long-term drought: impacts on foliar respiration and photosynthesis in Quercus ilex L

    PubMed Central

    Sperlich, D.; Barbeta, A.; Ogaya, R.; Sabaté, S.; Peñuelas, J.

    2016-01-01

    Terrestrial carbon exchange is a key process of the global carbon cycle consisting of a delicate balance between photosynthetic carbon uptake and respiratory release. We have, however, a limited understanding how long-term decreases in precipitation induced by climate change affect the boundaries and mechanisms of photosynthesis and respiration. We examined the seasonality of photosynthetic and respiratory traits and evaluated the adaptive mechanism of the foliar carbon balance of Quercus ilex L. experiencing a long-term rainfall-exclusion experiment. Day respiration (R d) but not night respiration (R n) was generally higher in the drought treatment leading to an increased R d/R n ratio. The limitation of mesophyll conductance (g m) on photosynthesis was generally stronger than stomatal limitation (g s) in the drought treatment, reflected in a lower g m/g s ratio. The peak photosynthetic activity in the drought treatment occurred in an atypical favourable summer in parallel with lower R d/R n and higher g m/g s ratios. The plant carbon balance was thus strongly improved through: (i) higher photosynthetic rates induced by g m; and (ii) decreased carbon losses mediated by R d. Interestingly, photosynthetic potentials (V c,max, J max, and TPU) were not affected by the drought treatment, suggesting a dampening effect on the biochemical level in the long term. In summary, the trees experiencing a 14-year-long drought treatment adapted through higher plasticity in photosynthetic and respiratory traits, so that eventually the atypical favourable growth period was exploited more efficiently. PMID:26552882

  4. Is there a species spectrum within the world-wide leaf economics spectrum? Major variations in leaf functional traits in the Mediterranean sclerophyll Quercus ilex.

    PubMed

    Niinemets, Ulo

    2015-01-01

    The leaf economics spectrum is a general concept describing coordinated variation in foliage structural, chemical and physiological traits across resource gradients. Yet, within this concept,the role of within-species variation, including ecotypic and plastic variation components, has been largely neglected. This study hypothesized that there is a within-species economics spectrum within the general spectrum in the evergreen sclerophyll Quercus ilex which dominates low resource ecosystems over an exceptionally wide range. An extensive database of foliage traits covering the full species range was constructed, and improved filtering algorithms were developed. Standardized data filtering was deemed absolutely essential as additional variation sources can result in trait variation of 10–300%,blurring the broad relationships. Strong trait variation, c. two-fold for most traits to up to almost an order of magnitude, was uncovered.Although the Q. ilex spectrum is part of the general spectrum, within-species trait and climatic relationships in this species partly differed from the overall spectrum. Contrary to world-wide trends, Q. ilex does not necessarily have a low nitrogen content per mass and can increase photosynthetic capacity with increasing foliage robustness. This study argues that the within-species economics spectrum needs to be considered in regional- to biome-level analyses.

  5. Effects of disking, bedding, and subsoiling on survival and growth of three oak species in central Mississippi

    Treesearch

    J. Paul Jeffreys; Emily B. Schultz; Thomas G. Matney; W. Cade Booth; Jason M. Morris

    2010-01-01

    A replicated split-plot design experiment to evaluate the effects of three site preparation methods (disking, bedding, and subsoiling plus bedding) on survival and growth of three oak species (cherrybark, Quercus pagoda Raf.; Shumard, Quercus shumardii Buckl.; and Nuttall, Quercus texana Buckl.) was established...

  6. Photosynthetic Light Response of Bottomland Oak Seedlings Raised Under Partial Sunlight

    Treesearch

    Emile S. Gardiner

    2002-01-01

    Seedlings of cherrybark oak (Quercus pagoda Rafinesque), Nuttall oak (Quercus nuttallii Palmer) and overcup oak (Quercus lyrata Walter) were grown under two light levels, partial (20 percent) or full sunlight, to study physiological acclimation of leaves to low light availability. Shifts in leaf morphology were...

  7. Growth response of four species of Eastern hardwood tree seedlings exposed to ozone, acidic precipitation, and sulfur dioxide. [Prunus serotina, Acer rubrum, Quercus rubra, Liriodendron tulipifera

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davis, D.D. Skelly, J.M.

    1992-03-01

    In 1987 a study was conducted in controlled environment chambers to determine the foliar sensitivity of tree seedlings of eight species to ozone and acidic precipitation, and to determine the influence of leaf position on symptom severity. Jensen and Dochinger conducted concurrent similar studies in Continuously Stirred Tank Reactor (CSTR) chambers with ten species of forest trees. Based on the results of these initial studies, four species representing a range in foliar sensitivity to ozone were chosen: black cherry (Prunus serotina Ehrh.), red maple (Acer rubrum L.), northern red oak (Quercus rubra L.) and yellow-poplar (Liriodendron tulipifera L.). These speciesmore » were also chosen because of their ecological and/or commercial importance in Pennsylvania. Seedlings were exposed in growth chambers simulated acid rain. In addition acute exposures to sulfur dioxide were conducted in a regime based on unpublished monitoring data collected near coal-fired power plants. The objective of this study was to determine if the pollutant treatments influenced the growth and productivity of seedlings of these four species. This information will help researchers and foresters understand the role of air pollution in productivity of eastern forests.« less

  8. Do chestnut, northern red, and white oak germinant seedlings respond similarly to light treatments? Growth and biomass

    Treesearch

    Joanne Rebbeck; Kurt Gottschalk; Amy Scherzer

    2011-01-01

    Northern red oak (Quercus rubra L.) seedling growth has been extensively studied. White oak (Quercus alba L.) and chestnut oak (Quercus prinus L.), however, are far less investigated despite their importance among upland oak species in eastern North American forests. We characterized white and chestnut oak...

  9. Natural selection and neutral evolutionary processes contribute to genetic divergence in leaf traits across a precipitation gradient in the tropical oak Quercus oleoides.

    PubMed

    Ramírez-Valiente, José A; Deacon, Nicholas J; Etterson, Julie; Center, Alyson; Sparks, Jed P; Sparks, Kimberlee L; Longwell, Timothy; Pilz, George; Cavender-Bares, Jeannine

    2018-05-01

    The impacts of drought are expanding worldwide as a consequence of climate change. However, there is still little knowledge of how species respond to long-term selection in seasonally dry ecosystems. In this study, we used Q ST -F ST comparisons to investigate (i) the role of natural selection on population genetic differentiation for a set of functional traits related to drought resistance in the seasonally dry tropical oak Quercus oleoides and (ii) the influence of water availability at the site of population origin and in experimental treatments on patterns of trait divergence. We conducted a thorough phenotypic characterization of 1912 seedlings from ten populations growing in field and greenhouse common gardens under replicated watering treatments. We also genotyped 218 individuals from the same set of populations using eleven nuclear microsatellites. Q ST distributions for leaf lamina area, specific leaf area, leaf thickness and stomatal pore index were higher than F ST distribution. Results were consistent across growth environments. Genetic differentiation among populations for these functional traits was associated with the index of moisture at the origin of the populations. Together, our results suggest that drought is an important selective agent for Q. oleoides and that differences in length and severity of the dry season have driven the evolution of genetic differences in functional traits. © 2018 John Wiley & Sons Ltd.

  10. The Capacity for Thermal Protection of Photosynthetic Electron Transport Varies for Different Monoterpenes in Quercus ilex1

    PubMed Central

    Copolovici, Lucian O.; Filella, Iolanda; Llusià, Joan; Niinemets, Ülo; Peñuelas, Josep

    2005-01-01

    Heat stress resistance of foliar photosynthetic apparatus was investigated in the Mediterranean monoterpene-emitting evergreen sclerophyll species Quercus ilex. Leaf feeding with fosmidomycin, which is a specific inhibitor of the chloroplastic isoprenoid synthesis pathway, essentially stopped monoterpene emission and resulted in the decrease of the optimum temperature of photosynthetic electron transport from approximately 38°C to approximately 30°C. The heat stress resistance was partly restored by fumigation with 4 to 5 nmol mol−1 air concentrations of monoterpene α-pinene but not with fumigations with monoterpene alcohol α-terpineol. Analyses of monoterpene physicochemical characteristics demonstrated that α-pinene was primarily distributed to leaf gas and lipid phases, while α-terpineol was primarily distributed to leaf aqueous phase. Thus, for a common monoterpene uptake rate, α-terpineol is less efficient in stabilizing membrane liquid-crystalline structure and as an antioxidant in plant membranes. Furthermore, α-terpineol uptake rate (U) strongly decreased with increasing temperature, while the uptake rates of α-pinene increased with increasing temperature, providing a further explanation of the lower efficiency of thermal protection by α-terpineol. The temperature-dependent decrease of α-terpineol uptake was both due to decreases in stomatal conductance, gw, and increased volatility of α-terpineol at higher temperature that decreased the monoterpene diffusion gradient between the ambient air (FA) and leaf (FI; U = gw[FA − FI]). Model analyses suggested that α-pinene reacted within the leaf at higher temperatures, possibly within the lipid phase, thereby avoiding the decrease in diffusion gradient, FA − FI. Thus, these data contribute to the hypothesis of the antioxidative protection of leaf membranes during heat stress by monoterpenes. These data further suggest that fumigation with the relatively low atmospheric concentrations of

  11. Xylem and Leaf Functional Adjustments to Drought in Pinus sylvestris and Quercus pyrenaica at Their Elevational Boundary

    PubMed Central

    Fernández-de-Uña, Laura; Rossi, Sergio; Aranda, Ismael; Fonti, Patrick; González-González, Borja D.; Cañellas, Isabel; Gea-Izquierdo, Guillermo

    2017-01-01

    Climatic scenarios for the Mediterranean region forecast increasing frequency and intensity of drought events. Consequently, a reduction in Pinus sylvestris L. distribution range is projected within the region, with this species being outcompeted at lower elevations by more drought-tolerant taxa such as Quercus pyrenaica Willd. The functional response of these species to the projected shifts in water availability will partially determine their performance and, thus, their competitive success under these changing climatic conditions. We studied how the cambial and leaf phenology and xylem anatomy of these two species responded to a 3-year rainfall exclusion experiment set at their elevational boundary in Central Spain. Additionally, P. sylvestris leaf gas exchange, water potential and carbon isotope content response to the treatment were measured. Likewise, we assessed inter-annual variability in the studied functional traits under control and rainfall exclusion conditions. Prolonged exposure to drier conditions did not affect the onset of xylogenesis in either of the studied species, whereas xylem formation ceased 1–3 weeks earlier in P. sylvestris. The rainfall exclusion had, however, no effect on leaf phenology on either species, which suggests that cambial phenology is more sensitive to drought than leaf phenology. P. sylvestris formed fewer, but larger tracheids under dry conditions and reduced the proportion of latewood in the tree ring. On the other hand, Q. pyrenaica did not suffer earlywood hydraulic diameter changes under rainfall exclusion, but experienced a cumulative reduction in latewood width, which could ultimately challenge its hydraulic performance. The phenological and anatomical response of the studied species to drought is consistent with a shift in resource allocation under drought stress from xylem to other sinks. Additionally, the tighter stomatal control and higher intrinsic water use efficiency observed in drought-stressed P. sylvestris

  12. Xylem and Leaf Functional Adjustments to Drought in Pinus sylvestris and Quercus pyrenaica at Their Elevational Boundary.

