Sample records for quinone

  1. Quinone Reductase 2 Is a Catechol Quinone Reductase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fu, Yue; Buryanovskyy, Leonid; Zhang, Zhongtao

    2008-09-05

    The functions of quinone reductase 2 have eluded researchers for decades even though a genetic polymorphism is associated with various neurological disorders. Employing enzymatic studies using adrenochrome as a substrate, we show that quinone reductase 2 is specific for the reduction of adrenochrome, whereas quinone reductase 1 shows no activity. We also solved the crystal structure of quinone reductase 2 in complexes with dopamine and adrenochrome, two compounds that are structurally related to catecholamine quinones. Detailed structural analyses delineate the mechanism of quinone reductase 2 specificity toward catechol quinones in comparison with quinone reductase 1; a side-chain rotational difference betweenmore » quinone reductase 1 and quinone reductase 2 of a single residue, phenylalanine 106, determines the specificity of enzymatic activities. These results infer functional differences between two homologous enzymes and indicate that quinone reductase 2 could play important roles in the regulation of catecholamine oxidation processes that may be involved in the etiology of Parkinson disease.« less

  2. Quinone-Catalyzed Selective Oxidation of Organic Molecules

    PubMed Central

    Wendlandt, Alison E.

    2016-01-01

    Lead In Quinones are common stoichiometric reagents in organic chemistry. High potential para-quinones, such as DDQ and chloranil, are widely used and typically promote hydride abstraction. In recent years, many catalytic applications of these methods have been achieved by using transition metals, electrochemistry or O2 to regenerate the oxidized quinone in situ. Complementary studies have led to the development of a different class of quinones that resemble the ortho-quinone cofactors in Copper Amine Oxidases and mediate efficient and selective aerobic and/or electrochemical dehydrogenation of amines. The latter reactions typically proceed via electrophilic transamination and/or addition-elimination reaction mechanisms, rather than hydride abstraction pathways. The collective observations show that the quinone structure has a significant influence on the reaction mechanism and have important implications for the development of new quinone reagents and quinone-catalyzed transformations. PMID:26530485

  3. QUINONE METHIDES IN LIGNIFICATION

    USDA-ARS?s Scientific Manuscript database

    Quinone methides play an important role in lignification. They are produced directly, as intermediates, when lignin monomers, be they hydroxycinnamyl alcohols, hydroxycinnamaldehydes, or hydroxycinnamates, couple or cross-couple at their 8-positions. A variety of post-coupling quinone methide rearom...

  4. NMR Reveals Double Occupancy of Quinone-type Ligands in the Catalytic Quinone Binding Site of the Na+-translocating NADH:Quinone Oxidoreductase from Vibrio cholerae*

    PubMed Central

    Nedielkov, Ruslan; Steffen, Wojtek; Steuber, Julia; Möller, Heiko M.

    2013-01-01

    The sodium ion-translocating NADH:quinone oxidoreductase (Na+-NQR) from the pathogen Vibrio cholerae exploits the free energy liberated during oxidation of NADH with ubiquinone to pump sodium ions across the cytoplasmic membrane. The Na+-NQR consists of four membrane-bound subunits NqrBCDE and the peripheral NqrF and NqrA subunits. NqrA binds ubiquinone-8 as well as quinones with shorter prenyl chains (ubiquinone-1 and ubiquinone-2). Here we show that the quinone derivative 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone (DBMIB), a known inhibitor of the bc1 and b6f complexes found in mitochondria and chloroplasts, also inhibits quinone reduction by the Na+-NQR in a mixed inhibition mode. Tryptophan fluorescence quenching and saturation transfer difference NMR experiments in the presence of Na+-NQR inhibitor (DBMIB or 2-n-heptyl-4-hydroxyquinoline N-oxide) indicate that two quinone analog ligands are bound simultaneously by the NqrA subunit with very similar interaction constants as observed with the holoenzyme complex. We conclude that the catalytic site of quinone reduction is located on NqrA. The two ligands bind to an extended binding pocket in direct vicinity to each other as demonstrated by interligand Overhauser effects between ubiquinone-1 and DBMIB or 2-n-heptyl-4-hydroxyquinoline N-oxide, respectively. We propose that a similar spatially close arrangement of the native quinone substrates is also operational in vivo, enhancing the catalytic efficiency during the final electron transfer steps in the Na+-NQR. PMID:24003222

  5. Quinone-induced protein handling changes: Implications for major protein handling systems in quinone-mediated toxicity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiong, Rui; Siegel, David; Ross, David, E-mail: david.ross@ucdenver.edu

    2014-10-15

    Para-quinones such as 1,4-Benzoquinone (BQ) and menadione (MD) and ortho-quinones including the oxidation products of catecholamines, are derived from xenobiotics as well as endogenous molecules. The effects of quinones on major protein handling systems in cells; the 20/26S proteasome, the ER stress response, autophagy, chaperone proteins and aggresome formation, have not been investigated in a systematic manner. Both BQ and aminochrome (AC) inhibited proteasomal activity and activated the ER stress response and autophagy in rat dopaminergic N27 cells. AC also induced aggresome formation while MD had little effect on any protein handling systems in N27 cells. The effect of NQO1more » on quinone induced protein handling changes and toxicity was examined using N27 cells stably transfected with NQO1 to generate an isogenic NQO1-overexpressing line. NQO1 protected against BQ–induced apoptosis but led to a potentiation of AC- and MD-induced apoptosis. Modulation of quinone-induced apoptosis in N27 and NQO1-overexpressing cells correlated only with changes in the ER stress response and not with changes in other protein handling systems. These data suggested that NQO1 modulated the ER stress response to potentiate toxicity of AC and MD, but protected against BQ toxicity. We further demonstrated that NQO1 mediated reduction to unstable hydroquinones and subsequent redox cycling was important for the activation of the ER stress response and toxicity for both AC and MD. In summary, our data demonstrate that quinone-specific changes in protein handling are evident in N27 cells and the induction of the ER stress response is associated with quinone-mediated toxicity. - Highlights: • Unstable hydroquinones contributed to quinone-induced ER stress and toxicity.« less

  6. Synthetic Strategies to Terpene Quinones/Hydroquinones

    PubMed Central

    Gordaliza, Marina

    2012-01-01

    The cytotoxic and antiproliferative properties of many natural sesquiterpene-quinones and -hydroquinones from sponges offer promising opportunities for the development of new drugs. A review dealing with different strategies for obtaining bioactive terpenyl quinones/hydroquinones is presented. The different synthetic approches for the preparation of the most relevant quinones/hydroquinones are described. PMID:22412807

  7. Quinone

    Integrated Risk Information System (IRIS)

    Quinone ; CASRN 106 - 51 - 4 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Effects )

  8. A copper-induced quinone degradation pathway provides protection against combined copper/quinone stress in Lactococcus lactis IL1403.

    PubMed

    Mancini, Stefano; Abicht, Helge K; Gonskikh, Yulia; Solioz, Marc

    2015-02-01

    Quinones are ubiquitous in the environment. They occur naturally but are also in widespread use in human and industrial activities. Quinones alone are relatively benign to bacteria, but in combination with copper, they become toxic by a mechanism that leads to intracellular thiol depletion. Here, it was shown that the yahCD-yaiAB operon of Lactococcus lactis IL1403 provides resistance to combined copper/quinone stress. The operon is under the control of CopR, which also regulates expression of the copRZA copper resistance operon as well as other L. lactis genes. Expression of the yahCD-yaiAB operon is induced by copper but not by quinones. Two of the proteins encoded by the operon appear to play key roles in alleviating quinone/copper stress: YaiB is a flavoprotein that converts p-benzoquinones to less toxic hydroquinones, using reduced nicotinamide adenine dinucleotide phosphate (NADPH) as reductant; YaiA is a hydroquinone dioxygenase that converts hydroquinone putatively to 4-hydroxymuconic semialdehyde in an oxygen-consuming reaction. Hydroquinone and methylhydroquinone are both substrates of YaiA. Deletion of yaiB causes increased sensitivity of L. lactis to quinones and complete growth arrest under combined quinone and copper stress. Copper induction of the yahCD-yaiAB operon offers protection to copper/quinone toxicity and could provide a growth advantage to L. lactis in some environments. © 2014 John Wiley & Sons Ltd.

  9. Hurdles to organic quinone flow cells. Electrode passivation by quinone reduction in acetonitrile Li electrolytes

    NASA Astrophysics Data System (ADS)

    Rueda-García, D.; Dubal, D. P.; Huguenin, F.; Gómez-Romero, P.

    2017-05-01

    The uses of quinones in Redox Flow Batteries (RFBs) has been mainly circumscribed to aqueous solutions (of derivatives with polar groups) despite a larger solubility and wider electrochemical window provided by organic media. The redox mechanism of quinones in protic media is simpler and better known than in aprotic media, where radical species are involved. This paper reports the behaviour of methyl-p-benzoquinone (MBQ) under electrochemical reduction conditions in a LiClO4sbnd CH3CN electrolyte and various working electrodes. We detected the reversible generation of a bright green coating on the working electrode and the subsequent formation of a polymer (the nature of which depends on the presence or absence of oxygen). These coatings prevent the regular redox process of methyl-p-benzoquinone from taking place on the surface of the electrode and is generated regardless of the electrode material used or the presence of O2 in solution. In addition to MBQ, the green passivating layer was also found for less sterically hindered quinones such as p-benzoquinone or 1,4-naphthoquinone, but not for anthraquinone. We have also shown the central role of Li+ in the formation of this green layer. This work provides important guidelines for the final use of quinones in RFBs with organic electrolytes.

  10. Role of chlorogenic acid quinone and interaction of chlorogenic acid quinone and catechins in the enzymatic browning of apple.

    PubMed

    Amaki, Kanako; Saito, Eri; Taniguchi, Kumiko; Joshita, Keiko; Murata, Masatsune

    2011-01-01

    Chlorogenic acid (CQA) is one of the major polyphenols in apple and a good substrate for the polyphenol oxidase (PPO) in apple. Apple contains catechins as well as CQA, and the role of CQA quinone and its interaction with catechins in the enzymatic browning of apple were examined. Browning was repressed and 2-cysteinyl-CQA was formed when cysteine was added to apple juice. CQA quinone was essential for browning to occur. Although catechins and CQA were oxidized by PPO, some catechins seemed to be non-enzymatically oxidized by CQA quinone.

  11. Quinone Photoreactivity: An Undergraduate Experiment in Photochemistry

    ERIC Educational Resources Information Center

    Vaughan, Pamela P.; Cochran, Michael; Haubrich, Nicole

    2010-01-01

    An experiment exploring the photochemical properties of quinones was developed. Their unique photochemistry and highly reactive nature make them an ideal class of compounds for examining structure-activity relationships. For several substituted quinones, photochemical reactivity was related to structure and ultimately to the Gibbs energy for…

  12. Formation and Biological Targets of Quinones: Cytotoxic versus Cytoprotective Effects

    PubMed Central

    2016-01-01

    Quinones represent a class of toxicological intermediates, which can create a variety of hazardous effects in vivo including, acute cytotoxicity, immunotoxicity, and carcinogenesis. In contrast, quinones can induce cytoprotection through the induction of detoxification enzymes, anti-inflammatory activities, and modification of redox status. The mechanisms by which quinones cause these effects can be quite complex. The various biological targets of quinones depend on their rate and site of formation and their reactivity. Quinones are formed through a variety of mechanisms from simple oxidation of catechols/hydroquinones catalyzed by a variety of oxidative enzymes and metal ions to more complex mechanisms involving initial P450-catalyzed hydroxylation reactions followed by two-electron oxidation. Quinones are Michael acceptors, and modification of cellular processes could occur through alkylation of crucial cellular proteins and/or DNA. Alternatively, quinones are highly redox active molecules which can redox cycle with their semiquinone radical anions leading to the formation of reactive oxygen species (ROS) including superoxide, hydrogen peroxide, and ultimately the hydroxyl radical. Production of ROS can alter redox balance within cells through the formation of oxidized cellular macromolecules including lipids, proteins, and DNA. This perspective explores the varied biological targets of quinones including GSH, NADPH, protein sulfhydryls [heat shock proteins, P450s, cyclooxygenase-2 (COX-2), glutathione S-transferase (GST), NAD(P)H:quinone oxidoreductase 1, (NQO1), kelch-like ECH-associated protein 1 (Keap1), IκB kinase (IKK), and arylhydrocarbon receptor (AhR)], and DNA. The evidence strongly suggests that the numerous mechanisms of quinone modulations (i.e., alkylation versus oxidative stress) can be correlated with the known pathology/cytoprotection of the parent compound(s) that is best described by an inverse U-shaped dose–response curve. PMID:27617882

  13. Isoprenoid quinones of the genus Legionella.

    PubMed Central

    Karr, D E; Bibb, W F; Moss, C W

    1982-01-01

    Representative strains of each of the named species of Legionella were examined for isoprenoid quinones by reverse-phase thin-layer chromatography. All strains contained three or more ubiquinones (Q9, Q10, Q11, Q12, Q13) which were useful for placing the species into one of three distinct groups. Group 1 contained L. longbeachae, L. bozemanii, L. dumoffi, and L. gormanii; group 2 contained only L. micdadei; and group 3 contained only L. pneumophila. The identities of the quinones were established by UV spectroscopy and mass spectrometry. PMID:7107837

  14. Profiling quinones in ambient air samples collected from the Athabasca region (Canada).

    PubMed

    Wnorowski, Andrzej; Charland, Jean-Pierre

    2017-12-01

    This paper presents new findings on polycyclic aromatic hydrocarbon oxidation products-quinones that were collected in ambient air samples in the proximity of oil sands exploration. Quinones were characterized for their diurnal concentration variability, phase partitioning, and molecular size distribution. Gas-phase (GP) and particle-phase (PM) ambient air samples were collected separately in the summer; a lower quinone content was observed in the PM samples from continuous 24-h sampling than from combined 12-h sampling (day and night). The daytime/nocturnal samples demonstrated that nighttime conditions led to lower concentrations and some quinones not being detected. The highest quinone levels were associated with wind directions originating from oil sands exploration sites. The statistical correlation with primary pollutants directly emitted from oil sands industrial activities indicated that the bulk of the detected quinones did not originate directly from primary emission sources and that quinone formation paralleled a reduction in primary source NO x levels. This suggests a secondary chemical transformation of primary pollutants as the origin of the determined quinones. Measurements of 19 quinones included five that have not previously been reported in ambient air or in Standard Reference Material 1649a/1649b and seven that have not been previously measured in ambient air in the underivatized form. This is the first paper to report on quinone characterization in secondary organic aerosols originating from oil sands activities, to distinguish chrysenequinone and anthraquinone positional isomers in ambient air, and to report the requirement of daylight conditions for benzo[a]pyrenequinone and naphthacenequinone to be present in ambient air. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  15. Removal of bisphenol derivatives through quinone oxidation by polyphenol oxidase and subsequent quinone adsorption on chitosan in the heterogeneous system.

    PubMed

    Kimura, Yuji; Takahashi, Ayumi; Kashiwada, Ayumi; Yamada, Kazunori

    2015-01-01

    In this study, the combined use of a biopolymer chitosan and an oxidoreductase polyphenol oxidase (PPO) was systematically investigated for the removal of bisphenol derivatives from aqueous medium. The process parameters, such as the pH value, temperature, and PPO concentration, were estimated to conduct the enzymatic quinone oxidation of bisphenol derivatives by as little enzyme as possible. Bisphenol derivatives effectively underwent PPO-catalysed quinone oxidation without H2O2 unlike other oxidoreductases, such as peroxidase and tyrosinase, and the optimum conditions were determined to be pH 7.0 and 40°C for bisphenol B, bisphenol E, bisphenol O, and bisphenol Z; pH 7.0 and 30°C for bisphenol C and bisphenol F; and pH 8.0 and 40°C for bisphenol T. They were completely removed through adsorption of enzymatically generated quinone derivatives on chitosan beads or chitosan powders. Quinone adsorption on chitosan beads or chitosan powders in the heterogeneous system was found to be a more effective procedure than generation of aggregates in the homogeneous system with chitosan solution. The removal time was shortened by increasing the amount of chitosan beads or decreasing the size of the chitosan powders.

  16. Bioinspired organocatalytic aerobic C-H oxidation of amines with an ortho-quinone catalyst.

    PubMed

    Qin, Yan; Zhang, Long; Lv, Jian; Luo, Sanzhong; Cheng, Jin-Pei

    2015-03-20

    A simple bioinspired ortho-quinone catalyst for the aerobic oxidative dehydrogenation of amines to imines is reported. Without any metal cocatalysts, the identified optimal ortho-quinone catalyst enables the oxidations of α-branched primary amines and cyclic secondary amines. Mechanistic studies have disclosed the origins of different performances of ortho-quinone vs para-quinone in biomimetic amine oxidations.

  17. Quinone-based stable isotope probing for assessment of 13C substrate-utilizing bacteria

    NASA Astrophysics Data System (ADS)

    Kunihiro, Tadao; Katayama, Arata; Demachi, Toyoko; Veuger, Bart; Boschker, Henricus T. S.; van Oevelen, Dick

    2015-04-01

    In this study, we attempted to establish quinone-stable-isotope probing (SIP) technique to link substrate-utilizing bacterial group to chemotaxonomic group in bacterial community. To identify metabolically active bacterial group in various environments, SIP techniques combined with biomarkers have been widely utilized as an attractive method for environmental study. Quantitative approaches of the SIP technique have unique advantage to assess substrate-incorporation into bacteria. As a most major quantitative approach, SIP technique based on phospholipid-derived fatty acids (PLFA) have been applied to simultaneously assess substrate-incorporation rate into bacteria and microbial community structure. This approach is powerful to estimate the incorporation rate because of the high sensitivity due to the detection by a gas chromatograph-combustion interface-isotope ratio mass spectrometer (GC-c-IRMS). However, its phylogenetic resolution is limited by specificity of a compound-specific marker. We focused on respiratory quinone as a biomarker. Our previous study found a good correlation between concentrations of bacteria-specific PLFAs and quinones over several orders of magnitude in various marine sediments, and the quinone method has a higher resolution (bacterial phylum level) for resolving differences in bacterial community composition more than that of bacterial PLFA. Therefore, respiratory quinones are potentially good biomarkers for quantitative approaches of the SIP technique. The LC-APCI-MS method as molecular-mass based detection method for quinone was developed and provides useful structural information for identifying quinone molecular species in environmental samples. LC-MS/MS on hybrid triple quadrupole/linear ion trap, which enables to simultaneously identify and quantify compounds in a single analysis, can detect high molecular compounds with their isotope ions. Use of LC-MS/MS allows us to develop quinone-SIP based on molecular mass differences due to

  18. Computational design of molecules for an all-quinone redox flow battery.

    PubMed

    Er, Süleyman; Suh, Changwon; Marshak, Michael P; Aspuru-Guzik, Alán

    2015-02-01

    Inspired by the electron transfer properties of quinones in biological systems, we recently showed that quinones are also very promising electroactive materials for stationary energy storage applications. Due to the practically infinite chemical space of organic molecules, the discovery of additional quinones or other redox-active organic molecules for energy storage applications is an open field of inquiry. Here, we introduce a high-throughput computational screening approach that we applied to an accelerated study of a total of 1710 quinone (Q) and hydroquinone (QH 2 ) ( i.e. , two-electron two-proton) redox couples. We identified the promising candidates for both the negative and positive sides of organic-based aqueous flow batteries, thus enabling an all-quinone battery. To further aid the development of additional interesting electroactive small molecules we also provide emerging quantitative structure-property relationships.

  19. Design and synthesis of novel isoxazole tethered quinone-amino Acid hybrids.

    PubMed

    Ravi Kumar, P; Behera, Manoranjan; Sambaiah, M; Kandula, Venu; Payili, Nagaraju; Jaya Shree, A; Yennam, Satyanarayana

    2014-01-01

    A new series of isoxazole tethered quinone-amino acid hybrids has been designed and synthesized involving 1,3-dipolar cycloaddition reaction followed by an oxidation reaction using cerium ammonium nitrate (CAN). Using this method, for the first time various isoxazole tethered quinone-phenyl alanine and quinone-alanine hybrids were synthesized from simple commercially available 4-bromobenzyl bromide, propargyl bromide, and 2,5-dimethoxybenzaldehyde in good yield.

  20. Evaluation of hydrological processes in a mountainous small basin using a quinone biomarker.

    PubMed

    Fujita, M; Haga, H; Nishida, K; Sakamoto, Y

    2006-01-01

    An applicability of quinone biomarker to the analysis of hillslope runoff was investigated. At first, quinone profiles of three streams as well as a hillslope runoff in a forested headwater catchment were compared. The quinone composition of hillslope runoff differed from others. Moreover, there were remarkable differences in quinone profile of hillslope runoff under different rainfall conditions. Then, the behavior of quinone biomarker during the increase and decrease of hillslope runoff after a rainfall event was examined. The fractional changes in Q-9 (H2), Q-10 (H2), Q-11, MK-6 and MK-10 suggested the effect of interflow.

  1. Design and Synthesis of Novel Isoxazole Tethered Quinone-Amino Acid Hybrids

    PubMed Central

    Ravi Kumar, P.; Sambaiah, M.; Kandula, Venu; Payili, Nagaraju; Jaya Shree, A.; Yennam, Satyanarayana

    2014-01-01

    A new series of isoxazole tethered quinone-amino acid hybrids has been designed and synthesized involving 1,3-dipolar cycloaddition reaction followed by an oxidation reaction using cerium ammonium nitrate (CAN). Using this method, for the first time various isoxazole tethered quinone-phenyl alanine and quinone-alanine hybrids were synthesized from simple commercially available 4-bromobenzyl bromide, propargyl bromide, and 2,5-dimethoxybenzaldehyde in good yield. PMID:25709839

  2. On-column reduction of catecholamine quinones in stainless steel columns during liquid chromatography.

    PubMed

    Xu, R; Huang, X; Kramer, K J; Hawley, M D

    1995-10-10

    The chromatographic behavior of quinones derived from the oxidation of dopamine and N-acetyldopamine has been studied using liquid chromatography (LC) with both a diode array detector and an electrochemical detector that has parallel dual working electrodes. When stainless steel columns are used, an anodic peak for the oxidation of the catecholamine is observed at the same retention time as a cathodic peak for the reduction of the catecholamine quinone. In addition, the anodic peak exhibits a tail that extends to a second anodic peak for the catecholamine. The latter peak occurs at the normal retention time of the catecholamine. The origin of this phenomenon has been studied and metallic iron in the stainless steel components of the LC system has been found to reduce the quinones to their corresponding catecholamines. The simultaneous appearance of a cathodic peak for the reduction of catecholamine quinone and an anodic peak for the oxidation of the corresponding catecholamine occurs when metallic iron in the exit frit reduces some of the quinones as the latter exits the column. This phenomenon is designated as the "concurrent anodic-cathodic response." It is also observed for quinones of of 3,4-dihydroxybenzoic acid and probably occurs with o- or p-quinones of other dihydroxyphenyl compounds. The use of nonferrous components in LC systems is recommended to eliminate possible on-column reduction of quinones.

  3. Electron Transfer Between Electrically Conductive Minerals and Quinones

    NASA Astrophysics Data System (ADS)

    Taran, Olga

    2017-07-01

    Long-distance electron transfer in marine environments couples physically separated redox half-reactions, impacting biogeochemical cycles of iron, sulfur and carbon. Bacterial bio-electrochemical systems that facilitate electron transfer via conductive filaments or across man-made electrodes are well known, but the impact of abiotic currents across naturally occurring conductive and semiconducitve minerals is poorly understood. In this paper I use cyclic voltammetry to explore electron transfer between electrodes made of common iron minerals (magnetite, hematite, pyrite, pyrrhotite, mackinawite and greigite), and hydroquinones - a class of organic molecules found in carbon-rich sediments. Of all tested minerals, only pyrite and magnetite showed an increase in electric current in the presence of organic molecules, with pyrite showing excellent electrocatalytic performance. Pyrite electrodes performed better than commercially available glassy carbon electrodes and showed higher peak currents, lower overpotential values and a smaller separation between oxidation and reduction peaks for each tested quinone. Hydroquinone oxidation on pyrite surfaces was reversible, diffusion controlled, and stable over a large number of potential cycles. Given the ubiquity of both pyrite and quinones, abiotic electron transfer between minerals and organic molecules is likely widespread in Nature and may contribute to several different phenomena, including anaerobic respiration of a wide variety of microorganisms in temporally anoxic zones or in the proximity of hydrothermal vent chimneys, as well as quinone cycling and the propagation of anoxic zones in organic rich waters. Finally, interactions between pyrite and quinones make use of electrochemical gradients that have been suggested as an important source of energy for the origins of life on Earth. Ubiquinones and iron sulfide clusters are common redox cofactors found in electron transport chains across all domains of life and

  4. Bioactivation of tamoxifen to metabolite E quinone methide: reaction with glutathione and DNA.

    PubMed

    Fan, P W; Bolton, J L

    2001-06-01

    Despite the beneficial effects of tamoxifen in the treatment and prevention of breast cancer, long-term usage of this popular antiestrogen has been linked to an increased risk of developing endometrial cancer in women. One of the suggested pathways leading to the potential toxicity of tamoxifen involves its oxidative metabolism to 4-hydroxytamoxifen, which may be further oxidized to an electrophilic quinone methide. Alternatively, tamoxifen could undergo O-dealkylation to give cis/trans-1,2-diphenyl-1-(4-hydroxyphenyl)-but-1-ene, which is commonly known as metabolite E. Because of its structural similarity to 4-hydroxytamoxifen, metabolite E could also be biotransformed to a quinone methide, which has the potential to alkylate DNA and may contribute to the genotoxic effects of tamoxifen. To further probe the chemical reactivity/toxicity of such an electrophilic species, we have prepared metabolite E quinone methide chemically and enzymatically and examined its reactivity with glutathione (GSH) and DNA. Like 4-hydroxytamoxifen quinone methide, metabolite E quinone methide is quite stable; its half-life under physiological conditions is around 4 h, and its half-life in the presence of GSH is approximately 4 min. However, unlike the unstable GSH adducts of 4-hydroxytamoxifen quinone methide, metabolite E GSH adducts are stable enough to be isolated and characterized by NMR and liquid chromatography/tandem mass spectrometry (LC/MS/MS). Reaction of metabolite E quinone methide with DNA generated exclusively deoxyguanosine adducts, which were characterized by LC/MS/MS. These data suggest that metabolite E has the potential to cause cytotoxicity/genotoxicity through the formation of a quinone methide.

  5. Quinones from Heliotropium ovalifolium.

    PubMed

    Guntern, A; Ioset, J R; Queiroz, E F; Foggin, C M; Hostettmann, K

    2001-10-01

    Two new benzoquinones, heliotropinones A and B, have been isolated from the aerial parts of Heliotropium ovalifolium. Their structures were elucidated by spectrometric methods including high resolution electrospray ionization (ESI-HR), EI mass spectrometry, 1H, 13C and 2D NMR experiments. The two quinones demonstrated antifungal activities against Cladosporium cucumerinum and Candida albicans as well as antibacterial activity against Bacillus subtilis.

  6. Non-enzymatic oxidation of NADH by quinones

    NASA Astrophysics Data System (ADS)

    Scherbak, Nikolai; Strid, Åke; Eriksson, Leif A.

    2005-10-01

    Non-enzymatic oxidation of NADH by a large number of different quinones has been explored both theoretically and experimentally. It is concluded that the smaller benzo- and naphtho-quinones are capable of oxidising NADH in aqueous solution, whereas the larger anthraquinone is not. The mechanisms of stepwise electron and proton transfers are explored, and ruled out in favour of direct hydride transfer. For menadione (2-methyl-1,4-naphthoquinone), no reaction is observed experimentally; theoretically we find that there is a very close balance between the energetic cost of hydride removal from NADH and the energy gain of formation of the menadione semiquinone radical anion.

  7. High-capacity aqueous zinc batteries using sustainable quinone electrodes

    PubMed Central

    Zhao, Qing; Huang, Weiwei; Luo, Zhiqiang; Liu, Luojia; Lu, Yong; Li, Yixin; Li, Lin; Hu, Jinyan; Ma, Hua; Chen, Jun

    2018-01-01

    Quinones, which are ubiquitous in nature, can act as sustainable and green electrode materials but face dissolution in organic electrolytes, resulting in fast fading of capacity and short cycle life. We report that quinone electrodes, especially calix[4]quinone (C4Q) in rechargeable metal zinc batteries coupled with a cation-selective membrane using an aqueous electrolyte, exhibit a high capacity of 335 mA h g−1 with an energy efficiency of 93% at 20 mA g−1 and a long life of 1000 cycles with a capacity retention of 87% at 500 mA g−1. The pouch zinc batteries with a respective depth of discharge of 89% (C4Q) and 49% (zinc anode) can deliver an energy density of 220 Wh kg−1 by mass of both a C4Q cathode and a theoretical Zn anode. We also develop an electrostatic potential computing method to demonstrate that carbonyl groups are active centers of electrochemistry. Moreover, the structural evolution and dissolution behavior of active materials during discharge and charge processes are investigated by operando spectral techniques such as IR, Raman, and ultraviolet-visible spectroscopies. Our results show that batteries using quinone cathodes and metal anodes in aqueous electrolyte are reliable approaches for mass energy storage. PMID:29511734

  8. High-capacity aqueous zinc batteries using sustainable quinone electrodes.

    PubMed

    Zhao, Qing; Huang, Weiwei; Luo, Zhiqiang; Liu, Luojia; Lu, Yong; Li, Yixin; Li, Lin; Hu, Jinyan; Ma, Hua; Chen, Jun

    2018-03-01

    Quinones, which are ubiquitous in nature, can act as sustainable and green electrode materials but face dissolution in organic electrolytes, resulting in fast fading of capacity and short cycle life. We report that quinone electrodes, especially calix[4]quinone (C4Q) in rechargeable metal zinc batteries coupled with a cation-selective membrane using an aqueous electrolyte, exhibit a high capacity of 335 mA h g -1 with an energy efficiency of 93% at 20 mA g -1 and a long life of 1000 cycles with a capacity retention of 87% at 500 mA g -1 . The pouch zinc batteries with a respective depth of discharge of 89% (C4Q) and 49% (zinc anode) can deliver an energy density of 220 Wh kg -1 by mass of both a C4Q cathode and a theoretical Zn anode. We also develop an electrostatic potential computing method to demonstrate that carbonyl groups are active centers of electrochemistry. Moreover, the structural evolution and dissolution behavior of active materials during discharge and charge processes are investigated by operando spectral techniques such as IR, Raman, and ultraviolet-visible spectroscopies. Our results show that batteries using quinone cathodes and metal anodes in aqueous electrolyte are reliable approaches for mass energy storage.

  9. Electronic transport properties of a quinone-based molecular switch

    NASA Astrophysics Data System (ADS)

    Zheng, Ya-Peng; Bian, Bao-An; Yuan, Pei-Pei

    2016-09-01

    In this paper, we carried out first-principles calculations based on density functional theory and non-equilibrium Green's function to investigate the electronic transport properties of a quinone-based molecule sandwiched between two Au electrodes. The molecular switch can be reversibly switched between the reduced hydroquinone (HQ) and oxidized quinone (Q) states via redox reactions. The switching behavior of two forms is analyzed through their I- V curves, transmission spectra and molecular projected self-consistent Hamiltonian at zero bias. Then we discuss the transmission spectra of the HQ and Q forms at different bias, and explain the oscillation of current according to the transmission eigenstates of LUMO energy level for Q form. The results suggest that this kind of a quinone-based molecule is usable as one of the good candidates for redox-controlled molecular switches.

  10. Anti-acne activities of pulsaquinone, hydropulsaquinone, and structurally related 1, 4-quinone derivatives.

    PubMed

    Cho, Soon-Chang; Sultan, Md Zakir; Moon, Surk-Sik

    2009-04-01

    Quinone type compound, pulsaquinone 1, isolated from the aqueous ethanol extract of the roots of Pulsatilla koreana exhibited antimicrobial activities against an anaerobic non-spore-forming gram-positive bacillus, Propionibacterium acnes, which is related with the pathogenesis of the inflamed lesions in a common skin disease, acne vulgaris. Compound 1 was unstable on standing and thus converted to more stable compound 2, namely hydropulsaquinone by hydrogenation, whose activity was comparable to mother compound 1 (MIC for 1 and 2 against P. acnes: 2.0 and 4.0 microg/mL, respectively). Other structurally-related quinone derivatives (3-13) were also tested for structure-activity relationship against anaerobic and aerobic bacteria, and fungi. The antimicrobial activity was fairly good when the quinone moiety was fused with a nonpolar 6- or 7-membered ring on the right side whether or not conjugated (1,4-naphtoquinone derivatives 3-5), while simple quinone compounds 6-9 showed poor activity. It seems that the methoxy groups at the left side of the quinone function deliver no considerable antimicrobial effect.

  11. Semiquinone formation and DNA base damage by toxic quinones and inhibition by N-acetylcysteine (NAC)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lewis, D.C.; Shibamoto, T.

    1986-03-05

    Toxic, mutagenic, carcinogenic, and teratogenic effects have been reported for some quinones as well as compounds metabolized to quinones. Semiquinone radical formation, thymidine degradation, and protection by NAC were studied in a hypoxanthine/xanthine oxidase (HX/XO) system. Quinone, benzo(a)pyrene-3,6-quinone, danthron, doxorubicin, emodin, juglone, menadione, and moniliformin were tested. Diethylstilbestrolquinone, N-acetylquinoneimine, and benzoquinonediimine, hypothesized toxic metabolites of diethylstilbestrol, acetaminophen and p-phenylenediamine, respectively, were synthesized and studied. Semiquinone radical formation was assessed in a HX/XO system monitoring cytochrome C reduction. Large differences in rates of semiquinone radical formation were noted for different quinones, with V/Vo values ranging from 1.2 to 10.6. DNA basemore » degradation, thymine or thymidine glycol formation, and thiobarbituric acid reactive substance (TBARS) production were measured in a similar system containing thymine, thymidine, calf thymus DNA, or deoxyribose. TBARS formation was observed with deoxyribose, but thymidine degradation without TBARS formation was noted with thymidine. NAC (0.5 to 10 mM) caused dose-dependent inhibition of quinone-induced cytochrome C reduction.« less

  12. 4-Hydroxylated metabolites of the antiestrogens tamoxifen and toremifene are metabolized to unusually stable quinone methides.

    PubMed

    Fan, P W; Zhang, F; Bolton, J L

    2000-01-01

    Tamoxifen is widely prescribed for the treatment of hormone-dependent breast cancer, and it has recently been approved by the Food and Drug Administration for the chemoprevention of this disease. However, long-term usage of tamoxifen has been linked to increased risk of developing endometrial cancer in women. One of the suggested pathways leading to the potential toxicity of tamoxifen involves its oxidative metabolism to 4-hydroxytamoxifen, which may be further oxidized to an electrophilic quinone methide. The resulting quinone methide has the potential to alkylate DNA and may initiate the carcinogenic process. To further probe the chemical reactivity and toxicity of such an electrophilic species, we have prepared the 4-hydroxytamoxifen quinone methide chemically and enzymatically, examined its reactivity under physiological conditions, and quantified its reactivity with GSH. Interestingly, this quinone methide is unusually stable; its half-life under physiological conditions is approximately 3 h, and its half-life in the presence of GSH is approximately 4 min. The reaction between 4-hydroxytamoxifen quinone methide and GSH appears to be a reversible process because the quinone methide GSH conjugates slowly decompose over time, regenerating the quinone methide as indicated by LC/MS/MS data. The tamoxifen GSH conjugates were detected in microsomal incubations with 4-hydroxytamoxifen; however, none were observed in breast cancer cell lines (MCF-7) perhaps because very little quinone methides is formed. Toremifene, which is a chlorinated analogue of tamoxifen, undergoes similar oxidative metabolism to give 4-hydroxytoremifene, which is further oxidized to the corresponding quinone methide. The toremifene quinone methide has a half-life of approximately 1 h under physiological conditions, and its rate of reaction in the presence of excess GSH is approximately 6 min. More detailed analyses have indicated that the 4-hydroxytoremifene quinone methide reacts with two

  13. Oxidative stress and neurodegeneration: The possible contribution of quinone reductase 2.

    PubMed

    Cassagnes, Laure-Estelle; Chhour, Monivan; Pério, Pierre; Sudor, Jan; Gayon, Régis; Ferry, Gilles; Boutin, Jean A; Nepveu, Françoise; Reybier, Karine

    2018-05-20

    There is increasing evidence that oxidative stress is involved in the etiology and pathogenesis of neurodegenerative disorders. Overproduction of reactive oxygen species (ROS) is due in part to the reactivity of catecholamines, such as dopamine, adrenaline, and noradrenaline. These molecules are rapidly converted, chemically or enzymatically, into catechol-quinone and then into highly deleterious semiquinone radicals after 1-electron reduction in cells. Notably, the overexpression of dihydronicotinamide riboside:quinone oxidoreductase (QR2) in Chinese hamster ovary (CHO) cells increases the production of ROS, mainly superoxide radicals, when it is exposed to exogenous catechol-quinones (e.g. dopachrome, aminochrome, and adrenochrome). Here we used electron paramagnetic resonance analysis to demonstrate that the phenomenon observed in CHO cells is also seen in human leukemic cells (K562 cells) that naturally express QR2. Moreover, by manipulating the level of QR2 in neuronal cells, including immortalized neuroblast cells and ex vivo neurons isolated from QR2 knockout animals, we showed that there is a direct relationship between QR2-mediated quinone reduction and ROS overproduction. Supporting this result, the withdraw of the QR2 co-factor (BNAH) or the addition of the specific QR2 inhibitor S29434 suppressed oxidative stress. Taken together, these data suggest that the overexpression of QR2 in brain cells in the presence of catechol quinones might lead to ROS-induced cell death via the rapid conversion of superoxide radicals into hydrogen peroxide and then into highly reactive hydroxyl radicals. Thus, QR2 may be implicated in the early stages of neurodegenerative disorders. Copyright © 2018 Elsevier Inc. All rights reserved.

  14. Bioinspired Aerobic Oxidation of Secondary Amines and Nitrogen Heterocycles with a Bifunctional Quinone Catalyst

    PubMed Central

    Wendlandt, Alison E.; Stahl, Shannon S.

    2014-01-01

    Copper amine oxidases are a family of enzymes with quinone cofactors that oxidize primary amines to aldehydes. The native mechanism proceeds via an iminoquinone intermediate that promotes high selectivity for reactions with primary amines, thereby constraining the scope of potential biomimetic synthetic applications. Here, we report a novel bioinspired quinone catalyst system, consisting of 1,10-phenanthroline-5,6-dione/ZnI2, that bypasses these constraints via an abiological pathway involving a hemiaminal intermediate. Efficient aerobic dehydrogenation of non-native secondary amine substrates, including pharmaceutically relevant nitrogen heterocycles, is demonstrated. The ZnI2 cocatalyst activates the quinone toward amine oxidation and provides a source of iodide, which plays an important redox-mediator role to promote aerobic catalytic turnover. These findings provide a valuable foundation for broader development of aerobic oxidation reactions employing quinone-based catalysts. PMID:24328193

  15. Bioinspired aerobic oxidation of secondary amines and nitrogen heterocycles with a bifunctional quinone catalyst.

    PubMed

    Wendlandt, Alison E; Stahl, Shannon S

    2014-01-08

    Copper amine oxidases are a family of enzymes with quinone cofactors that oxidize primary amines to aldehydes. The native mechanism proceeds via an iminoquinone intermediate that promotes high selectivity for reactions with primary amines, thereby constraining the scope of potential biomimetic synthetic applications. Here we report a novel bioinspired quinone catalyst system consisting of 1,10-phenanthroline-5,6-dione/ZnI2 that bypasses these constraints via an abiological pathway involving a hemiaminal intermediate. Efficient aerobic dehydrogenation of non-native secondary amine substrates, including pharmaceutically relevant nitrogen heterocycles, is demonstrated. The ZnI2 cocatalyst activates the quinone toward amine oxidation and provides a source of iodide, which plays an important redox-mediator role to promote aerobic catalytic turnover. These findings provide a valuable foundation for broader development of aerobic oxidation reactions employing quinone-based catalysts.

  16. X-ray structural studies of quinone reductase 2 nanomolar range inhibitors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pegan, Scott D.; Sturdy, Megan; Ferry, Gilles

    Quinone reductase 2 (QR2) is one of two members comprising the mammalian quinone reductase family of enzymes responsible for performing FAD mediated reductions of quinone substrates. In contrast to quinone reductase 1 (QR1) which uses NAD(P)H as its co-substrate, QR2 utilizes a rare group of hydride donors, N-methyl or N-ribosyl nicotinamide. Several studies have linked QR2 to the generation of quinone free radicals, several neuronal degenerative diseases, and cancer. QR2 has been also identified as the third melatonin receptor (MT3) through in cellulo and in vitro inhibition of QR2 by traditional MT3 ligands, and through recent X-ray structures of humanmore » QR2 (hQR2) in complex with melatonin and 2-iodomelatonin. Several MT3 specific ligands have been developed that exhibit both potent in cellulo inhibition of hQR2 nanomolar, affinity for MT3. The potency of these ligands suggest their use as molecular probes for hQR2. However, no definitive correlation between traditionally obtained MT3 ligand affinity and hQR2 inhibition exists limiting our understanding of how these ligands are accommodated in the hQR2 active site. To obtain a clearer relationship between the structures of developed MT3 ligands and their inhibitory properties, in cellulo and in vitro IC{sub 50} values were determined for a representative set of MT3 ligands (MCA-NAT, 2-I-MCANAT, prazosin, S26695, S32797, and S29434). Furthermore, X-ray structures for each of these ligands in complex with hQR2 were determined allowing for a structural evaluation of the binding modes of these ligands in relation to the potency of MT3 ligands.« less

  17. Localization of Ubiquinone-8 in the Na+-pumping NADH:Quinone Oxidoreductase from Vibrio cholerae*

    PubMed Central

    Casutt, Marco S.; Nedielkov, Ruslan; Wendelspiess, Severin; Vossler, Sara; Gerken, Uwe; Murai, Masatoshi; Miyoshi, Hideto; Möller, Heiko M.; Steuber, Julia

    2011-01-01

    Na+ is the second major coupling ion at membranes after protons, and many pathogenic bacteria use the sodium-motive force to their advantage. A prominent example is Vibrio cholerae, which relies on the Na+-pumping NADH:quinone oxidoreductase (Na+-NQR) as the first complex in its respiratory chain. The Na+-NQR is a multisubunit, membrane-embedded NADH dehydrogenase that oxidizes NADH and reduces quinone to quinol. Existing models describing redox-driven Na+ translocation by the Na+-NQR are based on the assumption that the pump contains four flavins and one FeS cluster. Here we show that the large, peripheral NqrA subunit of the Na+-NQR binds one molecule of ubiquinone-8. Investigations of the dynamic interaction of NqrA with quinones by surface plasmon resonance and saturation transfer difference NMR reveal a high affinity, which is determined by the methoxy groups at the C-2 and C-3 positions of the quinone headgroup. Using photoactivatable quinone derivatives, it is demonstrated that ubiquinone-8 bound to NqrA occupies a functional site. A novel scheme of electron transfer in Na+-NQR is proposed that is initiated by NADH oxidation on subunit NqrF and leads to quinol formation on subunit NqrA. PMID:21885438

  18. Structural and Functional insights into the catalytic mechanism of the Type II NADH:quinone oxidoreductase family

    PubMed Central

    Marreiros, Bruno C.; Sena, Filipa V.; Sousa, Filipe M.; Oliveira, A. Sofia F.; Soares, Cláudio M.; Batista, Ana P.; Pereira, Manuela M.

    2017-01-01

    Type II NADH:quinone oxidoreductases (NDH-2s) are membrane proteins involved in respiratory chains. These proteins contribute indirectly to the establishment of the transmembrane difference of electrochemical potential by catalyzing the reduction of quinone by oxidation of NAD(P)H. NDH-2s are widespread enzymes being present in the three domains of life. In this work, we explored the catalytic mechanism of NDH-2 by investigating the common elements of all NDH-2s, based on the rationale that conservation of such elements reflects their structural/functional importance. We observed conserved sequence motifs and structural elements among 1762 NDH-2s. We identified two proton pathways possibly involved in the protonation of the quinone. Our results led us to propose the first catalytic mechanism for NDH-2 family, in which a conserved glutamate residue, E172 (in NDH-2 from Staphylococcus aureus) plays a key role in proton transfer to the quinone pocket. This catalytic mechanism may also be extended to the other members of the two-Dinucleotide Binding Domains Flavoprotein (tDBDF) superfamily, such as sulfide:quinone oxidoreductases. PMID:28181562

  19. [Development of selective determination methods for quinones with fluorescence and chemiluminescence detection and their application to environmental and biological samples].

    PubMed

    Kishikawa, Naoya

    2010-10-01

    Quinones are compounds that have various characteristics such as a biological electron transporter, an industrial product and a harmful environmental pollutant. Therefore, an effective determination method for quinones is required in many fields. This review describes the development of sensitive and selective determination methods for quinones based on some detection principles and their application to analyses in environmental, pharmaceutical and biological samples. Firstly, a fluorescence method was developed based on fluorogenic derivatization of quinones and applied to environmental analysis. Secondly, a luminol chemiluminescence method was developed based on generation of reactive oxygen species through the redox cycle of quinone and applied to pharmaceutical analysis. Thirdly, a photo-induced chemiluminescence method was developed based on formation of reactive oxygen species and fluorophore or chemiluminescence enhancer by the photoreaction of quinones and applied to biological and environmental analyses.

  20. Electron transfer of quinone self-assembled monolayers on a gold electrode.

    PubMed

    Nagata, Morio; Kondo, Masaharu; Suemori, Yoshiharu; Ochiai, Tsuyoshi; Dewa, Takehisa; Ohtsuka, Toshiaki; Nango, Mamoru

    2008-06-15

    Dialkyl disulfide-linked naphthoquinone, (NQ-Cn-S)2, and anthraquinone, (AQ-Cn-S)2, derivatives with different spacer alkyl chains (Cn: n=2, 6, 12) were synthesized and these quinone derivatives were self-assembled on a gold electrode. The formation of self-assembled monolayers (SAMs) of these derivatives on a gold electrode was confirmed by infrared reflection-absorption spectroscopy (IR-RAS). Electron transfer between the derivatives and the gold electrode was studied by cyclic voltammetry. On the cyclic voltammogram a reversible redox reaction between quinone (Q) and hydroquinone (QH2) was clearly observed under an aqueous condition. The formal potentials for NQ and AQ derivatives were -0.48 and -0.58 V, respectively, that did not depend on the spacer length. The oxidation and reduction peak currents were strongly dependent on the spacer alkyl chain length. The redox behavior of quinone derivatives depended on the pH condition of the buffer solution. The pH dependence was in agreement with a theoretical value of E 1/2 (mV)=E'-59pH for 2H+/2e(-) process in the pH range 3-11. In the range higher than pH 11, the value was estimated with E 1/2 (mV)=E'-30pH , which may correspond to H+/2e(-) process. The tunneling barrier coefficients (beta) for NQ and AQ SAMs were determined to be 0.12 and 0.73 per methylene group (CH2), respectively. Comparison of the structures and the alkyl chain length of quinones derivatives on these electron transfers on the electrode is made.

  1. Alpha-tocopherol and alpha-tocopheryl quinone levels in cervical intraepithelial neoplasia and cervical cancer.

    PubMed

    Palan, Prabhudas R; Woodall, Angela L; Anderson, Patrick S; Mikhail, Magdy S

    2004-05-01

    alpha-Tocopherol is a potent antioxidant that protects cell membranes against oxidative damage. Red blood cell alpha-tocopherol levels reflect membrane alpha-tocopherol concentrations, and altered levels may suggest membrane damage. The objective of this study was to determine the levels of alpha-tocopherol and alpha-tocopheryl quinone, the oxidized product of alpha-tocopherol, in plasma and red blood cells that were obtained from control subjects and patients with cervical intraepithelial neoplasia and cervical cancer. In this cross-sectional study, 72 women, (32 African American and 40 Hispanic) were recruited. Among these subjects, 37 women had cervical intraepithelial neoplasia; 14 women had cervical cancer, and 21 women were considered control subjects, who had normal Papanicolaou test results. alpha-Tocopherol and alpha-tocopheryl quinone levels were determined in red blood cell and plasma by high-pressure liquid chromatography. Plasma levels of alpha-tocopherol and alpha-tocopheryl quinone were decreased significantly (P=.012 and=.005, respectively, by Kruskal-Wallis test) in study groups compared with the control group; red blood cell levels of alpha-tocopherol and alpha-tocopheryl quinone were not altered significantly. The lower alpha-tocopherol level that was observed in this study is consistent with our previous reports of decreased antioxidant concentrations and increased oxidative stress in women with cervical intraepithelial neoplasia. Unaltered red blood cell alpha-tocopherol and alpha-tocopheryl quinone levels suggest undamaged cell membrane. Further studies are needed to investigate the potential role of oxidative stress in cervical intraepithelial neoplasia.

  2. A cannabinoid quinone inhibits angiogenesis by targeting vascular endothelial cells.

    PubMed

    Kogan, Natalya M; Blázquez, Cristina; Alvarez, Luis; Gallily, Ruth; Schlesinger, Michael; Guzmán, Manuel; Mechoulam, Raphael

    2006-07-01

    Recent findings on the inhibition of angiogenesis and vascular endothelial cell proliferation by anthracycline antibiotics, which contain a quinone moiety, make this type of compound a very promising lead in cancer research/therapy. We have reported that a new cannabinoid anticancer quinone, cannabidiol hydroxyquinone (HU-331), is highly effective against tumor xenografts in nude mice. For evaluation of the antiangiogenic action of cannabinoid quinones, collagen-embedded rat aortic ring assay was used. The ability of cannabinoids to cause endothelial cell apoptosis was assayed by TUNEL staining and flow cytometry analysis. To examine the genes and pathways targeted by HU-331 in vascular endothelial cells, human cDNA microarrays and polymerase chain reaction were used. Immunostaining with anti-CD31 of tumors grown in nude mice served to indicate inhibition of tumor angiogenesis. HU-331 was found to be strongly antiangiogenic, significantly inhibiting angiogenesis at concentrations as low as 300 nM. HU-331 inhibited angiogenesis by directly inducing apoptosis of vascular endothelial cells without changing the expression of pro- and antiangiogenic cytokines and their receptors. A significant decrease in the total area occupied by vessels in HU-331-treated tumors was also observed. These data lead us to consider HU-331 to have high potential as a new antiangiogenic and anticancer drug.

  3. Redox potential tuning through differential quinone binding in the photosynthetic reaction center of Rhodobacter sphaeroides

    DOE PAGES

    Vermaas, Josh V.; Taguchi, Alexander T.; Dikanov, Sergei A.; ...

    2015-03-03

    Ubiquinone forms an integral part of the electron transport chain in cellular respiration and photosynthesis across a vast number of organisms. Prior experimental results have shown that the photosynthetic reaction center (RC) from Rhodobacter sphaeroides is only fully functional with a limited set of methoxy-bearing quinones, suggesting that specific interactions with this substituent are required to drive electron transport and the formation of quinol. The nature of these interactions has yet to be determined. Through parameterization of a CHARMM-compatible quinone force field and subsequent molecular dynamics simulations of the quinone-bound RC, in this paper we have investigated and characterized themore » interactions of the protein with the quinones in the Q A and Q B sites using both equilibrium simulation and thermodynamic integration. In particular, we identify a specific interaction between the 2-methoxy group of ubiquinone in the Q B site and the amide nitrogen of GlyL225 that we implicate in locking the orientation of the 2-methoxy group, thereby tuning the redox potential difference between the quinones occupying the Q A and Q B sites. Finally, disruption of this interaction leads to weaker binding in a ubiquinone analogue that lacks a 2-methoxy group, a finding supported by reverse electron transfer electron paramagnetic resonance experiments of the Q A–Q B– biradical and competitive binding assays.« less

  4. Redox potential tuning through differential quinone binding in the photosynthetic reaction center of Rhodobacter sphaeroides.

    PubMed

    Vermaas, Josh V; Taguchi, Alexander T; Dikanov, Sergei A; Wraight, Colin A; Tajkhorshid, Emad

    2015-03-31

    Ubiquinone forms an integral part of the electron transport chain in cellular respiration and photosynthesis across a vast number of organisms. Prior experimental results have shown that the photosynthetic reaction center (RC) from Rhodobacter sphaeroides is only fully functional with a limited set of methoxy-bearing quinones, suggesting that specific interactions with this substituent are required to drive electron transport and the formation of quinol. The nature of these interactions has yet to be determined. Through parameterization of a CHARMM-compatible quinone force field and subsequent molecular dynamics simulations of the quinone-bound RC, we have investigated and characterized the interactions of the protein with the quinones in the Q(A) and Q(B) sites using both equilibrium simulation and thermodynamic integration. In particular, we identify a specific interaction between the 2-methoxy group of ubiquinone in the Q(B) site and the amide nitrogen of GlyL225 that we implicate in locking the orientation of the 2-methoxy group, thereby tuning the redox potential difference between the quinones occupying the Q(A) and Q(B) sites. Disruption of this interaction leads to weaker binding in a ubiquinone analogue that lacks a 2-methoxy group, a finding supported by reverse electron transfer electron paramagnetic resonance experiments of the Q(A)⁻Q(B)⁻ biradical and competitive binding assays.

  5. Mechanism and analyses for extracting photosynthetic electrons using exogenous quinones - what makes a good extraction pathway?

    PubMed

    Longatte, G; Rappaport, F; Wollman, F-A; Guille-Collignon, M; Lemaître, F

    2016-08-04

    Plants or algae take many benefits from oxygenic photosynthesis by converting solar energy into chemical energy through the synthesis of carbohydrates from carbon dioxide and water. However, the overall yield of this process is rather low (about 4% of the total energy available from sunlight is converted into chemical energy). This is the principal reason why recently many studies have been devoted to extraction of photosynthetic electrons in order to produce a sustainable electric current. Practically, the electron transfer occurs between the photosynthetic organism and an electrode and can be assisted by an exogenous mediator, mainly a quinone. In this regard, we recently reported on a method involving fluorescence measurements to estimate the ability of different quinones to extract photosynthetic electrons from a mutant of Chlamydomonas reinhardtii. In the present work, we used the same kind of methodology to establish a zone diagram for predicting the most suitable experimental conditions to extract photoelectrons from intact algae (quinone concentration and light intensity) as a function of the purpose of the study. This will provide further insights into the extraction mechanism of photosynthetic electrons using exogenous quinones. Indeed fluorescence measurements allowed us to model the capacity of photosynthetic algae to donate electrons to an exogenous quinone by considering a numerical parameter called "open center ratio" which is related to the Photosystem II acceptor redox state. Then, using it as a proxy for investigating the extraction of photosynthetic electrons by means of an exogenous quinone, 2,6-DCBQ, we suggested an extraction mechanism that was globally found consistent with the experimentally extracted parameters.

  6. Widespread ability of fungi to drive quinone redox cycling for biodegradation.

    PubMed

    Krueger, Martin C; Bergmann, Michael; Schlosser, Dietmar

    2016-06-01

    Wood-rotting fungi possess remarkably diverse extracellular oxidation mechanisms, including enzymes, such as laccase and peroxidases, and Fenton chemistry. The ability to biologically drive Fenton chemistry by the redox cycling of quinones has previously been reported to be present in both ecologically diverging main groups of wood-rotting basidiomycetes. Therefore, we investigated whether it is even more widespread among fungal organisms. Screening of a diverse selection of a total of 18 ascomycetes and basidiomycetes for reduction of the model compound 2,6-dimethoxy benzoquinone revealed that all investigated strains were capable of reducing it to its corresponding hydroquinone. In a second step, depolymerization of the synthetic polymer polystyrene sulfonate was used as a proxy for quinone-dependent Fenton-based biodegradation capabilities. A diverse subset of the strains, including environmentally ubiquitous molds, white-rot fungi, as well as peatland and aquatic isolates, caused substantial depolymerization indicative for the effective employment of quinone redox cycling as biodegradation tool. Our results may also open up new paths to utilize diverse fungi for the bioremediation of recalcitrant organic pollutants. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  7. On the importance of hydroquinone/p-quinone redox system in the photoyellowing of mechanical pulps

    Treesearch

    Umesh P. Agarwal

    1999-01-01

    In the area of photoyellowing of mechanical pulps, recently obtained experimental evidence has shown that hydroquinone/p-quinone redox couple is present in lignin-rich mechanical pulps. It was also noted that compared to a control pulp the concentration of p-quinones was significantly higher in a photoyellowed pulp. Under ambient conditions, upon exposure to light, the...

  8. Identification of Carotenoids and Isoprenoid Quinones from Asaia lannensis and Asaia bogorensis.

    PubMed

    Antolak, Hubert; Oracz, Joanna; Otlewska, Anna; Żyżelewicz, Dorota; Kręgiel, Dorota

    2017-09-25

    The aim of the study was to identify and quantitatively assess of carotenoids and isoprenoid quinones biosynthesized by six different strains of acetic acid bacteria, belonging to genus Asaia , that are common beverage-spoiling bacteria in Europe. Bacterial cultures were conducted in a laboratory liquid culture minimal medium with 2% sucrose. Carotenoids and isoprenoid quinones were investigated using UHPLC-DAD-ESI-MS analysis. In general, tested strains of Asaia spp. were able to produce 10 carotenoids and 3 isoprenoid quinones: menaquinone-7, menaquinone-8, and ubiquinone-10. The main identified carotenoids in Asaia lannensis strains were phytofluene, neurosporene, α-carotene, while for Asaia bogorensis , neurosporene, canthaxanthin, and zeaxanthin were noted. What is more, tested Asaia spp. were able to produce myxoxanthophyll, which has so far been identified primarily in cyanobacteria. The results show that A. lannensis are characterized by statistically higher concentrations of produced carotenoids, as well as a greater variety of these compounds. We have noted that carotenoids were not only accumulated by bacterial cells, but also some strains of A. lannensis produced extracellular carotenoids.

  9. Detection of Free and Protein-Bound ortho-Quinones by Near-Infrared Fluorescence.

    PubMed

    Mazzulli, Joseph R; Burbulla, Lena F; Krainc, Dimitri; Ischiropoulos, Harry

    2016-02-16

    Aging and oxidative stress are two prominent pathological mechanisms for Parkinson's disease (PD) that are strongly associated with the degeneration of dopamine (DA) neurons in the midbrain. DA and other catechols readily oxidize into highly reactive o-quinone species that are precursors of neuromelanin (NM) pigment and under pathological conditions can modify and damage macromolecules. The role of DA oxidation in PD pathogenesis remains unclear in part due to the lack of appropriate disease models and the absence of a simple method for the quantification of DA-derived oxidants. Here, we describe a rapid, simple, and reproducible method for the quantification of o-quinones in cells and tissues that relies on the near-infrared fluorescent properties of these species. Importantly, we demonstrate that catechol-derived oxidants can be quantified in human neuroblastoma cells and midbrain dopamine neurons derived from induced pluripotent stem cells, providing a novel model to study the downstream actions of o-quinones. This method should facilitate further study of oxidative stress and DA oxidation in PD and related diseases that affect the dopaminergic system.

  10. A comparison of free radical formation by quinone antitumour agents in MCF-7 cells and the role of NAD(P)H (quinone-acceptor) oxidoreductase (DT-diaphorase).

    PubMed

    Fisher, G R; Patterson, L H; Gutierrez, P L

    1993-09-01

    Electron paramagnetic resonance (EPR/ESR) spin trapping studies with DMPO revealed that purified rat liver NAD(P)H (quinone-acceptor) oxidoreductase (QAO) mediated hydroxyl radical formation by a diverse range of quinone-based antitumour agents. However, when MCF-7 S9 cell fraction was the source of QAO, EPR studies distinguished four different interactions by these agents and QAO with respect to hydroxyl radical formation: (i) hydroxyl radical formation by diaziquone (AZQ), menadione, 1AQ; 1,5AQ and 1,8AQ was mediated entirely or partially by QAO in MCF-7 S9 fraction; (ii) hydroxyl radical formation by daunorubicin and Adriamycin was not mediated by QAO in MCF-7 S9 fraction; (iii) hydroxyl radical formation by mitomycin C was stimulated in MCF-7 S9 fraction when QAO was inhibited by dicumarol; (iv) no hydroxyl radical formation was detected for 1,4AQ or mitoxantrone in MCF-7 S9 fraction. This study shows that purified rat liver QAO can mediate hydroxyl radical formation by a variety of diverse quinone antitumour agents. However, QAO did not necessarily contribute to hydroxyl radical formation by these agents in MCF-7 S9 fraction and in the case of mitomycin C, QAO played a protective role against hydroxyl radical formation.

  11. Computational design of molecules for an all-quinone redox flow battery† †Electronic supplementary information (ESI) available: The list of computationally predicted candidate quinone molecules with interesting redox properties. See DOI: 10.1039/c4sc03030c Click here for additional data file.

    PubMed Central

    Er, Süleyman; Suh, Changwon; Marshak, Michael P.

    2015-01-01

    Inspired by the electron transfer properties of quinones in biological systems, we recently showed that quinones are also very promising electroactive materials for stationary energy storage applications. Due to the practically infinite chemical space of organic molecules, the discovery of additional quinones or other redox-active organic molecules for energy storage applications is an open field of inquiry. Here, we introduce a high-throughput computational screening approach that we applied to an accelerated study of a total of 1710 quinone (Q) and hydroquinone (QH2) (i.e., two-electron two-proton) redox couples. We identified the promising candidates for both the negative and positive sides of organic-based aqueous flow batteries, thus enabling an all-quinone battery. To further aid the development of additional interesting electroactive small molecules we also provide emerging quantitative structure-property relationships. PMID:29560173

  12. Experimental and Theoretical Reduction Potentials of Some Biologically Active ortho-Carbonyl para-Quinones.

    PubMed

    Martínez-Cifuentes, Maximiliano; Salazar, Ricardo; Ramírez-Rodríguez, Oney; Weiss-López, Boris; Araya-Maturana, Ramiro

    2017-04-04

    The rational design of quinones with specific redox properties is an issue of great interest because of their applications in pharmaceutical and material sciences. In this work, the electrochemical behavior of a series of four p -quinones was studied experimentally and theoretically. The first and second one-electron reduction potentials of the quinones were determined using cyclic voltammetry and correlated with those calculated by density functional theory (DFT) using three different functionals, BHandHLYP, M06-2x and PBE0. The differences among the experimental reduction potentials were explained in terms of structural effects on the stabilities of the formed species. DFT calculations accurately reproduced the first one-electron experimental reduction potentials with R ² higher than 0.94. The BHandHLYP functional presented the best fit to the experimental values ( R ² = 0.957), followed by M06-2x ( R ² = 0.947) and PBE0 ( R ² = 0.942).

  13. Quinone 1 e – and 2 e – /2 H + Reduction Potentials: Identification and Analysis of Deviations from Systematic Scaling Relationships

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huynh, Mioy T.; Anson, Colin W.; Cavell, Andrew C.

    Quinones participate in diverse electron transfer and proton-coupled electron transfer processes in chemistry and biology. An experimental study of common quinones reveals a non-linear correlation between the 1 e – and 2 e –/2 H + reduction potentials. This unexpected observation prompted a computational study of 128 different quinones, probing their 1 e – reduction potentials, pKa values, and 2 e –/2 H + reduction potentials. The density functional theory calculations reveal an approximately linear correlation between these three properties and an effective Hammett constant associated with the quinone substituent(s). However, deviations from this linear scaling relationship are evident formore » quinones that feature halogen substituents, charged substituents, intramolecular hydrogen bonding in the hydroquinone, and/or sterically bulky substituents. These results, particularly the different substituent effects on the 1 e – versus 2 e – /2 H + reduction potentials, have important implications for designing quinones with tailored redox properties.« less

  14. Quinone-induced Enhancement of DNA Cleavage by Human Topoisomerase IIα: Adduction of Cysteine Residues 392 and 405†

    PubMed Central

    Bender, Ryan P.; Ham, Amy-Joan L.; Osheroff, Neil

    2010-01-01

    Several quinone-based metabolites of drugs and environmental toxins are potent topoisomerase II poisons. These compounds act by adducting the protein, and appear to increase levels of enzyme-DNA cleavage complexes by at least two potentially independent mechanisms. Treatment of topoisomerase IIα with quinones inhibits DNA religation, and blocks the N-terminal gate of the protein by crosslinking its two protomer subunits. It is not known whether these two effects result from quinone adduction to the same amino acid residue(s) in topoisomerase IIα or whether they are mediated by modification of separate residues. Therefore, the present study identified amino acid residues in human topoisomerase IIα that are modified by quinones and determined their role in the actions of these compounds as topoisomerase II poisons. Four cysteine residues were identified by mass spectrometry as sites of quinone adduction: cys170, cys392, cys405, and cys455. Mutations (cys–>ala) were individually generated at each position. Only mutations at cys392 or cys405 reduced sensitivity (~50% resistance) to benzoquinone. Top2αC392A and top2αC405A displayed faster rates (~2–fold) of DNA religation than wild-type topoisomerase IIα in the presence of the quinone. In contrast, as determined by DNA binding, protein clamp closing, and protomer crosslinking experiments, mutations at cys392 and cys405 did not affect the ability of benzoquinone to block the N-terminal gate of topoisomerase IIα. These findings indicate that adduction of cys392 and cys405 is important for the actions of quinones against the enzyme, and increases levels of cleavage complexes primarily by inhibiting DNA religation. PMID:17298034

  15. Electron transfer capacity dependence of quinone-mediated Fe(III) reduction and current generation by Klebsiella pneumoniae L17.

    PubMed

    Li, Xiaomin; Liu, Liang; Liu, Tongxu; Yuan, Tian; Zhang, Wei; Li, Fangbai; Zhou, Shungui; Li, Yongtao

    2013-06-01

    Quinone groups in exogenous electron shuttles can accelerate extracellular electron transfer (EET) from bacteria to insoluble terminal electron acceptors, such as Fe(III) oxides and electrodes, which are important in biogeochemical redox processes and microbial electricity generation. However, the relationship between quinone-mediated EET performance and electron-shuttling properties of the quinones remains incompletely characterized. This study investigates the effects of a series of synthetic quinones (SQs) on goethite reduction and current generation by a fermenting bacterium Klebsiella pneumoniae L17. In addition, the voltammetric behavior and electron transfer capacities (ETCs) of SQ, including electron accepting (EAC) and donating (EDC) capacities, is also examined using electrochemical methods. The results showed that SQ can significantly increase both the Fe(III) reduction rates and current outputs of L17. Each tested SQ reversibly accepted and donated electrons as indicated by the cyclic voltammograms. The EAC and EDC results showed that Carmine and Alizarin had low relative capacities of electron transfer, whereas 9,10-anthraquinone-2,6-disulfonic acid (AQDS), 2-hydroxy-1,4-naphthoquinone (2-HNQ), and 5-hydroxy-1,4-naphthoquinone (5-HNQ) showed stronger relative ETC, and 9,10-anthraquinone-2-carboxylic acid (AQC) and 9,10-anthraquinone-2-sulfonic acid (AQS) had high relative ETC. Enhancement of microbial goethite reduction kinetics and current outputs by SQ had a good linear relationship with their ETC, indicating that the effectiveness of quinone-mediated EET may be strongly dependent on the ETC of the quinones. Therefore, the presence of quinone compounds and fermenting microorganisms may increase the diversity of microbial populations that contribute to element transformation in natural environments. Moreover, ETC determination of different SQ would help to evaluate their performance for microbial EET under anoxic conditions. Copyright © 2013 Elsevier

  16. Antioxidant and quinone reductase-inducing constituents of black chokeberry (Aronia melanocarpa) fruits.

    PubMed

    Li, Jie; Deng, Ye; Yuan, Chunhua; Pan, Li; Chai, Heebyung; Keller, William J; Kinghorn, A Douglas

    2012-11-21

    Using in vitro hydroxyl radical-scavenging and quinone reductase-inducing assays, bioactivity-guided fractionation of an ethyl acetate-soluble extract of the fruits of the botanical dietary supplement, black chokeberry (Aronia melanocarpa), led to the isolation of 27 compounds, including a new depside, ethyl 2-[(3,4-dihydroxybenzoyloxy)-4,6-dihydroxyphenyl] acetate (1), along with 26 known compounds (2-27). The structures of the isolated compounds were identified by analysis of their physical and spectroscopic data ([α](D), NMR, IR, UV, and MS). Altogether, 17 compounds (1-4, 9, 15-17, and 19-27) showed significant antioxidant activity in the hydroxyl radical-scavenging assay, with hyperin (24, ED(50) = 0.17 μM) being the most potent. The new compound (1, ED(50) = 0.44 μM) also exhibited potent antioxidant activity in this assay. Three constituents of black chokeberry fruits doubled quinone reductase activity at concentrations <20 μM, namely, protocatechuic acid [9, concentration required to double quinone reductase activity (CD) = 4.3 μM], neochlorogenic acid methyl ester (22, CD = 6.7 μM), and quercetin (23, CD = 3.1 μM).

  17. Redox and non-redox mechanism of in vitro cyclooxygenase inhibition by natural quinones.

    PubMed

    Landa, Premysl; Kutil, Zsofia; Temml, Veronika; Vuorinen, Anna; Malik, Jan; Dvorakova, Marcela; Marsik, Petr; Kokoska, Ladislav; Pribylova, Marie; Schuster, Daniela; Vanek, Tomas

    2012-03-01

    In this study, ten anthra-, nine naphtho-, and five benzoquinone compounds of natural origin and five synthetic naphthoquinones were assessed, using an enzymatic in vitro assay, for their potential to inhibit cyclooxygenase-1 and -2 (COX-1 and COX-2), the key enzymes of the arachidonic acid cascade. IC₅₀ values comparable with COX reference inhibitor indomethacin were recorded for several quinones (primin, alkannin, diospyrin, juglone, 7-methyljuglone, and shikonin). For some of the compounds, we suggest the redox potential of quinones as the mechanism responsible for in vitro COX inhibition because of the quantitative correlation with their pro-oxidant effect. Structure-relationship activity studies revealed that the substitutions at positions 2 and 5 play the key roles in the COX inhibitory and pro-oxidant actions of naphthoquinones. In contrast, the redox mechanism alone could not explain the activity of primin, embelin, alkannin, and diospyrin. For these four quinones, molecular modeling suggested similar binding modes as for conventional nonsteroidal anti-inflammatory drugs (NSAIDs). © Georg Thieme Verlag KG Stuttgart · New York.

  18. Ultrafast above-threshold dynamics of the radical anion of a prototypical quinone electron-acceptor.

    PubMed

    Horke, Daniel A; Li, Quansong; Blancafort, Lluís; Verlet, Jan R R

    2013-08-01

    Quinones feature prominently as electron acceptors in nature. Their electron-transfer reactions are often highly exergonic, for which Marcus theory predicts reduced electron-transfer rates because of a free-energy barrier that occurs in the inverted region. However, the electron-transfer kinetics that involve quinones can appear barrierless. Here, we consider the intrinsic properties of the para-benzoquinone radical anion, which serves as the prototypical electron-transfer reaction product involving a quinone-based acceptor. Using time-resolved photoelectron spectroscopy and ab initio calculations, we show that excitation at 400 and 480 nm yields excited states that are unbound with respect to electron loss. These excited states are shown to decay on a sub-40 fs timescale through a series of conical intersections with lower-lying excited states, ultimately to form the ground anionic state and avoid autodetachment. From an isolated electron-acceptor perspective, this ultrafast stabilization mechanism accounts for the ability of para-benzoquinone to capture and retain electrons.

  19. Phospholipid-derived fatty acids and quinones as markers for bacterial biomass and community structure in marine sediments.

    PubMed

    Kunihiro, Tadao; Veuger, Bart; Vasquez-Cardenas, Diana; Pozzato, Lara; Le Guitton, Marie; Moriya, Kazuyoshi; Kuwae, Michinobu; Omori, Koji; Boschker, Henricus T S; van Oevelen, Dick

    2014-01-01

    Phospholipid-derived fatty acids (PLFA) and respiratory quinones (RQ) are microbial compounds that have been utilized as biomarkers to quantify bacterial biomass and to characterize microbial community structure in sediments, waters, and soils. While PLFAs have been widely used as quantitative bacterial biomarkers in marine sediments, applications of quinone analysis in marine sediments are very limited. In this study, we investigated the relation between both groups of bacterial biomarkers in a broad range of marine sediments from the intertidal zone to the deep sea. We found a good log-log correlation between concentrations of bacterial PLFA and RQ over several orders of magnitude. This relationship is probably due to metabolic variation in quinone concentrations in bacterial cells in different environments, whereas PLFA concentrations are relatively stable under different conditions. We also found a good agreement in the community structure classifications based on the bacterial PLFAs and RQs. These results strengthen the application of both compounds as quantitative bacterial biomarkers. Moreover, the bacterial PLFA- and RQ profiles revealed a comparable dissimilarity pattern of the sampled sediments, but with a higher level of dissimilarity for the RQs. This means that the quinone method has a higher resolution for resolving differences in bacterial community composition. Combining PLFA and quinone analysis as a complementary method is a good strategy to yield higher resolving power in bacterial community structure.

  20. Increased Isoprenoid Quinone Concentration Modulates Membrane Fluidity in Listeria monocytogenes at Low Growth Temperatures.

    PubMed

    Seel, Waldemar; Flegler, Alexander; Zunabovic-Pichler, Marija; Lipski, André

    2018-07-01

    Listeria monocytogenes is a food pathogen capable of growing at a broad temperature range from 50°C to refrigerator temperatures. A key requirement for bacterial activity and growth at low temperatures is the ability to adjust the membrane lipid composition to maintain cytoplasmic membrane fluidity. In this study, we confirmed earlier findings that the extents of fatty acid profile adaptation differed between L. monocytogenes strains. We were able to demonstrate for isolates from food that growth rates at low temperatures and resistance to freeze-thaw stress were not impaired by a lower adaptive response of the fatty acid composition. This indicated the presence of a second adaptation mechanism besides temperature-regulated fatty acid synthesis. For strains that showed weaker adaptive responses in their fatty acid profiles to low growth temperature, we could demonstrate a significantly higher concentration of isoprenoid quinones. Three strains even showed a higher quinone concentration after growth at 6°C than at 37°C, which is contradictory to the reduced respiratory activity at lower growth temperatures. Analyses of the membrane fluidity in vivo by measuring generalized polarization and anisotropy revealed modulation of the transition phase. Strains with increased quinone concentrations showed an expanded membrane transition phase in contrast to strains with pronounced adaptations of fatty acid profiles. The correlation between quinone concentration and membrane transition phase expansion was confirmed by suppression of quinone synthesis. A reduced quinone concentration resulted in a narrower transition phase. Expansion of the phase transition zone by increasing the concentration of non-fatty acid membrane lipids is discussed as an additional mechanism improving adaptation to temperature shifts for L. monocytogenes strains. IMPORTANCE Listeria monocytogenes is a foodborne pathogen with an outstanding temperature range for growth. The ability for growth at

  1. Contribution of Quinones and Ketones/Aldehydes to the Optical Properties of Humic Substances (HS) and Chromophoric Dissolved Organic Matter (CDOM).

    PubMed

    Del Vecchio, Rossana; Schendorf, Tara Marie; Blough, Neil V

    2017-12-05

    The molecular basis of the optical properties of chromophoric dissolved organic matter (CDOM) and humic substances (HS) remains poorly understood and yet to be investigated adequately. This study evaluates the relative contributions of two broad classes of carbonyl-containing compounds, ketones/aldehydes versus quinones, to the absorption and emission properties of a representative suite of HS as well as a lignin sample. Selective reduction of quinones to hydroquinones by addition of small molar excesses of dithionite to these samples under anoxic conditions produced small or negligible changes in their optical properties; however, when measurable, these changes were largely reversible upon exposure to air, consistent with the reoxidation of hydroquinones to quinones. With one exception, estimates of quinone content based on dithionite consumption by the HS under anoxic conditions were in good agreement with past electrochemical measurements. In contrast, reduction of ketones/aldehydes to alcohols employing excess sodium borohydride produced pronounced and largely, but not completely, irreversible changes in the optical properties. The results demonstrate that (aromatic) ketones/aldehydes, as opposed to quinones, play a far more prominent role in the optical absorption and emission properties of these HS, consistent with these moieties acting as the primary acceptors in charge-transfer transitions within these samples. As a method, anoxic dithionite titrations may further allow additional insight into the content and impact of quinones/hydroquinones on the optical properties of HS and CDOM.

  2. Study of quinones reactions with wine nucleophiles by cyclic voltammetry.

    PubMed

    Oliveira, Carla M; Barros, António S; Ferreira, António C S; Silva, Artur M S

    2016-11-15

    Quinones are electrophilic species which can react with various nucleophiles, like wine antioxidants, such as sulfur dioxide or ascorbic acid, thiols, amino acids, and numerous polyphenols. These reactions are very important in wine aging because they mediate oxygen reactions during both production and bottle aging phases. In this work, the major challenge was to determine the interaction between ortho-quinones and wine nucleophiles (amino acids, thiols, and the antioxidants SO2 and ascorbic acid), by cyclic voltammetry. Wine-model solutions with gallic acid, caffeic acid, or (+)-catechin and nucleophilic compounds were used. To understand the effect of nucleophilic addition in wine, a white wine with the same added nucleophiles was also analysed. Cyclic voltammograms were taken with glassy carbon electrode or screen-printed carbon electrodes, respectively, for wine-model and white wines solutions, in the absence and in the presence of nucleophiles. A nucleophilic order profile related to the cathodic current intensity decrease was observed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Docking and molecular dynamics simulation of quinone compounds with trypanocidal activity.

    PubMed

    de Molfetta, Fábio Alberto; de Freitas, Renato Ferreira; da Silva, Albérico Borges Ferreira; Montanari, Carlos Alberto

    2009-10-01

    In this work, two different docking programs were used, AutoDock and FlexX, which use different types of scoring functions and searching methods. The docking poses of all quinone compounds studied stayed in the same region in the trypanothione reductase. This region is a hydrophobic pocket near to Phe396, Pro398 and Leu399 amino acid residues. The compounds studied displays a higher affinity in trypanothione reductase (TR) than glutathione reductase (GR), since only two out of 28 quinone compounds presented more favorable docking energy in the site of human enzyme. The interaction of quinone compounds with the TR enzyme is in agreement with other studies, which showed different binding sites from the ones formed by cysteines 52 and 58. To verify the results obtained by docking, we carried out a molecular dynamics simulation with the compounds that presented the highest and lowest docking energies. The results showed that the root mean square deviation (RMSD) between the initial and final pose were very small. In addition, the hydrogen bond pattern was conserved along the simulation. In the parasite enzyme, the amino acid residues Leu399, Met400 and Lys402 are replaced in the human enzyme by Met406, Tyr407 and Ala409, respectively. In view of the fact that Leu399 is an amino acid of the Z site, this difference could be explored to design selective inhibitors of TR.

  4. An antibacterial ortho-quinone diterpenoid and its derivatives from Caryopteris mongolica.

    PubMed

    Saruul, Erdenebileg; Murata, Toshihiro; Selenge, Erdenechimeg; Sasaki, Kenroh; Yoshizaki, Fumihiko; Batkhuu, Javzan

    2015-06-15

    To identify antibacterial components in traditional Mongolian medicinal plant Caryopteris mongolica, an ortho-quinone abietane caryopteron A (1) and three its derivatives caryopteron B-D (2-4) were isolated from the roots of the plant together with three known abietanes demethylcryptojaponol (5), 6α-hydroxydemethyl cryptojaponol (6), and 14-deoxycoleon U (7). The chemical structures of these abietane derivatives were elucidated on the basis of spectroscopic data. Compounds 1-4 had C-13 methylcyclopropane substructures, and 2-4 had a hexanedioic anhydride ring C instead of ortho-quinone in 1. The stereochemistry of these compound was assumed from NOE spectra and ECD Cotton effects. Compounds 1 and 5-7 showed antibacterial activities against the Gram-positive bacteria Staphylococcus aureus, Staphylococcus epidermidis, Enterococcus faecalis, and Micrococcus luteus, being 1 the more potent. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Phospholipid and Respiratory Quinone Analyses From Extreme Environments

    NASA Astrophysics Data System (ADS)

    Pfiffner, S. M.

    2008-12-01

    Extreme environments on Earth have been chosen as surrogate sites to test methods and strategies for the deployment of space craft in the search for extraterrestrial life. Surrogate sites for many of the NASA astrobiology institutes include the South African gold mines, Canadian subpermafrost, Atacama Desert, and acid rock drainage. Soils, sediments, rock cores, fracture waters, biofilms, and service and drill waters represent the types of samples collected from these sites. These samples were analyzed by gas chromatography mass spectrometry for phospholipid fatty acid methyl esters and by high performance liquid chromatography atmospheric pressure chemical ionization tandem mass spectrometry for respiratory quinones. Phospholipid analyses provided estimates of biomass, community composition, and compositional changes related to nutritional limitations or exposure to toxic conditions. Similar to phospholipid analyses, respiratory quinone analyses afforded identification of certain types of microorganisms in the community based on respiration and offered clues to in situ redox conditions. Depending on the number of samples analyzed, selected multivariate statistical methods were applied to relate membrane lipid results with site biogeochemical parameters. Successful detection of life signatures and refinement of methodologies at surrogate sites on Earth will be critical for the recognition of extraterrestrial life. At this time, membrane lipid analyses provide useful information not easily obtained by other molecular techniques.

  6. UV-Vis spectrophotometry of quinone flow battery electrolyte for in situ monitoring and improved electrochemical modeling of potential and quinhydrone formation.

    PubMed

    Tong, Liuchuan; Chen, Qing; Wong, Andrew A; Gómez-Bombarelli, Rafael; Aspuru-Guzik, Alán; Gordon, Roy G; Aziz, Michael J

    2017-12-06

    Quinone-based aqueous flow batteries provide a potential opportunity for large-scale, low-cost energy storage due to their composition from earth abundant elements, high aqueous solubility, reversible redox kinetics and their chemical tunability such as reduction potential. In an operating flow battery utilizing 9,10-anthraquinone-2,7-disulfonic acid, the aggregation of an oxidized quinone and a reduced hydroquinone to form a quinhydrone dimer causes significant variations from ideal solution behavior and of optical absorption from the Beer-Lambert law. We utilize in situ UV-Vis spectrophotometry to establish (a), quinone, hydroquinone and quinhydrone molar attenuation profiles and (b), an equilibrium constant for formation of the quinhydrone dimer (K QHQ ) ∼ 80 M -1 . We use the molar optical attenuation profiles to identify the total molecular concentration and state of charge at arbitrary mixtures of quinone and hydroquinone. We report density functional theory calculations to support the quinhydrone UV-Vis measurements and to provide insight into the dimerization conformations. We instrument a quinone-bromine flow battery with a Pd-H reference electrode in order to demonstrate how complexation in both the negative (quinone) and positive (bromine) electrolytes directly impacts measured half-cell and full-cell voltages. This work shows how accounting for electrolyte complexation improves the accuracy of electrochemical modeling of flow battery electrolytes.

  7. Quinone-induced protein modifications: Kinetic preference for reaction of 1,2-benzoquinones with thiol groups in proteins.

    PubMed

    Li, Yuting; Jongberg, Sisse; Andersen, Mogens L; Davies, Michael J; Lund, Marianne N

    2016-08-01

    Oxidation of polyphenols to quinones serves as an antioxidative mechanism, but the resulting quinones may induce damage to proteins as they react through a Michael addition with nucleophilic groups, such as thiols and amines to give protein adducts. In this study, rate constants for the reaction of 4-methylbenzoquinone (4MBQ) with proteins, thiol and amine compounds were determined under pseudo first-order conditions by UV-vis stopped-flow spectrophotometry. The chemical structures of the adducts were identified by LC-ESI-MS/MS. Proteins with free thiols were rapidly modified by 4MBQ with apparent second order rate constants, k2 of (3.1±0.2)×10(4)M(-1)s(-1) for bovine serum albumin (BSA) and (4.8±0.2)×10(3)M(-1)s(-1) for human serum albumin at pH 7.0. These values are at least 12-fold greater than that for α-lactalbumin (4.0±0.2)×10(2)M(-1)s(-1), which does not contain any free thiols. Reaction of Cys-34 of BSA with N-ethylmaleimide reduced the thiol concentration by ~59%, which resulted in a decrease in k2 by a similar percentage, consistent with rapid adduction at Cys-34. Reaction of 4MBQ with amines (Gly, Nα-acetyl-l-Lys, Nε-acetyl-l-Lys and l-Lys) and the guanidine group of Nα-acetyl-l-Arg was at least 5×10(5) slower than with low-molecular-mass thiols (l-Cys, Nα-acetyl-l-Cys, glutathione). The thiol-quinone interactions formed colorless thiol-phenol products via an intermediate adduct, while the amine-quinone interactions generated colored amine-quinone products that require oxygen involvement. These data provide strong evidence for rapid modification of protein thiols by quinone species which may be of considerable significance for biological and food systems. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Unexpected Reduction of Iminoquinone and Quinone Derivatives in Positive Electrospray Ionization Mass Spectrometry and Possible Mechanism Exploration

    NASA Astrophysics Data System (ADS)

    Pei, Jiying; Hsu, Cheng-Chih; Zhang, Ruijie; Wang, Yinghui; Yu, Kefu; Huang, Guangming

    2017-08-01

    Unexpected reduction of iminoquinone (IQ) and quinone derivatives was first reported during positive electrospray ionization mass spectrometry. Upon increasing spray voltage, the intensities of IQ and quinone derivatives decreased drastically, accompanying the increase of the intensities of the reduction products, amodiaquine (AQ) and phenol derivatives. To gain more insight into the mechanism of such reduction, we explored the experimental factors that are influential to corona discharge (CD). The results show that experimental parameters that favor severe CD, including metal spray emitter, using water as spray solvent, sheath gas with low dielectric strength (e.g., nitrogen), and shorter spray tip-to-mass spectrometer inlet distance, facilitated the reduction of IQ and quinone derivatives, implying that the reduction should be closely related to CD in the gas phase. [Figure not available: see fulltext.

