Science.gov

Sample records for quorum sensing inhibitors

  1. Quorum sensing inhibitors: an overview.

    PubMed

    Kalia, Vipin Chandra

    2013-01-01

    Excessive and indiscriminate use of antibiotics to treat bacterial infections has lead to the emergence of multiple drug resistant strains. Most infectious diseases are caused by bacteria which proliferate within quorum sensing (QS) mediated biofilms. Efforts to disrupt biofilms have enabled the identification of bioactive molecules produced by prokaryotes and eukaryotes. These molecules act primarily by quenching the QS system. The phenomenon is also termed as quorum quenching (QQ). In addition, synthetic compounds have also been found to be effective in QQ. This review focuses primarily on natural and synthetic quorum sensing inhibitors (QSIs) with the potential for treating bacterial infections. It has been opined that the most versatile prokaryotes to produce QSI are likely to be those, which are generally regarded as safe. Among the eukaryotes, certain legumes and traditional medicinal plants are likely to act as QSIs. Such findings are likely to lead to efficient treatments with much lower doses of drugs especially antibiotics than required at present. PMID:23142623

  2. Interactions among quorum sensing inhibitors.

    PubMed

    Anand, Rajat; Rai, Navneet; Thattai, Mukund

    2013-01-01

    Many pathogenic bacteria use quorum sensing (QS) systems to regulate the expression of virulence genes in a density-dependent manner. In one widespread QS paradigm the enzyme LuxI generates a small diffusible molecule of the acyl-homoserine lactone (AHL) family; high cell densities lead to high AHL levels; AHL binds the transcription factor LuxR, triggering it to activate gene expression at a virulence promoter. The emergence of antibiotic resistance has generated interest in alternative anti-microbial therapies that target QS. Inhibitors of LuxI and LuxR have been developed and tested in vivo, and can act at various levels: inhibiting the synthesis of AHL by LuxI, competitively or non-competitively inhibiting LuxR, or increasing the turnover of LuxI, LuxR, or AHL. Here use an experimentally validated computational model of LuxI/LuxR QS to study the effects of using inhibitors individually and in combination. The model includes the effect of transcriptional feedback, which generates highly non-linear responses as inhibitor levels are increased. For the ubiquitous LuxI-feedback virulence systems, inhibitors of LuxI are more effective than those of LuxR when used individually. Paradoxically, we find that LuxR competitive inhibitors, either individually or in combination with other inhibitors, can sometimes increase virulence by weakly activating LuxR. For both LuxI-feedback and LuxR-feedback systems, a combination of LuxR non-competitive inhibitors and LuxI inhibitors act multiplicatively over a broad parameter range. In our analysis, this final strategy emerges as the only robust therapeutic option. PMID:23626795

  3. Caffeine as a Potential Quorum Sensing Inhibitor

    PubMed Central

    Norizan, Siti Nur Maisarah; Yin, Wai-Fong; Chan, Kok-Gan

    2013-01-01

    Quorum sensing enables bacteria to control the gene expression in response to the cell density. It regulates a variety of bacterial physiological functions such as biofilm formation, bioluminescence, virulence factors and swarming which has been shown contribute to bacterial pathogenesis. The use of quorum sensing inhibitor would be of particular interest in treating bacterial pathogenicity and infections. In this work, we have tested caffeine as quorum sensing inhibitor by using Chromobacterium violaceum CV026 as a biosensor. We verified that caffeine did not degrade the N-acyl homoserine lactones tested. In this work, it is shown that caffeine could inhibit N-acyl homoserine lactone production and swarming of a human opportunistic pathogen, namely Pseudomonas aeruginosa PA01. To the best of our knowledge, this is the first documentation providing evidence on the presence of anti-quorum sensing activity in caffeine. Our work will allow caffeine to be explored as anti-infective drugs. PMID:23598500

  4. Evolution of resistance to quorum sensing inhibitors

    PubMed Central

    Kalia, Vipin C.; Wood, Thomas K.; Kumar, Prasun

    2013-01-01

    The major cause of mortality and morbidity in human beings is bacterial infection. Bacteria have developed resistance to most of the antibiotics primarily due to large scale and “indiscriminate” usage. The need is to develop novel mechanisms to treat bacterial infections. The expression of pathogenicity during bacterial infections is mediated by a cell density dependent phenomenon known as quorum sensing (QS). A wide array of QS systems (QSS) is operative in expressing the virulent behavior of bacterial pathogens. Each QSS may be mediated largely by a few major signals along with others produced in minuscule quantities. Efforts to target signal molecules and their receptors have proved effective in alleviating the virulent behavior of such pathogenic bacteria. These QS inhibitors (QSIs) have been reported to be effective in influencing the pathogenicity without affecting bacterial growth. However, evidence is accumulating that bacteria may develop resistance to QSIs. The big question is whether QSIs will meet the same fate as antibiotics? PMID:24194099

  5. Attenuation of Pseudomonas aeruginosa virulence by quorum sensing inhibitors.

    PubMed

    Hentzer, Morten; Wu, Hong; Andersen, Jens Bo; Riedel, Kathrin; Rasmussen, Thomas B; Bagge, Niels; Kumar, Naresh; Schembri, Mark A; Song, Zhijun; Kristoffersen, Peter; Manefield, Mike; Costerton, John W; Molin, Søren; Eberl, Leo; Steinberg, Peter; Kjelleberg, Staffan; Høiby, Niels; Givskov, Michael

    2003-08-01

    Traditional treatment of infectious diseases is based on compounds that kill or inhibit growth of bacteria. A major concern with this approach is the frequent development of resistance to antibiotics. The discovery of communication systems (quorum sensing systems) regulating bacterial virulence has afforded a novel opportunity to control infectious bacteria without interfering with growth. Compounds that can override communication signals have been found in the marine environment. Using Pseudomonas aeruginosa PAO1 as an example of an opportunistic human pathogen, we show that a synthetic derivate of natural furanone compounds can act as a potent antagonist of bacterial quorum sensing. We employed GeneChip microarray technology to identify furanone target genes and to map the quorum sensing regulon. The transcriptome analysis showed that the furanone drug specifically targeted quorum sensing systems and inhibited virulence factor expression. Application of the drug to P.aeruginosa biofilms increased bacterial susceptibility to tobramycin and SDS. In a mouse pulmonary infection model, the drug inhibited quorum sensing of the infecting bacteria and promoted their clearance by the mouse immune response. PMID:12881415

  6. Quorum sensing inhibitors as anti-biofilm agents.

    PubMed

    Brackman, Gilles; Coenye, Tom

    2015-01-01

    Biofilms are microbial sessile communities characterized by cells that are attached to a substratum or interface or to each other, are embedded in a self-produced matrix of extracellular polymeric substances and exhibit an altered phenotype compared to planktonic cells. Biofilms are estimated to be associated with 80% of microbial infections and it is currently common knowledge that growth of micro-organisms in biofilms can enhance their resistance to antimicrobial agents. As a consequence antimicrobial therapy often fails to eradicate biofilms from the site of infection. For this reason, innovative anti-biofilm agents with novel targets and modes of action are needed. One alternative approach is targeting the bacterial communication system (quorum sensing, QS). QS is a process by which bacteria produce and detect signal molecules and thereby coordinate their behavior in a cell-density dependent manner. Three main QS systems can be distinguished: the acylhomoserine lactone (AHL) QS system in Gram-negative bacteria, the autoinducing peptide (AIP) QS system in Gram-positive bacteria and the autoinducer-2 (AI-2) QS system in both Gram-negative and -positive bacteria. Although much remains to be learned about the involvement of QS in biofilm formation, maintenance, and dispersal, QS inhibitors (QSI) have been proposed as promising antibiofilm agents. In this article we will give an overview of QS inhibitors which have been shown to play a role in biofilm formation and/or maturation. PMID:25189863

  7. Quorum-sensing inhibitors as anti-pathogenic drugs.

    PubMed

    Rasmussen, Thomas B; Givskov, Michael

    2006-04-01

    Quorum-sensing (QS) signalling systems of pathogens are central regulators for the expression of virulence factors and represent highly attractive targets for the development of novel therapeutics. In Pseudomonas aeruginosa, QS systems are also involved in elevated antibiotic tolerance of biofilms as well as elevated tolerance to the activity of the innate immune system. Gram-negative bacteria commonly use N-acyl homoserine lactones (AHL) as QS signal molecules. The use of signal molecule based drugs to attenuate bacterial pathogenecity rather than bacterial growth is attractive for several reasons, particularly considering the emergence of increasingly antibiotic-resistant bacteria. Compounds capable of this type of interference have been termed anti-pathogenic drugs. A large variety of synthetic AHL analogues and natural products libraries have been screened and a number of QS inhibitors (QSI) have been identified. Promising QSI compounds have been shown to make biofilms more susceptible to antimicrobial treatments, and are capable of reducing mortality and virulence as well as promoting clearance of bacteria in experimental animal models of infection. PMID:16503194

  8. Food as a Source for Quorum Sensing Inhibitors: Iberin from Horseradish Revealed as a Quorum Sensing Inhibitor of Pseudomonas aeruginosa

    PubMed Central

    Jakobsen, Tim Holm; Bragason, Steinn Kristinn; Phipps, Richard Kerry; Christensen, Louise Dahl; van Gennip, Maria; Alhede, Morten; Skindersoe, Mette; Larsen, Thomas Ostenfeld; Høiby, Niels; Bjarnsholt, Thomas

    2012-01-01

    Foods with health-promoting effects beyond nutritional values have been gaining increasing research focus in recent years, although not much has been published on this subject in relation to bacterial infections. With respect to treatment, a novel antimicrobial strategy, which is expected to transcend problems with selective pressures for antibiotic resistance, is to interrupt bacterial communication, also known as quorum sensing (QS), by means of signal antagonists, the so-called QS inhibitors (QSIs). Furthermore, QSI agents offer a potential solution to the deficiencies associated with use of traditional antibiotics to treat infections caused by bacterial biofilms and multidrug-resistant bacteria. Several QSIs of natural origin have been identified, and in this study, several common food products and plants were extracted and screened for QSI activity in an attempt to isolate and characterize previously unknown QSI compounds active against the common opportunistic pathogen Pseudomonas aeruginosa. Several extracts displayed activity, but horseradish exhibited the highest activity. Chromatographic separation led to the isolation of a potent QSI compound that was identified by liquid chromatography-diode array detector-mass spectrometry (LC-DAD-MS) and nuclear magnetic resonance (NMR) spectroscopy as iberin—an isothiocyanate produced by many members of the Brassicaceae family. Real-time PCR (RT-PCR) and DNA microarray studies showed that iberin specifically blocks expression of QS-regulated genes in P. aeruginosa. PMID:22286987

  9. Colostrum hexasaccharide, a novel Staphylococcus aureus quorum-sensing inhibitor.

    PubMed

    Srivastava, A; Singh, B N; Deepak, D; Rawat, A K S; Singh, B R

    2015-04-01

    The discovery of quorum-sensing (QS) systems regulating antibiotic resistance and virulence factors (VFs) has afforded a novel opportunity to prevent bacterial pathogenicity. Dietary molecules have been demonstrated to attenuate QS circuits of bacteria. But, to our knowledge, no study exploring the potential of colostrum hexasaccharide (CHS) in regulating QS systems has been published. In this study, we analyzed CHS for inhibiting QS signaling in Staphylococcus aureus. We isolated and characterized CHS from mare colostrum by high-performance thin-layer chromatography (HPTLC), reverse-phase high-performance liquid chromatography evaporative light-scattering detection (RP-HPLC-ELSD), (1)H and (13)C nuclear magnetic resonance (NMR), and electrospray ionization mass spectrometry (ESI-MS). Antibiofilm activity of CHS against S. aureus and its possible interference with bacterial QS systems were determined. The inhibition and eradication potentials of the biofilms were studied by microscopic analyses and quantified by 96-well-microtiter-plate assays. Also, the ability of CHS to interfere in bacterial QS by degrading acyl-homoserine lactones (AHLs), one of the most studied signal molecules for Gram-negative bacteria, was evaluated. The results revealed that CHS exhibited promising inhibitory activities against QS-regulated secretion of VFs, including spreading ability, hemolysis, protease, and lipase activities, when applied at a rate of 5 mg/ml. The results of biofilm experiments indicated that CHS is a strong inhibitor of biofilm formation and also has the ability to eradicate it. The potential of CHS to interfere with bacterial QS systems was also examined by degradation of AHLs. Furthermore, it was documented that CHS decreased antibiotic resistance in S. aureus. The results thus give a lead that mare colostrum can be a promising source for isolating a next-generation antibacterial. PMID:25645850

  10. Colostrum Hexasaccharide, a Novel Staphylococcus aureus Quorum-Sensing Inhibitor

    PubMed Central

    Srivastava, A.; Deepak, D.; Singh, B. R.

    2015-01-01

    The discovery of quorum-sensing (QS) systems regulating antibiotic resistance and virulence factors (VFs) has afforded a novel opportunity to prevent bacterial pathogenicity. Dietary molecules have been demonstrated to attenuate QS circuits of bacteria. But, to our knowledge, no study exploring the potential of colostrum hexasaccharide (CHS) in regulating QS systems has been published. In this study, we analyzed CHS for inhibiting QS signaling in Staphylococcus aureus. We isolated and characterized CHS from mare colostrum by high-performance thin-layer chromatography (HPTLC), reverse-phase high-performance liquid chromatography evaporative light-scattering detection (RP-HPLC-ELSD), 1H and 13C nuclear magnetic resonance (NMR), and electrospray ionization mass spectrometry (ESI-MS). Antibiofilm activity of CHS against S. aureus and its possible interference with bacterial QS systems were determined. The inhibition and eradication potentials of the biofilms were studied by microscopic analyses and quantified by 96-well-microtiter-plate assays. Also, the ability of CHS to interfere in bacterial QS by degrading acyl-homoserine lactones (AHLs), one of the most studied signal molecules for Gram-negative bacteria, was evaluated. The results revealed that CHS exhibited promising inhibitory activities against QS-regulated secretion of VFs, including spreading ability, hemolysis, protease, and lipase activities, when applied at a rate of 5 mg/ml. The results of biofilm experiments indicated that CHS is a strong inhibitor of biofilm formation and also has the ability to eradicate it. The potential of CHS to interfere with bacterial QS systems was also examined by degradation of AHLs. Furthermore, it was documented that CHS decreased antibiotic resistance in S. aureus. The results thus give a lead that mare colostrum can be a promising source for isolating a next-generation antibacterial. PMID:25645850

  11. Quorum Sensing Inhibitors for Staphylococcus aureus from Italian Medicinal Plants

    PubMed Central

    Quave, Cassandra L.; Plano, Lisa R.W.; Bennett, Bradley C.

    2010-01-01

    Morbidity and mortality estimates due to methicillin-resistant Staphylococcus aureus (MRSA) infections continue to rise. Therapeutic options are limited by antibiotic resistance. Anti-pathogenic compounds, which inhibit quorum sensing (QS) pathways, may be a useful alternative to antibiotics. Staphylococcal QS is encoded by the agr locus and is responsible for the production of δ-hemolysin. Quantification of δ-hemolysin found in culture supernatants permits the analysis of agr activity at the translational, rather than transcriptional, level. We employed RP-HPLC techniques to investigate the anti-QS activity of 168 extracts from 104 Italian plants through quantification of δ-hemolysin. Extracts from three medicinal plants (Ballota nigra, Castanea sativa, and Sambucus ebulus) exhibited a dose-dependent response in the production of δ-hemolysin, indicating strong anti-QS activity in a pathogenic MRSA isolate. PMID:20645243

  12. Identification of poultry meat-derived fatty acids functioning as quorum sensing signal inhibitors of autoinducer-2 (AI-2)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Autoinducer-2 (AI-2) is a compound that plays a key role in bacterial cell-to-cell communication (quorum sensing). Previous research has shown certain food matrices inhibit this signaling compound. Using the reporter strain, Vibrio harveyi BB170, quorum sensing inhibitors contained in poultry meat...

  13. Quorum Sensing and Phytochemicals

    PubMed Central

    Nazzaro, Filomena; Fratianni, Florinda; Coppola, Raffaele

    2013-01-01

    Most infectious diseases are caused by bacteria, which proliferate within quorum sensing (QS)-mediated biofilms. Efforts to block QS in bacteria and disrupt biofilms have enabled the identification of bioactive molecules that are also produced by plants. This mini review primarily focuses on natural QS inhibitors, which display potential for treating bacterial infections and also enhance the safety of food supply. PMID:23774835

  14. Bacterial quorum sensing inhibitors: attractive alternatives for control of infectious pathogens showing multiple drug resistance.

    PubMed

    Bhardwaj, Ashima K; Vinothkumar, Kittappa; Rajpara, Neha

    2013-04-01

    Quorum sensing (QS) is a bacterial communication process that depends on the bacterial population density. It involves small diffusible signaling molecules which activate the expression of myriad genes that control diverse array of functions like bioluminescence, virulence, biofilm formation, sporulation, to name a few. Since QS is responsible for virulence in the clinically relevant bacteria, inhibition of QS appears to be a promising strategy to control these pathogenic bacteria. With indiscriminate use of antibiotics, there has been an alarming increase in the number of antibiotic resistant pathogens. Antibiotics are no longer the magic bullets they were once thought to be and therefore there is a need for development of new antibiotics and/or other novel strategies to combat the infections caused by multidrug resistant organisms. Quorum sensing inhibition or quorum quenching has been pursued as one of such novel strategies. While antibiotics kill or slow down the growth of bacteria, quorum sensing inhibitors (QSIs) or quorum quenchers (QQs) attenuate bacterial virulence. A large body of work on QS has been carried out in deadly pathogens like Pseudomonas aeruginosa, Staphylococcus aureus, Vibrio fischeri, V. harveyi, Escherichia coli and V. cholerae etc to unravel the mechanisms of QS as well as identify and study QSIs. This review describes various aspects of QS, QSI, different model systems to study these phenomena and recent patents on various QSIs. It suggests QSIs as attractive alternatives for controlling human, animal and plant pathogens and their utility in agriculture and other industries. PMID:23394143

  15. A high-throughput screen for quorum-sensing inhibitors that target acyl-homoserine lactone synthases

    PubMed Central

    Christensen, Quin H.; Grove, Tyler L.; Booker, Squire J.; Greenberg, E. Peter

    2013-01-01

    Many Proteobacteria use N-acyl-homoserine lactone (acyl-HSL) quorum sensing to control specific genes. Acyl-HSL synthesis requires unique enzymes that use S-adenosyl methionine as an acyl acceptor and amino acid donor. We developed and executed an enzyme-coupled high-throughput cell-free screen to discover acyl-HSL synthase inhibitors. The three strongest inhibitors were equally active against two different acyl-HSL synthases: Burkholderia mallei BmaI1 and Yersinia pestis YspI. Two of these inhibitors showed activity in whole cells. The most potent compound behaves as a noncompetitive inhibitor with a Ki of 0.7 µM and showed activity in a cell-based assay. Quorum-sensing signal synthesis inhibitors will be useful in attempts to understand acyl-HSL synthase catalysis and as a tool in studies of quorum-sensing control of gene expression. Because acyl-HSL quorum-sensing controls virulence of some bacterial pathogens, anti–quorum-sensing chemicals have been sought as potential therapeutic agents. Our screen and identification of acyl-HSL synthase inhibitors serve as a basis for efforts to target quorum-sensing signal synthesis as an antivirulence approach. PMID:23924613

  16. A high-throughput screen for quorum-sensing inhibitors that target acyl-homoserine lactone synthases.

    PubMed

    Christensen, Quin H; Grove, Tyler L; Booker, Squire J; Greenberg, E Peter

    2013-08-20

    Many Proteobacteria use N-acyl-homoserine lactone (acyl-HSL) quorum sensing to control specific genes. Acyl-HSL synthesis requires unique enzymes that use S-adenosyl methionine as an acyl acceptor and amino acid donor. We developed and executed an enzyme-coupled high-throughput cell-free screen to discover acyl-HSL synthase inhibitors. The three strongest inhibitors were equally active against two different acyl-HSL synthases: Burkholderia mallei BmaI1 and Yersinia pestis YspI. Two of these inhibitors showed activity in whole cells. The most potent compound behaves as a noncompetitive inhibitor with a Ki of 0.7 µM and showed activity in a cell-based assay. Quorum-sensing signal synthesis inhibitors will be useful in attempts to understand acyl-HSL synthase catalysis and as a tool in studies of quorum-sensing control of gene expression. Because acyl-HSL quorum-sensing controls virulence of some bacterial pathogens, anti-quorum-sensing chemicals have been sought as potential therapeutic agents. Our screen and identification of acyl-HSL synthase inhibitors serve as a basis for efforts to target quorum-sensing signal synthesis as an antivirulence approach. PMID:23924613

  17. Discovery of potent inhibitors of pseudomonal quorum sensing via pharmacophore modeling and in silico screening.

    PubMed

    Taha, Mutasem O; Al-Bakri, Amal G; Zalloum, Waleed A

    2006-11-15

    HipHop-Refine was employed to derive a binding hypothesis for pseudomonal quorum sensing (QS) antagonists. The model was employed as 3D search query to screen the National Cancer Institute (NCI) database. One of the hits illustrated nanomolar QS inhibitory activity. The fact that this compound contained tetravalent lead (Pb) prompted us to evaluate the activities of phenyl mercuric nitrate and thimerosal, both fit the binding pharmacophore. The two mercurials illustrated nanomolar to low micromolar IC50 inhibitory values against pseudomonal QS. The three compounds represent a new class of QS inhibitors. PMID:16945524

  18. Identification of Quorum-Sensing Inhibitors Disrupting Signaling between Rgg and Short Hydrophobic Peptides in Streptococci

    PubMed Central

    Aggarwal, Chaitanya; Jimenez, Juan Cristobal; Lee, Hyun; Chlipala, George E.; Ratia, Kiira

    2015-01-01

    ABSTRACT Bacteria coordinate a variety of social behaviors, important for both environmental and pathogenic bacteria, through a process of intercellular chemical signaling known as quorum sensing (QS). As microbial resistance to antibiotics grows more common, a critical need has emerged to develop novel anti-infective therapies, such as an ability to attenuate bacterial pathogens by means of QS interference. Rgg quorum-sensing pathways, widespread in the phylum Firmicutes, employ cytoplasmic pheromone receptors (Rgg transcription factors) that directly bind and elicit gene expression responses to imported peptide signals. In the human-restricted pathogen Streptococcus pyogenes, the Rgg2/Rgg3 regulatory circuit controls biofilm development in response to the short hydrophobic peptides SHP2 and SHP3. Using Rgg-SHP as a model receptor-ligand target, we sought to identify chemical compounds that could specifically inhibit Rgg quorum-sensing circuits. Individual compounds from a diverse library of known drugs and drug-like molecules were screened for their ability to disrupt complexes of Rgg and FITC (fluorescein isothiocyanate)-conjugated SHP using a fluorescence polarization (FP) assay. The best hits were found to bind Rgg3 in vitro with submicromolar affinities, to specifically abolish transcription of Rgg2/3-controlled genes, and to prevent biofilm development in S. pyogenes without affecting bacterial growth. Furthermore, the top hit, cyclosporine A, as well as its nonimmunosuppressive analog, valspodar, inhibited Rgg-SHP pathways in multiple species of Streptococcus. The Rgg-FITC-peptide-based screen provides a platform to identify inhibitors specific for each Rgg type. Discovery of Rgg inhibitors constitutes a step toward the goal of manipulating bacterial behavior for purposes of improving health. PMID:25968646

  19. Mini Review of Phytochemicals and Plant Taxa with Activity as Microbial Biofilm and Quorum Sensing Inhibitors.

    PubMed

    Ta, Chieu Anh Kim; Arnason, John Thor

    2015-01-01

    Microbial biofilms readily form on many surfaces in nature including plant surfaces. In order to coordinate the formation of these biofilms, microorganisms use a cell-to-cell communication system called quorum sensing (QS). As formation of biofilms on vascular plants may not be advantageous to the hosts, plants have developed inhibitors to interfere with these processes. In this mini review, research papers published on plant-derived molecules that have microbial biofilm or quorum sensing inhibition are reviewed with the objectives of determining the biosynthetic classes of active compounds, their biological activity in assays, and their families of occurrence and range. The main findings are the identification of plant phenolics, including benzoates, phenyl propanoids, stilbenes, flavonoids, gallotannins, proanthocyanidins and coumarins as important inhibitors with both activities. Some terpenes including monoterpenes, sesquiterpenes, diterpenes and triterpenes also have anti-QS and anti-biofilm activities. Relatively few alkaloids were reported. Quinones and organosulfur compounds, especially from garlic, were also active. A common feature is the polar nature of these compounds. Phytochemicals with these activities are widespread in Angiosperms in temperate and tropical regions, but gymnosperms, bryophytes and pteridophytes were not represented. PMID:26712734

  20. Broad Spectrum Pro-Quorum-Sensing Molecules as Inhibitors of Virulence in Vibrios

    PubMed Central

    Ng, Wai-Leung; Perez, Lark; Cong, Jianping; Semmelhack, Martin F.; Bassler, Bonnie L.