    PubMed

    Fernández-de-Uña, Laura; Rossi, Sergio; Aranda, Ismael; Fonti, Patrick; González-González, Borja D; Cañellas, Isabel; Gea-Izquierdo, Guillermo

    2017-01-01

    Climatic scenarios for the Mediterranean region forecast increasing frequency and intensity of drought events. Consequently, a reduction in Pinus sylvestris L. distribution range is projected within the region, with this species being outcompeted at lower elevations by more drought-tolerant taxa such as Quercus pyrenaica Willd. The functional response of these species to the projected shifts in water availability will partially determine their performance and, thus, their competitive success under these changing climatic conditions. We studied how the cambial and leaf phenology and xylem anatomy of these two species responded to a 3-year rainfall exclusion experiment set at their elevational boundary in Central Spain. Additionally, P. sylvestris leaf gas exchange, water potential and carbon isotope content response to the treatment were measured. Likewise, we assessed inter-annual variability in the studied functional traits under control and rainfall exclusion conditions. Prolonged exposure to drier conditions did not affect the onset of xylogenesis in either of the studied species, whereas xylem formation ceased 1-3 weeks earlier in P. sylvestris . The rainfall exclusion had, however, no effect on leaf phenology on either species, which suggests that cambial phenology is more sensitive to drought than leaf phenology. P. sylvestris formed fewer, but larger tracheids under dry conditions and reduced the proportion of latewood in the tree ring. On the other hand, Q. pyrenaica did not suffer earlywood hydraulic diameter changes under rainfall exclusion, but experienced a cumulative reduction in latewood width, which could ultimately challenge its hydraulic performance. The phenological and anatomical response of the studied species to drought is consistent with a shift in resource allocation under drought stress from xylem to other sinks. Additionally, the tighter stomatal control and higher intrinsic water use efficiency observed in drought-stressed P. sylvestris

  13. Soil pH and extractable sulfate-sulfur distribution as influenced by tree species and distance from the stem. [Acer rubrum; Quercus coccinea

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wolfe, M.H.; Kelly, J.M.; Wolt, J.D.

    Stemflow influence on the distribution of soil (NaH/sub 2/PO/sub 4/ extractable) SO/sub 4/-S and pH was evaluated as a function of tree size class and distance from the stem for red maple (Acer rubrum L.) and scarlet oak (Quercus coccinea Muenchh.) at two locations in Tennessee which have received different historical inputs of S from atmospheric sources. Soil profiles around the base of each study tree were sampled by horizon at 25, 50, 100, and 200 cm from the stem along four transects radiating from the stem at 90/sup 0/ angles. Distance from the stem influenced soil pH of Amore » horizons at 25 cm from the stem of red maple and scarlet oak at both sites. Species had an effect on Bt2 and Bt3 soil SO/sub 4/-S concentrations. The Bt2 (0.49 cmol kg/sup -1/) and Bt3 (0.67 cmol kg/sup -1/) horizons beneath scarlet oaks had greater SO/sub 4/-S concentrations than corresponding horizons beneath red maple (0.29 and 0.43 cmol kg/sup -1/, respectively). The results of this study indicate that increased sampling intensity combined with tracer studies will be need to clearly determine the effect of stemflow, tree species, and tree size on subtlety-manifested soil properties such as pH and SO/sub 4/-S as well as other elements of interest.« less

  14. Chloroplast DNA analysis of Tunisian cork oak populations (Quercus suber L.): sequence variations and molecular evolution of the trnL (UAA)-trnF (GAA) region.

    PubMed

    Abdessamad, A; Baraket, G; Sakka, H; Ammari, Y; Ksontini, M; Hannachi, A Salhi

    2016-10-24

    Sequences of the trnL-trnF spacer and combined trnL-trnF region in chloroplast DNA of cork oak (Quercus suber L.) were analyzed to detect polymorphisms and to elucidate molecular evolution and demographic history. The aligned sequences varied in length and nucleotide composition. The overall ratio of transition/transversion (ti/tv) of 0.724 for the intergenic spacer and 0.258 for the pooled sequences were estimated, and indicated that transversions are more frequent than transitions. The molecular evolution and demographic history of Q. suber were investigated. Neutrality tests (Tajima's D and Fu and Li) ruled out the null hypothesis of a strictly neutral model, and Fu's Fs and Ramos-Onsins and Rozas' R2 confirmed the recent expansion of cork oak trees, validating its persistency in North Africa since the last glaciation during the Quaternary. The observed uni-modal mismatch distribution and the Harpending's raggedness index confirmed the demographic history model for cork oak. A phylogenetic dendrogram showed that the distribution of Q. suber trees occurs independently of geographical origin, the relief of the population site, and the bioclimatic stages. The molecular history and cytoplasmic diversity suggest that in situ and ex situ conservation strategies can be recommended for preserving landscape value and facing predictable future climatic changes.

  15. Using 13C and 15N isotopes to study allocation patterns in oak seedlings

    Treesearch

    Laura M. Suz; María V. Albarracín; Caroline S. Bledsoe

    2008-01-01

    In California’s oak woodlands, survival and growth of oaks may depend on a symbiosis between oak roots and fungi that form ectomycorrhizas. Ectomycorrhizal (ECM) fungi are major players in carbon (C) and nitrogen (N) utilization and cycling because they facilitate water and nutrient uptake from the soil into the plant. The ECM fungi also benefit because plants supply...

  16. Sudden Oak Death - Western (Pest Alert)

    Treesearch

    Susan Frankel

    2002-01-01

    Tens of thousands of tanoak (Lithocarpus densiflorus), coast live oak (Quercus agrifolia), California black oak (Quercus kelloggii), Shreve oak (Quercus parvula var. shrevei), and madrone (Arbutus menziesii) have been killed by a newly identified species, Phytophthora ramorum, which causes Sudden Oak Death. Sudden Oak Death was first reported in 1995 in central coastal...

  17. Effect of feeding tannin-degrading bacteria Streptococcus gallolyticus strain TDGB 406 on meat quality of goats fed with Quercus semicarpifolia leaves.

    PubMed

    Kumar, Kaushalendra; Chaudhary, L C; Agarwal, Neeta; Kamra, D N

    2016-10-01

    The effect of feeding tannin-degrading bacteria (Streptococcus gallolyticus strain TDGB 406) on carcass characteristics of goats fed with oak (Quercus semicarpifolia) leaves was studied on 18 male goats (4 months old, average body weight 9.50 ± 1.50 kg), distributed into three groups of six animals each. The animals of group 1 served as control, while the animals of groups 2 and 3 were given (at 5 ml/kg live weight) autoclaved and live culture of isolate TDGB 406 (10(6) cells/ml), respectively. The animals were fed with oak leaves as a basal roughage source and maize hay along with fixed quantity of concentrate mixture. After 4 months of feeding, the animals were slaughtered for carcass studies. The feeding of live culture of isolate TDGB 406 did not cause any effect (P > 0.05) on pre-slaughter weight, empty body weight, carcass weight, dressing percent, and yield of wholesale cuts (neck, rack, shoulder, breast, shank, loin, leg, and flank) of the goat meat. The chemical composition of longissimus dorsi muscle was comparable (P > 0.05) among the groups. The organoleptic evaluation of pressure-cooked meat in terms of tenderness and overall palatability was increased significantly (P < 0.05) in the meat of group 3 where live culture was supplemented. The other attributes were similar among the groups. It was concluded that supplementation of tannin-degrading bacteria S. gallolyticus strain TDGB 406 to goats fed with oak leaves did not affect the carcass characteristics and meat quality.

  18. Influence of overstory density on ecophysiology of red oak (Quercus rubra) and sugar maple (Acer saccharum) seedlings in central Ontario shelterwoods.

    PubMed

    Parker, William C; Dey, Daniel C

    2008-05-01

    A field experiment was established in a second-growth hardwood forest dominated by red oak (Quercus rubra L.) to examine the effects of shelterwood overstory density on leaf gas exchange and seedling water status of planted red oak, naturally regenerated red oak and sugar maple (Acer saccharum Marsh.) seedlings during the first growing season following harvest. Canopy cover of uncut control stands and moderate and light shelterwoods averaged 97, 80 and 49%, respectively. Understory light and vapor pressure deficit (VPD) strongly influenced gas exchange responses to overstory reduction. Increased irradiance beneath the shelterwoods significantly increased net photosynthesis (P(n)) and leaf conductance to water vapor (G(wv)) of red oak and maple seedlings; however, P(n) and G(wv) of planted and naturally regenerated red oak seedlings were two to three times higher than those of sugar maple seedlings in both partial harvest treatments, due in large part to decreased stomatal limitation of gas exchange in red oak as a result of increased VPD in the shelterwoods. In both species, seedling water status was higher in the partial harvest treatments, as reflected by the higher predawn leaf water potential and seedling water-use efficiency in seedlings in shelterwoods than in uncut stands. Within a treatment, planted and natural red oak seedlings exhibited similar leaf gas exchange rates and water status, indicating little adverse physiological effect of transplanting. We conclude that the use of shelterwoods favors photosynthetic potential of red oak over sugar maple, and should improve red oak regeneration in Ontario.

  19. Quercus dilatata Lindl. ex Royle ameliorates BPA induced hepatotoxicity in Sprague Dawley rats.

    PubMed

    Kazmi, Syeda Tayyaba Batool; Majid, Muhammad; Maryam, Sonia; Rahat, Aymen; Ahmed, Madiha; Khan, Muhammad Rashid; Haq, Ihsan Ul

    2018-06-01

    Quercus dilatata Lindl. ex Royle was evaluated for in vitro polyphenol content and antioxidant potential as well as in vivo protective role against bisphenol A (BPA) induced hepatotoxicity. The distilled water-acetone (QDDAE) and methanol-ethyl acetate (QDMEtE) extracts were standardized and administered in high (300 mg/kg body weight (BW) and low (150 mg/kg BW) doses to Sprague Dawley rats, injected with BPA (25 mg/kg BW). Silymarin (50 mg/kg BW) was used as positive control. Subsequently, blood and liver homogenates were collected after four weeks of treatment, and the defensive effects of both extracts against oxidative damage and genotoxicity were assessed via hematological and biochemical investigations, determination of endogenous expression of enzymes as well as levels of free radicals and comet assay. Between the two extracts, maximum phenolics (213 ± 0.15 μg gallic acid equivalent/mg dry extract (DE) and flavonoids (55.6 ± 0.16 μg quercetin equivalent/mg DE) content, DPPH scavenging activity (IC 50 : 8.1 ± 0.5 μg/ml), antioxidant capacity (53.7 ± 0.98 μg ascorbic acid equivalent (AAE)/mg DE) and reducing potential (228.4 ± 2.4 μg AAE/mg DE) were observed in QDMEtE. In in vivo analysis, a dose dependent hepatoprotective activity was exhibited by both the extracts. QDDAE demonstrated maximum reduction in levels of alanine transaminase (49.77 ± 3.83 U/l), thiobarbituric acid reactant substances (33.46 ± 0.70 nM/min/mg protein), hydrogen peroxide (18.08 ± 0.01 ng/mg tissue) and nitrite (55.64 ± 1.79 μM/ml), along with decline in erythrocyte sedimentation rate (4.13 ± 0.072 mm/h), histopathological injuries and DNA damage in BPA intoxicated rats as compared with QDMEtE. Likewise, QDDAE also significantly restored activity levels of endogenous antioxidants, including superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (POD) and GSH with values of 6.46 ± 0.15

  20. Limited Pollen Dispersal Contributes to Population Genetic Structure but Not Local Adaptation in Quercus oleoides Forests of Costa Rica.