  9. Crystallization of the Na+-translocating NADH:quinone oxidoreductase from Vibrio cholerae

    PubMed Central

    Casutt, Marco S.; Wendelspiess, Severin; Steuber, Julia; Fritz, Günter

    2010-01-01

    The Na+-translocating NADH:quinone oxidoreductase (Na+-NQR) from the human pathogen Vibrio cholerae couples the exergonic oxidation of NADH by membrane-bound quinone to Na+ translocation across the membrane. Na+-NQR consists of six different subunits (NqrA–NqrF) and contains a [2Fe–2S] cluster, a noncovalently bound FAD, a noncovalently bound riboflavin, two covalently bound FMNs and potentially Q8 as cofactors. Initial crystallization of the entire Na+-NQR complex was achieved by the sitting-drop method using a nanolitre dispenser. Optimization of the crystallization conditions yielded flat yellow-coloured crystals with dimensions of up to 200 × 80 × 20 µm. The crystals diffracted to 4.0 Å resolution and belonged to space group P21, with unit-cell parameters a = 94, b = 146, c = 105 Å, α = γ = 90, β = 111°. PMID:21139223

  10. Process for Preparing Microcapsules Having Gelatin Walls Crosslinked with Quinone.

    DTIC Science & Technology

    A process for conveniently producing microcapsules containing a gelatin wall crosslinked with quinone and a core of an active compound such as a...provides microcapsules of excellent strength, storage stability, and resistance to aqueous exposure, such that the rate of release of the fouling reducing agent can be controlled with precision. jg

  11. Monitoring of BHT-quinone and BHT-CHO in the gas of capsules of Asclepias physocarpa.

    PubMed

    Ma, Bing-Ji; Peng, Hua; Liu, Ji-Kai

    2006-01-01

    Three volatile components, namely benzoic acid ethyl ester (1), 2,6-di-tert-butyl-p-benzoquinone (BHT-quinone) (2), and 3,5-di-tert-butyl-4-hydroxybenzaldehyde (BHT-CHO) (3), were detected from the gas in the capsules of Asclepias physocarpa by means of GC/MS analysis. BHT-quinone and BHT-CHO as organic pollutants are the degradation products of the antioxidant 2,6-di-tert-butyl-4-methylphenol (BHT). Ground water, lake water and/or rain water are a source of BHT metabolites in the plant Asclepias physocarpa.

  12. Comparison of estrogen-derived ortho-quinone and para-quinol concerning induction of oxidative stress.

    PubMed

    Rivera-Portalatin, Nilka M; Vera-Serrano, José L; Prokai-Tatrai, Katalin; Prokai, Laszlo

    2007-01-01

    Ortho-quinones formed from catechol estrogens are considered prooxidants due to the production of superoxide radical anions through redox cycling via semiquinones. Para-quinols have been identified as novel metabolites of and as the major products of hydroxyl-radical scavenging by estrogens. Cycling of these compounds has also been discovered, because they are converted back to the parent estrogen via reductive aromatization in vitro and in vivo. We hypothesized that, unlike ortho-quinones, para-quinols do not induce oxidative stress due to this cycling. Like the estrogen itself, the 17beta-estradiol-derived para-quinol (10beta,17beta-dihydroxyestra-1,4-diene-3-one) did not induce oxidative stress, as the rate of hydrogen peroxide production during the incubations of the compounds in various tissue homogenates was not significantly different from that of the control experiments performed without the addition of a test compound. We also confirmed that the estrogen metabolite estra-1,5(10)-dien-3,4,17-trione (estrone 3,4-quinone) was a profound prooxidant due to redox cycling, especially in uterine tissue. Therefore, we concluded that para-quinols do not induce oxidative stress.

  13. Comparison of estrogen-derived ortho-quinone and para-quinol concerning induction of oxidative stress

    PubMed Central

    Rivera-Portalatin, Nilka M.; Vera-Serrano, José L.; Prokai-Tatrai, Katalin; Prokai, Laszlo

    2009-01-01

    Ortho-quinones formed from catechol estrogens are considered prooxidants due to the production of superoxide radical anions through redox cycling via semiquinones. Para-quinols have been identified as novel metabolites of and as the major products of hydroxyl-radical scavenging by estrogens. Cycling of these compounds has also been discovered, because they are converted back to the parent estrogen via reductive aromatization in vitro and in vivo. We hypothesized that, unlike ortho-quinones, para-quinols do not induce oxidative stress due to this cycling. Like the estrogen itself, the 17β-estradiol-derived para-quinol (10β,17β-dihydroxyestra-1,4-diene-3-one) did not induce oxidative stress, as the rate of hydrogen peroxide production during the incubations of the compounds in various tissue homogenates was not significantly different from that of the control experiments performed without the addition of a test compound. We also confirmed that the estrogen metabolite estra-1,5(10)-dien-3,4,17-trione (estrone 3,4-quinone) was a profound prooxidant due to redox cycling, especially in uterine tissue. Therefore, we concluded that para-quinols do not induce oxidative stress. PMID:17582759

  14. Universal quinone electrodes for long cycle life aqueous rechargeable batteries

    NASA Astrophysics Data System (ADS)

    Liang, Yanliang; Jing, Yan; Gheytani, Saman; Lee, Kuan-Yi; Liu, Ping; Facchetti, Antonio; Yao, Yan

    2017-08-01

    Aqueous rechargeable batteries provide the safety, robustness, affordability, and environmental friendliness necessary for grid storage and electric vehicle operations, but their adoption is plagued by poor cycle life due to the structural and chemical instability of the anode materials. Here we report quinones as stable anode materials by exploiting their structurally stable ion-coordination charge storage mechanism and chemical inertness towards aqueous electrolytes. Upon rational selection/design of quinone structures, we demonstrate three systems that coupled with industrially established cathodes and electrolytes exhibit long cycle life (up to 3,000 cycles/3,500 h), fast kinetics (>=20C), high anode specific capacity (up to 200-395 mAh g-1), and several examples of state-of-the-art specific energy/energy density (up to 76-92 Wh kg-1/ 161-208 Wh l-1) for several operational pH values (-1 to 15), charge carrier species (H+, Li+, Na+, K+, Mg2+), temperature (-35 to 25 °C), and atmosphere (with/without O2), making them a universal anode approach for any aqueous battery technology.

  15. All three quinone species play distinct roles in ensuring optimal growth under aerobic and fermentative conditions in E. coli K12

    PubMed Central

    Nitzschke, Annika

    2018-01-01

    The electron transport chain of E. coli contains three different quinone species, ubiquinone (UQ), menaquinone (MK) and demethylmenaquinone (DMK). The content and ratio of the different quinone species vary depending on the external conditions. To study the function of the different quinone species in more detail, strains with deletions preventing UQ synthesis, as well as MK and/or DMK synthesis were cultured under aerobic and anaerobic conditions. The strains were characterized with respect to growth and product synthesis. As quinones are also involved in the control of ArcB/A activity, we analyzed the phosphorylation state of the response regulator as well as the expression of selected genes.The data show reduced aerobic growth coupled to lactate production in the mutants defective in ubiquinone synthesis. This confirms the current assumption that ubiquinone is the main quinone under aerobic growth conditions. In the UQ mutant strains the amount of MK and DMK is significantly elevated. The strain synthesizing only DMK is less affected in growth than the strain synthesizing MK as well as DMK. An inhibitory effect of MK on aerobic growth due to increased oxidative stress is postulated.Under fermentative growth conditions the mutant synthesizing only UQ is severely impaired in growth. Obviously, UQ is not able to replace MK and DMK during anaerobic growth. Mutations affecting quinone synthesis have an impact on ArcA phosphorylation only under anaerobic conditions. ArcA phosphorylation is reduced in strains synthesizing only MK or MK plus DMK. PMID:29614086

  16. Isoprenoid quinones resolve the stratification of microbial redox processes in a biogeochemical continuum from the photic zone to deep anoxic sediments of the Black Sea.

    PubMed

    Becker, Kevin W; Elling, Felix J; Schröder, Jan M; Lipp, Julius S; Goldhammer, Tobias; Zabel, Matthias; Elvert, Marcus; Overmann, Jörg; Hinrichs, Kai-Uwe

    2018-03-09

    The stratified water column of the Black Sea serves as a model ecosystem for studying the interactions of microorganisms with major biogeochemical cycles. Here we provide detailed analysis of isoprenoid quinones to study microbial redox processes in the ocean. In a continuum from the photic zone through the chemocline into deep anoxic sediments of the southern Black Sea, diagnostic quinones and inorganic geochemical parameters indicate niche segregation between redox processes and corresponding shifts in microbial community composition. Quinones specific for oxygenic photosynthesis and aerobic respiration dominate oxic waters, while quinones associated with thaumarchaeal ammonia-oxidation and bacterial methanotrophy, respectively, dominate a narrow interval in suboxic waters. Quinone distributions indicate highest metabolic diversity within the anoxic zone, with anoxygenic photosynthesis being a major process in its photic layer. In the dark anoxic layer, quinone profiles indicate occurrence of bacterial sulfur and nitrogen cycling, archaeal methanogenesis, and archaeal methanotrophy. Multiple novel ubiquinone isomers, possibly originating from unidentified intra-aerobic anaerobes, occur in this zone. The respiration modes found in the anoxic zone continue into shallow subsurface sediments, but quinone abundances rapidly decrease within the upper 50 cm below sea floor, reflecting the transition to lower energy availability. In the deep subseafloor sediments, quinone distributions and geochemical profiles indicate archaeal methanogenesis/methanotrophy and potentially bacterial fermentative metabolisms. We observed that sedimentary quinone distributions track lithology, which supports prior hypotheses that deep biosphere community composition and metabolisms are determined by environmental conditions during sediment deposition. Importance Microorganisms play crucial roles in global biogeochemical cycles. Yet, we have only a fragmentary understanding of the diversity

  17. In vivo exposure of Dreissena polymorpha mussels to the quinones menadione and lawsone: menadione is more toxic to mussels than lawsone.

    PubMed

    Osman, A M; Rotteveel, S; den Besten, P J; van Noort, P C M

    2004-01-01

    The principal aim of this study was to assess whether the two quinones, menadione (2-methyl-1,4-naphthoquinone) and lawsone (2-hydroxy-1,4-naphthoquinone), elicit differential toxicity in mussels as has been reported for higher organisms. Therefore, the effects of short-term (48 h) and long-term (20 days) exposure of the two quinones at concentrations of 0.56 and 1 mg l(-1) to zebra mussels, Dreissena polymorpha, under laboratory conditions were studied. After the short-term exposure, the specific activities of the two-electron quinone oxidoreductase (DT-diaphorase) and the one-electron catalysing quinone reductases NADPH-cytochrome c reductase and NADH-cytochrome c reductase were determined in the gills and the rest of the soft tissues (soft mussel tissues minus the gills) of both treated and control mussels. At the higher concentrations of menadione and lawsone used, a significant reduction of the activity of NADPH-cytochrome c reductase in the gills and in the rest of the soft mussel tissues (by 33-34% and 31-43%, respectively) was observed. The activities of DT-diaphorase and NADH-cytochrome c reductase were not significantly affected. Interestingly, DT-diaphorase was observed in the gills, an organ requiring protection against antioxidants. Furthermore, a single-cell electrophoretic assay (comet assay) performed with gill cells to assess DNA damage by the quinones did not show any significant difference between the treated and the control organisms. This indicates that the formation of reactive species by the quinone metabolism in vivo in the mussels was possibly suppressed through the concerted action of DT-diaphorase and antioxidant enzymes. The results of in vitro experiments with gill extracts confirmed the protective role of DT-diaphorase. The rate of the two-electron quinone reduction was found to be five times that of the one-electron quinone reduction. The results of the long-term exposure unambiguously demonstrated that in mussels menadione, unlike in

  18. The Role of Human Aldo-Keto Reductases in the Metabolic Activation and Detoxication of Polycyclic Aromatic Hydrocarbons: Interconversion of PAH Catechols and PAH o-Quinones

    PubMed Central

    Zhang, Li; Jin, Yi; Huang, Meng; Penning, Trevor M.

    2012-01-01

    Polycyclic aromatic hydrocarbons (PAH) are ubiquitous environmental pollutants. They are procarcinogens requiring metabolic activation to elicit their deleterious effects. Aldo-keto reductases (AKR) catalyze the oxidation of proximate carcinogenic PAH trans-dihydrodiols to yield electrophilic and redox-active PAH o-quinones. AKRs are also found to be capable of reducing PAH o-quinones to form PAH catechols. The interconversion of o-quinones and catechols results in the redox-cycling of PAH o-quinones to give rise to the generation of reactive oxygen species and subsequent oxidative DNA damage. On the other hand, PAH catechols can be intercepted through phase II metabolism by which PAH o-quinones could be detoxified and eliminated. The aim of the present review is to summarize the role of human AKRs in the metabolic activation/detoxication of PAH and the relevance of phase II conjugation reactions to human lung carcinogenesis. PMID:23162467

  19. Identifying the Tautomeric Form of a Deoxyguanosine-Estrogen Quinone Intermediate.

    PubMed

    Stack, Douglas E

    2015-09-10

    Mechanistic insights into the reaction of an estrogen o-quinone with deoxyguanosine has been further investigated using high level density functional calculations in addition to the use of 4-hyroxycatecholestrone (4-OHE₁) regioselectivity labeled with deuterium at the C1-position. Calculations using the M06-2X functional with large basis sets indicate the tautomeric form of an estrogen-DNA adduct present when glycosidic bonds cleavage occurs is comprised of an aromatic A ring structure. This tautomeric form was further verified by use of deuterium labelling of the catechol precursor use to form the estrogen o-quinone. Regioselective deuterium labelling at the C1-position of the estrogen A ring allows discrimination between two tautomeric forms of a reaction intermediate either of which could be present during glycosidic bond cleavage. HPLC-MS analysis indicates a reactive intermediate with a m/z of 552.22 consistent with a tautomeric form containing no deuterium. This intermediate is consistent with a reaction mechanism that involves: (1) proton assisted Michael addition; (2) re-aromatization of the estrogen A ring; and (3) glycosidic bond cleavage to form the known estrogen-DNA adduct, 4-OHE₁-1-N7Gua.

  20. Measuring protection of aromatic wine thiols from oxidation by competitive reactions vs wine preservatives with ortho-quinones.

    PubMed

    Nikolantonaki, Maria; Magiatis, Prokopios; Waterhouse, Andrew L

    2014-11-15

    Quinones are central intermediates in wine oxidation that can degrade the quality of wine by reactions with varietal thiols, such as 3-sulfanylhexanol, decreasing desirable aroma. Protection by wine preservatives (sulphur dioxide, glutathione, ascorbic acid and model tannin, phloroglucinol) was assessed by competitive sacrificial reactions with 4-methyl-1,2-benzoquinone, quantifying products and ratios by HPLC-UV-MS. Regioselectivity was assessed by product isolation and identification by NMR spectroscopy. Nucleophilic addition reactions compete with two electron reduction of quinones by sulphur dioxide or ascorbic acid, and both routes serve as effective quenching pathways, but minor secondary products from coupled redox reactions between the products and reactants are also observed. The wine preservatives were all highly reactive and thus all very protective against 3-sulfanylhexanol loss to the quinone, but showed only additive antioxidant effects. Confirmation of these reaction rates and pathways in wine is needed to assess the actual protective action of each tested preservative. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. The binding of quinone to the photosynthetic reaction centers: kinetics and thermodynamics of reactions occurring at the QB-site in zwitterionic and anionic liposomes.

    PubMed

    Mavelli, Fabio; Trotta, Massimo; Ciriaco, Fulvio; Agostiano, Angela; Giotta, Livia; Italiano, Francesca; Milano, Francesco

    2014-07-01

    Liposomes represent a versatile biomimetic environment for studying the interaction between integral membrane proteins and hydrophobic ligands. In this paper, the quinone binding to the QB-site of the photosynthetic reaction centers (RC) from Rhodobacter sphaeroides has been investigated in liposomes prepared with either the zwitterionic phosphatidylcholine (PC) or the negatively charged phosphatidylglycerol (PG) to highlight the role of the different phospholipid polar heads. Quinone binding (K Q) and interquinone electron transfer (L AB) equilibrium constants in the two type of liposomes were obtained by charge recombination reaction of QB-depleted RC in the presence of increasing amounts of ubiquinone-10 over the temperature interval 6-35 °C. The kinetic of the charge recombination reactions has been fitted by numerically solving the ordinary differential equations set associated with a detailed kinetic scheme involving electron transfer reactions coupled with quinone release and uptake. The entire set of traces at each temperature was accurately fitted using the sole quinone release constants (both in a neutral and a charge separated state) as adjustable parameters. The temperature dependence of the quinone exchange rate at the QB-site was, hence, obtained. It was found that the quinone exchange regime was always fast for PC while it switched from slow to fast in PG as the temperature rose above 20 °C. A new method was introduced in this paper for the evaluation of constant K Q using the area underneath the charge recombination traces as the indicator of the amount of quinone bound to the QB-site.

  2. Quinones are growth factors for the human gut microbiota.

    PubMed

    Fenn, Kathrin; Strandwitz, Philip; Stewart, Eric J; Dimise, Eric; Rubin, Sarah; Gurubacharya, Shreya; Clardy, Jon; Lewis, Kim

    2017-12-20

    The human gut microbiome has been linked to numerous components of health and disease. However, approximately 25% of the bacterial species in the gut remain uncultured, which limits our ability to properly understand, and exploit, the human microbiome. Previously, we found that growing environmental bacteria in situ in a diffusion chamber enables growth of uncultured species, suggesting the existence of growth factors in the natural environment not found in traditional cultivation media. One source of growth factors proved to be neighboring bacteria, and by using co-culture, we isolated previously uncultured organisms from the marine environment and identified siderophores as a major class of bacterial growth factors. Here, we employ similar co-culture techniques to grow bacteria from the human gut microbiome and identify novel growth factors. By testing dependence of slow-growing colonies on faster-growing neighboring bacteria in a co-culture assay, eight taxonomically diverse pairs of bacteria were identified, in which an "induced" isolate formed a gradient of growth around a cultivatable "helper." This set included two novel species Faecalibacterium sp. KLE1255-belonging to the anti-inflammatory Faecalibacterium genus-and Sutterella sp. KLE1607. While multiple helper strains were identified, Escherichia coli was also capable of promoting growth of all induced isolates. Screening a knockout library of E. coli showed that a menaquinone biosynthesis pathway was required for growth induction of Faecalibacterium sp. KLE1255 and other induced isolates. Purified menaquinones induced growth of 7/8 of the isolated strains, quinone specificity profiles for individual bacteria were identified, and genome analysis suggests an incomplete menaquinone biosynthetic capability yet the presence of anaerobic terminal reductases in the induced strains, indicating an ability to respire anaerobically. Our data show that menaquinones are a major class of growth factors for bacteria

  3. Inhibition of in vitro leukotriene B4 biosynthesis in human neutrophil granulocytes and docking studies of natural quinones.

    PubMed

    Landa, Premysl; Kutil, Zsofia; Temml, Veronika; Malik, Jan; Kokoska, Ladislav; Widowitz, Ute; Pribylova, Marie; Dvorakova, Marcela; Marsik, Petr; Schuster, Daniela; Bauer, Rudolf; Vanek, Tomas

    2013-01-01

    Quinones are compounds frequently contained in medicinal plants used for the treatment of inflammatory diseases. Therefore, the impact of plant-derived quinones on the arachidonic acid metabolic pathway is worthy of investigation. In this study, twenty-three quinone compounds of plant origin were tested in vitro for their potential to inhibit leukotriene B4 (LTB4) biosynthesis in activated human neutrophil granulocytes with 5-lipoxygenase (5-LOX) activity. The benzoquinones primin (3) and thymohydroquinone (4) (IC50 = 4.0 and 4.1 microM, respectively) showed activity comparable with the reference inhibitor zileuton (1C50 = 4.1 microM). Moderate activity was observed for the benzoquinone thymoquinone (2) (1C50 = 18.2 microM) and the naphthoquinone shikonin (1) (IC50 = 24.3 microM). The anthraquinone emodin and the naphthoquinone plumbagin (5) displayed only weak activities (IC50 > 50 microM). The binding modes of the active compounds were further evaluated in silico by molecular docking to the human 5-LOX crystal structure. This process supports the biological data and suggested that, although the redox potential is responsible for the quinone's activity on multiple targets, in the case of 5-LOX the molecular structure plays a vital role in the inhibition. The obtained results suggest primin as a promising compound for the development of dual COX-2/5-LOX inhibitors.

  4. Enzyme-Initiated Quinone-Chitosan Conjugation Chemistry: Toward A General in Situ Strategy for High-Throughput Photoelectrochemical Enzymatic Bioanalysis.

    PubMed

    Wang, Guang-Li; Yuan, Fang; Gu, Tiantian; Dong, Yuming; Wang, Qian; Zhao, Wei-Wei

    2018-02-06

    Herein we report a general and novel strategy for high-throughput photoelectrochemical (PEC) enzymatic bioanalysis on the basis of enzyme-initiated quinone-chitosan conjugation chemistry (QCCC). Specifically, the strategy was illustrated by using a model quinones-generating oxidase of tyrosinase (Tyr) to catalytically produce 1,2-bezoquinone or its derivative, which can easily and selectively be conjugated onto the surface of the chitosan deposited PbS/NiO/FTO photocathode via the QCCC. Upon illumination, the covalently attached quinones could act as electron acceptors of PbS quantum dots (QDs), improving the photocurrent generation and thus allowing the elegant probing of Tyr activity. Enzyme cascades, such as alkaline phosphatase (ALP)/Tyr and β-galactosidase (Gal)/Tyr, were further introduced into the system for the successful probing of the corresponding targets. This work features not only the first use of QCCC in PEC bioanalysis but also the separation of enzymatic reaction from the photoelectrode as well as the direct signal recording in a split-type protocol, which enables quite convenient and high-throughput detection as compared to previous formats. More importantly, by using numerous other oxidoreductases that involve quinones as reactants/products, this protocol could serve as a common basis for the development of a new class of QCCC-based PEC enzymatic bioanalysis and further extended for general enzyme-labeled PEC bioanalysis of versatile targets.

  5. Liquid Quinones for Solvent-Free Redox Flow Batteries.

    PubMed

    Shimizu, Akihiro; Takenaka, Keisuke; Handa, Naoyuki; Nokami, Toshiki; Itoh, Toshiyuki; Yoshida, Jun-Ichi

    2017-11-01

    Liquid benzoquinone and naphthoquinone having diethylene glycol monomethyl ether groups are designed and synthesized as redox active materials that dissolve supporting electrolytes. The Li-ion batteries based on the liquid quinones using LiBF 4 /PC show good performance in terms of voltage, capacity, energy efficiency, and cyclability in both static and flow modes. A battery is constructed without using intentionally added organic solvent, and its high energy density (264 W h L -1 ) demonstrates the potential of solvent-free organic redox flow batteries using liquid active materials. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Differential antioxidant and quinone reductase inducing activity of American, Asian, and Siberian ginseng

    USDA-ARS?s Scientific Manuscript database

    The antioxidant and quinone reductase (QR) inducing activities of American, Asian, and Siberian ginseng have been reported using various plant materials, solvents, and assays. To directly establish their comparative bioactivity, the effects of extracts obtained from acidified methanol (MeOH), a gas...

  7. Compositions comprising a polypeptide having cellulolytic enhancing activity and a quinone compound and uses thereof

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Quinlan, Jason; Xu, Feng; Sweeney, Matthew

    The present invention relates to compositions comprising: a polypeptide having cellulolytic enhancing activity and a quinone compound. The present invention also relates to methods of using the compositions.

  8. Compositions comprising a polypeptide having cellulolytic enhancing activity and a quinone compound and uses thereof

    DOEpatents

    Quinlan, Jason; Xu, Feng; Sweeney, Matthew

    2016-03-01

    The present invention relates to compositions comprising: a polypeptide having cellulolytic enhancing activity and a quinone compound. The present invention also relates to methods of using the compositions.

  9. Polychlorinated biphenyl quinone induces oxidative DNA damage and repair responses: The activations of NHEJ, BER and NER via ATM-p53 signaling axis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dong, Hui; Shi, Qiong; Song, Xiufang

    2015-07-01

    Our previous studies demonstrated that polychlorinated biphenyl (PCB) quinone induced oxidative DNA damage in HepG2 cells. To promote genomic integrity, DNA damage response (DDR) coordinates cell-cycle transitions, DNA repair and apoptosis. PCB quinone-induced cell cycle arrest and apoptosis have been documented, however, whether PCB quinone insult induce DNA repair signaling is still unknown. In this study, we identified the activation of DDR and corresponding signaling events in HepG2 cells upon the exposure to a synthetic PCB quinone, PCB29-pQ. Our data illustrated that PCB29-pQ induces the phosphorylation of p53, which was mediated by ataxia telangiectasia mutated (ATM) protein kinase. The observedmore » phosphorylated histone H2AX (γ-H2AX) foci and the elevation of 8-hydroxy-2′-deoxyguanosine (8-OHdG) indicated that DDR was stimulated by PCB29-pQ treatment. Additionally, we found PCB29-pQ activates non-homologous end joining (NHEJ), base excision repair (BER) and nucleotide excision repair (NER) signalings. However, these repair pathways are not error-free processes and aberrant repair of DNA damage may cause the potential risk of carcinogenesis and mutagenesis. - Highlights: • Polychlorinated biphenyl quinone induces oxidative DNA damage in HepG2 cells. • The elevation of γ-H2AX and 8-OHdG indicates the activation of DNA damage response. • ATM-p53 signaling acts as the DNA damage sensor and effector. • Polychlorinated biphenyl quinone activates NHEJ, BER and NER signalings.« less

  10. Novel chemistries and materials for grid-scale energy storage: Quinones and halogen catalysis

    NASA Astrophysics Data System (ADS)

    Huskinson, Brian Thomas

    In this work I describe various approaches to electrochemical energy storage at the grid-scale. Chapter 1 provides an introduction to energy storage and an overview of the history and development of flow batteries. Chapter 2 describes work on the hydrogen-chlorine regenerative fuel cell, detailing its development and the record-breaking performance of the device. Chapter 3 dives into catalyst materials for such a fuel cell, focusing on ruthenium oxide based alloys to be used as chlorine redox catalysts. Chapter 4 introduces and details the development of a performance model for a hydrogen-bromine cell. Chapter 5 delves into the more recent work I have done, switching to applications of quinone chemistries in flow batteries. It focuses on the pairing of one particular quinone (2,7-anthraquinone disulfonic acid) with bromine, and highlights the promising performance characteristics of a device based on this type of chemistry.

  11. Potential gastroprotective effect of novel cyperenoic acid/quinone derivatives in human cell cultures.

    PubMed

    Theoduloz, Cristina; Carrión, Ivanna Bravo; Pertino, Mariano Walter; Valenzuela, Daniela; Schmeda-Hirschmann, Guillermo

    2012-11-01

    The stem bark of Tabebuia species and the rhizomes of Jatropha isabelii are used in Paraguayan traditional medicine to treat gastric lesions and as anti-inflammatory agents. The sesquiterpene cyperenoic acid obtained from J. isabelii has been shown to display a gastroprotective effect in animal models of induced gastric ulcers while the quinone lapachol shows several biological effects associated with the use of the crude drug. The aim of this work was to prepare hybrid molecules presenting a terpene and a quinone moiety and to obtain an assessment of the gastroprotective activity of the new compounds using human cell cultures (MRC-5 fibroblasts and AGS epithelial gastric cells). Eight compounds, including the natural products and semisynthetic derivatives were assessed for proliferation of MRC-5 fibroblasts, protection against sodium taurocholate-induced damage, prostaglandin E2 content, and stimulation of cellular-reduced glutathione synthesis in AGS cells. The following antioxidant assays were performed: DPPH discoloration, scavenging of the superoxide anion, and inhibition of induced lipoperoxidation in erythrocyte membranes. 3-Hydroxy-β-lapachone (3) and cyperenoic acid (4) stimulated fibroblast proliferation. Lapachol (1), dihydroprenyl lapachol (2), 3-hydroxy-β-lapachone (3), and lapachoyl cyperenate (6) protected against sodium taurocholate-induced damage in AGS cells. Lapachol (1) and dihydroprenyl lapachoyl cyperenate (7) significantly stimulated prostaglandin E2 synthesis in AGS cells. Compounds 3, 4, and 7 raised reduced glutathione levels in AGS cells. The hybrid compounds presented activities different than those of the starting sesquiterpene or quinones. Georg Thieme Verlag KG Stuttgart · New York.

  12. Chloroquine Binding Reveals Flavin Redox Switch Function of Quinone Reductase 2*

    PubMed Central

    Leung, Kevin K. K.; Shilton, Brian H.

    2013-01-01

    Quinone reductase 2 (NQO2) is an FAD-linked enzyme and the only known human target of two antimalarial drugs, primaquine (PQ) and chloroquine (CQ). The structural differences between oxidized and reduced NQO2 and the structural basis for inhibition by PQ and CQ were investigated by x-ray crystallography. Structures of oxidized NQO2 in complex with PQ and CQ were solved at 1.4 Å resolution. CQ binds preferentially to reduced NQO2, and upon reduction of NQO2-CQ crystals, the space group changed from P212121 to P21, with 1-Å decreases in all three unit cell dimensions. The change in crystal packing originated in the negative charge and 4–5º bend in the reduced isoalloxazine ring of FAD, which resulted in a new mode of CQ binding and closure of a flexible loop (Phe126–Leu136) over the active site. This first structure of a reduced quinone reductase shows that reduction of the FAD cofactor and binding of a specific inhibitor lead to global changes in NQO2 structure and is consistent with a functional role for NQO2 as a flavin redox switch. PMID:23471972

  13. Wide-band, time-resolved photoacoustic study of electron-transfer reactions. Photoexcited magnesium porphyrin and quinones

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feitelson, J.; Mauzerall, D.C.

    1993-08-12

    Wide-band, time-resolved, pulsed photoacoustics has been employed to study the electron-transfer reaction between a triplet magnesium porphyrin and various quinones in polar and nonpolar solvents. The reaction rate constants are near encounter limited. The yield of triplet state is 70% in both solvents. The yield of ions is 85% in the former and zero in the latter, in agreement with spin dephasing time and escape times from the Coulomb wells in the two solvents. In methanol the plot of measured heat output versus quinone redox potential is linear. This implies that the entropy of electron transfer is constant through themore » series, but it may not be negligible. 16 refs., 2 figs., 1 tab.« less

  14. A prototype hybrid 7π quinone-fused 1,3,2-dithiazolyl radical.

    PubMed

    Decken, A; Mailman, A; Passmore, J; Rautiainen, J M; Scherer, W; Scheidt, E-W

    2011-01-28

    Reaction of 1,4-naphthoquinone and SNSMF(6) (M = As, Sb) in SO(2) solution in a 1 : 2 molar ratio led to the naphthoquinone fused 1,3,2-dithiazolylium salts, 3MF(6) quantitatively by multinuclear NMR (87% isolated yield of 3SbF(6)) via the cycloaddition and oxidative dehydrogenation chemistry of SNS(+) with formation of NH(4)SbF(6) and S(8). The product 3SbF(6) was fully characterized by IR, Raman, multinuclear {(1)H, (13)C, (14)N} NMR, elemental analysis, cyclic voltammetry and single crystal X-ray crystallography. The reduction of 3SbF(6) with ferrocene (Cp(2)Fe) in refluxing acetonitrile (CH(3)CN) led to the first isolation of a fused quinone-thiazyl radical, 3˙ in 73% yield. The prototype hybrid quinone-thiazyl radical 3˙ was fully characterized by IR, Raman microscopy, EI-MS, elemental analysis, solution and solid state EPR, magnetic susceptibility (2-370 K) and was found to form π*-π* dimers in the solid state as determined by single crystal X-ray crystallography. Furthermore, the thermal decomposition of 3˙ led to a novel quinone-fused 1,2,3,4-tetrathiine, 10 (x = 2) and the known 1,2,5-thiadiazole, 11. The energetics of the cycloadditon and oxidative dehydrogenation chemistry of SNS(+) and 1,4-naphthoquinone leading to 3SbF(6) were estimated in the gas phase and SO(2) solution by DFT calculations (PBE0/6-311G(d)) and lattice enthalpies obtained by the volume based thermodynamic (VBT) approach in the solid state. The gas phase ion energetics (ionization potential (IP) and electron affinity (EA)) of 3˙ are compared to related 1,3,2- and 1,2,3-dithiazolyl radicals.

  15. Metabolism of a Representative Oxygenated Polycyclic Aromatic Hydrocarbon (PAH) Phenanthrene-9,10-quinone in Human Hepatoma (HepG2) Cells

    PubMed Central

    2014-01-01

    Exposure to polycyclic aromatic hydrocarbons (PAHs) in the food chain is the major human health hazard associated with the Deepwater Horizon oil spill. Phenanthrene is a representative PAH present in crude oil, and it undergoes biological transformation, photooxidation, and chemical oxidation to produce its signature oxygenated derivative, phenanthrene-9,10-quinone. We report the downstream metabolic fate of phenanthrene-9,10-quinone in HepG2 cells. The structures of the metabolites were identified by HPLC–UV–fluorescence detection and LC–MS/MS. O-mono-Glucuronosyl-phenanthrene-9,10-catechol was identified, as reported previously. A novel bis-conjugate, O-mono-methyl-O-mono-sulfonated-phenanthrene-9,10-catechol, was discovered for the first time, and evidence for both of its precursor mono conjugates was obtained. The identities of these four metabolites were unequivocally validated by comparison to authentic enzymatically synthesized standards. Evidence was also obtained for a minor metabolic pathway of phenanthrene-9,10-quinone involving bis-hydroxylation followed by O-mono-sulfonation. The identification of 9,10-catechol conjugates supports metabolic detoxification of phenanthrene-9,10-quinone through interception of redox cycling by UGT, COMT, and SULT isozymes and indicates the possible use of phenanthrene-9,10-catechol conjugates as biomarkers of human exposure to oxygenated PAH. PMID:24646012

  16. Three-dimensional Structure and Enzymatic Function of Proapoptotic Human p53-inducible Quinone Oxidoreductase PIG3*

    PubMed Central

    Porté, Sergio; Valencia, Eva; Yakovtseva, Evgenia A.; Borràs, Emma; Shafqat, Naeem; Debreczeny, Judit É.; Pike, Ashley C. W.; Oppermann, Udo; Farrés, Jaume; Fita, Ignacio; Parés, Xavier

    2009-01-01

    Tumor suppressor p53 regulates the expression of p53-induced genes (PIG) that trigger apoptosis. PIG3 or TP53I3 is the only known member of the medium chain dehydrogenase/reductase superfamily induced by p53 and is used as a proapoptotic marker. Although the participation of PIG3 in the apoptotic pathway is proven, the protein and its mechanism of action were never characterized. We analyzed human PIG3 enzymatic function and found NADPH-dependent reductase activity with ortho-quinones, which is consistent with the classification of PIG3 in the quinone oxidoreductase family. However, the activity is much lower than that of ζ-crystallin, a better known quinone oxidoreductase. In addition, we report the crystallographic structure of PIG3, which allowed the identification of substrate- and cofactor-binding sites, with residues fully conserved from bacteria to human. Tyr-59 in ζ-crystallin (Tyr-51 in PIG3) was suggested to participate in the catalysis of quinone reduction. However, kinetics of Tyr/Phe and Tyr/Ala mutants of both enzymes demonstrated that the active site Tyr is not catalytic but may participate in substrate binding, consistent with a mechanism based on propinquity effects. It has been proposed that PIG3 contribution to apoptosis would be through oxidative stress generation. We found that in vitro activity and in vivo overexpression of PIG3 accumulate reactive oxygen species. Accordingly, an inactive PIG3 mutant (S151V) did not produce reactive oxygen species in cells, indicating that enzymatically active protein is necessary for this function. This supports that PIG3 action is through oxidative stress produced by its enzymatic activity and provides essential knowledge for eventual control of apoptosis. PMID:19349281

  17. Induction of quinone reductase (QR) by withanolides isolated from Physalis pubescens L. (Solanaceae).

    PubMed

    Ji, Long; Yuan, Yonglei; Ma, Zhongjun; Chen, Zhe; Gan, Lishe; Ma, Xiaoqiong; Huang, Dongsheng

    2013-09-01

    In the present study, it was demonstrated that the dichloromethane extract of Physalis pubescens L. (DEPP) had weak potential quinone reductase (QR) inducing activity, but an UPLC-ESI-MS method with glutathione (GSH) as the substrate revealed that the DEPP had electrophiles (with an α,β-unsaturated ketone moiety). These electrophiles could induce quinone reductase (QR) activity, which might be attributed to the modification of the highly reactive cysteine residues in Keap1. Herein, four withanolides, including three new compounds physapubescin B (2), physapubescin C (3), physapubescin D (4), together with one known steroidal compound physapubescin (1) were isolated. Structures of these compounds were determined by spectroscopic analysis and that of physapubescin C (3) was confirmed by a combination of molecular modeling and quantum chemical DFT-GIAO calculations. Evaluation of the QR inducing activities of all withanolides indicated potent activities of compounds 1 and 2, which had a common α,β-unsaturated ketone moiety. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Immunomodulatory Effects of Diterpene Quinone Derivatives from the Roots of Horminum pyrenaicum in Human PBMC

    PubMed Central

    Becker, K.; Schwaiger, S.; Waltenberger, B.; Pezzei, C. K.; Schennach, H.

    2018-01-01

    Several phytochemicals were shown to interfere with redox biology in the human system. Moreover, redox biochemistry is crucially involved in the orchestration of immunological cascades. When screening for immunomodulatory compounds, the two interferon gamma- (IFN-γ-) dependent immunometabolic pathways of tryptophan breakdown via indoleamine 2,3-dioxygenase-1 (IDO-1) and neopterin formation by GTP-cyclohydrolase 1 (GTP-CH-I) represent prominent targets, as IFN-γ-related signaling is strongly sensitive to oxidative triggers. Herein, the analysis of these pathway activities in human peripheral mononuclear cells was successfully applied in a bioactivity-guided fractionation strategy to screen for anti-inflammatory substances contained in the root of Horminum (H.) pyrenaicum L. (syn. Dragon's mouth), the only representative of the monophyletic genus Horminum. Four abietane diterpene quinone derivatives (horminone, 7-O-acetylhorminone, inuroyleanol and its 15,16-dehydro-derivative, a novel natural product), two nor-abietane diterpene quinones (agastaquinone and 3-deoxyagastaquinone) and two abeo 18 (4 → 3) abietane diterpene quinones (agastol and its 15,16-dehydro-derivative) could be identified. These compounds were able to dose-dependently suppress the above mentioned pathways with different potency. Beside the description of new active compounds, this study demonstrates the feasibility of integrating IDO-1 and GTP-CH-I activity in the search for novel anti-inflammatory compounds, which can then be directed towards a more detailed mode of action analysis. PMID:29576845

  19. The Quinone Based Antitumor Agent Sepantronium Bromide (YM155) Causes Oxygen Independent Redox Activated Oxidative DNA Damage.

    PubMed

    Wani, Tasaduq Hussain; Surendran, Sreeraj; Jana, Anal; Chakrabarty, Anindita; Chowdhury, Goutam

    2018-06-13

    Sepantronium bromide (YM155) is a small molecule antitumor agent currently in phase II clinical trials. Although developed as survivin suppressor, YM155's primary mode of action has recently been found to be DNA damage. However, the mechanism of DNA damage by YM155 is still unknown. Knowing the mechanism of action of an anticancer drug is necessary to formulate a rational drug combination and select a cancer type for achieving maximum clinical efficacy. Using cell-based assays we showed that YM155 cause extensive DNA cleavage and reactive oxygen species generation. DNA cleavage by YM155 was found to be inhibited by radical scavengers and desferal. The reducing agent DTT and the cellular reducing system xanthine/xanthine oxidase were found to reductively activate YM155 and cause DNA cleavage. Unlike quinones, DNA cleavage by YM155 occurs in the presence of catalase and under hypoxic conditions indicating that hydrogen peroxide and oxygen is not necessary. Although YM155 is a quinone, it does not follow a typical quinone mechanism. Consistent with these observations a mechanism has been proposed that suggests that YM155 can cause oxidative DNA cleavage upon two electron reductive activation.

  20. Loss of quinone reductase 2 function selectively facilitates learning behaviors.

    PubMed

    Benoit, Charles-Etienne; Bastianetto, Stephane; Brouillette, Jonathan; Tse, YiuChung; Boutin, Jean A; Delagrange, Philippe; Wong, TakPan; Sarret, Philippe; Quirion, Rémi

    2010-09-22

    High levels of reactive oxygen species (ROS) are associated with deficits in learning and memory with age as well as in Alzheimer's disease. Using DNA microarray, we demonstrated the overexpression of quinone reductase 2 (QR2) in the hippocampus in two models of learning deficits, namely the aged memory impaired rats and the scopolamine-induced amnesia model. QR2 is a cytosolic flavoprotein that catalyzes the reduction of its substrate and enhances the production of damaging activated quinone and ROS. QR2-like immunostaining is enriched in cerebral structures associated with learning behaviors, such as the hippocampal formation and the temporofrontal cortex of rat, mouse, and human brains. In cultured rat embryonic hippocampal neurons, selective inhibitors of QR2, namely S26695 and S29434, protected against menadione-induced cell death by reversing its proapoptotic action. S26695 (8 mg/kg) also significantly inhibited scopolamine-induced amnesia. Interestingly, adult QR2 knock-out mice demonstrated enhanced learning abilities in various tasks, including Morris water maze, object recognition, and rotarod performance test. Other behaviors related to anxiety (elevated plus maze), depression (forced swim), and schizophrenia (prepulse inhibition) were not affected in QR2-deficient mice. Together, these data suggest a role for QR2 in cognitive behaviors with QR2 inhibitors possibly representing a novel therapeutic strategy toward the treatment of learning deficits especially observed in the aged brain.

  1. EXAMINATION OF QUINONE TOXICITY USING YEAST SACCHAROMYCES CEREVISIAE MODEL SYSTEM. (R827352C007)

    EPA Science Inventory

    The toxicity of quinones is generally thought to occur by two mechanisms: the formation of covalent bonds with biological molecules by Michael addition chemistry and the catalytic reduction of oxygen to superoxide and other reactive oxygen species (ROS) (redox cycling). In an ...

  2. Combined molecular modelling and 3D-QSAR study for understanding the inhibition of NQO1 by heterocyclic quinone derivatives.

    PubMed

    López-Lira, Claudia; Alzate-Morales, Jans H; Paulino, Margot; Mella-Raipán, Jaime; Salas, Cristian O; Tapia, Ricardo A; Soto-Delgado, Jorge

    2018-01-01

    A combination of three-dimensional quantitative structure-activity relationship (3D-QSAR), and molecular modelling methods were used to understand the potent inhibitory NAD(P)H:quinone oxidoreductase 1 (NQO1) activity of a set of 52 heterocyclic quinones. Molecular docking results indicated that some favourable interactions of key amino acid residues at the binding site of NQO1 with these quinones would be responsible for an improvement of the NQO1 activity of these compounds. The main interactions involved are hydrogen bond of the amino group of residue Tyr128, π-stacking interactions with Phe106 and Phe178, and electrostatic interactions with flavin adenine dinucleotide (FADH) cofactor. Three models were prepared by 3D-QSAR analysis. The models derived from Model I and Model III, shown leave-one-out cross-validation correlation coefficients (q 2 LOO ) of .75 and .73 as well as conventional correlation coefficients (R 2 ) of .93 and .95, respectively. In addition, the external predictive abilities of these models were evaluated using a test set, producing the predicted correlation coefficients (r 2 pred ) of .76 and .74, respectively. The good concordance between the docking results and 3D-QSAR contour maps provides helpful information about a rational modification of new molecules based in quinone scaffold, in order to design more potent NQO1 inhibitors, which would exhibit highly potent antitumor activity. © 2017 John Wiley & Sons A/S.

  3. Beneficial synergistic effects of microdose lithium with pyrroloquinoline quinone in an Alzheimer's disease mouse model.

    PubMed

    Zhao, Lei; Gong, Neng; Liu, Meng; Pan, Xiaoli; Sang, Shaoming; Sun, Xiaojing; Yu, Zhe; Fang, Qi; Zhao, Na; Fei, Guoqiang; Jin, Lirong; Zhong, Chunjiu; Xu, Tianle

    2014-12-01

    Alzheimer's disease (AD) is a complicated, neurodegenerative disorder involving multifactorial pathogeneses and still lacks effective clinical treatment. Recent studies show that lithium exerts disease-modifying effects against AD. However, the intolerant side effects at conventional effective dosage limit the clinical use of lithium in treating AD. To explore a novel AD treatment strategy with microdose lithium, we designed and synthesized a new chemical, tri-lithium pyrroloquinoline quinone (Li3PQQ), to study the synergistic effects of low-dose lithium and pyrroloquinoline quinone, a native compound with powerful antioxidation and mitochondrial amelioration. The results showed that Li3PQQ at a relative low dose (6 and 12 mg/kg) exhibited more powerful effects in restoring the impairment of learning and memory, facilitating hippocampal long-term potentiation, and reducing cerebral amyloid deposition and phosphorylated tau level in APP/PS1 transgenic mice than that of lithium chloride at both low and high dose (5 and 100 mg/kg). We further found that Li3PQQ inhibited the activity of glycogen synthase kinase-3 and increased the activity of β-amyloid-binding alcohol dehydrogenase, which might underlie the beneficial effects of Li3PQQ on APP/PS1 transgenic mice. Our study demonstrated the efficacy of a novel AD therapeutic strategy targeting at multiple disease-causing mechanisms through the synergistic effects of microdose lithium and pyrroloquinoline quinone. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Substituents on Quinone Methides Strongly Modulate Formation and Stability of Their Nucleophilic Adducts

    PubMed Central

    Weinert, Emily E.; Dondi, Ruggero; Colloredo-Melz, Stefano; Frankenfield, Kristen N.; Mitchell, Charles H.; Freccero, Mauro; Rokita, Steven E.

    2008-01-01

    Electronic perturbation of quinone methides (QM) greatly influences their stability and in turn alters the kinetics and product profile of QM reaction with deoxynucleosides. Consistent with the electron deficient nature of this reactive intermediate, electron-donating substituents are stabilizing and electron-withdrawing substituents are destabilizing. For example, a dC N3-QM adduct is made stable over the course of observation (7 days) by the presence of an electron-withdrawing ester group that inhibits QM regeneration. Conversely, a related adduct with an electron donating methyl group is very labile and regenerates its QM with a half-life of approximately 5 hr. The generality of these effects is demonstrated with a series of alternative quinone methide precursors (QMP) containing a variety of substituents attached at different positions with respect to the exocyclic methylene. The rates of nucleophilic addition to substituted QMs measured by laser flash photolysis similarly span five orders of magnitude with electron rich species reacting most slowly and electron deficient species reacting most quickly. The reversibility of QM reaction can now be predictably adjusted for any desired application. PMID:16953635

  5. Modification of quinone electrochemistry by the proteins in the biological electron transfer chains: examples from photosynthetic reaction centers

    PubMed Central

    Gunner, M. R.; Madeo, Jennifer; Zhu, Zhenyu

    2009-01-01

    Quinones such as ubiquinone are the lipid soluble electron and proton carriers in the membranes of mitochondria, chloroplasts and oxygenic bacteria. Quinones undergo controlled redox reactions bound to specific sites in integral membrane proteins such as the cytochrome bc1 oxidoreductase. The quinone reactions in bacterial photosynthesis are amongst the best characterized, presenting a model to understand how proteins modulate cofactor chemistry. The free energy of ubiquinone redox reactions in aqueous solution and in the QA and QB sites of the bacterial photosynthetic reaction centers (RCs) are compared. In the primary QA site ubiquinone is reduced only to the anionic semiquinone (Q•−) while in the secondary QB site the product is the doubly reduced, doubly protonated quinol (QH2). The ways in which the protein modifies the relative energy of each reduced and protonated intermediate are described. For example, the protein stabilizes Q•− while destabilizing Q= relative to aqueous solution through electrostatic interactions. In addition, kinetic and thermodynamic mechanisms for stabilizing the intermediate semiquinones are compared. Evidence for the protein sequestering anionic compounds by slowing both on and off rates as well as by binding the anion more tightly is reviewed. PMID:18979192

  6. Biphasic Kinetic Behavior of E. coli WrbA, an FMN-Dependent NAD(P)H:Quinone Oxidoreductase

    PubMed Central

    Kishko, Iryna; Harish, Balasubramanian; Zayats, Vasilina; Reha, David; Tenner, Brian; Beri, Dhananjay; Gustavsson, Tobias; Ettrich, Rüdiger; Carey, Jannette

    2012-01-01

    The E. coli protein WrbA is an FMN-dependent NAD(P)H:quinone oxidoreductase that has been implicated in oxidative defense. Three subunits of the tetrameric enzyme contribute to each of four identical, cavernous active sites that appear to accommodate NAD(P)H or various quinones, but not simultaneously, suggesting an obligate tetramer with a ping-pong mechanism in which NAD departs before oxidized quinone binds. The present work was undertaken to evaluate these suggestions and to characterize the kinetic behavior of WrbA. Steady-state kinetics results reveal that WrbA conforms to a ping-pong mechanism with respect to the constancy of the apparent Vmax to Km ratio with substrate concentration. However, the competitive/non-competitive patterns of product inhibition, though consistent with the general class of bi-substrate reactions, do not exclude a minor contribution from additional forms of the enzyme. NMR results support the presence of additional enzyme forms. Docking and energy calculations find that electron-transfer-competent binding sites for NADH and benzoquinone present severe steric overlap, consistent with the ping-pong mechanism. Unexpectedly, plots of initial velocity as a function of either NADH or benzoquinone concentration present one or two Michaelis-Menten phases depending on the temperature at which the enzyme is held prior to assay. The effect of temperature is reversible, suggesting an intramolecular conformational process. WrbA shares these and other details of its kinetic behavior with mammalian DT-diaphorase, an FAD-dependent NAD(P)H:quinone oxidoreductase. An extensive literature review reveals several other enzymes with two-plateau kinetic plots, but in no case has a molecular explanation been elucidated. Preliminary sedimentation velocity analysis of WrbA indicates a large shift in size of the multimer with temperature, suggesting that subunit assembly coupled to substrate binding may underlie the two-plateau behavior. An additional aim of

  7. Investigating the thermostability of succinate: quinone oxidoreductase enzymes by direct electrochemistry at SWNTs-modified electrodes and FTIR spectroscopy

    PubMed Central

    Melin, Frederic; Noor, Mohamed R.; Pardieu, Elodie; Boulmedais, Fouzia; Banhart, Florian; Cecchini, Gary; Soulimane, Tewfik

    2015-01-01

    Succinate Quinone reductases (SQRs) are the enzymes which couple the oxidation of succinate and the reduction of quinones in the respiratory chain of prokaryotes and eukaryotes. We compare herein the temperature-dependent activity and structural stability of two SQRs, the first one from the mesophilic bacterium E. coli and the second one from the thermophilic bacterium T. thermophilus by a combined electrochemical and infrared spectroscopy approach. Direct electron transfer was achieved with the full membrane protein complexes at SWNTs-modified electrodes. The possible structural factors which contribute to the temperature-dependent activity of the enzymes and to the thermostability of the T. thermophiles SQR in particular, are discussed. PMID:25139263

  8. Activity-guided isolation of the chemical constituents of Muntingia calabura using a quinone reductase induction assay.

    PubMed

    Su, Bao-Ning; Jung Park, Eun; Vigo, Jose Schunke; Graham, James G; Cabieses, Fernando; Fong, Harry H S; Pezzuto, John M; Kinghorn, A Douglas

    2003-06-01

    Activity-guided fractionation of an EtOAc-soluble extract of the leaves of Muntingia calabura collected in Peru, using an in vitro quinone reductase induction assay with cultured Hepa 1c1c7 (mouse hepatoma) cells, resulted in the isolation of a flavanone with an unsubstituted B-ring, (2R,3R)-7-methoxy-3,5,8-trihydroxyflavanone (5), as well as 24 known compounds, which were mainly flavanones and flavones. The structure including absolute stereochemistry of compound 5 was determined by spectroscopic (HRMS, 1D and 2D NMR, and CD spectra) methods. Of the isolates obtained, in addition to 5, (2S)-5-hydroxy-7-methoxyflavanone, 2',4'-dihydroxychalcone, 4,2',4'-trihydroxychalcone, 7-hydroxyisoflavone and 7,3',4'-trimethoxyisoflavone were found to induce quinone reductase activity.

  9. Electronic connection between the quinone and cytochrome C redox pools and its role in regulation of mitochondrial electron transport and redox signaling.

    PubMed

    Sarewicz, Marcin; Osyczka, Artur

    2015-01-01

    Mitochondrial respiration, an important bioenergetic process, relies on operation of four membranous enzymatic complexes linked functionally by mobile, freely diffusible elements: quinone molecules in the membrane and water-soluble cytochromes c in the intermembrane space. One of the mitochondrial complexes, complex III (cytochrome bc1 or ubiquinol:cytochrome c oxidoreductase), provides an electronic connection between these two diffusible redox pools linking in a fully reversible manner two-electron quinone oxidation/reduction with one-electron cytochrome c reduction/oxidation. Several features of this homodimeric enzyme implicate that in addition to its well-defined function of contributing to generation of proton-motive force, cytochrome bc1 may be a physiologically important point of regulation of electron flow acting as a sensor of the redox state of mitochondria that actively responds to changes in bioenergetic conditions. These features include the following: the opposing redox reactions at quinone catalytic sites located on the opposite sides of the membrane, the inter-monomer electronic connection that functionally links four quinone binding sites of a dimer into an H-shaped electron transfer system, as well as the potential to generate superoxide and release it to the intermembrane space where it can be engaged in redox signaling pathways. Here we highlight recent advances in understanding how cytochrome bc1 may accomplish this regulatory physiological function, what is known and remains unknown about catalytic and side reactions within the quinone binding sites and electron transfers through the cofactor chains connecting those sites with the substrate redox pools. We also discuss the developed molecular mechanisms in the context of physiology of mitochondria. Copyright © 2015 the American Physiological Society.

  10. Electronic Connection Between the Quinone and Cytochrome c Redox Pools and Its Role in Regulation of Mitochondrial Electron Transport and Redox Signaling

    PubMed Central

    Sarewicz, Marcin; Osyczka, Artur

    2015-01-01

    Mitochondrial respiration, an important bioenergetic process, relies on operation of four membranous enzymatic complexes linked functionally by mobile, freely diffusible elements: quinone molecules in the membrane and water-soluble cytochromes c in the intermembrane space. One of the mitochondrial complexes, complex III (cytochrome bc1 or ubiquinol:cytochrome c oxidoreductase), provides an electronic connection between these two diffusible redox pools linking in a fully reversible manner two-electron quinone oxidation/reduction with one-electron cytochrome c reduction/oxidation. Several features of this homodimeric enzyme implicate that in addition to its well-defined function of contributing to generation of proton-motive force, cytochrome bc1 may be a physiologically important point of regulation of electron flow acting as a sensor of the redox state of mitochondria that actively responds to changes in bioenergetic conditions. These features include the following: the opposing redox reactions at quinone catalytic sites located on the opposite sides of the membrane, the inter-monomer electronic connection that functionally links four quinone binding sites of a dimer into an H-shaped electron transfer system, as well as the potential to generate superoxide and release it to the intermembrane space where it can be engaged in redox signaling pathways. Here we highlight recent advances in understanding how cytochrome bc1 may accomplish this regulatory physiological function, what is known and remains unknown about catalytic and side reactions within the quinone binding sites and electron transfers through the cofactor chains connecting those sites with the substrate redox pools. We also discuss the developed molecular mechanisms in the context of physiology of mitochondria. PMID:25540143

  11. Molecular docking studies of selected tricyclic and quinone derivatives on trypanothione reductase of Leishmania infantum.

    PubMed

    Venkatesan, Santhosh Kannan; Shukla, Anil Kumar; Dubey, Vikash Kumar

    2010-10-01

    Visceral leishmaniasis, most lethal form of Leishmaniasis, is caused by Leishmania infantum in the Old world. Current therapeutics for the disease is associated with a risk of high toxicity and development of drug resistant strains. Thiol-redox metabolism involving trypanothione and trypanothione reductase, key for survival of Leishmania, is a validated target for rational drug design. Recently published structure of trypanothione reductase (TryR) from L. infantum, in oxidized and reduced form along with Sb(III), provides vital clues on active site of the enzyme. In continuation with our attempts to identify potent inhibitors of TryR, we have modeled binding modes of selected tricyclic compounds and quinone derivatives, using AutoDock4. Here, we report a unique binding mode for quinone derivatives and 9-aminoacridine derivatives, at the FAD binding domain. A conserved hydrogen bonding pattern was observed in all these compounds with residues Thr335, Lys60, His461. With the fact that these residues aid in the orientation of FAD towards the active site forming the core of the FAD binding domain, designing selective and potent compounds that could replace FAD in vivo during the synthesis of Trypanothione reductase can be deployed as an effective strategy in designing new drugs towards Leishmaniasis. We also report the binding of Phenothiazine and 9-aminoacridine derivatives at the Z site of the protein. The biological significance and possible mode of inhibition by quinone derivatives, which binds to FAD binding domain, along with other compounds are discussed. (c) 2010 Wiley Periodicals, Inc.

  12. Crystal structures of 1-hy­droxy-4-prop­yloxy-9,10-anthra­quinone and its acetyl derivative

    PubMed Central

    Nakagawa, Hidemi; Kitamura, Chitoshi

    2017-01-01

    1-Hy­droxy-4-prop­yloxy-9,10-anthra­quinone, C17H14O4, (I), and its acetyl derivative, 4-acet­yloxy-4-prop­yloxy-9,10-anthra­quinone, C19H16O5, (II), were synthesized from the commercially available dye quinizarin. In both compounds, the anthra­quinone frameworks are close to planarity. There is a large difference in the conformation of the prop­yloxy group; the mol­ecule of (I) adopts a gauche conformation [O—C—C—C = −64.4 (2)°], although the mol­ecule of (II) takes a trans-planar conformation (zigzag) [O—C—C—C = 176.1 (3)°]. In the mol­ecule of (I), there is an intra­molecular O—H⋯O hydrogen bond. In both crystals, the mol­ecules are linked by C—H ⋯O hydrogen bonds. A difference in the mol­ecular arrangements of (I) and (II) is found along the stacking directions. PMID:29250400

  13. Dissection of the Voltage Losses of an Acidic Quinone Redox Flow Battery

    DOE PAGES

    Chen, Qing; Gerhardt, Michael R.; Aziz, Michael J.

    2017-03-28

    We measure the polarization characteristics of a quinone-bromide redox flow battery with interdigitated flow fields, using electrochemical impedance spectroscopy and voltammetry of a full cell and of a half cell against a reference electrode. We find linear polarization behavior at 50% state of charge all the way to the short-circuit current density of 2.5 A/cm 2. We uniquely identify the polarization area-specific resistance (ASR) of each electrode, the membrane ASR to ionic current, and the electronic contact ASR. We use voltage probes to deduce the electronic current density through each sheet of carbon paper in the quinone-bearing electrode. By alsomore » interpreting the results using the Newman 1-D porous electrode model, we deduce the volumetric exchange current density of the porous electrode. We uniquely evaluate the power dissipation and identify a correspondence to the contributions to the electrode ASR from the faradaic, electronic, and ionic transport processes. We find that, within the electrode, more power is dissipated in the faradaic process than in the electronic and ionic conduction processes combined, despite the observed linear polarization behavior. We examine the sensitivity of the ASR to the values of the model parameters. The greatest performance improvement is anticipated from increasing the volumetric exchange current density.« less

  14. Dopamine quinones activate microglia and induce a neurotoxic gene expression profile: relationship to methamphetamine-induced nerve ending damage.

    PubMed

    Kuhn, Donald M; Francescutti-Verbeem, Dina M; Thomas, David M

    2006-08-01

    Methamphetamine (METH) intoxication leads to persistent damage of dopamine (DA) nerve endings of the striatum. Recently, we and others have suggested that the neurotoxicity associated with METH is mediated by extensive microglial activation. DA itself has been shown to play an obligatory role in METH neurotoxicity, possibly through the formation of quinone species. We show presently that DA-quinones (DAQ) cause a time-dependent activation of cultured microglial cells. Microarray analysis of the effects of DAQ on microglial gene expression revealed that 101 genes were significantly changed in expression, with 73 genes increasing and 28 genes decreasing in expression. Among those genes differentially regulated by DAQ were those often associated with neurotoxic conditions including inflammation, cytokines, chemokines, and prostaglandins. In addition, microglial genes associated with a neuronally protective phenotype were among those that were downregulated by DAQ. These results implicate DAQ as one species that could cause early activation of microglial cells in METH intoxication, manifested as an alteration in the expression of a broad biomarker panel of genes. These results also link oxidative stress, chemical alterations in DA to its quinone, and microglial activation as part of a cascade of glial-neuronal crosstalk that can amplify METH-induced neurotoxicity.

  15. Double hetero-Michael addition of N-substituted hydroxylamines to quinone monoketals: synthesis of bridged isoxazolidines.

    PubMed

    Yin, Zhiwei; Zhang, Jinzhu; Wu, Jing; Liu, Che; Sioson, Kate; Devany, Matthew; Hu, Chunhua; Zheng, Shengping

    2013-07-19

    A general synthesis of bridged isoxazolidines from a double hetero-Michael addition of N-substituted hydroxylamines to quinone monoketals has been developed. The different addition order of N-benzylhydroxylamine and N-Boc hydroxylamine is also discussed. Moreover, the various functionalities in the isoxazolidine products allow facile derivatization.

  16. Enhancing the Performance of Vanadium Redox Flow Batteries using Quinones

    NASA Astrophysics Data System (ADS)

    Mulcahy, James W., III

    The global dependence on fossil fuels continues to increase while the supply diminishes, causing the proliferation in demand for renewable energy sources. Intermittent renewable energy sources such as wind and solar, require electrochemical storage devices in order to transfer stored energy to the power grid at a constant output. Redox flow batteries (RFB) have been studied extensively due to improvements in scalability, cyclability and efficiency over conventional batteries. Vanadium redox flow batteries (VRFB) provide one of the most comprehensive solutions to energy storage in relation to other RFBs by alleviating the problem of cross-contamination. Quinones are a class of organic compounds that have been extensively used in chemistry, biochemistry and pharmacology due to their catalytic properties, fast proton-coupled electron transfer, good chemical stability and low cost. Anthraquinones are a subcategory of quinones and have been utilized in several battery systems. Anthraquinone-2, 6-disulfonic acid (AQDS) was added to a VRFB in order to study its effects on cyclical performance. This study utilized carbon paper electrodes and a Nafion 117 ion exchange membrane for the membrane-electrode assembly (MEA). The cycling performance was investigated over multiple charge and discharge cycles and the addition of AQDS was found to increase capacity efficiency by an average of 7.6% over the standard VRFB, while decreasing the overall cycle duration by approximately 18%. It is thus reported that the addition of AQDS to a VRFB electrolyte has the potential to increase the activity and capacity with minimal increases in costs.

  17. Michael Additions of Highly Basic Enolates to ortho-Quinone Methides

    PubMed Central

    Lewis, Robert S.; Garza, Christopher J.; Dang, Ann T.; Pedro, Te Kie A.; Chain, William J.

    2015-01-01

    A protocol by which ketone or ester enolates and ortho-quinone methides (o-QMs) are generated in situ in a single reaction flask from silylated precursors under the action of anhydrous fluoride is reported. The reaction partners are joined to give a variety of β-(2-hydroxyphenyl)-carbonyl compounds in 32–94% yield in a single laboratory operation. The intermediacy of o-QMs is supported by control experiments utilizing enolate precursors and conventional alkyl halides as competitive alkylating agents and the isolation of 1,5-dicarbonyl products resulting from conjugate additions that do not restore the aromatic system. PMID:25906358

  18. Intramolecular Aza-Diels-Alder Reactions of ortho-Quinone Methide Imines: Rapid, Catalytic, and Enantioselective Assembly of Benzannulated Quinolizidines.

    PubMed

    Kretzschmar, Martin; Hofmann, Fabian; Moock, Daniel; Schneider, Christoph

    2018-04-16

    Aza-Diels-Alder reactions (ADARs) are powerful processes that furnish N-heterocycles in a straightforward fashion. Intramolecular variants offer the additional possibility of generating bi- and polycyclic systems with high stereoselectivity. We report herein a novel Brønsted acid catalyzed process in which ortho-quinone methide imines tethered to the dienophile via the N substituent react in an intramolecular ADAR to form complex quinolizidines and oxazinoquinolines in a one-step process. The reactions proceed under very mild conditions, with very good yields and good to very good diastereo- and enantioselectivities. Furthermore, the process was extended to a domino reaction that efficiently combines substrate synthesis, ortho-quinone methide imine formation, and ADAR. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Quinones from plants of northeastern Brazil: structural diversity, chemical transformations, NMR data and biological activities.

    PubMed

    Lemos, Telma L G; Monte, Francisco J Q; Santos, Allana Kellen L; Fonseca, Aluisio M; Santos, Hélcio S; Oliveira, Mailcar F; Costa, Sonia M O; Pessoa, Otilia D L; Braz-Filho, Raimundo

    2007-05-20

    The present review focus in quinones found in species of Brazilian northeastern Capraria biflora, Lippia sidoides, Lippia microphylla and Tabebuia serratifolia. The review cover ethnopharmacological aspects including photography of species, chemical structure feature, NMR datea and biological properties. Chemical transformations of lapachol to form enamine derivatives and biological activities are discussed.

  20. Aziridinyl-substituted benzo-1,4-quinones: A preliminary investigation on the theoretical and experimental studies of their structure and spectroscopic properties

    NASA Astrophysics Data System (ADS)

    Šarlauskas, Jonas; Tamulienė, Jelena; Čėnas, Narimantas

    2017-05-01

    The detailed structure, chemical and spectroscopic properties of the derivatives of the selected 2,5-bis(1-aziridinyl)-benzo-1,4-quinone conformers were studied by applying quantum chemical and experimental methods. The relationship between the structure and chemical activity of the selected 3 bifunctional bioreductive quinonic anticancer agents - aziridinyl benzoquinones (AzBQ compounds) was obtained. The results obtained showed that the position of aziridine rings influenced by the chemical activity of the investigated compound were more significant than the substitutions of the benzene ring of the AzBQ compounds. The solvents influencing this activity were obtained, too.

  1. Extraction methods determine the antioxidant capacity and induction of quinone reductase by soy products in vitro

    USDA-ARS?s Scientific Manuscript database

    Gastrointestinal mimic (GI) and organic solvent extracts of whole soybean powder (WSP), soy protein concentrate (SPC), and soy protein isolate (SPI) as well as soy isoflavone concentrate (SIC) were analyzed for total phenols; quinone reductase (QR) induction in hepa1c1c7 cells; antioxidant scavengi...

  2. Induction of quinone reductase (QR) by withanolides isolated from Physalis angulata L. var. villosa Bonati (Solanaceae).

    PubMed

    Ding, Hui; Hu, Zhijuan; Yu, Liyan; Ma, Zhongjun; Ma, Xiaoqiong; Chen, Zhe; Wang, Dan; Zhao, Xiaofeng

    2014-08-01

    In the present study, the EtOAc extract of the persistent calyx of Physalis angulata L. var. villosa Bonati (PA) was tested for its potential quinone reductase (QR) inducing activity with glutathione (GSH) as the substrate using an UPLC-ESI-MS method. The result revealed that the PA had electrophiles that could induce quinone reductase (QR) activity, which might be attributed to the modification of the highly reactive cysteine residues in Keap1. Herein, three new withanolides, compounds 3, 6 and 7, together with four known withanolides, compounds 1, 2, 4 and 5 were isolated from PA extract. Their structures were determined by spectroscopic techniques, including (1)H-, (13)C NMR (DEPT), and 2D-NMR (HMBC, HMQC, (1)H, (1)H-COSY, NOESY) experiments, as well as by HR-MS. All the seven compounds were tested for their QR induction activities towards mouse hepa 1c1c7 cells. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Quinone Reduction by the Na+-Translocating NADH Dehydrogenase Promotes Extracellular Superoxide Production in Vibrio cholerae▿ †

    PubMed Central

    Lin, Po-Chi; Türk, Karin; Häse, Claudia C.; Fritz, Günter; Steuber, Julia

    2007-01-01

    The pathogenicity of Vibrio cholerae is influenced by sodium ions which are actively extruded from the cell by the Na+-translocating NADH:quinone oxidoreductase (Na+-NQR). To study the function of the Na+-NQR in the respiratory chain of V. cholerae, we examined the formation of organic radicals and superoxide in a wild-type strain and a mutant strain lacking the Na+-NQR. Upon reduction with NADH, an organic radical was detected in native membranes by electron paramagnetic resonance spectroscopy which was assigned to ubisemiquinones generated by the Na+-NQR. The radical concentration increased from 0.2 mM at 0.08 mM Na+ to 0.4 mM at 14.7 mM Na+, indicating that the concentration of the coupling cation influences the redox state of the quinone pool in V. cholerae membranes. During respiration, V. cholerae cells produced extracellular superoxide with a specific activity of 10.2 nmol min−1 mg−1 in the wild type compared to 3.1 nmol min−1 mg−1 in the NQR deletion strain. Raising the Na+ concentration from 0.1 to 5 mM increased the rate of superoxide formation in the wild-type V. cholerae strain by at least 70%. Rates of respiratory H2O2 formation by wild-type V. cholerae cells (30.9 nmol min−1 mg−1) were threefold higher than rates observed with the mutant strain lacking the Na+-NQR (9.7 nmol min−1 mg−1). Our study shows that environmental Na+ could stimulate ubisemiquinone formation by the Na+-NQR and hereby enhance the production of reactive oxygen species formed during the autoxidation of reduced quinones. PMID:17322313

  4. Differential stress-induced regulation of two quinone reductases in the brown rot Basidiomycete Gloeophyllum trabeum

    Treesearch

    Roni Cohen; Melissa R. Suzuki; Kenneth E. Hammel

    2004-01-01

    Quinone reductases (QRDs) have two important functions in the basidiomycete Gloeophyllum trabeum, which causes brown rot of wood. First, a QRD is required to generate biodegradative hydroxyl radicals via redox cycling between two G. trabeum extracellular metabolites, 2,5-dimethoxyhydroquinone (2,5-DMHQ) and 2,5-dimethoxy-1,4-benzoquinone (2,5- DMBQ). Second, because 2,...

  5. Insight into the kinetics and thermodynamics of the hydride transfer reactions between quinones and lumiflavin: a density functional theory study.

    PubMed

    Reinhardt, Clorice R; Jaglinski, Tanner C; Kastenschmidt, Ashly M; Song, Eun H; Gross, Adam K; Krause, Alyssa J; Gollmar, Jonathan M; Meise, Kristin J; Stenerson, Zachary S; Weibel, Tyler J; Dison, Andrew; Finnegan, Mackenzie R; Griesi, Daniel S; Heltne, Michael D; Hughes, Tom G; Hunt, Connor D; Jansen, Kayla A; Xiong, Adam H; Hati, Sanchita; Bhattacharyya, Sudeep

    2016-09-01

    The kinetics and equilibrium of the hydride transfer reaction between lumiflavin and a number of substituted quinones was studied using density functional theory. The impact of electron withdrawing/donating substituents on the redox potentials of quinones was studied. In addition, the role of these substituents on the kinetics of the hydride transfer reaction with lumiflavin was investigated in detail under the transition state (TS) theory assumption. The hydride transfer reactions were found to be more favorable for an electron-withdrawing substituent. The activation barrier exhibited a quadratic relationship with the driving force of these reactions as derived under the formalism of modified Marcus theory. The present study found a significant extent of electron delocalization in the TS that is stabilized by enhanced electrostatic, polarization, and exchange interactions. Analysis of geometry, bond-orders, and energetics revealed a predominant parallel (Leffler-Hammond) effect on the TS. Closer scrutiny reveals that electron-withdrawing substituents, although located on the acceptor ring, reduce the N-H bond order of the donor fragment in the precursor complex. Carried out in the gas-phase, this is the first ever report of a theoretical study of flavin's hydride transfer reactions with quinones, providing an unfiltered view of the electronic effect on the nuclear reorganization of donor-acceptor complexes.

  6. Redox-active quinones and ascorbate: an innovative cancer therapy that exploits the vulnerability of cancer cells to oxidative stress.

    PubMed

    Verrax, J; Beck, R; Dejeans, N; Glorieux, C; Sid, B; Pedrosa, R Curi; Benites, J; Vásquez, D; Valderrama, J A; Calderon, P Buc

    2011-02-01

    Cancer cells are particularly vulnerable to treatments impairing redox homeostasis. Reactive oxygen species (ROS) can indeed play an important role in the initiation and progression of cancer, and advanced stage tumors frequently exhibit high basal levels of ROS that stimulate cell proliferation and promote genetic instability. In addition, an inverse correlation between histological grade and antioxidant enzyme activities is frequently observed in human tumors, further supporting the existence of a redox dysregulation in cancer cells. This biochemical property can be exploited by using redox-modulating compounds, which represent an interesting approach to induce cancer cell death. Thus, we have developed a new strategy based on the use of pharmacologic concentrations of ascorbate and redox-active quinones. Ascorbate-driven quinone redox cycling leads to ROS formation and provoke an oxidative stress that preferentially kill cancer cells and spare healthy tissues. Cancer cell death occurs through necrosis and the underlying mechanism implies an energetic impairment (ATP depletion) that is likely due to glycolysis inhibition. Additional mechanisms that participate to cell death include calcium equilibrium impairment and oxidative cleavage of protein chaperone Hsp90. Given the low systemic toxicity of ascorbate and the impairment of crucial survival pathways when associated with redox-active quinones, these combinations could represent an original approach that could be combined to standard cancer therapy.

  7. A novel coumarin-quinone derivative SV37 inhibits CDC25 phosphatases, impairs proliferation, and induces cell death.

    PubMed

    Bana, Emilie; Sibille, Estelle; Valente, Sergio; Cerella, Claudia; Chaimbault, Patrick; Kirsch, Gilbert; Dicato, Mario; Diederich, Marc; Bagrel, Denyse

    2015-03-01

    Cell division cycle (CDC) 25 proteins are key phosphatases regulating cell cycle transition and proliferation by regulating CDK/cyclin complexes. Overexpression of these enzymes is frequently observed in cancer and is related to aggressiveness, high-grade tumors and poor prognosis. Thus, targeting CDC25 by compounds, able to inhibit their activity, appears a good therapeutic approach. Here, we describe the synthesis of a new inhibitor (SV37) whose structure is based on both coumarin and quinone moieties. An analytical in vitro approach shows that this compound efficiently inhibits all three purified human CDC25 isoforms (IC50 1-9 µM) in a mixed-type mode. Moreover, SV37 inhibits growth of breast cancer cell lines. In MDA-MB-231 cells, reactive oxygen species generation is followed by pCDK accumulation, a mark of CDC25 dysfunction. Eventually, SV37 treatment leads to activation of apoptosis and DNA cleavage, underlining the potential of this new type of coumarin-quinone structure. © 2013 Wiley Periodicals, Inc.

  8. Site-directed mutagenesis of conserved cysteine residues in NqrD and NqrE subunits of Na+-translocating NADH:quinone oxidoreductase.

    PubMed

    Fadeeva, M S; Bertsova, Y V; Verkhovsky, M I; Bogachev, A V

    2008-02-01

    Each of two hydrophobic subunits of Na+-translocating NADH:quinone oxidoreductase (NQR), NqrD and NqrE, contain a pair of strictly conserved cysteine residues within their transmembrane alpha-helices. Site-directed mutagenesis showed that substitutions of these residues in NQR of Vibrio harveyi blocked the Na+-dependent and 2-n-heptyl-4-hydroxyquinoline N-oxide-sensitive quinone reductase activity of the enzyme. However, these mutations did not affect the interaction of NQR with NADH and menadione. It was demonstrated that these conserved cysteine residues are necessary for the correct folding and/or the stability of the NQR complex. Mass and EPR spectroscopy showed that NQR from V. harveyi bears only a 2Fe-2S cluster as a metal-containing prosthetic group.

  9. Perturbation of the quinone-binding site of complex II alters the electronic properties of the proximal [3Fe-4S] iron-sulfur cluster.

    PubMed

    Ruprecht, Jonathan; Iwata, So; Rothery, Richard A; Weiner, Joel H; Maklashina, Elena; Cecchini, Gary

    2011-04-08

    Succinate-ubiquinone oxidoreductase (SQR) and menaquinol-fumarate oxidoreductase (QFR) from Escherichia coli are members of the complex II family of enzymes. SQR and QFR catalyze similar reactions with quinones; however, SQR preferentially reacts with higher potential ubiquinones, and QFR preferentially reacts with lower potential naphthoquinones. Both enzymes have a single functional quinone-binding site proximal to a [3Fe-4S] iron-sulfur cluster. A difference between SQR and QFR is that the redox potential of the [3Fe-4S] cluster in SQR is 140 mV higher than that found in QFR. This may reflect the character of the different quinones with which the two enzymes preferentially react. To investigate how the environment around the [3Fe-4S] cluster affects its redox properties and catalysis with quinones, a conserved amino acid proximal to the cluster was mutated in both enzymes. It was found that substitution of SdhB His-207 by threonine (as found in QFR) resulted in a 70-mV lowering of the redox potential of the cluster as measured by EPR. The converse substitution in QFR raised the redox potential of the cluster. X-ray structural analysis suggests that placing a charged residue near the [3Fe-4S] cluster is a primary reason for the alteration in redox potential with the hydrogen bonding environment having a lesser effect. Steady state enzyme kinetic characterization of the mutant enzymes shows that the redox properties of the [3Fe-4S] cluster have only a minor effect on catalysis.

  10. β-carboline derivatives and diphenols from soy sauce are in vitro quinone reductase (QR) inducers.

    PubMed

    Li, Ying; Zhao, Mouming; Parkin, Kirk L

    2011-03-23

    A murine hepatoma (Hepa 1c1c7) cellular bioassay was used to guide the isolation of phase II enzyme inducers from fermented soy sauce, using quinone reductase (QR) as a biomarker. A crude ethyl acetate extract, accounting for 8.7% of nonsalt soluble solids of soy sauce, was found to double relative QR specific activity at 25 μg/mL (concentration required to double was defined as a "CD value"). Further silica gel column fractionation yielded 17 fractions, 16 of which exhibited CD values for QR induction of <100 μg/mL. The four most potent fractions were subfractionated by column and preparative thin layer chromatography, leading to the isolation and identification of two phenolic compounds (catechol and daidzein) and two β-carbolines (flazin and perlolyrin), with respective CD values of 8, 35, 42, and 2 μM. Western blots confirmed that the increases in QR activity corresponded to dose-dependent increases in cellular levels of NAD[P]H:quinone oxidoreductase 1 protein by these four QR inducers. To the authors' knowledge, this is the first report on the ability of β-carboline-derived alkaloids to induce phase II enzymes.

  11. Absorption spectrometric study of charge transfer complex formation between 4-acetamidophenol (paracetamol) and a series of quinones including Vitamin K 3

    NASA Astrophysics Data System (ADS)

    Saha, Avijit; Mukherjee, Asok K.

    2004-07-01

    The formation of charge transfer (CT) complexes of 4-acetamidophenol (commonly called 'paracetamol') and a series of quinones (including Vitamin K 3) has been studied spectrophotometrically in ethanol medium. The vertical ionisation potential of paracetamol and the degrees of charge transfer of the complexes in their ground state has been estimated from the trends in the charge transfer bands. The oscillator and transition dipole strengths of the complexes have been determined from the CT absorption spectra at 298 K. The complexes have been found by Job's method of continuous variation to have the uncommon 2:1 (paracetamol:quinone) stoichiometry in each case. The enthalpies and entropies of formation of the complexes have been obtained by determining their formation constants at five different temperatures.

  12. Vitamin E and vitamin E-quinone levels in red blood cells and plasma of newborn infants and their mothers.

    PubMed

    Jain, S K; Wise, R; Bocchini, J J

    1996-02-01

    Vitamin E is a physiological antioxidant and protects cell membranes from oxidative damage. This study has determined whether vitamin E level in RBC of newborns has any relationship with its level in their mothers. We have also examined levels of vitamin E and vitamin E-quinone, an oxidized product of vitamin E, in paired samples of red blood cells (RBC) and plasma of newborns and their mothers. Blood was collected from 26 mothers and their full-term placental cords at delivery. Vitamin E and vitamin E-quinone levels were determined in RBC and plasma by HPLC. Newborn-plasma had significantly lower vitamin E levels compared with maternal-plasma both when expressed as nmole/ml (5.5+/-0.4 vs 26.1+/-1.1, p = 0.0001) or nmole/mumole total lipids (1.9+/-0.1 vs 2.6+/-0.1, p = 0.0001). Vitamin E level in the newborn-RBC was similar to that of maternal-RBC when expressed as nmole/ml packed cells (2.77+/-0.14 vs 2.95+/-0.13), but was significantly lower when expressed as nmole/mumole total lipids (0.56+/-0.03 vs 0.64+/-0.04, p = 0.03) from that of maternal-RBC. Vitamin E-quinone levels are significantly elevated in newborns compared with their mothers both in RBC (29.4+/-2.1 vs 24.1+/-1.2, p = 0.04) and plasma (39.9+/-5.3 vs 25.3+/-4.2, p = 0.006) when expressed as nmole/mmole total lipids but not when expressed as nmole/ml. There was a significant correlation of vitamin E between newborn-plasma and newborn-RBC (r = 0.65, p = 0.0002 for nmole per ml packed RBC;r = 0.63, p = 0.0007 for nmole per mumole total lipids). The relationship between maternal plasma and newborn plasma was significant when vitamin E was normalized with nmole/mumole total lipid (r = 0.54, p = 0.007 but not when expressed as nmole/ml (r = 0.09, p = 0.64). However, vitamin E in the RBC of maternal and newborn had significant correlation when expressed as per ml packed cells (r = 0.61, p = 0.001) and per total lipid (r = 0.46, p = 0.02). There was no relationship of vitamin E-quinone levels between RBC and

  13. Possible roles of two quinone molecules in direct and indirect proton pumps of bovine heart NADH-quinone oxidoreductase (complex I).

    PubMed

    Ohnishi, S Tsuyoshi; Salerno, John C; Ohnishi, Tomoko

    2010-12-01

    In many energy transducing systems which couple electron and proton transport, for example, bacterial photosynthetic reaction center, cytochrome bc(1)-complex (complex III) and E. coli quinol oxidase (cytochrome bo(3) complex), two protein-associated quinone molecules are known to work together. T. Ohnishi and her collaborators reported that two distinct semiquinone species also play important roles in NADH-ubiquinone oxidoreductase (complex I). They were called SQ(Nf) (fast relaxing semiquinone) and SQ(Ns) (slow relaxing semiquinone). It was proposed that Q(Nf) serves as a "direct" proton carrier in the semiquinone-gated proton pump (Ohnishi and Salerno, FEBS Letters 579 (2005) 4555), while Q(Ns) works as a converter between one-electron and two-electron transport processes. This communication presents a revised hypothesis in which Q(Nf) plays a role in a "direct" redox-driven proton pump, while Q(Ns) triggers an "indirect" conformation-driven proton pump. Q(Nf) and Q(Ns) together serve as (1e(-)/2e(-)) converter, for the transfer of reducing equivalent to the Q-pool. Copyright © 2010 Elsevier B.V. All rights reserved.

  14. In vitro antifungal effect of black cumin seed quinones against dairy spoilage yeasts at different acidity levels.

    PubMed

    Halamova, Katerina; Kokoska, Ladislav; Flesar, Jaroslav; Sklenickova, Olga; Svobodova, Blanka; Marsik, Petr

    2010-12-01

    The antiyeast activity of the black cumin seed (Nigella sativa) quinones dithymoquinone, thymohydroquinone (THQ), and thymoquinone (TQ) were evaluated in vitro with a broth microdilution method against six dairy spoilage yeast species. Antifungal effects of the quinones were compared with those of preservatives commonly used in milk products (calcium propionate, natamycin, and potassium sorbate) at two pH levels (4.0 and 5.5). THQ and TQ possessed significant antiyeast activity and affected the growth of all strains tested at both pH levels, with MICs ranging from 8 to 128 μg/ml. With the exception of the antibiotic natamycin, the inhibitory effects of all food preservatives against the yeast strains tested in this study were strongly affected by differences in pH, with MICs of ≥16 and ≥512 μg/ml at pH 4.0 and 5.5, respectively. These findings suggest that HQ and TQ are effective antiyeast agents that could be used in the dairy industry as chemical preservatives of natural origin.

  15. Biosynthesis of actinorhodin and related antibiotics: discovery of alternative routes for quinone formation encoded in the act gene cluster.

    PubMed

    Okamoto, Susumu; Taguchi, Takaaki; Ochi, Kozo; Ichinose, Koji

    2009-02-27

    All known benzoisochromanequinone (BIQ) biosynthetic gene clusters carry a set of genes encoding a two-component monooxygenase homologous to the ActVA-ORF5/ActVB system for actinorhodin biosynthesis in Streptomyces coelicolor A3(2). Here, we conducted molecular genetic and biochemical studies of this enzyme system. Inactivation of actVA-ORF5 yielded a shunt product, actinoperylone (ACPL), apparently derived from 6-deoxy-dihydrokalafungin. Similarly, deletion of actVB resulted in accumulation of ACPL, indicating a critical role for the monooxygenase system in C-6 oxygenation, a biosynthetic step common to all BIQ biosyntheses. Furthermore, in vitro, we showed a quinone-forming activity of the ActVA-ORF5/ActVB system in addition to that of a known C-6 monooxygenase, ActVA-ORF6, by using emodinanthrone as a model substrate. Our results demonstrate that the act gene cluster encodes two alternative routes for quinone formation by C-6 oxygenation in BIQ biosynthesis.

