These are representative sample records from Science.gov related to your search topic.
For comprehensive and current results, perform a real-time search at Science.gov.
1

Quorum sensing inhibitors: an overview.  

PubMed

Excessive and indiscriminate use of antibiotics to treat bacterial infections has lead to the emergence of multiple drug resistant strains. Most infectious diseases are caused by bacteria which proliferate within quorum sensing (QS) mediated biofilms. Efforts to disrupt biofilms have enabled the identification of bioactive molecules produced by prokaryotes and eukaryotes. These molecules act primarily by quenching the QS system. The phenomenon is also termed as quorum quenching (QQ). In addition, synthetic compounds have also been found to be effective in QQ. This review focuses primarily on natural and synthetic quorum sensing inhibitors (QSIs) with the potential for treating bacterial infections. It has been opined that the most versatile prokaryotes to produce QSI are likely to be those, which are generally regarded as safe. Among the eukaryotes, certain legumes and traditional medicinal plants are likely to act as QSIs. Such findings are likely to lead to efficient treatments with much lower doses of drugs especially antibiotics than required at present. PMID:23142623

Kalia, Vipin Chandra

2013-01-01

2

Interactions among quorum sensing inhibitors.  

PubMed

Many pathogenic bacteria use quorum sensing (QS) systems to regulate the expression of virulence genes in a density-dependent manner. In one widespread QS paradigm the enzyme LuxI generates a small diffusible molecule of the acyl-homoserine lactone (AHL) family; high cell densities lead to high AHL levels; AHL binds the transcription factor LuxR, triggering it to activate gene expression at a virulence promoter. The emergence of antibiotic resistance has generated interest in alternative anti-microbial therapies that target QS. Inhibitors of LuxI and LuxR have been developed and tested in vivo, and can act at various levels: inhibiting the synthesis of AHL by LuxI, competitively or non-competitively inhibiting LuxR, or increasing the turnover of LuxI, LuxR, or AHL. Here use an experimentally validated computational model of LuxI/LuxR QS to study the effects of using inhibitors individually and in combination. The model includes the effect of transcriptional feedback, which generates highly non-linear responses as inhibitor levels are increased. For the ubiquitous LuxI-feedback virulence systems, inhibitors of LuxI are more effective than those of LuxR when used individually. Paradoxically, we find that LuxR competitive inhibitors, either individually or in combination with other inhibitors, can sometimes increase virulence by weakly activating LuxR. For both LuxI-feedback and LuxR-feedback systems, a combination of LuxR non-competitive inhibitors and LuxI inhibitors act multiplicatively over a broad parameter range. In our analysis, this final strategy emerges as the only robust therapeutic option. PMID:23626795

Anand, Rajat; Rai, Navneet; Thattai, Mukund

2013-01-01

3

Caffeine as a Potential Quorum Sensing Inhibitor  

PubMed Central

Quorum sensing enables bacteria to control the gene expression in response to the cell density. It regulates a variety of bacterial physiological functions such as biofilm formation, bioluminescence, virulence factors and swarming which has been shown contribute to bacterial pathogenesis. The use of quorum sensing inhibitor would be of particular interest in treating bacterial pathogenicity and infections. In this work, we have tested caffeine as quorum sensing inhibitor by using Chromobacterium violaceum CV026 as a biosensor. We verified that caffeine did not degrade the N-acyl homoserine lactones tested. In this work, it is shown that caffeine could inhibit N-acyl homoserine lactone production and swarming of a human opportunistic pathogen, namely Pseudomonas aeruginosa PA01. To the best of our knowledge, this is the first documentation providing evidence on the presence of anti-quorum sensing activity in caffeine. Our work will allow caffeine to be explored as anti-infective drugs. PMID:23598500

Norizan, Siti Nur Maisarah; Yin, Wai-Fong; Chan, Kok-Gan

2013-01-01

4

Targeting Staphylococcus aureus Quorum Sensing with Nonpeptidic Small Molecule Inhibitors  

PubMed Central

A series of 3-oxo-C12-HSL, tetramic acid, and tetronic acid analogues were synthesized to gain insights into the structural requirements for quorum sensing inhibition in Staphylococcus aureus. Compounds active against agr were noncompetitive inhibitors of the autoinducing peptide (AIP) activated AgrC receptor, by altering the activation efficacy of the cognate AIP-1. They appeared to act as negative allosteric modulators and are exemplified by 3-tetradecanoyltetronic acid 17, which reduced nasal cell colonization and arthritis in a murine infection model. PMID:24592914

2014-01-01

5

Computer-aided identification of recognized drugs as Pseudomonas aeruginosa quorum-sensing inhibitors.  

PubMed

Attenuation of Pseudomonas aeruginosa virulence by the use of small-molecule quorum-sensing inhibitors (referred to as the antipathogenic drug principle) is likely to play a role in future treatment strategies for chronic infections. In this study, structure-based virtual screening was used in a search for putative quorum-sensing inhibitors from a database comprising approved drugs and natural compounds. The database was built from compounds which showed structural similarities to previously reported quorum-sensing inhibitors, the ligand of the P. aeruginosa quorum-sensing receptor LasR, and a quorum-sensing receptor agonist. Six top-ranking compounds, all recognized drugs, were identified and tested for quorum-sensing-inhibitory activity. Three compounds, salicylic acid, nifuroxazide, and chlorzoxazone, showed significant inhibition of quorum-sensing-regulated gene expression and related phenotypes in a dose-dependent manner. These results suggest that the identified compounds have the potential to be used as antipathogenic drugs. Furthermore, the results indicate that structure-based virtual screening is an efficient tool in the search for novel compounds to combat bacterial infections. PMID:19364871

Yang, Liang; Rybtke, Morten Theil; Jakobsen, Tim Holm; Hentzer, Morten; Bjarnsholt, Thomas; Givskov, Michael; Tolker-Nielsen, Tim

2009-06-01

6

Glycosylflavonoids from Cecropia pachystachya Trécul are quorum sensing inhibitors.  

PubMed

The Cecropia genus is widely distributed in Latin America including at least 60 species, and some of them are commonly used in traditional medicine for the treatment of several diseases. We used Cecropia pachystachya Trécul to search for quorum sensing (QS) inhibitors compounds and found that the aqueous extract of C. pachystachya leaves is a promising source of substances with this activity. Using as biosensor Chromobacterium violaceum ATCC 31532 and Escherichia coli pSB403, the compounds chlorogenic acid (2), isoorientin (3), orientin (4), isovitexin (6), vitexin (7), and rutin (9) were identified as QS inhibitors. None of these compounds inhibited the growth of neither the used biosensors nor the microorganisms Staphylococcus aureus ATCC 23591, Escherichia coli ATCC 25922 and Saccharomyces cerevisiae, used here as growth inhibition controls. Along with the rutin, here we presented for the first time the QS-inhibition potential of the C-glycosyl flavonoids. The prospective of this evidence lead to the use of these compounds as antipathogenic drugs or antifoulants. PMID:24548722

Brango-Vanegas, J; Costa, G M; Ortmann, C F; Schenkel, E P; Reginatto, F H; Ramos, F A; Arévalo-Ferro, C; Castellanos, L

2014-04-15

7

Gram-Positive Marine Bacteria as a Potential Resource for the Discovery of Quorum Sensing Inhibitors  

Microsoft Academic Search

Inhibitors of bacterial quorum sensing have been proposed as potentially novel therapeutics for the treatment of certain bacterial\\u000a diseases. We recently reported a marine Halobacillus salinus isolate that secretes secondary metabolites capable of quenching quorum sensing phenotypes in several Gram-negative reporter\\u000a strains. To investigate how widespread the production of such compounds may be in the marine bacterial environment, 332 Gram-positive

Margaret E. Teasdale; Kellye A. Donovan; Stephanie R. Forschner-Dancause; David C. Rowley

8

Food as a Source for Quorum Sensing Inhibitors: Iberin from Horseradish Revealed as a Quorum Sensing Inhibitor of Pseudomonas aeruginosa  

PubMed Central

Foods with health-promoting effects beyond nutritional values have been gaining increasing research focus in recent years, although not much has been published on this subject in relation to bacterial infections. With respect to treatment, a novel antimicrobial strategy, which is expected to transcend problems with selective pressures for antibiotic resistance, is to interrupt bacterial communication, also known as quorum sensing (QS), by means of signal antagonists, the so-called QS inhibitors (QSIs). Furthermore, QSI agents offer a potential solution to the deficiencies associated with use of traditional antibiotics to treat infections caused by bacterial biofilms and multidrug-resistant bacteria. Several QSIs of natural origin have been identified, and in this study, several common food products and plants were extracted and screened for QSI activity in an attempt to isolate and characterize previously unknown QSI compounds active against the common opportunistic pathogen Pseudomonas aeruginosa. Several extracts displayed activity, but horseradish exhibited the highest activity. Chromatographic separation led to the isolation of a potent QSI compound that was identified by liquid chromatography-diode array detector-mass spectrometry (LC-DAD-MS) and nuclear magnetic resonance (NMR) spectroscopy as iberin—an isothiocyanate produced by many members of the Brassicaceae family. Real-time PCR (RT-PCR) and DNA microarray studies showed that iberin specifically blocks expression of QS-regulated genes in P. aeruginosa. PMID:22286987

Jakobsen, Tim Holm; Bragason, Steinn Kristinn; Phipps, Richard Kerry; Christensen, Louise Dahl; van Gennip, Maria; Alhede, Morten; Skindersoe, Mette; Larsen, Thomas Ostenfeld; H?iby, Niels; Bjarnsholt, Thomas

2012-01-01

9

Food as a source for quorum sensing inhibitors: iberin from horseradish revealed as a quorum sensing inhibitor of Pseudomonas aeruginosa.  

PubMed

Foods with health-promoting effects beyond nutritional values have been gaining increasing research focus in recent years, although not much has been published on this subject in relation to bacterial infections. With respect to treatment, a novel antimicrobial strategy, which is expected to transcend problems with selective pressures for antibiotic resistance, is to interrupt bacterial communication, also known as quorum sensing (QS), by means of signal antagonists, the so-called QS inhibitors (QSIs). Furthermore, QSI agents offer a potential solution to the deficiencies associated with use of traditional antibiotics to treat infections caused by bacterial biofilms and multidrug-resistant bacteria. Several QSIs of natural origin have been identified, and in this study, several common food products and plants were extracted and screened for QSI activity in an attempt to isolate and characterize previously unknown QSI compounds active against the common opportunistic pathogen Pseudomonas aeruginosa. Several extracts displayed activity, but horseradish exhibited the highest activity. Chromatographic separation led to the isolation of a potent QSI compound that was identified by liquid chromatography-diode array detector-mass spectrometry (LC-DAD-MS) and nuclear magnetic resonance (NMR) spectroscopy as iberin-an isothiocyanate produced by many members of the Brassicaceae family. Real-time PCR (RT-PCR) and DNA microarray studies showed that iberin specifically blocks expression of QS-regulated genes in P. aeruginosa. PMID:22286987

Jakobsen, Tim Holm; Bragason, Steinn Kristinn; Phipps, Richard Kerry; Christensen, Louise Dahl; van Gennip, Maria; Alhede, Morten; Skindersoe, Mette; Larsen, Thomas Ostenfeld; Høiby, Niels; Bjarnsholt, Thomas; Givskov, Michael

2012-04-01

10

Quorum Sensing Inhibitors for Staphylococcus aureus from Italian Medicinal Plants  

PubMed Central

Morbidity and mortality estimates due to methicillin-resistant Staphylococcus aureus (MRSA) infections continue to rise. Therapeutic options are limited by antibiotic resistance. Anti-pathogenic compounds, which inhibit quorum sensing (QS) pathways, may be a useful alternative to antibiotics. Staphylococcal QS is encoded by the agr locus and is responsible for the production of ?-hemolysin. Quantification of ?-hemolysin found in culture supernatants permits the analysis of agr activity at the translational, rather than transcriptional, level. We employed RP-HPLC techniques to investigate the anti-QS activity of 168 extracts from 104 Italian plants through quantification of ?-hemolysin. Extracts from three medicinal plants (Ballota nigra, Castanea sativa, and Sambucus ebulus) exhibited a dose-dependent response in the production of ?-hemolysin, indicating strong anti-QS activity in a pathogenic MRSA isolate. PMID:20645243

Quave, Cassandra L.; Plano, Lisa R.W.; Bennett, Bradley C.

2010-01-01

11

Quorum sensing inhibitors of Staphylococcus aureus from Italian medicinal plants.  

PubMed

Morbidity and mortality estimates due to methicillin-resistant Staphylococcus aureus (MRSA) infections continue to rise. Therapeutic options are limited by antibiotic resistance. Anti-pathogenic compounds, which inhibit quorum sensing (QS) pathways, may be a useful alternative to antibiotics. Staphylococcal QS is encoded by the AGR locus and is responsible for the production of ?-hemolysin. Quantification of ?-hemolysin found in culture supernatants permits the analysis of AGR activity at the translational rather than transcriptional level. We employed reversed phase high performance chromatographic (RP-HPLC) techniques to investigate the anti-QS activity of 168 extracts from 104 Italian plants through quantification of ?-hemolysin. Extracts from three medicinal plants (Ballota nigra, Castanea sativa, and Sambucus ebulus) exhibited a dose-dependent response in the production of ?-hemolysin, indicating anti-QS activity in a pathogenic MRSA isolate. PMID:20645243

Quave, Cassandra L; Plano, Lisa R W; Bennett, Bradley C

2011-01-01

12

Quorum Sensing and Phytochemicals  

PubMed Central

Most infectious diseases are caused by bacteria, which proliferate within quorum sensing (QS)-mediated biofilms. Efforts to block QS in bacteria and disrupt biofilms have enabled the identification of bioactive molecules that are also produced by plants. This mini review primarily focuses on natural QS inhibitors, which display potential for treating bacterial infections and also enhance the safety of food supply. PMID:23774835

Nazzaro, Filomena; Fratianni, Florinda; Coppola, Raffaele

2013-01-01

13

Bacterial quorum sensing inhibitors: attractive alternatives for control of infectious pathogens showing multiple drug resistance.  

PubMed

Quorum sensing (QS) is a bacterial communication process that depends on the bacterial population density. It involves small diffusible signaling molecules which activate the expression of myriad genes that control diverse array of functions like bioluminescence, virulence, biofilm formation, sporulation, to name a few. Since QS is responsible for virulence in the clinically relevant bacteria, inhibition of QS appears to be a promising strategy to control these pathogenic bacteria. With indiscriminate use of antibiotics, there has been an alarming increase in the number of antibiotic resistant pathogens. Antibiotics are no longer the magic bullets they were once thought to be and therefore there is a need for development of new antibiotics and/or other novel strategies to combat the infections caused by multidrug resistant organisms. Quorum sensing inhibition or quorum quenching has been pursued as one of such novel strategies. While antibiotics kill or slow down the growth of bacteria, quorum sensing inhibitors (QSIs) or quorum quenchers (QQs) attenuate bacterial virulence. A large body of work on QS has been carried out in deadly pathogens like Pseudomonas aeruginosa, Staphylococcus aureus, Vibrio fischeri, V. harveyi, Escherichia coli and V. cholerae etc to unravel the mechanisms of QS as well as identify and study QSIs. This review describes various aspects of QS, QSI, different model systems to study these phenomena and recent patents on various QSIs. It suggests QSIs as attractive alternatives for controlling human, animal and plant pathogens and their utility in agriculture and other industries. PMID:23394143

Bhardwaj, Ashima K; Vinothkumar, Kittappa; Rajpara, Neha

2013-04-01

14

Inhibition of marine biofouling by bacterial quorum sensing inhibitors  

PubMed Central

Seventy eight natural products from chemical libraries containing compounds from marine organisms (sponges, algae, fungi, tunicates and cyanobacteria) and terrestrial plants, were screened for the inhibition of bacterial quorum sensing (QS) using a reporter strain Chromobacterium violaceum CV017. About half of the natural products did not show any QS inhibition. Twenty four percent of the tested compounds inhibited QS of the reporter without causing toxicity. The QS inhibitory activities of the most potent and abundant compounds were further investigated using the LuxR-based reporter E. coli pSB401 and the LasR-based reporter E. coli pSB1075. Midpacamide and tenuazonic acid were toxic to the tested reporters. QS-dependent luminescence of the LasR-based reporter, which is normally induced by N-3-oxo-dodecanoyl-L-homoserine lactone, was reduced by demethoxy encecalin and hymenialdisin at concentrations 46.6 ?M and 15?M, respectively. Hymenialdisin, demethoxy encecalin, microcolins A and B and kojic acid inhibited responses of the LuxR-based reporter induced by N-3-oxo-hexanoyl-L-homoserine lactone at concentrations 40.2 ?M, 2.2 ?M, 1.5 ?M, 15 ?M and 36 ?M, respectively. The ability to prevent microfouling by one of the compounds screened in this study (kojic acid; final concentrations 330 ?M and 1 mM) was tested in a controlled mesocosm experiment. Kojic acid inhibited formation of microbial communities on glass slides, decreasing the densities of bacteria and diatoms in comparison with the control lacking kojic acid. The study suggests that natural products with QS inhibitory properties can be used for controlling biofouling communities. PMID:21882898

Dobretsov, Sergey; Teplitski, Max; Bayer, Mirko; Gunasekera, Sarath; Proksch, Peter; Paul, Valerie J

2012-01-01

15

A high-throughput screen for quorum-sensing inhibitors that target acyl-homoserine lactone synthases.  

PubMed

Many Proteobacteria use N-acyl-homoserine lactone (acyl-HSL) quorum sensing to control specific genes. Acyl-HSL synthesis requires unique enzymes that use S-adenosyl methionine as an acyl acceptor and amino acid donor. We developed and executed an enzyme-coupled high-throughput cell-free screen to discover acyl-HSL synthase inhibitors. The three strongest inhibitors were equally active against two different acyl-HSL synthases: Burkholderia mallei BmaI1 and Yersinia pestis YspI. Two of these inhibitors showed activity in whole cells. The most potent compound behaves as a noncompetitive inhibitor with a Ki of 0.7 µM and showed activity in a cell-based assay. Quorum-sensing signal synthesis inhibitors will be useful in attempts to understand acyl-HSL synthase catalysis and as a tool in studies of quorum-sensing control of gene expression. Because acyl-HSL quorum-sensing controls virulence of some bacterial pathogens, anti-quorum-sensing chemicals have been sought as potential therapeutic agents. Our screen and identification of acyl-HSL synthase inhibitors serve as a basis for efforts to target quorum-sensing signal synthesis as an antivirulence approach. PMID:23924613

Christensen, Quin H; Grove, Tyler L; Booker, Squire J; Greenberg, E Peter

2013-08-20

16

Gram-positive marine bacteria as a potential resource for the discovery of quorum sensing inhibitors.  

PubMed

Inhibitors of bacterial quorum sensing have been proposed as potentially novel therapeutics for the treatment of certain bacterial diseases. We recently reported a marine Halobacillus salinus isolate that secretes secondary metabolites capable of quenching quorum sensing phenotypes in several Gram-negative reporter strains. To investigate how widespread the production of such compounds may be in the marine bacterial environment, 332 Gram-positive isolates from diverse habitats were tested for their ability to interfere with Vibrio harveyi bioluminescence, a cell signaling-regulated phenotype. Rapid assay methods were employed where environmental isolates were propagated alongside the reporter strain. "Actives" were defined as bacteria that interfered with bioluminescence without visible cell-killing effects (antibiotic activity). A total of 49 bacterial isolates interfered with bioluminescence production in the assays. Metabolite extracts were generated from cultures of the active isolates, and 28 reproduced the bioluminescence inhibition against V. harveyi. Of those 28, five extracts additionally inhibited violacein production by Chromobacterium violaceum. Chemical investigations revealed that phenethylamides and a cyclic dipeptide are two types of secondary metabolites responsible for the observed activities. The active bacterial isolates belonged primarily to either the genus Bacillus or Halobacillus. The results suggest that Gram-positive marine bacteria are worthy of further investigation for the discovery of quorum sensing antagonists. PMID:21152942

Teasdale, Margaret E; Donovan, Kellye A; Forschner-Dancause, Stephanie R; Rowley, David C

2011-08-01

17

Structural understanding of quorum-sensing inhibitors by molecular modeling study in Pseudomonas aeruginosa.  

PubMed

Inhibitors of 3OC12, an initial signal molecule of the quorum sensing (QS) signaling cascade in Pseudomonas aeruginosa have been developed. Eight inhibitor candidates were synthesized by substituting the head part of 3-oxododecanoyl-homoserine lactone (3OC12) with different aromatic rings, and their docking poses and scores (binding energies) were predicted by in silico modeling study. All compounds gave better docking scores than 3OC12 and good inhibition effects on LasR activity in the in vivo bioassay. Like the modifications in the tail part of 3OC12 in our previous study Kim et al. (2008), the head-part modifications also showed inhibition activity in a fairly good proportion to the docking scores from the modeling analysis. This implies that the head part of 3OC12 also contributes significantly to forming the active conformation of the LasR-3OC12 complex, and its modification could effectively induce the inactive conformation of the complex. We suggest that the head part of 3OC12 is also a good target moiety to develop the structure-based Pseudomonas QS inhibitors. PMID:19330325

Kim, Cheoljin; Kim, Jaeeun; Park, Hyung-Yeon; Lee, Joon-Hee; Park, Hee-Jin; Kim, Chan Kyung; Yoon, Jeyong

2009-07-01

18

Identification of five structurally unrelated quorum-sensing inhibitors of Pseudomonas aeruginosa from a natural-derivative database.  

PubMed

Bacteria communicate by means of small signal molecules in a process termed quorum sensing (QS). QS enables bacteria to organize their activities at the population level, including the coordinated secretion of virulence factors. Certain small-molecule compounds, known as quorum-sensing inhibitors (QSIs), have been shown to effectively block QS and subsequently attenuate the virulence of Pseudomonas aeruginosa, as well as increasing its susceptibility to both antibiotics and the immune system. In this study, a structure-based virtual screening (SB-VS) approach was used for the discovery of novel QSI candidates. Three-dimensional structures of 3,040 natural compounds and their derivatives were obtained, after which molecular docking was performed using the QS receptor LasR as a target. Based on docking scores and molecular masses, 22 compounds were purchased to determine their efficacies as quorum-sensing inhibitors. Using a live reporter assay for quorum sensing, 5 compounds were found to be able to inhibit QS-regulated gene expression in P. aeruginosa in a dose-dependent manner. The most promising compound, G1, was evaluated by isobaric tag for relative and absolute quantitation (iTRAQ)-based proteomic analysis, and it was found to significantly affect the abundance of 46 proteins (19 were upregulated; 27 were downregulated) in P. aeruginosa PAO1. It specifically reduced the expression of several quorum-sensing-regulated virulence factors, such as protease IV, chitinase, and pyoverdine synthetases. G1 was also able to reduce extracellular DNA release and inhibited the secretion of the virulence factor, elastase, whose expression is regulated by LasR. These results demonstrate the utility of SB-VS for the discovery of target-specific QSIs. PMID:24002091

Tan, Sean Yang-Yi; Chua, Song-Lin; Chen, Yicai; Rice, Scott A; Kjelleberg, Staffan; Nielsen, Thomas E; Yang, Liang; Givskov, Michael

2013-11-01

19

Identification of Five Structurally Unrelated Quorum-Sensing Inhibitors of Pseudomonas aeruginosa from a Natural-Derivative Database  

PubMed Central

Bacteria communicate by means of small signal molecules in a process termed quorum sensing (QS). QS enables bacteria to organize their activities at the population level, including the coordinated secretion of virulence factors. Certain small-molecule compounds, known as quorum-sensing inhibitors (QSIs), have been shown to effectively block QS and subsequently attenuate the virulence of Pseudomonas aeruginosa, as well as increasing its susceptibility to both antibiotics and the immune system. In this study, a structure-based virtual screening (SB-VS) approach was used for the discovery of novel QSI candidates. Three-dimensional structures of 3,040 natural compounds and their derivatives were obtained, after which molecular docking was performed using the QS receptor LasR as a target. Based on docking scores and molecular masses, 22 compounds were purchased to determine their efficacies as quorum-sensing inhibitors. Using a live reporter assay for quorum sensing, 5 compounds were found to be able to inhibit QS-regulated gene expression in P. aeruginosa in a dose-dependent manner. The most promising compound, G1, was evaluated by isobaric tag for relative and absolute quantitation (iTRAQ)-based proteomic analysis, and it was found to significantly affect the abundance of 46 proteins (19 were upregulated; 27 were downregulated) in P. aeruginosa PAO1. It specifically reduced the expression of several quorum-sensing-regulated virulence factors, such as protease IV, chitinase, and pyoverdine synthetases. G1 was also able to reduce extracellular DNA release and inhibited the secretion of the virulence factor, elastase, whose expression is regulated by LasR. These results demonstrate the utility of SB-VS for the discovery of target-specific QSIs. PMID:24002091

Tan, Sean Yang-Yi; Chua, Song-Lin; Chen, Yicai; Rice, Scott A.; Kjelleberg, Staffan; Nielsen, Thomas E.; Givskov, Michael

2013-01-01

20

Inhibitors of the Pseudomonas aeruginosa quorum-sensing regulator, QscR.  

PubMed

QscR is a quorum-sensing (QS) signal receptor that controls expression of virulence genes in the prevalent opportunistic pathogen, Pseudomonas aeruginosa. Unlike the previously reported LuxR-type QS receptor proteins, that is, LasR and TraR, QscR can be obtained as an apo-protein that can reversibly form an active complex in vitro with its cognate signal molecule, 3-oxododecanoyl-homoserine lactone (3OC12-HSL), and subsequently bind to target promoter DNA sequences. To search for potential QS inhibitors, an in vitro gel retardation assay was developed using the purified QscR. Both the in vitro assay and the in vivo cell-based assay using QscR-overproducing recombinant strains were applied in the screening process. Furanones were chosen for testing the activity as QS inhibitors because they have been reported to strongly inhibit expression of QS-related genes in Agrobacterium tumefaciens. Among more than a hundred furanones tested, three compounds showed strong and dose-dependent inhibitory effects on QscR in both assays. One compound in particular, designated as F2, could completely inhibit the 3OC12-HSL-dependent QscR activity in vitro at a concentration of 50-fold molar excess over 3OC12-HSL. However, with the furanones F3 and F4, which are structurally similar to F2 but with a nitro group instead of the amine moiety, significantly decreased activities were observed. These results suggest that (i) the in vitro assay is a sensitive and reliable tool for screening QS inhibitors, and (ii) furanones are potentially important QS inhibitors for many LuxR-type receptor proteins. PMID:20091741

Liu, Hai-Bo; Lee, Joon-Hee; Kim, Jung Sun; Park, Sunghoon

2010-05-01

21

A quorum-sensing inhibitor blocks Pseudomonas aeruginosa virulence and biofilm formation.  

PubMed

Quorum sensing is a chemical communication process that bacteria use to regulate collective behaviors. Disabling quorum-sensing circuits with small molecules has been proposed as a potential strategy to prevent bacterial pathogenicity. The human pathogen Pseudomonas aeruginosa uses quorum sensing to control virulence and biofilm formation. Here, we analyze synthetic molecules for inhibition of the two P. aeruginosa quorum-sensing receptors, LasR and RhlR. Our most effective compound, meta-bromo-thiolactone (mBTL), inhibits both the production of the virulence factor pyocyanin and biofilm formation. mBTL also protects Caenorhabditis elegans and human lung epithelial cells from killing by P. aeruginosa. Both LasR and RhlR are partially inhibited by mBTL in vivo and in vitro; however, RhlR, not LasR, is the relevant in vivo target. More potent antagonists do not exhibit superior function in impeding virulence. Because LasR and RhlR reciprocally control crucial virulence factors, appropriately tuning rather than completely inhibiting their activities appears to hold the key to blocking pathogenesis in vivo. PMID:24143808

O'Loughlin, Colleen T; Miller, Laura C; Siryaporn, Albert; Drescher, Knut; Semmelhack, Martin F; Bassler, Bonnie L

2013-10-29

22

A quorum-sensing inhibitor blocks Pseudomonas aeruginosa virulence and biofilm formation  

PubMed Central

Quorum sensing is a chemical communication process that bacteria use to regulate collective behaviors. Disabling quorum-sensing circuits with small molecules has been proposed as a potential strategy to prevent bacterial pathogenicity. The human pathogen Pseudomonas aeruginosa uses quorum sensing to control virulence and biofilm formation. Here, we analyze synthetic molecules for inhibition of the two P. aeruginosa quorum-sensing receptors, LasR and RhlR. Our most effective compound, meta-bromo-thiolactone (mBTL), inhibits both the production of the virulence factor pyocyanin and biofilm formation. mBTL also protects Caenorhabditis elegans and human lung epithelial cells from killing by P. aeruginosa. Both LasR and RhlR are partially inhibited by mBTL in vivo and in vitro; however, RhlR, not LasR, is the relevant in vivo target. More potent antagonists do not exhibit superior function in impeding virulence. Because LasR and RhlR reciprocally control crucial virulence factors, appropriately tuning rather than completely inhibiting their activities appears to hold the key to blocking pathogenesis in vivo. PMID:24143808

O'Loughlin, Colleen T.; Miller, Laura C.; Siryaporn, Albert; Drescher, Knut; Semmelhack, Martin F.; Bassler, Bonnie L.

2013-01-01

23

Discovery of a quorum-sensing inhibitor of drug-resistant staphylococcal infections by structure-based virtual screening.  

PubMed

Staphylococci are a major health threat because of increasing resistance to antibiotics. An alternative to antibiotic treatment is preventing virulence by inhibition of bacterial cell-to-cell communication using the quorum-sensing inhibitor RNAIII-inhibiting peptide (RIP). In this work, we identified 2',5-di-O-galloyl-d-hamamelose (hamamelitannin) as a nonpeptide analog of RIP by virtual screening of a RIP-based pharmacophore against a database of commercially available small-molecule compounds. Hamamelitannin is a natural product found in the bark of Hamamelis virginiana (witch hazel), and it has no effect on staphylococcal growth in vitro; but like RIP, it does inhibit the quorum-sensing regulator RNAIII. In a rat graft model, hamamelitannin prevented device-associated infections in vivo, including infections caused by methicillin-resistant Staphylococcus aureus and Staphylococcus epidermidis strains. These findings suggest that hamamelitannin may be used as a suppressor to staphylococcal infections. PMID:18314496

Kiran, Madanahally D; Adikesavan, Nallini Vijayarangan; Cirioni, Oscar; Giacometti, Andrea; Silvestri, Carmela; Scalise, Giorgio; Ghiselli, Roberto; Saba, Vittorio; Orlando, Fiorenza; Shoham, Menachem; Balaban, Naomi

2008-05-01

24

Isolation of agr quorum sensing autoinducers.  

PubMed

Autoregulation of genes is often associated with quorum sensing systems where bacteria produce and secrete molecules that allow the cells to communicate with one another, leading to the activation of certain genes at certain population densities. Here we describe the identification of the agr as a quorum sensing system in Staphylococcus aureus and the isolation of agr autoinducers and inhibitors by northern blotting, real-time RT-PCR, and ?-lactamase reporter cells assays. PMID:21031303

Balaban, Naomi

2011-01-01

25

Cyanobacterial mats from hot springs produce antimicrobial compounds and quorum-sensing inhibitors under natural conditions  

Microsoft Academic Search

Polar (water) and non-polar (ethyl acetate) extracts from the cyanobacterial layer (top 1–3 mm) of four hot spring microbial\\u000a mats in the Sultanate of Oman were tested for their antibacterial, antidiatom and quorum-sensing inhibitory activities under\\u000a natural conditions. The chemical composition of the active extracts was analysed using gas chromatography–mass spectrometry\\u000a (GC-MS). Cyanobacteria within these mats were identified by direct microscopy

Sergey Dobretsov; Raeid M. M. Abed; Sultan M. S. Al Maskari; Jamal N. Al Sabahi; Reginald Victor

26

Imidazolines as Non-Classical Bioisosteres of N-Acyl Homoserine Lactones and Quorum Sensing Inhibitors  

PubMed Central

A series of selected 2-substituted imidazolines were synthesized in moderate to excellent yields by a modification of protocols reported in the literature. They were evaluated as potential non-classical bioisosteres of AHL with the aim of counteracting bacterial pathogenicity. Imidazolines 18a, 18e and 18f at various concentrations reduced the violacein production by Chromobacterium violaceum, suggesting an anti-quorum sensing profile against Gram-negative bacteria. Imidazoline 18b did not affect the production of violacein, but had a bacteriostatic effect at 100 ?M and a bactericidal effect at 1 mM. Imidazoline 18a bearing a hexyl phenoxy moiety was the most active compound of the series, rendering a 72% inhibitory effect of quorum sensing at 100 ?M. Imidazoline 18f bearing a phenyl nonamide substituent presented an inhibitory effect on quorum sensing at a very low concentration (1 nM), with a reduction percentage of 28%. This compound showed an irregular performance, decreasing inhibition at concentrations higher than 10 ?M, until reaching 100 ?M, at which concentration it increased the inhibitory effect with a 49% reduction percentage. When evaluated on Serratia marcescens, compound 18f inhibited the production of prodigiosin by 40% at 100 ?M. PMID:22408391

Reyes-Arellano, Alicia; Bucio-Cano, Alejandro; Montenegro-Sustaita, Mabel; Curiel-Quesada, Everardo; Salgado-Zamora, Hector

2012-01-01

27

At a Supra-Physiological Concentration, Human Sexual Hormones Act as Quorum-Sensing Inhibitors  

PubMed Central

N-Acylhomoserine lactone (AHL)-mediated quorum-sensing (QS) regulates virulence functions in plant and animal pathogens such as Agrobacterium tumefaciens and Pseudomonas aeruginosa. A chemolibrary of more than 3500 compounds was screened using two bacterial AHL-biosensors to identify QS-inhibitors (QSIs). The purity and structure of 15 QSIs selected through this screening were verified using HPLC MS/MS tools and their activity tested on the A. tumefaciens and P. aeruginosa bacterial models. The IC50 value of the identified QSIs ranged from 2.5 to 90 µg/ml, values that are in the same range as those reported for the previously identified QSI 4-nitropyridine-N-oxide (IC50 24 µg/ml). Under the tested culture conditions, most of the identified QSIs did not exhibit bacteriostatic or bactericidal activities. One third of the tested QSIs, including the plant compound hordenine and the human sexual hormone estrone, decreased the frequency of the QS-regulated horizontal transfer of the tumor-inducing (Ti) plasmid in A. tumefaciens. Hordenine, estrone as well as its structural relatives estriol and estradiol, also decreased AHL accumulation and the expression of six QS-regulated genes (lasI, lasR, lasB, rhlI, rhlR, and rhlA) in cultures of the opportunist pathogen P. aeruginosa. Moreover, the ectopic expression of the AHL-receptors RhlR and LasR of P. aeruginosa in E. coli showed that their gene-regulatory activity was affected by the QSIs. Finally, modeling of the structural interactions between the human hormones and AHL-receptors LasR of P. aeruginosa and TraR of A. tumefaciens confirmed the competitive binding capability of the human sexual hormones. This work indicates potential interferences between bacterial and eukaryotic hormonal communications. PMID:24376718

Beury-Cirou, Amelie; Tannieres, Melanie; Minard, Corinne; Soulere, Laurent; Rasamiravaka, Tsiry; Dodd, Robert H.; Queneau, Yves; Dessaux, Yves; Guillou, Catherine; Vandeputte, Olivier M.; Faure, Denis

2013-01-01

28

Aspirin is an efficient inhibitor of quorum sensing, virulence and toxins in Pseudomonas aeruginosa.  

PubMed

Quorum sensing (QS) plays a vital role in regulation of virulence factors and toxins in Pseudomonas aeruginosa, which can cause serious human infections. Therefore, the QS system in P. aeruginosa may be an important target for pharmacological intervention. Activity of aspirin on the QS system was assessed using a reporter strain assay and confirmed using RT-PCR to test expression of virulence factors and toxins. In addition, molecular modeling techniques including docking, flexible alignment and surface mapping were also applied to further understand aspirin's potential QS inhibition activity. Aspirin (6 mg/ml) showed significant reduction (p < 0.01) of quorum sensing signals in P. aeruginosa, including expression of elastase, total proteases, and pyocyanin (p < 0.01) without affecting bacterial viability. Aspirin also significantly reduced organism motility and biofilm production (p < 0.01) and decreased expression of lasI, lasR, rhlI, rhlR, pqsA and pqsR genes by 38, 72, 69, 72, 74 and 43% respectively. Moreover, the expression of Pseudomonas toxins exoS and exoY was reduced by 47 and 55% respectively. The molecular modeling analysis suggests the QS inhibitory action of aspirin occurs through interaction of aspirin's aryl group and Tyr-88 of the LasR receptor, by strong ?-? stacking interactions, which associated with a conformational change of the receptor-aspirin complex. The inhibitory effect of aspirin on virulence factors was specific to P. aeruginosa as aspirin at sub-MIC did not affect the biofilm or motility of Escherichia coli. To summarize, the collective data demonstrate that low concentrations of aspirin inhibit quorum sensing of P. aeruginosa. PMID:25088031

El-Mowafy, Somaia A; Abd El Galil, Khaled H; El-Messery, Shahenda M; Shaaban, Mona I

2014-09-01

29

High-throughput screening of inhibitors targeting Agr/Fsr quorum sensing in Staphylococcus aureus and Enterococcus faecalis.  

PubMed

Staphylococcus aureus and Enterococcus faecalis employ cyclic peptide-mediated quorum sensing (QS) systems, termed agr and fsr respectively, to regulate the expression of a series of virulence genes. To identify quorum sensing inhibitors (QSIs) that target agr/fsr systems, an efficient screening system was established. In addition to the gelatinase-induction assay to examine E. faecalis fsr QS, the use of an S. aureus agr reporter strain that carries luciferase and green fluorescence protein genes under the agr P3 promoter facilitated the development of a high-throughput screen (HTS) for QSIs. As a result of screening of 906 actinomycetes culture extracts, four showed QSI activity against the agr and fsr systems without growth inhibitory activity. The extracts were purified on a small scale, and three HPLC peaks were obtained with obvious QSI activity. In sum, the established HTS system is a promising strategy for the discovery of anti-pathogenic agents targeting cyclic peptide-mediated QS in Gram-positive pathogens. PMID:23649251

Desouky, Said E; Nishiguchi, Kenzo; Zendo, Takeshi; Igarashi, Yasuhiro; Williams, Paul; Sonomoto, Kenji; Nakayama, Jiro

2013-01-01

30

Computational discovery of putative quorum sensing inhibitors against LasR and RhlR receptor proteins of Pseudomonas aeruginosa.  

PubMed

Drugs have been discovered in the past mainly either by identification of active components from traditional remedies or by unpredicted discovery. A key motivation for the study of structure based virtual screening is the exploitation of such information to design targeted drugs. In this study, structure based virtual screening was used in search for putative quorum sensing inhibitors (QSI) of Pseudomonas aeruginosa. The virtual screening programme Glide version 5.5 was applied to screen 1,920 natural compounds/drugs against LasR and RhlR receptor proteins of P. aeruginosa. Based on the results of in silico docking analysis, five top ranking compounds namely rosmarinic acid, naringin, chlorogenic acid, morin and mangiferin were subjected to in vitro bioassays against laboratory strain PAO1 and two more antibiotic resistant clinical isolates, P. aeruginosa AS1 (GU447237) and P. aeruginosa AS2 (GU447238). Among the five compounds studied, except mangiferin other four compounds showed significant inhibition in the production of protease, elastase and hemolysin. Further, all the five compounds potentially inhibited the biofilm related behaviours. This interaction study provided promising ligands to inhibit the quorum sensing (QS) mediated virulence factors production in P. aeruginosa. PMID:22986632

Annapoorani, Angusamy; Umamageswaran, Venugopal; Parameswari, Radhakrishnan; Pandian, Shunmugiah Karutha; Ravi, Arumugam Veera

2012-09-01

31

Screening of SdiA inhibitors from Melia dubia seeds extracts towards the hold back of uropathogenic E.coli quorum sensing-regulated factors.  

PubMed

Plants have always been a supreme source of drugs and India is endowed with a wide variety of them with high medicinal values. The Quorum Sensing (QS) quenching efficiency of various solvent extracts of Melia dubia seeds was investigated against uropathogenic Escherichia coli (UPEC) to screen the competitive inhibitor of SdiA, a transcriptional activator of quorum sensing in E. coli. In this study, potentiality of five different extracts of Melia dubia seeds for quorum sensing inhibitory activity was investigated against uropathogenic Escherichia coli (UPEC). Assays such as cell density, swarming motility, protein, protease, hemolysis, hemagglutination, hydrophobicity and biofilm inhibition were performed. Biofilm, hemolysis and swarming motility were found to be inhibited by 92.1%, 20.9 % and 48.52% respectively, when the medium was supplemented with 30 mg/ml of the ethanolic extract. GC-MS spectrum of the ethanolic extract showed an array of 27 structurally unlinked compounds with natural ligand C8HSL. The docking against QS transcriptional regulator SdiA was predicted by in silico studies and the ligand C6 showed significant activity with -10.8 GScore. In vitro and in silico docking analysis showed fairly a good correlation, suggesting that the ethanolic extract showed potency to attenuate quorum sensing of uropathogenic E. coli. Further studies by in vitro and in vivo strategies are necessary to foresee the quorum quenching effect of the ligands. PMID:23210902

Ravichandiran, Vinothkannan; Shanmugam, Karthi; Solomon, Adline Princy

2013-09-01

32

Polyhydroxyanthraquinones as quorum sensing inhibitors from the guttates of Penicillium restrictum and their analysis by desorption electrospray ionization mass spectrometry.  

PubMed

The endophytic fungus Penicillium restrictum was isolated from the stems of a milk thistle (Silybum marianum) plant. In culture, the fungus produced distinct red guttates, which have been virtually uninvestigated, particularly from the standpoint of chemistry. Hence, this study examined the chemical mycology of P. restrictum and, in doing so, uncovered a series of both known and new polyhydroxyanthraquinones (1-9). These compounds were quorum sensing inhibitors in a clinical isolate of methicillin-resistant Staphylococcus aureus (MRSA), with IC50 values ranging from 8 to 120 ?M, suggesting antivirulence potential for the compounds. Moreover, the spatial and temporal distribution of the polyhydroxyanthraquinones was examined in situ via desorption electrospray ionization-mass spectrometry (DESI-MS) imaging, demonstrating the first application of this technique to a guttate-forming fungus and revealing both the concentration of secondary metabolites at the ventral surface of the fungus and their variance in colonies of differing ages. PMID:24911880

Figueroa, Mario; Jarmusch, Alan K; Raja, Huzefa A; El-Elimat, Tamam; Kavanaugh, Jeffrey S; Horswill, Alexander R; Cooks, R Graham; Cech, Nadja B; Oberlies, Nicholas H

2014-06-27

33

Non-antibiotic quorum sensing inhibitors acting against N-acyl homoserine lactone synthase as druggable target.  

PubMed

N-acylhomoserine lactone (AHL)-based quorum sensing (QS) is important for the regulation of proteobacterial virulence determinants. Thus, the inhibition of AHL synthases offers non-antibiotics-based therapeutic potentials against QS-mediated bacterial infections. In this work, functional AHL synthases of Pseudomonas aeruginosa LasI and RhlI were heterologously expressed in an AHL-negative Escherichia coli followed by assessments on their AHLs production using AHL biosensors and high resolution liquid chromatography-mass spectrometry (LCMS). These AHL-producing E. coli served as tools for screening AHL synthase inhibitors. Based on a campaign of screening synthetic molecules and natural products using our approach, three strongest inhibitors namely are salicylic acid, tannic acid and trans-cinnamaldehyde have been identified. LCMS analysis further confirmed tannic acid and trans-cinnemaldehyde efficiently inhibited AHL production by RhlI. We further demonstrated the application of trans-cinnemaldehyde inhibiting Rhl QS system regulated pyocyanin production in P. aeruginosa up to 42.06%. Molecular docking analysis suggested that trans-cinnemaldehyde binds to the LasI and EsaI with known structures mainly interacting with their substrate binding sites. Our data suggested a new class of QS-inhibiting agents from natural products targeting AHL synthase and provided a potential approach for facilitating the discovery of anti-QS signal synthesis as basis of novel anti-infective approach. PMID:25430794

Chang, Chien-Yi; Krishnan, Thiba; Wang, Hao; Chen, Ye; Yin, Wai-Fong; Chong, Yee-Meng; Tan, Li Ying; Chong, Teik Min; Chan, Kok-Gan

2014-01-01

34

Competition studies confirm two major barriers that can preclude the spread of resistance to quorum-sensing inhibitors in bacteria.  

PubMed

The growing threat of antibiotic resistance necessitates the development of novel antimicrobial therapies. Antivirulence agents that target group-beneficial traits in microorganisms (i.e., phenotypes that help the cells surrounding the producer cell instead of selfishly benefiting only the producer cell) represent a new antimicrobial approach that may be robust against the spread of resistant mutants. One prominent group-beneficial antivirulence target in bacteria is quorum sensing (QS). While scientists are producing new QS inhibitors (QSIs) at an increasing pace for use as research tools and potential therapeutic leads, substantial work remains in empirically demonstrating a robustness against resistance. Herein we report the results of in vitro competition studies in Pseudomonas aeruginosa that explicitly confirm that two separate barriers can impede the spread of resistance to QSIs: (1) insufficient native QS signal levels prevent rare QSI-resistant bacteria from expressing their QS regulon, and (2) group-beneficial QS-regulated phenotypes produced by resistant bacteria are susceptible to cheating by QSI-sensitive neighbors, even when grown on a solid substrate with limited mixing to mimic infected tissue. These results underscore the promise of QSIs and other antivirulence molecules that target group beneficial traits as resistance-robust antimicrobial treatments and provide support for their further development. PMID:25105594

Gerdt, Joseph P; Blackwell, Helen E

2014-10-17

35

Honaucins A-C, potent inhibitors of inflammation and bacterial quorum sensing: synthetic derivatives and structure-activity relationships.  

PubMed

Honaucins A-C were isolated from the cyanobacterium Leptolyngbya crossbyana which was found overgrowing corals on the Hawaiian coast. Honaucin A consists of (S)-3-hydroxy-?-butyrolactone and 4-chlorocrotonic acid, which are connected via an ester linkage. Honaucin A and its two natural analogs exhibit potent inhibition of both bioluminescence, a quorum-sensing-dependent phenotype, in Vibrio harveyi BB120 and lipopolysaccharide-stimulated nitric oxide production in the murine macrophage cell line RAW264.7. The decrease in nitric oxide production was accompanied by a decrease in the transcripts of several proinflammatory cytokines, most dramatically interleukin-1?. Synthesis of honaucin A, as well as a number of analogs, and subsequent evaluation in anti-inflammation and quorum-sensing inhibition bioassays revealed the essential structural features for activity in this chemical class and provided analogs with greater potency in both assays. PMID:22633410

Choi, Hyukjae; Mascuch, Samantha J; Villa, Francisco A; Byrum, Tara; Teasdale, Margaret E; Smith, Jennifer E; Preskitt, Linda B; Rowley, David C; Gerwick, Lena; Gerwick, William H

2012-05-25

36

Garlic as an inhibitor of Pseudomonas aeruginosa quorum sensing in cystic fibrosis--a pilot randomized controlled trial.  

PubMed

Pseudomonas aeruginosa forms biofilms in the cystic fibrosis lung. Quorum sensing (QS) controls biofilm maturation, immune evasion, antibiotic tolerance and virulence factor production. Garlic shows QS inhibitory activity in vitro and in animal models. We report the first clinical trial in man of a QS inhibitor.We randomized 34 patients to garlic or olive oil capsules (both 656 mg daily). Clinical outcomes and safety bloods were measured at baseline and after 8 weeks treatment. In this exploratory study, analysis was per protocol.Eight patients withdrew, leaving 26 for analysis (13 garlic). With placebo, there was a greater decline in mean (SD) percentage change from baseline FEV(1) [-3.6% (11.3)] than with garlic [-2.0% (12.3)]. This was not significant (mean difference = 1.6, 95% CI -12.7 to 15.9, P = 0.8). The mean (SD) increase in weight was greater with garlic [1.0% (2.0)] than with placebo [0.6% (2.0)]--non-significant (mean difference = 0.4%, 95% CI -1.3 to 2.0, P = 0.6). The median (range) change in clinical score with garlic was -1 (-3 to 5) and 1 (-1 to 4) with placebo (negative score means improvement). This was non-significant [median difference = -1 (-3 to 0), P = 0.16]. In the garlic group, seven patients had IV antibiotics versus five placebo. There was a highly significant correlation between plasma and sputum measurements of the QS molecule 3-oxo-C12-HSL (Pearson correlation coefficient = 0.914, P = 0.004). At the end of treatment five patients in each group had abnormal liver function or triglycerides and five garlic patients (one placebo) reported minor adverse effects.Garlic capsules were well tolerated. Although there was no significant effect of garlic compared to placebo in this pilot study, there was a suggestion of improvement with garlic which should be investigated in a larger trial. PMID:20306535

Smyth, Alan R; Cifelli, Paramita M; Ortori, Catharine A; Righetti, Karima; Lewis, Sarah; Erskine, Penny; Holland, Elaine D; Givskov, Michael; Williams, Paul; Cámara, Miguel; Barrett, David A; Knox, Alan

2010-04-01

37

Construction of an effective screening system for detection of Pseudomonas aeruginosa quorum sensing inhibitors and its application in bioautographic thin-layer chromatography.  

PubMed

In Pseudomonas aeruginosa, quorum sensing (QS) regulates dozens of genes and proteins, many of which contribute to the virulence of this pathogen. QS inhibitory (QSI) compounds have been proposed as potential agents for treatment of bacterial infections. To search for Ps. aeruginosa QS inhibitors, we constructed an effective screening system, QSIS-lasI selector, based on the PlasI-sacB reporter, in which QS could be induced with 20 nM 3-oxo-N-[(3S)-tetrahydro-2-oxo-3-furanyl]-dodecanamide (3-oxo-C(12)-HSL). During screening of the crude extracts from 65 marine fungi, an isolate of Penicillium atramentosum was found to have QSI activity. Thin-layer chromatography assay of the fungal extracts for bioautographic identification of QSIS-lasI indicated that this fungus produced several QSI compounds, including QS inhibitors other than penicillic acid or patulin. PMID:21344206

Wang, Linna; Zou, Shanshan; Yin, Shouliang; Liu, Hongbing; Yu, Wengong; Gong, Qianhong

2011-07-01

38

Development and comparison of whole-cell assay systems for quorum-sensing inhibitors based on TraR, LasR, and QscR.  

PubMed

Quorum sensing (QS) is a cell density-dependent signaling system that is used by bacteria to coordinate gene expression within their population. In this study, the authors describe the development and characterization of various cell-based bioassay systems for detecting QS inhibitors based on three LuxR family proteins, TraR, LasR, and the recently identified QscR. Three different gram-negative bacteria, Escherichia coli, Agrobacterium tumefaciens, and Pseudomonas aeruginosa, were employed as reporter strains to overproduce one of the aforementioned QS activator proteins and respond to inhibitors. The nine different whole-cell assay systems (three reporter strains × three QS proteins) were evaluated for their applicability and reliability by studying quantitative responses to various furanones, which are potent inhibitors of the LuxR family proteins. These results demonstrate that the cell-based bioassay systems are sensitive and reliable tools for screening of QS activators and inhibitors. This study also suggests that furanones are potentially important QS inhibitors for many LuxR-type activator proteins. PMID:21841142

Liu, Hai-Bo; Kim, Jung Sun; Park, Sunghoon

2011-10-01

39

N,N?-alkylated Imidazolium-Derivatives Act as Quorum-Sensing Inhibitors Targeting the Pectobacterium atrosepticum-Induced Symptoms on Potato Tubers  

PubMed Central

Bacteria belonging to the Pectobacterium genus are the causative agents of the blackleg and soft-rot diseases that affect potato plants and tubers worldwide. In Pectobacterium, the expression of the virulence genes is controlled by quorum-sensing (QS) and N-acylhomoserine lactones (AHLs). In this work, we screened a chemical library of QS-inhibitors (QSIs) and AHL-analogs to find novel QSIs targeting the virulence of Pectobacterium. Four N,N?-bisalkylated imidazolium salts were identified as QSIs; they were active at the ?M range. In potato tuber assays, two of them were able to decrease the severity of the symptoms provoked by P. atrosepticum. This work extends the range of the QSIs acting on the Pectobacterium-induced soft-rot disease. PMID:24108370

des Essarts, Yannick Raoul; Sabbah, Mohamad; Comte, Arnaud; Soulere, Laurent; Queneau, Yves; Dessaux, Yves; Helias, Valerie; Faure, Denis

2013-01-01

40

Quorum sensing systems influence Burkholderia cenocepacia virulence.  

PubMed

Burkholderia cepacia complex strains communicate using N-acyl homoserine lactones and BDSF-dependent quorum sensing (QS) systems. Burkholderia cenocepacia QS systems include CepIR, CciIR, CepR2 and BDSF. Analysis of CepR, CciIR, CepR2 and RpfF (BDSF synthase) QS regulons revealed that these QS systems both independently regulate and coregulate many target genes, often in an opposing manner. The role of QS and several QS-regulated genes in virulence has been determined using vertebrate, invertebrate and plant infection models. Virulence phenotypes are strain and model dependent, suggesting that different QS-regulated genes are important depending on the strain and type of infection. QS inhibitors in combination with antibiotics can reduce biofilm formation and virulence in infection models. PMID:23231487

Subramoni, Sujatha; Sokol, Pamela A

2012-12-01

41

Quorum-sensing quenching by rhizobacterial volatiles.  

PubMed

We show that volatile organic compounds (VOCs) produced by rhizospheric strains Pseudomonas fluorescens B-4117 and Serratia plymuthica IC1270 may act as inhibitors of the cell-cell communication quorum-sensing (QS) network mediated by N-acyl homoserine lactone (AHL) signal molecules produced by various bacteria, including strains of Agrobacterium, Chromobacterium, Pectobacterium and Pseudomonas. This quorum-quenching effect was observed when AHL-producing bacteria were treated with VOCs emitted by strains B-4117 and IC1270 or with dimethyl disulfide (DMDS), the major volatile produced by strain IC1270. LC-MS/MS analysis revealed that treatment of strains Pseudomonas chlororaphis 449, Pseudomonas aeruginosa PAO1 or Ps.?fluorescens 2-79 with VOCs emitted by strain IC1270 or DMDS drastically decreases the amount of AHLs produced by these bacteria. Volatile organic compounds produced by Ps.?chlororaphis 449 were able to suppress its own QS-induction activity, suggesting a negative interaction between VOCs and AHL molecules in the same strain. Quantitative RT-PCR analysis showed that treatment of Ps.?chlororaphis 449 with VOCs emitted by cells of IC1270, B-4117 or 449 itself, or with DMDS, leads to significant suppression of transcription of AHL synthase genes phzI and csaI. Thus, along with AHLs, bacterial volatiles might be considered another type of signal molecule involved in microbial communication in the rhizosphere. PMID:23761359

Chernin, Leonid; Toklikishvili, Natela; Ovadis, Marianna; Kim, Sofia; Ben-Ari, Julius; Khmel, Inessa; Vainstein, Alexander

2011-12-01

42

Development and validation of a UHPLC-MS/MS procedure for quantification of the Pseudomonas Quinolone Signal in bacterial culture after acetylation for characterization of new quorum sensing inhibitors.  

PubMed

The appearance of antibiotic resistance requires novel therapeutic strategies. One approach is to selectively attenuate bacterial pathogenicity by interfering with bacterial cell-to-cell communication known as quorum sensing. The PQS quorum sensing system of Pseudomonas aeruginosa employs as signal molecule the Pseudomonas Quinolone Signal (PQS; 2-heptyl-3-hydroxy-4-(1H)-quinolone), a key contributor to virulence and biofilm formation. Thus, interference with PQS production is considered as promising approach for the development of novel anti-infectives. Therefore, in this study, we developed and validated an ultra-high performance liquid chromatographic-tandem mass spectrometric approach for reliable quantification of PQS in P. aeruginosa cultures for activity determination of new quorum sensing inhibitors. The poor chromatographic properties of PQS reported by others could be overcome by fast microwave-assisted acetylation. The validation procedure including matrix effects, recovery, process efficiency, selectivity, carry-over, accuracy and precision, stability of the processed sample, and limit of quantification demonstrated that the method fulfilled all requirements of common validation guidelines. Its applicability was successfully proven in routine testing. In addition, two-point calibration was shown to be applicable for fast and reliable PQS quantification saving time and resources. In summary, the described method provides a powerful tool for the discovery of new quorum sensing inhibitors as potential anti-infectives and illustrated the usefulness of chemical derivatization, acetylation, in liquid chromatography-mass spectrometry analysis. PMID:24001903

Maurer, Christine K; Steinbach, Anke; Hartmann, Rolf W

2013-12-01

43

Development of inhibitors against TraR quorum-sensing system in Agrobacterium tumefaciens by molecular modeling of the ligand-receptor interaction.  

PubMed

The quorum sensing (QS) inhibitors that antagonize TraR, a receptor protein for N-3-oxo-octanoyl-L-homoserine lactones (3-oxo-C8-HSL), a QS signal of Agrobacterium tumefaciens were developed. The structural analogues of 3-oxo-C8-HSL were designed by in silico molecular modeling using SYBYL packages, and synthesized by the solid phase organic synthesis (SPOS) method, where the carboxamide bond of 3-oxo-C8-HSL was replaced with a nicotinamide or a sulfonamide bond to make derivatives of N-nicotinyl-L-homoserine lactones or N-sulfonyl-L-homoserine lactones. The in vivo inhibitory activities of these compounds against QS signaling were assayed using reporter systems and compared with the estimated binding energies from the modeling study. This comparison showed fairly good correlation, suggesting that the in silico interpretation of ligand-receptor structures can be a valuable tool for the pre-design of better competitive inhibitors. In addition, these inhibitors also showed anti-biofilm activities against Pseudomonas aeruginosa. PMID:19855933

Kim, Cheoljin; Kim, Jaeeun; Park, Hyung-Yeon; Park, Hee-Jin; Kim, Chan Kyung; Yoon, Jeyong; Lee, Joon-Hee

2009-11-30

44

Cross-species induction of antimicrobial compounds, biosurfactants and quorum-sensing inhibitors in tropical marine epibiotic bacteria by pathogens and biofouling microorganisms.  

PubMed

Enhancement or induction of antimicrobial, biosurfactant, and quorum-sensing inhibition property in marine bacteria due to cross-species and cross-genera interactions was investigated. Four marine epibiotic bacteria (Bacillus sp. S3, B. pumilus S8, B. licheniformis D1, and Serratia marcescens V1) displaying antimicrobial activity against pathogenic or biofouling fungi (Candida albicans CA and Yarrowia lipolytica YL), and bacteria (Pseudomonas aeruginosa PA and Bacillus pumilus BP) were chosen for this study. The marine epibiotic bacteria when co-cultivated with the aforementioned fungi or bacteria showed induction or enhancement in antimicrobial activity, biosurfactant production, and quorum-sensing inhibition. Antifungal activity against Y. lipolytica YL was induced by co-cultivation of the pathogens or biofouling strains with the marine Bacillus sp. S3, B. pumilus S8, or B. licheniformis D1. Antibacterial activity against Ps. aeruginosa PA or B. pumilus BP was enhanced in most of the marine isolates after co-cultivation. Biosurfactant activity was significantly increased when cells of B. pumilus BP were co-cultivated with S. marcescens V1, B. pumilus S8, or B. licheniformis D1. Pigment reduction in the quorum-sensing inhibition indicator strain Chromobacterium violaceum 12472 was evident when the marine strain of Bacillus sp. S3 was grown in the presence of the inducer strain Ps. aeruginosa PA, suggesting quorum-sensing inhibition. The study has important ecological and biotechnological implications in terms of microbial competition in natural environments and enhancement of secondary metabolite production. PMID:21086131

Dusane, Devendra H; Matkar, Pratiek; Venugopalan, Valayam P; Kumar, Ameeta Ravi; Zinjarde, Smita S

2011-03-01

45

A Strategy for Antagonizing Quorum Sensing  

SciTech Connect

Quorum-sensing bacteria communicate via small molecules called autoinducers to coordinate collective behaviors. Because quorum sensing controls virulence factor expression in many clinically relevant pathogens, membrane-permeable quorum sensing antagonists that prevent population-wide expression of virulence genes offer a potential route to novel antibacterial therapeutics. Here, we report a strategy for inhibiting quorum-sensing receptors of the widespread LuxR family. Structure-function studies with natural and synthetic ligands demonstrate that the dimeric LuxR-type transcription factor CviR from Chromobacterium violaceum is potently antagonized by molecules that bind in place of the native acylated homoserine lactone autoinducer, provided that they stabilize a closed conformation. In such conformations, each of the two DNA-binding domains interacts with the ligand-binding domain of the opposing monomer. Consequently, the DNA-binding helices are held apart by {approx}60 {angstrom}, twice the {approx}30 {angstrom} separation required for operator binding. This approach may represent a general strategy for the inhibition of multidomain proteins.

G Chen; L Swem; D Swem; D Stauff; C OLoughlin; P Jeffrey; B Bassler; F Hughson

2011-12-31

46

Highly potent inhibitors of quorum sensing in Staphylococcus aureus revealed through a systematic synthetic study of the group-III autoinducing peptide.  