    PubMed

    Deacon, Nicholas John; Cavender-Bares, Jeannine

    2015-01-01

    Quercus oleoides Cham. and Schlect., tropical live oak, is a species of conservation importance in its southern range limit of northwestern Costa Rica. It occurs in high-density stands across a fragmented landscape spanning a contrasting elevation and precipitation gradient. We examined genetic diversity and spatial genetic structure in this geographically isolated and genetically distinct population. We characterized population genetic diversity at 11 nuclear microsatellite loci in 260 individuals from 13 sites. We monitored flowering time at 10 sites, and characterized the local environment in order to compare observed spatial genetic structure to hypotheses of isolation-by-distance and isolation-by-environment. Finally, we quantified pollen dispersal distances and tested for local adaptation through a reciprocal transplant experiment in order to experimentally address these hypotheses. High genetic diversity is maintained in the population and the genetic variation is significantly structured among sampled sites. We identified 5 distinct genetic clusters and average pollen dispersal predominately occurred over short distances. Differences among sites in flowering phenology and environmental factors, however, were not strictly associated with genetic differentiation. Growth and survival of upland and lowland progeny in their native and foreign environments was expected to exhibit evidence of local adaptation due to the more extreme dry season in the lowlands. Seedlings planted in the lowland garden experienced much higher mortality than seedlings in the upland garden, but we did not identify evidence for local adaptation. Overall, this study indicates that the Costa Rican Q. oleoides population has a rich population genetic history. Despite environmental heterogeneity and habitat fragmentation, isolation-by-distance and isolation-by-environment alone do not explain spatial genetic structure. These results add to studies of genetic structure by examining a common

  1. Chronological Sequence of Leaf Phenology, Xylem and Phloem Formation and Sap Flow of Quercus pubescens from Abandoned Karst Grasslands

    PubMed Central

    Lavrič, Martina; Eler, Klemen; Ferlan, Mitja; Vodnik, Dominik; Gričar, Jožica

    2017-01-01

    Intra-annual variations in leaf development, radial growth, including the phloem part, and sap flow have rarely been studied in deciduous trees from drought-prone environments. In order to understand better the chronological order and temporal course of these processes, we monitored leaf phenology, xylem and phloem formation and sap flow in Quercus pubescens from abandoned karst grasslands in Slovenia during the growing season of 2014. We found that the initial earlywood vessel formation started before bud opening at the beginning of April. Buds started to open in the second half of April and full leaf unfolding occurred by the end of May. LAI values increased correspondingly with leaf development. About 28% of xylem and 22% of phloem annual increment were formed by the time of bud break. Initial earlywood vessels were fully lignified and ready for water transport, indicating that they are essential to provide hydraulic conductivity for axial water flow during leaf development. Sap flow became active and increasing contemporarily with leaf development and LAI values. Similar early spring patterns of xylem sap flow and LAI denoted that water transport in oaks broadly followed canopy leaf area development. In the initial 3 weeks of radial growth, phloem growth preceded that of xylem, indicating its priority over xylem at the beginning of the growing season. This may be related to the fact that after bud break, the developing foliage is a very large sink for carbohydrates but, at the same time, represents a small transpirational area. Whether the interdependence of the chronological sequence of the studied processes is fixed in Q. pubescens needs to be confirmed with more data and several years of analyses, although the ‘correct sequence’ of processes is essential for synchronized plant performance and response to environmental stress. PMID:28321232

  2. Leaf-age effects on temperature responses of photosynthesis and respiration of an alpine oak, Quercus aquifolioides, in southwestern China.

    PubMed

    Zhou, Haoran; Xu, Ming; Pan, Hongli; Yu, Xiubo

    2015-11-01

    Temperature responses and sensitivity of photosynthesis (A(n_)T) and respiration for leaves at different ages are crucial to modeling ecosystem carbon (C) cycles and productivity of evergreen forests. Understanding the mechanisms and processes of temperature sensitivity may further shed lights on temperature acclimation of photosynthesis and respiration with leaf aging. The current study examined temperature responses of photosynthesis and respiration of young leaves (YLs) (fully expanded in current growth season) and old leaves (OLs) (fully expanded in last growth season) of Quercus aquifolioides Rehder and E.H. Wilson in an alpine oak forest, southwestern China. Temperature responses of dark respiration (R(dark)), net assimilation (A(n)), maximal velocity of carboxylation (V(cmax)) and maximum rate of electron transport (J(max)) were significantly different between the two leaf ages. Those differences implied different temperature response parameters should be used for leaves of different ages in modeling vegetation productivity and ecosystem C cycles in Q. aquifolioides forests and other evergreen forests. We found that RuBP carboxylation determined the downward shift of A(n_)T in OLs, while RuBP regeneration and the balance between Rubisco carboxylation and RuBP regeneration made little contribution. Sensitivity of stomatal conductance to vapor pressure deficit changed in OLs and compensated part of the downward shift. We also found that OLs of Q. aquifolioides had lower An due to lower stomatal conductance, higher stomatal conductance limitation and deactivation of the biochemical processes. In addition, the balance between R(dark) and A(n) changed between OLs and YLs, which was represented by a higher R(dark)/A(n) ratio for OLs. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  3. Conservative Decrease in Water Potential in Existing Leaves during New Leaf Expansion in Temperate and Tropical Evergreen Quercus Species

    PubMed Central

    Saito, Takami; Naiola, B. Paul; Terashima, Ichiro

    2007-01-01

    Background and Aims This study aimed at clarifying how the water potential gradient (ΔΨ) is maintained in the shoots of evergreen trees with expanding leaves, whose leaf water potentials at the turgor loss point (Ψtlp) are generally high. Materials The water relations were examined in current-year expanding (CEX) and 1-year-old (OLD) leaves on the same shoots in temperate (Osaka, Japan) and tropical (Bogor, Indonesia) areas. A temperate evergreen species, Quercus glauca growing in both sites, was compared with a temperate deciduous species, Q. serrata, in Osaka, and two tropical evergreen species, Q. gemelliflora and Q. subsericea, in Bogor. Key Results (1) In Osaka, the midday leaf water potential (Ψmidday) was slightly higher in OLD (−0·5 MPa) than in CEX leaves (−0·6 MPa), whereas Ψtlp was significantly lower in OLD (−2·9 MPa) than in CEX leaves (−1·0 MPa). In Bogor, Ψmidday was also higher in OLD leaves (−1·0 MPa) despite the low Ψtlp (−1·9 MPa), although stomatal conductance was not always low in OLD leaves. In the branch bearing CEX and OLD leaves, most of the hydraulic resistance (86 %) exists in the current-year branch, leading to differences in water supply between CEX and OLD leaves. The removal of buds just before breaking did not affect the high Ψmidday in OLD leaves after 1 month. Ψmidday in OLD leaves thus appears to be independent of that in CEX leaves. Conclusions The moderate decrease in Ψmidday in OLD leaves would contribute to maintenance of ΔΨ in the shoots during leaf expansion. PMID:17855379

  4. Flood-Ring Formation and Root Development in Response to Experimental Flooding of Young Quercus robur Trees

    PubMed Central

    Copini, Paul; den Ouden, Jan; Robert, Elisabeth M. R.; Tardif, Jacques C.; Loesberg, Walter A.; Goudzwaard, Leo; Sass-Klaassen, Ute

    2016-01-01

    Spring flooding in riparian forests can cause significant reductions in earlywood-vessel size in submerged stem parts of ring-porous tree species, leading to the presence of ‘flood rings’ that can be used as a proxy to reconstruct past flooding events, potentially over millennia. The mechanism of flood-ring formation and the relation with timing and duration of flooding are still to be elucidated. In this study, we experimentally flooded 4-year-old Quercus robur trees at three spring phenophases (late bud dormancy, budswell, and internode expansion) and over different flooding durations (2, 4, and 6 weeks) to a stem height of 50 cm. The effect of flooding on root and vessel development was assessed immediately after the flooding treatment and at the end of the growing season. Ring width and earlywood-vessel size and density were measured at 25- and 75-cm stem height and collapsed vessels were recorded. Stem flooding inhibited earlywood-vessel development in flooded stem parts. In addition, flooding upon budswell and internode expansion led to collapsed earlywood vessels below the water level. At the end of the growing season, mean earlywood-vessel size in the flooded stem parts (upon budswell and internode expansion) was always reduced by approximately 50% compared to non-flooded stem parts and 55% compared to control trees. This reduction was already present 2 weeks after flooding and occurred independent of flooding duration. Stem and root flooding were associated with significant root dieback after 4 and 6 weeks and mean radial growth was always reduced with increasing flooding duration. By comparing stem and root flooding, we conclude that flood rings only occur after stem flooding. As earlywood-vessel development was hampered during flooding, a considerable number of narrow earlywood vessels present later in the season, must have been formed after the actual flooding events. Our study indicates that root dieback, together with strongly reduced hydraulic

  5. [Sap flow characteristics of Quercus liaotungensis in response to sapwood area and soil moisture in the loess hilly region, China].

    PubMed

    Lyu, Jin Lin; He, Qiu Yue; Yan, Mei Jie; Li, Guo Qing; Du, Sheng

    2018-03-01

    To examine the characteristics of sap flow in Quercus liaotungensis and their response to environmental factors under different soil moisture conditions, Granier-type thermal dissipation probes were used to measure xylem sap flow of trees with different sapwood area in a natural Q. liaotungensis forest in the loess hilly region. Solar radiation, air temperature, relative air humidity, precipitation, and soil moisture were monitored during the study period. The results showed that sap flux of Q. liaotungensis reached daily peaks earlier than solar radiation and vapor pressure deficit. The diurnal dynamics of sap flux showed a similar pattern to those of the environmental factors. Trees had larger sap flux during the period with higher soil moisture. Under the same soil moisture conditions, trees with larger diameter and sapwood areas had significantly higher sap flux than those with smaller diameter and sapwood areas. Sap flux could be fitted with vapor pressure deficit, solar radiation, and the integrated index of the two factors using exponential saturation function. Differences in the fitted curves and parameters suggested that sap flux tended to reach saturation faster under higher soil moisture. Furthermore, trees in the smaller diameter class were more sensitive to the changes of soil moisture. The ratio of daily sap flux per unit vapor pressure deficit under lower soil moisture condition to that under higher soil moisture condition was linearly correlated to sapwood area. The regressive slope in smaller diameter class was larger than that in bigger diameter class, which further indicated the higher sensitivity of trees with smaller diameter class to soil moisture. These results indicated that wider sapwood of larger diameter class provided a buffer against drought stress.

  6. Effects of ice storm damage on hardwood survival and growth in Ohio

    Treesearch

    Richard M. Turcotte; Thomas R. Elliott; Mary Ann Fajvan; Yong-Lak Park; Daniel A. Snider; Patrick C. Tobin

    2012-01-01

    In 2003, an ice storm occurred across four Mid-Atlantic states. This study investigated the effects of the ice-storm damage on growth and mortality of five tree species (Acer rubrum, Acer saccharum, Quercus alba, Quercus prinus, and Quercus rubra) from three forest stands in the Wayne National Forest in Ohio. We remeasured the same...

  7. Monoterpene and sesquiterpene emissions from Quercus coccifera exhibit interacting responses to light and temperature

    NASA Astrophysics Data System (ADS)

    Staudt, M.; Lhoutellier, L.

    2011-09-01

    Light and temperature are known to be the most important environmental factors controlling biogenic volatile organic compound (BVOC) emissions from plants, but little is known about their interdependencies especially for BVOCs other than isoprene. We studied light responses at different temperatures and temperature responses at different light levels of foliar BVOC emissions, photosynthesis and chlorophyll fluorescence on Quercus coccifera, an evergreen oak widespread in Mediterranean shrublands. More than 50 BVOCs were detected in the emissions from Q. coccifera leaves most of them being isoprenoids plus a few green leaf volatiles (GLVs). Under standard conditions non-oxygenated monoterpenes (MT-hc) accounted for about 90% of the total BVOC release (mean ± SD: 738 ± 378 ng m-2 projected leaf area s-1 or 13.1 ± 6.9 μg g-1 leaf dry weight h-1) and oxygenated monoterpenes (MT-ox) and sesquiterpenes (SQTs) accounted for the rest in about equal proportions. Except GLVs, emissions of all BVOCs responded positively to light and temperature. The light responses of MT and SQT emissions resembled that of CO2-assimilation and were little influenced by the assay temperature: at high assay temperature, MT-hc emissions saturated at lower light levels than at standard assay temperature and tended even to decrease in the highest light range. The emission responses to temperature showed mostly Arrhenius-type response curves, whose shapes in the high temperature range were clearly affected by the assay light level and were markedly different between isoprenoid classes: at non-saturating light, all isoprenoids showed a similar temperature optimum (~43 °C), but, at higher temperatures, MT-hc emissions decreased faster than MT-ox and SQT emissions. At saturating light, MT-hc emissions peaked around 37 °C and rapidly dropped at higher temperatures, whereas MT-ox and SQT emissions strongly increased between 40 and 50 °C accompanied by a burst of GLVs. In all experiments

  8. Monoterpene and sesquiterpene emissions from Quercus coccifera exhibit interacting responses to light and temperature

    NASA Astrophysics Data System (ADS)

    Staudt, M.; Lhoutellier, L.