  16. Kinetic, thermodynamic and X-ray structural insights into the interaction of melatonin and analogues with quinone reductase 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Calamini, Barbara; Santarsiero, Bernard D.; Boutin, Jean A.

    Melatonin exerts its biological effects through at least two transmembrane G-protein-coupled receptors, MT1 and MT2, and a lower-affinity cytosolic binding site, designated MT3. MT3 has recently been identified as QR2 (quinone reductase 2) (EC 1.10.99.2) which is of significance since it links the antioxidant effects of melatonin to a mechanism of action. Initially, QR2 was believed to function analogously to QR1 in protecting cells from highly reactive quinones. However, recent studies indicate that QR2 may actually transform certain quinone substrates into more highly reactive compounds capable of causing cellular damage. Therefore it is hypothesized that inhibition of QR2 in certainmore » cases may lead to protection of cells against these highly reactive species. Since melatonin is known to inhibit QR2 activity, but its binding site and mode of inhibition are not known, we determined the mechanism of inhibition of QR2 by melatonin and a series of melatonin and 5-hydroxytryptamine (serotonin) analogues, and we determined the X-ray structures of melatonin and 2-iodomelatonin in complex with QR2 to between 1.5 and 1.8 {angstrom} (1 {angstrom} = 0.1 nm) resolution. Finally, the thermodynamic binding constants for melatonin and 2-iodomelatonin were determined by ITC (isothermal titration calorimetry). The kinetic results indicate that melatonin is a competitive inhibitor against N-methyldihydronicotinamide (K{sub i} = 7.2 {mu}M) and uncompetitive against menadione (K{sub i} = 92 {mu}M), and the X-ray structures shows that melatonin binds in multiple orientations within the active sites of the QR2 dimer as opposed to an allosteric site. These results provide new insights into the binding mechanisms of melatonin and analogues to QR2.« less

  17. 1,6-Conjugate addition of zinc alkyls to para-quinone methides in a continuous-flow microreactor.

    PubMed

    Jadhav, Abhijeet S; Anand, Ramasamy Vijaya

    2016-12-20

    An efficient method for the synthesis of alkyl diarylmethanes through the 1,6-conjugate addition of dialkylzinc reagents to para-quinone methides (p-QMs) has been developed under continuous flow conditions using a microreactor. This protocol allows to access unsymmetrical alkyl diarylmethanes in moderate to excellent yields using a wide range of p-QMs and dialkylzinc reagents. Interestingly, this transformation worked well without the requirement of a catalyst.

  18. Effect of the Antioxidant Supplement Pyrroloquinoline Quinone Disodium Salt (BioPQQ™) on Cognitive Functions.

    PubMed

    Itoh, Yuji; Hine, Kyoko; Miura, Hiroshi; Uetake, Tatsuo; Nakano, Masahiko; Takemura, Naohiro; Sakatani, Kaoru

    2016-01-01

    Pyrroloquinoline quinone (PQQ) is a quinone compound first identified in 1979. It has been reported that rats fed a PQQ-supplemented diet showed better learning ability than controls, suggesting that PQQ may be useful for improving memory in humans. In the present study, a randomized, placebo-controlled, double-blinded study to examine the effect of PQQ disodium salt (BioPQQ™) on cognitive functions was conducted with 41 elderly healthy subjects. Subjects were orally given 20 mg of BioPQQ™ per day or placebo, for 12 weeks. For cognitive functions, selective attention by the Stroop and reverse Stroop test, and visual-spatial cognitive function by the laptop tablet Touch M, were evaluated. In the Stroop test, the change of Stroop interference ratios (SIs) for the PQQ group was significantly smaller than for the placebo group. In the Touch M test, the stratification analyses dividing each group into two groups showed that only in the lower group of the PQQ group (initial score<70), did the score significantly increase. Measurements of physiological parameters indicated no abnormal blood or urinary adverse events, nor adverse internal or physical examination findings at any point in the study. The preliminary experiment using near-infrared spectrometry (NIRS) suggests that cerebral blood flow in the prefrontal cortex was increased by the administration of PQQ. The results suggest that PQQ can prevent reduction of brain function in aged persons, especially in attention and working memory.

  19. Constituents of Musa x paradisiaca cultivar with the potential to induce the phase II enzyme, quinone reductase.

    PubMed

    Jang, Dae Sik; Park, Eun Jung; Hawthorne, Michael E; Vigo, Jose Schunke; Graham, James G; Cabieses, Fernando; Santarsiero, Bernard D; Mesecar, Andrew D; Fong, Harry H S; Mehta, Rajendra G; Pezzuto, John M; Kinghorn, A Douglas

    2002-10-23

    A new bicyclic diarylheptanoid, rel-(3S,4aR,10bR)-8-hydroxy-3-(4-hydroxyphenyl)-9-methoxy-4a,5,6,10b-tetrahydro-3H-naphtho[2,1-b]pyran (1), as well as four known compounds, 1,2-dihydro-1,2,3-trihydroxy-9-(4-methoxyphenyl)phenalene (2), hydroxyanigorufone (3), 2-(4-hydroxyphenyl)naphthalic anhydride (4), and 1,7-bis(4-hydroxyphenyl)hepta-4(E),6(E)-dien-3-one (5), were isolated from an ethyl acetate-soluble fraction of the methanol extract of the fruits of Musa x paradisiaca cultivar, using a bioassay based on the induction of quinone reductase (QR) in cultured Hepa1c1c7 mouse hepatoma cells to monitor chromatographic fractionation. The structure and relative stereochemistry of compound 1 were elucidated unambiguously by one- and two-dimensional NMR experiments ((1)H NMR, (13)C NMR, DEPT, COSY, HMQC, HMBC, and NOESY) and single-crystal X-ray diffraction analysis. Isolates 1-5 were evaluated for their potential cancer chemopreventive properties utilizing an in vitro assay to determine quinone reductase induction and a mouse mammary organ culture assay.

  20. Differences in the binding of the primary quinone receptor in Photosystem I and reaction centres of Rhodobacter sphaeroides-R26 studied with transient EPR spectroscopy

    NASA Astrophysics Data System (ADS)

    van der Est, A.; Sieckmann, I.; Lubitz, W.; Stehlik, D.

    1995-05-01

    The binding of the primary quinone acceptor, Q, in Photosystem I (PS I) and reaction centres (RC's) of Rhodobacter Sphaeroide-R26 in which, the non-heme iron has been replaced by zinc (Zn-bRC's) is studied using transient EPR spectroscopy. In PS I, Q is phylloquinone (vitamin K 1, VK 1) and is referred to as A 1. In Zn-bRC's, it is ubiquinone-10 (UQ 10) and called Q A. Native samples of the two RC's as well as those in which A 1 and Q A have been replaced by perdeuterated napthoquinone (NQ- d6) and duroquinone (DQ- d12) are compared. The spin polarized K-band (24 GHz) spectra of the charge separated state P +.Q -. (P = primary chlorophyll donor) in Zn-bRC's show that substitution of Q A, with NQ- d6 and DQ- d12 does not have a measurable effect on the quinone orientation in the Q A site. In contrast, large differences in the orientation of VK 1, NQ- d6 and DQ- d12 in the A 1 site in PS I are found. In addition, all three quinones in PS I are oriented differently than Q A in Zn-bRC's. Further, the x and y principal values of the g-tensors of VK 1-., NQ -. and DQ -. in PS I are shown to be significantly larger than in frozen alcohol and Zn-bRC's. It is suggested that the differences in the orientation and a g-values of the quinones in the two RC's arise from a weaker binding to the protein in PS I.

  1. Regiospecific attack of nitrogen and sulfur nucleophiles on quinones derived from poison oak/ivy catechols (urushiols) and analogues as models for urushiol-protein conjugate formation.

    PubMed

    Liberato, D J; Byers, V S; Dennick, R G; Castagnoli, N

    1981-01-01

    Attempts to characterize potential biologically important covalent interactions between electrophilic quinones derived from catechols present in poison oak/ivy (urushiol) and biomacromolecules have led to the analysis of model reactions involving sulfur and amino nucleophiles with 3-heptadecylbenzoquinone. Characterization of the reaction products indicates that this quinone undergoes regiospecific attack by (S)-N-acetylcysteine at C-6 and by 1-aminopentane at C-5. The red solid obtained with 1-aminopentane proved to be 3-heptadecyl-5-(pentylamino)-1,2-benzoquinone. Analogous aminobenzoquinones were obtained with the quinones derived from the 4- and 6-methyl analogues of 3-pentadecylcatechol. All three adducts absorbed visible light at different wavelengths. When the starting catechols were incubated with human serum albumin almost identical chromophores were formed. These results establish that cathechols responsible for the production of the poison oak/ivy contact dermatitis in humans undergo a sequence of reactions in the presence of human serum albumin that lead to covalent attachment of the catechols to the protein via carbon-nitrogen bonds. Estimations of the extent of this binding indicate that, at least with human serum albumin, the reaction is quantitative.

  2. Exploring Cancer Therapeutics with Natural Products from African Medicinal Plants, Part I: Xanthones, Quinones, Steroids, Coumarins, Phenolics and other Classes of Compounds.

    PubMed

    Simoben, Conrad V; Ibezim, Akachukwu; Ntie-Kang, Fidele; Nwodo, Justina N; Lifongo, Lydia L

    2015-01-01

    Cancer is known to be the second most common disease-related cause of death among humans. In drug discovery programs anti-cancer chemotherapy remains quite challenging due to issues related to resistance. Plants used in traditional medicine are known to contribute significantly within a large proportion of the African population. A survey of the literature has led to the identification of ~400 compounds from African medicinal plants, which have shown anti-cancer, anti-proliferation, anti-tumor and/or cytotoxic activities, tested by in vitro and in vivo assays (from mildly active to very active), mainly alkaloids, terpenoids, flavonoids, coumarins, phenolics, polyacetylates, xanthones, quinones, steroids and lignans. The first part of this review series focuses on xanthones, quinones, steroids, coumarins, phenolics and other compound classes, while part II is focused on alkaloids, terpenoids, flavonoids.

  3. Kinetic modeling of electron transfer reactions in photosystem I complexes of various structures with substituted quinone acceptors.

    PubMed

    Milanovsky, Georgy E; Petrova, Anastasia A; Cherepanov, Dmitry A; Semenov, Alexey Yu

    2017-09-01

    The reduction kinetics of the photo-oxidized primary electron donor P 700 in photosystem I (PS I) complexes from cyanobacteria Synechocystis sp. PCC 6803 were analyzed within the kinetic model, which considers electron transfer (ET) reactions between P 700 , secondary quinone acceptor A 1 , iron-sulfur clusters and external electron donor and acceptors - methylviologen (MV), 2,3-dichloro-naphthoquinone (Cl 2 NQ) and oxygen. PS I complexes containing various quinones in the A 1 -binding site (phylloquinone PhQ, plastoquinone-9 PQ and Cl 2 NQ) as well as F X -core complexes, depleted of terminal iron-sulfur F A /F B clusters, were studied. The acceleration of charge recombination in F X -core complexes by PhQ/PQ substitution indicates that backward ET from the iron-sulfur clusters involves quinone in the A 1 -binding site. The kinetic parameters of ET reactions were obtained by global fitting of the P 700 + reduction with the kinetic model. The free energy gap ΔG 0 between F X and F A /F B clusters was estimated as -130 meV. The driving force of ET from A 1 to F X was determined as -50 and -220 meV for PhQ in the A and B cofactor branches, respectively. For PQ in A 1A -site, this reaction was found to be endergonic (ΔG 0  = +75 meV). The interaction of PS I with external acceptors was quantitatively described in terms of Michaelis-Menten kinetics. The second-order rate constants of ET from F A /F B , F X and Cl 2 NQ in the A 1 -site of PS I to external acceptors were estimated. The side production of superoxide radical in the A 1 -site by oxygen reduction via the Mehler reaction might comprise ≥0.3% of the total electron flow in PS I.

  4. Respiration metabolism of Group B Streptococcus is activated by environmental haem and quinone and contributes to virulence.

    PubMed

    Yamamoto, Yuji; Poyart, Claire; Trieu-Cuot, Patrick; Lamberet, Gilles; Gruss, Alexandra; Gaudu, Philippe

    2005-04-01

    Group B Streptococcus (GBS) is a common constituent of the vaginal microflora, but its transmission to newborns can cause life-threatening sepsis, pneumonia and meningitis. Energy metabolism of this opportunist pathogen has been deduced to be strictly fermentative. We discovered that GBS undergoes respiration metabolism if its environment supplies two essential respiratory components: quinone and haem. Respiration metabolism led to significant changes in growth characteristics, including a doubling of biomass and an altered metabolite profile under the tested conditions. The GBS respiratory chain is inactivated by: (i) withdrawing haem and/or quinone, (ii) treating cultures with a respiration inhibitor or (iii) inactivating the cydA gene product, a subunit of cytochrome bd quinol oxidase, in all cases resulting in exclusively fermentative growth. cydA inactivation reduced GBS growth in human blood and strongly attenuated virulence in a neonatal rat sepsis model, suggesting that the animal host may supply the components that activate GBS respiration. These results suggest a role of respiration metabolism in GBS dissemination. Our findings show that environmental factors can increase the flexibility of GBS metabolism by activating a newly identified respiration chain. The need for two environmental factors may explain why GBS respiration metabolism was not found in previous studies.

  5. Electrochemical study of quinone redox cycling: A novel application of DNA-based biosensors for monitoring biochemical reactions.

    PubMed

    Ensafi, Ali A; Jamei, Hamid Reza; Heydari-Bafrooei, Esmaeil; Rezaei, B

    2016-10-01

    This paper presents the results of an experimental investigation of voltammetric and impedimetric DNA-based biosensors for monitoring biological and chemical redox cycling reactions involving free radical intermediates. The concept is based on associating the amounts of radicals generated with the electrochemical signals produced, using differential pulse voltammetry (DPV) and electrochemical impedance spectroscopy (EIS). For this purpose, a pencil graphite electrode (PGE) modified with multiwall carbon nanotubes and poly-diallydimethlammonium chloride decorated with double stranded fish sperm DNA was prepared to detect DNA damage induced by the radicals generated from a redox cycling quinone (i.e., menadione (MD; 2-methyl-1,4-naphthoquinone)). Menadione was employed as a model compound to study the redox cycling of quinones. A direct relationship was found between free radical production and DNA damage. The relationship between MD-induced DNA damage and free radical generation was investigated in an attempt to identify the possible mechanism(s) involved in the action of MD. Results showed that DPV and EIS were appropriate, simple and inexpensive techniques for the quantitative and qualitative comparisons of different reducing reagents. These techniques may be recommended for monitoring DNA damages and investigating the mechanisms involved in the production of redox cycling compounds. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Kinetics of the Strain-Promoted Oxidation-Controlled Cycloalkyne-1,2-quinone Cycloaddition: Experimental and Theoretical Studies.

    PubMed

    Escorihuela, Jorge; Das, Anita; Looijen, Wilhelmus J E; van Delft, Floris L; Aquino, Adelia J A; Lischka, Hans; Zuilhof, Han

    2018-01-05

    Stimulated by its success in both bioconjugation and surface modification, we studied the strain-promoted oxidation-controlled cycloalkyne-1,2-quinone cycloaddition (SPOCQ) in three ways. First, the second-order rate constants and activation parameters (ΔH ⧧ ) were determined of various cyclooctynes reacting with 4-tert-butyl-1,2-quinone in a SPOCQ reaction, yielding values for ΔH ⧧ of 4.5, 7.3, and 12.1 kcal/mol, for bicyclo[6.1.0]non-4-yne (BCN), cyclooctyne (OCT), and dibenzoazacyclooctyne (DIBAC), respectively. Second, their reaction paths were investigated in detail by a range of quantum mechanical calculations. Single-configuration theoretical methods, like various DFT and a range of MP2-based methods, typically overestimate this barrier by 3-8 kcal/mol (after inclusion of zero-point energy, thermal, and solvation corrections), whereas MP2 itself underestimates the barrier significantly. Only dispersion-corrected DFT methods like B97D (yielding 4.9, 6.4, and 12.1 kcal/mol for these three reactions) and high-level CCSD(T) and multireference multiconfiguration AQCC ab initio approaches (both yielding 8.2 kcal/mol for BCN) give good approximations of experimental data. Finally, the multireference methods show that the radical character in the TS is rather small, thus rationalizing the use of single-reference methods like B97D and SCS-MP2 as intrinsically valid approaches.

  7. Kinetics of the Strain-Promoted Oxidation-Controlled Cycloalkyne-1,2-quinone Cycloaddition: Experimental and Theoretical Studies

    PubMed Central

    2017-01-01

    Stimulated by its success in both bioconjugation and surface modification, we studied the strain-promoted oxidation-controlled cycloalkyne–1,2-quinone cycloaddition (SPOCQ) in three ways. First, the second-order rate constants and activation parameters (ΔH⧧) were determined of various cyclooctynes reacting with 4-tert-butyl-1,2-quinone in a SPOCQ reaction, yielding values for ΔH⧧ of 4.5, 7.3, and 12.1 kcal/mol, for bicyclo[6.1.0]non-4-yne (BCN), cyclooctyne (OCT), and dibenzoazacyclooctyne (DIBAC), respectively. Second, their reaction paths were investigated in detail by a range of quantum mechanical calculations. Single-configuration theoretical methods, like various DFT and a range of MP2-based methods, typically overestimate this barrier by 3–8 kcal/mol (after inclusion of zero-point energy, thermal, and solvation corrections), whereas MP2 itself underestimates the barrier significantly. Only dispersion-corrected DFT methods like B97D (yielding 4.9, 6.4, and 12.1 kcal/mol for these three reactions) and high-level CCSD(T) and multireference multiconfiguration AQCC ab initio approaches (both yielding 8.2 kcal/mol for BCN) give good approximations of experimental data. Finally, the multireference methods show that the radical character in the TS is rather small, thus rationalizing the use of single-reference methods like B97D and SCS-MP2 as intrinsically valid approaches. PMID:29260879

  8. The mechanism of catalysis by type-II NADH:quinone oxidoreductases

    PubMed Central

    Blaza, James N.; Bridges, Hannah R.; Aragão, David; Dunn, Elyse A.; Heikal, Adam; Cook, Gregory M.; Nakatani, Yoshio; Hirst, Judy

    2017-01-01

    Type II NADH:quinone oxidoreductase (NDH-2) is central to the respiratory chains of many organisms. It is not present in mammals so may be exploited as an antimicrobial drug target or used as a substitute for dysfunctional respiratory complex I in neuromuscular disorders. NDH-2 is a single-subunit monotopic membrane protein with just a flavin cofactor, yet no consensus exists on its mechanism. Here, we use steady-state and pre-steady-state kinetics combined with mutagenesis and structural studies to determine the mechanism of NDH-2 from Caldalkalibacillus thermarum. We show that the two substrate reactions occur independently, at different sites, and regardless of the occupancy of the partner site. We conclude that the reaction pathway is determined stochastically, by the substrate/product concentrations and dissociation constants, and can follow either a ping-pong or ternary mechanism. This mechanistic versatility provides a unified explanation for all extant data and a new foundation for the development of therapeutic strategies. PMID:28067272

  9. Laccase-catalyzed synthesis of 2,3-ethylenedithio-1,4-quinones

    DOE PAGES

    Cannatelli, Mark D.; Ragauskas, Arthur J.

    2015-06-05

    Laccases (benzenediol:oxygen oxidoreductase EC 1.10.3.2) are part of a family of multicopper oxidases. These environmentally friendly enzymes require O 2 as their only co-substrate and produce H 2O as their sole by-product. As a result, they have acquired increasing use in biotechnological applications, particularly in the field of organic synthesis. In the current study, laccases have been employed to successfully couple 1,2-ethanedithiol to various substituted hydroquinones to produce novel 2,3-ethylenedithio-1,4-quinones in good yields via an oxidation–addition–oxidation–addition–oxidation mechanism. The reactions proceeded in one-pot under mild conditions (room temperature, pH 5.0). This study further supports the use of laccases as green toolsmore » in organic chemistry. Furthermore, it provides evidence that laccase-catalyzed cross-coupling reactions involving small thiols are possible, in spite of research that suggests small thiols are potent inhibitors of laccases.« less

  10. Vitamins K interact with N-terminus α-synuclein and modulate the protein fibrillization in vitro. Exploring the interaction between quinones and α-synuclein.

    PubMed

    da Silva, Fernanda Luna; Coelho Cerqueira, Eduardo; de Freitas, Mônica Santos; Gonçalves, Daniela Leão; Costa, Lilian Terezinha; Follmer, Cristian

    2013-01-01

    In the last decades, a series of compounds, including quinones and polyphenols, has been described as having anti-fibrillogenic action on α-synuclein (α-syn) whose aggregation is associated to the pathogenesis of Parkinson's disease (PD). Most of these molecules act as promiscuous anti-amyloidogenic agents, interacting with the diverse amyloidogenic proteins (mostly unfolded) through non-specific hydrophobic interactions. Herein we investigated the effect of the vitamins K (phylloquinone, menaquinone and menadione), which are 1,4-naphthoquinone (1,4-NQ) derivatives, on α-syn aggregation, comparing them with other anti-fibrillogenic molecules such as quinones, polyphenols and lipophilic vitamins. Vitamins K delayed α-syn fibrillization in substoichiometric concentrations, leading to the formation of short, sheared fibrils and amorphous aggregates, which are less prone to produce leakage of synthetic vesicles. In seeding conditions, menadione and 1,4-NQ significantly inhibited fibrils elongation, which could be explained by their ability to destabilize preformed fibrils of α-syn. Bidimensional NMR experiments indicate that a specific site at the N-terminal α-syn (Gly31/Lys32) is involved in the interaction with vitamins K, which is corroborated by previous studies suggesting that Lys is a key residue in the interaction with quinones. Together, our data suggest that 1,4-NQ, recently showed up by our group as a potential scaffold for designing new monoamine oxidase inhibitors, is also capable to modulate α-syn fibrillization in vitro. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Reduction of mitomycin C is catalysed by human recombinant NRH:quinone oxidoreductase 2 using reduced nicotinamide adenine dinucleotide as an electron donating co-factor

    PubMed Central

    Jamieson, D; Tung, A T Y; Knox, R J; Boddy, A V

    2006-01-01

    NRH:Quinone Oxidoreductase 2 (NQO2) has been described as having no enzymatic activity with nicotinamide adenine dinucleotide (NADH) or NADPH as electron donating cosubstrates. Mitomycin C (MMC) is both a substrate for and a mechanistic inhibitor of the NQO2 homologue NQO1. NRH:quinone oxidoreductase 2 catalysed the reduction of MMC at pH 5.8 with NADH as a co-factor. This reaction results in species that inhibit the NQO2-mediated metabolism of CB1954. In addition, MMC caused an increase in DNA cross-links in a cell line transfected to overexpress NQO2 to an extent comparable to that observed with an isogenic NQO1-expressing cell line. These data indicate that NQO2 may contribute to the metabolism of MMC to cytotoxic species. PMID:17031400

  12. The Unexpected and Exceptionally Facile Chemical Modification of the Phenolic Hydroxyl Group of Tyrosine by Polyhalogenated Quinones under Physiological Conditions.

    PubMed

    Qu, Na; Li, Feng; Shao, Bo; Shao, Jie; Zhai, Guijin; Wang, Fuyi; Zhu, Ben-Zhan

    2016-10-17

    The phenolic hydroxyl group of tyrosine residue plays a crucial role in the structure and function of many proteins. However, little study has been reported about its modification by chemical agents under physiological conditions. In this study, we found, unexpectedly, that the phenolic hydroxyl group of tyrosine can be rapidly and efficiently modified by tetrafluoro-1,4-benzoquinone and other polyhalogenated quinones, which are the major genotoxic and carcinogenic quinoid metabolites of polyhalogenated aromatic compounds. The modification was found to be mainly due to the formation of a variety of fluoroquinone-O-tyrosine conjugates and their hydroxylated derivatives via nucleophilic substitution pathway. Analogous modifications were observed for tyrosine-containing peptides. Further studies showed that the blockade of the reactive phenolic hydroxyl group of tyrosine in the substrate peptide, even by very low concentration of tetrafluoro-1,4-benzoquinone, can prevent the kinase catalyzed tyrosine phosphorylation. This is the first report showing the exceptionally facile chemical modification of the phenolic hydroxyl group of tyrosine by polyhalogenated quinones under normal physiological conditions, which may have potential biological and toxicological implications.

  13. REACTIONS OF BENZO[A]PYRENE-7,8-QUINONE WITH DEOXYGUANOSINE AND DEOXYADENOSINE AT PHYSIOLOGICAL pH: IDENTIFICATION AND CHARACTERIZATION OF STABLE ADDUCTS

    EPA Science Inventory

    Reactions of Benzo[a]pyrene-7,8-quinone with Deoxyguanosine and Deoxyadenosine at Physiological pH: Identification and Characterization of Stable Adducts

    Narayanan Balu, William T. Padgett, Guy Lambert, Adam E. Swank,
    Ann M. Richard, and Stephen Nesnow

    Environmen...

  14. LC/MSMS STUDY OF BENZO[A]PYRENE-7,8-QUINONE ADDUCTION TO GLOBIN TRYPTIC PEPTIDES AND N-ACETYLAMINO ACIDS

    EPA Science Inventory

    Benzo[a]pyrene-7,8-quinone (BPQ) is regarded as a reactive genotoxic compound enzymatically formed from a xenobiotic precursor benzo[a]pyrene-7,8-diol by aldo-keto-reductase family of enzymes. Because BPQ, a Michael electrophile, was previously shown to react with oligonucleotide...

  15. Hydrogen Peroxide Activated Quinone Methide Precursors with Enhanced DNA Cross-Linking Capability and Cytotoxicity towards Cancer Cells

    PubMed Central

    Wang, Yibin; Fan, Heli; Balakrishnan, Kumudha; Lin, Zechao; Cao, Sheng; Chen, Wenbing; Fan, Yukai; Guthrie, Quibria A.; Sun, Huabing; Teske, Kelly A.; Gandhi, Varsha; Arnold, Leggy A.; Peng, Xiaohua

    2017-01-01

    Quinone methide (QM) formation induced by endogenously generated H2O2 is attractive for biological and biomedical applications. To overcome current limitations due to low biological activity of H2O2-activated QM precursors, we are introducing herein several new arylboronates with electron donating substituents at different positions of benzene ring and/or different neutral leaving groups. The reaction rate of the arylboronate esters with H2O2 and subsequent bisquinone methides formation and DNA cross-linking was accelerated with the application of Br as a leaving group instead of acetoxy groups. Additionally, a donating group placed meta to the nascent exo-methylene group of the quinone methide greatly improves H2O2-induced DNA interstrand cross-link formation as well as enhances the cellular activity. Multiple donating groups decrease the stability and DNA cross-linking capability, which lead to low cellular activity. A cell-based screen demonstrated that compounds 2a and 5a with a OMe or OH group dramatically inhibited the growth of various tissue-derived cancer cells while normal cells were less affected. Induction of H2AX phosphorylation by these compounds in CLL lymphocytes provide evidence for a correlation between cell death and DNA damage. The compounds presented herein showed potent anticancer activities and selectivity, which represent a novel scaffold for anticancer drug development. PMID:28388522

  16. Chemoselective methylation of phenolic hydroxyl group prevents quinone methide formation and repolymerization during lignin depolymerization

    DOE PAGES

    Kim, Kwang Ho; Dutta, Tanmoy; Walter, Eric D.; ...

    2017-03-22

    Chemoselective blocking of the phenolic hydroxyl (Ar–OH) group by methylation was found to suppress secondary repolymerization and charring during lignin depolymerization. Methylation of Ar–OH prevents formation of reactive quinone methide intermediates, which are partly responsible for undesirable secondary repolymerization reactions. Instead, this structurally modified lignin produces more relatively low molecular weight products from lignin depolymerization compared to unmodified lignin. This result demonstrates that structural modification of lignin is desirable for production of low molecular weight phenolic products. Finally, this approach could be directed toward alteration of natural lignification processes to produce biomass that is more amenable to chemical depolymerization.

  17. Lung toxicity and tumor promotion by hydroxylated derivatives of 2,6-di-tert-butyl-4-methylphenol (BHT) and 2-tert-butyl-4-methyl-6-iso-propylphenol: correlation with quinone methide reactivity.

    PubMed

    Kupfer, Rene; Dwyer-Nield, Lori D; Malkinson, Alvin M; Thompson, John A

    2002-08-01

    Acute pulmonary toxicity and tumor promotion by the food additive 2,6-di-tert-butyl-4-methylphenol (BHT) in mice are well documented. These effects have been attributed to either of two quinone methides, 2,6-di-tert-butyl-4-methylenecyclohexa-2,5-dienone (BHT-QM) formed through direct oxidation of BHT by pulmonary cytochrome P450 or a quinone methide formed by hydroxylation of a tert-butyl group of BHT (to form BHTOH) followed by oxidation of this metabolite to BHTOH-QM. BHTOH-QM is a more reactive electrophile compared to BHT-QM due to intramolecular interactions of the side-chain hydroxyl with the carbonyl oxygen. To further examine this bioactivation pathway, an analogue of BHTOH was prepared, 2-tert-butyl-6-(1'-hydroxy-1'-methyl)ethyl-4-methylphenol (BPPOH), that is structurally very similar to BHTOH but forms a quinone methide (BPPOH-QM) capable of more efficient intramolecular hydrogen bonding and, therefore, higher electrophilicity than BHTOH-QM. BPPOH-QM was synthesized and its reactivity with water, methanol, and glutathione determined to be >10-fold higher than that of BHTOH-QM. The conversions of BPPOH and BHTOH to quinone methides in lung microsomes from male BALB/cByJ mice were quantitatively similar, but in vivo the former was pneumotoxic at one-half of the dose required for the latter and one-eighth of the dose required for BHT, as determined by increased lung weight:body weight ratios following a single i.p. injection. Similar differences were found in the doses of BHT, BHTOH, or BPPOH required for tumor promotion after a single initiating dose of 3-methylcholanthrene followed by three weekly injections of the phenol. The downregulaton of calpain II, previously shown to accompany lung tumor promotion by BHT and BHTOH, also occurred with BPPOH. The correlation between biologic activities of these phenols and the reactivities of their corresponding quinone methides provides additional support for the role of BHTOH-QM as the principal metabolite

  18. Organization of the human [zeta]-crystallin/quinone reductase gene (CRYZ)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gonzalez, P.; Rao, P.V.; Zigler, J.S. Jr.

    1994-05-15

    [zeta]-Crystallin is a protein highly expressed in the lens of guinea pigs and camels, where it comprises about 10% of the total soluble protein. It has recently been characterized as a novel quinone oxidoreductase present in a variety of mammalian tissues. The authors report here the isolation and characterization of the human [zeta]-crystallin gene (CRYZ) and its processed pseudogene. The functional gene is composed of nine exons and spans about 20 kb. The 5[prime]-flanking region of the gene is rich in G and C (58%) and lacks TATA and CAAT boxes. Previous analysis of the guinea pig gene revealed themore » presence of two different promoters, one responsible for the high lens-specific expression and the other for expression at the enzymatic level in numerous tissues. Comparative analysis with the guinea pig gene shows that a region of [approximately]2.5 kb that includes the promoter responsible for the high expression in the lens in guinea pig is not present in the human gene. 34 refs., 6 figs., 1 tab.« less

  19. Photoinduced electron transfer in fixed distance chlorophyll-quinone donor-acceptor molecules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wasielewski, M.R.; Johnson, D.G.; Svec, W.A.

    1987-01-01

    A series of fixed distance chlorophyll-quinone donor-acceptor molecules have been prepared. The donor consists of either methyl pyropheophorbide a or methyl pyrochlorophyllide a, while the acceptor is either benzoquinone or naphthoquinone. The acceptors are fused to a triptycene spacer group, which in turn is attached to the donors at their vinyl groups. Picosecond transient absorption measurements have been used to identify electron transfer from the lowest excited singlet state of the donor to the acceptor as the mechanism of fluorescence quenching in these molecules. The charge separation rate constants increase from 2 x 10/sup 10/ s/sup -1/ to 4 xmore » 10/sup 11/ s/sup -1/ as the free energy of charge separation increases, while the radical pair recombination rate constants decrease from 1.2 x 10/sup 11/ s/sup -1/ to 2 x 10/sup 9/ s/sup -1/ as the free energy of recombination increases. The resulting total reorganization energy lambda = 0.9 eV.« less

  20. Amine quinone polyurethane polymers for improved performance in advanced particulate media

    NASA Astrophysics Data System (ADS)

    Warren, G. W.; Sharma, Rahul; Nikles, D. E.; Hu, Y.; Street, S. C.

    1999-03-01

    The magnetic layer used in commercial, high density, metal particle recording media consists of sub-micron sized Fe particles suspended in a polyurethane polymer binder. New amine-quinone polymers, AQPU15 and AQPU100, have been developed for improving corrosion resistance of the particles. A fundamental study of the nature of the AQ polymer/metal oxide interface and its relationship to corrosion resistance is reported. Electrochemical impedance spectroscopy was used to evaluate corrosion behavior of Fe substrates coated with two different thicknesses of each polymer. The extent of corrosion of Fe particles coated with AQ polymers was also measured via the loss in MS with time of immersion in an acid solution. AQ coated particles showed significant improvement in corrosion resistance. FTIR-RA and XPS data show an interaction between AQM14A, a simple model for a portion of the polymer, and metal (Fe, Cu, Al) surfaces which occurs through the π system of the AQ functional group.

  1. Supercritical fluid extraction and ultra performance liquid chromatography of respiratory quinones for microbial community analysis in environmental and biological samples.

    PubMed

    Hanif, Muhammad; Atsuta, Yoichi; Fujie, Koichi; Daimon, Hiroyuki

    2012-03-05

    Microbial community structure plays a significant role in environmental assessment and animal health management. The development of a superior analytical strategy for the characterization of microbial community structure is an ongoing challenge. In this study, we developed an effective supercritical fluid extraction (SFE) and ultra performance liquid chromatography (UPLC) method for the analysis of bacterial respiratory quinones (RQ) in environmental and biological samples. RQ profile analysis is one of the most widely used culture-independent tools for characterizing microbial community structure. A UPLC equipped with a photo diode array (PDA) detector was successfully applied to the simultaneous determination of ubiquinones (UQ) and menaquinones (MK) without tedious pretreatment. Supercritical carbon dioxide (scCO(2)) extraction with the solid-phase cartridge trap proved to be a more effective and rapid method for extracting respiratory quinones, compared to a conventional organic solvent extraction method. This methodology leads to a successful analytical procedure that involves a significant reduction in the complexity and sample preparation time. Application of the optimized methodology to characterize microbial communities based on the RQ profile was demonstrated for a variety of environmental samples (activated sludge, digested sludge, and compost) and biological samples (swine and Japanese quail feces).

  2. Callitriche cophocarpa (water starwort) proteome under chromate stress: evidence for induction of a quinone reductase.

    PubMed

    Kaszycki, Paweł; Dubicka-Lisowska, Aleksandra; Augustynowicz, Joanna; Piwowarczyk, Barbara; Wesołowski, Wojciech

    2018-03-01

    Chromate-induced physiological stress in a water-submerged macrophyte Callitriche cophocarpa Sendtn. (water starwort) was tested at the proteomic level. The oxidative stress status of the plant treated with 1 mM Cr(VI) for 3 days revealed stimulation of peroxidases whereas catalase and superoxide dismutase activities were similar to the control levels. Employing two-dimensional electrophoresis, comparative proteomics enabled to detect five differentiating proteins subjected to identification with mass spectrometry followed by an NCBI database search. Cr(VI) incubation led to induction of light harvesting chlorophyll a/b binding protein with a concomitant decrease of accumulation of ribulose bisphosphate carboxylase (RuBisCO). The main finding was, however, the identification of an NAD(P)H-dependent dehydrogenase FQR1, detectable only in Cr(VI)-treated plants. The FQR1 flavoenzyme is known to be responsive to oxidative stress and to act as a detoxification protein by protecting the cells against oxidative damage. It exhibits the in vitro quinone reductase activity and is capable of catalyzing two-electron transfer from NAD(P)H to several substrates, presumably including Cr(VI). The enhanced accumulation of FQR1 was chromate-specific since other stressful conditions, such as salt, temperature, and oxidative stresses, all failed to induce the protein. Zymographic analysis of chromate-treated Callitriche shoots showed a novel enzymatic protein band whose activity was attributed to the newly identified enzyme. We suggest that Cr(VI) phytoremediation with C. cophocarpa can be promoted by chromate reductase activity produced by the induced quinone oxidoreductase which might take part in Cr(VI) → Cr(III) bioreduction process and thus enable the plant to cope with the chromate-generated oxidative stress.

  3. Collapse of the native structure caused by a single amino acid exchange in human NAD(P)H:quinone oxidoreductase(1.).

    PubMed

    Lienhart, Wolf-Dieter; Gudipati, Venugopal; Uhl, Michael K; Binter, Alexandra; Pulido, Sergio A; Saf, Robert; Zangger, Klaus; Gruber, Karl; Macheroux, Peter

    2014-10-01

    Human quinone oxidoreductase 1 (NQO1) is essential for the antioxidant defense system, stabilization of tumor suppressors (e.g. p53, p33, and p73), and activation of quinone-based chemotherapeutics. Overexpression of NQO1 in many solid tumors, coupled with its ability to convert quinone-based chemotherapeutics into potent cytotoxic compounds, have made it a very attractive target for anticancer drugs. A naturally occurring single-nucleotide polymorphism (C609T) leading to an amino acid exchange (P187S) has been implicated in the development of various cancers and poor survival rates following anthracyclin-based adjuvant chemotherapy. Despite its importance for cancer prediction and therapy, the exact molecular basis for the loss of function in NQO1 P187S is currently unknown. Therefore, we solved the crystal structure of NQO1 P187S. Surprisingly, this structure is almost identical to NQO1. Employing a combination of NMR spectroscopy and limited proteolysis experiments, we demonstrated that the single amino acid exchange destabilized interactions between the core and C-terminus, leading to depopulation of the native structure in solution. This collapse of the native structure diminished cofactor affinity and led to a less competent FAD-binding pocket, thus severely compromising the catalytic capacity of the variant protein. Hence, our findings provide a rationale for the loss of function in NQO1 P187S with a frequently occurring single-nucleotide polymorphism. Structural data are available in the Protein Data Bank under the accession numbers 4cet (P187S variant with dicoumarol) and 4cf6 (P187S variant with Cibacron blue). NQO1 P187S and NQO1 P187S bind by nuclear magnetic resonance (View interaction) NQO1 P187S and NQO1 P187S bind by x-ray crystallography (1, 2) NQO1 and NQO1 bind by molecular sieving (1, 2). © 2014 The Authors. FEBS Journal published by John Wiley & Sons Ltd on behalf of FEBS.

  4. Role of the NAD(P)H quinone oxidoreductase NQR and the cytochrome b AIR12 in controlling superoxide generation at the plasma membrane.

    PubMed

    Biniek, Catherine; Heyno, Eiri; Kruk, Jerzy; Sparla, Francesca; Trost, Paolo; Krieger-Liszkay, Anja

    2017-04-01

    The quinone reductase NQR and the b-type cytochrome AIR12 of the plasma membrane are important for the control of reactive oxygen species in the apoplast. AIR12 and NQR are two proteins attached to the plant plasma membrane which may be important for generating and controlling levels of reactive oxygen species in the apoplast. AIR12 (Auxin Induced in Root culture) is a single gene of Arabidopsis that codes for a mono-heme cytochrome b. The NADPH quinone oxidoreductase NQR is a two-electron-transferring flavoenzyme that contributes to the generation of O 2 •- in isolated plasma membranes. A. thaliana double knockout plants of both NQR and AIR12 generated more O 2 •- and germinated faster than the single mutant affected in AIR12. To test whether NQR and AIR12 are able to interact functionally, recombinant purified proteins were added to plasma membranes isolated from soybean hypocotyls. In vitro NADH-dependent O 2 •- production at the plasma membrane in the presence of NQR was reduced upon addition of AIR12. Electron donation from semi-reduced menadione to AIR12 was shown to take place. Biochemical analysis showed that purified plasma membrane from soybean hypocotyls or roots contained phylloquinone and menaquinone-4 as redox carriers. This is the first report on the occurrence of menaquinone-4 in eukaryotic photosynthetic organisms. We propose that NQR and AIR12 interact via the quinone, allowing an electron transfer from cytosolic NAD(P)H to apoplastic monodehydroascorbate and control thereby the level of reactive oxygen production and the redox state of the apoplast.

  5. Investigation of the cumulative body burden of estrogen-3,4-quinone in breast cancer patients and controls using albumin adducts as biomarkers.

    PubMed

    Lin, Che; Chen, Dar-Ren; Hsieh, Wei-Chung; Yu, Wen-Fa; Lin, Ching-Chiuan; Ko, Mao-Huei; Juan, Chang-Hsin; Tsuang, Ben-Jei; Lin, Po-Hsiung

    2013-04-26

    Both 17β-estradiol-2,3-quinone (E2-2,3-Q) and 17β-estradiol-3,4-quinone (E2-3,4-Q) are reactive metabolites of estrogen. Elevation of E2-3,4-Q to E2-2,3-Q ratio is thought to be an important indicator of estrogen-induced carcinogenesis. Our current study compared the cumulative body burden of these estrogen quinones in serum samples taken from Taiwanese women with breast cancer (n=152) vs healthy controls (n=75) by using albumin (Alb) adducts as biomarkers. Results clearly demonstrated the presence of cysteinyl adducts of E2-2,3-Q-4-S-Alb and E2-3,4-Q-2-S-Alb in all study population at levels ranging from 61.7-1330 to 66.6-1,590 pmol/g, respectively. Correlation coefficient between E2-2,3-Q-4-S-Alb and E2-3,4-Q-2-S-Alb was 0.610 for controls and 0.767 for breast cancer patients (p<0.001). We also noticed that in premenopausal subjects with body mass index (BMI) less than 27, background levels of E2-3,4-Q-2-S-Alb was inversely proportional to BMI with about 25% increase in E2-3,4-Q-2-S-Alb per 5 kg/m(2) decrease in BMI (p<0.001). In addition, we confirmed that mean levels of E2-3,4-Q-2-S-Alb in breast cancer patients were ∼5-fold greater than in those of controls (p<0.001). Overall, this evidence suggests that disparity in estrogen disposition and the subsequent elevation of cumulative body burden of E2-3,4-Q may play a role in the development of breast cancer. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  6. Biosynthesis of pyrroloquinoline quinone. 1. Identification of biosynthetic precursors using /sup 13/C labeling and NMR spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Houck, D.R.; Hanners, J.L.; Unkefer, C.J.

    The biosynthesis of pyrroloquinoline quinone (PQQ) in the methylotropic bacterium methylobacterium AM1 has been investigated using /sup 13/C-labelling of the products and NMR spectroscopy. The data indicated that the quinoline portion of PQQ is formed by a novel condensation of N-1, C-2, -3, and -4 of glutamate with a symmetrical six-carbon ring derived from the shikimate pathway. It is postulated that tyrosine is the shikimate-derived percursor, since pyrrole could be formed by the internal cyclization of the amino acid backbone. 18 references, 2 figures, 2 tables.

  7. [Induction of NAD(P)H: quinone reductase by anticarcinogenic ingredients of tea].

    PubMed

    Qi, L; Han, C

    1998-09-30

    By assaying the activity of NAD(P)H: quinone reductase (QR) in Hep G2 cells exposed to inducing agents, a variety of ingredients in tea, we compared their abilities on inducing QR and preventing cancer. The results showed that tea polyphenols, tea pigments and mixed tea were all able to induce the activity of QR significantly. The single-component ingredients of tea polyphenols and tea pigments, including thearubigens, EGCG and ECG, also enhanced the activity of QR. But EGC, EC, theaflavins, tea polysaccharide and tea caffeine, showed no apparent induction of QR. We found that among those tea ingredients studied, the multi-component ingredients were more effective than the single-component ones. So we thought that the abilities of antioxidation and cancer prevention of tea depended on the combined effects of several kinds of active ingredients, which mainly include tea polyphenols and tea pigments.

  8. NAD(P)H-dependent quinone oxidoreductase 1 (NQO1) and cytochrome P450 oxidoreductase (CYP450OR) differentially regulate menadione-mediated alterations in redox status, survival and metabolism in pancreatic β-cells.

    PubMed

    Gray, Joshua P; Karandrea, Shpetim; Burgos, Delaine Zayasbazan; Jaiswal, Anil A; Heart, Emma A

    2016-11-16

    NQO1 (NAD(P)H-quinone oxidoreductase 1) reduces quinones and xenobiotics to less-reactive compounds via 2-electron reduction, one feature responsible for the role of NQO1 in antioxidant defense in several tissues. In contrast, NADPH cytochrome P450 oxidoreductase (CYP450OR), catalyzes the 1-electron reduction of quinones and xenobiotics, resulting in enhanced superoxide formation. However, to date, the roles of NQO1 and CYP450OR in pancreatic β-cell metabolism under basal conditions and oxidant challenge have not been characterized. Using NQO1 inhibition, over-expression and knock out, we have demonstrated that, in addition to protection of β-cells from toxic concentrations of the redox cycling quinone menadione, NQO1 also regulates the basal level of reduced-to-oxidized nucleotides, suggesting other role(s) beside that of an antioxidant enzyme. In contrast, over-expression of NADPH cytochrome P450 oxidoreductase (CYP450OR) resulted in enhanced redox cycling activity and decreased cellular viability, consistent with the enhanced generation of superoxide and H 2 O 2 . Basal expression of NQO1 and CYP450OR was comparable in isolated islets and liver. However, NQO1, but not CYP450OR, was strongly induced in β-cells exposed to menadione. NQO1 and CYP450OR exhibited a reciprocal preference for reducing equivalents in β-cells: while CYP450OR preferentially utilized NADPH, NQO1 primarily utilized NADH. Together, these results demonstrate that NQO1 and CYP450OR reciprocally regulate oxidant metabolism in pancreatic β-cells. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  9. NAD(P)H-dependent Quinone Oxidoreductase 1 (NQO1) and Cytochrome P450 Oxidoreductase (CYP450OR) differentially regulate menadione-mediated alterations in redox status, survival and metabolism in pancreatic β-cells

    PubMed Central

    Gray, Joshua P.; Karandrea, Shpetim; Burgos, Delaine Zayasbazan; Jaiswal, Anil A; Heart, Emma A.

    2017-01-01

    NQO1 (NAD(P)H-quinone oxidoreductase 1) reduces quinones and xenobiotics to less-reactive compounds via 2-electron reduction, one feature responsible for the role of NQO1 in antioxidant defense in several tissues. In contrast, NADPH cytochrome P450 oxidoreductase (CYP450OR), catalyzes the 1-electron reduction of quinones and xenobiotics, resulting in enhanced superoxide formation. However, to date, the roles of NQO1 and CYP450OR in pancreatic β-cell metabolism under basal conditions and oxidant challenge have not been characterized. Using NQO1 inhibition, over-expression and knock out, we have demonstrated that, in addition to protection of β-cells from toxic concentrations of the redox cycling quinone menadione, NQO1 also regulates the basal level of reduced-to-oxidized nucleotides, suggesting other role(s) beside that of an antioxidant enzyme. In contrast, over-expression of NADPH cytochrome P450 oxidoreductase (CYP450OR) resulted in enhanced redox cycling activity and decreased cellular viability, consistent with the enhanced generation of superoxide and H2O2. Basal expression of NQO1 and CYP450OR was comparable in isolated islets and liver. However, NQO1, but not CYP450OR, was strongly induced in β-cells exposed to menadione. NQO1 and CYP450OR exhibited a reciprocal preference for reducing equivalents in β-cells: while CYP450OR preferentially utilized NADPH, NQO1 primarily utilized NADH. Together, these results demonstrate that NQO1 and CYP450OR reciprocally regulate oxidant metabolism in pancreatic β-cells. PMID:27558805

  10. Identifying involvement of Lys251/Asp252 pair in electron transfer and associated proton transfer at the quinone reduction site of Rhodobacter capsulatus cytochrome bc1.

    PubMed

    Kuleta, Patryk; Sarewicz, Marcin; Postila, Pekka; Róg, Tomasz; Osyczka, Artur

    2016-10-01

    Describing dynamics of proton transfers in proteins is challenging, but crucial for understanding processes which use them for biological functions. In cytochrome bc1, one of the key enzymes of respiration or photosynthesis, proton transfers engage in oxidation of quinol (QH2) and reduction of quinone (Q) taking place at two distinct catalytic sites. Here we evaluated by site-directed mutagenesis the contribution of Lys251/Asp252 pair (bacterial numbering) in electron transfers and associated with it proton uptake to the quinone reduction site (Qi site). We showed that the absence of protonable group at position 251 or 252 significantly changes the equilibrium levels of electronic reactions including the Qi-site mediated oxidation of heme bH, reverse reduction of heme bH by quinol and heme bH/Qi semiquinone equilibrium. This implicates the role of H-bonding network in binding of quinone/semiquinone and defining thermodynamic properties of Q/SQ/QH2 triad. The Lys251/Asp252 proton path is disabled only when both protonable groups are removed. With just one protonable residue from this pair, the entrance of protons to the catalytic site is sustained, albeit at lower rates, indicating that protons can travel through parallel routes, possibly involving water molecules. This shows that proton paths display engineering tolerance for change as long as all the elements available for functional cooperation secure efficient proton delivery to the catalytic site. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  11. Anti-inflammatory and Quinone Reductase Inducing Compounds from Fermented Noni (Morinda citrifolia) Juice Exudates.

    PubMed

    Youn, Ui Joung; Park, Eun-Jung; Kondratyuk, Tamara P; Sang-Ngern, Mayuramas; Wall, Marisa M; Wei, Yanzhang; Pezzuto, John M; Chang, Leng Chee

    2016-06-24

    A new fatty acid ester disaccharide, 2-O-(β-d-glucopyranosyl)-1-O-(2E,4Z,7Z)-deca-2,4,7-trienoyl-β-d-glucopyranose (1), a new ascorbic acid derivative, 2-caffeoyl-3-ketohexulofuranosonic acid γ-lactone (2), and a new iridoid glycoside, 10-dimethoxyfermiloside (3), were isolated along with 13 known compounds (4-16) from fermented noni fruit juice (Morinda citrifolia). The structures of the new compounds, together with 4 and 5, were determined by 1D and 2D NMR experiments, as well as comparison with published values. Compounds 2 and 7 showed moderate inhibitory activities in a TNF-α-induced NF-κB assay, and compounds 4 and 6 exhibited considerable quinone reductase-1 (QR1) inducing effects.

  12. Ebselen: A thioredoxin reductase-dependent catalyst for {alpha}-tocopherol quinone reduction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fang Jianguo; Zhong Liangwei; Zhao Rong

    2005-09-01

    The thioredoxin system, composed of thioredoxin (Trx), thioredoxin reductase (TrxR), and NADPH, is a powerful protein disulfide reductase system with a broad substrate specificity. Recently the selenazol drug ebselen was shown to be a substrate for both mammalian TrxR and Trx. We examined if {alpha}-tocopherol quinone (TQ), a product of {alpha}-tocopherol oxidation, is reduced by ebselen in the presence of TrxR, since TQ was not a substrate for the enzyme itself. Ebselen reduction of TQ in the presence of TrxR was caused by ebselen selenol, generated from fast reduction of ebselen by the enzyme. TQ has no intrinsic antioxidant activity,more » while the product of reduction of TQ, {alpha}-tocopherolhydroquinone (TQH{sub 2}), is a potent antioxidant. The thioredoxin system dependence of ebselen to catalyze reduction of other oxidized species, such as hydrogen peroxide, dehydroascorbate, and peroxynitrite, is discussed. The ability of ebselen to reduce TQ via the thioredoxin system is a novel mechanism to explain the effects of the drug as an antioxidant in vivo.« less

  13. Origin of the Giant Honeycomb Network of Quinones on Cu(111)

    NASA Astrophysics Data System (ADS)

    Einstein, T. L.; Kim, Kwangmoo; Wyrick, Jon; Cheng, Zhihai; Bartels, Ludwig; Berland, Kristian; Hyldgaard, Per

    2011-03-01

    We discuss the factors that lead to the amazing regular giant honeycomb network formed by quinones on Cu(111). Using a related lattice gas model with many characteristic energies, we can reproduce many experimental features. These models require a long-range attraction, which can be attributed to indirect interactions mediated by the Shockley surface state of Cu(111). However, Wyrick's preceding talk gave evidence that the network self-selects for the size of the pore rather than for the periodicity of the superstructure, suggesting that confined states are the key ingredient. We discuss this phenomenon in terms of the magic numbers of 2D quantum dots. We also report calculations of the effects of anthraquinones (AQ) in modifying the surface states by considering a superlattice of AQ chains with various separations. We discuss implications of these results for tuning the electronic states and, thence, superstructures. Supported by (TLE) NSF CHE 07-50334 & UMD MRSEC DMR 05-20471, (JW & LB) NSF CHE NSF CHE 07-49949, (KB & PH) Swedish Vetenskapsrådet VR 621-2008-4346.

  14. Medium-dependent interactions of quinones with cytosine and cytidine: a laser flash photolysis study with magnetic field effect.

    PubMed

    Bose, Adity; Basu, Samita

    2009-03-01

    Laser flash photolysis and an external magnetic field have been used for the study of the interaction of two quinone molecules, namely, 9,10-anthraquinone (AQ) and 2-methyl 1,4-naphthoquinone (or menadione, MQ) with a DNA base, cytosine (C) and its nucleoside cytidine (dC) in two media, a homogeneous one composed of acetonitrile/water (ACN/H(2)O, 9:1, v/v) and a SDS micellar heterogeneous one. We have applied an external magnetic field for the proper identification of the transients formed during the interactions in micellar media. Cytosine exhibits electron transfer (ET) followed by hydrogen abstraction (HA) while dC reveals a reduced ET compared to C, with both quinones in organic homogeneous medium (ACN/H(2)O). Due to a higher electron affinity, AQ supports more faciler ET than MQ with dC in ACN/H(2)O but observations in SDS have been just the reverse. In SDS, ET from dC is completely quenched and a dominant HA is all that could be discerned. This work reveals two main findings: first, a drop in ET on addition of a ribose unit to C, which has been attributed to a role of keto-enol tautomerism in inducing ET from electron-rich nucleus and second, the effect of medium in controlling reaction mechanism by favoring HA with AQ although it is intrinsically more prone towards ET.

  15. Trapping para-Quinone Methide Intermediates with Ferrocene: Synthesis and Preliminary Biological Evaluation of New Phenol-Ferrocene Conjugates.

    PubMed

    González-Pelayo, Silvia; López, Enol; Borge, Javier; de-Los-Santos-Álvarez, Noemí; López, Luis A

    2018-06-01

    The reaction of para -hydroxybenzyl alcohols with ferrocene in the presence of a catalytic amount of InCl₃ provided ferrocenyl phenol derivatives, an interesting class of organometallic compounds with potential applications in medicinal chemistry. This transformation exhibited a reasonable substrate scope delivering the desired products in synthetically useful yields. Evidence of involvement of a para -quinone methide intermediate in this coupling process was also provided. Preliminary biological evaluation demonstrated that some of the ferrocene derivatives available by this methodology exhibit significant cytotoxicity against several cancer cell lines with IC 50 values within the range of 1.07⁻4.89 μM.

  16. Quinone reduction via secondary B-branch electron transfer in mutant bacterial reaction centers.

    PubMed

    Laible, Philip D; Kirmaier, Christine; Udawatte, Chandani S M; Hofman, Samuel J; Holten, Dewey; Hanson, Deborah K

    2003-02-18

    Symmetry-related branches of electron-transfer cofactors-initiating with a primary electron donor (P) and terminating in quinone acceptors (Q)-are common features of photosynthetic reaction centers (RC). Experimental observations show activity of only one of them-the A branch-in wild-type bacterial RCs. In a mutant RC, we now demonstrate that electron transfer can occur along the entire, normally inactive B-branch pathway to reduce the terminal acceptor Q(B) on the time scale of nanoseconds. The transmembrane charge-separated state P(+)Q(B)(-) is created in this manner in a Rhodobacter capsulatus RC containing the F(L181)Y-Y(M208)F-L(M212)H-W(M250)V mutations (YFHV). The W(M250)V mutation quantitatively blocks binding of Q(A), thereby eliminating Q(B) reduction via the normal A-branch pathway. Full occupancy of the Q(B) site by the native UQ(10) is ensured (without the necessity of reconstitution by exogenous quinone) by purification of RCs with the mild detergent, Deriphat 160-C. The lifetime of P(+)Q(B)(-) in the YFHV mutant RC is >6 s (at pH 8.0, 298 K). This charge-separated state is not formed upon addition of competitive inhibitors of Q(B) binding (terbutryn or stigmatellin). Furthermore, this lifetime is much longer than the value of approximately 1-1.5 s found when P(+)Q(B)(-) is produced in the wild-type RC by A-side activity alone. Collectively, these results demonstrate that P(+)Q(B)(-) is formed solely by activity of the B-branch carriers in the YFHV RC. In comparison, P(+)Q(B)(-) can form by either the A or B branches in the YFH RC, as indicated by the biexponential lifetimes of approximately 1 and approximately 6-10 s. These findings suggest that P(+)Q(B)(-) states formed via the two branches are distinct and that P(+)Q(B)(-) formed by the B side does not decay via the normal (indirect) pathway that utilizes the A-side cofactors when present. These differences may report on structural and energetic factors that further distinguish the functional

  17. Design, synthesis and biological evaluation of diaziridinyl quinone isoxazole hybrids.

    PubMed

    Swapnaja, K Jones M; Yennam, Satyanarayana; Chavali, Murthy; Poornachandra, Y; Kumar, C Ganesh; Muthusamy, Krubakaran; Jayaraman, Venkatesh Babu; Arumugam, Premkumar; Balasubramanian, Sridhar; Sriram, Kiran Kumar

    2016-07-19

    A series of novel diaziridinyl quinone isoxazole hybrids (9a-9j) were synthesized starting from 2, 5-dimethoxy acetophenone 1 via Claisen reaction, cyclisation, alkoxy carbonylation, hydrolysis, oxidation and aziridine insertion. All the compounds were screened for antimicrobial, anti-biofilm and cytotoxic activities. Among the screened compounds, the compound 9h showed good antibacterial and anti-biofilm activities with MIC value of 3.9, 3.9, 3.9 and 7.8 μg/mL, respectively, and IC50 values of 1.9, 2.5, 2.8 and 5.1 μM, respectively, against Staphylococcus aureus MTCC 96, S. aureus MLS-16 MTCC 2940, Bacillus subtilis MTCC 121 and Klebsiella planticola MTCC 530, and also exhibited potent antifungal activity against Candida albicans MTCC 227, C. albicans MTCC 854 and Candida krusei MTCC 3020 equipotent to standard miconazole (MIC value 7.8 μg/mL). All the synthesized compounds exhibited promising cytotoxicity against A549 and PC3 cell lines (IC50 values between 1 and 4 μM). Compounds 9b and 9j exhibited IC50 value of 0.5 μM which was similar to that of Mitomycin C against PC3 cell line. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  18. Generalized Mulliken-Hush analysis of electronic coupling interactions in compressed pi-stacked porphyrin-bridge-quinone systems.

    PubMed

    Zheng, Jieru; Kang, Youn K; Therien, Michael J; Beratan, David N

    2005-08-17

    Donor-acceptor interactions were investigated in a series of unusually rigid, cofacially compressed pi-stacked porphyrin-bridge-quinone systems. The two-state generalized Mulliken-Hush (GMH) approach was used to compute the coupling matrix elements. The theoretical coupling values evaluated with the GMH method were obtained from configuration interaction calculations using the INDO/S method. The results of this analysis are consistent with the comparatively soft distance dependences observed for both the charge separation and charge recombination reactions. Theoretical studies of model structures indicate that the phenyl units dominate the mediation of the donor-acceptor coupling and that the relatively weak exponential decay of rate with distance arises from the compression of this pi-electron stack.

  19. Hydroquinone and Quinone-Grafted Porous Carbons for Highly Selective CO2 Capture from Flue Gases and Natural Gas Upgrading.

    PubMed

    Wang, Jun; Krishna, Rajamani; Yang, Jiangfeng; Deng, Shuguang

    2015-08-04

    Hydroquinone and quinone functional groups were grafted onto a hierarchical porous carbon framework via the Friedel-Crafts reaction to develop more efficient adsorbents for the selective capture and removal of carbon dioxide from flue gases and natural gas. The oxygen-doped porous carbons were characterized with scanning electron microscopy, transmission electron microscopy, X-ray powder diffraction, Fourier transform infrared spectroscopy, and Raman spectroscopy. CO2, CH4, and N2 adsorption isotherms were measured and correlated with the Langmuir model. An ideal adsorbed solution theory (IAST) selectivity for the CO2/N2 separation of 26.5 (298 K, 1 atm) was obtained on the hydroquinone-grafted carbon, which is 58.7% higher than that of the pristine porous carbon, and a CO2/CH4 selectivity value of 4.6 (298 K, 1 atm) was obtained on the quinone-grafted carbon (OAC-2), which represents a 28.4% improvement over the pristine porous carbon. The highest CO2 adsorption capacity on the oxygen-doped carbon adsorbents is 3.46 mmol g(-1) at 298 K and 1 atm. In addition, transient breakthrough simulations for CO2/CH4/N2 mixture separation were conducted to demonstrate the good separation performance of the oxygen-doped carbons in fixed bed adsorbers. Combining excellent adsorption separation properties and low heats of adsorption, the oxygen-doped carbons developed in this work appear to be very promising for flue gas treatment and natural gas upgrading.

  20. Hydrolysis of the quinone methide of butylated hydroxytoluene in aqueous solutions.

    PubMed

    Willcockson, Maren Gulsrud; Toteva, Maria M; Stella, Valentino J

    2013-10-01

    Butylated hydroxytoluene or BHT is an antioxidant commonly used in pharmaceutical formulations. BHT upon oxidation forms a quinone methide (QM). QM is a highly reactive electrophilic species that can undergo nucleophilic addition. Here, the kinetic reactivity of QM with water at various apparent pH values in a 50% (v/v) water-acetonitrile solution at constant ionic strength of I = 0.5 (NaCl)4 , was studied. The hydrolysis of QM in the presence of added acid, base, sodium chloride, and phosphate buffer resulted in the formation of only one product--the corresponding 3,5-di-tert-butyl-4-hydroxybenzyl alcohol (BA). The rate of BA formation was catalyzed by the addition of acid and base, but not chloride and phosphate species. Nucleophilic excipients, used in the pharmaceutical formulation, or nucleophilic groups on active pharmaceutical ingredient molecule may form adducts with QM, the immediate oxidative product of BHT degradation, thus having implications for drug product impurity profiles. Because of these considerations, BHT should be used with caution in formulations containing drugs or excipients capable of acting as nucleophiles. © 2013 Wiley Periodicals, Inc. and the American Pharmacists Association.

  1. Terreic acid, a quinone epoxide inhibitor of Bruton’s tyrosine kinase

    PubMed Central

    Kawakami, Yuko; Hartman, Stephen E.; Kinoshita, Eiji; Suzuki, Hidefumi; Kitaura, Jiro; Yao, Libo; Inagaki, Naoki; Franco, Alessandra; Hata, Daisuke; Maeda-Yamamoto, Mari; Fukamachi, Hiromi; Nagai, Hiroichi; Kawakami, Toshiaki

    1999-01-01

    Bruton’s tyrosine kinase (Btk) plays pivotal roles in mast cell activation as well as in B cell development. Btk mutations lead to severe impairments in proinflammatory cytokine production induced by cross-linking of high-affinity IgE receptor on mast cells. By using an in vitro assay to measure the activity that blocks the interaction between protein kinase C and the pleckstrin homology domain of Btk, terreic acid (TA) was identified and characterized in this study. This quinone epoxide specifically inhibited the enzymatic activity of Btk in mast cells and cell-free assays. TA faithfully recapitulated the phenotypic defects of btk mutant mast cells in high-affinity IgE receptor-stimulated wild-type mast cells without affecting the enzymatic activities and expressions of many other signaling molecules, including those of protein kinase C. Therefore, this study confirmed the important roles of Btk in mast cell functions and showed the usefulness of TA in probing into the functions of Btk in mast cells and other immune cell systems. Another insight obtained from this study is that the screening method used to identify TA is a useful approach to finding more efficacious Btk inhibitors. PMID:10051623

  2. Quinone-formaldehyde polymer as an active material in Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Pirnat, Klemen; Mali, Gregor; Gaberscek, Miran; Dominko, Robert

    2016-05-01

    A benzoquinone polymer is synthesized by the polymerisation of hydrobenzoquinone and formaldehyde, followed by oxidation process using a hydrogen peroxide to convert hydroquinone to quinone. As prepared materials are characterized with FTIR, 1H-13C CPMAS NMR, pyrolysis coupled with gas chromatography (GC) and mass spectrometer (MS), TGA-MS analysis, EDX, elemental analysis, XRD, SEM and TEM microscopies and BET nitrogen adsorption. The benzoquinone polymer shows an excellent electrochemical performance when used as a positive electrode material in Li-ion secondary batteries. Using an electrolyte consisting 1 M bis(trifluoromethane)-sulfonimide lithium salt dissolved in 1,3-dioxolane and dimethoxyethane in a vol. ratio 1:1 (1 M LiTFSI/DOL + DME = 1:1) a stable capacity close to 150 mAh/g can be obtained. Compared to other electroactive materials based on benzoquinones it has a supreme capacity stability and is prepared by a simple synthesis using easily accessible starting materials. Further improvements in the capacity value (up to the theoretical value of 406 mAh/g) can be foreseen by achieving a higher degree of oxidation and by modification of polymerization process to enhance the electronic and ionic conductivity.

  3. Persistent and widespread occurrence of bioactive quinone pigments during post-Paleozoic crinoid diversification

    PubMed Central

    Wolkenstein, Klaus

    2015-01-01

    Secondary metabolites often play an important role in the adaptation of organisms to their environment. However, little is known about the secondary metabolites of ancient organisms and their evolutionary history. Chemical analysis of exceptionally well-preserved colored fossil crinoids and modern crinoids from the deep sea suggests that bioactive polycyclic quinones related to hypericin were, and still are, globally widespread in post-Paleozoic crinoids. The discovery of hypericinoid pigments both in fossil and in present-day representatives of the order Isocrinida indicates that the pigments remained almost unchanged since the Mesozoic, also suggesting that the original color of hypericinoid-containing ancient crinoids may have been analogous to that of their modern relatives. The persistent and widespread occurrence, spatially as well as taxonomically, of hypericinoid pigments in various orders during the adaptive radiation of post-Paleozoic crinoids suggests a general functional importance of the pigments, contributing to the evolutionary success of the Crinoidea. PMID:25730856

  4. The Na+-Translocating NADH:Quinone Oxidoreductase Enhances Oxidative Stress in the Cytoplasm of Vibrio cholerae

    PubMed Central

    Muras, Valentin; Dogaru-Kinn, Paul; Minato, Yusuke; Häse, Claudia C.

    2016-01-01

    ABSTRACT We searched for a source of reactive oxygen species (ROS) in the cytoplasm of the human pathogen Vibrio cholerae and addressed the mechanism of ROS formation using the dye 2′,7′-dichlorofluorescein diacetate (DCFH-DA) in respiring cells. By comparing V. cholerae strains with or without active Na+-translocating NADH:quinone oxidoreductase (Na+-NQR), this respiratory sodium ion redox pump was identified as a producer of ROS in vivo. The amount of cytoplasmic ROS detected in V. cholerae cells producing variants of Na+-NQR correlated well with rates of superoxide formation by the corresponding membrane fractions. Membranes from wild-type V. cholerae showed increased superoxide production activity (9.8 ± 0.6 μmol superoxide min−1 mg−1 membrane protein) compared to membranes from the mutant lacking Na+-NQR (0.18 ± 0.01 μmol min−1 mg−1). Overexpression of plasmid-encoded Na+-NQR in the nqr deletion strain resulted in a drastic increase in the formation of superoxide (42.6 ± 2.8 μmol min−1 mg−1). By analyzing a variant of Na+-NQR devoid of quinone reduction activity, we identified the reduced flavin adenine dinucleotide (FAD) cofactor of cytoplasmic NqrF subunit as the site for intracellular superoxide formation in V. cholerae. The impact of superoxide formation by the Na+-NQR on the virulence of V. cholerae is discussed. IMPORTANCE In several studies, it was demonstrated that the Na+-NQR in V. cholerae affects virulence in a yet unknown manner. We identified the reduced FAD cofactor in the NADH-oxidizing NqrF subunit of the Na+-NQR as the site of superoxide formation in the cytoplasm of V. cholerae. Our study provides the framework to understand how reactive oxygen species formed during respiration could participate in the regulated expression of virulence factors during the transition from aerobic to microaerophilic (intestinal) habitats. This hypothesis may turn out to be right for many other pathogens which, like V. cholerae, depend on

  5. The Domestication of ortho-Quinone Methides

    PubMed Central

    2015-01-01

    Conspectus An ortho-quinone methide (o-QM) is a highly reactive chemical motif harnessed by nature for a variety of purposes. Given its extraordinary reactivity and biological importance, it is surprising how few applications within organic synthesis exist. We speculate that their widespread use has been slowed by the complications that surround the preparation of their precursors, the harsh generation methods, and the omission of this stratagem from computer databases due to its ephemeral nature. About a decade ago, we discovered a mild anionic triggering procedure to generate transitory o-QMs at low temperature from readily available salicylaldehydes, particularly OBoc derivatives. This novel reaction cascade included both the o-QM formation and the subsequent consumption reaction. The overall transformation was initiated by the addition of the organometallic reagent, usually a Grignard reagent, which resulted in the formation of a benzyloxy alkoxide. Boc migration from the neighboring phenol produced a magnesium phenoxide that we supposed underwent β-elimination of the transferred Boc residue to form an o-QM for immediate further reactions. Moreover, the cascade proved controllable through careful manipulation of metallic and temperature levers so that it could be paused, stopped, or restarted at various intermediates and stages. This new level of domestication enabled us to deploy o-QMs for the first time in a range of applications including diastereocontrolled reactions. This sequence ultimately could be performed in either multipot or single pot processes. The subsequent reaction of the fleeting o-QM intermediates included the 1,4-conjugate additions that led to unbranched or branched ortho-alkyl substituted phenols and Diels–Alder reactions that provided 4-unsubstituted or 4-substituted benzopyrans and chroman ketals. The latter cycloadducts were obtained for the first time with outstanding diastereocontrol. In addition, the steric effects of the newly

  6. Identification of quinone analogues as potential inhibitors of picornavirus 3C protease in vitro.

    PubMed

    Jung, Eunhye; Lee, Joo-Youn; Kim, Ho Jeong; Ryu, Chung-Kyu; Lee, Kee-In; Kim, Meehyein; Lee, Chong-Kyo; Go, Yun Young

    2018-05-29

    Picornaviruses are non-enveloped viruses that represent a large family of positive-sense single-stranded RNA viruses including a number of causative agents of many human and animal diseases such as coxsackievirus B3 (CVB3) and rhinoviruses (HRV). In this study, we performed a high-throughput screening of a compound library composed of ∼6000 small molecules in search of potential picornavirus 3C protease (3C pro ) inhibitors. As results, we identified quinone analogues that effectively inhibited both CVB3 3C pro and HRV 3C pro with IC 50 values in low micromolar range. Together with predicted binding modes of these compounds to the active site of the viral protease, it is implied that structural features of these non-peptidic inhibitors may act as useful scaffold for further anti-picornavirus drug design and development. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Reduction of Clofazimine by Mycobacterial Type 2 NADH:Quinone Oxidoreductase

    PubMed Central

    Yano, Takahiro; Kassovska-Bratinova, Sacha; Teh, J. Shin; Winkler, Jeffrey; Sullivan, Kevin; Isaacs, Andre; Schechter, Norman M.; Rubin, Harvey

    2011-01-01

    The mechanism of action of clofazimine (CFZ), an antimycobacterial drug with a long history, is not well understood. The present study describes a redox cycling pathway that involves the enzymatic reduction of CFZ by NDH-2, the primary respiratory chain NADH:quinone oxidoreductase of mycobacteria and nonenzymatic oxidation of reduced CFZ by O2 yielding CFZ and reactive oxygen species (ROS). This pathway was demonstrated using isolated membranes and purified recombinant NDH-2. The reduction and oxidation of CFZ was measured spectrally, and the production of ROS was measured using a coupled assay system with Amplex Red. Supporting the ROS-based killing mechanism, bacteria grown in the presence of antioxidants are more resistant to CFZ. CFZ-mediated increase in NADH oxidation and ROS production were not observed in membranes from three different Gram-negative bacteria but was observed in Staphylococcus aureus and Saccharomyces cerevisiae, which is consistent with the known antimicrobial specificity of CFZ. A more soluble analog of CFZ, KS6, was synthesized and was shown to have the same activities as CFZ. These studies describe a pathway for a continuous and high rate of reactive oxygen species production in Mycobacterium smegmatis treated with CFZ and a CFZ analog as well as evidence that cell death produced by these agents are related to the production of these radical species. PMID:21193400

  8. Oxygen control of nif gene expression in Klebsiella pneumoniae depends on NifL reduction at the cytoplasmic membrane by electrons derived from the reduced quinone pool.

    PubMed

    Grabbe, Roman; Schmitz, Ruth A

    2003-04-01

    In Klebsiella pneumoniae, the flavoprotein, NifL regulates NifA mediated transcriptional activation of the N2-fixation (nif) genes in response to molecular O2 and ammonium. We investigated the influence of membrane-bound oxidoreductases on nif-regulation by biochemical analysis of purified NifL and by monitoring NifA-mediated expression of nifH'-'lacZ reporter fusions in different mutant backgrounds. NifL-bound FAD-cofactor was reduced by NADH only in the presence of a redox-mediator or inside-out vesicles derived from anaerobically grown K. pneumoniae cells, indicating that in vivo NifL is reduced by electrons derived from membrane-bound oxidoreductases of the anaerobic respiratory chain. This mechanism is further supported by three lines of evidence: First, K. pneumoniae strains carrying null mutations of fdnG or nuoCD showed significantly reduced nif-induction under derepressing conditions, indicating that NifL inhibition of NifA was not relieved in the absence of formate dehydrogenase-N or NADH:ubiquinone oxidoreductase. The same effect was observed in a heterologous Escherichia coli system carrying a ndh null allele (coding for NADH dehydrogenaseII). Second, studying nif-induction in K. pneumoniae revealed that during anaerobic growth in glycerol, under nitrogen-limitation, the presence of the terminal electron acceptor nitrate resulted in a significant decrease of nif-induction. The final line of evidence is that reduced quinone derivatives, dimethylnaphthoquinol and menadiol, are able to transfer electrons to the FAD-moiety of purified NifL. On the basis of these data, we postulate that under anaerobic and nitrogen-limited conditions, NifL inhibition of NifA activity is relieved by reduction of the FAD-cofactor by electrons derived from the reduced quinone pool, generated by anaerobic respiration, that favours membrane association of NifL. We further hypothesize that the quinol/quinone ratio is important for providing the signal to NifL.

  9. Bioorthogonal Metabolic DNA Labelling using Vinyl Thioether-Modified Thymidine and o-Quinolinone Quinone Methide.

    PubMed

    Gubu, Amu; Li, Long; Ning, Yan; Zhang, Xiaoyun; Lee, Seonghyun; Feng, Mengke; Li, Qiang; Lei, Xiaoguang; Jo, Kyubong; Tang, Xinjing

    2018-04-17

    Bioorthogonal metabolic DNA labeling with fluorochromes is a powerful strategy to visualize DNA molecules and their functions. Here, we report the development of a new DNA metabolic labeling strategy enabled by the catalyst-free bioorthogonal ligation using vinyl thioether modified thymidine and o-quinolinone quinone methide. With the newly designed vinyl thioether-modified thymidine (VTdT), we added labeling tags on cellular DNA, which could further be linked to fluorochromes in cells. Therefore, we successfully visualized the DNA localization within cells as well as single DNA molecules without other staining reagents. In addition, we further characterized this bioorthogonal DNA metabolic labeling using DNase I digestion, MS characterization of VTdT as well as VTdT-oQQF conjugate in cell nuclei or mitochondria. This technique provides a powerful strategy to study DNA in cells, which paves the way to achieve future spatiotemporal deciphering of DNA synthesis and functions. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. The 2-Methoxy Group Orientation Regulates the Redox Potential Difference between the Primary (QA) and Secondary (QB) Quinones of Type II Bacterial Photosynthetic Reaction Centers.

    PubMed

    de Almeida, Wagner B; Taguchi, Alexander T; Dikanov, Sergei A; Wraight, Colin A; O'Malley, Patrick J

    2014-08-07

    Recent studies have shown that only quinones with a 2-methoxy group can act simultaneously as the primary (Q A ) and secondary (Q B ) electron acceptors in photosynthetic reaction centers from purple bacteria such as Rb. sphaeroides . 13 C HYSCORE measurements of the 2-methoxy group in the semiquinone states, SQ A and SQ B , were compared with DFT calculations of the 13 C hyperfine couplings as a function of the 2-methoxy dihedral angle. X-ray structure comparisons support 2-methoxy dihedral angle assignments corresponding to a redox potential gap (Δ E m ) between Q A and Q B of 175-193 mV. A model having a methyl group substituted for the 2-methoxy group exhibits no electron affinity difference. This is consistent with the failure of a 2-methyl ubiquinone analogue to function as Q B in mutant reaction centers with a Δ E m of ∼160-195 mV. The conclusion reached is that the 2-methoxy group is the principal determinant of electron transfer from Q A to Q B in type II photosynthetic reaction centers with ubiquinone serving as both acceptor quinones.

  11. Inducible Alkylation of DNA by a Quinone Methide-Peptide Nucleic Acid Conjugate†

    PubMed Central

    Liu, Yang; Rokita, Steven E.

    2012-01-01

    The reversibility of alkylation by a quinone methide intermediate (QM) avoids the irreversible consumption that plagues most reagents based on covalent chemistry and allows for site specific reaction that is controlled by the thermodynamics rather than kinetics of target association. This characteristic was originally examined with an oligonucleotide QM conjugate but broad application depends on alternative derivatives that are compatible with a cellular environment. Now, a peptide nucleic acid (PNA) derivative has been constructed and shown to exhibit an equivalent ability to delivery the reactive QM in a controlled manner. This new conjugate demonstrates high selectivity for a complementary sequence of DNA even when challenged with an alternative sequence containing a single T/T mismatch. Alkylation of non-complementary sequences is only possible when a template strand is present to co-localize the conjugate and its target. For efficient alkylation in this example, a single-stranded region of the target is required adjacent to the QM conjugate. Most importantly, the intrastrand self adducts formed between the PNA and its attached QM remained active and reversible over more than eight days in aqueous solution prior to reaction with a chosen target added subsequently. PMID:22243337

  12. Carbon nanotube-supported Au-Pd alloy with cooperative effect of metal nanoparticles and organic ketone/quinone groups as a highly efficient catalyst for aerobic oxidation of amines.

    PubMed

    Deng, Weiping; Chen, Jiashu; Kang, Jincan; Zhang, Qinghong; Wang, Ye

    2016-05-21

    Functionalised carbon nanotube (CNT)-supported Au-Pd alloy nanoparticles were highly efficient catalysts for the aerobic oxidation of amines. We achieved the highest turnover frequencies (>1000 h(-1)) for the oxidative homocoupling of benzylamine and the oxidative dehydrogenation of dibenzylamine. We discovered a cooperative effect between Au-Pd nanoparticles and ketone/quinone groups on CNTs.

  13. Insertion and self-diffusion of a monotopic protein, the Aquifex aeolicus sulfide quinone reductase, in supported lipid bilayers.

    PubMed

    Harb, Frédéric; Prunetti, Laurence; Giudici-Orticoni, Marie-Thérèse; Guiral, Marianne; Tinland, Bernard

    2015-10-01

    Monotopic proteins constitute a class of membrane proteins that bind tightly to cell membranes, but do not span them. We present a FRAPP (Fluorescence Recovery After Patterned Photobleaching) study of the dynamics of a bacterial monotopic protein, SQR (sulfide quinone oxidoreductase) from the thermophilic bacteria Aquifex aeolicus, inserted into two different types of lipid bilayers (EggPC: L-α-phosphatidylcholine (Egg, Chicken) and DMPC: 1,2-dimyristoyl-sn-glycero-3-phosphocholine) supported on two different types of support (mica or glass). It sheds light on the behavior of a monotopic protein inside the bilayer. The insertion of SQR is more efficient when the bilayer is in the fluid phase than in the gel phase. We observed diffusion of the protein, with no immobile fraction, and deduced from the diffusion coefficient measurements that the resulting inserted object is the same whatever the incubation conditions, i.e. homogeneous in terms of oligomerization state. As expected, the diffusion coefficient of the SQR is smaller in the gel phase than in the fluid phase. In the supported lipid bilayer, the diffusion coefficient of the SQR is smaller than the diffusion coefficient of phospholipids in both gel and fluid phase. SQR shows a diffusion behavior different from the transmembrane protein α-hemolysin, and consistent with its monotopic character. Preliminary experiments in the presence of the substrate of SQR, DecylUbiquinone, an analogue of quinone, component of transmembrane electrons transport systems of eukaryotic and prokaryotic organisms, have been carried out. Finally, we studied the behavior of SQR, in terms of insertion and diffusion, in bilayers formed with lipids from Aquifex aeolicus. All the conclusions that we have found in the biomimetic systems applied to the biological system.

  14. Mechanisms Behind Pyrroloquinoline Quinone Supplementation on Skeletal Muscle Mitochondrial Biogenesis: Possible Synergistic Effects with Exercise.

    PubMed

    Hwang, Paul; Willoughby, Darryn S

    2018-05-01

    There is clear evidence that endurance exercise training elicits intramuscular adaptations that can lead to elevations in mitochondrial biogenesis, oxidative capacity, mitochondrial density, and mitochondrial function. Mitochondrial biogenesis is regulated by the activation of the transcriptional coactivator peroxisome proliferator-activated receptor gamma coactivator 1-alpha. This master regulator of mitochondrial biogenesis activates nuclear respiratory factors (NRF-1, NRF-2) and mitochondrial transcription factor A, which enables the expansion of mitochondrial size and transcription of mitochondrial DNA. Pyrroloquinoline quinone (PQQ) has been identified as a novel supplement that is involved in various physiological processes such as redox modulation, cellular energy metabolism, and mitochondrial biogenesis and is a potent antioxidant. Since both exercise and supplemental PQQ have mechanisms associated with mitochondrial biogenesis, it is plausible that a differential additive ergogenic benefit with PQQ can ensue. However, there is a major paucity of research exploring the role of PQQ in conjunction with exercise. In this respect, the purpose of the critical literature review will be to present a comprehensive overview of PQQ and the proposed mechanisms underlying mitochondrial biogenesis. Because exercise can instigate the molecular responses indicative of mitochondrial biogenesis, it is plausible that PQQ and exercise may instigate a synergistic response. Key teaching points • Endurance exercise training enables skeletal muscle adaptations that can induce increases in mitochondrial biogenesis, improve oxidative capacity, mitochondrial density, and mitochondrial function. • Pyrroloquinoline quinone (PQQ) has been identified as a novel supplement that is involved in physiological processes including redox modulation, cellular energy metabolism, mitochondrial biogenesis, and antioxidant potential. • There is emerging evidence to support that PQQ

  15. Roles of the Sodium-Translocating NADH:Quinone Oxidoreductase (Na+-NQR) on Vibrio cholerae Metabolism, Motility and Osmotic Stress Resistance

    PubMed Central

    Minato, Yusuke; Halang, Petra; Quinn, Matthew J.; Faulkner, Wyatt J.; Aagesen, Alisha M.; Steuber, Julia; Stevens, Jan F.; Häse, Claudia C.

    2014-01-01

    The Na+ translocating NADH:quinone oxidoreductase (Na+-NQR) is a unique respiratory enzyme catalyzing the electron transfer from NADH to quinone coupled with the translocation of sodium ions across the membrane. Typically, Vibrio spp., including Vibrio cholerae, have this enzyme but lack the proton-pumping NADH:ubiquinone oxidoreductase (Complex I). Thus, Na+-NQR should significantly contribute to multiple aspects of V. cholerae physiology; however, no detailed characterization of this aspect has been reported so far. In this study, we broadly investigated the effects of loss of Na+-NQR on V. cholerae physiology by using Phenotype Microarray (Biolog), transcriptome and metabolomics analyses. We found that the V. cholerae ΔnqrA-F mutant showed multiple defects in metabolism detected by Phenotype Microarray. Transcriptome analysis revealed that the V. cholerae ΔnqrA-F mutant up-regulates 31 genes and down-regulates 55 genes in both early and mid-growth phases. The most up-regulated genes included the cadA and cadB genes, encoding a lysine decarboxylase and a lysine/cadaverine antiporter, respectively. Increased CadAB activity was further suggested by the metabolomics analysis. The down-regulated genes include sialic acid catabolism genes. Metabolomic analysis also suggested increased reductive pathway of TCA cycle and decreased purine metabolism in the V. cholerae ΔnqrA-F mutant. Lack of Na+-NQR did not affect any of the Na+ pumping-related phenotypes of V. cholerae suggesting that other secondary Na+ pump(s) can compensate for Na+ pumping activity of Na+-NQR. Overall, our study provides important insights into the contribution of Na+-NQR to V. cholerae physiology. PMID:24811312

  16. Photochemical electron transfer in chlorophyll-porphyrin-quinone triads. The role of the porphyrin-bridging molecule

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, D.G.; Niemczyk, M.P.; Minsek, D.W.