    2012-01-01

    Quorum sensing (QS) is a bacterial cell-cell communication process that relies on the production and detection of extracellular signal molecules called autoinducers. QS allows bacteria to perform collective activities. Vibrio cholerae, a pathogen that causes an acute disease, uses QS to repress virulence factor production and biofilm formation. Thus, molecules that activate QS in V. cholerae have the potential to control pathogenicity in this globally important bacterium. Using a whole-cell high-throughput screen, we identified eleven molecules that activate V. cholerae QS: eight molecules are receptor agonists and three molecules are antagonists of LuxO, the central NtrC-type response regulator that controls the global V. cholerae QS cascade. The LuxO inhibitors act by an uncompetitive mechanism by binding to the pre-formed LuxO-ATP complex to inhibit ATP hydrolysis. Genetic analyses suggest that the inhibitors bind in close proximity to the Walker B motif. The inhibitors display broad-spectrum capability in activation of QS in Vibrio species that employ LuxO. To the best of our knowledge, these are the first molecules identified that inhibit the ATPase activity of a NtrC-type response regulator. Our discovery supports the idea that exploiting pro-QS molecules is a promising strategy for the development of novel anti-infectives. PMID:22761573

  1. Identification of Five Structurally Unrelated Quorum-Sensing Inhibitors of Pseudomonas aeruginosa from a Natural-Derivative Database

    PubMed Central

    Tan, Sean Yang-Yi; Chua, Song-Lin; Chen, Yicai; Rice, Scott A.; Kjelleberg, Staffan; Nielsen, Thomas E.; Givskov, Michael

    2013-01-01

    Bacteria communicate by means of small signal molecules in a process termed quorum sensing (QS). QS enables bacteria to organize their activities at the population level, including the coordinated secretion of virulence factors. Certain small-molecule compounds, known as quorum-sensing inhibitors (QSIs), have been shown to effectively block QS and subsequently attenuate the virulence of Pseudomonas aeruginosa, as well as increasing its susceptibility to both antibiotics and the immune system. In this study, a structure-based virtual screening (SB-VS) approach was used for the discovery of novel QSI candidates. Three-dimensional structures of 3,040 natural compounds and their derivatives were obtained, after which molecular docking was performed using the QS receptor LasR as a target. Based on docking scores and molecular masses, 22 compounds were purchased to determine their efficacies as quorum-sensing inhibitors. Using a live reporter assay for quorum sensing, 5 compounds were found to be able to inhibit QS-regulated gene expression in P. aeruginosa in a dose-dependent manner. The most promising compound, G1, was evaluated by isobaric tag for relative and absolute quantitation (iTRAQ)-based proteomic analysis, and it was found to significantly affect the abundance of 46 proteins (19 were upregulated; 27 were downregulated) in P. aeruginosa PAO1. It specifically reduced the expression of several quorum-sensing-regulated virulence factors, such as protease IV, chitinase, and pyoverdine synthetases. G1 was also able to reduce extracellular DNA release and inhibited the secretion of the virulence factor, elastase, whose expression is regulated by LasR. These results demonstrate the utility of SB-VS for the discovery of target-specific QSIs. PMID:24002091

  2. Mechanistic analysis of a synthetic inhibitor of the Pseudomonas aeruginosa LasI quorum-sensing signal synthase

    PubMed Central

    Lidor, O.; Al-Quntar, A.; Pesci, E. C.; Steinberg, D.

    2015-01-01

    Pseudomonas aeruginosa is an opportunistic Gram-negative pathogen responsible for many human infections. LasI is an acyl-homoserine lactone synthase that produces a quorum-sensing (QS) signal that positively regulates numerous P. aeruginosa virulence determinants. The inhibition of the LasI protein is therefore an attractive drug target. In this study, a novel in silico to in vitro complementation was applied to screen thiazolidinedione-type compounds for their ability to inhibit biofilm formation at concentrations not affecting bacterial growth. The compound (z)-5-octylidenethiazolidine-2, 4-dione (TZD-C8) was a strong inhibitor of biofilm formation and chosen for further study. Structural exploration of in silico docking predicted that the compound had high affinity for the LasI activity pocket. The TZD-C8 compound was also predicted to create hydrogen bonds with residues Arg30 and Ile107. Site-directed mutagenesis (SDM) of these two sites demonstrated that TZD-C8 inhibition was abolished in the lasI double mutant PAO-R30D, I107S. In addition, in vitro swarming motility and quorum sensing signal production were affected by TZD-C 8, confirming this compound alters the cell to cell signalling circuitry. Overall, this novel inhibitor of P. aeruginosa quorum sensing shows great promise and validates our mechanistic approach to discovering inhibitors of LuxI-type acyl-homoserine lactone synthases. PMID:26593271

  3. Potential Emergence of Multi-quorum Sensing Inhibitor Resistant (MQSIR) Bacteria.

    PubMed

    Koul, Shikha; Prakash, Jyotsana; Mishra, Anjali; Kalia, Vipin Chandra

    2016-03-01

    Expression of certain bacterial genes only at a high bacterial cell density is termed as quorum-sensing (QS). Here bacteria use signaling molecules to communicate among themselves. QS mediated genes are generally involved in the expression of phenotypes such as bioluminescence, biofilm formation, competence, nodulation, and virulence. QS systems (QSS) vary from a single in Vibrio spp. to multiple in Pseudomonas and Sinorhizobium species. The complexity of QSS is further enhanced by the multiplicity of signals: (1) peptides, (2) acyl-homoserine lactones, (3) diketopiperazines. To counteract this pathogenic behaviour, a wide range of bioactive molecules acting as QS inhibitors (QSIs) have been elucidated. Unlike antibiotics, QSIs don't kill bacteria and act at much lower concentration than those of antibiotics. Bacterial ability to evolve resistance against multiple drugs has cautioned researchers to develop QSIs which may not generate undue pressure on bacteria to develop resistance against them. In this paper, we have discussed the implications of the diversity and multiplicity of QSS, in acting as an arsenal to withstand attack from QSIs and may use these as reservoirs to develop multi-QSI resistance. PMID:26843692

  4. Discovery of a quorum-sensing inhibitor of drug-resistant staphylococcal infections by structure-based virtual screening.

    PubMed

    Kiran, Madanahally D; Adikesavan, Nallini Vijayarangan; Cirioni, Oscar; Giacometti, Andrea; Silvestri, Carmela; Scalise, Giorgio; Ghiselli, Roberto; Saba, Vittorio; Orlando, Fiorenza; Shoham, Menachem; Balaban, Naomi

    2008-05-01

    Staphylococci are a major health threat because of increasing resistance to antibiotics. An alternative to antibiotic treatment is preventing virulence by inhibition of bacterial cell-to-cell communication using the quorum-sensing inhibitor RNAIII-inhibiting peptide (RIP). In this work, we identified 2',5-di-O-galloyl-d-hamamelose (hamamelitannin) as a nonpeptide analog of RIP by virtual screening of a RIP-based pharmacophore against a database of commercially available small-molecule compounds. Hamamelitannin is a natural product found in the bark of Hamamelis virginiana (witch hazel), and it has no effect on staphylococcal growth in vitro; but like RIP, it does inhibit the quorum-sensing regulator RNAIII. In a rat graft model, hamamelitannin prevented device-associated infections in vivo, including infections caused by methicillin-resistant Staphylococcus aureus and Staphylococcus epidermidis strains. These findings suggest that hamamelitannin may be used as a suppressor to staphylococcal infections. PMID:18314496

  5. Potent Irreversible Inhibitors of LasR Quorum Sensing in Pseudomonas aeruginosa

    PubMed Central

    2014-01-01

    Antagonism of quorum sensing represents a promising new antivirulence approach for the treatment of bacterial infection. The development of a novel series of non-natural irreversible antagonists of P. aeruginosa LasR is described. The lead compounds identified (25 and 28) display potent LasR antagonist activity and inhibit expression of the P. aeruginosa virulence factors pyocyanin and biofilm formation in PAO1 and PA14. PMID:25699144

  6. Imidazolines as Non-Classical Bioisosteres of N-Acyl Homoserine Lactones and Quorum Sensing Inhibitors

    PubMed Central

    Reyes-Arellano, Alicia; Bucio-Cano, Alejandro; Montenegro-Sustaita, Mabel; Curiel-Quesada, Everardo; Salgado-Zamora, Héctor

    2012-01-01

    A series of selected 2-substituted imidazolines were synthesized in moderate to excellent yields by a modification of protocols reported in the literature. They were evaluated as potential non-classical bioisosteres of AHL with the aim of counteracting bacterial pathogenicity. Imidazolines 18a, 18e and 18f at various concentrations reduced the violacein production by Chromobacterium violaceum, suggesting an anti-quorum sensing profile against Gram-negative bacteria. Imidazoline 18b did not affect the production of violacein, but had a bacteriostatic effect at 100 ?M and a bactericidal effect at 1 mM. Imidazoline 18a bearing a hexyl phenoxy moiety was the most active compound of the series, rendering a 72% inhibitory effect of quorum sensing at 100 ?M. Imidazoline 18f bearing a phenyl nonamide substituent presented an inhibitory effect on quorum sensing at a very low concentration (1 nM), with a reduction percentage of 28%. This compound showed an irregular performance, decreasing inhibition at concentrations higher than 10 ?M, until reaching 100 ?M, at which concentration it increased the inhibitory effect with a 49% reduction percentage. When evaluated on Serratia marcescens, compound 18f inhibited the production of prodigiosin by 40% at 100 ?M. PMID:22408391

  7. Imidazolines as non-classical bioisosteres of N-acyl homoserine lactones and quorum sensing inhibitors.

    PubMed

    Reyes-Arellano, Alicia; Bucio-Cano, Alejandro; Montenegro-Sustaita, Mabel; Curiel-Quesada, Everardo; Salgado-Zamora, Héctor

    2012-01-01

    A series of selected 2-substituted imidazolines were synthesized in moderate to excellent yields by a modification of protocols reported in the literature. They were evaluated as potential non-classical bioisosteres of AHL with the aim of counteracting bacterial pathogenicity. Imidazolines 18a, 18e and 18f at various concentrations reduced the violacein production by Chromobacterium violaceum, suggesting an anti-quorum sensing profile against Gram-negative bacteria. Imidazoline 18b did not affect the production of violacein, but had a bacteriostatic effect at 100 ?M and a bactericidal effect at 1 mM. Imidazoline 18a bearing a hexyl phenoxy moiety was the most active compound of the series, rendering a 72% inhibitory effect of quorum sensing at 100 ?M. Imidazoline 18f bearing a phenyl nonamide substituent presented an inhibitory effect on quorum sensing at a very low concentration (1 nM), with a reduction percentage of 28%. This compound showed an irregular performance, decreasing inhibition at concentrations higher than 10 ?M, until reaching 100 ?M, at which concentration it increased the inhibitory effect with a 49% reduction percentage. When evaluated on Serratia marcescens, compound 18f inhibited the production of prodigiosin by 40% at 100 ?M. PMID:22408391

  8. At a supra-physiological concentration, human sexual hormones act as quorum-sensing inhibitors.

    PubMed

    Beury-Cirou, Amélie; Tannières, Mélanie; Minard, Corinne; Soulère, Laurent; Rasamiravaka, Tsiry; Dodd, Robert H; Queneau, Yves; Dessaux, Yves; Guillou, Catherine; Vandeputte, Olivier M; Faure, Denis

    2013-01-01

    N-acylhomoserine lactone (AHL)-mediated quorum-sensing (QS) regulates virulence functions in plant and animal pathogens such as Agrobacterium tumefaciens and Pseudomonas aeruginosa. A chemolibrary of more than 3500 compounds was screened using two bacterial AHL-biosensors to identify QS-inhibitors (QSIs). The purity and structure of 15 QSIs selected through this screening were verified using HPLC MS/MS tools and their activity tested on the A. tumefaciens and P. aeruginosa bacterial models. The IC50 value of the identified QSIs ranged from 2.5 to 90 µg/ml, values that are in the same range as those reported for the previously identified QSI 4-nitropyridine-N-oxide (IC50 24 µg/ml). Under the tested culture conditions, most of the identified QSIs did not exhibit bacteriostatic or bactericidal activities. One third of the tested QSIs, including the plant compound hordenine and the human sexual hormone estrone, decreased the frequency of the QS-regulated horizontal transfer of the tumor-inducing (Ti) plasmid in A. tumefaciens. Hordenine, estrone as well as its structural relatives estriol and estradiol, also decreased AHL accumulation and the expression of six QS-regulated genes (lasI, lasR, lasB, rhlI, rhlR, and rhlA) in cultures of the opportunist pathogen P. aeruginosa. Moreover, the ectopic expression of the AHL-receptors RhlR and LasR of P. aeruginosa in E. coli showed that their gene-regulatory activity was affected by the QSIs. Finally, modeling of the structural interactions between the human hormones and AHL-receptors LasR of P. aeruginosa and TraR of A. tumefaciens confirmed the competitive binding capability of the human sexual hormones. This work indicates potential interferences between bacterial and eukaryotic hormonal communications. PMID:24376718

  9. At a Supra-Physiological Concentration, Human Sexual Hormones Act as Quorum-Sensing Inhibitors

    PubMed Central

    Beury-Cirou, Amélie; Tannières, Mélanie; Minard, Corinne; Soulère, Laurent; Rasamiravaka, Tsiry; Dodd, Robert H.; Queneau, Yves; Dessaux, Yves; Guillou, Catherine; Vandeputte, Olivier M.; Faure, Denis

    2013-01-01

    N-Acylhomoserine lactone (AHL)-mediated quorum-sensing (QS) regulates virulence functions in plant and animal pathogens such as Agrobacterium tumefaciens and Pseudomonas aeruginosa. A chemolibrary of more than 3500 compounds was screened using two bacterial AHL-biosensors to identify QS-inhibitors (QSIs). The purity and structure of 15 QSIs selected through this screening were verified using HPLC MS/MS tools and their activity tested on the A. tumefaciens and P. aeruginosa bacterial models. The IC50 value of the identified QSIs ranged from 2.5 to 90 µg/ml, values that are in the same range as those reported for the previously identified QSI 4-nitropyridine-N-oxide (IC50 24 µg/ml). Under the tested culture conditions, most of the identified QSIs did not exhibit bacteriostatic or bactericidal activities. One third of the tested QSIs, including the plant compound hordenine and the human sexual hormone estrone, decreased the frequency of the QS-regulated horizontal transfer of the tumor-inducing (Ti) plasmid in A. tumefaciens. Hordenine, estrone as well as its structural relatives estriol and estradiol, also decreased AHL accumulation and the expression of six QS-regulated genes (lasI, lasR, lasB, rhlI, rhlR, and rhlA) in cultures of the opportunist pathogen P. aeruginosa. Moreover, the ectopic expression of the AHL-receptors RhlR and LasR of P. aeruginosa in E. coli showed that their gene-regulatory activity was affected by the QSIs. Finally, modeling of the structural interactions between the human hormones and AHL-receptors LasR of P. aeruginosa and TraR of A. tumefaciens confirmed the competitive binding capability of the human sexual hormones. This work indicates potential interferences between bacterial and eukaryotic hormonal communications. PMID:24376718

  10. Bioactive proteins from Solanaceae as quorum sensing inhibitors against virulence in Pseudomonas aeruginosa.

    PubMed

    Singh, Gurpreet; Tamboli, Ekant; Acharya, Aurovind; Kumarasamy, Chellan; Mala, Kanchana; Raman, Pachaiappan

    2015-06-01

    Cell-to-cell communication or quorum sensing (QS) is a generic event in bacteria that is used to coordinate gene expression among local populations. The phenomenon of QS depends on the fact that presence of sufficient bacteria ascertains a threshold level of autoinducer concentration that allows bacteria to sense a critical cell mass and to activate or repress target genes. Thus, QS has been an attractive target for the development of anti-infective strategies that are not based on the use of antibiotics. Several anti-QS approaches have been demonstrated including natural products from plant-based secondary metabolites. However, the role of plant bioactive proteins as an anti-QS peptide is yet to be deciphered. Against a backdrop of ever-increasing antibiotic resistant pathogens, there is a strong need for development of alternative therapeutic strategies. Thus, our hypothesis is that bioactive proteins from the plant family Solanaceae are quorum quenching molecules that can be exploited to develop a therapeutic strategy against virulence. We presume that bioactive proteins will inactivate or inhibit or degrade QS signals from bacteria to prevent cell-to-cell communication and thus inhibit development of virulence in Pseudomonas aeruginosa. Further, the use of proteins as quorum quenchers will delay the bacteria to develop resistance against these quenching molecules. PMID:25777471

  11. Nanoporous Superhydrophobic Coatings that Promote the Extended Release of Water-Labile Quorum Sensing Inhibitors and Enable Long-Term Modulation of Quorum Sensing in Staphylococcus aureus

    PubMed Central

    2015-01-01

    Materials and coatings that inhibit bacterial colonization are of interest in a broad range of biomedical, environmental, and industrial applications. In view of the rapid increase in bacterial resistance to conventional antibiotics, the development of new strategies that target nonessential pathways in bacterial pathogens—and that thereby limit growth and reduce virulence through nonbiocidal means—has attracted considerable attention. Bacterial quorum sensing (QS) represents one such target, and is intimately connected to virulence in many human pathogens. Here, we demonstrate that the properties of nanoporous, polymer-based superhydrophobic coatings can be exploited to host and subsequently sustain the extended release of potent and water-labile peptide-based inhibitors of QS (QSIs) in Staphylococcus aureus. Our results demonstrate that these peptidic QSIs can be released into surrounding media for periods of at least 8 months, and that they strongly inhibit agr-based QS in S. aureus for at least 40 days. These results also suggest that these extremely nonwetting coatings can confer protection against the rapid hydrolysis of these water-labile peptides, thereby extending their useful lifetimes. Finally, we demonstrate that these peptide-loaded superhydrophobic coatings can strongly modulate the QS-controlled formation of biofilm in wild-type S. aureus. These nanoporous superhydrophobic films provide a new, useful, and nonbiocidal approach to the design of coatings that attenuate bacterial virulence. This approach has the potential to be general, and could prove suitable for the encapsulation, protection, and release of other classes of water-sensitive agents. We anticipate that the materials, strategies, and concepts reported here will enable new approaches to the long-term attenuation of QS and associated bacterial phenotypes in a range of basic research and applied contexts. PMID:26501126

  12. Secondary metabolites produced by marine streptomyces as antibiofilm and quorum-sensing inhibitor of uropathogen Proteus mirabilis.

    PubMed

    Younis, Khansa Mohammed; Usup, Gires; Ahmad, Asmat

    2016-03-01

    Quorum-sensing regulates bacterial biofilm formation and virulence factors, thereby making it an interesting target for attenuating pathogens. In this study, we investigated anti-biofilm and anti-quorum-sensing compounds from secondary metabolites of halophiles marine streptomyces against urinary catheter biofilm forming Proteus mirabilis without effect on growth viability. A total of 40 actinomycetes were isolated from samples collected from different places in Iraq including marine sediments and soil samples. Fifteen isolates identified as streptomyces and their supernatant screened as anti-quorum-sensing by inhibiting quorum-sensing regulated prodigiosin biosynthesis of Serratia marcescens strain Smj-11 as a reporter strain. Isolate Sediment Lake Iraq (sdLi) showed potential anti-quorum-sensing activity. Out of 35 clinical isolates obtained from Urinary catheter used by patient at the Universiti Kebangsaan Malaysia Medical Center, 22 isolates were characterized and identified as Proteus mirabilis. Isolate Urinary Catheter B4 (UCB4) showed the highest biofilm formation with highest resistance to used antibiotic and was chosen for further studies. Ethyl acetate secondary metabolites extract was produced from sdLi isolate. First, we determined the Minimum Inhibitory Concentration (MIC) of sdLi crude extract against UCB4 isolate, and all further experiments used concentrations below the MIC. Tests of subinhibitory concentrations of sdLi crude extract showed good inhibition against UCB4 isolate biofilm formation on urinary catheter and cover glass using Scanning electron microscopy and light microscopy respectively. The influence of sub-MIC of sdLi crude extract was also found to attenuate the quorum sensing (QS)-dependent factors such as hemolysin activity, urease activity, pH value, and motility of UCB4 isolate. Evidence is presented that these nontoxic secondary metabolites may act as antagonists of bacterial quorum sensing by competing with quorum-sensing signals for receptor binding. PMID:26538254

  13. Polyhydroxyanthraquinones as Quorum Sensing Inhibitors from the Guttates of Penicillium restrictum and Their Analysis by Desorption Electrospray Ionization Mass Spectrometry

    PubMed Central

    2015-01-01

    The endophytic fungus Penicillium restrictum was isolated from the stems of a milk thistle (Silybum marianum) plant. In culture, the fungus produced distinct red guttates, which have been virtually uninvestigated, particularly from the standpoint of chemistry. Hence, this study examined the chemical mycology of P. restrictum and, in doing so, uncovered a series of both known and new polyhydroxyanthraquinones (1–9). These compounds were quorum sensing inhibitors in a clinical isolate of methicillin-resistant Staphylococcus aureus (MRSA), with IC50 values ranging from 8 to 120 ?M, suggesting antivirulence potential for the compounds. Moreover, the spatial and temporal distribution of the polyhydroxyanthraquinones was examined in situ via desorption electrospray ionization–mass spectrometry (DESI-MS) imaging, demonstrating the first application of this technique to a guttate-forming fungus and revealing both the concentration of secondary metabolites at the ventral surface of the fungus and their variance in colonies of differing ages. PMID:24911880

  14. Design, synthesis and evaluation of N-aryl-glyoxamide derivatives as structurally novel bacterial quorum sensing inhibitors.

    PubMed

    Nizalapur, Shashidhar; Kimyon, Önder; Biswas, Nripendra Nath; Gardner, Christopher R; Griffith, Renate; Rice, Scott A; Manefield, Mike; Willcox, Mark; Black, David StC; Kumar, Naresh

    2015-12-23

    Bacteria cooperatively regulate the expression of many phenotypes through a mechanism called quorum sensing (QS). Many Gram-negative bacteria use an N-acyl homoserine lactone (AHL)-mediated QS system to control biofilm formation and virulence factor production. In recent years, quorum sensing inhibitors (QSIs) have become attractive tools to overcome antimicrobial resistance exhibited by various pathogenic bacteria. In the present study, we report the design and synthesis of novel N-arylisatin-based glyoxamide derivatives via the ring-opening reaction of N-aryl isatins with cyclic and acylic amines, and amino acid esters. The QSI activity of the synthesized compounds was determined in the LasR-expressing Pseudomonas aeruginosa MH602 and LuxR-expressing Escherichia coli MT102 reporter strains. Compounds and exhibited the greatest QSI activity in P. aeruginosa MH602, with 48.7% and 42.7% reduction in QS activity at 250 ?M, respectively, while compounds and showed 73.6% and 43.7% QSI activity in E. coli MT102. In addition, the ability of these compounds to inhibit the production of pyocyanin in P. aeruginosa (PA14) was also determined, with compound showing 47% inhibition at 250 ?M. Furthermore, computational docking studies were performed on the LasR receptor protein of P. aeruginosa, which showed that formation of a hydrogen bonding network played a major role in influencing the QS inhibitory activity. We envisage that these novel non-AHL glyoxamide derivatives could become a new tool for the study of QS and potentially for the treatment of bacterial infections. PMID:26552577

  15. Bacterial quorum sensing and biofilm formation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Quorum sensing is a cell density-dependent signaling system by which bacteria can regulate gene expression through the production, secretion, and subsequent detection of extracellular signaling molecules called autoinducers. Bacteria use quorum sensing to regulate various physiological activities, ...

  16. Quorum Sensing Inhibition, Relevance to Periodontics

    PubMed Central

    Yada, Sudheer; Kamalesh, B; Sonwane, Siddharth; Guptha, Indra; Swetha, R K

    2015-01-01

    Quorum sensing helps bacteria to communicate with each other and in coordinating their behavior. Many diseases of human beings, plants, and animals are mediated by quorum sensing. Various approaches are being tried to inhibit this communication to control the diseases caused by bacteria. Periodontal pathogens also communicate through quorum sensing and new approaches to treat periodontal disease using quorum sensing inhibition need to explored. PMID:25709373

  17. Optimal Census by Quorum Sensing

    PubMed Central

    Taillefumier, Thibaud; Wingreen, Ned S.

    2015-01-01

    Quorum sensing is the regulation of gene expression in response to changes in cell density. To measure their cell density, bacterial populations produce and detect diffusible molecules called autoinducers. Individual bacteria internally represent the external concentration of autoinducers via the level of monitor proteins. In turn, these monitor proteins typically regulate both their own production and the production of autoinducers, thereby establishing internal and external feedbacks. Here, we ask whether feedbacks can increase the information available to cells about their local density. We quantify available information as the mutual information between the abundance of a monitor protein and the local cell density for biologically relevant models of quorum sensing. Using variational methods, we demonstrate that feedbacks can increase information transmission, allowing bacteria to resolve up to two additional ranges of cell density when compared with bistable quorum-sensing systems. Our analysis is relevant to multi-agent systems that track an external driver implicitly via an endogenously generated signal. PMID:25965377

  18. Non-antibiotic quorum sensing inhibitors acting against N-acyl homoserine lactone synthase as druggable target

    PubMed Central

    Chang, Chien-Yi; Krishnan, Thiba; Wang, Hao; Chen, Ye; Yin, Wai-Fong; Chong, Yee-Meng; Tan, Li Ying; Chong, Teik Min; Chan, Kok-Gan

    2014-01-01

    N-acylhomoserine lactone (AHL)-based quorum sensing (QS) is important for the regulation of proteobacterial virulence determinants. Thus, the inhibition of AHL synthases offers non-antibiotics-based therapeutic potentials against QS-mediated bacterial infections. In this work, functional AHL synthases of Pseudomonas aeruginosa LasI and RhlI were heterologously expressed in an AHL-negative Escherichia coli followed by assessments on their AHLs production using AHL biosensors and high resolution liquid chromatography–mass spectrometry (LCMS). These AHL-producing E. coli served as tools for screening AHL synthase inhibitors. Based on a campaign of screening synthetic molecules and natural products using our approach, three strongest inhibitors namely are salicylic acid, tannic acid and trans-cinnamaldehyde have been identified. LCMS analysis further confirmed tannic acid and trans-cinnemaldehyde efficiently inhibited AHL production by RhlI. We further demonstrated the application of trans-cinnemaldehyde inhibiting Rhl QS system regulated pyocyanin production in P. aeruginosa up to 42.06%. Molecular docking analysis suggested that trans-cinnemaldehyde binds to the LasI and EsaI with known structures mainly interacting with their substrate binding sites. Our data suggested a new class of QS-inhibiting agents from natural products targeting AHL synthase and provided a potential approach for facilitating the discovery of anti-QS signal synthesis as basis of novel anti-infective approach. PMID:25430794

  19. Investigation of Pseudomonas aeruginosa quorum-sensing signaling system for identifying multiple inhibitors using molecular docking and structural analysis methodology.