    2011-06-01

    Light and temperature are known to be the most important environmental factors controlling biogenic volatile organic compound (BVOC) emissions from plants, but little is known about their interdependencies especially for BVOCs other than isoprene. We studied light responses at different temperatures and temperature responses at different light levels of foliar BVOC emissions, photosynthesis and chlorophyll fluorescence on Quercus coccifera, an evergreen oak widespread in Mediterranean shrublands. More than 50 BVOCs were detected in the emissions from Q. coccifera leaves most of them being isoprenoids plus a few green leaf volatiles (GLVs). Under standard conditions non-oxygenated monoterpenes (MT-hc) accounted for about 90 % of the total BVOC release (mean ± SD: 738 ± 378 ng m-2 projected leaf area s-1 or 13.1 ± 6.9 μg g-1 leaf dry weight h-1) and oxygenated monoterpenes (MT-ox) and sesquiterpenes (SQTs) accounted for the rest in about equal proportions. Except GLVs, emissions of all BVOCs responded positively to light and temperature. The light responses of MT and SQT emissions resembled that of CO2-assimilation and were little influenced by the assay temperature: at high assay temperature, MT-hc emissions saturated at lower light levels than at standard assay temperature and tended even to decrease in the highest light range. The emission responses to temperature showed mostly Arrhenius-type response curves, whose shapes in the high temperature range were clearly affected by the assay light level and were markedly different between isoprenoid classes: at non-saturating light, all isoprenoids showed a similar temperature optimum (~43 °C), but, at higher temperatures, MT-hc emissions decreased faster than MT-ox and SQT emissions. At saturating light, MT-hc emissions peaked already around 37 °C and rapidly dropped at higher temperatures, whereas MT-ox and SQT emissions strongly increased between 40 and 50 °C accompanied by a burst of GLVs. In all experiments

  9. Eucalypt NADP-Dependent Isocitrate Dehydrogenase1

    PubMed Central

    Boiffin, Vincent; Hodges, Michael; Gálvez, Susana; Balestrini, Raffaella; Bonfante, Paola; Gadal, Pierre; Martin, Francis

    1998-01-01

    NADP-dependent isocitrate dehydrogenase (NADP-ICDH) activity is increased in roots of Eucalyptus globulus subsp. bicostata ex Maiden Kirkp. during colonization by the ectomycorrhizal fungus Pisolithus tinctorius Coker and Couch. To investigate the regulation of the enzyme expression, a cDNA (EgIcdh) encoding the NADP-ICDH was isolated from a cDNA library of E. globulus-P. tinctorius ectomycorrhizae. The putative polypeptide sequence of EgIcdh showed a high amino acid similarity with plant NADP-ICDHs. Because the deduced EgICDH protein lacks an amino-terminal targeting sequence and shows highest similarity to plant cytosolic ICDHs, it probably represents a cytoplasmic isoform. RNA analysis showed that the steady-state level of EgIcdh transcripts was enhanced nearly 2-fold in ectomycorrhizal roots compared with nonmycorrhizal roots. Increased accumulation of NADP-ICDH transcripts occurred as early as 2 d after contact and likely led to the observed increased enzyme activity. Indirect immunofluorescence microscopy indicated that NADP-ICDH was preferentially accumulated in the epidermis and stele parenchyma of nonmycorrhizal and ectomycorrhizal lateral roots. The putative role of cytosolic NADP-ICDH in ectomycorrhizae is discussed. PMID:9662536

  10. Mycorrhizal symbionts of Pisonia grandis and P. sechellarum in Seychelles: identification of mycorrhizal fungi and description of new Tomentella species.

    PubMed

    Suvi, Triin; Tedersoo, Leho; Abarenkov, Kessy; Beaver, Katy; Gerlach, Justin; Kõljalg, Urmas

    2010-01-01

    Nyctaginaceae includes species that are predominantly non-mycorrhizal or form arbuscular or ectomycorrhiza. Root-associated fungi were studied from P. grandis and P. sechellarum roots collected respectively on the islands of Cousin and Silhouette in Seychelles. In addition fungal sporocarps were collected from the sampling area. Fungal symbionts were identified from the roots by anatomotyping and rDNA sequencing; sporocarps collected were examined microscopically and sequenced. Three distantly related ectomycorrhizal fungal species belonging to Thelephoraceae were identified from the roots of P. grandis. Sporocarps also were found for two symbionts and described as new Tomentella species. In addition Tomentella species collected from other Seychelles islands were studied and described as new species if there was no close resemblance to previously established species. P. sechellarum was determined to be an arbuscular mycorrhizal plant; three arbuscular mycorrhizal fungal species were detected from the roots. P. grandis is probably associated only with species of Thelephoraceae throughout its area. Only five Tomentella species are known to form ectomycorrhiza with P. grandis and they never have been found to be associated with another host, suggesting adaptation of these fungi to extreme environmental conditions in host's habitat.

  11. The alpha-tocopherol content of leaves of pedunculate oak (Quercus robur L.)--variation over the growing season and along the vertical light gradient in the canopy.

    PubMed

    Hansen, Ute; Schneiderheinze, Jenny; Stadelmann, Simone; Rank, Barbara

    2003-01-01

    This study was performed in order to investigate whether the actual requirement for defence against photo-oxidative stress is reflected by the alpha-tocopherol (alpha-Toco) content in leaves of pedunculate oak (Quercus robur L.). Antioxidants and pigments were quantified in leaves that were collected on six days between May and September 2000 in a mixed pine/oak forest at canopy positions differing in light environment. Pools of hydrophilic antioxidants and photo-protective xanthophyll cycle pigments (V + A + Z) reflected the anti-oxidative demand, as these pools increased with the average light intensity to which the leaves were acclimated. The photo-protective demand was not the determinant of the alpha-Toco content of oak leaves, as (1) foliage of a young oak, exposed to low light levels in the understorey, contained higher amounts of this lipophilic antioxidant than leaves sampled from semimature oaks at canopy positions with a similar light environment, and (2) a strong increase in the alpha-Toco content over the growing season was detected at each investigated crown position, whereas the V + A + Z pool did not show a concomitant accumulation during leaf ageing. The rate of alpha-Toco accumulation differed distinctly between samples taken at different canopy positions.

  12. Climate Influences the Content and Chemical Composition of Foliar Tannins in Green and Senesced Tissues of Quercus rubra

    PubMed Central

    Top, Sara M.; Preston, Caroline M.; Dukes, Jeffrey S.; Tharayil, Nishanth

    2017-01-01

    Environmental stresses not only influence production of plant metabolites but could also modify their resorption during leaf senescence. The production-resorption dynamics of polyphenolic tannins, a class of defense compound whose ecological role extends beyond tissue senescence, could amplify the influence of climate on ecosystem processes. We studied the quantity, chemical composition, and tissue-association of tannins in green and freshly-senesced leaves of Quercus rubra exposed to different temperature (Warming and No Warming) and precipitation treatments (Dry, Ambient, Wet) at the Boston-Area Climate Experiment (BACE) in Massachusetts, USA. Climate influenced not only the quantity of tannins, but also their molecular composition and cell-wall associations. Irrespective of climatic treatments, tannin composition in Q. rubra was dominated by condensed tannins (CTs, proanthocyanidins). When exposed to Dry and Ambient*Warm conditions, Q. rubra produced higher quantities of tannins that were less polymerized. In contrast, under favorable conditions (Wet), tannins were produced in lower quantities, but the CTs were more polymerized. Further, even as the overall tissue tannin content declined, the content of hydrolysable tannins (HTs) increased under Wet treatments. The molecular composition of tannins influenced their content in senesced litter. Compared to the green leaves, the content of HTs decreased in senesced leaves across treatments, whereas the CT content was similar between green and senesced leaves in Wet treatments that produced more polymerized tannins. The content of total tannins in senesced leaves was higher in Warming treatments under both dry and ambient precipitation treatments. Our results suggest that, though climate directly influenced the production of tannins in green tissues (and similar patterns were observed in the senesced tissue), the influence of climate on tannin content of senesced tissue was partly mediated by the effect on the

  13. Recent climate hiatus revealed dual control by temperature and drought on the stem growth of Mediterranean Quercus ilex.

    PubMed

    Lempereur, Morine; Limousin, Jean-Marc; Guibal, Frédéric; Ourcival, Jean-Marc; Rambal, Serge; Ruffault, Julien; Mouillot, Florent

    2017-01-01

    A better understanding of stem growth phenology and its climate drivers would improve projections of the impact of climate change on forest productivity. Under a Mediterranean climate, tree growth is primarily limited by soil water availability during summer, but cold temperatures in winter also prevent tree growth in evergreen forests. In the widespread Mediterranean evergreen tree species Quercus ilex, the duration of stem growth has been shown to predict annual stem increment, and to be limited by winter temperatures on the one hand, and by the summer drought onset on the other hand. We tested how these climatic controls of Q. ilex growth varied with recent climate change by correlating a 40-year tree ring record and a 30-year annual diameter inventory against winter temperature, spring precipitation, and simulated growth duration. Our results showed that growth duration was the best predictor of annual tree growth. We predicted that recent climate changes have resulted in earlier growth onset (-10 days) due to winter warming and earlier growth cessation (-26 days) due to earlier drought onset. These climatic trends partly offset one another, as we observed no significant trend of change in tree growth between 1968 and 2008. A moving-window correlation analysis revealed that in the past, Q. ilex growth was only correlated with water availability, but that since the 2000s, growth suddenly became correlated with winter temperature in addition to spring drought. This change in the climate-growth correlations matches the start of the recent atmospheric warming pause also known as the 'climate hiatus'. The duration of growth of Q. ilex is thus shortened because winter warming has stopped compensating for increasing drought in the last decade. Decoupled trends in precipitation and temperature, a neglected aspect of climate change, might reduce forest productivity through phenological constraints and have more consequences than climate warming alone. © 2016 John

  14. [Allelopathic effects of the humus soils from Betula platyphylla and Quercus liaotungensis pure plantations on 9 kinds of common shrubs and herbs].

    PubMed

    Huang, Liang-Jia; Liu, Zeng-wen; Zhu, Bo-Chao; Bing, Yuan-Hao; Zhang, Xiao-Xi; Lü, Chen

    2014-06-01

    The humus soils were collected from Betula platyphylla and Quercus liaotungensis pure plantations and woodless land separately where the site conditions were basically the same, and taken as medium for potting culture test of 9 kinds of shrubs or herbs in plastic greenhouse to assess the allelopathic effects of humus soils of pure plantations on shrubs or herbs. Humus soils from B. platyphylla plantation significantly inhibited the seed germinations of Medicago sativa and Melilotus officinalis, decreased the catalase (CAT) activity of M. officinalis, Coronilla varia, M. sativa and Lespedeza davurica, and improved malondialdehyde (MDA) contents in seedlings of Caragana kor-shinskii, C. varia and Astragalus adsurgens. The biomass growths of C. varia, Amorpha fruticosa, M. sativa, M. officinalis and A. adsurgens in humus soils from B. platyphylla plantation were significantly decreased by 48.2%, 45.1%, 44.3%, 37.3% and 36.0%, respectively. In addition, humus soil of Q. liaotungensis plantation significantly decreased the germination rates of M. sativa and A. adsurgens, the chlorophyll contents of Vicia villosa, A. fruticosa and M. sativa, and improved malondialdehyde (MDA) contents in seedlings of Lespedeza davurica, Caragana korshinskii, M. officinalis and A. adsurgens. The biomass growths of A. adsurgens, M. sativa, M. officinalis and A. fruticosa were significantly decreased by 52.6% , 43.8%, 35.5% and 34.6%, respective- ly. B. platyphylla plantation humus soil had obvious inhibition effects on M. sativa, M. officinalis and A. fruticosa, while Q. liaotungensis plantation humus soil had obvious inhibition effects on M. sativa, A. adsurgens and A. fruticosa.