PubMed

Methods to intercept bacterial quorum sensing (QS) have attracted significant attention as potential anti-infective therapies. Staphylococcus aureus is a major human pathogen that utilizes autoinducing peptide (AIP) signals to mediate QS and thereby regulate virulence. S. aureus strains are categorized into four groups (I-IV) according to their AIP signal and cognate extracellular receptor, AgrC. Each group is associated with a certain disease profile, and S. aureus group-III strains are responsible for toxic shock syndrome and have been underestimated in other infections to date. A limited set of non-native AIP analogs have been shown to inhibit AgrC receptors; such compounds represent promising tools to study QS pathways in S. aureus . We seek to expand this set of chemical probes and report herein the first design, synthesis, and biological testing of AIP-III mimetics. A set of non-native peptides was identified that can inhibit all four of the AgrC receptors (I-IV) with picomolar IC50 values in reporter strains. These analogs also blocked hemolysis by wild-type S. aureus group I-IV strains-a virulence trait under the control of QS-at picomolar concentrations. Moreover, four of the lead AgrC inhibitors were capable of attenuating the production of toxic shock syndrome toxin-1 (also under the control of QS) by over 80% at nanomolar concentrations in a wild-type S. aureus group-III strain. These peptides represent, to our knowledge, the most potent synthetic inhibitors of QS in S. aureus known, and constitute new and readily accessible chemical tools for the study of the AgrC system and virulence in this deadly pathogen. PMID:23647400

Tal-Gan, Yftah; Stacy, Danielle M; Foegen, Mary K; Koenig, David W; Blackwell, Helen E

2013-05-29

47

Quorum Sensing Antagonism from Marine Organisms  

Microsoft Academic Search

With the global emergence of multiresistant bacteria there is an increasing demand for development of new treatments to combat\\u000a pathogens. Bacterial cell–cell communication [quorum sensing (QS)] regulates expression of virulence factors in a number of\\u000a bacterial pathogens and is a new promising target for the control of infectious bacteria. We present the results of screening\\u000a of 284 extracts of marine

Mette Elena Skindersoe; Piers Ettinger-Epstein; Thomas Bovbjerg Rasmussen; Thomas Bjarnsholt; Rocky de Nys; Michael Givskov

2008-01-01

48

Exploiting Quorum Sensing To Confuse Bacterial Pathogens  

PubMed Central

SUMMARY Cell-cell communication, or quorum sensing, is a widespread phenomenon in bacteria that is used to coordinate gene expression among local populations. Its use by bacterial pathogens to regulate genes that promote invasion, defense, and spread has been particularly well documented. With the ongoing emergence of antibiotic-resistant pathogens, there is a current need for development of alternative therapeutic strategies. An antivirulence approach by which quorum sensing is impeded has caught on as a viable means to manipulate bacterial processes, especially pathogenic traits that are harmful to human and animal health and agricultural productivity. The identification and development of chemical compounds and enzymes that facilitate quorum-sensing inhibition (QSI) by targeting signaling molecules, signal biogenesis, or signal detection are reviewed here. Overall, the evidence suggests that QSI therapy may be efficacious against some, but not necessarily all, bacterial pathogens, and several failures and ongoing concerns that may steer future studies in productive directions are discussed. Nevertheless, various QSI successes have rightfully perpetuated excitement surrounding new potential therapies, and this review highlights promising QSI leads in disrupting pathogenesis in both plants and animals. PMID:23471618

LaSarre, Breah

2013-01-01

49

The impact of quorum sensing on the virulence of Aeromonas hydrophila and Aeromonas salmonicida towards burbot (Lota lota L.) larvae.  

PubMed

In this study, the link between quorum sensing in Aeromonas spp. and its virulence towards burbot (Lota lota) was investigated. High mortality occurred in burbot juveniles challenged with Aeromonas salmonicida HN-00, but not in juveniles challenged with Aeromonas hydrophila AH-1N. Meanwhile, both A. hydrophila AH-1N and A. salmonicida HN-00 were virulent towards larvae. The effect of quorum sensing on the virulence of A. hydrophila AH-1N towards burbot larvae was further investigated using quorum sensing mutants (N-(butyryl)-L-homoserine lactone production and receptor mutants). Challenge with these mutants resulted in higher survival of burbot larvae when compared to challenge with the wild type, and the addition of the signal molecule N-butyryl-L-homoserine lactone restored the virulence of the quorum sensing production mutant. Moreover, quorum sensing inhibitors protected the burbot larvae from both Aeromonas strains. Finally, the freshwater micro-algae Chlorella saccharophila and Chlamydomonas reinhardtii, which are able to interfere with quorum sensing, also protected burbot from the pathogens. However, QS interference was unlikely to be the only mechanism. This study revealed that the virulence of Aeromonas spp. towards burbot is regulated by quorum sensing and that quorum sensing inhibitors and micro-algae are promising biocontrol agents. PMID:22465799

Natrah, F M I; Alam, Md Iftakharul; Pawar, Sushant; Harzevili, A Shiri; Nevejan, Nancy; Boon, Nico; Sorgeloos, Patrick; Bossier, Peter; Defoirdt, Tom

2012-09-14

50

Confinement-Induced Quorum Sensing of Individual Staphylococcus aureus Bacteria  

PubMed Central

It is postulated that, in addition to cell density, other factors, such as the dimensions and diffusional characteristics of the environment, could influence quorum sensing (QS) and induction of genetic reprogramming. Modeling studies predict that QS may operate at the level of a single cell, but, due to experimental challenges, the potential benefits of QS by individual cells remain virtually unexplored. Here we report a physical system that mimics isolation of a bacterium, such as within an endosome or phagosome during infection, and maintains cell viability under conditions of complete chemical and physical isolation. For Staphylococcus aureus, we show quorum sensing and genetic re-programming to occur in a single isolated organism. Quorum sensing allows S. aureus to sense confinement and to activate virulence and metabolic pathways needed for survival. To demonstrate the benefit of confinement-induced quorum sensing to individuals, we showed quorum sensing bacteria to have significantly greater viability over non-QS bacteria. PMID:19935660

Carnes, Eric C; Lopez, DeAnna M; Donegan, Niles P; Cheung, Ambrose; Gresham, Hattie; Timmins, Graham S; Brinker, CJ

2014-01-01

51

Cooperation, Quorum Sensing, and Evolution of Virulence in Staphylococcus aureus  

E-print Network

Cooperation, Quorum Sensing, and Evolution of Virulence in Staphylococcus aureus Eric J. G. Pollitt Staphylococcus aureus are associated with a cell-to-cell signaling mechanism known as quorum sensing (QS). QS widespread, evolution for signaling to coordinate cooperation in bacteria. Staphylococcus aureus is a major

West, Stuart

52

Quorum-sensing and cheating in bacterial biofilms  

E-print Network

Quorum-sensing and cheating in bacterial biofilms Roman Popat1,, Shanika A. Crusz1, Marco Messina1-to-cell signalling (quorum-sensing, QS). We found that: (i) QS cheating occurs in biofilm populations owing to exploitation of QS-regulated public goods; (ii) the thickness and density of biofilms was reduced

West, Stuart

53

Metagenomic approaches to understanding phylogenetic diversity in quorum sensing.  

PubMed

Quorum sensing, a form of cell-cell communication among bacteria, allows bacteria to synchronize their behaviors at the population level in order to control behaviors such as luminescence, biofilm formation, signal turnover, pigment production, antibiotics production, swarming, and virulence. A better understanding of quorum-sensing systems will provide us with greater insight into the complex interaction mechanisms used widely in the Bacteria and even the Archaea domain in the environment. Metagenomics, the use of culture-independent sequencing to study the genomic material of microorganisms, has the potential to provide direct information about the quorum-sensing systems in uncultured bacteria. This article provides an overview of the current knowledge of quorum sensing focused on phylogenetic diversity, and presents examples of studies that have used metagenomic techniques. Future technologies potentially related to quorum-sensing systems are also discussed. PMID:24429899

Kimura, Nobutada

2014-04-01

54

Identification of synthetic inducers and inhibitors of the quorum-sensing regulator LasR in Pseudomonas aeruginosa by high-throughput screening.  

PubMed

We report the screening of 16,000 synthetic compounds for induction and inhibition of quorum sensing in a Pseudomonas putida N-acylated l-homoserine lactone (AHL) sensor strain engineered with the LasR transcriptional activator. LasR controls virulence gene expression in the opportunistic pathogen Pseudomonas aeruginosa and is of significant interest as a therapeutic target. Nine compounds that inhibit and 14 compounds that induce LasR activity were identified in our high-throughput screen. PMID:20935125

Borlee, Bradley R; Geske, Grant D; Blackwell, Helen E; Handelsman, Jo

2010-12-01

55

Synthesis and evaluation of new antagonists of bacterial quorum sensing in Vibrio harveyi.  

PubMed

Bacterial quorum sensing has received much attention in recent years because of its relevance to pathological events such as biofilm formation. Based on the structures of two lead inhibitors (IC50: 35-55 microM) against autoinducer-2-mediated quorum sensing identified through virtual screening, we synthesized 39 analogues and examined their inhibitory activities. Twelve of these new analogues showed equal or better inhibitory activities than the lead inhibitors. The best compound showed an IC50 value of approximately 6 microM in a whole-cell assay using Vibrio harveyi as the model organism. The structure-activity relationship is discussed herein. PMID:19533733

Peng, Hanjing; Cheng, Yunfeng; Ni, Nanting; Li, Minyong; Choudhary, Gaurav; Chou, Han Ting; Lu, Chung-Dar; Tai, Phang C; Wang, Binghe

2009-09-01

56

[Screening and identification of marine fungi against bacterial quorum sensing].  

PubMed

The discovery of quorum sensing (QS) system and its critical role in bacterial virulence have revealed a new way to attack pathogenic bacterium. The pathogenecity of QS deletion mutants decreases significantly. Targeting bacterial QS system is a promising therapeutic approach to control infections and anti-microbial resistance. To obtain natural QS inhibitors from marine organisms, marine fungi (69 strains) were isolated from marine mollusca, and their extracts were screened using improved QSIS2 (Quorum Sensing Inhibitor Selector 2) assay and Chromobacterium violaceum CV026. To improve the efficiency of QSIS2 screening, 2,3,5-triphenyltetrazolium chloride (TTC) staining method was used. Extract from strain QY013 was found to have QS inhibitory activity. Further experiment indicated that pyocyanin in Pseudomonas aeruginosa PAOI and violacein in C. violaceum CV026 were reduced by QY013 extract, without affecting bacterial growth. Morphological and 18S rDNA sequence analysis revealed that strain QY013 was most closely related to Penicillium species. The above results suggest that active constituents from QY013 may be used as novel antimicrobial agents against bacterial infection. PMID:22117517

Yin, Shouliang; Chang, Yajing; Deng, Suping; Wang, Qingchi; Yu, Wengong; Gong, Qianhong

2011-09-01

57

Transition state analogs of 5'-methylthioadenosine nucleosidase disrupt quorum sensing.  

PubMed

5'-Methylthioadenosine/S-adenosylhomocysteine nucleosidase (MTAN) is a bacterial enzyme involved in S-adenosylmethionine-related quorum sensing pathways that induce bacterial pathogenesis factors. Transition state analogs MT-DADMe-Immucillin-A, EtT-DADMe-Immucillin-A and BuT-DADMe-Immucillin-A are slow-onset, tight-binding inhibitors of Vibrio cholerae MTAN (VcMTAN), with equilibrium dissociation constants of 73, 70 and 208 pM, respectively. Structural analysis of VcMTAN with BuT-DADMe-Immucillin-A revealed interactions contributing to the high affinity. We found that in V. cholerae cells, these compounds are potent MTAN inhibitors with IC(50) values of 27, 31 and 6 nM for MT-, EtT- and BuT-DADMe-Immucillin-A, respectively; the compounds disrupt autoinducer production in a dose-dependent manner without affecting growth. MT- and BuT-DADMe-Immucillin-A also inhibited autoinducer-2 production in enterohemorrhagic Escherichia coli O157:H7 with IC(50) values of 600 and 125 nM, respectively. BuT-DADMe-Immucillin-A inhibition of autoinducer-2 production in both strains persisted for several generations and caused reduction in biofilm formation. These results support MTAN's role in quorum sensing and its potential as a target for bacterial anti-infective drug design. PMID:19270684

Gutierrez, Jemy A; Crowder, Tamara; Rinaldo-Matthis, Agnes; Ho, Meng-Chiao; Almo, Steven C; Schramm, Vern L

2009-04-01

58

Transition state analogs of 5'-methylthioadenosine nucleosidase disrupt quorum sensing.  

SciTech Connect

5'-Methylthioadenosine/S-adenosylhomocysteine nucleosidase (MTAN) is a bacterial enzyme involved in S-adenosylmethionine-related quorum sensing pathways that induce bacterial pathogenesis factors. Transition state analogs MT-DADMe-Immucillin-A, EtT-DADMe-Immucillin-A and BuT-DADMe-Immucillin-A are slow-onset, tight-binding inhibitors of Vibrio cholerae MTAN (VcMTAN), with equilibrium dissociation constants of 73, 70 and 208 pM, respectively. Structural analysis of VcMTAN with BuT-DADMe-Immucillin-A revealed interactions contributing to the high affinity. We found that in V. cholerae cells, these compounds are potent MTAN inhibitors with IC50 values of 27, 31 and 6 nM for MT-, EtT- and BuT-DADMe-Immucillin-A, respectively; the compounds disrupt autoinducer production in a dose-dependent manner without affecting growth. MT- and BuT-DADMe-Immucillin-A also inhibited autoinducer-2 production in enterohemorrhagic Escherichia coli O157:H7 with IC{sub 50} values of 600 and 125 nM, respectively. BuT-DADMe-Immucillin-A inhibition of autoinducer-2 production in both strains persisted for several generations and caused reduction in biofilm formation. These results support MTAN's role in quorum sensing and its potential as a target for bacterial anti-infective drug design.

Gutierrez, J.; Crowder, T; Rinaldo-Matthis, A; Ho, M; Almo, S; Schramm, V

2009-01-01

59

Qualitative and quantitative determination of quorum sensing inhibition in vitro.  

PubMed

The formation of biofilms in conjunction with quorum sensing (QS)-regulated expression of virulence by opportunistic pathogens contributes significantly to immune evasion and tolerance to a variety of antimicrobial treatments. The present protocol describes methods to determine the in vitro efficacy of potential quorum sensing inhibitors (QSIs). Work on Pseudomonas aeruginosa has shown that chemical blockage of QS is a promising new antimicrobial strategy. Several live bacterial reporter systems been developed to screen extracts and pure compounds for QSI activity. Here we describe the usage of reporter strains consisting of a lasB-gfp or rhlA-gfp fusion in P. aeruginosa for qualitative and quantitative evaluation of the inhibition of the two major QS pathways, monitored as reduced expression of green fluorescence. By the use of an in vitro flow cell system it is possible to study the QSI activity by monitoring its ability to interfere with the protective functions of bacterial biofilm. For evaluation of the global effects of QSI compounds, we present a protocol for the DNA microarray-based transcriptomics. Using these in vitro methods it is possible to evaluate the potential of various QSI compounds. PMID:21031317

Jakobsen, Tim Holm; van Gennip, Maria; Christensen, Louise Dahl; Bjarnsholt, Thomas; Givskov, Michael

2011-01-01

60

Electronic implementation of a repressilator with quorum sensing feedback.  

PubMed

We investigate the dynamics of a synthetic genetic repressilator with quorum sensing feedback. In a basic genetic ring oscillator network in which three genes inhibit each other in unidirectional manner, an additional quorum sensing feedback loop stimulates the activity of a chosen gene providing competition between inhibitory and stimulatory activities localized in that gene. Numerical simulations show several interesting dynamics, multi-stability of limit cycle with stable steady-state, multi-stability of different stable steady-states, limit cycle with period-doubling and reverse period-doubling, and infinite period bifurcation transitions for both increasing and decreasing strength of quorum sensing feedback. We design an electronic analog of the repressilator with quorum sensing feedback and reproduce, in experiment, the numerically predicted dynamical features of the system. Noise amplification near infinite period bifurcation is also observed. An important feature of the electronic design is the accessibility and control of the important system parameters. PMID:23658793

Hellen, Edward H; Dana, Syamal K; Zhurov, Boris; Volkov, Evgeny

2013-01-01

61

Electronic Implementation of a Repressilator with Quorum Sensing Feedback  

PubMed Central

We investigate the dynamics of a synthetic genetic repressilator with quorum sensing feedback. In a basic genetic ring oscillator network in which three genes inhibit each other in unidirectional manner, an additional quorum sensing feedback loop stimulates the activity of a chosen gene providing competition between inhibitory and stimulatory activities localized in that gene. Numerical simulations show several interesting dynamics, multi-stability of limit cycle with stable steady-state, multi-stability of different stable steady-states, limit cycle with period-doubling and reverse period-doubling, and infinite period bifurcation transitions for both increasing and decreasing strength of quorum sensing feedback. We design an electronic analog of the repressilator with quorum sensing feedback and reproduce, in experiment, the numerically predicted dynamical features of the system. Noise amplification near infinite period bifurcation is also observed. An important feature of the electronic design is the accessibility and control of the important system parameters. PMID:23658793

Hellen, Edward H.; Dana, Syamal K.; Zhurov, Boris; Volkov, Evgeny

2013-01-01

62

Quorum sensing dependent phenotypes and their molecular mechanisms in Campylobacterales  

PubMed Central

Quorum sensing comprises the mechanism of communication between numerous bacteria via small signalling molecules, termed autoinducers (AI). Using quorum sensing, bacteria can regulate the expression of multiple genes involved in virulence, toxin production, motility, chemotaxis and biofilm formation, thus contributing to adaptation as well as colonisation. The current understanding of the role of quorum sensing in the lifecycle of Campylobacterales is still incomplete. Campylobacterales belong to the class of Epsilonproteobacteria representing a physiologically and ecologically diverse group of bacteria that are rather distinct from the more commonly studied Proteobacteria, such as Escherichia and Salmonella. This review summarises the recent knowledge on distribution and production of AI molecules, as well as possible quorum sensing dependent regulation in the mostly investigated species within the Campylobacterales group: Campylobacter jejuni and Helicobacter pylori. PMID:24611121

Golz, G.; Sharbati, S.; Backert, S.; Alter, T.

2012-01-01

63

Interspecific Quorum Sensing Mediates the Resuscitation of Viable but Nonculturable Vibrios  

PubMed Central

Entry and exit from dormancy are essential survival mechanisms utilized by microorganisms to cope with harsh environments. Many bacteria, including the opportunistic human pathogen Vibrio vulnificus, enter a form of dormancy known as the viable but nonculturable (VBNC) state. VBNC cells can resuscitate when suitable conditions arise, yet the molecular mechanisms facilitating resuscitation in most bacteria are not well understood. We discovered that bacterial cell-free supernatants (CFS) can awaken preexisting dormant vibrio populations within oysters and seawater, while CFS from a quorum sensing mutant was unable to produce the same resuscitative effect. Furthermore, the quorum sensing autoinducer AI-2 could induce resuscitation of VBNC V. vulnificus in vitro, and VBNC cells of a mutant unable to produce AI-2 were unable to resuscitate unless the cultures were supplemented with exogenous AI-2. The quorum sensing inhibitor cinnamaldehyde delayed the resuscitation of wild-type VBNC cells, confirming the importance of quorum sensing in resuscitation. By monitoring AI-2 production by VBNC cultures over time, we found quorum sensing signaling to be critical for the natural resuscitation process. This study provides new insights into the molecular mechanisms stimulating VBNC cell exit from dormancy, which has significant implications for microbial ecology and public health. PMID:24509922

Ayrapetyan, Mesrop; Williams, Tiffany C.

2014-01-01

64

Quorum sensing in group A Streptococcus  

PubMed Central

Quorum sensing (QS) is a widespread phenomenon in the microbial world that has important implications in the coordination of population-wide responses in several bacterial pathogens. In Group A Streptococcus (GAS), many questions surrounding QS systems remain to be solved pertaining to their function and their contribution to the GAS lifestyle in the host. The QS systems of GAS described to date can be categorized into four groups: regulator gene of glucosyltransferase (Rgg), Sil, lantibiotic systems, and LuxS/AI-2. The Rgg family of proteins, a conserved group of transcription factors that modify their activity in response to signaling peptides, has been shown to regulate genes involved in virulence, biofilm formation and competence. The sil locus, whose expression is regulated by the activity of signaling peptides and a putative two-component system (TCS), has been implicated on regulating genes involved with invasive disease in GAS isolates. Lantibiotic regulatory systems are involved in the production of bacteriocins and their autoregulation, and some of these genes have been shown to target both bacterial organisms as well as processes of survival inside the infected host. Finally AI-2 (dihydroxy pentanedione, DPD), synthesized by the LuxS enzyme in several bacteria including GAS, has been proposed to be a universal bacterial communication molecule. In this review we discuss the mechanisms of these four systems, the putative functions of their targets, and pose critical questions for future studies.

Jimenez, Juan Cristobal; Federle, Michael J.

2014-01-01

65

Quorum Sensing in the Squid-Vibrio Symbiosis  

PubMed Central

Quorum sensing is an intercellular form of communication that bacteria use to coordinate group behaviors such as biofilm formation and the production of antibiotics and virulence factors. The term quorum sensing was originally coined to describe the mechanism underlying the onset of luminescence production in cultures of the marine bacterium Vibrio fischeri. Luminescence and, more generally, quorum sensing are important for V. fischeri to form a mutualistic symbiosis with the Hawaiian bobtail squid, Euprymna scolopes. The symbiosis is established when V. fischeri cells migrate via flagella-based motility from the surrounding seawater into a specialized structure injuvenile squid called the light organ. The cells grow to high cell densities within the light organ where the infection persists over the lifetime of the animal. A hallmark of a successful symbiosis is the luminescence produced by V. fischeri that camouflages the squid at night by eliminating its shadow within the water column. While the regulatory networks governing quorum sensing are critical for properly regulating V. fischeri luminescence within the squid light organ, they also regulate luminescence-independent processes during symbiosis. In this review, we discuss the quorum-sensing network of V. fischeri and highlight its impact at various stages during host colonization. PMID:23965960

Verma, Subhash C.; Miyashiro, Tim

2013-01-01

66

Quorum sensing in the squid-Vibrio symbiosis.  

PubMed

Quorum sensing is an intercellular form of communication that bacteria use to coordinate group behaviors such as biofilm formation and the production of antibiotics and virulence factors. The term quorum sensing was originally coined to describe the mechanism underlying the onset of luminescence production in cultures of the marine bacterium Vibrio fischeri. Luminescence and, more generally, quorum sensing are important for V. fischeri to form a mutualistic symbiosis with the Hawaiian bobtail squid, Euprymna scolopes. The symbiosis is established when V. fischeri cells migrate via flagella-based motility from the surrounding seawater into a specialized structure injuvenile squid called the light organ. The cells grow to high cell densities within the light organ where the infection persists over the lifetime of the animal. A hallmark of a successful symbiosis is the luminescence produced by V. fischeri that camouflages the squid at night by eliminating its shadow within the water column. While the regulatory networks governing quorum sensing are critical for properly regulating V. fischeri luminescence within the squid light organ, they also regulate luminescence-independent processes during symbiosis. In this review, we discuss the quorum-sensing network of V. fischeri and highlight its impact at various stages during host colonization. PMID:23965960

Verma, Subhash C; Miyashiro, Tim

2013-01-01

67

Effects of natural and chemically synthesized furanones on quorum sensing in Chromobacterium violaceum  

PubMed Central

Background Cell to cell signaling systems in Gram-negative bacteria rely on small diffusible molecules such as the N-acylhomoserine lactones (AHL). These compounds are involved in the production of antibiotics, exoenzymes, virulence factors and biofilm formation. They belong to the class of furanone derivatives which are frequently found in nature as pheromones, flavor compounds or secondary metabolites. To obtain more information on the relation between molecular structure and quorum sensing, we tested a variety of natural and chemically synthesized furanones for their ability to interfere with the quorum sensing mechanism using a quantitative bioassay with Chromobacterium violaceum CV026 for antagonistic and agonistic action. We were looking at the following questions: 1. Do these compounds affect growth? 2) Do these compounds activate the quorum sensing system of C. violaceum CV026? 3) Do these compounds inhibit violacein formation induced by the addition of the natural inducer N-hexanoylhomoserine lactone (HHL)? 4) Do these compounds enhance violacein formation in presence of HHL? Results The naturally produced N-acylhomoserine lactones showed a strong non-linear concentration dependent influence on violacein production in C. violaceum with a maximum at 3.7*10-8 M with HHL. Apart from the N-acylhomoserine lactones only one furanone (emoxyfurane) was found to simulate N-acylhomoserine lactone activity and induce violacein formation. The most effective substances acting negatively both on growth and quorum sensing were analogs and intermediates in synthesis of the butenolides from Streptomyces antibioticus. Conclusion As the regulation of many bacterial processes is governed by quorum sensing systems, the finding of natural and synthetic furanones acting as agonists or antagonists suggests an interesting tool to control and handle detrimental AHL induced effects. Some effects are due to general toxicity; others are explained by a competitive interaction for LuxR proteins. For further experiments it is important to be aware of the fact that quorum sensing active compounds have non-linear effects. Inducers can act as inhibitors and inhibitors might be able to activate or enhance the quorum sensing system depending on chemical structure and concentration levels. PMID:15233843

Martinelli, Daniel; Grossmann, Gilles; Sequin, Urs; Brandl, Helmut; Bachofen, Reinhard

2004-01-01

68

Quorum Sensing and Self-Quorum Quenching in the Intracellular Pathogen Brucellamelitensis  

PubMed Central

Brucella quorum sensing has been described as an important regulatory system controlling crucial virulence determinants such as the VirB type IV secretion system and the flagellar genes. However, the basis of quorum sensing, namely the production of autoinducers in Brucella has been questioned. Here, we report data obtained from the use of a genetic tool allowing the in situ detection of long-chain N-acyl-homoserine lactones (AHL) activity at single bacterium level in Brucella melitensis. These data are consistent with an intrinsic production of AHL by B. melitensis in low concentration both during in vitro growth and macrophage infection. Moreover, we identified a protein, named AibP, which is homologous to the AHL-acylases of various bacterial species. In vitro and during infection, expression of aibP coincided with a decrease in endogenous AHL activity within B. melitensis, suggesting that AibP could efficiently impair AHL accumulation. Furthermore, we showed that deletion of aibP in B. melitensis resulted in enhanced virB genes expression and VirB8 production as well as in a reduced flagellar genes expression and production of FlgE (hook protein) and FliC (flagellin) in vitro. Altogether, these results suggest that AHL-dependent quorum sensing and AHL-quorum quenching coexist in Brucella, at least to regulate its virulence. PMID:24349302

Terwagne, Matthieu; Mirabella, Aurelie; Lemaire, Julien; Deschamps, Chantal; De Bolle, Xavier; Letesson, Jean-Jacques

2013-01-01

69

Ratio-dependent quantity discrimination in quorum sensing ants.  

PubMed

To optimise behaviour, organisms require information on the quantity of various components of their environment, and the ability of animals to discriminate quantity has been a subject of considerable recent interest. This body of research hints at generalised mechanisms of quantity discrimination in vertebrates, but data on invertebrates are still relatively scarce. In this study, I present data on the quantification abilities of an invertebrate in a novel context: quorum sensing. Quorum sensing generates a behavioural response in group-living animals once a threshold number of individuals, a 'quorum', is detected performing some key action. This process forms the basis for consensus decision-making in many species and allows group-living organisms to decide among mutually exclusive alternatives without compromising group integrity. To determine when a quorum is achieved, individuals must assess the number of group members performing the key action. Social insects employ quorum decisions to decide among potential nest sites when searching for a new home. In the Japanese ant, Myrmecina nipponica, quorum thresholds increase with colony size, providing an opportunity to assess the accuracy of quantity discrimination at different stimulus magnitudes. In this study, I demonstrate that the variation in individual quorum thresholds around the mean increases with increasing colony size. This indicates that the quantity discrimination ability of ants decreases with stimulus magnitude, and thus exhibits ratio dependence in the manner of Weber's Law. This may have implications for the accuracy of consensus decision-making and other collective actions in a range of group-living organisms. PMID:24844665

Cronin, Adam L

2014-11-01

70

Structural Basis for Native Agonist and Synthetic Inhibitor Recognition by the Pseudomonas aeruginosa Quorum Sensing Regulator PqsR (MvfR)  

PubMed Central

Bacterial populations co-ordinate gene expression collectively through quorum sensing (QS), a cell-to-cell communication mechanism employing diffusible signal molecules. The LysR-type transcriptional regulator (LTTR) protein PqsR (MvfR) is a key component of alkyl-quinolone (AQ)-dependent QS in Pseudomonas aeruginosa. PqsR is activated by 2-alkyl-4-quinolones including the Pseudomonas quinolone signal (PQS; 2-heptyl-3-hydroxy-4(1H)-quinolone), its precursor 2-heptyl-4-hydroxyquinoline (HHQ) and their C9 congeners, 2-nonyl-3-hydroxy-4(1H)-quinolone (C9-PQS) and 2-nonyl-4-hydroxyquinoline (NHQ). These drive the autoinduction of AQ biosynthesis and the up-regulation of key virulence determinants as a function of bacterial population density. Consequently, PqsR constitutes a potential target for novel antibacterial agents which attenuate infection through the blockade of virulence. Here we present the crystal structures of the PqsR co-inducer binding domain (CBD) and a complex with the native agonist NHQ. We show that the structure of the PqsR CBD has an unusually large ligand-binding pocket in which a native AQ agonist is stabilized entirely by hydrophobic interactions. Through a ligand-based design strategy we synthesized and evaluated a series of 50 AQ and novel quinazolinone (QZN) analogues and measured the impact on AQ biosynthesis, virulence gene expression and biofilm development. The simple exchange of two isosteres (OH for NH2) switches a QZN agonist to an antagonist with a concomitant impact on the induction of bacterial virulence factor production. We also determined the complex crystal structure of a QZN antagonist bound to PqsR revealing a similar orientation in the ligand binding pocket to the native agonist NHQ. This structure represents the first description of an LTTR-antagonist complex. Overall these studies present novel insights into LTTR ligand binding and ligand-based drug design and provide a chemical scaffold for further anti-P. aeruginosa virulence drug development by targeting the AQ receptor PqsR. PMID:23935486

Ilangovan, Aravindan; Fletcher, Matthew; Rampioni, Giordano; Pustelny, Christian; Rumbaugh, Kendra; Heeb, Stephan; Camara, Miguel; Truman, Alex; Chhabra, Siri Ram; Emsley, Jonas; Williams, Paul

2013-01-01

71

Structural basis for native agonist and synthetic inhibitor recognition by the Pseudomonas aeruginosa quorum sensing regulator PqsR (MvfR).  

PubMed

Bacterial populations co-ordinate gene expression collectively through quorum sensing (QS), a cell-to-cell communication mechanism employing diffusible signal molecules. The LysR-type transcriptional regulator (LTTR) protein PqsR (MvfR) is a key component of alkyl-quinolone (AQ)-dependent QS in Pseudomonas aeruginosa. PqsR is activated by 2-alkyl-4-quinolones including the Pseudomonas quinolone signal (PQS; 2-heptyl-3-hydroxy-4(1H)-quinolone), its precursor 2-heptyl-4-hydroxyquinoline (HHQ) and their C9 congeners, 2-nonyl-3-hydroxy-4(1H)-quinolone (C9-PQS) and 2-nonyl-4-hydroxyquinoline (NHQ). These drive the autoinduction of AQ biosynthesis and the up-regulation of key virulence determinants as a function of bacterial population density. Consequently, PqsR constitutes a potential target for novel antibacterial agents which attenuate infection through the blockade of virulence. Here we present the crystal structures of the PqsR co-inducer binding domain (CBD) and a complex with the native agonist NHQ. We show that the structure of the PqsR CBD has an unusually large ligand-binding pocket in which a native AQ agonist is stabilized entirely by hydrophobic interactions. Through a ligand-based design strategy we synthesized and evaluated a series of 50 AQ and novel quinazolinone (QZN) analogues and measured the impact on AQ biosynthesis, virulence gene expression and biofilm development. The simple exchange of two isosteres (OH for NH?) switches a QZN agonist to an antagonist with a concomitant impact on the induction of bacterial virulence factor production. We also determined the complex crystal structure of a QZN antagonist bound to PqsR revealing a similar orientation in the ligand binding pocket to the native agonist NHQ. This structure represents the first description of an LTTR-antagonist complex. Overall these studies present novel insights into LTTR ligand binding and ligand-based drug design and provide a chemical scaffold for further anti-P. aeruginosa virulence drug development by targeting the AQ receptor PqsR. PMID:23935486

Ilangovan, Aravindan; Fletcher, Matthew; Rampioni, Giordano; Pustelny, Christian; Rumbaugh, Kendra; Heeb, Stephan; Cámara, Miguel; Truman, Alex; Chhabra, Siri Ram; Emsley, Jonas; Williams, Paul

2013-01-01

72

Interplay of two quorum sensing regulation systems of Vibrio fischeri  

Microsoft Academic Search

Many bacteria developed a possibility to recognise aspects of their environment or to communicate with each other by chemical signals. An important strategy is the so-called quorum sensing (QS), a regulatory mechanism for the gene expression, where the bacteria measure their own cell density by means of this signalling pathway. One of the best-studied species using QS is the marine

Christina Kuttler; Burkhard A. Hense

2008-01-01

73

Pandoraea sp. RB-44, A Novel Quorum Sensing Soil Bacterium  

PubMed Central

Proteobacteria are known to communicate via signaling molecules and this process is known as quorum sensing. The most commonly studied quorum sensing molecules are N-acylhomoserine lactones (AHLs) that consists of a homoserine lactone moiety and an N-acyl side chain with various chain lengths and degrees of saturation at the C-3 position. We have isolated a bacterium, RB-44, from a site which was formally a landfill dumping ground. Using matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometry analysis, this isolate was identified as a Pandoraea sp.which was then screened for AHL production using biosensors which indicated its quorum sensing properties. To identify the AHL profile of Pandoraea sp. RB-44, we used high resolution tandem mass spectrometry confirming that this isolate produced N-octanoylhomoserine lactone (C8-HSL). To the best of our knowledge, this is the first report that showed quorum sensing activity exhibited by Pandoraea sp. Our data add Pandoraea sp. to the growing number of bacteria that possess QS systems. PMID:24145919

Han-Jen, Robson Ee; Wai-Fong, Yin; Kok-Gan, Chan

2013-01-01

74

Quorum sensing-controlled gene expression in lactic acid bacteria  

Microsoft Academic Search

Quorum sensing in lactic acid bacteria (LAB) involves peptides that are directly sensed by membrane-located histidine kinases, after which the signal is transmitted to an intracellular response regulator. This regulator in turn activates transcription of target genes, that commonly include the structural gene for the inducer molecule. The two-component signal-transduction machinery has proven to be indispensable for transcription activation and

Oscar P. Kuipers; Michiel Kleerebezem; Willem M. de Vos

1998-01-01

75

Effects of Antibiotics on Quorum Sensing in Pseudomonas aeruginosa?  

PubMed Central

During infection, Pseudomonas aeruginosa employs bacterial communication (quorum sensing [QS]) to coordinate the expression of tissue-damaging factors. QS-controlled gene expression plays a pivotal role in the virulence of P. aeruginosa, and QS-deficient mutants cause less severe infections in animal infection models. Treatment of cystic fibrosis (CF) patients chronically infected with P. aeruginosa with the macrolide antibiotic azithromycin (AZM) has been demonstrated to improve the clinical outcome. Several studies indicate that AZM may accomplish its beneficial action in CF patients by impeding QS, thereby reducing the pathogenicity of P. aeruginosa. This led us to investigate whether QS inhibition is a common feature of antibiotics. We present the results of a screening of 12 antibiotics for their QS-inhibitory activities using a previously described QS inhibitor selector 1 strain. Three of the antibiotics tested, AZM, ceftazidime (CFT), and ciprofloxacin (CPR), were very active in the assay and were further examined for their effects on QS-regulated virulence factor production in P. aeruginosa. The effects of the three antibiotics administered at subinhibitory concentrations were investigated by use of DNA microarrays. Consistent results from the virulence factor assays, reverse transcription-PCR, and the DNA microarrays support the finding that AZM, CFT, and CPR decrease the expression of a range of QS-regulated virulence factors. The data suggest that the underlying mechanism may be mediated by changes in membrane permeability, thereby influencing the flux of N-3-oxo-dodecanoyl-l-homoserine lactone. PMID:18644954

Skindersoe, Mette E.; Alhede, Morten; Phipps, Richard; Yang, Liang; Jensen, Peter O.; Rasmussen, Thomas B.; Bjarnsholt, Thomas; Tolker-Nielsen, Tim; H?iby, Niels; Givskov, Michael

2008-01-01

76

Substituted Lactam and Cyclic Azahemiacetals Modulate Pseudomonas aeruginosa Quorum Sensing  

PubMed Central

Quorum sensing (QS) is a population-dependent signaling process bacteria use to control multiple processes including virulence that is critical for establishing infection. The most common QS signaling molecule used by Gram-negative bacteria are acylhomoserine lactones. The development of non-native acylhomoserine lactone (AHL) ligands has emerged as a promising new strategy to inhibit QS in Gram-negative bacteria. In this work, we have synthesized a set of optically pure ?-lactams and their reduced cyclic azahemiacetal analogues, bearing the additional alkylthiomethyl substituent, and evaluated their effect on the AHL-dependent Pseudomonas aeruginosa las and rhl QS pathways. The concentration of these ligands and the simple structural modification such as the length of the alkylthio substituent has notable effect on activity. The ?-lactam derivatives with nonylthio or dodecylthio chains acted as inhibitors of las signaling with moderate potency. The cyclic azahemiacetal with shorter propylthio or hexylthio substituent was found to strongly inhibit both las and rhl signaling at higher concentrations while the propylthio analogue strongly stimulated the las QS system at lower concentrations. PMID:21855349

Malladi, Venkata L. A.; Sobczak, Adam J.; Maricic, Natalie; Murugapiran, Senthil Kumar; Schneper, Lisa; Makemson, John; Mathee, Kalai; Wnuk, Stanislaw F.

2011-01-01

77

Transcriptome analysis of acyl-homoserine lactone-based quorum sensing regulation in Yersinia pestis [corrected].  

PubMed

The etiologic agent of bubonic plague, Yersinia pestis, senses self-produced, secreted chemical signals in a process named quorum sensing. Though the closely related enteric pathogen Y. pseudotuberculosis uses quorum sensing system to regulate motility, the role of quorum sensing in Y. pestis has been unclear. In this study we performed transcriptional profiling experiments to identify Y. pestis quorum sensing regulated functions. Our analysis revealed that acyl-homoserine lactone-based quorum sensing controls the expression of several metabolic functions. Maltose fermentation and the glyoxylate bypass are induced by acyl-homoserine lactone signaling. This effect was observed at 30°C, indicating a potential role for quorum sensing regulation of metabolism at temperatures below the normal mammalian temperature. It is proposed that utilization of alternative carbon sources may enhance growth and/or survival during prolonged periods in natural habitats with limited nutrient sources, contributing to maintenance of plague in nature. PMID:23620823

LaRock, Christopher N; Yu, Jing; Horswill, Alexander R; Parsek, Matthew R; Minion, F Chris

2013-01-01

78

Inhibition of Quorum Sensing in Serratia marcescens AS-1 by Synthetic Analogs of N-Acylhomoserine Lactone?  

PubMed Central

Quorum sensing is a regulatory system for controlling gene expression in response to increasing cell density. N-Acylhomoserine lactone (AHL) is produced by gram-negative bacteria, which use it as a quorum-sensing signal molecule. Serratia marcescens is a gram-negative opportunistic pathogen which is responsible for an increasing number of serious nosocomial infections. S. marcescens AS-1 produces N-hexanoyl homoserine lactone (C6-HSL) and N-(3-oxohexanoyl) homoserine lactone and regulates prodigiosin production, swarming motility, and biofilm formation by AHL-mediated quorum sensing. We synthesized a series of N-acyl cyclopentylamides with acyl chain lengths ranging from 4 to 12 and estimated their inhibitory effects on prodigiosin production in AS-1. One of these molecules, N-nonanoyl-cyclopentylamide (C9-CPA), had a strong inhibitory effect on prodigiosin production. C9-CPA also inhibited the swarming motility and biofilm formation of AS-1. A competition assay revealed that C9-CPA was able to inhibit quorum sensing at four times the concentration of exogenous C6-HSL and was more effective than the previously reported halogenated furanone. Our results demonstrated that C9-CPA was an effective quorum-sensing inhibitor for S. marcescens AS-1. PMID:17675425

Morohoshi, Tomohiro; Shiono, Toshitaka; Takidouchi, Kiyomi; Kato, Masashi; Kato, Norihiro; Kato, Junichi; Ikeda, Tsukasa

2007-01-01

79

Quorum quenching is responsible for the underestimated quorum sensing effects in biological wastewater treatment reactors.  

PubMed

Quorum sensing (QS) and quorum quenching (QQ) are two antagonistic processes coexisting in various bacterial communities in bioreactors, e.g., activated sludge for biological wastewater treatment. Although QS signal molecules are detected in activated sludge reactors and known to affect sludge properties and reactor performance, there has been no direct evidence to prove the endogenous existence of QQ effects in activated sludge. In this study, for the first time, acyl homoserine lactones-degrading enzymatic activity, a typical QQ effect, was discovered in activated sludge and found to considerably affect the QS detection results. The coexistence of QS and QQ bacteria in activated sludge was further confirmed by bacterial screening and denaturing gradient gel electrophoresis analysis. The method developed in this study could also be used to evaluate QQ activities in bioreactors, and a possible way is provided to tune bioreactor performance through balancing the QS and QQ processes. PMID:25182424

Song, Xiang-Ning; Cheng, Yuan-Yuan; Li, Wen-Wei; Li, Bing-Bing; Sheng, Guo-Ping; Fang, Cai-Yun; Wang, Yun-Kun; Li, Xiao-Yan; Yu, Han-Qing

2014-11-01

80

Characterization of Quorum Sensing and Quorum Quenching Soil Bacteria Isolated from Malaysian Tropical Montane Forest  

PubMed Central

We report the production and degradation of quorum sensing N-acyl-homoserine lactones by bacteria isolated from Malaysian montane forest soil. Phylogenetic analysis indicated that these isolates clustered closely to the genera of Arthrobacter, Bacillus and Pseudomonas. Quorum quenching activity was detected in six isolates of these three genera by using a series of bioassays and rapid resolution liquid chromatography analysis. Biosensor screening and high resolution liquid chromatography-mass spectrometry analysis revealed the production of N-dodecanoyl-L-homoserine lactone (C12-HSL) by Pseudomonas frederiksbergensis (isolate BT9). In addition to degradation of a wide range of N-acyl-homoserine lactones, Arthrobacter and Pseudomonas spp. also degraded p-coumaroyl-homoserine lactone. To the best of our knowledge, this is the first documentation of Arthrobacter and Pseudomonas spp. capable of degrading p-coumaroyl-homoserine lactone and the production of C12-HSL by P. frederiksbergensis. PMID:22666062

Chong, Teik-Min; Koh, Chong-Lek; Sam, Choon-Kook; Choo, Yeun-Mun; Yin, Wai-Fong; Chan, Kok-Gan

2012-01-01

81

Global Analysis of the Burkholderia thailandensis Quorum Sensing-Controlled Regulon  

PubMed Central

Burkholderia thailandensis contains three acyl-homoserine lactone quorum sensing circuits and has two additional LuxR homologs. To identify B. thailandensis quorum sensing-controlled genes, we carried out transcriptome sequencing (RNA-seq) analyses of quorum sensing mutants and their parent. The analyses were grounded in the fact that we identified genes coding for factors shown previously to be regulated by quorum sensing among a larger set of quorum-controlled genes. We also found that genes coding for contact-dependent inhibition were induced by quorum sensing and confirmed that specific quorum sensing mutants had a contact-dependent inhibition defect. Additional quorum-controlled genes included those for the production of numerous secondary metabolites, an uncharacterized exopolysaccharide, and a predicted chitin-binding protein. This study provides insights into the roles of the three quorum sensing circuits in the saprophytic lifestyle of B. thailandensis, and it provides a foundation on which to build an understanding of the roles of quorum sensing in the biology of B. thailandensis and the closely related pathogenic Burkholderia pseudomallei and Burkholderia mallei. PMID:24464461

Majerczyk, Charlotte; Brittnacher, Mitchell; Jacobs, Michael; Armour, Christopher D.; Radey, Mathew; Schneider, Emily; Phattarasokul, Somsak; Bunt, Richard

2014-01-01

82

(2) DNA O(n^5) Quorum-Sensing Lux  

E-print Network

- 1 - ( ) ( ) DNA RNA DNA RNA DNA DNA 2 DNA #12;- 2 - 17 6 (1) (2) DNA O(n^5) (3) Quorum-Sensing Lux (4) (5) LMNtal ambient LMNtal (1) (2) DNA (3) DNA (4) DNA (5) DNA (1) DNA ANP-96 (Precision System Science ) (2) RTRACS DNA RTRACS (3) in vivo in vivo (4) DNA trans cis 1/10 (5) DNA-PNA DNA DNA DNA DNA DNA

Hagiya, Masami

83

Stereochemical Insignificance Discovered in Acinetobacter baumannii Quorum Sensing  

PubMed Central

Stereochemistry is a key aspect of molecular recognition for biological systems. As such, receptors and enzymes are often highly stereospecific, only recognizing one stereoisomer of a ligand. Recently, the quorum sensing signaling molecules used by the nosocomial opportunistic pathogen, Acinetobacter baumannii, were identified, and the primary signaling molecule isolated from this species was N-(3-hydroxydodecanoyl)-l-homoserine lactone. A plethora of bacterial species have been demonstrated to utilize 3-hydroxy-acylhomoserine lactone autoinducers, and in virtually all cases, the (R)-stereoisomer was identified as the natural ligand and exhibited greater autoinducer activity than the corresponding (S)-stereoisomer. Using chemical synthesis and biochemical assays, we have uncovered a case of stereochemical insignificance in A. baumannii and provide a unique example where stereochemistry appears nonessential for acylhomoserine lactone-mediated quorum sensing signaling. Based on previously reported phylogenetic studies, we suggest that A. baumannii has evolutionarily adopted this unique, yet promiscuous quorum sensing system to ensure its survival, particularly in the presence of other proteobacteria. PMID:22629354

Struss, Anjali Kumari; Watkins, Richard; Feske, Brent D.; Kaufmann, Gunnar F.; Janda, Kim D.

2012-01-01

84

A Quorum-Sensing-Induced Bacteriophage Defense Mechanism  

PubMed Central

ABSTRACT One of the key determinants of the size, composition, structure, and development of a microbial community is the predation pressure by bacteriophages. Accordingly, bacteria have evolved a battery of antiphage defense strategies. Since maintaining constantly elevated defenses is costly, we hypothesize that some bacteria have additionally evolved the abilities to estimate the risk of phage infection and to adjust their strategies accordingly. One risk parameter is the density of the bacterial population. Hence, quorum sensing, i.e., the ability to regulate gene expression according to population density, may be an important determinant of phage-host interactions. This hypothesis was investigated in the model system of Escherichia coli and phage ?. We found that, indeed, quorum sensing constitutes a significant, but so far overlooked, determinant of host susceptibility to phage attack. Specifically, E. coli reduces the numbers of ? receptors on the cell surface in response to N-acyl-l-homoserine lactone (AHL) quorum-sensing signals, causing a 2-fold reduction in the phage adsorption rate. The modest reduction in phage adsorption rate leads to a dramatic increase in the frequency of uninfected survivor cells after a potent attack by virulent phages. Notably, this mechanism may apply to a broader range of phages, as AHLs also reduce the risk of ? phage infection through a different receptor. PMID:23422409

H?yland-Kroghsbo, Nina Molin; Maerkedahl, Rasmus Baadsgaard; Svenningsen, Sine Lo

2013-01-01

85

Discovery of a quorum sensing modulator pharmacophore by 3D small-molecule microarray screening.  

PubMed

The screening of large arrays of drug-like small-molecules was traditionally a time consuming and resource intensive task. New methodology developed within our laboratories provides an attractive low cost, 3D microarray-assisted screening platform that could be used to rapidly assay thousands of compounds. As a proof-of-principle the platform was exploited to screen a number of quorum sensing analogs. Quorum sensing is used by bacterium to initiate and spread infection; in this context its modulation may have significant clinical value. 3D microarray slides were probed with fluorescently labeled ligand-binding domains of the LuxR homolog CarR from Erwinia carotovora subsp. carotovora. The 3D microarray platform was used to discover the biologically active chloro-pyridine pharmacophore, which was validated using a fluorometric ligand binding assay and ITC. Analogs containing the chloro-pyridine pharmacophore were found to be potent inhibitors of N-acyl-homoserine-lactone (AHL) mediated quorum sensing phenotypes in Serratia (IC(50) = ?5 ?M) and Pseudomonas aeruginosa (IC(50) = 10-20 ?M). PMID:20886127

Marsden, David M; Nicholson, Rebecca L; Skindersoe, Mette E; Galloway, Warren R J D; Sore, Hannah F; Givskov, Michael; Salmond, George P C; Ladlow, Mark; Welch, Martin; Spring, David R

2010-12-01

86

Quorum sensing: a non-conventional target for antibiotic discovery.  

PubMed

Quorum sensing (QS) is known to regulate different functions viz. pathogenesis, biofilm formation, and host colonization, along with other functions by regulating bacterial virulence determinants. Therefore, QS is deemed to be an interesting target to modulate pathogenesis. Also, there have been global reports of continuous emergence of antibiotic-resistant microbes; hence, an alternative treatment that compliments antibiotic activity is highly desirable. One such approach is to look for QS inhibitors, which can quench the virulence phenotypes exerted by pathogenic bacteria and compliment antibiotic treatment. In the present study, Pseudomonas aeruginosa strain was used as the model organism which produces three pigments viz. pyocyanin, pyoverdin and pyorubin. Pyocyanin synthesis is reported to be QS dependent and is one of the virulence factors of P. aeruginosa. Hence, we envisage inhibition of pyocyanin pigment would indicate QS inhibition (QSI). Auto-inducers like N-(3-oxododecanoyl)-L-homoserine lactone (OdDHL/3-oxo-C12-HSL) and N-butyryl-L- homoserine lactone (BHL/C4-HSL) were used to enhance the pyocyanin pigment production by the model strain at different doses and time points. BHL, at 25 microM was found to be a better inducer of pyocyanin. Tannic acid (TA) was tested to suppress this pigment synthesis and it was found to be effective when assessed at different time points. About 5.12 mg/mL TA was found to be the optimum concentration at which pyocyanin was inhibited by 77.3%. Thus, we confirm that TA can be used as a QSI, either in its purest form or in the crude form found in various plant species, and could be considered for development to compliment antibiotic therapy. PMID:24354200

Naik, Varsha; Mahajan, Girish

2013-10-01

87

Quorum Sensing in the Context of Food Microbiology  

PubMed Central

Food spoilage may be defined as a process that renders a product undesirable or unacceptable for consumption and is the outcome of the biochemical activity of a microbial community that eventually dominates according to the prevailing ecological determinants. Although limited information are reported, this activity has been attributed to quorum sensing (QS). Consequently, the potential role of cell-to-cell communication in food spoilage and food safety should be more extensively elucidated. Such information would be helpful in designing approaches for manipulating these communication systems, thereby reducing or preventing, for instance, spoilage reactions or even controlling the expression of virulence factors. Due to the many reports in the literature on the fundamental features of QS, e.g., chemistry and definitions of QS compounds, in this minireview, we only allude to the types and chemistry of QS signaling molecules per se and to the (bioassay-based) methods of their detection and quantification, avoiding extensive documentation. Conversely, we attempt to provide insights into (i) the role of QS in food spoilage, (ii) the factors that may quench the activity of QS in foods and review the potential QS inhibitors that might “mislead” the bacterial coordination of spoilage activities and thus may be used as biopreservatives, and (iii) the future experimental approaches that need to be undertaken in order to explore the “gray” or “black” areas of QS, increase our understanding of how QS affects microbial behavior in foods, and assist in finding answers as to how we can exploit QS for the benefit of food preservation and food safety. PMID:22706047

Skandamis, Panagiotis N.

2012-01-01

88

Quorum sensing via static coupling demonstrated by Chua's circuits  

NASA Astrophysics Data System (ADS)

Dynamical quorum sensing, the population based phenomenon, is believed to occur when the elements of a system interact via dynamic coupling. In the present work, we demonstrate an alternate scenario, involving static coupling, that could also lead to quorum sensing behavior. These static and dynamic coupling terms have already been employed by Konishi [Int. J. Bifurcation Chaos Appl. Sci. Eng.IJBEE40218-127410.1142/S0218127407018750 17, 2781 (2007)]. In our context, the coupling is defined as static or dynamic, on the basis of the relative time scales at which the surrounding dynamics and the elements' dynamics evolve. According to this, if the variation in the surrounding dynamics happens on a much larger (fast) time scale than that at which the elements' dynamics are varying (such as seconds and ?s), then the coupling is considered to be static, otherwise it is considered to be dynamic. A series of experiments have been performed starting from a system of three Chua's circuits to a system of 20 Chua's circuits to study two types of quorum transitions: the emergence and the extinction of global oscillations (period-1). The numerics involving up to 100 Chua's circuits validate the experimental observations.

Singh, Harpartap; Parmananda, P.

2013-10-01

89

Quorum sensing in gram-positive bacteria: assay protocols for staphylococcal agr and enterococcal fsr systems.  

PubMed

A thiolactone/lactone peptide-mediated quorum sensing (QS) system is commonly employed in gram-positive bacteria to control the expression of a variety of phenotypes, including the production of virulence factors and biofilm formation. Here, we describe assay protocols for the well-studied QS systems (agr and fsr) of two representative gram-positive pathogens, Staphylococcus aureus and Enterococcus faecalis. These convenient assay systems are useful for the screening of QS inhibitors as well as for basic research to address the mechanism of these QS systems. PMID:24664824

Shojima, Akane; Nakayama, Jiro

2014-01-01

90

Connecting Quorum Sensing, c-di-GMP, Pel Polysaccharide, and Biofilm Formation in Pseudomonas  

E-print Network

Connecting Quorum Sensing, c-di-GMP, Pel Polysaccharide, and Biofilm Formation in Pseudomonas on homoserine lactones was found to influence biofilm formation. Here we discern a mechanism by which quorum sensing controls biofilm formation by screening 5850 transposon mutants of P. aeruginosa PA14 for altered

Wood, Thomas K.

91

l-Canavanine Made by Medicago sativa Interferes with Quorum Sensing in Sinorhizobium meliloti  

PubMed Central

Sinorhizobium meliloti is a gram-negative soil bacterium, capable of establishing a nitrogen-fixing symbiosis with its legume host, alfalfa (Medicago sativa). Quorum sensing plays a crucial role in this symbiosis, where it influences the nodulation process and the synthesis of the symbiotically important exopolysaccharide II (EPS II). S. meliloti has three quorum-sensing systems (Sin, Tra, and Mel) that use N-acyl homoserine lactones as their quorum-sensing signal molecule. Increasing evidence indicates that certain eukaryotic hosts involved in symbiotic or pathogenic relationships with gram-negative bacteria produce quorum-sensing-interfering (QSI) compounds that can cross-communicate with the bacterial quorum-sensing system. Our studies of alfalfa seed exudates suggested the presence of multiple signal molecules capable of interfering with quorum-sensing-regulated gene expression in different bacterial strains. In this work, we choose one of these QSI molecules (SWI) for further characterization. SWI inhibited violacein production, a phenotype that is regulated by quorum sensing in Chromobacterium violaceum. In addition, this signal molecule also inhibits the expression of the S. meliloti exp genes, responsible for the production of EPS II, a quorum-sensing-regulated phenotype. We identified this molecule as l-canavanine, an arginine analog, produced in large quantities by alfalfa and other legumes. PMID:16321947

Keshavan, Neela D.; Chowdhary, Puneet K.; Haines, Donovan C.; González, Juan E.

2005-01-01

92

A mathematical model of quorum sensing regulated EPS production in biofilm communities  

PubMed Central

Background Biofilms are microbial communities encased in a layer of extracellular polymeric substances (EPS). The EPS matrix provides several functional purposes for the biofilm, such as protecting bacteria from environmental stresses, and providing mechanical stability. Quorum sensing is a cell-cell communication mechanism used by several bacterial taxa to coordinate gene expression and behaviour in groups, based on population densities. Model We mathematically model quorum sensing and EPS production in a growing biofilm under various environmental conditions, to study how a developing biofilm impacts quorum sensing, and conversely, how a biofilm is affected by quorum sensing-regulated EPS production. We investigate circumstances when using quorum-sensing regulated EPS production is a beneficial strategy for biofilm cells. Results We find that biofilms that use quorum sensing to induce increased EPS production do not obtain the high cell populations of low-EPS producers, but can rapidly increase their volume to parallel high-EPS producers. Quorum sensing-induced EPS production allows a biofilm to switch behaviours, from a colonization mode (with an optimized growth rate), to a protection mode. Conclusions A biofilm will benefit from using quorum sensing-induced EPS production if bacteria cells have the objective of acquiring a thick, protective layer of EPS, or if they wish to clog their environment with biomass as a means of securing nutrient supply and outcompeting other colonies in the channel, of their own or a different species. PMID:21477365

2011-01-01

93

Structure and Inhibition of Quorum Sensing Target from Streptococcus pneumoniae  

SciTech Connect

Streptococcus pneumoniae 5'-methylthioadenosine/S-adenosylhomocysteine hydrolase (MTAN) catalyzes the hydrolytic deadenylation of its substrates to form adenine and 5-methylthioribose or S-ribosylhomocysteine (SRH). MTAN is not found in mammals but is involved in bacterial quorum sensing. MTAN gene disruption affects the growth and pathogenicity of bacteria, making it a target for antibiotic design. Kinetic isotope effects and computational studies have established a dissociative S{sub N}1 transition state for Escherichia coli MTAN, and transition state analogues resembling the transition state are powerful inhibitors of the enzyme [Singh, V., Lee, J. L., Nunez, S., Howell, P. L., and Schramm, V. L. (2005) Biochemistry 44, 11647-11659]. The sequence of MTAN from S. pneumoniae is 40% identical to that of E. coli MTAN, but S. pneumoniae MTAN exhibits remarkably distinct kinetic and inhibitory properties. 5'-Methylthio-Immucillin-A (MT-ImmA) is a transition state analogue resembling an early S{sub N}1 transition state. It is a weak inhibitor of S. pneumoniae MTAN with a K{sub i} of 1.0 {mu}M. The X-ray structure of S. pneumoniae MTAN with MT-ImmA indicates a dimer with the methylthio group in a flexible hydrophobic pocket. Replacing the methyl group with phenyl (PhT-ImmA), tolyl (p-TolT-ImmA), or ethyl (EtT-ImmA) groups increases the affinity to give K{sub i} values of 335, 60, and 40 nM, respectively. DADMe-Immucillins are geometric and electrostatic mimics of a fully dissociated transition state and bind more tightly than Immucillins. MT-DADMe-Immucillin-A inhibits with a K{sub i} value of 24 nM, and replacing the 5'-methyl group with p-Cl-phenyl (p-Cl-PhT-DADMe-ImmA) gave a K{sub i}* value of 0.36 nM. The inhibitory potential of DADMe-Immucillins relative to the Immucillins supports a fully dissociated transition state structure for S. pneumoniae MTAN. Comparison of active site contacts in the X-ray crystal structures of E. coli and S. pneumoniae MTAN with MT-ImmA would predict equal binding, yet most analogues bind 10{sup 3}-10{sup 4}-fold more tightly to the E. coli enzyme. Catalytic site efficiency is primarily responsible for this difference since k{sub cat}/K{sub m} for S. pneumoniae MTAN is decreased 845-fold relative to that of E. coli MTAN.

Singh,V.; Shi, W.; Almo, S.; Evans, G.; Furneaux, R.; Tyler, P.; Painter, G.; Lenz, D.; Mee, S.; et al.

2006-01-01

94

Quorum Sensing and Expression of Virulence in Pectobacteria  

PubMed Central

Quorum sensing (QS) is a population density-dependent regulatory mechanism in which gene expression is coupled to the accumulation of a chemical signaling molecule. QS systems are widespread among the plant soft-rotting bacteria. In Pectobacterium carotovorum, at least two QS systems exist being specified by the nature of chemical signals involved. QS in Pectobacterium carotovorum uses N-acylhomoserine lactone (AHL) based, as well as autoinducer-2 (AI-2) dependent signaling systems. This review will address the importance of the QS in production of virulence factors and interaction of QS with other regulatory systems in Pectobacterium carotovorum. PMID:22737011

Pollumaa, Lee; Alamae, Tiina; Mae, Andres

2012-01-01

95

Small Molecule Inhibitors of AI-2 Signaling in Bacteria: State-of-the-Art and Future Perspectives for Anti-Quorum Sensing Agents  

PubMed Central

Bacteria respond to different small molecules that are produced by other neighboring bacteria. These molecules, called autoinducers, are classified as intraspecies (i.e., molecules produced and perceived by the same bacterial species) or interspecies (molecules that are produced and sensed between different bacterial species). AI-2 has been proposed as an interspecies autoinducer and has been shown to regulate different bacterial physiology as well as affect virulence factor production and biofilm formation in some bacteria, including bacteria of clinical relevance. Several groups have embarked on the development of small molecules that could be used to perturb AI-2 signaling in bacteria, with the ultimate goal that these molecules could be used to inhibit bacterial virulence and biofilm formation. Additionally, these molecules have the potential to be used in synthetic biology applications whereby these small molecules are used as inputs to switch on and off AI-2 receptors. In this review, we highlight the state-of-the-art in the development of small molecules that perturb AI-2 signaling in bacteria and offer our perspective on the future development and applications of these classes of molecules. PMID:23994835

Guo, Min; Gamby, Sonja; Zheng, Yue; Sintim, Herman O.

2013-01-01

96

Quorum Sensing Activity of Enterobacter asburiae Isolated from Lettuce Leaves  

PubMed Central

Bacterial communication or quorum sensing (QS) is achieved via sensing of QS signaling molecules consisting of oligopeptides in Gram-positive bacteria and N-acyl homoserine lactones (AHL) in most Gram-negative bacteria. In this study, Enterobacteriaceae isolates from Batavia lettuce were screened for AHL production. Enterobacter asburiae, identified by matrix-assisted laser desorption ionization time of flight mass spectrometry (MALDI-TOF-MS) was found to produce short chain AHLs. High resolution triple quadrupole liquid chromatography mass spectrometry (LC/MS) analysis of the E. asburiae spent supernatant confirmed the production of N-butanoyl homoserine lactone (C4-HSL) and N–hexanoyl homoserine lactone (C6-HSL). To the best of our knowledge, this is the first report of AHL production by E. asburiae. PMID:24152877

Lau, Yin Yin; Sulaiman, Joanita; Chen, Jian Woon; Yin, Wai-Fong; Chan, Kok-Gan

2013-01-01

97

Quenching quorum-sensing-dependent bacterial infection by an N-acyl homoserine lactonase  

Microsoft Academic Search

Bacterial cells sense their population density through a sophisticated cell-cell communication system and trigger expression of particular genes when the density reaches a threshold. This type of gene regulation, which controls diverse biological functions including virulence, is known as quorum sensing. Quorum-sensing signals, such as acyl-homoserine lactones (AHLs), are the essential components of the communication system. AHLs regulate virulence gene

Yi-Hu Dong; Lian-Hui Wang; Jin-Ling Xu; Hai-Bao Zhang; Xi-Fen Zhang; Lian-Hui Zhang

2001-01-01

98

Malabaricone C from Myristica cinnamomea exhibits anti-quorum sensing activity.  