    1993-06-30

    The photochemistry of four chlorophyll-porphyrin-naphthoquinone molecules possessing both fixed distances and orientations between the three components is described. These molecules consist of a methyl pyropheophorbide a or pyrochlorophyllide a that is directly bonded at its 3-position to the 5-position of a 2,8,12,18-tetraethyl-3,7,13,-17-tetramethylporphyrin, which is in turn bonded at its 15-position to a 2-triptycenenaphthoquinone. In addition, porphyrin-quinone compounds in which the chlorins are replaced by a p-tolyl group were also prepared as reference compounds. Selective metalation of the macrocycles with zinc gives the series ZCHPNQ, ZCZPNQ, HCZPNQ, HCHPNQ, HPNQ, and ZPNQ, where H, Z, C, P, and NQ denote free base,more » Zn derivative, chlorophyll, porphyrin, and naphthoquinone, respectively. Selective excitation of ZC in ZCZPNQ and ZCHPNQ, and HC in HCHPNQ dissolved in butyronitrile yields ZC[sup +]ZPNQ[sup [minus

  17. Catalytic performance of quinone and graphene-modified polyurethane foam on the decolorization of azo dye Acid Red 18 by Shewanella sp. RQs-106.

    PubMed

    Zhou, Yang; Lu, Hong; Wang, Jing; Zhou, Jiti; Leng, Xueying; Liu, Guangfei

    2018-08-15

    Quinone-modified graphene powder is not reusable in bio-treatment systems, and the roles of quinone and graphene during extracellular electron-transfer processes remain unclear. In this study, we prepared anthraquinone-2-sulfonate and reduced graphene-oxide-modified polyurethane foam (AQS-rGO-PUF) and found that AQS-rGO-PUF exhibited higher catalytic performance on Acid Red 18 (AR 18) bio-decolorization compared with AQS-PUF and rGO-PUF. We observed a significant synergistic effect between AQS and rGO in AQS-rGO-PUF-mediated system in the presence of 50 μM AQS and 1.63 mg/L rGO. The synergistic effect was mainly attributed to electron transfer from AQS to rGO either directly or via flavins secreted by strain RQs-106, and ultimately to AR 18, accounting for ∼33.47% of AR 18 removal during AQS-rGO-PUF-mediated decolorization. Additionally, AQS-rGO-PUF exhibited good mechanical properties and maintained its macroporous structure. Furthermore, after eight rounds of experiments using AQS-rGO-PUF, the bio-decolorization efficiency of AR 18 retained >98.18% of its original value. These results indicate that the combination of AQS-rGO-PUF and Shewanella strains show potential efficacy for enhancing the treatment of azo-dye-containing wastewater. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Limonin Methoxylation Influences Induction of Glutathione S-Transferase and Quinone Reductase

    PubMed Central

    PEREZ, JOSE LUIS; JAYAPRAKASHA, G. K.; VALDIVIA, VIOLETA; MUNOZ, DIANA; DANDEKAR, DEEPAK V.; AHMAD, HASSAN; PATIL, BHIMANAGOUDA S.

    2009-01-01

    Previous studies have indicated the chemoprevention potential of citrus limonoids due to the induction of phase II detoxifying enzymes. In the present study, three citrus limonoids were purified and identified from sour orange seeds as limonin, limonin glucoside (LG), deacetylnomilinic acid glucoside (DNAG). In addition, limonin was modified to defuran limonin and limonin 7-methoxime. The structures of these compounds were confirmed by NMR studies. These five compounds were used to investigate the influence of Phase II enzymes in female A/J mice. Our results indicated that the highest induction of Glutathione S-Transferase (GST) activity against 1-chloro-2, 4-dinitrobenzene (CDNB) by DNAG (67%) in lung homogenates followed by limonin-7-methoxime (32%) in treated liver homogenates. Interestingly, the limonin-7-methoxime showed the highest GST activity (270%) in liver against 4-nitroquinoline 1-oxide (4NQO), while the same compound in stomach induced GST by 51% compared to the control. DNAG treated group induced 55% in stomach homogenates. Another Phase II enzyme, quinone reductase (QR), was significantly induced by limonin-7-methoxime by 65 and 32% in liver and lung homogenates, respectively. Defuran limonin, induced QR in lung homogenates by 45%. Our results indicated that modification of the limonin have differential induction of phase II enzymes. These findings are indicative of a possible mechanism for the prevention of cancer by aiding in detoxification of xenobiotics. PMID:19480426

  19. Spectroscopic and molecular docking studies on the charge transfer complex of bovine serum albumin with quinone in aqueous medium and its influence on the ligand binding property of the protein.

    PubMed

    Satheshkumar, Angupillai; Elango, Kuppanagounder P

    2014-09-15

    The spectral techniques such as UV-Vis, (1)H NMR and fluorescence and electrochemical experiments have been employed to investigate the interaction between 2-methoxy-3,5,6-trichloro-1,4-benzoquinone (MQ; a water soluble quinone) and bovine serum albumin (BSA) in aqueous medium. The fluorescence of BSA was quenched by MQ via formation of a 1:1 BSA-MQ charge transfer adduct with a formation constant of 3.3×10(8) L mol(-1). Based on the Forster's theory the binding distance between them is calculated as 2.65 nm indicating high probability of binding. For the first time, influence of quinone on the binding property of various types of ligands such as aspirin, ascorbic acid, nicotinimide and sodium stearate has also been investigated. The results indicated that the strong and spontaneous binding existing between BSA and MQ, decreased the intensity of binding of these ligands with BSA. Since Tryptophan (Trp) is the basic residue present in BSA, a comparison between binding property of Trp-MQ adduct with that of BSA-MQ with these ligands has also been attempted. 1H NMR titration study indicated that the Trp forms a charge transfer complex with MQ, which reduces the interaction of Trp with the ligands. Molecular docking study supported the fact that the quinone interacts with the Trp212 unit of the BSA and the free energy change of binding (ΔG) for the BSA-MQ complex was found to be -46 kJ mol(-1), which is comparable to our experimental free energy of binding (-49 kJ mol(-1)) obtained from fluorescence study. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Spectroscopic and molecular docking studies on the charge transfer complex of bovine serum albumin with quinone in aqueous medium and its influence on the ligand binding property of the protein

    NASA Astrophysics Data System (ADS)

    Satheshkumar, Angupillai; Elango, Kuppanagounder P.

    2014-09-01

    The spectral techniques such as UV-Vis, 1H NMR and fluorescence and electrochemical experiments have been employed to investigate the interaction between 2-methoxy-3,5,6-trichloro-1,4-benzoquinone (MQ; a water soluble quinone) and bovine serum albumin (BSA) in aqueous medium. The fluorescence of BSA was quenched by MQ via formation of a 1:1 BSA-MQ charge transfer adduct with a formation constant of 3.3 × 108 L mol-1. Based on the Forster’s theory the binding distance between them is calculated as 2.65 nm indicating high probability of binding. For the first time, influence of quinone on the binding property of various types of ligands such as aspirin, ascorbic acid, nicotinimide and sodium stearate has also been investigated. The results indicated that the strong and spontaneous binding existing between BSA and MQ, decreased the intensity of binding of these ligands with BSA. Since Tryptophan (Trp) is the basic residue present in BSA, a comparison between binding property of Trp-MQ adduct with that of BSA-MQ with these ligands has also been attempted. 1H NMR titration study indicated that the Trp forms a charge transfer complex with MQ, which reduces the interaction of Trp with the ligands. Molecular docking study supported the fact that the quinone interacts with the Trp212 unit of the BSA and the free energy change of binding (ΔG) for the BSA-MQ complex was found to be -46 kJ mol-1, which is comparable to our experimental free energy of binding (-49 kJ mol-1) obtained from fluorescence study.

  1. Electrophoretic analysis of quinone anion radicals in acetonitrile solutions using an on-line radical generator.

    PubMed

    Esaka, Yukihiro; Okumura, Noriko; Uno, Bunji; Goto, Masashi

    2003-05-01

    We have investigated analysis of anion radicals of phenanthrenequinone (PhQ) and anthraquinone (AQ) using acetonitrile-capillary electrophoresis (CE) under anaerobic conditions. PhQ and AQ have relatively high negative reduction potentials meaning that their anion radicals are re-oxidized quite readily by the surrounding O(2) to disappear during analysis and we failed to detect them with our previous system. In this work, we have developed an on-line system combining a unique electrolysis cell for generation of the radicals and a CE unit to keep the analysis system free from external O(2) molecules and to reduce analysis time remarkably. As a result, electrophoretic detection of the anion radicals of PhQ and AQ has been achieved. Furthermore, we have observed hydrogen-bonding interaction between the anion radicals and dimethylurea (DMU) using the present system and have indicated a characteristic interaction of the anion radical of PhQ as an ortho-quinone with DMU.

  2. Bisphenol A 3,4-quinone induces the conversion of xanthine dehydrogenase into oxidase in vitro.

    PubMed

    Sakuma, Satoru; Nakanishi, Masahiko; Morinaga, Kazuhiro; Fujitake, Mihoyo; Wada, Shun-ichi; Fujimoto, Yohko

    2010-01-01

    In the present study, we assessed the influence of bisphenol A (BPA) and bisphenol A 3,4-quinone (BPAQ) on the conversion of xanthine dehydrogenase (XD) into xanthine oxidase (XO) in the rat liver in vitro. BPA up to 100 micromol/L did not affect the XO and XD activities in the partially purified cytosolic fraction from rat liver, whereas BPAQ (2-10 micromol/L) dose-dependently enhanced the XO activity concomitant with a decrease in the XD activity, implying that BPAQ, but not BPA, can convert XD into the reactive oxygen species (ROS) producing the form XO. Furthermore, it was found that BPAQ could increase the generation of ROS and oxidize the guanine moiety of deoxyguanosine in the DNA of primary rat hepatocyte cultures. These results suggest that BPAQ has the potential to convert XD into XO in the liver, which in turn may lead to ROS generation and oxidative DNA damage in this region. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  3. All-solid-state lithium organic battery with composite polymer electrolyte and pillar[5]quinone cathode.

    PubMed

    Zhu, Zhiqiang; Hong, Meiling; Guo, Dongsheng; Shi, Jifu; Tao, Zhanliang; Chen, Jun

    2014-11-26

    The cathode capacity of common lithium ion batteries (LIBs) using inorganic electrodes and liquid electrolytes must be further improved. Alternatively, all-solid-state lithium batteries comprising the electrode of organic compounds can offer much higher capacity. Herein, we successfully fabricated an all-solid-state lithium battery based on organic pillar[5]quinone (C35H20O10) cathode and composite polymer electrolyte (CPE). The poly(methacrylate) (PMA)/poly(ethylene glycol) (PEG)-LiClO4-3 wt % SiO2 CPE has an optimum ionic conductivity of 0.26 mS cm(-1) at room temperature. Furthermore, pillar[5]quinine cathode in all-solid-state battery rendered an average operation voltage of ∼2.6 V and a high initial capacity of 418 mAh g(-1) with a stable cyclability (94.7% capacity retention after 50 cycles at 0.2C rate) through the reversible redox reactions of enolate/quinonid carbonyl groups, showing favorable prospect for the device application with high capacity.

  4. Pyrroloquinoline quinone ameliorates l-thyroxine-induced hyperthyroidism and associated problems in rats.

    PubMed

    Kumar, Narendra; Kar, Anand; Panda, Sunanda

    2014-08-01

    Pyrroloquinoline quinone (PQQ) is believed to be a strong antioxidant. In this study, we have evaluated its hitherto unknown role in l-thyroxin (L-T4 )-induced hyperthyroidism considering laboratory rat as a model. Alterations in the serum concentration of thyroxin (T4 ) and triiodothyronine (T3 ); lipid peroxidation (LPO) of liver, kidney, heart, muscles and brain; in the endogenous antioxidants such as superoxide dismutase, catalase and glutathione and in serum total cholesterol, high-density lipoprotien, triglycerides, serum glutamate pyruvate transaminase (SGPT), serum glutamate oxaloacetate transaminase (SGOT) and urea were evaluated. Administration of l-T4 (500-µg kg(-1) body weight) enhanced not only the serum T3 and T4 levels but also the tissue LPO, serum SGOT, SGPT and urea with a parallel decrease in the levels of antioxidants and serum lipids. However, on simultaneous administration of PQQ (5 mg kg(-1) for 6 days), all these adverse effects were ameliorated, indicating the potential of PQQ in the amelioration of hyperthyroidism and associated problems. Possibly, the curative effects were mediated through inhibition of oxidative stress. We suggest that PQQ may be considered for therapeutic use for hyperthyroidism after dose standardization. Copyright © 2014 John Wiley & Sons, Ltd.

  5. A cannabinoid anticancer quinone, HU-331, is more potent and less cardiotoxic than doxorubicin: a comparative in vivo study.

    PubMed

    Kogan, Natalya M; Schlesinger, Michael; Peters, Maximilian; Marincheva, Gergana; Beeri, Ronen; Mechoulam, Raphael

    2007-08-01

    Several quinones have been found to be effective in the treatment of some forms of cancer; however, their cumulative heart toxicity limits their use. The cannabinoid quinone HU-331 [3S,4R-p-benzoquinone-3-hydroxy-2-p-mentha-(1,8)-dien-3-yl-5-pentyl] is highly effective against tumor xenografts in nude mice. We report now a comparison of the anticancer activity of HU-331 and its cardiotoxicity with those of doxorubicin in vivo. General toxicity was assayed in Sabra, nude and SCID-NOD mice. The anticancer activity in vivo was assessed by measurement of the tumors with an external caliper in HT-29 and Raji tumor-bearing mice and by weighing the excised tumors. Left ventricular function was evaluated with transthoracic echocardiography. Myelotoxicity was evaluated by blood cell count. Cardiac troponin T (cTnT) plasma levels were determined by immunoassay. HU-331 was found to be much less cardiotoxic than doxorubicin. The control and the HU-331-treated groups gained weight, whereas the doxorubicin-treated group lost weight during the study. In HT-29 colon carcinoma, the tumor weight in the HU-331-treated group was 54% smaller than in the control group and 30% smaller than in the doxorubicin-treated group. In Raji lymphoma, the tumor weight in the HU-331-treated group was 65% smaller than in the control group and 33% smaller than in the doxorubicin-treated group. In contrast to doxorubicin, HU-331 did not generate reactive oxygen species in mice hearts (measured by protein carbonylation levels and malondialdehyde levels). In vivo, HU-331 was more active and less toxic than doxorubicin and thus it has a high potential for development as a new anticancer drug.

  6. Succinate dehydrogenase activity regulates PCB3-quinone-induced metabolic oxidative stress and toxicity in HaCaT human keratinocytes.

    PubMed

    Xiao, Wusheng; Sarsour, Ehab H; Wagner, Brett A; Doskey, Claire M; Buettner, Garry R; Domann, Frederick E; Goswami, Prabhat C

    2016-02-01

    Polychlorinated biphenyls (PCBs) and their metabolites are environmental pollutants that are known to have adverse health effects. 1-(4-Chlorophenyl)-benzo-2,5-quinone (4-ClBQ), a quinone metabolite of 4-monochlorobiphenyl (PCB3, present in the environment and human blood) is toxic to human skin keratinocytes, and breast and prostate epithelial cells. This study investigates the hypothesis that 4-ClBQ-induced metabolic oxidative stress regulates toxicity in human keratinocytes. Results from Seahorse XF96 Analyzer showed that the 4-ClBQ treatment increased extracellular acidification rate, proton production rate, oxygen consumption rate and ATP content, indicative of metabolic oxidative stress. Results from a q-RT-PCR assay showed significant increases in the mRNA levels of hexokinase 2 (hk2), pyruvate kinase M2 (pkm2) and glucose-6-phosphate dehydrogenase (g6pd), and decreases in the mRNA levels of succinate dehydrogenase (complex II) subunit C and D (sdhc and sdhd). Pharmacological inhibition of G6PD-activity enhanced the toxicity of 4-ClBQ, suggesting that the protective function of the pentose phosphate pathway is functional in 4-ClBQ-treated cells. The decrease in sdhc and sdhd expression was associated with a significant decrease in complex II activity and increase in mitochondrial levels of ROS. Overexpression of sdhc and sdhd suppressed 4-ClBQ-induced inhibition of complex II activity, increase in mitochondrial levels of ROS, and toxicity. These results suggest that the 4-ClBQ treatment induces metabolic oxidative stress in HaCaT cells, and while the protective function of the pentose phosphate pathway is active, inhibition of complex II activity sensitizes HaCaT cells to 4-ClBQ-induced toxicity.

  7. Cranberry extract-enriched diets increase NAD(P)H:quinone oxidoreductase and catalase activities in obese but not in nonobese mice.

    PubMed

    Boušová, Iva; Bártíková, Hana; Matoušková, Petra; Lněničková, Kateřina; Zappe, Lukáš; Valentová, Kateřina; Szotáková, Barbora; Martin, Jan; Skálová, Lenka

    2015-10-01

    Consumption of antioxidant-enriched diets is 1 method of addressing obesity, which is associated with chronic oxidative stress and changes in the activity/expression of various enzymes. In this study, we hypothesized that the modulation of antioxidant enzymes and redox status through a cranberry extract (CBE)-enriched diet would differ between obese and nonobese mice. The CBE used in this study was obtained from the American cranberry (Vaccinium macrocarpon, Ericaceae), a popular constituent of dietary supplements that is a particularly rich source of (poly)phenols and has strong antioxidant properties. The present study was designed to test and compare the in vivo effects of 28-day consumption of a CBE-enriched diet (2%) on the antioxidant status of nonobese mice and mice with monosodium glutamate-induced obesity. Plasma, erythrocytes, liver, and small intestine were studied concurrently to obtain more complex information. The specific activities, protein, and messenger RNA expression levels of antioxidant enzymes as well as the levels of malondialdehyde and thiol (SH) groups were analyzed. Cranberry extract treatment increased the SH group content in plasma and the glutathione S-transferase activity in the erythrocytes of the obese and nonobese mice. In addition, in the obese animals, the CBE treatment reduced the malondialdehyde content in erythrocytes and increased quinone oxidoreductase (liver) and catalase (erythrocytes and small intestine) activities. The elevation of hepatic quinone oxidoreductase activity was accompanied by an increase in the corresponding messenger RNA levels. The effects of CBE on the activity of antioxidant enzymes and redox status were more pronounced in the obese mice compared with the nonobese mice. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. NQO1 and CYP450 reductase decrease the systemic exposure of rifampicin-quinone and mediate its redox cycle in rats.

    PubMed

    Shi, Fuguo; Li, Xiaobing; Pan, Hong; Ding, Li

    2017-01-05

    Rifampicin (RIF) is used in regimens for infections caused by Mycobacteria accompanied by serious adverse reactions. Rifampicin-quinone (RIF-Q) is a major autoxidation product of RIF. It is not clear whether RIF-Q plays a role in RIF induced adverse reactions. Investigation of the systemic exposure of RIF-Q is helpful to better understand the role of RIF-Q in RIF induced adverse reactions. In this study, a simple and reproducible high performance liquid chromatography-mass spectrometry (LC-MS) method involving a procedure to prevent the RIF from oxidation for simultaneous quantification of RIF and RIF-Q in rat plasma has been developed and validated, and applied to elucidate the systemic exposure of RIF-Q in rats. The pharmacokinetics data showed that the systemic exposure of RIF-Q was very low (0.67% of RIF, AUC 0-24 ) in rats after oral administration of RIF. However, RIF-Q may undergo the redox cycle in vivo by the evidence that the majority of RIF-Q was reduced to RIF after an oral dose of RIF-Q. Pretreatment with the NAD(P)H: quinone oxidoreductase 1 (NQO1) specific inhibitor dicoumarol and/or cytochrome P450 reductase (CPR) inhibitor diphenyleneiodonium suppressed the redox cycle and significantly increased the systemic exposure of RIF-Q. The inhibitors also attenuated the redox cycle induced reactive oxygen species formation and cytotoxicity in RIF-Q-treated HepG2 cells. These results indicate that NQO1 and CPR play an important role in redox cycle of RIF-Q and may thus contribute to RIF-induced adverse reactions. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Antiplasmodial, cytotoxic activities and characterization of a new naturally occurring quinone methide pentacyclic triterpenoid derivative isolated from Salacia leptoclada Tul. (Celastraceae) originated from Madagascar

    PubMed Central

    Ruphin, Fatiany Pierre; Baholy, Robijaona; Emmanue, Andrianarivo; Amelie, Raharisololalao; Martin, Marie-Therese; Koto-te-Nyiwa, Ngbolua

    2013-01-01

    Objective To validate scientifically the traditional use of Salacia leptoclada Tul. (Celastraceae) (S. leptoclada) and to isolate and elucidate the structure of the biologically active compound. Methods Bioassay-guided fractionation of the acetonic extract of the stem barks of S. leptoclada was carried out by a combination of chromatography technique and biological experiments in viro using Plasmodium falciparum and P388 leukemia cell lines as models. The structure of the biologically active pure compound was elucidated by 1D and 2D NMR spectroscopy and mass spectrometry. Results Biological screening of S. leptoclada extracts resulted in the isolation of a pentacyclic triterpenic quinone methide. The pure compound exhibited both in vitro a cytotoxic effect on murine P388 leukemia cells with IC50 value of (0.041±0.020) µg/mL and an antiplasmodial activity against the chloroquine-resistant strain FC29 of Plasmodium falciparum with an IC50 value of (0.052±0.030) µg/mL. Despite this interesting anti-malarial property of the lead compound, the therapeutic index was weak (0.788). In the best of our knowledge, the quinone methide pentacyclic triterpenoid derivative compound is reported for the first time in S. leptoclada. Conclusions The results suggest that furthers studies involving antineoplastic activity is needed for the development of this lead compound as anticancer drug. PMID:24075342

  10. Acid residues in the transmembrane helices of the Na+-pumping NADH:quinone oxidoreductase (Na+-NQR) from Vibrio cholerae involved in sodium translocation†

    PubMed Central

    Juárez, Oscar; Athearn, Kathleen; Gillespie, Portia; Barquera, Blanca

    2009-01-01

    Vibrio cholerae and many other marine and pathogenic bacteria posses a unique respiratory complex, the Na+-pumping NADH: quinone oxidoreductase (Na+-NQR)1, which pumps Na+ across the cell membrane using the energy released by the redox reaction between NADH and ubiquinone. In order to function as a selective sodium pump, Na+-NQR must contain structures that: 1) allow the sodium ion to pass through the hydrophobic core of the membrane, and 2) provide cation specificity to the translocation system. In other sodium transporting proteins, the structures that carry out these roles frequently include aspartate and glutamate residues. The negative charge of these residues facilitates binding and translocation of sodium. In this study we have analyzed mutants of acid residues located in the transmembrane helices of subunits B, D and E of Na+-NQR. The results are consistent with the participation of seven of these residues in the translocation process of sodium. Mutations at NqrB-D397, NqrD-D133 and NqrE-E95 produced a decrease of approximately ten times or more in the apparent affinity of the enzyme for sodium (Kmapp), which suggests that these residues may form part of a sodium-binding site. Mutation at other residues, including NqrB-E28, NqrB-E144, NqrB-E346 and NqrD-D88, had a large effect on the quinone reductase activity of the enzyme and its sodium sensitivity, but less effect on the apparent sodium affinity, consistent with a possible role in sodium conductance pathways. PMID:19694431

  11. Identification of a multi-protein reductive dehalogenase complex in Dehalococcoides mccartyi strain CBDB1 suggests a protein-dependent respiratory electron transport chain obviating quinone involvement.

    PubMed

    Kublik, Anja; Deobald, Darja; Hartwig, Stefanie; Schiffmann, Christian L; Andrades, Adarelys; von Bergen, Martin; Sawers, R Gary; Adrian, Lorenz

    2016-09-01

    Dehalococcoides mccartyi strain CBDB1 is an obligate organohalide-respiring bacterium using only hydrogen as electron donor and halogenated organics as electron acceptor. Here, we studied proteins involved in the respiratory chain under non-denaturing conditions. Using blue native gel electrophoresis (BN-PAGE), gel filtration and ultrafiltration an active dehalogenating protein complex with a molecular mass of 250-270 kDa was identified. The active subunit of reductive dehalogenase (RdhA) colocalised with a complex iron-sulfur molybdoenzyme (CISM) subunit (CbdbA195) and an iron-sulfur cluster containing subunit (CbdbA131) of the hydrogen uptake hydrogenase (Hup). No colocalisation between the catalytically active subunits of hydrogenase and reductive dehalogenase was found. By two-dimensional BN/SDS-PAGE the stability of the complex towards detergents was assessed, demonstrating stepwise disintegration with increasing detergent concentrations. Chemical cross-linking confirmed the presence of a higher molecular mass reductive dehalogenase protein complex composed of RdhA, CISM I and Hup hydrogenase and proved to be a potential tool for stabilising protein-protein interactions of the dehalogenating complex prior to membrane solubilisation. Taken together, the identification of the respiratory dehalogenase protein complex and the absence of indications for quinone participation in the respiration suggest a quinone-independent protein-based respiratory electron transfer chain in D. mccartyi. © 2015 Society for Applied Microbiology and John Wiley & Sons Ltd.

  12. Phenolic derivatives from soy flour ethanol extract are potent in vitro quinone reductase (QR) inducing agents.

    PubMed

    Bolling, Bradley W; Parkin, Kirk L

    2008-11-26

    The fractionation of soy flour directed by a cellular bioassay for induction of phase 2 detoxification enzymes was used to identify quinone reductase (QR) inducing agents. A phospholipid-depleted, 80% methanol-partitioned isolate from a crude ethanol extract of soy flour was resolved using normal phase medium-pressure liquid chromatography (MPLC). Early eluting fractions were found to be the most potent QR inducing agents among the separated fractions. Fraction 2 was the most potent, doubling QR at <2 mug/mL. Further fractionation of this isolate led to the identification of several constituents. Fatty acids and sn-1 and sn-2 monoacylglycerols were identified, but were not highly potent QR inducers. Benzofuran-3-carbaldehyde, 4-hydroxybenzaldeyde, 4-ethoxybenzoic acid, 4-ethoxycinnamic acid, benzofuran-2-carboxylic ethyl ester, and ferulic acid ethyl ester (FAEE) were also identified as QR inducing constituents of this fraction. FAEE was the most potent of the identified constituents, doubling QR specific activity at 3.2 muM in the cellular bioassay.

  13. Combination of Aryl Diselenides/Hydrogen Peroxide and Carbon Nanotube-Rhodium Nanohybrid for Naphthols Oxidation: An Efficient Route towards Trypanocidal Quinones.

    PubMed

    de Carvalho, Renato L; Jardim, Guilherme A M; Santos, Augusto; Araujo, Maria H; Oliveira, Willian X C; Bombaça, Ana Cristina; Menna-Barreto, Rubem F S; Gopi, Elumalai; Gravel, Edmond; Doris, Eric; da Silva Júnior, Eufrânio Nunes

    2018-06-14

    We report a combination of aryl diselenides/hydrogen peroxide and carbon nanotube-rhodium nanohybrid for naphthols oxidation towards synthesis of 1,4-naphthoquinones and evaluation of their relevant trypanocidal activity. Under a combination of (PhSe)2/H2O2 in the presence of O2 in i-PrOH/Hexane, several benzenoid (A-ring) substituted quinones were prepared in moderate to high yields. We also studied the contribution of RhCNT as co-catalyst in this process and, in some cases, yields were improved. This method provides an efficient and versatile alternative for preparing A-ring modified naphthoquinonoid compounds with relevant biological profile. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. The effect of functional groups on reduction and activation of quinone bioreductive agents by DT-diaphorase.

    PubMed

    Fourie, Jeanne; Oleschuk, Curtis J; Guziec, Frank; Guziec, Lynn; Fiterman, Derek J; Monterrosa, Cielo; Begleiter, Asher

    2002-02-01

    Bioreductive antitumor agents are an important class of anticancer drugs that include the clinically used drug, mitomycin C, and new agents such as EO9 and tirapazamine that have recently been tested in clinical trials. These agents require activation by reductive enzymes such as DT-diaphorase or NADPH:cytochrome P450 reductase. A major focus for improving cancer chemotherapy has been to increase the selectivity and targeting of antitumor drugs to tumor cells. Bioreductive antitumor agents are ideally suited to improving tumor selectivity by an enzyme-directed approach to tumor targeting. However, none of the bioreductive agents developed to date has been specific for activation by a single reductive enzyme. This is in part due to a lack of knowledge about structural factors that confer selectivity for activation by reductive enzymes. The purpose of this study was to investigate the ability of specific functional groups to modify reduction and activation of quinone bioreductive agents by DT-diaphorase. We used a series of model benzoquinone mustard (BM) bioreductive agents and compared the parent compound BM to MBM, which has a strong electron-donating methoxy group, MeBM, which has a weaker electron-donating methyl group, CBM, which has an electron-withdrawing chloro group, and PBM and its structural isomer, meta-PBM (m-PBM), which both have sterically bulky benzene rings attached to the quinone moiety. We determined the rate of reduction of these agents by purified human DT-diaphorase under hypoxic and aerobic conditions. We also measured the cytotoxic activity of these agents in human tumor cell lines with and without the DT-diaphorase inhibitor, dicoumarol. Under hypoxic conditions in vitro, the t(1/2) values for reduction of the analogs by purified DT-diaphorase were 4, 6, 8, 9, 10 and 21 min for BM, MeBM, CBM, MBM, PBM and m-PBM, respectively. Under aerobic conditions the rank order of redox cycling after two-electron reduction by DT-diaphorase was MBM > Me

  15. Antiplasmodial, cytotoxic activities and characterization of a new naturally occurring quinone methide pentacyclic triterpenoid derivative isolated from Salacia leptoclada Tul. (Celastraceae) originated from Madagascar.

    PubMed

    Ruphin, Fatiany Pierre; Baholy, Robijaona; Emmanue, Andrianarivo; Amelie, Raharisololalao; Martin, Marie-Therese; Koto-te-Nyiwa, Ngbolua

    2013-10-01

    To validate scientifically the traditional use of Salacia leptoclada Tul. (Celastraceae) (S. leptoclada) and to isolate and elucidate the structure of the biologically active compound. Bioassay-guided fractionation of the acetonic extract of the stem barks of S. leptoclada was carried out by a combination of chromatography technique and biological experiments in viro using Plasmodium falciparum and P388 leukemia cell lines as models. The structure of the biologically active pure compound was elucidated by 1D and 2D NMR spectroscopy and mass spectrometry. Biological screening of S. leptoclada extracts resulted in the isolation of a pentacyclic triterpenic quinone methide. The pure compound exhibited both in vitro a cytotoxic effect on murine P388 leukemia cells with IC50 value of (0.041±0.020) μg/mL and an antiplasmodial activity against the chloroquine-resistant strain FC29 of Plasmodium falciparum with an IC50 value of (0.052±0.030) μg/mL. Despite this interesting anti-malarial property of the lead compound, the therapeutic index was weak (0.788). In the best of our knowledge, the quinone methide pentacyclic triterpenoid derivative compound is reported for the first time in S. leptoclada. The results suggest that furthers studies involving antineoplastic activity is needed for the development of this lead compound as anticancer drug. Copyright © 2013 Asian Pacific Tropical Biomedical Magazine. Published by Elsevier B.V. All rights reserved.

  16. Quinone reductase (QR) inducers from Andrographis paniculata and identification of molecular target of andrographolide.

    PubMed

    Yuan, Yonglei; Ji, Long; Luo, Liping; Lu, Juan; Ma, Xiaoqiong; Ma, Zhongjun; Chen, Zhe

    2012-12-01

    In the present study, it was demonstrated that the petroleum extract of Andrographis paniculata (AP) had quinone reductase (QR) inducing activity, which might be attributed to the modification of key cysteine residues in Keap1 by Michael addition acceptors (MAAs) in it. To screen MAAs in AP, glutathione (GSH) was employed, and a LC/MS/MS method was implied. Three compounds, andrographoside, andrographolide, 14-deoxy-14,15-dehydroandrographolide were revealed could well conjugated with GSH. Then, andrographolide along with 4 new and 14 known compounds were isolated to conduct QR induction evaluation, and the CD (the concentration required to double the activity of QR) value of andrographolide is 1.43μM. The QR induce activity of andrographolide might be attributed to its targeting multiple cysteine residues in Keap1, therefore, the alkylation of Keap1 by andrographolide was further studied and the result showed that four cysteine residues: Cys77, Cys151, Cys273 and Cys368 were alkylated, which indicated that Keap1 is a potential target for the QR induce activity of andrographolide. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. Cyanide as a copper and quinone-directed inhibitor of amine oxidases from pea seedlings ( Pisum sativum) and Arthrobacter globiformis: evidence for both copper coordination and cyanohydrin derivatization of the quinone cofactor.

    PubMed

    Shepard, Eric M; Juda, Gregory A; Ling, Ke-Qing; Sayre, Lawrence M; Dooley, David M

    2004-04-01

    The interactions of cyanide with two copper-containing amine oxidases (CuAOs) from pea seedlings (PSAO) and the soil bacterium Arthrobacter globiformis (AGAO) have been investigated by spectroscopic and kinetic techniques. Previously, we rationalized the effects of azide and cyanide for several CuAOs in terms of copper coordination by these exogenous ligands and their effects on the internal redox equilibrium TPQ(amr)-Cu(II) right harpoon over left harpoon TPQ(sq)-Cu(I). The mechanism of cyanide inhibition was proposed to occur through complexation to Cu(I), thereby directly competing with O(2) for reoxidation of TPQ. Although cyanide readily and reversibly reacts with quinones, no direct spectroscopic evidence for cyanohydrin derivatization of TPQ has been previously documented for CuAOs. This work describes the first direct spectroscopic evidence, using both model and enzyme systems, for cyanohydrin derivatization of TPQ. K(d) values for Cu(II)-CN(-) and Cu(I)-CN(-), as well as the K(i) for cyanide inhibition versus substrate amine, are reported for PSAO and AGAO. In spite of cyanohydrin derivatization of the TPQ cofactor in these enzymes, the uncompetitive inhibition of amine oxidation is determined to arise almost exclusively through CN(-) complexation of Cu(I).

  18. A new cytotoxic sesquiterpene quinone produced by Penicillium sp. F00120 isolated from a deep sea sediment sample.

    PubMed

    Lin, Xiuping; Zhou, Xuefeng; Wang, Fazuo; Liu, Kaisheng; Yang, Bin; Yang, Xianwen; Peng, Yan; Liu, Juan; Ren, Zhe; Liu, Yonghong

    2012-01-01

    A new fungal strain, displaying strong toxic activity against brine shrimp larvae, was isolated from a deep sea sediment sample collected at a depth of 1300 m. The strain, designated as F00120, was identified as a member of the genus Penicillium on the basis of morphology and ITS sequence analysis. One new sesquiterpene quinone, named penicilliumin A (1), along with two known compounds ergosterol (2) and ergosterol peroxide (3), were isolated and purified from the cultures of F00120 by silica gel column, Sephadex LH-20 column, and preparative thin layer chromatography. Their structures were elucidated by detailed nuclear magnetic resonance (NMR) and mass spectroscopic (MS) analysis as well as comparison with literature data. The new compound penicilliumin A inhibited in vitro proliferation of mouse melanoma (B16), human melanoma (A375), and human cervical carcinoma (Hela) cell lines moderately.

  19. Ultrafast Adiabatic Photodehydration of 2-Hydroxymethylphenol and the Formation of Quinone Methide.

    PubMed

    Škalamera, Đani; Antol, Ivana; Mlinarić-Majerski, Kata; Vančik, Hrvoj; Phillips, David Lee; Ma, Jiani; Basarić, Nikola

    2018-04-20

    The photochemical reactivity of 2-hydroxymethylphenol (1) was investigated experimentally by photochemistry under cryogenic conditions, by detecting reactive intermediates by IR spectroscopy, and by using nanosecond and femtosecond transient absorption spectroscopic methods in solution at room temperature. In addition, theoretical studies were performed to facilitate the interpretation of the experimental results and also to simulate the reaction pathway to obtain a better understanding of the reaction mechanism. The main finding of this work is that photodehydration of 1 takes place in an ultrafast adiabatic photochemical reaction without any clear intermediate, delivering quinone methide (QM) in the excited state. Upon photoexcitation to a higher vibrational level of the singlet excited state, 1 undergoes vibrational relaxation leading to two photochemical pathways, one by which synchronous elimination of H 2 O gives QM 2 in its S 1 state and the other by which homolytic cleavage of the phenolic O-H bond produces a phenoxyl radical (S 0 ). Both are ultrafast processes that occur within a picosecond. The excited state of QM 2 (S 1 ) probably deactivates to S 0 through a conical intersection to give QM 2 (S 0 ), which subsequently delivers benzoxete 4. Elucidation of the reaction mechanisms for the photodehydration of phenols by which QMs are formed is important to tune the reactivity of QMs with DNA and proteins for the potential application of QMs in medicine as therapeutic agents. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Correlation of quinone reductase activity and allyl isothiocyanate formation among different genotypes and grades of horseradish roots.

    PubMed

    Ku, Kang-Mo; Jeffery, Elizabeth H; Juvik, John A; Kushad, Mosbah M

    2015-03-25

    Horseradish (Armoracia rusticana) is a perennial crop and its ground root tissue is used in condiments because of the pungency of the glucosinolate (GS)-hydrolysis products allyl isothiocyanate (AITC) and phenethyl isothiocyanate (PEITC) derived from sinigrin and gluconasturtiin, respectively. Horseradish roots are sold in three grades: U.S. Fancy, U.S. No. 1, and U.S. No. 2 according to the USDA standards. These grading standards are primarily based on root diameter and length. There is little information on whether root grades vary in their phytochemical content or potential health promoting properties. This study measured GS, GS-hydrolysis products, potential anticancer activity (as quinone reductase inducing activity), total phenolic content, and antioxidant activities from different grades of horseradish accessions. U.S. Fancy showed significantly higher sinigrin and AITC concentrations than U.S. No. 1 ,whereas U.S. No. 1 showed significantly higher concentrations of 1-cyano 2,3-epithiopropane, the epithionitrile hydrolysis product of sinigrin, and significantly higher total phenolic concentrations than U.S. Fancy.

  1. In vivo relevance of two critical levels for NAD(P)H:quinone oxidoreductase (NQO1)-mediated cellular protection against electrophile toxicity found in vitro.

    PubMed

    de Haan, Laura H J; Pot, Gerda K; Aarts, Jac M M J G; Rietjens, Ivonne M C M; Alink, Gerrit M

    2006-08-01

    NAD(P)H:quinone oxidoreductase (NQO1)-mediated detoxification of quinones is suggested to be involved in cancer prevention. In the present study, using transfected CHO cells, it was demonstrated that the relation between NQO1 activity and the resulting protection against the cytotoxicity of menadione shows a steep dose-response curve revealing a 'lower protection threshold' of 0.5mumol DCPIP/min/mg protein and an 'upper protection threshold' at 1mumol DCPIP/min/mg protein. In an additional in vivo experiment it was investigated how both in vitro critical activity levels of NQO1, relate to NQO1 activities in mice and man, either without or upon induction of the enzyme by butylated hydroxyanisol (BHA) or indole-3-carbinol (I(3)C). Data from an experiment with CD1 mice revealed that base-line NQO1 levels in liver, kidney, small intestine, colon and lung are generally below the observed 'lower protection threshold' in vitro, this also holds for most human tissue S-9 samples. To achieve NQO1 levels above this 'lower protection threshold' will require 5-20 fold NQO1 induction. Discussion focuses on the relevance of the in vitro NQO1 activity thresholds for the in vivo situation. We conclude that increased protection against menadione toxicity can probably not be achieved by NQO1 induction but should be achieved by other mechanisms. Whether this conclusion also holds for other electrophiles and the in vivo situation awaits further definition of their NQO1 protection thresholds.

  2. Quinone Methide Signal Amplification: Covalent Reporter Labeling of Cancer Epitopes using Alkaline Phosphatase Substrates.

    PubMed

    Polaske, Nathan W; Kelly, Brian D; Ashworth-Sharpe, Julia; Bieniarz, Christopher

    2016-03-16

    Diagnostic assays with the sensitivity required to improve cancer therapeutics depend on the development of new signal amplification technologies. Herein, we report the development and application of a novel amplification system which utilizes latent quinone methides (QMs) activated by alkaline phosphatase (AP) for signal amplification in solid-phase immunohistochemical (IHC) assays. Phosphate-protected QM precursor substrates were prepared and conjugated to either biotin or a fluorophore through an amine-functionalized linker group. Upon reaction with AP, the phosphate group is cleaved, followed by elimination of the leaving group and formation of the highly reactive and short-lived QM. The QMs either react with tissue nucleophiles in close proximity to their site of generation, or are quenched by nucleophiles in the reaction media. The reporter molecules that covalently bind to the tissue were then detected visually by fluorescence microscopy in the case of fluorophore reporters, or brightfield microscopy using diaminobenzidine (DAB) in the case of biotin reporters. With multiple reporters deposited per enzyme, significant signal amplification was observed utilizing QM precursor substrates containing either benzyl difluoro or benzyl monofluoro leaving group functionalities. However, the benzyl monofluoro leaving group gave superior results with respect to both signal intensity and discretion, the latter of which was found to be imperative for use in diagnostic IHC assays.

  3. Complex thiolated mannose/quinone film modified on EQCM/Au electrode for recognizing specific carbohydrate-proteins.

    PubMed

    Zeng, Hongjuan; Yu, Junsheng; Jiang, Yadong; Zeng, Xiangqun

    2014-05-15

    A complex thiolated mannose (TM)/quinone functionalised polythiophene (QFPT) thin film was modified on EQCM/Au electrode for recognition of specific carbohydrate-proteins. Different lectins such as those from Sambucus nigra (elder berry), Arachis hypogaea (peanut), Ulex europaeus (gorse, furze), Triticum vulgaris and Concanavalin A (ConA) was used for probes to evaluate bio-sensing performance of the TM/QFPT film. A specific response was observed for ConA from lectins when using the TM/QFPT film as sensing material and employing either elelctrochemical or the QCM method. No response was detected between thiolated mannose and other lectins. The linear relationship between current and ConA concentration is in the range of 0.5-17.5 nM by the elelctrochemical method and the linear relationship between frequency change and ConA concentration is in the range of 0.5-4.5 nM by the QCM method. This shows that the TM/QFPT-modified EQCM biosensor presents a paralleled determination by using electrochemical and the QCM method. The elelctrochemical method of the biosensor can be applicable in a large concentration range and its frequency change can be more precise. © 2013 Published by Elsevier B.V.

  4. NqrM (DUF539) Protein Is Required for Maturation of Bacterial Na+-Translocating NADH:Quinone Oxidoreductase

    PubMed Central

    Kostyrko, Vitaly A.; Bertsova, Yulia V.; Serebryakova, Marina V.; Baykov, Alexander A.

    2015-01-01

    ABSTRACT Na+-translocating NADH:quinone oxidoreductase (Na+-NQR) catalyzes electron transfer from NADH to ubiquinone in the bacterial respiratory chain, coupled with Na+ translocation across the membrane. Na+-NQR maturation involves covalent attachment of flavin mononucleotide (FMN) residues, catalyzed by flavin transferase encoded by the nqr-associated apbE gene. Analysis of complete bacterial genomes has revealed another putative gene (duf539, here renamed nqrM) that usually follows the apbE gene and is present only in Na+-NQR-containing bacteria. Expression of the Vibrio harveyi nqr operon alone or with the associated apbE gene in Escherichia coli, which lacks its own Na+-NQR, resulted in an enzyme incapable of Na+-dependent NADH or reduced nicotinamide hypoxanthine dinucleotide (dNADH) oxidation. However, fully functional Na+-NQR was restored when these genes were coexpressed with the V. harveyi nqrM gene. Furthermore, nqrM lesions in Klebsiella pneumoniae and V. harveyi prevented production of functional Na+-NQR, which could be recovered by an nqrM-containing plasmid. The Na+-NQR complex isolated from the nqrM-deficient strain of V. harveyi lacks several subunits, indicating that nqrM is necessary for Na+-NQR assembly. The protein product of the nqrM gene, NqrM, contains a single putative transmembrane α-helix and four conserved Cys residues. Mutating one of these residues (Cys33 in V. harveyi NqrM) to Ser completely prevented Na+-NQR maturation, whereas mutating any other Cys residue only decreased the yield of the mature protein. These findings identify NqrM as the second specific maturation factor of Na+-NQR in proteobacteria, which is presumably involved in the delivery of Fe to form the (Cys)4[Fe] center between subunits NqrD and NqrE. IMPORTANCE Na+-translocating NADH:quinone oxidoreductase complex (Na+-NQR) is a unique primary Na+ pump believed to enhance the vitality of many bacteria, including important pathogens such as Vibrio cholerae, Vibrio

  5. NADPH:Quinone Oxidoreductase 1 Regulates Host Susceptibility to Ozone via Isoprostane Generation*

    PubMed Central

    Kummarapurugu, Apparao B.; Fischer, Bernard M.; Zheng, Shuo; Milne, Ginger L.; Ghio, Andrew J.; Potts-Kant, Erin N.; Foster, W. Michael; Soderblom, Erik J.; Dubois, Laura G.; Moseley, M. Arthur; Thompson, J. Will; Voynow, Judith A.

    2013-01-01

    NADPH:quinone oxidoreductase 1 (NQO1) is recognized as a major susceptibility gene for ozone-induced pulmonary toxicity. In the absence of NQO1 as can occur by genetic mutation, the human airway is protected from harmful effects of ozone. We recently reported that NQO1-null mice are protected from airway hyperresponsiveness and pulmonary inflammation following ozone exposure. However, NQO1 regenerates intracellular antioxidants and therefore should protect the individual from oxidative stress. To explain this paradox, we tested whether in the absence of NQO1 ozone exposure results in increased generation of A2-isoprostane, a cyclopentenone isoprostane that blunts inflammation. Using GC-MS, we found that NQO1-null mice had greater lung tissue levels of D2- and E2-isoprostanes, the precursors of J2- and A2-isoprostanes, both at base line and following ozone exposure compared with congenic wild-type mice. We confirmed in primary cultures of normal human bronchial epithelial cells that A2-isoprostane inhibited ozone-induced NF-κB activation and IL-8 regulation. Furthermore, we determined that A2-isoprostane covalently modified the active Cys179 domain in inhibitory κB kinase in the presence of ozone in vitro, thus establishing the biochemical basis for A2-isoprostane inhibition of NF-κB. Our results demonstrate that host factors may regulate pulmonary susceptibility to ozone by regulating the generation of A2-isoprostanes in the lung. These observations provide the biochemical basis for the epidemiologic observation that NQO1 regulates pulmonary susceptibility to ozone. PMID:23275341

  6. PQQ: Biosynthetic studies in Methylobacterium AM1 and Hyphomicrobium X using specific TC labeling and NMR. [Pyrroloquinoline quinones

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Houck, D.R.; Hanners, J.L.; Unkefer, C.J.

    Using TC labeling and NMR spectroscopy we have determined biosynthetic precursors of pyrroloquinoline quinone (PQQ) in two closely related serine-type methylotrophs, Methylobacterium AM1 and Hyphomicrobium X. Analysis of the TC-labeling data revealed that PQQ is constructed from two amino acids: the portion containing N-6, C-7,8,9 and the two carboxylic acid groups, C-7' and 9', is derived-intact-from glutamate. The remaining portion is derived from tyrosine; the phenol side chain provides the six carbons of the ring containing the orthoquinone, whereas internal cyclization of the amino acid backbone forms the pyrrole-2-carboxylic acid moiety. This is analogous to the cyclization of dopaquinone tomore » form dopachrome. Dopaquinone is a product of the oxidation of tyrosine (via dopa) in reactions catalyzed by monophenol monooxygenase (EC 1.14.18.1). Starting with tyrosine and glutamate, we will discuss possible biosynthetic routes to PQQ. 29 refs., 4 figs., 2 tabs.« less

  7. H32, a non-quinone sulfone analog of vitamin K3, inhibits human hepatoma cell growth by inhibiting Cdc25 and activating ERK.

    PubMed

    Kar, Siddhartha; Wang, Meifang; Ham, Seung Wook; Carr, Brian I

    2006-10-01

    We previously synthesized a K-vitamin derivative, Cpd 5, which was a potent growth inhibitor of human tumor cells, including Hep3B hepatoma cells. However, being a quinone compound, Cpd 5 has the potential for generating toxic reactive oxygen species (ROS). We therefore synthesized a nonquinone sulfone derivative, H32, which has a sufone group substituting the quinone. The IC50 of H32 for Hep3B cells was found to be 2.5 microM, which was 2.5 and 3.2 times more potent than Cpd 5 and vitamin K3 respectively. It induced apoptosis in Hep3B cells but did not generate ROS when compared to Cpd 5. Interestingly, under similar culture conditions, normal rat hepatocytes were 14-fold more and 7-fold more resistant to the growth inhibitory effects of H32 than Hep3B and PLC/PRF5 cells respectively. H32 preferentially inhibited the activities of the cell cycle controlling Cdc25A phosphatase likely by binding to its catalytic cysteine. As a consequence, it induced inhibitory tyrosine phosphorylation of the Cdc25 substrate kinases Cdk2 and Cdk4 in Hep3B cells and the cells undergo an arrest in the G1 phase of the cell cycle. H32 also induced persistent phosphorylation of the MAPK protein ERK1/2, but marginal JNK1/2 and p38 phosphorylation. The ERK inhibitor U0126, added at least 30 min prior to H32, antagonized the growth inhibition induced by H32. However, the JNK and p38 inhibitors, JNKI-II and SB203580, were not able to antagonize H32 induced growth inhibition. Thus, H32 differentially inhibited growth of normal and liver tumor cells by preferentially inhibiting the actions of Cdc25 phosphatases and inducing persistent ERK phosphorylation.

  8. Genetic susceptibility of postmenopausal osteoporosis on sulfide quinone reductase-like gene.

    PubMed

    Cai, X; Yi, X; Zhang, Y; Zhang, D; Zhi, L; Liu, H

    2018-05-31

    Postmenopausal osteoporosis is a major health problem with important genetic factors in postmenopausal women. We explored the relationship between SQRDL and osteoporosis in a cohort of 1006 patients and 2027 controls from Han Chinese postmenopausal women. Our evidence supported the significant role of SQRDL in the etiology of postmenopausal osteoporosis. Postmenopausal osteoporosis (PMOP) is a metabolic bone disease leading to progressive bone loss and the deterioration of the bone microarchitecture. The sulfide-quinone reductase-like protein is an important enzyme regulating the cellular hydrogen sulfide levels, and it can regulate bone metabolism balance in postmenopausal women. In this study, we aimed to investigate whether SQRDL is associated with susceptibility to PMOP in the Han Chinese population. A total of 3033 postmenopausal women, comprised of 1006 cases and 2027 controls, were recruited in the study. Twenty-two SNPs were selected for genotyping to evaluate the association of SQRDL gene with BMD and PMOP. Association analyses in both single marker and haplotype levels were performed for PMOP. Bone mineral density (BMD) was also utilized as a quantitative phenotype in further analyses. Bioinformatics tools were applied to predict the functional consequences of targeted polymorphisms in SQRDL. The SNP rs1044032 (P = 6.42 × 10 -5 , OR = 0.80) was identified as significantly associated with PMOP. Three SNPs (rs1044032, rs2028589, and rs12913151) were found to be significantly associated with BMD. Although limited functional significance can be obtained for these polymorphisms, significant hits for association with PMOP were found. Moreover, further association analyses with BMD identified three SNPs with significantly independent effects. Our evidence supported the significant role of SQRDL in the etiology of PMOP and suggest that it may be a genetic risk factor for BMD and osteoporosis in Han Chinese postmenopausal women.

  9. The pea SAD short-chain dehydrogenase/reductase: quinone reduction, tissue distribution, and heterologous expression.

    PubMed

    Scherbak, Nikolai; Ala-Häivälä, Anneli; Brosché, Mikael; Böwer, Nathalie; Strid, Hilja; Gittins, John R; Grahn, Elin; Eriksson, Leif A; Strid, Åke

    2011-04-01

    The pea (Pisum sativum) tetrameric short-chain alcohol dehydrogenase-like protein (SAD) family consists of at least three highly similar members (SAD-A, -B, and -C). According to mRNA data, environmental stimuli induce SAD expression. The aim of this study was to characterize the SAD proteins by examining their catalytic function, distribution in pea, and induction in different tissues. In enzyme activity assays using a range of potential substrates, the SAD-C enzyme was shown to reduce one- or two-ring-membered quinones lacking long hydrophobic hydrocarbon tails. Immunological assays using a specific antiserum against the protein demonstrated that different tissues and cell types contain small amounts of SAD protein that was predominantly located within epidermal or subepidermal cells and around vascular tissue. Particularly high local concentrations were observed in the protoderm of the seed cotyledonary axis. Two bow-shaped rows of cells in the ovary and the placental surface facing the ovule also exhibited considerable SAD staining. Ultraviolet-B irradiation led to increased staining in epidermal and subepidermal cells of leaves and stems. The different localization patterns of SAD suggest functions both in development and in responses to environmental stimuli. Finally, the pea SAD-C promoter was shown to confer heterologous wound-induced expression in Arabidopsis (Arabidopsis thaliana), which confirmed that the inducibility of its expression is regulated at the transcriptional level.

  10. Product yield-detected ESR on magnetic field-dependent photoreduction of quinones in SDS micellar solution

    NASA Astrophysics Data System (ADS)

    Okazaki, M.; Sakata, S.; Konaka, R.; Shiga, T.

    1987-06-01

    Transient free radicals in the magnetic field-dependent photoreduction of quinones (menadione or anthraquinone) in a sodium dodecyl sulfate (SDS) micellar solution, were converted to stable nitroxide radicals by the ``spin trapping'' technique with or without the microwave irradiation. Upon irradiating the microwave at 160 mW, the product yield (``spin adduct'' of the alkyl radical generated from SDS molecule) decreased by up to 14% at certain magnetic fields in a resonant manner. Although only one component of the postulated radical pair was converted to the spin adduct, the decrease in the yield as a function of external magnetic field revealed the ESR spectra of both component radicals of the radical pair, i.e., the semiquinone radical and the alkyl radical from SDS. This experiment not only gives the direct evidence for the radical pair model, but also suggests the possibility for this method to be applied in controlling the chemical reactions by the microwave. A simple calculation was made to simulate the observed ``product yield-detected ESR.'' Agreements were achieved semiquantitatively between the observed reductions in the spin adduct yields and those calculated. The estimated exchange interaction between the component radicals in the radical pair of the present systems was lower than 0.3 mT.

  11. Role of quinones in electron transfer of PQQ–glucose dehydrogenase anodes—mediation or orientation effect

    DOE PAGES

    Babanova, Sofia; Matanovic, Ivana; Chavez, Madelaine Seow; ...

    2015-06-16

    In this study, the influence of two quinones (1,2- and 1,4-benzoquinone) on the operation and mechanism of electron transfer in PQQ-sGDH anodes has been determined. Benzoquinones were experimentally explored as mediators present in the electrolyte. The electrochemical performance of the PQQ–sGDH anodes with and without the mediators was examined and for the first time molecular docking simulations were used to gain a fundamental understanding to explain the role of the mediator molecules in the design and operation of the enzymatic electrodes. It was proposed that the higher performance of the PQQ–sGDH anodes in the presence of 1,2- and 1,4-benzoquinones introducedmore » in the solution is due to the shorter distance between these molecules and PQQ in the enzymatic molecule. It was also hypothesized that when 1,4-benzoquinone is adsorbed on a carbon support, it would play the dual role of a mediator and an orienting agent. At the same time, when 1,2-benzoquinone and ubiquinone are adsorbed on the electrode surface, the enzyme would transfer the electrons directly to the support, and these molecules would primarily play the role of an orienting agent.« less

  12. Role of Quinones in Electron Transfer of PQQ–Glucose Dehydrogenase Anodes—Mediation or Orientation Effect

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Babanova, Sofia; Matanovic, Ivana; Chavez, Madelaine Seow

    2015-06-24

    In this study, the influence of two quinones (1,2- and 1,4-benzoquinone) on the operation and mechanism of electron transfer in PQQ-dependent glucose dehydrogenase (PQQ–sGDH) anodes has been determined. Benzoquinones were experimentally explored as mediators present in the electrolyte. The electrochemical performance of the PQQ–sGDH anodes with and without the mediators was examined and for the first time molecular docking simulations were used to gain a fundamental understanding to explain the role of the mediator molecules in the design and operation of the enzymatic electrodes. It was proposed that the higher performance of the PQQ–sGDH anodes in the presence of 1,2-more » and 1,4-benzoquinones introduced in the solution is due to the shorter distance between these molecules and PQQ in the enzymatic molecule. It was also hypothesized that when 1,4-benzoquinone is adsorbed on a carbon support, it would play the dual role of a mediator and an orienting agent. At the same time, when 1,2-benzoquinone and ubiquinone are adsorbed on the electrode surface, the enzyme would transfer the electrons directly to the support, and these molecules would primarily play the role of an orienting agent.« less

  13. Alternative quinone substrates and inhibitors of human electron-transfer flavoprotein-ubiquinone oxidoreductase.

    PubMed Central

    Simkovic, Martin; Frerman, Frank E

    2004-01-01

    Electron-transfer flavoprotein (ETF)-ubiquinone (2,3-dimethoxy-5-methyl-1,4-benzoquinone) oxidoreductase (ETF-QO) is a membrane-bound iron-sulphur flavoprotein that participates in an electron-transport pathway between eleven mitochondrial flavoprotein dehydrogenases and the ubiquinone pool. ETF is the intermediate electron carrier between the dehydrogenases and ETF-QO. The steady-state kinetic constants of human ETF-QO were determined with ubiquinone homologues and analogues that contained saturated n-alkyl substituents at the 6 position. These experiments show that optimal substrates contain a ten-carbon-atom side chain, consistent with a preliminary crystal structure that shows that only the first two of ten isoprene units of co-enzyme Q10 (CoQ10) interact with the protein. Derivatives with saturated alkyl side chains are very good substrates, indicating that, unlike other ubiquinone oxidoreductases, there is little preference for the methyl branches or rigidity of the CoQ side chain. Few of the compounds that inhibit ubiquinone oxidoreductases inhibit ETF-QO. Compounds found to act as inhibitors of ETF-QO include 2-n-heptyl-4-hydroxyquinoline N-oxide, a naphthoquinone analogue, 2-(3-methylpentyl)-4,6-dinitrophenol and pentachlorophenol. 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone (DBMIB), which inhibits the mitochondrial bc1 complex and the chloroplast b6 f complex in redox-dependent fashion, can serve as an electron acceptor for human ETF-QO. The observation of simple Michaelis-Menten kinetic patterns and a single type of quinone-binding site, determined by fluorescence titrations of the protein with DBMIB and 6-(10-bromodecyl)ubiquinone, are consistent with one ubiquinone-binding site per ETF-QO monomer. PMID:14640977

  14. Alternative quinone substrates and inhibitors of human electron-transfer flavoprotein-ubiquinone oxidoreductase.

    PubMed

    Simkovic, Martin; Frerman, Frank E

    2004-03-01

    Electron-transfer flavoprotein (ETF)-ubiquinone (2,3-dimethoxy-5-methyl-1,4-benzoquinone) oxidoreductase (ETF-QO) is a membrane-bound iron-sulphur flavoprotein that participates in an electron-transport pathway between eleven mitochondrial flavoprotein dehydrogenases and the ubiquinone pool. ETF is the intermediate electron carrier between the dehydrogenases and ETF-QO. The steady-state kinetic constants of human ETF-QO were determined with ubiquinone homologues and analogues that contained saturated n-alkyl substituents at the 6 position. These experiments show that optimal substrates contain a ten-carbon-atom side chain, consistent with a preliminary crystal structure that shows that only the first two of ten isoprene units of co-enzyme Q10 (CoQ10) interact with the protein. Derivatives with saturated alkyl side chains are very good substrates, indicating that, unlike other ubiquinone oxidoreductases, there is little preference for the methyl branches or rigidity of the CoQ side chain. Few of the compounds that inhibit ubiquinone oxidoreductases inhibit ETF-QO. Compounds found to act as inhibitors of ETF-QO include 2-n-heptyl-4-hydroxyquinoline N-oxide, a naphthoquinone analogue, 2-(3-methylpentyl)-4,6-dinitrophenol and pentachlorophenol. 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone (DBMIB), which inhibits the mitochondrial bc1 complex and the chloroplast b6 f complex in redox-dependent fashion, can serve as an electron acceptor for human ETF-QO. The observation of simple Michaelis-Menten kinetic patterns and a single type of quinone-binding site, determined by fluorescence titrations of the protein with DBMIB and 6-(10-bromodecyl)ubiquinone, are consistent with one ubiquinone-binding site per ETF-QO monomer.

  15. Artificial photosynthesis using chlorophyll based carotenoid quinone triads: A brief synopsis of research progress as of 31 December 1986

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gust, D.; Moore, T.A.

    1986-12-31

    The design, synthesis and study of a series of carotenoid-chlorophyll-quinone triad molecules which mimic some of the basic photochemistry and photophysics of natural photosynthesis is sought. The first members of this series have now been prepared, and have been found to mimic photosynthetic charge separation, carotenoid antenna function, and carotenoid photoprotection from singlet oxygen damage. Although the triad molecules mimic the general principle of multistep electron transfer which is found in natural photosynthesis, the details of photosynthetic electron transfer differ in the triads, in that the first electron transfer step involves electron donation from the excited state donor, followed bymore » reduction of the resulting donor radical cation by the carotenoid. In photosynthesis, the electron is moved through several acceptors before the chlorophyll radical cation is reduced. Therefore, our recent work has concentrated on the design and synthesis of new model systems which better mimic certain aspects of natural photosynthesis.« less

  16. Transient Kinetic Analysis of Hydrogen Sulfide Oxidation Catalyzed by Human Sulfide Quinone Oxidoreductase*

    PubMed Central

    Mishanina, Tatiana V.; Yadav, Pramod K.; Ballou, David P.; Banerjee, Ruma

    2015-01-01

    The first step in the mitochondrial sulfide oxidation pathway is catalyzed by sulfide quinone oxidoreductase (SQR), which belongs to the family of flavoprotein disulfide oxidoreductases. During the catalytic cycle, the flavin cofactor is intermittently reduced by sulfide and oxidized by ubiquinone, linking H2S oxidation to the electron transfer chain and to energy metabolism. Human SQR can use multiple thiophilic acceptors, including sulfide, sulfite, and glutathione, to form as products, hydrodisulfide, thiosulfate, and glutathione persulfide, respectively. In this study, we have used transient kinetics to examine the mechanism of the flavin reductive half-reaction and have determined the redox potential of the bound flavin to be −123 ± 7 mV. We observe formation of an unusually intense charge-transfer (CT) complex when the enzyme is exposed to sulfide and unexpectedly, when it is exposed to sulfite. In the canonical reaction, sulfide serves as the sulfur donor and sulfite serves as the acceptor, forming thiosulfate. We show that thiosulfate is also formed when sulfide is added to the sulfite-induced CT intermediate, representing a new mechanism for thiosulfate formation. The CT complex is formed at a kinetically competent rate by reaction with sulfide but not with sulfite. Our study indicates that sulfide addition to the active site disulfide is preferred under normal turnover conditions. However, under pathological conditions when sulfite concentrations are high, sulfite could compete with sulfide for addition to the active site disulfide, leading to attenuation of SQR activity and to an alternate route for thiosulfate formation. PMID:26318450

  17. Transient Kinetic Analysis of Hydrogen Sulfide Oxidation Catalyzed by Human Sulfide Quinone Oxidoreductase.

    PubMed

    Mishanina, Tatiana V; Yadav, Pramod K; Ballou, David P; Banerjee, Ruma

    2015-10-09

    The first step in the mitochondrial sulfide oxidation pathway is catalyzed by sulfide quinone oxidoreductase (SQR), which belongs to the family of flavoprotein disulfide oxidoreductases. During the catalytic cycle, the flavin cofactor is intermittently reduced by sulfide and oxidized by ubiquinone, linking H2S oxidation to the electron transfer chain and to energy metabolism. Human SQR can use multiple thiophilic acceptors, including sulfide, sulfite, and glutathione, to form as products, hydrodisulfide, thiosulfate, and glutathione persulfide, respectively. In this study, we have used transient kinetics to examine the mechanism of the flavin reductive half-reaction and have determined the redox potential of the bound flavin to be -123 ± 7 mV. We observe formation of an unusually intense charge-transfer (CT) complex when the enzyme is exposed to sulfide and unexpectedly, when it is exposed to sulfite. In the canonical reaction, sulfide serves as the sulfur donor and sulfite serves as the acceptor, forming thiosulfate. We show that thiosulfate is also formed when sulfide is added to the sulfite-induced CT intermediate, representing a new mechanism for thiosulfate formation. The CT complex is formed at a kinetically competent rate by reaction with sulfide but not with sulfite. Our study indicates that sulfide addition to the active site disulfide is preferred under normal turnover conditions. However, under pathological conditions when sulfite concentrations are high, sulfite could compete with sulfide for addition to the active site disulfide, leading to attenuation of SQR activity and to an alternate route for thiosulfate formation. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  18. Rhodium-catalyzed C-H bond activation for the synthesis of quinonoid compounds: Significant Anti-Trypanosoma cruzi activities and electrochemical studies of functionalized quinones.

    PubMed

    Jardim, Guilherme A M; Silva, Thaissa L; Goulart, Marilia O F; de Simone, Carlos A; Barbosa, Juliana M C; Salomão, Kelly; de Castro, Solange L; Bower, John F; da Silva Júnior, Eufrânio N

    2017-08-18

    Thirty four halogen and selenium-containing quinones, synthesized by rhodium-catalyzed C-H bond activation and palladium-catalyzed cross-coupling reactions, were evaluated against bloodstream trypomastigotes of T. cruzi. We have identified fifteen compounds with IC 50 /24 h values of less than 2 μM. Electrochemical studies on A-ring functionalized naphthoquinones were also performed aiming to correlate redox properties with trypanocidal activity. For instance, (E)-5-styryl-1,4-naphthoquinone 59 and 5,8-diiodo-1,4-naphthoquinone 3, which are around fifty fold more active than the standard drug benznidazole, are potential derivatives for further investigation. These compounds represent powerful new agents useful in Chagas disease therapy. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  19. Bioactivation of the Cancer Chemopreventive Agent Tamoxifen to Quinone Methides by Cytochrome P4502B6 and Identification of the Modified Residue on the Apoprotein

    PubMed Central

    Sridar, Chitra; D'Agostino, Jaime

    2012-01-01

    The nonsteroidal antiestrogen tamoxifen was introduced as a treatment for breast cancer 3 decades ago. It has also been approved as a chemopreventive agent and is prescribed to women at high risk for this disease. However, several studies have shown that use of tamoxifen leads to increased risk of endometrial cancer in humans. One potential pathway of tamoxifen toxicity could involve metabolism via hydroxylation to give 4-hydroxytamoxifen (4OHtam), which may be further oxidized to form a quinone methide. CYP2B6 is a highly polymorphic drug-metabolizing enzyme, and it metabolizes a number of clinically important drugs. Earlier studies from our laboratory have shown that tamoxifen is a mechanism-based inactivator of CYP2B6. The aim of the current study was to investigate the possible formation of reactive intermediates through detection of protein covalent binding and glutathione ethyl ester adduct (GSHEE) formation. The incubation of tamoxifen with 2B6 gave rise to an adduct of 4OHtam with glutathione, which was characterized as the 4OHtam quinone methide + GSHEE with an m/z value of 719, and the structure was characterized by liquid chromatography-tandem mass spectrometry. The metabolic activation of tamoxifen in the CYP2B6 reconstituted system also resulted in the formation of an adduct to the P4502B6 apoprotein, which was identified using liquid chromatography mass spectrometry. The site responsible for the inactivation of CYP2B6 was determined by proteolytic digestion and identification of the labeled peptide. This revealed a tryptic peptide 188FHYQDQE194 with the site of adduct formation localized to Gln193 as the site modified by the reactive metabolite formed during tamoxifen metabolism. PMID:22942317

  20. NAD(P)H quinone oxidoreductase 1 inhibits the proteasomal degradation of homocysteine-induced endoplasmic reticulum protein

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maeda, Tomoji, E-mail: t-maeda@nichiyaku.ac.jp; Tanabe-Fujimura, Chiaki; Fujita, Yu

    2016-05-13

    Homocysteine-induced endoplasmic reticulum (ER) protein (Herp) is an ER stress-inducible key regulatory component of ER-associated degradation (ERAD) that has been implicated in insulin hypersecretion in diabetic mouse models. Herp expression is tightly regulated. Additionally, Herp is a highly labile protein and interacts with various proteins, which are characteristic features of ubiquitinated protein. Previously, we reported that ubiquitination is not required for Herp degradation. In addition, we found that the lysine residues of Herp (which are ubiquitinated by E3 ubiquitin ligase) are not sufficient for regulation of Herp degradation. In this study, we found that NAD(P)H quinone oxidoreductase 1 (NQO1)-mediated targetingmore » of Herp to the proteasome was involved in Herp degradation. In addition, we found that Herp protein levels were markedly elevated in synoviolin-null cells. The E3 ubiquitin ligase synoviolin is a central component of ERAD and is involved in the degradation of nuclear factor E2-related factor-2 (Nrf2), which regulates cellular reactive oxygen species. Additionally, NQO1 is a target of Nrf2. Thus, our findings indicated that NQO1 could stabilize Herp protein expression via indirect regulation of synoviolin. -- Highlights: •Herp interacts with NQO1. •NQO1 regulates Herp degradation.« less

  1. Suppression of experimental cerebral malaria by disruption of malate:quinone oxidoreductase.

    PubMed

    Niikura, Mamoru; Komatsuya, Keisuke; Inoue, Shin-Ichi; Matsuda, Risa; Asahi, Hiroko; Inaoka, Daniel Ken; Kita, Kiyoshi; Kobayashi, Fumie

    2017-06-12

    Aspartate, which is converted from oxaloacetate (OAA) by aspartate aminotransferase, is considered an important precursor for purine salvage and pyrimidine de novo biosynthesis, and is thus indispensable for the growth of Plasmodium parasites at the asexual blood stages. OAA can be produced in malaria parasites via two routes: (i) from phosphoenolpyruvate (PEP) by phosphoenolpyruvate carboxylase (PEPC) in the cytosol, or (ii) from fumarate by consecutive reactions catalyzed by fumarate hydratase (FH) and malate:quinone oxidoreductase (MQO) in the mitochondria of malaria parasites. Although PEPC-deficient Plasmodium falciparum and Plasmodium berghei (rodent malaria) parasites show a growth defect, the mutant P. berghei can still cause experimental cerebral malaria (ECM) with similar dynamics to wild-type parasites. In contrast, the importance of FH and MQO for parasite viability, growth and virulence is not fully understood because no FH- and MQO-deficient P. falciparum has been established. In this study, the role of FH and MQO in the pathogenicity of asexual-blood-stage Plasmodium parasites causing cerebral malaria was examined. First, FH- and MQO-deficient parasites were generated by inserting a luciferase-expressing cassette into the fh and mqo loci in the genome of P. berghei ANKA strain. Second, the viability of FH-deficient and MQO-deficient parasites that express luciferase was determined by measuring luciferase activity, and the effect of FH or MQO deficiency on the development of ECM was examined. While the viability of FH-deficient P. berghei was comparable to that of control parasites, MQO-deficient parasites exhibited considerably reduced viability. FH activity derived from erythrocytes was also detected. This result and the absence of phenotype in FH-deficient P. berghei parasites suggest that fumarate can be metabolized to malate by host or parasite FH in P. berghei-infected erythrocytes. Furthermore, although the growth of FH- and MQO

  2. Variation of glucosinolates and quinone reductase activity among different varieties of Chinese kale and improvement of glucoraphanin by metabolic engineering.

    PubMed

    Qian, Hongmei; Sun, Bo; Miao, Huiying; Cai, Congxi; Xu, Chaojiong; Wang, Qiaomei

    2015-02-01

    The variation of glucosinolates and quinone reductase (QR) activity in fourteen varieties of Chinese kale (Brassica oleracea var. alboglabra Bailey) was investigated in the present study. Results showed that gluconapin (GNA), instead of glucoraphanin (GRA), was the most predominant glucosinolate in all varieties, and QR activity was remarkably positively correlated with the glucoraphanin level. AOP2, a tandem 2-oxoglutarate-dependent dioxygenase, catalyzes the conversion of glucoraphanin to gluconapin in glucosinolate biosynthesis. Here, antisense AOP2 was transformed into Gailan-04, the variety with the highest gluconapin content and ratio of GNA/GRA. The glucoraphanin content and corresponding QR activity were notably increased in transgenic plants, while no significant difference at the level of other main nutritional compounds (total phenolics, vitamin C, carotenoids and chlorophyll) was observed between the transgenic lines and the wide-type plants. Taken together, metabolic engineering is a good practice for improvement of glucoraphanin in Chinese kale. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. EGF-receptor phosphorylation and downstream signaling are activated by benzo[a]pyrene 3,6-quinone and benzo[a]pyrene 1,6-quinone in human mammary epithelial cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rodriguez-Fragoso, Lourdes; Melendez, Karla; Hudson, Laurie G.

    2009-03-15

    Benzo[a]pyrene (BaP) is activated by xenobiotic-metabolizing enzymes to highly mutagenic and carcinogenic metabolites. Previous studies in this laboratory have shown that benzo[a]pyrene quinones (BPQs), 1,6-BPQ and 3,6-BPQ, are able to induce epidermal growth factor receptor (EGFR) cell signaling through the production of reactive oxygen species. Recently, we have reported that BPQs have the potential to induce the expression of genes involved in numerous pathways associated with cell proliferation and survival in human mammary epithelial cells. In the present study we demonstrated that BPQs not only induced EGFR tyrosine autophosphorylation, but also induced EGFR-dependent tyrosine phosphorylation of phospholipase C-{gamma}1 and severalmore » signal transducers and activators of transcription (STATs). The effects of BPQs were evaluated in a model of EGF withdrawal in MCF10-A cells. We found that BPQs (1 {mu}M), induced EGFR tyrosine phosphorylation at positions Y845, Y992, Y1068, and Y1086. PLC-{gamma}1 phosphorylation correlated with the phosphorylation of tyrosine-Y992, a proposed docking site for PLC-{gamma}1 on the EGFR. Additionally, we found that BPQs induced the activation of STAT-1, STAT-3, STAT-5a and STAT-5b. STAT5 was shown to translocate to the nucleus following 3,6-BPQ and 1,6-BPQ exposures. Although the patterns of phosphorylation at EGFR, PLC-{gamma}1 and STATs were quite similar to those induced by EGF, an important difference between BPQ-mediated signaling of the EGFR was observed. Signaling produced by EGF ligand produced a rapid disappearance of EGFR from the cell surface, whereas BPQ signaling maintained EGFR receptors on the cell membrane. Thus, the results of these studies show that 1,6-BPQ and 3,6-BPQ can produce early events as evidenced by EGFR expression, and a prolonged transactivation of EGFR leading to downstream cell signaling pathways.« less

  4. EGF-Receptor Phosphorylation and Downstream Signaling are Activated by Benzo[a]pyrene 3,6-quinone and Benzo[a]pyrene 1,6-quinone in Human Mammary Epithelial Cells

    PubMed Central

    Rodríguez-Fragoso, Lourdes; Melendez, Karla; Hudson, Laurie; Lauer, Fredine T.; Burchiel, Scott W.

    2013-01-01

    Benzo[a]pyrene (BaP) is activated by xenobiotic-metabolizing enzymes to highly mutagenic and carcinogenic metabolites. Previous studies in this laboratory have shown that benzo(a)pyrene quinones (BPQs), 1,6-BPQ and 3,6-BPQ, are able to induce epidermal growth factor receptor (EGFR) cell signaling through the production of reactive oxygen species. Recently, we have reported that BPQs have the potential to induce the expression of genes involved in numerous pathways associated with cell proliferation and survival in human mammary epithelial cells. In the present study we demonstrated that BPQs not only induced EGFR tyrosine autophosphorylation, but also induced EGFR-dependent tyrosine phosphorylation of phospholipase C-γ1 and several signal transducers and activators of transcription (STATs). The effects of BPQs were evaluated in a model of EGF withdrawal in MCF10-A cells. We found that BPQs (1 μM), induced EGFR tyrosine phosphorylation at positions Y845, Y992, Y1068, and Y1086. PLC-γ1 phosphorylation correlated with the phosphorylation of tyrosine-Y992, a proposed docking site for PLC-γ1 on the EGFR. Additionally, we found that BPQs induced the activation of STAT-1, STAT-3, STAT-5a and STAT-5b. STAT5 was shown to translocate to the nucleus following 3,6-BPQ and 1,6-BPQ exposures. Although the pattern of phosphorylation at EGFR, PLC-γ1 and STATs were quite similar to those induced by EGF, an important difference between BPQ-mediated signaling of the EGFR was observed. Signaling produced by EGF ligand produced a rapid disappearance of EGFR from the cell surface, whereas BPQ signaling maintained EGFR receptors on the cell membrane. Thus, the results of these studies show that 1,6-BPQ and 3,6-BPQ can produce early events as evidenced by EGFR expression, and a prolonged transactivation of EGFR leading to downstream cell signaling pathways. PMID:19166869

  5. EGF-receptor phosphorylation and downstream signaling are activated by benzo[a]pyrene 3,6-quinone and benzo[a]pyrene 1,6-quinone in human mammary epithelial cells.

    PubMed

    Rodríguez-Fragoso, Lourdes; Melendez, Karla; Hudson, Laurie G; Lauer, Fredine T; Burchiel, Scott W

    2009-03-15

    Benzo[a]pyrene (BaP) is activated by xenobiotic-metabolizing enzymes to highly mutagenic and carcinogenic metabolites. Previous studies in this laboratory have shown that benzo[a]pyrene quinones (BPQs), 1,6-BPQ and 3,6-BPQ, are able to induce epidermal growth factor receptor (EGFR) cell signaling through the production of reactive oxygen species. Recently, we have reported that BPQs have the potential to induce the expression of genes involved in numerous pathways associated with cell proliferation and survival in human mammary epithelial cells. In the present study we demonstrated that BPQs not only induced EGFR tyrosine autophosphorylation, but also induced EGFR-dependent tyrosine phosphorylation of phospholipase C-gamma1 and several signal transducers and activators of transcription (STATs). The effects of BPQs were evaluated in a model of EGF withdrawal in MCF10-A cells. We found that BPQs (1 muM), induced EGFR tyrosine phosphorylation at positions Y845, Y992, Y1068, and Y1086. PLC-gamma1 phosphorylation correlated with the phosphorylation of tyrosine-Y992, a proposed docking site for PLC-gamma1 on the EGFR. Additionally, we found that BPQs induced the activation of STAT-1, STAT-3, STAT-5a and STAT-5b. STAT5 was shown to translocate to the nucleus following 3,6-BPQ and 1,6-BPQ exposures. Although the patterns of phosphorylation at EGFR, PLC-gamma1 and STATs were quite similar to those induced by EGF, an important difference between BPQ-mediated signaling of the EGFR was observed. Signaling produced by EGF ligand produced a rapid disappearance of EGFR from the cell surface, whereas BPQ signaling maintained EGFR receptors on the cell membrane. Thus, the results of these studies show that 1,6-BPQ and 3,6-BPQ can produce early events as evidenced by EGFR expression, and a prolonged transactivation of EGFR leading to downstream cell signaling pathways.

  6. ACTIVATION OF DIOXIN RESPONSE ELEMENT (DRE)-ASSOCIATED GENES BY BENZO(A)PYRENE 3,6-QUINONE AND BENZO(A)PYRENE 1,6-QUINONE IN MCF-10A HUMAN MAMMARY EPITHELIAL CELLS

    PubMed Central

    Burchiel, Scott W.; Thompson, Todd A.; Lauer, Fredine T.; Oprea, Tudor I.

    2007-01-01

    Benzo(a)pyrene (BaP) is a known human carcinogen and a suspected breast cancer complete carcinogen. BaP is metabolized by several metabolic pathways, some having bioactivation and others detoxification properties. BaP-quinones (BPQs) are formed via cytochrome P450 and peroxidase dependent pathways. Previous studies by our laboratory have shown that BPQs have significant growth promoting and anti-apoptotic activities in human MCF-10A mammary epithelial cells examined in vitro. Previous results suggest that BPQs act via redox-cycling and oxidative stress. However, because two specific BPQs (1,6-BPQ and 3,6-BPQ) differed in their ability to produce reactive oxygen species (ROS) and yet both had strong proliferative and EGF receptor activating activity, we utilized mRNA expression arrays and qRT-PCR to determine potential pathways and mechanisms of gene activation. The results of the present studies demonstrated that 1,6-BPQ and 3,6-BPQ activate dioxin response elements (DRE, also known as xenobiotic response elements, XRE) and anti-oxidant response elements (ARE, also known and electrophile response elements, EpRE). 3,6-BPQ had greater DRE activity than 1,6-BPQ, whereas the opposite was true for the activation of ARE. Both 3,6-BPQ and 1,6-BPQ induced oxidative stress associated genes (HMOX1, GCLC, GCLM, and SLC7A11), phase 2 enzyme genes (NQO1, NQO2, ALDH3A1) PAH metabolizing genes (CYP1B1, EPHX1, AKR1C1), and certain EGF receptor associated genes (EGFR, IER3, ING1, SQSTM1 and TRIM16). The results of these studies demonstrate that BPQs activate numerous pathways in human mammary epithelial cells associated with increased cell growth and survival that may play important roles in tumor promotion. PMID:17466351

  7. A self-powered glucose biosensor based on pyrolloquinoline quinone glucose dehydrogenase and bilirubin oxidase operating under physiological conditions.

    PubMed

    Kulkarni, Tanmay; Slaughter, Gymama

    2017-07-01

    A novel biosensing system capable of simultaneously sensing glucose and powering portable electronic devices such as a digital glucometer is described. The biosensing system consists of enzymatic glucose biofuel cell bioelectrodes functionalized with pyrolloquinoline quinone glucose dehydrogenase (PQQ-GDH) and bilirubin oxidase (BOD) at the bioanode and biocathode, respectively. A dual-stage power amplification circuit is integrated with the single biofuel cell to amplify the electrical power generated. In addition, a capacitor circuit was incorporated to serve as the transducer for sensing glucose. The open circuit voltage of the optimized biofuel cell reached 0.55 V, and the maximum power density achieved was 0.23 mW/ cm 2 at 0.29 V. The biofuel cell exhibited a sensitivity of 0.312 mW/mM.cm 2 with a linear dynamic range of 3 mM - 20 mM glucose. The overall self-powered glucose biosensor is capable of selectively screening against common interfering species, such as ascorbate and urate and exhibited an operational stability of over 53 days, while maintaining 90 % of its activity. These results demonstrate the system's potential to replace the current glucose monitoring devices that rely on external power supply, such as a battery.

  8. Crystal Structure and Function of PqqF Protein in the Pyrroloquinoline Quinone Biosynthetic Pathway*

    PubMed Central

    Wei, Qiaoe; Ran, Tingting; Ma, Chencui; He, Jianhua; Xu, Dongqing; Wang, Weiwu

    2016-01-01

    Pyrroloquinoline quinone (PQQ) has received considerable attention due to its numerous important physiological functions. PqqA is a precursor peptide of PQQ with two conserved residues: glutamate and tyrosine. After linkage of the Cγ of glutamate and Cϵ of tyrosine by PqqE, these two residues are hypothesized to be cleaved from PqqA by PqqF. The linked glutamate and tyrosine residues are then used to synthesize PQQ. Here, we demonstrated that the pqqF gene is essential for PQQ biosynthesis as deletion of it eliminated the inhibition of prodigiosin production by glucose. We further determined the crystal structure of PqqF, which has a closed clamshell-like shape. The PqqF consists of two halves composed of an N- and a C-terminal lobe. The PqqF-N and PqqF-C lobes form a chamber with the volume of the cavity of ∼9400 Å3. The PqqF structure conforms to the general structure of inverzincins. Compared with the most thoroughly characterized inverzincin insulin-degrading enzyme, the size of PqqF chamber is markedly smaller, which may define the specificity for its substrate PqqA. Furthermore, the 14-amino acid-residue-long tag formed by the N-terminal tag from expression vector precisely protrudes into the counterpart active site; this N-terminal tag occupies the active site and stabilizes the closed, inactive conformation. His-48, His-52, Glu-129 and His-14 from the N-terminal tag coordinate with the zinc ion. Glu-51 acts as a base catalyst. The observed histidine residue-mediated inhibition may be applicable for the design of a peptide for the inhibition of M16 metalloproteases. PMID:27231346

  9. In vitro activity of almond skin polyphenols for scavenging free radicals and inducing quinone reductase.

    PubMed

    Chen, C-Y Oliver; Blumberg, Jeffrey B

    2008-06-25

    Observational studies and clinical trials suggest nut intake, including almonds, is associated with an enhancement in antioxidant defense and a reduction in the risk of cancer and cardiovascular disease. Almond skins are rich in polyphenols (ASP) that may contribute to these putative benefits. To assess their potential mechanisms of action, we tested the in vitro effect of ASP extracted with methanol (M) or a gastrointestinal juice mimic (GI) alone or in combination with vitamins C (VC) or E (VE) (1-10 micromol/L) on scavenging free radicals and inducing quinone reductase (QR). Flavonoid profiles from ASP-M and -GI extracts were different from one another. ASP-GI was more potent in scavenging HOCl and ONOO (-) radicals than ASP-M. In contrast, ASP-M increased and ASP-GI decreased QR activity in Hepa1c1c7 cells. Adding VC or VE to ASP produced a combination- and dose-dependent action on radical scavenging and QR induction. In comparison to their independent actions, ASP-M plus VC were less potent in scavenging DPPH, HOCl, ONOO (-), and O 2 (-) (*). However, the interaction between ASP-GI plus VC promoted their radical scavenging activity. Combining ASP-M plus VC resulted in a synergistic interaction, inducing QR activity, but ASP-GI plus VC had an antagonistic effect. On the basis of their total phenolic content, the measures of total antioxidant activity of ASP-M and -GI were comparable. Thus, in vitro, ASP act as antioxidants and induce QR activity, but these actions are dependent upon their dose, method of extraction, and interaction with antioxidant vitamins.