  15. The Potential of Dark Septate Endophytes to Form Root Symbioses with Ectomycorrhizal and Ericoid Mycorrhizal Middle European Forest Plants

    PubMed Central

    Lukešová, Tereza; Kohout, Petr; Větrovský, Tomáš; Vohník, Martin

    2015-01-01

    The unresolved ecophysiological significance of Dark Septate Endophytes (DSE) may be in part due to existence of morphologically indistinguishable cryptic species in the most common Phialocephala fortinii s. l.—Acephala applanata species complex (PAC). We inoculated three middle European forest plants (European blueberry, Norway spruce and silver birch) with 16 strains of eight PAC cryptic species and other DSE and ectomycorrhizal/ericoid mycorrhizal fungi and focused on intraradical structures possibly representing interfaces for plant-fungus nutrient transfer and on host growth response. The PAC species Acephala applanata simultaneously formed structures resembling ericoid mycorrhiza (ErM) and DSE microsclerotia in blueberry. A. macrosclerotiorum, a close relative to PAC, formed ectomycorrhizae with spruce but not with birch, and structures resembling ErM in blueberry. Phialocephala glacialis, another close relative to PAC, formed structures resembling ErM in blueberry. In blueberry, six PAC strains significantly decreased dry shoot biomass compared to ErM control. In birch, one A. macrosclerotiorum strain increased root biomass and the other shoot biomass in comparison with non-inoculated control. The dual mycorrhizal ability of A. macrosclerotiorum suggested that it may form mycorrhizal links between Ericaceae and Pinaceae. However, we were unable to detect this species in Ericaceae roots growing in a forest with presence of A. macrosclerotiorum ectomycorrhizae. Nevertheless, the diversity of Ericaceae mycobionts was high (380 OTUs) with individual sites often dominated by hitherto unreported helotialean and chaetothyrialean/verrucarialean species; in contrast, typical ErM fungi were either absent or low in abundance. Some DSE apparently have a potential to form mycorrhizae with typical middle European forest plants. However, except A. applanata, the tested representatives of all hitherto described PAC cryptic species formed typical DSE colonization without

  16. Impact of ozone on monoterpene emissions and evidence for an isoprene-like antioxidant action of monoterpenes emitted by Quercus ilex leaves.

    PubMed

    Loreto, Francesco; Pinelli, Paola; Manes, Fausto; Kollist, Hannes

    2004-04-01

    Quercus ilex (L.) leaves emit monoterpenes, particularly alpha-pinene, beta-pinene and sabinene. Apart from the monoterpene pools that are stored in specialized structures and have a clear defensive or attractive role, the function of monoterpenes in Q. ilex leaves is unknown. We tested whether monoterpenes have an antioxidant role, as has previously been found for isoprene in isoprene-emitting leaves. We exposed Q. ilex leaves to either mild and repeated ozone exposure (Experiment I) or to a single acute ozone exposure (Experiment II) at temperatures ranging between 20 and 32 degrees C. Both ozone treatments rapidly stimulated monoterpene synthesis, but had no effect on photosynthesis and caused no visible damage to leaves maintained at 25, 30 or 32 degrees C. Ozone inhibited both photosynthesis and monoterpene synthesis in leaves maintained at 20 degrees C. To characterize the relationship between monoterpenes and ozone-induced damage, we fed detached leaves fosmidomycin, a selective inhibitor of isoprene synthesis. Fosmidomycin caused rapid and complete inhibition of monoterpene emissions in leaves maintained at 30 degrees C, confirming that monoterpenes are synthesized by the same biochemical pathway as isoprene. However, over the experimental period, fosmidomycin did not affect concentrations of compounds that are formed from chloroplastic isoprenoids and that might have conferred antioxidant protection, either directly (carotenoids) or indirectly (chlorophylls, xanthophylls). In leaves whose monoterpene synthesis had been inhibited by fosmidomycin, ozone rapidly and significantly inhibited photosynthesis and increased the production of hydrogen peroxide and malonyldialdehyde. We conclude that monoterpenes produced by Q. ilex leaves share the same biosynthetic pathway and function as isoprene. Furthermore, all volatile isoprenoids may have similar antioxidant properties and may be stimulated by the same stress-inducing conditions.

  17. Mapping the Distribution of Sand Live Oak (Quercus geminata) and Determining Growth Responses to Hurricane Katrina (2005) on Cat Island, Mississippi

    NASA Astrophysics Data System (ADS)

    Funderburk, W.; Carter, G. A.; Harley, G. L.

    2013-12-01

    William R. Funderburk, Gregory A. Carter, Grant Harley Gulf Coast Geospatial Center, University of Southern Mississippi Department of Geography and Geology Stennis Space Center, MS 39529 U.S.A. william.funderburk@usm.edu The Mississippi-Alabama barrier islands serve to buffer mainland coastal areas from the impacts of hurricanes and other extreme weather events. On August 29, 2005, they were impacted heavily by the wind, waves, and storm surges of Hurricane Katrina. The purpose of this study is to determine the growth responses of Quercus geminata, a dominant tree species on Cat Island, MS, in relation to the impact of Hurricane Katrina. Remotely sensed data was utilized in conjunction with ground data to assess growth response post Hurricane Katrina. The main objectives of this study were: 1) determine growth response of Q. geminata through tree ring analysis; 2) understand how Q. geminata adapted to intense weather and climatic phenomena on Cat Island. The hypotheses tested were: 1) growth rates of Q. geminata on Cat Island were decreased by the impact of Hurricane Katrina 2) trees at higher elevations survived or recovered while trees at lower elevations did not recover or died. Decadal scale stability is required for forest stand development on siliciclastic barrier islands. Thus, monitoring the distribution of forest climax community species is key to understanding siliciclastic, subsiding, barrier island geomorphic processes and their relationships to successional patterns and growth rates. Preliminary results indicate that Q. geminata produces a faint growth ring, survive for at least two to three hundred years and is well-adapted to frequent salt water flooding. Cat Island: False color Image

  18. Leaf functional plasticity decreases the water consumption without further consequences for carbon uptake in Quercus coccifera L. under Mediterranean conditions

    PubMed Central

    Peguero-Pina, José Javier; Sisó, Sergio; Fernández-Marín, Beatriz; Flexas, Jaume; Galmés, Jeroni; García-Plazaola, Jose Ignacio; Niinemets, Ülo; Sancho-Knapik, Domingo; Gil-Pelegrín, Eustaquio

    2016-01-01

    The accumulation of epicuticular waxes over stomata in Quercus coccifera L. contributes to a severe reduction in maximum stomatal conductance (gs,max) under Mediterranean (MED) conditions. However, this phenomenon was not observed in this species under temperate (TEM) conditions, which could lead to differences in the ability to assimilate CO2 between the sites. We hypothesise that the overall importance of such a reduction in gs,max on photosynthesis is modulated by other factors affecting carbon gain, mainly mesophyll conductance to CO2 (gm), through a plastic response to changes in environmental conditions (i.e., vapour pressure deficit, VPD, and mean daily quantum flux density, Qint). The results reveal that leaves grown at the TEM site did not show an increased ability for net CO2 assimilation (AN), mainly due to an equal gm at both sites. This fact is explained by a trade-off between an increased conductance of the gas phase (gias) and a reduced conductance of the liquid phase (gliq) at the TEM site compared with the MED site. In spite of the reduction in gs,max at the MED site, transpiration (E) did not diminish during midsummer to the levels of the TEM site due to a higher VPD found at the MED site, yielding a higher water use efficiency (AN/E) at the TEM site. Moreover, photosynthetic nitrogen use efficiency was also higher at the TEM site, indicating these leaves can reach similar values of AN with lower nitrogen investment that those at the MED site. These results suggest that Q. coccifera does not always use the main resources (water and nutrients) at leaf level as efficiently as possible. Moreover, the different patterns of resource use (in particular N), together with the functional plasticity, cannot overcome the morpho-functional constraints that limit photosynthetic activity, even under potentially favourable conditions. PMID:26705310

  19. Seasonal changes in the photosynthetic capacity and chlorophyll fluorescence in canopy leaves of Quercus crispula in a cool-temperate forest

    NASA Astrophysics Data System (ADS)

    Tsujimoto, K.; Kato, T.; Nakaji, T.

    2016-12-01

    As well as a proxy of ecosystem level photosynthesis, sun-induced fluorescence (SIF) is expected to be an indicator of plant physiological information in photosynthesis (Frankenberg et al., 2011). Zhang et al. (2014) especially suggested that the SIF can be used to estimate the capacity of RuBP carboxylation, Vcmax, at the ecosystem scale by the simple inversion approach with the combination of both observation and modeling. However, the seasonal pattern of the relationships between SIF and such gas exchange physiological parameters has not been confirmed by the direct field observation, yet. Here, we present the field observation results of both gas exchange based photosynthetic parameters and fluorescence properties of canopy leaves of Japanese oak (Quercus crispula) in a cool-temperate forest. In the Tomakomai experimental forest site (42°40'N, 141°36'E), Hokkaido University in Japan, we conducted the periodical measurements of the seasonality in photosynthetic parameters (Li-6400, Li-Cor, USA) and LED-induced fluorescence yield (USB4000, OceanOptics, USA and mini-PAM, WALZ, Germany) from June to October in 2016. Every two or three weeks, the in-situ single leaf data were collected for 10-16 leaves (consisting of 3-4 leaves x 3-4 individual trees) of Japanese oak at the top of canopy at 15-20m above ground surface with approaching by the tall canopy crane. After the in-situ data acquisition, the leaves are frozen in liquid nitrogen immediately followed by removable from shoots, and are going to be analyzed their chemical properties (ex. Chla, Chlb etc.). By analyzing seasonal pattern of those leaf traits, we are going to show how effectively the chlorophyll fluorescence can assess the carbon assimilation capacity of cool temperate forest.