PubMed

A methanol-soluble extract of the bark of Myristica cinnamomea was found to exhibit anti-quorum sensing activity, and subsequent bioassay-guided isolation led to the identification of the active compound malabaricone C (1). Compound 1 inhibited violacein production by Chromobacterium violaceum CV026 when grown in the presence of a cognate signaling molecule, N-3-oxohexanoyl-homoserine lactone. Furthermore, 1 inhibited the quorum sensing-regulated pyocyanin production and biofilm formation in Pseudomonas aeruginosa PAO1. These results suggest that the anti-quorum sensing activity of 1 and related molecules should be investigated further. PMID:21910441

Chong, Yee Meng; Yin, Wai Fong; Ho, Chia Yong; Mustafa, Mohamad Rais; Hadi, A Hamid A; Awang, Khalijah; Narrima, Putri; Koh, Chong-Lek; Appleton, David R; Chan, Kok-Gan

2011-10-28

99

Quorum Sensing Activity of Hafnia alvei Isolated from Packed Food  

PubMed Central

Quorum sensing (QS) is a mechanism adopted by bacteria to regulate expression of genes according to population density. N-acylhomoserine lactones (AHLs) are a type of QS signalling molecules commonly found in Gram-negative bacteria which have been reported to play a role in microbial spoilage of foods and pathogenesis. In this study, we isolated an AHL-producing Hafnia alvei strain (FB1) from spherical fish pastes. Analysis via high resolution triple quadrupole liquid chromatography/mass spectrometry (LC/MS) on extracts from the spent supernatant of H. alvei FB1 revealed the existence of two short chain AHLs: N-(3-oxohexanoyl) homoserine lactone (3-oxo-C6-HSL) and N-(3-oxo- octanoyl) homoserine lactone (3-oxo-C8-HSL). To our knowledge, this is the first report of the production of AHLs, especially 3-oxo-C8-HSL, by H. alvei. PMID:24736131

Tan, Jia-Yi; Yin, Wai-Fong; Chan, Kok-Gan

2014-01-01

100

Acyl-Homoserine Lactone Quorum Sensing in the Roseobacter Clade  

PubMed Central

Members of the Roseobacter clade are ecologically important and numerically abundant in coastal environments and can associate with marine invertebrates and nutrient-rich marine snow or organic particles, on which quorum sensing (QS) may play an important role. In this review, we summarize current research progress on roseobacterial acyl-homoserine lactone-based QS, particularly focusing on three relatively well-studied representatives, Phaeobacter inhibens DSM17395, the marine sponge symbiont Ruegeria sp. KLH11 and the dinoflagellate symbiont Dinoroseobacter shibae. Bioinformatic survey of luxI homologues revealed that over 80% of available roseobacterial genomes encode at least one luxI homologue, reflecting the significance of QS controlled regulatory pathways in adapting to the relevant marine environments. We also discuss several areas that warrant further investigation, including studies on the ecological role of these diverse QS pathways in natural environments. PMID:24402124

Zan, Jindong; Liu, Yue; Fuqua, Clay; Hill, Russell T.

2014-01-01

101

BACTERIAL ATTRACTION AND QUORUM SENSING INHIBITION IN CAENORHABDITIS ELEGANS EXUDATES  

PubMed Central

Caenorhabditis elegans, a bacterivorous nematode, lives in complex rotting fruit, soil, and compost environments, and chemical interactions are required for mating, monitoring population density, recognition of food, avoidance of pathogenic microbes, and other essential ecological functions. Despite being one of the best-studied model organisms in biology, relatively little is known about the signals that C. elegans uses to chemically interact with its environment or as defense. C. elegans exudates were analyzed using several analytical methods and found to contain 36 common metabolites including organic acids, amino acids and sugars, all in relatively high abundance. Furthermore, the concentrations of amino acids in the exudates were dependent on developmental stage. The C. elegans exudates were tested for bacterial chemotaxis using Pseudomonas putida (KT2440), a plant growth promoting rhizobacterium, Pseudomonas aeruginosa (PAO1), a soil bacterium pathogenic to C. elegans, and E. coli (OP50), a non-motile bacterium tested as a control. The C. elegans exudates attracted the two Psuedomonas species, but had no detectable antibacterial activity against P. aeruginosa. To our surprise, the exudates of young adult and adult life stages of C. elegans exudates inhibited quorum sensing in the reporter system based on the LuxR bacterial quorum sensing (QS) system, which regulates bacterial virulence and other factors in Vibrio fischeri. We were able to fractionate the QS inhibition and bacterial chemotaxis activities, demonstrating that these activities are chemically distinct. Our results demonstrate that C. elegans can attract its bacterial food and has the potential of partially regulating the virulence of bacterial pathogens by inhibiting specific QS systems. PMID:19649780

KAPLAN, FATMA; BADRI, DAYAKAR V.; ZACHARIAH, CHERIAN; AJREDINI, RAMADAN; SANDOVAL, FRANCISCO J; ROJE, SANJA; LEVINE, LANFANG H.; ZHANG, FENGLI; ROBINETTE, STEVEN L.; ALBORN, HANS T.; ZHAO, WEI; STADLER, MICHAEL; NIMALENDRAN, RATHIKA; DOSSEY, AARON T.; BRUSCHWEILER, RAFAEL; VIVANCO, JORGE M.; EDISON, ARTHUR S.

2014-01-01

102

The Apparent Quorum-Sensing Inhibitory Activity of Pyrogallol Is a Side Effect of Peroxide Production  

PubMed Central

There currently is more and more interest in the use of natural products, such as tea polyphenols, as therapeutic agents. The polyphenol compound pyrogallol has been reported before to inhibit quorum-sensing-regulated bioluminescence in Vibrio harveyi. Here, we report that the addition of 10 mg · liter?1 pyrogallol protects both brine shrimp (Artemia franciscana) and giant river prawn (Macrobrachium rosenbergii) larvae from pathogenic Vibrio harveyi, whereas the compound showed relatively low toxicity (therapeutic index of 10). We further demonstrate that the apparent quorum-sensing-disrupting activity is a side effect of the peroxide-producing activity of this compound rather than true quorum-sensing inhibition. Our results emphasize that verification of minor toxic effects by using sensitive methods and the use of appropriate controls are essential when characterizing compounds as being able to disrupt quorum sensing. PMID:23545532

Pande, Gde Sasmita Julyantoro; Baruah, Kartik; Bossier, Peter

2013-01-01

103

The apparent quorum-sensing inhibitory activity of pyrogallol is a side effect of peroxide production.  

PubMed

There currently is more and more interest in the use of natural products, such as tea polyphenols, as therapeutic agents. The polyphenol compound pyrogallol has been reported before to inhibit quorum-sensing-regulated bioluminescence in Vibrio harveyi. Here, we report that the addition of 10 mg · liter(-1) pyrogallol protects both brine shrimp (Artemia franciscana) and giant river prawn (Macrobrachium rosenbergii) larvae from pathogenic Vibrio harveyi, whereas the compound showed relatively low toxicity (therapeutic index of 10). We further demonstrate that the apparent quorum-sensing-disrupting activity is a side effect of the peroxide-producing activity of this compound rather than true quorum-sensing inhibition. Our results emphasize that verification of minor toxic effects by using sensitive methods and the use of appropriate controls are essential when characterizing compounds as being able to disrupt quorum sensing. PMID:23545532

Defoirdt, Tom; Pande, Gde Sasmita Julyantoro; Baruah, Kartik; Bossier, Peter

2013-06-01

104

Bacteria clustering by polymers induces the expression of quorum sense controlled phenotypes  

PubMed Central

Bacteria deploy a range of chemistries to regulate their behaviour and respond to their environment. Quorum sensing is one mean by which bacteria use chemical reactions to modulate pre-infection behaviour such as surface attachment. Polymers that can interfere with bacterial adhesion or the chemical reactions used for quorum sensing are thus a potential means to control bacterial population responses. Here we report how polymeric “bacteria sequestrants”, designed to bind to bacteria through electrostatic interactions and thus inhibit bacterial adhesion to surfaces, induce the expression of quorum sensing controlled phenotypes as a consequence of cell clustering. A combination of polymer and analytical chemistry, biological assays and computational modelling has been used to characterise the feedback between bacteria clustering and quorum sensing signaling. We have also derived design principles and chemical strategies for controlling bacterial behaviour at the population level. PMID:24256871

Lui, Leong T.; Xue, Xuan; Sui, Cheng; Brown, Alan; Pritchard, David I.; Halliday, Nigel; Winzer, Klaus; Howdle, Steven M.; Fernandez-Trillo, Francisco; Krasnogor, Natalio; Alexander, Cameron

2014-01-01

105

Microarray Analysis of Quorum-Sensing-Regulated Genes in Porphyromonas gingivalis  

Microsoft Academic Search

Quorum sensing is a phenomenon defined as gene regulation in response to cell density that regulates various functions in bacteria. The periodontopathogen Porphyromonas gingivalis possesses a luxS gene homo- logue that may encode a quorum-sensing system. In order to identify genes of P. gingivalis that are regulated by luxS, gene expression analysis was done using microarrays and RNA samples from

Lihui Yuan; Jeffrey D. Hillman; Ann Progulske-Fox

2005-01-01

106

N -Phenylacetanoyl- l Homoserine Lactones Can Strongly Antagonize or Superagonize Quorum Sensing in Vibrio fischeri  

Microsoft Academic Search

Bacteria monitor their population densities using low-molecular-weight ligands in a process known as quorum sensing. At sufficient cell densities, bacteria can change their mode of growth and behave as multicellular communities that play critical roles in both beneficial symbio- ses and the pathogenesis of infectious disease. The development of non-native ligands that can block quorum-sensing signals has emerged as a

Grant D. Geske; Jennifer C. O’Neill; Helen E. Blackwell

2007-01-01

107

Nonenzymatic Turnover of an Erwinia carotovora Quorum-Sensing Signaling Molecule  

Microsoft Academic Search

The production of virulence factors and carbapenem antibiotic in the phytopathogen Erwinia carotovora is under the control of quorum sensing. The quorum-sensing signaling molecule, N-(3-oxohexanoyl)-L-homo- serine lactone (OHHL), accumulates in log-phase culture supernatants of E. carotovora but diminishes in concentration during the stationary phase. In this study, we show that the diminution in OHHL was not due to sequestration of

Joseph T. Byers; Claire Lucas; George P. C. Salmond; Martin Welch

2002-01-01

108

Plant-Derived Natural Products as Sources of Anti-Quorum Sensing Compounds  

PubMed Central

Quorum sensing is a system of stimuli and responses in relation to bacterial cell population density that regulates gene expression, including virulence determinants. Consequently, quorum sensing has been an attractive target for the development of novel anti-infective measures that do not rely on the use of antibiotics. Anti-quorum sensing has been a promising strategy to combat bacterial infections as it is unlikely to develop multidrug resistant pathogens since it does not impose any selection pressure. A number of anti-quorum sensing approaches have been documented and plant-based natural products have been extensively studied in this context. Plant matter is one of the major sources of chemicals in use today in various industries, ranging from the pharmaceutical, cosmetic, and food biotechnology to the textile industries. Just like animals and humans, plants are constantly exposed to bacterial infections, it is therefore logical to expect that plants have developed sophisticated of chemical mechanisms to combat pathogens. In this review, we have surveyed the various types of plant-based natural products that exhibit anti-quorum sensing properties and their anti-quorum sensing mechanisms. PMID:23669710

Koh, Chong-Lek; Sam, Choon-Kook; Yin, Wai-Fong; Tan, Li Ying; Krishnan, Thiba; Chong, Yee Meng; Chan, Kok-Gan

2013-01-01

109

Biofouling control by quorum sensing inhibition and its dependence on membrane surface.  

PubMed

Biofouling control by quorum sensing (QS) inhibition and the influence of membrane surface characteristics on biofilm formation and QS inhibition were investigated. Pseudomonas putida isolated from the bio-fouled reverse osmosis (RO) membranes in a real plant was used. Acylase was chosen as a model QS inhibitor. Bacteria on the membrane coupons were quantified with the heterotrophic plate count method. Cell distribution was imaged by a confocal laser scanning microscope. Results showed that biofilm formation on the membrane was reduced by acylase as it inhibits the activity of N-acylhomoserine lactone (AHL) which is a signal molecule of QS. It was also shown that membrane surface characteristics were influential factors affecting bacterial adhesion, biofilm formation, and QS inhibition. PMID:22864426

Kim, Mijin; Lee, Sangyoup; Park, Hee-Deung; Choi, Suing-Il; Hong, Seungkwan

2012-01-01

110

Mini-review: quorum sensing in the marine environment and its relationship to biofouling.  

PubMed

Bacterial quorum sensing (QS) is a cell-cell communication and gene regulatory mechanism that allows bacteria to coordinate swarming, biofilm formation, stress resistance, and production of toxins and secondary metabolites in response to threshold concentrations of QS signals that accumulate within a diffusion-limited environment. This review focuses on the role of QS signaling and QS inhibition in marine bacteria by compounds derived from marine organisms. Since the formation of a biofilm is considered to be an initial step in the development of fouling, direct and indirect effects of QS signals and inhibitors on the process of marine biofouling are discussed. Directions for future investigations and QS-related biotechnological applications are highlighted. PMID:19306145

Dobretsov, Sergey; Teplitski, Max; Paul, Valerie

2009-01-01

111

N -acyl-homoserine lactone-mediated quorum sensing blockage, a novel strategy for attenuating pathogenicity of Gram-negative bacterial plant pathogens  

Microsoft Academic Search

Quorum sensing is a bacterial communication mechanism by which bacteria sense their own population size and couple specific gene expression to cell density. In Gram-negative bacteria, the most commonly used quorum sensing signals are N-acyl homoserine lactones (AHLs). It is now apparent that many pathogenic bacteria employ quorum sensing to control premature expression of virulence factors. This control is thought

X. Cui; R. Harling

2005-01-01

112

Identification of a Pseudomonas sp. that Inhibits RHL System of Quorum Sensing.  

PubMed

The production of many Pseudomonas aeruginosa virulence factors and secondary metabolites is regulated in concert with cell density by quorum sensing (QS). Therefore, strategies designed to inhibit QS are promising for the control of diseases. Here, we succeeded in isolating soil bacteria (56 out of 7,000 isolates) capable of inhibiting violacein production by Chromobacterium violaceum CV026. We focused on an isolate identified as a Pseudomonas sp. based on its 16S rRNA nucleotide sequence. A partially purified inhibitor factor(s) derived from culture supernatants consisted of at least three major components by HPLC analysis. A more highly purified preparation (16 ?g/ml) specifically inhibited rhl-controlled pyocyanin and rhamnolipid production by wild type P. aeruginosa PAO1 (PAO1) and a QS double mutant PAO-MW1, without affecting growth. A significant inhibitory effect on elastase, protease and biofilm was also observed. These results provide compelling evidence that the inhibitor(s) interferes with the QS system. The identities of the inhibitors remain to be established. PMID:24426075

Zhang, Yuanyuan; Zhang, Yuqian; Yang, Yuxiang; Wang, Lianhui; Weng, Lixing

2013-03-01

113

Anti-quorum sensing potential of the mangrove Rhizophora annamalayana.  

PubMed

The present study was carried out to assess the anti-quorum sensing (anti-QS) activity of bark extract obtained from the mangrove plant Rhizophora annamalayana Kathir. against Gram-negative bacteria. In microtitre plate assay, the bark extract at a concentration of 1 mg/ml inhibited the QS-dependent violacein production in Chromobacterium violaceum ATCC 12472. Further, the QS-dependent bioluminescence production in the aquatic bacterial pathogen Vibrio harveyi MTCC 3438 was also reduced to the level of 99 % when treated with the same concentration of the extract. Gas chromatography-mass spectrum analysis identified the presence of seven different chemical constituents, 1H-purin-6-amine, cycloheptasiloxane, cyclooctasiloxane, cyclononasiloxane, cyclononasiloxane octadecamethyl, cyclodecasiloxane eicosamethyl and 1,1,1,5,7,7,7-heptamethyl-3,3-bis(trimethylsiloxy)tetrasiloxane. The molecular docking analysis of the identified compounds revealed that the compounds cyclononasiloxane octadecamethyl and cyclodecasiloxane eicosamethyl exhibited the best docking energy with the QS receptors of C. violaceum and V. harveyi with that of the natural ligand N -hexanoyl- L -homoserine lactone (C6-HSL) and furanosyl borate diester (AI-2). Similarly, another compound 1,1,1,5,7,7,7-heptamethyl-3,3-bis(trimethylsiloxy)tetrasiloxane showed best docking energy only against C6-HSL. Thus, the results of the present study divulge the activity of R. annamalayana bark extract to interfere with bacterial QS. PMID:23591758

Musthafa, Khadar Syed; Sahu, Sunil Kumar; Ravi, Arumugam Veera; Kathiresan, Kandasamy

2013-10-01

114

RNAseq-based Transcriptome Analysis of Burkholderia glumae Quorum Sensing  

PubMed Central

Burkholderia glumae causes rice grain rot and sheath rot by producing toxoflavin, the expression of which is regulated by quorum sensing (QS). The QS systems of B. glumae rely on N-octanoyl homoserine lactone, synthesized by TofI and its cognate receptor TofR, to activate the genes for toxoflavin biosynthesis and an IclR-type transcriptional regulator gene, qsmR. To understand genome-wide transcriptional profiling of QS signaling, we employed RNAseq of the wild-type B. glumae BGR1 with QS-defective mutant, BGS2 (BGR1 tofI::?) and QS-dependent transcriptional regulator mutant, BGS9 (BGR1 qsmR::?). A comparison of gene expression profiling among the wild-type BGR1 and the two mutants before and after QS onset as well as gene ontology (GO) enrichment analysis from differential expressed genes (DEGs) revealed that genes involved in motility were highly enriched in TofI-dependent DEGs, whereas genes for transport and DNA polymerase were highly enriched in QsmR-dependent DEGs. Further, a combination of pathways with these DEGs and phenotype analysis of mutants pointed to a couple of metabolic processes, which are dependent on QS in B. glumae, that were directly or indirectly related with bacterial motility. The consistency of observed bacterial phenotypes with GOs or metabolic pathways in QS-regulated genes implied that integration RNAseq with GO enrichment or pathways would be useful to study bacterial physiology and phenotypes.

Kim, Sunyoung; Park, Jungwook; Kim, Ji Hyeon; Lee, Jongyun; Bang, Bongjun; Hwang, Ingyu; Seo, Young-Su

2013-01-01

115

Inhibition of quorum sensing in Pseudomonas aeruginosa by sesquiterpene lactones.  

PubMed

Six sesquiterpene lactones (SLs) of the goyazensolide and isogoyazensolide-type isolated from the Argentine herb Centratherum punctatum were evaluated on their ability to inhibit virulence factors of Pseudomonas aeruginosa ATCC 27853. Although compounds were not able to completely inhibit bacterial growth at 200?g/ml, the SLs do altered biofilm formation, elastase activity, and production of N-acyl-homoserinelactones (AHLs) which are known quorum sensing autoinducers at lower concentration. Compounds 2, 3, and 5 displayed significant inhibitory effects on P. aeruginosa biofilm formation at 0.5?g/ml being compound 3 (1.32?M) the most potent (42%). Compounds 2, 3, 4, 5 and 6, inhibited 39, 44, 42, 32 and 35% the production of AHLs at 100?g/ml and inhibited by more than 50% the elastase activity at 0.5?g/ml. Our results clearly indicated that sesquiterpene lactones are good candidates for the development of new antimicrobial agents acting not as bactericidal but as antipathogenic agents. PMID:22925726

Amaya, Susana; Pereira, José A; Borkosky, Susana A; Valdez, Juan C; Bardón, Alicia; Arena, Mario E

2012-10-15

116

Quorum sensing and social networking in the microbial world  

PubMed Central

For many years, bacterial cells were considered primarily as selfish individuals, but, in recent years, it has become evident that, far from operating in isolation, they coordinate collective behaviour in response to environmental challenges using sophisticated intercellular communication networks. Cell-to-cell communication between bacteria is mediated by small diffusible signal molecules that trigger changes in gene expression in response to fluctuations in population density. This process, generally referred to as quorum sensing (QS), controls diverse phenotypes in numerous Gram-positive and Gram-negative bacteria. Recent advances have revealed that bacteria are not limited to communication within their own species but are capable of ‘listening in’ and ‘broadcasting to’ unrelated species to intercept messages and coerce cohabitants into behavioural modifications, either for the good of the population or for the benefit of one species over another. It is also evident that QS is not limited to the bacterial kingdom. The study of two-way intercellular signalling networks between bacteria and both uni- and multicellular eukaryotes as well as between eukaryotes is just beginning to unveil a rich diversity of communication pathways. PMID:19674996

Atkinson, Steve; Williams, Paul

2009-01-01

117

Identification of quorum sensing-controlled genes in Burkholderia ambifaria  

PubMed Central

The Burkholderia cepacia complex (Bcc) comprises strains with a virulence potential toward immunocompromised patients as well as plant growth–promoting rhizobacteria (PGPR). Owing to the link between quorum sensing (QS) and virulence, most studies among Bcc species have been directed toward QS of pathogenic bacteria. We have investigated the QS of B. ambifaria, a PGPR only infrequently recovered from patients. The cepI gene, responsible for the synthesis of the main signaling molecule N-octanoylhomoserine lactone (C8-HSL), was inactivated. Phenotypes of the B. ambifaria cepI mutant we observed, such as increased production of siderophores and decreased proteolytic and antifungal activities, are in agreement with those of other Bcc cepI mutants. The cepI mutant was then used as background strain for a whole-genome transposon-insertion mutagenesis strategy, allowing the identification of 20 QS-controlled genes, corresponding to 17 loci. The main functions identified are linked to antifungal and antimicrobial properties, as we have identified QS-controlled genes implicated in the production of pyrrolnitrin, burkholdines (occidiofungin-like molecules), and enacyloxins. This study provides insights in the QS-regulated functions of a PGPR, which could lead to beneficial potential biotechnological applications. PMID:23382083

Chapalain, Annelise; Vial, Ludovic; Laprade, Natacha; Dekimpe, Valerie; Perreault, Jonathan; Deziel, Eric

2013-01-01

118

Inhibition of bacterial quorum sensing and biofilm formation by extracts of neotropical rainforest plants.  

PubMed

Bacterial biofilms are responsible for many persistent infections by many clinically relevant pathogens such as Staphylococcus aureus and Pseudomonas aeruginosa. Biofilms are much more resistant to conventional antibiotics than their planktonic counterparts. Quorum sensing, an intercellular communication system, controls pathogenesis and biofilm formation in most bacterial species. Quorum sensing provides an important pharmacological target since its inhibition does not provide a selective pressure for resistance. In this study, we investigated the quorum sensing and biofilm inhibitory activities of 126 plant extracts from 71 species collected from neotropical rainforests in Costa Rica. Quorum sensing and biofilm interference were assessed using a modified disc diffusion bioassay with Chromobacterium violaceum ATCC 12,472 and a spectrophotometric bioassay with Pseudomonas aeruginosa PA14, respectively. Species with significant anti-quorum sensing and/or anti-biofilm activities belonged to the Meliaceae, Melastomataceae, Lepidobotryaceae, Sapindaceae, and Simaroubaceae families. IC50 values ranged from 45 to 266 µg/mL. Extracts of these active species could lead to future development of botanical treatments for biofilm-associated infections. PMID:24488718

Ta, Chieu Anh; Freundorfer, Marie; Mah, Thien-Fah; Otárola-Rojas, Marco; Garcia, Mario; Sanchez-Vindas, Pablo; Poveda, Luis; Maschek, J Alan; Baker, Bill J; Adonizio, Allison L; Downum, Kelsey; Durst, Tony; Arnason, John T

2014-03-01

119

Quorum sensing inhibitory activities of surface immobilized antibacterial dihydropyrrolones via click chemistry.  

PubMed

Device-related infection remains a major barrier to the use of biomaterial implants as life-saving devices. This study aims to examine the effectiveness and mechanism of action of surface attached dihydropyrrolones (DHPs), a quorum sensing (QS) inhibitor, against bacterial colonization. DHPs were covalently attached on glass surfaces via copper-catalyzed azide-alkyne 1,3-dipolar cycloaddition (CuAAC) click reaction. The covalent attachment of DHP surfaces was confirmed by X-ray photoelectron spectroscopy (XPS) and contact angle measurements, and the antimicrobial efficacy of the DHP coatings was assessed by confocal laser scanning microscopy (CLSM) and image analysis. The results demonstrated that covalently bound DHP compounds are effective in reducing the adhesion by up to 97% (p < 0.05) for both Pseudomonas aeruginosa and Staphylococcus aureus. Furthermore, using the green fluorescent protein (Gfp)-based reporter technology, it is demonstrated that surface attached DHPs were able to repress the expression of a lasB-gfp reporter fusion of P. aeruginosa by 72% (p < 0.001) without affecting cell viability. This demonstrates the ability of the covalently bound QS inhibitor to inhibit QS and suggests the existence of a membrane-based pathway(s) for QS inhibition. Hence, strategies based on incorporation of QS inhibitors such as DHPs represent a potential approach for prevention of device-related infections. PMID:24345737

Ho, Kitty K K; Chen, Renxun; Willcox, Mark D P; Rice, Scott A; Cole, Nerida; Iskander, George; Kumar, Naresh

2014-02-01

120

N-Acyl Homoserine Lactone-Mediated Quorum Sensing with Special Reference to Use of Quorum Quenching Bacteria in Membrane Biofouling Control  

PubMed Central

Membrane biofouling remains a severe problem to be addressed in wastewater treatment systems affecting reactor performance and economy. The finding that many wastewater bacteria rely on N-acyl homoserine lactone-mediated quorum sensing to synchronize their activities essential for biofilm formations; the quenching bacterial quorum sensing suggests a promising approach for control of membrane biofouling. A variety of quorum quenching compounds of both synthetic and natural origin have been identified and found effective in inhibition of membrane biofouling with much less environmental impact than traditional antimicrobials. Work over the past few years has demonstrated that enzymatic quorum quenching mechanisms are widely conserved in several prokaryotic organisms and can be utilized as a potent tool for inhibition of membrane biofouling. Such naturally occurring bacterial quorum quenching mechanisms also play important roles in microbe-microbe interactions and have been used to develop sustainable nonantibiotic antifouling strategies. Advances in membrane fabrication and bacteria entrapment techniques have allowed the implication of such quorum quenching bacteria for better design of membrane bioreactor with improved antibiofouling efficacies. In view of this, the present paper is designed to review and discuss the recent developments in control of membrane biofouling with special emphasis on quorum quenching bacteria that are applied in membrane bioreactors. PMID:25147787

Paul, Diby

2014-01-01

121

Pharmacological inhibition of quorum sensing for the treatment of chronic bacterial infections  

PubMed Central

Traditional treatment of infectious diseases is based on compounds that aim to kill or inhibit bacterial growth. A major concern with this approach is the frequently observed development of resistance to antimicrobial compounds. The discovery of bacterial-communication systems (quorum-sensing systems), which orchestrate important temporal events during the infection process, has afforded a novel opportunity to ameliorate bacterial infection by means other than growth inhibition. Compounds able to override bacterial signaling are present in nature. Herein we discuss the known signaling mechanisms and potential antipathogenic drugs that specifically target quorum-sensing systems in a manner unlikely to pose a selective pressure for the development of resistant mutants. PMID:14597754

Hentzer, Morten; Givskov, Michael

2003-01-01

122

Assessment of Anti-Quorum Sensing Activity for Some Ornamental and Medicinal Plants Native to Egypt  

PubMed Central

This study investigated the effects of some plant extracts on the bacterial communication system, expressed as quorum sensing (QS) activity. Quorum sensing has a directly proportional effect on the amount of certain compounds, such as pigments, produced by the bacteria. Alcohol extracts of 23 ornamental and medicinal plants were tested for anti-QS activity by the Chromobacterium violaceum assay using the agar cup diffusion method. The screening revealed the anti-QS activity of six plants; namely the leaves of Adhatoda vasica Nees, Bauhinia purpurea L., Lantana camara L., Myoporum laetum G. Forst.; the fruits of Piper longum L.; and the aerial parts of Taraxacum officinale F.H. Wigg. PMID:23641343

Zaki, Ahmed A.; Shaaban, Mona I.; Hashish, Nadia E.; Amer, Mohamed A.; Lahloub, Mohamed-Farid

2013-01-01

123

Malyngolide from the cyanobacterium Lyngbya majuscula interferes with quorum sensing circuitry.  

PubMed

Extracts of several cyanobacterial species collected from different marine and estuarine locations predominately in Florida (USA), with one sample each from Belize and Oman, were screened for their ability to disrupt quorum sensing (QS) in the reporter strain Chromobacterium violaceum CV017. Inhibitory activities were detected in the ethyl acetate?:?methanol (1:1) extracts of several Lyngbya spp., and extracts of Lyngbya majuscula contained the strongest QS inhibitory activities. Extracts of L. majuscula from the Indian River Lagoon, FL, USA, were further purified by bioassay-guided fractionation. The antibiotic malyngolide (MAL) was identified as a QS inhibitor. Activity of MAL was investigated using N-acyl homoserine lactone (AHL) reporters based on the LasR receptor of Pseudomonas aeruginosa. MAL at concentrations ranging from 3.57?µM to 57?µM (EC50 ?=?12.2?±?1.6?µM) inhibited responses of the LasR reporters without affecting bacterial growth. MAL inhibited (EC50 ?=? 10.6?±?1.8?µM) Las QS-dependent production of elastase by P. aeruginosa PAO1. We propose that this QS inhibitor plays a role in controlling interactions of heterotrophic bacteria associated with the cyanobacterium L. majuscula. PMID:23766278

Dobretsov, Sergey; Teplitski, Max; Alagely, Ali; Gunasekera, Sarath P; Paul, Valerie J

2010-12-01

124

Developing next generation antimicrobials by intercepting AI-2 mediated quorum sensing.  

PubMed

Bacteria have been evolving antibiotic resistance since their discovery in the early twentieth century. Most new antibiotics are derivatives of older generations and there are now bacteria that are virtually resistant to almost all antibiotics. This poses a global threat to human health and has been classified as a clinical "super-challenge", which has necessitated research into new antimicrobials that inhibit bacterial virulence while minimizing selective pressures that lead to the emergence of resistant strains. Quorum sensing (QS), the process of population dependent bacterial cell-cell signaling, can accelerate bacterial virulence and is an increasingly interesting target for developing next generation antimicrobials. Most QS inhibitors target species-specific signals, such as acylhomoserine lactones (AHLs) and oligopeptides. Methodologies for intercepting the cross-species signal, autoinducer-2 (AI-2), have only recently emerged. We review these strategies to prevent the relay of the AI-2 signal amongst pathogens, including Escherichia coli, Salmonella enterica serovar Typhimurium, Vibrio cholerae and Pseudomonas aeruginosa. Inhibition mechanisms are categorized based on the target (i.e., enzymes for signal generation, the signal molecule itself, or the various components of the signal transduction process). The universal nature of the AI-2 signal imparts on its inhibitors the potential for broad spectrum use. PMID:22112397

Roy, Varnika; Adams, Bryn L; Bentley, William E

2011-07-10

125

Biofilm Formation and Sloughing in Serratia marcescens Are Controlled by Quorum Sensing and Nutrient Cues  

Microsoft Academic Search

We describe here a role for quorum sensing in the detachment, or sloughing, of Serratia marcescens filamentous biofilms, and we show that nutrient conditions affect the biofilm morphotype. Under reduced carbon or nitrogen conditions, S. marcescens formed a classical biofilm consisting of microcolonies. The filamentous biofilm could be converted to a microcolony-type biofilm by switching the medium after estab- lishment

S. A. Rice; K. S. Koh; S. Y. Queck; M. Labbate; K. W. Lam; S. Kjelleberg

2005-01-01

126

LuxU connects quorum sensing to biofilm formation in Vibrio fischeri  

E-print Network

LuxU connects quorum sensing to biofilm formation in Vibrio fischeri Valerie A. Ray and Karen L, USA. Summary Biofilm formation by Vibrio fischeri is a complex process involving multiple regulators polysaccha- ride (syp) locus. To identify other regulators of biofilm formation in V. fischeri, we screened

McFall-Ngai, Margaret

127

A Quorum Sensing Regulated Small Volatile Molecule Reduces Acute Virulence and Promotes Chronic Infection  

E-print Network

Infection Phenotypes Meenu Kesarwani1,2¤a , Ronen Hazan1,2 , Jianxin He1,2 , YokAi Que1,2 , Yiorgos: Kesarwani M, Hazan R, He J, Que Y, Apidianakis Y, et al. (2011) A Quorum Sensing Regulated Small Volatile

Paris-Sud XI, Université de

128

Density-dependent fitness benefits in quorum-sensing bacterial populations  

E-print Network

Density-dependent fitness benefits in quorum-sensing bacterial populations Sophie E. Darcha beneficial at higher cell densities. However, this fundamental assumption has never been tested experimentally. Here, we directly test this by independently manipulating pop- ulation density and the induction

West, Stuart

129

A spatial model of the evolution of quorum sensing regulating bacteriocin production  

E-print Network

A spatial model of the evolution of quorum sensing regulating bacteriocin production Tama´s Cza and Eo¨tvo¨s University, H-1117 Budapest, Pa´zma´ny Pe´ter se´ta´ny 1/c, Hungary and b Laboratory functions, like biofilm differentiation, swarming, toxin excretion in interstrain competition, and virulence

Czárán, Tamás

130

Visualizing Bacteria Quorum Sensing Maria Schwarz, Daniela Romano and Marian Gheorghe1  

E-print Network

Visualizing Bacteria Quorum Sensing Maria Schwarz, Daniela Romano and Marian Gheorghe1 12 Abstract. Large populations of bacteria communicate by sending into the environment some specific signalling is presented in [1]. Bacteria use QS to coordinate different behaviours. For example the light emission

Romano, Daniela

131

Antisense RNA that Affects Rhodopseudomonas palustris Quorum-Sensing Signal Receptor Expression.  

National Technical Information Service (NTIS)

Quorum sensing in the bacterium Rhodopseudomonas palustris involves the RpaI signal synthase, which produces p-coumaroyl-homoserine lactone (pC- HSL) and RpaR, which is a pC-HSL-dependent transcriptional activator. There is also an antisense rpaR transcri...

A. L. Schaefer, C. S. Harwood, E. P. Greenberg, H. Hirakawa, K. B. Pechter

2012-01-01

132

Natural Genome Diversity of AI-2 Quorum Sensing in Escherichia coli: Conserved Signal Production but Labile  

E-print Network

Natural Genome Diversity of AI-2 Quorum Sensing in Escherichia coli: Conserved Signal Production an important impact in virulence. Autoinducer-2 (AI-2) is a signal that has the peculiarity of mediating both intra- and interspecies bacterial QS. We analyzed the diversity of all components of AI-2 QS across 44

Gordo, Isabel

133

Transcriptional control of the quorum sensing response in yeastw Arthur Wuster* and M. Madan Babu*  

E-print Network

Transcriptional control of the quorum sensing response in yeastw Arthur Wuster* and M. Madan Babu this system is conserved in related fungal species is still unknown. In this work, by employing an integrated transcriptional regulators that control the differential expression of the genes affected by aromatic alcohol

Babu, M. Madan

134

Novel glycolipids synthesized using plant essential oils and their application in quorum sensing inhibition and as antibiofilm agents.  

PubMed

Essential oils (EOs) form an important part of traditional medicine so their anti-microbial and, in the recent past, antiquorum sensing activity has been well studied. However it is likely that due to their hydrophobic nature and reduced solubility in aqueous environments full potential of their activity cannot be realized. hence it is only rational to formulate a process to make these molecules more polar in nature. The present paper reports synthesis of sophorolipids using 12 different essential oils as substrates, thus providing surfactant-like properties to these EOs. The synthesis protocol makes the use of Candida bombicola ATCC 22214 as producer organism. The production process required 7 days of incubation at 28°C and 180?rpm. Preliminary characterization of the synthesized essential oil sophorolipids (EOSLs) was performed using thin layer chromatography (TLC) and Fourier transform infrared spectroscopy (FTIR). Additionally, essential oils that were incapable of mediating quorum sensing inhibition (QSI) on their own became potent quorum sensing inhibitors upon conversion into their corresponding EOSLs. Antibiofilm potential of these EOSLs was also demonstrated using V. cholerae as test organism. Use of essential oils as substrates for glycolipid synthesis has not been attempted previously, and hence this is the first report. PMID:24558341

Mukherji, Ruchira; Prabhune, Asmita

2014-01-01

135

Novel Glycolipids Synthesized Using Plant Essential Oils and Their Application in Quorum Sensing Inhibition and as Antibiofilm Agents  

PubMed Central

Essential oils (EOs) form an important part of traditional medicine so their anti-microbial and, in the recent past, antiquorum sensing activity has been well studied. However it is likely that due to their hydrophobic nature and reduced solubility in aqueous environments full potential of their activity cannot be realized. hence it is only rational to formulate a process to make these molecules more polar in nature. The present paper reports synthesis of sophorolipids using 12 different essential oils as substrates, thus providing surfactant-like properties to these EOs. The synthesis protocol makes the use of Candida bombicola ATCC 22214 as producer organism. The production process required 7 days of incubation at 28°C and 180?rpm. Preliminary characterization of the synthesized essential oil sophorolipids (EOSLs) was performed using thin layer chromatography (TLC) and Fourier transform infrared spectroscopy (FTIR). Additionally, essential oils that were incapable of mediating quorum sensing inhibition (QSI) on their own became potent quorum sensing inhibitors upon conversion into their corresponding EOSLs. Antibiofilm potential of these EOSLs was also demonstrated using V. cholerae as test organism. Use of essential oils as substrates for glycolipid synthesis has not been attempted previously, and hence this is the first report. PMID:24558341

Prabhune, Asmita

2014-01-01

136

Synthetic organic compounds with potential for bacterial biofilm inhibition, a path for the identification of compounds interfering with quorum sensing.  

PubMed

New unconventional approaches to the development of antimicrobial drugs must target inhibition of infection stages leading to host colonisation or virulence itself, rather than bacterial viability. Amongst the most promising unconventional targets for the development of new antimicrobial drugs is bacterial adherence and biofilm formation as well as their control system, the quorum-sensing (QS) system, a mechanism of communication used to co-ordinate bacterial activities. Here we describe the evaluation of synthetic organic compounds as bacterial biofilm inhibitors against a panel of clinically relevant Gram-positive and Gram-negative bacterial strains. This approach has successfully allowed the identification of five compounds (GEt, GHex, GOctad, G19 and C33) active not only against bacterial biofilms but also displaying potential to be used as antagonists and/or inhibitors of bacterial QS. PMID:24016798

de Lima Pimenta, Andréa; Chiaradia-Delatorre, Louise Domeneghini; Mascarello, Alessandra; de Oliveira, Karen Andrinéia; Leal, Paulo César; Yunes, Rosendo Augusto; de Aguiar, Cláudia Beatriz Nedel Mendes; Tasca, Carla Inês; Nunes, Ricado José; Smânia, Artur

2013-12-01

137

Selective chemical inhibition of agr quorum sensing in Staphylococcus aureus promotes host defense with minimal impact on resistance.  

PubMed

Bacterial signaling systems are prime drug targets for combating the global health threat of antibiotic resistant bacterial infections including those caused by Staphylococcus aureus. S. aureus is the primary cause of acute bacterial skin and soft tissue infections (SSTIs) and the quorum sensing operon agr is causally associated with these. Whether efficacious chemical inhibitors of agr signaling can be developed that promote host defense against SSTIs while sparing the normal microbiota of the skin is unknown. In a high throughput screen, we identified a small molecule inhibitor (SMI), savirin (S. aureus virulence inhibitor) that disrupted agr-mediated quorum sensing in this pathogen but not in the important skin commensal Staphylococcus epidermidis. Mechanistic studies employing electrophoretic mobility shift assays and a novel AgrA activation reporter strain revealed the transcriptional regulator AgrA as the target of inhibition within the pathogen, preventing virulence gene upregulation. Consistent with its minimal impact on exponential phase growth, including skin microbiota members, savirin did not provoke stress responses or membrane dysfunction induced by conventional antibiotics as determined by transcriptional profiling and membrane potential and integrity studies. Importantly, savirin was efficacious in two murine skin infection models, abating tissue injury and selectively promoting clearance of agr+ but not ?agr bacteria when administered at the time of infection or delayed until maximal abscess development. The mechanism of enhanced host defense involved in part enhanced intracellular killing of agr+ but not ?agr in macrophages and by low pH. Notably, resistance or tolerance to savirin inhibition of agr was not observed after multiple passages either in vivo or in vitro where under the same conditions resistance to growth inhibition was induced after passage with conventional antibiotics. Therefore, chemical inhibitors can selectively target AgrA in S. aureus to promote host defense while sparing agr signaling in S. epidermidis and limiting resistance development. PMID:24945495

Sully, Erin K; Malachowa, Natalia; Elmore, Bradley O; Alexander, Susan M; Femling, Jon K; Gray, Brian M; DeLeo, Frank R; Otto, Michael; Cheung, Ambrose L; Edwards, Bruce S; Sklar, Larry A; Horswill, Alexander R; Hall, Pamela R; Gresham, Hattie D

2014-06-01

138

Quorum-sensing-regulated virulence factors in Pseudomonas aeruginosa are toxic to Lucilia sericata maggots.  

PubMed

Maggot debridement therapy (MDT) is widely used for debridement of chronic infected wounds; however, for wounds harbouring specific bacteria limited effect or failure of the treatment has been described. Here we studied the survival of Lucilia sericata maggots encountering Pseudomonas aeruginosa PAO1 in a simple assay with emphasis on the quorum-sensing (QS)-regulated virulence. The maggots were challenged with GFP-tagged P. aeruginosa wild-type (WT) PAO1 and a GFP-tagged P. aeruginosa DeltalasR rhlR (DeltaRR) QS-deficient mutant in different concentrations. Maggots were killed in the presence of WT PAO1 whereas the challenge with the QS mutant showed a survival reduction of approximately 25 % compared to negative controls. Furthermore, bacterial intake by the maggots was lower in the presence of WT PAO1 compared to the PAO1 DeltaRR mutant. Maggot excretions/secretions (ES) were assayed for the presence of QS inhibitors; only high doses of ES showed inhibition of QS in P. aeruginosa. Thus P. aeruginosa was shown to be toxic to L. sericata maggots. This, coupled to the preferential feeding by the maggots and reduced ingestion of P. aeruginosa, could explain MDT failure in wounds colonized by P. aeruginosa. Wounds heavily colonized with P. aeruginosa should be a counterindication for MDT unless used in combination with a pre-treatment with other topical therapeutics targeting P. aeruginosa. PMID:19892758

Andersen, A S; Joergensen, B; Bjarnsholt, T; Johansen, H; Karlsmark, T; Givskov, M; Krogfelt, K A

2010-02-01

139

Thiolactone modulators of quorum sensing revealed through library design and screening.  

PubMed

Quorum sensing (QS) is a process by which bacteria use small molecules or peptidic signals to assess their local population densities. At sufficiently high density, bacteria can alter gene expression levels to regulate group behaviors involved in a range of important and diverse phenotypes, including virulence factor production, biofilm formation, root nodulation, and bioluminescence. Gram-negative bacteria most commonly use N-acylated l-homoserine lactones (AHLs) as their QS signals. The AHL lactone ring is hydrolyzed relatively rapidly at biological pH, and the ring-opened product is QS inactive. We seek to identify AHL analogues with heightened hydrolytic stability, and thereby potentially heightened activity, for use as non-native modulators of bacterial QS. As part of this effort, we probed the utility of thiolactone analogues in the current study as QS agonists and antagonists in Gram-negative bacteria. A focused library of thiolactone analogs was designed and rapidly synthesized in solution. We examined the activity of the library as agonists and antagonists of LuxR-type QS receptors in Pseudomonas aeruginosa (LasR), Vibrio fischeri (LuxR), and Agrobacterium tumefaciens (TraR) using bacterial reporter strains. The thiolactone library contained several highly active compounds, including some of the most active LuxR inhibitors and the most active synthetic TraR agonist reported to date. Analysis of a representative thiolactone analog revealed that its hydrolysis half-life was almost double that of its parent AHL in bacterial growth medium. PMID:21798746

McInnis, Christine E; Blackwell, Helen E

2011-08-15

140

Identification of anti-virulence compounds that disrupt quorum-sensing regulated acute and persistent pathogenicity.  

PubMed

Etiological agents of acute, persistent, or relapsing clinical infections are often refractory to antibiotics due to multidrug resistance and/or antibiotic tolerance. Pseudomonas aeruginosa is an opportunistic Gram-negative bacterial pathogen that causes recalcitrant and severe acute chronic and persistent human infections. Here, we target the MvfR-regulated P. aeruginosa quorum sensing (QS) virulence pathway to isolate robust molecules that specifically inhibit infection without affecting bacterial growth or viability to mitigate selective resistance. Using a whole-cell high-throughput screen (HTS) and structure-activity relationship (SAR) analysis, we identify compounds that block the synthesis of both pro-persistence and pro-acute MvfR-dependent signaling molecules. These compounds, which share a benzamide-benzimidazole backbone and are unrelated to previous MvfR-regulon inhibitors, bind the global virulence QS transcriptional regulator, MvfR (PqsR); inhibit the MvfR regulon in multi-drug resistant isolates; are active against P. aeruginosa acute and persistent murine infections; and do not perturb bacterial growth. In addition, they are the first compounds identified to reduce the formation of antibiotic-tolerant persister cells. As such, these molecules provide for the development of next-generation clinical therapeutics to more effectively treat refractory and deleterious bacterial-human infections. PMID:25144274

Starkey, Melissa; Lepine, Francois; Maura, Damien; Bandyopadhaya, Arunava; Lesic, Biljana; He, Jianxin; Kitao, Tomoe; Righi, Valeria; Milot, Sylvain; Tzika, Aria; Rahme, Laurence

2014-08-01

141

Ajoene, a Sulfur-Rich Molecule from Garlic, Inhibits Genes Controlled by Quorum Sensing  

PubMed Central

In relation to emerging multiresistant bacteria, development of antimicrobials and new treatment strategies of infections should be expected to become a high-priority research area. Quorum sensing (QS), a communication system used by pathogenic bacteria like Pseudomonas aeruginosa to synchronize the expression of specific genes involved in pathogenicity, is a possible drug target. Previous in vitro and in vivo studies revealed a significant inhibition of P. aeruginosa QS by crude garlic extract. By bioassay-guided fractionation of garlic extracts, we determined the primary QS inhibitor present in garlic to be ajoene, a sulfur-containing compound with potential as an antipathogenic drug. By comprehensive in vitro and in vivo studies, the effect of synthetic ajoene toward P. aeruginosa was elucidated. DNA microarray studies of ajoene-treated P. aeruginosa cultures revealed a concentration-dependent attenuation of a few but central QS-controlled virulence factors, including rhamnolipid. Furthermore, ajoene treatment of in vitro biofilms demonstrated a clear synergistic, antimicrobial effect with tobramycin on biofilm killing and a cease in lytic necrosis of polymorphonuclear leukocytes. Furthermore, in a mouse model of pulmonary infection, a significant clearing of infecting P. aeruginosa was detected in ajoene-treated mice compared to a nontreated control group. This study adds to the list of examples demonstrating the potential of QS-interfering compounds in the treatment of bacterial infections. PMID:22314537

Jakobsen, Tim Holm; van Gennip, Maria; Phipps, Richard Kerry; Shanmugham, Meenakshi Sundaram; Christensen, Louise Dahl; Alhede, Morten; Skindersoe, Mette Eline; Rasmussen, Thomas Bovbjerg; Friedrich, Karlheinz; Uthe, Friedrich; Jensen, Peter ?strup; Moser, Claus; Nielsen, Kristian Fog; Eberl, Leo; Larsen, Thomas Ostenfeld; Tanner, David; H?iby, Niels; Bjarnsholt, Thomas

2012-01-01

142

Endemic malagasy Dalbergia species inhibit quorum sensing in Pseudomonas aeruginosa PAO1.  

PubMed

Various species of the plant genus Dalbergia are traditionally used as medicine for sundry ailments and some of them have been shown recently to quench the virulence of Gram-positive and Gram-negative bacteria. Cell-to-cell communication mechanisms, quorum sensing (QS) in particular, are key regulators of virulence in many pathogenic bacteria. Screening n-hexane extracts of leaves, roots and bark of endemic Malagasy Dalbergia species for their capacity to antagonize QS mechanisms in Pseudomonas aeruginosa PAO1 showed that many reduced the expression of the QS-regulated genes lasB and rhlA. However, only the extract of Dalbergia trichocarpa bark (DTB) showed a significant reduction of QS gene expression without any effect on the aceA gene encoding a QS-independent isocitrate lyase. Further characterization of DTB impact on QS revealed that the QS systems las and rhl are inhibited and that swarming, twitching, biofilm formation and the production of pyocyanin, elastase and proteases are also hampered in the presence of the DTB extract. Importantly, compared with the known QS inhibitor naringenin, the DTB extract showed a stronger negative effect on twitching, biofilm formation and tobramycin resistance. Preliminary structural characterization of these potent biofilm disrupters suggests that they belong to the phytosterols. The strong inhibition of motility and biofilm formation suggests that the DTB extract contains agents disrupting biofilm architecture, which is an important observation in the context of the design of new drugs targeting biofilm-encapsulated pathogens. PMID:23449917

Rasamiravaka, Tsiry; Jedrzejowski, Anaïs; Kiendrebeogo, Martin; Rajaonson, Sanda; Randriamampionona, Denis; Rabemanantsoa, Christian; Andriantsimahavandy, Abel; Rasamindrakotroka, Andry; Duez, Pierre; El Jaziri, Mondher; Vandeputte, Olivier M

2013-05-01

143

Identification of Anti-virulence Compounds That Disrupt Quorum-Sensing Regulated Acute and Persistent Pathogenicity  

PubMed Central

Etiological agents of acute, persistent, or relapsing clinical infections are often refractory to antibiotics due to multidrug resistance and/or antibiotic tolerance. Pseudomonas aeruginosa is an opportunistic Gram-negative bacterial pathogen that causes recalcitrant and severe acute chronic and persistent human infections. Here, we target the MvfR-regulated P. aeruginosa quorum sensing (QS) virulence pathway to isolate robust molecules that specifically inhibit infection without affecting bacterial growth or viability to mitigate selective resistance. Using a whole-cell high-throughput screen (HTS) and structure-activity relationship (SAR) analysis, we identify compounds that block the synthesis of both pro-persistence and pro-acute MvfR-dependent signaling molecules. These compounds, which share a benzamide-benzimidazole backbone and are unrelated to previous MvfR-regulon inhibitors, bind the global virulence QS transcriptional regulator, MvfR (PqsR); inhibit the MvfR regulon in multi-drug resistant isolates; are active against P. aeruginosa acute and persistent murine infections; and do not perturb bacterial growth. In addition, they are the first compounds identified to reduce the formation of antibiotic-tolerant persister cells. As such, these molecules provide for the development of next-generation clinical therapeutics to more effectively treat refractory and deleterious bacterial-human infections. PMID:25144274

Bandyopadhaya, Arunava; Lesic, Biljana; He, Jianxin; Kitao, Tomoe; Righi, Valeria; Milot, Sylvain; Tzika, Aria; Rahme, Laurence

2014-01-01

144

Ligand-Induced Asymmetry in Histidine Sensor Kinase Complex Regulates Quorum Sensing  

SciTech Connect

Bacteria sense their environment using receptors of the histidine sensor kinase family, but how kinase activity is regulated by ligand binding is not well understood. Autoinducer-2 (AI-2), a secreted signaling molecule originally identified in studies of the marine bacterium Vibrio harveyi, regulates quorum-sensing responses and allows communication between different bacterial species. AI-2 signal transduction in V. harveyi requires the integral membrane receptor LuxPQ, comprised of periplasmic binding protein (LuxP) and histidine sensor kinase (LuxQ) subunits. Combined X-ray crystallographic and functional studies show that AI-2 binding causes a major conformational change within LuxP, which in turn stabilizes a quaternary arrangement in which two LuxPQ monomers are asymmetrically associated. We propose that formation of this asymmetric quaternary structure is responsible for repressing the kinase activity of both LuxQ subunits and triggering the transition of V. harveyi into quorum-sensing mode.

Neiditch,M.; Federle, M.; Pompeani, A.; Kelly, R.; Swem, D.; Jeffrey, P.; Bassler, B.; Hughson, F.

2006-01-01

145

The impact of quorum sensing on the virulence of Aeromonas hydrophila and Aeromonas salmonicida towards burbot (Lota lota L.) larvae  

Microsoft Academic Search

In this study, the link between quorum sensing in Aeromonas spp. and its virulence towards burbot (Lota lota) was investigated. High mortality occurred in burbot juveniles challenged with Aeromonas salmonicida HN-00, but not in juveniles challenged with Aeromonas hydrophila AH-1N. Meanwhile, both A. hydrophila AH-1N and A salmonicida HN-00 were virulent towards larvae. The effect of quorum sensing on the

F. M. I. Natrah; M. I. Alam; S. Pawar; A. S. Harzevili; N. Nevejan; N. Boon; P. Sorgeloos; P. Bossier; T. Defoirdt

2012-01-01

146

Evidence for a Functional Quorum-Sensing Type AI1 System in the Extremophilic Bacterium Acidithiobacillus ferrooxidans  

Microsoft Academic Search

Acidithiobacillus ferrooxidans is one of the main acidophilic chemolithotrophic bacteria involved in the bioleaching of metal sulfide ores. The bacterium-mineral interaction requires the development of biofilms, whose formation is regulated in many microorganisms by type AI-1 quorum sensing. Here, we report the existence and characterization of a functional type AI-1 quorum-sensing system in A. ferrooxidans. This microorganism produced mainly acyl-homoserine

Carolina Farah; Mario Vera; Daniele Morin; Dominique Haras; Carlos A. Jerez; Nicolas Guiliani

2005-01-01

147

Dynamical quorum-sensing in oscillators coupled through an external medium  

PubMed Central

Many biological and physical systems exhibit population-density dependent transitions to synchronized oscillations in a process often termed “dynamical quorum sensing”. Synchronization frequently arises through chemical communication via signaling molecules distributed through an external medium. We study a simple theoretical model for dynamical quorum sensing: a heterogenous population of limit-cycle oscillators diffusively coupled through a common medium. We show that this model exhibits a rich phase diagram with four qualitatively distinct physical mechanisms that can lead to a loss of coherent population-level oscillations, including a novel mechanism arising from effective time-delays introduced by the external medium. We derive a single pair of analytic equations that allow us to calculate phase boundaries as a function of population density and show that the model reproduces many of the qualitative features of recent experiments on BZ catalytic particles as well as synthetically engineered bacteria. PMID:23087494

Schwab, David J.; Baetica, Ania; Mehta, Pankaj

2012-01-01

148

[Growth and mutation of Escherichia coli with suicide gene circuit based on quorum sensing].  

PubMed

Constructing robust gene circuits is a fundamental work for synthetic biology. Bacteria with suicide gene circuit based on quorum-sensing will kill themselves in a controllable pattern upon certain cell density. In the media of different IPTG inducer concentration, we observed the growth and suicidal behavior of the Escherichia coli. Top10F' with such gene circuit, screened the mutants and determined their mutated loci. The results show that, with higher IPTG concentration, the more wild type bacteria were killed; as well the mutants emerged earlier and spread over the population more quickly. The sequence of plasmids in those mutants revealed that a transposon inserted into the luxR gene and therefore disrupted Quorum-Sensing of these individuals. Furthermore, the insertion sequence of the plasmid can solely result in the mutants escaping from suicide. PMID:24063233

Gao, Qi; Zheng, Xuesong

2013-06-01

149

Classifying the Topology of AHL-Driven Quorum Sensing Circuits in Proteobacterial Genomes  

PubMed Central

Virulence and adaptability of many Gram-negative bacterial species are associated with an N-acylhomoserine lactone (AHL) gene regulation mechanism called quorum sensing (QS). The arrangement of quorum sensing genes is variable throughout bacterial genomes, although there are unifying themes that are common among the various topological arrangements. A bioinformatics survey of 1,403 complete bacterial genomes revealed characteristic gene topologies in 152 genomes that could be classified into 16 topological groups. We developed a concise notation for the patterns and show that the sequences of LuxR regulators and LuxI autoinducer synthase proteins cluster according to the topological patterns. The annotated topologies are deposited online with links to sequences and genome annotations at http://bacteria.itk.ppke.hu/QStopologies/. PMID:22778593

Gelencser, Zsolt; Choudhary, Kumari Sonal; Coutinho, Bruna Goncalves; Hudaiberdiev, Sanjarbek; Galbats, Borisz; Venturi, Vittorio; Pongor, Sandor

2012-01-01

150

A negative feedback loop involving small RNAs accelerates Vibrio cholerae's transition out of quorum-sensing mode  

PubMed Central

Quorum sensing is a cell-to-cell communication process that allows bacteria to measure their population numbers and to synchronously alter gene expression in response to changes in cell population density. At the core of the Vibrio cholerae quorum-sensing signal transduction pathway lie four redundant small RNAs (sRNAs), named the Quorum Regulatory RNAs (Qrr1–4). Expression of qrr1–4 is cell population density-dependent due to a requirement for the quorum-sensing controlled phosphorylated response regulator LuxO-P, which is abundant only at low cell population density. When expressed, Qrr1–4 repress translation of HapR, the “master” quorum-sensing transcription factor. Here we show a negative feedback loop in which HapR activates transcription of the qrr genes, which indirectly leads to hapR repression. Efficient feedback activation of the qrr genes requires the simultaneous presence of LuxO-P (present only at low cell population density) and HapR (present only at high cell population density). For this reason, the feedback loop does not influence quorum sensing at steady-state low or high cell population density. However, LuxO-P and HapR are simultaneously present immediately following the switch from high to low cell density conditions. In this state, the HapR feedback loop dramatically accelerates V. cholerae’s transition from the high to the low cell density mode. PMID:18198339

Svenningsen, Sine L.; Waters, Christopher M.; Bassler, Bonnie L.

2008-01-01

151

Role of Quorum Sensing and Antimicrobial Component Production by Serratia plymuthica in Formation of Biofilms, Including Mixed Biofilms with Escherichia coli  

Microsoft Academic Search

We have previously characterized the N-acyl-L-homoserine lactone-based quorum-sensing system of the biofilm isolate Serratia plymuthica RVH1. Here we investigated the role of quorum sensing and of quorum- sensing-dependent production of an antimicrobial compound (AC) on biofilm formation by RVH1 and on the cocultivation of RVH1 and Escherichia coli in planktonic cultures or in biofilms. Biofilm formation of S. plymuthica was

Pieter Moons; Rob Van Houdt; Abram Aertsen; Kristof Vanoirbeek; Yves Engelborghs; Chris W. Michiels

2006-01-01

152

Regulation of Uptake and Processing of the Quorum-Sensing Autoinducer AI2 in Escherichia coli  

Microsoft Academic Search

AI-2 is a quorum-sensing signaling molecule proposed to be involved in interspecies communication. In Escherichia coli and Salmonella enterica serovar Typhimurium, extracellular AI-2 accumulates in exponential phase, but the amount decreases drastically upon entry into stationary phase. In S. enterica serovar Typhi- murium, the reduction in activity is due to import and processing of AI-2 by the Lsr transporter. We

Karina B. Xavier; Bonnie L. Bassler

2005-01-01

153

Anti-quorum sensing activity of essential oils from Colombian plants  

Microsoft Academic Search

Essential oils from Colombian plants were characterised by GC–MS, and assayed for anti-quorum sensing activity in bacteria sensor strains. Two major chemotypes were found for Lippia alba, the limonene-carvone and the citral (geranial-neral). For other species, the main components included ?-pinene (Ocotea sp.), ?-pinene (Swinglea glutinosa), cineol (Elettaria cardamomun), ?-zingiberene (Zingiber officinale) and pulegone (Minthostachys mollis). Several essential oils presented

Beatriz Jaramillo-Colorado; Jesus Olivero-Verbel; Elena E. Stashenko; Irene Wagner-Döbler; Brigitte Kunze

2011-01-01

154

Anti-quorum sensing activity of essential oils from Colombian plants  

Microsoft Academic Search

Essential oils from Colombian plants were characterised by GC–MS, and assayed for anti-quorum sensing activity in bacteria sensor strains. Two major chemotypes were found for Lippia alba, the limonene-carvone and the citral (geranial-neral). For other species, the main components included ?-pinene (Ocotea sp.), ?-pinene (Swinglea glutinosa), cineol (Elettaria cardamomun), ?-zingiberene (Zingiber officinale) and pulegone (Minthostachys mollis). Several essential oils presented

Beatriz Jaramillo-Colorado; Jesus Olivero-Verbel; Elena E. Stashenko; Irene Wagner-Döbler; Brigitte Kunze

2012-01-01

155

The BpsIR Quorum-Sensing System of Burkholderia pseudomallei  

PubMed Central

BpsIR, a LuxIR quorum-sensing homolog, is required for optimal expression of virulence and secretion of exoproducts in Burkholderia pseudomallei. Cell density-dependent expression of bpsI and bpsR, the positive regulation of bpsIR expression by BpsR, and the synthesis of N-octanoyl-homoserine lactone (C8HSL) by BpsI are described in this report. PMID:15629951

Song, Yan; Xie, Chao; Ong, Yong-Mei; Gan, Yunn-Hwen; Chua, Kim-Lee

2005-01-01

156

Intracellular Screen To Identify Metagenomic Clones That Induce or Inhibit a Quorum-Sensing Biosensor  

PubMed Central

The goal of this study was to design and evaluate a rapid screen to identify metagenomic clones that produce biologically active small molecules. We built metagenomic libraries with DNA from soil on the floodplain of the Tanana River in Alaska. We extracted DNA directly from the soil and cloned it into fosmid and bacterial artificial chromosome vectors, constructing eight metagenomic libraries that contain 53,000 clones with inserts ranging from 1 to 190 kb. To identify clones of interest, we designed a high throughput “intracellular” screen, designated METREX, in which metagenomic DNA is in a host cell containing a biosensor for compounds that induce bacterial quorum sensing. If the metagenomic clone produces a quorum-sensing inducer, the cell produces green fluorescent protein (GFP) and can be identified by fluorescence microscopy or captured by fluorescence-activated cell sorting. Our initial screen identified 11 clones that induce and two that inhibit expression of GFP. The intracellular screen detected quorum-sensing inducers among metagenomic clones that a traditional overlay screen would not. One inducing clone carries a LuxI homologue that directs the synthesis of an N-acyl homoserine lactone quorum-sensing signal molecule. The LuxI homologue has 62% amino acid sequence identity to its closest match in GenBank, AmfI from Pseudomonas fluorescens, and is on a 78-kb insert that contains 67 open reading frames. Another inducing clone carries a gene with homology to homocitrate synthase. Our results demonstrate the power of an intracellular screen to identify functionally active clones and biologically active small molecules in metagenomic libraries. PMID:16204555

Williamson, Lynn L.; Borlee, Bradley R.; Schloss, Patrick D.; Guan, Changhui; Allen, Heather K.; Handelsman, Jo

2005-01-01

157

The Pseudomonas putida Lon protease is involved in N-acyl homoserine lactone quorum sensing regulation  

Microsoft Academic Search

BACKGROUND: In Pseudomonas putida and Pseduomonas aeruginosa, the similar PpuR\\/RsaL\\/PpuI and LasR\\/RsaL\\/LasI acyl homoserine lactones (AHLs) quorum sensing (QS) systems have been shown to be under considerable regulation by other global regulators. A major regulator is the RsaL protein which strongly directly represses the transcription of the P. putida ppuI and P. aeruginosa lasI AHL synthases. In this study we

Iris Bertani; Giordano Rampioni; Livia Leoni; Vittorio Venturi

2007-01-01

158

luxS-Based Quorum-Sensing Signaling Affects Biofilm Formation in Streptococcus mutans  

Microsoft Academic Search

Background: Quorum sensing (QS) is a process by which bacteria communicate with diffusible chemical signaling molecules called autoinducers (AIs). The autoinducer-2 signal (AI-2) produced by the LuxS protein mediates interspecies communication among Gram-positive and Gram-negative bacteria. In this study, we report that luxS-dependent QS is involved in the formation of Streptococcus mutans biofilms. Methods: An S. mutans luxS mutant was

Z. Huang; G. Meric; Z. Liu; R. Ma; Z. Tang; P. Lejeune

2009-01-01

159

AinS Quorum Sensing Regulates the Vibrio fischeri Acetate Switch  

Microsoft Academic Search

The marine bacterium Vibrio fischeri uses two acyl-homoserine lactone (acyl-HSL) quorum-sensing systems. The earlier signal, octanoyl-HSL, produced by AinS, is required for normal colonization of the squid Euprymna scolopes and, in culture, is necessary for a normal growth yield. In examining the latter requirement, we found that during growth in a glycerol\\/tryptone-based medium, wild-type V. fischeri cells initially excrete acetate

Sarah V. Studer; Mark J. Mandel; Edward G. Ruby

2008-01-01

160

Inhibition of Bacterial Quorum Sensing-Regulated Behaviors by Tremella fuciformis Extract  

Microsoft Academic Search

Quorum sensing (QS), or the control of gene expression in response to cell density, is used by both gram-negative and gram-positive\\u000a bacteria to regulate a variety of physiological functions. Increasing evidence implies that certain eukaryotes produce QS-inhibitory\\u000a compounds. In this work, we tested Tremella fuciformis for their ability to inhibit QS-regulated behaviors. T. fuciformis fruiting bodies were dried and extracted

H. Zhu; S. J. Sun

2008-01-01

161

Quorum Sensing as a Target for Novel Biocontrol Strategies Directed at Pectobacterium  

Microsoft Academic Search

\\u000a Members of the species Pectobacterium carotovorum and P. atrosepticum are pathogenic bacteria that are responsible for tissue maceration on various host plants. Pathogenicity essentially relies\\u000a upon the production of plant cell wall degradation enzymes, the synthesis of which is regulated in a bacterial cell density\\u000a dependent fashion, a process called quorum sensing (QS). This process involves key low molecular weight

Amélie Cirou; Stéphane Uroz; Emilie Chapelle; Xavier Latour; Nicole Orange; Denis Faure; Yves Dessaux

162

Quorum sensing activity of Aeromonas caviae strain YL12, a bacterium isolated from compost.  