  10. Sensitivity of hiPSC-derived neural stem cells (NSC) to Pyrroloquinoline quinone depends on their developmental stage.

    PubMed

    Augustyniak, J; Lenart, J; Zychowicz, M; Lipka, G; Gaj, P; Kolanowska, M; Stepien, P P; Buzanska, L

    2017-12-01

    Pyrroloquinoline quinone (PQQ) is a factor influencing on the mitochondrial biogenesis. In this study the PQQ effect on viability, total cell number, antioxidant capacity, mitochondrial biogenesis and differentiation potential was investigated in human induced Pluripotent Stem Cells (iPSC) - derived: neural stem cells (NSC), early neural progenitors (eNP) and neural progenitors (NP). Here we demonstrated that sensitivity to PQQ is dependent upon its dose and neural stage of development. Induction of the mitochondrial biogenesis by PQQ at three stages of neural differentiation was evaluated at mtDNA, mRNA and protein level. Changes in NRF1, TFAM and PPARGC1A gene expression were observed at all developmental stages, but only at eNP were correlated with the statistically significant increase in the mtDNA copy numbers and enhancement of SDHA, COX-1 protein level. Thus, the "developmental window" of eNP for PQQ-evoked mitochondrial biogenesis is proposed. This effect was independent of high antioxidant capacity of PQQ, which was confirmed in all tested cell populations, regardless of the stage of hiPSC neural differentiation. Furthermore, a strong induction of GFAP, with down regulation of MAP2 gene expression upon PQQ treatment was observed. This indicates a possibility of shifting the balance of cell differentiation in the favor of astroglia, but more research is needed at this point. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. The Pea SAD Short-Chain Dehydrogenase/Reductase: Quinone Reduction, Tissue Distribution, and Heterologous Expression1[W][OA

    PubMed Central

    Scherbak, Nikolai; Ala-Häivälä, Anneli; Brosché, Mikael; Böwer, Nathalie; Strid, Hilja; Gittins, John R.; Grahn, Elin; Eriksson, Leif A.; Strid, Åke

    2011-01-01

    The pea (Pisum sativum) tetrameric short-chain alcohol dehydrogenase-like protein (SAD) family consists of at least three highly similar members (SAD-A, -B, and -C). According to mRNA data, environmental stimuli induce SAD expression. The aim of this study was to characterize the SAD proteins by examining their catalytic function, distribution in pea, and induction in different tissues. In enzyme activity assays using a range of potential substrates, the SAD-C enzyme was shown to reduce one- or two-ring-membered quinones lacking long hydrophobic hydrocarbon tails. Immunological assays using a specific antiserum against the protein demonstrated that different tissues and cell types contain small amounts of SAD protein that was predominantly located within epidermal or subepidermal cells and around vascular tissue. Particularly high local concentrations were observed in the protoderm of the seed cotyledonary axis. Two bow-shaped rows of cells in the ovary and the placental surface facing the ovule also exhibited considerable SAD staining. Ultraviolet-B irradiation led to increased staining in epidermal and subepidermal cells of leaves and stems. The different localization patterns of SAD suggest functions both in development and in responses to environmental stimuli. Finally, the pea SAD-C promoter was shown to confer heterologous wound-induced expression in Arabidopsis (Arabidopsis thaliana), which confirmed that the inducibility of its expression is regulated at the transcriptional level. PMID:21343423

  12. Existence of a novel enzyme, pyrroloquinoline quinone-dependent polyvinyl alcohol dehydrogenase, in a bacterial symbiont, Pseudomonas sp. strain VM15C.

    PubMed Central

    Shimao, M; Ninomiya, K; Kuno, O; Kato, N; Sakazawa, C

    1986-01-01

    A novel enzyme, pyrroloquinoline quinone (PQQ)-dependent polyvinyl alcohol (PVA) dehydrogenase, was found in and partially purified from the membrane fraction of a PVA-degrading symbiont, Pseudomonas sp. strain VM15C. The enzyme required PQQ for PVA dehydrogenation with phenazine methosulfate, phenazine ethosulfate, and 2,6-dichlorophenolindophenol as electron acceptors and did not show PVA oxidase activity leading to H2O2 formation. The enzyme was active toward low-molecular-weight secondary alcohols rather than primary alcohols. A membrane-bound PVA oxidase was also present in cells of VM15C. Although the purified oxidase showed a substrate specificity similar to that of PQQ-dependent PVA dehydrogenase and about threefold-higher PVA-dehydrogenating activity with phenazine methosulfate or phenazine ethosulfate than PVA oxidase activity with H2O2 formation, it was shown that the enzyme does not contain PQQ as the coenzyme, and PQQ did not affect its activity. Incubation of the membrane fraction of cells with PVA caused a reduction in the cytochrome(s) of the fraction. Images PMID:3513704

  13. Crystal Structure and Function of PqqF Protein in the Pyrroloquinoline Quinone Biosynthetic Pathway.

    PubMed

    Wei, Qiaoe; Ran, Tingting; Ma, Chencui; He, Jianhua; Xu, Dongqing; Wang, Weiwu

    2016-07-22

    Pyrroloquinoline quinone (PQQ) has received considerable attention due to its numerous important physiological functions. PqqA is a precursor peptide of PQQ with two conserved residues: glutamate and tyrosine. After linkage of the Cγ of glutamate and Cϵ of tyrosine by PqqE, these two residues are hypothesized to be cleaved from PqqA by PqqF. The linked glutamate and tyrosine residues are then used to synthesize PQQ. Here, we demonstrated that the pqqF gene is essential for PQQ biosynthesis as deletion of it eliminated the inhibition of prodigiosin production by glucose. We further determined the crystal structure of PqqF, which has a closed clamshell-like shape. The PqqF consists of two halves composed of an N- and a C-terminal lobe. The PqqF-N and PqqF-C lobes form a chamber with the volume of the cavity of ∼9400 Å(3) The PqqF structure conforms to the general structure of inverzincins. Compared with the most thoroughly characterized inverzincin insulin-degrading enzyme, the size of PqqF chamber is markedly smaller, which may define the specificity for its substrate PqqA. Furthermore, the 14-amino acid-residue-long tag formed by the N-terminal tag from expression vector precisely protrudes into the counterpart active site; this N-terminal tag occupies the active site and stabilizes the closed, inactive conformation. His-48, His-52, Glu-129 and His-14 from the N-terminal tag coordinate with the zinc ion. Glu-51 acts as a base catalyst. The observed histidine residue-mediated inhibition may be applicable for the design of a peptide for the inhibition of M16 metalloproteases. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  14. Identification of a Lactate-Quinone Oxidoreductase in Staphylococcus aureus that is Essential for Virulence

    PubMed Central

    Fuller, James R.; Vitko, Nicholas P.; Perkowski, Ellen F.; Scott, Eric; Khatri, Dal; Spontak, Jeffrey S.; Thurlow, Lance R.; Richardson, Anthony R.

    2011-01-01

    Staphylococcus aureus is an important human pathogen commonly infecting nearly every host tissue. The ability of S. aureus to resist innate immunity is critical to its success as a pathogen, including its propensity to grow in the presence of host nitric oxide (NO·). Upon exogenous NO· exposure, S. aureus immediately excretes copious amounts of L-lactate to maintain redox balance. However, after prolonged NO·-exposure, S. aureus reassimilates L-lactate specifically and in this work, we identify the enzyme responsible for this L-lactate-consumption as a L-lactate-quinone oxidoreductase (Lqo, SACOL2623). Originally annotated as Mqo2 and thought to oxidize malate, we show that this enzyme exhibits no affinity for malate but reacts specifically with L-lactate (KM = ∼330 μM). In addition to its requirement for reassimilation of L-lactate during NO·-stress, Lqo is also critical to respiratory growth on L-lactate as a sole carbon source. Moreover, Δlqo mutants exhibit attenuation in a murine model of sepsis, particularly in their ability to cause myocarditis. Interestingly, this cardiac-specific attenuation is completely abrogated in mice unable to synthesize inflammatory NO· (iNOS−/−). We demonstrate that S. aureus NO·-resistance is highly dependent on the availability of a glycolytic carbon sources. However, S. aureus can utilize the combination of peptides and L-lactate as carbon sources during NO·-stress in an Lqo-dependent fashion. Murine cardiac tissue has markedly high levels of L-lactate in comparison to renal or hepatic tissue consistent with the NO·-dependent requirement for Lqo in S. aureus myocarditis. Thus, Lqo provides S. aureus with yet another means of replicating in the presence of host NO·. PMID:22919585

  15. Localization and Function of the Membrane-bound Riboflavin in the Na+-translocating NADH:Quinone Oxidoreductase (Na+-NQR) from Vibrio cholerae*

    PubMed Central

    Casutt, Marco S.; Huber, Tamara; Brunisholz, René; Tao, Minli; Fritz, Günter; Steuber, Julia

    2010-01-01

    The sodium ion-translocating NADH:quinone oxidoreductase (Na+-NQR) from the human pathogen Vibrio cholerae is a respiratory membrane protein complex that couples the oxidation of NADH to the transport of Na+ across the bacterial membrane. The Na+-NQR comprises the six subunits NqrABCDEF, but the stoichiometry and arrangement of these subunits are unknown. Redox-active cofactors are FAD and a 2Fe-2S cluster on NqrF, covalently attached FMNs on NqrB and NqrC, and riboflavin and ubiquinone-8 with unknown localization in the complex. By analyzing the cofactor content and NADH oxidation activity of subcomplexes of the Na+-NQR lacking individual subunits, the riboflavin cofactor was unequivocally assigned to the membrane-bound NqrB subunit. Quantitative analysis of the N-terminal amino acids of the holo-complex revealed that NqrB is present in a single copy in the holo-complex. It is concluded that the hydrophobic NqrB harbors one riboflavin in addition to its covalently attached FMN. The catalytic role of two flavins in subunit NqrB during the reduction of ubiquinone to ubiquinol by the Na+-NQR is discussed. PMID:20558724

  16. Cyanide degradation by Pseudomonas pseudoalcaligenes CECT5344 involves a malate:quinone oxidoreductase and an associated cyanide-insensitive electron transfer chain.

    PubMed

    Luque-Almagro, Victor M; Merchán, Faustino; Blasco, Rafael; Igeño, M Isabel; Martínez-Luque, Manuel; Moreno-Vivián, Conrado; Castillo, Francisco; Roldán, M Dolores

    2011-03-01

    The alkaliphilic bacterium Pseudomonas pseudoalcaligenes CECT5344 is able to grow with cyanide as the sole nitrogen source. Membrane fractions from cells grown under cyanotrophic conditions catalysed the production of oxaloacetate from L-malate. Several enzymic activities of the tricarboxylic acid and glyoxylate cycles in association with the cyanide-insensitive respiratory pathway seem to be responsible for the oxaloacetate formation in vivo. Thus, in cyanide-grown cells, citrate synthase and isocitrate lyase activities were significantly higher than those observed with other nitrogen sources. Malate dehydrogenase activity was undetectable, but a malate:quinone oxidoreductase activity coupled to the cyanide-insensitive alternative oxidase was found in membrane fractions from cyanide-grown cells. Therefore, oxaloacetate production was linked to the cyanide-insensitive respiration in P. pseudoalcaligenes CECT5344. Cyanide and oxaloacetate reacted chemically inside the cells to produce a cyanohydrin (2-hydroxynitrile), which was further converted to ammonium. In addition to cyanide, strain CECT5344 was able to grow with several cyano derivatives, such as 2- and 3-hydroxynitriles. The specific system required for uptake and metabolization of cyanohydrins was induced by cyanide and by 2-hydroxynitriles, such as the cyanohydrins of oxaloacetate and 2-oxoglutarate.

  17. Omeprazole induces NAD(P)H quinone oxidoreductase 1 via aryl hydrocarbon receptor-independent mechanisms: Role of the transcription factor nuclear factor erythroid 2–related factor 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Shaojie; Patel, Ananddeep; Moorthy, Bhagavatula

    2015-11-13

    Activation of the aryl hydrocarbon receptor (AhR) transcriptionally induces phase I (cytochrome P450 (CYP) 1A1) and phase II (NAD(P)H quinone oxidoreductase 1 (NQO1) detoxifying enzymes. The effects of the classical and nonclassical AhR ligands on phase I and II enzymes are well studied in human hepatocytes. Additionally, we observed that the proton pump inhibitor, omeprazole (OM), transcriptionally induces CYP1A1 in the human adenocarcinoma cell line, H441 cells via AhR. Whether OM activates AhR and induces the phase II enzyme, NAD(P)H quinone oxidoreductase 1 (NQO1), in fetal primary human pulmonary microvascular endothelial cells (HPMEC) is unknown. Therefore, we tested the hypothesis thatmore » OM will induce NQO1 in HPMEC via the AhR. The concentrations of OM used in our experiments did not result in cytotoxicity. OM activated AhR as evident by increased CYP1A1 mRNA expression. However, contrary to our hypothesis, OM increased NQO1 mRNA and protein via an AhR-independent mechanism as AhR knockdown failed to abrogate OM-mediated increase in NQO1 expression. Interestingly, OM activated Nrf2 as evident by increased phosphoNrf2 (S40) expression in OM-treated compared to vehicle-treated cells. Furthermore, Nrf2 knockdown abrogated OM-mediated increase in NQO1 expression. In conclusion, we provide evidence that OM induces NQO1 via AhR-independent, but Nrf2-dependent mechanisms. - Highlights: • We investigated whether omeprazole induces NQO1 in human fetal lung cells. • Omeprazole induces the phase II enzyme, NQO1, in human fetal lung cells. • AhR deficiency fails to abrogate omeprazole-mediated induction of NQO1. • Omeprazole increases phosphoNrf2 (S40) protein expression in human fetal lung cells. • Nrf2 knockdown abrogates the induction of NQO1 by omeprazole in human lung cells.« less

  18. The Role of Glycine Residues 140 and 141 of Subunit B in the Functional Ubiquinone Binding Site of the Na+-pumping NADH:quinone Oxidoreductase from Vibrio cholerae*

    PubMed Central

    Juárez, Oscar; Neehaul, Yashvin; Turk, Erin; Chahboun, Najat; DeMicco, Jessica M.; Hellwig, Petra; Barquera, Blanca

    2012-01-01

    The Na+-pumping NADH:quinone oxidoreductase (Na+-NQR) is the main entrance for electrons into the respiratory chain of many marine and pathogenic bacteria. The enzyme accepts electrons from NADH and donates them to ubiquinone, and the free energy released by this redox reaction is used to create an electrochemical gradient of sodium across the cell membrane. Here we report the role of glycine 140 and glycine 141 of the NqrB subunit in the functional binding of ubiquinone. Mutations at these residues altered the affinity of the enzyme for ubiquinol. Moreover, mutations in residue NqrB-G140 almost completely abolished the electron transfer to ubiquinone. Thus, NqrB-G140 and -G141 are critical for the binding and reaction of Na+-NQR with its electron acceptor, ubiquinone. PMID:22645140

  19. Synthesis, spectral characterization, molecular structure and pharmacological studies of N'-(1, 4-naphtho-quinone-2yl) isonicotinohyWdrazide

    NASA Astrophysics Data System (ADS)

    Kavitha Rani, P. R.; Fernandez, Annette; George, Annie; Remadevi, V. K.; Sudarsanakumar, M. R.; Laila, Shiny P.; Arif, Muhammed

    2015-01-01

    A simple and efficient procedure was employed for the synthesis of N'-(1,4-naphtho-quinone-2-yl) isonicotinohydrazide (NIH) by the reaction of 2-hydroxy-1,4-naphthaquinone (lawsone) and isonicotinoyl hydrazine in methanol using ultrasonic irradiation. Lawsone is the principal dye, isolated from the leaves of henna (Lawsonia inermis). Structural modification was done on the molecule aiming to get a more active derivative. The structure of the parent compound and the derivative was characterized by elemental analyses, infrared, electronic, 1H, 13C NMR and GC-MS spectra. The fluorescence spectral investigation of the compound was studied in DMSO and ethanol. Single crystal X-ray diffraction studies reveal that NIH crystallizes in monoclinic space group. The DNA cleavage study was monitored by gel electrophoresis method. The synthesized compound was found to have significant antioxidant activity against DPPH radical (IC50 = 58 μM). The in vitro cytotoxic studies of the derivative against two human cancer cell lines MCF-7 (human breast cancer) and HCT-15 (human colon carcinoma cells) using MTT assay revealed that the compound exhibited higher cytotoxic activity with a lower IC50 value indicating its efficiency in killing the cancer cells even at low concentrations. These results suggest that the structural modifications performed on lawsone could be considered a good strategy to obtain a more active drug.

  20. Disruption of NAD(P)H:quinone oxidoreductase 1 gene in mice leads to radiation induced myeloproliferative disease

    PubMed Central

    Iskander, Karim; Barrios, Roberto J.; Jaiswal, Anil K.

    2008-01-01

    NAD(P)H:quinone oxidoreductase1-null (NQO1-/-) mice exposed to 3 grays of γ-radiation demonstrated an increase in neutrophils, bone marrow hypercellularity, and enlarged lymph nodes and spleen. The spleen showed disrupted follicular structure, loss of red pulp, and granulocyte and megakarocyte invasion. Blood and histological analysis did not show any sign of infection in mice. These results suggested that exposure of NQO1-/- mice to γ-radiation led to myeloproliferative disease. Radiation-induced myeloproliferative disease was observed in 74% of NQO1-/- mice as compared to none in wild type mice. NQO1-/- mice exposed to γ-radiation also demonstrated tissues lymphoma (32%) and lung adenocarcinoma (84%). In contrast, only 11% wild type mice showed lymphoma and none showed lung adenocarcinoma. Exposure of NQO1-/- mice to γ-radiation resulted in reduced apoptosis in granulocytes and lack of induction of p53, p21, and Bax. NQO1-/- mice also demonstrated increased expression of myeloid differentiation factors C/EBPα and Pu.1. Intriguingly, exposure of NQO1-/- mice to γ-radiation failed to induce C/EBPα and Pu.1, as was observed in wild type mice. These results suggest that decreased p53/apoptosis and increased Pu.1 and C/EBPα led to myeloid hyperplasia in NQO1-/- mice. The lack of induction of apoptosis and differentiation contributed to radiation-induced myeloproliferative disease in NQO1-/- mice. PMID:18829548

  1. Evidence for the formation of a quinone methide during the oxidation of the insect cuticular sclerotizing precursor 1,2-dehydro-N-acetyldopamine.

    PubMed

    Sugumaran, M; Semensi, V; Kalyanaraman, B; Bruce, J M; Land, E J

    1992-05-25

    properties of the two-electron oxidized species derived from dehydro-NADA and from 1,2-dehydro-N-acetyldopa methyl ester, it is concluded that the transient intermediate exhibiting absorbance at 485 nm is the quinone methide tautomer of the o-quinone of dehydro-NADA. Sclerotization of insect cuticle is discussed in the light of these findings.

  2. Biochemical studies of membrane bound Plasmodium falciparum mitochondrial L-malate:quinone oxidoreductase, a potential drug target.

    PubMed

    Hartuti, Endah Dwi; Inaoka, Daniel Ken; Komatsuya, Keisuke; Miyazaki, Yukiko; Miller, Russell J; Xinying, Wang; Sadikin, Mohamad; Prabandari, Erwahyuni Endang; Waluyo, Danang; Kuroda, Marie; Amalia, Eri; Matsuo, Yuichi; Nugroho, Nuki B; Saimoto, Hiroyuki; Pramisandi, Amila; Watanabe, Yoh-Ichi; Mori, Mihoko; Shiomi, Kazuro; Balogun, Emmanuel Oluwadare; Shiba, Tomoo; Harada, Shigeharu; Nozaki, Tomoyoshi; Kita, Kiyoshi

    2018-03-01

    Plasmodium falciparum is an apicomplexan parasite that causes the most severe malaria in humans. Due to a lack of effective vaccines and emerging of drug resistance parasites, development of drugs with novel mechanisms of action and few side effects are imperative. To this end, ideal drug targets are those essential to parasite viability as well as absent in their mammalian hosts. The mitochondrial electron transport chain (ETC) of P. falciparum is one source of such potential targets because enzymes, such as L-malate:quinone oxidoreductase (PfMQO), in this pathway are absent humans. PfMQO catalyzes the oxidation of L-malate to oxaloacetate and the simultaneous reduction of ubiquinone to ubiquinol. It is a membrane protein, involved in three pathways (ETC, the tricarboxylic acid cycle and the fumarate cycle) and has been shown to be essential for parasite survival, at least, in the intra-erythrocytic asexual stage. These findings indicate that PfMQO would be a valuable drug target for development of antimalarial with novel mechanism of action. Up to this point in time, difficulty in producing active recombinant mitochondrial MQO has hampered biochemical characterization and targeted drug discovery with MQO. Here we report for the first time recombinant PfMQO overexpressed in bacterial membrane and the first biochemical study. Furthermore, about 113 compounds, consisting of ubiquinone binding site inhibitors and antiparasitic agents, were screened resulting in the discovery of ferulenol as a potent PfMQO inhibitor. Finally, ferulenol was shown to inhibit parasite growth and showed strong synergism in combination with atovaquone, a well-described anti-malarial and bc 1 complex inhibitor. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Transcriptional regulation of nicotinamide adenine dinucleotide phosphate: quinone oxidoreductase in murine hepatoma cells by 6-(methylsufinyl)hexyl isothiocyanate, an active principle of wasabi (Eutrema wasabi Maxim).

    PubMed

    Hou, D X; Fukuda, M; Fujii, M; Fuke, Y

    2000-12-20

    Wasabi is a very popular pungent spice in Japan. This study examined the ability of 6-(methylsufinyl)hexyl isothiocyanate (6-MITC), an active principle of wasabi, to induce the cellular expression of nicotinamide adenine dinucleotide phosphate: quinone oxidoreductase (QR) in Hepa 1c1c7 cells. The cells were treated with various concentrations of 6-MITC, and were then assessed for cell growth, QR activity and QR mRNA expression. The induction of QR activity and QR mRNA expression was time- and dose-responsive over a narrow range of 0.1-5 microM, with declining induction at higher concentrations due to cell toxicity. Furthermore, transfection studies demonstrated that the induction of transcription of the QR gene by 6-MITC involved an antioxidant/electrophile-responsive element (ARE/EpRE) activation. Our results suggest a novel mechanism by which dietary wasabi 6-MITC may be implicated in cancer chemoprevention.

  4. Quenching Enhancement of the Singlet Excited State of Pheophorbide-a by DNA in the Presence of the Quinone Carboquone

    PubMed Central

    Díaz-Espinosa, Yisaira; Crespo-Hernández, Carlos E.; Alegría, Antonio E.; García, Carmelo; Arce, Rafael

    2011-01-01

    Changes in the emission fluorescence intensity of pheophorbide-a (PHEO) in the presence of carboquone (CARBOQ) were used to obtain the association constant, the number of CARBOQ molecules interacting with PHEO, and the fluorescence quantum yield of the complex. Excitation spectra of mixtures of PHEO and CARBOQ in ethanol (EtOH) show an unresolved doublet in the red-most excitation band of PHEO, indicating the formation of a loose ground-state complex. The 1:1 CARBOQ–PHEO complex shows a higher fluorescence quantum yield in EtOH (0.41 ± 0.02) than in buffer solution (0.089 ± 0.002), which is also higher than that of the PHEO monomer (0.28). Quenching of the PHEO fluorescence by DNA nucleosides and double-stranded oligonucleotides was also observed and the bimolecular quenching rate constants were determined. The quenching rate constant increase as the oxidation potential of the DNA nucleoside increases. Larger quenching constants were obtained in the presence of CARBOQ suggesting that CARBOQ enhances DNA photo-oxidation, presumably by inhibiting the back–electron-transfer reaction from the photoreduced PHEO to the oxidized base. Thus, the enhanced DNA-base photosensitized oxidation by PHEO in the presence of CARBOQ may be related to the large extent by which this quinone covalently binds to DNA, as previously reported. PMID:21138440

  5. Inhibitory effects of different forms of tocopherols, tocopherol phosphates and tocopherol quinones on growth of colon cancer cells

    PubMed Central

    Dolfi, Sonia C.; Yang, Zhihong; Lee, Mao-Jung; Guan, Fei; Hong, Jungil; Yang, Chung S.

    2013-01-01

    Tocopherols are the major source of dietary vitamin E. In this study, the growth inhibitory effects of different forms of tocopherols, tocopheryl phosphates (TP) and tocopherol quinones (TQ) on human colon cancer HCT116 and HT29 cells were investigated. δ-T was more active than γ-T in inhibiting colon cancer cell growth, decreasing cancer cell colony formation and inducing apoptosis; however α-T was rather ineffective. Similarly, the rate of cellular uptake also followed the ranking order δ-T > γ-T ≫ α-T. TP and TQ generally had higher inhibitory activities than their parent compounds. Interestingly, the γ-forms of TP and TQ were more active than the δ-forms in inhibiting cancer cell growth; whereas the α-forms were the least effective. The potencies of γ-TQ and δ-TQ (showing IC50 of ~0.8 and ~2 μM on HCT116 cells after a 72-h incubation, respectively) were >100 and >20 fold higher, respectively, than those of their parent tocopherols. Induction of cancer cell apoptosis by δ-T, γ-TP and γ-TQ was characterized by the cleavage of caspase 3 and PARP1 and DNA fragmentation. These studies demonstrated the higher growth inhibitory activity of δ-T than γ-T, the even higher activities of the γ-forms of TP and TQ, and the ineffectiveness of the α-forms of tocopherol and their metabolites against colon cancer cells. PMID:23898832

  6. Inhibitory effects of different forms of tocopherols, tocopherol phosphates, and tocopherol quinones on growth of colon cancer cells.

    PubMed

    Dolfi, Sonia C; Yang, Zhihong; Lee, Mao-Jung; Guan, Fei; Hong, Jungil; Yang, Chung S

    2013-09-11

    Tocopherols are the major source of dietary vitamin E. In this study, the growth inhibitory effects of different forms of tocopherols (T), tocopheryl phosphates (TP), and tocopherol quinones (TQ) on human colon cancer HCT116 and HT29 cells were investigated. δ-T was more active than γ-T in inhibiting colon cancer cell growth, decreasing cancer cell colony formation, and inducing apoptosis; however, α-T was rather ineffective. Similarly, the rate of cellular uptake also followed the ranking order δ-T > γ-T ≫ α-T. TP and TQ generally had higher inhibitory activities than their parent compounds. Interestingly, the γ forms of TP and TQ were more active than the δ forms in inhibiting cancer cell growth, whereas the α forms were the least effective. The potencies of γ-TQ and δ-TQ (showing IC50 values of ∼0.8 and ∼2 μM on HCT116 cells after a 72 h incubation, respectively) were greater than 100-fold and greater than 20-fold higher, respectively, than those of their parent tocopherols. Induction of cancer cell apoptosis by δ-T, γ-TP, and γ-TQ was characterized by the cleavage of caspase 3 and PARP1 and DNA fragmentation. These studies demonstrated the higher growth inhibitory activity of δ-T than γ-T, the even higher activities of the γ forms of TP and TQ, and the ineffectiveness of the α forms of tocopherol and their metabolites against colon cancer cells.

  7. Discovery of a Eukaryotic Pyrroloquinoline Quinone-Dependent Oxidoreductase Belonging to a New Auxiliary Activity Family in the Database of Carbohydrate-Active Enzymes

    PubMed Central

    Sugimoto, Naohisa; Ishida, Takuya; Samejima, Masahiro; Ohno, Hiroyuki; Yoshida, Makoto; Igarashi, Kiyohiko; Nakamura, Nobuhumi

    2014-01-01

    Pyrroloquinoline quinone (PQQ) is a redox cofactor utilized by a number of prokaryotic dehydrogenases. Not all prokaryotic organisms are capable of synthesizing PQQ, even though it plays important roles in the growth and development of many organisms, including humans. The existence of PQQ-dependent enzymes in eukaryotes has been suggested based on homology studies or the presence of PQQ-binding motifs, but there has been no evidence that such enzymes utilize PQQ as a redox cofactor. However, during our studies of hemoproteins, we fortuitously discovered a novel PQQ-dependent sugar oxidoreductase in a mushroom, the basidiomycete Coprinopsis cinerea. The enzyme protein has a signal peptide for extracellular secretion and a domain for adsorption on cellulose, in addition to the PQQ-dependent sugar dehydrogenase and cytochrome domains. Although this enzyme shows low amino acid sequence homology with known PQQ-dependent enzymes, it strongly binds PQQ and shows PQQ-dependent activity. BLAST search uncovered the existence of many genes encoding homologous proteins in bacteria, archaea, amoebozoa, and fungi, and phylogenetic analysis suggested that these quinoproteins may be members of a new family that is widely distributed not only in prokaryotes, but also in eukaryotes. PMID:25121592

  8. Structure-activity relationships and docking studies of synthetic 2-arylindole derivatives determined with aromatase and quinone reductase 1.

    PubMed

    Prior, Allan M; Yu, Xufen; Park, Eun-Jung; Kondratyuk, Tamara P; Lin, Yan; Pezzuto, John M; Sun, Dianqing

    2017-12-15

    In our ongoing effort of discovering anticancer and chemopreventive agents, a series of 2-arylindole derivatives were synthesized and evaluated toward aromatase and quinone reductase 1 (QR1). Biological evaluation revealed that several compounds (e.g., 2d, IC 50  = 1.61 μM; 21, IC 50  = 3.05 μM; and 27, IC 50  = 3.34 μM) showed aromatase inhibitory activity with half maximal inhibitory concentration (IC 50 ) values in the low micromolar concentrations. With regard to the QR1 induction activity, 11 exhibited the highest QR1 induction ratio (IR) with a low concentration to double activity (CD) value (IR = 8.34, CD = 2.75 μM), while 7 showed the most potent CD value of 1.12 μM. A dual acting compound 24 showed aromatase inhibition (IC 50  = 9.00 μM) as well as QR1 induction (CD = 5.76 μM) activities. Computational docking studies using CDOCKER (Discovery Studio 3.5) provided insight in regard to the potential binding modes of 2-arylindoles within the aromatase active site. Predominantly, the 2-arylindoles preferred binding with the 2-aryl group toward a small hydrophobic pocket within the active site. The C-5 electron withdrawing group on indole was predicted to have an important role and formed a hydrogen bond with Ser478 (OH). Alternatively, meta-pyridyl analogs may orient with the pyridyl 3'-nitrogen coordinating with the heme group. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Heterologous expression of pyrroloquinoline quinone (pqq) gene cluster confers mineral phosphate solubilization ability to Herbaspirillum seropedicae Z67.

    PubMed

    Wagh, Jitendra; Shah, Sonal; Bhandari, Praveena; Archana, G; Kumar, G Naresh

    2014-06-01

    Gluconic acid secretion mediated by the direct oxidation of glucose by pyrroloquinoline quinone (PQQ)-dependent glucose dehydrogenase (GDH) is responsible for mineral phosphate solubilization in Gram-negative bacteria. Herbaspirillum seropedicae Z67 (ATCC 35892) genome encodes GDH apoprotein but lacks genes for the biosynthesis of its cofactor PQQ. In this study, pqqE of Erwinia herbicola (in plasmid pJNK1) and pqq gene clusters of Pseudomonas fluorescens B16 (pOK53) and Acinetobacter calcoaceticus (pSS2) were over-expressed in H. seropedicae Z67. Transformants Hs (pSS2) and Hs (pOK53) secreted micromolar levels of PQQ and attained high GDH activity leading to secretion of 33.46 mM gluconic acid when grown on 50 mM glucose while Hs (pJNK1) was ineffective. Hs (pJNK1) failed to solubilize rock phosphate, while Hs (pSS2) and Hs (pOK53) liberated 125.47 μM and 168.07 μM P, respectively, in minimal medium containing 50 mM glucose under aerobic conditions. Moreover, under N-free minimal medium, Hs (pSS2) and Hs (pOK53) not only released significant P but also showed enhanced growth, biofilm formation, and exopolysaccharide (EPS) secretion. However, indole acetic acid (IAA) production was suppressed. Thus, the addition of the pqq gene cluster, but not pqqE alone, is sufficient for engineering phosphate solubilization in H. seropedicae Z67 without compromising growth under nitrogen-fixing conditions.

  10. Exogenous Methyl Jasmonate Treatment Increases Glucosinolate Biosynthesis and Quinone Reductase Activity in Kale Leaf Tissue

    PubMed Central

    Ku, Kang-Mo; Jeffery, Elizabeth H.; Juvik, John A.

    2014-01-01

    Methyl jasmonate (MeJA) spray treatments were applied to the kale varieties ‘Dwarf Blue Curled Vates’ and ‘Red Winter’ in replicated field plantings in 2010 and 2011 to investigate alteration of glucosinolate (GS) composition in harvested leaf tissue. Aqueous solutions of 250 µM MeJA were sprayed to saturation on aerial plant tissues four days prior to harvest at commercial maturity. The MeJA treatment significantly increased gluconasturtiin (56%), glucobrassicin (98%), and neoglucobrassicin (150%) concentrations in the apical leaf tissue of these genotypes over two seasons. Induction of quinone reductase (QR) activity, a biomarker for anti-carcinogenesis, was significantly increased by the extracts from the leaf tissue of these two cultivars. Extracts of apical leaf tissues had greater MeJA mediated increases in phenolics, glucosinolate concentrations, GS hydrolysis products, and QR activity than extracts from basal leaf tissue samples. The concentration of the hydrolysis product of glucoraphanin, sulforphane was significantly increased in apical leaf tissue of the cultivar ‘Red Winter’ in both 2010 and 2011. There was interaction between exogenous MeJA treatment and environmental conditions to induce endogenous JA. Correlation analysis revealed that indole-3-carbanol (I3C) generated from the hydrolysis of glucobrassicin significantly correlated with QR activity (r = 0.800, P<0.001). Concentrations required to double the specific QR activity (CD values) of I3C was calculated at 230 µM, which is considerably weaker at induction than other isothiocyanates like sulforphane. To confirm relationships between GS hydrolysis products and QR activity, a range of concentrations of MeJA sprays were applied to kale leaf tissues of both cultivars in 2011. Correlation analysis of these results indicated that sulforaphane, NI3C, neoascorbigen, I3C, and diindolylmethane were all significantly correlated with QR activity. Thus, increased QR activity may be due to

  11. Tuning cofactor redox potentials: the 2-methoxy dihedral angle generates a redox potential difference of >160 mV between the primary (Q(A)) and secondary (Q(B)) quinones of the bacterial photosynthetic reaction center.

    PubMed

    Taguchi, Alexander T; Mattis, Aidas J; O'Malley, Patrick J; Dikanov, Sergei A; Wraight, Colin A

    2013-10-15

    Only quinones with a 2-methoxy group can act simultaneously as the primary (QA) and secondary (QB) electron acceptors in photosynthetic reaction centers from Rhodobacter sphaeroides. (13)C hyperfine sublevel correlation measurements of the 2-methoxy in the semiquinone states, SQA and SQB, were compared with quantum mechanics calculations of the (13)C couplings as a function of the dihedral angle. X-ray structures support dihedral angle assignments corresponding to a redox potential gap (ΔEm) between QA and QB of ~180 mV. This is consistent with the failure of a ubiquinone analogue lacking the 2-methoxy to function as QB in mutant reaction centers with a ΔEm of ≈160-195 mV.

  12. Towards a novel bioelectrocatalytic platform based on “wiring” of pyrroloquinoline quinone-dependent glucose dehydrogenase with an electrospun conductive polymeric fiber architecture

    NASA Astrophysics Data System (ADS)

    Gladisch, Johannes; Sarauli, David; Schäfer, Daniel; Dietzel, Birgit; Schulz, Burkhard; Lisdat, Fred

    2016-01-01

    Electrospinning is known as a fabrication technique for electrode architectures that serve as immobilization matrices for biomolecules. The current work demonstrates a novel approach to construct a conductive polymeric platform, capable not only of immobilization, but also of electrical connection of the biomolecule with the electrode. It is produced upon electrospinning from mixtures of three different highly conductive sulfonated polyanilines and polyacrylonitrile on ITO electrodes. The resulting fiber mats are with a well-retained conductivity. After coupling the enzyme pyrroloquinoline quinone-dependent glucose dehydrogenase (PQQ-GDH) to polymeric structures and addition of the substrate glucose an efficient bioelectrocatalysis is demonstrated. Depending on the choice of the sulfonated polyanilline mediatorless bioelectrocatalysis starts at low potentials; no large overpotential is needed to drive the reaction. Thus, the electrospun conductive immobilization matrix acts here as a transducing element, representing a promising strategy to use 3D polymeric scaffolds as wiring agents for active enzymes. In addition, the mild and well reproducible fabrication process and the active role of the polymer film in withdrawing electrons from the reduced PQQ-GDH lead to a system with high stability. This could provide access to a larger group of enzymes for bioelectrochemical applications including biosensors and biofuel cells.

  13. An NAD(P)H:quinone oxidoreductase 1 (NQO1) enzyme responsive nanocarrier based on mesoporous silica nanoparticles for tumor targeted drug delivery in vitro and in vivo

    NASA Astrophysics Data System (ADS)

    Gayam, Srivardhan Reddy; Venkatesan, Parthiban; Sung, Yi-Ming; Sung, Shuo-Yuan; Hu, Shang-Hsiu; Hsu, Hsin-Yun; Wu, Shu-Pao

    2016-06-01

    The synthesis and characterization of an NAD(P)H:quinone oxidoreductase 1 (NQO1) enzyme responsive nanocarrier based on mesoporous silica nanoparticles (MSNPs) for on-command delivery applications has been described in this paper. Gatekeeping of MSNPs is achieved by the integration of mechanically interlocked rotaxane nanovalves on the surface of MSNPs. The rotaxane nanovalve system is composed of a linear stalk anchoring on the surface of MSNPs, an α-cyclodextrin ring that encircles it and locks the payload ``cargo'' molecules in the mesopores, and a benzoquinone stopper incorporated at the end of the stalk. The gate opening and controlled release of the cargo are triggered by cleavage of the benzoquinone stopper using an endogenous NQO1 enzyme. In addition to having efficient drug loading and controlled release mechanisms, this smart biocompatible carrier system showed obvious uptake and consequent release of the drug in tumor cells, could selectively induce the tumor cell death and enhance the capability of inhibition of tumor growth in vivo. The controlled drug delivery system demonstrated its use as a potential theranostic material.The synthesis and characterization of an NAD(P)H:quinone oxidoreductase 1 (NQO1) enzyme responsive nanocarrier based on mesoporous silica nanoparticles (MSNPs) for on-command delivery applications has been described in this paper. Gatekeeping of MSNPs is achieved by the integration of mechanically interlocked rotaxane nanovalves on the surface of MSNPs. The rotaxane nanovalve system is composed of a linear stalk anchoring on the surface of MSNPs, an α-cyclodextrin ring that encircles it and locks the payload ``cargo'' molecules in the mesopores, and a benzoquinone stopper incorporated at the end of the stalk. The gate opening and controlled release of the cargo are triggered by cleavage of the benzoquinone stopper using an endogenous NQO1 enzyme. In addition to having efficient drug loading and controlled release mechanisms, this

  14. Inhibition of melanoma cell proliferation by resveratrol is correlated with upregulation of quinone reductase 2 and p53

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hsieh Tzechen; Wang Zhirong; Hamby, Carl V.

    2005-08-19

    Resveratrol (trans-3,4',5-trihydroxystilbene) is a grape-derived polyphenol under intensive study for its potential in cancer prevention. In the case of cultured human melanoma cells, no one to our knowledge has investigated whether resveratrol exerts similar anti-proliferative activities in cells with different metastatic potential. Therefore, we examined the effects of this polyphenol on the growth of weakly metastatic Line IV clone 3 and on autologous, highly metastatic Line IV clone 1 cultured melanoma cells. Comparable inhibition of growth and colony formation resulted from treatment by resveratrol in both cell lines. Flow cytometric analysis revealed that resveratrol-treated clone 1 cells had a dose-dependentmore » increase in S phase and a concomitant reduction in the G{sub 1} phase. No detectable change in cell cycle phase distribution was found in similarly treated clone 3 cells. Western blots demonstrated a significant increase in the expression of the tumor suppressor gene p53, without a commensurate change in p21 and several other cell cycle regulatory proteins in both cell types. Chromatography of Line IV clone 3 and clone 1 cell extracts on resveratrol affinity columns revealed that the basal expression of dihydronicotinamide riboside quinone reductase 2 (NQO2) was higher in Line IV clone 1 than clone 3 cells. Levels of NQO2 but not its structural analog NQO1 were dose-dependently increased by resveratrol in both cell lines. We propose that induction of NQO2 may relate to the observed increased expression of p53 that, in turn, contributes to the observed suppression of cell growth in both melanoma cell lines.« less

  15. Riboflavin Is an Active Redox Cofactor in the Na+-pumping NADH:Quinone Oxidoreductase (Na+-NQR) from Vibrio cholerae*

    PubMed Central

    Juárez, Oscar; Nilges, Mark J.; Gillespie, Portia; Cotton, Jennifer; Barquera, Blanca

    2008-01-01

    Here we present new evidence that riboflavin is present as one of four flavins in Na+-NQR. In particular, we present conclusive evidence that the source of the neutral radical is not one of the FMNs and that riboflavin is the center that gives rise to the neutral flavosemiquinone. The riboflavin is a bona fide redox cofactor and is likely to be the last redox carrier of the enzyme, from which electrons are donated to quinone. We have constructed a double mutant that lacks both covalently bound FMN cofactors (NqrB-T236Y/NqrC-T225Y) and have studied this mutant together with the two single mutants (NqrB-T236Y and NqrC-T225Y) and a mutant that lacks the noncovalently bound FAD in NqrF (NqrF-S246A). The double mutant contains riboflavin and FAD in a 0.6:1 ratio, as the only flavins in the enzyme; noncovalently bound flavins were detected. In the oxidized form, the double mutant exhibits an EPR signal consistent with a neutral flavosemiquinone radical, which is abolished on reduction of the enzyme. The same radical can be observed in the FAD deletion mutant. Furthermore, when the oxidized enzyme reacts with ubiquinol (the reduced form of the usual electron acceptor) in a process that reverses the physiological direction of the electron flow, a single kinetic phase is observed. The kinetic difference spectrum of this process is consistent with one-electron reduction of a neutral flavosemiquinone. The presence of riboflavin in the role of a redox cofactor is thus far unique to Na+-NQR. PMID:18832377

  16. Upregulation of NAD(P)H:Quinone Oxidoreductase By Radiation Potentiates the Effect of Bioreductive β-Lapachone on Cancer Cells1

    PubMed Central

    Choi, Eun K; Terai, Kaoru; Ji, In-Mi; Kook, Yeon H; Park, Kyung H; Oh, Eun T; Griffin, Robert J; Lim, Byung U; Kim, Jin-Seok; Lee, Doo S; Boothman, David A; Loren, Melissa; Song, Chang W; Park, Heon Joo

    2007-01-01

    We found that β-lapachone (β-lap), a novel bioreductive drug, caused rapid apoptosis and clonogenic cell death in A549 human lung epithelial cancer cells in vitro in a dose-dependent manner. The clonogenic cell death caused by β-lap could be significantly inhibited by dicoumarol, an inhibitor of NAD(P)H:quinone oxido-reductase (NQO1), and also by siRNA for NQO1, demonstrating that NQO1-induced bioreduction of β-lap is an essential step in β-lap-induced cell death. Irradiation of A549 cells with 4 Gy caused a long-lasting upregulation of NQO1, thereby increasing NQO1-mediated β-lap-induced cell deaths. Although the direct cause of β-lap-induced apoptosis is not yet clear, β-lap treatment reduced the expression of p53 and NF-κB, whereas it increased cytochrome C release, caspase-3 activity, and γH2AX foci formation. Importantly, β-lap treatment immediately after irradiation enhanced radiation-induced cell death, indicating that β-lap sensitizes cancer cells to radiation, in addition to directly killing some of the cells. The growth of A549 tumors induced in immunocompromised mice could be markedly suppressed by local radiation therapy when followed by β-lap treatment. This is the first study to demonstrate that combined radiotherapy and β-lap treatment can have a significant effect on human tumor xenografts. PMID:17786182

  17. Synthesis and antitumor activity of quinonoid derivatives of cannabinoids.

    PubMed

    Kogan, Natalya M; Rabinowitz, Ruth; Levi, Paloma; Gibson, Dan; Sandor, Peter; Schlesinger, Michael; Mechoulam, Raphael

    2004-07-15

    Three cannabis constituents, cannabidiol (1), Delta(8)-tetrahydrocannabinol (3), and cannabinol (5), were oxidized to their respective para-quinones 2, 4, and 6. In the 1960s, the oxidized product 4 had been assigned a para-quinone structure, which was later modified to an ortho-quinone. To distinguish between the two possible quinone structures, a detailed NMR investigation was undertaken. The original para-quinone structure was confirmed. X-ray crystallography elucidated the structures of the crystalline 2 and 6. All three compounds displayed antiproliferative activity in several human cancer cell lines in vitro, and quinone 2 significantly reduced cancer growth of HT-29 cancer in nude mice.

  18. Medium optimization for pyrroloquinoline quinone (PQQ) production by Methylobacillus sp. zju323 using response surface methodology and artificial neural network-genetic algorithm.

    PubMed

    Wei, Peilian; Si, Zhenjun; Lu, Yao; Yu, Qingfei; Huang, Lei; Xu, Zhinan

    2017-08-09

    Methylobacillus sp. zju323 was adopted to improve the biosynthesis of pyrroloquinoline quinone (PQQ) by systematic optimization of the fermentation medium. The Plackett-Burman design was implemented to screen for the key medium components for the PQQ production. CoCl 2  · 6H 2 O, ρ-amino benzoic acid, and MgSO 4  · 7H 2 O were found capable of enhancing the PQQ production most significantly. A five-level three-factor central composite design was used to investigate the direct and interactive effects of these variables. Both response surface methodology (RSM) and artificial neural network-genetic algorithm (ANN-GA) were used to predict the PQQ production and to optimize the medium composition. The results showed that the medium optimized by ANN-GA was better than that by RSM in maximizing PQQ production and the experimental PQQ concentration in the ANN-GA-optimized medium was improved by 44.3% compared with that in the unoptimized medium. Further study showed that this ANN-GA-optimized medium was also effective in improving PQQ production by fed-batch mode, reaching the highest PQQ accumulation of 232.0 mg/L, which was about 47.6% increase relative to that in the original medium. The present work provided an optimized medium and developed a fed-batch strategy which might be potentially applicable in industrial PQQ production.

  19. Cooperation of NAD(P)H:quinone oxidoreductase 1 and UDP-glucuronosyltransferases reduces menadione cytotoxicity in HEK293 cells.

    PubMed

    Nishiyama, Takahito; Izawa, Tadashi; Usami, Mami; Ohnuma, Tomokazu; Ogura, Kenichiro; Hiratsuka, Akira

    2010-04-09

    Previous studies have shown that NAD(P)H:quinone oxidoreductase 1 (NQO1) plays an important role in the detoxification of menadione (2-methyl-1,4-naphthoquinone, also known as vitamin K3). However, menadiol (2-methyl-1,4-naphthalenediol) formed from menadione by NQO1-mediated reduction continues to be an unstable substance, which undergoes the reformation of menadione with concomitant formation of reactive oxygen species (ROS). Hence, we focused on the roles of phase II enzymes, with particular attention to UDP-glucuronosyltransferases (UGTs), in the detoxification process of menadione. In this study, we established an HEK293 cell line stably expressing NQO1 (HEK293/NQO1) and HEK293/NQO1 cell lines with doxycycline (DOX)-regulated expression of UGT1A6 (HEK293/NQO1/UGT1A6) and UGT1A10 (HEK293/NQO1/UGT1A10), and evaluated the role of NQO1 and UGTs against menadione-induced cytotoxicity. Our results differed from those of previous studies. HEK293/NQO1 was the most sensitive cell line to menadione cytotoxicity among cell lines established in this study. These phenomena were also observed in HEK293/NQO1/UGT1A6 and HEK293/NQO1/UGT1A10 cells in which the expression of UGT was suppressed by DOX treatment. On the contrary, HEK293/NQO1/UGT1A6 and HEK293/NQO1/UGT1A10 cells without DOX treatment were resistant to menadione-induced cytotoxicity. These results demonstrated that NQO1 is not a detoxification enzyme for menadione and that UGT-mediated glucuronidation of menadiol is the most important detoxification process. Copyright 2009 Elsevier Inc. All rights reserved.

  20. Identification of the coupling step in Na(+)-translocating NADH:quinone oxidoreductase from real-time kinetics of electron transfer.

    PubMed

    Belevich, Nikolai P; Bertsova, Yulia V; Verkhovskaya, Marina L; Baykov, Alexander A; Bogachev, Alexander V

    2016-02-01

    Bacterial Na(+)-translocating NADH:quinone oxidoreductase (Na(+)-NQR) uses a unique set of prosthetic redox groups-two covalently bound FMN residues, a [2Fe-2S] cluster, FAD, riboflavin and a Cys4[Fe] center-to catalyze electron transfer from NADH to ubiquinone in a reaction coupled with Na(+) translocation across the membrane. Here we used an ultra-fast microfluidic stopped-flow instrument to determine rate constants and the difference spectra for the six consecutive reaction steps of Vibrio harveyi Na(+)-NQR reduction by NADH. The instrument, with a dead time of 0.25 ms and optical path length of 1 cm allowed collection of visible spectra in 50-μs intervals. By comparing the spectra of reaction steps with the spectra of known redox transitions of individual enzyme cofactors, we were able to identify the chemical nature of most intermediates and the sequence of electron transfer events. A previously unknown spectral transition was detected and assigned to the Cys4[Fe] center reduction. Electron transfer from the [2Fe-2S] cluster to the Cys4[Fe] center and all subsequent steps were markedly accelerated when Na(+) concentration was increased from 20 μM to 25 mM, suggesting coupling of the former step with tight Na(+) binding to or occlusion by the enzyme. An alternating access mechanism was proposed to explain electron transfer between subunits NqrF and NqrC. According to the proposed mechanism, the Cys4[Fe] center is alternatively exposed to either side of the membrane, allowing the [2Fe-2S] cluster of NqrF and the FMN residue of NqrC to alternatively approach the Cys4[Fe] center from different sides of the membrane. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Role of reactive oxygen species and sulfide-quinone oxoreductase in hydrogen sulfide-induced contraction of rat pulmonary arteries

    PubMed Central

    Prieto-Lloret, Jesus; Snetkov, Vladimir A.; Shaifta, Yasin; Docio, Inmaculada; Connolly, Michelle J.; MacKay, Charles E.; Knock, Greg A.

    2018-01-01

    Application of H2S (“sulfide”) elicits a complex contraction in rat pulmonary arteries (PAs) comprising a small transient contraction (phase 1; Ph1) followed by relaxation and then a second, larger, and more sustained contraction (phase 2; Ph2). We investigated the mechanisms causing this response using isometric myography in rat second-order PAs, with Na2S as a sulfide donor. Both phases of contraction to 1,000 μM Na2S were attenuated by the pan-PKC inhibitor Gö6983 (3 μM) and by 50 μM ryanodine; the Ca2+ channel blocker nifedipine (1 μM) was without effect. Ph2 was attenuated by the mitochondrial complex III blocker myxothiazol (1 μM), the NADPH oxidase (NOX) blocker VAS2870 (10 μM), and the antioxidant TEMPOL (3 mM) but was unaffected by the complex I blocker rotenone (1 μM). The bath sulfide concentration, measured using an amperometric sensor, decreased rapidly following Na2S application, and the peak of Ph2 occurred when this had fallen to ~50 μM. Sulfide caused a transient increase in NAD(P)H autofluorescence, the offset of which coincided with development of the Ph2 contraction. Sulfide also caused a brief mitochondrial hyperpolarization (assessed using tetramethylrhodamine ethyl ester), followed immediately by depolarization and then a second more prolonged hyperpolarization, the onset of which was temporally correlated with the Ph2 contraction. Sulfide application to cultured PA smooth muscle cells increased reactive oxygen species (ROS) production (recorded using L012); this was absent when the mitochondrial flavoprotein sulfide-quinone oxoreductase (SQR) was knocked down using small interfering RNA. We propose that the Ph2 contraction is largely caused by SQR-mediated sulfide metabolism, which, by donating electrons to ubiquinone, increases electron production by complex III and thereby ROS production. PMID:29351439

  2. Methyl Jasmonate and 1-Methylcyclopropene Treatment Effects on Quinone Reductase Inducing Activity and Post-Harvest Quality of Broccoli

    PubMed Central

    Ku, Kang Mo; Choi, Jeong Hee; Kim, Hyoung Seok; Kushad, Mosbah M.; Jeffery, Elizabeth H.; Juvik, John A.

    2013-01-01

    Effect of pre-harvest methyl jasmonate (MeJA) and post-harvest 1-methylcyclopropene (1-MCP) treatments on broccoli floret glucosinolate (GS) concentrations and quinone reductase (QR, an in vitro anti-cancer biomarker) inducing activity were evaluated two days prior to harvest, at harvest and at 10, 20, and 30 days of post-harvest storage at 4 °C. MeJA treatments four days prior to harvest of broccoli heads was observed to significantly increase floret ethylene biosynthesis resulting in chlorophyll catabolism during post-harvest storage and reduced product quality. Post-harvest treatment with 1-methylcyclopropene (1-MCP), which competitively binds to protein ethylene receptors, maintained post-harvest floret chlorophyll concentrations and product visual quality in both control and MeJA-treated broccoli. Transcript abundance of BoPPH, a gene which is responsible for the synthesis of pheophytinase, the primary enzyme associated with chlorophyll catabolism in broccoli, was reduced by 1-MCP treatment and showed a significant, negative correlation with floret chlorophyll concentrations. The GS, glucobrassicin, neoglucobrassicin, and gluconasturtiin were significantly increased by MeJA treatments. The products of some of the GS from endogenous myrosinase hydrolysis [sulforaphane (SF), neoascorbigen (NeoASG), N-methoxyindole-3-carbinol (NI3C), and phenethyl isothiocyanate (PEITC)] were also quantified and found to be significantly correlated with QR. Sulforaphane, the isothiocyanate hydrolysis product of the GS glucoraphanin, was found to be the most potent QR induction agent. Increased sulforaphane formation from the hydrolysis of glucoraphanin was associated with up-regulated gene expression of myrosinase (BoMyo) and the myrosinase enzyme co-factor gene, epithiospecifier modifier1 (BoESM1). This study demonstrates the combined treatment of MeJA and 1-MCP increased QR activity without post-harvest quality loss. PMID:24146962

  3. Production of the quinone-methide triterpene maytenin by in vitro adventitious roots of Peritassa campestris (Cambess.) A.C.Sm. (Celastraceae) and rapid detection and identification by APCI-IT-MS/MS.

    PubMed

    Paz, Tiago Antunes; dos Santos, Vânia A F F M; Inácio, Marielle Cascaes; Pina, Edieidia Souza; Pereira, Ana Maria Soares; Furlan, Maysa

    2013-01-01

    Establishment of adventitious root cultures of Peritassa campestris (Celastraceae) was achieved from seed cotyledons cultured in semisolid Woody Plant Medium (WPM) supplemented with 2% sucrose, 0.01% PVP, and 4.0 mg L⁻¹ IBA. Culture period on accumulation of biomass and quinone-methide triterpene maytenin in adventitious root were investigated. The accumulation of maytenin in these roots was compared with its accumulation in the roots of seedlings grown in a greenhouse (one year old). A rapid detection and identification of maytenin by direct injection into an atmospheric-pressure chemical ionization ion trap tandem mass spectrometer (APCI-IT-MS/MS) were performed without prior chromatographic separation. In vitro, the greatest accumulation of biomass occurred within 60 days of culture. The highest level of maytenin--972.11  μ g·g⁻¹ dry weight--was detected at seven days of cultivation; this value was 5.55-fold higher than that found in the roots of seedlings grown in a greenhouse.

  4. Production of the Quinone-Methide Triterpene Maytenin by In Vitro Adventitious Roots of Peritassa campestris (Cambess.) A.C.Sm. (Celastraceae) and Rapid Detection and Identification by APCI-IT-MS/MS

    PubMed Central

    Paz, Tiago Antunes; dos Santos, Vânia A. F. F. M.; Inácio, Marielle Cascaes; Pina, Edieidia Souza; Pereira, Ana Maria Soares; Furlan, Maysa

    2013-01-01

    Establishment of adventitious root cultures of Peritassa campestris (Celastraceae) was achieved from seed cotyledons cultured in semisolid Woody Plant Medium (WPM) supplemented with 2% sucrose, 0.01% PVP, and 4.0 mg L−1 IBA. Culture period on accumulation of biomass and quinone-methide triterpene maytenin in adventitious root were investigated. The accumulation of maytenin in these roots was compared with its accumulation in the roots of seedlings grown in a greenhouse (one year old). A rapid detection and identification of maytenin by direct injection into an atmospheric-pressure chemical ionization ion trap tandem mass spectrometer (APCI-IT-MS/MS) were performed without prior chromatographic separation. In vitro, the greatest accumulation of biomass occurred within 60 days of culture. The highest level of maytenin—972.11 μg·g−1 dry weight—was detected at seven days of cultivation; this value was 5.55-fold higher than that found in the roots of seedlings grown in a greenhouse. PMID:24205504

  5. The Role and Specificity of the Catalytic and Regulatory Cation-binding Sites of the Na+-pumping NADH:Quinone Oxidoreductase from Vibrio cholerae*

    PubMed Central

    Juárez, Oscar; Shea, Michael E.; Makhatadze, George I.; Barquera, Blanca

    2011-01-01

    The Na+-translocating NADH:quinone oxidoreductase is the entry site for electrons into the respiratory chain and the main sodium pump in Vibrio cholerae and many other pathogenic bacteria. In this work, we have employed steady-state and transient kinetics, together with equilibrium binding measurements to define the number of cation-binding sites and characterize their roles in the enzyme. Our results show that sodium and lithium ions stimulate enzyme activity, and that Na+-NQR enables pumping of Li+, as well as Na+ across the membrane. We also confirm that the enzyme is not able to translocate other monovalent cations, such as potassium or rubidium. Although potassium is not used as a substrate, Na+-NQR contains a regulatory site for this ion, which acts as a nonessential activator, increasing the activity and affinity for sodium. Rubidium can bind to the same site as potassium, but instead of being activated, enzyme turnover is inhibited. Activity measurements in the presence of both sodium and lithium indicate that the enzyme contains at least two functional sodium-binding sites. We also show that the binding sites are not exclusively responsible for ion selectivity, and other steps downstream in the mechanism also play a role. Finally, equilibrium-binding measurements with 22Na+ show that, in both its oxidized and reduced states, Na+-NQR binds three sodium ions, and that the affinity for sodium is the same for both of these states. PMID:21652714

  6. Anticancer activity of Nigella sativa (black seed) and its relationship with the thermal processing and quinone composition of the seed.

    PubMed

    Agbaria, Riad; Gabarin, Adi; Dahan, Arik; Ben-Shabat, Shimon

    2015-01-01

    The traditional preparation process of Nigella sativa (NS) oil starts with roasting of the seeds, an allegedly unnecessary step that was never skipped. The aims of this study were to investigate the role and boundaries of thermal processing of NS seeds in the preparation of therapeutic extracts and to elucidate the underlying mechanism. NS extracts obtained by various seed thermal processing methods were investigated in vitro for their antiproliferative activity in mouse colon carcinoma (MC38) cells and for their thymoquinone content. The effect of the different methods of thermal processing on the ability of the obtained NS oil to inhibit the nuclear factor kappa B (NF-κB) pathway was then investigated in Hodgkin's lymphoma (L428) cells. The different thermal processing protocols yielded three distinct patterns: heating the NS seeds to 50°C, 100°C, or 150°C produced oil with a strong ability to inhibit tumor cell growth; no heating or heating to 25°C had a mild antiproliferative effect; and heating to 200°C or 250°C had no effect. Similar patterns were obtained for the thymoquinone content of the corresponding oils, which showed an excellent correlation with the antiproliferative data. It is proposed that there is an oxidative transition mechanism between quinones after controlled thermal processing of the seeds. While NS oil from heated seeds delayed the expression of NF-κB transcription, non-heated seeds resulted in only 50% inhibition. The data indicate that controlled thermal processing of NS seeds (at 50°C-150°C) produces significantly higher anticancer activity associated with a higher thymoquinone oil content, and inhibits the NF-κB signaling pathway.

  7. A Bacterial Multidomain NAD-Independent d-Lactate Dehydrogenase Utilizes Flavin Adenine Dinucleotide and Fe-S Clusters as Cofactors and Quinone as an Electron Acceptor for d-Lactate Oxidization

    PubMed Central

    Jiang, Tianyi; Guo, Xiaoting; Yan, Jinxin; Zhang, Yingxin; Wang, Yujiao; Zhang, Manman; Sheng, Binbin; Ma, Cuiqing; Xu, Ping

    2017-01-01

    ABSTRACT Bacterial membrane-associated NAD-independent d-lactate dehydrogenase (Fe-S d-iLDH) oxidizes d-lactate into pyruvate. A sequence analysis of the enzyme reveals that it contains an Fe-S oxidoreductase domain in addition to a flavin adenine dinucleotide (FAD)-containing dehydrogenase domain, which differs from other typical d-iLDHs. Fe-S d-iLDH from Pseudomonas putida KT2440 was purified as a His-tagged protein and characterized in detail. This monomeric enzyme exhibited activities with l-lactate and several d-2-hydroxyacids. Quinone was shown to be the preferred electron acceptor of the enzyme. The two domains of the enzyme were then heterologously expressed and purified separately. The Fe-S cluster-binding motifs predicted by sequence alignment were preliminarily verified by site-directed mutagenesis of the Fe-S oxidoreductase domain. The FAD-containing dehydrogenase domain retained 2-hydroxyacid-oxidizing activity, although it decreased compared to the full Fe-S d-iLDH. Compared to the intact enzyme, the FAD-containing dehydrogenase domain showed increased catalytic efficiency with cytochrome c as the electron acceptor, but it completely lost the ability to use coenzyme Q10. Additionally, the FAD-containing dehydrogenase domain was no longer associated with the cell membrane, and it could not support the utilization of d-lactate as a carbon source. Based on the results obtained, we conclude that the Fe-S oxidoreductase domain functions as an electron transfer component to facilitate the utilization of quinone as an electron acceptor by Fe-S d-iLDH, and it helps the enzyme associate with the cell membrane. These functions make the Fe-S oxidoreductase domain crucial for the in vivo d-lactate utilization function of Fe-S d-iLDH. IMPORTANCE Lactate metabolism plays versatile roles in most domains of life. Lactate utilization processes depend on certain enzymes to oxidize lactate to pyruvate. In recent years, novel bacterial lactate-oxidizing enzymes have been

  8. Pyrroloquinoline quinone (PQQ) is reduced to pyrroloquinoline quinol (PQQH2) by vitamin C, and PQQH2 produced is recycled to PQQ by air oxidation in buffer solution at pH 7.4.

    PubMed

    Mukai, Kazuo; Ouchi, Aya; Nagaoka, Shin-ichi; Nakano, Masahiko; Ikemoto, Kazuto

    2016-01-01

    Measurements of the reaction of sodium salt of pyrroloquinoline quinone (PQQNa2) with vitamin C (Vit C) were performed in phosphate-buffered solution (pH 7.4) at 25 °C under nitrogen atmosphere, using UV-vis spectrophotometry. The absorption spectrum of PQQNa2 decreased in intensity due to the reaction with Vit C and was changed to that of pyrroloquinoline quinol (PQQH2, a reduced form of PQQ). One molecule of PQQ was reduced by two molecules of Vit C producing a molecule of PQQH2 in the buffer solution. PQQH2, thus produced, was recycled to PQQ due to air oxidation. PQQ and Vit C coexist in many biological systems, such as vegetables, fruits, as well as in human tissues. The results obtained suggest that PQQ is reduced by Vit C and functions as an antioxidant in biological systems, because it has been reported that PQQH2 shows very high free-radical scavenging and singlet-oxygen quenching activities in buffer solutions.

  9. Changes of microbial population structure related to lignin degradation during lignocellulosic waste composting.

    PubMed

    Huang, Dan-Lian; Zeng, Guang-Ming; Feng, Chong-Ling; Hu, Shuang; Lai, Cui; Zhao, Mei-Hua; Su, Feng-Feng; Tang, Lin; Liu, Hong-Liang

    2010-06-01

    Microbial populations and their relationship to bioconversion during lignocellulosic waste composting were studied by quinone profiling. Nine quinones were observed in the initial composting materials, and 15 quinones were found in compost after 50days of composting. The quinone species Q-9(H2), Q-10 and Q-10(H2) which are indicative of certain fungi appeared at the thermophilic stage but disappeared at the cooling stage. Q-10, indicative of certain fungi, and MK-7, characteristic of certain bacteria, were the predominant quinones during the thermophilic stage and were correlated with lignin degradation at the thermophilic stage. The highest lignin degradation ratio (26%) and good cellulose degradation were found at the cooling stage and were correlated with quinones Q-9, MK-7 and long-chain menaquinones attributed to mesophilic fungi, bacteria and actinomycetes, respectively. The present findings will improve the understandings of microbial dynamics and roles in composting, which could provide useful references for development of composting technology. Copyright 2010. Published by Elsevier Ltd.

  10. Improvement of functional recovery of transected peripheral nerve by means of chitosan grafts filled with vitamin E, pyrroloquinoline quinone and their combination.

    PubMed

    Azizi, Asghar; Azizi, Saeed; Heshmatian, Behnam; Amini, Keyvan

    2014-01-01

    Effects of vitamin E and pyrroloquinoline quinone on peripheral nerve regeneration were studied using a rat sciatic nerve transection model. Ninety male healthy White Wistar rats were divided into three experimental groups (n = 15), randomly: Sham-operation (SHAM), transected control (TC), chitosan conduit (Chit) and three treatment groups (Vit E, PQQ and PQQ + Vit E). In SHAM group after anesthesia, left sciatic nerve was exposed through a gluteal muscle incision and after homeostasis muscle was sutured. In Chit group left sciatic nerve was exposed the same way and transected proximal to tibio-peroneal bifurcation leaving a 10-mm gap. Proximal and distal stumps were each inserted into a chitosan tube. In treatment groups the tube was implanted the same way and filled with Vit E, PQQ and PQQ + Vit E. Each group was subdivided into three subgroups of six animals each and were studied 4, 8, 12 weeks after surgery. Functional and electrophysiological studies, and gastrocnemius muscle mass measurement confirmed faster and better recovery of regenerated axons in Vit E + PQQ combination compared to Vit E or PQQ solely (P < 0.05). Morphometric indices of regenerated fibers showed number and diameter of the myelinated fibers in PQQ + Vit E was significantly higher than in other treatment groups. In immunohistochemistry, location of reactions to S-100 in PQQ + Vit E was clearly more positive than in other treatment groups. Response to PQQ + Vit E treatment demonstrates that it influences and improves functional recovery of peripheral nerve regeneration. Copyright © 2013 Surgical Associates Ltd. Published by Elsevier Ltd. All rights reserved.

  11. Does quinone or phenol enrichment of humic substances alter the primary compound from a non-algicidal to an algicidal preparation?

    PubMed

    Bährs, Hanno; Menzel, Ralph; Kubsch, Georg; Stösser, Reinhardt; Putschew, Anke; Heinze, Tobias; Steinberg, Christian E W

    2012-06-01

    Dissolved organic matter (DOM) has been shown to affect phytoplankton species directly. These interactions largely depend on the origin and molecular size of DOM and are different in prokaryotes and eukaryotes. In a preceding study, however, two humic substance preparations did not adversely affect coccal green algae or cyanobacterial growth even at high concentrations of dissolved organic carbon (DOC). These results contradicted previous findings, showing a clear, negative response of different phototrophs to much lower DOC concentrations. To test whether or not at least defined building blocks of humic substances (HSs) are effective algicidal structures, we enriched two humic preparations with hydroquinone and p-benzoquinone, respectively, and exposed two different green algae, Pseudokirchneriella subcapitata and Monoraphidium braunii, and two cyanobacterial species, Synechocystis sp. and Microcystis aeruginosa, to the unmodified and enriched HSs. As response variables, growth rates in terms of biomass increase, chlorophyll-a content, and photosynthetic yield were measured. The highest concentration (4.17 mM DOC) of the modified HSs clearly inhibited growth; the cyanobacterial species were much more sensitive than the green algal species. However, realistic ecological concentrations did not adversely affect growth. Aerating the exposure solution for 24 h strongly reduced the inhibitory effect of the modified HSs. The algicidal effect was obviously caused by monomers and not by polymerised high molecular weight HSs themselves. Furthermore, the maximum quantum yield (Φ PSII max) was stimulated in the green algal species by low and medium DOC concentrations, but reduced in the cyanobacterial species upon exposure to higher HS concentrations. The quinone- and phenol-enriched HSs only showed algicidal activity at high concentrations of 4.17 mM DOC and lost their effects over time, presumably by oxidation and subsequent polymerisation. This study confirms that the

  12. Mechanistic aspects of the tyrosinase oxidation of hydroquinone.

    PubMed

    Ramsden, Christopher A; Riley, Patrick A

    2014-06-01

    Contradictory reports on the behaviour of hydroquinone as a tyrosinase substrate are reconciled in terms of the ability of the initially formed ortho-quinone to tautomerise to the thermodynamically more stable para-quinone isomer. Oxidation of phenols by native tyrosinase requires activation by in situ formation of a catechol formed via an enzyme generated ortho-quinone. In the special case of hydroquinone, catechol formation is precluded by rapid tautomerisation of the ortho-quinone precursor to catechol formation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. NAD(P)H: Quinone Oxidoreductase 1 Deficiency Conjoint with Marginal Vitamin C Deficiency Causes Cigarette Smoke Induced Myelodysplastic Syndromes

    PubMed Central

    Das, Archita; Dey, Neekkan; Ghosh, Arunava; Das, Tanusree; Chatterjee, Indu B.

    2011-01-01

    Background The etiology of myelodysplastic syndromes (MDS) is largely unknown. Exposure to cigarette smoke (CS) is reported to be associated with MDS risk. There is inconsistent evidence that deficiency of NAD(P)H-quinone: oxidoreductase 1 (NQO1) increases the risk of MDS. Earlier we had shown that CS induces toxicity only in marginal vitamin C-deficient guinea pigs but not in vitamin C-sufficient ones. We therefore considered that NQO1 deficiency along with marginal vitamin C deficiency might produce MDS in CS-exposed guinea pigs. Methodology and Principal Findings Here we show that CS exposure for 21 days produces MDS in guinea pigs having deficiency of NQO1 (fed 3 mg dicoumarol/day) conjoint with marginal vitamin C deficiency (fed 0.5 mg vitamin C/day). As evidenced by morphology, histology and cytogenetics, MDS produced in the guinea pigs falls in the category of refractory cytopenia with unilineage dysplasia (RCUD): refractory anemia; refractory thrombocytopenia that is associated with ring sideroblasts, micromegakaryocytes, myeloid hyperplasia and aneuploidy. MDS is accompanied by increased CD34(+) cells and oxidative stress as shown by the formation of protein carbonyls and 8-oxodeoxyguanosine. Apoptosis precedes MDS but disappears later with marked decrease in the p53 protein. MDS produced in the guinea pigs are irreversible. MDS and all the aforesaid pathophysiological events do not occur in vitamin C-sufficient guinea pigs. However, after the onset of MDS vitamin C becomes ineffective. Conclusions and Significance CS exposure causes MDS in guinea pigs having deficiency of NQO1 conjoint with marginal vitamin C deficiency. The syndromes are not produced in singular deficiency of NQO1 or marginal vitamin C deficiency. Our results suggest that human smokers having NQO1 deficiency combined with marginal vitamin C deficiency are likely to be at high risk for developing MDS and that intake of a moderately large dose of vitamin C would prevent MDS. PMID:21655231

  14. Compounds from the Fruits of the Popular European Medicinal Plant Vitex agnus-castus in Chemoprevention via NADP(H):Quinone Oxidoreductase Type 1 Induction.

    PubMed

    Li, Shenghong; Qiu, Shengxiang; Yao, Ping; Sun, Handong; Fong, Harry H S; Zhang, Hongjie

    2013-01-01

    As part of our continuing efforts in the search for potential biologically active compounds from medicinal plants, we have isolated 18 compounds including two novel nitrogen containing diterpenes from extracts of the fruits of Vitex agnus-castus. These isolates, along with our previously obtained novel compound vitexlactam A (1), were evaluated for potential biological effects, including cancer chemoprevention. Chemically, the nitrogenous isolates were found to be two labdane diterpene alkaloids, each containing an α , β -unsaturated γ -lactam moiety. Structurally, they were elucidated to be 9 α -hydroxy-13(14)-labden-16,15-amide (2) and 6 β -acetoxy-9 α -hydroxy-13(14)-labden-15,16-amide (3), which were named vitexlactams B and C, respectively. The 15 known isolates were identified as vitexilactone (4), rotundifuran (5), 8-epi-manoyl oxide (6), vitetrifolin D (7), spathulenol (8), cis-dihydro-dehydro-diconiferylalcohol-9-O- β -D-glucoside (9), luteolin-7-O-glucoside (10), 5-hydroxy-3,6,7,4'-tetramethoxyflavone (11), casticin (12), artemetin (13), aucubin (14), agnuside (15), β -sitosterol (16), p-hydroxybenzoic acid (17), and p-hydroxybenzoic acid glucose ester (18). All compound structures were determined/identified on the basis of 1D and/or 2D NMR and mass spectrometry techniques. Compounds 6, 8, 9, and 18 were reported from a Vitex spieces for the first time. The cancer chemopreventive potentials of these isolates were evaluated for NADP(H):quinone oxidoreductase type 1 (QR1) induction activity. Compound 7 demonstrated promising QR1 induction effect, while the new compound vitexlactam (3) was only slightly active.

  15. Compounds from the Fruits of the Popular European Medicinal Plant Vitex agnus-castus in Chemoprevention via NADP(H):Quinone Oxidoreductase Type 1 Induction

    PubMed Central

    Li, Shenghong; Qiu, Shengxiang; Yao, Ping; Sun, Handong; Fong, Harry H. S.; Zhang, Hongjie

    2013-01-01

    As part of our continuing efforts in the search for potential biologically active compounds from medicinal plants, we have isolated 18 compounds including two novel nitrogen containing diterpenes from extracts of the fruits of Vitex agnus-castus. These isolates, along with our previously obtained novel compound vitexlactam A (1), were evaluated for potential biological effects, including cancer chemoprevention. Chemically, the nitrogenous isolates were found to be two labdane diterpene alkaloids, each containing an α, β-unsaturated γ-lactam moiety. Structurally, they were elucidated to be 9α-hydroxy-13(14)-labden-16,15-amide (2) and 6β-acetoxy-9α-hydroxy-13(14)-labden-15,16-amide (3), which were named vitexlactams B and C, respectively. The 15 known isolates were identified as vitexilactone (4), rotundifuran (5), 8-epi-manoyl oxide (6), vitetrifolin D (7), spathulenol (8), cis-dihydro-dehydro-diconiferylalcohol-9-O-β-D-glucoside (9), luteolin-7-O-glucoside (10), 5-hydroxy-3,6,7,4′-tetramethoxyflavone (11), casticin (12), artemetin (13), aucubin (14), agnuside (15), β-sitosterol (16), p-hydroxybenzoic acid (17), and p-hydroxybenzoic acid glucose ester (18). All compound structures were determined/identified on the basis of 1D and/or 2D NMR and mass spectrometry techniques. Compounds 6, 8, 9, and 18 were reported from a Vitex spieces for the first time. The cancer chemopreventive potentials of these isolates were evaluated for NADP(H):quinone oxidoreductase type 1 (QR1) induction activity. Compound 7 demonstrated promising QR1 induction effect, while the new compound vitexlactam (3) was only slightly active. PMID:23662135

  16. Benzo(a)pyrene quinones increase cell proliferation, generate reactive oxygen species, and transactivate the epidermal growth factor receptor in breast epithelial cells.

    PubMed

    Burdick, Andrew D; Davis, John W; Liu, Ke Jian; Hudson, Laurie G; Shi, Honglian; Monske, Michael L; Burchiel, Scott W

    2003-11-15

    Polycyclic aromatic hydrocarbons, such as benzo(a)pyrene (BaP), are known mammary carcinogens in rodents and may be involved in human breast cancer. We have reported previously that BaP can mimic growth factor signaling and increase cell proliferation in primary human mammary epithelial cells and the human mammary epithelial cell line MCF-10A. BaP-quinones (BPQs) are important metabolites of BaP that have been associated with the production of reactive oxygen species. Using a model of epidermal growth factor (EGF) withdrawal in MCF-10A, we hypothesized that production of reactive oxygen species by BPQs could lead to the activation of the EGF receptor (EGFR). Here, we demonstrate through electron paramagnetic resonance spectroscopy and flow cytometry that 1,6-BPQ and 3,6-BPQ produce superoxide anion and hydrogen peroxide in MCF-10A cells. Furthermore, we show that BPQs increase EGFR, Akt, and extracellular signal-regulated kinase activity, leading to increased cell number in the absence of EGF. The BPQ-induced EGFR activity and associated cell proliferation were attenuated by the EGFR inhibitor AG1478, as well as by the antioxidant N-acetyl cysteine. Overexpression of catalase, but not Cu/Zn superoxide dismutase, reduced the extent of BPQ-dependent increased cell number and EGFR pathway activation. Moreover, the direct treatment of MCF-10A cells with hydrogen peroxide enhanced EGFR, Akt, and extracellular-regulated kinase phosphorylation that could be similarly inhibited by AG1478, N-acetyl cysteine, and catalase. Taken together, these data indicate that BPQs, through the generation of hydrogen peroxide, activate the EGFR in MCF-10A cells, leading to increased cell number under EGF-deficient conditions.

  17. Membrane Topology Mapping of the Na+-Pumping NADH: Quinone Oxidoreductase from Vibrio cholerae by PhoA- Green Fluorescent Protein Fusion Analysis▿

    PubMed Central

    Duffy, Ellen B.; Barquera, Blanca

    2006-01-01

    The membrane topologies of the six subunits of Na+-translocating NADH:quinone oxidoreductase (Na+-NQR) from Vibrio cholerae were determined by a combination of topology prediction algorithms and the construction of C-terminal fusions. Fusion expression vectors contained either bacterial alkaline phosphatase (phoA) or green fluorescent protein (gfp) genes as reporters of periplasmic and cytoplasmic localization, respectively. A majority of the topology prediction algorithms did not predict any transmembrane helices for NqrA. A lack of PhoA activity when fused to the C terminus of NqrA and the observed fluorescence of the green fluorescent protein C-terminal fusion confirm that this subunit is localized to the cytoplasmic side of the membrane. Analysis of four PhoA fusions for NqrB indicates that this subunit has nine transmembrane helices and that residue T236, the binding site for flavin mononucleotide (FMN), resides in the cytoplasm. Three fusions confirm that the topology of NqrC consists of two transmembrane helices with the FMN binding site at residue T225 on the cytoplasmic side. Fusion analysis of NqrD and NqrE showed almost mirror image topologies, each consisting of six transmembrane helices; the results for NqrD and NqrE are consistent with the topologies of Escherichia coli homologs YdgQ and YdgL, respectively. The NADH, flavin adenine dinucleotide, and Fe-S center binding sites of NqrF were localized to the cytoplasm. The determination of the topologies of the subunits of Na+-NQR provides valuable insights into the location of cofactors and identifies targets for mutagenesis to characterize this enzyme in more detail. The finding that all the redox cofactors are localized to the cytoplasmic side of the membrane is discussed. PMID:17041063

  18. Reduction of estrogen-induced transformation of mouse mammary epithelial cells by N-acetylcysteine

    PubMed Central

    Venugopal, Divya; Zahid, Muhammad; Mailander, Paula C; Meza, Jane L.; Rogan, Eleanor G.; Cavalieri, Ercole L.; Chakravarti, Dhrubajyoti

    2009-01-01

    A growing number of studies indicate that breast cancer initiation is related to abnormal estrogen oxidation to form an excess of estrogen-3,4-quinones, which react with DNA to form depurinating adducts and induce mutations. This mechanism is often called estrogen genotoxicity. 4-catechol estrogens, precursors of the estrogen-3,4-quinones, were previously shown to account for most of the transforming and tumorigenic activity. We examined whether estrogen-induced transformation can be reduced by inhibiting the oxidation of a 4-catechol estrogen to its quinone. We demonstrate that E6 cells (a normal mouse epithelial cell line) can be transformed by a single treatment with a catechol estrogen or its quinone. The transforming activities of 4-hydroxyestradiol and estradiol-3,4-quinone were comparable. N-acetylcysteine, a common antioxidant, inhibited the oxidation of 4-hydroxyestradiol to the quinone and consequent formation of DNA adducts. It also drastically reduced estrogen-induced transformation of E6 cells. These results strongly implicate estrogen genotoxicity in mammary cell transformation. Since N-acetylcysteine is well-tolerated in clinical studies, it may be a promising candidate for breast cancer prevention. PMID:18226522

  19. Strongly enhanced Fenton degradation of organic pollutants by cysteine: An aliphatic amino acid accelerator outweighs hydroquinone analogues.

    PubMed

    Li, Tuo; Zhao, Zhenwen; Wang, Quan; Xie, Pengfei; Ma, Jiahai

    2016-11-15

    Quinone-hydroquinone analogues have been proven to be efficient promoters of Fenton reactions by accelerating the Fe(III)/Fe(II) redox cycle along with self-destruction. However, so far there is little information on non-quinone-hydroquinone cocatalyst for Fenton reactions. This study found that cysteine, a common aliphatic amino acid, can strongly enhance Fenton degradation of organic pollutants by accelerating Fe(III)/Fe(II) redox cycle, as quinone-hydroquinone analogues do. Further, cysteine is superior to quinone-hydroquinone analogues in catalytic activity, H 2 O 2 utilization and atmospheric limits. The cocatalysis mechanism based on the cycle of cysteine/cystine was proposed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Soda-amine pulping : reaction of amines with free phenolic [beta]-[omicron]-4 ethers

    Treesearch

    John R. Obst

    1981-01-01

    The quinone methide from guaiacylglycol-ß-guaiacyl ether underwent nucleophilic addition to the a-carbon with primary and secondary amines at 40°C. At pulping temperature, 170°C, only the primary amine adduct was detected. The quinone methide from guaiacylglycerol-ß-guaiacyl ether gave analogous adducts at 40°C, but no quinone methide-amine adducts were detected at 170...

  1. The quinone methide aurin is a heat shock response inducer that causes proteotoxic stress and Noxa-dependent apoptosis in malignant melanoma cells.

    PubMed

    Davis, Angela L; Qiao, Shuxi; Lesson, Jessica L; Rojo de la Vega, Montserrat; Park, Sophia L; Seanez, Carol M; Gokhale, Vijay; Cabello, Christopher M; Wondrak, Georg T

    2015-01-16

    Pharmacological induction of proteotoxic stress is rapidly emerging as a promising strategy for cancer cell-directed chemotherapeutic intervention. Here, we describe the identification of a novel drug-like heat shock response inducer for the therapeutic induction of proteotoxic stress targeting malignant human melanoma cells. Screening a focused library of compounds containing redox-directed electrophilic pharmacophores employing the Stress & Toxicity PathwayFinder(TM) PCR Array technology as a discovery tool, a drug-like triphenylmethane-derivative (aurin; 4-[bis(p-hydroxyphenyl)methylene]-2,5-cyclohexadien-1-one) was identified as an experimental cell stress modulator that causes (i) heat shock factor transcriptional activation, (ii) up-regulation of heat shock response gene expression (HSPA6, HSPA1A, DNAJB4, HMOX1), (iii) early unfolded protein response signaling (phospho-PERK, phospho-eIF2α, CHOP (CCAAT/enhancer-binding protein homologous protein)), (iv) proteasome impairment with increased protein-ubiquitination, and (v) oxidative stress with glutathione depletion. Fluorescence polarization-based experiments revealed that aurin displays activity as a geldanamycin-competitive Hsp90α-antagonist, a finding further substantiated by molecular docking and ATPase inhibition analysis. Aurin exposure caused caspase-dependent cell death in a panel of human malignant melanoma cells (A375, G361, LOX-IMVI) but not in non-malignant human skin cells (Hs27 fibroblasts, HaCaT keratinocytes, primary melanocytes) undergoing the aurin-induced heat shock response without impairment of viability. Aurin-induced melanoma cell apoptosis depends on Noxa up-regulation as confirmed by siRNA rescue experiments demonstrating that siPMAIP1-based target down-regulation suppresses aurin-induced cell death. Taken together, our data suggest feasibility of apoptotic elimination of malignant melanoma cells using the quinone methide-derived heat shock response inducer aurin. © 2015 by The

  2. The Quinone Methide Aurin Is a Heat Shock Response Inducer That Causes Proteotoxic Stress and Noxa-dependent Apoptosis in Malignant Melanoma Cells*

    PubMed Central

    Davis, Angela L.; Qiao, Shuxi; Lesson, Jessica L.; Rojo de la Vega, Montserrat; Park, Sophia L.; Seanez, Carol M.; Gokhale, Vijay; Cabello, Christopher M.; Wondrak, Georg T.