    PubMed

    Soheili, Vahid; Bazzaz, Bibi Sedigheh Fazly; Abdollahpour, Nooshin; Hadizadeh, Farzin

    2015-12-01

    Pseudomonas aeruginosa is an opportunistic human pathogen and a common Gram-negative bacterium in hospital-acquired infections. It causes death in many burn victims, cystic-fibrosis and neutropenic-cancer patients. It is known that P. aeruginosa biofilm maturation and production of cell-associated and extracellular virulence factors such as pyocyanin, elastase and rhamnolipids are under the control of a quorum-sensing (QS) system. Among several proteins involved in the Pseudomonas QS mechanism, LasR and PqsE play an important role in its cascade signaling system. They can cause increases in QS factors, biofilm maturation, and the production of virulence factors. Therefore, inhibition of these proteins can reduce the pathogenicity of P. aeruginosa. According to the structure of corresponding auto-inducers bound to these proteins, in silico calculations were performed with some non-steroidal anti-inflammatory drugs (NSAIDs) to estimate possible interactions and find the co-inhibitors of LasR and PqsE. The results showed that oxicams (Piroxicam and Meloxicam) can interact well with active sites of both proteins with the Ki of 119.43 nM and 4.0 μM for Meloxicam and 201.39 nM and 4.88 μM against LasR and PqsE, respectively. These findings suggested that Piroxicam and Meloxicam can be used as potential inhibitors for control of the P. aeruginosa QS signaling system and biofilm formation, and may be used in the design of multiple inhibitors. PMID:26358567

  20. Hybrids of acylated homoserine lactone and nitric oxide donors as inhibitors of quorum sensing and virulence factors in Pseudomonas aeruginosa.

    PubMed

    Kutty, Samuel K; Barraud, Nicolas; Ho, Kitty K K; Iskander, George M; Griffith, Renate; Rice, Scott A; Bhadbhade, Mohan; Willcox, Mark D P; Black, David StC; Kumar, Naresh

    2015-10-14

    Pseudomonas aeruginosa is an opportunistic pathogen causing a variety of life-threatening diseases such as cystic fibrosis and nosocomial infections in burn victims. The ability of P. aeruginosa to cause infection is attributed to the production of virulence factors such as pyocyanin and elastases. These virulence factors are under the control of quorum sensing (QS) a cell to cell communication process controlled by small diffusible signalling molecules based on N-acyl-homoserine lactones (AHLs) known as autoinducers. The inhibition of QS and thereby virulence factors is seen as a potential new anti-infective strategy. Additionally, the role of nitric oxide (NO) in downstream processes in bacteria such as biofilm dispersal, motility, virulence and antimicrobial defence systems is gaining attention and could be used to control bacterial. Herein we report the design and synthesis of hybrid compounds based on AHL signalling molecules and NO donors as anti-infective agents. A series of AHL-NO hybrids were synthesised and potent inhibitors of QS and virulence factors of P. aeruginosa were identified. This research has led to conversion of agonist AHLs to antagonist AHLs with dual properties of QS inhibition and NO release. PMID:26282835

  1. Competition Studies Confirm Two Major Barriers That Can Preclude the Spread of Resistance to Quorum-Sensing Inhibitors in Bacteria

    PubMed Central

    2015-01-01

    The growing threat of antibiotic resistance necessitates the development of novel antimicrobial therapies. Antivirulence agents that target group-beneficial traits in microorganisms (i.e., phenotypes that help the cells surrounding the producer cell instead of selfishly benefiting only the producer cell) represent a new antimicrobial approach that may be robust against the spread of resistant mutants. One prominent group-beneficial antivirulence target in bacteria is quorum sensing (QS). While scientists are producing new QS inhibitors (QSIs) at an increasing pace for use as research tools and potential therapeutic leads, substantial work remains in empirically demonstrating a robustness against resistance. Herein we report the results of in vitro competition studies in Pseudomonas aeruginosa that explicitly confirm that two separate barriers can impede the spread of resistance to QSIs: (1) insufficient native QS signal levels prevent rare QSI-resistant bacteria from expressing their QS regulon, and (2) group-beneficial QS-regulated phenotypes produced by resistant bacteria are susceptible to cheating by QSI-sensitive neighbors, even when grown on a solid substrate with limited mixing to mimic infected tissue. These results underscore the promise of QSIs and other antivirulence molecules that target group beneficial traits as resistance-robust antimicrobial treatments and provide support for their further development. PMID:25105594

  2. Honaucins A-C, potent inhibitors of inflammation and bacterial quorum sensing: synthetic derivatives and structure-activity relationships.

    PubMed

    Choi, Hyukjae; Mascuch, Samantha J; Villa, Francisco A; Byrum, Tara; Teasdale, Margaret E; Smith, Jennifer E; Preskitt, Linda B; Rowley, David C; Gerwick, Lena; Gerwick, William H

    2012-05-25

    Honaucins A-C were isolated from the cyanobacterium Leptolyngbya crossbyana which was found overgrowing corals on the Hawaiian coast. Honaucin A consists of (S)-3-hydroxy-?-butyrolactone and 4-chlorocrotonic acid, which are connected via an ester linkage. Honaucin A and its two natural analogs exhibit potent inhibition of both bioluminescence, a quorum-sensing-dependent phenotype, in Vibrio harveyi BB120 and lipopolysaccharide-stimulated nitric oxide production in the murine macrophage cell line RAW264.7. The decrease in nitric oxide production was accompanied by a decrease in the transcripts of several proinflammatory cytokines, most dramatically interleukin-1?. Synthesis of honaucin A, as well as a number of analogs, and subsequent evaluation in anti-inflammation and quorum-sensing inhibition bioassays revealed the essential structural features for activity in this chemical class and provided analogs with greater potency in both assays. PMID:22633410

  3. Isoprenyl caffeate, a major compound in manuka propolis, is a quorum-sensing inhibitor in Chromobacterium violaceum.

    PubMed

    Gemiarto, Adrian Tandhyka; Ninyio, Nathaniel Nyakaat; Lee, Siew Wei; Logis, Joko; Fatima, Ayesha; Chan, Eric Wei Chiang; Lim, Crystale Siew Ying

    2015-08-01

    The emergence of antibiotic-resistant bacterial pathogens, especially Gram-negative bacteria, has driven investigations into suppressing bacterial virulence via quorum sensing (QS) inhibition strategies instead of bactericidal and bacteriostatic approaches. Here, we investigated several bee products for potential compound(s) that exhibit significant QS inhibitory (QSI) properties at the phenotypic and molecular levels in Chromobacterium violaceum ATCC 12472 as a model organism. Manuka propolis produced the strongest violacein inhibition on C. violaceum lawn agar, while bee pollen had no detectable QSI activity and honey had bactericidal activity. Fractionated manuka propolis (pooled fraction 5 or PF5) exhibited the largest violacein inhibition zone (24.5 ± 2.5 mm) at 1 mg dry weight per disc. In C. violaceum liquid cultures, at least 450 µg/ml of manuka propolis PF5 completely inhibited violacein production. Gene expression studies of the vioABCDE operon, involved in violacein biosynthesis, showed significant (≥two-fold) down-regulation of vioA, vioD and vioE in response to manuka propolis PF5. A potential QSI compound identified in manuka propolis PF5 is a hydroxycinnamic acid-derivative, isoprenyl caffeate, with a [M-H] of 247. Complete violacein inhibition in C. violaceum liquid cultures was achieved with at least 50 µg/ml of commercial isoprenyl caffeate. In silico docking experiments suggest that isoprenyl caffeate may act as an inhibitor of the violacein biosynthetic pathway by acting as a competitor for the FAD-binding pockets of VioD and VioA. Further studies on these compounds are warranted toward the development of anti-pathogenic drugs as adjuvants to conventional antibiotic treatments, especially in antibiotic-resistant bacterial infections. PMID:26059863

  4. Impairment of Pseudomonas aeruginosa Biofilm Resistance to Antibiotics by Combining the Drugs with a New Quorum-Sensing Inhibitor.

    PubMed

    Furiga, Aurelie; Lajoie, Barbora; El Hage, Salome; Baziard, Genevieve; Roques, Christine

    2015-01-01

    Pseudomonas aeruginosa plays an important role in chronic lung infections among patients with cystic fibrosis (CF) through its ability to form antibiotic-resistant biofilms. In P. aeruginosa, biofilm development and the production of several virulence factors are mainly regulated by the rhl and las quorum-sensing (QS) systems, which are controlled by two N-acyl-homoserine lactone signal molecules. In a previous study, we discovered an original QS inhibitor, N-(2-pyrimidyl)butanamide, called C11, based on the structure of C4-homoserine lactone, and found that it is able to significantly inhibit P. aeruginosa biofilm formation. However, recent data indicate that P. aeruginosa grows under anaerobic conditions and forms biofilms in the lungs of CF patients that are denser and more robust than those formed under aerobic conditions. Our confocal microscopy observations of P. aeruginosa biofilms developed under aerobic and anaerobic conditions confirmed that the biofilms formed under these two conditions have radically different architectures. C11 showed significant dose-dependent antibiofilm activity on biofilms grown under both aerobic and anaerobic conditions, with a greater inhibitory effect being seen under conditions of anaerobiosis. Gene expression analyses performed by quantitative reverse transcriptase PCR showed that C11 led to the significant downregulation of rhl QS regulatory genes but also to the downregulation of both las QS regulatory genes and QS system-regulated virulence genes, rhlA and lasB. Furthermore, the activity of C11 in combination with antibiotics against P. aeruginosa biofilms was tested, and synergistic antibiofilm activity between C11 and ciprofloxacin, tobramycin, and colistin was obtained under both aerobic and anaerobic conditions. This study demonstrates that C11 may increase the efficacy of treatments for P. aeruginosa infections by increasing the susceptibility of biofilms to antibiotics and by attenuating the pathogenicity of the bacterium. PMID:26711774

  5. GENE EXPRESSION IN SALMONELLA ENTERICA SEROTYPE TYPHIMURIUM LUXS MUTANT IN RESPONSE TO QUORUM SENSING SIGNALS AND A POULTRY MEAT-DERIVED QUORUM SENSING INHIBITOR USING MICROARRAY-BASED STUDIES

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Quorum sensing describes the processes in which bacteria cells produce, secrete, and communicate using chemical signal molecules. There is evidence that these sensing signals, especially AI-2, can influence bacterial gene expression. We have previously shown that food matrices, such as poultry wash ...

  6. Exploring the chemical space of ureidothiophene-2-carboxylic acids as inhibitors of the quorum sensing enzyme PqsD from Pseudomonas aeruginosa.

    PubMed

    Sahner, J Henning; Empting, Martin; Kamal, Ahmed; Weidel, Elisabeth; Groh, Matthias; Börger, Carsten; Hartmann, Rolf W

    2015-01-01

    Pseudomonas aeruginosa employs a quorum sensing (QS) communication system that makes use of small diffusible molecules. Among other effects, the QS system coordinates the formation of biofilm which decisively contributes to difficulties in the therapy of Pseudomonas infections. The present work deals with the structure-activity exploration of ureidothiophene-2-carboxylic acids as inhibitors of PqsD, a key enzyme in the biosynthetic pathway of signal molecules in the Pseudomonas QS system. We describe an improvement of the inhibitory activity by successfully combining features from two different PqsD inhibitor classes. Furthermore the functional groups, which are responsible for the inhibitory potency, were identified. Moreover, the inability of the new inhibitors, to prevent signal molecule formation in whole cell assays, is discussed. PMID:25874327

  7. Quorum Sensing in Extreme Environments

    PubMed Central

    Montgomery, Kate; Charlesworth, James C.; LeBard, Rebecca; Visscher, Pieter T.; Burns, Brendan P.

    2013-01-01

    Microbial communication, particularly that of quorum sensing, plays an important role in regulating gene expression in a range of organisms. Although this phenomenon has been well studied in relation to, for example, virulence gene regulation, the focus of this article is to review our understanding of the role of microbial communication in extreme environments. Cell signaling regulates many important microbial processes and may play a pivotal role in driving microbial functional diversity and ultimately ecosystem function in extreme environments. Several recent studies have characterized cell signaling in modern analogs to early Earth communities (microbial mats), and characterization of cell signaling systems in these communities may provide unique insights in understanding the microbial interactions involved in function and survival in extreme environments. Cell signaling is a fundamental process that may have co-evolved with communities and environmental conditions on the early Earth. Without cell signaling, evolutionary pressures may have even resulted in the extinction rather than evolution of certain microbial groups. One of the biggest challenges in extremophile biology is understanding how and why some microbial functional groups are located where logically they would not be expected to survive, and tightly regulated communication may be key. Finally, quorum sensing has been recently identified for the first time in archaea, and thus communication at multiple levels (potentially even inter-domain) may be fundamental in extreme environments. PMID:25371335

  8. Acne, quorum sensing and danger.

    PubMed

    Lwin, S M; Kimber, I; McFadden, J P

    2014-03-01

    Propionibacterium acnes is a ubiquitous skin commensal bacterium, which is normally well tolerated by the immune system in healthy human skin. However, there is increasing evidence to suggest a pivotal role for P. acnes in the inflammatory process underlying the acne pathogenesis. With its features of inflammation and pustulation, acne vulgaris resembles the skin's normal reaction to bacterial pathogens. P. acnes flourishes when sebum production increases in the follicles. Bacteria may undergo behavioural changes based on the surrounding bacterial population, a process called quorum sensing (QS). Evidence from in vitro studies suggests that QS enables P. acnes to upregulate its hydrolysis of sebum triglycerides by its bacterial lipases, secreting free fatty acids (FFAs) such as oleic, palmitic and lauric acids. These FFAs act as danger-associated molecular patterns (DAMPs), and activate Toll-like receptor (TLR)2 and TLR4, leading to selective T-helper (Th)-driven immunity, with subsequent expression of Th1/Th17-associated inflammatory cytokines. To our knowledge, there is currently no explanation as to what determines the shift of recognition by the immune system of P. acnes from being symbiotic to pathogenic. We present a novel hypothesis based on the essence of QS and DAMPs. P. acnes sends no or only 'safety' signals when present in 'controlled' quantities under commensal conditions, but becomes pathogenic and sends 'danger' signals via QS in the form of excess FFA production, which stimulates TLR2 and TLR4 as the bacterial population flourishes. PMID:24524558

  9. Interfering with Bacterial Quorum Sensing

    PubMed Central

    Reuter, Kerstin; Steinbach, Anke; Helms, Volkhard

    2016-01-01

    Quorum sensing (QS) describes the exchange of chemical signals in bacterial populations to adjust the bacterial phenotypes according to the density of bacterial cells. This serves to express phenotypes that are advantageous for the group and ensure bacterial survival. To do so, bacterial cells synthesize autoinducer (AI) molecules, release them to the environment, and take them up. Thereby, the AI concentration reflects the cell density. When the AI concentration exceeds a critical threshold in the cells, the AI may activate the expression of virulence-associated genes or of luminescent proteins. It has been argued that targeting the QS system puts less selective pressure on these pathogens and should avoid the development of resistant bacteria. Therefore, the molecular components of QS systems have been suggested as promising targets for developing new anti-infective compounds. Here, we review the QS systems of selected gram-negative and gram-positive bacteria, namely, Vibrio fischeri, Pseudomonas aeruginosa, and Staphylococcus aureus, and discuss various antivirulence strategies based on blocking different components of the QS machinery. PMID:26819549

  10. Interfering with Bacterial Quorum Sensing.

    PubMed

    Reuter, Kerstin; Steinbach, Anke; Helms, Volkhard

    2016-01-01

    Quorum sensing (QS) describes the exchange of chemical signals in bacterial populations to adjust the bacterial phenotypes according to the density of bacterial cells. This serves to express phenotypes that are advantageous for the group and ensure bacterial survival. To do so, bacterial cells synthesize autoinducer (AI) molecules, release them to the environment, and take them up. Thereby, the AI concentration reflects the cell density. When the AI concentration exceeds a critical threshold in the cells, the AI may activate the expression of virulence-associated genes or of luminescent proteins. It has been argued that targeting the QS system puts less selective pressure on these pathogens and should avoid the development of resistant bacteria. Therefore, the molecular components of QS systems have been suggested as promising targets for developing new anti-infective compounds. Here, we review the QS systems of selected gram-negative and gram-positive bacteria, namely, Vibrio fischeri, Pseudomonas aeruginosa, and Staphylococcus aureus, and discuss various antivirulence strategies based on blocking different components of the QS machinery. PMID:26819549

  11. A Strategy for Antagonizing Quorum Sensing

    SciTech Connect

    G Chen; L Swem; D Swem; D Stauff; C OLoughlin; P Jeffrey; B Bassler; F Hughson

    2011-12-31

    Quorum-sensing bacteria communicate via small molecules called autoinducers to coordinate collective behaviors. Because quorum sensing controls virulence factor expression in many clinically relevant pathogens, membrane-permeable quorum sensing antagonists that prevent population-wide expression of virulence genes offer a potential route to novel antibacterial therapeutics. Here, we report a strategy for inhibiting quorum-sensing receptors of the widespread LuxR family. Structure-function studies with natural and synthetic ligands demonstrate that the dimeric LuxR-type transcription factor CviR from Chromobacterium violaceum is potently antagonized by molecules that bind in place of the native acylated homoserine lactone autoinducer, provided that they stabilize a closed conformation. In such conformations, each of the two DNA-binding domains interacts with the ligand-binding domain of the opposing monomer. Consequently, the DNA-binding helices are held apart by {approx}60 {angstrom}, twice the {approx}30 {angstrom} separation required for operator binding. This approach may represent a general strategy for the inhibition of multidomain proteins.

  12. AI-2 Quorum Sensing in Campylobacter jejuni

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Quorum sensing response modulates many physiological attributes, such as bacterial virulence/pathogenesis, competence, and biofilm formation, when the bacterial population has reached a certain threshold. Among the various signaling compounds, autoinducer-2 (AI-2) is produced by most bacterial spec...

  13. Preliminary results of a novel quorum sensing inhibitor against pneumococcal infection and biofilm formation with special interest to otitis media and cochlear implantation.

    PubMed

    Cevizci, Ra?it; Düzlü, Mehmet; Dündar, Yasemin; Noyanalpan, Ningur; Sultan, Nedim; Tutar, Hakan; Bayaz?t, Y?ld?r?m A

    2015-06-01

    The purpose of the study is to assess the effect of a novel quorum sensing inhibitor (QSI), coded as 'yd 47', against otitis media and biofilm formation on Cochlear implants (CIs). Small pieces cut from cochlear implant were implanted under the skin in the retroauricular area on both sides of four guinea pigs. The implant pieces in the study and control sides were implanted in Streptococcus pneumoniae strain solution and saline, respectively. The right and left middle ears were also instilled with a solution containing pneumococci and saline, respectively. The animals were only given an intraperitoneal 'yd 47' twice daily for three months to be assessed later with electron microscopy. Clinical examination with palpation, inspection and otoscopy did not reveal any sign of implant infection or otitis media. In the study and control implant materials, soft tissues around the implant and tympanic membranes, there was no biofilm formation by pneumococci. Contamination by various cells and some rod-shaped bacteria (not diplococcic) were seen in some of the materials. In conclusion, the novel QSI seems promising in the prevention of otitis media and biofilm formation on CIs by pneumococci. PMID:24570174

  14. Prediction of mixture toxicity from the hormesis of a single chemical: A case study of combinations of antibiotics and quorum-sensing inhibitors with gram-negative bacteria.

    PubMed

    Wang, Ting; Wang, Dali; Lin, Zhifen; An, Qingqing; Yin, Chunsheng; Huang, Qinghui

    2016-05-01

    The 50% effect level of a single chemical in the real environment is almost impossible to determine at the low exposure concentration, and the prediction of the concentration of a mixture at the 50% effect level from the concentration of a single chemical at the low effect level is even more difficult. The current literature does not address this problem. Thus, to determine solutions for this question, single/mixture chronic toxicities of sulfonamides (SAs) and quorum-sensing inhibitors (QSIs) were determined using Gram-negative bacteria (Vibrio fischeri and E. coli.) and Gram-positive bacteria (B. subtilis) as the target organisms. The results showed that the joint effects of SAs and QSIs were primarily antagonistic responses. In addition, the toxicity mechanisms of mixtures of SAs and QSIs were investigated further, and the results revealed that the chronic joint effects were primarily an antagonistic response due to the QSI competing against acyl-homoserine lactones (AHL) for luxR in V. fischeri and SdiA in E. coli generated by the SAs, leading to negative effects exerted by the QSI-luxR or QSI-SdiA complexes on luxI in V. fischeri or FtsZ in E. coli. This phenomenon eventually weakened the stimulatory effect caused by the SAs. Based on the mixture toxicity mechanism, the relationship between the mixture toxicity and the simulation effect was formulated. PMID:26901472

  15. The joint effects of sulfonamides and quorum sensing inhibitors on Vibrio fischeri: Differences between the acute and chronic mixed toxicity mechanisms.

    PubMed

    Wang, Ting; Liu, Yuewei; Wang, Dali; Lin, Zhifen; An, Qingqing; Yin, Chunsheng; Liu, Yin

    2016-06-01

    Quorum sensing inhibitors (QSIs) are considered to be promising antibiotic alternatives and will be increasingly exposed to the environment together with antibiotics after their research and development process; it is therefore necessary to study the joint effects of QSIs and antibiotics. In this study, single and mixed toxicity of sulfonamide (SAs) and QSIs under acute and chronic conditions and their corresponding toxicity mechanisms were investigated. The results indicated that the acute joint effect was extremely complex, ranging from an antagonistic to synergistic response, while the chronic joint effect was primarily an antagonistic response. Using a molecular docking and regression model, we found that the acute joint effect could be determined by the hydrion's, ability to be oxidized, as well as the binding energy. The chronic joint effect was primarily an antagonistic response, which was due to the QSI competing against AHL for luxR generated by SAs, leading to negative effects of the QSI-luxR complexes on luxI. This phenomenon eventually weakened the stimulatory effect caused by SAs. Finally, the main differences between acute and chronic mixtures were analyzed: (1) The target protein was different between acute and chronic toxicity mixtures, and (2) effective concentration in acute and chronic toxicity mixtures was also different. These deep insights into mixed toxicity mechanisms will play an important role in the study of antibiotic resistance genes in response to antibiotic replacements. PMID:26897575

  16. Time-dependent hormesis of chemical mixtures: A case study on sulfa antibiotics and a quorum-sensing inhibitor of Vibrio fischeri.

    PubMed

    You, Ruirong; Sun, Haoyu; Yu, Yan; Lin, Zhifen; Qin, Mengnan; Liu, Ying

    2016-01-01

    Sulfa antibiotics (SAs) and quorum-sensing inhibitor (QSI) may pose potential ecological risks because mixed using of them has been proposed to inhibit bacteria from generating antibiotic resistance. This study investigated the time-dependent hormesis of single and binary mixtures of QSI and SAs of Vibrio fischeri (V. fischeri) for 0-24h. Although the low-dose SAs stimulated the expression of LuxR protein, the high-dose SAs could inhibit bacteria growth by competitively binding to dihydropteroate synthase. Moreover, AinR protein was bound to Benzofuran-3(2H)-one (B3O) with low concentration, thus the N-octanoyl homoserine lactone signal molecules (C8) has chance to bind to LuxR protein to promote light emission. The hormesis effect induced by the mixtures could be deduced that SAs promoted the expression of LuxR protein and B3O increases the chance of C8 binding to LuxR. Our findings facilitate new insight into the mechanistic study of hormesis and ecological risks of the chemical mixtures. PMID:26645135

  17. Collective sensing and collective responses in quorum-sensing bacteria

    PubMed Central

    Popat, R.; Cornforth, D. M.; McNally, L.; Brown, S. P.