PubMed

Quorum sensing is a well-studied cell-to-cell communication method that involves a cell-density dependent regulation of genes expression mediated by signalling molecules. In this study, a bacterium isolated from a plant material compost pile was found to possess quorum sensing activity based on bioassay screening. Isolate YL12 was identified using matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometry and molecular typing using rpoD gene which identified the isolate as Aeromonas caviae. High resolution tandem mass spectrometry was subsequently employed to identify the N-acyl homoserine lactone profile of Aeromonas caviae YL12 and confirmed that this isolate produced two short chain N-acyl homoserine lactones, namely C4-HSL and C6, and the production was observed to be cell density-dependent. Using the thin layer chromatography (TLC) bioassay, both AHLs were found to activate C. violaceum CV026, whereas only C6-HSL was revealed to induce bioluminescence expression of E. coli [pSB401]. The data presented in this study will be the leading steps in understanding the role of quorum sensing in Aeromonas caviae strain YL12. PMID:24759107

Lim, Yan-Lue; Ee, Robson; Yin, Wai-Fong; Chan, Kok-Gan

2014-01-01

163

Bicyclic brominated furanones: a new class of quorum sensing modulators that inhibit bacterial biofilm formation.  

PubMed

Both natural and synthetic brominated furanones are known to inhibit biofilm formation by bacteria, but their toxicity to mammalian cells is often not reported. Here, we designed and synthesized a new class of brominated furanones (BBFs) that contained a bicyclic structure having one bromide group with well-defined regiochemistry. This class of molecules exhibited reduction in the toxicity to mammalian cells (human neuroblastoma SK-N-SH) and did not inhibit bacteria (Pseudomonas aeruginosa and Escherichia coli) growth, but retained the inhibitory activity towards biofilm formation of bacteria. In addition, all the BBFs inhibited the production of virulence factor elastase B in P. aeruginosa. To explore the effect of BBFs on quorum sensing, we used a reporter gene assay and found that 6-BBF and 7-BBF exhibited antagonistic activities for LasR protein in the lasI quorum sensing circuit, while 5-BBF showed agonistic activity for the rhlI quorum sensing circuit. This study suggests that structural variation of brominated furanones can be designed for targeted functions to control biofilm formation. PMID:24485124

Yang, Sijie; Abdel-Razek, Osama A; Cheng, Fei; Bandyopadhyay, Debjyoti; Shetye, Gauri S; Wang, Guirong; Luk, Yan-Yeung

2014-02-15

164

Quorum Sensing Activity of Aeromonas Caviae Strain YL12, A Bacterium Isolated from Compost  

PubMed Central

Quorum sensing is a well-studied cell-to-cell communication method that involves a cell-density dependent regulation of genes expression mediated by signalling molecules. In this study, a bacterium isolated from a plant material compost pile was found to possess quorum sensing activity based on bioassay screening. Isolate YL12 was identified using matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometry and molecular typing using rpoD gene which identified the isolate as Aeromonas caviae. High resolution tandem mass spectrometry was subsequently employed to identify the N-acyl homoserine lactone profile of Aeromonas caviae YL12 and confirmed that this isolate produced two short chain N-acyl homoserine lactones, namely C4-HSL and C6, and the production was observed to be cell density-dependent. Using the thin layer chromatography (TLC) bioassay, both AHLs were found to activate C. violaceum CV026, whereas only C6-HSL was revealed to induce bioluminescence expression of E. coli [pSB401]. The data presented in this study will be the leading steps in understanding the role of quorum sensing in Aeromonas caviae strain YL12. PMID:24759107

Lim, Yan-Lue; Ee, Robson; Yin, Wai-Fong; Chan, Kok-Gan

2014-01-01

165

Affecting Pseudomonas aeruginosa Phenotypic Plasticity by Quorum Sensing Dysregulation Hampers Pathogenicity in Murine Chronic Lung Infection  

PubMed Central

In Pseudomonas aeruginosa quorum sensing (QS) activates the production of virulence factors, playing a critical role in pathogenesis. Multiple negative regulators modulate the timing and the extent of the QS response either in the pre-quorum or post-quorum phases of growth. This regulation likely increases P. aeruginosa phenotypic plasticity and population fitness, facilitating colonization of challenging environments such as higher organisms. Accordingly, in addition to the factors required for QS signals synthesis and response, also QS regulators have been proposed as targets for anti-virulence therapies. However, while it is known that P. aeruginosa mutants impaired in QS are attenuated in their pathogenic potential, the effect of mutations causing a dysregulated timing and/or magnitude of the QS response has been poorly investigated so far in animal models of infection. In order to investigate the impact of QS dysregulation on P. aeruginosa pathogenesis in a murine model of lung infection, the QteE and RsaL proteins have been selected as representatives of negative regulators controlling P. aeruginosa QS in the pre- and post-quorum periods, respectively. Results showed that the qteE mutation does not affect P. aeruginosa lethality and ability to establish chronic infection in mice, despite causing a premature QS response and enhanced virulence factors production in test tube cultures compared to the wild type. Conversely, the post-quorum dysregulation caused by the rsaL mutation hampers the establishment of P. aeruginosa chronic lung infection in mice without affecting the mortality rate. On the whole, this study contributes to a better understanding of the impact of QS regulation on P. aeruginosa phenotypic plasticity during the infection process. Possible fallouts of these findings in the anti-virulence therapy field are also discussed. PMID:25420086

Bondí, Roslen; Messina, Marco; De Fino, Ida; Bragonzi, Alessandra; Rampioni, Giordano; Leoni, Livia

2014-01-01

166

New Life for an Old Drug: the Anthelmintic Drug Niclosamide Inhibits Pseudomonas aeruginosa Quorum Sensing  

PubMed Central

The need for novel antibacterial strategies and the awareness of the importance of quorum sensing (QS) in bacterial infections have stimulated research aimed at identifying QS inhibitors (QSIs). However, clinical application of QSIs identified so far is still distant, likely due to their unsuitability for use in humans. A promising way to overcome this problem is searching for anti-QS side activity among the thousands of drugs approved for clinical use in the treatment of different diseases. Here, we applied this strategy to the search for QSIs, by screening a library of FDA-approved compounds for their ability to inhibit the QS response in the Gram-negative pathogen Pseudomonas aeruginosa. We found that the anthelmintic drug niclosamide strongly inhibits the P. aeruginosa QS response and production of acyl-homoserine lactone QS signal molecules. Microarray analysis showed that niclosamide affects the transcription of about 250 genes, with a high degree of target specificity toward the QS-dependent regulon. Phenotypic assays demonstrated that niclosamide suppresses surface motility and production of the secreted virulence factors elastase, pyocyanin, and rhamnolipids, and it reduces biofilm formation. In accordance with the strong antivirulence activity disclosed in vitro, niclosamide prevented P. aeruginosa pathogenicity in an insect model of acute infection. Besides the finding that an FDA-approved drug has a promising antivirulence activity against one of the most antibiotic-resistant bacterial pathogens, this work provides a proof of concept that a lateral anti-QS activity can be detected among drugs already used in humans, validating a new approach to identify QSIs that could easily move into clinical applications. PMID:23254430

Imperi, Francesco; Massai, Francesco; Ramachandran Pillai, Cejoice; Longo, Francesca; Zennaro, Elisabetta; Rampioni, Giordano; Visca, Paolo

2013-01-01

167

Heterogeneous response to a quorum-sensing signal in the luminescence of individual Vibrio fischeri.  

PubMed

The marine bacterium Vibrio fischeri regulates its bioluminescence through a quorum sensing mechanism: the bacterium releases diffusible small molecules (autoinducers) that accumulate in the environment as the population density increases. This accumulation of autoinducer (AI) eventually activates transcriptional regulators for bioluminescence as well as host colonization behaviors. Although V. fischeri quorum sensing has been extensively characterized in bulk populations, far less is known about how it performs at the level of the individual cell, where biochemical noise is likely to limit the precision of luminescence regulation. We have measured the time-dependence and AI-dependence of light production by individual V. fischeri cells that are immobilized in a perfusion chamber and supplied with a defined concentration of exogenous AI. We use low-light level microscopy to record and quantify the photon emission from the cells over periods of several hours as they respond to the introduction of AI. We observe an extremely heterogeneous response to the AI signal. Individual cells differ widely in the onset time for their luminescence and in their resulting brightness, even in the presence of high AI concentrations that saturate the light output from a bulk population. The observed heterogeneity shows that although a given concentration of quorum signal may determine the average light output from a population of cells, it provides far weaker control over the luminescence output of each individual cell. PMID:21103327

Pérez, Pablo Delfino; Hagen, Stephen J

2010-01-01

168

A Quorum-Quenching Approach To Investigate the Conservation of Quorum-Sensing-Regulated Functions within the Burkholderia cepacia Complex  

PubMed Central

Taxonomic studies of the past few years have shown that the Burkholderia cepacia complex, a heterogeneous group of B. cepacia-like organisms, consists of at least nine species. B. cepacia complex strains are ubiquitously distributed in nature and have been used for biocontrol, bioremediation, and plant growth promotion purposes. At the same time, B. cepacia complex strains have emerged as important opportunistic pathogens of humans, particularly those with cystic fibrosis. All B. cepacia complex species investigated thus far use quorum-sensing (QS) systems that rely on N-acylhomoserine lactone (AHL) signal molecules to express certain functions, including the production of extracellular proteases, swarming motility, biofilm formation, and pathogenicity, in a population-density-dependent manner. In this study we constructed a broad-host-range plasmid that allowed the heterologous expression of the Bacillus sp. strain 240B1 AiiA lactonase, which hydrolyzes the lactone ring of various AHL signal molecules, in all described B. cepacia complex species. We show that expression of AiiA abolished or greatly reduced the accumulation of AHL molecules in the culture supernatants of all tested B. cepacia complex strains. Phenotypic characterization of wild-type and transgenic strains revealed that protease production, swarming motility, biofilm formation, and Caenorhabditis elegans killing efficiency was regulated by AHL in the large majority of strains investigated. PMID:16461713

Wopperer, Julia; Cardona, Silvia T.; Huber, Birgit; Jacobi, Christoph A.; Valvano, Miguel A.; Eberl, Leo

2006-01-01

169

De Novo Assembly of the Quorum-Sensing Pandoraea sp. Strain RB-44 Complete Genome Sequence Using PacBio Single-Molecule Real-Time Sequencing Technology  

PubMed Central

We report the first complete genome sequence of Pandoraea sp. strain RB-44, which was found to possess quorum-sensing properties. To the best of our knowledge, this is the first documentation of both a complete genome sequence and quorum-sensing properties of a Pandoraea species. PMID:24699956

Ee, Robson; Lim, Yan-Lue; Yin, Wai-Fong

2014-01-01

170

Structure and Inhibition of a Quorum Sensing Target from Streptococcus pneumoniae  

PubMed Central

Streptococcus pneumoniae 5?-methylthioadenosine/S-adenosylhomocysteine hydrolase (MTAN) catalyzes the hydrolytic deadenylation of its substrates to form adenine and 5-methylthioribose or S-ribosylhomocysteine (SRH). MTAN is not found in mammals but is involved in bacterial quorum sensing. MTAN gene disruption affects growth and pathogenicity of bacteria, making it a target for antibiotic design. Kinetic isotope effects and computational studies have established a dissociative SN1 transition state for E. coli MTAN and transition state analogues resembling the transition state are powerful inhibitors of the enzyme (Singh, V., Lee, J. L., Núñez, S., Howell, P. L. and Schramm, V. L. (2005) Biochemistry 44, 11647-11659). The MTAN from S. pneumoniae has 40% sequence identity to E. coli MTAN, but exhibits remarkably distinct kinetic and inhibitory properties. 5?-Methylthio-Immucillin-A (MT-ImmA) is a transition state analogue resembling an early SN1 transition state. It is a weak inhibitor of S. pneumoniae MTAN with a Ki of 1.0 ?M. The X-ray structure of S. pneumoniae MTAN with MT-ImmA indicates a dimer with the methylthio group in a flexible hydrophobic pocket. Replacing the methyl group with phenyl (PhT-ImmA), tolyl (p-TolT-ImmA) or ethyl (EtT-ImmA) groups increases the affinity to give Ki values of 335 nM, 60 nM and 40 nM, respectively. DADMe-Immucillins are geometric and electrostatic mimics of a fully-dissociated transition state and bind more tightly than Immucillins. MT-DADMe-Immucillin-A inhibits with a Ki value of 24 nM and replacing the 5?-methyl group with p-Cl-phenyl (p-Cl-PhT-DADMe-ImmA) gave a Ki* value of 0.36 nM. The inhibitory potential of DADMe-Immucillins relative to the Immucillins supports a fully dissociated transition state structure for S. pneumoniae MTAN. Comparison of active site contacts in the X-ray crystal structures of E. coli and S. pneumoniae MTAN with MT-ImmA would predict equal binding, yet most analogues bind 103 to 104 fold more tightly to the E. coli enzyme. Catalytic site efficiency is primarily responsible for this difference since kcat/Km for S. pneumoniae MTAN is <10-2 that of E. coli MTAN. PMID:17059210

Singh, Vipender; Shi, Wuxian; Almo, Steven C.; Evans, Gary B.; Furneaux, Richard H.; Tyler, Peter C.; Zheng, Renjian; Schramm, Vern L.

2008-01-01

171

Quorum Sensing Inhibition by Asparagopsis taxiformis, a Marine Macro Alga: Separation of the Compound that Interrupts Bacterial Communication  

PubMed Central

The majority of the marine algal species, though completing their life cycle in seawater, are rarely susceptible to fouling, making them an important source of quorum sensing (QS) inhibitory substances. The separation and characterization of QS inhibitors are crucial for any potential application. Thirty marine macroalgae were tested for QS inhibition activity by using Chromobacterium violaceum CV026 as the reporter strain, and among them, Asparagopsis taxiformis showed antibacterial, as well as antiquorum, sensing activities. Cinnamaldehyde (75 mM) and methanol were used as positive and negative controls, respectively. The antiquorum sensing activity of A. taxiformis was further confirmed using the sensor strain, Serratia liquefaciens MG44, having green fluorescent protein (gfp). Methanolic extract of the alga was fractionated by solid phase extraction (SPE), and each fraction was tested for QS inhibition. Two types of activities were observed—zone of clearance (antibacterial activity) and zone of inhibition with or without finger-like projections (QS inhibition). Out of five SPE cartridges, Bond Elut PH showed clear separation of these two fractions. The Ion Cyclotron Resonance Fourier Transformation Mass Spectrometer (ICR-FT/MS) analysis of the fractions further supported the bioassay results. The presence of strong QS inhibitory compound in A. taxiformis indicates its potential use in antifouling preparations. PMID:23344114

Jha, Bhavanath; Kavita, Kumari; Westphal, Jenny; Hartmann, Anton; Schmitt-Kopplin, Philippe

2013-01-01

172

Quorum sensing inhibition by Asparagopsis taxiformis, a marine macro alga: separation of the compound that interrupts bacterial communication.  

PubMed

The majority of the marine algal species, though completing their life cycle in seawater, are rarely susceptible to fouling, making them an important source of quorum sensing (QS) inhibitory substances. The separation and characterization of QS inhibitors are crucial for any potential application. Thirty marine macroalgae were tested for QS inhibition activity by using Chromobacterium violaceum CV026 as the reporter strain, and among them, Asparagopsis taxiformis showed antibacterial, as well as antiquorum, sensing activities. Cinnamaldehyde (75 mM) and methanol were used as positive and negative controls, respectively. The antiquorum sensing activity of A. taxiformis was further confirmed using the sensor strain, Serratia liquefaciens MG44, having green fluorescent protein (gfp). Methanolic extract of the alga was fractionated by solid phase extraction (SPE), and each fraction was tested for QS inhibition. Two types of activities were observed-zone of clearance (antibacterial activity) and zone of inhibition with or without finger-like projections (QS inhibition). Out of five SPE cartridges, Bond Elut PH showed clear separation of these two fractions. The Ion Cyclotron Resonance Fourier Transformation Mass Spectrometer (ICR-FT/MS) analysis of the fractions further supported the bioassay results. The presence of strong QS inhibitory compound in A. taxiformis indicates its potential use in antifouling preparations. PMID:23344114

Jha, Bhavanath; Kavita, Kumari; Westphal, Jenny; Hartmann, Anton; Schmitt-Kopplin, Philippe

2013-01-01

173

Quorum Sensing Signal Synthesis May Represent a Selective Advantage Independent of Its Role in Regulation of Bioluminescence in Vibrio fischeri  

PubMed Central

The evolution of biological signalling systems and apparently altruistic or cooperative traits in diverse organisms has required selection against the subversive tendencies of self-interested biological entities. The bacterial signalling and response system known as quorum sensing or Acylated Homoserine Lactone (AHL) mediated gene expression is thought to have evolved through kin selection. In this in vitro study on the model quorum sensing bioluminescent marine symbiont Vibrio fischeri, competition and long-term sub culturing experiments suggest that selection for AHL synthesis (encoded by the AHL synthase gene luxI) is independent of the quorum sensing regulated phenotype (bioluminescence encoded by luxCDABE). Whilst results support the hypothesis that signal response (AHL binding and transcriptional activation encoded by the luxR gene) is maintained through indirect fitness benefits (kin selection), signal synthesis is maintained in the V. fischeri genome over evolutionary time through direct fitness benefits at the individual level from an unknown function. PMID:23825662

Chong, Grace; Kimyon, Onder; Manefield, Mike

2013-01-01

174

Iron and Quorum Sensing Coordinately Regulate the Expression of Vulnibactin Biosynthesis in Vibrio vulnificus*  

PubMed Central

Vibrio vulnificus is a halophilic marine pathogen associated with human diseases such as septicemia and serious wound infections. Genes vvsA and vvsB, which are co-transcribed and encode a member of the nonribosomal peptide synthase family, are required for vulnibactin biosynthesis in V. vulnificus. In this study, we found that quorum sensing represses the transcription of a vvsAB-lux reporter fusion. Gel shift assay and DNaseI footprinting experiments show that the main regulator of quorum sensing, SmcR, binds to a 22-bp region located between ?40 and ?19 with respect to the vvsA transcription start site. Mutation of the SmcR binding site abolishes the repression of vvsA::luxAB by SmcR. Fur represses vvsAB transcription in the presence of iron by binding to a 47-bp region located between ?45 and +2 with respect to the vvsA transcription start site. A competition gel shift assay and footprinting experiment using Fur and SmcR showed that Fur binds to the vvsA promoter region with higher affinity than SmcR. Studies with the vvsAB::luxAB transcriptional fusion demonstrate that in the presence of iron, Fur is the key repressor of vvsAB transcription, whereas in iron-limited conditions, SmcR is the key regulator repressing vvsAB transcription. This study demonstrates that the Fe-Fur complex and quorum sensing cooperate to repress the transcription of vvsAB in response to iron conditions, suggesting that fine tuning of the intracellular iron level is important for the survival and pathogenicity of V. vulnificus. PMID:22696215

Wen, Yancheng; Kim, In Hwang; Son, Jee-Soo; Lee, Byeong-Ha; Kim, Kun-Soo

2012-01-01

175

Antisense RNA that affects Rhodopseudomonas palustris quorum-sensing signal receptor expression.  

PubMed

Quorum sensing in the bacterium Rhodopseudomonas palustris involves the RpaI signal synthase, which produces p-coumaroyl-homoserine lactone (pC-HSL) and RpaR, which is a pC-HSL-dependent transcriptional activator. There is also an antisense rpaR transcript (asrpaR) of unknown function. Recent RNAseq studies have revealed that bacterial antisense RNAs are abundant, but little is known about the function of these molecules. Because asrpaR expression is quorum sensing dependent, we sought to characterize its production and function. We show that asrpaR is approximately 300-600 bases and is produced in response to pC-HSL and RpaR. There is an RpaR-binding site centered 51.5 bp from the mapped asrpaR transcript start site. We show that asrpaR overexpression reduces RpaR levels, rpaI expression, and pC-HSL production. We also generated an asrpaR mutant, which shows elevated RpaR levels, and elevated rpaI expression. Thus, asrpaR inhibits rpaR translation, and this inhibition results in suppression of RpaR-dependent rpaI expression and, thus, pC-HSL production. The R. palustris asrpaR represents an antisense RNA for which an activity can be measured and for which a distinct regulatory circuit related to a function is elucidated. It also represents yet another subtle regulatory layer for acyl-homoserine lactone quorum-sensing signal-responsive transcription factors. PMID:22778415

Hirakawa, Hidetada; Harwood, Caroline S; Pechter, Kieran B; Schaefer, Amy L; Greenberg, E Peter

2012-07-24

176

Antisense RNA that affects Rhodopseudomonas palustris quorum-sensing signal receptor expression  

PubMed Central

Quorum sensing in the bacterium Rhodopseudomonas palustris involves the RpaI signal synthase, which produces p-coumaroyl-homoserine lactone (pC-HSL) and RpaR, which is a pC-HSL–dependent transcriptional activator. There is also an antisense rpaR transcript (asrpaR) of unknown function. Recent RNAseq studies have revealed that bacterial antisense RNAs are abundant, but little is known about the function of these molecules. Because asrpaR expression is quorum sensing dependent, we sought to characterize its production and function. We show that asrpaR is approximately 300–600 bases and is produced in response to pC-HSL and RpaR. There is an RpaR-binding site centered 51.5 bp from the mapped asrpaR transcript start site. We show that asrpaR overexpression reduces RpaR levels, rpaI expression, and pC-HSL production. We also generated an asrpaR mutant, which shows elevated RpaR levels, and elevated rpaI expression. Thus, asrpaR inhibits rpaR translation, and this inhibition results in suppression of RpaR-dependent rpaI expression and, thus, pC-HSL production. The R. palustris asrpaR represents an antisense RNA for which an activity can be measured and for which a distinct regulatory circuit related to a function is elucidated. It also represents yet another subtle regulatory layer for acyl-homoserine lactone quorum-sensing signal-responsive transcription factors. PMID:22778415

Hirakawa, Hidetada; Harwood, Caroline S.; Pechter, Kieran B.; Schaefer, Amy L.; Greenberg, E. Peter

2012-01-01

177

N-Sulfonyl homoserine lactones as antagonists of bacterial quorum sensing.  

PubMed

A series of 11 new analogues of N-acylhomoserine lactones in which the carboxamide bond was replaced by a sulfonamide one, has been synthesised. These compounds were evaluated for their ability to competitively inhibit the action of 3-oxohexanoyl-L-homoserine lactone, the natural ligand of the quorum sensing transcriptional regulator LuxR, which in turn activates expression of bioluminescence in the model bacterium Vibrio fischeri. Several compounds were found to display antagonist activity. Molecular modeling suggests that the latter prevent a cascade of structural rearrangements necessary for the formation of the active LuxR dimer. PMID:15380216

Castang, Sandra; Chantegrel, Bernard; Deshayes, Christian; Dolmazon, René; Gouet, Patrice; Haser, Richard; Reverchon, Sylvie; Nasser, William; Hugouvieux-Cotte-Pattat, Nicole; Doutheau, Alain

2004-10-18

178

Quorumpeps database: chemical space, microbial origin and functionality of quorum sensing peptides  

PubMed Central

Quorum-sensing (QS) peptides are biologically attractive molecules, with a wide diversity of structures and prone to modifications altering or presenting new functionalities. Therefore, the Quorumpeps database (http://quorumpeps.ugent.be) is developed to give a structured overview of the QS oligopeptides, describing their microbial origin (species), functionality (method, result and receptor), peptide links and chemical characteristics (3D-structure-derived physicochemical properties). The chemical diversity observed within this group of QS signalling molecules can be used to develop new synthetic bio-active compounds. PMID:23180797

Wynendaele, Evelien; Bronselaer, Antoon; Nielandt, Joachim; D'Hondt, Matthias; Stalmans, Sofie; Bracke, Nathalie; Verbeke, Frederick; Van De Wiele, Christophe; De Tre, Guy; De Spiegeleer, Bart

2013-01-01

179

Identification of a New Regulator in Streptococcus pneumoniae Linking Quorum Sensing to Competence for Genetic Transformation  

Microsoft Academic Search

Competence for genetic transformation in Streptococcus pneumoniae is regulated by a quorum-sensing system encoded by two genetic loci, comCDE and comAB. Additional competence-specific operons, cilA, cilB, cilC, cilD, cilE, cinA-recA, coiA, and cfl, involved in the DNA uptake process and recombination, share an unusual consensus sequence at 210 and 225 in the promoter, which is absent from the promoters of

MYEONG S. LEE; DONALD A. MORRISON

1999-01-01

180

Inhaled Lactonase Reduces Pseudomonas aeruginosa Quorum Sensing and Mortality in Rat Pneumonia  

PubMed Central

Rationale The effectiveness of antibiotic molecules in treating Pseudomonas aeruginosa pneumonia is reduced as a result of the dissemination of bacterial resistance. The existence of bacterial communication systems, such as quorum sensing, has provided new opportunities of treatment. Lactonases efficiently quench acyl-homoserine lactone-based bacterial quorum sensing, implicating these enzymes as potential new anti-Pseudomonas drugs that might be evaluated in pneumonia. Objectives The aim of the present study was to evaluate the ability of a lactonase called SsoPox-I to reduce the mortality of a rat P. aeruginosa pneumonia. Methods To assess SsoPox-I-mediated quorum quenching, we first measured the activity of the virulence gene lasB, the synthesis of pyocianin, the proteolytic activity of a bacterial suspension and the formation of biofilm of a PAO1 strain grown in the presence of lactonase. In an acute lethal model of P. aeruginosa pneumonia in rats, we evaluated the effects of an early or deferred intra-tracheal treatment with SsoPox-I on the mortality, lung bacterial count and lung damage. Measurements and Primary Results SsoPox-I decreased PAO1 lasB virulence gene activity, pyocianin synthesis, proteolytic activity and biofilm formation. The early use of SsoPox-I reduced the mortality of rats with acute pneumonia from 75% to 20%. Histological lung damage was significantly reduced but the lung bacterial count was not modified by the treatment. A delayed treatment was associated with a non-significant reduction of mortality. Conclusion These results demonstrate the protective effects of lactonase SsoPox-I in P. aeruginosa pneumonia and open the way for a future therapeutic use. PMID:25350373

Lafleur, John; Lepidi, Hubert; Papazian, Laurent; Rolain, Jean-Marc; Raoult, Didier; Elias, Mikael; Silby, Mark W.; Bzdrenga, Janek; Bregeon, Fabienne; Chabriere, Eric

2014-01-01

181

Quorum sensing and biofilm formation investigated using laser-trapped bacterial arrays  

NASA Astrophysics Data System (ADS)

Studies of individual, free-swimming (planktonic) bacteria have yielded much information about their genetic and phenotypic characteristics and about ``quorum sensing,'' the autoinducing process by which bacteria detect high concentrations of other bacteria. However, in most environments the majority of bacteria are not in the planktonic form but are rather in biofilms, which are highly-structured, dynamic communities of multiple bacteria that adhere to a surface and to each other using an extracellular polysaccharide matrix. Bacteria in biofilms are phenotypically very different from their genetically-identical planktonic counterparts. Among other characteristics, they are much more antibiotic-resistant and virulent. Such biofilms form persistent infections on medical implants and in the lungs of cystic fibrosis patients, where Pseudomonas aeruginosa biofilms are the leading cause of lung damage and, ultimately, death. To understand the importance of different extracellular materials, motility mechanisms, and quorum sensing for biofilm formation and stability, we use single-gene knockout mutants and an infrared laser trap to create a bacterial aggregate that serves as a model biofilm and allows us to measure the importance of these factors as a function of trapping time, surface, and nutritional environment.

Gordon, Vernita; Butler, John; Smalyukh, Ivan; Parsek, Matthew; Wong, Gerard

2008-03-01

182

Quorum Sensing Activity of Serratia fonticola Strain RB-25 Isolated from an Ex-landfill Site  

PubMed Central

Quorum sensing is a unique bacterial communication system which permits bacteria to synchronize their behaviour in accordance with the population density. The operation of this communication network involves the use of diffusible autoinducer molecules, termed N-acylhomoserine lactones (AHLs). Serratia spp. are well known for their use of quorum sensing to regulate the expression of various genes. In this study, we aimed to characterized the AHL production of a bacterium designated as strain RB-25 isolated from a former domestic waste landfill site. It was identified as Serratia fonticola using matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometry analysis and this was confirmed by 16S ribosomal DNA sequencing. High resolution triple quadrupole liquid chromatography-mass spectrometry analysis of S. fonticola strain RB-25 spent culture supernatant indicated the existence of three AHLs namely: N-butyryl-L-homoserine lactone (C4-HSL), N-hexanoyl-L-homoserine lactone (C6-HSL) and N-(3-oxohexanoyl) homoserine-lactone (3-oxo-C6 HSL). This is the first report of the production of these AHLs in S. fonticola. PMID:24625739

Ee, Robson; Lim, Yan-Lue; Tee, Kok-Keng; Yin, Wai-Fong; Chan, Kok-Gan

2014-01-01

183

Pleiotropic Role of Quorum-Sensing Autoinducer 2 in Photorhabdus luminescens†  

PubMed Central

Bacterial virulence is an integrative process that may involve quorum sensing. In this work, we compared by global expression profiling the wild-type entomopathogenic Photorhabdus luminescens subsp. laumondii TT01 to a luxS-deficient mutant unable to synthesize the type 2 quorum-sensing inducer AI-2. AI-2 was shown to regulate more than 300 targets involved in most compartments and metabolic pathways of the cell. AI-2 is located high in the hierarchy, as it controls the expression of several transcriptional regulators. The regulatory effect of AI-2 appeared to be dose dependent. The luxS-deficient strain exhibited decreased biofilm formation and increased type IV/V pilus-dependent twitching motility. AI-2 activated its own synthesis and transport. It also modulated bioluminescence by regulating the synthesis of spermidine. AI-2 was further shown to increase oxidative stress resistance, which is necessary to overcome part of the innate immune response of the host insect involving reactive oxygen species. Finally, we showed that the luxS-deficient strain had attenuated virulence against the lepidopteran Spodoptera littoralis. We concluded that AI-2 is involved mainly in early steps of insect invasion in P. luminescens. PMID:17021191

Krin, Evelyne; Chakroun, Nesrine; Turlin, Evelyne; Givaudan, Alain; Gaboriau, Francois; Bonne, Isabelle; Rousselle, Jean-Claude; Frangeul, Lionel; Lacroix, Celine; Hullo, Marie-Francoise; Marisa, Laetitia; Danchin, Antoine; Derzelle, Sylviane

2006-01-01

184

A Quorum-Sensing Factor in Vegetative Dictyostelium Discoideum Cells Revealed by Quantitative Migration Analysis  

PubMed Central

Background Many cells communicate through the production of diffusible signaling molecules that accumulate and once a critical concentration has been reached, can activate or repress a number of target genes in a process termed quorum sensing (QS). In the social amoeba Dictyostelium discoideum, QS plays an important role during development. However little is known about its effect on cell migration especially in the growth phase. Methods and Findings To investigate the role of cell density on cell migration in the growth phase, we use multisite timelapse microscopy and automated cell tracking. This analysis reveals a high heterogeneity within a given cell population, and the necessity to use large data sets to draw reliable conclusions on cell motion. In average, motion is persistent for short periods of time (), but normal diffusive behavior is recovered over longer time periods. The persistence times are positively correlated with the migrated distances. Interestingly, the migrated distance decreases as well with cell density. The adaptation of cell migration to cell density highlights the role of a secreted quorum sensing factor (QSF) on cell migration. Using a simple model describing the balance between the rate of QSF generation and the rate of QSF dilution, we were able to gather all experimental results into a single master curve, showing a sharp cell transition between high and low motile behaviors with increasing QSF. Conclusion This study unambiguously demonstrates the central role played by QSF on amoeboid motion in the growth phase. PMID:22073217

Gole, Laurent; Riviere, Charlotte; Hayakawa, Yoshinori; Rieu, Jean-Paul

2011-01-01

185

Regulation of Yersina pestis Virulence by AI-2 Mediated Quorum Sensing  

SciTech Connect

The proposed research was motivated by an interest in understanding Y. pestis virulence mechanisms and bacteria cell-cell communication. It is expected that a greater understanding of virulence mechanisms will ultimately lead to biothreat countermeasures and novel therapeutics. Y. pestis is the etiological agent of plague, the most devastating disease in human history. Y. pestis infection has a high mortality rate and a short incubation before mortality. There is no widely available and effective vaccine for Y. pestis and multi-drug resistant strains are emerging. Y. pestis is a recognized biothreat agent based on the wide distribution of the bacteria in research laboratories around the world and on the knowledge that methods exist to produce and aerosolize large amounts of bacteria. We hypothesized that cell-cell communication via signaling molecules, or quorum sensing, by Y. pestis is important for the regulation of virulence factor gene expression during host invasion, though a causative link had never been established. Quorum sensing is a mode of intercellular communication which enables orchestration of gene expression for many bacteria as a function of population density and available evidence suggests there may be a link between quorum sensing and regulation of Y. pesits virulence. Several pathogenic bacteria have been shown to regulate expression of virulence factor genes, including genes encoding type III secretion, via quorum sensing. The Y. pestis genome encodes several cell-cell signaling pathways and the interaction of at least three of these are thought to be involved in one or more modes of host invasion. Furthermore, Y. pestis gene expression array studies carried out at LLNL have established a correlation between expression of known virulence factors and genes involved in processing of the AI-2 quorum sensing signal. This was a basic research project that was intended to provide new insights into bacterial intercellular communication and how it is used to regulate virulence in Y. pestis. It is known that many bacteria use intercellular signaling molecules to orchestrate gene expression and cellular function. A fair amount is known about production and uptake of signaling molecules, but very little is known about how intercellular signaling regulates other pathways. Although several studies demonstrate that intercellular signaling plays a role in regulating virulence in other pathogens, the link between signaling and regulation of virulence has not been established. Very little work had been done directly with Y. pestis intercellular signaling apart from the work carried out at LLNL. The research we proposed was intended to both establish a causative link between AI-2 intercellular signaling and regulation of virulence in Y. pestis and elucidate the fate of the AI-2 signaling molecule after it is taken up and processed by Y. pestis. Elucidating the fate of AI-2 was expected to lead directly to the understanding of how AI-2 signal processing regulates other pathways as well as provide new insights in this direction.

Segelke, B; Hok, S; Lao, V; Corzett, M; Garcia, E

2010-03-29

186

Effects of AiiA-mediated quorum quenching in Sinorhizobium meliloti on quorum-sensing signals, proteome patterns, and symbiotic interactions.  

PubMed

Many behaviors in bacteria, including behaviors important to pathogenic and symbiotic interactions with eukaryotic hosts, are regulated by a mechanism called quorum sensing (QS). A "quorum-quenching" approach was used here to identify QS-regulated behaviors in the N-fixing bacterial symbiont Sinorhizobium meliloti. The AiiA lactonase from Bacillus produced in S. meliloti was shown to enzymatically inactivate S. meliloti's N-acyl homoserine lactone (AHL) QS signals, thereby disrupting normal QS regulation. Sixty proteins were differentially accumulated in the AiiA-producing strain versus the control in early log or early stationary phase cultures. Fifty-two of these QS-regulated proteins, with putative functions that include cell division, protein processing and translation, metabolite transport, oxidative stress, and amino acid metabolism, were identified by peptide mass fingerprinting. Transcription of representative genes was reduced significantly in the AiiA-producing strain, although the effects of AiiA on protein accumulation did not always correspond to effects on transcription. The QS signal-deficient strain was reduced significantly in nodule initiation during the first 12 h after inoculation onto Medicago truncatula host plants. The AiiA lactonase also was found to substantially inactivate two of the AHL mimic compounds secreted by M. truncatula. This suggests some structural similarity between bacterial AHLs and these mimic compounds. It also indicates that quorum quenching could be useful in identifying Sinorhizobium genes that are affected by such host QS mimics in planta. PMID:17601171

Gao, Mengsheng; Chen, Hancai; Eberhard, Anatol; Gronquist, Matthew R; Robinson, Jayne B; Connolly, Mary; Teplitski, Max; Rolfe, Barry G; Bauer, Wolfgang D

2007-07-01

187

Genome Sequence of Maribius sp. Strain MOLA 401, a Marine Roseobacter with a Quorum-Sensing Cell-Dependent Physiology  

PubMed Central

Maribius sp. strain MOLA401 is an alphaproteobacterium isolated from a coral reef lagoon located in New Caledonia, France. We report the genome sequence and its annotation which, interestingly, reveals the presence of genes involved in quorum sensing. This is the first report of a full genome within the genus Maribius. PMID:25278539

Doberva, Margot; Sanchez-Ferandin, Sophie; Ferandin, Yoan; Intertaglia, Laurent; Joux, Fabien; Lebaron, Philippe

2014-01-01

188

Vibrio fischeri Uses Two Quorum-Sensing Systems for the Regulation of Early and Late Colonization Factors  

Microsoft Academic Search

Vibrio fischeri possesses two quorum-sensing systems, ain and lux, using acyl homoserine lactones as signaling molecules. We have demonstrated previously that the ain system activates luminescence gene ex- pression at lower cell densities than those required for lux system activation and that both systems are essential for persistent colonization of the squid host, Euprymna scolopes. Here, we asked whether the

Claudia Lupp; Edward G. Ruby

2005-01-01

189

Shigella flexneri LuxS Quorum-Sensing System Modulates virB Expression but Is Not Essential for Virulence  

Microsoft Academic Search

Quorum-sensing systems regulate the expression of virulence factors in a wide variety of plant and animal pathogens, including members of the Enterobacteriaceae. Studies of Shigella virulence gene expression have demonstrated that maximal expression of genes encoding the type III secretion system and its substrates and maximal activity of this virulence organelle occur at high cell density. In these studies, we

WILLIAM A. DAY; ANTHONY T. MAURELLI

2001-01-01

190

Disruption of a Quorum Sensing mechanism triggers tumorigenesis: a simple discrete model corroborated by experiments in mammary cancer stem cells  

Microsoft Academic Search

BACKGROUND: The balance between self-renewal and differentiation of stem cells is expected to be tightly controlled in order to maintain tissue homeostasis throughout life, also in the face of environmental hazards. Theory, predicting that homeostasis is maintained by a negative feedback on stem cell proliferation, implies a Quorum Sensing mechanism in higher vertebrates. RESULTS: Application of this theory to a

Zvia Agur; Yuri Kogan; Liora Levi; Hannah Harrison; Rebecca Lamb; Oleg U Kirnasovsky; Robert B Clarke

2010-01-01

191

Vanadium bromoperoxidase from Delisea pulchra: enzyme-catalyzed formation of bromofuranone and attendant disruption of quorum sensing.  

PubMed

Vanadium bromoperoxidase was isolated and cloned from the marine red alga Delisea pulchra. This enzyme catalyzes the bromolactonization of 4-pentynoic acid forming 5E-bromo-methylidenetetrahydro-2-furanone, a compound which is shown herein to inhibit quorum sensing in the engineered reporter strain, Agrobacterium tumefaciens NTL4. PMID:22006105

Sandy, Moriah; Carter-Franklin, Jayme N; Martin, Jessica D; Butler, Alison

2011-11-28

192

Genome Sequence of Maribius sp. Strain MOLA 401, a Marine Roseobacter with a Quorum-Sensing Cell-Dependent Physiology.  

PubMed

Maribius sp. strain MOLA401 is an alphaproteobacterium isolated from a coral reef lagoon located in New Caledonia, France. We report the genome sequence and its annotation which, interestingly, reveals the presence of genes involved in quorum sensing. This is the first report of a full genome within the genus Maribius. PMID:25278539

Doberva, Margot; Sanchez-Ferandin, Sophie; Ferandin, Yoan; Intertaglia, Laurent; Joux, Fabien; Lebaron, Philippe; Lami, Raphaël

2014-01-01

193

A LuxR/LuxI-Type Quorum-Sensing System in a Plant Bacterium, Mesorhizobium tianshanense, Controls Symbiotic Nodulation  

PubMed Central

The ability of rhizobia to symbiotically fix nitrogen from the atmosphere when forming nodules on their plant hosts requires various signal transduction pathways. LuxR-LuxI-type quorum-sensing systems have been shown to be one of the players in a number of rhizobium species. In this study, we found that Mesorhizobium tianshanense, a moderate-growth Rhizobium that forms nodules on a number of licorice plants, produces multiple N-acyl homoserine lactone (AHL)-like molecules. A simple screen for AHL synthase genes using an M. tianshanense genomic expression library in Escherichia coli, coupled with a sensitive AHL detector, uncovered a LuxI-type synthase, MrtI, and a LuxR-type regulator, MrtR, in M. tianshanense. Deletions of the mrtI or mrtR locus completely abolished AHL production in M. tianshanense. Using lacZ transcriptional fusions, we found that expression of the quorum-sensing regulators is autoinduced, as mrtI gene expression requires MrtR and cognate AHLs and mrtR expression is dependent on AHLs. Compared with the wild-type strains, quorum-sensing-deficient mutants showed a marked reduction in the efficiency of root hair adherence and, more importantly, were defective in nodule formation on their host plant, Glycyrrhiza uralensis. These data provide strong evidence that quorum sensing plays a critical role in the M. tianshanense symbiotic process. PMID:16484206

Zheng, Huiming; Zhong, Zengtao; Lai, Xin; Chen, Wen-Xin; Li, Shunpeng; Zhu, Jun

2006-01-01

194

Exposure to Static Magnetic Field Stimulates Quorum Sensing Circuit in Luminescent Vibrio Strains of the Harveyi Clade  

PubMed Central

In this study, the evidence of electron-dense magnetic inclusions with polyhedral shape in the cytoplasm of Harveyi clade Vibrio strain PS1, a bioluminescent bacterium living in symbiosis with marine organisms, led us to investigate the behavior of this bacterium under exposure to static magnetic fields ranging between 20 and 2000 Gauss. When compared to sham-exposed, the light emission of magnetic field-exposed bacteria growing on solid medium at 18°C ±0.1°C was increased up to two-fold as a function of dose and growth phase. Stimulation of bioluminescence by magnetic field was more pronounced during the post-exponential growth and stationary phase, and was lost when bacteria were grown in the presence of the iron chelator deferoxamine, which caused disassembly of the magnetic inclusions suggesting their involvement in magnetic response. As in luminescent Vibrio spp. bioluminescence is regulated by quorum sensing, possible effects of magnetic field exposure on quorum sensing were investigated. Measurement of mRNA levels by reverse transcriptase real time-PCR demonstrated that luxR regulatory gene and luxCDABE operon coding for luciferase and fatty acid reductase complex were significantly up-regulated in magnetic field-exposed bacteria. In contrast, genes coding for a type III secretion system, whose expression was negatively affected by LuxR, were down-regulated. Up-regulation of luxR paralleled with down-regulation of small RNAs that mediate destabilization of luxR mRNA in quorum sensing signaling pathways. The results of experiments with the well-studied Vibrio campbellii strain BB120 (originally classified as Vibrio harveyi) and derivative mutants unable to synthesize autoinducers suggest that the effects of magnetic fields on quorum sensing may be mediated by AI-2, the interspecies quorum sensing signal molecule. PMID:24960170

Tala, Adelfia; Delle Side, Domenico; Buccolieri, Giovanni; Tredici, Salvatore Maurizio; Velardi, Luciano; Paladini, Fabio; De Stefano, Mario; Nassisi, Vincenzo; Alifano, Pietro

2014-01-01

195

Label-Free Critical Micelle Concentration Determination of Bacterial Quorum Sensing Molecules  

PubMed Central

A practical label-free method for the rapid determination of small-molecule critical micelle concentration (CMC) using a fixed-angle light-scattering technique is described. Change in 90° light scattering at a fixed wavelength of incident radiation with increasing bacterial quorum molecule concentration and the observation of a break point is used to determine CMC. In our study, this technique is utilized to investigate the aqueous CMC of previously uncharacterized Pseudomonas aeruginosa quorum sensing signaling molecules (QSSM) belonging to the n-acylhomoserine lactone and 2-alkyl-4-quinolone classes. Several were found to form micelles within a physiologically relevant concentration range and potential roles of these micelles as QSSM transporters are discussed. The influence of temperature and the presence of biological membranes or serum proteins on QSSM CMC are also investigated and evidence is obtained to suggest the QSSMs studied are capable of both membrane and serum protein interaction. This demonstrates that the fixed-angle light-scattering technique outlined can be used simply and rapidly to determine small-molecule CMC under a variety of conditions. PMID:21723835

Davis, B.M.; Richens, J.L.; O'Shea, P.

2011-01-01

196

Deinococcus radiodurans can interfere with quorum sensing by producing an AHL-acylase and an AHL-lactonase.  

PubMed

Bacterial communication via the secretion of small diffusible compounds allows microorganisms to regulate gene expression in a coordinated manner. As many virulence traits are regulated in this fashion, disruption of chemical communication has been proposed as novel antimicrobial therapy. Quorum-quenching enzymes have been a promising discovery in this field as they interfere with the communication of Gram-negative bacteria. AHL-lactonases and AHL-acylases have been described in a variety of bacterial strains; however, usually only one of these two groups of enzymes has been described in a single species. We report here the presence of a member of each group of enzymes in the extremophile bacterium Deinococcus radiodurans. Co-occurrence of both enzymes in a single species increases the chance of inactivating foreign AHL signals under different conditions. We demonstrate that both enzymes are able to degrade the quorum-sensing molecules of various pathogens subsequently affecting virulence gene expression. These studies add the quorum-quenching enzymes of D. radiodurans to the list of potent quorum-quenchers and highlight the idea that quorum quenching could have evolved in some bacteria as a strategy to gain a competitive advantage by altering gene expression in other species. PMID:24863934

Koch, Gudrun; Nadal-Jimenez, Pol; Cool, Robbert H; Quax, Wim J

2014-07-01

197

MINIREVIEWS Evolution of Resistance to Quorum-Sensing Inhibitors  

E-print Network

to be effective in influencing the pathogenicity without affecting bacterial growth. However, evidence that around 80 % of the infectious diseases are caused by bacteria which form biofilms [5]. Biofilms

Wood, Thomas K.

198

Targeting N-acyl-homoserine-lactones to mitigate membrane biofouling based on quorum sensing using a biofouling reducer.  

PubMed

Exploring novel biological anti-quorum sensing (QS) agents to control membrane biofouling is of great worth in order to allow sustainable performance of membrane bioreactors (MBRs) for wastewater treatment. In recent studies, QS inhibitors have provided evidence of alternative route to control membrane biofouling. This study investigated the role of Piper betle extract (PBE) as an anti-QS agent to mitigate membrane biofouling. Results demonstrated the occurrence of the N-acyl-homoserine-lactone (AHL) autoinducers (AIs), correlate QS activity and membrane biofouling mitigation. The AIs production in bioreactor was confirmed using an indicator strain Agrobacterium tumefaciens (NTL4) harboring plasmid pZLR4. Moreover, three different AHLs were found in biocake using thin layer chromatographic analysis. An increase in extracellular polymeric substances (EPS) and transmembrane pressure (TMP) was observed with AHL activity of the biocake during continuous MBR operation, which shows that membrane biofouling was in close relationship with QS activity. PBE was verified to mitigate membrane biofouling via inhibiting AIs production. SEM analysis further confirmed the effect of PBE on EPS and biofilm formation. These results exhibited that PBE could be a novel agent to target AIs for mitigation of membrane biofouling. Further work can be carried out to purify the active compound of Piper betle extract to target the QS to mitigate membrane biofouling. PMID:22796090

Siddiqui, Muhammad Faisal; Sakinah, Mimi; Singh, Lakhveer; Zularisam, A W

2012-10-31

199

Anti-quorum sensing activity of selected sponge extracts: a case study of Pseudomonas aeruginosa.  

PubMed

The anti-quorum sensing activities towards the bacterium Pseudomonas aeruginosa PA01 (pyocyanin production, biofilm formation and twitching and flagella motility) of two crude extracts (methanol and acetone) of the freshwater sponge Ochridaspongia rotunda (Arndt, 1937) were evaluated in vitro for the first time. Both extracts demonstrated P. aeruginosa pyocyanin inhibitory activity, reducing its production for 49.90% and 42.44%, respectively. In addition, they both showed higher anti-biofilm activity (48.29% and 53.99%, respectively) than ampicillin (30.84%). Finally, O. rotunda extracts effectively reduced twitching and flagella motility of P. aeruginosa. Taken all together, these results suggest that endemic sponge species from the oldest lake in Europe may offer novel bioactive natural products with promising medicinal potential towards P. aeruginosa infections. PMID:25039944

Pejin, Boris; Talevska, Aleksandra; Ciric, Ana; Glamoclija, Jasmina; Nikolic, Milos; Talevski, Trajce; Sokovic, Marina

2014-12-01

200

Piper nigrum, Piper betle and Gnetum gnemon- Natural Food Sources with Anti-Quorum Sensing Properties  

PubMed Central

Various parts of Piper nigrum, Piper betle and Gnetum gnemon are used as food sources by Malaysians. The purpose of this study is to examine the anti-quorum sensing (anti-QS) properties of P. nigrum, P. betle and G. gnemon extracts. The hexane, chloroform and methanol extracts of these plants were assessed in bioassays involving Pseudomonas aeruginosa PA01, Escherichia coli [pSB401], E. coli [pSB1075] and Chromobacterium violaceum CV026. It was found that the extracts of these three plants have anti-QS ability. Interestingly, the hexane, chloroform and methanol extracts from P. betle showed the most potent anti-QS activity as judged by the bioassays. Since there is a variety of plants that serve as food sources in Malaysia that have yet to be tested for anti-QS activity, future work should focus on identification of these plants and isolation of the anti-QS compounds. PMID:23519352

Tan, Li Ying; Yin, Wai-Fong; Chan, Kok-Gan

2013-01-01

201

Pseudomonas cremoricolorata strain ND07 produces N-acyl homoserine lactones as quorum sensing molecules.  

PubMed

Quorum sensing (QS) is a bacterial cell-to-cell communication system controlling QS-mediated genes which is synchronized with the population density. The regulation of specific gene activity is dependent on the signaling molecules produced, namely N-acyl homoserine lactones (AHLs). We report here the identification and characterization of AHLs produced by bacterial strain ND07 isolated from a Malaysian fresh water sample. Molecular identification showed that strain ND07 is clustered closely to Pseudomonas cremoricolorata. Spent culture supernatant extract of P. cremoricolorata strain ND07 activated the AHL biosensor Chromobacterium violaceum CV026. Using high resolution triple quadrupole liquid chromatography-mass spectrometry, it was confirmed that P. cremoricolorata strain ND07 produced N-octanoyl-L-homoserine lactone (C8-HSL) and N-decanoyl-L-homoserine lactone (C10-HSL). To the best of our knowledge, this is the first documentation on the production of C10-HSL in P. cremoricolorata strain ND07. PMID:24984061

Yunos, Nina Yusrina Muhamad; Tan, Wen-Si; Koh, Chong-Lek; Sam, Choon-Kook; Mohamad, Nur Izzati; Tan, Pui-Wan; Adrian, Tan-Guan-Sheng; Yin, Wai-Fong; Chan, Kok-Gan

2014-01-01

202

Tandem Mass Spectrometry Detection of Quorum Sensing Activity in Multidrug Resistant Clinical Isolate Acinetobacter baumannii  

PubMed Central

Many Proteobacteria communicate via production followed by response of quorum sensing molecules, namely, N-acyl homoserine lactones (AHLs). These molecules consist of a lactone moiety with N-acyl side chain with various chain lengths and degrees of saturation at C-3 position. AHL-dependent QS is often associated with regulation of diverse bacterial phenotypes including the expression of virulence factors. With the use of biosensor and high resolution liquid chromatography tandem mass spectrometry, the AHL production of clinical isolate A. baumannii 4KT was studied. Production of short chain AHL, namely, N-hexanoyl-homoserine lactone (C6-HSL) and N-octanoyl-homoserine lactone (C8-HSL), was detected. PMID:25101326

Chan, Kok-Gan; Cheng, Huey Jia; Chen, Jian Woon; Yin, Wai-Fong; Ngeow, Yun Fong

2014-01-01

203

Synthesis and biological evaluation of novel N-?-haloacylated homoserine lactones as quorum sensing modulators  

PubMed Central

Summary Novel N-?-haloacylated homoserine lactones, in which a halogen atom was introduced at the ?-position of the carbonyl function of the N-acyl chain, have been studied as quorum sensing (QS) modulators and compared with a library of natural N-acylated homoserine lactones (AHLs). The series of novel analogues consists of ?-chloro, ?-bromo and ?-iodo AHL analogues. Furthermore, the biological QS activity of the synthetic AHL analogues compared to the natural AHLs was evaluated. Halogenated analogues demonstrated a reduced activity in the Escherichia coli JB523 bioassay, with the ?-iodo lactones being the less active ones and the ?-chloro AHLs the most potent QS agonists. Most of the ?-haloacylated analogues did not exhibit a significant reduction when tested in the QS inhibition test. Therefore, these novel analogues could be utilized as chemical probes for QS structure–activity studies. PMID:25383125

Syrpas, Michail; Ruysbergh, Ewout; Stevens, Christian V; De Kimpe, Norbert

2014-01-01

204

Methylthioadenosine deaminase in an alternative quorum sensing pathway in Pseudomonas aeruginosa.  

PubMed

Pseudomonas aeruginosa possesses an unusual pathway for 5'-methylthioadenosine (MTA) metabolism involving deamination to 5'-methylthioinosine (MTI) followed by N-ribosyl phosphorolysis to hypoxanthine and 5-methylthio-?-d-ribose 1-phosphate. The specific MTI phosphorylase of P. aeruginosa has been reported [Guan, R., Ho, M. C., Almo, S. C., and Schramm, V. L. (2011) Biochemistry 50, 1247-1254], and here we characterize MTA deaminase from P. aeruginosa (PaMTADA). Genomic analysis indicated the PA3170 locus to be a candidate for MTA deaminase (MTADA). Protein encoded by PA3170 was expressed and shown to deaminate MTA with 40-fold greater catalytic efficiency for MTA than for adenosine. The k(cat)/K(m) value of 1.6 × 10(7) M(-1) s(-1) for MTA is the highest catalytic efficiency known for an MTA deaminase. 5'-Methylthiocoformycin (MTCF) is a 4.8 pM transition state analogue for PaMTADA but causes no significant inhibition of human adenosine deaminase or MTA phosphorylase. MTCF is permeable to P. aeruginosa and exhibits an IC(50) of 3 nM on cellular PaMTADA activity. PaMTADA is the only activity in P. aeruginosa extracts to act on MTA. MTA and 5-methylthio-?-d-ribose are involved in quorum sensing pathways; thus, PaMTADA is a potential target for quorum sensing. The crystal structure of PaMTADA in complex with MTCF shows the transition state mimic 8(R)-hydroxyl group in contact with a catalytic site Zn(2+), the 5'-methylthio group in a hydrophobic pocket, and the transition state mimic of the diazepine ring in contact with a catalytic site Glu. PMID:23050701

Guan, Rong; Ho, Meng-Chiao; Fröhlich, Richard F G; Tyler, Peter C; Almo, Steven C; Schramm, Vern L

2012-11-13

205

Differential Immune Modulatory Activity of Pseudomonas aeruginosa Quorum-Sensing Signal Molecules  

PubMed Central

Pseudomonas aeruginosa releases a spectrum of well-regulated virulence factors, controlled by intercellular communication (quorum sensing) and mediated through the production of small diffusible quorum-sensing signal molecules (QSSM). We hypothesize that QSSM may in fact serve a dual purpose, also allowing bacterial colonization via their intrinsic immune-modulatory capacity. One class of signal molecule, the N-acylhomoserine lactones, has pleiotropic effects on eukaryotic cells, particularly those involved in host immunity. In the present study, we have determined the comparative effects of two chemically distinct and endobronchially detectable QSSM, N-(3-oxododecanoyl)-l-homoserine lactone (3-oxo-C12-HSL) and 2-heptyl-3-hydroxy-4 (1H)-quinolone or the Pseudomonas quinolone signal (PQS), on human leukocytes exposed to a series of stimuli designed to detect differential immunological activity in vitro. 3-Oxo-C12-HSL and PQS displayed differential effects on the release of interleukin-2 (IL-2) when human T cells were activated via the T-cell receptor and CD28 (a costimulatory molecule). 3-Oxo-C12-HSL inhibited cell proliferation and IL-2 release; PQS inhibited cell proliferation without affecting IL-2 release. Both molecules inhibited cell proliferation and the release of IL-2 following mitogen stimulation. Furthermore, in the presence of Escherichia coli lipopolysaccharide, 3-oxo-C12-HSL inhibited tumor necrosis factor alpha release from human monocytes, as reported previously (K. Tateda et al., Infect. Immun. 64:37-43, 1996), whereas PQS did not inhibit in this assay. These data highlight the presence of two differentially active immune modulatory QSSM from P. aeruginosa, which are detectable endobronchially and may be active at the host/pathogen interface during infection with P. aeruginosa, should the bronchial airway lymphoid tissues prove to be accessible to QSSM. PMID:15501777

Hooi, Doreen S. W.; Bycroft, Barrie W.; Chhabra, Siri Ram; Williams, Paul; Pritchard, David I.

2004-01-01

206

Vibrio campbellii hmgA-mediated pyomelanization impairs quorum sensing, virulence, and cellular fitness  

PubMed Central

Melanization due to the inactivation of the homogentisate-1,2-dioxygenase gene (hmgA) has been demonstrated to increase stress resistance, persistence, and virulence in some bacterial species but such pigmented mutants have not been observed in pathogenic members of the Vibrio Harveyi clade. In this study, we used Vibrio campbellii ATCC BAA-1116 as model organism to understand how melanization affected cellular phenotype, metabolism, and virulence. An in-frame deletion of the hmgA gene resulted in the overproduction of a pigment in cell culture supernatants and cellular membranes that was identified as pyomelanin. Unlike previous demonstrations in Vibrio cholerae, Burkholderia cepacia, and Pseudomonas aeruginosa, the pigmented V. campbellii mutant did not show increased UV resistance and was found to be ~2.7 times less virulent than the wild type strain in Penaeus monodon shrimp virulence assays. However, the extracted pyomelanin pigment did confer a higher resistance to oxidative stress when incubated with wild type cells. Microarray-based transcriptomic analyses revealed that the hmgA gene deletion and subsequent pyomelanin production negatively effected the expression of 129 genes primarily involved in energy production, amino acid, and lipid metabolism, and protein translation and turnover. This transcriptional response was mediated in part by an impairment of the quorum sensing regulon as transcripts of the quorum sensing high cell density master regulator LuxR and other operonic members of this regulon were significantly less abundant in the hmgA mutant. Taken together, the results suggest that the pyomelanization of V. campbellii sufficiently impairs the metabolic activities of this organism and renders it less fit and virulent than its isogenic wild type strain. PMID:24376440

Wang, Zheng; Lin, Baochuan; Mostaghim, Anahita; Rubin, Robert A.; Glaser, Evan R.; Mittraparp-arthorn, Pimonsri; Thompson, Janelle R.; Vuddhakul, Varaporn; Vora, Gary J.