    2015-01-01

    Pharmacological induction of proteotoxic stress is rapidly emerging as a promising strategy for cancer cell-directed chemotherapeutic intervention. Here, we describe the identification of a novel drug-like heat shock response inducer for the therapeutic induction of proteotoxic stress targeting malignant human melanoma cells. Screening a focused library of compounds containing redox-directed electrophilic pharmacophores employing the Stress & Toxicity PathwayFinderTM PCR Array technology as a discovery tool, a drug-like triphenylmethane-derivative (aurin; 4-[bis(p-hydroxyphenyl)methylene]-2,5-cyclohexadien-1-one) was identified as an experimental cell stress modulator that causes (i) heat shock factor transcriptional activation, (ii) up-regulation of heat shock response gene expression (HSPA6, HSPA1A, DNAJB4, HMOX1), (iii) early unfolded protein response signaling (phospho-PERK, phospho-eIF2α, CHOP (CCAAT/enhancer-binding protein homologous protein)), (iv) proteasome impairment with increased protein-ubiquitination, and (v) oxidative stress with glutathione depletion. Fluorescence polarization-based experiments revealed that aurin displays activity as a geldanamycin-competitive Hsp90α-antagonist, a finding further substantiated by molecular docking and ATPase inhibition analysis. Aurin exposure caused caspase-dependent cell death in a panel of human malignant melanoma cells (A375, G361, LOX-IMVI) but not in non-malignant human skin cells (Hs27 fibroblasts, HaCaT keratinocytes, primary melanocytes) undergoing the aurin-induced heat shock response without impairment of viability. Aurin-induced melanoma cell apoptosis depends on Noxa up-regulation as confirmed by siRNA rescue experiments demonstrating that siPMAIP1-based target down-regulation suppresses aurin-induced cell death. Taken together, our data suggest feasibility of apoptotic elimination of malignant melanoma cells using the quinone methide-derived heat shock response inducer aurin. PMID:25477506

  3. Down-regulation of the detoxifying enzyme NAD(P)H:quinone oxidoreductase 1 by vanadium in Hepa 1c1c7 cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anwar-Mohamed, Anwar; El-Kadi, Ayman O.S.

    2009-05-01

    Recent data suggest that vanadium (V{sup 5+}) compounds exert protective effects against chemical-induced carcinogenesis, mainly through modifying various xenobiotic metabolizing enzymes. In fact, we have shown that V{sup 5+} down-regulates the expression of Cyp1a1 at the transcriptional level through an ATP-dependent mechanism. However, incongruously, there is increasing evidence that V{sup 5+} is found in higher amounts in cancer cells and tissues than in normal cells or tissues. Therefore, the current study aims to address the possible effect of this metal on the regulation of expression of an enzyme that helps maintain endogenous antioxidants used to protect tissues/cells from mutagens, carcinogens,more » and oxidative stress damage, NAD(P)H:quinone oxidoreductase 1 (Nqo1). In an attempt to examine these effects, Hepa 1c1c7 cells and its AhR-deficient version, c12, were treated with increasing concentrations of V{sup 5+} in the presence of two distinct Nqo1 inducers, the 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and isothiocyanate sulforaphane (SUL). Our results showed that V{sup 5+} inhibits the TCDD- and SUL-mediated induction of Nqo1 at mRNA, protein, and catalytic activity levels. At transcriptional level, V{sup 5+} was able to decrease the TCDD- and SUL-induced nuclear accumulation of Nrf2 and the subsequent binding to antioxidant responsive element (ARE) without affecting Nrf2 protein levels. Looking at post-transcriptional level; we found that V{sup 5+} did not affect Nqo1 mRNA transcripts turn-over rates. However, at the post-translational level V{sup 5+} increased Nqo1 protein half-life. In conclusion, the present study demonstrates that V{sup 5+} down-regulates Nqo1 at the transcriptional level, possibly through inhibiting the ATP-dependent activation of Nrf2.« less

  4. Indigofera suffruticosa Mill extracts up-regulate the expression of the π class of glutathione S-transferase and NAD(P)H: quinone oxidoreductase 1 in rat Clone 9 liver cells.

    PubMed

    Chen, Chun-Chieh; Liu, Chin-San; Li, Chien-Chun; Tsai, Chia-Wen; Yao, Hsien-Tsung; Liu, Te-Chung; Chen, Haw-Wen; Chen, Pei-Yin; Wu, Yu-Ling; Lii, Chong-Kuei; Liu, Kai-Li

    2013-09-01

    Because induction of phase II detoxification enzyme is important for chemoprevention, we study the effects of Indigofera suffruticosa Mill, a medicinal herb, on the expression of π class of glutathione S-transferase (GSTP) and NAD(P)H: quinone oxidoreductase 1 (NQO1) in rat Clone 9 liver cells. Both water and ethanolic extracts of I. suffruticosa significantly increased the expression and enzyme activities of GSTP and NQO1. I. suffruticosa extracts up-regulated GSTP promoter activity and the binding affinity of nuclear factor erythroid 2-related factor 2 (Nrf2) with the GSTP enhancer I oligonucleotide. Moreover, I. suffruticosa extracts increased nuclear Nrf2 accumulation as well as ARE transcriptional activity. The level of phospho-ERK was augmented by I. suffruticosa extracts, and the ERK inhibitor PD98059 abolished the I. suffruticosa extract-induced ERK activation and GSTP and NQO-1 expression. Moreover, I. suffruticosa extracts, especially the ethanolic extract increased the glutathione level in mouse liver and red blood cells as well as Clone 9 liver cells. The efficacy of I. suffruticosa extracts in induction of phase II detoxification enzymes and glutathione content implies that I. suffruticosa could be considered as a potential chemopreventive agent. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Photographic fixative poisoning

    MedlinePlus

    Photographic developer poisoning; Hydroquinone poisoning; Quinone poisoning; Sulfite poisoning ... Poisonous ingredients include: Hydroquinones Quinones Sodium ... fixative can also break down (decompose) to form sulfur dioxide ...

  6. Regiocontrol by remote substituents. An enantioselective total synthesis of frenolicin B via a highly regioselective Diels-Alder reaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kraus, G.A.; Li, J.; Gordon, M.S.

    1993-06-30

    The quinone subunit is contained in a broad range of biologically important natural products such as frenolicin B, which is a member of the pyranonaphthoquinone family. The diverse biological activity of quinones has led to the development of several new synthetic methods for quinones. Among the pathways featuring a cycloaddition reaction, one of the most general methods for the regiospecific synthesis of substituted quinones was pioneered by H.J. Rapoport and others. This method involves the Diels-Alder reaction of a substituted quinone. As part of a program to evaluate the directing effects of functional groups not directly attached to the atomsmore » undergoing Diels-Alder cycloaddition, we now report that remote substituents on a dienophile can confer excellent regioselectivity in Diels-Alder reactions. This work has led to an extremely direct synthesis of the pyranonaphthoquinone framework and to the first synthesis of frenolicin B (1). 19 refs., 1 fig.« less

  7. An x-ray absorption study of the iron site in bacterial photosynthetic reaction centers.

    PubMed Central

    Bunker, G; Stern, E A; Blankenship, R E; Parson, W W

    1982-01-01

    Measurements were made of the extended x-ray absorption fine structure (EXAFS) of the iron site in photosynthetic reaction centers from the bacterium Rhodopseudomonas sphaeroides. Forms with two quinones, two quinones with added o-phenanthroline, and one quinone were studied. Only the two forms containing two quinones maintained their integrity and were analyzed. The spectra show directly that the added o-phenanthroline does not chelate the iron atom. Further analysis indicates that the iron is octahedrally coordinated by nitrogen and/or oxygen atoms located at various distances, with the average value of about 2.14 A. The analysis suggests that most of the ligands are nitrogens and that three of the nitrogen ligands belong to histidine rings. This interpretation accounts for several unusual features of the EXAFS spectrum. We speculate that the quinones are bound to the histidine rings in some manner. Qualitative features of the absorption edge spectra also are discussed and are related to the Fe-ligand distance. PMID:6977382

  8. The neuroprotective action of pyrroloquinoline quinone against glutamate-induced apoptosis in hippocampal neurons is mediated through the activation of PI3K/Akt pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang Qi; Shen Mi; Ding Mei

    2011-04-01

    Pyrroloquinoline quinone (PQQ), a cofactor in several enzyme-catalyzed redox reactions, possesses a potential capability of scavenging reactive oxygen species (ROS) and inhibiting cell apoptosis. In this study, we investigated the effects of PQQ on glutamate-induced cell death in primary cultured hippocampal neurons and the possible underlying mechanisms. We found that glutamate-induced apoptosis in cultured hippocampal neurons was significantly attenuated by the ensuing PQQ treatment, which also inhibited the glutamate-induced increase in Ca2+ influx, caspase-3 activity, and ROS production, and reversed the glutamate-induced decrease in Bcl-2/Bax ratio. The examination of signaling pathways revealed that PQQ treatment activated the phosphorylation of Aktmore » and suppressed the glutamate-induced phosphorylation of c-Jun N-terminal protein kinase (JNK). And inhibition of phosphatidylinositol-3-kinase (PI3K)/Akt cascade by LY294002 and wortmannin significantly blocked the protective effects of PQQ, and alleviated the increase in Bcl-2/Bax ratio. Taken together, our results indicated that PQQ could protect primary cultured hippocampal neurons against glutamate-induced cell damage by scavenging ROS, reducing Ca2+ influx, and caspase-3 activity, and suggested that PQQ-activated PI3K/Akt signaling might be responsible for its neuroprotective action through modulation of glutamate-induced imbalance between Bcl-2 and Bax. - Research Highlights: >PQQ attenuated glutamate-induced cell apoptosis of cultured hippocampal neurons. >PQQ inhibited glutamate-induced Ca{sup 2+} influx and caspase-3 activity. >PQQ reduced glutamate-induced increase in ROS production. >PQQ affected phosphorylation of Akt and JNK signalings after glutamate injury. >PI3K/Akt was required for neuroprotection of PQQ by modulating Bcl-2/Bax ratio.« less

  9. Redox potentials of primary electron acceptor quinone molecule (QA)- and conserved energetics of photosystem II in cyanobacteria with chlorophyll a and chlorophyll d.

    PubMed

    Allakhverdiev, Suleyman I; Tsuchiya, Tohru; Watabe, Kazuyuki; Kojima, Akane; Los, Dmitry A; Tomo, Tatsuya; Klimov, Vyacheslav V; Mimuro, Mamoru

    2011-05-10

    In a previous study, we measured the redox potential of the primary electron acceptor pheophytin (Phe) a of photosystem (PS) II in the chlorophyll d-dominated cyanobacterium Acaryochloris marina and a chlorophyll a-containing cyanobacterium, Synechocystis. We obtained the midpoint redox potential (E(m)) values of -478 mV for A. marina and -536 mV for Synechocystis. In this study, we measured the redox potentials of the primary electron acceptor quinone molecule (Q(A)), i.e., E(m)(Q(A)/Q(A)(-)), of PS II and the energy difference between [P680·Phe a(-)·Q(A)] and [P680·Phe a·Q(A)(-)], i.e., ΔG(PhQ). The E(m)(Q(A)/Q(A)(-)) of A. marina was determined to be +64 mV without the Mn cluster and was estimated to be -66 to -86 mV with a Mn-depletion shift (130-150 mV), as observed with other organisms. The E(m)(Phe a/Phe a(-)) in Synechocystis was measured to be -525 mV with the Mn cluster, which is consistent with our previous report. The Mn-depleted downshift of the potential was measured to be approximately -77 mV in Synechocystis, and this value was applied to A. marina (-478 mV); the E(m)(Phe a/Phe a(-)) was estimated to be approximately -401 mV. These values gave rise to a ΔG(PhQ) of -325 mV for A. marina and -383 mV for Synechocystis. In the two cyanobacteria, the energetics in PS II were conserved, even though the potentials of Q(A)(-) and Phe a(-) were relatively shifted depending on the special pair, indicating a common strategy for electron transfer in oxygenic photosynthetic organisms.

  10. NAD(P)H:quinone oxidoreductase 1 (NQO1) competes with 20S proteasome for binding with C/EBPα leading to its stabilization and protection against radiation-induced myeloproliferative disease.

    PubMed

    Xu, Junkang; Jaiswal, Anil K

    2012-12-07

    NAD(P)H:quinone oxidoreductase 1 (NQO1) is a flavoprotein that protects cells against radiation and chemical-induced oxidative stress. Disruption of NQO1 gene in mice leads to increased susceptibility to myeloproliferative disease. In this report, we demonstrate that NQO1 controls the stability of myeloid differentiation factor C/EBPα against 20S proteasomal degradation during radiation exposure stress. Co-immunoprecipitation studies showed that NQO1, C/EBPα, and 20S all interacted with each other. C/EBPα interaction with 20S led to the degradation of C/EBPα. NQO1 in presence of its cofactor NADH protected C/EBPα against 20S degradation. Deletion and site-directed mutagenesis demonstrated that NQO1 and 20S competed for the same binding region (268)SGAGAGKAKKSV(279) in C/EBPα. Mutagenesis studies also revealed that NQO1Y127/Y129 required for NADH binding is essential for NQO1 stabilization of C/EBPα. Exposure of mice and HL-60 cells to 3 Grays of γ-radiation led to increased NQO1 that stabilized C/EBPα against 20S proteasomal degradation. This mechanism of NQO1 regulation of C/EBPα may provide protection to bone marrow against adverse effects of radiation exposure. The studies have significance for human individuals carrying hetero- or homozygous NQO1P187S mutation and are deficient or lack NQO1 protein.

  11. The single NqrB and NqrC subunits in the Na(+)-translocating NADH: quinone oxidoreductase (Na(+)-NQR) from Vibrio cholerae each carry one covalently attached FMN.

    PubMed

    Casutt, Marco S; Schlosser, Andreas; Buckel, Wolfgang; Steuber, Julia

    2012-10-01

    The Na(+)-translocating NADH:quinone oxidoreductase (Na(+)-NQR) is the prototype of a novel class of flavoproteins carrying a riboflavin phosphate bound to serine or threonine by a phosphodiester bond to the ribityl side chain. This membrane-bound, respiratory complex also contains one non-covalently bound FAD, one non-covalently bound riboflavin, ubiquinone-8 and a [2Fe-2S] cluster. Here, we report the quantitative analysis of the full set of flavin cofactors in the Na(+)-NQR and characterize the mode of linkage of the riboflavin phosphate to the membrane-bound NqrB and NqrC subunits. Release of the flavin by β-elimination and analysis of the cofactor demonstrates that the phosphate group is attached at the 5'-position of the ribityl as in authentic FMN and that the Na(+)-NQR contains approximately 1.7mol covalently bound FMN per mol non-covalently bound FAD. Therefore, each of the single NqrB and NqrC subunits in the Na(+)-NQR carries a single FMN. Elimination of the phosphodiester bond yields a dehydro-2-aminobutyrate residue, which is modified with β-mercaptoethanol by Michael addition. Proteolytic digestion followed by mass determination of peptide fragments reveals exclusive modification of threonine residues, which carry FMN in the native enzyme. The described reactions allow quantification and localization of the covalently attached FMNs in the Na(+)-NQR and in related proteins belonging to the Rhodobacter nitrogen fixation (RNF) family of enzymes. This article is part of a Special Issue entitled: 17th European Bioenergetics Conference (EBEC 2012). Copyright © 2012 Elsevier B.V. All rights reserved.

  12. Aspartic acid 397 in subunit B of the Na+-pumping NADH:quinone oxidoreductase from Vibrio cholerae forms part of a sodium-binding site, is involved in cation selectivity, and affects cation-binding site cooperativity.

    PubMed

    Shea, Michael E; Juárez, Oscar; Cho, Jonathan; Barquera, Blanca

    2013-10-25

    The Na(+)-pumping NADH:quinone complex is found in Vibrio cholerae and other marine and pathogenic bacteria. NADH:ubiquinone oxidoreductase oxidizes NADH and reduces ubiquinone, using the free energy released by this reaction to pump sodium ions across the cell membrane. In a previous report, a conserved aspartic acid residue in the NqrB subunit at position 397, located in the cytosolic face of this protein, was proposed to be involved in the capture of sodium. Here, we studied the role of this residue through the characterization of mutant enzymes in which this aspartic acid was substituted by other residues that change charge and size, such as arginine, serine, lysine, glutamic acid, and cysteine. Our results indicate that NqrB-Asp-397 forms part of one of the at least two sodium-binding sites and that both size and charge at this position are critical for the function of the enzyme. Moreover, we demonstrate that this residue is involved in cation selectivity, has a critical role in the communication between sodium-binding sites, by promoting cooperativity, and controls the electron transfer step involved in sodium uptake (2Fe-2S → FMNC).

  13. Aspartic Acid 397 in Subunit B of the Na+-pumping NADH:Quinone Oxidoreductase from Vibrio cholerae Forms Part of a Sodium-binding Site, Is Involved in Cation Selectivity, and Affects Cation-binding Site Cooperativity

    PubMed Central

    Shea, Michael E.; Juárez, Oscar; Cho, Jonathan; Barquera, Blanca

    2013-01-01

    The Na+-pumping NADH:quinone complex is found in Vibrio cholerae and other marine and pathogenic bacteria. NADH:ubiquinone oxidoreductase oxidizes NADH and reduces ubiquinone, using the free energy released by this reaction to pump sodium ions across the cell membrane. In a previous report, a conserved aspartic acid residue in the NqrB subunit at position 397, located in the cytosolic face of this protein, was proposed to be involved in the capture of sodium. Here, we studied the role of this residue through the characterization of mutant enzymes in which this aspartic acid was substituted by other residues that change charge and size, such as arginine, serine, lysine, glutamic acid, and cysteine. Our results indicate that NqrB-Asp-397 forms part of one of the at least two sodium-binding sites and that both size and charge at this position are critical for the function of the enzyme. Moreover, we demonstrate that this residue is involved in cation selectivity, has a critical role in the communication between sodium-binding sites, by promoting cooperativity, and controls the electron transfer step involved in sodium uptake (2Fe-2S → FMNC). PMID:24030824

  14. A DIRECT ROUTE TO ACYLHYDROQUINONES FROM ALPHA-KETO ACIDS AND ALPHA-CARBOXAMIDO ACIDS. (R825330)

    EPA Science Inventory

    Abstract

    The reaction of quinones with in situ generated acyl- or carboxamido radicals provides a direct route to the synthesis of acylhydroquinones not accessible by the photochemical reaction of quinones with aldehydes.

  15. Potential Metabolic Activation of a Representative C2-Alkylated Polycyclic Aromatic Hydrocarbon 6-Ethylchrysene Associated with the Deepwater Horizon Oil Spill in Human Hepatoma (HepG2) Cells

    PubMed Central

    2016-01-01

    Exposure to polycyclic aromatic hydrocarbons (PAHs) is the major human health hazard associated with the Deepwater Horizon oil spill. C2-Chrysenes are representative PAHs present in crude oil and could contaminate the food chain. We describe the metabolism of a C2-chrysene regioisomer, 6-ethylchrysene (6-EC), in human HepG2 cells. The structures of the metabolites were identified by HPLC-UV-fluorescence detection and LC-MS/MS. 6-EC-tetraol isomers were identified as signature metabolites of the diol-epoxide pathway. O-Monomethyl-O-monosulfonated-6-EC-catechol, its monohydroxy products, and N-acetyl-l-cysteine(NAC)-6-EC-ortho-quinone were discovered as signature metabolites of the ortho-quinone pathway. Potential dual metabolic activation of 6-EC involving the formation of bis-electrophiles, i.e., a mono-diol-epoxide and a mono-ortho-quinone within the same structure, bis-diol-epoxides, and bis-ortho-quinones was observed as well. The identification of 6-EC-tetraol, O-monomethyl-O-monosulfonated-6-EC-catechol, its monohydroxy products, and NAC-6-EC-ortho-quinone supports potential metabolic activation of 6-EC by P450 and AKR enzymes followed by metabolic detoxification of the ortho-quinone through interception of its redox cycling capability by catechol-O-methyltransferase and sulfotransferase enzymes. The tetraols and catechol conjugates could be used as biomarkers of human exposure to 6-EC resulting from oil spills. PMID:27054409

  16. Genomic phenotyping by barcode sequencing broadly distinguishes between alkylating agents, oxidizing agents, and non-genotoxic agents, and reveals a role for aromatic amino acids in cellular recovery after quinone exposure.

    PubMed

    Svensson, J Peter; Quirós Pesudo, Laia; McRee, Siobhan K; Adeleye, Yeyejide; Carmichael, Paul; Samson, Leona D

    2013-01-01

    Toxicity screening of compounds provides a means to identify compounds harmful for human health and the environment. Here, we further develop the technique of genomic phenotyping to improve throughput while maintaining specificity. We exposed cells to eight different compounds that rely on different modes of action: four genotoxic alkylating (methyl methanesulfonate (MMS), N-Methyl-N-nitrosourea (MNU), N,N'-bis(2-chloroethyl)-N-nitroso-urea (BCNU), N-ethylnitrosourea (ENU)), two oxidizing (2-methylnaphthalene-1,4-dione (menadione, MEN), benzene-1,4-diol (hydroquinone, HYQ)), and two non-genotoxic (methyl carbamate (MC) and dimethyl sulfoxide (DMSO)) compounds. A library of S. cerevisiae 4,852 deletion strains, each identifiable by a unique genetic 'barcode', were grown in competition; at different time points the ratio between the strains was assessed by quantitative high throughput 'barcode' sequencing. The method was validated by comparison to previous genomic phenotyping studies and 90% of the strains identified as MMS-sensitive here were also identified as MMS-sensitive in a much lower throughput solid agar screen. The data provide profiles of proteins and pathways needed for recovery after both genotoxic and non-genotoxic compounds. In addition, a novel role for aromatic amino acids in the recovery after treatment with oxidizing agents was suggested. The role of aromatic acids was further validated; the quinone subgroup of oxidizing agents were extremely toxic in cells where tryptophan biosynthesis was compromised.

  17. The correlation of cathodic peak potentials of vitamin K(3) derivatives and their calculated electron affinities. The role of hydrogen bonding and conformational changes.

    PubMed

    Nasiri, Hamid Reza; Panisch, Robin; Madej, M Gregor; Bats, Jan W; Lancaster, C Roy D; Schwalbe, Harald

    2009-06-01

    2-methyl-1,4-naphtoquinone 1 (vitamin K(3), menadione) derivatives with different substituents at the 3-position were synthesized to tune their electrochemical properties. The thermodynamic midpoint potential (E(1/2)) of the naphthoquinone derivatives yielding a semi radical naphthoquinone anion were measured by cyclic voltammetry in the aprotic solvent dimethoxyethane (DME). Using quantum chemical methods, a clear correlation was found between the thermodynamic midpoint potentials and the calculated electron affinities (E(A)). Comparison of calculated and experimental values allowed delineation of additional factors such as the conformational dependence of quinone substituents and hydrogen bonding which can influence the electron affinities (E(A)) of the quinone. This information can be used as a model to gain insight into enzyme-cofactor interactions, particularly for enzyme quinone binding modes and the electrochemical adjustment of the quinone motif.

  18. Expression of NAD(P)H quinone dehydrogenase 1 (NQO1) is increased in the endometrium of women with endometrial cancer and women with polycystic ovary syndrome.

    PubMed

    Atiomo, William; Shafiee, Mohamad Nasir; Chapman, Caroline; Metzler, Veronika M; Abouzeid, Jad; Latif, Ayşe; Chadwick, Amy; Kitson, Sarah; Sivalingam, Vanitha N; Stratford, Ian J; Rutland, Catrin S; Persson, Jenny L; Ødum, Niels; Fuentes-Utrilla, Pablo; Jeyapalan, Jennie N; Heery, David M; Crosbie, Emma J; Mongan, Nigel P

    2017-11-01

    Women with a prior history of polycystic ovary syndrome (PCOS) have an increased risk of endometrial cancer (EC). To investigate whether the endometrium of women with PCOS possesses gene expression changes similar to those found in EC. Patients with EC, PCOS and control women unaffected by either PCOS or EC were recruited into a cross-sectional study at the Nottingham University Hospital, UK. For RNA sequencing, representative individual endometrial biopsies were obtained from women with EC, PCOS and a woman unaffected by PCOS or EC. Expression of a subset of differentially expressed genes identified by RNA sequencing, including NAD(P)H quinone dehydrogenase 1 (NQO1), was validated by quantitative reverse transcriptase PCR validation (n = 76) and in the cancer genome atlas UCEC (uterine corpus endometrioid carcinoma) RNA sequencing data set (n = 381). The expression of NQO1 was validated by immunohistochemistry in EC samples from a separate cohort (n = 91) comprised of consecutive patients who underwent hysterectomy at St Mary's Hospital, Manchester, between 2011 and 2013. A further 6 postmenopausal women with histologically normal endometrium who underwent hysterectomy for genital prolapse were also included. Informed consent and local ethics approval were obtained for the study. We show for the first that NQO1 expression is significantly increased in the endometrium of women with PCOS and EC. Immunohistochemistry confirms significantly increased NQO1 protein expression in EC relative to nonmalignant endometrial tissue (P < .0001). The results obtained here support a previously unrecognized molecular link between PCOS and EC involving NQO1. © 2017 The Authors. Clinical Endocrinology Published by John Wiley & Sons Ltd.

  19. Lack of contribution of covalent benzo[a]pyrene-7,8-quinone-DNA adducts in benzo[a]pyrene-induced mouse lung tumorigenesis.

    PubMed

    Nesnow, Stephen; Nelson, Garret; Padgett, William T; George, Michael H; Moore, Tanya; King, Leon C; Adams, Linda D; Ross, Jeffrey A

    2010-07-30

    Benzo[a]pyrene (B[a]P) is a potent human and rodent lung carcinogen. This activity has been ascribed in part to the formation of anti-trans-7,8-dihydroxy-7,8-dihydroB[a]P-9,10-epoxide (BPDE)-DNA adducts. Other carcinogenic mechanisms have been proposed: (1) the induction of apurinic sites from radical cation processes, and (2) the metabolic formation of B[a]P-7,8-quinone (BPQ) that can form covalent DNA adducts or reactive oxygen species which can damage DNA. The studies presented here sought to examine the role of stable BPQ-DNA adducts in B[a]P-induced mouse lung tumorigenesis. Male strain A/J mice were injected intraperitoneally once with BPQ or trans-7,8-dihydroxy-7,8-dihydroB[a]P (BP-7,8-diol) at 30, 10, 3, or 0mg/kg. Lungs and livers were harvested after 24h, the DNA extracted and subjected to (32)P-postlabeling analysis. Additional groups of mice were dosed once with BPQ or BP-7,8-diol each at 30 mg/kg and tissues harvested 48 and 72 h later, or with B[a]P (50mg/kg, a tumorigenic dose) and tissues harvested 72 h later. No BPQ or any other DNA adducts were observed in lung or liver tissues 24, 48, or 72 h after the treatment with 30 mg/kg BPQ. BP-7,8-diol gave BPDE-DNA adducts at all time points in both tissues and B[a]P treatment gave BPDE-DNA adducts in the lung. In each case, no BPQ-DNA adducts were detected. Mouse body weights significantly decreased over time after BPQ or BP-7,8-diol treatments suggesting that systemic toxicity was induced by both agents. Model studies with BPQ and N-acetylcysteine suggested that BPQ is rapidly inactivated by sulfhydryl-containing compounds and not available for DNA adduction. We conclude that under these treatment conditions BPQ does not form stable covalent DNA adducts in the lungs or livers of strain A/J mice, suggesting that stable BPQ-covalent adducts are not a part of the complex of mechanisms involved in B[a]P-induced mouse lung tumorigenesis. (c) 2010 Elsevier Ireland Ltd. All rights reserved.

  20. Engineering alfalfa to accumulate useful caffeic acid derivatives and characterization of hydroxycinnamoyl-CoA transferases from legumes

    USDA-ARS?s Scientific Manuscript database

    Some forages crops, such as red clover, accumulate high levels of caffeic acid derivatives. Oxidation of these o-diphenols to quinones by endogenous polyphenol oxidases (PPOs) and the subsequent reactions of these quinones (probably with endogenous plant proteases) result in a significant reduction ...

  1. Cytochrome b6 arginine 214 of Synechococcus sp. PCC 7002, a key residue for quinone-reductase site function and turnover of the cytochrome bf complex.

    PubMed

    Nelson, Matthew E; Finazzi, Giovanni; Wang, Qing Jun; Middleton-Zarka, Kelly A; Whitmarsh, John; Kallas, Toivo

    2005-03-18

    Quinone-reductase (Q(i)) domains of cyanobacterial/chloroplast cytochrome bf and bacterial/mitochondrial bc complexes differ markedly, and the cytochrome bf Q(i) site mechanism remains largely enigmatic. To investigate the bf Q(i) domain, we constructed the mutation R214H, which substitutes histidine for a conserved arginine in the cytochrome b(6) polypeptide of the cyanobacterium Synechococcus sp. SPCC 7002. At high light intensity, the R214H mutant grew approximately 2.5-fold more slowly than the wild type. Slower growth arose from correspondingly slower overall turnover of the bf complex. Specifically, as shown in single flash turnover experiments of cytochrome b(6) reduction and oxidation, the R214H mutation partially blocked electron transfer to the Q(i) site, mimicking the effect of the Q(i) site inhibitor 2-N-4-hydroxyquinoline-N-oxide. The kinetics of cytochrome b(6) oxidation were largely unaffected by hydrogen-deuterium exchange in the mutant but were slowed considerably in the wild type. This suggests that although protonation events influenced the kinetics of cytochrome b(6) oxidation at the Q(i) site in the wild type, electron flow limited this reaction in the R214H mutant. Redox titration of membranes revealed midpoint potentials (E(m,7)) of the two b hemes similar to those in the wild type. Our data define cytochrome b(6) Arg(214) as a key residue for Q(i) site catalysis and turnover of the cytochrome bf complex. In the recent cytochrome bf structures, Arg(214) lies near the Q(i) pocket and the newly discovered c(i) or x heme. We propose a model for Q(i) site function and a role for Arg(214) in plastoquinone binding.

  2. The 1:1 co-crystal of 2-bromo-naphthalene-1,4-dione and 1,8-di-hydroxy-anthracene-9,10-dione: crystal structure and Hirshfeld surface analysis.

    PubMed

    Tonin, Marlon D L; Garden, Simon J; Jotani, Mukesh M; Wardell, Solange M S V; Wardell, James L; Tiekink, Edward R T

    2017-05-01

    The asymmetric unit of the title co-crystal, C 10 H 5 BrO 2 ·C 14 H 8 O 4 [systematic name: 2-bromo-1,4-di-hydro-naphthalene-1,4-dione-1,8-dihy-droxy-9,10-di-hydro-anthracene-9,10-dione (1/1)], features one mol-ecule of each coformer. The 2-bromo-naphtho-quinone mol-ecule is almost planar [r.m.s deviation of the 13 non-H atoms = 0.060 Å, with the maximum deviations of 0.093 (1) and 0.099 (1) Å being for the Br atom and a carbonyl-O atom, respectively]. The 1,8-di-hydroxy-anthra-quinone mol-ecule is planar (r.m.s. deviation for the 18 non-H atoms is 0.022 Å) and features two intra-molecular hy-droxy-O-H⋯O(carbon-yl) hydrogen bonds. Dimeric aggregates of 1,8-di-hydroxy-anthra-quinone mol-ecules assemble through weak inter-molecular hy-droxy-O-H⋯O(carbon-yl) hydrogen bonds. The mol-ecular packing comprises stacks of mol-ecules of 2-bromo-naphtho-quinone and dimeric assembles of 1,8-di-hydroxy-anthra-quinone with the shortest π-π contact within a stack of 3.5760 (9) Å occurring between the different rings of 2-bromo-naphtho-quinone mol-ecules. The analysis of the Hirshfeld surface reveals the importance of the inter-actions just indicated but, also the contribution of additional C-H⋯O contacts as well as C=O⋯π inter-actions to the mol-ecular packing.

  3. Alkaline quinone flow battery.

    PubMed

    Lin, Kaixiang; Chen, Qing; Gerhardt, Michael R; Tong, Liuchuan; Kim, Sang Bok; Eisenach, Louise; Valle, Alvaro W; Hardee, David; Gordon, Roy G; Aziz, Michael J; Marshak, Michael P

    2015-09-25

    Storage of photovoltaic and wind electricity in batteries could solve the mismatch problem between the intermittent supply of these renewable resources and variable demand. Flow batteries permit more economical long-duration discharge than solid-electrode batteries by using liquid electrolytes stored outside of the battery. We report an alkaline flow battery based on redox-active organic molecules that are composed entirely of Earth-abundant elements and are nontoxic, nonflammable, and safe for use in residential and commercial environments. The battery operates efficiently with high power density near room temperature. These results demonstrate the stability and performance of redox-active organic molecules in alkaline flow batteries, potentially enabling cost-effective stationary storage of renewable energy. Copyright © 2015, American Association for the Advancement of Science.

  4. Characterizing chlorine oxidation of dissolved organic matter and disinfection by-product formation with fluorescence spectroscopy and parallel factor analysis

    NASA Astrophysics Data System (ADS)

    Beggs, Katherine M. H.; Summers, R. Scott; McKnight, Diane M.

    2009-12-01

    Relationships between chlorine demand and disinfection by-product (DBP) formation during chlorination and fluorescence of dissolved organic matter (DOM) were developed. Fluorescence excitation and emission (EEM) spectroscopy was employed, and parameters including fluorescence index, redox index, and overall fluorescence intensity (OFI) were correlated to chlorine demand and DBP formation. The EEMs were also analyzed using a well established global parallel factor analysis (PARAFAC) model which resolves the fluorescence signal into 13 components, including quinone-like and protein-like components. Over an 8-day chlorination period the OFI and sum of the 13 PARAFAC loadings decreased by more than 70%. The remaining identified quinone-like compounds within the DOM were shifted to a more oxidized state. Quinone fluorescence was strongly correlated to both reduced fluorescence intensity and to chlorine demand which indicates that fluorescence may be used to track the chlorine oxidation of DOM. Quinone fluorescence was also correlated strongly with both classes of regulated DBPs: total trihalomethanes and haloacetic acids. Quinone-like components were found to be strongly correlated to overall, short-term, and long-term specific DBP formation. The results of this study show that fluorescence is a useful tool in tracking both DOM oxidation and DBP formation during chlorination.

  5. Electrochemistry coupled to (LC-)MS for the simulation of oxidative biotransformation reactions of PAHs.

    PubMed

    Wigger, Tina; Seidel, Albrecht; Karst, Uwe

    2017-06-01

    Electrochemistry coupled to liquid chromatography and mass spectrometry was used for simulating the biological and environmental fate of polycyclic aromatic hydrocarbons (PAHs) as well as for studying the PAH degradation behavior during electrochemical remediation. Pyrene and benzo[a]pyrene were selected as model compounds and oxidized within an electrochemical thin-layer cell equipped with boron-doped diamond electrode. At potentials of 1.2 and 1.6 V vs. Pd/H 2 , quinones were found to be the major oxidation products for both investigated PAHs. These quinones belong to a large group of PAH derivatives referred to as oxygenated PAHs, which have gained increasing attention in recent years due to their high abundance in the environment and their significant toxicity. Separation of oxidation products allowed the identification of two pyrene quinone and three benzo[a]pyrene quinone isomers, all of which are known to be formed via photooxidation and during mammalian metabolism. The good correlation between electrochemically generated PAH quinones and those formed in natural processes was also confirmed by UV irradiation experiments and microsomal incubations. At potentials higher than 2.0 V, further degradation of the initial oxidation products was observed which highlights the capability of electrochemistry to be used as remediation technique. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Lipoquinones of some spore-forming rods, lactic-acid bacteria and actinomycetes.

    PubMed

    Hess, A; Holländer, R; Mannheim, W

    1979-11-01

    The respiratory quinones of 73 strains of Gram-positive bacteria including spore-forming rods, lactic-acid bacteria and actinomyctes were examined. Menaquinones with seven isoprenoid units (MK-7) were the main quinone type found in representatives of the genus Bacillus and in Sporolactobacillus inulinus. However, a strain of B. thuringiensis produced MK-8 in addition to MK-7, and strains of B. lentus and B. pantothenticus appeared to produce MK-9 and MK-8, respectively, with no MK-7. In the clostridia and lactic-acid bacteria, no quinones were found, except in Pediococcus cerevisiae NCTC 8066 and Lactobacillus casei subsp. rhamnosus ATCC 7469, which contained menaquinones, and Streptococcus faecalis NCTC 775 and HIM 478-1, which contained demethylmenaquinones, in relatively low concentrations. Menaquinones were also found in the actinomycetes (except Actinomyces odontolyticus and Bifidobacterium bifidum which did not produce any quinones) and in Protaminobacter alboflavus ATCC 8458, the so-called Actinobacillus actinoides ATCC 15900 and Noguchia granulosis NCTC 10559.

  7. Tumor cell membrane-targeting pH-dependent electron donor-acceptor fluorescence systems with low background signals.

    PubMed

    Han, Liang; Liu, Mingming; Ye, Deyong; Zhang, Ning; Lim, Ed; Lu, Jing; Jiang, Chen

    2014-03-01

    Minimizing the background signal is crucial for developing tumor-imaging techniques with sufficient specificity and sensitivity. Here we use pH difference between healthy tissues and tumor and tumor targeting delivery to achieve this goal. We synthesize fluorophore-dopamine conjugate as pH-dependent electron donor-acceptor fluorescence system. Fluorophores are highly sensitive to electron-transfer processes, which can alter their optical properties. The intrinsic redox properties of dopamine are oxidation of hydroquinone to quinone at basic pH and reduction of quinone to hydroquinone at acidic pH. Quinone can accept electron then quench fluorescence. We design tumor cell membrane-targeting carrier for delivery. We demonstrate quenched fluorophore-quinone can be specially transferred to tumor extracellular environment and tumor-accumulated fluorophore can be activated by acidic pH. These tumor-targeting pH-dependent electron donor-acceptor fluorescence systems may offer new opportunity for developing tumor-imaging techniques. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Genomic Phenotyping by Barcode Sequencing Broadly Distinguishes between Alkylating Agents, Oxidizing Agents, and Non-Genotoxic Agents, and Reveals a Role for Aromatic Amino Acids in Cellular Recovery after Quinone Exposure

    PubMed Central

    Svensson, J. Peter; Quirós Pesudo, Laia; McRee, Siobhan K.; Adeleye, Yeyejide; Carmichael, Paul; Samson, Leona D.

    2013-01-01

    Toxicity screening of compounds provides a means to identify compounds harmful for human health and the environment. Here, we further develop the technique of genomic phenotyping to improve throughput while maintaining specificity. We exposed cells to eight different compounds that rely on different modes of action: four genotoxic alkylating (methyl methanesulfonate (MMS), N-Methyl-N-nitrosourea (MNU), N,N′-bis(2-chloroethyl)-N-nitroso-urea (BCNU), N-ethylnitrosourea (ENU)), two oxidizing (2-methylnaphthalene-1,4-dione (menadione, MEN), benzene-1,4-diol (hydroquinone, HYQ)), and two non-genotoxic (methyl carbamate (MC) and dimethyl sulfoxide (DMSO)) compounds. A library of S. cerevisiae 4,852 deletion strains, each identifiable by a unique genetic ‘barcode’, were grown in competition; at different time points the ratio between the strains was assessed by quantitative high throughput ‘barcode’ sequencing. The method was validated by comparison to previous genomic phenotyping studies and 90% of the strains identified as MMS-sensitive here were also identified as MMS-sensitive in a much lower throughput solid agar screen. The data provide profiles of proteins and pathways needed for recovery after both genotoxic and non-genotoxic compounds. In addition, a novel role for aromatic amino acids in the recovery after treatment with oxidizing agents was suggested. The role of aromatic acids was further validated; the quinone subgroup of oxidizing agents were extremely toxic in cells where tryptophan biosynthesis was compromised. PMID:24040048

  9. Evaluation of photosynthetic electrons derivation by exogenous redox mediators.

    PubMed

    Longatte, Guillaume; Fu, Han-Yi; Buriez, Olivier; Labbé, Eric; Wollman, Francis-André; Amatore, Christian; Rappaport, Fabrice; Guille-Collignon, Manon; Lemaître, Frédéric

    2015-10-01

    Oxygenic photosynthesis is the complex process that occurs in plants or algae by which the energy from the sun is converted into an electrochemical potential that drives the assimilation of carbon dioxide and the synthesis of carbohydrates. Quinones belong to a family of species commonly found in key processes of the Living, like photosynthesis or respiration, in which they act as electron transporters. This makes this class of molecules a popular candidate for biofuel cell and bioenergy applications insofar as they can be used as cargo to ship electrons to an electrode immersed in the cellular suspension. Nevertheless, such electron carriers are mostly selected empirically. This is why we report on a method involving fluorescence measurements to estimate the ability of seven different quinones to accept photosynthetic electrons downstream of photosystem II, the first protein complex in the light-dependent reactions of oxygenic photosynthesis. To this aim we use a mutant of Chlamydomonas reinhardtii, a unicellular green alga, impaired in electron downstream of photosystem II and assess the ability of quinones to restore electron flow by fluorescence. In this work, we defined and extracted a "derivation parameter" D that indicates the derivation efficiency of the exogenous quinones investigated. D then allows electing 2,6-dichlorobenzoquinone, 2,5-dichlorobenzoquinone and p-phenylbenzoquinone as good candidates. More particularly, our investigations suggested that other key parameters like the partition of quinones between different cellular compartments and their propensity to saturate these various compartments should also be taken into account in the process of selecting exogenous quinones for the purpose of deriving photoelectrons from intact algae. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Amelioration of cadmium- and mercury-induced liver and kidney damage in rats by genetically engineered probiotic Escherichia coli Nissle 1917 producing pyrroloquinoline quinone with oral supplementation of citric acid.

    PubMed

    Raghuvanshi, Ruma; Chaudhari, Archana; Kumar, G Naresh

    2016-01-01

    Antioxidants, chelating agents, and probiotics are used to manage the toxic effects of cadmium (Cd) and mercury (Hg). The aim of this study was to investigate the combined effects of antioxidants, chelating agents, and probiotics against heavy metal toxicity. Genetically modified probiotic Escherichia coli Nissle 1917 (EcN-20) producing a potent water soluble antioxidant pyrroloquinoline quinone (PQQ) was supplemented with oral citric acid and compared with another genetically modified probiotic EcN-21 producing PQQ and citric acid against oxidative stress induced by Cd and Hg. Rats were independently given 100 ppm Cd and 80 ppm Hg in drinking water for 4 wk. EcN-20 was found to be more effective than EcN-2 (EcN strain with genomic integration of vgb and gfp genes) with orally given PQQ against oxidative stress induced by Cd and Hg. EcN-20 supplemented with oral citric acid was more effective against Cd and Hg toxicity compared with EcN-2+citric acid (oral), EcN-2+PQQ (oral), EcN-2+PQQ (oral)+citric acid (oral), EcN-20, and EcN-21. However, protection shown by EcN-21 was similar to EcN-20. The combination therapy involving probiotic EcN-20 producing PQQ with citric acid given orally was found to be a moderately effective strategy against toxicity induced by Cd and Hg, whereas the protective effect of EcN-21 was the same as EcN-20. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Studies on the enzymes involved in puparial cuticle sclerotization in Drosophila melanogaster.

    PubMed

    Sugumaran, M; Giglio, L; Kundzicz, H; Saul, S; Semensi, V

    1992-01-01

    The properties of cuticular enzymes involved in sclerotization of Drosophila melanogaster puparium were examined. The cuticle-bound phenoloxidase from the white puparium exhibited a pH optimum of 6.5 in phosphate buffer and oxidized a variety of catecholic substrates such as 4-methylcatechol, N-beta-alanyldopamine, dopa, dopamine, N-acetyldopamine, catechol, norepinephrine, 3,4-dihydroxyphenylglycol, 3,4-dihydroxybenzoic acid, and 3,4-dihydroxyphenylacetic acid. Phenoloxidase inhibitors such as potassium cyanide and sodium fluoride inhibited the enzyme activity drastically, but phenylthiourea showed marginal inhibition only. This result, coupled with the fact that syringaldazine served as the substrate for the insoluble enzyme, confirmed that cuticular phenoloxidase is of the "laccase" type. In addition, we also examined the mode of synthesis of the sclerotizing precursor, 1,2-dehydro-N-acetyldopamine. Our results indicate that this catecholamine derivative is biosynthesized from N-acetyldopamine through the intermediate formation of N-acetyldopamine quinone and N-acetyldopamine quinone methide as established for Sarcophaga bullata [Saul, S. and Sugumaran, M., F.E.B.S. Letters 251, 69-73 (1989)]. Accordingly, successful solubilization and fractionation of cuticular enzymes involved in the introduction of a double bond in the side chain of N-acetyldopamine indicated that they included o-diphenoloxidase, 4-alkyl-o-quinone:p-quinone methide isomerase, and N-acetyldopamine quinone methide:dehydro N-acetyldopamine isomerase and not any side chain desaturase.

  12. FT–Raman investigation of bleaching of spruce thermomechanical pulp

    Treesearch

    U.P. Agarwal; L.L. Landucci

    2004-01-01

    Spruce thermomechanical pulp was bleached initially by alkaline hydrogen peroxide and then by sodium dithionite and sodium borohydride. Near-infrared Fourier-transform–Raman spectroscopy revealed that spectral differences were due primarily to coniferaldehyde and p-quinone structures in lignin, new direct evidence that bleaching removes p-quinone structures. In...

  13. The effects of protein crowding in bacterial photosynthetic membranes on the flow of quinone redox species between the photochemical reaction center and the ubiquinol-cytochrome c2 oxidoreductase.

    PubMed

    Woronowicz, Kamil; Sha, Daniel; Frese, Raoul N; Sturgis, James N; Nanda, Vikas; Niederman, Robert A

    2011-08-01

    Atomic force microscopy (AFM) of the native architecture of the intracytoplasmic membrane (ICM) of a variety of species of purple photosynthetic bacteria, obtained at submolecular resolution, shows a tightly packed arrangement of light harvesting (LH) and reaction center (RC) complexes. Since there are no unattributed structures or gaps with space sufficient for the cytochrome bc(1) or ATPase complexes, they are localized in membrane domains distinct from the flat regions imaged by AFM. This has generated a renewed interest in possible long-range pathways for lateral diffusion of UQ redox species that functionally link the RC and the bc(1) complexes. Recent proposals to account for UQ flow in the membrane bilayer are reviewed, along with new experimental evidence provided from an analysis of intrinsic near-IR fluorescence emission that has served to test these hypotheses. The results suggest that different mechanism of UQ flow exist between species such as Rhodobacter sphaeroides, with a highly organized arrangement of LH and RC complexes and fast RC electron transfer turnover, and Phaeospirillum molischianum with a more random organization and slower RC turnover. It is concluded that packing density of the peripheral LH2 antenna in the Rba. sphaeroides ICM imposes constraints that significantly slow the diffusion of UQ redox species between the RC and cytochrome bc(1) complex, while in Phs. molischianum, the crowding of the ICM with LH3 has little effect upon UQ diffusion. This supports the proposal that in this type of ICM, a network of RC-LH1 core complexes observed in AFM provides a pathway for long-range quinone diffusion that is unaffected by differences in LH complex composition or organization.

  14. Lack of complex I activity in human cells carrying a mutation in MtDNA-encoded ND4 subunit is corrected by the Saccharomyces cerevisiae NADH-quinone oxidoreductase (NDI1) gene.

    PubMed

    Bai, Y; Hájek, P; Chomyn, A; Chan, E; Seo, B B; Matsuno-Yagi, A; Yagi, T; Attardi, G

    2001-10-19

    The gene for the single subunit, rotenone-insensitive, and flavone-sensitive internal NADH-quinone oxidoreductase of Saccharomyces cerevisiae (NDI1) can completely restore the NADH dehydrogenase activity in mutant human cells that lack the essential mitochondrial DNA (mtDNA)-encoded subunit ND4. In particular, the NDI1 gene was introduced into the nuclear genome of the human 143B.TK(-) cell line derivative C4T, which carries a homoplasmic frameshift mutation in the ND4 gene. Two transformants with a low or high level of expression of the exogenous gene were chosen for a detailed analysis. In these cells the corresponding protein is localized in mitochondria, its NADH-binding site faces the matrix compartment as in yeast mitochondria, and in perfect correlation with its abundance restores partially or fully NADH-dependent respiration that is rotenone-insensitive, flavone-sensitive, and antimycin A-sensitive. Thus the yeast enzyme has become coupled to the downstream portion of the human respiratory chain. Furthermore, the P:O ratio with malate/glutamate-dependent respiration in the transformants is approximately two-thirds of that of the wild-type 143B.TK(-) cells, as expected from the lack of proton pumping activity in the yeast enzyme. Finally, whereas the original mutant cell line C4T fails to grow in medium containing galactose instead of glucose, the high NDI1-expressing transformant has a fully restored capacity to grow in galactose medium. The present observations substantially expand the potential of the yeast NDI1 gene for the therapy of mitochondrial diseases involving complex I deficiency.

  15. Biomimetic Modeling of Copper Complexes: A Study of Enantioselective Catalytic Oxidation on D-(+)-Catechin and L-( − )-Epicatechin with Copper Complexes

    PubMed Central

    Mutti, Francesco G.; Pievo, Roberta; Sgobba, Maila; Gullotti, Michele; Santagostini, Laura

    2008-01-01

    The biomimetic catalytic oxidations of the dinuclear and trinuclear copper(II) complexes versus two catechols, namely, D-(+)-catechin and L-( − )-epicatechin to give the corresponding quinones are reported. The unstable quinones were trapped by the nucleophilic reagent, 3-methyl-2-benzothiazolinone hydrazone (MBTH), and have been calculated the molar absorptivities of the different quinones. The catalytic efficiency is moderate, as inferred by kinetic constants, but the complexes exhibit significant enantio-differentiating ability towards the catechols, albeit for the dinuclear complexes, this enantio-differentiating ability is lower. In all cases, the preferred enantiomeric substrate is D-(+)-catechin to respect the other catechol, because of the spatial disposition of this substrate. PMID:18825268

  16. Deodorizing Substance in Black Cumin (Nigella sativa L.) Seed Oil.

    PubMed

    Nakasugi, Toru; Murakawa, Takushi; Shibuya, Koji; Morimoto, Masanori

    2017-08-01

    A deodorizing substance in black cumin (Nigella sativa L.), a spice for curry and vegetable foods in Southwest Asia, was examined. The essential oil prepared from the seeds of this plant exhibited strong deodorizing activity against methyl mercaptan, which is a main factor in oral malodor. After purification with silica gel column chromatography, the active substance in black cumin seed oil was identified as thymoquinone. This monoterpenic quinone functions as the main deodorizing substance in this oil against methyl mercaptan. Metabolite analysis suggested that the deodorizing activity may be generated by the addition of a reactive quinone molecule to methyl mercaptan. In the present study, the menthane-type quinone and phenol derivatives exhibited deodorizing activities via this mechanism.

  17. Photogenerated radical intermediates of vitamin K 1: a time-resolved resonance Raman study

    NASA Astrophysics Data System (ADS)

    Balakrishnan, G.; Umapathy, S.

    1999-01-01

    Quinones play a vital role in the process of electron transfer in bacterial photosynthetic reaction centers. It is of interest to investigate the photochemical reactions involving quinones with a view to elucidating the structure-function relationships in the biological processes. Resonance Raman spectra of radical anions and the time-resolved resonance Raman spectra of vitamin K 1 (model compound for Q A in Rhodopseudomonas viridis, a bacterial photosynthetic reception center) are presented. The photochemical intermediates of vitamin K 1, viz. radical anion, ketyl radical and o-quinone methide have been identified. The vibrational assignments of all these intermediates are made on the basis of comparison with our earlier TR3 studies on radical anions of naphthoquinone and menaquinone.

  18. Strecker Aldehyde Formation in Wine: New Insights into the Role of Gallic Acid, Glucose, and Metals in Phenylacetaldehyde Formation.

    PubMed

    Monforte, Ana Rita; Martins, Sara I F S; Silva Ferreira, Antonio C

    2018-03-14

    Strecker degradation (SD) leading to the formation of phenylacetaldehyde (PA) was studied in wine systems. New insights were gained by using two full factorial designs focusing on the effects of (1) pH and (2) temperature. In each design of experiments (DoE) three factors, glucose, gallic acid, and metals at two levels (present or absence), were varied while phenylalanine was kept constant. The obtained results gave a clear indication, with statistical significance, that in wine conditions, the SD occurs in the presence of metals preferentially via the phenolic oxidation independent of the temperature (40 or 80 °C). The reaction of the amino acid with the o-quinone formed by the oxidation of the gallic acid seems to be favored when compared with the SD promoted by the reaction with α-dicarbonyls formed by MR between glucose and phenylalanine. In fact, kinetics results showed that the presence of glucose had an inhibitory effect on PA rate of formation. PA formation was 4 times higher in the control wine when compared to the same wine with 10 g/L glucose added. By gallic acid quinone quantitation it is shown that glucose affects directly the concentration of the quinone. decreasing the rate of quinone formation. This highlights the role of sugar in o-quinone concentration and consequently in the impact on Strecker aldehyde formation, a promising new perspective regarding wine shelf-life understanding.

  19. Electrochemical measurement of lateral diffusion coefficients of ubiquinones and plastoquinones of various isoprenoid chain lengths incorporated in model bilayers.

    PubMed Central

    Marchal, D; Boireau, W; Laval, J M; Moiroux, J; Bourdillon, C

    1998-01-01

    The long-range diffusion coefficients of isoprenoid quinones in a model of lipid bilayer were determined by a method avoiding fluorescent probe labeling of the molecules. The quinone electron carriers were incorporated in supported dimyristoylphosphatidylcholine layers at physiological molar fractions (<3 mol%). The elaborate bilayer template contained a built-in gold electrode at which the redox molecules solubilized in the bilayer were reduced or oxidized. The lateral diffusion coefficient of a natural quinone like UQ10 or PQ9 was 2.0 +/- 0.4 x 10(-8) cm2 s(-1) at 30 degrees C, two to three times smaller than the diffusion coefficient of a lipid analog in the same artificial bilayer. The lateral mobilities of the oxidized or reduced forms could be determined separately and were found to be identical in the 4-13 pH range. For a series of isoprenoid quinones, UQ2 or PQ2 to UQ10, the diffusion coefficient exhibited a marked dependence on the length of the isoprenoid chain. The data fit very well the quantitative behavior predicted by a continuum fluid model in which the isoprenoid chains are taken as rigid particles moving in the less viscous part of the bilayer and rubbing against the more viscous layers of lipid heads. The present study supports the concept of a homogeneous pool of quinone located in the less viscous region of the bilayer. PMID:9545054

  20. pH-Dependent Regulation of the Relaxation Rate of the Radical Anion of the Secondary Quinone Electron Acceptor QB in Photosystem II As Revealed by Fourier Transform Infrared Spectroscopy.

    PubMed

    Nozawa, Yosuke; Noguchi, Takumi

    2018-05-15

    Photosystem II (PSII) is a protein complex that performs water oxidation using light energy during photosynthesis. In PSII, electrons abstracted from water are eventually transferred to the secondary quinone electron acceptor, Q B , and upon double reduction, Q B is converted to quinol by binding two protons. Thus, excess electron transfer in PSII increases the pH of the stroma. In this study, to investigate the pH-dependent regulation of the electron flow in PSII, we have estimated the relaxation rate of the Q B - radical anion in the pH region between 5 and 8 by direct monitoring of its population using light-induced Fourier transform infrared difference spectroscopy. The decay of Q B - by charge recombination with the S 2 state of the water oxidation center in PSII membranes was shown to be accelerated at higher pH, whereas that of Q A - examined in the presence of a herbicide was virtually unaffected at pH ≤7.5 and slightly slowed at pH 8. These observations were consistent with the previous studies that included rather indirect monitoring of the Q B - and Q A - decays using fluorescence detection. The accelerated relaxation of Q B - was explained by the shift of a redox equilibrium between Q A - and Q B - to the Q A - side due to the decrease in the redox potential of Q B at higher pH, which is induced by deprotonation of a single amino acid residue near Q B . It is proposed that this pH-dependent Q B - relaxation is one of the mechanisms of electron flow regulation in PSII for its photoprotection.

  1. Photoproduction of hydrogen peroxide in aqueous solution from model compounds for chromophoric dissolved organic matter (CDOM).

    PubMed

    Clark, Catherine D; de Bruyn, Warren; Jones, Joshua G

    2014-02-15

    To explore whether quinone moieties are important in chromophoric dissolved organic matter (CDOM) photochemistry in natural waters, hydrogen peroxide (H2O2) production and associated optical property changes were measured in aqueous solutions irradiated with a Xenon lamp for CDOM model compounds (dihydroquinone, benzoquinone, anthraquinone, napthoquinone, ubiquinone, humic acid HA, fulvic acid FA). All compounds produced H2O2 with concentrations ranging from 15 to 500 μM. Production rates were higher for HA vs. FA (1.32 vs. 0.176 mM h(-1)); values ranged from 6.99 to 0.137 mM h(-1) for quinones. Apparent quantum yields (Θ app; measure of photochemical production efficiency) were higher for HA vs. FA (0.113 vs. 0.016) and ranged from 0.0018 to 0.083 for quinones. Dihydroquinone, the reduced form of benzoquinone, had a higher production rate and efficiency than its oxidized form. Post-irradiation, quinone compounds had absorption spectra similar to HA and FA and 3D-excitation-emission matrix fluorescence spectra (EEMs) with fluorescent peaks in regions associated with CDOM. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Esculetin-induced protection of human hepatoma HepG2 cells against hydrogen peroxide is associated with the Nrf2-dependent induction of the NAD(P)H: Quinone oxidoreductase 1 gene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Subramaniam, Sudhakar R.; Ellis, Elizabeth M., E-mail: elizabeth.ellis@strath.ac.uk

    Esculetin (6,7-dihydroxy coumarin), is a potent antioxidant that is present in several plant species. The aim of this study was to investigate the mechanism of protection of esculetin in human hepatoma HepG2 cells against reactive oxygen species (ROS) induced by hydrogen peroxide. Cell viability, cell integrity, intracellular glutathione levels, generation of reactive oxygen species and expression of antioxidant enzymes were used as markers to measure cellular oxidative stress and response to ROS. The protective effect of esculetin was compared to a well-characterized chemoprotective compound quercetin. Pre-treatment of HepG2 cells with sub-lethal (10-25 {mu}M) esculetin for 8 h prevented cell deathmore » and maintained cell integrity following exposure to 0.9 mM hydrogen peroxide. An increase in the generation of ROS following hydrogen peroxide treatment was significantly attenuated by 8 h pre-treatment with esculetin. In addition, esculetin ameliorated the decrease in intracellular glutathione caused by hydrogen peroxide exposure. Moreover, treatment with 25 {mu}M esculetin for 8 h increased the expression of NAD(P)H: quinone oxidoreductase (NQO1) at both protein and mRNA levels significantly, by 12-fold and 15-fold, respectively. Esculetin treatment also increased nuclear accumulation of Nrf2 by 8-fold indicating that increased NQO1 expression is Nrf2-mediated. These results indicate that esculetin protects human hepatoma HepG2 cells from hydrogen peroxide induced oxidative injury and that this protection is provided through the induction of protective enzymes as part of an adaptive response mediated by Nrf2 nuclear accumulation.« less

  3. The measured and calculated affinity of methyl and methoxy substituted benzoquinones for the QA site of bacterial reaction centers

    PubMed Central

    Zheng, Zhong; Dutton, P. Leslie; Gunner, M. R.

    2010-01-01

    Quinones play important roles in mitochondrial and photosynthetic energy conversion acting as intramembrane, mobile electron and proton carriers between catalytic sites in various electron transfer proteins. They display different affinity, selectivity, functionality and exchange dynamics in different binding sites. The computational analysis of quinone binding sheds light on the requirements for quinone affinity and specificity. The affinities of ten oxidized, neutral benzoquinones (BQs) were measured for the high affinity QA site in the detergent solubilized Rhodobacter sphaeroides bacterial photosynthetic reaction center. Multi-Conformation Continuum Electrostatics (MCCE) was then used to calculate their relative binding free energies by Grand Canonical Monte Carlo sampling with a rigid protein backbone, flexible ligand and side chain positions and protonation states. Van der Waals and torsion energies, Poisson-Boltzmann continuum electrostatics and accessible surface area dependent ligand-solvent interactions are considered. An initial, single cycle of GROMACS backbone optimization improves the match with experiment as do coupled ligand and side chain motions. The calculations match experiment with an RMSD of 2.29 and a slope of 1.28. The affinities are dominated by favorable protein-ligand van der Waals rather than electrostatic interactions. Each quinone appears in a closely clustered set of positions. Methyl and methoxy groups move into the same positions as found for the native quinone. Difficulties putting methyls into methoxy sites are observed. Calculations using an SAS dependent implicit van der Waals interaction smoothed out small clashes, providing a better match to experiment with a RMSD of 0.77 and a slope of 0.97. PMID:20607696

  4. Diels-Alder reactions of 12-hydroxy-9(10®20)-5aH-abeo-abieta-1(10),8(9),12(13)-triene-11,14-dione.

    PubMed

    Majetich, George; Zhang, Yong; Tian, Xinrong; Zou, Ge; Li, Yang; Wang, Yangyang; Hu, Shougang; Huddleston, Eric

    2013-06-14

    12-Hydroxy-9(10-->20)-5aH-abeo-abieta-1(10),8(9),12(13)-triene-11,14-dione (quinone 2) served as the dienophile in numerous intermolecular Diels-Alder reactions. These cycloadditions were conducted either thermally (including microwave heating) or with Lewis acid activation. While most dienes reacted with quinone 2 in good chemical yield, others were incompatible under the experimental conditions used.

  5. Cytotoxicity Mechanism of Two Naphthoquinones (Menadione and Plumbagin) in Saccharomyces cerevisiae

    PubMed Central

    Castro, Frederico Augusto Vieira; Mariani, Diana; Panek, Anita Dolly; Eleutherio, Elis Cristina Araújo; Pereira, Marcos Dias

    2008-01-01

    Background Quinones are compounds extensively used in studies of oxidative stress due to their role in plants as chemicals for defense. These compounds are of great interest for pharmacologists and scientists, in general, because several cancer chemotherapeutic agents contain the quinone nucleus. However, due to differences in structures and diverse pharmacological effects, the exact toxicity mechanisms exerted by quinones are far from elucidatation. Methodology/Principal Findings Using Saccharomyces cerevisiae, we evaluated the main mechanisms of toxicity of two naphthoquinones, menadione and plumbagin, by determining tolerance and oxidative stress biomarkers such as GSH and GSSG, lipid peroxidation levels, as well as aconitase activity. The importance of glutathione transferases (GST) in quinone detoxification was also addressed. The GSSG/GSH ratio showed that menadione seemed to exert its toxicity mainly through the generation of ROS while plumbagin acted as an electrophile reacting with GSH. However, the results showed that, even by different pathways, both drugs were capable of generating oxidative stress through their toxic effects. Our results showed that the control strain, BY4741, and the glutathione transferase deficient strains (gtt1Δ and gtt2Δ) were sensitive to both compounds. With respect to the role of GST isoforms in cellular protection against quinone toxicity, we observed that the Gtt2 deficient strain was unable to overcome lipid peroxidation, even after a plumbagin pre-treatment, indicating that this treatment did not improve tolerance when compared with the wild type strain. Cross-tolerance experiments confirmed distinct cytotoxicity mechanisms for these naphthoquinones since only a pre-treatment with menadione was able to induce acquisition of tolerance against stress with plumbagin. Conclusions/Significance These results suggest different responses to menadione and plumbagin which could be due to the fact that these compounds use different

  6. Designing Light-Activated Charge-Separating Proteins with a Naphthoquinone Amino Acid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lichtenstein, Bruce R.; Bialas, Chris; Cerda, José F.

    2015-09-14

    The first principles design of manmade redox-protein maquettes is used to clarify the physical/chemical engineering supporting the mechanisms of natural enzymes with a view to recapitulate and surpass natural performance. Herein, we use intein-based protein semisynthesis to pair a synthetic naphthoquinone amino acid (Naq) with histidine-ligated photoactive metal–tetrapyrrole cofactors, creating a 100 μs photochemical charge separation unit akin to photosynthetic reaction centers. By using propargyl groups to protect the redox-active para-quinone during synthesis and assembly while permitting selective activation, we gain the ability to employ the quinone amino acid redox cofactor with the full set of natural amino acids inmore » protein design. Direct anchoring of quinone to the protein backbone permits secure and adaptable control of intraprotein electron-tunneling distances and rates.« less

  7. Induction of NAD(P)H:quinone oxidoreductase 1 (NQO1) by Glycyrrhiza species used for women's health: differential effects of the Michael acceptors isoliquiritigenin and licochalcone A

    PubMed Central

    Hajirahimkhan, Atieh; Simmler, Charlotte; Dong, Huali; Lantvit, Daniel D.; Li, Guannan; Chen, Shao-Nong; Nikolić, Dejan; Pauli, Guido F.; van Breemen, Richard B.; Dietz, Birgit M.; Bolton, Judy L.

    2016-01-01

    For the alleviation of menopausal symptoms, women frequently turn to botanical dietary supplements, such as licorice and hops. In addition to estrogenic properties, these botanicals could also have chemopreventive effects. We have previously shown that hops and its Michael acceptor xanthohumol (XH) induced the chemoprevention enzyme, NAD(P)H:quinone oxidoreductase 1 (NQO1), in vitro and in vivo. Licorice species could also induce NQO1, as they contain the Michael acceptors isoliquiritigenin (LigC) found in Glycyrrhiza glabra (GG), G. uralensis (GU), and G. inflata (GI) and licochalcone A (LicA) which is only found in GI. These licorice species and hops induced NQO1 activity in murine hepatoma (Hepa1c1c7) cells; hops >> GI > GG ≅ GU. Similar to the known chemopreventive compounds curcumin (turmeric), sulforaphane (broccoli), and XH, LigC and LicA were active dose-dependently; sulforaphane >> XH > LigC > LicA ≅ curcumin >> LigF. Induction of the antioxidant response element-luciferase in human hepatoma (Hep-G2-ARE-C8) cells suggested involvement of the Keap1-Nrf2 pathway. GG, GU, and LigC also induced NQO1 in non-tumorigenic breast epithelial MCF-10A cells. In female Sprague-Dawley rats treated with GG and GU, LigC and LigF were detected in the liver and mammary gland. GG weakly enhanced NQO1 activity in the mammary tissue but not in the liver. Treatment with LigC alone did not induce NQO1 in vivo most likely due to its conversion to LigF, extensive metabolism, and its low bioavailability in vivo. These data show the chemopreventive potential of licorice species in vitro could be due to LigC and LicA and emphasize the importance of chemical and biological standardization of botanicals used as dietary supplements. Although the in vivo effects in the rat model after four day treatment are minimal, it must be emphasized that menopausal women take these supplements for extended periods of time and long-term beneficial effects are quite possible. PMID:26473469

  8. Modeling electron transfer in photosystem I.

    PubMed

    Makita, Hiroki; Hastings, Gary

    2016-06-01

    Nanosecond to millisecond time-resolved absorption spectroscopy has been used to study electron transfer processes in photosystem I particles from Synechocystis sp. PCC 6803 with eight different quinones incorporated into the A1 binding site, at both 298 and 77K. A detailed kinetic model was constructed and solved within the context of Marcus electron transfer theory, and it was found that all of the data could be well described only if the in situ midpoint potentials of the quinones fell in a tightly defined range. For photosystem I with phylloquinone incorporated into the A1 binding site all of the time-resolved optical data is best modeled when the in situ midpoint potential of phylloquinone on the A/B branch is -635/-690 mV, respectively. With the midpoint potential of the F(X) iron sulfur cluster set at -680 mV, this indicates that forward electron transfer from A(1)(-) to F(X) is slightly endergonic/exergonic on the A/B branch, respectively. Additionally, for forward electron transfer from A(1)(-) to F(X), on both the A and B branches the reorganization energy is close to 0.7 eV. Reorganization energies of 0.4 or 1.0 eV are not possible. For the eight different quinones incorporated, the same kinetic model was used, allowing us to establish in situ redox potentials for all of the incorporated quinones on both branches. A linear correlation was found between the in situ and in vitro midpoint potentials of the quinones on both branches. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Metabolic activation of 4-hydroxyanisole by isolated rat hepatocytes.

    PubMed

    Moridani, M Y; Cheon, S S; Khan, S; O'Brien, P J

    2002-10-01

    A tyrosinase-directed therapeutic approach for treating malignant melanoma uses depigmenting phenolic prodrugs such as 4-hydroxyanisole (4-HA) for oxidation by melanoma tyrosinase to form cytotoxic o-quinones. However, in a recent clinical trial, both renal and hepatic toxicity were reported as side effects of 4-HA therapy. In the following, 4-HA (200 mg/kg i.p.) administered to mice caused a 7-fold increase in plasma transaminase toxicity, an indication of liver toxicity. Furthermore, 4-HA induced-cytotoxicity toward isolated hepatocytes was preceded by glutathione (GSH) depletion, which was prevented by cytochrome p450 inhibitors that also partly prevented cytotoxicity. The 4-HA metabolite formed by NADPH/microsomes and GSH was identified as a hydroquinone mono-glutathione conjugate. GSH-depleted hepatocytes were much more prone to cytotoxicity induced by 4-HA or its reactive metabolite hydroquinone (HQ). Dicumarol (an NAD(P)H/quinone oxidoreductase inhibitor) also potentiated 4-HA- or HQ-induced toxicity whereas sorbitol, an NADH-generating nutrient, prevented the cytotoxicity. Ethylenediamine (an o-quinone trap) did not prevent 4-HA-induced cytotoxicity, which suggests that the cytotoxicity was not caused by o-quinone as a result of 4-HA ring hydroxylation. Deferoxamine and the antioxidant pyrogallol/4-hydroxy-2,2,6,6-tetramethylpiperidene-1-oxyl (TEMPOL) did not prevent 4-HA-induced cytotoxicity, therefore excluding oxidative stress as a cytotoxic mechanism for 4-HA. A negligible amount of formaldehyde was formed when 4-HA was incubated with rat microsomal/NADPH. These results suggest that the 4-HA cytotoxic mechanism involves alkylation of cellular proteins by 4-HA epoxide or p-quinone rather than involving oxidative stress.

  10. Quinonoid constituents as contact sensitisers in Australian blackwood (Acacia melanoxylon RBR).

    PubMed Central

    Hausen, B M; Schmalle, H

    1981-01-01

    Australian blackwood (Acacia melanoxylon RBR) is a valuable commercial timber that since 1925 has been incriminated as being injurious to health. In addition to toxic effects numerous cases of allergic contact dermatitis and bronchial asthma have been observed in woodworkers. Several constituents have been identified in recent years, but none of them could be considered as aetiological factors. Sensitizing experiments performed with blackwood heartwood extracts corroborated the described sensitising properties. Chemical studies showed the occurrence of two or possibly three quinones that produced positive skin responses in the sensitised guinea pigs. The main contact allergens were isolated and identified by x-ray analysis. The first, a yellow quinone, was identified as 2,6-dimethoxy-1,4-benzoquinone while the second, a red quinone, has the structure of 6-methoxy-2-methyl-3,5-dihydrobenzofurano-4,7-dion and was named acamelin. Whereas 2, 6-dimethoxy-p-benzoquinone is already known from natural sources, acamelin is new and belongs to the rate group of naturally occurring furanoquinones. Though the obtained sensitising capacity of A melanoxylon RBR in respect of its quinones is not high, it should be considered as a possible source of allergic contact dermatitis, especially as greater amounts of Australian blackwood may enter European countries in the near future. PMID:7236533

  11. Optical properties of humic substances and CDOM: effects of borohydride reduction.

    PubMed

    Ma, Jiahai; Del Vecchio, Rossana; Golanoski, Kelli S; Boyle, Erin S; Blough, Neil V

    2010-07-15

    Treatment of Suwanee River humic (SRHA) and fulvic (SRFA) acids, a commercial lignin (LAC), and a series of solid phase extracts (C18) from the Middle Atlantic Bight (MAB extracts) with sodium borohydride (NaBH(4)), a selective reductant of carbonyl-containing compounds including quinones and aromatic ketones, produces a preferential loss of visible absorption (> or = 50% for SRFA) and substantially enhanced, blue-shifted fluorescence emission (2- to 3-fold increase). Comparison of the results with those obtained from a series of model quinones and hydroquinones demonstrates that these spectral changes cannot be assigned directly to the absorption and emission of visible light by quinones/hydroquinones. Instead, these results are consistent with a charge transfer model in which the visible absorption is due primarily to charge transfer transitions arising among hydroxy- (methoxy-) aromatic donors and carbonyl-containing acceptors. Unlike most of the model hydroquinones, the changes in optical properties of the natural samples following NaBH(4) reduction were largely irreversible in the presence of air and following addition of a Cu(2+) catalyst, providing tentative evidence that aromatic ketones (or other similar carbonyl-containing structures) may play a more important role than quinones in the optical properties of these materials.

  12. Electrochemical oxidation of wine polyphenols in the presence of sulfur dioxide.

    PubMed

    Makhotkina, Olga; Kilmartin, Paul A

    2013-06-12

    Electrochemical oxidation of three representative wine polyphenols (catechin, caffeic acid, and quercetin) in the presence of sulfur dioxide in a model wine solution (pH = 3.3) was investigated. The oxidation was undertaken using chronoamperometry at a rotating glassy carbon rod electrode, and the reaction products were characterized by HPLC-MS. The mechanism of electrochemical oxidation of polyphenols in the presence of sulfur dioxide was proposed to be an ECEC mechanism. The polyphenols first underwent a one-electron oxidation to a semiquinone radical, which can be reduced back to the original polyphenol by sulfur dioxide, or further oxidized to the quinone form. In the cases of caffeic acid and catechin, the quinone combined with sulfur dioxide and produced new derivatives. The quercetin quinone underwent further chemical transformations, producing several new compounds. The proposed mechanisms were confirmed by digital simulation of cyclic voltammograms.

  13. Modulation of Estrogen-Depurinating DNA Adducts by Sulforaphane for Breast Cancer

    DTIC Science & Technology

    2014-12-01

    adducts. NQO1 reduces CE-3,4- 5 quinones back to catechols and GST catalyzes the conjugation of CE-3,4-quinones with glutathione, whereas COMT ... COMT , GSTA1 and β-actin (Sigma) antibodies were made in blocking solution (5% non-fat dry milk in Tris-buffered saline). The blots were incubated...other genes known to influence E2 metabolism, namely CYP1B1 and COMT , were observed (Figure 4A). These inductions exhibited a dose response, with

  14. Conformational differences between the methoxy groups of QA and QB site ubisemiquinones in bacterial reaction centers: a key role for methoxy group orientation in modulating ubiquinone redox potential.

    PubMed

    Taguchi, Alexander T; O'Malley, Patrick J; Wraight, Colin A; Dikanov, Sergei A

    2013-07-09

    Ubiquinone is an almost universal, membrane-associated redox mediator. Its ability to accept either one or two electrons allows it to function in critical roles in biological electron transport. The redox properties of ubiquinone in vivo are determined by its environment in the binding sites of proteins and by the dihedral angle of each methoxy group relative to the ring plane. This is an attribute unique to ubiquinone among natural quinones and could account for its widespread function with many different redox complexes. In this work, we use the photosynthetic reaction center as a model system for understanding the role of methoxy conformations in determining the redox potential of the ubiquinone/semiquinone couple. Despite the abundance of X-ray crystal structures for the reaction center, quinone site resolution has thus far been too low to provide a reliable measure of the methoxy dihedral angles of the primary and secondary quinones, QA and QB. We performed 2D ESEEM (HYSCORE) on isolated reaction centers with ubiquinones (13)C-labeled at the headgroup methyl and methoxy substituents, and have measured the (13)C isotropic and anisotropic components of the hyperfine tensors. Hyperfine couplings were compared to those derived by DFT calculations as a function of methoxy torsional angle allowing estimation of the methoxy dihedral angles for the semiquinones in the QA and QB sites. Based on this analysis, the orientation of the 2-methoxy groups are distinct in the two sites, with QB more out of plane by 20-25°. This corresponds to an ≈50 meV larger electron affinity for the QB quinone, indicating a substantial contribution to the experimental difference in redox potentials (60-75 mV) of the two quinones. The methods developed here can be readily extended to ubiquinone-binding sites in other protein complexes.

  15. Synergistic electron transfer effect-based signal amplification strategy for the ultrasensitive detection of dopamine.

    PubMed

    Lu, Qiujun; Chen, Xiaogen; Liu, Dan; Wu, Cuiyan; Liu, Meiling; Li, Haitao; Zhang, Youyu; Yao, Shouzhuo

    2018-05-15

    The selective and sensitive detection of dopamine (DA) is of great significance for the identification of schizophrenia, Huntington's disease, and Parkinson's disease from the perspective of molecular diagnostics. So far, most of DA fluorescence sensors are based on the electron transfer from the fluorescence nanomaterials to DA-quinone. However, the limited electron transfer ability of the DA-quinone affects the level of detection sensitivity of these sensors. In this work, based on the DA can reduce Ag + into AgNPs followed by oxidized to DA-quinone, we developed a novel silicon nanoparticles-based electron transfer fluorescent sensor for the detection of DA. As electron transfer acceptor, the AgNPs and DA-quinone can quench the fluorescence of silicon nanoparticles effectively through the synergistic electron transfer effect. Compared with traditional fluorescence DA sensors, the proposed synergistic electron transfer-based sensor improves the detection sensitivity to a great extent (at least 10-fold improvement). The proposed sensor shows a low detection limit of DA, which is as low as 0.1 nM under the optimal conditions. This sensor has potential applicability for the detection of DA in practical sample. This work has been demonstrated to contribute to a substantial improvement in the sensitivity of the sensors. It also gives new insight into design electron transfer-based sensors. Copyright © 2018. Published by Elsevier B.V.

  16. Bimolecular Rate Constants for FAD-Dependent Glucose Dehydrogenase from Aspergillus terreus and Organic Electron Acceptors.

    PubMed

    Tsuruoka, Nozomu; Sadakane, Takuya; Hayashi, Rika; Tsujimura, Seiya

    2017-03-10

    The flavin adenine dinucleotide-dependent glucose dehydrogenase (FAD-GDH) from Aspergillus species require suitable redox mediators to transfer electrons from the enzyme to the electrode surface for the application of bioelectrical devices. Although several mediators for FAD-GDH are already in use, they are still far from optimum in view of potential, kinetics, sustainability, and cost-effectiveness. Herein, we investigated the efficiency of various phenothiazines and quinones in the electrochemical oxidation of FAD-GDH from Aspergillus terreus . At pH 7.0, the logarithm of the bimolecular oxidation rate constants appeared to depend on the redox potentials of all the mediators tested. Notably, the rate constant of each molecule for FAD-GDH was approximately 2.5 orders of magnitude higher than that for glucose oxidase from Aspergillus sp. The results suggest that the electron transfer kinetics is mainly determined by the formal potential of the mediator, the driving force of electron transfer, and the electron transfer distance between the redox active site of the mediator and the FAD, affected by the steric or chemical interactions. Higher k ₂ values were found for ortho-quinones than for para-quinones in the reactions with FAD-GDH and glucose oxidase, which was likely due to less steric hindrance in the active site in the case of the ortho-quinones.

  17. The degradation of three-ringed polycyclic aromatic hydrocarbons by wood-inhabiting fungus Pleurotus ostreatus and soil-inhabiting fungus Agaricus bisporus.

    PubMed

    Pozdnyakova, Natalia; Dubrovskaya, Ekaterina; Chernyshova, Marina; Makarov, Oleg; Golubev, Sergey; Balandina, Svetlana; Turkovskaya, Olga

    2018-05-01

    The degradation of two isomeric three-ringed polycyclic aromatic hydrocarbons by the white rot fungus Pleurotus ostreatus D1 and the litter-decomposing fungus Agaricus bisporus F-8 was studied. Despite some differences, the degradation of phenanthrene and anthracene followed the same scheme, forming quinone metabolites at the first stage. The further fate of these metabolites was determined by the composition of the ligninolytic enzyme complexes of the fungi. The quinone metabolites of phenanthrene and anthracene produced in the presence of only laccase were observed to accumulate, whereas those formed in presence of laccase and versatile peroxidase were metabolized further to form products that were further included in basal metabolism (e.g. phthalic acid). Laccase can catalyze the initial attack on the PAH molecule, which leads to the formation of quinones, and that peroxidase ensures their further oxidation, which eventually leads to PAH mineralization. A. bisporus, which produced only laccase, metabolized phenanthrene and anthracene to give the corresponding quinones as the dominant metabolites. No products of further utilization of these compounds were detected. Thus, the fungi's affiliation with different ecophysiological groups and their cultivation conditions affect the composition and dynamics of production of the ligninolytic enzyme complex and the completeness of PAH utilization. Copyright © 2018 British Mycological Society. Published by Elsevier Ltd. All rights reserved.

  18. Construction of nerve guide conduits from cellulose/soy protein composite membranes combined with Schwann cells and pyrroloquinoline quinone for the repair of peripheral nerve defect

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luo, Lihua; Center of Molecular Medicine, School of Medicine, Hubei University of Arts and Sciences, Xiangyang 441053; Gan, Li

    Regeneration and functional reconstruction of peripheral nerve defects remained a significant clinical challenge. Nerve guide conduits, with seed cells or neurotrophic factors (NTFs), had been widely used to improve the repair and regeneration of injured peripheral nerve. Pyrroloquinoline quinone (PQQ) was an antioxidant that can stimulate nerve growth factors (NGFs) synthesis and accelerate the Schwann cells (SCs) proliferation and growth. In present study, three kinds of nerve guide conduits were constructed: one from cellulose/SPI hollow tube (CSC), another from CSC combined with SCs (CSSC), and the third one from CSSC combined with PQQ (CSSPC), respectively. And then they were appliedmore » to bridge and repair the sciatic nerve defect in rats, using autograft as control. Effects of different nerve guide conduits on the nerve regeneration were comparatively evaluated by general analysis, sciatic function index (SFI) and histological analysis (HE and TEM). Newly-formed regenerative nerve fibers were observed and running through the transparent nerve guide conduits 12 weeks after surgery. SFI results indicated that the reconstruction of motor function in CSSPC group was better than that in CSSC and CSC groups. HE images from the cross-sections and longitudinal-sections of the harvested regenerative nerve indicated that regenerative nerve fibers had been formed and accompanied with new blood vessels and matrix materials in the conduits. TEM images also showed that lots of fresh myelinated and non-myelinated nerve fibers had been formed. Parts of vacuolar, swollen and abnormal axons occurred in CSC and CSSC groups, while the vacuolization and swell of axons was the least serious in CSSPC group. These results indicated that CSSPC group had the most ability to repair and reconstruct the nerve structure and functions due to the comprehensive contributions from hollow CSC tube, SCs and PQQ. As a result, the CSSPC may have the potential for the applications as nerve

  19. Review of the taxonomy of the genus Arthrobacter, emendation of the genus Arthrobacter sensu lato, proposal to reclassify selected species of the genus Arthrobacter in the novel genera Glutamicibacter gen. nov., Paeniglutamicibacter gen. nov., Pseudoglutamicibacter gen. nov., Paenarthrobacter gen. nov. and Pseudarthrobacter gen. nov., and emended description of Arthrobacter roseus.

    PubMed

    Busse, Hans-Jürgen

    2016-01-01

    In this paper, the taxonomy of the genus Arthrobacter is discussed, from its first description in 1947 to the present state. Emphasis is given to intrageneric phylogeny and chemotaxonomic characteristics, concentrating on quinone systems, peptidoglycan compositions and polar lipid profiles. Internal groups within the genus Arthrobacter indicated from homogeneous chemotaxonomic traits and corresponding to phylogenetic grouping and/or high 16S rRNA gene sequence similarities are highlighted. Furthermore, polar lipid profiles and quinone systems of selected species are shown, filling some gaps concerning these chemotaxonomic traits. Based on phylogenetic groupings, 16S rRNA gene sequence similarities and homogeneity in peptidoglycan types, quinone systems and polar lipid profiles, a description of the genus Arthrobacter sensu lato and an emended description of Arthrobacter roseus are provided. Furthermore, reclassifications of selected species of the genus Arthrobacter into novel genera are proposed, namely Glutamicibacter gen. nov. (nine species), Paeniglutamicibacter gen. nov. (six species), Pseudoglutamicibacter gen. nov. (two species), Paenarthrobacter gen. nov. (six species) and Pseudarthrobacter gen. nov. (ten species).

  20. Lignin Modification for Biopolymer/Conjugated Polymer Hybrids as Renewable Energy Storage Materials.

    PubMed

    Nilsson, Ting Yang; Wagner, Michal; Inganäs, Olle

    2015-12-07

    Lignin derivatives, which arise as waste products from the pulp and paper industry and are mainly used for heating, can be used as charge storage materials. The charge storage function is a result of the quinone groups formed in the lignin derivative. Herein, we modified lignins to enhance the density of such quinone groups by covalently linking monolignols and quinones through phenolation. The extra guaiacyl, syringyl, and hydroquinone groups introduced by phenolation of kraft lignin derivatives were monitored by (31) P nuclear magnetic resonance and size exclusion chromatography. Electropolymerization in ethylene glycol/tetraethylammonium tosylate electrolyte was used to synthesize the kraft lignin/polypyrrole hybrid films. These modifications changed the phenolic content of the kraft lignin with attachment of hydroquinone units yielding the highest specific capacity (around 70 mA h g(-1) ). The modification of softwood and hardwood lignin derivatives yielded 50 % and 23 % higher charge capacity than the original lignin, respectively. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Unprecedent aminophysalin from Physalis angulata.