    2015-01-01

    Bacteria often face fluctuating environments, and in response many species have evolved complex decision-making mechanisms to match their behaviour to the prevailing conditions. Some environmental cues provide direct and reliable information (such as nutrient concentrations) and can be responded to individually. Other environmental parameters are harder to infer and require a collective mechanism of sensing. In addition, some environmental challenges are best faced by a group of cells rather than an individual. In this review, we discuss how bacteria sense and overcome environmental challenges as a group using collective mechanisms of sensing, known as ‘quorum sensing’ (QS). QS is characterized by the release and detection of small molecules, potentially allowing individuals to infer environmental parameters such as density and mass transfer. While a great deal of the molecular mechanisms of QS have been described, there is still controversy over its functional role. We discuss what QS senses and how, what it controls and why, and how social dilemmas shape its evolution. Finally, there is a growing focus on the use of QS inhibitors as antibacterial chemotherapy. We discuss the claim that such a strategy could overcome the evolution of resistance. By linking existing theoretical approaches to data, we hope this review will spur greater collaboration between experimental and theoretical researchers. PMID:25505130

  18. Exploiting Quorum Sensing To Confuse Bacterial Pathogens

    PubMed Central

    LaSarre, Breah

    2013-01-01

    SUMMARY Cell-cell communication, or quorum sensing, is a widespread phenomenon in bacteria that is used to coordinate gene expression among local populations. Its use by bacterial pathogens to regulate genes that promote invasion, defense, and spread has been particularly well documented. With the ongoing emergence of antibiotic-resistant pathogens, there is a current need for development of alternative therapeutic strategies. An antivirulence approach by which quorum sensing is impeded has caught on as a viable means to manipulate bacterial processes, especially pathogenic traits that are harmful to human and animal health and agricultural productivity. The identification and development of chemical compounds and enzymes that facilitate quorum-sensing inhibition (QSI) by targeting signaling molecules, signal biogenesis, or signal detection are reviewed here. Overall, the evidence suggests that QSI therapy may be efficacious against some, but not necessarily all, bacterial pathogens, and several failures and ongoing concerns that may steer future studies in productive directions are discussed. Nevertheless, various QSI successes have rightfully perpetuated excitement surrounding new potential therapies, and this review highlights promising QSI leads in disrupting pathogenesis in both plants and animals. PMID:23471618

  19. Noisy neighbourhoods: quorum sensing in fungal-polymicrobial infections.

    PubMed

    Dixon, Emily F; Hall, Rebecca A

    2015-10-01

    Quorum sensing was once considered a way in which a species was able to sense its cell density and regulate gene expression accordingly. However, it is now becoming apparent that multiple microbes can sense particular quorum-sensing molecules, enabling them to sense and respond to other microbes in their neighbourhood. Such interactions are significant within the context of polymicrobial disease, in which the competition or cooperation of microbes can alter disease progression. Fungi comprise a small but important component of the human microbiome and are in constant contact with bacteria and viruses. The discovery of quorum-sensing pathways in fungi has led to the characterization of a number of interkingdom quorum-sensing interactions. Here, we review the recent developments in quorum sensing in medically important fungi, and the implications these interactions have on the host's innate immune response. PMID:26243526

  20. Global convergence of quorum-sensing networks

    NASA Astrophysics Data System (ADS)

    Russo, Giovanni; Slotine, Jean Jacques E.

    2010-10-01

    In many natural synchronization phenomena, communication between individual elements occurs not directly but rather through the environment. One of these instances is bacterial quorum sensing, where bacteria release signaling molecules in the environment which in turn are sensed and used for population coordination. Extending this motivation to a general nonlinear dynamical system context, this paper analyzes synchronization phenomena in networks where communication and coupling between nodes are mediated by shared dynamical quantities, typically provided by the nodes’ environment. Our model includes the case when the dynamics of the shared variables themselves cannot be neglected or indeed play a central part. Applications to examples from system biology illustrate the approach.

  1. The impact of quorum sensing on the virulence of Aeromonas hydrophila and Aeromonas salmonicida towards burbot (Lota lota L.) larvae.

    PubMed

    Natrah, F M I; Alam, Md Iftakharul; Pawar, Sushant; Harzevili, A Shiri; Nevejan, Nancy; Boon, Nico; Sorgeloos, Patrick; Bossier, Peter; Defoirdt, Tom

    2012-09-14

    In this study, the link between quorum sensing in Aeromonas spp. and its virulence towards burbot (Lota lota) was investigated. High mortality occurred in burbot juveniles challenged with Aeromonas salmonicida HN-00, but not in juveniles challenged with Aeromonas hydrophila AH-1N. Meanwhile, both A. hydrophila AH-1N and A. salmonicida HN-00 were virulent towards larvae. The effect of quorum sensing on the virulence of A. hydrophila AH-1N towards burbot larvae was further investigated using quorum sensing mutants (N-(butyryl)-L-homoserine lactone production and receptor mutants). Challenge with these mutants resulted in higher survival of burbot larvae when compared to challenge with the wild type, and the addition of the signal molecule N-butyryl-L-homoserine lactone restored the virulence of the quorum sensing production mutant. Moreover, quorum sensing inhibitors protected the burbot larvae from both Aeromonas strains. Finally, the freshwater micro-algae Chlorella saccharophila and Chlamydomonas reinhardtii, which are able to interfere with quorum sensing, also protected burbot from the pathogens. However, QS interference was unlikely to be the only mechanism. This study revealed that the virulence of Aeromonas spp. towards burbot is regulated by quorum sensing and that quorum sensing inhibitors and micro-algae are promising biocontrol agents. PMID:22465799

  2. Confinement-Induced Quorum Sensing of Individual Staphylococcus aureus Bacteria

    PubMed Central

    Carnes, Eric C; Lopez, DeAnna M; Donegan, Niles P; Cheung, Ambrose; Gresham, Hattie; Timmins, Graham S; Brinker, CJ

    2014-01-01

    It is postulated that, in addition to cell density, other factors, such as the dimensions and diffusional characteristics of the environment, could influence quorum sensing (QS) and induction of genetic reprogramming. Modeling studies predict that QS may operate at the level of a single cell, but, due to experimental challenges, the potential benefits of QS by individual cells remain virtually unexplored. Here we report a physical system that mimics isolation of a bacterium, such as within an endosome or phagosome during infection, and maintains cell viability under conditions of complete chemical and physical isolation. For Staphylococcus aureus, we show quorum sensing and genetic re-programming to occur in a single isolated organism. Quorum sensing allows S. aureus to sense confinement and to activate virulence and metabolic pathways needed for survival. To demonstrate the benefit of confinement-induced quorum sensing to individuals, we showed quorum sensing bacteria to have significantly greater viability over non-QS bacteria. PMID:19935660

  3. Design, synthesis and biological evaluation of 4-(alkyloxy)-6-methyl-2H-pyran-2-one derivatives as quorum sensing inhibitors.

    PubMed

    Park, Suzie; Kim, Han-Shin; Ok, Kiwon; Kim, YunHye; Park, Hee-Deung; Byun, Youngjoo

    2015-08-01

    Novel pyrone-derived quorum sensing (QS) ligands to inhibit the binding of OdDHL to the LasR of Pseudomonas aeruginosa were designed, synthesized and evaluated. Among the analogs, the most potent compound 8 exhibited strong in vitro inhibitory activities against biofilm formation and down-regulated OdDHL/LasR-associated genes by 35-67%. The binding mode of 8 in silico was highly similar to that of the crystal ligand OdDHL in the active site of LasR. PMID:26048802

  4. Metagenomic approaches to understanding phylogenetic diversity in quorum sensing

    PubMed Central

    Kimura, Nobutada

    2014-01-01

    Quorum sensing, a form of cell–cell communication among bacteria, allows bacteria to synchronize their behaviors at the population level in order to control behaviors such as luminescence, biofilm formation, signal turnover, pigment production, antibiotics production, swarming, and virulence. A better understanding of quorum-sensing systems will provide us with greater insight into the complex interaction mechanisms used widely in the Bacteria and even the Archaea domain in the environment. Metagenomics, the use of culture-independent sequencing to study the genomic material of microorganisms, has the potential to provide direct information about the quorum-sensing systems in uncultured bacteria. This article provides an overview of the current knowledge of quorum sensing focused on phylogenetic diversity, and presents examples of studies that have used metagenomic techniques. Future technologies potentially related to quorum-sensing systems are also discussed. PMID:24429899

  5. Bacterial quorum sensing and metabolic incentives to cooperate.

    PubMed

    Dandekar, Ajai A; Chugani, Sudha; Greenberg, E Peter

    2012-10-12

    The opportunistic pathogen Pseudomonas aeruginosa uses a cell-cell communication system termed "quorum sensing" to control production of public goods, extracellular products that can be used by any community member. Not all individuals respond to quorum-sensing signals and synthesize public goods. Such social cheaters enjoy the benefits of the products secreted by cooperators. There are some P. aeruginosa cellular enzymes controlled by quorum sensing, and we show that quorum sensing-controlled expression of such private goods can put a metabolic constraint on social cheating and prevent a tragedy of the commons. Metabolic constraint of social cheating provides an explanation for private-goods regulation by a cooperative system and has general implications for population biology, infection control, and stabilization of quorum-sensing circuits in synthetic biology. PMID:23066081

  6. Ambroxol interferes with Pseudomonas aeruginosa quorum sensing.

    PubMed

    Lu, Qi; Yu, Jialin; Yang, Xiqiang; Wang, Jiarong; Wang, Lijia; Lin, Yayin; Lin, Lihua

    2010-09-01

    The mucolytic agent ambroxol has been reported to interfere with the formation of Pseudomonas aeruginosa-derived biofilms in addition to reducing alginate production by undefined mechanisms. Since quorum sensing is a key regulator of virulence and biofilm formation, we examined the effects of ambroxol on P. aeruginosa PAO1 wild-type bacterial clearance rates, adhesion profiles and biofilm formation compared with the quorum sensing-deficient, double-mutant strains DeltalasR DeltarhlR and DeltalasI DeltarhlI. Data presented in this report demonstrated that ambroxol treatment reduced survival rates of the double-mutant strains compared with the wild-type strain in a dose-dependent manner even though the double-mutants had increased adhesion in the presence of ambroxol compared with the wild-type strain. The PAO1 wild-type strain produced a significantly thicker biofilm (21.64+/-0.57 microm) compared with the biofilms produced by the DeltalasR DeltarhlR (7.36+/-0.2 microm) and DeltalasI DeltarhlI (6.62+/-0.31 microm) isolates. Ambroxol treatment reduced biofilm thickness, increased areal porosity, and decreased the average diffusion distance and textual entropy of wild-type and double-mutant strains. However, compared with the double-mutant strains, the changes observed for the wild-type strain were more clearly defined. Finally, ambroxol exhibited significant antagonistic quorum-sensing properties, suggesting that it could be adapted for use clinically in the treatment of cystic fibrosis and to reduce biofilm formation and in the colonisation of indwelling devices. PMID:20580207

  7. [Quorum sensing in bacteria and yeast].

    PubMed

    March Rosselló, Gabriel Alberto; Eiros Bouza, José María

    2013-10-19

    Bacterial sets are complex dynamic systems, which interact with each other and through the interaction, bacteria coexist, collaborate, compete and share information in a coordinated manner. A way of bacterial communication is quorum sensing. Through this mechanism the bacteria can recognize its concentration in a given environment and they can decide the time at which the expression of a particular set of genes should be started for developing a specific and simultaneous response. The result of these interconnections raises properties that cannot be explained from a single isolated bacterial cell. PMID:23622893

  8. Antibiotic-free nanotherapeutics: ultra-small, mucus-penetrating solid lipid nanoparticles enhance the pulmonary delivery and anti-virulence efficacy of novel quorum sensing inhibitors.

    PubMed

    Nafee, Noha; Husari, Ayman; Maurer, Christine K; Lu, Cenbin; de Rossi, Chiara; Steinbach, Anke; Hartmann, Rolf W; Lehr, Claus-Michael; Schneider, Marc

    2014-10-28

    Cystic fibrosis (CF) is a genetic disease mainly manifested in the respiratory tract. Pseudomonas aeruginosa (P. aeruginosa) is the most common pathogen identified in cultures of the CF airways, however, its eradication with antibiotics remains challenging as it grows in biofilms that counterwork human immune response and dramatically decrease susceptibility to antibiotics. P. aeruginosa regulates pathogenicity via a cell-to-cell communication system known as quorum sensing (QS) involving the virulence factor (pyocyanin), thus representing an attractive target for coping with bacterial pathogenicity. The first in vivo potent QS inhibitor (QSI) was recently developed. Nevertheless, its lipophilic nature might hamper its penetration of non-cellular barriers such as mucus and bacterial biofilms, which limits its biomedical application. Successful anti-infective inhalation therapy necessitates proper design of a biodegradable nanocarrier allowing: 1) high loading and prolonged release, 2) mucus penetration, 3) effective pulmonary delivery, and 4) maintenance of the anti-virulence activity of the QSI. In this context, various pharmaceutical lipids were used to prepare ultra-small solid lipid nanoparticles (us-SLNs) by hot melt homogenization. Plain and QSI-loaded SLNs were characterized in terms of colloidal properties, drug loading, in vitro release and acute toxicity on Calu-3 cells. Mucus penetration was studied using a newly-developed confocal microscopy technique based on 3D-time-lapse imaging. For pulmonary application, nebulization efficiency of SLNs and lung deposition using next generation impactor (NGI) were performed. The anti-virulence efficacy was investigated by pyocyanin formation in P. aeruginosa cultures. Ultra-small SLNs (<100nm diameter) provided high encapsulation efficiency (68-95%) according to SLN composition, high burst in phosphate buffer saline compared to prolonged release of the payload over >8h in simulated lung fluid with minor burst. All types and concentrations of plain and QSI-loaded SLNs maintained the viability of Calu-3 cells. 3D time-lapse confocal imaging proved the ability of SLNs to penetrate into artificial sputum model. SLNs were efficiently nebulized; NGI experiments revealed their deposition in the bronchial region. Overall, nanoencapsulated QSI showed up to sevenfold superior anti-virulence activity to the free compound. Most interestingly, the plain SLNs exhibited anti-virulence properties themselves, which was shown to be related to anti-virulence effects of the emulsifiers used. These startling findings represent a new perspective of ultimate significance in the area of nano-based delivery of novel anti-infectives. PMID:24997276

  9. Efficacies of quorum sensing inhibitors, piericidin A and glucopiericidin A, produced by Streptomyces xanthocidicus KPP01532 for the control of potato soft rot caused by Erwinia carotovora subsp. atroseptica.

    PubMed

    Kang, Ji Eun; Han, Jae Woo; Jeon, Byeong Jun; Kim, Beom Seok

    2016-03-01

    To discover potential inhibitors of the quorum sensing (QS) system, a library of microbial culture extracts was screened with Chromobacterium violaceumCV026 strain. The culture extract of Streptomyces xanthocidicus KPP01532 contained quorum-sensing inhibitors (QSIs) of the CV026 strain. The active constituents of the culture extract of strain KPP01532 were purified using a series of chromatographic procedures, and based on data from NMR and mass spectroscopy, piericidin A and glucopiericidin A were identified. Erwinia carotovora subsp. atroseptica (Eca) is a plant pathogen that causes blackleg and soft rot diseases on potato stems and tubers. The virulence factors of Eca are regulated by QS. The expression of virulence genes (pelC, pehA, celV and nip) under the control of QS was monitored using quantitative real-time PCR (qRT-PCR). The transcription levels of the four genes were significantly lower when Eca was exposed to piericidin A or glucopiericidin A. These two compounds displayed similar control efficacies against soft rot caused by Eca in potato slices as furanone C-30. Therefore, piericidin A and glucopiericidin A are potential QSIs that suppress the expression of the virulence genes of Eca, suggesting that they could have potential use as control agents of soft rot disease on potato tubers. PMID:26856451

  10. Engineered biological nanofactories trigger quorum sensing response in targeted bacteria

    NASA Astrophysics Data System (ADS)

    Fernandes, Rohan; Roy, Varnika; Wu, Hsuan-Chen; Bentley, William E.

    2010-03-01

    Biological nanofactories, which are engineered to contain modules that can target, sense and synthesize molecules, can trigger communication between different bacterial populations. These communications influence biofilm formation, virulence, bioluminescence and many other bacterial functions in a process called quorum sensing. Here, we show the assembly of a nanofactory that can trigger a bacterial quorum sensing response in the absence of native quorum molecules. The nanofactory comprises an antibody (for targeting) and a fusion protein that produces quorum molecules when bound to the targeted bacterium. Our nanofactory selectively targets the appropriate bacteria and triggers a quorum sensing response when added to two populations of bacteria. The nanofactories also trigger communication between two bacterial populations that are otherwise non-communicating. We envision the use of these nanofactories in generating new antimicrobial treatments that target the communication networks of bacteria rather than their viability.

  11. Quorum Quenching Enzymes and Their Application in Degrading Signal Molecules to Block Quorum Sensing-Dependent Infection

    PubMed Central

    Chen, Fang; Gao, Yuxin; Chen, Xiaoyi; Yu, Zhimin; Li, Xianzhen

    2013-01-01

    With the emergence of antibiotic-resistant strains of bacteria, the available options for treating bacterial infections have become very limited, and the search for a novel general antibacterial therapy has received much greater attention. Quorum quenching can be used to control disease in a quorum sensing system by triggering the pathogenic phenotype. The interference with the quorum sensing system by the quorum quenching enzyme is a potential strategy for replacing traditional antibiotics because the quorum quenching strategy does not aim to kill the pathogen or limit cell growth but to shut down the expression of the pathogenic gene. Quorum quenching enzymes have been identified in quorum sensing and non-quorum sensing microbes, including lactonase, acylase, oxidoreductase and paraoxonase. Lactonase is widely conserved in a range of bacterial species and has variable substrate spectra. The existence of quorum quenching enzymes in the quorum sensing microbes can attenuate their quorum sensing, leading to blocking unnecessary gene expression and pathogenic phenotypes. In this review, we discuss the physiological function of quorum quenching enzymes in bacterial infection and elucidate the enzymatic protection in quorum sensing systems for host diseases and their application in resistance against microbial diseases. PMID:24065091

  12. Transition state analogs of 5'-methylthioadenosine nucleosidase disrupt quorum sensing.

    SciTech Connect

    Gutierrez, J.; Crowder, T; Rinaldo-Matthis, A; Ho, M; Almo, S; Schramm, V

    2009-01-01

    5'-Methylthioadenosine/S-adenosylhomocysteine nucleosidase (MTAN) is a bacterial enzyme involved in S-adenosylmethionine-related quorum sensing pathways that induce bacterial pathogenesis factors. Transition state analogs MT-DADMe-Immucillin-A, EtT-DADMe-Immucillin-A and BuT-DADMe-Immucillin-A are slow-onset, tight-binding inhibitors of Vibrio cholerae MTAN (VcMTAN), with equilibrium dissociation constants of 73, 70 and 208 pM, respectively. Structural analysis of VcMTAN with BuT-DADMe-Immucillin-A revealed interactions contributing to the high affinity. We found that in V. cholerae cells, these compounds are potent MTAN inhibitors with IC50 values of 27, 31 and 6 nM for MT-, EtT- and BuT-DADMe-Immucillin-A, respectively; the compounds disrupt autoinducer production in a dose-dependent manner without affecting growth. MT- and BuT-DADMe-Immucillin-A also inhibited autoinducer-2 production in enterohemorrhagic Escherichia coli O157:H7 with IC{sub 50} values of 600 and 125 nM, respectively. BuT-DADMe-Immucillin-A inhibition of autoinducer-2 production in both strains persisted for several generations and caused reduction in biofilm formation. These results support MTAN's role in quorum sensing and its potential as a target for bacterial anti-infective drug design.

  13. Quorum sensing and Bacterial Pathogenicity: From Molecules to Disease

    PubMed Central

    Deep, Antariksh; Chaudhary, Uma; Gupta, Varsha

    2011-01-01

    Quorum sensing in prokaryotic biology refers to the ability of a bacterium to sense information from other cells in the population when they reach a critical concentration (i.e. a Quorum) and communicate with them. The “language” used for this intercellular communication is based on small, self-generated signal molecules called as autoinducers. Quorum sensing is thought to afford pathogenic bacteriaa mechanism to minimize host immune responses by delaying theproduction of tissue-damaging virulence factors until sufficientbacteria have amassed and are prepared to overwhelm host defensemechanisms and establish infection. Quorum sensing systems are studied in a large number of gram-negative bacterial species belonging to ?, ?, and ? subclasses of proteobacteria. Among the pathogenic bacteria, Pseudomonas aeruginosa is perhaps the best understood in terms of the virulence factors regulated and the role the Quorum sensing plays in pathogenicity. Presently, Quorum sensing is considered as a potential novel target for antimicrobial therapy to control multi/all drug-resistant infections. This paper reviews Quorum sensing in gram positive and gram negative bacteria and its role in biofilm formation. PMID:21701655

  14. Quorum sensing and policing of Pseudomonas aeruginosa social cheaters

    PubMed Central

    Wang, Meizhen; Schaefer, Amy L.; Dandekar, Ajai A.; Greenberg, E. Peter

    2015-01-01

    The bacterium Pseudomonas aeruginosa is an opportunistic human pathogen that uses a quorum sensing signal cascade to activate expression of dozens of genes when sufficient population densities have been reached. Quorum sensing controls production of several key virulence factors, including secreted proteases such as elastase. Cooperating groups of bacteria growing on protein are susceptible to social cheating by quorum-sensing defective mutants. A possible way to restrict cheater emergence is by policing where cooperators produce costly goods to sanction or punish cheats. The P. aeruginosa LasR-LasI quorum sensing system controls genes including those encoding proteases and also those encoding a second quorum-sensing system, the RhlR-RhlI system, which controls numerous genes including those for cyanide production. By using RhlR quorum sensing mutants and cyanide synthesis mutants, we show that cyanide production is costly and cyanide-producing cooperators use cyanide to punish LasR-null social cheaters. Cooperators are less susceptible to cyanide than are LasR mutants. These experiments demonstrate policing in P. aeruginosa, provide a mechanistic understanding of policing, and show policing involves the cascade organization of the two quorum sensing systems in this bacterium. PMID:25646454

  15. Social Evolution Selects for Redundancy in Bacterial Quorum Sensing

    PubMed Central

    Valastyan, Julie; Ke, Xiaobo; Pollak, Shaul; Bareia, Tasneem; Ben-Zion, Ishay; Bassler, Bonnie L.; Eldar, Avigdor

    2016-01-01

    Quorum sensing is a process of chemical communication that bacteria use to monitor cell density and coordinate cooperative behaviors. Quorum sensing relies on extracellular signal molecules and cognate receptor pairs. While a single quorum-sensing system is sufficient to probe cell density, bacteria frequently use multiple quorum-sensing systems to regulate the same cooperative behaviors. The potential benefits of these redundant network structures are not clear. Here, we combine modeling and experimental analyses of the Bacillus subtilis and Vibrio harveyi quorum-sensing networks to show that accumulation of multiple quorum-sensing systems may be driven by a facultative cheating mechanism. We demonstrate that a strain that has acquired an additional quorum-sensing system can exploit its ancestor that possesses one fewer system, but nonetheless, resume full cooperation with its kin when it is fixed in the population. We identify the molecular network design criteria required for this advantage. Our results suggest that increased complexity in bacterial social signaling circuits can evolve without providing an adaptive advantage in a clonal population. PMID:26927849

  16. Social Evolution Selects for Redundancy in Bacterial Quorum Sensing.

    PubMed

    Even-Tov, Eran; Omer Bendori, Shira; Valastyan, Julie; Ke, Xiaobo; Pollak, Shaul; Bareia, Tasneem; Ben-Zion, Ishay; Bassler, Bonnie L; Eldar, Avigdor

    2016-02-01

    Quorum sensing is a process of chemical communication that bacteria use to monitor cell density and coordinate cooperative behaviors. Quorum sensing relies on extracellular signal molecules and cognate receptor pairs. While a single quorum-sensing system is sufficient to probe cell density, bacteria frequently use multiple quorum-sensing systems to regulate the same cooperative behaviors. The potential benefits of these redundant network structures are not clear. Here, we combine modeling and experimental analyses of the Bacillus subtilis and Vibrio harveyi quorum-sensing networks to show that accumulation of multiple quorum-sensing systems may be driven by a facultative cheating mechanism. We demonstrate that a strain that has acquired an additional quorum-sensing system can exploit its ancestor that possesses one fewer system, but nonetheless, resume full cooperation with its kin when it is fixed in the population. We identify the molecular network design criteria required for this advantage. Our results suggest that increased complexity in bacterial social signaling circuits can evolve without providing an adaptive advantage in a clonal population. PMID:26927849

  17. Quorum sensing dependent phenotypes and their molecular mechanisms in Campylobacterales

    PubMed Central

    Gölz, G.; Sharbati, S.; Backert, S.; Alter, T.

    2012-01-01

    Quorum sensing comprises the mechanism of communication between numerous bacteria via small signalling molecules, termed autoinducers (AI). Using quorum sensing, bacteria can regulate the expression of multiple genes involved in virulence, toxin production, motility, chemotaxis and biofilm formation, thus contributing to adaptation as well as colonisation. The current understanding of the role of quorum sensing in the lifecycle of Campylobacterales is still incomplete. Campylobacterales belong to the class of Epsilonproteobacteria representing a physiologically and ecologically diverse group of bacteria that are rather distinct from the more commonly studied Proteobacteria, such as Escherichia and Salmonella. This review summarises the recent knowledge on distribution and production of AI molecules, as well as possible quorum sensing dependent regulation in the mostly investigated species within the Campylobacterales group: Campylobacter jejuni and Helicobacter pylori. PMID:24611121

  18. Quorum sensing: How bacteria can coordinate activity and synchronize their response to external signals?

    PubMed Central

    Li, Zhi; Nair, Satish K

    2012-01-01

    Quorum sensing is used by a large variety of bacteria to regulate gene expression in a cell-density-dependent manner. Bacteria can synchronize population behavior using small molecules called autoinducers that are produced by cognate synthases and recognized by specific receptors. Quorum sensing plays critical roles in regulating diverse cellular functions in bacteria, including bioluminescence, virulence gene expression, biofilm formation, and antibiotic resistance. The best-studied autoinducers are acyl homoserine lactone (AHL) molecules, which are the primary quorum sensing signals used by Gram-negative bacteria. In this review we focus on the AHL-dependent quorum sensing system and highlight recent progress on structural and mechanistic studies of AHL synthases and the corresponding receptors. Crystal structures of LuxI-type AHL synthases provide insights into acyl-substrate specificity, but the current knowledge is still greatly limited. Structural studies of AHL receptors have facilitated a more thorough understanding of signal perception and established the molecular framework for the development of quorum sensing inhibitors. PMID:22825856

  19. Interspecific Quorum Sensing Mediates the Resuscitation of Viable but Nonculturable Vibrios

    PubMed Central

    Ayrapetyan, Mesrop; Williams, Tiffany C.