2013-01-01

207

Involvement of Bacterial Quorum-Sensing Signals in Spoilage of Bean Sprouts  

PubMed Central

Bacterial communication signals, acylated homoserine lactones (AHLs), were extracted from samples of commercial bean sprouts undergoing soft-rot spoilage. Bean sprouts produced in the laboratory did not undergo soft-rot spoilage and did not contain AHLs or AHL-producing bacteria, although the bacterial population reached levels similar to those in the commercial sprouts, 108 to 109 CFU/g. AHL-producing bacteria (Enterobacteriaceae and pseudomonads) were isolated from commercial sprouts, and strains that were both proteolytic and pectinolytic were capable of causing soft-rot spoilage in bean sprouts. Thin-layer chromatography and liquid chromatography-high-resolution mass spectrometry revealed the presence of N-3-oxo-hexanoyl-l-homoserine lactone in spoiled bean sprouts and in extracts from pure cultures of bacteria. During normal spoilage, the pH of the sprouts increased due to proteolytic activity, and the higher pH probably facilitated the activity of pectate lyase. The AHL synthetase gene (I gene) from a spoilage Pectobacterium was cloned, sequenced, and inactivated in the parent strain. The predicted amino acid sequence showed 97% homology to HslI and CarI in Erwinia carotovora. Spoilage of laboratory bean sprouts inoculated with the AHL-negative mutant was delayed compared to sprouts inoculated with the wild type, and the AHL-negative mutant did not cause the pH to rise. Compared to the wild-type strain, the AHL-negative mutant had significantly reduced protease and pectinase activities and was negative in an iron chelation (siderophore) assay. This is the first study demonstrating AHL regulation of iron chelation in Enterobacteriaceae. The present study clearly demonstrates that the bacterial spoilage of some food products is influenced by quorum-sensing-regulated phenotypes, and understanding these processes may be useful in the development of novel food preservation additives that specifically block the quorum-sensing systems. PMID:15933035

Rasch, Maria; Andersen, Jens Bo; Nielsen, Kristian Fog; Flodgaard, Lars Ravn; Christensen, Henrik; Givskov, Michael; Gram, Lone

2005-01-01

208

The regulation of biofilm development by quorum sensing in Aeromonas hydrophila.  

PubMed

Aeromonas hydrophila is an opportunistic Gram-negative pathogen that readily attaches to stainless steel to produce a thin biofilm with a complex 3D structure covering 40-50% of the available surface and producing large microcolonies. As A. hydrophila possesses an N-acylhomoserine lactone (AHL)-dependent quorum-sensing system based on the ahyRI locus, the presence of the AhyI protein and C4-HSL within the biofilm phase was first established by Western blot and AHL biosensor analysis respectively. The ability of the A. hydrophila AH-1 N strain to form biofilms in a continuous-flow chamber was compared with isogenic ahyI and ahyR mutants. The ahyI mutant, which cannot produce C4-HSL, failed to form a mature biofilm. In addition, the viable count of biofilm, but not planktonic phase ahyI mutants, was significantly lower that the parent or ahyR mutant. This defect in the differentiation of the ahyI mutant biofilm could be partially restored by the addition of exogenous C4-HSL. A mutation in ahyR increased coverage of the available surface to around 80% with no obvious effect upon biofilm microcolony formation. These data support a role for AHL-dependent quorum sensing in A. hydrophila biofilm development. Exposure of the A. hydrophila AH-1N biofilm to N-(3-oxodecanoyl)homoserine lactone, which inhibits exoprotease production in planktonic cells, however, had no effect on biofilm formation or architecture within the continuous-flow chamber. PMID:11966822

Lynch, Martin J; Swift, Simon; Kirke, David F; Keevil, C William; Dodd, Christine E R; Williams, Paul

2002-01-01

209

Chitinolytic Activity in Chromobacterium violaceum: Substrate Analysis and Regulation by Quorum Sensing  

PubMed Central

Quorum sensing control mediated by N-acyl homoserine lactone (AHL) signaling molecules has been established as a key feature of the regulation of exoenzyme production in many gram-negative bacteria. In Chromobacterium violaceum ATCC 31532 a number of phenotypic characteristics, including production of the purple pigment violacein, hydrogen cyanide, antibiotics, and exoproteases are known to be regulated by the endogenous AHL N-hexanoyl-l-homoserine lactone (HHL). In this study we show that C. violaceum produces a set of chitinolytic enzymes whose production is regulated by HHL. The chitinolytic activity was induced in strains grown in the presence of chitin as the sole carbon source and quantitated in the secreted proteins by using p-nitrophenol analogs of disaccharide, trisaccharide, and tetrasaccharide oligomers of N-acetylglucosamine. By using 4-methylumbelliferyl analogs of the same oligomers of N-acetylglucosamine as substrates for proteins separated and renatured by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, at least six enzymes were detected: a chitobiase with high specificity to a dimeric substrate of 87 kDa, two N-acetylglucosaminidases with apparent molecular masses of 162 and 133 kDa, two endochitinases of 108 and 67 kDa, and a chitobiosidase of 56 kDa. In addition, two unidentified bands of >205 kDa were found where a tetrameric chitin derivative was used as a substrate. A pleiotropic mini-Tn5 mutant of C. violaceum (CV026) that is defective in HHL production and other quorum-sensing-regulated factors was also found to be completely deficient in chitinolytic activity. Growth of this mutant on minimal medium with chitin supplemented with culture supernatant from the C. violaceum wild-type strain or 10 ?M synthetic HHL restored chitinase production to the level shown by the parental strain. These results constitute the most complete evidence so far for regulation of chitinolytic activity by AHL signaling in a gram-negative bacterium. PMID:9721280

Chernin, Leonid S.; Winson, Michael K.; Thompson, Jacquelyn M.; Haran, Shoshan; Bycroft, Barrie W.; Chet, Ilan; Williams, Paul; Stewart, Gordon S. A. B.

1998-01-01

210

Inhibition of Quorum Sensing-Controlled Virulence Factor Production in Pseudomonas aeruginosa PAO1 by Ayurveda Spice Clove (Syzygium Aromaticum) Bud Extract  

PubMed Central

Quorum sensing controls the virulence determinants in most proteobacteria. In this work, the hexane, chloroform and methanol extracts of an Ayurveda spice, namely clove (Syzygium aromaticum), shown anti-quorum sensing activity. Hexane and methanol extracts of clove inhibited the response of C. violaceum CV026 to exogenously supplied N?hexanoylhomoserine lactone, in turn preventing violacein production. Chloroform and methanol extracts of clove significantly reduced bioluminescence production by E. coli [pSB1075] grown in the presence of N-(3-oxododecanoyl)-l-homoserine lactone. We demonstrated that clove extract inhibited quorum sensing-regulated phenotypes in Pseudomonas aeruginosa PA01, including expression of lecA::lux (by hexane extract), swarming (maximum inhibition by methanol extract), pyocyanin (maximum inhibition by hexane extract). This study shows that the presence of natural compounds that exhibit anti-quorum sensing activity in the clove extracts may be useful as the lead of anti-infective drugs. PMID:22666015

Krishnan, Thiba; Yin, Wai-Fong; Chan, Kok-Gan

2012-01-01

211

Microbial growth and quorum sensing antagonist activities of herbal plants extracts.  

PubMed

Antimicrobial and antiquorum sensing (AQS) activities of fourteen ethanolic extracts of different parts of eight plants were screened against four Gram-positive, five Gram-negative bacteria and four fungi. Depending on the plant part extract used and the test microorganism, variable activities were recorded at 3 mg per disc. Among the Grampositive bacteria tested, for example, activities of Laurus nobilis bark extract ranged between a 9.5 mm inhibition zone against Bacillus subtilis up to a 25 mm one against methicillin resistant Staphylococcus aureus. Staphylococcus aureus and Aspergillus fumigatus were the most susceptible among bacteria and fungi tested towards other plant parts. Of interest is the tangible antifungal activity of a Tecoma capensis flower extract, which is reported for the first time. However, minimum inhibitory concentrations (MIC's) for both bacteria and fungi were relatively high (0.5-3.0 mg). As for antiquorum sensing activity against Chromobacterium violaceum, superior activity (>17 mm QS inhibition) was associated with Sonchus oleraceus and Laurus nobilis extracts and weak to good activity (8-17 mm) was recorded for other plants. In conclusion, results indicate the potential of these plant extracts in treating microbial infections through cell growth inhibition or quorum sensing antagonism, which is reported for the first time, thus validating their medicinal use. PMID:19783935

Al-Hussaini, Reema; Mahasneh, Adel M

2009-01-01

212

A multitask biosensor for micro-volumetric detection of N-3-oxo-dodecanoyl-homoserine lactone quorum sensing signal.  

PubMed

N-3-oxo-dodecanoyl-homoserine lactone (3OC(12)-HSL) is the main quorum sensing (QS) signal produced by the human pathogen Pseudomonas aeruginosa, a major cause of hard-to-treat nosocomial infections and years-lasting chronic biofilm infections in the lungs of cystic fibrosis (CF) patients. 3OC(12)-HSL-dependent QS is considered a promising target for novel anti-pseudomonads drugs. However, the screening systems employed to date for the identification of QS inhibitors (QSI) were aimed at the identification of inhibitors of 3OC(12)-HSL signaling rather than of the synthesis or the export of this molecule. Moreover, the low concentration of 3OC(12)-HSL in CF sputum has hampered large scale studies aimed at addressing the role of this molecule in the CF lung infection. Here we describe the construction and characterization of PA14-R3, a new whole-cell biosensor for the quantitative detection of 3OC(12)-HSL. PA14-R3 provides fast and direct quantification of 3OC(12)-HSL over a wide range of concentrations (from pM to ?M), and proved to be an easy-to-handle, cost-effective and reliable biosensor for high-throughput screening of 3OC(12)-HSL levels in samples of different origin, including CF sputum. Moreover, the specific features of PA14-R3 made it possible to develop and validate a novel high-throughput screening system for QSI based on the co-cultivation of PA14-R3 with the PA14 wild-type strain. With respect to previous screening systems for QSI, this approach has the advantage of being cost-effective and allowing the identification of compounds targeting, besides 3OC(12)-HSL signaling, any cellular process critical for QS response, including 3OC(12)-HSL synthesis and secretion. PMID:21324665

Massai, Francesco; Imperi, Francesco; Quattrucci, Serena; Zennaro, Elisabetta; Visca, Paolo; Leoni, Livia

2011-04-15

213

Microbial Communication, Cooperation and Cheating: Quorum Sensing Drives the Evolution of Cooperation in Bacteria  

PubMed Central

An increasing body of empirical evidence suggests that cooperation among clone-mates is common in bacteria. Bacterial cooperation may take the form of the excretion of “public goods”: exoproducts such as virulence factors, exoenzymes or components of the matrix in biofilms, to yield significant benefit for individuals joining in the common effort of producing them. Supposedly in order to spare unnecessary costs when the population is too sparse to supply the sufficient exoproduct level, many bacteria have evolved a simple chemical communication system called quorum sensing (QS), to “measure” the population density of clone-mates in their close neighborhood. Cooperation genes are expressed only above a threshold rate of QS signal molecule re-capture, i.e., above the local quorum of cooperators. The cooperative population is exposed to exploitation by cheaters, i.e., mutants who contribute less or nil to the effort but fully enjoy the benefits of cooperation. The communication system is also vulnerable to a different type of cheaters (“Liars”) who may produce the QS signal but not the exoproduct, thus ruining the reliability of the signal. Since there is no reason to assume that such cheaters cannot evolve and invade the populations of honestly signaling cooperators, the empirical fact of the existence of both bacterial cooperation and the associated QS communication system seems puzzling. Using a stochastic cellular automaton approach and allowing mutations in an initially non-cooperating, non-communicating strain we show that both cooperation and the associated communication system can evolve, spread and remain persistent. The QS genes help cooperative behavior to invade the population, and vice versa; cooperation and communication might have evolved synergistically in bacteria. Moreover, in good agreement with the empirical data recently available, this synergism opens up a remarkably rich repertoire of social interactions in which cheating and exploitation are commonplace. PMID:19684853

Czaran, Tamas; Hoekstra, Rolf F.

2009-01-01

214

Paraoxonases as Potential Antibiofilm Agents: Their Relationship with Quorum-Sensing Signals in Gram-Negative Bacteria ?  

PubMed Central

The property of many bacteria to form biofilms constitutes a major health problem. Bacteria living in biofilms have a very high resistance to antibiotics. Biofilms may develop at a certain locations with the participation of secreted molecules, termed quorum-sensing signals, when a sufficient density of bacterial growth occurs. In Gram-negative bacteria, acyl homoserine lactones (AHL) have been identified as major quorum-sensing signals. The paraoxonases (PONs) constitute a family of enzymes comprising 3 members (PON1, PON2, and PON3) that have lactonase activity and are able to hydrolyze AHL. In this minireview, we summarize some existing basic knowledge on PON genetics, biochemistry, and function and describe recent research that reports evidence of the important roles that they may play in the organism's defense against biofilm formation. Finally, we propose some lines of future research that could be very productive. PMID:21199929

Camps, Jordi; Pujol, Isabel; Ballester, Frederic; Joven, Jorge; Simo, Josep M.

2011-01-01

215

The Stringent Response Modulates 4-Hydroxy-2-Alkylquinoline Biosynthesis and Quorum-Sensing Hierarchy in Pseudomonas aeruginosa  

PubMed Central

As a ubiquitous environmental organism and an important human pathogen, Pseudomonas aeruginosa readily adapts and responds to a wide range of conditions and habitats. The intricate regulatory networks that link quorum sensing and other global regulators allow P. aeruginosa to coordinate its gene expression and cell signaling in response to different growth conditions and stressors. Upon nutrient transitions and starvation, as well as other environmental stresses, the stringent response is activated, mediated by the signal (p)ppGpp. P. aeruginosa produces a family of molecules called HAQ (4-hydroxy-2-alkylquinolines), some of which exhibit antibacterial and quorum-sensing signaling functions and regulate virulence genes. In this study, we report that (p)ppGpp negatively regulates HAQ biosynthesis: in a (p)ppGpp-null (?SR) mutant, HHQ (4-hydroxyl-2-heptylquinoline) and PQS (3,4-dihydroxy-2-heptylquinoline) levels are increased due to upregulated pqsA and pqsR expression and reduced repression by the rhl system. We also found that (p)ppGpp is required for full expression of both rhl and las AHL (acyl-homoserine lactone) quorum-sensing systems, since the ?SR mutant has reduced rhlI, rhlR, lasI, and lasR expression, butanoyl-homoserine lactone (C4-HSL) and 3-oxo-dodecanoyl-homoserine lactone (3-oxo-C12-HSL) levels, and rhamnolipid and elastase production. Furthermore, (p)ppGpp significantly modulates the AHL and PQS quorum-sensing hierarchy, as the las system no longer has a dominant effect on HAQ biosynthesis when the stringent response is inactivated. PMID:24509318

Schafhauser, James; Lepine, Francois; McKay, Geoffrey; Ahlgren, Heather G.; Khakimova, Malika

2014-01-01

216

Computational modeling of differences in the quorum sensing induced luminescence phenotypes of Vibrio harveyi and Vibrio cholerae  

Microsoft Academic Search

Vibrio harveyi and Vibrio cholerae have quorum sensing pathways with similar design and highly homologous components including multiple small RNAs (sRNAs). However, the associated luminescence phenotypes of strains with sRNA deletions differ dramatically: in V. harveyi, the sRNAs act additively; however, in V. cholerae, the sRNAs act redundantly. Furthermore, there are striking differences in the luminescence phenotypes for different pathway

Andrew T. Fenley; Suman K. Banik; Rahul V. Kulkarni

2011-01-01

217

A Linear Pentapeptide Is a Quorum-Sensing Factor Required for mazEF-Mediated Cell Death in Escherichia coli  

Microsoft Academic Search

mazEF is a toxin-antitoxin module located on many bacterial chromosomes, including those of pathogens. Here, we report that Escherichia coli mazEF-mediated cell death is a population phenomenon requiring a quorum-sensing molecule that we call the extracellular death factor (EDF). Structural analysis revealed that EDF is a linear pentapeptide, Asn-Asn-Trp-Asn-Asn. Each of the five amino acids of EDF is important for

Ilana Kolodkin-Gal; Ronen Hazan; Ariel Gaathon; Shmuel Carmeli; Hanna Engelberg-Kulka

2007-01-01

218

The natural antimicrobial carvacrol inhibits quorum sensing in Chromobacterium violaceum and reduces bacterial biofilm formation at sub-lethal concentrations.  

PubMed

The formation of biofilm by bacteria confers resistance to biocides and presents problems in medical and veterinary clinical settings. Here we report the effect of carvacrol, one of the major antimicrobial components of oregano oil, on the formation of biofilms and its activity on existing biofilms. Assays were carried out in polystyrene microplates to observe (a) the effect of 0-0.8 mM carvacrol on the formation of biofilms by selected bacterial pathogens over 24 h and (b) the effect of 0-8 mM carvacrol on the stability of pre-formed biofilms. Carvacrol was able to inhibit the formation of biofilms of Chromobacterium violaceum ATCC 12472, Salmonella enterica subsp. Typhimurium DT104, and Staphylococcus aureus 0074, while it showed no effect on formation of Pseudomonas aeruginosa (field isolate) biofilms. This inhibitory effect of carvacrol was observed at sub-lethal concentrations (<0.5 mM) where no effect was seen on total bacterial numbers, indicating that carvacrol's bactericidal effect was not causing the observed inhibition of biofilm formation. In contrast, carvacrol had (up to 8 mM) very little or no activity against existing biofilms of the bacteria described, showing that formation of the biofilm also confers protection against this compound. Since quorum sensing is an essential part of biofilm formation, the effect of carvacrol on quorum sensing of C. violaceum was also studied. Sub-MIC concentrations of carvacrol reduced expression of cviI (a gene coding for the N-acyl-L-homoserine lactone synthase), production of violacein (pigmentation) and chitinase activity (both regulated by quorum sensing) at concentrations coinciding with carvacrol's inhibiting effect on biofilm formation. These results indicate that carvacrol's activity in inhibition of biofilm formation may be related to the disruption of quorum sensing. PMID:24691035

Burt, Sara A; Ojo-Fakunle, Victoria T A; Woertman, Jenifer; Veldhuizen, Edwin J A

2014-01-01

219

An EAL domain protein and cyclic AMP contribute to the interaction between the two quorum sensing systems in Escherichia coli  

Microsoft Academic Search

Quorum sensing (QS) is a bacterial cell-cell communication process by which bacteria communicate using extracellular signals called autoinducers. Two QS systems have been identified in Escherichia coli K-12, including an intact QS system 2 that is stimulated by the cyclic AMP (cAMP)-cAMP receptor protein (CRP) complex and a partial QS system 1 that consists of SdiA (suppressor of cell division

Xianxuan Zhou; Xiaoming Meng; Baolin Sun

2008-01-01

220

Gene Expression in Pseudomonas aeruginosa: Evidence of Iron Override Effects on Quorum Sensing and Biofilm-Specific Gene Regulation  

Microsoft Academic Search

Prior studies established that the Pseudomonas aeruginosa oxidative stress response is influenced by iron availability, whereas more recent evidence demonstrated that it was also controlled by quorum sensing (QS) regulatory circuitry. In the present study, sodA (encoding manganese-cofactored superoxide dismutase (Mn- SOD)) and Mn-SOD were used as a reporter gene and endogenous reporter enzyme, respectively, to reexamine control mechanisms that

NIKKI BOLLINGER; DANIEL J. HASSETT; BARBARA H. IGLEWSKI; J. WILLIAM COSTERTON; TIMOTHY R. MCDERMOTT

2001-01-01

221

The Natural Antimicrobial Carvacrol Inhibits Quorum Sensing in Chromobacterium violaceum and Reduces Bacterial Biofilm Formation at Sub-Lethal Concentrations  

PubMed Central

The formation of biofilm by bacteria confers resistance to biocides and presents problems in medical and veterinary clinical settings. Here we report the effect of carvacrol, one of the major antimicrobial components of oregano oil, on the formation of biofilms and its activity on existing biofilms. Assays were carried out in polystyrene microplates to observe (a) the effect of 0–0.8 mM carvacrol on the formation of biofilms by selected bacterial pathogens over 24 h and (b) the effect of 0–8 mM carvacrol on the stability of pre-formed biofilms. Carvacrol was able to inhibit the formation of biofilms of Chromobacterium violaceum ATCC 12472, Salmonella enterica subsp. Typhimurium DT104, and Staphylococcus aureus 0074, while it showed no effect on formation of Pseudomonas aeruginosa (field isolate) biofilms. This inhibitory effect of carvacrol was observed at sub-lethal concentrations (<0.5 mM) where no effect was seen on total bacterial numbers, indicating that carvacrol's bactericidal effect was not causing the observed inhibition of biofilm formation. In contrast, carvacrol had (up to 8 mM) very little or no activity against existing biofilms of the bacteria described, showing that formation of the biofilm also confers protection against this compound. Since quorum sensing is an essential part of biofilm formation, the effect of carvacrol on quorum sensing of C. violaceum was also studied. Sub-MIC concentrations of carvacrol reduced expression of cviI (a gene coding for the N-acyl-L-homoserine lactone synthase), production of violacein (pigmentation) and chitinase activity (both regulated by quorum sensing) at concentrations coinciding with carvacrol's inhibiting effect on biofilm formation. These results indicate that carvacrol's activity in inhibition of biofilm formation may be related to the disruption of quorum sensing. PMID:24691035

Burt, Sara A.; Ojo-Fakunle, Victoria T. A.; Woertman, Jenifer; Veldhuizen, Edwin J. A.

2014-01-01

222

LuxS-dependent quorum sensing in Porphyromonas gingivalis modulates protease and haemagglutinin activities but is not essential for virulence  

Microsoft Academic Search

Porphyromonas gingivalis is a Gram-negative black-pigmented obligate anaerobe implicated in the aetiology of human periodontal disease. The virulence of P. gingivalis is associated with the elaboration of the cysteine proteases Arg-gingipain (Rgp) and Lys-gingipain (Kgp), which are produced at high bacterial cell densities. To determine whether quorum sensing plays a role in the regulation of Rgp and Kgp, biosensors capable

Nicola A. Burgess; David F. Kirke; Paul Williams; Klaus Winzer; Kim R. Hardie; Nicholas L. Meyers; Joseph Aduse-Opoku; Michael A. Curtis; SmithKline Beecham

223

A Quorum Sensing Regulated Small Volatile Molecule Reduces Acute Virulence and Promotes Chronic Infection Phenotypes  

PubMed Central

A significant number of environmental microorganisms can cause serious, even fatal, acute and chronic infections in humans. The severity and outcome of each type of infection depends on the expression of specific bacterial phenotypes controlled by complex regulatory networks that sense and respond to the host environment. Although bacterial signals that contribute to a successful acute infection have been identified in a number of pathogens, the signals that mediate the onset and establishment of chronic infections have yet to be discovered. We identified a volatile, low molecular weight molecule, 2-amino acetophenone (2-AA), produced by the opportunistic human pathogen Pseudomonas aeruginosa that reduces bacterial virulence in vivo in flies and in an acute mouse infection model. 2-AA modulates the activity of the virulence regulator MvfR (multiple virulence factor regulator) via a negative feedback loop and it promotes the emergence of P. aeruginosa phenotypes that likely promote chronic lung infections, including accumulation of lasR mutants, long-term survival at stationary phase, and persistence in a Drosophila infection model. We report for the first time the existence of a quorum sensing (QS) regulated volatile molecule that induces bistability phenotype by stochastically silencing acute virulence functions in P. aeruginosa. We propose that 2-AA mediates changes in a subpopulation of cells that facilitate the exploitation of dynamic host environments and promote gene expression changes that favor chronic infections. PMID:21829370

Kesarwani, Meenu; Hazan, Ronen; He, Jianxin; Que, YokAi; Apidianakis, Yiorgos; Lesic, Biliana; Xiao, Gaoping; Dekimpe, Valerie; Milot, Sylvain; Deziel, Eric; Lepine, Francois; Rahme, Laurence G.

2011-01-01

224

Quorum sensing signalling and biofilm formation of brewery-derived bacteria, and inhibition of signalling by natural compounds.  

PubMed

Bacteria use quorum sensing signalling in various functions, e.g. while forming biofilms, and inhibition of this signalling could be one way to control biofilm formation. The aim of this study was to evaluate the production of signalling molecules and its correlation with the biofilm formation capability of bacteria isolated from brewery filling process. A further aim was to study berry extracts and wood-derived terpenes for their possible quorum sensing inhibitory effects. Out of the twenty bacteria studied, five produced short-chain and five long-chain AHL (acyl homoserine lactone) signalling molecules when tested with the Chromobacterium violaceum CV026 reporter bacterium. Production of AI-2 (autoinducer-2) signalling molecules was detected from nine strains with the Vibrio harveyi BB170 bioassay. Over half of the strains produced biofilm in the microtitre plate assay, but the production of AHL and AI-2 signalling molecules and biofilm formation capability did not directly correlate with each other. Out of the 13 berry extracts and wood-derived terpenes screened, four compounds decreased AHL signalling without effect on growth. These were betulin, raspberry extract and two cloudberry extracts. The effect of these compounds on biofilm formation of the selected six bacterial strains varied. The phenolic extract of freeze-dried cloudberry fruit caused a statistically significant reduction of biofilm formation of Obesumbacterium proteus strain. Further experiments should aim at identifying the active compounds and revealing whether quorum sensing inhibition causes structural changes in the biofilms formed. PMID:24944110

Priha, O; Virkajärvi, V; Juvonen, R; Puupponen-Pimiä, R; Nohynek, L; Alakurtti, S; Pirttimaa, M; Storgårds, E

2014-11-01

225

Degradation of Bacterial Quorum Sensing Signaling Molecules by the Microscopic Yeast Trichosporon loubieri Isolated from Tropical Wetland Waters  

PubMed Central

Proteobacteria produce N-acylhomoserine lactones as signaling molecules, which will bind to their cognate receptor and activate quorum sensing-mediated phenotypes in a population-dependent manner. Although quorum sensing signaling molecules can be degraded by bacteria or fungi, there is no reported work on the degradation of such molecules by basidiomycetous yeast. By using a minimal growth medium containing N-3-oxohexanoylhomoserine lactone as the sole source of carbon, a wetland water sample from Malaysia was enriched for microbial strains that can degrade N-acylhomoserine lactones, and consequently, a basidiomycetous yeast strain WW1C was isolated. Morphological phenotype and molecular analyses confirmed that WW1C was a strain of Trichosporon loubieri. We showed that WW1C degraded AHLs with N-acyl side chains ranging from 4 to 10 carbons in length, with or without oxo group substitutions at the C3 position. Re-lactonisation bioassays revealed that WW1C degraded AHLs via a lactonase activity. To the best of our knowledge, this is the first report of degradation of N-acyl-homoserine lactones and utilization of N-3-oxohexanoylhomoserine as carbon and nitrogen source for growth by basidiomycetous yeast from tropical wetland water; and the degradation of bacterial quorum sensing molecules by an eukaryotic yeast. PMID:24072030

Wong, Cheng-Siang; Koh, Chong-Lek; Sam, Choon-Kook; Chen, Jian Woon; Chong, Yee Meng; Yin, Wai-Fong; Chan, Kok-Gan

2013-01-01

226

Functional Analysis of the Quorum-Sensing Streptococcal Invasion Locus (sil)  

PubMed Central

Group A streptococcus (GAS) causes a wide variety of human diseases, and at the same time, GAS can also circulate without producing symptoms, similar to its close commensal relative, group G streptococcus (GGS). We previously identified, by transposon-tagged mutagenesis, the streptococcal invasion locus (sil). sil is a quorum-sensing regulated locus which is activated by the autoinducer peptide SilCR through the two-component system SilA-SilB. Here we characterize the DNA promoter region necessary for SilA-mediated activation. This site is composed of two direct repeats of 10 bp, separated by a spacer of 11 bp. Fusion of this site to gfp allowed us to systematically introduce single-base substitutions in the repeats region and to assess the relative contribution of various positions to promoter strength. We then developed an algorithm giving different weights to these positions, and performed a chromosome-wide bioinformatics search which was validated by transcriptome analysis. We identified 13 genes, mostly bacteriocin related, that are directly under the control of SilA. Having developed the ability to quantify SilCR signaling via GFP accumulation prompted us to search for GAS and GGS strains that sense and produce SilCR. While the majority of GAS strains lost sil, all GGS strains examined still possess the locus and ?63% are able to respond to exogenously added SilCR. By triggering the autoinduction circle using a minute concentration of synthetic SilCR, we identified GAS and GGS strains that are capable of sensing and naturally producing SilCR, and showed that SilCR can be sensed across these streptococci species. These findings suggest that sil may be involved in colonization and establishment of commensal host-bacterial relationships. PMID:19893632

Belotserkovsky, Ilia; Baruch, Moshe; Peer, Asaf; Dov, Eran; Ravins, Miriam; Mishalian, Inbal; Persky, Merav; Smith, Yoav; Hanski, Emanuel

2009-01-01

227

The Interaction of N-Acylhomoserine Lactone Quorum Sensing Signaling Molecules with Biological Membranes: Implications for Inter-Kingdom Signaling  

PubMed Central

Background The long chain N-acylhomoserine lactone (AHL) quorum sensing signal molecules released by Pseudomonas aeruginosa have long been known to elicit immunomodulatory effects through a process termed inter-kingdom signaling. However, to date very little is known regarding the exact mechanism of action of these compounds on their eukaryotic targets. Methodology/Principal Findings The use of the membrane dipole fluorescent sensor di-8-ANEPPS to characterise the interactions of AHL quorum sensing signal molecules, N-(3-oxotetradecanoyl)-L-homoserine lactone (3-oxo-C14-HSL), N-(3-oxododecanoyl)homoserine-L-lactone (3-oxo-C12-HSL) and N-(3-oxodecanoyl) homoserine-L-lactone (3-oxo-C10 HSL) produced by Pseudomonas aeruginosa with model and cellular membranes is reported. The interactions of these AHLs with artificial membranes reveal that each of the compounds is capable of membrane interaction in the micromolar concentration range causing significant modulation of the membrane dipole potential. These interactions fit simple hyperbolic binding models with membrane affinity increasing with acyl chain length. Similar results were obtained with T-lymphocytes providing the evidence that AHLs are capable of direct interaction with the plasma membrane. 3-oxo-C12-HSL interacts with lymphocytes via a cooperative binding model therefore implying the existence of an AHL membrane receptor. The role of cholesterol in the interactions of AHLs with membranes, the significance of modulating cellular dipole potential for receptor conformation and the implications for immune modulation are discussed. Conclusions/ Significance Our observations support previous findings that increasing AHL lipophilicity increases the immunomodulatory activity of these quorum compounds, while providing evidence to suggest membrane interaction plays an important role in quorum sensing and implies a role for membrane microdomains in this process. Finally, our results suggest the existence of a eukaryotic membrane-located system that acts as an AHL receptor. PMID:20975958

Davis, Benjamin Michael; Jensen, Rasmus; Williams, Paul; O'Shea, Paul

2010-01-01

228

Modulation of Bacterial Quorum Sensing with Synthetic Ligands: Systematic Evaluation of N-Acylated Homoserine Lactones in Multiple Species and New Insights into Their Mechanisms of Action  

PubMed Central

Bacteria use a language of low molecular weight ligands to assess their population densities in a process called quorum sensing. This chemical signaling process plays a pivotal role both in the pathogenesis of infectious disease and in beneficial symbioses. There is intense interest in the development of synthetic ligands that can intercept quorum-sensing signals and attenuate these divergent outcomes. Both broad-spectrum and species-selective modulators of quorum sensing hold significant value as small-molecule tools for fundamental studies of this complex cell–cell signaling process and for future biomedical and environmental applications. Here, we report the design and synthesis of focused collections of non-native N-acylated homoserine lactones and the systematic evaluation of these ~90 ligands across three Gram-negative bacterial species: the pathogens Agrobacterium tumefaciens and Pseudomonas aeruginosa; the model symbiont Vibrio fischeri. This study is the first to report and compare the activities of a set of ligands across multiple species and has revealed some of the most potent synthetic modulators of quorum sensing to date. Moreover, several of these ligands exhibit agonistic or antagonistic activity in all three species, while other ligands are only active in one or two species. Analysis of the screening data revealed that at least a subset of these ligands modulate quorum sensing via a partial agonism mechanism. We also demonstrate that selected ligands can either inhibit or promote the production of elastase B, a key virulence factor in wild-type P. aeruginosa, depending on their concentrations. Overall, this work provides broad insights into the molecular features required for small-molecule inhibition or activation of quorum sensing in Gram-negative bacteria. In addition, this study has supplied an expansive set of chemical tools for the further investigation of quorum-sensing pathways and responses. PMID:17927181

Geske, Grant D.; O'Neill, Jennifer C.; Miller, David M.; Mattmann, Margrith E.; Blackwell, Helen E.

2008-01-01

229

Quorum sensing in Aeromonas salmonicida subsp. achromogenes and the effect of the autoinducer synthase AsaI on bacterial virulence.  

PubMed

The Gram-negative fish pathogenic bacterium Aeromonas salmonicida possesses the LuxIR-type quorum sensing (QS) system, termed AsaIR. In this study the role of QS in A. salmonicida subsp. achromogenes virulence and pigment production was investigated. Five wild-type Asa strains induced the N-acyl-homoserinelactone (AHL) monitor bacteria. HPLC-HR-MS analysis identified only one type of AHL, N-butanoyl-L-homoserine lactone (C4-HSL). A knock out mutant of AsaI, constructed by allelic exchange, did not produce a detectable QS signal and its virulence in fish was significantly impaired, as LD(50) of the AsaI-deficient mutant was 20-fold higher than that of the isogenic wt strain and the mean day to death of the mutant was significantly prolonged. Furthermore, the expression of two virulence factors (a toxic protease, AsaP1, and a cytotoxic factor) and a brown pigment were reduced in the mutant. AsaP1 production was inhibited by synthetic QS inhibitors (N-(propylsulfanylacetyl)-L-homoserine lactone; N-(pentylsulfanylacetyl)-L-homoserine lactone; and N-(heptylsulfanylacetyl)-L-homoserine lactone) at concentrations that did not affect bacterial growth. It is a new finding that the AHL synthase of Aeromonas affects virulence in fish and QS has not previously been associated with A. salmonicida infections in fish. Furthermore, AsaP1 production has not previously been shown to be QS regulated. The simplicity of the A. salmonicida subsp. achromogenes LuxIR-type QS system and the observation that synthetic QSI can inhibit an important virulence factor, AsaP1, without affecting bacterial growth, makes A. salmonicida subsp. achromogenes an interesting target organism to study the effects of QS in disease development and QSI in disease control. PMID:20708354

Schwenteit, Johanna; Gram, Lone; Nielsen, Kristian F; Fridjonsson, Olafur H; Bornscheuer, Uwe T; Givskov, Michael; Gudmundsdottir, Bjarnheidur K

2011-01-27

230

Aspergillus Oxylipin Signaling and Quorum Sensing Pathways Depend on G Protein-Coupled Receptors  

PubMed Central

Oxylipins regulate Aspergillus development and mycotoxin production and are also involved in Aspergillus quorum sensing mechanisms. Despite extensive knowledge of how these oxylipins are synthesized and what processes they regulate, nothing is known about how these signals are detected and transmitted by the fungus. G protein-coupled receptors (GPCR) have been speculated to be involved as they are known oxylipin receptors in mammals, and many putative GPCRs have been identified in the Aspergilli. Here, we present evidence that oxylipins stimulate a burst in cAMP in A. nidulans, and that loss of an A. nidulans GPCR, gprD, prevents this cAMP accumulation. A. flavus undergoes an oxylipin-mediated developmental shift when grown at different densities, and this regulates spore, sclerotial and aflatoxin production. A. flavus encodes two putative GprD homologs, GprC and GprD, and we demonstrate here that they are required to transition to a high-density development state, as well as to respond to spent medium of a high-density culture. The finding of GPCRs that regulate production of survival structures (sclerotia), inoculum (spores) and aflatoxin holds promise for future development of anti-fungal therapeutics. PMID:23105976

Affeldt, Katharyn J.; Brodhagen, Marion; Keller, Nancy P.

2012-01-01

231

Dynamics of AHL mediated quorum sensing under flow and non-flow conditions  

NASA Astrophysics Data System (ADS)

Quorum sensing (QS) describes the capability of microbes to communicate with each other by the aid of small molecules. Here we investigate the dynamics of QS-regulated gene expression induced by acylhomoserine lactones (AHLs) in Pseudomonas putida IsoF containing a green fluorescent protein-based AHL reporter. The fluorescence time course of individual colonies is monitored following the external addition of a defined AHL concentration to cells which had previously reached the QS-inactive state in AHL-free medium. Using a microfluidic setup the experiment is performed both under flow and non-flow conditions. We find that without supplying external AHL gene expression is induced without flow while flow suppresses the induction. Both without and with flow, at a low AHL concentration the fluorescence onset is significantly delayed while fluorescence starts to increase directly upon the addition of AHL at a high concentration. The differences between no flow and flow can be accounted for using a two-compartment model. This indicates AHL accumulation in a volume which is not affected by the flow. The experiments furthermore show significant cell-to-cell and colony-to-colony variability which is discussed in the context of a compartmentalized QS mechanism.

Meyer, Andrea; Megerle, Judith A.; Kuttler, Christina; Müller, Johannes; Aguilar, Claudio; Eberl, Leo; Hense, Burkhard A.; Rädler, Joachim O.

2012-04-01

232

Uracil influences quorum sensing and biofilm formation in Pseudomonas aeruginosa and fluorouracil is an antagonist  

PubMed Central

Summary Pseudomonas aeruginosa is an ubiquitous, opportunistic pathogen whose biofilms are notoriously difficult to control. Here we discover uracil influences all three known quorum?sensing (QS) pathways of P. aeruginosa. By screening 5850 transposon mutants for altered biofilm formation, we identified seven uracil?related mutations that abolished biofilm formation. Whole?transcriptome studies showed the uracil mutations (e.g. pyrF that catalyses the last step in uridine monophosphate synthesis) alter the regulation of all three QS pathways [LasR?, RhlR? and 2?heptyl?3?hydroxy?4?quinolone (PQS)?related regulons]; addition of extracellular uracil restored global wild?type regulation. Phenotypic studies confirmed uracil influences the LasR (elastase), RhlR (pyocyanin, rhamnolipids), PQS and swarming regulons. Our results also demonstrate uracil influences virulence (the pyrF mutant was less virulent to barley). Additionally, we found an anticancer uracil analogue, 5?fluorouracil, that repressed biofilm formation, abolished QS phenotypes and reduced virulence. Hence, we have identified a central regulator of an important pathogen and a potential novel class of efficacious drugs for controlling cellular behaviour (e.g. biofilm formation and virulence). PMID:21261882

Ueda, Akihiro; Attila, Can; Whiteley, Marvin; Wood, Thomas K.

2009-01-01

233

Combinatorial quorum sensing allows bacteria to resolve their social and physical environment  

PubMed Central

Quorum sensing (QS) is a cell–cell communication system that controls gene expression in many bacterial species, mediated by diffusible signal molecules. Although the intracellular regulatory mechanisms of QS are often well-understood, the functional roles of QS remain controversial. In particular, the use of multiple signals by many bacterial species poses a serious challenge to current functional theories. Here, we address this challenge by showing that bacteria can use multiple QS signals to infer both their social (density) and physical (mass-transfer) environment. Analytical and evolutionary simulation models show that the detection of, and response to, complex social/physical contrasts requires multiple signals with distinct half-lives and combinatorial (nonadditive) responses to signal concentrations. We test these predictions using the opportunistic pathogen Pseudomonas aeruginosa and demonstrate significant differences in signal decay between its two primary signal molecules, as well as diverse combinatorial responses to dual-signal inputs. QS is associated with the control of secreted factors, and we show that secretome genes are preferentially controlled by synergistic “AND-gate” responses to multiple signal inputs, ensuring the effective expression of secreted factors in high-density and low mass-transfer environments. Our results support a new functional hypothesis for the use of multiple signals and, more generally, show that bacteria are capable of combinatorial communication. PMID:24594597

Cornforth, Daniel M.; Popat, Roman; McNally, Luke; Gurney, James; Scott-Phillips, Thomas C.; Ivens, Alasdair; Diggle, Stephen P.; Brown, Sam P.

2014-01-01

234

The vitamin riboflavin and its derivative lumichrome activate the LasR bacterial quorum sensing receptor  

PubMed Central

Many bacteria use quorum sensing (QS) as an intercellular signaling mechanism to regulate gene expression in local populations. Plant and algal hosts, in turn, secrete compounds that mimic bacterial QS signals, allowing these hosts to manipulate QS-regulated gene expression in bacteria. Lumichrome, a derivative of the vitamin riboflavin, was purified and chemically identified from culture filtrates of the alga Chlamydomonas as a QS signal-mimic compound capable of stimulating the Pseudomonas aeruginosa LasR QS receptor. LasR normally recognizes the N-acyl homoserine lactone (AHL) signal, N-3-oxo-dodecanoyl homoserine lactone (3-oxo-C12-HSL). Authentic lumichrome and riboflavin stimulated the LasR receptor in bioassays, and lumichrome activated LasR in gel shift experiments. Amino acid substitutions in LasR residues required for AHL binding altered responses to both AHLs and lumichrome/riboflavin. These results and docking studies indicate that the AHL binding pocket of LasR recognizes both AHLs and the structurally dissimilar lumichrome/riboflavin. Bacteria, plants and algae commonly secrete riboflavin and/or lumichrome, raising the possibility that these compounds could serve as either QS signals or as interkingdom signal-mimics capable of manipulating QS in bacteria with a LasR-like receptor. PMID:18700823

Rajamani, Sathish; Bauer, Wolfgang D.; Robinson, Jayne B.; Farrow, John M.; Pesci, Everett C.; Teplitski, Max; Gao, Mengsheng; Sayre, Richard T.; Phillips, Donald A.

2013-01-01

235

Attenuation of quorum sensing controlled virulence of Pseudomonas aeruginosa by cranberry  

PubMed Central

Background & objectives: Emergence of antimicrobial resistance in Pseudomonas aeruginosa has led to the search for alternative agents for infections control. Natural products have been a good alternative to present antibiotics. The present study was undertaken to evaluate the effectiveness of cranberry in attenuation of virulence of P. aeruginosa in experimental urinary tract infection (UTI) in mouse model. Efforts were also directed to explore the action of cranberry towards virulence of P. aeruginosa through quorum sensing (QS) inhibition. Methods: Efficacy of cranberry was evaluated in an experimental UTI mouse model and on production of QS signals, alginate, pyochelin, haemolysin, phospholipase-C, cell-surface hydrophobicity, uroepithelial cell-adhesion assay and biofilm formation by already standardized methods. Results: Presence of cranberry showed significant decline in the production of QS signals, biofilm formation and virulence factors of P. aeruginosa in vitro (P<0.001). Further, cranberry was found to be useful in prevention of experimental UTI in mouse model as indicated by reduced renal bacterial colonization and kidney tissues destruction. Interpretation & conclusions: The findings of the present study indicated that cranberry inhibited QS and hence elaboration of virulence factors of P. aeruginosa. It also affected the adherence ability of this pathogen. This approach can lead to the discovery of new category of safe anti-bacterial drugs from dietary sources such as cranberry with reduced toxicity without the risk of antibiotic resistance. PMID:24820840

Harjai, Kusum; Gupta, Ravi Kumar; Sehgal, Himanshi

2014-01-01

236

Solonamide B Inhibits Quorum Sensing and Reduces Staphylococcus aureus Mediated Killing of Human Neutrophils  

PubMed Central

Methicillin-resistant Staphylococcus aureus (MRSA) continues to be a serious human pathogen, and particularly the spread of community associated (CA)-MRSA strains such as USA300 is a concern, as these strains can cause severe infections in otherwise healthy adults. Recently, we reported that a cyclodepsipeptide termed Solonamide B isolated from the marine bacterium, Photobacterium halotolerans strongly reduces expression of RNAIII, the effector molecule of the agr quorum sensing system. Here we show that Solonamide B interferes with the binding of S. aureus autoinducing peptides (AIPs) to sensor histidine kinase, AgrC, of the agr two-component system. The hypervirulence of USA300 has been linked to increased expression of central virulence factors like ?-hemolysin and the phenol soluble modulins (PSMs). Importantly, in strain USA300 Solonamide B dramatically reduced the activity of ?-hemolysin and the transcription of psma encoding PSMs with an 80% reduction in toxicity of supernatants towards human neutrophils and rabbit erythrocytes. To our knowledge this is the first report of a compound produced naturally by a Gram-negative marine bacterium that interferes with agr and affects both RNAIII and AgrA controlled virulence gene expression in S. aureus. PMID:24416329

Nielsen, Anita; Mansson, Maria; Bojer, Martin S.; Gram, Lone; Larsen, Thomas O.; Novick, Richard P.; Frees, Dorte; Fr?kiaer, Hanne; Ingmer, Hanne

2014-01-01

237

Anti-Quorum Sensing Potential of Crude Kigelia africana Fruit Extracts  

PubMed Central

The increasing incidence of multidrug-resistant pathogens has stimulated the search for novel anti-virulence compounds. Although many phytochemicals show promising antimicrobial activity, their power lies in their anti-virulence properties. Thus the quorum sensing (QS) inhibitory activity of four crude Kigelia africana fruit extracts was assessed qualitatively and quantitatively using the Chromobacterium violaceum and Agrobacterium tumefaciens biosensor systems. Inhibition of QS-controlled violacein production in C. violaceum was assayed using the qualitative agar diffusion assay as well as by quantifying violacein inhibition using K. africana extracts ranging from 0.31–8.2 mg/mL. Qualitative modulation of QS activity was investigated using the agar diffusion double ring assay. All four extracts showed varying levels of anti-QS activity with zones of violacein inhibition ranging from 9–10 mm. The effect on violacein inhibition was significant in the following order: hexane > dichloromethane > ethyl acetate > methanol. Inhibition was concentration-dependent, with the ?90% inhibition being obtained with ?1.3 mg/mL of the hexane extract. Both LuxI and LuxR activity were affected by crude extracts suggesting that the phytochemicals target both QS signal and receptor. K. africana extracts with their anti-QS activity, have the potential to be novel therapeutic agents, which might be important in reducing virulence and pathogenicity of drug-resistant bacteria in vivo. PMID:23447012

Chenia, Hafizah Y.

2013-01-01

238

Genes as Early Responders Regulate Quorum-Sensing and Control Bacterial Cooperation in Pseudomonas aeruginosa  

PubMed Central

Quorum-sensing (QS) allows bacterial communication to coordinate the production of extracellular products essential for population fitness at higher cell densities. It has been generally accepted that a significant time duration is required to reach appropriate cell density to activate the relevant quiescent genes encoding these costly but beneficial public goods. Which regulatory genes are involved and how these genes control bacterial communication at the early phases are largely un-explored. By determining time-dependent expression of QS-related genes of the opportunistic pathogen Pseudomonas aerugionsa, we show that the induction of social cooperation could be critically influenced by environmental factors to optimize the density of population. In particular, small regulatory RNAs (RsmY and RsmZ) serving as early responders, can promote the expression of dependent genes (e.g. lasR) to boost the synthesis of intracellular enzymes and coordinate instant cooperative behavior in bacterial cells. These early responders, acting as a rheostat to finely modulate bacterial cooperation, which may be quickly activated under environment threats, but peter off when critical QS dependent genes are fully functional for cooperation. Our findings suggest that RsmY and RsmZ critically control the timing and levels of public goods production, which may have implications in sociomicrobiology and infection control. PMID:25006971

Zhao, Kelei; Li, Yi; Yue, Bisong; Wu, Min

2014-01-01

239

2,5-Piperazinedione inhibits quorum sensing-dependent factor production in Pseudomonas aeruginosa PAO1.  

PubMed

The effects of 2,5-piperazinedione in reducing the production of quorum sensing (QS)-dependent factors in Pseudomonas aeruginosa PAO1 were assessed both in vitro and in vivo. 2,5-Piperazinedione exhibited a 69% reduction in the azocasein-degrading proteolytic activity and a 48% reduction in the elastolytic activity of PAO1. Further, it showed 85% and 96% reduction in the production of pyocyanin and extracellular polymeric substances (EPS) of PAO1, respectively. In the swimming inhibition assay, 2,5-piperazinedione-treated PAO1 cells exhibited poor swimming motility in swim agar medium. In the in vivo analysis, an enhanced survival of PAO1-preinfected Caenorhabditis elegans was observed after treatment with 2,5-piperazinedione. Regarding the mode of action, in the molecular docking analysis, 2,5-piperazinedione interacts with the amino acid residue of the LasR receptor protein required for binding the natural ligand N -3-oxododecanoyl-l-homoserine lactone (3-oxo-C12-HSL). This demonstrates the probability of 2,5-piperazinedione to interfere with the binding process of 3-oxo-C12-HSL to its receptor protein. Thus, the findings of the present study reveal the potential of 2,5-piperazinedione in reducing the QS-dependent phenotypic features of PAO1. PMID:22359266

Musthafa, Khadar Syed; Balamurugan, Krishnaswamy; Pandian, Shunmugiah Karutha; Ravi, Arumugam Veera

2012-12-01

240

Solonamide B inhibits quorum sensing and reduces Staphylococcus aureus mediated killing of human neutrophils.  

PubMed

Methicillin-resistant Staphylococcus aureus (MRSA) continues to be a serious human pathogen, and particularly the spread of community associated (CA)-MRSA strains such as USA300 is a concern, as these strains can cause severe infections in otherwise healthy adults. Recently, we reported that a cyclodepsipeptide termed Solonamide B isolated from the marine bacterium, Photobacterium halotolerans strongly reduces expression of RNAIII, the effector molecule of the agr quorum sensing system. Here we show that Solonamide B interferes with the binding of S. aureus autoinducing peptides (AIPs) to sensor histidine kinase, AgrC, of the agr two-component system. The hypervirulence of USA300 has been linked to increased expression of central virulence factors like ?-hemolysin and the phenol soluble modulins (PSMs). Importantly, in strain USA300 Solonamide B dramatically reduced the activity of ?-hemolysin and the transcription of psma encoding PSMs with an 80% reduction in toxicity of supernatants towards human neutrophils and rabbit erythrocytes. To our knowledge this is the first report of a compound produced naturally by a Gram-negative marine bacterium that interferes with agr and affects both RNAIII and AgrA controlled virulence gene expression in S. aureus. PMID:24416329

Nielsen, Anita; Månsson, Maria; Bojer, Martin S; Gram, Lone; Larsen, Thomas O; Novick, Richard P; Frees, Dorte; Frøkiær, Hanne; Ingmer, Hanne

2014-01-01

241

Quorum sensing communication between bacteria and human cells: signals, targets, and functions  

PubMed Central

Both direct and long-range interactions between pathogenic Pseudomonas aeruginosa bacteria and their eukaryotic hosts are important in the outcome of infections. For cell-to-cell communication, these bacteria employ the quorum sensing (QS) system to pass on information of the density of the bacterial population and collectively switch on virulence factor production, biofilm formation, and resistance development. Thus, QS allows bacteria to behave as a community to perform tasks which would be impossible for individual cells, e.g., to overcome defense and immune systems and establish infections in higher organisms. This review highlights these aspects of QS and our own recent research on how P. aeruginosa communicates with human cells using the small QS signal molecules N-acyl homoserine lactones (AHL). We focus on how this conversation changes the behavior and function of neutrophils, macrophages, and epithelial cells and on how the signaling machinery in human cells responsible for the recognition of AHL. Understanding the bacteria–host relationships at both cellular and molecular levels is essential for the identification of new targets and for the development of novel strategies to fight bacterial infections in the future. PMID:25018766

Holm, Angelika; Vikstrom, Elena

2014-01-01

242

Quorum sensing has an unexpected role in virulence in the model pathogen Citrobacter rodentium  

PubMed Central

The bacterial mouse pathogen Citrobacter rodentium causes attaching and effacing (AE) lesions in the same manner as pathogenic Escherichia coli, and is an important model for this mode of pathogenesis. Quorum sensing (QS) involves chemical signalling by bacteria to regulate gene expression in response to cell density. E. coli has never been reported to have N-acylhomoserine lactone (AHL) QS, but it does utilize luxS-dependent signalling. We found production of AHL QS signalling molecules by an AE pathogen, C. rodentium. AHL QS is directed by the croIR locus and a croI mutant is affected in its surface attachment, although not in Type III secretion. AHL QS has an important role in virulence in the mouse as, unexpectedly, the QS mutant is hypervirulent; by contrast, we detected no impact of luxS inactivation. Further study of QS in Citrobacter should provide new insights into AE pathogenesis. As the croIR locus might have been horizontally acquired, AHL QS might exist in some strains of pathogenic E. coli. PMID:17557113

Coulthurst, Sarah J; Clare, Simon; Evans, Terry J; Foulds, Ian J; Roberts, Kevin J; Welch, Martin; Dougan, Gordon; Salmond, George P C

2007-01-01

243

Identification of a Quorum-Sensing Signal Molecule in the Facultative Intracellular Pathogen Brucella melitensis  

PubMed Central

Brucella melitensis is a gram-negative alpha2-proteobacterium responsible for abortion in goats and for Malta fever in humans. This facultative intracellular pathogen invades and survives within both professional and nonprofessional phagocytes. A dichloromethane extract of spent culture supernatant from B. melitensis induces bioluminescence in an Escherichia coli acyl-homoserine lactone (acyl-HSL) biosensor strain based upon the activity of the LasR protein of Pseudomonas aeruginosa. HPLC fractionation of the extract, followed by mass spectrometry, identified the major active molecule as N-dodecanoylhomoserine lactone (C12-HSL). This is the first report of the production of an acyl-HSL by an intracellular pathogen. The addition of synthetic C12-HSL to an early log phase culture of either B. melitensis or Brucella suis 1330 reduces the transcription of the virB operon, which contains virulence genes known to be required for intracellular survival. This mimics events seen during the stationary phase of growth and suggests that quorum sensing may play a role in the control of virulence in Brucella. PMID:12010991

Taminiau, Bernard; Daykin, Mavis; Swift, Simon; Boschiroli, Maria-Laura; Tibor, Anne; Lestrate, Pascal; De Bolle, Xavier; O'Callaghan, David; Williams, Paul; Letesson, Jean-Jacques

2002-01-01

244

Altering Plant–Microbe Interaction Through Artificially Manipulating Bacterial Quorum Sensing  

PubMed Central

Many bacteria regulate diverse physiological processes in concert with their population size. Bacterial cell?to?cell communication utilizes small diffusible signal molecules, which the bacteria both produce and perceive. The bacteria couple gene expression to cell density by eliciting a response only when the signalling molecules reach a critical threshold (a point at which the population is said to be ‘quorate’). The population as a whole is thus able to modify its behaviour as a single unit. Amongst Gram?negative bacteria, the quorum sensing signals most commonly used are N?acylhomoserine lactones (AHLs). It is now apparent that AHLs are used for regulating diverse behaviours in epiphytic, rhizosphere?inhabiting and plant pathogenic bacteria and that plants may produce their own metabolites that interfere with this signalling. Transgenic plants that produce high levels of AHLs or which can degrade bacterial?produced AHLs have been made. These plants have dramatically altered susceptibilities to infection by pathogenic Erwinia species. In addition, such plants will prove useful tools in determining the roles of AHL?regulated density?dependent behaviour in growth promoting, biological control and pathogenic plant?associated bacterial species. PMID:12096736

FRAY, RUPERT G.

2002-01-01

245

Caenorhabditis elegans recognizes a bacterial quorum-sensing signal molecule through the AWCON neuron.  

PubMed

In a process known as quorum sensing, bacteria use chemicals called autoinducers for cell-cell communication. Population-wide detection of autoinducers enables bacteria to orchestrate collective behaviors. In the animal kingdom detection of chemicals is vital for success in locating food, finding hosts, and avoiding predators. This behavior, termed chemotaxis, is especially well studied in the nematode Caenorhabditis elegans. Here we demonstrate that the Vibrio cholerae autoinducer (S)-3-hydroxytridecan-4-one, termed CAI-1, influences chemotaxis in C. elegans. C. elegans prefers V. cholerae that produces CAI-1 over a V. cholerae mutant defective for CAI-1 production. The position of the CAI-1 ketone moiety is the key feature driving CAI-1-directed nematode behavior. CAI-1 is detected by the C. elegans amphid sensory neuron AWC(ON). Laser ablation of the AWC(ON) cell, but not other amphid sensory neurons, abolished chemoattraction to CAI-1. These analyses define the structural features of a bacterial-produced signal and the nematode chemosensory neuron that permit cross-kingdom interaction. PMID:25092291

Werner, Kristen M; Perez, Lark J; Ghosh, Rajarshi; Semmelhack, Martin F; Bassler, Bonnie L

2014-09-19

246

Inhibition of Bacterial Quorum Sensing by Extracts from Aquatic Fungi: First Report from Marine Endophytes  

PubMed Central

In our search for quorum-sensing (QS) disrupting molecules, 75 fungal isolates were recovered from reef organisms (endophytes), saline lakes and mangrove rhizosphere. Their QS inhibitory activity was evaluated in Chromobacterium violaceum CVO26. Four strains of endophytic fungi stood out for their potent activity at concentrations from 500 to 50 ?g mL?1. The molecular characterization, based on the internal transcribed spacer (ITS) region sequences (ITS1, 5.8S and ITS2) between the rRNA of 18S and 28S, identified these strains as belonging to four genera: Sarocladium (LAEE06), Fusarium (LAEE13), Epicoccum (LAEE14), and Khuskia (LAEE21). Interestingly, three came from coral species and two of them came from the same organism, the coral Diploria strigosa. Metabolic profiles obtained by Liquid Chromatography-High Resolution Mass Spectrometry (LC-HRMS) suggest that a combination of fungal secondary metabolites and fatty acids could be the responsible for the observed activities. The LC-HRMS analysis also revealed the presence of potentially new secondary metabolites. This is, to the best of our knowledge, the first report of QS inhibition by marine endophytic fungi. PMID:25415350

Martín-Rodríguez, Alberto J.; Reyes, Fernando; Martín, Jesús; Pérez-Yépez, Juan; León-Barrios, Milagros; Couttolenc, Alan; Espinoza, César; Trigos, Ángel; Martín, Víctor S.; Norte, Manuel; Fernández, José J.

2014-01-01

247

Global and Phylogenetic Distribution of Quorum Sensing Signals, Acyl Homoserine Lactones, in the Family of Vibrionaceae  

PubMed Central

Bacterial quorum sensing (QS) and the corresponding signals, acyl homoserine lactones (AHLs), were first described for a luminescent Vibrio species. Since then, detailed knowledge has been gained on the functional level of QS; however, the abundance of AHLs in the family of Vibrionaceae in the environment has remained unclear. Three hundred and one Vibrionaceae strains were collected on a global research cruise and the prevalence and profile of AHL signals in this global collection were determined. AHLs were detected in 32 of the 301 strains using Agrobacterium tumefaciens and Chromobacterium violaceum reporter strains. Ethyl acetate extracts of the cultures were analysed by ultra-high performance liquid chromatography-high resolution mass spectrometry (MS) with automated tandem MS confirmation for AHLs. N-(3-hydroxy-hexanoyl) (OH-C6) and N-(3-hydroxy-decanoyl) (OH-C10) homoserine lactones were the most common AHLs found in 17 and 12 strains, respectively. Several strains produced a diversity of different AHLs, including N-heptanoyl (C7) HL. AHL-producing Vibrionaceae were found in polar, temperate and tropical waters. The AHL profiles correlated with strain phylogeny based on gene sequence homology, however not with geographical location. In conclusion, a wide range of AHL signals are produced by a number of clades in the Vibrionaceae family and these results will allow future investigations of inter- and intra-species interactions within this cosmopolitan family of marine bacteria. PMID:25419995

Barker Rasmussen, Bastian; Fog Nielsen, Kristian; Machado, Henrique; Melchiorsen, Jette; Gram, Lone; Sonnenschein, Eva C.

2014-01-01

248

Antibacterial and quorum sensing regulatory activities of some traditional Eastern-European medicinal plants.  

PubMed

The objective of this study was to screen extracts of twenty Eastern European medicinal plants, using wild-type and reporter Chromobacterium violaceum bioassays, for novel components that target bacterial cells and their quorum sensing (QS) communication systems. Three types of activity and their combinations were revealed: (i) direct antimicrobial growth-inhibitory activity, (ii) non-specific and specific pro-QS activities, (iii) anti-QS activity. Among seven plant extracts showing direct growth-inhibitory activity, the strongest effect was shown by Arctostaphylos uva-ursi (bearberry) leaves. Many plants stimulated violacein production by wild-type C. violaceum ATCC 31532 in a non-specific manner, and only the herb Bidens tripartita (three-lobe beggarticks) contained compounds that mimic acyl-homoserine lactone and operated as a QS agonist. Anti-QS activity was found in eleven plants including Quercus robur (oak) cortex, Betula verrucosa (birch) buds and Eucalyptus viminalis (Manna Gum) leaves. Subsequent statistical analysis showed differences between antimicrobial and anti-QS activities, whereas both activities were defined by phylogenetic position of medical resource plant. Finally, extract from Quercus robur cortex revealed at least two fractions, showing different anti-QS mechanisms. These data confirm that multicomponent anti-infectious mechanisms are used by plants, which may be useful for drug development. PMID:24914718

Tolmacheva, Anna A; Rogozhin, Eugene A; Deryabin, Dmitry G

2014-06-01

249

Methylobacterium-plant interaction genes regulated by plant exudate and quorum sensing molecules  

PubMed Central

Bacteria from the genus Methylobacterium interact symbiotically (endophytically and epiphytically) with different plant species. These interactions can promote plant growth or induce systemic resistance, increasing plant fitness. The plant colonization is guided by molecular communication between bacteria-bacteria and bacteria-plants, where the bacteria recognize specific exuded compounds by other bacteria (e.g. homoserine molecules) and/or by the plant roots (e.g. flavonoids, ethanol and methanol), respectively. In this context, the aim of this study was to evaluate the effect of quorum sensing molecules (N-acyl-homoserine lactones) and plant exudates (including ethanol) in the expression of a series of bacterial genes involved in Methylobacterium-plant interaction. The selected genes are related to bacterial metabolism (mxaF), adaptation to stressful environment (crtI, phoU and sss), to interactions with plant metabolism compounds (acdS) and pathogenicity (patatin and phoU). Under in vitro conditions, our results showed the differential expression of some important genes related to metabolism, stress and pathogenesis, thereby AHL molecules up-regulate all tested genes, except phoU, while plant exudates induce only mxaF gene expression. In the presence of plant exudates there is a lower bacterial density (due the endophytic and epiphytic colonization), which produce less AHL, leading to down regulation of genes when compared to the control. Therefore, bacterial density, more than plant exudate, influences the expression of genes related to plant-bacteria interaction. PMID:24688531

Dourado, Manuella Nobrega; Bogas, Andrea Cristina; Pomini, Armando M.; Andreote, Fernando Dini; Quecine, Maria Carolina; Marsaioli, Anita J.; Araujo, Welington Luiz

2013-01-01

250

Detection of Quorum Sensing Signal Molecules in Edwardsiella ictaluri Ei-151.  