    PubMed

    Men, Rui-Zhi; Li, Ning; Ding, Wan-Jing; Hu, Zhi-Juan; Ma, Zhong-Jun; Cheng, Lin

    2014-10-01

    The 95% ethanol extract of the whole plant of Physalis angulata Linn. afforded one new skeletal physalin named aminophysalin A (1) and one new naturally occurring 5β-hydroxy-6a-chloro-5,6-dihydrophysalin B (2), together with five known physalins (3-7). Their structures were elucidated through MS, IR, NMR spectroscopy analyses and X-ray crystallography. Aminophysalin A (1) had an absolutely unusual structural feature in the chemistry of physalins with a nitrogen atom. Compounds 1-7 were evaluated for quinone reductase activities in hepa 1c1c7 cells. Physalin H (6) showed strong quinone reductase induction activity with IR (Induction ratio, QR induction activity) value of 3.74±0.02, using 4-bromoflavone as a positive control substance (2.17±0.01, 10 μg/mL), while compounds 1, 2, 3, 5 showed weak quinone reductase induction activity. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. 15N and13C NMR investigation of hydroxylamine-derivatized humic substances

    USGS Publications Warehouse

    Thorn, K.A.; Arterburn, J.B.; Mikita, M.A.

    1992-01-01

    Five fulvic and humic acid samples of diverse origins were derivatized with 15N-labeled hydroxylamine and analyzed by liquid-phase 15N NMR spectrometry. The 15N NMR spectra indicated that hydroxylamine reacted similarly with all samples and could discriminate among carbonyl functional groups. Oximes were the major derivatives; resonances attributable to hydroxamic acids, the reaction products of hydroxylamine with esters, and resonances attributable to the tautomeric equilibrium position between the nitrosophenol and monoxime derivatives of quinones, the first direct spectroscopic evidence for quinones, also were evident. The 15N NMR spectra also suggested the presence of nitriles, oxazoles, oxazolines, isocyanides, amides, and lactams, which may all be explained in terms of Beckmann reactions of the initial oxime derivatives. INEPT and ACOUSTIC 15N NMR spectra provided complementary information on the derivatized samples. 13C NMR spectra of derivatized samples indicated that the ketone/quinone functionality is incompletely derivatized with hydroxylamine. ?? 1991 American Chemical Society.

  3. Physiological Evidence for Isopotential Tunneling in the Electron Transport Chain of Methane-Producing Archaea

    PubMed Central

    Duszenko, Nikolas

    2017-01-01

    ABSTRACT Many, but not all, organisms use quinones to conserve energy in their electron transport chains. Fermentative bacteria and methane-producing archaea (methanogens) do not produce quinones but have devised other ways to generate ATP. Methanophenazine (MPh) is a unique membrane electron carrier found in Methanosarcina species that plays the same role as quinones in the electron transport chain. To extend the analogy between quinones and MPh, we compared the MPh pool sizes between two well-studied Methanosarcina species, Methanosarcina acetivorans C2A and Methanosarcina barkeri Fusaro, to the quinone pool size in the bacterium Escherichia coli. We found the quantity of MPh per cell increases as cultures transition from exponential growth to stationary phase, and absolute quantities of MPh were 3-fold higher in M. acetivorans than in M. barkeri. The concentration of MPh suggests the cell membrane of M. acetivorans, but not of M. barkeri, is electrically quantized as if it were a single conductive metal sheet and near optimal for rate of electron transport. Similarly, stationary (but not exponentially growing) E. coli cells also have electrically quantized membranes on the basis of quinone content. Consistent with our hypothesis, we demonstrated that the exogenous addition of phenazine increases the growth rate of M. barkeri three times that of M. acetivorans. Our work suggests electron flux through MPh is naturally higher in M. acetivorans than in M. barkeri and that hydrogen cycling is less efficient at conserving energy than scalar proton translocation using MPh. IMPORTANCE Can we grow more from less? The ability to optimize and manipulate metabolic efficiency in cells is the difference between commercially viable and nonviable renewable technologies. Much can be learned from methane-producing archaea (methanogens) which evolved a successful metabolic lifestyle under extreme thermodynamic constraints. Methanogens use highly efficient electron transport

  4. Metabolic activation of 3-hydroxyanisole by isolated rat hepatocytes.

    PubMed

    Moridani, Majid Y; Cheon, Sophia S; Khan, Sumsullah; O'Brien, Peter J

    2003-01-06

    A tyrosinase-directed therapeutic approach for malignant melanoma therapy uses the depigmenting phenolic agents such as 4-hydroxyanisole (4-HA) to form cytotoxic o-quinones. However, renal and hepatic toxicity was reported as side effects in a recent 4-HA clinical trial. In search of novel therapeutics, the cytotoxicity of the isomers 4-HA, 3-HA and 2-HA were investigated. In the following, the order of the HAs induced hepatotoxicity in mice, as measured by increased in vivo plasma transaminase activity, or in isolated rat hepatocytes, as measured by trypan blue exclusion, was 3-HA > 2-HA > 4-HA. Hepatocyte GSH depletion preceded HA induced cytotoxicity and a 4-MC-SG conjugate was identified by LC/MS/MS mass spectrometry analysis when 3-HA was incubated with NADPH/microsomes/GSH. 3-HA induced hepatocyte GSH depletion or GSH depletion when 3-HA was incubated with NADPH/microsomes was prevented by CYP 2E1 inhibitors. Dicumarol (an NAD(P)H: quinone oxidoreductase inhibitor) potentiated 3-HA- or 4-methoxycatechol (4-MC) induced toxicity whereas sorbitol (an NADH generating nutrient) greatly prevented cytotoxicity indicating a quinone-mediated cytotoxic mechanism. Ethylendiamine (an o-quinone trap) largely prevented 3-HA and 4-MC-induced cytotoxicity indicating that o-quinone was involved in cytotoxicity. Dithiothreitol (DTT) greatly reduced 3-HA and 4-MC induced toxicity. The ferric chelator deferoxamine slightly decreased 3-HA and 4-MC induced cytotoxicity whereas the antioxidants pyrogallol or TEMPOL greatly prevented the toxicity suggesting that oxidative stress contributed to 3-HA induced cytotoxicity. In summary, ring hydroxylation but not O-demethylation/epoxidation seems to be the bioactivation pathway for 3-HA in rat liver. The cytotoxic mechanism for 3-HA and its metabolite 4-MC likely consists cellular protein alkylation and oxidative stress. These results suggest that 3-HA is not suitable for treatment of melanoma. Copyright 2002 Elsevier Science B.V.

  5. The succession of microbial community in the organic rich fish-farm sediment during bioremediation by introducing artificially mass-cultured colonies of a small polychaete, Capitella sp. I.

    PubMed

    Kunihiro, Tadao; Miyazaki, Tomoaki; Uramoto, Yuuta; Kinoshita, Kyoko; Inoue, Akihiro; Tamaki, Sayaka; Hama, Daigo; Tsutsumi, Hiroaki; Ohwada, Kouichi

    2008-01-01

    We monitored seasonal changes of the abundance and composition of microorganisms in the fish-farm sediment in Kusuura Bay, Amakusa, Japan, using the quinone profiling technique, during bioremediation by introducing cultured colonies of polychaete, Capitella sp. I. In November 2004, approximately 9.2 million cultured worms were transferred to the fish-farm sediment, which increased rapidly, and reached 458.5 gWW/m(2) (528,000 indiv./m(2)) in March 2005. During this fast-increasing period of Capitella, the microbial quinone content of the surface sediment (0-2 cm) also increased markedly, and reached 237 micromol/m(2) in January 2005, although the water temperature decreased to the lowest levels in the year. Particularly, the mole fraction of ubiquinone-10 in total quinones in the sediment, indicating the presence of alpha subclass of Proteobacteria, increased by 9.3%. These facts suggest that the bacterial growth was enhanced markedly by the biological activities of worms in the sediment, and the bacteria played an important role in the decomposition of the organic matter in the sediment.

  6. HU-331, a novel cannabinoid-based anticancer topoisomerase II inhibitor.

    PubMed

    Kogan, Natalya M; Schlesinger, Michael; Priel, Esther; Rabinowitz, Ruth; Berenshtein, Eduard; Chevion, Mordechai; Mechoulam, Raphael

    2007-01-01

    Anthracyclines, a large group of quinonoid compounds, are used to treat some forms of cancer. Although highly effective in cancer therapy, the mechanism of action of these compounds is not specific; they act on cancer and other cells by numerous mechanisms. A new anticancer quinone (HU-331) was synthesized from cannabidiol. It shows significant high efficacy against human cancer cell lines in vitro and against in vivo tumor grafts in nude mice. In this study, we investigated its mode of action and present evidence on its unique mechanism. HU-331 does not cause cancer cell cycle arrest, cell apoptosis, or caspase activation. HU-331-caused cell death of human cancer cell lines is not mediated by reactive oxygen intermediates/species, as exposure to HU-331 failed to elicit the generation of reactive oxygen species. HU-331 inhibits DNA topoisomerase II even at nanomolar concentrations but has only a slight nonsignificant effect on DNA topoisomerase I action. The cannabinoid quinone HU-331 is a highly specific inhibitor of topoisomerase II, compared with most known anticancer quinones. It might represent a new potent anticancer drug.

  7. Time-resolved fluorescence spectroscopic study of flavin fluorescence in purified enzymes of bioluminescent bacteria

    NASA Astrophysics Data System (ADS)

    Vetrova, Elena; Kudryasheva, N.; Cheng, K.

    2006-10-01

    Time-resolved fluorescence intensity and anisotropy decay measurements have been used to study the environment and rotational mobility of endogenous flavin in two purified enzymes of bioluminescent bacteria, Luciferase from Photobacterium leiognathi and NAD(P)H:FMN-oxidoreductase from Vibrio fischeri. We compared the time-resolved fluorescence parameters, intensity decay lifetimes, rotational correlation times, and their fractional contribution, of the endogeneous flavin fluorescence in each of the two enzymes in the presence or absence of quinones of different structures and redox potentials. The endogeneous flavin exhibited multi-exponential decay characteristics as compared to a single decay lifetime of around 5 ns for free flavin, suggesting a complex and heterogeneous environment of flavin bound to the enzyme. In addition, a significant increase in the rotational correlation time and a certain degree of ordering of the molecule were observed for endogenous flavin when compared to a single and fast rotational correlation time of 150 ps of free flavin. Quinone significantly altered both the lifetime and rotational characteristics of endogenous flavin suggesting specific interactions of quinones to the endogeneous flavin in the bacterial enzyme.

  8. Ligninolytic basidiomycetes as promising organisms for the mycoremediation of PAH-contaminated Environments

    NASA Astrophysics Data System (ADS)

    Pozdnyakova, N. N.; Balandina, S. A.; Dubrovskaya, E. V.; Golubev, C. N.; Turkovskaya, O. V.

    2018-01-01

    Primary screening of ligninolytic fungi belonging to wood- and soil-inhabiting basidiomycetes revealed their ability to degrade three-ringed PAHs with formation of quinone metabolites at the first stage. The degradative activity was both species and strain specific, and some differences in the “chances” for the formed quinones were found. They were the main end metabolites in the degradation of PAHs by Stropharia rugosoannulata and Agaricus bisporus. During PAH degradation by strains of Trametes versicolor, Pleurotus ostreatus, Schizophyllum commune, and Bjerkandera adusta similar metabolites were detected during the cultivation, but they were utilized further. The results supported the hypothesis that the degree of PAH degradation may depend on the composition of the extracellular ligninolytic complex of the fungi: in the presence of a single ligninolytic enzyme, laccase, the accumulation of quinone metabolites takes place; their further utilization is possible with the participation of ligninolytic peroxidases. The data obtained showed the necessity not only to identify the metabolites formed, but also to study the activity of the basic ligninolytic enzymes. It is important for the correct selection of fungal strains for mycoremediation.

  9. The structure of the yeast NADH dehydrogenase (Ndi1) reveals overlapping binding sites for water- and lipid-soluble substrates.

    PubMed

    Iwata, Momi; Lee, Yang; Yamashita, Tetsuo; Yagi, Takao; Iwata, So; Cameron, Alexander D; Maher, Megan J

    2012-09-18

    Bioenergy is efficiently produced in the mitochondria by the respiratory system consisting of complexes I-V. In various organisms, complex I can be replaced by the alternative NADH-quinone oxidoreductase (NDH-2), which catalyzes the transfer of an electron from NADH via FAD to quinone, without proton pumping. The Ndi1 protein from Saccharomyces cerevisiae is a monotopic membrane protein, directed to the matrix. A number of studies have investigated the potential use of Ndi1 as a therapeutic agent against complex I disorders, and the NDH-2 enzymes have emerged as potential therapeutic targets for treatments against the causative agents of malaria and tuberculosis. Here we present the crystal structures of Ndi1 in its substrate-free, NAD(+)- and ubiquinone- (UQ2) complexed states. The structures reveal that Ndi1 is a peripheral membrane protein forming an intimate dimer, in which packing of the monomeric units within the dimer creates an amphiphilic membrane-anchor domain structure. Crucially, the structures of the Ndi1-NAD(+) and Ndi1-UQ2 complexes show overlapping binding sites for the NAD(+) and quinone substrates.

  10. Does menaquinone participate in brain astrocyte electron transport?

    PubMed

    Lovern, Douglas; Marbois, Beth

    2013-10-01

    Quinone compounds act as membrane resident carriers of electrons between components of the electron transport chain in the periplasmic space of prokaryotes and in the mitochondria of eukaryotes. Vitamin K is a quinone compound in the human body in a storage form as menaquinone (MK); distribution includes regulated amounts in mitochondrial membranes. The human brain, which has low amounts of typical vitamin K dependent function (e.g., gamma carboxylase) has relatively high levels of MK, and different regions of brain have different amounts. Coenzyme Q (Q), is a quinone synthesized de novo, and the levels of synthesis decline with age. The levels of MK are dependent on dietary intake and generally increase with age. MK has a characterized role in the transfer of electrons to fumarate in prokaryotes. A newly recognized fumarate cycle has been identified in brain astrocytes. The MK precursor menadione has been shown to donate electrons directly to mitochondrial complex III. Vitamin K compounds function in the electron transport chain of human brain astrocytes. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. A novel o-aminophenol oxidase responsible for formation of the phenoxazinone chromophore of grixazone.

    PubMed

    Suzuki, Hirokazu; Furusho, Yasuhide; Higashi, Tatsuichiro; Ohnishi, Yasuo; Horinouchi, Sueharu

    2006-01-13

    Grixazone contains a phenoxazinone chromophore and is a secondary metabolite produced by Streptomyces griseus. In the grixazone biosynthesis gene cluster, griF (encoding a tyrosinase homolog) and griE (encoding a protein similar to copper chaperons for tyrosinases) are encoded. An expression study of GriE and GriF in Escherichia coli showed that GriE activated GriF by transferring copper ions to GriF, as has been observed for a Streptomyces melanogenesis system in which the MelC1 copper chaperon transfers copper ions to MelC2 tyrosinase. In contrast with tyrosinases, GriF showed no monophenolase activity, although it oxidized various o-aminophenols as preferable substrates rather than catechol-type substrates. Deletion of the griEF locus on the chromosome resulted in accumulation of 3-amino-4-hydroxybenzaldehyde (3,4-AHBAL) and its acetylated compound, 3-acetylamino-4-hydroxybenzaldehyde. GriF oxidized 3,4-AHBAL to yield an o-quinone imine derivative, which was then non-enzymatically coupled with another molecule of the o-quinone imine to form a phenoxazinone. The coexistence of N-acetylcysteine in the in vitro oxidation of 3,4-AH-BAL by GriF resulted in the formation of grixazone A, suggesting that the -SH group of N-acetylcysteine is conjugated to the o-quinone imine formed from 3,4-AHBAL and that the conjugate is presumably coupled with another molecule of the o-quinone imine. GriF is thus a novel o-aminophenol oxidase that is responsible for the formation of the phenoxazinone chromophore in the grixazone biosynthetic pathway.

  12. Electron Shuttling by Dissolved Humic Substances: Using Fluorescence Spectroscopy to Move Beyond the Laboratory to Natural Lakes, Streams and Groundwaters

    NASA Astrophysics Data System (ADS)

    McKnight, D. M.

    2017-12-01

    Humic substances are an important class of reactive chemical species in natural waters, and one important role is their capacity to as an electron acceptor and/or electron shuttle to ferric iron present as solid phase ferric oxides. Several lines of evidence point to quinone-like moieties being the main redox active moieties that can be used by microbes in respiration. Concomitantly, the humic fraction of dissolved organic mater (DOM) contains the dominant fluorophores in many natural waters. Examination of excitation emission matrices (EEMs) across redox gradients in diverse aquatic systems show that the EEMs are generally red-shifted under reducing conditions, such as anoxic bottom waters in lakes and hypoxic waters in riparian wetlands. Furthermore, there is striking similarity between the humic fluorophores that are resolved by statistical analysis and the fluorescence spectra of model quinone compounds, with the more reduced species having red-shifted fluorescence spectra. This apparent red-shift can be quantified based on the distribution of apparently "quinone-like", "semi-quinone-like" and "hydroquinone-like" fluorophores determined by the PARAFAC statistical analysis. Because fluorescence spectroscopy can be applied at ambient DOM concentrations for samples that have been maintained in an anoxic condition, fluorescence spectroscopy can provide insight into the role of humic electron shuttling in natural systems. Examples are presented demosntrating the changing EEMs in anoxic bottomwaters in a lake in the McMurdo Dry Valleys following a major flood event and the role of organic material in the mobilization of arsenic in shallow groundwater in South East Asia.

  13. Photoinduced electron transfer interaction of anthraquinones with aniline quenchers: Influence of methyl substitution in aniline donors

    NASA Astrophysics Data System (ADS)

    Sivakumar, V.; Ponnamma, Deepalekshmi; Hussein, Yasser H. A.

    2017-02-01

    Photoinduced electron transfer between triplet state of 9,10-anthraquinone (AQ) and its two derivatives: 2-chloro-9,10-anthraquinone (CAQ) and sodium anthraquinone-2-sulfonate (AQS) and ground state aniline (AN) and its dimethyl substitutions: 2,3-dimethylaniline (2,3-DMA), 2,6-dimethylaniline (2,6-DMA), 3,5-dimethylaniline (3,5-DMA) and N,N-dimethylaniline (N,N-DMA) is studied using nanosecond laser flash photolysis at room temperature. Detection of radical bands of quinone anions and aniline cations along with their formation and/or decay kinetics are used to confirm the electron transfer (ET) process. In MeCN medium, AN quenches the triplet state of CAQ (CAQT) but not the triplets AQT or AQST. However in aqueous medium, AN quenches AQST and forms radical ion pair. All the DMAs can react through ET with all the triplet quinones at different degrees of efficiency in MeCN medium. Noticeably, the ring substituted DMAs are less efficient in electron donation to AQT or AQST while the N,N-DMA shows high efficiency in donating electron to all triplet quinones in MeCN medium. Charge distribution of donor molecules, in MeCN medium is calculated using density functional theory (DFT), and shows an enhancement of electron density of the ring of N,N-DMA, making it an ideal electron donor for ET studies compared to other DMAs. This systematic selection and usage of anilines with electrochemically tunable quinones can be viewed as a working model of donor-acceptor system that can be utilized in photoinduced ET applications.

  14. 4-n-butylresorcinol, a depigmenting agent used in cosmetics, reacts with tyrosinase.

    PubMed

    Garcia-Jimenez, Antonio; Teruel-Puche, Jose Antonio; Ortiz-Ruiz, Carmen Vanessa; Berna, Jose; Tudela, Jose; Garcia-Canovas, Francisco

    2016-08-01

    4-n-Butylresorcinol (BR) is considered the most potent inhibitor of tyrosinase, which is why it is used in cosmetics as a depigmenting agent. However, this work demonstrates that BR is a substrate of this enzyme. The Em (met-tyrosinase) form is not active on BR, but Eox (oxy-tyrosinase) can act on this molecule, hydroxylating it to o-diphenol. In turn, this is oxidized to an o-quinone, which isomerizes to a red p-quinone. Thus, for tyrosinase to act on this compound, a mechanism to generate Eox in the medium is required, which can be achieved by means of hydrogen peroxide or ascorbic acid. A kinetic analysis of the proposed mechanism allows its kinetic characterization: catalytic constant kcatBR (8.49 ± 0.20 s(-1) ) and Michaelis-constant KMBR (60.26 ± 8.76 μM). These findings are compared with those for other monophenolic substrates of tyrosinase. Studies of BR docking to the Em form of the enzyme show that the hydroxyl group in C-1 position is oriented toward the copper atom A (CuA), as in it is L-tyrosine. As regards Eox , BR is oriented with the carbon in C-6 position ready to be hydroxylated. The reaction of BR originates o-quinones, which isomerize to p-quinones, which in turn, could react with thiol compounds, a finding that could have important implications for pharmacology and the cosmetic industry. © 2016 IUBMB Life, 68(8):663-672, 2016. © 2016 International Union of Biochemistry and Molecular Biology.

  15. Syntheses, structural characterization, and basic properties of unsymmetrically substituted biphenoquinones

    NASA Astrophysics Data System (ADS)

    Fujii, Ryotaro; Sugiura, Ken-ichi

    2018-03-01

    Unsymmetrically substituted biphenoquinones, 3,5-dimethyl-3‧,5‧-diphenylbiphenoquinone and 3,5-di-tert-butyl-3‧,5‧-diphenylbiphenoquinone, were prepared by a mixed oxidative coupling reaction of the corresponding phenols with potassium permanganate in CHCl3. The properties of the quinones such as reduction potential and visible light absorption were measured and positively shifted reduction potentials and bathochromic shifts as a result of light absorption were found to be characteristic of the π-expanded quinones. We also carried out single-crystal diffraction study and uncovered a unique packing motif attributable to their unsymmetrical structures.

  16. Physiological Evidence for Isopotential Tunneling in the Electron Transport Chain of Methane-Producing Archaea.

    PubMed

    Duszenko, Nikolas; Buan, Nicole R

    2017-09-15

    Many, but not all, organisms use quinones to conserve energy in their electron transport chains. Fermentative bacteria and methane-producing archaea (methanogens) do not produce quinones but have devised other ways to generate ATP. Methanophenazine (MPh) is a unique membrane electron carrier found in Methanosarcina species that plays the same role as quinones in the electron transport chain. To extend the analogy between quinones and MPh, we compared the MPh pool sizes between two well-studied Methanosarcina species, Methanosarcina acetivorans C2A and Methanosarcina barkeri Fusaro, to the quinone pool size in the bacterium Escherichia coli We found the quantity of MPh per cell increases as cultures transition from exponential growth to stationary phase, and absolute quantities of MPh were 3-fold higher in M. acetivorans than in M. barkeri The concentration of MPh suggests the cell membrane of M. acetivorans , but not of M. barkeri , is electrically quantized as if it were a single conductive metal sheet and near optimal for rate of electron transport. Similarly, stationary (but not exponentially growing) E. coli cells also have electrically quantized membranes on the basis of quinone content. Consistent with our hypothesis, we demonstrated that the exogenous addition of phenazine increases the growth rate of M. barkeri three times that of M. acetivorans Our work suggests electron flux through MPh is naturally higher in M. acetivorans than in M. barkeri and that hydrogen cycling is less efficient at conserving energy than scalar proton translocation using MPh. IMPORTANCE Can we grow more from less? The ability to optimize and manipulate metabolic efficiency in cells is the difference between commercially viable and nonviable renewable technologies. Much can be learned from methane-producing archaea (methanogens) which evolved a successful metabolic lifestyle under extreme thermodynamic constraints. Methanogens use highly efficient electron transport systems and

  17. Requirement of histidine 217 for ubiquinone reductase activity (Qi site) in the cytochrome bc1 complex.

    PubMed

    Gray, K A; Dutton, P L; Daldal, F

    1994-01-25

    Folding models suggest that the highly conserved histidine 217 of the cytochrome b subunit from the cytochrome bc1 complex is close to the quinone reductase (Qi) site. This histidine (bH217) in the cytochrome b polypeptide of the photosynthetic bacterium Rhodobacter capsulatus has been replaced with three other residues, aspartate (D), arginine (R), and leucine (L). bH217D and bH217R are able to grow photoheterotrophically and contain active cytochrome bc1 complexes (60% of wild-type activity), whereas the bH217L mutant is photosynthetically incompetent and contains a cytochrome bc1 complex that has only 10% of the wild-type activity. Single-turnover flash-activated electron transfer experiments show that cytochrome bH is reduced via the Qo site with near native rates in the mutant strains but that electron transfer between cytochrome bH and quinone bound at the Qi site is greatly slowed. These results are consistent with redox midpoint potential (Em) measurements of the cytochrome b subunit hemes and the Qi site quinone. The Em values of cyt bL and bH are approximately the same in the mutants and wild type, although the mutant strains have a larger relative concentration of what may be the high-potential form of cytochrome bH, called cytochrome b150. However, the redox properties of the semiquinone at the Qi site are altered significantly. The Qi site semiquinone stability constant of bH217R is 10 times higher than in the wild type, while in the other two strains (bH217D and bH217L) the stability constant is much lower than in the wild type. Thus H217 appears to have major effects on the redox properties of the quinone bound at the Qi site. These data are incorporated into a suggestion that H217 forms part of the binding pocket of the Qi site in a manner reminiscent of the interaction between quinone bound at the Qb site and H190 of the L subunit of the bacterial photosynthetic reaction center.

  18. Kinetics of the benzyl + O(3P) reaction: a quantum chemical/statistical reaction rate theory study.

    PubMed

    da Silva, Gabriel; Bozzelli, Joseph W

    2012-12-14

    The resonance stabilized benzyl radical is an important intermediate in the combustion of aromatic hydrocarbons and in polycyclic aromatic hydrocarbon (PAH) formation in flames. Despite being a free radical, benzyl is relatively stable in thermal, oxidizing environments, and is predominantly removed through bimolecular reactions with open-shell species other than O(2). In this study the reaction of benzyl with ground-state atomic oxygen, O((3)P), is examined using quantum chemistry and statistical reaction rate theory. C(7)H(7)O energy surfaces are generated at the G3SX level, and include several novel pathways. Transition state theory is used to describe elementary reaction kinetics, with canonical variational transition state theory applied for barrierless O atom association with benzyl. Apparent rate constants and branching ratios to different product sets are obtained as a function of temperature and pressure from solving the time-dependent master equation, with RRKM theory for microcanonical k(E). These simulations indicate that the benzyl + O reaction predominantly forms the phenyl radical (C(6)H(5)) plus formaldehyde (HCHO), with lesser quantities of the C(7)H(6)O products benzaldehyde, ortho-quinone methide, and para-quinone methide (+H), along with minor amounts of the formyl radical (HCO) + benzene. Addition of O((3)P) to the methylene site in benzyl produces a highly vibrationally excited C(7)H(7)O* adduct, the benzoxyl radical, which can β-scission to benzaldehyde + H and phenyl + HCHO. In order to account for the experimental observation of benzene as the major reaction product, a roaming radical mechanism is proposed that converts the nascent products phenyl and HCHO to benzene + HCO. Oxygen atom addition at the ortho and para ring sites in benzyl, which has not been previously considered, is shown to lead to the quinone methides + H; these species are less-stable isomers of benzaldehyde that are proposed as important combustion intermediates, but

  19. Photoinduced electron transfer interaction of anthraquinones with aniline quenchers: Influence of methyl substitution in aniline donors.

    PubMed

    Sivakumar, V; Ponnamma, Deepalekshmi; Hussein, Yasser H A

    2017-02-15

    Photoinduced electron transfer between triplet state of 9,10-anthraquinone (AQ) and its two derivatives: 2-chloro-9,10-anthraquinone (CAQ) and sodium anthraquinone-2-sulfonate (AQS) and ground state aniline (AN) and its dimethyl substitutions: 2,3-dimethylaniline (2,3-DMA), 2,6-dimethylaniline (2,6-DMA), 3,5-dimethylaniline (3,5-DMA) and N,N-dimethylaniline (N,N-DMA) is studied using nanosecond laser flash photolysis at room temperature. Detection of radical bands of quinone anions and aniline cations along with their formation and/or decay kinetics are used to confirm the electron transfer (ET) process. In MeCN medium, AN quenches the triplet state of CAQ (CAQ T ) but not the triplets AQ T or AQS T . However in aqueous medium, AN quenches AQS T and forms radical ion pair. All the DMAs can react through ET with all the triplet quinones at different degrees of efficiency in MeCN medium. Noticeably, the ring substituted DMAs are less efficient in electron donation to AQ T or AQS T while the N,N-DMA shows high efficiency in donating electron to all triplet quinones in MeCN medium. Charge distribution of donor molecules, in MeCN medium is calculated using density functional theory (DFT), and shows an enhancement of electron density of the ring of N,N-DMA, making it an ideal electron donor for ET studies compared to other DMAs. This systematic selection and usage of anilines with electrochemically tunable quinones can be viewed as a working model of donor-acceptor system that can be utilized in photoinduced ET applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Enhancement of DMNQ-induced hepatocyte toxicity by cytochrome P450 inhibition.

    PubMed

    Ishihara, Yasuhiro; Shiba, Dai; Shimamoto, Norio

    2006-07-15

    Two mechanisms have been proposed to explain quinone cytotoxicity: oxidative stress via the redox cycle and the arylation of intracellular nucleophiles. As the redox cycle is catalyzed by NADPH cytochrome P450 reductase, cytochrome P450 systems are expected to be related to the cytotoxicity induced by redox-cycling quinones. Thus, we investigated the relationship between cytochrome P450 systems and quinone toxicity for rat primary hepatocytes using an arylator, 1,4-benzoquinone (BQ), and a redox cycler, 2,3-dimethoxy-1,4-naphthoquinone (DMNQ). The hepatocyte toxicity of both BQ and DMNQ increased in a time- and dose-dependent manner. Pretreatment with cytochrome P450 inhibitors, such as SKF-525A (SKF), ketoconazole and 2-methy-1,2-di-3-pyridyl-1-propanone, enhanced the hepatocyte toxicity induced by DMNQ but did not affect BQ-induced hepatocyte toxicity. The production of superoxide anion and the levels of glutathione disulfide and thiobarbituric-acid-reactive substances were increased by treatment with DMNQ, and SKF pretreatment further enhanced their increases. In addition, NADPH oxidation in microsomes was increased by treatment with DMNQ and further augmented by pretreatment with SKF, and a NADPH cytochrome P450 reductase inhibitor, diphenyleneiodonium chloride completely suppressed NADPH oxidations increased by treatment with either DMNQ- or DMNQ + SKF. Pretreatment with antioxidants, such as alpha-tocopherol, reduced glutathione, N-acetyl cysteine or an iron ion chelator deferoxamine, totally suppressed DMNQ- and DMNQ + SKF-induced hepatocyte toxicity. These results indicate that the hepatocyte toxicity of redox-cycling quinones is enhanced under cytochrome P450 inhibition, and that this enhancement is caused by the potentiation of oxidative stress.

  1. Enhancement of anti-inflammatory activity of Aloe vera adventitious root extracts through the alteration of primary and secondary metabolites via salicylic acid elicitation.

    PubMed

    Lee, Yun Sun; Ju, Hyun Kyoung; Kim, Yeon Jeong; Lim, Tae-Gyu; Uddin, Md Romij; Kim, Yeon Bok; Baek, Jin Hong; Kwon, Sung Won; Lee, Ki Won; Seo, Hak Soo; Park, Sang Un; Yang, Tae-Jin

    2013-01-01

    Aloe vera (Asphodeloideae) is a medicinal plant in which useful secondary metabolites are plentiful. Among the representative secondary metabolites of Aloe vera are the anthraquinones including aloe emodin and chrysophanol, which are tricyclic aromatic quinones synthesized via a plant-specific type III polyketide biosynthesis pathway. However, it is not yet clear which cellular responses can induce the pathway, leading to production of tricyclic aromatic quinones. In this study, we examined the effect of endogenous elicitors on the type III polyketide biosynthesis pathway and identified the metabolic changes induced in elicitor-treated Aloe vera adventitious roots. Salicylic acid, methyl jasmonate, and ethephon were used to treat Aloe vera adventitious roots cultured on MS liquid media with 0.3 mg/L IBA for 35 days. Aloe emodin and chrysophanol were remarkably increased by the SA treatment, more than 10-11 and 5-13 fold as compared with untreated control, respectively. Ultra-performance liquid chromatography-electrospray ionization mass spectrometry analysis identified a total of 37 SA-induced compounds, including aloe emodin and chrysophanol, and 3 of the compounds were tentatively identified as tricyclic aromatic quinones. Transcript accumulation analysis of polyketide synthase genes and gas chromatography mass spectrometry showed that these secondary metabolic changes resulted from increased expression of octaketide synthase genes and decreases in malonyl-CoA, which is the precursor for the tricyclic aromatic quinone biosynthesis pathway. In addition, anti-inflammatory activity was enhanced in extracts of SA-treated adventitious roots. Our results suggest that SA has an important role in activation of the plant specific-type III polyketide biosynthetic pathway, and therefore that the efficacy of Aloe vera as medicinal agent can be improved through SA treatment.

  2. Partitioning of electron flux between the respiratory chains of the yeast Candida parapsilosis: parallel working of the two chains.

    PubMed

    Guerin, M G; Camougrand, N M

    1994-02-08

    Partitioning of the electron flux between the classical and the alternative respiratory chains of the yeast Candida parapsilosis, was measured as a function of the oxidation rate and of the Q-pool redox poise. At low respiration rate, electrons from external NADH travelled preferentially through the alternative pathway as indicated by the antimycin A-insensitivity of electron flow. Inhibition of the alternative pathway by SHAM restored full antimycin A-sensitivity to the remaining electro flow. The dependence of the respiratory rate on the redox poise of the quinone pool was investigated when the electron flux was mediated either by the main respiratory chain (growth in the absence of antimycin A) or by the second respiratory chain (growth in the presence of antimycin A). In the former case, a linear relationship was found between these two parameters. In contrast, in the latter case, the relationship between Q-pool reduction level and electron flux was non-linear, but it could be resolved into two distinct curves. This second quinone is not reducible in the presence of antimycin A but only in the presence of high concentrations of myxothiazol or cyanide. Since two quinone species exist in C. parapsilosis, UQ9 and Qx (C33H54O4), we hypothesized that these two curves could correspond to the functioning of the second quinone engaged during the alternative pathway activity. Partitioning of electrons between both respiratory chains could occur upstream of complex III with the second chain functioning in parallel to the main one, and with the additional possibility of merging into the main one at the complex IV level.

  3. Characterization of the ambient air content of parent polycyclic aromatic hydrocarbons in the Fort McKay region (Canada).

    PubMed

    Wnorowski, Andrzej

    2017-05-01

    This study presents the characterization of the gas-particle partition and size distribution of seven parent polycyclic aromatic hydrocarbons (PAHs) in ambient air samples collected in the proximity of oil sands exploration and compares their time-integrated concentration levels with nineteen analogous oxidation products - quinones. Gas-phase (GP) and particle-phase (PM) ambient air aerosol samples that were collected separately in summer for either 24 h or 12 h (day and night) revealed a higher PAH partition in the GP than in the PM, with the distribution over tenfold higher for light over heavy PAHs. Diurnal/nocturnal samples demonstrated that night conditions lead to lower concentrations, linking some of the sources of these compounds with daytime activity emissions. PAHs were observed to transform more efficiently in the GP, and quinone levels increased in the PM with time. Correlation data indicated that parent PAHs originated from primary emission sources associated with oil sand activities and that quinone formation paralleled a reduction in PAH levels. The findings of this study shed new light on characterization of PAHs in the Athabasca oil sands region. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  4. Oxidation of atenolol, propranolol, carbamazepine and clofibric acid by a biological Fenton-like system mediated by the white-rot fungus Trametes versicolor.

    PubMed

    Marco-Urrea, Ernest; Radjenović, Jelena; Caminal, Gloria; Petrović, Mira; Vicent, Teresa; Barceló, Damià

    2010-01-01

    Biological advanced oxidation of the pharmaceuticals clofibric acid (CA), carbamazepine (CBZP), atenolol (ATL) and propranolol (PPL) is reported for the first time. Extracellular oxidizing species were produced through a quinone redox cycling mechanism catalyzed by an intracellular quinone reductase and any of the ligninolytic enzymes of Trametes versicolor after addition of the lignin-derived quinone 2,6-dimethoxy-1,4-benzoquinone (DBQ) and Fe(3+)-oxalate in the medium. Time-course experiments with approximately 10mg L(-1) of initial pharmaceutical concentration resulted in percent degradations above 80% after 6h of incubation. Oxidation of pharmaceuticals was only observed under DBQ redox cycling conditions. A similar degradation pattern was observed when CBZP was added at the environmentally relevant concentration of 50 microg L(-1). Depletion of DBQ due to the attack of oxidizing agents was assumed to be the main limiting factor of pharmaceutical degradation. The main degradation products, that resulted to be pharmaceutical hydroxylated derivatives, were structurally elucidated. The detected 4- and 7-hydroxycarbamazepine intermediates of CBZP degradation were not reported to date. Total disappearance of intermediates was observed in all the experiments at the end of the incubation period. (c) 2009 Elsevier Ltd. All rights reserved.

  5. Enhanced oxidation of flavan-3-ols and proanthocyanidin accumulation in water-stressed tea plants.

    PubMed

    Hernández, Iker; Alegre, Leonor; Munné-Bosch, Sergi

    2006-06-01

    (-)-Epicatechin (EC) and (-)-epigallocatechin gallate (EGCG), two major tea flavan-3-ols, have received attention in food science and biomedicine because of their potent antioxidant properties. In plants, flavan-3-ols serve as proanthocyanidin (PA) building blocks, and although both monomeric flavan-3-ols and PAs show antioxidant activity in vitro, their antioxidant function in vivo remains unclear. In the present study, EC quinone (ECQ) and EGCG quinone (EGCGQ), the oxidation products of EC and EGCG, increased up to 100- and 30-fold, respectively, in tea plants exposed to 19 days of water deficit. Oxidation of EC and EGCG preceded PAs accumulation in leaves, which increased from 35 to 53 mg gDW(-1) after 26 days of water deficit. Aside from the role monomeric flavan-3-ols may play in PAs biosynthesis, formation of ECQ and EGCGQ strongly negatively correlated with the extent of lipid peroxidation in leaves, thus supporting a protective role for these compounds in drought-stressed plants. Besides demonstrating flavonoid accumulation in drought-stressed tea plants, we show for the first time that EC and EGCG are oxidized to their respective quinones in plants in vivo.

  6. In vitro evidence for the formation of reactive intermediates of resveratrol in human liver microsomes.

    PubMed

    Steenwyk, R C; Tan, B

    2010-01-01

    Resveratrol (3,4',5-trihydroxystilbene) is a naturally occurring polyphenolic compound found in a variety of foods and over-the-counter health products. It has gained wide public use due to its potential health properties, and is available over-the-counter at health product stores. Although the safety profile of resveratrol has been minimally investigated in humans, resveratrol has been associated with observations of toxicity in vitro, and has been identified as a mechanism-based inhibitor of cytochrome P450 3A4. In addition, resveratrol has been rationally hypothesized to form reactive quinone methide metabolites, despite experimental evidence supporting this assumption. This work evaluates the potential for resveratrol to form glutathione-trapped reactive intermediates in human liver microsomes utilizing liquid chromatography and electrospray tandem mass spectrometry, and has resulted in the identification of several in vitro products including two hydroxylated metabolites (piceatannol and metabolite 2), and two pairs of regioisomeric glutathione adducts. The parallel metabolism of resveratrol to piceatannol and metabolite 2 (a putative quinone methide) are demonstrated to result in the formation of two putative quinone methide intermediates resulting in divergent mechanisms for formation of each pair of regioisomeric glutathione adducts.

  7. Removal of p-alkylphenols from aqueous solutions by combined use of mushroom tyrosinase and chitosan beads.

    PubMed

    Yamada, Kazunori; Inoue, Tomoaki; Akiba, Yuji; Kashiwada, Ayumi; Matsuda, Kiyomi; Hirata, Mitsuo

    2006-10-01

    Enzymatic removal of p-alkylphenols from aqueous solutions was investigated through the two-step approach, the quinone conversion of p-alkylphenols with mushroom tyrosinase (EC 1.14.18.1) and the subsequent adsorption of quinone derivatives enzymatically generated on chitosan beads at pH 7.0 and 45 degrees C as the optimum conditions. This technique is quite effective for removal of various p-alkylphenols from an aqueous solution. The % removal values of 97-100% were obtained for p-n-alkylphenols with carbon chain lengths of 5 to 9. In addition, removal of other p-alkylphenols was enhanced by increasing either the tyrosinase concentration or the amount of added chitosan beads, and their % removal values reached >93 except for 4-tert-pentylphenol. This technique was also applicable to remove 4-n-octylphenol (4NOP) and 4-n-nonylphenol (4NNP) as suspected endocrine disrupting chemicals. The reaction of quinone derivatives enzymatically generated with the chitosan's amino groups was confirmed by the appearance of peaks for UV-visible spectrum measurements of the chitosan films incubated in the p-alkylphenol and tyrosinase mixture solutions. In addition, 4-tert-pentylphenol underwent tyrosinase-catalyzed oxidation in the presence of hydrogen peroxide.

  8. Reaction of Hydroquinone with Hematite I. Study of Adsorption by Electrochemical-Scanning Tunneling Microscopy and X-ray Photoelectron Spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stack, Andrew G; Eggleston, Carrick M; Engelhard, Mark H

    2004-06-15

    The reaction of hematite with quinones and the quinone moieties of larger molecules may be an important factor in limiting the rate ofreductive dissolution, especially by iron-reducing bacteria. Here, the electrochemical and physical properties of hydroquinone adsorbed on hematite surfaces at pH 2.5–3 were investigated with cyclic voltammetry (CV), electrochemical-scanning tunneling microscopy (EC-STM), and X-ray photoelectron spectroscopy (XPS). An oxidation peak for hydroquinone was observed in the CV experiments, as well as (photo)reduction of iron and decomposition of the solvent. The EC-STM results indicate that hydroquinone sometimes forms an ordered monolayer with ~1.1 H₂/nm², but can be fairly disordered (especiallymore » when viewed at larger scales). XPS results indicate that hydroquinone and benzoquinone are retained at the interface in increasing amounts as the reaction proceeds, but reduced iron is not observed. These results suggest that quinones do not adsorb by an inner-sphere complex where adsorbate–surface interactions determine the adsorbate surface structure, but rather in an outer-sphere complex where interactions among the adsorbate molecules dominate.« less

  9. Reaction of hydroquinone with hematite I. Study of asdsorption by electrochemical-scanning tunneling microscopy and X-ray photoelectron spectroscopy.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stack, Andrew G; Eggleston, Carrick M; Engelhard, Mark H

    2003-12-01

    The reaction of hematite with quinones and the quinone moieties of larger molecules may be an important factor in limiting the rate of reductive dissolution, especially by iron-reducing bacteria. Here, the electrochemical and physical properties of hydroquinone adsorbed on hematite surfaces at pH 2.5-3 were investigated with cyclic voltammetry (CV), electrochemical-scanning tunneling microscopy (EC-STM), and X-ray photoelectron spectroscopy (XPS). An oxidation peak for hydroquinone was observed in the CV experiments, as well as (photo)reduction of iron and decomposition of the solvent. The EC-STM results indicate that hydroquinone sometimes forms an ordered monolayer with {approx}1.1 QH{sub 2}/nm{sup 2}, but can bemore » fairly disordered (especially when viewed at larger scales). XPS results indicate that hydroquinone and benzoquinone are retained at the interface in increasing amounts as the reaction proceeds, but reduced iron is not observed. These results suggest that quinones do not adsorb by an inner-sphere complex where adsorbate-surface interactions determine the adsorbate surface structure, but rather in an outer-sphere complex where interactions among the adsorbate molecules dominate.« less

  10. Regulatory interactions in the dimeric cytochrome bc(1) complex: the advantages of being a twin.

    PubMed

    Covian, Raul; Trumpower, Bernard L

    2008-09-01

    The dimeric cytochrome bc(1) complex catalyzes the oxidation-reduction of quinol and quinone at sites located in opposite sides of the membrane in which it resides. We review the kinetics of electron transfer and inhibitor binding that reveal functional interactions between the quinol oxidation site at center P and quinone reduction site at center N in opposite monomers in conjunction with electron equilibration between the cytochrome b subunits of the dimer. A model for the mechanism of the bc(1) complex has emerged from these studies in which binding of ligands that mimic semiquinone at center N regulates half-of-the-sites reactivity at center P and binding of ligands that mimic catalytically competent binding of ubiquinol at center P regulates half-of-the-sites reactivity at center N. An additional feature of this model is that inhibition of quinol oxidation at the quinone reduction site is avoided by allowing catalysis in only one monomer at a time, which maximizes the number of redox acceptor centers available in cytochrome b for electrons coming from quinol oxidation reactions at center P and minimizes the leakage of electrons that would result in the generation of damaging oxygen radicals.

  11. Potential Chemopreventive Agents Based on the Structure of the Lead Compound 2-Bromo-1-hydroxyphenazine, Isolated from Streptomyces sp., Strain CNS284

    PubMed Central

    Conda-Sheridan, Martin; Marler, Laura; Park, Eun-Jung; Kondratyuk, Tamara P.; Jermihov, Katherine; Mesecar, Andrew D.; Pezzuto, John M.; Asolkar, Ratnakar N.; Fenical, William; Cushman, Mark

    2010-01-01

    The isolation of 2-bromo-1-hydroxyphenazine from a marine Streptomyces sp., strain CNS284, and its activity against NFκB, suggested that a short and flexible route for the synthesis of this metabolite and a variety of phenazine analogues be developed. Numerous phenazines were subsequently prepared and evaluated as inducers of quinone reductase 1 (QR1) and inhibitors of quinone reductase 2 (QR2), NF-κB, and inducible nitric oxide synthase (iNOS). Several of the active phenazine derivatives displayed IC50 values vs. QR1 induction and QR2 inhibition in the nanomolar range, suggesting they may find utility as cancer chemopreventive agents. PMID:21105712

  12. Polymerization of a Quinone-Crosslinked Marine Bioadhesive

    DTIC Science & Technology

    1989-10-01

    with type II collagen, essentially shielding the latter from digestion by clostridial collagenase. No such shielding was conferred by the Fasciola ...been characterized from Fasciola hepatica. 20. DISTRIBUTION /iAVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSiFICATION 0UNCLASSIFIED/UNLIMITED 0...collagen. Moreover, the digestion of collagen by collagenase is undeterred by vitelline protein B, a DOPA-containing protein from Fasciola hepatica (Waite

  13. Polymerization of Quinone-Crosslinked Marine Bioadhesive Protein

    DTIC Science & Technology

    1988-10-05

    T. (1988) Adhesive protein of ribbed mussels: a natural glue with some features of collagen . To: J. Biol. Chem. Rzepecki, L., Nagafuchi, T. and...protein as inducing agent in the settlement of Mytilus edulis larvae", and "Hemolytic toxins of two marine jellyfish ", respectively. Tatsuhiko

  14. CHARACTERIZATION OF STABLE BENZO(A)PYRENE-7,8-QUINONE-DNA ADDUCTS IN CALF THYMUS DNA

    EPA Science Inventory

    Benzo[alpyrene-7,8-dione (BPQ) is a reactive aldo-keto reductase-mediated product of B[a]P-7,8-diol, a major P450/epoxide hydrolase metabolite of the multi-species carcinogen, B[a]P. The role of BPQ in B[a]P's genotoxicity and carcinogenesis is evolving. Toxicity pathways involvi...

  15. CHARACTERIZATION OF STABLE BENZOLALPYRENE-7,8-QUINONE-DNA ADDUCTS IN CALF THYMUS DNA AND POLYDEOXYNUCLEOTIDES

    EPA Science Inventory

    Bcnzo[a]pyrene-7,8-dione (BPQ) is a reactive aldo-keto reductase-mediated product of B[a]P-7,8-diol, a major P450/epoxide hydrolase metabolite of the multi-species carcinogen, B[a]P. The role of BPQ in B[a]P's genotoxicity and carcinogenesis is evolving. Toxicity pathways involvi...

  16. Profiling the NIH Small Molecule Repository for Compounds That Generate H2O2 by Redox Cycling in Reducing Environments

    PubMed Central

    2010-01-01

    We have screened the Library of Pharmacologically Active Compounds (LOPAC) and the National Institutes of Health (NIH) Small Molecule Repository (SMR) libraries in a horseradish peroxidase–phenol red (HRP-PR) H2O2 detection assay to identify redox cycling compounds (RCCs) capable of generating H2O2 in buffers containing dithiothreitol (DTT). Two RCCs were identified in the LOPAC set, the ortho-naphthoquinone β-lapachone and the para-naphthoquinone NSC 95397. Thirty-seven (0.02%) concentration-dependent RCCs were identified from 195,826 compounds in the NIH SMR library; 3 singleton structures, 9 ortho-quinones, 2 para-quinones, 4 pyrimidotriazinediones, 15 arylsulfonamides, 2 nitrothiophene-2-carboxylates, and 2 tolyl hydrazides. Sixty percent of the ortho-quinones and 80% of the pyrimidotriazinediones in the library were confirmed as RCCs. In contrast, only 3.9% of the para-quinones were confirmed as RCCs. Fifteen of the 251 arylsulfonamides in the library were confirmed as RCCs, and since we screened 17,868 compounds with a sulfonamide functional group we conclude that the redox cycling activity of the arylsulfonamide RCCs is due to peripheral reactive enone, aromatic, or heterocyclic functions. Cross-target queries of the University of Pittsburgh Drug Discovery Institute (UPDDI) and PubChem databases revealed that the RCCs exhibited promiscuous bioactivity profiles and have populated both screening databases with significantly higher numbers of active flags than non-RCCs. RCCs were promiscuously active against protein targets known to be susceptible to oxidation, but were also active in cell growth inhibition assays, and against other targets thought to be insensitive to oxidation. Profiling compound libraries or the hits from screening campaigns in the HRP-PR H2O2 detection assay significantly reduce the timelines and resources required to identify and eliminate promiscuous nuisance RCCs from the candidates for lead optimization. PMID:20070233

  17. Physiological responses of emerald ash borer larvae to feeding on different ash species reveal putative resistance mechanisms and insect counter-adaptations.

    PubMed

    Rigsby, C M; Showalter, D N; Herms, D A; Koch, J L; Bonello, P; Cipollini, D

    2015-07-01

    Emerald ash borer, Agrilus planipennis Fairmaire, an Asian wood-boring beetle, has devastated ash (Fraxinus spp.) trees in North American forests and landscapes since its discovery there in 2002. In this study, we collected living larvae from EAB-resistant Manchurian ash (Fraxinus mandschurica), and susceptible white (Fraxinus americana) and green (Fraxinus pennsylvanica) ash hosts, and quantified the activity and production of selected detoxification, digestive, and antioxidant enzymes. We hypothesized that differences in larval physiology could be used to infer resistance mechanisms of ash. We found no differences in cytochrome P450, glutathione-S-transferase, carboxylesterase, sulfotransferase, and tryptic BApNAase activities between larvae feeding on different hosts. Despite this, Manchurian ash-fed larvae produced a single isozyme of low electrophoretic mobility that was not produced in white or green ash-fed larvae. Additionally, larvae feeding on white and green ash produced two serine protease isozymes of high electrophoretic mobility that were not observed in Manchurian ash-fed larvae. We also found lower activity of β-glucosidase and higher activities of monoamine oxidase, ortho-quinone reductase, catalase, superoxide dismutase, and glutathione reductase in Manchurian ash-fed larvae compared to larvae that had fed on susceptible ash. A single isozyme was detected for both catalase and superoxide dismutase in all larval groups. The activities of the quinone-protective and antioxidant enzymes are consistent with the resistance phenotype of the host species, with the highest activities measured in larvae feeding on resistant Manchurian ash. We conclude that larvae feeding on Manchurian ash could be under quinone and oxidative stress, suggesting these may be potential mechanisms of resistance of Manchurian ash to EAB larvae, and that quinone-protective and antioxidant enzymes are important counter-adaptations of larvae for dealing with these resistance

  18. Light-adaptation of photosystem II is mediated by the plastoquinone pool.

    PubMed

    Ahrling, Karin A; Peterson, Sindra

    2003-07-01

    During the first few enzymatic turnovers after dark-adaptation of photosystem II (PSII), the relaxation rate of the EPR signals from the Mn cluster and Y(D)(*) are significantly enhanced. This light-adaptation process has been suggested to involve the appearance of a new paramagnet on the PSII donor side [Peterson, S., Ahrling, K., Högblom, J., and Styring, S. (2003) Biochemistry 42, 2748-2758]. In the present study, a correlation is established between the observed relaxation enhancement and the redox state of the quinone pool. It is shown that the addition of quinol to dark-adapted PSII membrane fragments induces relaxation enhancement already after a single oxidation of the Mn, comparable to that observed after five oxidations in samples with quinones (PPBQ or DQ) added. The saturation behavior of Y(D)(*) revealed that with quinol added in the dark, a single flash was necessary for the relaxation enhancement to occur. The quinol-induced relaxation enhancement of PSII was also activated by illumination at 200 K. Whole thylakoids, with no artificial electron acceptor present but with an intact plastoquinone pool, displayed the same relaxation enhancement on the fifth flash as membrane fragments with exogenous quinones present. We conclude that (i) reduction of the quinone pool induces the relaxation enhancement of the PSII donor-side paramagnets, (ii) light is required for the quinol to effect the relaxation enhancement, and (iii) light-adaptation occurs in the intact thylakoid system, when the endogenous plastoquinone pool is gradually reduced by PSII turnover. It seems clear that a species on the PSII donor side is reduced by the quinol, to become a potent paramagnetic relaxer. On the basis of XANES reports, we suggest that this species may be the Mn ions not involved in the cyclic redox changes of the oxygen-evolving complex.

  19. Ultrafast Electron Transfer Kinetics in the LM Dimer of Bacterial Photosynthetic Reaction Center from Rhodobacter sphaeroides.

    PubMed

    Sun, Chang; Carey, Anne-Marie; Gao, Bing-Rong; Wraight, Colin A; Woodbury, Neal W; Lin, Su

    2016-06-23

    It has become increasingly clear that dynamics plays a major role in the function of many protein systems. One system that has proven particularly facile for studying the effects of dynamics on protein-mediated chemistry is the bacterial photosynthetic reaction center from Rhodobacter sphaeroides. Previous experimental and computational analysis have suggested that the dynamics of the protein matrix surrounding the primary quinone acceptor, QA, may be particularly important in electron transfer involving this cofactor. One can substantially increase the flexibility of this region by removing one of the reaction center subunits, the H-subunit. Even with this large change in structure, photoinduced electron transfer to the quinone still takes place. To evaluate the effect of H-subunit removal on electron transfer to QA, we have compared the kinetics of electron transfer and associated spectral evolution for the LM dimer with that of the intact reaction center complex on picosecond to millisecond time scales. The transient absorption spectra associated with all measured electron transfer reactions are similar, with the exception of a broadening in the QX transition and a blue-shift in the QY transition bands of the special pair of bacteriochlorophylls (P) in the LM dimer. The kinetics of the electron transfer reactions not involving quinones are unaffected. There is, however, a 4-fold decrease in the electron transfer rate from the reduced bacteriopheophytin to QA in the LM dimer compared to the intact reaction center and a similar decrease in the recombination rate of the resulting charge-separated state (P(+)QA(-)). These results are consistent with the concept that the removal of the H-subunit results in increased flexibility in the region around the quinone and an associated shift in the reorganization energy associated with charge separation and recombination.

  20. Enhancement of Anti-Inflammatory Activity of Aloe vera Adventitious Root Extracts through the Alteration of Primary and Secondary Metabolites via Salicylic Acid Elicitation

    PubMed Central

    Lee, Yun Sun; Ju, Hyun Kyoung; Kim, Yeon Jeong; Lim, Tae-Gyu; Uddin, Md Romij; Kim, Yeon Bok; Baek, Jin Hong; Kwon, Sung Won; Lee, Ki Won; Seo, Hak Soo; Park, Sang Un; Yang, Tae-Jin

    2013-01-01

    Aloe vera (Asphodeloideae) is a medicinal plant in which useful secondary metabolites are plentiful. Among the representative secondary metabolites of Aloe vera are the anthraquinones including aloe emodin and chrysophanol, which are tricyclic aromatic quinones synthesized via a plant-specific type III polyketide biosynthesis pathway. However, it is not yet clear which cellular responses can induce the pathway, leading to production of tricyclic aromatic quinones. In this study, we examined the effect of endogenous elicitors on the type III polyketide biosynthesis pathway and identified the metabolic changes induced in elicitor-treated Aloe vera adventitious roots. Salicylic acid, methyl jasmonate, and ethephon were used to treat Aloe vera adventitious roots cultured on MS liquid media with 0.3 mg/L IBA for 35 days. Aloe emodin and chrysophanol were remarkably increased by the SA treatment, more than 10–11 and 5–13 fold as compared with untreated control, respectively. Ultra-performance liquid chromatography-electrospray ionization mass spectrometry analysis identified a total of 37 SA-induced compounds, including aloe emodin and chrysophanol, and 3 of the compounds were tentatively identified as tricyclic aromatic quinones. Transcript accumulation analysis of polyketide synthase genes and gas chromatography mass spectrometry showed that these secondary metabolic changes resulted from increased expression of octaketide synthase genes and decreases in malonyl-CoA, which is the precursor for the tricyclic aromatic quinone biosynthesis pathway. In addition, anti-inflammatory activity was enhanced in extracts of SA-treated adventitious roots. Our results suggest that SA has an important role in activation of the plant specific-type III polyketide biosynthetic pathway, and therefore that the efficacy of Aloe vera as medicinal agent can be improved through SA treatment. PMID:24358188

  1. A new look on protein-polyphenol complexation during honey storage: is this a random or organized event with the help of dirigent-like proteins?

    PubMed

    Brudzynski, Katrina; Sjaarda, Calvin; Maldonado-Alvarez, Liset

    2013-01-01

    Honey storage initiates melanoidin formation that involves a cascade of seemingly unguided redox reactions between amino acids/proteins, reducing sugars and polyphenols. In the process, high molecular weight protein-polyphenol complexes are formed, but the mechanism involved remains unknown. The objective of this study was twofold: to determine quantitative and qualitative changes in proteins in honeys stored for prolonged times and in different temperatures and to relate these changes to the formation of protein-polyphenol complexes. Six -month storage decreased the protein content by 46.7% in all tested honeys (t-test, p<0.002) with the rapid reduction occurring during the first three month. The changes in protein levels coincided with alterations in molecular size and net charge of proteins on SDS -PAGE. Electro-blotted proteins reacted with a quinone-specific nitro blue tetrazolium (NBT) on nitrocellulose membranes indicating that quinones derived from oxidized polyphenols formed covalent bonds with proteins. Protein-polyphenol complexes isolated by size-exclusion chromatography differed in size and stoichiometry and fall into two categories: (a) high molecular weight complexes (230-180 kDa) enriched in proteins but possessing a limited reducing activity toward the NBT and (b) lower molecular size complexes (110-85 kDa) enriched in polyphenols but strongly reducing the dye. The variable stoichiometry suggest that the large, "protein-type" complexes were formed by protein cross-linking, while in the smaller, "polyphenol-type" complexes polyphenols were first polymerized prior to protein binding. Quinones preferentially bound a 31 kDa protein which, by the electrospray quadrupole time of flight mass spectrometry (ESI-Qtof-MS) analysis, showed homology to dirigent-like proteins known for assisting in radical coupling and polymerization of phenolic compounds. These findings provide a new look on protein-polyphenol interaction in honey where the reaction of quinones

  2. Ecofriendly syntheses of phenothiazones and related structures facilitated by laccase – A comparative study

    DOE PAGES

    Cannatelli, Mark D.; Ragauskas, Arthur J.

    2016-07-06

    The biocatalytic synthesis of phenothiazones and related compounds has been achieved in an aqueous system under mild conditions facilitated by laccase oxidation. It was found that by coupling 2-aminothiophenol directly with 1,4-quinones, the product yields could be significantly increased compared to generating the 1,4-quinones in situ from the corresponding hydroquinones via laccase oxidation. However, laccase still proved to be pivotal for achieving highest product yields by catalyzing the final oxidation step. Furthermore, a difference in reactivity of aromatic and aliphatic amines toward 1,4-naphthoquinone is observed. Furthermore, this study provides a sustainable approach to the synthesis of a biologically important classmore » of compounds.« less

  3. Electrochemical analysis in a liposome suspension using lapachol as a hydrophobic electro active species.

    PubMed

    Okumura, Noriko; Wakamatsu, Shiori; Uno, Bunji

    2014-01-01

    This study demonstrated that the electro-chemical analysis of hydrophobic quinones can be performed in liposome suspension systems. We prepared and analyzed liposome suspensions containing lapachol, which is a quinone-based anti-tumor activity compound. In this suspension system, a simple one redox couple of lapachol is observed. These results are quite different from those obtained in organic solvents. In addition, the pH dependence of redox behaviors of lapachol could be observed in multilamellar vesicle (MLV) suspension system. This MLV suspension system method may approximate the electrochemical behavior of hydrophobic compounds in aqueous conditions. A benefit of this liposome suspension system for electrochemical analysis is that it enables to observe water-insoluble compounds without using organic solvents.

  4. Sodium dodecyl benzene sulphonate mediated tautomerism of Eriochrome Black-T: Effect of charge transfer interaction

    NASA Astrophysics Data System (ADS)

    Ghosh, Sumit

    2010-11-01

    Interaction between anionic surfactant, sodium dodecyl benzene sulphonate, (SDBS) and an anionic dye Eriochrome Black-T, (EBT) has been investigated by visible spectroscopy, conductometry, dynamic light scattering and zeta potential measurements. Spectral changes of EBT observed on addition of SDBS indicate formation of quinone-hydrazone tautomer at pH 7.0, whereas in absence of SDBS this change appears at pH ˜ 9.45. However, at pH 7.0 this change in tautomerism is not observed in presence of sodium dodecyl sulphate (SDS). Experimental results indicate presence of charge transfer interaction between less stable quinone-hydrazone tautomer of EBT and SDBS molecules, which is confirmed using Benesi-Hildebrand and Scott equations.

  5. 78 FR 21850 - Defense Federal Acquisition Regulation Supplement; Technical Amendments

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-12

    ... Parts 215, 235, and 237 Government procurement. Manuel Quinones, Editor, Defense Acquisition Regulations...-79 for notifying affected incumbent contractors of Government in-sourcing actions, in accordance with...

  6. Effect of the orthoquinone moiety in 9,10-phenanthrenequinone on its ability to induce apoptosis in HCT-116 and HL-60 cells.

    PubMed

    Hatae, Noriyuki; Nakamura, Jun; Okujima, Tetsuo; Ishikura, Minoru; Abe, Takumi; Hibino, Satoshi; Choshi, Tominari; Okada, Chiaki; Yamada, Hiroko; Uno, Hidemitsu; Toyota, Eiko

    2013-08-15

    9,10-Phenanthrenequinone (9,10-PQ) is one of the most abundant quinones among diesel exhaust particulates. Recent data have suggested that quinones induce apoptosis in immune, epithelial and tumor cells, leading to respirator illness; however, the mechanisms by which quinones induce apoptosis and the structure required for this remain unknown. We studied the antitumor activity of 9,10-PQ analogs against two human tumor cell lines, HCT-116 colon tumor cells and HL-60 promyelocytic leukemia cells. The loss of the cis-orthoquinone unit in 9,10-PQ abrogated its ability to induce apoptosis in the two tumor cell lines, and the LC50 values of these analogs were indicated over 10 μM. An analog of 9,10-PQ in which the biaryl unit had been deleted displayed a reduced ability to induce tumor cell apoptosis, while the analogs 1,10-phenanthroline-5,6-dione (9) and pyrene-4,5-dione (10), which also had modified biaryl units, exhibited increased tumor cell apoptotic activity. The cis-orthoquinone unit in 9,10-PQ was identified as essential for its ability to induce apoptosis in tumor cells, and its biaryl unit is also considered to influence orthoquinone-mediated apoptotic activity. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Simulation of the oxidative metabolism of diclofenac by electrochemistry/(liquid chromatography/)mass spectrometry.

    PubMed

    Faber, Helene; Melles, Daniel; Brauckmann, Christine; Wehe, Christoph Alexander; Wentker, Kristina; Karst, Uwe

    2012-04-01

    Diclofenac is a frequently prescribed drug for rheumatic diseases and muscle pain. In rare cases, it may be associated with a severe hepatotoxicity. In literature, it is discussed whether this toxicity is related to the oxidative phase I metabolism, resulting in electrophilic quinone imines, which can subsequently react with nucleophiles present in the liver in form of glutathione or proteins. In this work, electrochemistry coupled to mass spectrometry is used as a tool for the simulation of the oxidative pathway of diclofenac. Using this purely instrumental approach, diclofenac was oxidized in a thin layer cell equipped with a boron doped diamond working electrode. Sum formulae of generated oxidation products were calculated based on accurate mass measurements with deviations below 2 ppm. Quinone imines from diclofenac were detected using this approach. It could be shown for the first time that these quinone imines do not react with glutathione exclusively but also with larger molecules such as the model protein β-lactoglobulin A. A tryptic digest of the generated drug-protein adduct confirms that the protein is modified at the only free thiol-containing peptide. This simple and purely instrumental set-up offers the possibility of generating reactive metabolites of diclofenac and to assess their reactivity rapidly and easily.

  8. Browning inhibition mechanisms by cysteine, ascorbic acid and citric acid, and identifying PPO-catechol-cysteine reaction products.

    PubMed

    Ali, Hussein M; El-Gizawy, Ahmed M; El-Bassiouny, Rawia E I; Saleh, Mahmoud A

    2015-06-01

    The titled compounds were examined as PPO inhibitors and antibrowning agents; their various mechanisms were investigated and discussed. All compounds reduced significantly both the browning process and PPO activity. Browning index gave strong correlation with PPO activity (r(2) = 0.96, n = 19) indicating that the browning process is mainly enzymatic. Ascorbic acid could reduce the formed quinone instantly to the original substrate (catechol) at high concentration (>1.5 %) while at lower concentrations acted as competitive inhibitor (KI = 0.256 ± 0.067 mM). Cysteine, at higher concentrations (≥1.0 %), reacted with the resulted quinone to give a colorless products while at the low concentrations, cysteine worked as competitive inhibitor (KI = 1.113 ± 0.176 mM). Citric acid acted only as PPO non-competitive inhibitor with KI = 2.074 ± 0.363 mM. The products of PPO-catechole-cysteine reaction could be separation and identification by LC-ESI-MS. Results indicated that the product of the enzymatic oxidation of catechol, quinone, undergoes two successive nucleophilic attacks by cysteine thiol group. Cysteine was condensed with the resulted mono and dithiocatechols to form peptide side chains.

  9. Flow injection amperometric sensor with a carbon nanotube modified screen printed electrode for determination of hydroquinone.

    PubMed

    Upan, Jantima; Reanpang, Preeyaporn; Chailapakul, Orawon; Jakmunee, Jaroon

    2016-01-01

    Flow injection amperometric (FI-Amp) sensor was developed for sensitive and selective determination of hydroquinone. A simple screen printed carbon electrode (SPCE) was modified with various nanomaterials for improvement of sensitivity on the determination of quinone. As a result, the appropriate sensitivity is obtained from the SPCE modified with carbon nanotube (CNT) which indicated that CNT contributed to the transfer of electron to quinone. The reproducibility (n=9) and repeatability (n=111) of SPCE-CNT were obtained at 4.4% and 3.6%RSD, respectively. The SPCE-CNT electrode and enzymatic column were incorporated to the FI-Amp system to determine hydroquinone. Laccase was immobilized on silica gel using a cross-linking method by glutaraldehyde modification and then packed in the column. The laccase column has high efficiency for catalytic oxidation of hydroquinone to quinone, which further detects by amperometric detection. Parameters affecting response of the proposed sensor, i.e., pH, ionic strength, and temperature have been optimized. The proposed system provided a wide linear range between 1 and 50 µM with detection limit of 0.1 µM. Satisfactory recoveries in the range of 91.2-103.8% were obtained for the analysis of water sample. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Chemical ecology of the luna moth : Effects of host plant on detoxification enzyme activity.

    PubMed

    Lindroth, R L

    1989-07-01

    The effects of food plant on larval performance and midgut detoxification enzymes were investigated in larvae of the luna moth,Actias luna. Neonate larvae were fed leaves of black cherry, cottonwood, quaking aspen, white willow, red oak, white oak, tulip tree, paper birch, black walnut, butternut, or shagbark hickory. First instar survival, larval duration, and pupal weights were monitored as indices of food quality. Midgut enzyme preparations from fifth instars were assayed for β-glucosidase, quinone reductase, polysubstrate monooxygenase, esterase, and glutathione transferase activities. Larval survival on seven of the 11 plant species, including several recorded host plants, was extremely poor. Larvae performed well, and quite similarly, on birch, walnut, butternut, and hickory. Activities of all enzyme systems except β-glucosidase were significantly influenced by larval host plant. Of the systems assayed, quinone reductase and glutathione transferase activities were especially high. Comparisons of these values with published values for other Lepidoptera support the hypothesis that these enzyme systems are involved in conferring tolerance to juglone and related quinones occurring in members of the plant family Juglandaceae. Results suggest that host plant utilization by luna is more specialized at the individual or population level than at the species level and that biochemical detoxification systems may play a role in such specialization.

  11. Further Insights on the Chemical Structure of Humic Substances (HS) and Chromophoric Dissolved Organic Matter (CDOM) in Relation to their Optical/Chemical Properties

    NASA Astrophysics Data System (ADS)

    Del Vecchio, R.; Schendorf, T. M.; Koech, K.; Blough, N. V.

    2016-02-01

    HS have been studied extensively over the last decades, yet the structural basis of their optical properties is still highly debated. Aromatic ketones, aldehydes and quinones along with carboxylic groups and phenolic moieties are significant constituents of HS, however their contribution to the optical properties has only recently been investigated. Chemical manipulation of selected functional groups thus represents an extremely promising approach to highlight the contribution of such groups to the HS (and CDOM) optical properties. Chemical reduction (and re-oxidation) along with pH titrations are employed herein to assess the relative contribution of aromatic ketones/aldehydes/quinones and carboxylic groups/phenolic moieties, respectively to the optical properties of HS (and CDOM). Results indicate that (a) the contribution of quinones to HS absorption and fluorescence is minor (or nil), while that of aromatic ketones (and aldehydes) is significant; (b) phenolic groups contribute more than carboxylic acids to the HS optical properties; (c) the effects of borohydride reduction and pH on the long-wavelength absorption and fluorescence is consistent with charge-transfer interactions between carbonyl and phenolic groups (as well as aromatic carboxylic acids, but to a smaller extent). Results will be presented within the context of our proposed charge-transfer model.

  12. Biochemistry of Catabolic Reductive Dehalogenation.

    PubMed

    Fincker, Maeva; Spormann, Alfred M

    2017-06-20

    A wide range of phylogenetically diverse microorganisms couple the reductive dehalogenation of organohalides to energy conservation. Key enzymes of such anaerobic catabolic pathways are corrinoid and Fe-S cluster-containing, membrane-associated reductive dehalogenases. These enzymes catalyze the reductive elimination of a halide and constitute the terminal reductases of a short electron transfer chain. Enzymatic and physiological studies revealed the existence of quinone-dependent and quinone-independent reductive dehalogenases that are distinguishable at the amino acid sequence level, implying different modes of energy conservation in the respective microorganisms. In this review, we summarize current knowledge about catabolic reductive dehalogenases and the electron transfer chain they are part of. We review reaction mechanisms and the role of the corrinoid and Fe-S cluster cofactors and discuss physiological implications.

  13. Loss of heterocyclic amine mutagens by insoluble hemicellulose fiber and high-molecular-weight soluble polyphenolics of coffee.

    PubMed

    Kato, T; Takahashi, S; Kikugawa, K

    1991-01-01

    The presence of 2 kinds of components in brewed and instant coffee that could remove and destroy heterocyclic amine mutagens was demonstrated. The component that could remove the mutagens was insoluble fiber composed of hemicellulose. The fiber could tightly adsorb the mutagens Trp-P-1, Trp-P-2, Glu-P-1 and A alpha C, and those generated in roasted coffee beans. The component that could destroy the mutagens was high-molecular-weight soluble polyphenolics. They might be converted into quinone derivatives in the presence of molecular oxygen. The quinone derivatives might destroy the mutagens. The fibers and the polyphenolics in one cup of brewed or instant coffee had the capacity to remove and destroy a substantial amount of the mutagens in pyrolysates of foodstuffs.

  14. The oxidation of apomorphine and other catechol compounds by horseradish peroxidase: relevance to the measurement of dihydropteridine reductase activity.

    PubMed

    Milstien, S; Kaufman, S

    1987-03-19

    It has been reported by Shen et al. (Shen, R.-S., Smith, R.V., Davis, P.J. and Abell, C.W. (1984) J. Biol. Chem. 259, 8894-9000) that apomorphine and dopamine are potent, non-competitive inhibitors of quinonoid dihydropteridine reductase. In this paper we show that apomorphine, dopamine and other catechol-containing compounds are oxidized rapidly to quinones by the horseradish peroxidase-H2O2 system which is used to generate the quinonoid dihydropterin substrate. These quinones react non-enzymatically with reduced pyridine nucleotides, depleting the other substrate of dihydropteridine reductase. When true initial rates of dihydropteridine reductase-dependent reduction of quinonoid dihydropterins are measured, neither apomorphine nor any other catechol-containing compound that has been tested has been found to inhibit dihydropteridine reductase.

  15. 77 FR 71185 - Submission for OMB Review; Comment Request

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-29

    ... for-profit and not-for- profit institutions. Frequency: On occasion. Respondent's Obligation: Required..., 4800 Mark Center Drive, 2nd Floor, East Tower, Suite 02G09, Alexandria, VA 22350-3100. Manuel Quinones...

  16. Biomimetic Oxygen-Evolving Photobacteria Based on Amino Acid and Porphyrin Hierarchical Self-Organization.

    PubMed

    Liu, Kai; Zhang, Han; Xing, Ruirui; Zou, Qianli; Yan, Xuehai

    2017-12-26

    Biomimetic organization provides a promising strategy to develop functional materials and understand biological processes. However, how to mimic complex biological systems using simple biomolecular units remains a great challenge. Herein, we design and fabricate a biomimetic cyanobacteria model based on self-integration of small bioinspired molecules, including amphiphilic amino acid, 3,4-dihydroxyphenylalanine (DOPA), and metalloporphyrin and cobalt oxide nanoparticles (Co 3 O 4 NPs), with the assistance of chemical conjugation and molecular self-assembly. The assembled amino acid fiber can be modified by DOPA to form covalently bound DOPA melanin containing hydroxyl and quinone species via Schiff base reaction. The adhering template can further tune the self-assembly of metalloporphyrin and Co 3 O 4 NPs into J-aggregation and dispersive distribution, respectively, mainly via coordination binding. Metalloporphyrin molecules in the resulting hybrid fibers capture light; quinone species accept the excited electrons, and Co 3 O 4 NPs catalyze water oxidation. Thus, the essential components of the photosystem-II protein complex in cyanobacteria are simplified and engineered into a simple framework, still retaining a similar photosynthetic mechanism. In addition, this architecture leads to efficient coupling of antenna, quinone-type reaction center, and photocatalyst, which increases the flux of light energy from antenna to reaction center for charge separation, resulting in enhanced oxygen evolution rate with excellent sustainability.

  17. Cation Effects on the Electron-Acceptor Side of Photosystem II.

    PubMed

    Khan, Sahr; Sun, Jennifer S; Brudvig, Gary W

    2015-06-18

    The normal pathway of electron transfer on the electron-acceptor side of photosystem II (PSII) involves electron transfer from quinone A, QA, to quinone B, QB. It is possible to redirect electrons from QA(-) to water-soluble Co(III) complexes, which opens a new avenue for harvesting electrons from water oxidation by immobilization of PSII on electrode surfaces. Herein, the kinetics of electron transfer from QA(-) to [Co(III)(terpy)2](3+) (terpy = 2,2';6',2″-terpyridine) are investigated with a spectrophotometric assay revealing that the reaction follows Michaelis-Menten saturation kinetics, is inhibited by cations, and is not affected by variation of the QA reduction potential. A negatively charged site on the stromal surface of the PSII protein complex, composed of glutamic acid residues near QA, is hypothesized to bind cations, especially divalent cations. The cations are proposed to tune the redox properties of QA through electrostatic interactions. These observations may thus explain the molecular basis of the effect of divalent cations like Ca(2+), Sr(2+), Mg(2+), and Zn(2+) on the redox properties of the quinones in PSII, which has previously been attributed to long-range conformational changes propagated from divalent cations binding to the Ca(II)-binding site in the oxygen-evolving complex on the lumenal side of the PSII complex.

  18. Molecular mechanism of metal-independent decomposition of lipid hydroperoxide 13-HPODE by halogenated quinoid carcinogens.

    PubMed

    Qin, Hao; Huang, Chun-Hua; Mao, Li; Xia, Hai-Ying; Kalyanaraman, Balaraman; Shao, Jie; Shan, Guo-Qiang; Zhu, Ben-Zhan

    2013-10-01

    Halogenated quinones are a class of carcinogenic intermediates and newly identified chlorination disinfection by-products in drinking water. 13-Hydroperoxy-9,11-octadecadienoic acid (13-HPODE) is the most extensively studied endogenous lipid hydroperoxide. Although it is well known that the decomposition of 13-HPODE can be catalyzed by transition metal ions, it is not clear whether halogenated quinones could enhance its decomposition independent of metal ions and, if so, what the unique characteristics and similarities are. Here we show that 2,5-dichloro-1,4-benzoquinone (DCBQ) could markedly enhance the decomposition of 13-HPODE and formation of reactive lipid alkyl radicals such as pentyl and 7-carboxyheptyl radicals, and the genotoxic 4-hydroxy-2-nonenal (HNE), through the complementary application of ESR spin trapping, HPLC-MS, and GC-MS methods. Interestingly, two chloroquinone-lipid alkoxyl conjugates were also detected and identified from the reaction between DCBQ and 13-HPODE. Analogous results were observed with other halogenated quinones. This represents the first report that halogenated quinoid carcinogens can enhance the decomposition of the endogenous lipid hydroperoxide 13-HPODE and formation of reactive lipid alkyl radicals and genotoxic HNE via a novel metal-independent nucleophilic substitution coupled with homolytic decomposition mechanism, which may partly explain their potential genotoxicity and carcinogenicity. Copyright © 2013 Elsevier Inc. All rights reserved.

  19. Identification of the ubiquinone-binding domain in the disulfide catalyst disulfide bond protein B.

    PubMed

    Xie, Tong; Yu, Linda; Bader, Martin W; Bardwell, James C A; Yu, Chang-An

    2002-01-18

    Disulfide bond (Dsb) formation is catalyzed in the periplasm of prokaryotes by the Dsb proteins. DsbB, a key enzyme in this process, generates disulfides de novo by using the oxidizing power of quinones. To explore the mechanism of this newly described enzymatic activity, we decided to study the ubiquinone-protein interaction and identify the ubiquinone-binding domain in DsbB by cross-linking to photoactivatable quinone analogues. When purified Escherichia coli DsbB was incubated with an azidoubiquinone derivative, 3-azido-2-methyl-5-[(3)H]methoxy-6-decyl-1,4-benzoquinone ([(3)H]azido-Q), and illuminated with long wavelength UV light, the decrease in enzymatic activity correlated with the amount of 3-azido-2-methyl-5-methoxy-6-decyl-1,4-benzoquinone (azido-Q) incorporated into the protein. One azido-Q-linked peptide with a retention time of 33.5 min was obtained by high performance liquid chromatography of the V8 digest of [(3)H]azido-Q-labeled DsbB. This peptide has a partial NH(2)-terminal amino acid sequence of NH(2)-HTMLQLY corresponding to residues 91-97. This sequence occurs in the second periplasmic domain of the inner membrane protein DsbB in a loop connecting transmembrane helices 3 and 4. We propose that the quinone-binding site is within or very near to this sequence.

  20. Identification of the quinolinedione inhibitor binding site in Cdc25 phosphatase B through docking and molecular dynamics simulations.

    PubMed

    Ge, Yushu; van der Kamp, Marc; Malaisree, Maturos; Liu, Dan; Liu, Yi; Mulholland, Adrian J

    2017-11-01

    Cdc25 phosphatase B, a potential target for cancer therapy, is inhibited by a series of quinones. The binding site and mode of quinone inhibitors to Cdc25B remains unclear, whereas this information is important for structure-based drug design. We investigated the potential binding site of NSC663284 [DA3003-1 or 6-chloro-7-(2-morpholin-4-yl-ethylamino)-quinoline-5, 8-dione] through docking and molecular dynamics simulations. Of the two main binding sites suggested by docking, the molecular dynamics simulations only support one site for stable binding of the inhibitor. Binding sites in and near the Cdc25B catalytic site that have been suggested previously do not lead to stable binding in 50 ns molecular dynamics (MD) simulations. In contrast, a shallow pocket between the C-terminal helix and the catalytic site provides a favourable binding site that shows high stability. Two similar binding modes featuring protein-inhibitor interactions involving Tyr428, Arg482, Thr547 and Ser549 are identified by clustering analysis of all stable MD trajectories. The relatively flexible C-terminal region of Cdc25B contributes to inhibitor binding. The binding mode of NSC663284, identified through MD simulation, likely prevents the binding of protein substrates to Cdc25B. The present results provide useful information for the design of quinone inhibitors and their mechanism of inhibition.

  1. Identification of the quinolinedione inhibitor binding site in Cdc25 phosphatase B through docking and molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Ge, Yushu; van der Kamp, Marc; Malaisree, Maturos; Liu, Dan; Liu, Yi; Mulholland, Adrian J.

    2017-11-01

    Cdc25 phosphatase B, a potential target for cancer therapy, is inhibited by a series of quinones. The binding site and mode of quinone inhibitors to Cdc25B remains unclear, whereas this information is important for structure-based drug design. We investigated the potential binding site of NSC663284 [DA3003-1 or 6-chloro-7-(2-morpholin-4-yl-ethylamino)-quinoline-5, 8-dione] through docking and molecular dynamics simulations. Of the two main binding sites suggested by docking, the molecular dynamics simulations only support one site for stable binding of the inhibitor. Binding sites in and near the Cdc25B catalytic site that have been suggested previously do not lead to stable binding in 50 ns molecular dynamics (MD) simulations. In contrast, a shallow pocket between the C-terminal helix and the catalytic site provides a favourable binding site that shows high stability. Two similar binding modes featuring protein-inhibitor interactions involving Tyr428, Arg482, Thr547 and Ser549 are identified by clustering analysis of all stable MD trajectories. The relatively flexible C-terminal region of Cdc25B contributes to inhibitor binding. The binding mode of NSC663284, identified through MD simulation, likely prevents the binding of protein substrates to Cdc25B. The present results provide useful information for the design of quinone inhibitors and their mechanism of inhibition.

  2. Condensed tannins: Quinone methide intermediates in procyanidin synthesis

    Treesearch

    Richard W. Hemingway; L. Y. Foo

    1983-01-01

    Proanthocyanidins (condensed tanruns) are widely distributed in plants and are found in sufficiently high concentration in some tree barks to encourage their industrial utilization. These polymers consist of flavanoid units linked through the C-4 of the pyran ring to the C-6 or C-8 carbons of the aromatic A-ring. Recent advances in the chemistry of condensed tannins...

  3. A New Look on Protein-Polyphenol Complexation during Honey Storage: Is This a Random or Organized Event with the Help of Dirigent-Like Proteins?

    PubMed Central

    Brudzynski, Katrina; Sjaarda, Calvin; Maldonado-Alvarez, Liset

    2013-01-01

    Honey storage initiates melanoidin formation that involves a cascade of seemingly unguided redox reactions between amino acids/proteins, reducing sugars and polyphenols. In the process, high molecular weight protein-polyphenol complexes are formed, but the mechanism involved remains unknown. The objective of this study was twofold: to determine quantitative and qualitative changes in proteins in honeys stored for prolonged times and in different temperatures and to relate these changes to the formation of protein-polyphenol complexes. Six -month storage decreased the protein content by 46.7% in all tested honeys (t-test, p<0.002) with the rapid reduction occurring during the first three month. The changes in protein levels coincided with alterations in molecular size and net charge of proteins on SDS –PAGE. Electro-blotted proteins reacted with a quinone-specific nitro blue tetrazolium (NBT) on nitrocellulose membranes indicating that quinones derived from oxidized polyphenols formed covalent bonds with proteins. Protein-polyphenol complexes isolated by size-exclusion chromatography differed in size and stoichiometry and fall into two categories: (a) high molecular weight complexes (230–180 kDa) enriched in proteins but possessing a limited reducing activity toward the NBT and (b) lower molecular size complexes (110–85 kDa) enriched in polyphenols but strongly reducing the dye. The variable stoichiometry suggest that the large, “protein-type” complexes were formed by protein cross-linking, while in the smaller, “polyphenol-type” complexes polyphenols were first polymerized prior to protein binding. Quinones preferentially bound a 31 kDa protein which, by the electrospray quadrupole time of flight mass spectrometry (ESI-Qtof-MS) analysis, showed homology to dirigent-like proteins known for assisting in radical coupling and polymerization of phenolic compounds. These findings provide a new look on protein-polyphenol interaction in honey where the

  4. Natural Abenquines and Their Synthetic Analogues Exert Algicidal Activity against Bloom-Forming Cyanobacteria.

    PubMed

    Nain-Perez, Amalyn; Barbosa, Luiz Cláudio Almeida; Maltha, Célia Regina Álvares; Forlani, Giuseppe

    2017-04-28

    Abenquines are natural quinones, produced by some Streptomycetes, showing the ability to inhibit cyanobacterial growth in the 1 to 100 μM range. To further elucidate their biological significance, the synthesis of several analogues (4f-h, 5a-h) allowed us to identify some steric and electronic requirements for bioactivity. Replacing the acetyl by a benzoyl group in the quinone core and also changing the amino acid moiety with ethylpyrimidinyl or ethylpyrrolidinyl groups resulted in analogues 25-fold more potent than the natural abenquines. The two most effective analogues inhibited the proliferation of five cyanobacterial strains tested, with IC 50 values ranging from 0.3 to 3 μM. These compounds may be useful leads for the development of an effective strategy for the control of cyanobacterial blooms.