    2014-01-01

    Entry and exit from dormancy are essential survival mechanisms utilized by microorganisms to cope with harsh environments. Many bacteria, including the opportunistic human pathogen Vibrio vulnificus, enter a form of dormancy known as the viable but nonculturable (VBNC) state. VBNC cells can resuscitate when suitable conditions arise, yet the molecular mechanisms facilitating resuscitation in most bacteria are not well understood. We discovered that bacterial cell-free supernatants (CFS) can awaken preexisting dormant vibrio populations within oysters and seawater, while CFS from a quorum sensing mutant was unable to produce the same resuscitative effect. Furthermore, the quorum sensing autoinducer AI-2 could induce resuscitation of VBNC V. vulnificus in vitro, and VBNC cells of a mutant unable to produce AI-2 were unable to resuscitate unless the cultures were supplemented with exogenous AI-2. The quorum sensing inhibitor cinnamaldehyde delayed the resuscitation of wild-type VBNC cells, confirming the importance of quorum sensing in resuscitation. By monitoring AI-2 production by VBNC cultures over time, we found quorum sensing signaling to be critical for the natural resuscitation process. This study provides new insights into the molecular mechanisms stimulating VBNC cell exit from dormancy, which has significant implications for microbial ecology and public health. PMID:24509922

  20. A Mathematical Model of Quorum Sensing Induced Biofilm Detachment

    PubMed Central

    Emerenini, Blessing O.; Hense, Burkhard A.; Kuttler, Christina; Eberl, Hermann J.

    2015-01-01

    Background Cell dispersal (or detachment) is part of the developmental cycle of microbial biofilms. It can be externally or internally induced, and manifests itself in discrete sloughing events, whereby many cells disperse in an instance, or in continuous slower dispersal of single cells. One suggested trigger of cell dispersal is quorum sensing, a cell-cell communication mechanism used to coordinate gene expression and behavior in groups based on population densities. Method To better understand the interplay of colony growth and cell dispersal, we develop a dynamic, spatially extended mathematical model that includes biofilm growth, production of quorum sensing molecules, cell dispersal triggered by quorum sensing molecules, and re-attachment of cells. This is a highly nonlinear system of diffusion-reaction equations that we study in computer simulations. Results Our results show that quorum sensing induced cell dispersal can be an efficient mechanism for bacteria to control the size of a biofilm colony, and at the same time enhance its downstream colonization potential. In fact we find that over the lifetime of a biofilm colony the majority of cells produced are lost into the aqueous phase, supporting the notion of biofilms as cell nurseries. We find that a single quorum sensing based mechanism can explain both, discrete dispersal events and continuous shedding of cells from a colony. Moreover, quorum sensing induced cell dispersal affects the structure and architecture of the biofilm, for example it might lead to the formation of hollow inner regions in a biofilm colony. PMID:26197231

  1. Zingerone silences quorum sensing and attenuates virulence of Pseudomonas aeruginosa.

    PubMed

    Kumar, Lokender; Chhibber, Sanjay; Kumar, Rajnish; Kumar, Manoj; Harjai, Kusum

    2015-04-01

    Quorum sensing in Pseudomonas aeruginosa plays an imperative role in virulence factor, biofilm formation and antimicrobial resistance. Blocking quorum sensing pathways are viewed as viable anti-virulent therapy in association with traditional antimicrobial therapy. Anti-quorum sensing dietary phytochemicals with may prove to be a safe and viable choice as anti-virulent drug candidates. Previously, our lab proved zingerone as potent anti-biofilm agent hence; further its anti-virulent and anti-quorum activities were evaluated. Zingerone, besides decreasing swimming, swarming and twitching phenotypes of P. aeruginosa PAO1, reduced biofilm forming capacity and production of virulence factors including rhamnolipid, elastase, protease, pyocyanin, cell free and cell bound hemolysin (p<0.001) indicating anti-virulent property attributing towards attenuation of virulence of P. aeruginosa. Further zingerone not only had marked effect on the production of quorum sensing signal molecules by clinical isolates of P. aeruginosa but also showed significant interference with the activation of QS reporter strains. To study the mechanism of blocking quorum sensing cascade, in silico analysis was carried out. Anti-QS activity was attributed to interference with the ligand receptor interaction of zingerone with QS receptors (TraR, LasR, RhlR and PqsR). Zingerone showed a good comparative docking score to respective autoinducer molecules which was even higher than that of vanillin, a proven anti-quorum sensing phytochemical. The results of the present study revealed the anti-quorum sensing activity of zingerone targeting ligand-receptor interaction, hence proposing zingerone as a suitable anti-virulent drug candidate against P. aeruginosa infections. PMID:25704369

  2. The Quorum Sensing Inhibitor Hamamelitannin Increases Antibiotic Susceptibility of Staphylococcus aureus Biofilms by Affecting Peptidoglycan Biosynthesis and eDNA Release.

    PubMed

    Brackman, Gilles; Breyne, Koen; De Rycke, Riet; Vermote, Arno; Van Nieuwerburgh, Filip; Meyer, Evelyne; Van Calenbergh, Serge; Coenye, Tom

    2016-01-01

    Treatment of Staphylococcus aureus infections has become increasingly challenging due to the rapid emergence and dissemination of methicillin-resistant strains. In addition, S. aureus reside within biofilms at the site of infection. Few novel antibacterial agents have been developed in recent years and their bacteriostatic or bactericidal activity results in selective pressure, inevitably inducing antimicrobial resistance. Consequently, innovative antimicrobials with other modes of action are urgently needed. One alternative approach is targeting the bacterial quorum sensing (QS) system. Hamamelitannin (2',5-di-O-galloyl-d-hamamelose; HAM) was previously suggested to block QS through the TraP QS system and was shown to increase S. aureus biofilm susceptibility towards vancomycin (VAN) although mechanistic insights are still lacking. In the present study we provide evidence that HAM specifically affects S. aureus biofilm susceptibility through the TraP receptor by affecting cell wall synthesis and extracellular DNA release of S. aureus. We further provide evidence that HAM can increase the susceptibility of S. aureus biofilms towards different classes of antibiotics in vitro. Finally, we show that HAM increases the susceptibility of S. aureus to antibiotic treatment in in vivo Caenorhabditis elegans and mouse mammary gland infection models. PMID:26828772

  3. The Quorum Sensing Inhibitor Hamamelitannin Increases Antibiotic Susceptibility of Staphylococcus aureus Biofilms by Affecting Peptidoglycan Biosynthesis and eDNA Release

    PubMed Central

    Brackman, Gilles; Breyne, Koen; De Rycke, Riet; Vermote, Arno; Van Nieuwerburgh, Filip; Meyer, Evelyne; Van Calenbergh, Serge; Coenye, Tom

    2016-01-01

    Treatment of Staphylococcus aureus infections has become increasingly challenging due to the rapid emergence and dissemination of methicillin-resistant strains. In addition, S. aureus reside within biofilms at the site of infection. Few novel antibacterial agents have been developed in recent years and their bacteriostatic or bactericidal activity results in selective pressure, inevitably inducing antimicrobial resistance. Consequently, innovative antimicrobials with other modes of action are urgently needed. One alternative approach is targeting the bacterial quorum sensing (QS) system. Hamamelitannin (2′,5-di-O-galloyl-d-hamamelose; HAM) was previously suggested to block QS through the TraP QS system and was shown to increase S. aureus biofilm susceptibility towards vancomycin (VAN) although mechanistic insights are still lacking. In the present study we provide evidence that HAM specifically affects S. aureus biofilm susceptibility through the TraP receptor by affecting cell wall synthesis and extracellular DNA release of S. aureus. We further provide evidence that HAM can increase the susceptibility of S. aureus biofilms towards different classes of antibiotics in vitro. Finally, we show that HAM increases the susceptibility of S. aureus to antibiotic treatment in in vivo Caenorhabditis elegans and mouse mammary gland infection models. PMID:26828772

  4. Choosing an Appropriate Infection Model to Study Quorum Sensing Inhibition in Pseudomonas Infections

    PubMed Central

    Papaioannou, Evelina; Utari, Putri Dwi; Quax, Wim J.

    2013-01-01

    Bacteria, although considered for decades to be antisocial organisms whose sole purpose is to find nutrients and multiply are, in fact, highly communicative organisms. Referred to as quorum sensing, cell-to-cell communication mechanisms have been adopted by bacteria in order to co-ordinate their gene expression. By behaving as a community rather than as individuals, bacteria can simultaneously switch on their virulence factor production and establish successful infections in eukaryotes. Understanding pathogen-host interactions requires the use of infection models. As the use of rodents is limited, for ethical considerations and the high costs associated with their use, alternative models based on invertebrates have been developed. Invertebrate models have the benefits of low handling costs, limited space requirements and rapid generation of results. This review presents examples of such models available for studying the pathogenicity of the Gram-negative bacterium Pseudomonas aeruginosa. Quorum sensing interference, known as quorum quenching, suggests a promising disease-control strategy since quorum-quenching mechanisms appear to play important roles in microbe-microbe and host-pathogen interactions. Examples of natural and synthetic quorum sensing inhibitors and their potential as antimicrobials in Pseudomonas-related infections are discussed in the second part of this review. PMID:24065108

  5. Quorum sensing in fungi – a review

    PubMed Central

    ALBUQUERQUE, PATRÍCIA; CASADEVALL, ARTURO

    2015-01-01

    Quorum sensing (QS) is a mechanism of microbial communication dependent on cell density that can regulate several behaviors in bacteria such as secretion of virulence factors, biofilm formation, competence and bioluminescence. The existence of fungal QS systems was revealed ten years ago after the discovery that farnesol controls filamentation in the pathogenic polymorphic fungus Candida albicans. In the past decade, farnesol has been shown to play multiple roles in C. albicans physiology as a signaling molecule and inducing detrimental effects on host cells and other microbes. In addition to farnesol, the aromatic alcohol tyrosol was also found to be a C. albicans QS molecule (QSM) controlling growth, morphogenesis and biofilm formation. In Saccharomyces cerevisiae, two other aromatic alcohols, phenylethanol and tryptophol were found to be QSMs regulating morphogenesis during nitrogen starvation conditions. Additionally, population density-dependent behaviors that resemble QS have been described in several other fungal species. Although fungal QS research is still in its infancy, its discovery has changed our views about the fungal kingdom and could eventually lead to the development of new antifungal therapeutics. PMID:22268493

  6. Role of quorum sensing in bacterial infections

    PubMed Central

    Castillo-Juárez, Israel; Maeda, Toshinari; Mandujano-Tinoco, Edna Ayerim; Tomás, María; Pérez-Eretza, Berenice; García-Contreras, Silvia Julieta; Wood, Thomas K; García-Contreras, Rodolfo

    2015-01-01

    Quorum sensing (QS) is cell communication that is widely used by bacterial pathogens to coordinate the expression of several collective traits, including the production of multiple virulence factors, biofilm formation, and swarming motility once a population threshold is reached. Several lines of evidence indicate that QS enhances virulence of bacterial pathogens in animal models as well as in human infections; however, its relative importance for bacterial pathogenesis is still incomplete. In this review, we discuss the present evidence from in vitro and in vivo experiments in animal models, as well as from clinical studies, that link QS systems with human infections. We focus on two major QS bacterial models, the opportunistic Gram negative bacteria Pseudomonas aeruginosa and the Gram positive Staphylococcus aureus, which are also two of the main agents responsible of nosocomial and wound infections. In addition, QS communication systems in other bacterial, eukaryotic pathogens, and even immune and cancer cells are also reviewed, and finally, the new approaches proposed to combat bacterial infections by the attenuation of their QS communication systems and virulence are also discussed. PMID:26244150

  7. Quorum sensing in group A Streptococcus

    PubMed Central

    Jimenez, Juan Cristobal; Federle, Michael J.

    2014-01-01

    Quorum sensing (QS) is a widespread phenomenon in the microbial world that has important implications in the coordination of population-wide responses in several bacterial pathogens. In Group A Streptococcus (GAS), many questions surrounding QS systems remain to be solved pertaining to their function and their contribution to the GAS lifestyle in the host. The QS systems of GAS described to date can be categorized into four groups: regulator gene of glucosyltransferase (Rgg), Sil, lantibiotic systems, and LuxS/AI-2. The Rgg family of proteins, a conserved group of transcription factors that modify their activity in response to signaling peptides, has been shown to regulate genes involved in virulence, biofilm formation and competence. The sil locus, whose expression is regulated by the activity of signaling peptides and a putative two-component system (TCS), has been implicated on regulating genes involved with invasive disease in GAS isolates. Lantibiotic regulatory systems are involved in the production of bacteriocins and their autoregulation, and some of these genes have been shown to target both bacterial organisms as well as processes of survival inside the infected host. Finally AI-2 (dihydroxy pentanedione, DPD), synthesized by the LuxS enzyme in several bacteria including GAS, has been proposed to be a universal bacterial communication molecule. In this review we discuss the mechanisms of these four systems, the putative functions of their targets, and pose critical questions for future studies. PMID:25309879

  8. Quorum Sensing Peptides Selectively Penetrate the Blood-Brain Barrier

    PubMed Central

    Wynendaele, Evelien; Verbeke, Frederick; Stalmans, Sofie; Gevaert, Bert; Janssens, Yorick; Van De Wiele, Christophe; Peremans, Kathelijne; Burvenich, Christian; De Spiegeleer, Bart

    2015-01-01

    Bacteria communicate with each other by the use of signaling molecules, a process called ‘quorum sensing’. One group of quorum sensing molecules includes the oligopeptides, which are mainly produced by Gram-positive bacteria. Recently, these quorum sensing peptides were found to biologically influence mammalian cells, promoting i.a. metastasis of cancer cells. Moreover, it was found that bacteria can influence different central nervous system related disorders as well, e.g. anxiety, depression and autism. Research currently focuses on the role of bacterial metabolites in this bacteria-brain interaction, with the role of the quorum sensing peptides not yet known. Here, three chemically diverse quorum sensing peptides were investigated for their brain influx (multiple time regression technique) and efflux properties in an in vivo mouse model (ICR-CD-1) to determine blood-brain transfer properties: PhrCACET1 demonstrated comparatively a very high initial influx into the mouse brain (Kin = 20.87 μl/(g×min)), while brain penetrabilities of BIP-2 and PhrANTH2 were found to be low (Kin = 2.68 μl/(g×min)) and very low (Kin = 0.18 μl/(g×min)), respectively. All three quorum sensing peptides were metabolically stable in plasma (in vitro) during the experimental time frame and no significant brain efflux was observed. Initial tissue distribution data showed remarkably high liver accumulation of BIP-2 as well. Our results thus support the potential role of some quorum sensing peptides in different neurological disorders, thereby enlarging our knowledge about the microbiome-brain axis. PMID:26536593

  9. Computational modeling of the quorum-sensing network in bacteria

    NASA Astrophysics Data System (ADS)

    Fenley, Andrew; Banik, Suman; Kulkarni, Rahul

    2007-03-01

    Certain species of bacteria are able produce and sense the concentration of small molecules called autodinducers in order to coordinate gene regulation in response to population density, a process known as ``quorum-sensing''. The resulting regulation of gene expression involves both transcriptional and post-transcriptional regulators. In particular, the species of bacteria in the Vibrio genus use small RNAs to regulate the master protein controlling the quorum-sensing response (luminescence, biofilm formation, virulence...). We model the network of interactions using a modular approach which provides a quantitative understanding of how signal transduction occurs. The parameters of the input-module are fit to current experimental results allowing for testable predictions to be made for future experiments. The results of our analysis offer a revised perspective on quorum-sensing based regulation.

  10. Novel linear polymers able to inhibit bacterial quorum sensing.

    PubMed

    Cavaleiro, Eliana; Duarte, Ana Sofia; Esteves, Ana Cristina; Correia, António; Whitcombe, Michael J; Piletska, Elena V; Piletsky, Sergey A; Chianella, Iva

    2015-05-01

    Bacterial phenotypes, such as biofilm formation, antibiotic resistance and virulence expression, are associated with quorum sensing. Quorum sensing is a density-dependent regulatory system of gene expression controlled by specific signal molecules, such as N-acyl homoserine lactones (AHLs), produced and released by bacteria. This study reports the development of linear polymers capable to attenuate quorum sensing by adsorption of AHLs. Linear polymers were synthesized using MMA as backbone monomer and methacrylic acid and itaconic acid as functional monomers. Two different quorum sensing-controlled phenotypes, Vibrio fischeri bioluminescence and Aeromonas hydrophila biofilm formation, were evaluated to test the polymers' efficiency. Results showed that both phenotypes were significantly affected by the polymers, with the itaconic acid-containing material being more effective than the methacrylic acid one. The polymer inhibitory effects were reverted by the addition of lactones, confirming attenuation of quorum sensing through sequestration of signal molecules. The polymers also showed no cytotoxicity when tested using a mammalian cell line. PMID:25626858

  11. Modeling of signal transduction in bacterial quorum-sensing

    NASA Astrophysics Data System (ADS)

    Fenley, Andrew; Banik, Suman; Kulkarni, Rahul

    2006-03-01

    Several species of bacteria are able to coordinate gene regulation in response to population density, a process known as ``quorum-sensing''. Quorum-sensing bacteria produce, secrete, and detect signal molecules called autoinducers. For several species of bacteria in the Vibrio genus, recent results have shown that the external autoinducer concentrations control the expression of regulatory small RNA(s) which are critical to the process of quorum-sensing. We present a theoretical analysis of the network which relates the rate of small RNA expression to the external autoinducer concentrations. We relate the results from our modeling to previous experimental observations and suggest new experiments based on testable predictions of the model.

  12. Information processing and signal integration in bacterial quorum sensing

    NASA Astrophysics Data System (ADS)

    Mehta, Pankaj

    2009-03-01

    Bacteria communicate with each other using secreted chemical signaling molecules called autoinducers (AIs) in a process known as quorum sensing. Quorum sensing enables bacteria to collectively regulate their behavior depending on the number and/or species of bacteria present. The quorum-sensing network of the marine-bacteria Vibrio harveyi consists of three AIs encoding distinct ecological information, each detected by its own histidine-kinase sensor protein. The sensor proteins all phosphorylate a common response regulator and transmit sensory information through a shared phosphorelay that regulates expression of downstream quorum-sensing genes. Despite detailed knowledge of the Vibrio quorum-sensing circuit, it is still unclear how and why bacteria integrate information from multiple input signals to coordinate collective behaviors. Here we develop a mathematical framework for analyzing signal integration based on Information Theory and use it to show that bacteria must tune the kinase activities of sensor proteins in order to transmit information from multiple inputs. This is demonstrated within a quantitative model that allows us to quantify how much Vibrio's learn about individual inputs and explains experimentally measured input-output relations. Furthermore, we predicted and experimentally verified that bacteria manipulate the production rates of AIs in order to increase information transmission and argue that the quorum-sensing circuit is designed to coordinate a multi-cellular developmental program. Our results show that bacteria can successfully learn about multiple signals even when they are transmitted through a shared pathway and suggest that Information Theory may be a powerful tool for analyzing biological signaling networks.

  13. Effects of natural and chemically synthesized furanones on quorum sensing in Chromobacterium violaceum

    PubMed Central

    Martinelli, Daniel; Grossmann, Gilles; Séquin, Urs; Brandl, Helmut; Bachofen, Reinhard

    2004-01-01

    Background Cell to cell signaling systems in Gram-negative bacteria rely on small diffusible molecules such as the N-acylhomoserine lactones (AHL). These compounds are involved in the production of antibiotics, exoenzymes, virulence factors and biofilm formation. They belong to the class of furanone derivatives which are frequently found in nature as pheromones, flavor compounds or secondary metabolites. To obtain more information on the relation between molecular structure and quorum sensing, we tested a variety of natural and chemically synthesized furanones for their ability to interfere with the quorum sensing mechanism using a quantitative bioassay with Chromobacterium violaceum CV026 for antagonistic and agonistic action. We were looking at the following questions: 1. Do these compounds affect growth? 2) Do these compounds activate the quorum sensing system of C. violaceum CV026? 3) Do these compounds inhibit violacein formation induced by the addition of the natural inducer N-hexanoylhomoserine lactone (HHL)? 4) Do these compounds enhance violacein formation in presence of HHL? Results The naturally produced N-acylhomoserine lactones showed a strong non-linear concentration dependent influence on violacein production in C. violaceum with a maximum at 3.7*10-8 M with HHL. Apart from the N-acylhomoserine lactones only one furanone (emoxyfurane) was found to simulate N-acylhomoserine lactone activity and induce violacein formation. The most effective substances acting negatively both on growth and quorum sensing were analogs and intermediates in synthesis of the butenolides from Streptomyces antibioticus. Conclusion As the regulation of many bacterial processes is governed by quorum sensing systems, the finding of natural and synthetic furanones acting as agonists or antagonists suggests an interesting tool to control and handle detrimental AHL induced effects. Some effects are due to general toxicity; others are explained by a competitive interaction for LuxR proteins. For further experiments it is important to be aware of the fact that quorum sensing active compounds have non-linear effects. Inducers can act as inhibitors and inhibitors might be able to activate or enhance the quorum sensing system depending on chemical structure and concentration levels. PMID:15233843

  14. A structural perspective on the mechanisms of quorum sensing activation in bacteria.

    PubMed

    Lixa, Carolina; Mujo, Amanda; Anobom, Cristiane D; Pinheiro, Anderson S

    2015-12-01

    Bacteria are able to synchronize the population behavior in order to regulate gene expression through a cell-to-cell communication mechanism called quorum sensing. This phenomenon involves the production, detection and the response to extracellular signaling molecules named autoinducers, which directly or indirectly regulate gene expression in a cell density-dependent manner. Quorum sensing may control a wide range of biological processes in bacteria, such as bioluminescence, virulence factor production, biofilm formation and antibiotic resistance. The autoinducers are recognized by specific receptors that can either be membrane-bound histidine kinase receptors, which work by activating cognate cytoplasmic response regulators, or cytoplasmic receptors acting as transcription factors. In this review, we focused on the cytosolic quorum sensing regulators whose three-dimensional structures helped elucidate their mechanisms of action. Structural studies of quorum sensing receptors may enable the rational design of inhibitor molecules. Ultimately, this approach may represent an effective alternative to treat infections where classical antimicrobial therapy fails to overcome the microorganism virulence. PMID:26247154

  15. A direct pre-screen for marine bacteria producing compounds inhibiting quorum sensing reveals diverse planktonic bacteria that are bioactive.

    PubMed

    Linthorne, Jamie S; Chang, Barbara J; Flematti, Gavin R; Ghisalberti, Emilio L; Sutton, David C

    2015-02-01

    A promising new strategy in antibacterial research is inhibition of the bacterial communication system termed quorum sensing. In this study, a novel and rapid pre-screening method was developed to detect the production of chemical inhibitors of this system (quorum-quenching compounds) by bacteria isolated from marine and estuarine waters. This method involves direct screening of mixed populations on an agar plate, facilitating specific isolation of bioactive colonies. The assay showed that between 4 and 46 % of culturable bacteria from various samples were bioactive, and of the 95 selectively isolated bacteria, 93.7 % inhibited Vibrio harveyi bioluminescence without inhibiting growth, indicating potential production of quorum-quenching compounds. Of the active isolates, 21 % showed further activity against quorum-sensing-regulated pigment production by Serratia marcescens. The majority of bioactive isolates were identified by 16S ribosomal DNA (rDNA) amplification and sequencing as belonging to the genera Vibrio and Pseudoalteromonas. Extracts of two strongly bioactive Pseudoalteromonas isolates (K1 and B2) were quantitatively assessed for inhibition of growth and quorum-sensing-regulated processes in V. harveyi, S. marcescens and Chromobacterium violaceum. Extracts of the isolates reduced V. harveyi bioluminescence by as much as 98 % and C. violaceum pigment production by 36 % at concentrations which had no adverse effect on growth. The activity found in the extracts indicated that the isolates may produce quorum-quenching compounds. This study further supports the suggestion that quorum quenching may be a common attribute among culturable planktonic marine and estuarine bacteria. PMID:25082352

  16. Quorum Sensing Activity in Pandoraea pnomenusa RB38

    PubMed Central

    Ee, Robson; Lim, Yan-Lue; Kin, Lin-Xin; Yin, Wai-Fong; Chan, Kok-Gan

    2014-01-01

    Strain RB38 was recovered from a former dumping area in Malaysia. MALDI-TOF mass spectrometry and genomic analysis identified strain RB-38 as Pandoraea pnomenusa. Various biosensors confirmed its quorum sensing properties. High resolution triple quadrupole liquid chromatography–mass spectrometry analysis was subsequently used to characterize the N-acyl homoserine lactone production profile of P. pnomenusa strain RB38, which validated that this isolate produced N-octanoyl homoserine lactone as a quorum sensing molecule. This is the first report of the production of N-octanoyl homoserine lactone by P. pnomenusa strain RB38. PMID:24919016

  17. Links between Anr and Quorum Sensing in Pseudomonas aeruginosa Biofilms

    PubMed Central

    Hammond, John H.; Dolben, Emily F.; Smith, T. Jarrod; Bhuju, Sabin

    2015-01-01

    ABSTRACT In Pseudomonas aeruginosa, the transcription factor Anr controls the cellular response to low oxygen or anoxia. Anr activity is high in oxygen-limited environments, including biofilms and populations associated with chronic infections, and Anr is necessary for persistence in a model of pulmonary infection. In this study, we characterized the Anr regulon in biofilm-grown cells at 1% oxygen in the laboratory strain PAO1 and in a quorum sensing (QS)-deficient clinical isolate, J215. As expected, transcripts related to denitrification, arginine fermentation, high-affinity cytochrome oxidases, and CupA fimbriae were lower in the Δanr derivatives. In addition, we observed that transcripts associated with quorum sensing regulation, iron acquisition and storage, type VI secretion, and the catabolism of aromatic compounds were also differentially expressed in the Δanr strains. Prior reports have shown that quorum sensing-defective mutants have higher levels of denitrification, and we found that multiple Anr-regulated processes, including denitrification, were strongly inversely proportional to quorum sensing in both transcriptional and protein-based assays. We also found that in LasR-defective strains but not their LasR-intact counterparts, Anr regulated the production of the 4-hydroxy-2-alkylquinolines, which play roles in quorum sensing and interspecies interactions. These data show that Anr was required for the expression of important metabolic pathways in low-oxygen biofilms, and they reveal an expanded and compensatory role for Anr in the regulation of virulence-related genes in quorum sensing mutants, such as those commonly isolated from infections. IMPORTANCE Pseudomonas aeruginosa causes acute ocular, soft tissue, and pulmonary infections, as well as chronic infections in the airways of cystic fibrosis patients. P. aeruginosa uses quorum sensing (QS) to regulate virulence, but mutations in the gene encoding the master regulator of QS, lasR, are frequently observed in clinical isolates. We demonstrated that the regulon attributed to Anr, an oxygen-sensitive transcription factor, was more highly expressed in lasR mutants. Furthermore, we show that Anr regulates the production of several different secreted factors in lasR mutants. These data demonstrate the importance of Anr in naturally occurring quorum sensing mutants in the context of chronic infections. PMID:26078448

  18. Quorum Sensing and Silencing in Vibrio parahaemolyticus▿†

    PubMed Central

    Gode-Potratz, Cindy J.; McCarter, Linda L.