PubMed

Edwardsiella ictaluri is a Gram-negative pathogenic bacterium in the family Enterobacteriaceae that causes enteric septicemia of catfish, which has become a significant problem in the aquaculture of striped catfish (Pangasianodon hypophthalmus) in Vietnam. In this study, a bacterium designated as Ei-151 was isolated from diseased striped catfish and proved to be virulent. Based on 16S rDNA sequencing and phenotypic tests, the pathogenic bacterium was identified as Edw. ictaluri. The presence of quorum sensing signal molecules in Edw. ictaluri Ei-151 was detected with different biosensor strains. The results showed that Ei-151 produced at least three kinds of acylated homoserine lactone (AHL) signal molecules as detected with the biosensor Agrobacterium tumefaciens KYC55, and the AHLs fingerprint was similar to that of Edw. tarda. During its entire growth, the levels of AHLs and autoinducer-2 produced by Ei-151 peaked at the stationary phase (OD600 1.8), which suggested that both of them may function at the stationary phase. No Cholerae autoinducer-1-like activity (including Edw. ictaluri LMG7860(T)) was detected. PMID:24293714

Yang, Qian; Han, Yin; Tinh, Nguyen Thi Ngoc; Hien, Nguyen Thi; Bossier, Peter

2012-12-01

251

Oxidative DNA damage protective activity, antioxidant and anti-quorum sensing potentials of Moringa oleifera.  

PubMed

The aqueous extract of leaf (LE), fruit (FE) and seed (SE) of Moringa oleifera was assessed to examine the ability to inhibit the oxidative DNA damage, antioxidant and anti-quorum sensing (QS) potentials. It was found that these extracts could significantly inhibit the OH-dependent damage of pUC18 plasmid DNA and also inhibit synergistically with trolox, with an activity sequence of LE > FE > SE. HPLC and MS/MS analysis was carried out, which showed the presence of gallic acid, chlorogenic acid, ellagic acid, ferulic acid, kaempferol, quercetin and vanillin. The LE was with comparatively higher total phenolics content (105.04 mg gallic acid equivalents (GAE)/g), total flavonoids content (31.28 mg quercetin equivalents (QE)/g), and ascorbic acid content (106.95 mg/100 g) and showed better antioxidant activity (85.77%), anti-radical power (74.3), reducing power (1.1 ascorbic acid equivalents (ASE)/ml), inhibition of lipid peroxidation, protein oxidation, OH-induced deoxyribose degradation, and scavenging power of superoxide anion and nitric oxide radicals than did the FE, SE and standard alpha-tocopherol. Eventually, LE and FE were found to inhibit violacein production, a QS-regulated behavior in Chromobacterium violaceum 12472. PMID:19425184

Singh, Brahma N; Singh, B R; Singh, R L; Prakash, D; Dhakarey, R; Upadhyay, G; Singh, H B

2009-06-01

252

Quorum Sensing Contributes to Natural Transformation of Vibrio cholerae in a Species-Specific Manner?  

PubMed Central

Although it is a human pathogen, Vibrio cholerae is a regular member of aquatic habitats, such as coastal regions and estuaries. Within these environments, V. cholerae often takes advantage of the abundance of zooplankton and their chitinous molts as a nutritious surface on which the bacteria can form biofilms. Chitin also induces the developmental program of natural competence for transformation in several species of the genus Vibrio. In this study, we show that V. cholerae does not distinguish between species-specific and non-species-specific DNA at the level of DNA uptake. This is in contrast to what has been shown for other Gram-negative bacteria, such as Neisseria gonorrhoeae and Haemophilus influenzae. However, species specificity with respect to natural transformation still occurs in V. cholerae. This is based on a positive correlation between quorum sensing and natural transformation. Using mutant-strain analysis, cross-feeding experiments, and synthetic cholera autoinducer-1 (CAI-1), we provide strong evidence that the species-specific signaling molecule CAI-1 plays a major role in natural competence for transformation. We suggest that CAI-1 can be considered a competence pheromone. PMID:21784943

Suckow, Gaia; Seitz, Patrick; Blokesch, Melanie

2011-01-01

253

Evaluation of the effects of selected phytochemicals on quorum sensing inhibition and in vitro cytotoxicity.  

PubMed

Quorum sensing (QS) is an important regulatory mechanism in biofilm formation and differentiation. Interference with QS can affect biofilm development and antimicrobial susceptibility. This study evaluates the potential of selected phytochemical products to inhibit QS. Three isothiocyanates (allylisothiocyanate - AITC, benzylisothiocyanate - BITC and 2-phenylethylisothiocyanate - PEITC) and six phenolic products (gallic acid - GA, ferulic acid - FA, caffeic acid - CA, phloridzin - PHL, (-) epicatechin - EPI and oleuropein glucoside - OG) were tested. A disc diffusion assay based on pigment inhibition in Chromobacterium violaceum CV12472 was performed. In addition, the mechanisms of QS inhibition (QSI) based on the modulation of N-acyl homoserine lactone (AHLs) activity and synthesis by the phytochemicals were investigated. The cytotoxicity of each product was tested on a cell line of mouse lung fibroblasts. AITC, BITC and PEITC demonstrated a capacity for QSI by modulation of AHL activity and synthesis, interfering the with QS systems of C. violaceum CviI/CviR homologs of LuxI/LuxR systems. The cytotoxic assays demonstrated low effects on the metabolic viability of the fibroblast cell line only for FA, PHL and EPI. PMID:24344870

Borges, Anabela; Serra, Sofia; Cristina Abreu, Ana; Saavedra, Maria J; Salgado, António; Simões, Manuel

2014-02-01

254

Bacillus marcorestinctum sp. nov., a Novel Soil Acylhomoserine Lactone Quorum-Sensing Signal Quenching Bacterium  

PubMed Central

A Gram-positive, facultatively anaerobic, endospore-forming and rod-shaped bacterium was isolated from soil samples and designated strain LQQ. This organism strongly quenches the acylhomoserine lactone quorum-sensing signal. The LQQ strain exhibits phenotypic characteristics consistent with its classification in the genus Bacillus. It is positive in catalase and no special growth factor is needed. It uses glucose as sole carbon source. The DNA G + C content is 39.8 mol %. The closest relatives based on the 16S rRNA gene sequence are Bacillus anthracis, Bacillus thuringiensis, and Brevibacillus brevis (syn. Bacillus brevis) with the similarity of 96.5%. The DNA–DNA hybridization data indicates a low level of genomic relatedness with the relative type strains of Bacillus thuringiensis (6.1%), Bacillus anthracis (10.5%) and Brevibacillus brevis (8.7%). On the basis of the phenotypic and phylogenetic data together with the genomic distinctiveness, the LQQ strain represents a novel species of the genus Bacillus, for which the name Bacillus marcorestinctum sp. nov. is proposed. The type strain is LQQT. PMID:20386651

Han, Yan; Chen, Fang; Li, Nuo; Zhu, Bo; Li, Xianzhen

2010-01-01

255

Single cell analysis of Vibrio harveyi uncovers functional heterogeneity in response to quorum sensing signals  

PubMed Central

Background Vibrio harveyi and closely related species are important pathogens in aquaculture. A complex quorum sensing cascade involving three autoinducers controls bioluminescence and several genes encoding virulence factors. Single cell analysis of a V. harveyi population has already indicated intercellular heterogeneity in the production of bioluminescence. This study was undertaken to analyze the expression of various autoinducer-dependent genes in individual cells. Results Here we used reporter strains bearing promoter::gfp fusions to monitor the induction/repression of three autoinducer-regulated genes in wild type conjugates at the single cell level. Two genes involved in pathogenesis - vhp and vscP, which code for an exoprotease and a component of the type III secretion system, respectively, and luxC (the first gene in the lux operon) were chosen for analysis. The lux operon and the exoprotease gene are induced, while vscP is repressed at high cell density. As controls luxS and recA, whose expression is not dependent on autoinducers, were examined. The responses of the promoter::gfp fusions in individual cells from the same culture ranged from no to high induction. Importantly, simultaneous analysis of two autoinducer induced phenotypes, bioluminescence (light detection) and exoproteolytic activity (fluorescence of a promoter::gfp fusion), in single cells provided evidence for functional heterogeneity within a V. harveyi population. Conclusions Autoinducers are not only an indicator for cell density, but play a pivotal role in the coordination of physiological activities within the population. PMID:22985329

2012-01-01

256

A New Transcriptional Repressor of the Pseudomonas aeruginosa Quorum Sensing Receptor Gene lasR  

PubMed Central

Pseudomonas aeruginosa pathogenic potential is controlled via multiple regulatory pathways, including three quorum sensing (QS) systems. LasR is a key QS signal receptor since it acts as a global transcriptional regulator required for optimal expression of main virulence factors. P. aeruginosa modulates the QS response by integrating this cell density-dependent circuit to environmental and metabolic cues. Hence, QS also controls the adaptation to challenging environmental niches, such as infection sites. However, little is known about the molecular mechanisms connecting QS and other signalling pathways. In this work, DNA-affinity chromatography was used to identify new lasR transcriptional regulators. This approach led to the identification and functional characterization of the TetR-like transcriptional repressor PA3699. This protein was purified and shown to directly bind to the lasR promoter region in vitro. The induction of PA3699 expression in P. aeruginosa PAO1 cultures repressed lasR promoter activity and the production of LasR-dependent virulence factors, such as elastase, pyocyanin, and proteases. These findings suggest a role for PA3699 in P. aeruginosa pathogenicity. P. aeruginosa genome encodes at least 38 TetR-family proteins, and PA3699 is the eighth member of this group functionally characterized so far and the first one shown to bind the lasR promoter in vitro. PMID:23861975

Longo, Francesca; Rampioni, Giordano; Bondi, Roslen; Imperi, Francesco; Fimia, Gian Maria; Visca, Paolo; Zennaro, Elisabetta; Leoni, Livia

2013-01-01

257

Passive control of quorum sensing: prevention of Pseudomonas aeruginosa biofilm formation by imprinted polymers.  

PubMed

Here we present the first molecular imprinted polymer (MIP) that is able to attenuate the biofilm formation of the opportunistic human pathogen Pseudomonas aeruginosa through specific sequestration of its signal molecule N-(3-oxododecanoyl)-L-homoserine lactone (3-oxo-C(12)-AHL). The MIP was rationally designed using computational modeling, and its capacity and specificity and that of a corresponding blank polymer toward signal molecule of P. aeruginosa (3-oxo-C(12)-AHL) and its analogue were tested. The biofilm formation in the presence of polymers and without polymers was studied using scanning confocal laser microscopy. Staining with crystal violet dye was used for the quantification of the biofilm formation. A significant reduction of the biofilm growth was observed in the presence of MIP (>80%), which was superior to that of the resin prepared without template, which showed a reduction of 40% in comparison with biofilm, which was grown without polymer addition. It was shown that 3-oxo-C(12)-AHL-specific MIP prevented the development of quorum-sensing-controlled phenotypes (in this case, biofilm formation) from being up-regulated. The developed MIP could be considered as a new tool for the elimination of life-threatening infections in a multitude of practical applications; it could, for example, be grafted on the surface of medical devices such as catheters and lenses, be a component of paints, or be used as a wound adsorbent. PMID:21361273

Piletska, Elena V; Stavroulakis, Georgios; Larcombe, Lee D; Whitcombe, Michael J; Sharma, Anant; Primrose, Sandy; Robinson, Gary K; Piletsky, Sergey A

2011-04-11

258

Regulated proteolysis of Candida albicans Ras1 is involved in morphogenesis and quorum sensing regulation  

PubMed Central

Summary In Candida albicans, a fungal pathogen, the small G-protein Ras1 regulates many important behaviors including white-opaque switching, biofilm formation, and the induction and maintenance of hyphal growth. Like other Ras proteins, Ras1 is activated upon guanine triphosphate binding, and its activity is further modulated by post-translational lipid modifications. Here, we report that the levels of membrane-associated, full-length Ras1 were higher in hyphae than in yeast, and that yeast contained a shorter, soluble Ras1 species that resulted from cleavage. Deletion of the putative cleavage site led to more rapid induction of hyphal growth and delayed hypha-to-yeast transitions. The cleaved Ras1 species was less able to activate its effector, adenylate cyclase (Cyr1), unless tethered to the membrane by a heterologous membrane-targeting domain. Ras1 cleavage was repressed by cAMP-signaling, indicating the presence of a positive feedback loop in which Cyr1 and cAMP influence Ras1. The C. albicans quorum sensing molecule farnesol, which inhibits Cyr1 and represses filamentation, caused an increase in the fraction of Ras1 in the cleaved form, particularly in nascent yeast formed from hyphae. This newly recognized mode of Ras regulation may control C. albicans Ras1 activity in important ways. PMID:23692372

Piispanen, Amy; Grahl, Nora; Hollomon, Jeffrey M.; Hogan, Deborah A.

2013-01-01

259

Density-dependent fitness benefits in quorum-sensing bacterial populations  

PubMed Central

It has been argued that bacteria communicate using small diffusible signal molecules to coordinate, among other things, the production of factors that are secreted outside of the cells in a process known as quorum sensing (QS). The underlying assumption made to explain QS is that the secretion of these extracellular factors is more beneficial at higher cell densities. However, this fundamental assumption has never been tested experimentally. Here, we directly test this by independently manipulating population density and the induction and response to the QS signal, using the opportunistic pathogen Pseudomonas aeruginosa as a model organism. We found that the benefit of QS was relatively greater at higher population densities, and that this was because of more efficient use of QS-dependent extracellular “public goods.” In contrast, the benefit of producing “private goods,” which are retained within the cell, does not vary with cell density. Overall, these results support the idea that QS is used to coordinate the switching on of social behaviors at high densities when such behaviors are more efficient and will provide the greatest benefit. PMID:22566647

Darch, Sophie E.; West, Stuart A.; Winzer, Klaus; Diggle, Stephen P.

2012-01-01

260

Inhibition of quorum sensing in Chromobacterium violaceum by Syzygium cumini L. and Pimenta dioica L.  

PubMed Central

Objective To investigated into the anti-quorum sensing (QS) activity of Syzygium cumini L. (S. cumini) and Pimenta dioica L. (P. dioica) using Chromobacterium violaceum (C. violaceum) strains. Methods In this study, anti-QS activity of ethanol extract of Syzygium cumini L. and Pimenta dioica L. were screened using C. violaceum CV026 biosensor bioassay. By bioassay guided fractionation of S. cumini and P. dioica, ethyl acetate fraction (EAF) with strong anti-QS activity was separated. Inhibition of QS regulated violacein production in C. violaceum ATCC12472 by EAF was assessed at different concentrations. The effect of EAF on the synthesis of autoinducer like N-acyl homoserine lactone (AHL) was studied in C. violaceum ATCC31532 using its mutant C. violaceum CV026 by standard methods. Results EAF inhibited violacein production in C. violaceum ATCC12472 in a concentration dependent manner without significant reduction in bacterial growth. Complete inhibition of violacein production was evidenced in 0.75-1.0 mg/mL concentration of EAF without inhibiting the synthesis of the AHL. TLC biosensor overlay profile of EAF revealed two translucent spots in S. cumini and P. dioica that inhibited C6-AHL mediated violacein production in C. violaceum CV026. Conclusions This study indicates the anti-QS activity of the tested medicinal plants against C. violaceum. PMID:24093786

Vasavi, Halkare Suryanarayana; Arun, Ananthapadmanabha Bhagwath; Rekha, Punchapady Devasya

2013-01-01

261

Crystal Structure of the Vibrio Cholerae Quorum-Sensing Regulatory Protein HapR  

SciTech Connect

Quorum sensing in Vibrio cholerae involves signaling between two-component sensor protein kinases and the response regulator LuxO to control the expression of the master regulator HapR. HapR, in turn, plays a central role in regulating a number of important processes, such as virulence gene expression and biofilm formation. We have determined the crystal structure of HapR to 2.2- Angstroms resolution. Its structure reveals a dimeric, two-domain molecule with an all-helical structure that is strongly conserved with members of the TetR family of transcriptional regulators. The N-terminal DNA-binding domain contains a helix-turn-helix DNA-binding motif and alteration of certain residues in this domain completely abolishes the ability of HapR to bind to DNA, alleviating repression of both virulence gene expression and biofilm formation. The C-terminal dimerization domain contains a unique solvent accessible tunnel connected to an amphipathic cavity, which by analogy with other TetR regulators, may serve as a binding pocket for an as-yet-unidentified ligand.

DeSilva,R.; Kovacikova, G.; Lin, W.; Taylor, R.; Skorupski, K.; Kull, F.

2007-01-01

262

A Quorum Sensing Small Volatile Molecule Promotes Antibiotic Tolerance in Bacteria  

PubMed Central

Bacteria can be refractory to antibiotics due to a sub-population of dormant cells, called persisters that are highly tolerant to antibiotic exposure. The low frequency and transience of the antibiotic tolerant “persister” trait has complicated elucidation of the mechanism that controls antibiotic tolerance. In this study, we show that 2’ Amino-acetophenone (2-AA), a poorly studied but diagnostically important small, volatile molecule produced by the recalcitrant gram-negative human pathogen Pseudomonas aeruginosa, promotes antibiotic tolerance in response to quorum-sensing (QS) signaling. Our results show that 2-AA mediated persister cell accumulation occurs via alteration of the expression of genes involved in the translational capacity of the cell, including almost all ribosomal protein genes and other translation-related factors. That 2-AA promotes persisters formation also in other emerging multi-drug resistant pathogens, including the non 2-AA producer Acinetobacter baumannii implies that 2-AA may play an important role in the ability of gram-negative bacteria to tolerate antibiotic treatments in polymicrobial infections. Given that the synthesis, excretion and uptake of QS small molecules is a common hallmark of prokaryotes, together with the fact that the translational machinery is highly conserved, we posit that modulation of the translational capacity of the cell via QS molecules, may be a general, widely distributed mechanism that promotes antibiotic tolerance among prokaryotes. PMID:24367477

Strobel, Benjamin; Maura, Damien; He, Jianxin; Kesarwani, Meenu; Panopoulos, Panagiotis; Tsurumi, Amy; Giddey, Marlyse; Wilhelmy, Julie; Mindrinos, Michael N.; Rahme, Laurence G.

2013-01-01

263

Quorum Sensing in the Dimorphic Fungus Candida albicans Is Mediated by Farnesol  

PubMed Central

The inoculum size effect in the dimorphic fungus Candida albicans results from production of an extracellular quorum-sensing molecule (QSM). This molecule prevents mycelial development in both a growth morphology assay and a differentiation assay using three chemically distinct triggers for germ tube formation (GTF): l-proline, N-acetylglucosamine, and serum (either pig or fetal bovine). In all cases, the presence of QSM prevents the yeast-to-mycelium conversion, resulting in actively budding yeasts without influencing cellular growth rates. QSM exhibits general cross-reactivity within C. albicans in that supernatants from strain A72 are active on five other strains of C. albicans and vice versa. The QSM excreted by C. albicans is farnesol (C15H26O; molecular weight, 222.37). QSM is extracellular, and is produced continuously during growth and over a temperature range from 23 to 43°C, in amounts roughly proportional to the CFU/milliliter. Production is not dependent on the type of carbon source nor nitrogen source or on the chemical nature of the growth medium. Both commercial mixed isomer and (E,E)-farnesol exhibited QSM activity (the ability to prevent GTF) at a level sufficient to account for all the QSM activity present in C. albicans supernatants, i.e., 50% GTF at ca. 30 to 35 ?M. Nerolidol was ca. two times less active than farnesol. Neither geraniol (C10), geranylgeraniol (C20), nor farnesyl pyrophosphate had any QSM activity. PMID:11425711

Hornby, Jacob M.; Jensen, Ellen C.; Lisec, Amber D.; Tasto, Joseph J.; Jahnke, Brandon; Shoemaker, Richard; Dussault, Patrick; Nickerson, Kenneth W.

2001-01-01

264

Bioinformatic Prediction of Gene Functions Regulated by Quorum Sensing in the Bioleaching Bacterium Acidithiobacillus ferrooxidans  

PubMed Central

The biomining bacterium Acidithiobacillus ferrooxidans oxidizes sulfide ores and promotes metal solubilization. The efficiency of this process depends on the attachment of cells to surfaces, a process regulated by quorum sensing (QS) cell-to-cell signalling in many Gram-negative bacteria. At. ferrooxidans has a functional QS system and the presence of AHLs enhances its attachment to pyrite. However, direct targets of the QS transcription factor AfeR remain unknown. In this study, a bioinformatic approach was used to infer possible AfeR direct targets based on the particular palindromic features of the AfeR binding site. A set of Hidden Markov Models designed to maintain palindromic regions and vary non-palindromic regions was used to screen for putative binding sites. By annotating the context of each predicted binding site (PBS), we classified them according to their positional coherence relative to other putative genomic structures such as start codons, RNA polymerase promoter elements and intergenic regions. We further used the Multiple EM for Motif Elicitation algorithm (MEME) to further filter out low homology PBSs. In summary, 75 target-genes were identified, 34 of which have a higher confidence level. Among the identified genes, we found afeR itself, zwf, genes encoding glycosyltransferase activities, metallo-beta lactamases, and active transport-related proteins. Glycosyltransferases and Zwf (Glucose 6-phosphate-1-dehydrogenase) might be directly involved in polysaccharide biosynthesis and attachment to minerals by At. ferrooxidans cells during the bioleaching process. PMID:23959118

Banderas, Alvaro; Guiliani, Nicolas

2013-01-01

265

Effects of 14-Alpha-Lipoyl Andrographolide on Quorum Sensing in Pseudomonas aeruginosa  

PubMed Central

In Pseudomonas aeruginosa, the quorum-sensing (QS) system is closely related to biofilm formation. We previously demonstrated that 14-alpha-lipoyl andrographolide (AL-1) has synergistic effects on antibiofilm and antivirulence factors (pyocyanin and exopolysaccharide) of P. aeruginosa when combined with conventional antibiotics, while it has little inhibitory effect on its growth. However, its molecular mechanism remains elusive. Here we investigated the effect of AL-1 on QS systems, especially the Las and Rhl systems. This investigation showed that AL-1 can inhibit LasR–3-oxo-C12-homoserine lactone (HSL) interactions and repress the transcriptional level of QS-regulated genes. Reverse transcription (RT)-PCR data showed that AL-1 significantly reduced the expression levels of lasR, lasI, rhlR, and rhlI in a dose-dependent manner. AL-1 not only decreased the expression level of Psl, which is positively regulated by the Las system, but also increased the level of secretion of ExoS, which is negatively regulated by the Rhl system, indicating that AL-1 has multiple effects on both the Las and Rhl systems. It is no wonder that AL-1 showed synergistic effects with other antimicrobial agents in the treatment of P. aeruginosa infections. PMID:22802260

Ma, Li; Liu, Xiangyang; Liang, Haihua; Che, Yizhou; Chen, Caixia; Dai, Huanqin; Yu, Ke; Liu, Mei; Ma, Luyan; Yang, Ching-Hong; Song, Fuhang

2012-01-01

266

Inhibition of bacterial quorum sensing by extracts from aquatic fungi: first report from marine endophytes.  

PubMed

In our search for quorum-sensing (QS) disrupting molecules, 75 fungal isolates were recovered from reef organisms (endophytes), saline lakes and mangrove rhizosphere. Their QS inhibitory activity was evaluated in Chromobacterium violaceum CVO26. Four strains of endophytic fungi stood out for their potent activity at concentrations from 500 to 50 ?g mL-1. The molecular characterization, based on the internal transcribed spacer (ITS) region sequences (ITS1, 5.8S and ITS2) between the rRNA of 18S and 28S, identified these strains as belonging to four genera: Sarocladium (LAEE06), Fusarium (LAEE13), Epicoccum (LAEE14), and Khuskia (LAEE21). Interestingly, three came from coral species and two of them came from the same organism, the coral Diploria strigosa. Metabolic profiles obtained by Liquid Chromatography-High Resolution Mass Spectrometry (LC-HRMS) suggest that a combination of fungal secondary metabolites and fatty acids could be the responsible for the observed activities. The LC-HRMS analysis also revealed the presence of potentially new secondary metabolites. This is, to the best of our knowledge, the first report of QS inhibition by marine endophytic fungi. PMID:25415350

Martín-Rodríguez, Alberto J; Reyes, Fernando; Martín, Jesús; Pérez-Yépez, Juan; León-Barrios, Milagros; Couttolenc, Alan; Espinoza, César; Trigos, Angel; Martín, Víctor S; Norte, Manuel; Fernández, José J

2014-01-01

267

The Fur-Iron Complex Modulates Expression of the Quorum-Sensing Master Regulator, SmcR, To Control Expression of Virulence Factors in Vibrio vulnificus  

PubMed Central

The gene vvpE, encoding the virulence factor elastase, is a member of the quorum-sensing regulon in Vibrio vulnificus and displays enhanced expression at high cell density. We observed that this gene was repressed under iron-rich conditions and that the repression was due to a Fur (ferric uptake regulator)-dependent repression of smcR, a gene encoding a quorum-sensing master regulator with similarity to luxR in Vibrio harveyi. A gel mobility shift assay and a footprinting experiment demonstrated that the Fur-iron complex binds directly to two regions upstream of smcR (?82 to ?36 and ?2 to +27, with respect to the transcription start site) with differing affinities. However, binding of the Fur-iron complex is reversible enough to allow expression of smcR to be induced by quorum sensing at high cell density under iron-rich conditions. Under iron-limiting conditions, Fur fails to bind either region and the expression of smcR is regulated solely by quorum sensing. These results suggest that two biologically important environmental signals, iron and quorum sensing, converge to direct the expression of smcR, which then coordinates the expression of virulence factors. PMID:23716618

Kim, In Hwang; Wen, Yancheng; Son, Jee-Soo; Lee, Kyu-Ho

2013-01-01

268

Luminescent reporters and their applications for the characterization of signals and signal-mimics that alter LasR-mediated quorum sensing.  

PubMed

In many pathogenic bacteria, quorum sensing (QS) controls expression of genes that are involved in virulence, production and resistance to antibiotics, formation and maintenance of microbial multicellular consortia on biotic and abiotic surfaces of medical and industrial importance. N-acyl homoserine lactones (AHL) are the best characterized quorum sensing signals in Gram-negative bacteria. Interference with AHL-mediated QS, therefore, is considered an attractive strategy for controlling virulence in pathogens. The search for AHL signals and their mimics has been facilitated by the development of sensitive bioassays, in which QS reporters luminesce in response to AHL signals. These bioassays have already led to the identification of dozens of compounds with QS modulating activities. The characterization of the mode of action of QS signals and their mimics requires follow-up biochemical studies. Here, we describe a set of luminescent reporters, which could be used in high, medium or low throughput format, for the discovery and validation of agonists or antagonists of the Las QS system of Pseudomonas aeruginosa. These nearly isogenic reporters contain truncations or point mutations in the AHL binding domain of the AHL receptor LasR, as well as mutations in the promoter for the gene encoding LasI AHL synthase. We also developed reporters for documenting the regulation of lasI and lasR promoters. The use of these reporters significantly streamlines identification and characterization of the Las QS signal agonists and antagonists prior to biochemical experiments. To test the usefulness of these reporters, we carried out bioassays with patulin, a known inhibitor of Las QS. PMID:21031308

Alagely, Ali; Rajamani, Sathish; Teplitski, Max

2011-01-01

269

Cinnamaldehyde and cinnamaldehyde derivatives reduce virulence in Vibrio spp. by decreasing the DNA-binding activity of the quorum sensing response regulator LuxR  

PubMed Central

Background To date, only few compounds targeting the AI-2 based quorum sensing (QS) system are known. In the present study, we screened cinnamaldehyde and substituted cinnamaldehydes for their ability to interfere with AI-2 based QS. The mechanism of QS inhibition was elucidated by measuring the effect on bioluminescence in several Vibrio harveyi mutants. We also studied in vitro the ability of these compounds to interfere with biofilm formation, stress response and virulence of Vibrio spp. The compounds were also evaluated in an in vivo assay measuring the reduction of Vibrio harveyi virulence towards Artemia shrimp. Results Our results indicate that cinnamaldehyde and several substituted derivatives interfere with AI-2 based QS without inhibiting bacterial growth. The active compounds neither interfered with the bioluminescence system as such, nor with the production of AI-2. Study of the effect in various mutants suggested that the target protein is LuxR. Mobility shift assays revealed a decreased DNA-binding ability of LuxR. The compounds were further shown to (i) inhibit biofilm formation in several Vibrio spp., (ii) result in a reduced ability to survive starvation and antibiotic treatment, (iii) reduce pigment and protease production in Vibrio anguillarum and (iv) protect gnotobiotic Artemia shrimp against virulent Vibrio harveyi BB120. Conclusion Cinnamaldehyde and cinnamaldehyde derivatives interfere with AI-2 based QS in various Vibrio spp. by decreasing the DNA-binding ability of LuxR. The use of these compounds resulted in several marked phenotypic changes, including reduced virulence and increased susceptibility to stress. Since inhibitors of AI-2 based quorum sensing are rare, and considering the role of AI-2 in several processes these compounds may be useful leads towards antipathogenic drugs. PMID:18793453

Brackman, Gilles; Defoirdt, Tom; Miyamoto, Carol; Bossier, Peter; Van Calenbergh, Serge; Nelis, Hans; Coenye, Tom

2008-01-01

270

19/07/2012 16:21Density-dependent fitness benefits in quorum-sensing bacterial populations. -F1000 Page 1 of 2http://f1000.com/715297923  

E-print Network

19/07/2012 16:21Density-dependent fitness benefits in quorum-sensing bacterial populations. - F1000 Density-dependent fitness benefits in quorum-sensing bacterial populations. Darch SE, West SA, Winzer K and investigating immune responses Meghan Sullivan, Kaval Kaur, Noel Pauli, Patrick C. Wilson Bacteria, food

West, Stuart

271

Role of N-acyl homoserine lactone (AHL)-based quorum sensing (QS) in aerobic sludge granulation.  

PubMed

N-acyl homoserine lactone (AHL)-based quorum sensing (QS) has been recognized to play an important role in the formation of biofilm. However, aerobic granular sludge is considered as a special biofilm, and its biological implication and role of AHL-based QS still remain unclear. This study investigated the role of AHL-based QS in aerobic granulation. Results showed that AHLs were necessary to the typical aerobic granulation, and AHL-associated coordination of bacteria in sludge aggregation was sludge density dependent only when it reached a threshold of 1.010 g/mL; AHL-based QS was activated to regulate aerobic granulation. Furthermore, a quorum quenching method was firstly adopted to investigate the role of AHLs in aerobic granules. Results showed inhibition of AHL by acylase that reduced the AHL content in aerobic granules and further weakened its attachment potential, which proved that AHLs play an important role in the formation of aerobic granules. Additionally, the assay of quorum quenching not only proved that AHL-based QS could regulate EPS production but also provided additional evidence for the role of AHLs in aerobic granulation by regulating EPS content and its component proportion. PMID:24846735

Li, Yao-Chen; Zhu, Jian-Rong

2014-09-01

272

Complex Regulation of Symbiotic Functions Is Coordinated by MucR and Quorum Sensing in Sinorhizobium meliloti? †  

PubMed Central

In Sinorhizobium meliloti, the production of exopolysaccharides such as succinoglycan and exopolysaccharide II (EPS II) enables the bacterium to invade root nodules on Medicago sativa and establish a nitrogen-fixing symbiosis. While extensive research has focused on succinoglycan, less is known concerning the regulation of EPS II or the mechanism by which it mediates entrance into the host plant. Previously, we reported that the ExpR/Sin quorum-sensing system is required to produce the symbiotically active low-molecular-weight fraction of this exopolysaccharide. Here, we show that this system induces EPS II production by increasing expression of the expG-expC operon, encoding both a transcriptional regulator (ExpG) and a glycosyl transferase (ExpC). ExpG derepresses EPS II production at the transcriptional level from MucR, a RosR homolog, while concurrently elevating expression of expC, resulting in the synthesis of the low-molecular-weight form. While the ExpR/Sin system abolishes the role of MucR on EPS II production, it preserves a multitude of other quorum-sensing-independent regulatory functions which promote the establishment of symbiosis. In planktonic S. meliloti, MucR properly coordinates a diverse set of bacterial behaviors by repressing a variety of genes intended for expression during symbiosis and enhancing the bacterial ability to induce root nodule formation. Quorum sensing precisely modulates the functions of MucR to take advantage of both the production of symbiotically active EPS II as well as the proper coordination of bacterial behavior required to promote symbiosis. PMID:21057009

Mueller, Konrad; Gonzalez, Juan E.

2011-01-01

273

Development of a Mimotope Vaccine Targeting the Staphylococcus aureus Quorum Sensing Pathway.  

PubMed

A major hurdle in vaccine development is the difficulty in identifying relevant target epitopes and then presenting them to the immune system in a context that mimics their native conformation. We have engineered novel virus-like-particle (VLP) technology that is able to display complex libraries of random peptide sequences on a surface-exposed loop in the coat protein without disruption of protein folding or VLP assembly. This technology allows us to use the same VLP particle for both affinity selection and immunization, integrating the power of epitope discovery and epitope mimicry of traditional phage display with the high immunogenicity of VLPs. Previously, we showed that using affinity selection with our VLP platform identifies linear epitopes of monoclonal antibodies and subsequent immunization generates the proper antibody response. To test if our technology could identify immunologic mimotopes, we used affinity selection on a monoclonal antibody (AP4-24H11) that recognizes the Staphylococcus aureus autoinducing peptide 4 (AIP4). AIP4 is a secreted eight amino acid, cyclized peptide produced from the S. aureus accessory gene regulator (agrIV) quorum-sensing operon. The agr system coordinates density dependent changes in gene expression, leading to the upregulation of a host of virulence factors, and passive transfer of AP4-24H11 protects against S. aureus agrIV-dependent pathogenicity. In this report, we identified a set of peptides displayed on VLPs that bound with high specificity to AP4-24H11. Importantly, similar to passive transfer with AP4-24H11, immunization with a subset of these VLPs protected against pathogenicity in a mouse model of S. aureus dermonecrosis. These data are proof of principle that by performing affinity selection on neutralizing antibodies, our VLP technology can identify peptide mimics of non-linear epitopes and that these mimotope based VLP vaccines provide protection against pathogens in relevant animal models. PMID:25379726

O'Rourke, John P; Daly, Seth M; Triplett, Kathleen D; Peabody, David; Chackerian, Bryce; Hall, Pamela R

2014-01-01

274

Development of a Mimotope Vaccine Targeting the Staphylococcus aureus Quorum Sensing Pathway  

PubMed Central

A major hurdle in vaccine development is the difficulty in identifying relevant target epitopes and then presenting them to the immune system in a context that mimics their native conformation. We have engineered novel virus-like-particle (VLP) technology that is able to display complex libraries of random peptide sequences on a surface-exposed loop in the coat protein without disruption of protein folding or VLP assembly. This technology allows us to use the same VLP particle for both affinity selection and immunization, integrating the power of epitope discovery and epitope mimicry of traditional phage display with the high immunogenicity of VLPs. Previously, we showed that using affinity selection with our VLP platform identifies linear epitopes of monoclonal antibodies and subsequent immunization generates the proper antibody response. To test if our technology could identify immunologic mimotopes, we used affinity selection on a monoclonal antibody (AP4-24H11) that recognizes the Staphylococcus aureus autoinducing peptide 4 (AIP4). AIP4 is a secreted eight amino acid, cyclized peptide produced from the S. aureus accessory gene regulator (agrIV) quorum-sensing operon. The agr system coordinates density dependent changes in gene expression, leading to the upregulation of a host of virulence factors, and passive transfer of AP4-24H11 protects against S. aureus agrIV-dependent pathogenicity. In this report, we identified a set of peptides displayed on VLPs that bound with high specificity to AP4-24H11. Importantly, similar to passive transfer with AP4-24H11, immunization with a subset of these VLPs protected against pathogenicity in a mouse model of S. aureus dermonecrosis. These data are proof of principle that by performing affinity selection on neutralizing antibodies, our VLP technology can identify peptide mimics of non-linear epitopes and that these mimotope based VLP vaccines provide protection against pathogens in relevant animal models. PMID:25379726

Triplett, Kathleen D.; Peabody, David; Chackerian, Bryce

2014-01-01

275

Modulation of quorum sensing in Pseudomonas aeruginosa through alteration of membrane properties.  

PubMed

Changes in the cellular envelope are major physiological adaptations that occur when micro-organisms encounter extreme environmental conditions. An appropriate degree of membrane fluidity is crucial for survival, and alteration of membrane lipids is an essential adaptive response. Emerging data suggest that microbial cells may recognize alterations in their membrane viscosity resulting from certain environmental changes as a trigger for adaptive cellular responses. In Pseudomonas aeruginosa, the quorum-sensing (QS) system involves a complex regulatory circuitry that coordinates the expression of genes according to a critical population density. Interestingly, it has been shown that the QS system of P. aeruginosa can also be activated by nutritional stress, independently of the cell density, and therefore may be part of a more general adaptive response to stressful environmental conditions. In order to examine the proposed link between membrane properties and stress signalling, the effects of genetically engineered alterations of the membrane phospholipid composition of P. aeruginosa PAO1 on the activation of the stringent response and the QS system were examined. The lptA gene encoding a functional homologue of PlsC, an Escherichia coli enzyme that catalyses the second step of the phospholipid biosynthesis pathway, was identified and disrupted. Inactivation of lptA altered the fatty acid profile of phospholipids and the membrane properties, resulting in decreased membrane fluidity. This resulted in a premature production of the QS signals N-butanoyl- and N-hexanoyl-homoserine lactone (C4-HSL and C6-HSL) and a repression of 2-heptyl-3-hydroxy-4-quinolone (PQS) synthesis at later growth phases. The effects on C4- and C6-HSL depended upon the expression of relA, encoding the (p)ppGpp alarmone synthase, which was increased in the lptA mutant. Together, the findings support the concept that alterations in membrane properties can act as a trigger for stress-related gene expression. PMID:16079332

Baysse, Christine; Cullinane, Méabh; Dénervaud, Valérie; Burrowes, Elizabeth; Dow, J Maxwell; Morrissey, John P; Tam, Ling; Trevors, Jack T; O'Gara, Fergal

2005-08-01

276

Identification and Characterization of a Second Quorum-Sensing System in Agrobacterium tumefaciens A6  

PubMed Central

Quorum sensing (QS) is a widespread mechanism of bacterial communication in which individual cells produce and respond to small chemical signals. In Agrobacterium tumefaciens, an acylhomoserine lactone-dependent QS mechanism is known to regulate the replication and conjugation of the tumor-inducing (Ti) plasmid. Most of the QS regulatory proteins are encoded within the Ti plasmid. Among them, TraI is the LuxI-type enzyme synthesizing the QS signal N-3-oxooctanoyl-l-homoserine lactone (3OC8HSL), TraR is the LuxR-type transcriptional factor that recognizes 3OC8HSL, and TraM is an antiactivator that antagonizes TraR. Recently, we identified a TraM homolog encoded by the traM2 gene in the chromosomal background of A. tumefaciens A6. In this study, we further identified additional homologs (TraI2 and TraR2) of TraI and TraR in this strain. We showed that similar to TraI, TraI2 could predominantly synthesize the QS signal 3OC8HSL. We also showed that TraR2 could recognize 3OC8HSL and activate the tra box-containing promoters as efficiently as TraR. Further analysis showed that traM2, traI2, and traR2 are physically linked on a mobile genetic element that is not related to the Ti plasmid. These findings indicate that A. tumefaciens A6 carries a second QS system that may play a redundant role in the regulation of the replication and conjugation of the Ti plasmid. PMID:24464459

Wang, Chao; Yan, Chunlan; Fuqua, Clay

2014-01-01

277

Quorum-Sensing Regulation of Adhesion in Serratia marcescens MG1 Is Surface Dependent?  

PubMed Central

Serratia marcescens is an opportunistic pathogen and a major cause of ocular infections. In previous studies of S. marcescens MG1, we showed that biofilm maturation and sloughing were regulated by N-acyl homoserine lactone (AHL)-based quorum sensing (QS). Because of the importance of adhesion in initiating biofilm formation and infection, the primary goal of this study was to determine whether QS is important in adhesion to both abiotic and biotic surfaces, as assessed by determining the degree of attachment to hydrophilic tissue culture plates and human corneal epithelial (HCE) cells. Our results demonstrate that while adhesion to the abiotic surface was AHL regulated, adhesion to the HCE cell biotic surface was not. Type I fimbriae were identified as the critical adhesin for non-QS-mediated attachment to the biotic HCE cell surface but played no role in adhesion to the abiotic surface. While we were not able to identify a single QS-regulated adhesin essential for attachment to the abiotic surface, four AHL-regulated genes involved in adhesion to the abiotic surface were identified. Interestingly, two of these genes, bsmA and bsmB, were also shown to be involved in adhesion to the biotic surface in a non-QS-controlled fashion. Therefore, the expression of these two genes appears to be cocontrolled by regulators other than the QS system for mediation of attachment to HCE cells. We also found that QS in S. marcescens regulates other potential cell surface adhesins, including exopolysaccharide and the outer membrane protein OmpX. We concluded that S. marcescens MG1 utilizes different regulatory systems and adhesins in attachment to biotic and abiotic surfaces and that QS is a main regulatory pathway in adhesion to an abiotic surface but not in adhesion to a biotic surface. PMID:17237163

Labbate, Maurizio; Zhu, Hua; Thung, Leena; Bandara, Rani; Larsen, Martin R.; Willcox, Mark D. P.; Givskov, Michael; Rice, Scott A.; Kjelleberg, Staffan

2007-01-01

278

Global Analysis of Quorum Sensing Targets in the Intracellular Pathogen Brucella melitensis 16 M  

PubMed Central

Many pathogenic bacteria use a regulatory process termed quorum sensing (QS) to produce and detect small diffusible molecules to synchronize gene expression within a population. In Gram-negative bacteria, the detection of, and response to, these molecules depends on transcriptional regulators belonging to the LuxR family. Such a system has been discovered in the intracellular pathogen Brucella melitensis, a Gram-negative bacterium responsible for brucellosis, a worldwide zoonosis that remains a serious public health concern in countries were the disease is endemic. Genes encoding two LuxR-type regulators, VjbR and BabR, have been identified in the genome of B. melitensis 16 M. A ?vjbR mutant is highly attenuated in all experimental models of infection tested, suggesting a crucial role for QS in the virulence of Brucella. At present, no function has been attributed to BabR. The experiments described in this report indicate that 5% of the genes in the B. melitensis 16 M genome are regulated by VjbR and/or BabR, suggesting that QS is a global regulatory system in this bacterium. The overlap between BabR and VjbR targets suggest a cross-talk between these two regulators. Our results also demonstrate that VjbR and BabR regulate many genes and/or proteins involved in stress response, metabolism, and virulence, including those potentially involved in the adaptation of Brucella to the oxidative, pH, and nutritional stresses encountered within the host. These findings highlight the involvement of QS as a major regulatory system in Brucella and lead us to suggest that this regulatory system could participate in the spatial and sequential adaptation of Brucella strains to the host environment. PMID:20387905

2010-01-01

279

Staphylococcus aureus autoinducer-2 quorum sensing decreases biofilm formation in an icaR-dependent manner  

PubMed Central

Background Staphylococcus aureus is an important pathogen that causes biofilm-associated infection in humans. Autoinducer 2 (AI-2), a quorum-sensing (QS) signal for interspecies communication, has a wide range of regulatory functions in both Gram-positive and Gram-negative bacteria, but its exact role in biofilm formation in S. aureus remains unclear. Results Here we demonstrate that mutation of the AI-2 synthase gene luxS in S. aureus RN6390B results in increased biofilm formation compared with the wild-type (WT) strain under static, flowing and anaerobic conditions and in a mouse model. Addition of the chemically synthesized AI-2 precursor in the luxS mutation strain (?luxS) restored the WT phenotype. Real-time RT-PCR analysis showed that AI-2 activated the transcription of icaR, a repressor of the ica operon, and subsequently a decreased level of icaA transcription, which was presumably the main reason why luxS mutation influences biofilm formation. Furthermore, we compared the roles of the agr-mediated QS system and the LuxS/AI-2 QS system in the regulation of biofilm formation using the ?luxS strain, RN6911 and the ?agr ?luxS strain. Our data indicate a cumulative effect of the two QS systems on the regulation of biofilm formation in S. aureus. Conclusion These findings demonstrate that AI-2 can decrease biofilm formation in S. aureus via an icaR-activation pathway. This study may provide clues for therapy in S. aureus biofilm-associated infection. PMID:23216979

2012-01-01

280

Bacterial response to siderophore and quorum-sensing chemical signals in the seawater microbial community  

PubMed Central

Background Oceans are iron-deficient and nutrient-poor environments. These conditions impart limitations on our understanding of and our ability to identify microorganisms from the marine environment. However, less of knowledge on the influence of siderophores and N-acyl homoserinelactone as interspecies communication signals on the bacterial diversity of seawater has been understood. Results In the presence of 0.1 nM of the commercial siderophore desferroixamine and the known quorum-sensing chemical signals, synthetic N-(3-oxo)-hexanoylhomoserine lactone (0.1 nM) or N-octanoylhomoserine lactone (0.1 nM), the total numbers of bacteria in S9905 seawater increased nearly three-fold, and nearly eight-fold in S0011 seawater as determined by DAPI staining and counting, and increased three-fold by counting colony forming units in S9905 seawater after 7 days of incubation. Similar bacterial changes in bacterial abundance were observed when high concentration of desferroixamine (1 ?M) and each of homoserine lactone compounds (1 ?M) were presented in seawater samples. The number of cultivable bacterial species observed was also found to increase from 3 (without addition) to 8 (with additions) including three unknown species which were identified by phylogenetic analysis of 16S rDNA sequences. The growth of unknown species was found to be related to their siderophore production with response to the addition of desferroixamine and N-acyl homoserine lactones under iron-limited conditions. Conclusion Artificial addition of siderophores and HSLs may be a possible method to aid in the identification and isolation of marine bacterial species which are thought to be unknown. PMID:11716787

Guan, Le Luo; Kamino, Kei

2001-01-01

281

Physiological Framework for the Regulation of Quorum Sensing-Dependent Public Goods in Pseudomonas aeruginosa  

PubMed Central

Many bacteria possess cell density-dependent quorum-sensing (QS) systems that often regulate cooperative secretions involved in host-microbe or microbe-microbe interactions. These secretions, or “public goods,” are frequently coregulated by stress and starvation responses. Here we provide a physiological rationale for such regulatory complexity in the opportunistic pathogen Pseudomonas aeruginosa. Using minimal-medium batch and chemostat cultures, we comprehensively characterized specific growth rate-limiting macronutrients as key triggers for the expression of extracellular enzymes and metabolites directly controlled by the las and rhl QS systems. Expression was unrelated to cell density, depended on the secreted product's elemental composition, and was induced only when the limiting nutrient was not also a building block of the product; rhl-dependent products showed the strongest response, caused by the largely las-independent induction of the regulator RhlR and its cognate signal. In agreement with the prominent role of the rhl system, slow growth inverted the las-to-rhl signal ratio, previously considered a characteristic distinguishing between planktonic and biofilm lifestyles. Our results highlight a supply-driven, metabolically prudent regulation of public goods that minimizes production costs and thereby helps stabilize cooperative behavior. Such regulation would be beneficial for QS-dependent public goods that act broadly and nonspecifically, and whose need cannot always be accurately assessed by the producing cell. Clear differences in the capacities of the las and rhl systems to integrate starvation signals help explain the existence of multiple QS systems in one cell. PMID:24375105

Mellbye, Brett

2014-01-01

282

Growth Phase-Differential Quorum Sensing Regulation of Anthranilate Metabolism in Pseudomonas aeruginosa  

PubMed Central

Pseudomonas quinolone signal (PQS) plays a role in the regulation of virulence genes and it is intertwined in the las/rhl quorum sensing (QS) circuits of Pseudomonas aeruginosa. PQS is synthesized from anthranilate by pqsA-D and pqsH whose expression is influenced by the las/rhl systems. Since anthranilate can be degraded by functions of antABC and catBCA, PQS synthesis might be regulated by the balance between the expression of the pqsA-D/phnAB, pqsH, antABC, and catBCA gene loci. antA and catA are repressed by LasR during log phase and activated by RhlR in late stationary phase, whereas pqsA-E/phnAB is activated by LasR in log phase and repressed by RhlR. QscR represses both but each repression occurs in a different growth phase. This growth phasedifferential regulation appears to be accomplished by the antagonistic interplay of LasR, RhlR, and QscR, mediated by two intermediate regulators, AntR and PqsR, and their cofactors, anthranilate and PQS, where the expressions of antR and pqsR and the production of anthranilate and PQS are growth phase-differentially regulated by QS systems. Especially, the anthranilate level increases in an RhlRdependent manner at late stationary phase. From these results, we suggest that RhlR and LasR regulate the anthranilate metabolism in a mutually antagonistic and growth phase-differential manner by affecting both the expressions and activities of AntR and PqsR, and that QscR also phase-differentially represses both LasR and RhlR functions in this regulation. PMID:21614486

Choi, Yusang; Park, Ha-Young; Park, Seong Joon; Park, Su-Jin; Kim, Soo-Kyoung; Ha, Changwan; Im, Su-Jin; Lee, Joon-Hee

2011-01-01

283

Farnesol, a Fungal Quorum-Sensing Molecule Triggers Apoptosis in Human Oral Squamous Carcinoma Cells1  

PubMed Central

Farnesol is a catabolite within the isoprenoid/cholesterol pathway that has exhibited significant antitumor activity. Farnesol was recently identified as a quorum-sensing molecule produced by the fungal pathogen Candida albicans. In this study, we hypothesize that synthetic and Candida-produced farnesol can induce apoptosis in vitro in oral squamous cell carcinoma (OSCC) lines. Cell proliferation, apoptosis, mitochondrial degradation, and survivin and caspase expressions were examined. In addition, global protein expression profiles were analyzed using proteomic analysis. Results demonstrated significant decrease in proliferation and increase in apoptosis in cells exposed to farnesol and C. albicans culture media. Concurrently, protein expression analysis demonstrated a significant decrease in survivin and an increase in cleaved-caspase expression, whereas fluorescent microscopy revealed the presence of active caspases with mitochondrial degradation in exposed cells. A total of 36 differentially expressed proteins were identified by proteomic analysis. Among the 26 up-regulated proteins were those involved in the inhibition of carcinogenesis, proliferation suppression, and aging. Most notable among the 10 down-regulated proteins were those involved in the inhibition of apoptosis and proteins overexpressed in epithelial carcinomas. This study demonstrates that farnesol significantly inhibits the proliferation of OSCCs and promotes apoptosis in vitro through both the intrinsic and extrinsic apoptotic signaling pathways. In addition, we report for the first time the ability of Candida-produced farnesol to induce a similar apoptotic response through the same pathways. The capability of farnesol to trigger apoptosis in cancer cells makes it a potential tool for studying tumor progression and an attractive candidate as a therapeutic agent. PMID:18714396

Scheper, Mark A; Shirtliff, Mark E; Meiller, Timothy F; Peters, Brian M; Jabra-Rizk, Mary Ann

2008-01-01

284

Quorum Sensing Coordinates Brute Force and Stealth Modes of Infection in the Plant Pathogen Pectobacterium atrosepticum  

PubMed Central

Quorum sensing (QS) in vitro controls production of plant cell wall degrading enzymes (PCWDEs) and other virulence factors in the soft rotting enterobacterial plant pathogen Pectobacterium atrosepticum (Pba). Here, we demonstrate the genome-wide regulatory role of QS in vivo during the Pba–potato interaction, using a Pba-specific microarray. We show that 26% of the Pba genome exhibited differential transcription in a QS (expI-) mutant, compared to the wild-type, suggesting that QS may make a greater contribution to pathogenesis than previously thought. We identify novel components of the QS regulon, including the Type I and II secretion systems, which are involved in the secretion of PCWDEs; a novel Type VI secretion system (T6SS) and its predicted substrates Hcp and VgrG; more than 70 known or putative regulators, some of which have been demonstrated to control pathogenesis and, remarkably, the Type III secretion system and associated effector proteins, and coronafacoyl-amide conjugates, both of which play roles in the manipulation of plant defences. We show that the T6SS and a novel potential regulator, VirS, are required for full virulence in Pba, and propose a model placing QS at the apex of a regulatory hierarchy controlling the later stages of disease progression in Pba. Our findings indicate that QS is a master regulator of phytopathogenesis, controlling multiple other regulators that, in turn, co-ordinately regulate genes associated with manipulation of host defences in concert with the destructive arsenal of PCWDEs that manifest the soft rot disease phenotype. PMID:18566662

Liu, Hui; Coulthurst, Sarah J.; Pritchard, Leighton; Hedley, Peter E.; Ravensdale, Michael; Humphris, Sonia; Burr, Tom; Takle, Gunnhild; Brurberg, May-Bente; Birch, Paul R. J.; Salmond, George P. C.; Toth, Ian K.

2008-01-01

285

QsrO a novel regulator of quorum-sensing and virulence in Pseudomonas aeruginosa.  

PubMed

In Pseudomonas aeruginosa, the production of many secreted virulence factors is controlled by a quorum-sensing (QS) circuit, constituted of transcriptional activators (LasR, RhlR, PqsR) and their cognate signaling molecules (3-oxo-C12-HSL, C4-HSL, PQS). QS is a cooperative behavior that is beneficial to a population but can be exploited by "QS-cheaters", individuals which do not respond to the QS-signal, but can use public goods produced by QS-cooperators. In order to identify QS-deficient clones we designed a genetic screening based on a lasB-lacZ fusion. We isolated one clone (PT1617) deficient in QS-dependent gene expression and virulence factor production despite wild type lasR, rhlR and pqsR alleles. Whole genome sequencing of PT1617 revealed a 3,552 bp deletion encompassing ORFs PA2228-PA2229-PA2230 and the pslA gene. However, complementation of PT1617 by plasmid-encoded copies of these ORFs, did not restore QS. Unexpectedly, gene expression levels of ORFs PA2228, PA2227 (vqsM) and PA2222, located adjacent to the deletion, were 10 to 100 fold higher in mutant PT1617 than in PAO1. When expressed from a constitutive promoter on a plasmid, PA2226, alone was found to be sufficient to confer a QS-negative phenotype on PAO1 as well as on PA14. Co-expression of PA2226 and PA2225 in PAO1 further prevented induction of the type III secretion system. In summary, we have identified a novel genetic locus including ORF2226 termed qsrO (QS-repressing ORF), capable of down-regulating all three known QS-systems in P. aeruginosa. PMID:24551066

Köhler, Thilo; Ouertatani-Sakouhi, Hajer; Cosson, Pierre; van Delden, Christian

2014-01-01

286

QsrO a Novel Regulator of Quorum-Sensing and Virulence in Pseudomonas aeruginosa  

PubMed Central

In Pseudomonas aeruginosa, the production of many secreted virulence factors is controlled by a quorum-sensing (QS) circuit, constituted of transcriptional activators (LasR, RhlR, PqsR) and their cognate signaling molecules (3-oxo-C12-HSL, C4-HSL, PQS). QS is a cooperative behavior that is beneficial to a population but can be exploited by “QS-cheaters”, individuals which do not respond to the QS-signal, but can use public goods produced by QS-cooperators. In order to identify QS-deficient clones we designed a genetic screening based on a lasB-lacZ fusion. We isolated one clone (PT1617) deficient in QS-dependent gene expression and virulence factor production despite wild type lasR, rhlR and pqsR alleles. Whole genome sequencing of PT1617 revealed a 3,552 bp deletion encompassing ORFs PA2228-PA2229-PA2230 and the pslA gene. However, complementation of PT1617 by plasmid-encoded copies of these ORFs, did not restore QS. Unexpectedly, gene expression levels of ORFs PA2228, PA2227 (vqsM) and PA2222, located adjacent to the deletion, were 10 to 100 fold higher in mutant PT1617 than in PAO1. When expressed from a constitutive promoter on a plasmid, PA2226, alone was found to be sufficient to confer a QS-negative phenotype on PAO1 as well as on PA14. Co-expression of PA2226 and PA2225 in PAO1 further prevented induction of the type III secretion system. In summary, we have identified a novel genetic locus including ORF2226 termed qsrO (QS-repressing ORF), capable of down-regulating all three known QS-systems in P. aeruginosa. PMID:24551066

Kohler, Thilo; Ouertatani-Sakouhi, Hajer; Cosson, Pierre; van Delden, Christian

2014-01-01

287

Private link between signal and response in Bacillus subtilis quorum sensing.  

PubMed

Bacteria coordinate their behavior using quorum sensing (QS), whereby cells secrete diffusible signals that generate phenotypic responses associated with group living. The canonical model of QS is one of extracellular signaling, where signal molecules bind to cognate receptors and cause a coordinated response across many cells. Here we study the link between QS input (signaling) and QS output (response) in the ComQXPA QS system of Bacillus subtilis by characterizing the phenotype and fitness of comQ null mutants. These lack the enzyme to produce the ComX signal and do not activate the ComQXPA QS system in other cells. In addition to the activation effect of the signal, however, we find evidence of a second, repressive effect of signal production on the QS system. Unlike activation, which can affect other cells, repression acts privately: the de-repression of QS in comQ cells is intracellular and only affects mutant cells lacking ComQ. As a result, the QS signal mutants have an overly responsive QS system and overproduce the secondary metabolite surfactin in the presence of the signal. This surfactin overproduction is associated with a strong fitness cost, as resources are diverted away from primary metabolism. Therefore, by acting as a private QS repressor, ComQ may be protected against evolutionary competition from loss-of-function mutations. Additionally, we find that surfactin participates in a social selection mechanism that targets signal null mutants in coculture with signal producers. Our study shows that by pleiotropically combining intracellular and extracellular signaling, bacteria may generate evolutionarily stable QS systems. PMID:24425772

Oslizlo, Anna; Stefanic, Polonca; Dogsa, Iztok; Mandic-Mulec, Ines

2014-01-28

288

Private link between signal and response in Bacillus subtilis quorum sensing  

PubMed Central

Bacteria coordinate their behavior using quorum sensing (QS), whereby cells secrete diffusible signals that generate phenotypic responses associated with group living. The canonical model of QS is one of extracellular signaling, where signal molecules bind to cognate receptors and cause a coordinated response across many cells. Here we study the link between QS input (signaling) and QS output (response) in the ComQXPA QS system of Bacillus subtilis by characterizing the phenotype and fitness of comQ null mutants. These lack the enzyme to produce the ComX signal and do not activate the ComQXPA QS system in other cells. In addition to the activation effect of the signal, however, we find evidence of a second, repressive effect of signal production on the QS system. Unlike activation, which can affect other cells, repression acts privately: the de-repression of QS in comQ cells is intracellular and only affects mutant cells lacking ComQ. As a result, the QS signal mutants have an overly responsive QS system and overproduce the secondary metabolite surfactin in the presence of the signal. This surfactin overproduction is associated with a strong fitness cost, as resources are diverted away from primary metabolism. Therefore, by acting as a private QS repressor, ComQ may be protected against evolutionary competition from loss-of-function mutations. Additionally, we find that surfactin participates in a social selection mechanism that targets signal null mutants in coculture with signal producers. Our study shows that by pleiotropically combining intracellular and extracellular signaling, bacteria may generate evolutionarily stable QS systems. PMID:24425772

Oslizlo, Anna; Stefanic, Polonca; Dogsa, Iztok; Mandic-Mulec, Ines

2014-01-01

289

Synthetic analogs of bacterial quorum sensors  

DOEpatents

Bacterial quorum-sensing molecule analogs having the following structures: ##STR00001## and methods of reducing bacterial pathogenicity, comprising providing a biological system comprising pathogenic bacteria which produce natural quorum-sensing molecule; providing a synthetic bacterial quorum-sensing molecule having the above structures and introducing the synthetic quorum-sensing molecule into the biological system comprising pathogenic bacteria. Further is provided a method of targeted delivery of an antibiotic, comprising providing a synthetic quorum-sensing molecule; chemically linking the synthetic quorum-sensing molecule to an antibiotic to produce a quorum-sensing molecule-antibiotic conjugate; and introducing the conjugate into a biological system comprising pathogenic bacteria susceptible to the antibiotic.

Iyer, Rashi (Los Alamos, NM); Ganguly, Kumkum (Los Alamos, NM); Silks, Louis A. (Los Alamos, NM)

2011-12-06

290

Synthetic analogs of bacterial quorum sensors  

DOEpatents

Bacterial quorum-sensing molecule analogs having the following structures: ##STR00001## and methods of reducing bacterial pathogenicity, comprising providing a biological system comprising pathogenic bacteria which produce natural quorum-sensing molecule; providing a synthetic bacterial quorum-sensing molecule having the above structures and introducing the synthetic quorum-sensing molecule into the biological system comprising pathogenic bacteria. Further is provided a method of targeted delivery of an antibiotic, comprising providing a synthetic quorum-sensing molecule; chemically linking the synthetic quorum-sensing molecule to an antibiotic to produce a quorum-sensing molecule-antibiotic conjugate; and introducing the conjugate into a biological system comprising pathogenic bacteria susceptible to the antibiotic.

Iyer, Rashi S.; Ganguly, Kumkum; Silks, Louis A.