  20. Phylogeography of Quercus variabilis Based on Chloroplast DNA Sequence in East Asia: Multiple Glacial Refugia and Mainland-Migrated Island Populations

    PubMed Central

    Kang, Hongzhang; Sun, Xiao; Yin, Shan; Du, Hongmei; Yamanaka, Norikazu; Gapare, Washington; Wu, Harry X.; Liu, Chunjiang

    2012-01-01

    The biogeographical relationships between far-separated populations, in particular, those in the mainland and islands, remain unclear for widespread species in eastern Asia where the current distribution of plants was greatly influenced by the Quaternary climate. Deciduous Oriental oak (Quercus variabilis) is one of the most widely distributed species in eastern Asia. In this study, leaf material of 528 Q. variabilis trees from 50 populations across the whole distribution (Mainland China, Korea Peninsular as well as Japan, Zhoushan and Taiwan Islands) was collected, and three cpDNA intergenic spacer fragments were sequenced using universal primers. A total of 26 haplotypes were detected, and it showed a weak phylogeographical structure in eastern Asia populations at species level, however, in the central-eastern region of Mainland China, the populations had more haplotypes than those in other regions, with a significant phylogeographical structure (N ST = 0.751> G ST = 0.690, P<0.05). Q. variabilis displayed high interpopulation and low intrapopulation genetic diversity across the distribution range. Both unimodal mismatch distribution and significant negative Fu’s FS indicated a demographic expansion of Q. variabilis populations in East Asia. A fossil calibrated phylogenetic tree showed a rapid speciation during Pleistocene, with a population augment occurred in Middle Pleistocene. Both diversity patterns and ecological niche modelling indicated there could be multiple glacial refugia and possible bottleneck or founder effects occurred in the southern Japan. We dated major spatial expansion of Q. variabilis population in eastern Asia to the last glacial cycle(s), a period with sea-level fluctuations and land bridges in East China Sea as possible dispersal corridors. This study showed that geographical heterogeneity combined with climate and sea-level changes have shaped the genetic structure of this wide-ranging tree species in East Asia. PMID:23115642

  1. Drought impact on Quercus pubescens Willd. isoprene emissions over the Mediterranean area: what future?

    NASA Astrophysics Data System (ADS)

    Cyrielle Genard-Zielinski, Anne; Boissard, Christophe; Ormeño, Elena; Lathière, Juliette; Guenet, Bertrand; Gauquelin, Thierry; Fernandez, Catherine

    2015-04-01

    Biogenic Volatile Organic Compounds (BVOCs) released by plants mostly originate from their secondary metabolism. Their emissions are modulated, in terms of intensity and molecule diversity, by environmental conditions. Among BVOCs, isoprene has been especially studied due to its high emission fluxes and its contribution to tropospheric photochemistry, both in the gaseous and particulate phases. However, the way isoprene emissions are impacted by some abiotic factors, especially water stress, is still under debate. In a world facing climatic changes, global climate models expect air temperature and drought intensity to strengthen in the Mediterranean area by 2100. Our work focuses on the impact of water stress on isoprene emissions (ERiso) from Quercus pubescens Willd. This species covers large areas of the Mediterranean area where it appears to be the main isoprene emitter. An in situ experimentation was performed at the O3HP (Oak Observatory at OHP, southern France) in a pubescent oak forest with trees adapted to long lasting stress periods. We investigated during a whole seasonal cycle (from June 2012 to June 2013) the course of ERiso under both natural water stress (control treatment: C) and intensified water stress (stress treatment: S) by artificially reducing rain by 30% using a specific rain exclusion device. Restricted rain did not modify either the net CO2 assimilation or ERiso during the whole season. However, isoprene emission factors (Is) for trees under S were significantly higher (a factor of ˜ 2) than for trees growing under C in August (137.8 compared to 75.3 μgC.gDM-1.h-1 respectively) and September (75.3 compared to 40.2 μgC.gDM-1.h-1 respectively). Based on our experimental emission database, an appropriate isoprene emission algorithm (GZ2014) was developed using a statistic approach (an artificial neural network). Using ambient and edaphic environmental parameters integrated over up to 3 weeks, GZ2014 was found to represent more than 80% of

  2. Responses of canopy duration to temperature changes in four temperate tree species: relative contributions of spring and autumn leaf phenology.

    PubMed

    Vitasse, Yann; Porté, Annabel Josée; Kremer, Antoine; Michalet, Richard; Delzon, Sylvain

    2009-08-01

    While changes in spring phenological events due to global warming have been widely documented, changes in autumn phenology, and therefore in growing season length, are less studied and poorly understood. However, it may be helpful to assess the potential lengthening of the growing season under climate warming in order to determine its further impact on forest productivity and C balance. The present study aimed to: (1) characterise the sensitivity of leaf phenological events to temperature, and (2) quantify the relative contributions of leaf unfolding and senescence to the extension of canopy duration with increasing temperature, in four deciduous tree species (Acer pseudoplatanus, Fagus sylvatica, Fraxinus excelsior and Quercus petraea). For 3 consecutive years, we monitored the spring and autumn phenology of 41 populations at elevations ranging from 100 to 1,600 m. Overall, we found significant altitudinal trends in leaf phenology and species-specific differences in temperature sensitivity. With increasing temperature, we recorded an advance in flushing from 1.9 +/- 0.3 to 6.6 +/- 0.4 days degrees C(-1) (mean +/- SD) and a 0 to 5.6 +/- 0.6 days degrees C(-1) delay in leaf senescence. Together both changes resulted in a 6.9 +/- 1.0 to 13.0 +/- 0.7 days degrees C(-1) lengthening of canopy duration depending on species. For three of the four studied species, advances in flushing were the main factor responsible for lengthening canopy duration with increasing temperature, leading to a potentially larger gain in solar radiation than delays in leaf senescence. In contrast, for beech, we found a higher sensitivity to temperature in leaf senescence than in flushing, resulting in an equivalent contribution in solar radiation gain. These results suggest that climate warming will alter the C uptake period and forest productivity by lengthening canopy duration. Moreover, the between-species differences in phenological responses to temperature evidenced here could affect

  3. X-ray computed microtomography characterizes the wound effect that causes sap flow underestimation by thermal dissipation sensors.

    PubMed

    Marañón-Jiménez, S; Van den Bulcke, J; Piayda, A; Van Acker, J; Cuntz, M; Rebmann, C; Steppe, K

    2018-02-01

    Insertion of thermal dissipation (TD) sap flow sensors in living tree stems causes damage of the wood tissue, as is the case with other invasive methods. The subsequent wound formation is one of the main causes of underestimation of tree water-use measured by TD sensors. However, the specific alterations in wood anatomy in response to inserted sensors have not yet been characterized, and the linked dysfunctions in xylem conductance and sensor accuracy are still unknown. In this study, we investigate the anatomical mechanisms prompting sap flow underestimation and the dynamic process of wound formation. Successive sets of TD sensors were installed in the early, mid and end stage of the growing season in diffuse- and ring-porous trees, Fagus sylvatica (Linnaeus) and Quercus petraea ((Mattuschka) Lieblein), respectively. The trees were cut in autumn and additional sensors were installed in the cut stem segments as controls without wound formation. The wounded area and volume surrounding each sensor was then visually determined by X-ray computed microtomography (X-ray microCT). This technique allowed the characterization of vessel anatomical transformations such as tyloses formation, their spatial distribution and quantification of reduction in conductive area. MicroCT scans showed considerable formation of tyloses that reduced the conductive area of vessels surrounding the inserted TD probes, thus causing an underestimation in sap flux density (SFD) in both beech and oak. Discolored wood tissue was ellipsoidal, larger in the radial plane, more extensive in beech than in oak, and also for sensors installed for longer times. However, the severity of anatomical transformations did not always follow this pattern. Increased wound size with time, for example, did not result in larger SFD underestimation. This information helps us to better understand the mechanisms involved in wound effects with TD sensors and allows the provision of practical recommendations to reduce

  4. An empirical study of the wound effect on sap flux density measured with thermal dissipation probes.

    PubMed

    Wiedemann, Andreas; Marañón-Jiménez, Sara; Rebmann, Corinna; Herbst, Mathias; Cuntz, Matthias

    2016-12-01

    The insertion of thermal dissipation (TD) sensors on tree stems for sap flux density (SFD) measurements can lead to SFD underestimations due to a wound formation close to the drill hole. However, the wound effect has not been assessed experimentally for this method yet. Here, we propose an empirical approach to investigate the effect of the wound healing on measured sap flux with TD probes. The approach was performed for both, diffuse-porous (Fagus sylvatica (Linnaeus)) and ring-porous (Quercus petraea (Lieblein)) species. Thermal dissipation probes were installed on different dates along the growing season to document the effects of the dynamic wound formation. The trees were cut in autumn and additional sensors were installed in the cut stems, therefore, without potential effects of wound development. A range of water pressures was applied to the stem segments and SFDs were simultaneously measured by TD sensors as well as gravimetrically in the laboratory. The formation of wounds around sensors installed in living tree stems led to underestimation of SFD by 21.4 ± 3 and 47.5 ± 3.8% in beech and oak, respectively. The differences between SFD underestimations of diffuse-porous beech and ring-porous oak were, however, not statistically significant. Sensors with 5-, 11- and 22-week-old wounds also showed no significant differences, which implies that the influence of wound formation on SFD estimates was completed within the first few weeks after perforation. These results were confirmed by time courses of SFD measurements in the field. Field SFD values decreased immediately after sensor installation and reached stable values after ~2 weeks with similar underestimations to the ones observed in the laboratory. We therefore propose a feasible approach to correct directly field observations of SFD for potential underestimations due to the wound effect. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e

  5. Unravelling spatiotemporal tree-ring signals in Mediterranean oaks: a variance-covariance modelling approach of carbon and oxygen isotope ratios.

    PubMed

    Shestakova, Tatiana A; Aguilera, Mònica; Ferrio, Juan Pedro; Gutiérrez, Emilia; Voltas, Jordi

    2014-08-01

    Identifying how physiological responses are structured across environmental gradients is critical to understanding in what manner ecological factors determine tree performance. Here, we investigated the spatiotemporal patterns of signal strength of carbon isotope discrimination (Δ(13)C) and oxygen isotope composition (δ(18)O) for three deciduous oaks (Quercus faginea (Lam.), Q. humilis Mill. and Q. petraea (Matt.) Liebl.) and one evergreen oak (Q. ilex L.) co-occurring in Mediterranean forests along an aridity gradient. We hypothesized that contrasting strategies in response to drought would lead to differential climate sensitivities between functional groups. Such differential sensitivities could result in a contrasting imprint on stable isotopes, depending on whether the spatial or temporal organization of tree-ring signals was analysed. To test these hypotheses, we proposed a mixed modelling framework to group isotopic records into potentially homogeneous subsets according to taxonomic or geographical criteria. To this end, carbon and oxygen isotopes were modelled through different variance-covariance structures for the variability among years (at the temporal level) or sites (at the spatial level). Signal-strength parameters were estimated from the outcome of selected models. We found striking differences between deciduous and evergreen oaks in the organization of their temporal and spatial signals. Therefore, the relationships with climate were examined independently for each functional group. While Q. ilex exhibited a large spatial dependence of isotopic signals on the temperature regime, deciduous oaks showed a greater dependence on precipitation, confirming their higher susceptibility to drought. Such contrasting responses to drought among oak types were also observed at the temporal level (interannual variability), with stronger associations with growing-season water availability in deciduous oaks. Thus, our results indicate that Mediterranean deciduous

  6. The interactive impact of root branch order and soil genetic horizon on root respiration and nitrogen concentration.

    PubMed

    Trocha, Lidia K; Bulaj, Bartosz; Kutczynska, Paulina; Mucha, Joanna; Rutkowski, Pawel; Zadworny, Marcin

    2017-08-01

    In general, respiration (RS) is highly correlated with nitrogen concentration (N) in plant organs, including roots, which exhibit a positive N-RS relationship. Less is known, however, about the relationship between N and RS in roots of different branch orders within an individual tree along a vertical soil profile; this is especially true in trees with contrasting life strategies, such as pioneer Scots pine (Pinus sylvestris L.) vs mid-successional sessile oak (Quercus petraea Liebl.). In the present research, the impact of root branch order, as represented by those with absorptive vs transporting ability, and soil genetic horizon on root N, RS and the N-RS relationship was examined. Mean RS and total N concentration differed significantly among root branch orders and was significantly higher in absorptive roots than in transporting roots. The soil genetic horizon differentially affected root RS in Scots pine vs sessile oak. The genetic horizon mostly affected RS in absorptive roots of Scots pine and transporting roots in sessile oak. Root N was the highest in absorptive roots and most affected by soil genetic horizon in both tree species. Root N was not correlated with soil N, although N levels were higher in roots growing in fertile soil genetic horizons. Overall, RS in different root branch orders was positively correlated with N in both species. The N-RS relationship in roots, pooled by soil genetic horizon, was significant in both species, but was only significant in sessile oak when roots were pooled by root branch order. In both tree species, a significant interaction was found between the soil genetic horizon and root branch order with root function; however, species-specific responses were found. Both root N, which was unaffected by soil N, and the positive N-RS relationship consistently observed in different genetic horizons suggest that root function prevails over environmental factors, such as soil genetic horizon. © The Author 2017. Published by