  5. Structural and Biochemical Characterization of Chlamydia trachomatis Hypothetical Protein CT263 Supports That Menaquinone Synthesis Occurs through the Futalosine Pathway*

    PubMed Central

    Barta, Michael L.; Thomas, Keisha; Yuan, Hongling; Lovell, Scott; Battaile, Kevin P.; Schramm, Vern L.; Hefty, P. Scott

    2014-01-01

    The obligate intracellular human pathogen Chlamydia trachomatis is the etiological agent of blinding trachoma and sexually transmitted disease. Genomic sequencing of Chlamydia indicated this medically important bacterium was not exclusively dependent on the host cell for energy. In order for the electron transport chain to function, electron shuttling between membrane-embedded complexes requires lipid-soluble quinones (e.g. menaquionone or ubiquinone). The sources or biosynthetic pathways required to obtain these electron carriers within C. trachomatis are poorly understood. The 1.58Å crystal structure of C. trachomatis hypothetical protein CT263 presented here supports a role in quinone biosynthesis. Although CT263 lacks sequence-based functional annotation, the crystal structure of CT263 displays striking structural similarity to 5′-methylthioadenosine nucleosidase (MTAN) enzymes. Although CT263 lacks the active site-associated dimer interface found in prototypical MTANs, co-crystal structures with product (adenine) or substrate (5′-methylthioadenosine) indicate that the canonical active site residues are conserved. Enzymatic characterization of CT263 indicates that the futalosine pathway intermediate 6-amino-6-deoxyfutalosine (kcat/Km = 1.8 × 103 m−1 s−1), but not the prototypical MTAN substrates (e.g. S-adenosylhomocysteine and 5′-methylthioadenosine), is hydrolyzed. Bioinformatic analyses of the chlamydial proteome also support the futalosine pathway toward the synthesis of menaquinone in Chlamydiaceae. This report provides the first experimental support for quinone synthesis in Chlamydia. Menaquinone synthesis provides another target for agents to combat C. trachomatis infection. PMID:25253688

  6. Isolation and partial characterization of pigment-like antibiotics produced by a new strain of Streptosporangium isolated from an Algerian soil.

    PubMed

    Boudjella, H; Bouti, K; Zitouni, A; Mathieu, F; Lebrihi, A; Sabaou, N

    2007-07-01

    Identification of a new actinomycete strain Sg3, belonging to the genus Streptosporangium and partial characterization of the produced antibacterial activities. The strain Sg3 was isolated from an Algerian Saharan soil and identified by morphological, chemotaxonomic and phylogenetic analyses to the genus Streptosporangium. The comparison of its physiological characteristics with those of known species of Streptosporangium showed significant differences with the nearest species Streptosporangium carneum. Analysis of the 16S rDNA sequence of strain Sg3 showed a similarity level ranging between 97% and 98.8% within Streptosporangium species, with S. carneum the most closely related. Strain Sg3 showed a red coloured antibacterial activity against gram-positive bacteria on several culture media. The purification of the red pigment by chromatographic methods led to the isolation of three active products. The (1)H nuclear magnetic resonance (NMR), mass, infrared (IR) and ultraviolet-visible (UV-VIS) data of these molecules strongly suggested that they belonged to the quinone-anthracycline group with three or more rings. Strain Sg3 represents a distinct phyletic line suggesting a new genomic species. It produces antibacterial activities identified as quinone-anthracycline aromatics. The quinone-anthracycline antibiotics are known for their antimicrobial and antineoplastic activities and are used in chemotherapy for the treatment of many cancer diseases. The present work constitutes the first stage of a whole series of studies to be realized on these antibiotics before arriving at a possible application.

  7. Oxidation of DJ-1 Induced by 6-Hydroxydopamine Decreasing Intracellular Glutathione

    PubMed Central

    Miyama, Akiko; Saito, Yoshiro; Yamanaka, Kazunori; Hayashi, Kojiro; Hamakubo, Takao; Noguchi, Noriko

    2011-01-01

    DJ-1, the causative gene of a familial form of Parkinson's disease (PD), has been reported to undergo preferential oxidation of the cysteine residue at position 106 (Cys-106) under oxidative stress; however, details of the molecular mechanisms are not well known. In the present study, mechanisms of DJ-1 oxidation induced by 6-hydroxydopamine (6-OHDA) were investigated by using SH-SY5Y cells. The treatment of these cells with 6-OHDA caused an obvious acidic spot sift of DJ-1 due to its oxidation. However, when catalase, which is an hydrogen peroxide (H2O2)-removing enzyme, was added during the treatment, it failed to prevent the oxidation induced by 6-OHDA, suggesting that electrophilic p-quinone formed from 6-OHDA, but not H2O2, was responsible for the DJ-1 oxidation. Benzoquinone, another electrophilic p-quinone, also induced DJ-1 oxidation. The intracellular glutathione (GSH) levels were significantly decreased by 6-OHDA, irrespective of the presence or absence of catalase. The inhibition of GSH synthesis by buthionine sulfoximine resulted in a decrease in GSH levels and enhancement of DJ-1 oxidation. The pretreatment of cells with N-acetyl-cysteine prevented the loss of intracellular GSH and subsequently DJ-1 oxidation induced by 6-OHDA. Collectively, these results suggest that electrophilic p-quinone formed from 6-OHDA induces DJ-1 oxidation by decreasing intracellular GSH. PMID:22132160

  8. Kinetics and mechanism of hydration of o-thioquinone methide in aqueous solution. Rate-determining protonation of sulfur.

    PubMed

    Chiang, Yvonne; Kresge, A Jerry; Sadovski, Oleg; Zhan, Hao-Qiang

    2005-03-04

    o-Thioquinone methide, 2, was generated in aqueous solution by flash photolysis of benzothiete, 1, and rates of hydration of this quinone methide to o-mercaptobenzyl alcohol, 3, were measured in perchloric acid solutions, using H2O and D2O as the solvent, and also in acetic acid and tris(hydroxymethyl)methylammonium ion buffers, using H2O as the solvent. The rate profiles constructed from these data show hydronium-ion-catalyzed and uncatalyzed hydration reaction regions, just like the rate profiles based on literature data for hydration of the oxygen analogue, o-quinone methide, of the presently examined substrate. Solvent isotope effects on hydronium-ion catalysis of hydration for the two substrates, however, are quite different: k(H)/k(D) = 0.42 for the oxygen quinone methide, whereas k(H)/k(D) = 1.66 for the sulfur substrate. The inverse nature (k(H)/k(D) < 1) of the isotope effect in the oxygen system indicates that this reaction occurs by a preequilibrium proton-transfer reaction mechanism, with protonation of the substrate on its oxygen atom being fast and reversible and capture of the benzyl-type carbocationic intermediate so formed being rate-determining. The normal direction (k(H)/k(D) > 1) of the isotope effect in the sulfur system, on the other hand, suggests that protonation of the substrate on its sulfur atom is in this case rate-determining, with carbocation capture a fast following step. A semiquantitative argument supporting this hypothesis is presented.

  9. YNL134C from Saccharomyces cerevisiae encodes a novel protein with aldehyde reductase activity for detoxification of furfural derived from lignocellulosic biomass.

    PubMed

    Zhao, Xianxian; Tang, Juan; Wang, Xu; Yang, Ruoheng; Zhang, Xiaoping; Gu, Yunfu; Li, Xi; Ma, Menggen

    2015-05-01

    Furfural and 5-hydroxymethylfurfural (HMF) are the two main aldehyde compounds derived from pentoses and hexoses, respectively, during lignocellulosic biomass pretreatment. These two compounds inhibit microbial growth and interfere with subsequent alcohol fermentation. Saccharomyces cerevisiae has the in situ ability to detoxify furfural and HMF to the less toxic 2-furanmethanol (FM) and furan-2,5-dimethanol (FDM), respectively. Herein, we report that an uncharacterized gene, YNL134C, was highly up-regulated under furfural or HMF stress and Yap1p and Msn2/4p transcription factors likely controlled its up-regulated expression. Enzyme activity assays showed that YNL134C is an NADH-dependent aldehyde reductase, which plays a role in detoxification of furfural to FM. However, no NADH- or NADPH-dependent enzyme activity was observed for detoxification of HMF to FDM. This enzyme did not catalyse the reverse reaction of FM to furfural or FDM to HMF. Further studies showed that YNL134C is a broad-substrate aldehyde reductase, which can reduce multiple aldehydes to their corresponding alcohols. Although YNL134C is grouped into the quinone oxidoreductase family, no quinone reductase activity was observed using 1,2-naphthoquinone or 9,10-phenanthrenequinone as a substrate, and phylogenetic analysis indicates that it is genetically distant to quinone reductases. Proteins similar to YNL134C in sequence from S. cerevisiae and other microorganisms were phylogenetically analysed. Copyright © 2015 John Wiley & Sons, Ltd.

  10. Exploring the energy landscape for Q(A)(-) to Q(B) electron transfer in bacterial photosynthetic reaction centers: effect of substrate position and tail length on the conformational gating step.

    PubMed

    Xu, Qiang; Baciou, Laura; Sebban, Pierre; Gunner, M R

    2002-08-06

    The ability to initiate reactions with a flash of light and to monitor reactions over a wide temperature range allows detailed analysis of reaction mechanisms in photosynthetic reaction centers (RCs) of purple bacteria. In this protein, the electron transfer from the reduced primary quinone (Q(A)(-)) to the secondary quinone (Q(B)) is rate-limited by conformational changes rather than electron tunneling. Q(B) movement from a distal to a proximal site has been proposed to be the rate-limiting change. The importance of quinone motion was examined by shortening the Q(B) tail from 50 to 5 carbons. No change in rate was found from 100 to 300 K. The temperature dependence of the rate was also measured in three L209 proline mutants. Under conditions where Q(B) is in the distal site in wild-type RCs, it is trapped in the proximal site in the Tyr L209 mutant [Kuglstatter, A., et al. (2001) Biochemistry 40, 4253-4260]. The electron transfer slows at low temperature for all three mutants as it does in wild-type protein, indicating that conformational changes still limit the reaction rate. Thus, Q(B) movement is unlikely to be the sole, rate-limiting conformational gating step. The temperature dependence of the reaction in the L209 mutants differs somewhat from wild-type RCs. Entropy-enthalpy compensation reduces the difference in rates and free energy changes at room temperature.

  11. Oxidative Metabolites of Curcumin Poison Human Type II Topoisomerases†

    PubMed Central

    Ketron, Adam C.; Gordon, Odaine N.; Schneider, Claus; Osheroff, Neil

    2013-01-01

    The polyphenol curcumin is the principal flavor and color component of the spice turmeric. Beyond its culinary uses, curcumin is believed to positively impact human health and displays antioxidant, anti-inflammatory, antibacterial, and chemopreventive properties. It also is in clinical trials as an anticancer agent. In aqueous solution at physiological pH, curcumin undergoes spontaneous autoxidation that is enhanced by oxidizing agents. The reaction proceeds through a series of quinone methide and other reactive intermediates to form a final dioxygenated bicyclopentadione product. Several naturally occurring polyphenols that can form quinones have been shown to act as topoisomerase II poisons (i.e., increase levels of topoisomerase II-mediated DNA cleavage). Because several of these compounds have chemopreventive properties, we determined the effects of curcumin, its oxidative metabolites, and structurally related degradation products (vanillin, ferulic acid, and feruloylmethane), on the DNA cleavage activities of human topoisomerase IIα and IIβ. Intermediates in the curcumin oxidation pathway increased DNA scission mediated by both enzymes ~4-5–fold. In contrast, curcumin and the bicyclopentadione, as well as vanillin, ferulic acid, and feruloylmethane, had no effect on DNA cleavage. As found for other quinone-based compounds, curcumin oxidation intermediates acted as redox-dependent (as opposed to interfacial) topoisomerase II poisons. Finally, under conditions that promote oxidation, the dietary spice turmeric enhanced topoisomerase II-mediated DNA cleavage. Thus, even within the more complex spice formulation, oxidized curcumin intermediates appear to function as topoisomerase II poisons. PMID:23253398

  12. Natural organic matter as electron acceptor: experimental evidence for its important role in anaerobic respiration

    NASA Astrophysics Data System (ADS)

    Lau, Maximilian Peter; Sander, Michael; Gelbrecht, Jörg; Hupfer, Michael

    2014-05-01

    Microbial respiration is a key driver of element cycling in oxic and anoxic environments. Upon depletion of oxygen as terminal electron acceptor (TEA), a number of anaerobic bacteria can employ alternative TEA for intracellular energy generation. Redox active quinone moieties in dissolved organic matter (DOM) are well known electron acceptors for microbial respiration. However, it remains unclear whether quinones in adsorbed and particulate OM accept electrons in a same way. In our studies we aim to understand the importance of natural organic matter (NOM) as electron acceptors for microbial energy gain and its possible implications for methanogenesis. Using a novel electrochemical approach, mediated electrochemical reduction and -oxidation, we can directly quantify reduced hydroquinone and oxidized quionone moieties in dissolved and particulate NOM samples. In a mesocosm experiment, we rewetted sediment and peat soil and followed electron transfer to the inorganic and organic electron acceptors over time. We found that inorganic and organic electron acceptor pools were depleted over the same timescales. More importantly, we showed that organic, NOM-associated electron accepting moieties represent as much as 21 40% of total TEA inventories. These findings support earlier studies that propose that the reduction of quinone moieties in particulate organic matter competitively suppresses methanogenesis in wetland soils. Our results indicate that electron transfer to organic, particulate TEA in inundated ecosystems has to be accounted for when establishing carbon budgets in and projecting greenhouse gas emissions from these systems.

  13. Kinetic characterization of oxyresveratrol as a tyrosinase substrate.

    PubMed

    Ortiz-Ruiz, Carmen Vanessa; Ballesta de Los Santos, Manuel; Berna, Jose; Fenoll, Jose; Garcia-Ruiz, Pedro Antonio; Tudela, Jose; Garcia-Canovas, Francisco

    2015-11-01

    Oxyresveratrol is a stilbenoid described as a powerful inhibitor of tyrosinase and proposed as skin-whitening and anti-browning agent. However, the enzyme is capable of acting on it, considering it as a substrate, as it has been proved in the case of its analogous resveratrol. Tyrosinase hydroxylates the oxyresveratrol to an o-diphenol and oxidizes the latter to an o-quinone, which finally isomerizes to p-quinone. For these reactions to take place the presence of the Eox (oxy-tyrosinase) form is necessary. The kinetic analysis of the proposed mechanism has allowed the kinetic characterization of this molecule as a substrate of tyrosinase, affording a catalytic constant of 5.39 ± 0.21 sec(-1) and a Michaelis constant of 8.65 ± 0.73 µM. © 2015 International Union of Biochemistry and Molecular Biology.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Breton, J.; Berger, G.; Nabedryk, E.

    The photoreduction of the secondary quinone acceptor Q{sub B} in reaction centers (RCs) of the photosynthetic bacteria Rhodobacter sphaeroides and Rhodopseudomonas viridis has been investigated by light-induced FTIR difference spectroscopy of RCs reconstituted with several isotopically labeled ubiquinones. The labels used were {sup 18}O on both carbonyls and {sup 13}C either uniformly or selectively at the 1- or the 4-position, i.e., on either one of the two carbonyls. The Q{sub B}{sup {minus}}/Q{sub B} spectra of RCs reconstituted with the isotopically labeled and unlabeled quinones as well as the double differences calculated form these spectra exhibit distinct isotopic shifts for amore » numer of bands attributed to vibrations of Q{sub B} and Q{sub B}{sup {minus}}. The vibrational modes of the quinone in the Q{sub B} site are compared to those of ubiquinone in vitro, leading to band assignments for the C{double_bond}O and C{double_bond}C vibrations of the neutral Q{sub B} and for the C---O and C---C of the semiquinone. The C{double_bond}O frequency of each of the carbonyls of the unlabeled quinone is revealed at 1641 cm{sup {minus}1} for both species. This demonstrates symmetrical and weak hydrogen bonding of the two C{double_bond}O groups to the protein at the Q{sub B} site. In contrast, the C{double_bond}C vibrations are not equivalent for selective labeling at C{sub 1} or at C{sub 4}, although they both contribute to the {approximately}1611-cm{sup {minus}1} band in the Q{sub B}{sup {minus}}/Q{sub B} spectra of the two species. Compared to the vibrations of isolated ubiquinone, the C{double_bond}C mode of Q{sub B} does not involve displacement of the C{sub 4} carbon atom, while the motion of C{sub 1} is not hindered. Further analysis of the spectra suggests that the protein at the binding site imposes a specific constraint on the methoxy and/or the methyl group proximal to the C{sub 4} carbonyl. 49 refs., 5 figs.« less

  15. p53 Mutagenesis by Benzo[a]pyrene derived Radical Cations

    PubMed Central

    Sen, Sushmita; Bhojnagarwala, Pratik; Francey, Lauren; Lu, Ding; Jeffrey Field, Trevor M. Penning

    2013-01-01

    Benzo[a]pyrene (B[a]P), a major human carcinogen in combustion products such as cigarette smoke and diesel exhaust, is metabolically activated into DNA-reactive metabolites via three different enzymatic pathways. The pathways are the anti-(+)-benzo[a]pyrene 7,8-diol 9, 10-epoxide pathway (P450/ epoxide hydrolase catalyzed) (B[a]PDE), the benzo[a]pyrene o-quinone pathway (aldo ketose reductase (AKR) catalyzed) and the B[a]P radical cation pathway (P450 peroxidase catalyzed). We used a yeast p53 mutagenesis system to assess mutagenesis by B[a]P radical cations. Because radical cations are short-lived, they were generated in situ by reacting B[a]P with cumene hydroperoxide (CuOOH) and horse radish peroxidase (HRP) and then monitoring the generation of the more stable downstream products, B[a]P-1,6-dione and B[a]P-3,6-dione. Based on the B[a]P-1,6 and 3,6-dione formation, approximately 4µM of radical cation was generated. In the mutagenesis assays, the radical cations produced in situ showed a dose-dependent increase in mutagenicity from 0.25 µM to 10 µM B[a]P with no significant increase seen with further escalation to 50 µM B[a]P. However, mutagenesis was 200-fold less than with the AKR pathway derived B[a]P, 7–8 dione. Mutant p53 plasmids, which yield red colonies, were recovered from the yeast to study the pattern and spectrum of mutations. The mutation pattern observed was G to T (31%) > G to C (29%) > G to A (14%). The frequency of codons mutated by the B[a]P radical cations was essentially random and not enriched at known cancer hotspots. The quinone products of radical cations, B[a]P-1,6-dione and B[a]P-3,6-dione were more mutagenic than the radical cation reactions, but still less mutagenic than AKR derived B[a]P-7,8-dione. We conclude that B[a]P radical cations and their quinone products are weakly mutagenic in this yeast-based system compared to redox cycling PAH o-quinones. PMID:22768918

  16. Dithiothreitol activity by particulate oxidizers of SOA produced from photooxidation of hydrocarbons under varied NOx levels

    NASA Astrophysics Data System (ADS)

    Jiang, Huanhuan; Jang, Myoseon; Yu, Zechen

    2017-08-01

    When hydrocarbons (HCs) are atmospherically oxidized, they form particulate oxidizers, including quinones, organic hydroperoxides, and peroxyacyl nitrates (PANs). These particulate oxidizers can modify cellular materials (e.g., proteins and enzymes) and adversely modulate cell functions. In this study, the contribution of particulate oxidizers in secondary organic aerosols (SOAs) to the oxidative potential was investigated. SOAs were generated from the photooxidation of toluene, 1,3,5-trimethylbenzene, isoprene, and α-pinene under varied NOx levels. Oxidative potential was determined from the typical mass-normalized consumption rate (reaction time t = 30 min) of dithiothreitol (DTTt), a surrogate for biological reducing agents. Under high-NOx conditions, the DTTt of toluene SOA was 2-5 times higher than that of the other types of SOA. Isoprene DTTt significantly decreased with increasing NOx (up to 69 % reduction by changing the HC / NOx ratio from 30 to 5). The DTTt of 1,3,5-trimethylbenzene and α-pinene SOA was insensitive to NOx under the experimental conditions of this study. The significance of quinones to the oxidative potential of SOA was tested through the enhancement of DTT consumption in the presence of 2,4-dimethylimidazole, a co-catalyst for the redox cycling of quinones; however, no significant effect of 2,4-dimethylimidazole on modulation of DTT consumption was observed for all SOA, suggesting that a negligible amount of quinones was present in the SOA of this study. For toluene and isoprene, mass-normalized DTT consumption (DTTm) was determined over an extended period of reaction time (t = 2 h) to quantify their maximum capacity to consume DTT. The total quantities of PANs and organic hydroperoxides in toluene SOA and isoprene SOA were also measured using the Griess assay and the 4-nitrophenylboronic acid assay, respectively. Under the NOx conditions (HC / NOx ratio: 5-36 ppbC ppb-1) applied in this study, the amount of organic hydroperoxides was

  17. USING STRUCTURAL EFFECTS ON THE ORGANIZATION OF THE CYTOSKELETON OF RAINBOW TROUT HEPATOCYTES TO SORT PATHWAYS OF REACTIVE TOXICITY

    EPA Science Inventory

    Quinones have been shown to be more acutely toxic to aquatic organisms than chemicals that are not capable of either direct interaction with cellular nucleophiles or potentially metabolized free radicals. For the development of accurate QSAR models, in vitro toxicity assays are n...

  18. Polyphenolic reductants in cane sugar

    USDA-ARS?s Scientific Manuscript database

    Limited information is available to understand the chemical structure of cane sugar extracts responsible for the redox reactivity. This study employed Fremy’s salt to test the hypothesis that hydroquinone/catechol-semiquinone-quinone redox cycle is responsible for the antioxidant activity of sugarc...

  19. Biosynthesis of hydroxycinnamoyl esters and amides in legume species

    USDA-ARS?s Scientific Manuscript database

    In forage crops, protein that is degraded following harvest is poorly utilized by ruminant animals, resulting in both economic and environmental consequences. In red clover, secondary reactions of quinones resulting from polyphenol oxidase (PPO)-mediated oxidation of the caffeic acid derivatives pha...

  20. Cofacial Assembly of Metallomacrocycles. A Molecular Engineering Approach to Electrically Conductive Polymers.

    DTIC Science & Technology

    1981-05-13

    34molecular metals." THE COFACIAL ASSEMBLY STRATEGY Although the above molecular macrocycle, halogen cocrystalli - zation approach to the synthesis of...substitute various oxidizing quinones for halogens in the cocrystallization synthesis have failed because integrated stacK (Figure 2C,D) insulators are

  1. 77 FR 51957 - Defense Federal Acquisition Regulation Supplement: Clarification of “F” Orders in the Procurement...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-28

    ... multi-agency contracts, or basic ordering agreements. The proposed text also directs that a... agreements, or blanket purchase agreements. As a result of the proposed rule, new awards under the AbilityOne... Part 204 Government procurement. Manuel Quinones, Editor, Defense Acquisition Regulations System...

  2. COLLECTION EFFICIENCY OF THE HIGH VOLUME SMALL SURFACE SAMPLER ON WORN CARPETS

    EPA Science Inventory

    Collection Efficiency of the High Volume Small Surface Sampler on Worn Carpets

    Erik R. Svendsen*?, Peter S. Thorne*, Stephen J. Reynolds*?, Patrick T. O'Shaughnessy*, Alba Quinones*, Dale Zimmerman*, and Nervana Metwali*

    *University of Iowa College of Public Health<...

  3. Measuring the Bioenergetic Effects of 1,2-Naphthoquinone Exposure on Human Lung Macrophages Using Seahorse Extracellular Flux Analyses

    EPA Science Inventory

    Exposure to ambient particulate matter (PM) is one of the leading causes of morbidity and mortality in humans. Quinones are organic PM components that induce inflammatory responses through redox cycling and electrophilic attack. 1,2-naphthoquinone (1,2-NQ) has previously been sho...

  4. PHOTOCHEMICAL PRODUCTION OF REACTIVE OXYGEN SPECIES BY CONSTITUENTS OF COLORED DISSOLVED ORGANIC MATTER AND COASTAL RIVER WATERS IN THE SOUTHEASTERN UNITED STATES

    EPA Science Inventory

    Using a previously developed method to measure OH production, formation rates were obtained for several water systems. Employing an amino-nitroxide probe and DMSO, an action
    spectrum for the product consistent with the production of OH by quinone moieties within humic material...

  5. Amperometric micro pH measurements in oxygenated saliva.

    PubMed

    Chaisiwamongkhol, Korbua; Batchelor-McAuley, Christopher; Compton, Richard G

    2017-07-24

    An amperometric micro pH sensor has been developed based on the chemical oxidation of carbon fibre surfaces (diameter of 9 μm and length of ca. 1 mm) to enhance the population of surface quinone groups for the measurement of salivary pH. The pH analysis utilises the electrochemically reversible two-electron, two-proton behaviour of surface quinone groups on the micro-wire electrodes. A Nernstian response is observed across the pH range 2-8 which is the pH range of many biological fluids. We highlight the measurement of pH in small volumes of biological fluids without the need for oxygen removal and specifically the micro pH electrode is examined by measuring the pH of commercial synthetic saliva and authentic human saliva samples. The results correspond well with those obtained by using commercial glass pH electrodes on large volume samples.

  6. Searching phase II enzymes inducers, from Michael acceptor-[1,2]dithiolethione hybrids, as cancer chemopreventive agents.

    PubMed

    Couto, Marcos; de Ovalle, Stefani; Cabrera, Mauricio; Cerecetto, Hugo; González, Mercedes

    2015-01-01

    Cancer chemoprevention involves the carcinogenic process prevention, delay or reverse by the administration of chemopreventive agents, which are able to suppress or block the carcinogen metabolic activation/formation. The increased activity of phase II detoxification enzymes such as quinone-reductase (QR) and glutation-S-transferase (GST) correlates with the protection against chemically-induced carcinogenesis. It has been shown that synthetic chalcones and 3H-[1,2]-dithiole-3-thiones promote expression of genes involved in chemoprevention. Herein, the induction of phase II enzymes by designed Michael acceptor-dithiolethione hybrids was studied. Hybrids 5 and 7 displayed the induction of quinone-reductase and glutation-S-transferase in vitro in the same order on the wild-type mouse-hepatoma Hepa 1c1c7 and on the aryl-hydrocarbon-nuclear-translocator (Arnt)-defective mutant BPrc1 cells indicating that 7 displays the best chemopreventive potential.

  7. Cr(II) reactivity of taurine/alpha-ketoglutarate dioxygenase.

    PubMed

    Grzyska, Piotr K; Hausinger, Robert P

    2007-11-26

    The interaction of CrII with taurine/alpha-ketoglutarate (alphaKG) dioxygenase (TauD) was examined. CrII replaces FeII and binds stoichiometrically with alphaKG to the FeII/alphaKG binding site of the protein, with additional CrII used to generate a chromophore attributed to a CrIII-semiquinone in a small percentage of the sample. Formation of the latter oxygen-sensitive species requires the dihydroxyphenylalanine (DOPA) quinone form of Tyr-73. This preformed side chain is generated by intracellular self-hydroxylation of Tyr-73 to form DOPA, which is subsequently oxidized to the quinone. No chromophore is generated when using NaBH4-treated sample, protein isolated from anaerobically grown cells, inactive TauD variants that are incapable of self-hydroxylation, or the Y73F active mutant of TauD. A CrIII-DOPA semiquinone also was observed in the herbicide hydroxylase SdpA.

  8. Vinpocetine and α-tocopherol prevent the increase in DA and oxidative stress induced by 3-NPA in striatum isolated nerve endings.

    PubMed

    Herrera-Mundo, Nieves; Sitges, María

    2013-01-01

    Vinpocetine is a neuroprotective drug that exerts beneficial effects on neurological symptoms and cerebrovascular disease. 3-nitropropionic acid (3-NPA) is a toxin that irreversibly inhibits succinate dehydrogenase, the mitochondrial enzyme that acts in the electron transport chain at complex II. In previous studies in striatum-isolated nerve endings (synaptosomes), we found that vinpocetine decreased dopamine (DA) at expense of its main metabolite 3,4-dihydroxyphenylacetic acid (DOPAC), and that 3-NPA increased DA, reactive oxygen species (ROS), DA-quinone products formation, and decreased DOPAC. Therefore, in this study, the possible effect of vinpocetine on 3-NPA-induced increase in DA, ROS, lipid peroxidation, and DA-quinone products formation in striatum synaptosomes were investigated, and compared with the effects of the antioxidant α-tocopherol. Results show that the increase in DA induced by 3-NPA was inhibited by both 25 μM vinpocetine and 50 μM α-tocopherol. Vinpocetine, as α-tocopherol, also inhibited 3-NPA-induced increase in ROS (as judged by DCF fluorescence), lipid peroxidation (as judged by TBA-RS formation), and DA-quinone products formation (as judged by the nitroblue tetrazolium reduction method). As in addition to the inhibition of complex II exerted by 3-NPA, 3-NPA increases DA-oxidation products that in turn can inhibit other sites of the respiratory chain, the drop in DA produced by vinpocetine and α-tocopherol may importantly contribute to their protective action from oxidative damage, particularly in DA-rich structures. © 2012 The Authors Journal of Neurochemistry © 2012 International Society for Neurochemistry.

  9. A rhodium(III) complex for high-affinity DNA base-pair mismatch recognition

    PubMed Central

    Junicke, Henrik; Hart, Jonathan R.; Kisko, Jennifer; Glebov, Oleg; Kirsch, Ilan R.; Barton, Jacqueline K.

    2003-01-01

    A rhodium(III) complex, rac-[Rh(bpy)2phzi]3+ (bpy, 2,2′-bipyridine; phzi, benzo[a]phenazine-5,6-quinone diimine) has been designed as a sterically demanding intercalator targeted to destabilized mismatched sites in double-helical DNA. The complex is readily synthesized by condensation of the phenazine quinone with the corresponding diammine complex. Upon photoactivation, the complex promotes direct strand scission at single-base mismatch sites within the DNA duplex. As with the parent mismatch-specific reagent, [Rh(bpy)2(chrysi)]3+ [chrysene-5,6-quinone diimine (chrysi)], mismatch selectivity depends on the helix destabilization associated with mispairing. Unlike the parent chrysi complex, the phzi analogue binds and cleaves with high affinity and efficiency. The specific binding constants for CA, CC, and CT mismatches within a 31-mer oligonucleotide duplex are 0.3, 1, and 6 × 107 M−1, respectively; site-specific photocleavage is evident at nanomolar concentrations. Moreover, the specificity, defined as the ratio in binding affinities for mispaired vs. well paired sites, is maintained. The increase in affinity is attributed to greater stability in the mismatched site associated with stacking by the heterocyclic aromatic ligand. The high-affinity complex is also applied in the differential cleavage of DNA obtained from cell lines deficient in mismatch repair vs. those proficient in mismatch repair. Agreement is found between photocleavage by the mismatch-specific probes and deficiency in mismatch repair. This mismatch-specific targeting, therefore, offers a potential strategy for new chemotherapeutic design. PMID:12610209

  10. Influence of azo dye concentration on activated sludge bacterial community in the presence of functionalized polyurethane foam.

    PubMed

    Lu, Hong; Wang, Jing; Lu, Shuilong; Wang, Ying; Liu, Guangfei; Zhou, Jiti; Quan, Zhexue

    2015-03-01

    Immobilized quinones exhibit good catalytic performance in the biodecolorization of azo dyes. However, in practical activated sludge systems, little is known about the effect of azo dye concentration on microbial communities in the presence of immobilized quinones. 454 Pyrosequencing was used to investigate structural changes and to determine the key microorganisms involved in Reactive Red X-3B decolorization in the presence of anthraquinone-2-sulfonate immobilized on polyurethane foam (AQS-PUF). Our results show that the AQS-PUF-supplemented system exhibited better stability and decolorization performance during a 30-day run than polyurethane-foam-only (PUF-supplemented) and control systems. Analysis of pyrosequencing data showed that the AQS-PUF-supplemented system had the highest bacterial diversity, followed by the control and PUF-supplemented systems during decolorization. Reactive Red X-3B and AQS-PUF significantly influenced bacterial communities at the class level: Erysipelotrichia and the most dominant Deltaproteobacteria showed significant positive correlations with Reactive Red X-3B, while unclassified Firmicutes were found to be significantly correlated with AQS-PUF. At the genus level, Desulfomicrobium, which represents 8-44 % of the total population, displayed a significant positive correlation with Reactive Red X-3B. Some bacteria, including Desulfovibrio, Shewanella, and Clostridium with relative abundances of less than 6 %, were positively correlated with AQS-PUF. These findings provide a novel insight into the changes that occur in the bacterial community during immobilized AQS-mediated decolorization. Less abundant quinone-reducing bacteria play important roles in accelerating the effect of AQS-PUF on biodecolorization.

  11. DIFFERENTIATING MECHANISMS OF REACTIVE CHEMICAL TOXICITY IN ISOLATED TROUT HEPATOCYTES

    EPA Science Inventory

    The toxicity of four quinones, 2,3-dimethoxy-1,4-naphthoquinone (DMONQ), 2-methyl 1,4-naphthoquinone (MNQ ),1,4-naphthoquinone (NQ), and 1,4-benzoquinone (BQ), which redox cycle or arlyate in mammalian cells, was determined in isolated trout (Oncorhynchus mykiss) hepatocytes. Mor...

  12. Phytochemical composition and antioxidant capacity of whole wheat products

    USDA-ARS?s Scientific Manuscript database

    Whole wheat contains an array of phytochemicals. We quantified alkylresorcinols (AR), phenolic acids, phytosterols, and tocols in six whole wheat products and characterized their antioxidant capacity and ability to induce quinone reductase activity (QR). Total AR content ranged from 136.8 to 233.9 m...

  13. Impact of Erb-B Signaling on Myelin Repair in the CNS Following Virus-Induced Damage

    DTIC Science & Technology

    2008-03-01

    REFERENCES 1. Yahli Lorch, Adam Freidmann, Howard L. Lipton, and Moshe Kotler : Theiler’s murine encephalomyelitis virus group includes two...21-27 (2003) 123. Cynthia Rivera-Quinones, Dorian McGavern, James D. Schmelzer, Samuel F. Hunter, Philip A. Low, and Moses Rodriguez: Absence of

  14. Use of PCR-RFLP analysis to monitor fungicide resistance in Cercospora beticola populations from sugarbeet (Beta vulgaris) in Michigan, United States

    USDA-ARS?s Scientific Manuscript database

    Genetic resistance to Quinone outside inhibitor (QoI) and benzimidazole fungicides may be responsible for a recent decline in efficacy of chemical control management strategies for Cercospora leaf spot (CLS) caused by Cercospora beticola (Sacc.) in Michigan sugarbeet (Beta vulgaris L.) fields. The t...

  15. Electrochemically Active Soluble Mediators from Shewanella oneidensis: Relevance to Microbial Fuel Cells and Extracellular Electron Transfer

    DTIC Science & Technology

    2008-05-01

    A second approach is the use of soluble mediators such as, quinones, phenazines , and riboflavin, which are able to shuttle electrons from the cell...done using the equivalent graphite felt or graphite felt coated with platinum nanoparticles . Fuel cell chambers were separated using a gas-permeable

  16. Biodegradation of RDX by Stimulating Humic Substance- and Fe(III) - Reduction

    DTIC Science & Technology

    2007-06-19

    Sediments with Quinones and Humus as Terminal Electron Acceptors. Appl. Environ. Microbiol. 67:4471-4478. 10. Coates, J. D., D. J. Ellis, E. L...167. 57. Stevenson, F. J. 1982. Humus chemistry genesis, composition, reactions. Wiley Interscience, New York. 58. Stolz, J. F., D. R. Lovley, and

  17. PBT,PBO-Based Hybrid Polymers with Nonlinear Optical Properties or High Electrical Conductivity

    DTIC Science & Technology

    1988-08-29

    standing. Experiments with stronger oxidizing agents such as nitrosonium salts (e.g., NO+Br4, NO+PF6) and high-potential quinones (e.g., DDQ...several unique possibilities. First, the ionic structure should raise Tg. Second, electrophoretic ion migration under the influence of the poling field

  18. Relationship in between Chemical Oxidation and Browning of Flavanols

    NASA Astrophysics Data System (ADS)

    Dong, X.; Zhang, Y. L.; Wang, F.; Pang, M. X.; Qi, J. H.

    2016-08-01

    Catechin, epicatechin and chlorogenic acid are widely distributed in the plant kingdom. At present, influencing factors of phenol chemical oxidation is little research. In order to study non-enzymatic browning factors, this research utilized catechin, epicatechin and chlorogenic acid to establish simulation systems. The browning degree and products of flavanols were investigated by transmittance and high-performance liquid chromatography (HPLC). The main results and conclusions were follows. The brown generation is increased after phenols of chemical oxidation at 50°C and at pH 3.7 phosphate buffered saline, the sequence of influencing factor of browning is pH > kind of phenol > temperature. Oxidation of compounds of catechin and epicatechin results in formation of their Methylene quinone or o -Quinones. In addition, oxidation products of catechin, epicatechin and chlorogenic acid were mixture of different molecular sizes. The research has showed that brown generation correlated well with chemical oxidation of phenols and chemical oxidation reaction generated larger molecular weight polymers.

  19. Pre-harvest methyl jasmonate treatment enhances cauliflower chemoprotective attributes without a loss in postharvest quality.

    PubMed

    Ku, Kang Mo; Choi, Jeong-Hee; Kushad, Mosbah M; Jeffery, Elizabeth H; Juvik, John A

    2013-06-01

    Methyl jasmonate (MeJA) treatment can significantly increase glucosinolate (GS) concentrations in Brassica vegetables and potentially enhance anticancer bioactivity. Although MeJA treatment may promote ethylene biosynthesis, which can be detrimental to postharvest quality, there are no previous reports of its effect on cauliflower postharvest quality. To address this, cauliflower curds in field plots were sprayed with either 0.1 % Triton X-100 (control) or 500 μM MeJA solutions four days prior to harvest, then stored at 4 °C. Tissue subsamples were collected after 0, 10, 20, and 30 days of postharvest storage and assayed for visual color change, ethylene production, GS concentrations, and extract quinone reductase inductive activity. MeJA treatment increased curd GS concentrations of glucoraphanin, glucobrassicin, and neoglucobrassicin by 1.5, 2.4, and 4.6-fold over controls, respectively. MeJA treated cauliflower showed significantly higher quinone reductase activity, a biomarker for anticancer bioactivity, without reducing visual color and postharvest quality for 10 days at 4 °C storage.

  20. Allyl isothiocyanate enhances shelf life of minimally processed shredded cabbage.

    PubMed

    Banerjee, Aparajita; Penna, Suprasanna; Variyar, Prasad S

    2015-09-15

    The effect of allyl isothiocyanate (AITC), in combination with low temperature (10°C) storage on post harvest quality of minimally processed shredded cabbage was investigated. An optimum concentration of 0.05μL/mL AITC was found to be effective in maintaining the microbial and sensory quality of the product for a period of 12days. Inhibition of browning was shown to result from a down-regulation (1.4-fold) of phenylalanine ammonia lyase (PAL) gene expression and a consequent decrease in PAL enzyme activity and o-quinone content. In the untreated control samples, PAL activity increased following up-regulation in PAL gene expression that could be linearly correlated with enhanced o-quinone formation and browning. The efficacy of AITC in extending the shelf life of minimally processed shredded cabbage and its role in down-regulation of PAL gene expression resulting in browning inhibition in the product is reported here for the first time. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Characteristics and kinetic analysis of AQS transformation and microbial goethite reduction: Insight into “redox mediator-microbe-iron oxide” interaction process

    DOE PAGES

    Zhu, Weihuang; Shi, Mengran; Yu, Dan; ...

    2016-03-29

    Here, the characteristics and kinetics of redox transformation of a redox mediator, anthraquinone-2-sulfonate (AQS), during microbial goethite reduction by Shewanella decolorationis S12, a dissimilatory iron reduction bacterium (DIRB), were investigated to provide insights into “redox mediator-iron oxide” interaction in the presence of DIRB. Two pre-incubation reaction systems of the “strain S12-goethite” and the “strain S12-AQS” were used to investigate the dynamics of goethite reduction and AQS redox transformation. Results show that the concentrations of goethite and redox mediator, and the inoculation cell density all affect the characteristics of microbial goethite reduction, kinetic transformation between oxidized and reduced species of themore » redox mediator. Both abiotic and biotic reactions and their coupling regulate the kinetic process for “Quinone-Iron” interaction in the presence of DIRB. Our results provide some new insights into the characteristics and mechanisms of interaction among “quinone-DIRB- goethite” under biotic/abiotic driven.« less

  2. Cr(VI) remediation by enriched sediment with anthraquinone-2,6-disulfonate as electron shuttles

    NASA Astrophysics Data System (ADS)

    Chen, Hong; Li, Xiaojuan; Xu, Zhiwei

    Hexavalent chromium (Cr(VI)) is a priority pollutant in the USA and many other countries. This study investigated the simultaneous remediation of Cr(VI) in sediment enriched with quinone-reducing microorganisms via a closely coupled, biotic-abiotic pathway. The results showed that Cr(VI) remediation was achieved by sediment adsorption and reduction of quinone-reducing microorganism. Moreover, microorganism reduction of Cr(VI) could be continued when sediment adsorption was saturated after long-term Cr(VI) remediation. The acetate and anthraquinone-2,6-disulfonate (AQDS), which acted as exogenous carbon and electron shuttle, respectively, were two crucial factors. The optimum concentrations of acetate and AQDS were 5 mM and 1 mM when the initial Cr(VI) concentration was 10 mg/L. AQDS was recycled, and it acted in a catalytic-type manner for the bacterial reduction of Cr(VI). Thus, biological humus reduction might provide an extensive pathway for the sequestration and detoxification of Cr(VI) in anaerobic soils, water, and industrial effluents.

  3. Isolation and Purification of Complex II from Proteus Mirabilis Strain ATCC 29245

    PubMed Central

    Shabbiri, Khadija; Ahmad, Waqar; Syed, Quratulain; Adnan, Ahmad

    2010-01-01

    A respiratory complex was isolated from plasma membrane of pathogenic Proteus mirabilis strain ATCC 29245. It was identified as complex II consisting of succinate:quinone oxidoreductase (EC 1.3.5.1) containing single heme b. The complex II was purified by ion-exchange chromatography and gel filtration. The molecular weight of purified complex was 116.5 kDa and it was composed of three subunits with molecular weights of 19 kDa, 29 kDa and 68.5 kDa. The complex II contained 9.5 nmoles of cytochrome b per mg protein. Heme staining indicated that the 19 kDa subunit was cytochrome b. Its reduced form showed absorptions peaks at 557.0, 524.8 and 424.4 nm. The α-band was shifted from 557.0 nm to 556.8 nm in pyridine ferrohemochrome spectrum. The succinate: quinone oxidoreductase activity was found to be high in this microorganism. PMID:24031557

  4. β-Lapachone attenuates mitochondrial dysfunction in MELAS cybrid cells.

    PubMed

    Jeong, Moon Hee; Kim, Jin Hwan; Seo, Kang-Sik; Kwak, Tae Hwan; Park, Woo Jin

    2014-11-21

    Mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes (MELAS) is a mitochondrial disease caused by mutations in the mitochondrial genome. This study investigated the efficacy of β-lapachone (β-lap), a natural quinone compound, in rescuing mitochondrial dysfunction in MELAS cybrid cells. β-Lap significantly restored energy production and mitochondrial membrane potential as well as normalized the elevated ROS level in MELAS cybrid cells. Additionally, β-lap reduced lactic acidosis and restored glucose uptake in the MELAS cybrid cells. Finally, β-lap activated Sirt1 by increasing the intracellular NAD(+)/NADH ratio, which was accompanied by increased mtDNA content. Two other quinone compounds (idebenone and CoQ10) that have rescued mitochondrial dysfunction in previous studies of MELAS cybrid cells had a minimal effect in the current study. Taken together, these results demonstrated that β-lap may provide a novel therapeutic modality for the treatment of MELAS. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Production, purification and detergent exchange of isotopically labeled Bacillussubtilis cytochrome b₅₅₈ (SdhC).

    PubMed

    Baureder, Michael; Hederstedt, Lars

    2011-11-01

    Cytochrome b₅₅₈ of the gram-positive bacterium Bacillussubtilis is the membrane anchor subunit of the succinate:quinone oxidoreductase of the citric acid cycle. The cytochrome consists of the SdhC polypeptide (202 residues) and two protoheme IX groups that function in transmembrane electron transfer to menaquinone. The general structure of the cytochrome is known from extensive experimental studies and by comparison to Wolinellasuccinogenes fumarate reductase for which the X-ray crystal structure has been determined. Solution state NMR can potentially be used to identify the quinone binding site(s) and study, e.g. redox-linked, dynamics of cytochrome b₅₅₈. In this work we present an efficient procedure for the isolation of preparative amounts of isotopically labeled B. subtilis cytochrome b₅₅₈ produced in Escherichia coli. We have also evaluated several detergents suitable for NMR for their effectiveness in maintaining the cytochrome solubilized and intact for days at room temperature. Copyright © 2011 Elsevier Inc. All rights reserved.

  6. Biochemical basis of 4-hydroxyanisole induced cell toxicity towards B16-F0 melanoma cells.

    PubMed

    Moridani, Majid Y

    2006-11-18

    In the current work we investigated for the first time the biochemical basis of 4-hydroxyanisole (4-HA) induced toxicity in B16-F0 melanoma cells. It was found that dicoumarol, a diaphorase inhibitor, and 1-bromoheptane, a GSH depleting agent, increased 4-HA induced toxicity towards B16-F0 cells whereas dithiothreitol, a thiol containing agent, and ascorbic acid (AA), a reducing agent, largely prevented 4-HA toxicity. TEMPOL and pyrogallol, free radical scavengers, did not significantly prevent 4-HA toxicity towards B16-F0 cells. GSH>AA>NADH prevented the o-quinone formation when 4-HA was metabolized by tyrosinase/O(2). 4-HA metabolism by horseradish peroxidase/H(2)O(2) was prevented more effectively by AA than NADH>GSH. We therefore concluded that quinone formation was the major pathway for 4-HA induced toxicity in B16-F0 melanoma cells whereas free radical formation played a negligible role in the 4-HA induced toxicity.

  7. CrII Reactivity of Taurine/α-Ketoglutarate Dioxygenase

    PubMed Central

    Grzyska, Piotr K.; Hausinger, Robert P.

    2008-01-01

    The interaction of CrII with taurine/α-ketoglutarate (αKG) dioxygenase (TauD) was examined. CrII replaces FeII and binds stoichiometrically with αKG to the FeII/αKG-binding site of the protein, with additional CrII used to generate a chromophore attributed to a CrIII-semiquinone in a small percentage of the sample. Formation of the latter oxygen -sensitive species requires the dihydroxyphenylalanine (DOPA) quinone form of Tyr-73. This pre-formed side chain is generated by intracellular self-hydroxylation of Tyr-73 to form DOPA, which is subsequently oxidized to the quinone. No chromophore is generated when using NaBH4-treated sample, protein isolated from anaerobically grown cells, inactive TauD variants that are incapable of self-hydroxylation, or the Y73F active mutant of TauD. A CrIII-DOPA semiquinone also was observed in the herbicide hydroxylase SdpA. PMID:17973473

  8. Characteristics and Kinetic Analysis of AQS Transformation and Microbial Goethite Reduction:Insight into "Redox mediator-Microbe-Iron oxide" Interaction Process.

    PubMed

    Zhu, Weihuang; Shi, Mengran; Yu, Dan; Liu, Chongxuan; Huang, Tinglin; Wu, Fengchang

    2016-03-29

    The characteristics and kinetics of redox transformation of a redox mediator, anthraquinone-2-sulfonate (AQS), during microbial goethite reduction by Shewanella decolorationis S12, a dissimilatory iron reduction bacterium (DIRB), were investigated to provide insights into "redox mediator-iron oxide" interaction in the presence of DIRB. Two pre-incubation reaction systems of the "strain S12- goethite" and the "strain S12-AQS" were used to investigate the dynamics of goethite reduction and AQS redox transformation. Results show that the concentrations of goethite and redox mediator, and the inoculation cell density all affect the characteristics of microbial goethite reduction, kinetic transformation between oxidized and reduced species of the redox mediator. Both abiotic and biotic reactions and their coupling regulate the kinetic process for "Quinone-Iron" interaction in the presence of DIRB. Our results provide some new insights into the characteristics and mechanisms of interaction among "quinone-DIRB- goethite" under biotic/abiotic driven.

  9. Inhibition of Human Vascular NADPH Oxidase by Apocynin Derived Oligophenols

    PubMed Central

    Mora-Pale, Mauricio; Weïwer, Michel; Yu, Jingjing; Linhardt, Robert J.; Dordick, Jonathan S.

    2009-01-01

    Enzymatic oxidation of apocynin, which may mimic in vivo metabolism, affords a large number of oligomers (apocynin oxidation products, AOP) that inhibit vascular NADPH oxidase. In vitro studies of NADPH oxidase activity were performed to identify active inhibitors, resulting in a trimer hydroxylated quinone (IIIHyQ) that inhibited NADPH oxidase with an IC50 = 31 nM. Apocynin itself possessed minimal inhibitory activity. NADPH oxidase is believed to be inhibited through prevention of the interaction between two NADPH oxidase subunits, p47phox and p22phox. To that end, while apocynin was unable to block the interaction of his-tagged p47phox with a surface immobilized biotinalyted p22phox peptide, the IIIHyQ product strongly interfered with this interaction (apparent IC50 = 1.6 μM). These results provide evidence that peroxidase-catalyzed AOP, which consist of oligomeric phenols and quinones, inhibit critical interactions that are involved in the assembly and activation of human vascular NADPH oxidase. PMID:19523836

  10. Structure of a bacterial homologue of vitamin K epoxide reductase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Weikai; Schulman, Sol; Dutton, Rachel J.

    Vitamin K epoxide reductase (VKOR) generates vitamin K hydroquinone to sustain {gamma}-carboxylation of many blood coagulation factors. Here, we report the 3.6 {angstrom} crystal structure of a bacterial homologue of VKOR from Synechococcus sp. The structure shows VKOR in complex with its naturally fused redox partner, a thioredoxin-like domain, and corresponds to an arrested state of electron transfer. The catalytic core of VKOR is a four transmembrane helix bundle that surrounds a quinone, connected through an additional transmembrane segment with the periplasmic thioredoxin-like domain. We propose a pathway for how VKOR uses electrons from cysteines of newly synthesized proteins tomore » reduce a quinone, a mechanism confirmed by in vitro reconstitution of vitamin K-dependent disulphide bridge formation. Our results have implications for the mechanism of the mammalian VKOR and explain how mutations can cause resistance to the VKOR inhibitor warfarin, the most commonly used oral anticoagulant.« less

  11. Molecular complexes of L-phenylalanine with substituted 1,4-benzoquinones in aqueous medium: Spectral and theoretical investigations

    NASA Astrophysics Data System (ADS)

    Ganesh, K.; El-Mossalamy, E. H.; Satheshkumar, A.; Balraj, C.; Elango, K. P.

    2013-12-01

    Various spectral techniques such as UV-Vis, FT-IR, and fluorescence have been employed to investigate the charge transfer interaction of L-phenylalanine (LPA) with substituted 1,4-benzoquinones (MQ1-4). Kinetic and thermodynamic properties of the complexes were determined in aqueous medium at physiological condition (pH = 7). The interaction of MQ1-4 with L-phenylalanine (LPA) was found to proceed through the formation of donor-acceptor complex, yielding a radical anion. The stoichiometry of the complexes was determined by Jobs continuous variation method and was found to be 1:1 in all the cases. Fluorescence quenching studies showed that the interaction between the donor and the acceptors is spontaneous. The results indicated that the progressive replacement of chlorine atom (-I effect) by methoxy group (+M effect) in the quinone decreased the electron acceptor property of the quinone. The order of the experimentally measured association constant of these complexes was well supported by DFT/B3LYP calculations.

  12. Utilizing a CdTe quantum dots-enzyme hybrid system for the determination of both phenolic compounds and hydrogen peroxide.

    PubMed

    Yuan, Jipei; Guo, Weiwei; Wang, Erkang

    2008-02-15

    In this paper, we attempt to construct a simple and sensitive detection method for both phenolic compounds and hydrogen peroxide, with the successful combination of the unique property of quantum dots and the specificity of enzymatic reactions. In the presence of H2O2 and horseradish peroxidase, phenolic compounds can quench quantum dots' photoluminescence efficiently, and the extent of quenching is severalfold to more than 100-fold increase. Quinone intermediates produced from the enzymatic catalyzed oxidation of phenolic compounds were believed to play the main role in the photoluminescence quenching. Using a quantum dots-enzyme system, the detection limits for phenolic compounds and hydrogen peroxide were detected to be approximately 10(-7) mol L(-1). The coupling of efficient quenching of quantum dot photoluminescence by quinone and the effective enzymatic reactions make this a simple and sensitive method for phenolic compound detection and great potential in the development of H2O2 biosensors for various analytes.

  13. Microbial community in biofilm on membrane surface of submerged MBR: effect of in-line cleaning chemical agent.

    PubMed

    Lim, B R; Ahn, K H; Song, K G; Cho, J W

    2005-01-01

    The objective of this study was to investigate the change in microbial community pattern with the effect of cleaning agent using a quinone profile that is used for membrane in-line chemical cleaning in SMBR. The dominant quinone types of biofilm were ubiquinone (UQs)-8, -10, followed by menaquinone (MKs)-8(H4), -7 and UQ-9, but those of suspended microorganisms were UQ-8, UQ-10 followed by MKs-8(H4), -7 and -11. Both UQ and MK contents decreased with increasing NaCIO dosage and it seems that there is more resistance from UQ compared to MK. In addition, COD and DOC concentrations increased with increasing NaClO dosage up to 0.05 g-NaCIO/g-SS. The organic degradation performance of the microbial community in the presence of NaClO was impaired. The present study suggested that larger added amounts of NaClO caused an inhibition of organic degradation and cell lysis.

  14. Kibdelones: novel anticancer polyketides from a rare Australian actinomycete.

    PubMed

    Ratnayake, Ranjala; Lacey, Ernest; Tennant, Shaun; Gill, Jennifer H; Capon, Robert J

    2007-01-01

    The kibdelones are a novel family of bioactive heterocyclic polyketides produced by a rare soil actinomycete, Kibdelosporangium sp. (MST-108465). Complete relative stereostructures were assigned to kibdelones A-C (1-3), kibdelone B rhamnoside (5), 13-oxokibdelone A (7), and 25-methoxy-24-oxokibdelone C (8) on the basis of detailed spectroscopic analysis and chemical interconversion, as well as mechanistic and biosynthetic considerations. Under mild conditions, kibdelones B (2) and C (3) undergo a facile equilibration to kibdelones A-C (1-3), while kibdelone B rhamnoside (5) equilibrates to a mixture of kibdelone A-C rhamnosides (4-6). A plausible mechanism for this equilibration is proposed and involves air oxidation, quinone/hydroquinone redox transformations, and a choreographed sequence of keto/enol tautomerizations that aromatize ring C via a quinone methide intermediate. Kibdelones exhibit potent and selective cytotoxicity against a panel of human tumor cell lines and display significant antibacterial and nematocidal activity.

  15. Mushroom Tyrosinase: A Model System to Combine Experimental Investigation of Enzyme-Catalyzed Reactions, Data Handling Using R, and Enzyme-Inhibitor Structural Studies

    ERIC Educational Resources Information Center

    Nairn, Robert; Cresswell, Will; Nairn, Jacqueline

    2015-01-01

    The activity of mushroom tyrosinase can be measured by monitoring the conversion of phenolic compounds into quinone derivatives using spectrophotometry. This article describes a series of experiments which characterize the functional properties of tyrosinase, the analysis of the resulting data using R to determine the kinetic parameters, and the…

  16. Competition studies of QoI resistant and sensitive Cercospora sojina isolates the causal agent of frogeye leaf spot

    USDA-ARS?s Scientific Manuscript database

    Frogeye leaf spot (FLS), caused by Cercospora sojina, is a yearly foliar disease in Tennessee and causes substantial economic losses if not properly managed. Quinone outside inhibitor (QoI) fungicides are often used to manage FLS, but C. sojina isolates have developed resistance to this class of fun...

  17. 78 FR 30232 - Defense Federal Acquisition Regulation Supplement; Technical Amendments

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-22

    .... DATES: Effective: May 22, 2013. FOR FURTHER INFORMATION CONTACT: Mr. Manuel Quinones, Defense... MATTERS 204.1105 [Amended] 0 2. Amend section 204.1105 by removing the word ``clause'' and adding the word.... Section 252.204-7004 is amended by removing from the clause heading ``(DATE)'' and adding ``(MAY 2013...

  18. Fitness and competition studies of QoI resistant and sensitive Cercospora sojina isolates, the causal agent of frogeye leaf spot

    USDA-ARS?s Scientific Manuscript database

    Frogeye leaf spot (FLS), caused by Cercospora sojina, is a yearly foliar disease of soybean in Tennessee and causes substantial economic losses if not properly managed. Quinone outside inhibitor (QoI) fungicides are often used to manage FLS, but C. sojina isolates have developed resistance to this c...

  19. Beyond brown: polyphenol oxidases as enzymes of plant specialized metabolism

    USDA-ARS?s Scientific Manuscript database

    Most cloned and/or characterized plant polyphenol oxidases (PPOs) have catecholase activity (i.e., they oxidize o-diphenols to o-quinones) and are localized or predicted to be localized to plastids. As a class, they have broad substrate specificity and are associated with browning of produce and oth...

  20. The End of the Six-Party Talks?

    DTIC Science & Technology

    2007-01-01

    Pyongyang is wary of Beijing’s international influence, its ability to collaborate with the United States and South Korea, its willingness to foster ...Kenneth Quinones, “ Dualism in the Bush Administration’s North Korea Policy,” Asian Perspective, XXVII, no. 1, 2003, 197-224; Karin Lee and Adam Miles

  1. An Inexpensive Aqueous Flow Battery for Large-Scale Electrical Energy Storage Based on Water-Soluble Organic Redox Couples

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, B; Hoober-Burkhardt, L; Wang, F

    We introduce a novel Organic Redox Flow Battery (ORBAT), for Meeting the demanding requirements of cost, eco-friendliness, and durability for large-scale energy storage. ORBAT employs two different water-soluble organic redox couples on the positive and negative side of a flow battery. Redox couples such as quinones are particularly attractive for this application. No precious metal catalyst is needed because of the fast proton-coupled electron transfer processes. Furthermore, in acid media, the quinones exhibit good chemical stability. These properties render quinone-based redox couples very attractive for high-efficiency metal-free rechargeable batteries. We demonstrate the rechargeability of ORBAT with anthraquinone-2-sulfonic acid or anthraquinone-2,6-disulfonicmore » acid on the negative side, and 1,2-dihydrobenzoquinone- 3,5-disulfonic acid on the positive side. The ORBAT cell uses a membrane-electrode assembly configuration similar to that used in polymer electrolyte fuel cells. Such a battery can be charged and discharged multiple times at high faradaic efficiency without any noticeable degradation of performance. We show that solubility and mass transport properties of the reactants and products are paramount to achieving high current densities and high efficiency. The ORBAT configuration presents a unique opportunity for developing an inexpensive and sustainable metal-free rechargeable battery for large-scale electrical energy storage. (C) The Author(s) 2014. Published by ECS. This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 License (CC BY, http://creativecommons.orgilicenses/by/4.0/), which permits unrestricted reuse of the work in any medium, provided the original work is properly cited. All rights reserved.« less

  2. CHARGE-TRANSFER ASSOCIATION AND PARAMAGNETISM OF SOME ORGANIC SYSTEMS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eastman, J W

    When p-xylene was combined with chloranil in n-heptane, charge-transfer optical absorption was observed. The magnitude of this absorption was used to calculate an equilibrium constant for the formation of a donor-acceptor complex containing one p-xylene was combined with carbon tetrabromide and with carbon tetrachloride in n-heptane, no charge-transfer absorption was observed. Reactions of N,N,N',N'-tetramethyl-p-phenylenediamine (TMPD) with chloranil (pQCl/ sub 4/) were observed in ethylene dichloride and acetonitrile. In both solvents adduct formation occurred initially, as observed by its charge-transfer absorption. In acetonitrile time-dependent electron spin resonance (ESR) absorption was observed, and it was identified with the positive and negative radicalmore » ions of TMPD and pQCl/sub 4/, respectively. In this case a completely ionized electron transfer had occurred. Chloranil and other quinones were found to react with N,N-dimethylaniline forming a crystal violet salt. The diamagnetic donor-acceptor complexes and also semiquinone radicals are intermediates which were observed. Some physical measurements of the kinetics of this reaction are described and correlated. When fluoranil was allowed to react with dimethylaniline, the hyperfine splitting by the fluorine atoms of the fluoranil radical was not resolved. Characteristics of the ESR absorption by this radical in dimethylaniline are discussed in terms of an electron transfer between the semiquinone and quinone, and between the semiquinone and hydroquinone ion. Paramagnetism was discovered in hydrocarbon-quinone solids. ESR absorption was assigned to imperfections in the solid which was normally diamagnetic. The preparation of these solids and some of their physical characteristics are described. (auth)« less

  3. Duroquinone reduction during passage through the pulmonary circulation.

    PubMed

    Audi, Said H; Bongard, Robert D; Dawson, Christopher A; Siegel, David; Roerig, David L; Merker, Marilyn P

    2003-11-01

    The lungs can substantially influence the redox status of redox-active plasma constituents. Our objective was to examine aspects of the kinetics and mechanisms that determine pulmonary disposition of redox-active compounds during passage through the pulmonary circulation. Experiments were carried out on rat and mouse lungs with 2,3,5,6-tetramethyl-1,4-benzoquinone [duroquinone (DQ)] as a model amphipathic quinone reductase substrate. We measured DQ and durohydroquinone (DQH2) concentrations in the lung venous effluent after injecting, or while infusing, DQ or DQH2 into the pulmonary arterial inflow. The maximum net rates of DQ reduction to DQH2 in the rat and mouse lungs were approximately 4.9 and 2.5 micromol. min(-1).g dry lung wt(-1), respectively. The net rate was apparently the result of freely permeating access of DQ and DQH2 to tissue sites of redox reactions, dominated by dicumarol-sensitive DQ reduction to DQH2 and cyanide-sensitive DQH2 reoxidation back to DQ. The dicumarol sensitivity along with immunodetectable expression of NAD(P)H-quinone oxidoreductase 1 (NQO1) in the rat lung tissue suggest cytoplasmic NQO1 as the dominant site of DQ reduction. The effect of cyanide on DQH2 oxidation suggests that the dominant site of oxidation is complex III of the mitochondrial electron transport chain. If one envisions DQ as a model compound for examining the disposition of amphipathic NQO1 substrates in the lungs, the results are consistent with a role for lung NQO1 in determining the redox status of such compounds in the circulation. For DQ, the effect is conversion of a redox-cycling, oxygen-activating quinone into a stable hydroquinone.

  4. Effect of phytotoxic secondary metabolites and semisynthetic compounds from endophytic fungus Xylaria feejeensis strain SM3e-1b on spinach chloroplast photosynthesis.

    PubMed

    Macías-Rubalcava, Martha Lydia; García-Méndez, Marbella Claudia; King-Díaz, Beatriz; Macías-Ruvalcaba, Norma Angélica

    2017-01-01

    We investigated the mechanism of action on the photosynthesis light reactions of three major secondary metabolites produced by the endophytic fungus Xylaria feejeensis strain SM3e-1b, isolated from Sapium macrocarpum; and four novel derivatives of coriloxine, a major compound produced by X. feejeensis. The natural phytotoxins include one epoxycyclohexenone derivative, coriloxine (1), and two quinone derivatives (2-3). The semisynthetic derivatives of coriloxine are two cyclohexenone (4-6) and two quinone compounds (5-7). Cyclohexenone (4), (4R,5S,6R)-6-chloro-4,5-dihydroxy-3-methoxy-5-methylcyclohex-2-enone, inhibited ATP synthesis in freshly lysed spinach chloroplasts from water to MV; it also partly inhibited the basal and uncoupled photosynthetic electron transport, and significantly enhanced the phosphorylating electron transport and Mg 2+ -ATPase activity, thus demonstrating its action as an uncoupler agent. On the other hand, quinone (7), 2-((4-butylphenyl)amino)-5-methoxy-3-methylcyclohexa-2,5-diene-1,4-dione, inhibited ATP synthesis, and non-cyclic electron transport from water to MV in basal, phosphorylating and uncoupled conditions in a concentration-dependent manner. Hence, (7) behaves as a Hill reaction inhibitor at the PSII electron transport on the water splitting enzyme (OEC), and on the acceptor side between P 680 and Q A . This mechanism of action was confirmed by chlorophyll a fluorescence measurements. These results indicate that coriloxine derivatives 4 and 7 could work as prototype structures for the development of new herbicides. Contrastingly, natural products 1-3, and derivatives 5 and 6 did not show a significant inhibitory effect on ATP synthesis. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Higher Activities of Defense-Associated Enzymes may Contribute to Greater Resistance of Manchurian Ash to Emerald Ash Borer Than A closely Related and Susceptible Congener.

    PubMed

    Rigsby, Chad M; Herms, Daniel A; Bonello, Pierluigi; Cipollini, Don

    2016-08-01

    Emerald ash borer (EAB) is an invasive beetle native to Asia that infests and kills ash (Fraxinus spp.) in North America. Previous experiments indicated that larvae feeding on co-evolved, resistant Manchurian ash (F. mandshurica) have increased antioxidant and quinone-protective enzyme activities compared to larvae feeding on susceptible North American species. Here, we examined mechanisms of host-generated oxidative and quinone-based stress and other putative defenses in Manchurian ash and the closely related and chemically similar, but susceptible, black ash (F. nigra), with and without exogenous application of methyl jasmonate (MeJA) to induce resistance mechanisms. Peroxidase activities were 4.6-13.3 times higher in Manchurian than black ash, although both species appeared to express the same three peroxidase isozymes. Additionally, peroxidase-mediated protein cross-linking activity was stronger in Manchurian ash. Polyphenol oxidase, β-glucosidase, chitinase, and lipoxygenase activities also were greater in Manchurian ash, but only lipoxygenase activity increased with MeJA application. Phloem H 2 O 2 levels were similar and were increased by MeJA application in both species. Lastly, trypsin inhibitor activity was detected in methanol and water extracts that were not allowed to oxidize, indicating the presence of phenolic-based trypsin inhibitors. However, no proteinaceous trypsin inhibitor activity was detected in either species. In response to MeJA application, Manchurian ash had higher trypsin inhibitor activity than black ash using the unoxidized water extracts, but no treatment effects were detected using methanol extracts. Based on these results we hypothesize that peroxidases, lignin polymerization, and quinone generation contribute to the greater resistance to EAB displayed by Manchurian ash.

  6. Autoxidative and Cyclooxygenase-2 Catalyzed Transformation of the Dietary Chemopreventive Agent Curcumin*

    PubMed Central

    Griesser, Markus; Pistis, Valentina; Suzuki, Takashi; Tejera, Noemi; Pratt, Derek A.; Schneider, Claus

    2011-01-01

    The efficacy of the diphenol curcumin as a cancer chemopreventive agent is limited by its chemical and metabolic instability. Non-enzymatic degradation has been described to yield vanillin, ferulic acid, and feruloylmethane through cleavage of the heptadienone chain connecting the phenolic rings. Here we provide evidence for an alternative mechanism, resulting in autoxidative cyclization of the heptadienone moiety as a major pathway of degradation. Autoxidative transformation of curcumin was pH-dependent with the highest rate at pH 8 (2.2 μm/min) and associated with stoichiometric uptake of O2. Oxidation was also catalyzed by recombinant cyclooxygenase-2 (COX-2) (50 nm; 7.5 μm/min), and the rate was increased ≈10-fold by the addition of 300 μm H2O2. The COX-2 catalyzed transformation was inhibited by acetaminophen but not indomethacin, suggesting catalysis occurred by the peroxidase activity. We propose a mechanism of enzymatic or autoxidative hydrogen abstraction from a phenolic hydroxyl to give a quinone methide and a delocalized radical in the heptadienone chain that undergoes 5-exo cyclization and oxygenation. Hydration of the quinone methide (measured by the incorporation of O-18 from H218O) and rearrangement under loss of water gives the final dioxygenated bicyclopentadione product. When curcumin was added to RAW264.7 cells, the bicyclopentadione was increased 1.8-fold in cells activated by LPS; vanillin and other putative cleavage products were negligible. Oxidation to a reactive quinone methide is the mechanistic basis of many phenolic anti-cancer drugs. It is possible, therefore, that oxidative transformation of curcumin, a prominent but previously unrecognized reaction, contributes to its cancer chemopreventive activity. PMID:21071447

  7. Acetate in mixotrophic growth medium affects photosystem II in Chlamydomonas reinhardtii and protects against photoinhibition.

    PubMed

    Roach, Thomas; Sedoud, Arezki; Krieger-Liszkay, Anja

    2013-10-01

    Chlamydomonas reinhardtii is a photoautotrophic green alga, which can be grown mixotrophically in acetate-supplemented media (Tris-acetate-phosphate). We show that acetate has a direct effect on photosystem II (PSII). As a consequence, Tris-acetate-phosphate-grown mixotrophic C. reinhardtii cultures are less susceptible to photoinhibition than photoautotrophic cultures when subjected to high light. Spin-trapping electron paramagnetic resonance spectroscopy showed that thylakoids from mixotrophic C. reinhardtii produced less (1)O2 than those from photoautotrophic cultures. The same was observed in vivo by measuring DanePy oxalate fluorescence quenching. Photoinhibition can be induced by the production of (1)O2 originating from charge recombination events in photosystem II, which are governed by the midpoint potentials (Em) of the quinone electron acceptors. Thermoluminescence indicated that the Em of the primary quinone acceptor (QA/QA(-)) of mixotrophic cells was stabilised while the Em of the secondary quinone acceptor (QB/QB(-)) was destabilised, therefore favouring direct non-radiative charge recombination events that do not lead to (1)O2 production. Acetate treatment of photosystem II-enriched membrane fragments from spinach led to the same thermoluminescence shifts as observed in C. reinhardtii, showing that acetate exhibits a direct effect on photosystem II independent from the metabolic state of a cell. A change in the environment of the non-heme iron of acetate-treated photosystem II particles was detected by low temperature electron paramagnetic resonance spectroscopy. We hypothesise that acetate replaces the bicarbonate associated to the non-heme iron and changes the environment of QA and QB affecting photosystem II charge recombination events and photoinhibition. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. The Nrf2-antioxidant response element pathway: a target for regulating energy metabolism

    USDA-ARS?s Scientific Manuscript database

    The nuclear factor E2-related factor 2 (Nrf2) is a transcription factor that responds to oxidative stress by binding to the antioxidant response element (ARE) in the promoter of genes coding for antioxidant enzymes like NAD(P)H:quinone oxidoreductase 1 (NQO1) and proteins for glutathione synthesis. ...

  9. Ranking mechanical pulps for their potential to photoyellow

    Treesearch

    Umesh P. Agarwal

    2000-01-01

    Recently found experimental evidence has provided strong support for an alternative photoyellowing mechanism that suggests that pulp- photoyellowing occurs due to direct photooxidation of hydroquinones (present in mechanical pulps) top-quinones. Because hydroquinones were found to be present in pulps, it may be possible to quantify them. Quantification of mechanical-...

  10. Picture of the Week: Hacking the bio-nano interface for better biofuels

    Science.gov Websites

    ) influence electron transfer between the enzyme and the electrode to determine the best placement of enzymes compounds) influence electron transfer between the enzyme and the electrode to determine the best placement studied how three quinones (a class of organic compounds) influence electron transfer between the enzyme

  11. The Synthesis of a Cockroach Pheromone: An Experiment for the Second-Year Organic Chemistry Laboratory

    ERIC Educational Resources Information Center

    Feist, Patty L.

    2008-01-01

    This experiment describes the synthesis of gentisyl quinone isovalerate, or blattellaquinone, a sex pheromone of the German cockroach that was isolated and identified in 2005. The synthesis is appropriate for the second semester of a second-year organic chemistry laboratory course. It can be completed in two, three-hour laboratory periods and uses…

  12. Chemopreventive Agents from Physalis minima Function as Michael Reaction Acceptors

    PubMed Central

    Men, Ruizhi; Li, Ning; Ding, Chihong; Tang, Yingzhan; Xing, Yachao; Ding, Wanjing; Ma, Zhongjun

    2016-01-01

    Background: The fruits of some varieties of genus Physalis have been used as delicious fruits and functional food in the Northeast of China. Materials and Methods: To reveal the functional material basis, we performed bioactivity-guided phytochemical research and chemopreventive effect assay of the constituents from Physalis minima. Results: It was demonstrated that the ethyl acetate extract of P. minima L. (EEPM) had potential quinone reductase (QR) inducing activity with induction ratio (IR, QR induction activity) value of 1.47 ± 0.24, and glutathione binding property as potential Michael reaction acceptors (with an α, β-unsaturated ketone moiety). Furthermore, bioactivity-guided phytochemical research led eight compounds (1–8), which were elucidated as 3-isopropyl-5-acetoxycyclohexene-2-one-1 (1), isophysalin B (2), physalin G (3), physalin D (4), physalin I (5), physordinose B (6), stigmasterol-3-O-β-D-glucopyranoside (7) and 5α-6β-dihydroxyphysalin R (8) on the basis of nuclear magnetic resonance spectroscopy analyses and HRESIMS. Then, isophysalin B (2) and physordinose B (6) showed significant QR inducing activity with IR value of 2.80 ± 0.19 and 2.38 ± 0.46, respectively. SUMMARY An ultra-performance liquid chromatographic method with glutathione as the substrate was used to detect the Michael reaction acceptors in extracts of Physalis minima (EPM)We investigated the chemical constituents of EPM guided by biological activity methodIsophysalin B (1) and physordinose B (6) showed strong quinone reductase inducing activity with induction ratio values of 2.80 ± 0.19 and 2.38 ± 0.46This study generated useful information for consumers and many encourage researchers to utilize edible fruits from Physalis as a source of phytochemicals Abbreviations used: EPM: Extracts of Physalis minima, EEPM: Ethyl acetate extract of Physalis minima L., GSH: Glutathione, MRAs: Michael reaction acceptors, QR: Quinone reductase. PMID:27279713

  13. The orally active pterocarpanquinone LQB-118 exhibits cytotoxicity in prostate cancer cell and tumor models through cellular redox stress.

    PubMed

    Martino, Thiago; Kudrolli, Tarana A; Kumar, Binod; Salviano, Isis; Mencalha, André; Coelho, Marsen Garcia P; Justo, Graça; Costa, Paulo R Ribeiro; Sabino, Kátia C Carvalho; Lupold, Shawn E

    2018-02-01

    The targeted induction of reactive oxygen species (ROS) is a developing mechanism for cancer therapy. LQB-118 is a pterocarpanquinone and ROS-inducing agent with proven antineoplastic activity. Here, LQB-118 efficacy and mechanism of activity, were examined in Prostate Cancer (PCa) cell and tumor models. PC3, LNCaP, and LAPC4 PCa cells were applied. Dicoumarol treatment was used to inhibit quinone reductase activity. N-acetylcysteine (NAC) was applied as a ROS scavenger. ROS production was quantified by H 2 DCFDA flow cytometry. LQB-118 treated cells were evaluated for changes in lipid peroxidation, viability, and apoptosis. Treatment-induced gene expression was measured by RT-qPCR and Western Blot. SOD1 knockdown was achieved with siRNA or miRNA mimic transfection. MicroRNA specificity was determined by 3'UTR reporter assay. Oral LQB-118 treatment (10 mg/kg/day) efficacy was determined in athymic male nude mice bearing subcutaneous PC3 xenograft tumors. LQB-118 treatment triggered PCa cell death and apoptosis. Therapeutic activity was at least partially dependent upon quinone reduction and ROS generation. LQB-118 treatment caused an increase in cellular ROS and lipid peroxidation. Treated cells exhibited elevated levels of NQO1, Nrf2, and SOD1. The miRNAs miR-206, miR-1, and miR-101 targeted and reduced SOD1 expression. The knockdown of SOD1, by siRNA or miRNA, enhanced LQB-118 cytotoxicity. Orally administered LQB-118 treatment significantly reduced the growth of established PCa xenograft tumors. LQB-118 is a developing and orally active pterocarpanquinone agent that effectively kills PCa cells through quinone reduction and ROS generation. The inhibition SOD1 expression enhances LQB-118 activity, presumably by impairing the cellular antioxidant response. © 2017 Wiley Periodicals, Inc.

  14. Spectroscopic investigations of humic-like acids formed via polycondensation reactions between glycine, catechol and glucose in the presence of natural zeolites

    NASA Astrophysics Data System (ADS)

    Fukuchi, Shigeki; Miura, Akitaka; Okabe, Ryo; Fukushima, Masami; Sasaki, Masahide; Sato, Tsutomu

    2010-10-01

    Polycondensation reactions between low-molecular-weight compounds, such as amino acids, sugars and phenols, are crucially important processes in the formation of humic substances, and clay minerals have the ability to catalyze these reactions. In the present study, catechol (CT), glycine (Gly) and glucose (Gl) were used as representative phenols, amino acids and sugars, respectively, and the effects of the catalytic activities of natural zeolites on polycondensation reactions between these compounds were investigated. The extent of polycondensation was evaluated by measuring the specific absorbance at 600 nm ( E600) as an index of the degree of darkening. After a 3-week incubation period, the E600 values for solutions that contained zeolite samples were 4-10 times greater than those measured in the absence of zeolite, suggesting that the zeolite had, in fact, catalyzed the polycondensation reaction. The humic-like acids (HLAs) produced in the reactions were isolated, and their elemental composition and molecular weights determined. When formed in the presence of a zeolite, the nitrogen contents and molecular weights for the HLAs were significantly higher, compared to the HLA sample formed in the absence of zeolite. In addition, solid-state CP-MAS 13C NMR spectra and carboxylic group analyses of the HLA samples indicated that the concentration of carbonyl carbon species for quinones and ketones produced in the presence of zeolite were higher than the corresponding values for samples produced in the absence of a zeolite. Carbonyl carbons in quinones and ketones indicate the nucleophilic characteristics of the samples. Therefore, a nitrogen atom in Gly, which serves as nucleophile, is incorporated into quinones and ketones in CT and Gl. The differences in the catalytic activities of the zeolite samples can be attributed to differences in their transition metal content (Fe, Mn and Ti), which function as Lewis acids.

  15. Reengineered glucose oxidase for amperometric glucose determination in diabetes analytics.

    PubMed

    Arango Gutierrez, Erik; Mundhada, Hemanshu; Meier, Thomas; Duefel, Hartmut; Bocola, Marco; Schwaneberg, Ulrich

    2013-12-15

    Glucose oxidase is an oxidoreductase exhibiting a high β-D-glucose specificity and high stability which renders glucose oxidase well-suited for applications in diabetes care. Nevertheless, GOx activity is highly oxygen dependent which can lead to inaccuracies in amperometric β-D-glucose determinations. Therefore a directed evolution campaign with two rounds of random mutagenesis (SeSaM followed by epPCR), site saturation mutagenesis studies on individual positions, and one simultaneous site saturation library (OmniChange; 4 positions) was performed. A diabetes care well suited mediator (quinone diimine) was selected and the GOx variant (T30V I94V) served as starting point. For directed GOx evolution a microtiter plate detection system based on the quinone diimine mediator was developed and the well-known ABTS-assay was applied in microtiter plate format to validate oxygen independency of improved GOx variants. Two iterative rounds of random diversity generation and screening yielded to two subsets of amino acid positions which mainly improved activity (A173, A332) and oxygen independency (F414, V560). Simultaneous site saturation of all four positions with a reduced subset of amino acids using the OmniChange method yielded finally variant V7 with a 37-fold decreased oxygen dependency (mediator activity: 7.4 U/mg WT, 47.5 U/mg V7; oxygen activity: 172.3 U/mg WT, 30.1 U/mg V7). V7 is still highly β-D-glucose specific, highly active with the quinone diimine mediator and thermal resistance is retained (prerequisite for GOx coating of diabetes test stripes). The latter properties and V7's oxygen insensitivity make V7 a very promising candidate to replace standard GOx in diabetes care applications. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. The role of geochemistry and energetics in the evolution of modern respiratory complexes from a proton-reducing ancestor.

    PubMed

    Schut, Gerrit J; Zadvornyy, Oleg; Wu, Chang-Hao; Peters, John W; Boyd, Eric S; Adams, Michael W W

    2016-07-01

    Complex I or NADH quinone oxidoreductase (NUO) is an integral component of modern day respiratory chains and has a close evolutionary relationship with energy-conserving [NiFe]-hydrogenases of anaerobic microorganisms. Specifically, in all of biology, the quinone-binding subunit of Complex I, NuoD, is most closely related to the proton-reducing, H2-evolving [NiFe]-containing catalytic subunit, MbhL, of membrane-bound hydrogenase (MBH), to the methanophenzine-reducing subunit of a methanogenic respiratory complex (FPO) and to the catalytic subunit of an archaeal respiratory complex (MBX) involved in reducing elemental sulfur (S°). These complexes also pump ions and have at least 10 homologous subunits in common. As electron donors, MBH and MBX use ferredoxin (Fd), FPO uses either Fd or cofactor F420, and NUO uses either Fd or NADH. In this review, we examine the evolutionary trajectory of these oxidoreductases from a proton-reducing ancestral respiratory complex (ARC). We hypothesize that the diversification of ARC to MBH, MBX, FPO and eventually NUO was driven by the larger energy yields associated with coupling Fd oxidation to the reduction of oxidants with increasing electrochemical potential, including protons, S° and membrane soluble organic compounds such as phenazines and quinone derivatives. Importantly, throughout Earth's history, the availability of these oxidants increased as the redox state of the atmosphere and oceans became progressively more oxidized as a result of the origin and ecological expansion of oxygenic photosynthesis. ARC-derived complexes are therefore remarkably stable respiratory systems with little diversity in core structure but whose general function appears to have co-evolved with the redox state of the biosphere. This article is part of a Special Issue entitled Respiratory Complex I, edited by Volker Zickermann and Ulrich Brandt. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Effects of juglone and lawsone on oxidative stress in maize coleoptile cells treated with IAA.

    PubMed

    Kurtyka, Renata; Pokora, Wojciech; Tukaj, Zbigniew; Karcz, Waldemar

    2016-01-01

    Naphthoquinones are secondary metabolites widely distributed in nature and produced by bacteria, fungi and higher plants. Their biological activity may result from induction of oxidative stress, caused by redox cycling or direct interaction with cellular macromolecules, in which quinones act as electrophiles. The redox homeostasis is known as one of factors involved in auxin-mediated plant growth regulation. To date, however, little is known about the crosstalk between reactive oxygen species (ROS) produced by quinones and the plant growth hormone auxin (IAA). In this study, redox cycling properties of two naphthoquinones, juglone (5-hydroxy-1,4-naphthoquinone) and lawsone (2-hydroxy-1,4-naphthoquinone), were compared in experiments performed on maize coleoptile segments incubated with or without the addition of IAA. It was found that lawsone was much more effective than juglone in increasing both H 2 O 2 production and the activity of antioxidative enzymes (SOD, POX and CAT) in coleoptile cells, regardless of the presence of IAA. An increase in the activity of Cu/Zn-SOD isoenzymes induced by both naphthoquinones suggests that juglone- and lawsone-generated H 2 O 2 was primarily produced in the cytosolic and cell wall spaces. The cell potential to neutralize hydrogen peroxide, determined by POX and CAT activity, pointed to activity of catalase as the main enzymatic mechanism responsible for degradation of H 2 O 2 Therefore, we assumed that generation of H 2 O 2 , induced more efficiently by LW than JG, was the major factor accounting for differences in the toxicity of naphthoquinones in maize coleoptiles. The role of auxin in the process appeared negligible. Moreover, the results suggested that oxidative stress imposed by JG and LW was one of mechanisms of allelopathic action of the studied quinones in plants. © The Authors 2016. Published by Oxford University Press on behalf of the Annals of Botany Company.

  18. Cell protein cross-linking by erbstatin and related compounds | Center for Cancer Research

    Cancer.gov

    The scheme depicts a possible mechanism of cross-linking by erbstatin and related analogues. A mechanism of action is proposed which involves initial oxidation to reactive quinone intermediates that subsequently cross-link protein nucleophiles via multiple 1,4-Michael-type additions. Similar alkylation of protein by protein-tyrosine kinase inhibitors, such as herbimycin A, has

  19. Reversibly immobilized biological materials in monolayer films on electrodes

    DOEpatents

    Weaver, P.F.; Frank, A.J.

    1993-05-04

    Methods and techniques are described for reversibly binding charged biological particles in a fluid medium to an electrode surface. The methods are useful in a variety of applications. The biological materials may include microbes, proteins, and viruses. The electrode surface may consist of reversibly electroactive materials such as polyvinylferrocene, silicon-linked ferrocene or quinone.

  20. Understanding the Etiology of Tuberous Sclerosis Complex

    DTIC Science & Technology

    2012-07-01

    catalog #4856), mouse anti-NeuN (1:500; Millipore), GFAP (1:100, DAKO) and DCX (1:500, Santa Cruz Biotechnology). Each staining was replicated in slices...Tramontin, A.D., Quinones-Hinojosa, A., Barbaro, N.M., Gupta, N., Kunwar, S., Lawton, M.T., McDermott, M.W., Parsa, A.T., Manuel -Garcia, V.J. et al