2013-01-08

291

Guava Leaf Extract Inhibits Quorum-Sensing and Chromobacterium violaceum Induced Lysis of Human Hepatoma Cells: Whole Transcriptome Analysis Reveals Differential Gene Expression  

PubMed Central

Quorum sensing (QS) is a process mediated via small molecules termed autoinducers (AI) that allow bacteria to respond and adjust according to the cell population density by altering the expression of multitudinous genes. Since QS governs numerous bioprocesses in bacteria, including virulence, its inhibition promises to be an ideal target for the development of novel therapeutics. We found that the aqueous leaf extract of Psidium guajava (GLE) exhibited anti-QS properties as evidenced by inhibition of violacein production in Chromobacterium violaceum and swarming motility of Pseudomonas aeruginosa. The gram-negative bacterium, C. violaceum is a rare pathogen with high mortality rate. In this study, perhaps for the first time, we identified the target genes of GLE in C. violaceum MTCC 2656 by whole transcriptome analysis on Ion Torrent. Our data revealed that GLE significantly down-regulated 816 genes at least three fold, with p value?0.01, which comprises 19% of the C. violaceum MTCC 2656 genome. These genes were distributed throughout the genome and were associated with virulence, motility and other cellular processes, many of which have been described as quorum regulated in C. violaceum and other gram negative bacteria. Interestingly, GLE did not affect the growth of the bacteria. However, consistent with the gene expression pattern, GLE treated C. violaceum cells were restrained from causing lysis of human hepatoma cell line, HepG2, indicating a positive relationship between the QS-regulated genes and pathogenicity. Overall, our study proposes GLE as a QS inhibitor (QSI) with the ability to attenuate virulence without affecting growth. To the best of our knowledge, this is the first report which provides with a plausible set of candidate genes regulated by the QS system in the neglected pathogen C. violaceum. PMID:25229331

Tiwary, Bipransh Kumar; Kumar, Anoop

2014-01-01

292

Mutational Analysis of the Quorum-Sensing Receptor LasR Reveals Interactions that Govern Activation and Inhibition by Nonlactone Ligands.  

PubMed

Gram-negative bacteria use N-acyl L-homoserine lactone (AHL) quorum-sensing (QS) signals to regulate the expression of myriad phenotypes. Non-native AHL analogs can strongly attenuate QS receptor activity and thereby QS signaling; however, we currently lack a molecular understanding of the mechanisms by which most of these compounds elicit their agonistic or antagonistic profiles. In this study, we investigated the origins of striking activity profile switches (i.e., receptor activator to inhibitor, and vice versa) observed upon alteration of the lactone head group in certain AHL analogs. Reporter gene assays of mutant versions of the Pseudomonas aeruginosa QS receptor LasR revealed that interactions between the ligands and Trp60, Tyr56, and Ser129 govern whether these ligands behave as LasR activators or inhibitors. Using this knowledge, we propose a model for the modulation of LasR by AHL analogs-encompassing a subtly different interaction with the binding pocket to a global change in LasR conformation. PMID:25242287

Gerdt, Joseph P; McInnis, Christine E; Schell, Trevor L; Rossi, Francis M; Blackwell, Helen E

2014-10-23

293

The Vibrio cholerae quorum-sensing autoinducer CAI-1: analysis of the biosynthetic enzyme CqsA  

SciTech Connect

Vibrio cholerae, the bacterium that causes the disease cholera, controls virulence factor production and biofilm development in response to two extracellular quorum-sensing molecules, called autoinducers. The strongest autoinducer, called CAI-1 (for cholera autoinducer-1), was previously identified as (S)-3-hydroxytridecan-4-one. Biosynthesis of CAI-1 requires the enzyme CqsA. Here, we determine the CqsA reaction mechanism, identify the CqsA substrates as (S)-2-aminobutyrate and decanoyl coenzyme A, and demonstrate that the product of the reaction is 3-aminotridecan-4-one, dubbed amino-CAI-1. CqsA produces amino-CAI-1 by a pyridoxal phosphate-dependent acyl-CoA transferase reaction. Amino-CAI-1 is converted to CAI-1 in a subsequent step via a CqsA-independent mechanism. Consistent with this, we find cells release {ge}100 times more CAI-1 than amino-CAI-1. Nonetheless, V. cholerae responds to amino-CAI-1 as well as CAI-1, whereas other CAI-1 variants do not elicit a quorum-sensing response. Thus, both CAI-1 and amino-CAI-1 have potential as lead molecules in the development of an anticholera treatment.

Kelly, R.; Bolitho, M; Higgins, D; Lu, W; Ng, W; Jeffrey, P; Rabinowitz, J; Semmelhack, M; Hughson, F; Bassler, B

2009-01-01

294

The Serratia LuxR family regulator CarR 39006 activates transcription independently of cognate quorum sensing signals.  

PubMed

In Gram-negative bacteria, quorum sensing control of gene expression is mediated by transcription factors of the LuxR family, whose DNA-binding affinity is modulated by diffusible N-acyl homoserine lactone (AHL) signalling molecules. In Serratia sp. ATCC 39006 and the plant pathogen Erwinia carotovora ssp. carotovora (Ecc), the biosynthesis of the ?-lactam antibiotic 1-carbapen-2-em-3-carboxylic acid (Car) is under quorum sensing control. This study has revealed that, uniquely, the LuxR family transcriptional activator CarR(39006) from Serratia 39006 has no detectable affinity for cognate AHL molecules. Furthermore, CarR(39006) was shown to be naturally competent to bind to its target promoter with high affinity, activate transcription and resist cellular proteolysis, and was unaffected by AHL signals. Experiments with chimeric proteins suggest that the C-terminal DNA-binding domain of CarR(39006) may be responsible for conferring AHL independence. In contrast, we show that the homologous CarR(Ecc) protein binds to its 3O-C6-HSL ligand with high affinity, and that the highly conserved Trp-44 residue is critical for this interaction. Unlike TraR from Agrobacterium tumefaciens, CarR(Ecc) is not directly protected from cellular proteolysis by AHL binding, but via AHL-induced DNA binding. At physiological protein concentrations, AHL binding induces CarR(Ecc) to bind to its target promoter with higher affinity and activate transcription. PMID:21435033

Poulter, Simon; Carlton, Timothy M; Spring, David R; Salmond, George P C

2011-05-01

295

Effector-Stimulated Single Molecule Protein-DNA Interactions of a Quorum-Sensing System in Sinorhizobium meliloti  

PubMed Central

Intercellular communication by means of small signal molecules coordinates gene expression among bacteria. This population density-dependent regulation is known as quorum sensing. The symbiotic nitrogen-fixing bacterium Sinorhizobium meliloti Rm1021 possesses the Sin quorum sensing system based on N-acyl homoserine lactones (AHL) as signal molecules. Here, we demonstrate that the LuxR-type regulator ExpR binds specifically to a target sequence in the sinRI locus in the presence of different AHLs with acyl side chains from 8 to 20 carbons. Dynamic force spectroscopy based on the atomic force microscope provided detailed information about the molecular mechanism of binding upon activation by six different AHLs. These single molecule experiments revealed that the mean lifetime of the bound protein-DNA complex varies depending on the specific effector molecule. The small differences between individual AHLs also had a pronounced influence on the structure of protein-DNA interaction: The reaction length of dissociation varied from 2.6 to 5.8 Å. In addition, dynamic force spectroscopy experiments indicate that N-heptanoyl-DL-homoserine lactone binds to ExpR but is not able to stimulate protein-DNA interaction. PMID:17384071

Bartels, Frank Wilco; McIntosh, Matthew; Fuhrmann, Alexander; Metzendorf, Christoph; Plattner, Patrik; Sewald, Norbert; Anselmetti, Dario; Ros, Robert; Becker, Anke

2007-01-01

296

ComQXPA Quorum Sensing Systems May Not Be Unique to Bacillus subtilis: A Census in Prokaryotic Genomes  

PubMed Central

The comQXPA locus of Bacillus subtilis encodes a quorum sensing (QS) system typical of Gram positive bacteria. It encodes four proteins, the ComQ isoprenyl transferase, the ComX pre-peptide signal, the ComP histidine kinase, and the ComA response regulator. These are encoded by four adjacent genes all situated on the same chromosome strand. Here we present results of a comprehensive census of comQXPA-like gene arrangements in 2620 complete and 6970 draft prokaryotic genomes (sequenced by the end of 2013). After manually checking the data for false-positive and false-negative hits, we found 39 novel com-like predictions. The census data show that in addition to B. subtilis and close relatives, 20 comQXPA-like loci are predicted to occur outside the B. subtilis clade. These include some species of Clostridiales order, but none outside the phylum Firmicutes. Characteristic gene-overlap patterns were observed in comQXPA loci, which were different for the B. subtilis-like and non-B. subtilis-like clades. Pronounced sequence variability associated with the ComX peptide in B. subtilis clade is evident also in the non-B. subtilis clade suggesting grossly similar evolutionary constraints in the underlying quorum sensing systems. PMID:24788106

Marsetic, Ziva; Hudaiberdiev, Sanjarbek; Vera, Roberto; Pongor, Sandor; Mandic-Mulec, Ines

2014-01-01

297

Detection of AI-2 Receptors in Genomes of Enterobacteriaceae Suggests a Role of Type-2 Quorum Sensing in Closed Ecosystems  

PubMed Central

The LuxS enzyme, an S-ribosyl-homocysteine lyase, catalyzes the production of the signal precursor for autoinducer-2 mediated quorum sensing (QS-2) in Vibrio. Its widespread occurrence among bacteria is often considered the evidence for a universal language for interspecies communication. Presence of the luxS gene and production of the autoinducer-2 (AI-2) signal have repeatedly been the only evidences presented to assign a functional QS-2 to the most diverse species. In fact, LuxS has a primary metabolic role as part of the activated methyl cycle. In this review we have analyzed the distribution of QS-2 related genes in Enterobacteriaceae by moving the focus of the investigation from AI-2 production to the detection of potential AI-2 receptors. The latter are common in pathogens or endosymbionts of animals, but were also found in a limited number of Enterobacteriaceae of the genera Enterobacter, Klebsiella, and Pantoea that live in close association with plants or fungi. Although a precise function of QS-2 in these species has not been identified, they all show an endophytic or endosymbiontic lifestyle that suggests a role of type-2 quorum sensing in the adaptation to closed ecosystems. PMID:22778662

Rezzonico, Fabio; Smits, Theo H. M.; Duffy, Brion

2012-01-01

298

Cross-Species Comparison of the Burkholderia pseudomallei, Burkholderia thailandensis, and Burkholderia mallei Quorum-Sensing Regulons.  

PubMed

Burkholderia pseudomallei, Burkholderia thailandensis, and Burkholderia mallei (the Bptm group) are close relatives with very different lifestyles: B. pseudomallei is an opportunistic pathogen, B. thailandensis is a nonpathogenic saprophyte, and B. mallei is a host-restricted pathogen. The acyl-homoserine lactone quorum-sensing (QS) systems of these three species show a high level of conservation. We used transcriptome sequencing (RNA-seq) to define the quorum-sensing regulon in each species, and we performed a cross-species analysis of the QS-controlled orthologs. Our analysis revealed a core set of QS-regulated genes in all three species, as well as QS-controlled factors shared by only two species or unique to a given species. This global survey of the QS regulons of B. pseudomallei, B. thailandensis, and B. mallei serves as a platform for predicting which QS-controlled processes might be important in different bacterial niches and contribute to the pathogenesis of B. pseudomallei and B. mallei. PMID:25182491

Majerczyk, Charlotte D; Brittnacher, Mitchell J; Jacobs, Michael A; Armour, Christopher D; Radey, Matthew C; Bunt, Richard; Hayden, Hillary S; Bydalek, Ryland; Greenberg, E Peter

2014-11-15

299

Enterobacter asburiae Strain L1: Complete Genome and Whole Genome Optical Mapping Analysis of a Quorum Sensing Bacterium  

PubMed Central

Enterobacter asburiae L1 is a quorum sensing bacterium isolated from lettuce leaves. In this study, for the first time, the complete genome of E. asburiae L1 was sequenced using the single molecule real time sequencer (PacBio RSII) and the whole genome sequence was verified by using optical genome mapping (OpGen) technology. In our previous study, E. asburiae L1 has been reported to produce AHLs, suggesting the possibility of virulence factor regulation which is quorum sensing dependent. This evoked our interest to study the genome of this bacterium and here we present the complete genome of E. asburiae L1, which carries the virulence factor gene virK, the N-acyl homoserine lactone-based QS transcriptional regulator gene luxR and the N-acyl homoserine lactone synthase gene which we firstly named easI. The availability of the whole genome sequence of E. asburiae L1 will pave the way for the study of the QS-mediated gene expression in this bacterium. Hence, the importance and functions of these signaling molecules can be further studied in the hope of elucidating the mechanisms of QS-regulation in E. asburiae. To the best of our knowledge, this is the first documentation of both a complete genome sequence and the establishment of the molecular basis of QS properties of E. asburiae. PMID:25196111

Lau, Yin Yin; Yin, Wai-Fong; Chan, Kok-Gan

2014-01-01

300

Measurement of the copy number of the master quorum-sensing regulator of a bacterial cell  

E-print Network

, Princeton, NJ 08544, USA, Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA ABSTRACT Quorum is unchanged. Analyzing these changes statistically, we have determined that N = 80-135 dimers at low cell. By applying binomial distribution analysis to the partitioning errors of the proteins measured at cell

Ong, N. P.

301

An evolving perspective on the Pseudomonas aeruginosa orphan quorum sensing regulator QscR  

PubMed Central

Many Proteobacteria govern responses to changes in cell density by using acyl-homoserine lactone (AHL) quorum-sensing (QS) signaling. Similar to the LuxI-LuxR system described in Vibrio fischeri, a minimal AHL QS circuit comprises a pair of genes, a luxI-type synthase gene encoding an enzyme that synthesizes an AHL and a luxR-type AHL-responsive transcription regulator gene. In most bacteria that utilize AHL QS, cognate luxI and luxR homologs are found in proximity to each other on the chromosome. However, a number of recent reports have identified luxR homologs that are not linked to luxI homologs; in some cases luxR homologs have been identified in bacteria that have no luxI homologs. A luxR homolog without a linked luxI homologs is termed an orphan or solo. One of the first reports of an orphan was on QscR in Pseudomonas aeruginosa. The qscR gene was revealed by whole genome sequencing and has been studied in some detail. P. aeruginosa encodes two AHL synthases and three AHL responsive receptors, LasI-LasR form a cognate synthase-receptor pair as do RhlI-RhlR. QscR lacks a linked synthase and responds to the LasI-generated AHL. QS regulation of gene expression in P. aeruginosa employs multiple signals and occurs in the context of other interconnected regulatory circuits that control diverse physiological functions. QscR affects virulence of P. aeruginosa, and although it shows sensitivity to the LasI-generated AHL, 3-oxo-dodecanoylhomoserine lactone, it's specificity is relaxed compared to LasR and can respond equally well to several AHLs. QscR controls a set of genes that overlaps the set regulated by LasR. QscR is comparatively easy to purify and study in vitro, and has become a model for understanding the biochemistry of LuxR homologs. In fact there is a crystal structure of QscR bound to the LasI-generated AHL. Here, we review the current state of research concerning QscR and highlight recent advances in our understanding of its structure and biochemistry. PMID:25389523

Chugani, Sudha; Greenberg, Everett P.

2014-01-01

302

sinI- and expR-Dependent Quorum Sensing in Sinorhizobium meliloti†  

PubMed Central

Quorum sensing (QS) in Sinorhizobium meliloti, the N-fixing bacterial symbiont of Medicago host plants, involves at least half a dozen different N-acyl homoserine lactone (AHL) signals and perhaps an equal number of AHL receptors. The accumulation of 55 proteins was found to be dependent on SinI, the AHL synthase, and/or on ExpR, one of the AHL receptors. Gas chromatography-mass spectrometry and electrospray ionization tandem mass spectrometry identified 3-oxo-C14-homoserine lactone (3-oxo-C14-HSL), C16-HSL, 3-oxo-C16-HSL, C16:1-HSL, and 3-oxo-C16:1-HSL as the sinI-dependent AHL QS signals accumulated by the 8530 expR+ strain under the conditions used for proteome analysis. The 8530 expR+ strain secretes additional, unidentified QS-active compounds. Addition of 200 nM C14-HSL or C16:1-HSL, two of the known SinI AHLs, affected the levels of 75% of the proteins, confirming that their accumulation is QS regulated. A number of the QS-regulated proteins have functions plausibly related to symbiotic interactions with the host, including ExpE6, IdhA, MocB, Gor, PckA, LeuC, and AglE. Seven of 10 single-crossover ?-glucuronidase (GUS) transcriptional reporters in genes corresponding to QS-regulated proteins showed significantly different activities in the sinI and expR mutant backgrounds and in response to added SinI AHLs. The sinI mutant and several of the single-crossover strains were significantly delayed in the ability to initiate nodules on the primary root of the host plant, Medicago truncatula, indicating that sinI-dependent QS regulation and QS-regulated proteins contribute importantly to the rate or efficiency of nodule initiation. The sinI and expR mutants were also defective in surface swarming motility. The sinI mutant was restored to normal swarming by 5 nM C16:1-HSL. PMID:16291666

Gao, Mengsheng; Chen, Hancai; Eberhard, Anatol; Gronquist, Matthew R.; Robinson, Jayne B.; Rolfe, Barry G.; Bauer, Wolfgang D.

2005-01-01

303

Quorum sensing regulates dpsA and the oxidative stress response in Burkholderia pseudomallei.  

PubMed

Burkholderia pseudomallei is the causative agent of melioidosis, a fatal human tropical disease. The non-specific DNA-binding protein DpsA plays a key role in protecting B. pseudomallei from oxidative stress mediated, for example, by organic hydroperoxides. The regulation of dpsA expression is poorly understood but one possibility is that it is regulated in a cell population density-dependent manner via N-acylhomoserine lactone (AHL)-dependent quorum sensing (QS) since a lux-box motif has been located within the dpsA promoter region. Using liquid chromatography and tandem mass spectrometry, it was first established that B. pseudomallei strain PP844 synthesizes AHLs. These were identified as N-octanoylhomoserine lactone (C8-HSL), N-(3-oxooctanoyl)homoserine lactone (3-oxo-C8-HSL), N-(3-hydroxyoctanoyl)-homoserine lactone (3-hydroxy-C8-HSL), N-decanoylhomoserine lactone (C10-HSL), N-(3-hydroxydecanoyl) homoserine lactone (3-hydroxy-C10-HSL) and N-(3-hydroxydodecanoyl)homoserine lactone (3-hydroxy-C12-HSL). Mutation of the genes encoding the LuxI homologue BpsI or the LuxR homologue BpsR resulted in the loss of C8-HSL and 3-oxo-C8-HSL synthesis, demonstrating that BpsI was responsible for directing the synthesis of these AHLs only and that bpsI expression and hence C8-HSL and 3-oxo-C8-HSL production depends on BpsR. In bpsI, bpsR and bpsIR mutants, dpsA expression was substantially down-regulated. Furthermore, dpsA expression in Escherichia coli required both BpsR and C8-HSL. bpsIR-deficient mutants exhibited hypersensitivity to the organic hydroperoxide tert-butyl hydroperoxide by displaying a reduction in cell viability which was restored by provision of exogenous C8-HSL (bpsI mutant only), by complementation with the bpsIR genes or by overexpression of dpsA. These data indicate that in B. pseudomallei, QS regulates the response to oxidative stress at least in part via the BpsR/C8-HSL-dependent regulation of DpsA. PMID:17159218

Lumjiaktase, Putthapoom; Diggle, Stephen P; Loprasert, Suvit; Tungpradabkul, Sumalee; Daykin, Mavis; Cámara, Miguel; Williams, Paul; Kunakorn, Mongkol

2006-12-01

304

The influence of quorum sensing in compartment II of the MELiSSA loop  

NASA Astrophysics Data System (ADS)

MELiSSA (Micro-Ecological Life Support System Alternative) has been conceived as a 5 compartments microorganisms and higher plants recycling system for long haul space flights. Rhodospirillum rubrum S1H colonizes compartment II. Previous work reported that continuous culture of the bacterium in a photobioreactor could lead to thick biofilm formation, leading to bioreactor arrest. Our aim is to investigate the unknown quorum sensing (QS) system of R. rubrum S1H, specifically under MELiSSA relevant culture conditions meaning light anaerobic (LAN) and using acetate as carbon source. In that purpose an autoinducer synthase gene (Rru_A3396) knockout mutant was constructed by allelic exchange generating strain M68. In addition phenotypic comparison between wild type (WT) and M68 was performed. Results of thin layer chromatography assay where Agrobacterium tumefaciens NT1 have been used as reporter strain showed that WT produces acyl-homoserine lactones (AHLs) from C4 to C12 acyl carbon chain length; however, in M68 no AHLs were detected confirming that gene Rru_A3396 (named rruI) encodes an autoinducer synthase. Interestingly under a low shear or static environment M68 showed cell aggregation similar as reported in a closely related bacterium Rhodobacter sphaeroides (cerI mutant). In contrast to WT, M68 did not form biofilm and exhibited a decreased motility and pigment content. M68 vs wild type transcriptomics results showed that 326 genes were statistically significant differentially expressed. Downregulation of genes related to photosynthesis e.g., reaction center subunits, light harvesting complex and photosynthetic assembly proteins was observed. Similar results were obtained for preliminary proteomic analysis. Results obtained showed that in R. rubrum S1H the AHL-based QS system regulates almost 8% of the genome which is linked to biofilm formation among other biological processes described above. Since strain M68 could not be used in compartment II due to its less effective photosynthetic apparatus (among other cellular functions) we are investigating other alternatives to avoid biofilm formation.

Condori, Sandra; Mastroleo, Felice; Wattiez, Ruddy; Leys, Natalie

305

Quorum-sensing agr mediates bacterial oxidation response via an intramolecular disulfide redox switch in the response regulator AgrA.  

PubMed

Oxidation sensing and quorum sensing significantly affect bacterial physiology and host-pathogen interactions. However, little attention has been paid to the cross-talk between these two seemingly orthogonal signaling pathways. Here we show that the quorum-sensing agr system has a built-in oxidation-sensing mechanism through an intramolecular disulfide switch possessed by the DNA-binding domain of the response regulator AgrA. Biochemical and mass spectrometric analysis revealed that oxidation induces the intracellular disulfide bond formation between Cys-199 and Cys-228, thus leading to dissociation of AgrA from DNA. Molecular dynamics (MD) simulations suggest that the disulfide bond formation generates a steric clash responsible for the abolished DNA binding of the oxidized AgrA. Mutagenesis studies further established that Cys-199 is crucial for oxidation sensing. The oxidation-sensing role of Cys-199 is further supported by the observation that the mutant Staphylococcus aureus strain expressing AgrAC199S is more susceptible to H(2)O(2) owing to repression of the antioxidant bsaA gene under oxidative stress. Together, our results show that oxidation sensing is a component of the quorum-sensing agr signaling system, which serves as an intrinsic checkpoint to ameliorate the oxidation burden caused by intense metabolic activity and potential host immune response. PMID:22586129

Sun, Fei; Liang, Haihua; Kong, Xiangqian; Xie, Sherrie; Cho, Hoonsik; Deng, Xin; Ji, Quanjiang; Zhang, Haiyan; Alvarez, Sophie; Hicks, Leslie M; Bae, Taeok; Luo, Cheng; Jiang, Hualiang; He, Chuan

2012-06-01

306

The Vibrio harveyi bioassay used routinely to detect AI-2 quorum sensing inhibition is confounded by inconsistent normalization across marine matrices.  

PubMed

The Vibrio harveyi autoinducer-2 (AI-2) bioassay is used routinely to screen for inhibition of the AI-2 quorum sensing system. The present study utilizes three well-described bacterial strains to demonstrate that inconsistent normalization across matrices undermines the assay's use in screening marine samples for AI-2 inhibition. PMID:23305926

Blair, Walter M; Doucette, Gregory J

2013-03-01

307

A genetically engineered whole-cell pigment-based bacterial biosensing system for quantification of N-butyryl homoserine lactone quorum sensing signal  

Microsoft Academic Search

N-Acyl homoserine lactone (AHL) is a widely conserved quorum sensing (QS) signal of Gram-negative bacteria and has received attention in fighting against human diseases and environmental pollution. However, a method for quantifying AHL is lacking although it is urgently required for diagnosis and bioprocess manipulation. This work screened out an aromatics degrader Pseudomonas aeruginosa for biosensing system development, which produced

Yang-Chun Yong; Jian-Jiang Zhong

2009-01-01

308

The attenuated virulence of a Burkholderia cenocepacia?paaABCDE mutant is due to inhibition of quorum sensing by release of phenylacetic acid.  

PubMed

The phenylacetic acid degradation pathway of Burkholderia cenocepacia is active during cystic fibrosis-like conditions and is necessary for full pathogenicity of B. cenocepacia in nematode and rat infection models; however, the reasons for such requirements are unknown. Here, we show that the attenuated virulence of a phenylacetic acid catabolism mutant is due to quorum sensing inhibition. Unlike wild-type B. cenocepacia, a deletion mutant of the phenylacetyl-CoA monooxygenase complex (?paaABCDE) released phenylacetic acid in the medium that favours infection in Caenorhabditis elegans. Addition of phenylacetic acid further decreased the pathogenicity of the ?paaABCDE, which cannot metabolize phenylacetic acid, but did not affect the wild-type, due to phenylacetic acid consumption. In line with reduced detection of acyl-homoserine lactones in spent medium, the ?paaABCDE exhibited transcriptional inhibition of the quorum sensing system cepIR. Phenotypes repressed in ?paaABCDE, protease activity and pathogenicity against C. elegans, increased with exogenous N-octanoyl-L-homoserine lactone. Thus, we demonstrate that the attenuated phenotype of B. cenocepacia ?paaABCDE is due to quorum sensing inhibition by release of phenylacetic acid, affecting N-octanoyl-L-homoserine lactone signalling. Further, we propose that active degradation of phenylacetic acid by B. cenocepacia during growth in cystic fibrosis-like conditions prevents accumulation of a quorum sensing inhibiting compound. PMID:25155974

Pribytkova, Tanya; Lightly, Tasia Joy; Kumar, Brijesh; Bernier, Steve P; Sorensen, John L; Surette, Michael G; Cardona, Silvia T

2014-11-01

309

Genome Sequence of the Sponge-Associated Ruegeria halocynthiae Strain MOLA R1/13b, a Marine Roseobacter with Two Quorum-Sensing-Based Communication Systems.  

PubMed

Ruegeria halocynthiae MOLA R1/13b is an alphaproteobacterium isolated from the Mediterranean sea sponge Crambe crambe. We report here the genome sequence and its annotation, revealing the presence of quorum-sensing genes. This is the first report of the full genome of a Ruegeria halocynthiae strain. PMID:25301648

Doberva, Margot; Sanchez-Ferandin, Sophie; Ferandin, Yoan; Intertaglia, Laurent; Croué, Julie; Suzuki, Marcelino; Lebaron, Philippe; Lami, Raphaël

2014-01-01

310

Genome Sequence of the Sponge-Associated Ruegeria halocynthiae Strain MOLA R1/13b, a Marine Roseobacter with Two Quorum-Sensing-Based Communication Systems  

PubMed Central

Ruegeria halocynthiae MOLA R1/13b is an alphaproteobacterium isolated from the Mediterranean sea sponge Crambe crambe. We report here the genome sequence and its annotation, revealing the presence of quorum-sensing genes. This is the first report of the full genome of a Ruegeria halocynthiae strain. PMID:25301648

Doberva, Margot; Sanchez-Ferandin, Sophie; Ferandin, Yoan; Intertaglia, Laurent; Croue, Julie; Suzuki, Marcelino; Lebaron, Philippe

2014-01-01

311

Identification of N ?3-hydroxyoctanoyl-homoserine lactone production in Pseudomonas fluorescens 5064, pathogenic to broccoli, and controlling biosurfactant production by quorum sensing  

Microsoft Academic Search

Quorum sensing controls a number of key processes in growth, reproduction and virulence of many gram-negative bacteria via signalling molecules or autoinducers. It can control, for instance, the production of pectic enzymes which are virulence factors in disease. Pseudomonas fluorescens 5064 produces biosurfactants which are important for bacterial establishment on the plant surface prior to causing disease in broccoli. The

X. Cui; R. Harling; P. Mutch; D. Darling

2005-01-01

312

Interaction between the quorum sensing and stringent response regulation systems in the enterohemorrhagic Escherichia coli O157:H7 EDL933 strain.  

PubMed

Quorum sensing and the stringent response are well-known regulation systems for the expression of virulence genes in enterohemorrhagic Escherichia coli (EHEC). However, how these two systems interact is not well known. E. coli strains with mutations in two regulation systems, ?luxS (ECM101) and ?luxS?relA?spoT (ECM201), and the ?luxS complement strain to ECM201 (ECM202) were created from EHEC O157:H7 EDL933 to investigate how the regulatory systems interact. The phenotypic changes of the mutant strains were characterized and compared with the wild type. The mutant strains exhibited no obvious growth defects, although acid resistance and cellular cytotoxicity were decreased significantly in all the mutant strains. Phenotypic characterization revealed that mutations in the stringent response system (ECM201 and ECM202) influenced the metabolic (defective utilization of arabinose and L-sorbose) and enzymatic activities (decreased trypsin activity, and increased ?-glucosidase activity). In contrast, the quorum sensing system mutant (ECM101) did not display these phenotypes. The motility of the quorum sensing system mutant (ECM101) was unchanged, but mutation in the stringent response system influenced the motility. Our results suggest that quorum sensing interacts with the stringent response regulation system. PMID:24317480

Oh, Kyung-Hwan; Cho, Seung-Hak

2014-03-28

313

Lagerstroemia speciosa fruit extract modulates quorum sensing-controlled virulence factor production and biofilm formation in Pseudomonas aeruginosa.  

PubMed

Lagerstroemia speciosa (Lythraceae) is a south-east Asian tree more commonly known as 'Jarul'. Research on health benefits suggests that the L. speciosa plant contains phytomolecules that may have antioxidant, anti-diabetic and anti-obesity properties. However, antimicrobial activities have not been reported for this plant. The ability of L. speciosa fruit extract (LSFE) to antagonize cell-to-cell communication, expression of virulence genes and factors, and biofilm formation was evaluated in Pseudomonas aeruginosa strain PAO1. Our results suggested that LSFE caused downregulation of quorum sensing (QS)-related genes (las and rhl) and their respective signalling molecules, N-acylhomoserine lactones, without affecting the growth of P. aeruginosa PAO1. Significant inhibition of virulence factors: LasA protease, LasB elastase, and pyoverdin production, was also recorded. Application of LSFE to P. aeruginosa PAO1 biofilms increased bacterial susceptibility to tobramycin. These data suggest a possible role for quorum-quenching mechanisms unrelated to static or cidal effects, and also suggest that L. speciosa could serve as a cost-effective source in the development of new QS-based antibacterial drugs. PMID:22117007

Singh, Brahma N; Singh, H B; Singh, Akanksha; Singh, Braj R; Mishra, Aradhana; Nautiyal, C S

2012-02-01

314

Quorum quenching activity in cell-free lysate of endophytic bacteria isolated from Pterocarpus santalinus Linn., and its effect on quorum sensing regulated biofilm in Pseudomonas aeruginosa PAO1.  

PubMed

Quorum sensing mechanism allows the microorganisms to resist the antibiotic treatment by forming biofilms. Quorum quenching is one of the mechanisms to control the development of drug resistance in microbes. Endophyte bacteria are beneficial to plant growth as they support the immune system against the pathogen attack. The endophytic bacteria present in Pterocarpus santalinus were screened for the presence of N-acyl homoserine lactones (AHLs) degrading bacteria using biosensor strains and further confirmed by quantifying the violacein production. Cell-free lysate of endophytic bacteria, Bacillus firmus PT18 and Enterobacter asburiae PT39 exhibited potent AHL degrading ability by inhibiting about 80% violacein production in biosensor strain. Furthermore, when the cell-free lysate was applied to Pseudomonas aeruginosa PAO1 and PAO1-JP2 biofilm it resulted in significant (p<0.01) inhibition of biofilm formation. The biofilm inhibition was confirmed by visualization of biofilm slides under fluorescence microscopy, which showed decrease in total biomass formation in treated slides. Isolation and amplification of the gene (aiiA) indicated that the presence of AHL lactonase in cell-free lysate and sequence alignment indicated that AiiA contains a "HXHXDH" zinc-binding motif that is being conserved in several groups of metallohydrolases. Therefore, the study shows the potential of AHLs degradation by AHL lactonase present in cell-free lysate of isolated endophytic bacteria and inhibition of quorum sensing regulated biofilm formation in P. aeruginosa PAO1. PMID:24268182

Rajesh, P S; Ravishankar Rai, V

2014-01-01

315

Mining quorum sensing regulated proteins - Role of bacterial cell-to-cell communication in global gene regulation as assessed by proteomics.  

PubMed

Many bacteria utilize cell-to-cell communication systems that rely on small diffusible signal molecules to monitor the size of their population in a process known as quorum sensing (QS). QS plays a central role in coordinating genes that are generally mediating prokaryotic interactions with its eukaryotic host. In pathogens, this form of gene regulation is, for instance, believed to ensure that the cells remain invisible to the immune system until the pathogen has reached a critical population density sufficient to overwhelm host defenses and to establish an infection. This review summarizes proteome analyses to identify QS-regulated proteins focussing on Gram-negative bacteria interacting with their eukaryotic hosts either as symbionts or as pathogens. In most studies, the power of comparative 2-D PAGE coupled to MS analysis has been employed to recognize and identify QS-controlled proteins. The high number of QS-regulated proteins in the majority of the investigated species strongly supports the importance of QS as global regulatory system and suggests that it also operates via post-transcriptional mechanisms. As QS has been proven to be a central regulator for the expression of pathogenic traits and biofilm formation in various opportunistic pathogens, it represents a highly attractive target for the development of novel antibacterial drugs. Proteomics has also been exploited to validate the target specificity of natural and synthetic QS inhibitors that have a great potential as alternative therapeutics for the treatment of bacterial infections. PMID:21548094

Eberl, Leo; Riedel, Katharina

2011-08-01

316

Quorum sensing differentially regulates Pseudomonas aeruginosa type VI secretion locus I and homologous loci II and III, which are required for pathogenesis.  

PubMed

Pseudomonas aeruginosa harbours three type VI secretion (T6S) loci. Although HSI-I has been partially studied, limited knowledge is available on the homologous loci HSI-II and HSI-III. We show that quorum sensing (QS) differentially regulates the expression of genes at all three loci. HSI-I-associated gene expression is suppressed by both the homoserine lactone transcription factor LasR and the 4-hydroxy-2-alkylquinoline (HAQ) transcriptional regulator MvfR. Conversely, both HSI-II and HSI-III loci are positively controlled by LasR and MvfR. PqsE, a key component of the MvfR regulon, is required for the expression of part of HSI-III but not HSI-II, and previously identified inhibitors of HAQ biosynthesis significantly downregulate HSI-II and -III gene expression. Animal and plant infection studies reveal that both HSI-II and -III play important roles in pathogenesis. Furthermore, analysis of a double DeltaHSI-II : : III mutant suggests that these loci functionally compensate for one another in virulence. This study illustrates the contribution of the QS systems to T6S gene regulation and reveals the importance of HSI-II and -III in mediating P. aeruginosa pathogenesis. Moreover, this work provides new insights into the design and development of selective compounds that may restrict human P. aeruginosa and possibly other clinical infections. PMID:19497948

Lesic, B; Starkey, M; He, J; Hazan, R; Rahme, L G

2009-09-01

317

Bacterial quorum sensing molecule induces chemotaxis of human neutrophils via induction of p38 and leukocyte specific protein 1 (LSP1).  

PubMed

When bacteria colonize surfaces, they socialize and form biofilms. This process is well regulated and relies on the communication among the bacteria via so-called "quorum sensing molecules". Among those, N-(3-oxododecanoyl)-L-homoserine lactone (AHL-12), generated by Pseudomonas aeruginosa and other Gram-negative bacteria, activates not only bacteria but also interacts with mammalian cells. Among others, it activates phagocytic cells and - as we had shown previously - it is chemotactic for human polymorphonuclear neutrophils (PMN) in vitro. In the present study, we analyzed the signalling pathway of AHL-12 in PMN. We focused on the mitogen activated protein (MAP) kinase p38, because SB203580, an inhibitor of p38, prevented the AHL-12 induced chemotaxis. We found that in response to AHL-12, p38 was phosphorylated within minutes, as was its downstream target, the MAPKAP-Kinase-2 (MK2). In PMN, the major substrate of MK2 is the leukocyte specific protein 1 (LSP1), which binds to F-actin and participates directly in actin polymerization and cell migration. In response to AHL-12, LSP1 was phosphorylated and co-localized with F-actin in polarized PMN, suggesting that AHL-12-induced migration depended on p38 and LSP1 activation. PMID:22401915

Kahle, N A; Brenner-Weiss, G; Overhage, J; Obst, U; Hänsch, G M

2013-02-01

318

The microbial attachment potential and quorum sensing measurement of aerobic granular activated sludge and flocculent activated sludge.  

PubMed

The aerobic granulation process is involved in the attachment of microorganisms, and the quorum sensing (QS) is supposed to play an important role in microbial attachment. In this study, the attachment potential of aerobic granular activated sludge (AGAS) and flocculent activated sludge (FAS) was investigated. Results clearly showed that AGAS had stronger attachment potential than FAS. A bioassay with NTL4 proved that N-acylhomoserine lactones (AHLs) were produced in both sludge, but the AHLs content of AGAS was significantly higher than FAS. Additionally, the extracellular polymeric substances (EPS) measurements indicated that there were more proteins and polysaccharides in the hydrophobic EPS fraction of AGAS. Besides, the bacterial community structure of AGAS differed from FAS by PCR-DGGE. Some hydrophobic bacteria, such as Flavobacterium, exclusively existed in AGAS. It was speculated that the difference of attachment potential between AGAS and FAS was derived from the divergence of AHLs, EPS and microbial community. PMID:24262838

Lv, Junping; Wang, Yaqin; Zhong, Chen; Li, Yaochen; Hao, Wen; Zhu, Jianrong

2014-01-01

319

The effect of quorum sensing and extracellular proteins on the microbial attachment of aerobic granular activated sludge.  

PubMed

In this study, vanillin, a quorum sensing (QS) blocker, and proteinase K were employed to investigate the effect of QS and extracellular proteins on the microbial attachment of aerobic granular activated sludge (AGAS). Results clearly showed that both vanillin and proteinase K could reduce attachment potential of AGAS, and the combined use of them was more effective in reducing attachment biomass of AGAS. The contents of N-acylhomoserine lactones (AHLs) and extracellular proteins were reduced in the presence of vanillin and proteinase K. Besides, it was found that extracellular proteins could promote microbial attachment of AGAS, and it was also revealed that AHLs-mediated QS might be involved in microbial attachment of AGAS through the regulation of extracellular proteins. This study suggested that both QS and extracellular proteins might play important roles in the development of "AGAS biofilm" from the perspective of the biofilm. PMID:24280083

Lv, Junping; Wang, Yaqin; Zhong, Chen; Li, Yaochen; Hao, Wen; Zhu, Jianrong

2014-01-01

320

A quorum-sensing molecule acts as a morphogen controlling gas vesicle organelle biogenesis and adaptive flotation in an enterobacterium  

PubMed Central

Gas vesicles are hollow intracellular proteinaceous organelles produced by aquatic Eubacteria and Archaea, including cyanobacteria and halobacteria. Gas vesicles increase buoyancy and allow taxis toward air–liquid interfaces, enabling subsequent niche colonization. Here we report a unique example of gas vesicle-mediated flotation in an enterobacterium; Serratia sp. strain ATCC39006. This strain is a member of the Enterobacteriaceae previously studied for its production of prodigiosin and carbapenem antibiotics. Genes required for gas vesicle synthesis mapped to a 16.6-kb gene cluster encoding three distinct homologs of the main structural protein, GvpA. Heterologous expression of this locus in Escherichia coli induced copious vesicle production and efficient cell buoyancy. Gas vesicle morphogenesis in Serratia enabled formation of a pellicle-like layer of highly vacuolated cells, which was dependent on oxygen limitation and the expression of ntrB/C and cheY-like regulatory genes within the gas-vesicle gene cluster. Gas vesicle biogenesis was strictly controlled by intercellular chemical signaling, through an N-acyl homoserine lactone, indicating that in this system the quorum-sensing molecule acts as a morphogen initiating organelle development. Flagella-based motility and gas vesicle morphogenesis were also oppositely regulated by the small RNA-binding protein, RsmA, suggesting environmental adaptation through physiological control of the choice between motility and flotation as alternative taxis modes. We propose that gas vesicle biogenesis in this strain represents a distinct mechanism of mobility, regulated by oxygen availability, nutritional status, the RsmA global regulatory system, and the quorum-sensing morphogen. PMID:21873216

Ramsay, Joshua P.; Williamson, Neil R.; Spring, David R.; Salmond, George P. C.

2011-01-01

321

Salmonella Typhimurium invasion of HEp-2 epithelial cells in vitro is increased by N-acylhomoserine lactone quorum sensing signals  

PubMed Central

Background In Gram-negative bacteria, the most commonly studied quorum sensing signals are the N-acylhomoserine lactones (AHLs). In Salmonella, AHLs are recognized by SdiA, which is believed to be a sensor of AHLs produced by other bacteria, since Salmonella does not produce AHLs itself. It has been speculated that AHLs produced by the gastrointestinal flora may influence the regulation of virulence traits in Salmonella. The aim of the present work was to study the effect of AHLs on epithelial cell invasion by Salmonella in vitro. Methods Invasion by Salmonella enterica subspecies enterica serovar Typhimurium (S. Typhimurium) strain and its isogenc sdiA mutant was studied using a conventional gentamycin invasion assay with HEp-2 cells at 37°C. Gene expression was studied using a semi-quantitative PCR. Results The S. Typhimurium strain, but not its isogenic sdiA mutant, displayed increased in vitro invasion after addition of both N-hexanoyl-DL-homoserine lactone (C6-AHL) and N-octanoyl-DL-homoserine lactone (C8-AHL). Increased expression of two of the genes in the SdiA regulon (rck and srgE) was observed in the wild type strain, but not in the sdiA mutant. Conclusions The results from the present study show that S. Typhimurium can respond to two different AHL quorum sensing signals (C6-AHL and C8-AHL) with increased cell invasion at 37°C in vitro, and that this response most likely is sdiA mediated. These results indicate that if AHLs are present in the intestinal environment, they may increase the invasiveness of Salmonella. PMID:21711544

2011-01-01

322

Quorum Sensing in Vibrio anguillarum: Characterization of the vanI\\/vanR Locus and Identification of the Autoinducer N-(3-Oxodecanoyl)-L-Homoserine Lactone  

Microsoft Academic Search

Certain gram-negative pathogens are known to control virulence gene expression through cell-cell commu- nication via small diffusible signal molecules termed autoinducers. This intercellular signal transduction mechanism termed quorum sensing depends on the interaction of an N-acylhomoserine lactone (AHL) auto- inducer molecule with a receptor protein belonging to the LuxR family of positive transcriptional activators. Vibrio anguillarum is a gram-negative pathogen

DEBRA L. MILTON; ANDREA HARDMAN; MIGUEL CAMARA; SIRI RAM CHHABRA; BARRIE W. BYCROFT; GORDON S. A. B. STEWART; PAUL WILLIAMS

1997-01-01

323

AiiA, an enzyme that inactivates the acylhomoserine lactone quorum-sensing signal and attenuates the virulence of Erwinia carotovora  

Microsoft Academic Search

N-acylhomoserine lactones, known as autoinducers (AIs), are widely conserved signal molecules present in quorum-sensing systems of many Gram-negative bacteria. AIs are involved in the regulation of diverse biological functions, including expression of pathogenic genes in the plant pathogens Pseudomonas solanacearum, several Erwinia species, and the human pathogen Pseudomonas aeruginosa. A bacterial isolate, Bacillus sp. 240B1, is capable of enzymatic inactivation

Yi-Hu Dong; Jin-Ling Xu; Xian-Zhen Li; Lian-Hui Zhang

2000-01-01

324

Influence of mutations in genes of global transcriptional regulators on production of autoinducer AI2 in the Escherichia coli Quorum Sensing system  

Microsoft Academic Search

The control of gene expression in response to an increase in the bacterial population density (Quorum Sensing) involves low-molecular-weight\\u000a signal molecules (autoinducers, AI). AI-2 and synthase LuxS mediating its synthesis are widely distributed in Gram-negative\\u000a and Gram-positive bacteria. In this work, the data were obtained on the role of global regulators of gene expression in AI-2\\u000a synthesis in Escherichia coli

A. S. Belik; G. B. Zavil’gel’skii; I. A. Khmel

2008-01-01

325

PsrA, the Pseudomonas Sigma Regulator, Controls Regulators of Epiphytic Fitness, Quorum-Sensing Signals, and Plant Interactions in Pseudomonas syringae pv. tomato Strain DC3000  

Microsoft Academic Search

Pseudomonas syringae pv. tomato strain DC3000, a pathogen of tomato and Arabidopsis, occurs as an epiphyte. It produces N-acyl homoserine lactones (AHLs) which apparently function as quorum-sensing signals. A Tn5 insertion mutant of DC3000, designated PsrA (Psr is for Pseudomonas sigma regulator), overexpresses psyR (a LuxR-type regulator of psyI) and psyI (the gene for AHL synthase), and it produces a

Asita Chatterjee; Yaya Cui; Hiroaki Hasegawa; Arun K. Chatterjee

2007-01-01

326

Lack of genomic evidence of AI2 receptors suggests a non-quorum sensing role for luxS in most bacteria  

Microsoft Academic Search

BACKGROUND: Great excitement accompanied discoveries over the last decade in several Gram-negative and Gram-positive bacteria of the LuxS protein, which catalyzes production of the AI-2 autoinducer molecule for a second quorum sensing system (QS-2). Since the luxS gene was found to be widespread among the most diverse bacterial taxa, it was hypothesized that AI-2 may constitute the basis of a

Fabio Rezzonico; Brion Duffy

2008-01-01

327

Quorum Sensing Controls Biofilm Formation in Vibrio cholerae through Modulation of Cyclic Di-GMP Levels and Repression of vpsT  

Microsoft Academic Search

Two chemical signaling systems, quorum sensing (QS) and 3,5-cyclic diguanylic acid (c-di-GMP), recip- rocally control biofilm formation in Vibrio cholerae. QS is the process by which bacteria communicate via the secretion and detection of autoinducers, and in V. cholerae, QS represses biofilm formation. c-di-GMP is an intracellular second messenger that contains information regarding local environmental conditions, and in V. cholerae,

Christopher M. Waters; Wenyun Lu; Joshua D. Rabinowitz; Bonnie L. Bassler

2008-01-01

328

raiIR genes are part of a quorum-sensing network controlled by cinI and cinR in Rhizobium leguminosarum.  

PubMed

Analysis of N-acyl-L-homoserine lactones (AHLs) produced by Rhizobium leguminosarum bv. viciae indicated that there may be a network of quorum-sensing regulatory systems producing multiple AHLs in this species. Using a strain lacking a symbiosis plasmid, which carries some of the quorum-sensing genes, we isolated mutations in two genes (raiI and raiR) that are required for production of AHLs. The raiIR genes are located adjacent to dad genes (involved in D-alanine catabolism) on a large indigenous plasmid. RaiR is predicted to be a typical LuxR-type quorum-sensing regulator and is required for raiI expression. The raiR gene was expressed at a low level, possibly from a constitutive promoter, and its expression was increased under the influence of the upstream raiI promoter. Using gene fusions and analysis of AHLs produced, we showed that expression of raiI is strongly reduced in strains carrying mutations in cinI or cinR, genes which determine a higher-level quorum-sensing system that is required for normal expression of raiIR. The product of CinI, N-(3-hydroxy-7-cis tetradecenoyl) homoserine lactone, can induce raiR-dependent raiI expression, although higher levels of expression are induced by other AHLs. Expression of raiI in a strain of Agrobacterium that makes no AHLs resulted in the identification of N-(3-hydroxyoctanoyl)-L-homoserine lactone (3OH,C(8)-HSL) as the major product of RaiI, although other AHLs that comigrate with N-hexanoyl-, N-heptanoyl-, and N-octanoyl-homoserine lactones were also made at low levels. The raiI gene was strongly induced by 3OH,C(8)-HSL (the product of RaiI) but could also be induced by other AHLs, suggesting that the raiI promoter can be activated by other quorum-sensing systems within a network of regulation which also involves AHLs determined by genes on the symbiotic plasmid. Thus, the raiIR and cinIR genes are part of a complex regulatory network that influences AHL biosynthesis in R. leguminosarum. PMID:11872711

Wisniewski-Dyé, F; Jones, J; Chhabra, S R; Downie, J A

2002-03-01

329

Potent and selective synthetic modulators of a quorum sensing repressor in Pseudomonas aeruginosa identified from second-generation libraries of N-acylated L-homoserine lactones.  

PubMed

Bacteria can coordinate group behavior using chemical signals in a process called quorum sensing (QS). The QS system in the opportunistic pathogen Pseudomonas aeruginosa is largely governed by the LasR receptor and its cognate chemical signal, N-(3-oxo)-dodecanoyl L-homoserine lactone (OdDHL). LasR also appears to share this signal with an orphan LuxR-type receptor in P. aeruginosa, termed QscR, which represses LasR activity. Non-native molecules that modulate QscR would represent valuable tools to study the role of this novel QS repressor protein in P. aeruginosa. We performed a critical analysis of previously identified, non-native N-acylated L-homoserine lactone (AHL) activators and inhibitors of QscR to determine a set of structure-activity relationships (SARs). Based on these SAR data, we designed, synthesized, and screened several second-generation libraries of AHLs for new ligands that could target QscR. These studies revealed the most active AHL agonists and antagonists of QscR reported to date, with activities ranging from nanomolar to low micromolar in a QscR bacterial reporter strain. Several of these AHLs were highly selective for QscR over LasR and other LuxR-type receptors. A small subset of the new QscR activators, however, were also found to inhibit LasR; this demonstrates the exciting potential for the synergistic modulation of these integral P. aeruginosa QS receptors by using a single synthetic compound. PMID:21365734

Mattmann, Margrith E; Shipway, Patrick M; Heth, Nicole J; Blackwell, Helen E

2011-04-11

330

Necrotrophism Is a Quorum-Sensing-Regulated Lifestyle in Bacillus thuringiensis  

PubMed Central

How pathogenic bacteria infect and kill their host is currently widely investigated. In comparison, the fate of pathogens after the death of their host receives less attention. We studied Bacillus thuringiensis (Bt) infection of an insect host, and show that NprR, a quorum sensor, is active after death of the insect and allows Bt to survive in the cadavers as vegetative cells. Transcriptomic analysis revealed that NprR regulates at least 41 genes, including many encoding degradative enzymes or proteins involved in the synthesis of a nonribosomal peptide named kurstakin. These degradative enzymes are essential in vitro to degrade several substrates and are specifically expressed after host death suggesting that Bt has an active necrotrophic lifestyle in the cadaver. We show that kurstakin is essential for Bt survival during necrotrophic development. It is required for swarming mobility and biofilm formation, presumably through a pore forming activity. A nprR deficient mutant does not develop necrotrophically and does not sporulate efficiently in the cadaver. We report that necrotrophism is a highly regulated mechanism essential for the Bt infectious cycle, contributing to spore spreading. PMID:22511867

Perchat, Stephane; Lemy, Christelle; Buisson, Christophe; Nielsen-LeRoux, Christina; Gohar, Michel; Jacques, Philippe; Ramarao, Nalini; Kolst?, Anne-Brit; Lereclus, Didier

2012-01-01

331

Quorum-sensing regulation of a capsular polysaccharide receptor for the Rhodobacter capsulatus gene transfer agent (RcGTA)  

PubMed Central

Summary The gene transfer agent produced by Rhodobacter capsulatus (RcGTA) resembles a small tailed bacteriophage that packages almost random genomic DNA segments that may be transferred to other R. capsulatus cells. Gene transfer agents are produced by a number of prokaryotes; however, no receptors have been identified. We investigated the RcGTA recipient capability of wild-type R. capsulatus cells at different culture growth phases, and found that the frequency of RcGTA-dependent acquisition of an allele increases as cultures enter the stationary phase. We also found that RcGTA adsorption to cells follows a similar trend. RcGTA recipient capability and adsorption were found to be dependent on the GtaR/I quorum-sensing (QS) system. Production of an extracellular polysaccharide was found to be regulated by GtaR/I QS, as was production of the cell capsule. A number of QS-regulated putative polysaccharide biosynthesis genes were identified, and mutagenesis of two of these genes, rcc01081 and rcc01932, yielded strains that lack a capsule. Furthermore, these mutants were impaired in RcGTA recipient capability and adsorption, as was a non-encapsulated wild-type isolate of R. capsulatus. Overall, our results indicate that capsular polysaccharide is a receptor for the gene transfer agent of R. capsulatus, RcGTA. PMID:23279213

Brimacombe, Cedric A.; Stevens, Aaron; Jun, Daniel; Mercer, Ryan; Lang, Andrew S.; Beatty, J. Thomas

2013-01-01

332

Isolation and Molecular Characterization of Biofouling Bacteria and Profiling of Quorum Sensing Signal Molecules from Membrane Bioreactor Activated Sludge  

PubMed Central

The formation of biofilm in a membrane bioreactor depends on the production of various signaling molecules like N-acyl homoserine lactones (AHLs). In the present study, a total of 200 bacterial strains were isolated from membrane bioreactor activated sludge and screened for AHLs production using two biosensor systems, Chromobacterium violaceum CV026 and Agrobacterium tumefaciens A136. A correlation between AHLs production and biofilm formation has been made among screened AHLs producing strains. The 16S rRNA gene sequence analysis revealed the dominance of Aeromonas and Enterobacter sp. in AHLs production; however few a species of Serratia, Leclercia, Pseudomonas, Klebsiella, Raoultella and Citrobacter were also identified. The chromatographic characterization of sludge extract showed the presence of a broad range of quorum sensing signal molecules. Further identification of sludge AHLs by thin layer chromatography bioassay and high performance liquid chromatography confirms the presence of C4-HSL, C6-HSL, C8-HSL, 3-oxo-C8-HSL, C10-HSL, C12-HSL, 3-oxo-C12-HSL and C14-HSL. The occurrence of AHLs in sludge extract and dominance of Aeromonas and Enterobacter sp. in activated sludge suggests the key role of these bacterial strains in AHLs production and thereby membrane fouling. PMID:24499972

Lade, Harshad; Paul, Diby; Kweon, Ji Hyang

2014-01-01

333

Cis-2-dodecenoic acid signal modulates virulence of Pseudomonas aeruginosa through interference with quorum sensing systems and T3SS  

PubMed Central

Background Cis-2-dodecenoic acid (BDSF) is well known for its important functions in intraspecies signaling in Burkholderia cenocepacia. Previous work has also established an important role of BDSF in interspecies and inter-kingdom communications. It was identified that BDSF modulates virulence of Pseudomonas aeruginosa. However, how BDSF interferes with virulence of P. aeruginosa is still not clear. Results We report here that BDSF mediates the cross-talk between B. cenocepacia and P. aeruginosa through interference with quorum sensing (QS) systems and type III secretion system (T3SS) of P. aeruginosa. Bioassay results revealed that exogenous addition of BDSF not only reduced the transcriptional expression of the regulator encoding gene of QS systems, i.e., lasR, pqsR, and rhlR, but also simultaneously decreased the production of QS signals including 3-oxo-C12-HSL, Pseudomonas quinolone signal (PQS) and C4-HSL, consequently resulting in the down-regulation of biofilm formation and virulence factor production of P. aeruginosa. Furthermore, BDSF and some of its derivatives are also capable of inhibiting T3SS of P. aeruginosa at a micromolar level. Treatment with BDSF obviously reduced the virulence of P. aeruginosa in both HeLa cell and zebrafish infection models. Conclusions These results depict that BDSF modulates virulence of P. aeruginosa through interference with QS systems and T3SS. PMID:24134835

2013-01-01

334

Molecular mechanisms of master regulator VqsM mediating quorum-sensing and antibiotic resistance in Pseudomonas aeruginosa  

PubMed Central

The Pseudomonas aeruginosa quorum-sensing (QS) systems contribute to bacterial homeostasis and pathogenicity. Although the AraC-family transcription factor VqsM has been characterized to control the production of virulence factors and QS signaling molecules, its detailed regulatory mechanisms still remain elusive. Here, we report that VqsM directly binds to the lasI promoter region, and thus regulates its expression. To identify additional targets of VqsM in P. aeruginosa PAO1, we performed chromatin immunoprecipitation (ChIP) followed by high-throughput DNA sequencing (ChIP-seq) and detected 48 enriched loci harboring VqsM-binding peaks in the P. aeruginosa genome. The direct regulation of these genes by VqsM has been confirmed by electrophoretic mobility shift assays and quantitative real-time polymerase chain reactions. A VqsM-binding motif was identified by using the MEME suite and verified by footprint assays in vitro. In addition, VqsM directly bound to the promoter regions of the antibiotic resistance regulator NfxB and the master type III secretion system (T3SS) regulator ExsA. Notably, the vqsM mutant displayed more resistance to two types of antibiotics and promoted bacterial survival in a mouse model, compared to wild-type PAO1. Collectively, this work provides new cues to better understand the detailed regulatory networks of QS systems, T3SS, and antibiotic resistance. PMID:25034696

Liang, Haihua; Deng, Xin; Li, Xuefeng; Ye, Yan; Wu, Min

2014-01-01

335

New properties of wheat bran: anti-biofilm activity and interference with bacteria quorum-sensing systems.  

PubMed

Some plant extracts, have been demonstrated to interfere with the microbial metabolism of several pathogenic bacteria. Within this antimicrobial properties it has been described the potential to inhibit or destroy biofilms or to interfere in quorum-sensing (QS) systems. However, to our knowledge, no study exploring this potential of wheat-bran (WB) has been published. The purpose of the present study is to evaluate the anti-biofilm activity of WB against a cow mastitis strain of Staphylococcus aureus and also its possible interference with bacterial QS systems. The potential of inhibition and destruction of the biofilm was studied by different in vitro assays. Also, we tested the ability of WB to interfere in bacterial QS by degrading acyl-homoserine lactones (AHL) as one of the most studied QS signal molecules for Gram-negative bacteria. The soluble extract of WB at 0.5% showed anti-biofilm activity, inhibiting biofilm formation and also destroying it. Similarly, the >?300?kDa fraction from WB had significant anti-biofilm activity in both in vitro assays. The WB also showed a potential to interfere with bacterial QS systems, as it was demonstrated to contain certain lactonase activity able to reduce AHL concentration in the medium. The present study reveals two additional beneficial properties of WB extract never explored before, which may be related to the presence of defence compounds in the plant extract able to interfere with microbial biofilms and also QS systems. PMID:24588934

González-Ortiz, Gemma; Quarles Van Ufford, H C; Halkes, S Bart A; Cerdà-Cuéllar, Marta; Beukelman, Cees J; Pieters, Roland J; Liskamp, Rob M J; Pérez, José F; Martín-Orue, Susana M

2014-05-01

336

The Quorum Sensing-Dependent Gene katG of Burkholderia glumae Is Important for Protection from Visible Light?  

PubMed Central

Quorum sensing (QS) plays important roles in the pathogenicity of Burkholderia glumae, the causative agent of bacterial rice grain rot. We determined how QS is involved in catalase expression in B. glumae. The QS-defective mutant of B. glumae exhibited less catalase activity than wild-type B. glumae. A ?-glucuronidase assay of a katG::Tn3-gusA78 reporter fusion protein revealed that katG expression is under the control of QS. Furthermore, katG expression was upregulated by QsmR, a transcriptional activator for flagellar-gene expression that is regulated by QS. A gel mobility shift assay confirmed that QsmR directly activates katG expression. The katG mutant produced toxoflavin but exhibited less severe disease than BGR1 on rice panicles. Under visible light conditions and a photon flux density of 61.6 ?mol?1 m?2, the survival rate of the katG mutant was 105-fold lower than that of BGR1. This suggests that KatG is a major catalase that protects bacterial cells from visible light, which probably results in less severe disease caused by the katG mutant. PMID:19395481

Chun, Heejin; Choi, Okhee; Goo, Eunhye; Kim, Nayeon; Kim, Hongsup; Kang, Yongsung; Kim, Jinwoo; Moon, Jae Sun; Hwang, Ingyu

2009-01-01

337

Quorum sensing influences growth and photosynthetic membrane production in high-cell-density cultivations of Rhodospirillum rubrum  

PubMed Central

Background The facultative anoxygenic photosynthetic bacterium Rhodospirillum rubrum exhibits versatile metabolic activity allowing the adaptation to rapidly changing growth conditions in its natural habitat, the microaerobic and anoxic zones of stagnant waters. The microaerobic growth mode is of special interest as it allows the high-level expression of photosynthetic membranes when grown on succinate and fructose in the dark, which could significantly simplify the industrial production of compounds associated with PM formation. However, recently we showed that PM synthesis is no longer inducible when R. rubrum cultures are grown to high cell densities under aerobic conditions. In addition a reduction of the growth rate and the continued accumulation of precursor molecules for bacteriochlorophyll synthesis were observed under high cell densities conditions. Results In the present work, we demonstrate that the cell density-dependent effects are reversible if the culture supernatant is replaced by fresh medium. We identified six N-acylhomoserine lactones and show that four of them are produced in varying amounts according to the growth phase and the applied growth conditions. Further, we demonstrate that N-acylhomoserine lactones and tetrapyrrole compounds released into the growth medium affect the growth rate and PM expression in high cell density cultures. Conclusions In summary, we provide evidence that R. rubrum possesses a Lux-type quorum sensing system which influences the biosynthesis of PM and the growth rate and is thus likely to be involved in the phenotypes of high cell density cultures and the rapid adaptation to changing environmental conditions. PMID:23927486

2013-01-01

338

The Effect of pstS and phoB on Quorum Sensing and Swarming Motility in Pseudomonas aeruginosa  

PubMed Central

Pseudomonas aeruginosa is an opportunistic pathogen that can cause a wide range of infections and inflammations in a variety of hosts, such as chronic biofilm associated lung infections in Cystic Fibrosis patients. Phosphate, an essential nutrient, has been recognized as an important signal that affects virulence in P. aeruginosa. In the current study we examined the connection between phosphate regulation and surface motility in P. aeruginosa. We focused on two important genes, pstS, which is involved in phosphate uptake, and phoB, a central regulator that responds to phosphate starvation. We found that a mutant lacking pstS is constantly starved for phosphate and has a hyper swarming phenotype. Phosphate starvation also induced swarming in the wild type. The phoB mutant, on the other hand, did not express phosphate starvation even when phosphate was limited and showed no swarming. A double mutant lacking both genes (pstS and phoB) showed a similar phenotype to the phoB mutant (i.e. no swarming). This highlights the role of phoB in controlling swarming motility under phosphate-depleted conditions. Finally, we were able to demonstrate that PhoB controls swarming by up-regulating the Rhl quorum sensing system in P. aeruginosa, which resulted in hyper production of rhamonlipids: biosurfactants that are known to induce swarming motility. PMID:24023943

Blus-Kadosh, Inna; Zilka, Anat; Yerushalmi, Gal; Banin, Ehud

2013-01-01

339

Production of the quorum-sensing molecules N-acylhomoserine lactones by endobacteria associated with Mortierella alpina A-178.  