    2011-01-01

    The quorum regulatory cascade is poorly characterized in Vibrio parahaemolyticus, in part because swarming and virulence factors—the hallmarks of the organism—are repressed by this scheme of gene control, and quorum sensing seems to be silenced in many isolates. In these studies, we examine a swarming-proficient, virulent strain and identify an altered-function allele of the quorum regulator luxO that is demonstrated to produce a constitutively active mimic of LuxO∼P. We find that LuxO* affects the expression of three small regulatory RNAs (Qrrs) and the activity of a translational fusion in opaR, the output regulator. Tests for epistasis showed that luxO* is dominant over luxO and that opaR is dominant over luxO. Thus, information flow through the central elements of the V. parahaemolyticus quorum pathway is proven for the first time. Quorum-sensing output was explored using microarray profiling: the OpaR regulon encompasses ∼5.2% of the genome. OpaR represses the surface-sensing and type III secretion system 1 (T3SS1) regulons. One novel discovery is that OpaR strongly and oppositely regulates two type VI secretion systems (T6SS). New functional consequences of OpaR control were demonstrated: OpaR increases the cellular cyclic di-GMP (c-di-GMP) level, positively controls chitin-induced DNA competency, and profoundly blocks cytotoxicity toward host cells. In expanding the previously known quorum effects beyond the induction of the capsule and the repression of swarming to elucidate the global scope of genes in the OpaR regulon, this study yields many clues to distinguishing traits of this Vibrio species; it underscores the profoundly divergent survival strategies of the quorum On/Off phase variants. PMID:21705592

  19. Structural Basis for Native Agonist and Synthetic Inhibitor Recognition by the Pseudomonas aeruginosa Quorum Sensing Regulator PqsR (MvfR)

    PubMed Central

    Ilangovan, Aravindan; Fletcher, Matthew; Rampioni, Giordano; Pustelny, Christian; Rumbaugh, Kendra; Heeb, Stephan; Cámara, Miguel; Truman, Alex; Chhabra, Siri Ram; Emsley, Jonas; Williams, Paul

    2013-01-01

    Bacterial populations co-ordinate gene expression collectively through quorum sensing (QS), a cell-to-cell communication mechanism employing diffusible signal molecules. The LysR-type transcriptional regulator (LTTR) protein PqsR (MvfR) is a key component of alkyl-quinolone (AQ)-dependent QS in Pseudomonas aeruginosa. PqsR is activated by 2-alkyl-4-quinolones including the Pseudomonas quinolone signal (PQS; 2-heptyl-3-hydroxy-4(1H)-quinolone), its precursor 2-heptyl-4-hydroxyquinoline (HHQ) and their C9 congeners, 2-nonyl-3-hydroxy-4(1H)-quinolone (C9-PQS) and 2-nonyl-4-hydroxyquinoline (NHQ). These drive the autoinduction of AQ biosynthesis and the up-regulation of key virulence determinants as a function of bacterial population density. Consequently, PqsR constitutes a potential target for novel antibacterial agents which attenuate infection through the blockade of virulence. Here we present the crystal structures of the PqsR co-inducer binding domain (CBD) and a complex with the native agonist NHQ. We show that the structure of the PqsR CBD has an unusually large ligand-binding pocket in which a native AQ agonist is stabilized entirely by hydrophobic interactions. Through a ligand-based design strategy we synthesized and evaluated a series of 50 AQ and novel quinazolinone (QZN) analogues and measured the impact on AQ biosynthesis, virulence gene expression and biofilm development. The simple exchange of two isosteres (OH for NH2) switches a QZN agonist to an antagonist with a concomitant impact on the induction of bacterial virulence factor production. We also determined the complex crystal structure of a QZN antagonist bound to PqsR revealing a similar orientation in the ligand binding pocket to the native agonist NHQ. This structure represents the first description of an LTTR-antagonist complex. Overall these studies present novel insights into LTTR ligand binding and ligand-based drug design and provide a chemical scaffold for further anti-P. aeruginosa virulence drug development by targeting the AQ receptor PqsR. PMID:23935486

  20. Pandoraea sp. RB-44, A Novel Quorum Sensing Soil Bacterium

    PubMed Central

    Han-Jen, Robson Ee; Wai-Fong, Yin; Kok-Gan, Chan

    2013-01-01

    Proteobacteria are known to communicate via signaling molecules and this process is known as quorum sensing. The most commonly studied quorum sensing molecules are N-acylhomoserine lactones (AHLs) that consists of a homoserine lactone moiety and an N-acyl side chain with various chain lengths and degrees of saturation at the C-3 position. We have isolated a bacterium, RB-44, from a site which was formally a landfill dumping ground. Using matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometry analysis, this isolate was identified as a Pandoraea sp.which was then screened for AHL production using biosensors which indicated its quorum sensing properties. To identify the AHL profile of Pandoraea sp. RB-44, we used high resolution tandem mass spectrometry confirming that this isolate produced N-octanoylhomoserine lactone (C8-HSL). To the best of our knowledge, this is the first report that showed quorum sensing activity exhibited by Pandoraea sp. Our data add Pandoraea sp. to the growing number of bacteria that possess QS systems. PMID:24145919

  1. Draft Genome Sequence of Quorum-Sensing and Quorum-Quenching Pseudomonas aeruginosa Strain MW3a

    PubMed Central

    Wong, Cheng Siang; Yin, Wai-Fong; Chan, Xin Yue

    2014-01-01

    Pseudomonas aeruginosa has a broad range of habitation, from aquatic environments to human lungs. The coexistence of quorum-sensing and quorum-quenching activities occurs in P. aeruginosa strain MW3a. In this work, we present the draft genome sequence of P. aeruginosa MW3a, an interesting bacterium isolated from a marine environment. PMID:24744329

  2. A quorum-sensing-induced bacteriophage defense mechanism.

    PubMed

    Høyland-Kroghsbo, Nina Molin; Maerkedahl, Rasmus Baadsgaard; Svenningsen, Sine Lo

    2013-01-01

    One of the key determinants of the size, composition, structure, and development of a microbial community is the predation pressure by bacteriophages. Accordingly, bacteria have evolved a battery of antiphage defense strategies. Since maintaining constantly elevated defenses is costly, we hypothesize that some bacteria have additionally evolved the abilities to estimate the risk of phage infection and to adjust their strategies accordingly. One risk parameter is the density of the bacterial population. Hence, quorum sensing, i.e., the ability to regulate gene expression according to population density, may be an important determinant of phage-host interactions. This hypothesis was investigated in the model system of Escherichia coli and phage ?. We found that, indeed, quorum sensing constitutes a significant, but so far overlooked, determinant of host susceptibility to phage attack. Specifically, E. coli reduces the numbers of ? receptors on the cell surface in response to N-acyl-l-homoserine lactone (AHL) quorum-sensing signals, causing a 2-fold reduction in the phage adsorption rate. The modest reduction in phage adsorption rate leads to a dramatic increase in the frequency of uninfected survivor cells after a potent attack by virulent phages. Notably, this mechanism may apply to a broader range of phages, as AHLs also reduce the risk of ? phage infection through a different receptor. IMPORTANCE To enable the successful manipulation of bacterial populations, a comprehensive understanding of the factors that naturally shape microbial communities is required. One of the key factors in this context is the interactions between bacteria and the most abundant biological entities on Earth, namely, the bacteriophages that prey on bacteria. This proof-of-principle study shows that quorum sensing plays an important role in determining the susceptibility of E. coli to infection by bacteriophages ? and ?. On the basis of our findings in the classical Escherichia coli-? model system, we suggest that quorum sensing may serve as a general strategy to protect bacteria specifically under conditions of high risk of infection. PMID:23422409

  3. Inhibition of quorum-sensing signals by essential oils.

    PubMed

    Szabó, Mira Agnes; Varga, Gábor Zoltán; Hohmann, Judit; Schelz, Zsuzsanna; Szegedi, Erno; Amaral, Leonard; Molnár, József

    2010-05-01

    The role of quorum sensing (QS) is well known in microbial pathogenicity and antibiotic resistance. QS is responsible for motility, swarming, and biofilm production based on the signal molecules, e.g., acylated homoserine lactones (AHLs) produced by micro-organisms above certain population density. The inhibition of QS may reduce pathogenicity, antibiotic resistance and biofilm formation in systemic and local infections. The homoserine lactones and other transmitters contribute to antibiotic resistance and pathogenicity of several bacteria; consequently the inhibition of QS signals reduces the problem of resistance and virulence. Due to the increasing number of persistent non-treatable infections, there is an urgent need to develop new strategies to combat infections that destabilize bacterial communities in the host. The effect of essential oils on bacterial growth and QS were evaluated using the sensor strain Chromobacterium violaceum CV026 and N-acyl homoserine lactone (AHL) producing Escherichia coli ATTC 31298 and the grapevine colonizing Ezf 10-17 strains. Of the tested oils, rose, geranium, lavender and rosemary oils were the most potent QS inhibitors. Eucalyptus and citrus oils moderately reduced pigment production by CV026, whereas the chamomile, orange and juniper oils were ineffective. PMID:19827025

  4. Repellent and Anti-quorum Sensing Activity of Six Aromatic Plants Occurring in Colombia.

    PubMed

    Cervantes-Ceballos, Leonor; Caballero-Gallardo, Karina; Olivero-Verbel, Jesus

    2015-10-01

    Essential oils (EOs) are widely used as biopesticides and to control bacterial infections. This study describes the ability of six EOs isolated from plants cultivated in Colombia to perform as repellents against Ulomoides dermestoides and as quorum sensing (QS) inhibitors. EOs from Aloysia triphylla, Cymbopogon nardus, Lippia origanoides, Hyptis suaveolens, Swinglea glutinosa and Eucalyptus globulus were repellents classified as Class IV, IV, IV, III, II, and II, respectively, whereas the commercial repellent IR3535 only reached Class II after 2 h exposure. All EOs presented small, but significant inhibitory properties against the QS system in Escherichia coli (pJBA132) at 25 μg/mL after 4 h exposure. These data suggest evaluated EOs from Colombia are sustainable, promising new sources of natural repellents and could be important as anti-quorum sensing molecules. PMID:26669119

  5. RETRACTED ARTICLE: Quorum-sensing of bacteria and its application

    NASA Astrophysics Data System (ADS)

    Jiang, Guoliang; Su, Mingxia

    2009-12-01

    Quorum sensing, or auto induction, as a cell density dependent signaling mechanism in many microorganisms, is triggered via auto inducers which passively diffuse across the bacterial envelope and therefore intracellulaly accumulate only at higher bacterial densities to regulate specialized processes such as genetic competence, bioluminescence, virulence and sporulation. N-acyl homoserine lactones are the most common type of signal molecules. Aquaculture is one of the fastest-growing food-producing industries, but disease outbreaks caused by pathogenic bacteria are a significant constraint on the development of the sector worldwide. Many of these pathogens have been found to be controlled by their quorum sensing systems. As there is relevance between the pathogenic bacteria's virulence factor expression and their auto inducers, quorum quenching is a new effective anti-infective strategy to control infections caused by bacterial pathogens in aquaculture. The techniques used to do this mainly include the following: (1) the inhibition of signal molecule biosynthesis, (2) blocking signal transduction, and (3) chemical inactivation and biodegradation of signal molecules. To provide a basis for finding alternative means of controlling aquatic diseases by quorum quenching instead of treatment by antibiotics and disinfectants, we will discuss the examination, purification and identification of auto inducers in this paper.

  6. Inhibition of quorum sensing in Serratia marcescens AS-1 by synthetic analogs of N-acylhomoserine lactone.

    PubMed

    Morohoshi, Tomohiro; Shiono, Toshitaka; Takidouchi, Kiyomi; Kato, Masashi; Kato, Norihiro; Kato, Junichi; Ikeda, Tsukasa

    2007-10-01

    Quorum sensing is a regulatory system for controlling gene expression in response to increasing cell density. N-Acylhomoserine lactone (AHL) is produced by gram-negative bacteria, which use it as a quorum-sensing signal molecule. Serratia marcescens is a gram-negative opportunistic pathogen which is responsible for an increasing number of serious nosocomial infections. S. marcescens AS-1 produces N-hexanoyl homoserine lactone (C(6)-HSL) and N-(3-oxohexanoyl) homoserine lactone and regulates prodigiosin production, swarming motility, and biofilm formation by AHL-mediated quorum sensing. We synthesized a series of N-acyl cyclopentylamides with acyl chain lengths ranging from 4 to 12 and estimated their inhibitory effects on prodigiosin production in AS-1. One of these molecules, N-nonanoyl-cyclopentylamide (C(9)-CPA), had a strong inhibitory effect on prodigiosin production. C(9)-CPA also inhibited the swarming motility and biofilm formation of AS-1. A competition assay revealed that C(9)-CPA was able to inhibit quorum sensing at four times the concentration of exogenous C(6)-HSL and was more effective than the previously reported halogenated furanone. Our results demonstrated that C(9)-CPA was an effective quorum-sensing inhibitor for S. marcescens AS-1. PMID:17675425

  7. Transcriptome Analysis of Acetyl-Homoserine Lactone-Based Quorum Sensing Regulation in Yersinia pestis

    PubMed Central

    Horswill, Alexander R.; Parsek, Matthew R.; Minion, F. Chris

    2013-01-01

    The etiologic agent of bubonic plague, Yersinia pestis, senses self-produced, secreted chemical signals in a process named quorum sensing. Though the closely related enteric pathogen Y. pseudotuberculosis uses quorum sensing system to regulate motility, the role of quorum sensing in Y. pestis has been unclear. In this study we performed transcriptional profiling experiments to identify Y. pestis quorum sensing regulated functions. Our analysis revealed that acyl-homoserine lactone-based quorum sensing controls the expression of several metabolic functions. Maltose fermentation and the glyoxylate bypass are induced by acyl-homoserine lactone signaling. This effect was observed at 30°C, indicating a potential role for quorum sensing regulation of metabolism at temperatures below the normal mammalian temperature. It is proposed that utilization of alternative carbon sources may enhance growth and/or survival during prolonged periods in natural habitats with limited nutrient sources, contributing to maintenance of plague in nature. PMID:23620823

  8. Transcriptome analysis of acyl-homoserine lactone-based quorum sensing regulation in Yersinia pestis [corrected].

    PubMed

    LaRock, Christopher N; Yu, Jing; Horswill, Alexander R; Parsek, Matthew R; Minion, F Chris

    2013-01-01

    The etiologic agent of bubonic plague, Yersinia pestis, senses self-produced, secreted chemical signals in a process named quorum sensing. Though the closely related enteric pathogen Y. pseudotuberculosis uses quorum sensing system to regulate motility, the role of quorum sensing in Y. pestis has been unclear. In this study we performed transcriptional profiling experiments to identify Y. pestis quorum sensing regulated functions. Our analysis revealed that acyl-homoserine lactone-based quorum sensing controls the expression of several metabolic functions. Maltose fermentation and the glyoxylate bypass are induced by acyl-homoserine lactone signaling. This effect was observed at 30°C, indicating a potential role for quorum sensing regulation of metabolism at temperatures below the normal mammalian temperature. It is proposed that utilization of alternative carbon sources may enhance growth and/or survival during prolonged periods in natural habitats with limited nutrient sources, contributing to maintenance of plague in nature. PMID:23620823

  9. Quorum sensing enhancement of the stress response promotes resistance to quorum quenching and prevents social cheating.

    PubMed

    García-Contreras, Rodolfo; Nuñez-López, Leslie; Jasso-Chávez, Ricardo; Kwan, Brian W; Belmont, Javier A; Rangel-Vega, Adrián; Maeda, Toshinari; Wood, Thomas K

    2015-01-01

    Quorum sensing (QS) coordinates the expression of virulence factors and allows bacteria to counteract the immune response, partly by increasing their tolerance to the oxidative stress generated by immune cells. Despite the recognized role of QS in enhancing the oxidative stress response, the consequences of this relationship for the bacterial ecology remain unexplored. Here we demonstrate that QS increases resistance also to osmotic, thermal and heavy metal stress. Furthermore a QS-deficient lasR rhlR mutant is unable to exert a robust response against H2O2 as it has less induction of catalase and NADPH-producing dehydrogenases. Phenotypic microarrays revealed that the mutant is very sensitive to several toxic compounds. As the anti-oxidative enzymes are private goods not shared by the population, only the individuals that produce them benefit from their action. Based on this premise, we show that in mixed populations of wild-type and the mexR mutant (resistant to the QS inhibitor furanone C-30), treatment with C-30 and H2O2 increases the proportion of mexR mutants; hence, oxidative stress selects resistance to QS compounds. In addition, oxidative stress alone strongly selects for strains with active QS systems that are able to exert a robust anti oxidative response and thereby decreases the proportion of QS cheaters in cultures that are otherwise prone to invasion by cheats. As in natural environments stress is omnipresent, it is likely that this QS enhancement of stress tolerance allows cells to counteract QS inhibition and invasions by social cheaters, therefore having a broad impact in bacterial ecology. PMID:24936763

  10. The function of SpnR and the inhibitory effects by halogenated furanone on quorum sensing in Serratia marcescens AS-1.

    PubMed

    Tao, Yinlu; Morohoshi, Tomohiro; Kato, Norihiro; Ikeda, Tsukasa; Zhuang, Huisheng

    2008-03-01

    By secretion and detection of a series of signaling molecules, bacteria are able to coordinate gene expression as a community, to regulate a variety of important phenotypes, from virulence factor production to biofilm formation to symbiosis related behaviours such as bioluminescence. This widespread signaling mechanism is called quorum sensing. There are several quorum sensing systems described in Serratia. Serratia marcescens AS-1, isolated from soil, had the LuxI/LuxR homologues called SpnI/SpnR. S. marcescens AS-1 produced two kinds of N-acyl-L-homoserine lactones, N-hexanoyl-L-homoserine lactone and N-(3-oxohexanoyl)-L-homoserine lactone as signal molecules, which involved in quorum sensing to control the gene expression in response to increased cell density. By gene replacement method, the spnR mutant was constructed, named S. marcescens AS-1R. SpnR acted as a negative regulator for the production of prodigiosin, swarming motility and biofilm formation, which were regulated by quorum sensing. Halogenated furanone, known as a natural inhibitor of quorum sensing, could effectively inhibit the quorum sensing of S. marcescens AS-1 but without interrupting AHL-SpnR interaction. All results will be helpful to understand the mechanisms of halogenated furanone inhibition on quorum sensing and the potential application of halogenated furanone in effectively preventing infection disease caused by Serratia strains. PMID:18479069

  11. Global analysis of the Burkholderia thailandensis quorum sensing-controlled regulon.

    PubMed

    Majerczyk, Charlotte; Brittnacher, Mitchell; Jacobs, Michael; Armour, Christopher D; Radey, Mathew; Schneider, Emily; Phattarasokul, Somsak; Bunt, Richard; Greenberg, E Peter

    2014-04-01

    Burkholderia thailandensis contains three acyl-homoserine lactone quorum sensing circuits and has two additional LuxR homologs. To identify B. thailandensis quorum sensing-controlled genes, we carried out transcriptome sequencing (RNA-seq) analyses of quorum sensing mutants and their parent. The analyses were grounded in the fact that we identified genes coding for factors shown previously to be regulated by quorum sensing among a larger set of quorum-controlled genes. We also found that genes coding for contact-dependent inhibition were induced by quorum sensing and confirmed that specific quorum sensing mutants had a contact-dependent inhibition defect. Additional quorum-controlled genes included those for the production of numerous secondary metabolites, an uncharacterized exopolysaccharide, and a predicted chitin-binding protein. This study provides insights into the roles of the three quorum sensing circuits in the saprophytic lifestyle of B. thailandensis, and it provides a foundation on which to build an understanding of the roles of quorum sensing in the biology of B. thailandensis and the closely related pathogenic Burkholderia pseudomallei and Burkholderia mallei. PMID:24464461

  12. Analysis of Autoinducer-2 Quorum Sensing in Yersinia pestis

    PubMed Central

    Yu, Jing; Madsen, Melissa L.; Carruthers, Michael D.; Phillips, Gregory J.; Kavanaugh, Jeffrey S.; Boyd, Jeff M.; Horswill, Alexander R.

    2013-01-01

    The autoinducer-2 (AI-2) quorum-sensing system has been linked to diverse phenotypes and regulatory changes in pathogenic bacteria. In the present study, we performed a molecular and biochemical characterization of the AI-2 system in Yersinia pestis, the causative agent of plague. In strain CO92, the AI-2 signal is produced in a luxS-dependent manner, reaching maximal levels of 2.5 ?M in the late logarithmic growth phase, and both wild-type and pigmentation (pgm) mutant strains made equivalent levels of AI-2. Strain CO92 possesses a chromosomal lsr locus encoding factors involved in the binding and import of AI-2, and confirming this assignment, an lsr deletion mutant increased extracellular pools of AI-2. To assess the functional role of AI-2 sensing in Y. pestis, microarray studies were conducted by comparing ?pgm strain R88 to a ?pgm ?luxS mutant or a quorum-sensing-null ?pgm ?ypeIR ?yspIR ?luxS mutant at 37°C. Our data suggest that AI-2 quorum sensing is associated with metabolic activities and oxidative stress genes that may help Y. pestis survive at the host temperature. This was confirmed by observing that the luxS mutant was more sensitive to killing by hydrogen peroxide, suggesting a potential requirement for AI-2 in evasion of oxidative damage. We also show that a large number of membrane protein genes are controlled by LuxS, suggesting a role for quorum sensing in membrane modeling. Altogether, this study provides the first global analysis of AI-2 signaling in Y. pestis and identifies potential roles for the system in controlling genes important to disease. PMID:23959719

  13. Characterization of Quorum Sensing and Quorum Quenching Soil Bacteria Isolated from Malaysian Tropical Montane Forest

    PubMed Central

    Chong, Teik-Min; Koh, Chong-Lek; Sam, Choon-Kook; Choo, Yeun-Mun; Yin, Wai-Fong; Chan, Kok-Gan

    2012-01-01

    We report the production and degradation of quorum sensing N-acyl-homoserine lactones by bacteria isolated from Malaysian montane forest soil. Phylogenetic analysis indicated that these isolates clustered closely to the genera of Arthrobacter, Bacillus and Pseudomonas. Quorum quenching activity was detected in six isolates of these three genera by using a series of bioassays and rapid resolution liquid chromatography analysis. Biosensor screening and high resolution liquid chromatography-mass spectrometry analysis revealed the production of N-dodecanoyl-L-homoserine lactone (C12-HSL) by Pseudomonas frederiksbergensis (isolate BT9). In addition to degradation of a wide range of N-acyl-homoserine lactones, Arthrobacter and Pseudomonas spp. also degraded p-coumaroyl-homoserine lactone. To the best of our knowledge, this is the first documentation of Arthrobacter and Pseudomonas spp. capable of degrading p-coumaroyl-homoserine lactone and the production of C12-HSL by P. frederiksbergensis. PMID:22666062

  14. Quorum quenching is responsible for the underestimated quorum sensing effects in biological wastewater treatment reactors.