  7. Soil moisture in sessile oak forest gaps

    NASA Astrophysics Data System (ADS)

    Zagyvainé Kiss, Katalin Anita; Vastag, Viktor; Gribovszki, Zoltán; Kalicz, Péter

    2015-04-01

    By social demands are being promoted the aspects of the natural forest management. In forestry the concept of continuous forest has been an accepted principle also in Hungary since the last decades. The first step from even-aged stand to continuous forest can be the forest regeneration based on gap cutting, so small openings are formed in a forest due to forestry interventions. This new stand structure modifies the hydrological conditions for the regrowth. Without canopy and due to the decreasing amounts of forest litter the interception is less significant so higher amount of precipitation reaching the soil. This research focuses on soil moisture patterns caused by gaps. The spatio-temporal variability of soil water content is measured in gaps and in surrounding sessile oak (Quercus petraea) forest stand. Soil moisture was determined with manual soil moisture meter which use Time-Domain Reflectometry (TDR) technology. The three different sizes gaps (G1: 10m, G2: 20m, G3: 30m) was opened next to Sopron on the Dalos Hill in Hungary. First, it was determined that there is difference in soil moisture between forest stand and gaps. Second, it was defined that how the gap size influences the soil moisture content. To explore the short term variability of soil moisture, two 24-hour (in growing season) and a 48-hour (in dormant season) field campaign were also performed in case of the medium-sized G2 gap along two/four transects. Subdaily changes of soil moisture were performed. The measured soil moisture pattern was compared with the radiation pattern. It was found that the non-illuminated areas were wetter and in the dormant season the subdaily changes cease. According to our measurements, in the gap there is more available water than under the forest stand due to the less evaporation and interception loss. Acknowledgements: The research was supported by TÁMOP-4.2.2.A-11/1/KONV-2012-0004 and AGRARKLIMA.2 VKSZ_12-1-2013-0034.

  8. Drivers of radial growth and carbon isotope discrimination of bur oak (Quercus macrocarpa Michx.) across continental gradients in precipitation, vapour pressure deficit and irradiance.

    PubMed

    Voelker, Steven L; Meinzer, Frederick C; Lachenbruch, Barbara; Brooks, J Renée; Guyette, Richard P

    2014-03-01

    Tree-ring characteristics are commonly used to reconstruct climate variables, but divergence from the assumption of a single biophysical control may reduce the accuracy of these reconstructions. Here, we present data from bur oaks (Quercus macrocarpa Michx.) sampled within and beyond the current species bioclimatic envelope to identify the primary environmental controls on ring-width indices (RWIs) and carbon stable isotope discrimination (Δ(13) C) in tree-ring cellulose. Variation in Δ(13) C and RWI was more strongly related to leaf-to-air vapour pressure deficit (VPD) at the centre and western edge of the range compared with the northern and wettest regions. Among regions, Δ(13) C of tree-ring cellulose was closely predicted by VPD and light responses of canopy-level Δ(13) C estimated using a model driven by eddy flux and meteorological measurements (R(2)  = 0.96, P = 0.003). RWI and Δ(13) C were positively correlated in the drier regions, while they were negatively correlated in the wettest region. The strength and direction of the correlations scaled with regional VPD or the ratio of precipitation to evapotranspiration. Therefore, the correlation strength between RWI and Δ(13) C may be used to infer past wetness or aridity from paleo wood by determining the degree to which carbon gain and growth have been more limited by moisture or light. © 2013 John Wiley & Sons Ltd.

  9. Gene movement and genetic association with regional climate gradients in California valley oak (Quercus lobata Née) in the face of climate change

    USGS Publications Warehouse

    Sork, Victoria L.; Davis, Frank W.; Westfall, Robert; Flint, Alan L.; Ikegami, Makihiko; Wang, Hongfang; Grivet, Delphine

    2010-01-01

    Rapid climate change jeopardizes tree populations by shifting current climate zones. To avoid extinction, tree populations must tolerate, adapt, or migrate. Here we investigate geographic patterns of genetic variation in valley oak, Quercus lobata N??e, to assess how underlying genetic structure of populations might influence this species' ability to survive climate change. First, to understand how genetic lineages shape spatial genetic patterns, we examine historical patterns of colonization. Second, we examine the correlation between multivariate nuclear genetic variation and climatic variation. Third, to illustrate how geographic genetic variation could interact with regional patterns of 21st Century climate change, we produce region-specific bioclimatic distributions of valley oak using Maximum Entropy (MAXENT) models based on downscaled historical (1971-2000) and future (2070-2100) climate grids. Future climatologies are based on a moderate-high (A2) carbon emission scenario and two different global climate models. Chloroplast markers indicate historical range-wide connectivity via colonization, especially in the north. Multivariate nuclear genotypes show a strong association with climate variation that provides opportunity for local adaptation to the conditions within their climatic envelope. Comparison of regional current and projected patterns of climate suitability indicates that valley oaks grow in distinctly different climate conditions in different parts of their range. Our models predict widely different regional outcomes from local displacement of a few kilometres to hundreds of kilometres. We conclude that the relative importance of migration, adaptation, and tolerance are likely to vary widely for populations among regions, and that late 21st Century conditions could lead to regional extinctions. ?? 2010 Blackwell Publishing Ltd.

  10. Effects of growth irradiance, nitrogen nutrition and watering regime on photosynthesis, leaf conductance and isoprene emission in leaves of Post Oak, Quercus stellata

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harley, P.; Archer, S.; Guenther, A.

    1994-06-01

    Seedlings of Post Oak (Quercus stellata), the dominant woody species of oak savannas of east-central Texas, were grown outside in College Station, TX from April to November 1993. Plants were randomly placed in one cell of a 3 [times] 2 [times] 2 factorial experiment, employing 3 nitrogen fertilization (25, 100 and 225 ppm NH[sub 4]NO[sub 23]), 2 light levels (70% and 20% of full sun) and 2 watering regimes (to maintain 80-100% or 30-50% of field capacity). In November, net photosynthesis, leaf conductance and leaf isoprene emission rates at 30[degrees]C and PPFD=1000 [mu]mol m[sup [minus]2]s[sup [minus]1] were determined for twomore » mature leaves on each of four plants from eight growth treatments and data were analyzed stastically. For plants grown under the lower watering regime, photosynthesis and isoprene emission increased with both increasing PPFD and nitrogen (effects significant at p<0.01). For plants grown at 70% full sun, effects of nitrogen treatment on photosynthesis, conductance and isoprene emission were significant (p<0.0001) while effects of watering treatment were not significant (p<0.2). Although watering treatment did not lead to significant differences between treatments, in a short-term drying experiment conducted on four plants, isoprene emissions increased through the drying period in previously well-watered plants, but decreased in previously droughted plants. Measurements were also made on two leaves to determine the effects of varying PPFD and temperature on rates of isoprene emission.« less

  11. Seasonal changes in photosynthesis and photoprotection in a Quercus ilex subsp. ballota woodland located in its upper altitudinal extreme in the Iberian Peninsula.

    PubMed

    Corcuera, L; Morales, F; Abadía, A; Gil-Pelegrín, E

    2005-05-01

    Quercus ilex L. subsp. ballota (Desf.) Samp., a Mediterranean evergreen species growing in a continental Mediterranean climate, did not experience water stress and showed greater sensitivity to winter stress than to summer stress over a 12-month period. Net CO2 assimilation rates and photosystem II (PSII) efficiency decreased markedly during the cold months and recovered completely in spring. Lutein, neoxanthin and beta-carotene to chlorophyll (Chl) molar ratios all showed the same trend throughout the year, increasing from September to March. This increase was a result of increases in carotenoid concentrations, because Chl concentration per unit leaf area remained stable, and was higher at the end than at the beginning of the first growing season. Lutein-epoxide was a minor component of the total lutein pool. Thermal energy dissipation and non-photochemical quenching (NPQ) were associated with the de-epoxidated forms of the xanthophyll cycle pigments in the warm months. Photosynthetic rates decreased slightly at midday in summer. These changes were accompanied by decreases in maximum potential PSII efficiency (which recovered during the night), actual and intrinsic PSII efficiencies, photochemical quenching and increases in NPQ. Overall, our data indicate down-regulation of photosynthesis during the summer. The diurnal de-epoxidation of violaxanthin to antheraxanthin and zeaxanthin occurred throughout the year, except in January. Antioxidant enzymatic activity increased in the winter months, especially during the coldest months, highlighting its key role in photoprotection against photo-oxidation. Structural and functional modifications protected PSII from permanent damage and allowed 1-year-old leaves to photosynthesize at high rates when temperatures increased in spring.

  12. Gene movement and genetic association with regional climate gradients in California valley oak (Quercus lobata Née) in the face of climate change.

    PubMed

    Sork, Victoria L; Davis, Frank W; Westfall, Robert; Flint, Alan; Ikegami, Makihiko; Wang, Hongfang; Grivet, Delphine

    2010-09-01

    Rapid climate change jeopardizes tree populations by shifting current climate zones. To avoid extinction, tree populations must tolerate, adapt, or migrate. Here we investigate geographic patterns of genetic variation in valley oak, Quercus lobata Née, to assess how underlying genetic structure of populations might influence this species' ability to survive climate change. First, to understand how genetic lineages shape spatial genetic patterns, we examine historical patterns of colonization. Second, we examine the correlation between multivariate nuclear genetic variation and climatic variation. Third, to illustrate how geographic genetic variation could interact with regional patterns of 21st Century climate change, we produce region-specific bioclimatic distributions of valley oak using Maximum Entropy (MAXENT) models based on downscaled historical (1971-2000) and future (2070-2100) climate grids. Future climatologies are based on a moderate-high (A2) carbon emission scenario and two different global climate models. Chloroplast markers indicate historical range-wide connectivity via colonization, especially in the north. Multivariate nuclear genotypes show a strong association with climate variation that provides opportunity for local adaptation to the conditions within their climatic envelope. Comparison of regional current and projected patterns of climate suitability indicates that valley oaks grow in distinctly different climate conditions in different parts of their range. Our models predict widely different regional outcomes from local displacement of a few kilometres to hundreds of kilometres. We conclude that the relative importance of migration, adaptation, and tolerance are likely to vary widely for populations among regions, and that late 21st Century conditions could lead to regional extinctions.

  13. Evolutionary trade-offs between drought resistance mechanisms across a precipitation gradient in a seasonally dry tropical oak (Quercus oleoides).

    PubMed

    Ramírez-Valiente, Jose A; Cavender-Bares, Jeannine

    2017-07-01

    In seasonally dry tropical forest regions, drought avoidance during the dry season coupled with high assimilation rates in the wet season is hypothesized to be an advantageous strategy for forest trees in regions with severe and long dry seasons. In contrast, where dry seasons are milder, drought tolerance coupled with a conservative resource-use strategy is expected to maximize carbon assimilation throughout the year. Tests of this hypothesis, particularly at the intraspecific level, have been seldom conducted. In this study, we tested the extent to which drought resistance mechanisms and rates of carbon assimilation have evolved under climates with varying dry season length and severity within Quercus oleoidesCham. and Schlect., a tropical dry forest species that is widely distributed in Central America. For this purpose, we conducted a greenhouse experiment where seedlings originating from five populations that vary in rainfall patterns were grown under different watering treatments. Our results revealed that populations from xeric climates with more severe dry seasons exhibited large mesophyllous leaves (with high specific leaf area, SLA), and leaf abscission in response to drought, consistent with a drought-avoidance strategy. In contrast, populations from more mesic climates with less severe dry seasons had small and thick sclerophyllous leaves with low SLA and reduced water potential at the turgor loss point (πtlp), consistent with a drought-tolerance strategy. Mesic populations also showed high plasticity in πtlp in response to water availability, indicating that osmotic adjustment to drought is an important component of this strategy. However, populations with mesophyllous leaves did not have higher maximum carbon assimilation rates under well-watered conditions. Furthermore, SLA was negatively associated with mass-based photosynthetic rates, contrary to expectations of the leaf economics spectrum, indicating that drought-resistance strategies are not

  14. How drought severity constrains gross primary production(GPP) and its partitioning among carbon pools in a Quercus ilex coppice?