PubMed

Gram-negative bacteria communicate with one another using N-acylhomoserine lactones (AHLs) as signaling molecules. This mechanism, known as quorum sensing (QS), is needed to develop pathogenicity, as well as symbiotic interactions with eukaryotic hosts, such as animals and plants. Increasing evidence indicates that certain bacteria, namely endobacteria, also inhabit fungal cells and establish symbiotic relationships with their hosts. However, it has not been clear whether bacterial QS acts in developing the relationships. Here we describe the isolation and identification of N-heptanoylhomoserine lactone and N-octanoylhomoserine lactone from the culture broth of the zygomycete fungus Mortierella alpina A-178. This suggested the presence of endobacteria in the fungus, as was confirmed by PCR, fluorescence in situ hybridization, and transmission electron microscopy. Two major bands obtained by PCR-denaturing gradient gel electrophoresis showed sequence identity to genes in the ?-proteobacterium Castellaniella defragrans (100?%) and the Gram-positive bacterium Cryobacterium sp. (99.8?%). The production of AHLs depended on the presence of endobacteria and was induced in response to the increase in the concentration of AHLs, suggesting that the bacterium conducts AHL-mediated QS in the fungus. This paper is the first to report the production of AHLs by endofungal bacteria and raises the possibility that QS plays roles in the development of fungus-endobacterium symbiosis. PMID:22807274

Kai, Kenji; Furuyabu, Kana; Tani, Ayaka; Hayashi, Hideo

2012-08-13

340

A Quorum Sensing Regulated Small Volatile Molecule Reduces Acute Virulence and Promotes Chronic Infection Phenotypes  

Microsoft Academic Search

A significant number of environmental microorganisms can cause serious, even fatal, acute and chronic infections in humans. The severity and outcome of each type of infection depends on the expression of specific bacterial phenotypes controlled by complex regulatory networks that sense and respond to the host environment. Although bacterial signals that contribute to a successful acute infection have been identified

Meenu Kesarwani; Ronen Hazan; Jianxin He; YokAi Que; Yiorgos Apidianakis; Biliana Lesic; Gaoping Xiao; Valérie Dekimpe; Sylvain Milot; Eric Deziel; François Lépine; Laurence G. Rahme

2011-01-01

341

Relative Contributions of Vibrio Polysaccharide and Quorum Sensing to the Resistance of Vibrio cholerae to Predation by Heterotrophic Protists  

PubMed Central

Protozoan grazing is a major mortality factor faced by bacteria in the environment. Vibrio cholerae, the causative agent of the disease cholera, is a natural inhabitant of aquatic ecosystems, and its survival depends on its ability to respond to stresses, such as predation by heterotrophic protists. Previous results show that grazing pressure induces biofilm formation and enhances a smooth to rugose morphotypic shift, due to increased expression of Vibrio polysaccharide (VPS). In addition to negatively controlling vps genes, the global quorum sensing (QS) regulator, HapR, plays a role in grazing resistance as the ?hapR strain is efficiently consumed while the wild type (WT) is not. Here, the relative and combined contributions of VPS and QS to grazing resistance were investigated by exposing VPS and HapR mutants and double mutants in VPS and HapR encoding genes at different phases of biofilm development to amoeboid and flagellate grazers. Data show that the WT biofilms were grazing resistant, the VPS mutants were less resistant than the WT strain, but more resistant than the QS mutant strain, and that QS contributes to grazing resistance mainly in mature biofilms. In addition, grazing effects on biofilms of mixed WT and QS mutant strains were investigated. The competitive fitness of each strain in mixed biofilms was determined by CFU and microscopy. Data show that protozoa selectively grazed the QS mutant in mixed biofilms, resulting in changes in the composition of the mixed community. A small proportion of QS mutant cells which comprised 4% of the mixed biofilm biovolume were embedded in grazing resistant WT microcolonies and shielded from predation, indicating the existence of associational protection in mixed biofilms. PMID:23441178

Sun, Shuyang; Kjelleberg, Staffan; McDougald, Diane

2013-01-01

342

Post-transcriptional activation of a diguanylate cyclase by quorum sensing small RNAs promotes biofilm formation in Vibrio cholerae  

PubMed Central

Summary Biofilms promote attachment of Vibrio cholerae in aquatic ecosystems and aid in transmission. Intracellular c-di-GMP levels that control biofilm development positively correlate with expression of Qrr sRNAs, which are transcribed when quorum sensing (QS) autoinducer levels are low. The Qrr sRNA base-pair with and repress translation of hapR encoding the QS “master regulator”, hence increased c-di-GMP and biofilm development at low density were believed to be solely a consequence of Qrr/hapR pairing. We show that Qrr sRNAs also base-pair with and activate translation of the mRNA of a diguanylate cyclase (DGC), Vca0939; relieving an inhibitory structure in vca0939 that occludes the ribosome binding site. A nucleotide substitution in vca0939 disrupted sRNA/mRNA base-pairing and prevented vca0939 translation, while a compensating Qrr sRNA substitution restored pairing and Vca0939 levels. Qrr-dependent DGC activation led to c-di-GMP accumulation and biofilm development in V. cholerae. This represents the first description of 1) a DGC post-transcriptionally activated by direct pairing with an Hfq-dependent sRNA, and 2) control of a V. cholerae QS phenotype, independent of HapR. Thus, direct interactions of the same sRNAs with two mRNAs promote c-di-GMP-dependent biofilm formation by complementary mechanisms in V. cholerae; by negatively regulating HapR, and positively regulating the DGC Vca0939. PMID:23841714

Zhao, Xiaonan; Koestler, Benjamin J.; Waters, Christopher M.; Hammer, Brian K.

2013-01-01

343

ExpR Coordinates the Expression of Symbiotically Important, Bundle-Forming Flp Pili with Quorum Sensing in Sinorhizobium meliloti  

PubMed Central

Type IVb pili in enteropathogenic bacteria function as a host colonization factor by mediating tight adherence to host cells, but their role in bacterium-plant symbiosis is currently unknown. The genome of the symbiotic soil bacterium Sinorhizobium meliloti contains two clusters encoding proteins for type IVb pili of the Flp (fimbrial low-molecular-weight protein) subfamily. To establish the role of Flp pili in the symbiotic interaction of S. meliloti and its host, Medicago sativa, we deleted pilA1, which encodes the putative pilin subunit in the chromosomal flp-1 cluster and conducted competitive nodulation assays. The pilA1 deletion strain formed 27% fewer nodules than the wild type. Transmission electron microscopy revealed the presence of bundle-forming pili protruding from the polar and lateral region of S. meliloti wild-type cells. The putative pilus assembly ATPase CpaE1 fused to mCherry showed a predominantly unilateral localization. Transcriptional reporter gene assays demonstrated that expression of pilA1 peaks in early stationary phase and is repressed by the quorum-sensing regulator ExpR, which also controls production of exopolysaccharides and motility. Binding of acyl homoserine lactone-activated ExpR to the pilA1 promoter was confirmed with electrophoretic mobility shift assays. A 17-bp consensus sequence for ExpR binding was identified within the 28-bp protected region by DNase I footprinting analyses. Our results show that Flp pili are important for efficient symbiosis of S. meliloti with its plant host. The temporal inverse regulation of exopolysaccharides and pili by ExpR enables S. meliloti to achieve a coordinated expression of cellular processes during early stages of host interaction. PMID:24509921

Zatakia, Hardik M.; Nelson, Cassandra E.; Syed, Umair J.

2014-01-01

344

Co-ordination of quorum-sensing regulation in Rhizobium leguminosarum by induction of an anti-repressor.  

PubMed

Analysis of quorum-sensing (QS) regulation in Rhizobium leguminosarum revealed an unusual type of gene regulation that relies on the population density-dependent accumulation of an anti-repressor. The cinS gene, which is co-transcribed with the N-acyl-homoserine-lactone synthase gene cinI, is required to fully induce rhiR and raiR, whose products, together with their partner AHL synthases, regulate other genes in a QS-regulated hierarchy. Purified CinS bound to the R. leguminosarum transcriptional regulator PraR, which repressed rhiR and raiR expression. PraR bound to the rhiR and raiR promoters and CinS displaced PraR from these promoters, thereby inducing their expression. Although induction of cinS required CinI-made AHL, it appears CinS does not require the AHL for its anti-repressor function. The LuxR-type regulator ExpR was also required for normal induction of rhiR and raiR and it appears that this occurs by ExpR repressing the transcription of praR. Therefore ExpR and CinS act independently to attenuate PraR action, ExpR by repressing its transcription and CinS by attenuating its repressive activity. Thus, as CinS accumulates in a population density-dependent manner it induces the QS hierarchy by relieving PraR-mediated repression of rhiR and raiR. PMID:21732996

Frederix, Marijke; Edwards, Anne; McAnulla, Craig; Downie, J Allan

2011-08-01

345

Biofilm Development on Caenorhabditis elegans by Yersinia Is Facilitated by Quorum Sensing-Dependent Repression of Type III Secretion  

PubMed Central

Yersinia pseudotuberculosis forms biofilms on Caenorhabditis elegans which block nematode feeding. This genetically amenable host-pathogen model has important implications for biofilm development on living, motile surfaces. Here we show that Y. pseudotuberculosis biofilm development on C. elegans is governed by N-acylhomoserine lactone (AHL)-mediated quorum sensing (QS) since (i) AHLs are produced in nematode associated biofilms and (ii) Y. pseudotuberculosis strains expressing an AHL-degrading enzyme or in which the AHL synthase (ypsI and ytbI) or response regulator (ypsR and ytbR) genes have been mutated, are attenuated. Although biofilm formation is also attenuated in Y. pseudotuberculosis strains carrying mutations in the QS-controlled motility regulator genes, flhDC and fliA, and the flagellin export gene, flhA, flagella are not required since fliC mutants form normal biofilms. However, in contrast to the parent and fliC mutant, Yop virulon proteins are up-regulated in flhDC, fliA and flhA mutants in a temperature and calcium independent manner. Similar observations were found for the Y. pseudotuberculosis QS mutants, indicating that the Yop virulon is repressed by QS via the master motility regulator, flhDC. By curing the pYV virulence plasmid from the ypsI/ytbI mutant, by growing YpIII under conditions permissive for type III needle formation but not Yop secretion and by mutating the type III secretion apparatus gene, yscJ, we show that biofilm formation can be restored in flhDC and ypsI/ytbI mutants. These data demonstrate that type III secretion blocks biofilm formation and is reciprocally regulated with motility via QS. PMID:21253572

Atkinson, Steve; Goldstone, Robert J.; Joshua, George W. P.; Chang, Chien-Yi; Patrick, Hannah L.; Camara, Miguel; Wren, Brendan W.; Williams, Paul

2011-01-01

346

Anti-quorum sensing activity of Psidium guajava L. flavonoids against Chromobacterium violaceum and Pseudomonas aeruginosa PAO1.  

PubMed

Psidium guajava L., which has been used traditionally as a medicinal plant, was explored for anti-quorum sensing (QS) activity. The anti-QS activity of the flavonoid (FL) fraction of P. guajava leaves was determined using a biosensor bioassay with Chromobacterium violaceum CV026. Detailed investigation of the effects of the FL-fraction on QS-regulated violacein production in C. violaceum ATCC12472 and pyocyanin production, proteolytic, elastolytic activities, swarming motility and biofilm formation in Pseudomonas aeruginosa PAO1 was performed using standard methods. Possible mechanisms of QS-inhibition were studied by assessing violacein production in response to N-acyl homoserine lactone (AHL) synthesis in the presence of the FL-fraction in C. violaceum ATCC31532 and by evaluating the induction of violacein in the mutant C. violaceum CV026 by AHL extracted from the culture supernatants of C. violaceum 31532. Active compounds in the FL-fraction were identified by liquid chromatography-mass spectrometry (LC-MS). Inhibition of violacein production by the FL-fraction in a C. violaceum CV026 biosensor bioassay indicated possible anti-QS activity. The FL-fraction showed concentration-dependent decreases in violacein production in C. violaceum 12472 and inhibited pyocyanin production, proteolytic and elastolytic activities, swarming motility and biofilm formation in P. aeruginosa PAO1. Interestingly, the FL-fraction did not inhibit AHL synthesis; AHL extracted from cultures of C. violaceum 31532 grown in the presence of the FL-fraction induced violacein in the mutant C. violaceum CV026. LC-MS analysis revealed the presence of quercetin and quercetin-3-O-arabinoside in the FL-fraction. Both quercetin and quercetin-3-O-arabinoside inhibited violacein production in C. violaceum 12472, at 50 and 100??g/mL, respectively. Results of this study provide scope for further research to exploit these active molecules as anti-QS agents. PMID:24698116

Vasavi, Halkare Suryanarayana; Arun, Ananthapadmanabha Bhagwath; Rekha, Punchapady-Devasya

2014-05-01

347

Attenuation of virulence in pathogenic bacteria using synthetic quorum-sensing modulators under native conditions on plant hosts.  

PubMed

Quorum sensing (QS) is often critical in both pathogenic and mutualistic relationships between bacteria and their eukaryotic hosts. Gram-negative bacteria typically use N-acylated l-homoserine lactone (AHL) signals for QS. We have identified a number of synthetic AHL analogues that are able to strongly modulate QS in culture-based, reporter gene assays. While informative, these assays represent idealized systems, and their relevance to QS under native conditions is often unclear. As one of our goals is to utilize synthetic QS modulators to study bacterial communication under native conditions, identifying robust host-bacteria model systems for their evaluation is crucial. We reasoned that the host-pathogen interaction between Solanum tuberosum (potato) and the Gram-negative pathogen Pectobacterium carotovora would be ideal for such studies as we have identified several potent, synthetic QS modulators for this pathogen, and infection assays in potato are facile. Herein, we report on our development of this host-pathogen system, and another in Phaseolus vulgaris (green bean), as a means for monitoring the ability of abiotic AHLs to modulate QS-regulated virulence in host infection assays. Our assays confirmed that QS modulators previously identified through culture-based assays largely retained their activity profiles when introduced into the plant host. However, inhibition of virulence in wild-type infections was highly dependent on the timing of compound dosing. This study is the first to demonstrate that our AHL analogues are active in wild-type bacteria in their native eukaryotic hosts and provides compelling evidence for the application of these molecules as probes to study QS in a range of organisms and environments. PMID:21932837

Palmer, Andrew G; Streng, Evan; Blackwell, Helen E

2011-12-16

348

Performance and role of N-acyl-homoserine lactone (AHL)-based quorum sensing (QS) in aerobic granules.  

PubMed

The present study investigated the relationship between N-acyl-homoserine lactone (AHL)-based quorum sensing (QS) and the physico-chemical properties of aerobic granules. Stable mature granules were observed in SBR2 and SBR3 with average diameters of 0.96, and 1.49 mm, respectively. The sludge densities of aerobic granules in SBR2 and SBR3 were 1.0246, and 1.0201 g/mL, respectively, which were higher than that of flocculent sludge in SBR1 (1.0065 g/mL). The results showed that the activity of AHL-based QS in SBR2 and SBR3 amounted to 2.4- and 2.1-fold induction, however, that in SBR1 with flocculent sludge was 1.6-fold induction. In addition, the results also showed that the activity of AHL-based QS in the three reactors rose in the feast condition, and then dropped with the consumption of substrate. However, the activity of AHL-based QS in these three reactors recovered again in prolonged starvation. Furthermore, the results showed that the enhancement of AHL-based QS favored the extracellular polymeric substance production of microorganisms in activated sludge. Thus, it could be concluded that aerobic granules showed higher AHL-based QS than flocculent sludge, which resulted from the higher sludge density of aerobic granules than flocculent sludge. AHL-based QS was related to the metabolism energy in the feast condition; however, in prolonged starvation, microorganisms would emit more AHL-like molecules to protect themselves to resist starvation. Moreover, the enhancement of AHL-based QS favored the EPS component productivity of the microorganisms in activated sludge, which contributed to maintain the aerobic granular structure. PMID:25108717

Li, Yaochen; Lv, Junping; Zhong, Chen; Hao, Wen; Wang, Yaqin; Zhu, Jianrong

2014-08-01

349

Proteomic Analysis of the Quorum-Sensing Regulon in Pantoea stewartii and Identification of Direct Targets of EsaR  

PubMed Central

The proteobacterium Pantoea stewartii subsp. stewartii causes Stewart's wilt disease in maize when it colonizes the xylem and secretes large amounts of stewartan, an exopolysaccharide. The success of disease pathogenesis lies in the timing of bacterial virulence factor expression through the different stages of infection. Regulation is achieved through a quorum-sensing (QS) system consisting of the acyl-homoserine lactone (AHL) synthase, EsaI, and the transcription regulator EsaR. At low cell densities, EsaR represses transcription of itself and of rcsA, an activator of the stewartan biosynthesis operon; it also activates esaS, which encodes a small RNA (sRNA). Repression or activation ceases at high cell densities when EsaI synthesizes sufficient levels of the AHL ligand N-3-oxo-hexanoyl-l-homoserine lactone to bind and inactivate EsaR. This study aims to identify other genes activated or repressed by EsaR during the QS response. Proteomic analysis identified a QS regulon of more than 30 proteins. Electrophoretic mobility shift assays of promoters of genes encoding differentially expressed proteins distinguished direct targets of EsaR from indirect targets. Additional quantitative reverse transcription-PCR (qRT-PCR) and DNA footprinting analysis established that EsaR directly regulates the promoters of dkgA, glpF, and lrhA. The proteins encoded by dkgA, glpF, and lrhA are a 2,5-diketogluconate reductase, glycerol facilitator, and transcriptional regulator of chemotaxis and motility, respectively, indicating a more global QS response in P. stewartii than previously recognized. PMID:23913428

Ramachandran, Revathy

2013-01-01

350

Quorum sensing signal production and microbial interactions in a polymicrobial disease of corals and the coral surface mucopolysaccharide layer.  

PubMed

Black band disease (BBD) of corals is a complex polymicrobial disease considered to be a threat to coral reef health, as it can lead to mortality of massive reef-building corals. The BBD community is dominated by gliding, filamentous cyanobacteria with a highly diverse population of heterotrophic bacteria. Microbial interactions such as quorum sensing (QS) and antimicrobial production may be involved in BBD disease pathogenesis. In this study, BBD (whole community) samples, as well as 199 bacterial isolates from BBD, the surface mucopolysaccharide layer (SML) of apparently healthy corals, and SML of apparently healthy areas of BBD-infected corals were screened for the production of acyl homoserine lactones (AHLs) and for autoinducer-2 (AI-2) activity using three bacterial reporter strains. AHLs were detected in all BBD (intact community) samples tested and in cultures of 5.5% of BBD bacterial isolates. Over half of a subset (153) of the isolates were positive for AI-2 activity. AHL-producing isolates were further analyzed using LC-MS/MS to determine AHL chemical structure and the concentration of (S)-4,5-dihydroxy-2,3-pentanedione (DPD), the biosynthetic precursor of AI-2. C6-HSL was the most common AHL variant detected, followed by 3OC4-HSL. In addition to QS assays, 342 growth challenges were conducted among a subset of the isolates, with 27% of isolates eliciting growth inhibition and 2% growth stimulation. 24% of BBD isolates elicited growth inhibition as compared to 26% and 32% of the bacteria from the two SML sources. With one exception, only isolates that exhibited AI-2 activity or produced DPD inhibited growth of test strains. These findings demonstrate for the first time that AHLs are present in an active coral disease. It is possible that AI-2 production among BBD and coral SML bacteria may structure the microbial communities of both a polymicrobial infection and the healthy coral microbiome. PMID:25268348

Zimmer, Beth L; May, Amanda L; Bhedi, Chinmayee D; Dearth, Stephen P; Prevatte, Carson W; Pratte, Zoe; Campagna, Shawn R; Richardson, Laurie L

2014-01-01

351

Quorum Sensing Negatively Regulates Multinucleate Cell Formation during Intracellular Growth of Burkholderia pseudomallei in Macrophage-Like Cells  

PubMed Central

Burkholderia pseudomallei is a Gram-negative environmental bacterium and the causative agent of melioidosis, a potentially fatal, acute or chronic disease endemic in the tropics. Acyl homoserine lactone (AHL)-mediated quorum sensing and signalling have been associated with virulence and biofilm formation in numerous bacterial pathogens. In the canonical acyl-homoserine lactone signalling paradigm, AHLs are detected by a response regulator. B. pseudomallei encodes three AHL synthases, encoded by bpsI1, bpsI2 and bpsI3, and five regulator genes. In this study, we mutated the B. pseudomallei AHL synthases individually and in double and triple combination. Five AHLs were detected and quantified by tandem liquid chromatography-mass spectroscopy. The major AHLs produced were N-octanoylhomoserine lactone and N-(3-hydroxy-decanoyl)homoserine lactone, the expression of which depended on bpsI1 and bpsI2, respectively. B. pseudomallei infection of macrophage cells causes cell fusion, leading to multinucleated cells (3 or more nuclei per cell). A triple mutant defective in production of all three AHL synthases was associated with a striking phenotype of massively enhanced host cellular fusion in macrophages. However, neither abrogation of host cell fusion, achieved by mutation of bimA or hcp1, nor enhancement of fusion altered intracellular replication of B. pseudomallei. Furthermore, when tested in murine models of acute melioidosis the AHL synthase mutants were not attenuated for virulence. Collectively, this study identifies important new aspects of the genetic basis of AHL synthesis in B. pseudomallei and the roles of these AHLs in systemic infection and in cell fusion in macrophages for this important human pathogen. PMID:23704903

Horton, Rachel E.; Grant, Gary D.; Matthews, Ben; Batzloff, Michael; Owen, Suzzanne J.; Kyan, Stephanie; Flegg, Cameron P.; Clark, Amanda M.; Ulett, Glen C.; Morrison, Nigel; Peak, Ian R.; Beacham, Ifor R.

2013-01-01

352

Quorum Sensing Signal Production and Microbial Interactions in a Polymicrobial Disease of Corals and the Coral Surface Mucopolysaccharide Layer  

PubMed Central

Black band disease (BBD) of corals is a complex polymicrobial disease considered to be a threat to coral reef health, as it can lead to mortality of massive reef-building corals. The BBD community is dominated by gliding, filamentous cyanobacteria with a highly diverse population of heterotrophic bacteria. Microbial interactions such as quorum sensing (QS) and antimicrobial production may be involved in BBD disease pathogenesis. In this study, BBD (whole community) samples, as well as 199 bacterial isolates from BBD, the surface mucopolysaccharide layer (SML) of apparently healthy corals, and SML of apparently healthy areas of BBD-infected corals were screened for the production of acyl homoserine lactones (AHLs) and for autoinducer-2 (AI-2) activity using three bacterial reporter strains. AHLs were detected in all BBD (intact community) samples tested and in cultures of 5.5% of BBD bacterial isolates. Over half of a subset (153) of the isolates were positive for AI-2 activity. AHL-producing isolates were further analyzed using LC-MS/MS to determine AHL chemical structure and the concentration of (S)-4,5-dihydroxy-2,3-pentanedione (DPD), the biosynthetic precursor of AI-2. C6-HSL was the most common AHL variant detected, followed by 3OC4-HSL. In addition to QS assays, 342 growth challenges were conducted among a subset of the isolates, with 27% of isolates eliciting growth inhibition and 2% growth stimulation. 24% of BBD isolates elicited growth inhibition as compared to 26% and 32% of the bacteria from the two SML sources. With one exception, only isolates that exhibited AI-2 activity or produced DPD inhibited growth of test strains. These findings demonstrate for the first time that AHLs are present in an active coral disease. It is possible that AI-2 production among BBD and coral SML bacteria may structure the microbial communities of both a polymicrobial infection and the healthy coral microbiome. PMID:25268348

Zimmer, Beth L.; May, Amanda L.; Bhedi, Chinmayee D.; Dearth, Stephen P.; Prevatte, Carson W.; Pratte, Zoe; Campagna, Shawn R.; Richardson, Laurie L.

2014-01-01

353

Screening & profiling of quorum sensing signal molecules in Pseudomonas aeruginosa isolates from catheterized urinary tract infection patients  

PubMed Central

Background & objectives: Catheter associated urinary tract infections are the second most common nosocomial infections and Pseudomonas aeruginosa is the third most common organism responsible for these infections. In this study P. aeruginosa isolates from catheterized urinary tract infection patients were screened and profiled for the presence of different type of quorum sensing (QS) signal molecules. Methods: Screening and quantitation of AHLs was done by using cross feeding assay and by determining ?-galactosidase activity respectively using Escherichia coli MG4 as reporter strain. Further, AHL profiles were determined by separating AHLs on TLC coupled with their detection using Chromobacterium violaceum CV026 and Agrobacterium tumifaciens A136 biosensor strains. Results: All uroisolates from catheterized patients having urinary tract infections were found to be producers of QS signal molecules. There were differences in amounts and type of AHL produced amongst uroisolates of P. aeruginosa. Several AHLs belonging to C4-HSL, C6-HSL, oxo-C6-HSL, C8-HSL, C10-HSL and C12-HSL were determined in these strains. Interpretation & conclusions: Simultaneous use of more than one reporter strain and assay method proved useful in determining the AHLs profile in uroisolates of P. aeruginosa. Observed differences in the amounts and types of AHLs may reflect differences in virulence potential of P. aeruginosa to cause UTIs which can be further confirmed by employing animal model system. The present study speculates that production of QS signal molecules may act as a new virulence marker of P. aeruginosa responsible for causing catheter associated UTIs and can be considered as futuristic potential drug targets towards treatment of UTIs. PMID:21911974

Kumar, Ravi; Chhibber, Sanjay; Gupta, Varsha; Harjai, Kusum

2011-01-01

354

The hydrocarbon-degrading marine bacterium Cobetia sp. strain MM1IDA2H-1 produces a biosurfactant that interferes with quorum sensing of fish pathogens by signal hijacking  

PubMed Central

Summary Biosurfactants are produced by hydrocarbon-degrading marine bacteria in response to the presence of water-insoluble hydrocarbons. This is believed to facilitate the uptake of hydrocarbons by bacteria. However, these diffusible amphiphilic surface-active molecules are involved in several other biological functions such as microbial competition and intra-or inter-species communication. We report the isolation and characterization of a marine bacterial strain identified as Cobetia sp. MM1IDA2H-1, which can grow using the sulfur-containing heterocyclic aromatic hydrocarbon dibenzothiophene (DBT). As with DBT, when the isolated strain is grown in the presence of a microbial competitor, it produces a biosurfactant. Because the obtained biosurfactant was formed by hydroxy fatty acids and extracellular lipidic structures were observed during bacterial growth, we investigated whether the biosurfactant at its critical micelle concentration can interfere with bacterial communication systems such as quorum sensing. We focused on Aeromonas salmonicida subsp. salmonicida, a fish pathogen whose virulence relies on quorum sensing signals. Using biosensors for quorum sensing based on Chromobacterium violaceum and Vibrio anguillarum, we showed that when the purified biosurfactant was mixed with N-acyl homoserine lactones produced by A.?salmonicida, quorum sensing was inhibited, although bacterial growth was not affected. In addition, the transcriptional activities of A.?salmonicida virulence genes that are controlled by quorum sensing were repressed by both the purified biosurfactant and the growth in the presence of Cobetia sp. MM1IDA2H-1. We propose that the biosurfactant, or the lipid structures interact with the N-acyl homoserine lactones, inhibiting their function. This could be used as a strategy to interfere with the quorum sensing systems of bacterial fish pathogens, which represents an attractive alternative to classical antimicrobial therapies in fish aquaculture. PMID:23279885

Ibacache-Quiroga, C; Ojeda, J; Espinoza-Vergara, G; Olivero, P; Cuellar, M; Dinamarca, M A

2013-01-01

355

Quorum sensing and production of autoinducer-2 in Campylobacter spp., Escherichia coli O157:H7, and Salmonella enterica serovar Typhimurium in foods.  

PubMed

Autoinducer molecules are utilized by gram-negative and gram-positive bacteria to regulate density-dependent gene expression by a mechanism known as quorum sensing. PCR and DNA sequencing results showed that Campylobacter jejuni and Campylobacter coli possessed luxS, which is responsible for autoinducer-2 (AI-2) production. Using a Vibrio harveyi luminescence assay, the production of AI-2 was observed in milk, chicken broth, and brucella broth by C. coli, C. jejuni, Salmonella enterica serovar Typhimurium, and Escherichia coli O157:H7 under different conditions. PMID:12200329

Cloak, Orla M; Solow, Barbara T; Briggs, Connie E; Chen, Chin-Yi; Fratamico, Pina M

2002-09-01

356

Quorum Sensing and Production of Autoinducer-2 in Campylobacter spp., Escherichia coli O157:H7, and Salmonella enterica Serovar Typhimurium in Foods  

PubMed Central

Autoinducer molecules are utilized by gram-negative and gram-positive bacteria to regulate density-dependent gene expression by a mechanism known as quorum sensing. PCR and DNA sequencing results showed that Campylobacter jejuni and Campylobacter coli possessed luxS, which is responsible for autoinducer-2 (AI-2) production. Using a Vibrio harveyi luminescence assay, the production of AI-2 was observed in milk, chicken broth, and brucella broth by C. coli, C. jejuni, Salmonella enterica serovar Typhimurium, and Escherichia coli O157:H7 under different conditions. PMID:12200329

Cloak, Orla M.; Solow, Barbara T.; Briggs, Connie E.; Chen, Chin-Yi; Fratamico, Pina M.

2002-01-01

357

Characterization of N-acylhomoserine lactone-degrading bacteria associated with the Zingiber officinale (ginger) rhizosphere: Co-existence of quorum quenching and quorum sensing in Acinetobacter and Burkholderia  

PubMed Central

Background Cell-to-cell communication (quorum sensing (QS)) co-ordinates bacterial behaviour at a population level. Consequently the behaviour of a natural multi-species community is likely to depend at least in part on co-existing QS and quorum quenching (QQ) activities. Here we sought to discover novel N-acylhomoserine lactone (AHL)-dependent QS and QQ strains by investigating a bacterial community associated with the rhizosphere of ginger (Zingiber officinale) growing in the Malaysian rainforest. Results By using a basal growth medium containing N-(3-oxohexanoyl)homoserine lactone (3-oxo-C6-HSL) as the sole source of carbon and nitrogen, the ginger rhizosphere associated bacteria were enriched for strains with AHL-degrading capabilities. Three isolates belonging to the genera Acinetobacter (GG2), Burkholderia (GG4) and Klebsiella (Se14) were identified and selected for further study. Strains GG2 and Se14 exhibited the broadest spectrum of AHL-degrading activities via lactonolysis while GG4 reduced 3-oxo-AHLs to the corresponding 3-hydroxy compounds. In GG2 and GG4, QQ was found to co-exist with AHL-dependent QS and GG2 was shown to inactivate both self-generated and exogenously supplied AHLs. GG2, GG4 and Se14 were each able to attenuate virulence factor production in both human and plant pathogens. Conclusions Collectively our data show that ginger rhizosphere bacteria which make and degrade a wide range of AHLs are likely to play a collective role in determining the QS-dependent phenotype of a polymicrobial community. PMID:21385437

2011-01-01

358

Opposite effects of cefoperazone and ceftazidime on S-ribosylhomocysteine lyase/autoinducer-2 quorum sensing and biofilm formation by an Escherichia coli clinical isolate  

PubMed Central

To investigate the effects of subminimum inhibitory concentrations of cephalosporins on bacterial biofilm formation, the biofilm production of 52 Escherichia (E.) coli strains was examined following treatment with cephalosporin compounds at 1/4 minimum inhibitory concentrations (MICs). Ceftazidime (CAZ) inhibited biofilm formation in seven isolates, while cefoperazone (CFP) enhanced biofilm formation in 18 isolates. Biofilm formation of E. coli E42 was inhibited by CAZ and induced by CFP. Therefore, using reverse transcription-polymerase chain reaction, the expression of the biofilm-modulating genes of this isolate was investigated. To monitor the production of the autoinducer of quorum sensing in E. coli, autoinducer-2 (AI-2) production was detected by measuring the bioluminescence response of Vibrio harveyi BB170. Antisense oligonucleotides (AS-ODNs) targeting S-ribosylhomocysteine lyase (luxS) inhibited the expression of the luxS gene in E. coli. CAZ at 1/4 MIC reduced luxS mRNA levels and the production of AI-2, whereas CFP at 1/4 MIC had the opposite effect. AS-ODNs targeting luxS significantly decreased the aforementioned inhibitory effects of CAZ and the induction effects of CFP on E. coli biofilm formation. Therefore, biofilm formation by the E. coli clinical isolate E42 was evoked by CFP but attenuated by CAZ at sub-MICs, via a luxS/AI-2-based quorum sensing system. PMID:25189202

SHI, HUI-QING; SUN, FENG-JUN; CHEN, JIAN-HONG; YONG, XIAO-LAN; OU, QIAN-YI; FENG, WEI; XIA, PEI-YUAN

2014-01-01

359

Functional analysis of three AHL autoinducer synthase genes in Mesorhizobium loti reveals the important role of quorum sensing in symbiotic nodulation.  

PubMed

One of the most important signal transduction pathways in bacteria, quorum sensing, is involved in many regulatory circuits in rhizobia, especially in the control of communication between rhizobia and their plant hosts. In this study, we identified 3 autoinducer synthase genes - mrlI1, mrlI2, and mrlI3 - in Mesorhizobium loti NZP 2213. We found that MrlI1 and MrlI2 could synthesize distinct N-acyl homoserine lactone (AHL) autoinducers in rich medium cultures, and the expression of mrlI1 was shown to be growth-phase-dependent. MrlI3 did not produce any detectable AHL molecules under the culture conditions tested. To investigate whether these AHL synthases affect nodulation, we examined the nodulation of AHL-deficient mutants on their native plant host Lotus corniculatus and found that the efficiency of nodulation of bacteria with mutations of any of these 3 synthase genes was reduced, suggesting that quorum sensing systems in M. loti may play an important role in successful establishment of rhizobium-legume symbiosis. PMID:19295655

Yang, Menghua; Sun, Kejing; Zhou, Lei; Yang, Ruifu; Zhong, Zengtao; Zhu, Jun

2009-02-01

360

Computational modeling of differences in the quorum sensing induced luminescence phenotypes of \\textit{Vibrio harveyi} and \\textit{Vibrio cholerae}  

E-print Network

\\textit{Vibrio harveyi} and \\textit{Vibrio cholerae} have quorum sensing pathways with similar design and highly homologous components including multiple small RNAs (sRNAs). However, the associated luminescence phenotypes of strains with sRNA deletions differ dramatically: in \\textit{V. harveyi}, the sRNAs act additively; however, in \\textit{V. cholerae}, the sRNAs act redundantly. Furthermore, there are striking differences in the luminescence phenotypes for different pathway mutants in \\textit{V. harveyi} and \\textit{V. cholerae}. However these differences have not been connected with the observed differences for the sRNA deletion strains in these bacteria. In this work, we present a model for quorum sensing induced luminescence phenotypes focusing on the interactions of multiple sRNAs with target mRNA. Within our model, we find that one key parameter -- the fold-change in protein concentration necessary for luminescence activation -- can control whether the sRNAs appear to act additively or redundantly. For specific parameter choices, we find that differences in this key parameter can also explain hitherto unconnected luminescence phenotypes differences for various pathway mutants in \\textit{V. harveyi} and \\textit{V. cholerae}. The model can thus provide a unifying explanation for observed differences in luminescence phenotypes and can also be used to make testable predictions for future experiments.

Andrew T Fenley; Suman K Banik; Rahul V Kulkarni

2011-01-27

361

LsrF, a coenzyme A-dependent thiolase, catalyzes the terminal step in processing the quorum sensing signal autoinducer-2.  

PubMed

The quorum sensing signal autoinducer-2 (AI-2) regulates important bacterial behaviors, including biofilm formation and the production of virulence factors. Some bacteria, such as Escherichia coli, can quench the AI-2 signal produced by a variety of species present in the environment, and thus can influence AI-2-dependent bacterial behaviors. This process involves uptake of AI-2 via the Lsr transporter, followed by phosphorylation and consequent intracellular sequestration. Here we determine the metabolic fate of intracellular AI-2 by characterizing LsrF, the terminal protein in the Lsr AI-2 processing pathway. We identify the substrates of LsrF as 3-hydroxy-2,4-pentadione-5-phosphate (P-HPD, an isomer of AI-2-phosphate) and coenzyme A, determine the crystal structure of an LsrF catalytic mutant bound to P-HPD, and identify the reaction products. We show that LsrF catalyzes the transfer of an acetyl group from P-HPD to coenzyme A yielding dihydroxyacetone phosphate and acetyl-CoA, two key central metabolites. We further propose that LsrF, despite strong structural homology to aldolases, acts as a thiolase, an activity previously undescribed for this family of enzymes. With this work, we have fully characterized the biological pathway for AI-2 processing in E. coli, a pathway that can be used to quench AI-2 and control quorum-sensing-regulated bacterial behaviors. PMID:25225400

Marques, João C; Oh, Il Kyu; Ly, Daniel C; Lamosa, Pedro; Ventura, M Rita; Miller, Stephen T; Xavier, Karina B

2014-09-30

362

Quorum vs. diffusion sensing: a quantitative analysis of the relevance of absorbing or reflecting boundaries.  

PubMed

The consequences of the boundary conditions (signal reflecting vs. signal adsorbing) on bacterial intercellular communication were addressed by a combined physics and microbiology approach. A predictive biophysical model was devised that considered system size, diffusion from given points, signal molecule decay and boundary properties. The theoretical predictions were tested with two experimental agarose-gel-based set-ups for reflecting or absorbing boundaries. N-acyl homoserine lactone (AHL) concentration profiles were measured using the Agrobacterium tumefaciens NTL4 bioassay and found to agree with model predictions. The half-life of AHL was estimated to be 7 days. The absorbing vs. reflecting nature of the boundaries drastically changed AHL concentration profiles. The effect of a single nonreflecting boundary side was equivalent to a 100-fold lower cell concentration. Results suggest that the kinetics of signal accumulation vs. signal removal and their threshold-mediated phenotypic consequences are directly linked to the properties of biofilm boundaries, stressing the relevance of the diffusion sensing component in bacterial communication. PMID:24484313

Trovato, Antonio; Seno, Flavio; Zanardo, Marina; Alberghini, Sara; Tondello, Alessandra; Squartini, Andrea

2014-03-01

363

Correlation between group behavior and quorum sensing in Pseudomonas aeruginosa isolated from patients with hospital-acquired pneumonia  

PubMed Central

Background This study investigated the correlation between the expression of the Las and Rhl quorum-sensing (QS) systems and the communal behavior (motility, biofilm formation, and pyocyanin production) of Pseudomonas aeruginosa (P. aeruginosa) isolated from patients with hospital-acquired pneumonia. Methods We analyzed 138 P. aeruginosa isolates from 48 patients (30 men and 18 women; age 68.18±15.08 years). P. aeruginosa clinical isolates were assessed for Las and Rhl gene expression and bacterial motility, biofilm formation, and pyocyanin production. Results P. aeruginosa swimming, twitching, and swarming motility positively correlated with the expression of LasI, LasR, and RhlI (P<0.05) but not with that of RhlR (P>0.05). At all analyzed time points, a significant positive correlation was found between biofilm formation and the expression of LasI, LasR (P<0.01), and RhlI (P<0.05 for day 1, P<0.01 for days 7 and 14), whereas RhlR expression positively correlated with biofilm formation only on day 14 (P<0.05). On days 1 and 7, positive correlation was observed between pyocyanin production and the levels of LasI and RhlI (P<0.05). In bacterial clearance cases, the expression of QS-related genes and the group behavior of the pathogen did not correlate (P>0.05). However, in cases of persistent P. aeruginosa infection, the changes in LasI and LasR gene expression were positively correlated with those in bacterial motility (P<0.05), and the changes in LasI, LasR, RhlI, and RhlR expression showed a significant positive association with those in biofilm formation (P<0.01). Conclusions In patients with hospital-acquired pneumonia, the expression of the Las and Rhl QS genes was associated with bacterial motility, biofilm formation, and pyocyanin production, suggesting an involvement of the QS genes in the clearance of pathogenic P. aeruginosa in patients. PMID:24977007

Li, Yong; Qu, Hong-Ping; Wan, Huan-Ying

2014-01-01

364

Crystalline xylitol production by a novel yeast, Pichia caribbica (HQ222812), and its application for quorum sensing inhibition in gram-negative marker strain Chromobacterium violaceum CV026.  

PubMed

Xylitol, a sugar alcohol, is fast gaining ground over other artificial sugar substitutes owing to its advantageous properties. Xylitol is a safer alternative for diabetics because of insulin-independent metabolism. It has beneficial properties suitable to form an important part of odontological formulations. Conventional commercial production of xylitol involves harsh chemical method operating at high temperature and pressure. Thus, microbial production of xylitol is preferred over chemical method, and yeasts have been extensively exploited for this purpose. In the present manuscript, quantitative production of xylitol from D-xylose with the yield of 0.852 gm/gm and volumetric productivity of 1.83 gm/l/h in crystalline form, using novel yeast Pichia caribbica is reported. Also, a mild, safe procedure for product extraction is described. The ability of xylitol to act as a quorum sensing antagonist in gram-negative marker strain Chromobacterium violaceum CV026 has been demonstrated for the first time. PMID:23338824

Mukherji, Ruchira; Joshi-Navare, Kasturi; Prabhune, Asmita

2013-03-01

365

Discovery of antagonists of PqsR, a key player in 2-alkyl-4-quinolone-dependent quorum sensing in Pseudomonas aeruginosa.  

PubMed

The pqs quorum sensing communication system of Pseudomonas aeruginosa controls virulence factor production and is involved in biofilm formation, therefore playing an important role for pathogenicity. In order to attenuate P. aeruginosa pathogenicity, we followed a ligand-based drug design approach and synthesized a series of compounds targeting PqsR, the receptor of the pqs system. In vitro evaluation using a reporter gene assay in Escherichia coli led to the discovery of the first competitive PqsR antagonists, which are highly potent (K(d,app) of compound 20: 7 nM). These antagonists are able to reduce the production of the virulence factor pyocyanin in P. aeruginosa. Our finding offers insights into the ligand-receptor interaction of PqsR and provides a promising starting point for further drug design. PMID:22444593

Lu, Cenbin; Kirsch, Benjamin; Zimmer, Christina; de Jong, Johannes C; Henn, Claudia; Maurer, Christine K; Müsken, Mathias; Häussler, Susanne; Steinbach, Anke; Hartmann, Rolf W

2012-03-23

366

Regulation of Cytotoxicity by Quorum-Sensing Signaling in Vibrio vulnificus Is Mediated by SmcR, a Repressor of hlyU?†  

PubMed Central

Cytotoxicity is an important virulence determinant in the pathogenesis of Vibrio vulnificus, and two cytotoxins, RTX (encoded by rtxA1) and cytolysin/hemolysin (encoded by vvhA), have been identified in this organism. We showed that the quorum-sensing regulator LuxO controlled the cytotoxicity of this organism: a ?luxO mutant exhibited low cytotoxicity, whereas a constitutively activated luxO mutant, luxO(D47E), remained highly cytotoxic. The cytotoxicity of the ?luxO mutant was restored when smcR, a Vibrio harveyi luxR homologue repressed by luxO, was further deleted. SmcR then was shown to repress the expression of both rtxA1 and vvhA. A DNA library of V. vulnificus was screened in Escherichia coli for clones that upregulated vvhA in the presence of SmcR, and hlyU, which has been shown to positively regulate rtxA1 and vvhA, was identified. We demonstrated that SmcR repressed the expression of hlyU and bound to a region upstream of hlyU in V. vulnificus. The deletion of hlyU resulted in the loss of cytotoxicity and reduced cytolysin/hemolysin production in the ?smcR mutant. The ?smcR ?hlyU mutant regained cytotoxicity and cytolysin/hemolysin activity when hns, which has been shown to repress the transcription of rtxA1 and interfere with hlyU, was further removed. Collectively, our data suggest that SmcR mediates the regulation of cytotoxicity by quorum-sensing signaling in V. vulnificus by repressing hlyU, an activator of rtxA1 and vvhA. PMID:21398530

Shao, Chung-Ping; Lo, Horng-Ren; Lin, Jen-Hsing; Hor, Lien-I

2011-01-01

367

Octanoyl-Homoserine Lactone Is the Cognate Signal for Burkholderia mallei BmaR1-BmaI1 Quorum Sensing?  

PubMed Central

Acyl-homoserine lactones (HSLs) serve as quorum-sensing signals for many Proteobacteria. Members of the LuxI family of signal generators catalyze the production of acyl-HSLs, which bind to a cognate receptor in the LuxR family of transcription factors. The obligate animal pathogen Burkholderia mallei produces several acyl-HSLs, and the B. mallei genome has four luxR and two luxI homologs, each of which has been established as a virulence factor. To begin to delineate the relevant acyl-HSL signals for B. mallei LuxR homologs, we analyzed the BmaR1-BmaI1 system. A comparison of acyl-HSL profiles from B. mallei ATCC 23344 and a B. mallei bmaI1 mutant indicates that octanoyl-HSL synthesis is BmaI1 dependent. Furthermore, octanoyl-HSL is the predominant acyl-HSL produced by BmaI1 in recombinant Escherichia coli. The synthesis of soluble BmaR1 in recombinant E. coli requires octanoyl-HSL or decanoyl-HSL. Insoluble aggregates of BmaR1 are produced in the presence of other acyl-HSLs and in the absence of acyl-HSLs. The bmaI1 promoter is activated by BmaR1 and octanoyl-HSL, and a 20-bp inverted repeat in the bmaI1 promoter is required for bmaI1 activation. Purified BmaR1 binds to this promoter region. These findings implicate octanoyl-HSL as the signal for BmaR1-BmaI1 quorum sensing and show that octanoyl-HSL and BmaR1 activate bmaI1 transcription. PMID:17496085

Duerkop, Breck A.; Ulrich, Ricky L.; Greenberg, E. Peter

2007-01-01

368

Quorum-Sensing Systems LuxS/Autoinducer 2 and Com Regulate Streptococcus pneumoniae Biofilms in a Bioreactor with Living Cultures of Human Respiratory Cells  

PubMed Central

Streptococcus pneumoniae forms organized biofilms in the human upper respiratory tract that may play an essential role in both persistence and acute respiratory infection. However, the production and regulation of biofilms on human cells is not yet fully understood. In this work, we developed a bioreactor with living cultures of human respiratory epithelial cells (HREC) and a continuous flow of nutrients, mimicking the microenvironment of the human respiratory epithelium, to study the production and regulation of S. pneumoniae biofilms (SPB). SPB were also produced under static conditions on immobilized HREC. Our experiments demonstrated that the biomass of SPB increased significantly when grown on HREC compared to the amount on abiotic surfaces. Additionally, pneumococcal strains produced more early biofilms on lung cells than on pharyngeal cells. Utilizing the bioreactor or immobilized human cells, the production of early SPB was found to be regulated by two quorum-sensing systems, Com and LuxS/AI-2, since a mutation in either comC or luxS rendered the pneumococcus unable to produce early biofilms on HREC. Interestingly, while LuxS/autoinducer 2 (AI-2) regulated biofilms on both HREC and abiotic surfaces, Com control was specific for those structures produced on HREC. The biofilm phenotypes of strain D39-derivative ?comC and ?luxS QS mutants were reversed by genetic complementation. Of note, SPB formed on immobilized HREC and incubated under static conditions were completely lysed 24 h postinoculation. Biofilm lysis was also regulated by the Com and LuxS/AI-2 quorum-sensing systems. PMID:23403556

Howery, Kristen E.; Ludewick, Herbert P.; Nava, Porfirio; Klugman, Keith P.

2013-01-01

369

Resistance to Quorum Quenching Compounds1 Rodolfo Garca-Contreras1  

E-print Network

to all known26 antimicrobials. Hence, although inhibition of QS has been hailed as a means to reduce to quorum quenching compounds17 Keywords: quorum sensing, quorum sensing inhibition, anti such as25 virulence and biofilm formation. Bacteria also have an incredible ability to evolve resistance

Wood, Thomas K.

370

Quorum quenching agents: resources for antivirulence therapy.  

PubMed

The continuing emergence of antibiotic-resistant pathogens is a concern to human health and highlights the urgent need for the development of alternative therapeutic strategies. Quorum sensing (QS) regulates virulence in many bacterial pathogens, and thus, is a promising target for antivirulence therapy which may inhibit virulence instead of cell growth and division. This means that there is little selective pressure for the evolution of resistance. Many natural quorum quenching (QQ) agents have been identified. Moreover, it has been shown that many microorganisms are capable of producing small molecular QS inhibitors and/or macromolecular QQ enzymes, which could be regarded as a strategy for bacteria to gain benefits in competitive environments. More than 30 species of marine QQ bacteria have been identified thus far, but only a few of them have been intensively studied. Recent studies indicate that an enormous number of QQ microorganisms are undiscovered in the highly diverse marine environments, and these marine microorganism-derived QQ agents may be valuable resources for antivirulence therapy. PMID:24886865

Tang, Kaihao; Zhang, Xiao-Hua

2014-06-01

371

Quorum Quenching Agents: Resources for Antivirulence Therapy  

PubMed Central

The continuing emergence of antibiotic-resistant pathogens is a concern to human health and highlights the urgent need for the development of alternative therapeutic strategies. Quorum sensing (QS) regulates virulence in many bacterial pathogens, and thus, is a promising target for antivirulence therapy which may inhibit virulence instead of cell growth and division. This means that there is little selective pressure for the evolution of resistance. Many natural quorum quenching (QQ) agents have been identified. Moreover, it has been shown that many microorganisms are capable of producing small molecular QS inhibitors and/or macromolecular QQ enzymes, which could be regarded as a strategy for bacteria to gain benefits in competitive environments. More than 30 species of marine QQ bacteria have been identified thus far, but only a few of them have been intensively studied. Recent studies indicate that an enormous number of QQ microorganisms are undiscovered in the highly diverse marine environments, and these marine microorganism-derived QQ agents may be valuable resources for antivirulence therapy. PMID:24886865

Tang, Kaihao; Zhang, Xiao-Hua

2014-01-01

372

The incongruent gelatinase genotype and phenotype in Enterococcus faecalis are due to shutting off the ability to respond to the gelatinase biosynthesis-activating pheromone (GBAP) quorum-sensing signal  

PubMed Central

The concomitant presence of a complete fsr quorum-sensing system and gelE–sprE operons in Enterococcus faecalis is known to be essential for the detection of gelatinase activity. However, there are reports of the absence of gelatinase activity despite the presence of complete fsr and gelE loci. In order to understand this incongruence between genotype and phenotype we sequenced fsr and gelE loci of the E. faecalis LN68 strain, which was previously found to carry both operons but to lack gelatinase activity. Of the 59 nucleotide differences detected compared with the gelatinase-positive V583 strain, we found a nonsense mutation (a premature STOP codon) predicted to truncate the ATPase sensor domain of the FsrC protein, responsible for sensing and transducing the signal from the quorum-sensing molecule. Strain LN68 was highly affected in the expression of the gelE and sprE genes, further supporting the lack of Fsr-dependent gelE induction. When we constructed a V583 mutant with the same premature stop mutation in the fsrC gene the resulting strain was no longer able to degrade gelatin. We conclude that the reduced ability to transduce the quorum-sensing signal of the prematurely truncated FsrC protein is sufficient to explain the negative gelatinase phenotype. As the incongruent genotype and phenotype is detected in natural isolates, we believe that the silencing of the quorum-sensing system Fsr may be beneficial for some E. faecalis strains. PMID:22117005

Teixeira, Neuza; Santos, Sofia; Marujo, Paulo; Yokohata, Ryoji; Iyer, Vijayalakshmi S.; Nakayama, Jiro; Hancock, Lynn E.; Serror, Pascale

2012-01-01

373

Production of biofilm and quorum sensing by Escherichia coli O157:H7 and its transfer from contact surfaces to meat, poultry, ready-to-eat deli, and produce products  

Microsoft Academic Search

Multistate outbreaks of Escherichia coli O157:H7 infections through consumption of contaminated foods including produce products have brought a great safety concern. The objectives of this study were to determine the effect of biofilm and quorum sensing production on the attachment of E. coli O157:H7 on food contact surfaces and to evaluate the transfer of the pathogen from the food contact

Karen Silagyi; Shin-Hee Kim; Y. Martin Lo; Cheng-i Wei

2009-01-01

374

Quorum Sensing in Aeromonas hydrophila and Aeromonas salmonicida: Identification of the LuxRI Homologs AhyRI and AsaRI and Their Cognate N-Acylhomoserine Lactone Signal Molecules  

Microsoft Academic Search

Spent culture supernatants from both Aeromonas hydrophila and Aeromonas salmonicida activate a range of biosensors responsive to N-acylhomoserine lactones (AHLs). The genes for a quorum sensing signal generator and a response regulator were cloned from each Aeromonas species and termed ahyRI and asaRI, respectively. Protein sequence homology analysis places the gene products within the growing family of LuxRI homologs. ahyR

SIMON SWIFT; ANDREY V. KARLYSHEV; LEIGH FISH; EMMA L. DURANT; MICHAEL K. WINSON; SIRI RAM CHHABRA; PAUL WILLIAMS; SHEILA MACINTYRE; GORDON S. A. B. STEWART

1997-01-01

375

Transcriptional Control of the Hydrogen Cyanide Biosynthetic Genes hcnABC by the Anaerobic Regulator ANR and the Quorum-Sensing Regulators LasR and RhlR in Pseudomonas aeruginosa  

PubMed Central

Virulence factors of Pseudomonas aeruginosa include hydrogen cyanide (HCN). This secondary metabolite is maximally produced at low oxygen tension and high cell densities during the transition from exponential to stationary growth phase. The hcnABC genes encoding HCN synthase were identified on a genomic fragment complementing an HCN-deficient mutant of P. aeruginosa PAO1. The hcnA promoter was found to be controlled by the FNR-like anaerobic regulator ANR and by the quorum-sensing regulators LasR and RhlR. Primer extension analysis revealed two transcription starts, T1 and T2, separated by 29 bp. Their function was confirmed by transcriptional lacZ fusions. The promoter sequence displayed an FNR/ANR box at ?42.5 bp upstream of T2 and a lux box centered around ?42.5 bp upstream of T1. Expression of the hcn genes was completely abolished when this lux box was deleted or inactivated by two point mutations in conserved nucleotides. The lux box was recognized by both LasR [activated by N-(oxododecanoyl)-homoserine lactone] and RhlR (activated by N-butanoyl-homoserine lactone), as shown by expression experiments performed in quorum-sensing-defective P. aeruginosa mutants and in the N-acyl-homoserine lactone-negative heterologous host P. fluorescens CHA0. A second, less conserved lux box lying 160 bp upstream of T1 seems to account for enhanced quorum-sensing-dependent expression. Without LasR and RhlR, ANR could not activate the hcn promoter. Together, these data indicate that expression of the hcn promoter from T1 can occur under quorum-sensing control alone. Enhanced expression from T2 appears to rely on a synergistic action between LasR, RhlR, and ANR. PMID:11092854

Pessi, Gabriella; Haas, Dieter

2000-01-01

376

Lack of genomic evidence of AI-2 receptors suggests a non-quorum sensing role for luxS in most bacteria  

PubMed Central

Background Great excitement accompanied discoveries over the last decade in several Gram-negative and Gram-positive bacteria of the LuxS protein, which catalyzes production of the AI-2 autoinducer molecule for a second quorum sensing system (QS-2). Since the luxS gene was found to be widespread among the most diverse bacterial taxa, it was hypothesized that AI-2 may constitute the basis of a universal microbial language, a kind of bacterial Esperanto. Many of the studies published in this field have drawn a direct correlation between the occurrence of the luxS gene in a given organism and the presence and functionality of a QS-2 therein. However, rarely hathe existence of potential AI-2 receptors been examined. This is important, since it is now well recognized that LuxS also holds a central role as a metabolic enzyme in the activated methyl cycle which is responsible for the generation of S-adenosyl-L-methionine, the major methyl donor in the cell. Results In order to assess whether the role of LuxS in these bacteria is indeed related to AI-2 mediated quorum sensing we analyzed genomic databases searching for established AI-2 receptors (i.e., LuxPQ-receptor of Vibrio harveyi and Lsr ABC-transporter of Salmonella typhimurium) and other presumed QS-related proteins and compared the outcome with published results about the role of QS-2 in these organisms. An unequivocal AI-2 related behavior was restricted primarily to organisms bearing known AI-2 receptor genes, while phenotypes of luxS mutant bacteria lacking these genes could often be explained simply by assuming deficiencies in sulfur metabolism. Conclusion Genomic analysis shows that while LuxPQ is restricted to Vibrionales, the Lsr-receptor complex is mainly present in pathogenic bacteria associated with endotherms. This suggests that QS-2 may play an important role in interactions with animal hosts. In most other species, however, the role of LuxS appears to be limited to metabolism, although in a few cases the presence of yet unknown receptors or the adaptation of pre-existent effectors to QS-2 must be postulated. PMID:18803868

Rezzonico, Fabio; Duffy, Brion

2008-01-01

377

The CckA-ChpT-CtrA phosphorelay system is regulated by quorum sensing and controls flagellar motility in the marine sponge symbiont Ruegeria sp. KLH11.  

PubMed

Bacteria respond to their environment via signal transduction pathways, often two-component type systems that function through phosphotransfer to control expression of specific genes. Phosphorelays are derived from two-component systems but are comprised of additional components. The essential cckA-chpT-ctrA phosphorelay in Caulobacter crescentus has been well studied and is important in orchestrating the cell cycle, polar development and flagellar biogenesis. Although cckA, chpT and ctrA homologues are widespread among the Alphaproteobacteria, relatively few is known about their function in the large and ecologically significant Roseobacter clade of the Rhodobacterales. In this study the cckA-chpT-ctrA system of the marine sponge symbiont Ruegeria sp. KLH11 was investigated. Our results reveal that the cckA, chpT and ctrA genes positively control flagellar biosynthesis. In contrast to C. crescentus, the cckA, chpT and ctrA genes in Ruegeria sp. KLH11 are non-essential and do not affect bacterial growth. Gene fusion and transcript analyses provide evidence for ctrA autoregulation and the control of motility-related genes. In KLH11, flagellar motility is controlled by the SsaRI system and acylhomoserine lactone (AHL) quorum sensing. SsaR and long chain AHLs are required for cckA, chpT and ctrA gene expression, providing a regulatory link between flagellar locomotion and population density in KLH11. PMID:23825536

Zan, Jindong; Heindl, Jason E; Liu, Yue; Fuqua, Clay; Hill, Russell T

2013-01-01

378

The Quorum Sensing Volatile Molecule 2-Amino Acetophenon Modulates Host Immune Responses in a Manner that Promotes Life with Unwanted Guests  

PubMed Central

Increasing evidence indicates that bacterial quorum sensing (QS) signals are important mediators of immunomodulation. However, whether microbes utilize these immunomodulatory signals to maintain infection remain unclear. Here, we show that the Pseudomonas aeruginosa QS-regulated molecule 2-amino acetophenone (2-AA) modulates host immune responses in a manner that increases host ability to cope with this pathogen. Mice treated with 2-AA prior to infection had a 90% survival compared to 10% survival rate observed in the non-pretreated infected mice. Whilst 2-AA stimulation activates key innate immune response pathways involving mitogen-activated protein kinases (MAPKs), nuclear factor (NF)-?B, and pro-inflammatory cytokines, it attenuates immune response activation upon pretreatment, most likely by upregulating anti-inflammatory cytokines. 2-AA host pretreatment is characterized by a transcriptionally regulated block of c-JUN N-terminal kinase (JNK) and NF-?B activation, with relatively preserved activation of extracellular regulated kinase (ERK) 1/2. These kinase changes lead to CCAAT/enhancer-binding protein-? (c/EBP?) activation and formation of the c/EBP?-p65 complex that prevents NF-?B activation. 2-AA's aptitude for dampening the inflammatory processes while increasing host survival and pathogen persistence concurs with its ability to signal bacteria to switch to a chronic infection mode. Our results reveal a QS immunomodulatory signal that promotes original aspects of interkingdom communication. We propose that this communication facilitates pathogen persistence, while enabling host tolerance to infection. PMID:23166496

Que, Yok-Ai; He, Jianxin; Padfield, Katie; Tompkins, Ronald; Rahme, Laurence G.

2012-01-01

379

Bacterial Quorum Sensing Molecule N-3-Oxo-Dodecanoyl-L-Homoserine Lactone Causes Direct Cytotoxicity and Reduced Cell Motility in Human Pancreatic Carcinoma Cells  

PubMed Central

In spite of chemotherapeutic and surgical advances, pancreatic cancer continues to have a dismal prognosis. Metastasis due to tumor cell migration remains the most critical challenge in treating pancreatic cancer, and conventional chemotherapy is rarely curative. In the quest for more novel molecules to fight this disease, we tested the hypothesis that the Pseudomonas aeruginosa quorum sensing signal molecule N-3-oxo-dodecanoyl-L-homoserine lactone (O-DDHSL) would be cytotoxic to and reduce mobility of pancreatic carcinoma cells (Panc-1 and Aspc-1). Results showed a decrease in cell viability from apoptosis, diminished colony formation, and inhibition of migration of the evaluated pancreatic carcinoma cell lines. Also, cell viability decreased in the presence of O-DDHSL when cells were grown in matrigel basement membrane matrix. While messenger RNA for IQGAP-1 decreased in Panc-1 and HPDE cells upon exposure to O-DDHSL, no change was observed in Aspc-1 cells. Cofilin mRNA expression was found to be increased in both HPDE and Panc-1 cells with marginal decrease in Aspc-1 cells. RhoC, a Rho-family GTP