    PubMed

    Song, Xiang-Ning; Cheng, Yuan-Yuan; Li, Wen-Wei; Li, Bing-Bing; Sheng, Guo-Ping; Fang, Cai-Yun; Wang, Yun-Kun; Li, Xiao-Yan; Yu, Han-Qing

    2014-11-01

    Quorum sensing (QS) and quorum quenching (QQ) are two antagonistic processes coexisting in various bacterial communities in bioreactors, e.g., activated sludge for biological wastewater treatment. Although QS signal molecules are detected in activated sludge reactors and known to affect sludge properties and reactor performance, there has been no direct evidence to prove the endogenous existence of QQ effects in activated sludge. In this study, for the first time, acyl homoserine lactones-degrading enzymatic activity, a typical QQ effect, was discovered in activated sludge and found to considerably affect the QS detection results. The coexistence of QS and QQ bacteria in activated sludge was further confirmed by bacterial screening and denaturing gradient gel electrophoresis analysis. The method developed in this study could also be used to evaluate QQ activities in bioreactors, and a possible way is provided to tune bioreactor performance through balancing the QS and QQ processes. PMID:25182424

  15. Improved quorum sensing capacity by culturing Vibrio harveyi in microcapsules.

    PubMed

    Gao, Meng; Song, Huiyi; Liu, Xiudong; Yu, Weiting; Ma, Xiaojun

    2016-04-01

    Microcapsule entrapped low density cells with culture (ELDCwc), different from free cell culture, conferred stronger stress resistance and improved cell viability of microorganisms. In this paper, the quorum sensing (QS) system of Vibrio harveyi was used to investigate changes when cells were cultured in microcapsules. Cells in ELDCwc group grew into cell aggregates, which facilitated cell-cell communication and led to increased bioluminescence intensity. Moreover, the luxS-AI-2 system, a well-studied QS signal pathway, was detected as both luxS gene and the AI-2 signaling molecule, and the results were analyzed with respect to QS capacity of unit cell. The V. harveyi of ELDCwc also showed higher relative gene expression and stronger quorum sensing capacity when compared with free cells. In conclusion, the confined microcapsule space can promote the cell aggregates formation, reduce cell-cell communication distance and increase local concentration of signal molecule, which are beneficial to bacterial QS. PMID:26364746

  16. Synergistic activation of quorum sensing in Vibrio harveyi.

    PubMed

    Mandabi, Aviad; Ganin, Hadas; Meijler, Michael M

    2015-09-15

    Autoinducer-2 (AI-2) has been suggested to serve as a ubiquitous quorum sensing (QS) signal that mediates intra- and interspecies cross-talk between bacteria. To add tools for the study of its function in bacterial communication, we present a new and an improved synthetic route to AI-2 and aromatic analogues. We used this strategy to prepare naphthyl-DPD, and observed remarkably high synergistic activity at low nanomolar concentrations for this analogue in Vibrio harveyi. PMID:26248803

  17. Quorum Sensing and Synchronization in Populations of Coupled Chemical Oscillators

    NASA Astrophysics Data System (ADS)

    Taylor, Annette F.; Tinsley, Mark R.; Showalter, Kenneth

    2013-12-01

    Experiments and simulations of populations of coupled chemical oscillators, consisting of catalytic particles suspended in solution, provide insights into density-dependent dynamics displayed by many cellular organisms. Gradual synchronization transitions, the "switching on" of activity above a threshold number of oscillators (quorum sensing) and the formation of synchronized groups (clusters) of oscillators have been characterized. Collective behavior is driven by the response of the oscillators to chemicals emitted into the surrounding solution.

  18. Simple models for quorum sensing: Nonlinear dynamical analysis

    NASA Astrophysics Data System (ADS)

    Chiang, Wei-Yin; Li, Yue-Xian; Lai, Pik-Yin

    2011-10-01

    Quorum sensing refers to the change in the cooperative behavior of a collection of elements in response to the change in their population size or density. This behavior can be observed in chemical and biological systems. These elements or cells are coupled via chemicals in the surrounding environment. Here we focus on the change of dynamical behavior, in particular from quiescent to oscillatory, as the cell population changes. For instance, the silent behavior of the elements can become oscillatory as the system concentration or population increases. In this work, two simple models are constructed that can produce the essential representative properties in quorum sensing. The first is an excitable or oscillatory phase model, which is probably the simplest model one can construct to describe quorum sensing. Using the mean-field approximation, the parameter regime for quorum sensing behavior can be identified, and analytical results for the detailed dynamical properties, including the phase diagrams, are obtained and verified numerically. The second model consists of FitzHugh-Nagumo elements coupled to the signaling chemicals in the environment. Nonlinear dynamical analysis of this mean-field model exhibits rich dynamical behaviors, such as infinite period bifurcation, supercritical Hopf, fold bifurcation, and subcritical Hopf bifurcations as the population parameter changes for different coupling strengths. Analytical result is obtained for the Hopf bifurcation phase boundary. Furthermore, two elements coupled via the environment and their synchronization behavior for these two models are also investigated. For both models, it is found that the onset of oscillations is accompanied by the synchronized dynamics of the two elements. Possible applications and extension of these models are also discussed.

  19. A Quorum-Sensing-Induced Bacteriophage Defense Mechanism

    PubMed Central

    Høyland-Kroghsbo, Nina Molin; Mærkedahl, Rasmus Baadsgaard; Svenningsen, Sine Lo

    2013-01-01

    ABSTRACT One of the key determinants of the size, composition, structure, and development of a microbial community is the predation pressure by bacteriophages. Accordingly, bacteria have evolved a battery of antiphage defense strategies. Since maintaining constantly elevated defenses is costly, we hypothesize that some bacteria have additionally evolved the abilities to estimate the risk of phage infection and to adjust their strategies accordingly. One risk parameter is the density of the bacterial population. Hence, quorum sensing, i.e., the ability to regulate gene expression according to population density, may be an important determinant of phage-host interactions. This hypothesis was investigated in the model system of Escherichia coli and phage ?. We found that, indeed, quorum sensing constitutes a significant, but so far overlooked, determinant of host susceptibility to phage attack. Specifically, E. coli reduces the numbers of ? receptors on the cell surface in response to N-acyl-l-homoserine lactone (AHL) quorum-sensing signals, causing a 2-fold reduction in the phage adsorption rate. The modest reduction in phage adsorption rate leads to a dramatic increase in the frequency of uninfected survivor cells after a potent attack by virulent phages. Notably, this mechanism may apply to a broader range of phages, as AHLs also reduce the risk of ? phage infection through a different receptor. PMID:23422409

  20. Negative Feedback in the Vibrio harveyi Quorum-Sensing Circuit

    NASA Astrophysics Data System (ADS)

    Teng, Shu-Wen; Schaffer, Jessie; Wingreen, Ned; Bassler, Bonnie; Phuan Ong, Nai

    2010-03-01

    Quorum sensing is the mechanism by which bacteria communicate and synchronize group behaviors. Multiple feedbacks have been identified in the model quorum-sensing bacterium Vibrio harveyi, but it has been unclear how these feedbacks interact in individual cells to control the fidelity of signal transduction. We measured the copy number distribution of the master regulators to quantify the activity of the signaling network. We find that the feedbacks affect the production rate, level, and noise of the core quorum-sensing components. Using fluorescence time-lapse microscopy, we directly observed the master regulator in individual cells, and analyzed the persistence of heterogeneity in terms of the normalized time-delayed direct correlation. Our findings suggest that feedback from small regulatory RNAs regulates a receptor to control the noise level in signal transduction. We further tested this model by re-engineering the gene circuit to specifically diminish this feedback. We conclude that negative feedbacks mediated by sRNAs permit fine-tuning of gene regulation, thereby increasing the fidelity of signal transduction.

  1. Specific quorum sensing-disrupting activity (AQSI) of thiophenones and their therapeutic potential

    PubMed Central

    Yang, Qian; Aamdal Scheie, Anne; Benneche, Tore; Defoirdt, Tom

    2015-01-01

    Disease caused by antibiotic resistant pathogens is becoming a serious problem, both in human and veterinary medicine. The inhibition of quorum sensing, bacterial cell-to-cell communication, is a promising alternative strategy to control disease. In this study, we determined the quorum sensing-disrupting activity of 20 thiophenones towards the quorum sensing model bacterium V. harveyi. In order to exclude false positives, we propose a new parameter (AQSI) to describe specific quorum sensing activity. AQSI is defined as the ratio between inhibition of quorum sensing-regulated activity in a reporter strain and inhibition of the same activity when it is independent of quorum sensing. Calculation of AQSI allowed to exclude five false positives, whereas the six most active thiophenones (TF203, TF307, TF319, TF339, TF342 and TF403) inhibited quorum sensing at 0.25 μM, with AQSI higher than 10. Further, we determined the protective effect and toxicity of the thiophenones in a highly controlled gnotobiotic model system with brine shrimp larvae. There was a strong positive correlation between the specific quorum sensing-disrupting activity of the thiophenones and the protection of brine shrimp larvae against pathogenic V. harveyi. Four of the most active quorum sensing-disrupting thiophenones (TF 203, TF319, TF339 and TF342) were considered to be promising since they have a therapeutic potential of at least 10. PMID:26647822

  2. Specific quorum sensing-disrupting activity (AQSI) of thiophenones and their therapeutic potential.

    PubMed

    Yang, Qian; Aamdal Scheie, Anne; Benneche, Tore; Defoirdt, Tom

    2015-01-01

    Disease caused by antibiotic resistant pathogens is becoming a serious problem, both in human and veterinary medicine. The inhibition of quorum sensing, bacterial cell-to-cell communication, is a promising alternative strategy to control disease. In this study, we determined the quorum sensing-disrupting activity of 20 thiophenones towards the quorum sensing model bacterium V. harveyi. In order to exclude false positives, we propose a new parameter (AQSI) to describe specific quorum sensing activity. AQSI is defined as the ratio between inhibition of quorum sensing-regulated activity in a reporter strain and inhibition of the same activity when it is independent of quorum sensing. Calculation of AQSI allowed to exclude five false positives, whereas the six most active thiophenones (TF203, TF307, TF319, TF339, TF342 and TF403) inhibited quorum sensing at 0.25??M, with AQSI higher than 10. Further, we determined the protective effect and toxicity of the thiophenones in a highly controlled gnotobiotic model system with brine shrimp larvae. There was a strong positive correlation between the specific quorum sensing-disrupting activity of the thiophenones and the protection of brine shrimp larvae against pathogenic V. harveyi. Four of the most active quorum sensing-disrupting thiophenones (TF 203, TF319, TF339 and TF342) were considered to be promising since they have a therapeutic potential of at least 10. PMID:26647822

  3. Quorum Sensing in the Context of Food Microbiology

    PubMed Central

    Skandamis, Panagiotis N.

    2012-01-01

    Food spoilage may be defined as a process that renders a product undesirable or unacceptable for consumption and is the outcome of the biochemical activity of a microbial community that eventually dominates according to the prevailing ecological determinants. Although limited information are reported, this activity has been attributed to quorum sensing (QS). Consequently, the potential role of cell-to-cell communication in food spoilage and food safety should be more extensively elucidated. Such information would be helpful in designing approaches for manipulating these communication systems, thereby reducing or preventing, for instance, spoilage reactions or even controlling the expression of virulence factors. Due to the many reports in the literature on the fundamental features of QS, e.g., chemistry and definitions of QS compounds, in this minireview, we only allude to the types and chemistry of QS signaling molecules per se and to the (bioassay-based) methods of their detection and quantification, avoiding extensive documentation. Conversely, we attempt to provide insights into (i) the role of QS in food spoilage, (ii) the factors that may quench the activity of QS in foods and review the potential QS inhibitors that might “mislead” the bacterial coordination of spoilage activities and thus may be used as biopreservatives, and (iii) the future experimental approaches that need to be undertaken in order to explore the “gray” or “black” areas of QS, increase our understanding of how QS affects microbial behavior in foods, and assist in finding answers as to how we can exploit QS for the benefit of food preservation and food safety. PMID:22706047

  4. Quorum sensing via static coupling demonstrated by Chua's circuits

    NASA Astrophysics Data System (ADS)

    Singh, Harpartap; Parmananda, P.

    2013-10-01

    Dynamical quorum sensing, the population based phenomenon, is believed to occur when the elements of a system interact via dynamic coupling. In the present work, we demonstrate an alternate scenario, involving static coupling, that could also lead to quorum sensing behavior. These static and dynamic coupling terms have already been employed by Konishi [Int. J. Bifurcation Chaos Appl. Sci. Eng.IJBEE40218-127410.1142/S0218127407018750 17, 2781 (2007)]. In our context, the coupling is defined as static or dynamic, on the basis of the relative time scales at which the surrounding dynamics and the elements' dynamics evolve. According to this, if the variation in the surrounding dynamics happens on a much larger (fast) time scale than that at which the elements' dynamics are varying (such as seconds and μs), then the coupling is considered to be static, otherwise it is considered to be dynamic. A series of experiments have been performed starting from a system of three Chua's circuits to a system of 20 Chua's circuits to study two types of quorum transitions: the emergence and the extinction of global oscillations (period-1). The numerics involving up to 100 Chua's circuits validate the experimental observations.

  5. Inhibition of quorum sensing in Pseudomonas aeruginosa by two herbal essential oils from Apiaceae family.

    PubMed

    Sepahi, Ehsan; Tarighi, Saeed; Ahmadi, Farajollah Shahriari; Bagheri, Abdolreza

    2015-02-01

    Ferula (Ferula asafoetida L.) and Dorema (Dorema aucheri Bioss.) both from Apiaceae family were tested for their anti-quorum sensing (QS) activity against Pseudomonas aeruginosa. Both essential oils exhibited anti-QS activity at 25 μg/ml of concenteration. At this concenteration Ferula fully abolished and Dorema reduced the violacein production by C. violaceum. Pyocyanin, pyoverdine, elastase and biofilm production were decreased in Ferula oil treatments. Dorema oil reduced pyoverdine and elastase production, while pyocyanin and biofilm production were not affacted. Expresion analysis of QS-dependent genes confirmed our phenotypic data. Our data introduced native Dorema and Ferula plants as novel QS and virulence inhibitors. PMID:25564444

  6. Can the natural diversity of quorum-sensing advance synthetic biology?

    PubMed

    Davis, René Michele; Muller, Ryan Yue; Haynes, Karmella Ann

    2015-01-01

    Quorum-sensing networks enable bacteria to sense and respond to chemical signals produced by neighboring bacteria. They are widespread: over 100 morphologically and genetically distinct species of eubacteria are known to use quorum sensing to control gene expression. This diversity suggests the potential to use natural protein variants to engineer parallel, input-specific, cell-cell communication pathways. However, only three distinct signaling pathways, Lux, Las, and Rhl, have been adapted for and broadly used in engineered systems. The paucity of unique quorum-sensing systems and their propensity for crosstalk limits the usefulness of our current quorum-sensing toolkit. This review discusses the need for more signaling pathways, roadblocks to using multiple pathways in parallel, and strategies for expanding the quorum-sensing toolbox for synthetic biology. PMID:25806368

  7. Can the Natural Diversity of Quorum-Sensing Advance Synthetic Biology?

    PubMed Central

    Davis, René Michele; Muller, Ryan Yue; Haynes, Karmella Ann

    2015-01-01

    Quorum-sensing networks enable bacteria to sense and respond to chemical signals produced by neighboring bacteria. They are widespread: over 100 morphologically and genetically distinct species of eubacteria are known to use quorum sensing to control gene expression. This diversity suggests the potential to use natural protein variants to engineer parallel, input-specific, cell–cell communication pathways. However, only three distinct signaling pathways, Lux, Las, and Rhl, have been adapted for and broadly used in engineered systems. The paucity of unique quorum-sensing systems and their propensity for crosstalk limits the usefulness of our current quorum-sensing toolkit. This review discusses the need for more signaling pathways, roadblocks to using multiple pathways in parallel, and strategies for expanding the quorum-sensing toolbox for synthetic biology. PMID:25806368

  8. Structure and Inhibition of Quorum Sensing Target from Streptococcus pneumoniae

    SciTech Connect

    Singh,V.; Shi, W.; Almo, S.; Evans, G.; Furneaux, R.; Tyler, P.; Painter, G.; Lenz, D.; Mee, S.; et al.

    2006-01-01

    Streptococcus pneumoniae 5'-methylthioadenosine/S-adenosylhomocysteine hydrolase (MTAN) catalyzes the hydrolytic deadenylation of its substrates to form adenine and 5-methylthioribose or S-ribosylhomocysteine (SRH). MTAN is not found in mammals but is involved in bacterial quorum sensing. MTAN gene disruption affects the growth and pathogenicity of bacteria, making it a target for antibiotic design. Kinetic isotope effects and computational studies have established a dissociative S{sub N}1 transition state for Escherichia coli MTAN, and transition state analogues resembling the transition state are powerful inhibitors of the enzyme [Singh, V., Lee, J. L., Nunez, S., Howell, P. L., and Schramm, V. L. (2005) Biochemistry 44, 11647-11659]. The sequence of MTAN from S. pneumoniae is 40% identical to that of E. coli MTAN, but S. pneumoniae MTAN exhibits remarkably distinct kinetic and inhibitory properties. 5'-Methylthio-Immucillin-A (MT-ImmA) is a transition state analogue resembling an early S{sub N}1 transition state. It is a weak inhibitor of S. pneumoniae MTAN with a K{sub i} of 1.0 {mu}M. The X-ray structure of S. pneumoniae MTAN with MT-ImmA indicates a dimer with the methylthio group in a flexible hydrophobic pocket. Replacing the methyl group with phenyl (PhT-ImmA), tolyl (p-TolT-ImmA), or ethyl (EtT-ImmA) groups increases the affinity to give K{sub i} values of 335, 60, and 40 nM, respectively. DADMe-Immucillins are geometric and electrostatic mimics of a fully dissociated transition state and bind more tightly than Immucillins. MT-DADMe-Immucillin-A inhibits with a K{sub i} value of 24 nM, and replacing the 5'-methyl group with p-Cl-phenyl (p-Cl-PhT-DADMe-ImmA) gave a K{sub i}* value of 0.36 nM. The inhibitory potential of DADMe-Immucillins relative to the Immucillins supports a fully dissociated transition state structure for S. pneumoniae MTAN. Comparison of active site contacts in the X-ray crystal structures of E. coli and S. pneumoniae MTAN with MT-ImmA would predict equal binding, yet most analogues bind 10{sup 3}-10{sup 4}-fold more tightly to the E. coli enzyme. Catalytic site efficiency is primarily responsible for this difference since k{sub cat}/K{sub m} for S. pneumoniae MTAN is decreased 845-fold relative to that of E. coli MTAN.

  9. l-Canavanine Made by Medicago sativa Interferes with Quorum Sensing in Sinorhizobium meliloti

    PubMed Central

    Keshavan, Neela D.; Chowdhary, Puneet K.; Haines, Donovan C.; González, Juan E.

    2005-01-01

    Sinorhizobium meliloti is a gram-negative soil bacterium, capable of establishing a nitrogen-fixing symbiosis with its legume host, alfalfa (Medicago sativa). Quorum sensing plays a crucial role in this symbiosis, where it influences the nodulation process and the synthesis of the symbiotically important exopolysaccharide II (EPS II). S. meliloti has three quorum-sensing systems (Sin, Tra, and Mel) that use N-acyl homoserine lactones as their quorum-sensing signal molecule. Increasing evidence indicates that certain eukaryotic hosts involved in symbiotic or pathogenic relationships with gram-negative bacteria produce quorum-sensing-interfering (QSI) compounds that can cross-communicate with the bacterial quorum-sensing system. Our studies of alfalfa seed exudates suggested the presence of multiple signal molecules capable of interfering with quorum-sensing-regulated gene expression in different bacterial strains. In this work, we choose one of these QSI molecules (SWI) for further characterization. SWI inhibited violacein production, a phenotype that is regulated by quorum sensing in Chromobacterium violaceum. In addition, this signal molecule also inhibits the expression of the S. meliloti exp genes, responsible for the production of EPS II, a quorum-sensing-regulated phenotype. We identified this molecule as l-canavanine, an arginine analog, produced in large quantities by alfalfa and other legumes. PMID:16321947

  10. A mathematical model of quorum sensing regulated EPS production in biofilm communities

    PubMed Central

    2011-01-01

    Background Biofilms are microbial communities encased in a layer of extracellular polymeric substances (EPS). The EPS matrix provides several functional purposes for the biofilm, such as protecting bacteria from environmental stresses, and providing mechanical stability. Quorum sensing is a cell-cell communication mechanism used by several bacterial taxa to coordinate gene expression and behaviour in groups, based on population densities. Model We mathematically model quorum sensing and EPS production in a growing biofilm under various environmental conditions, to study how a developing biofilm impacts quorum sensing, and conversely, how a biofilm is affected by quorum sensing-regulated EPS production. We investigate circumstances when using quorum-sensing regulated EPS production is a beneficial strategy for biofilm cells. Results We find that biofilms that use quorum sensing to induce increased EPS production do not obtain the high cell populations of low-EPS producers, but can rapidly increase their volume to parallel high-EPS producers. Quorum sensing-induced EPS production allows a biofilm to switch behaviours, from a colonization mode (with an optimized growth rate), to a protection mode. Conclusions A biofilm will benefit from using quorum sensing-induced EPS production if bacteria cells have the objective of acquiring a thick, protective layer of EPS, or if they wish to clog their environment with biomass as a means of securing nutrient supply and outcompeting other colonies in the channel, of their own or a different species. PMID:21477365

  11. Whole-Genome Sequencing Analysis of Chromobacterium piscinae Strain ND17, a Quorum-Sensing Bacterium.

    PubMed

    Chan, Kok-Gan; Yunos, Nina Yusrina Muhamad

    2016-01-01

    Here, we report the draft genome sequence of Chromobacterium piscinae strain ND17. This bacterium was isolated from a fresh water sample in Malaysia and exhibits quorum-sensing activity. This first draft genome of C. piscinae strain ND17 will pave the way to future studies of the quorum-sensing properties of this isolate. PMID:26941152

  12. Whole-Genome Sequencing Analysis of Chromobacterium piscinae Strain ND17, a Quorum-Sensing Bacterium

    PubMed Central

    Yunos, Nina Yusrina Muhamad

    2016-01-01

    Here, we report the draft genome sequence of Chromobacterium piscinae strain ND17. This bacterium was isolated from a fresh water sample in Malaysia and exhibits quorum-sensing activity. This first draft genome of C. piscinae strain ND17 will pave the way to future studies of the quorum-sensing properties of this isolate. PMID:26941152

  13. Microarray Analysis of Quorum-Sensing Regulated Gene Expression in Campylobacter jejuni

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Quorum-sensing (QS) is defined as cell-to-cell communication in response to population density in bacteria. Autoinducer-2 (AI-2)-dependent quorum-sensing has been shown to control a variety of cellular processes such as expression of virulence factors, toxin production, biofilm formation, and swarm...

  14. INHIBITION OF QUORUM SENSING IN CLOSTRIDIUM PERFRINGENS AS A MEANS TOWARD FOOD SAFETY

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cell density-dependent signaling through the use of autoinducers, classified as quorum sensing, may play a role in the survival and virulence of Clostridium perfringens in foods. The natural 2-(5H)-furanone, ascorbic acid (vitamin C), was chosen for evaluation as a quorum sensing analogue due to it...

  15. The QseBC Quorum Sensing System is Involved in Salmonella enterica serovar Typhimurium Colonization of the Swine Gastrointestinal Tract

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The response of bacteria to hormone-like, chemical molecules is termed quorum sensing, a mechanism for cell-to-cell communication that includes sensing the host environment. In the gastrointestinal tract, at least two quorum sensing molecules are present that activate the bacterial QseBC quorum sen...

  16. Bacterial Quorum Sensing: Its Role in Virulence and Possibilities for Its Control

    PubMed Central

    Rutherford, Steven T.; Bassler, Bonnie L.

    2012-01-01

    Quorum sensing is a process of cell–cell communication that allows bacteria to share information about cell density and adjust gene expression accordingly. This process enables bacteria to express energetically expensive processes as a collective only when the impact of those processes on the environment or on a host will be maximized. Among the many traits controlled by quorum sensing is the expression of virulence factors by pathogenic bacteria. Here we review the quorum-sensing circuits of Staphylococcus aureus, Bacillus cereus, Pseudomonas aeruginosa, and Vibrio cholerae. We outline these canonical quorum-sensing mechanisms and how each uniquely controls virulence factor production. Additionally, we examine recent efforts to inhibit quorum sensing in these pathogens with the goal of designing novel antimicrobial therapeutics. PMID:23125205

  17. Interaction of a P. aeruginosa Quorum Sensing Signal with Lipid Membranes

    NASA Astrophysics Data System (ADS)

    Morrison, Rebecca; Hall, Amelia; Hutchison, Ellen; Nguyen, Thuc; Cooley, Benjamin; Gordon, Vernita

    2011-03-01

    Bacteria use a signaling and regulatory system called ``quorum sensing'' to alter their gene expressions in response to the concentration of neighboring bacteria and to environmental conditions that make collective activity favorable for bacteria. P. aeruginosa is an opportunistic human pathogen that uses quorum sensing to govern processes such as virulence and biofilm formation. This organism's two main quorum sensing circuits use two different signaling molecules that are amphiphilic and differ primarily in the length of their hydrocarbon side chain and thus in their hydrophobic physical chemistry. How these physical chemistries govern the propagation and spatial localization of signals and thus of quorum sensing is not known. We present preliminary results showing that signals preferentially sequester to amphiphilic lipid membranes, which can act as reservoirs for signal. This is promising for future characterization of how the quorum sensing signals of many bacteria and yeast partition to spatially-differentiated amphiphilic environments, in a host or biofilm.

  18. Multiple small RNAs act additively to integrate sensory information and control quorum sensing in Vibrio harveyi

    PubMed Central

    Tu, Kimberly C.; Bassler, Bonnie L.