    NASA Astrophysics Data System (ADS)

    Rambal, S.; Lempereur, M.; Limousin, J. M.; Martin-StPaul, N. K.; Ourcival, J. M.; Rodríguez-Calcerrada, J.

    2014-12-01

    The partitioning of photosynthates toward biomass compartments plays a crucial role in the carbon (C) sink function of forests. Few studies have examined how carbon is allocated toward plant compartments in drought-prone forests. We analyzed the fate of gross primary production (GPP) in relation to yearly water deficit in an old evergreen Mediterranean Quercus ilex coppice severely affected by water limitations. Carbon fluxes between the ecosystem and the atmosphere were measured with an eddy covariance flux tower running continuously since 2001. Discrete measurements of litterfall, stem growth and fAPAR allowed us to derive annual productions of leaves, wood, flowers and acorns, and an isometric relationship between stem and belowground biomass has been used to estimate perennial belowground growth. By combining eddy covariance fluxes with annual net primary productions (NPP), we managed to close a C budget and derive values of autotrophic, heterotrophic respirations and carbon-use efficiency (CUE; the ratio between NPP and GPP). Average values of yearly net ecosystem production (NEP), GPP and Reco were 282, 1259 and 977 g C m-2. The corresponding aboveground net primary production (ANPP) components were 142.5, 26.4 and 69.6 g C m-2 for leaves, reproductive effort (flowers and fruits) and stems, respectively. NEP, GPP and Reco were affected by annual water deficit. Partitioning to the different plant compartments was also impacted by drought, with a hierarchy of responses going from the most affected - the stem growth - to the least affected - the leaf production. The average CUE was 0.40, which is well in the range for Mediterranean-type forest ecosystems. CUE tended to decrease less drastically in response to drought than GPP and NPP did, probably due to drought acclimation of autotrophic respiration. Overall, our results provide a baseline for modeling the inter-annual variations of carbon fluxes and allocation in this widespread Mediterranean ecosystem, and

  15. A flux-based assessment of above and below ground biomass of Holm oak (Quercus ilex L.) seedlings after one season of exposure to high ozone concentrations

    NASA Astrophysics Data System (ADS)

    Gerosa, Giacomo; Fusaro, Lina; Monga, Robert; Finco, Angelo; Fares, Silvano; Manes, Fausto; Marzuoli, Riccardo

    2015-07-01

    Young plants of Holm oak (Quercus ilex) were exposed in non-limiting water conditions to four different levels of ozone (O3) concentrations in Open-Top Chambers during one growing season to evaluate biomass losses on roots, stems and leaves in relation to O3 exposure (AOT40) and phytotoxical ozone dose (POD1) absorbed. The exposure-effect and dose-effect relationships for the total biomass were statistically significant and indicated a reduction of 4% and 5.2% of the total biomass for each increase step of 10000 ppb h of AOT40 and 10 mmol m-2 of POD1, respectively. The results indicate a critical level for Holm oak protection of 7 mmol m-2 of POD1, which corresponds to 4% of total biomass reduction. The linear regressions based on the POD1 were significant for roots and stem biomass losses, but not significant for leaf biomass. The biomass loss rate at increasing POD1 was higher for roots than for stems and leaves, suggesting that stem growth under high levels of O3 is less affected than root growth. Because of the scarcity of data from the Mediterranean area, these results can be relevant for the O3 risk assessment models and for the definition of new O3 critical levels for forests in Europe.

  16. Correlated responses of root growth and sugar concentrations to various defoliation treatments and rhythmic shoot growth in oak tree seedlings (Quercus pubescens)

    PubMed Central

    Willaume, Magali; Pagès, Loïc

    2011-01-01

    Background and Aims To understand whether root responses to aerial rhythmic growth and contrasted defoliation treatments can be interpreted under the common frame of carbohydrate availability; root growth was studied in parallel with carbohydrate concentrations in different parts of the root system on oak tree seedlings. Methods Quercus pubescens seedlings were submitted to selective defoliation (removal of mature leaves, cotyledons or young developing leaves) at appearance of the second flush and collected 1, 5 or 10 d later for morphological and biochemical measurements. Soluble sugar and starch concentrations were measured in cotyledons and apical and basal root parts. Key Results Soluble sugar concentration in the root apices diminished during the expansion of the second aerial flush and increased after the end of aerial growth in control seedlings. Starch concentration in cotyledons regularly decreased. Continuous removal of young leaves did not alter either root growth or apical sugar concentration. Starch storage in basal root segments was increased. After removal of mature leaves (and cotyledons), root growth strongly decreased. Soluble sugar concentration in the root apices drastically decreased and starch reserves in the root basal segments were emptied 5 d after defoliation, illustrating a considerable shortage in carbohydrates. Soluble sugar concentrations recovered 10 d after defoliation, after the end of aerial growth, suggesting a recirculation of sugar. No supplementary recourse to starch in cotyledons was observed. Conclusions The parallel between apical sugar concentration and root growth patterns, and the correlations between hexose concentration in root apices and their growth rate, support the hypothesis that the response of root growth to aerial periodic growth and defoliation treatments is largely controlled by carbohydrate availability. PMID:21239407

  17. [Effects of forest gap size on the architecture of Quercus variablis seedlings on the south slope of Qinling Mountains, west China].

    PubMed

    Yu, Bi-yun; Zhang, Wen-hui; He, Ting; You, Jian-jian; Li, Gang

    2014-12-01

    Typical sampling method was conducted to survey the effects of forest gap size on branch architecture, leaf characteristics and their vertical distribution of Quercus variablis seedlings from different size gaps in natural secondary Q. variablis thinning forest, on the south slope of Qinling Mountains. The results showed that gap size significantly affected the diameter, crown area of Q. variablis seedlings. The gap size positively correlated with diameter and negatively correlated with crown area, while it had no significant impact on seedling height, crown length and crown rates. The overall bifurcation ratio, stepwise bifurcation ratio, and ratio of branch diameter followed as large gap > middle gap > small gap > understory. The vertical distribution of first-order branches under different size gaps mainly concentrated at the middle and upper part of trunk, larger diameter first-order branches were mainly distributed at the lower part of trunk, and the angle of first-order branch increased at first and then declined with the increasing seedling height. With the increasing forest gap size, the leaf length, leaf width and average leaf area of seedlings all gradually declined, while the average leaf number per plant and relative total leaf number increased, the leaf length-width ratio kept stable, the relative leaf number was mainly distributed at the middle and upper parts of trunk, the changes of leaf area index was consistent with the change of the relative total number of leaves. There was no significant difference between the diameters of middle gap and large gap seedlings, but the diameter of middle gap seedlings was higher than that of large gap, suggesting the middle gap would benefit the seedlings regeneration and high-quality timber cultivation. To promote the regeneration of Q. variabilis seedlings, and to cultivate high-quality timber, appropriate thinning should be taken to increase the number of middle gaps in the management of Q. variabilis forest.

  18. Change in the Green-Up Dates for Quercus mongolica in Northeast China and Its Climate-Driven Mechanism from 1962 to 2012.

    PubMed

    Fan, Deqin; Zhu, Wenquan; Zheng, Zhoutao; Zhang, Donghai; Pan, Yaozhong; Jiang, Nan; Zhou, Xiafei

    2015-01-01

    The currently available studies on the green-up date were mainly based on ground observations and/or satellite data, and few model simulations integrated with wide coverage satellite data have been reported at large scale over a long time period (i.e., > 30 years). In this study, we combined phenology mechanism model, long-term climate data and synoptic scale remote sensing data to investigate the change in the green-up dates for Quercus mongolica over 33 weather stations in Northeast China and its climate-driven mechanism during 1962-2012. The results indicated that the unified phenology model can be well parameterized with the satellite derived green-up dates. The optimal daily mean temperature for chilling effect was between -27°C and 1°C for Q. mongolica in Northeast China, while the optimal daily mean temperature for forcing effect was above -3°C. The green-up dates for Q. mongolica across Northeast China showed a delayed latitudinal gradient of 2.699 days degree-1, with the earliest date on the Julian day 93 (i.e., 3th April) in the south and the latest date on the Julian day 129 (i.e., 9th May) in the north. The green-up date for Q. mongolica in Northeast China has advanced 6.6 days (1.3 days decade-1) from 1962 to 2012. With the prevailing warming in autumn, winter and spring in Northeast China during the past 51 years, the chilling effect for Q. mongolica has been weakened, while the forcing effect has been enhanced. The advancing trend in the green-up dates for Q. mongolica implied that the enhanced forcing effect to accelerate green-up was stronger than the weakened chilling effect to hold back green-up while the changes of both effects were caused by the warming climate.

  19. Efficacy of a local-drug delivery gel containing extracts of Quercus brantii and Coriandrum sativum as an adjunct to scaling and root planing in moderate chronic periodontitis patients

    PubMed Central

    Yaghini, Jaber; Shahabooei, Mohammad; Aslani, Abolfazl; Zadeh, Mozhgan Reza; Kiani, Sima; Naghsh, Narges

    2014-01-01

    Objective: Recent advances in the field of alternative medicine introduced various herbal products for the treatment of periodontitis. The purpose of this study was to evaluate the effects of combined extracts from Quercus brantii and Coriandrum sativum on periodontal indices in adult periodontitis patients. Methods: In this randomized, double-blinded clinical trial, performed in Isfahan Dental School in 2012, a new herbal medicament containing combined extracts from Q. brantii and C. sativum was formulated in the gel form for subgingival application. Following scaling and root planing (SRP), both herbal and placebo gels were delivered at the experimental and control sites, respectively. Periodontal pocket depth, clinical attachment level, papilla bleeding index, and plaque index were measured at baseline, 1 month and 3 months later. Both intra-and inter-groups changes were registered. The obtained data were analyzed by SPSS software, using repeated measure analysis of variance, paired t-test, Mann-Whitney, Friedman, and Wilcoxon tests. Differences with P < 0.05 were considered to be significant. Findings: Both groups indicated statistically significant improvements in the periodontal indices (P < 0.05), but there were no significant differences between two study groups with this regard. Conclusion: The herbal gel does not have considerable advantages over SRP alone as an adjunct in periodontal treatment. PMID:25114940

  20. Identification of genes differentially expressed in ectomycorrhizal roots during the Pinus pinaster-Laccaria bicolor interaction.

    PubMed

    Flores-Monterroso, Aranzazu; Canales, Javier; de la Torre, Fernando; Ávila, Concepción; Cánovas, Francisco M

    2013-06-01

    Ectomycorrhizal associations are of major ecological importance in temperate and boreal forests. The development of a functional ectomycorrhiza requires many genetic and biochemical changes. In this study, suppressive subtraction hybridization was used to identify differentially expressed genes in the roots of maritime pine (Pinus pinaster Aiton) inoculated with Laccaria bicolor, a mycorrhizal fungus. A total number of 200 unigenes were identified as being differentially regulated in maritime pine roots during the development of mycorrhiza. These unigenes were classified into 10 categories according to the function of their homologues in the GenBank database. Approximately, 40 % of the differentially expressed transcripts were genes that coded for unknown proteins in the databases or that had no homology to known genes. A group of these differentially expressed genes was selected to validate the results using quantitative real-time PCR. The transcript levels of the representative genes were compared between the non-inoculated and inoculated plants at 1, 5, 15 and 30 days after inoculation. The observed expression patterns indicate (1) changes in the composition of the wall cell, (2) tight regulation of defence genes during the development of mycorrhiza and (3) changes in carbon and nitrogen metabolism. Ammonium excess or deficiency dramatically affected the stability of ectomycorrhiza and altered gene expression in maritime pine roots.