    2007-01-01

    Quorum sensing is a cell–cell communication mechanism that bacteria use to collectively regulate gene expression and, at a higher level, to coordinate group behavior. In the bioluminescent marine bacterium Vibrio harveyi, sensory information from three independent quorum-sensing systems converges on the shared response regulator LuxO. When LuxO is phosphorylated, it activates the expression of a putative repressor that destabilizes the mRNA encoding the master quorum-sensing transcriptional regulator LuxR. In the closely related species Vibrio cholerae, this repressor was revealed to be the RNA chaperone Hfq together with four small regulatory RNAs (sRNAs) called Qrr1–4 (quorum regulatory RNA). Here, we identify five Qrr sRNAs that control quorum sensing in V. harveyi. Mutational analysis reveals that only four of the five Qrrs are required for destabilization of the luxR mRNA. Surprisingly, unlike in V. cholerae where the sRNAs act redundantly, in V. harveyi, the Qrr sRNAs function additively to control quorum sensing. This latter mechanism produces a gradient of LuxR that, in turn, enables differential regulation of quorum-sensing target genes. Other regulators appear to be involved in control of V. harveyi qrr expression, allowing the integration of additional sensory information into the regulation of quorum-sensing gene expression. PMID:17234887

  19. Dynamical quorum sensing: Population density encoded in cellular dynamics

    PubMed Central

    De Monte, Silvia; d'Ovidio, Francesco; Danø, Sune; Sørensen, Preben Graae

    2007-01-01

    Mutual synchronization by exchange of chemicals is a mechanism for the emergence of collective dynamics in cellular populations. General theories exist on the transition to coherence, but no quantitative, experimental demonstration has been given. Here, we present a modeling and experimental analysis of cell-density-dependent glycolytic oscillations in yeast. We study the disappearance of oscillations at low cell density and show that this phenomenon occurs synchronously in all cells and not by desynchronization, as previously expected. This study identifies a general scenario for the emergence of collective cellular oscillations and suggests a quorum-sensing mechanism by which the cell density information is encoded in the intracellular dynamical state. PMID:18003917

  20. Glycation Reactivity of a Quorum-Sensing Signaling Molecule.

    PubMed

    Tsuchikama, Kyoji; Gooyit, Major; Harris, Tyler L; Zhu, Jie; Globisch, Daniel; Kaufmann, Gunnar F; Janda, Kim D

    2016-03-14

    Reported herein is that (4S)-4,5-dihydroxy-2,3-pentanedione (DPD) can undergo a previously undocumented non-enzymatic glycation reaction. Incubation of DPD with viral DNA or the antibiotic gramicidin?S resulted in significant biochemical alterations. A protein-labeling method was consequently developed that facilitated the identification of unrecognized glycation targets of DPD in a prokaryotic system. These results open new avenues toward tracking and understanding the fate and function of the elusive quorum-sensing signaling molecule. PMID:26890076

  1. Quorum Sensing and Expression of Virulence in Pectobacteria

    PubMed Central

    Põllumaa, Lee; Alamäe, Tiina; Mäe, Andres

    2012-01-01

    Quorum sensing (QS) is a population density-dependent regulatory mechanism in which gene expression is coupled to the accumulation of a chemical signaling molecule. QS systems are widespread among the plant soft-rotting bacteria. In Pectobacterium carotovorum, at least two QS systems exist being specified by the nature of chemical signals involved. QS in Pectobacterium carotovorum uses N-acylhomoserine lactone (AHL) based, as well as autoinducer-2 (AI-2) dependent signaling systems. This review will address the importance of the QS in production of virulence factors and interaction of QS with other regulatory systems in Pectobacterium carotovorum. PMID:22737011

  2. Small Molecule Inhibitors of AI-2 Signaling in Bacteria: State-of-the-Art and Future Perspectives for Anti-Quorum Sensing Agents

    PubMed Central

    Guo, Min; Gamby, Sonja; Zheng, Yue; Sintim, Herman O.

    2013-01-01

    Bacteria respond to different small molecules that are produced by other neighboring bacteria. These molecules, called autoinducers, are classified as intraspecies (i.e., molecules produced and perceived by the same bacterial species) or interspecies (molecules that are produced and sensed between different bacterial species). AI-2 has been proposed as an interspecies autoinducer and has been shown to regulate different bacterial physiology as well as affect virulence factor production and biofilm formation in some bacteria, including bacteria of clinical relevance. Several groups have embarked on the development of small molecules that could be used to perturb AI-2 signaling in bacteria, with the ultimate goal that these molecules could be used to inhibit bacterial virulence and biofilm formation. Additionally, these molecules have the potential to be used in synthetic biology applications whereby these small molecules are used as inputs to switch on and off AI-2 receptors. In this review, we highlight the state-of-the-art in the development of small molecules that perturb AI-2 signaling in bacteria and offer our perspective on the future development and applications of these classes of molecules. PMID:23994835

  3. Autocrine Signaling and Quorum Sensing: Extreme Ends of a Common Spectrum.

    PubMed

    Doğaner, Berkalp A; Yan, Lawrence K Q; Youk, Hyun

    2016-04-01

    'Secrete-and-sense cells' can communicate by secreting a signaling molecule while also producing a receptor that detects the molecule. The cell can potentially 'talk' to itself ('self-communication') or talk to neighboring cells with the same receptor ('neighbor communication'). The predominant forms of secrete-and-sense cells are self-communicating 'autocrine cells', which are largely found in animals, and neighbor-communicating 'quorum sensing cells', which are mostly associated with bacteria. While assumed to function independently of one another, recent studies have discovered quorum-sensing organs and autocrine-signaling microbes. Moreover, similar types of genetic circuit control many autocrine and quorum-sensing cells. Here, we outline these recent findings and explain how autocrine and quorum sensing are two sides of a many-sided 'dice' created by the versatile secrete-and-sense cell. PMID:26671200

  4. Functional Amyloids Keep Quorum-sensing Molecules in Check*

    PubMed Central

    Seviour, Thomas; Hansen, Susan Hove; Yang, Liang; Yau, Yin Hoe; Wang, Victor Bochuan; Stenvang, Marcel R.; Christiansen, Gunna; Marsili, Enrico; Givskov, Michael; Chen, Yicai; Otzen, Daniel E.; Nielsen, Per Halkjær; Geifman-Shochat, Susana; Kjelleberg, Staffan; Dueholm, Morten S.

    2015-01-01

    The mechanism by which extracellular metabolites, including redox mediators and quorum-sensing signaling molecules, traffic through the extracellular matrix of biofilms is poorly explored. We hypothesize that functional amyloids, abundant in natural biofilms and possessing hydrophobic domains, retain these metabolites. Using surface plasmon resonance, we demonstrate that the quorum-sensing (QS) molecules, 2-heptyl-3-hydroxy-4(1H)-quinolone and N-(3-oxododecanoyl)-l-homoserine lactone, and the redox mediator pyocyanin bind with transient affinity to functional amyloids from Pseudomonas (Fap). Their high hydrophobicity predisposes them to signal-amyloid interactions, but specific interactions also play a role. Transient interactions allow for rapid association and dissociation kinetics, which make the QS molecules bioavailable and at the same time secure within the extracellular matrix as a consequence of serial bindings. Retention of the QS molecules was confirmed using Pseudomonas aeruginosa PAO1-based 2-heptyl-3-hydroxy-4(1H)-quinolone and N-(3-oxododecanoyl)-l-homoserine lactone reporter assays, showing that Fap fibrils pretreated with the QS molecules activate the reporters even after sequential washes. Pyocyanin retention was validated by electrochemical analysis of pyocyanin-pretreated Fap fibrils subjected to the same washing process. Results suggest that QS molecule-amyloid interactions are probably important in the turbulent environments commonly encountered in natural habitats. PMID:25586180

  5. Quorum sensing between Pseudomonas aeruginosa biofilms accelerates cell growth

    PubMed Central

    Flickinger, Shane T.; Copeland, Matthew F.; Downes, Eric M.; Braasch, Andrew T.; Tuson, Hannah H.; Eun, Ye-Jin; Weibel, Douglas B.

    2011-01-01

    This manuscript describes the fabrication of arrays of spatially confined chambers embossed in a layer of poly(ethylene glycol) diacrylate (PEGDA) and their application to studying quorum sensing between communities of Pseudomonas aeruginosa. We hypothesized that biofilms may produce stable chemical signaling gradients in close proximity to surfaces, which influence the growth and development of nearby microcolonies into biofilms. To test this hypothesis we embossed a layer of PEGDA with 1.5-mm wide chambers in which P. aeruginosa biofilms grew, secreted homoserine lactones (HSLs, small molecule regulators of quorum sensing), and formed spatial and temporal gradients of these compounds. In static growth conditions (i.e. no flow), nascent biofilms secreted N-(3-oxododecanoyl) HSL that formed a gradient in the hydrogel and was detected by P. aeruginosa cells that were ≤ 8 mm away. Diffusing HSLs increased the growth rate of cells in communities that were < 3 mm away from the biofilm, where the concentration of HSL was > 1 µM, and had little effect on communities farther away. The HSL gradient had no observable influence on biofilm structure. Surprisingly, 0.1–10 µM of N-(3-oxododecanoyl) HSL had no effect on cell growth in liquid culture. The results suggest that the secretion of HSLs from a biofilm enhances the growth of neighboring cells in contact with surfaces into communities and may influence their composition, organization, and diversity. PMID:21434644

  6. Prediction by promoter logic in bacterial quorum sensing.

    PubMed

    Rai, Navneet; Anand, Rajat; Ramkumar, Krishna; Sreenivasan, Varun; Dabholkar, Sugat; Venkatesh, K V; Thattai, Mukund

    2012-01-01

    Quorum-sensing systems mediate chemical communication between bacterial cells, coordinating cell-density-dependent processes like biofilm formation and virulence-factor expression. In the proteobacterial LuxI/LuxR quorum sensing paradigm, a signaling molecule generated by an enzyme (LuxI) diffuses between cells and allosterically stimulates a transcriptional regulator (LuxR) to activate its cognate promoter (pR). By expressing either LuxI or LuxR in positive feedback from pR, these versatile systems can generate smooth (monostable) or abrupt (bistable) density-dependent responses to suit the ecological context. Here we combine theory and experiment to demonstrate that the promoter logic of pR - its measured activity as a function of LuxI and LuxR levels - contains all the biochemical information required to quantitatively predict the responses of such feedback loops. The interplay of promoter logic with feedback topology underlies the versatility of the LuxI/LuxR paradigm: LuxR and LuxI positive-feedback systems show dramatically different responses, while a dual positive/negative-feedback system displays synchronized oscillations. These results highlight the dual utility of promoter logic: to probe microscopic parameters and predict macroscopic phenotype. PMID:22275861

  7. LuxS and quorum-sensing in Campylobacter

    PubMed Central

    Plummer, Paul J.

    2012-01-01

    Several intercellular bacterial communication mechanisms have been identified in a broad range of bacterial species. These systems, collectively termed quorum-sensing systems, have been demonstrated to play significant roles in a variety of bacterial processes including motility, biofilm formation, expression of virulence genes, and animal colonization. Campylobacter jejuni is known to possess a LuxS/ autoinducer-2 (AI-2) mediated system that have been partially characterized over the last decade. AI-2 is formed as a byproduct of the activated methyl recycling pathway, specifically by the LuxS enzyme. Previous work in our laboratory and that of others has demonstrated that this gene is involved in a variety of physiologic pathways of C. jejuni including motility, autoagglutination, cytolethal distending toxin (CDT) expression, flagellar expression, oxidative stress, and animal colonization. This review article will summarize the current research associated with LuxS in C. jejuni and will provide insights into the role of this system in the metabolism and intercellular communication of this organism. Additionally, the evidence for other quorum-sensing pathways in Campylobacter will be discussed. PMID:22919614

  8. Chemical methods to interrogate bacterial quorum sensing pathways

    PubMed Central

    Praneenararat, Thanit; Palmer, Andrew G.

    2012-01-01

    Bacteria frequently manifest distinct phenotypes as a function of cell density in a phenomenon known as quorum sensing (QS). This intercellular signalling process is mediated by “chemical languages comprised of low-molecular weight signals, known as” autoinducers, and their cognate receptor proteins. As many of the phenotypes regulated by QS can have a significant impact on the success of pathogenic or mutualistic prokaryotic–eukaryotic interactions, there is considerable interest in methods to probe and modulate QS pathways with temporal and spatial control. Such methods would be valuable for both basic research in bacterial ecology and in practical medicinal, agricultural, and industrial applications. Toward this goal, considerable recent research has been focused on the development of chemical approaches to study bacterial QS pathways. In this Perspective, we provide an overview of the use of chemical probes and techniques in QS research. Specifically, we focus on: (1) combinatorial approaches for the discovery of small molecule QS modulators, (2) affinity chromatography for the isolation of QS receptors, (3) reactive and fluorescent probes for QS receptors, (4) antibodies as quorum “quenchers,” (5) abiotic polymeric “sinks” and “pools” for QS signals, and (6) the electrochemical sensing of QS signals. The application of such chemical methods can offer unique advantages for both elucidating and manipulating QS pathways in culture and under native conditions. PMID:22948815

  9. Quorum Sensing Activity of Enterobacter asburiae Isolated from Lettuce Leaves

    PubMed Central

    Lau, Yin Yin; Sulaiman, Joanita; Chen, Jian Woon; Yin, Wai-Fong; Chan, Kok-Gan

    2013-01-01

    Bacterial communication or quorum sensing (QS) is achieved via sensing of QS signaling molecules consisting of oligopeptides in Gram-positive bacteria and N-acyl homoserine lactones (AHL) in most Gram-negative bacteria. In this study, Enterobacteriaceae isolates from Batavia lettuce were screened for AHL production. Enterobacter asburiae, identified by matrix-assisted laser desorption ionization time of flight mass spectrometry (MALDI-TOF-MS) was found to produce short chain AHLs. High resolution triple quadrupole liquid chromatography mass spectrometry (LC/MS) analysis of the E. asburiae spent supernatant confirmed the production of N-butanoyl homoserine lactone (C4-HSL) and N–hexanoyl homoserine lactone (C6-HSL). To the best of our knowledge, this is the first report of AHL production by E. asburiae. PMID:24152877

  10. A Quorum Sensing-Disrupting Brominated Thiophenone with a Promising Therapeutic Potential to Treat Luminescent Vibriosis

    PubMed Central

    Defoirdt, Tom; Benneche, Tore; Brackman, Gilles; Coenye, Tom; Sorgeloos, Patrick; Scheie, Anne Aamdal

    2012-01-01

    Vibrio harveyi is amongst the most important bacterial pathogens in aquaculture. Novel methods to control this pathogen are needed since many strains have acquired resistance to antibiotics. We previously showed that quorum sensing-disrupting furanones are able to protect brine shrimp larvae against vibriosis. However, a major problem of these compounds is that they are toxic toward higher organisms and therefore, they are not safe to be used in aquaculture. The synthesis of brominated thiophenones, sulphur analogues of the quorum sensing-disrupting furanones, has recently been reported. In the present study, we report that these compounds block quorum sensing in V. harveyi at concentrations in the low micromolar range. Bioluminescence experiments with V. harveyi quorum sensing mutants and a fluorescence anisotropy assay indicated that the compounds disrupt quorum sensing in this bacterium by decreasing the ability of the quorum sensing master regulator LuxR to bind to its target promoter DNA. In vivo challenge tests with gnotobiotic brine shrimp larvae showed that thiophenone compound TF310, (Z)-4-((5-(bromomethylene)-2-oxo-2,5-dihydrothiophen-3-yl)methoxy)-4-oxobutanoic acid, completely protected the larvae from V. harveyi BB120 when dosed to the culture water at 2.5 µM or more, whereas severe toxicity was only observed at 250 µM. This makes TF310 showing the highest therapeutic index of all quorum sensing-disrupting compounds tested thus far in our brine shrimp model system. PMID:22848604

  11. Non-native acylated homoserine lactones reveal that LuxIR quorum sensing promotes symbiont stability

    PubMed Central

    Ho, Jessica S.; Geske, Grant D.; Blackwell, Helen E.; Ruby, Edward G.

    2014-01-01

    SUMMARY Quorum sensing, a group behavior coordinated by a diffusible pheromone signal and a cognate receptor, is typical of bacteria that form symbioses with plants and animals. LuxIR-type acyl homoserine-lactone (AHL) quorum sensing is common in Gram-negative proteobacteria, and many members of this group have additional quorum-sensing networks. The bioluminescent symbiont Vibrio fischeri encodes two AHL signal synthases: AinS and LuxI. AinS-dependent quorum sensing converges with LuxI-dependent quorum sensing at the LuxR regulatory element. Both AinS- and LuxI-mediated signaling are required for efficient and persistent colonization of the squid host, Euprymna scolopes. The basis of the mutualism is symbiont bioluminescence, which is regulated by both LuxI- and AinS-dependent quorum sensing, and is essential for maintaining a colonization of the host. Here, we used chemical and genetic approaches to probe the dynamics of LuxI- and AinS-mediated regulation of bioluminescence during symbiosis. We demonstrate that both native AHLs and non-native AHL analogs can be used to non-invasively and specifically modulate induction of symbiotic bioluminescence via LuxI-dependent quorum sensing. Our data suggest that the first day of colonization, during which symbiont bioluminescence is induced by LuxIR, is a critical period that determines the stability of the V. fischeri population once symbiosis is established. PMID:24191970

  12. Airway Epithelial Cell Integrity Protects from Cytotoxicity of Pseudomonas aeruginosa Quorum-Sensing Signals.

    PubMed

    Losa, Davide; Köhler, Thilo; Bacchetta, Marc; Saab, Joanna Bou; Frieden, Maud; van Delden, Christian; Chanson, Marc

    2015-08-01

    Cell-to-cell communication via gap junctions regulates airway epithelial cell homeostasis and maintains the epithelium host defense. Quorum-sensing molecules produced by Pseudomonas aeruginosa coordinate the expression of virulence factors by this respiratory pathogen. These bacterial signals may also incidentally modulate mammalian airway epithelial cell responses to the pathogen, a process called interkingdom signaling. We investigated the interactions between the P. aeruginosa N-3-oxo-dodecanoyl-L-homoserine lactone (C12) quorum-sensing molecule and human airway epithelial cell gap junctional intercellular communication (GJIC). C12 degradation and its effects on cells were monitored in various airway epithelial cell models grown under nonpolarized and polarized conditions. Its concentration was further monitored in daily tracheal aspirates of colonized intubated patients. C12 rapidly altered epithelial integrity and decreased GJIC in nonpolarized airway epithelial cells, whereas other quorum-sensing molecules had no effect. The effects of C12 were dependent on [Ca(2+)]i and could be prevented by inhibitors of Src tyrosine family and Rho-associated protein kinases. In contrast, polarized airway cells grown on Transwell filters were protected from C12 except when undergoing repair after wounding. In vivo during colonization of intubated patients, C12 did not accumulate, but it paralleled bacterial densities. In vitro C12 degradation, a reaction catalyzed by intracellular paraoxonase 2 (PON2), was impaired in nonpolarized cells, whereas PON2 expression was increased during epithelial polarization. The cytotoxicity of C12 on nonpolarized epithelial cells, combined with its impaired degradation allowing its accumulation, provides an additional pathogenic mechanism for P. aeruginosa infections. PMID:25562674

  13. A Chemical Biology Approach to Interrogate Quorum Sensing Regulated Behaviors at the Molecular and Cellular Level

    PubMed Central

    Lowery, Colin A.; Matamouros, Susana; Niessen, Sherry; Zhu, Jie; Scolnick, Jonathan A.; Mee, Jenny M.; Cravatt, Benjamin F.; Miller, Samuel I.; Kaufmann, Gunnar F.; Janda, Kim D.

    2013-01-01

    SUMMARY Small molecule probes have been employed extensively to explore biological systems and elucidate cellular signaling pathways. In this study, we utilize an inhibitor of bacterial communication to monitor changes in the proteome of Salmonella enterica serovar Typhimurium with the aim of discovering new processes regulated by AI-2-based quorum sensing (QS), a mechanism of bacterial intracellular communication that allows for the coordination of gene expression in a cell density-dependent manner. In S. typhimurium, this system regulates the uptake and catabolism of intracellular signals and has been implicated in pathogenesis, including the invasion of host epithelial cells. We demonstrate that our QS antagonist is capable of selectively inhibiting the expression of known QS-regulated proteins in S. typhimurium, thus attesting that QS inhibitors may be used to confirm proposed and elucidate previously unidentified QS pathways without relying on genetic manipulation. PMID:23890008

  14. Chemical Genetics Reveals Environment-Specific Roles for Quorum Sensing Circuits in Pseudomonas aeruginosa.

    PubMed

    Welsh, Michael A; Blackwell, Helen E

    2016-03-17

    Nutritional cues differentially influence the activities of the three quorum sensing (QS) circuits-Las, Rhl, and Pqs-in the pathogen Pseudomonas aeruginosa. A full understanding of how these systems work together to tune virulence factor production to the environment is lacking. Here, we used chemical probes to evaluate the contribution of each QS circuit to virulence in wild-type P. aeruginosa under defined environmental conditions. Our results indicate that Rhl and Pqs drive virulence factor production in phosphate- and iron-limiting environments, while Las has a minor influence. Consequently, simultaneous inhibition of Rhl and Pqs can attenuate virulence in environments where Las inhibition fails. The activity trends generated in this study can be extrapolated to predict QS inhibitor activity in infection-relevant environments, such as cystic fibrosis sputum. These results indicate that environmental signals can drastically alter the efficacy of small-molecule QS inhibitors in P. aeruginosa and possibly other pathogens. PMID:26905657

  15. Can resistance against quorum-sensing interference be selected?

    PubMed

    García-Contreras, Rodolfo; Maeda, Toshinari; Wood, Thomas K

    2016-01-01

    Quorum-sensing (QS) interference is a novel therapy to fight bacterial infections that, unlike conventional antibiotic treatments, is focused on reducing the damage caused by pathogens (virulence) rather than focused on inhibiting their growth. Given this ideal, it was predicted that this approach will be impervious to or at least much less prone to resistance in bacterial populations. However, recently, resistance mechanisms against well-characterized quorum quenchers (QQs) have been found in the laboratory as well as in clinical strains, demonstrating that the rise of resistance against these kinds of compounds is possible. Nevertheless, it has been argued that even if resistance mechanisms against QS interference exist, this fact does not guarantee that resistance will spread. In the present work, we discuss recent insights derived from the latest experiments to address this question. In addition, we explain how environmental conditions like the stress produced by the host immune system may influence the selection of resistance and eventually lead to the selection of QS interference-resistant bacteria in a clinical setting. PMID:26023871

  16. Novel quorum-sensing peptides mediating interspecies bacterial cell death.

    PubMed

    Kumar, Sathish; Kolodkin-Gal, Ilana; Engelberg-Kulka, Hanna

    2013-01-01

    ABSTRACT Escherichia coli mazEF is a toxin-antitoxin stress-induced module mediating cell death. It requires the quorum-sensing signal (QS) "extracellular death factor" (EDF), the penta-peptide NNWNN (EcEDF), enhancing the endoribonucleolytic activity of E. coli toxin MazF. Here we discovered that E. coli mazEF-mediated cell death could be triggered by QS peptides from the supernatants (SN) of the Gram-positive bacterium Bacillus subtilis and the Gram-negative bacterium Pseudomonas aeruginosa. In the SN of B. subtilis, we found one EDF, the hexapeptide RGQQNE, called BsEDF. In the SN of P. aeruginosa, we found three EDFs: the nonapeptide INEQTVVTK, called PaEDF-1, and two hexadecapeptides, VEVSDDGSGGNTSLSQ, called PaEDF-2, and APKLSDGAAAGYVTKA, called PaEDF-3. When added to a diluted E. coli cultures, each of these peptides acted as an interspecies EDF that triggered mazEF-mediated death. Furthermore, though their sequences are very different, each of these EDFs amplified the endoribonucleolytic activity of E. coli MazF, probably by interacting with different sites on E. coli MazF. Finally, we suggest that EDFs may become the basis for a new class of antibiotics that trigger death from outside the bacterial cells. IMPORTANCE Bacteria communicate with one another via quorum-sensing signal (QS) molecules. QS provides a mechanism for bacteria to monitor each other's presence and to modulate gene expression in response to population density. Previously, we added E. coli EDF (EcEDF), the peptide NNWNN, to this list of QS molecules. Here we extended the group of QS peptides to several additional different peptides. The new EDFs are produced by two other bacteria, Bacillus subtilis and Pseudomonas aeruginosa. Thus, in this study we established a "new family of EDFs." This family provides the first example of quorum-sensing molecules participating in interspecies bacterial cell death. Furthermore, each of these peptides provides the basis of a new class of antibiotics triggering death by acting from outside the cell. PMID:23736285

  17. Composition, anti-quorum sensing and antimicrobial activity of essential oils from Lippia alba.

    PubMed

    Olivero-Verbel, Jesus; Barreto-Maya, Ana; Bertel-Sevilla, Angela; Stashenko, Elena E

    2014-01-01

    Many Gram-negative pathogens have the ability to produce N-acylhomoserine lactones (AHLs) as signal molecules for quorum sensing (QS). This cell-cell communication system allows them to coordinate gene expression and regulate virulence. Strategies to inhibit QS are promising for the control of infectious diseases or antibiotic resistant bacterial pathogens. The aim of the present study was to evaluate the anti-quorum sensing (anti-QS) and antibacterial potential of five essential oils isolated from Lippia alba on the Tn-5 mutant of Chromobacterium violaceum CV026, and on the growth of the gram-positive bacteria S. aureus ATCC 25923. The anti-QS activity was detected through the inhibition of the QS-controlled violacein pigment production by the sensor bacteria. Results showed that two essential oils from L. alba, one containing the greatest geranial:neral and the other the highest limonene:carvone concentrations, were the most effective QS inhibitors. Both oils also had small effects on cell growth. Moreover, the geranial/neral chemotype oil also produced the maximum zone of growth inhibition against S. aureus ATCC 25923. These data suggest essential oils from L. alba have promising properties as QS modulators, and present antibacterial activity on S. aureus. PMID:25477905

  18. Hydnophytum formicarum Jack ethanol extract modulates quorum sensing-controlled pathogenicity in Pseudomonas aeruginosa.

    PubMed

    Hertiani, Triana; Pratiwi, Sylvia Utami Tunjung

    2015-09-01

    The discovery of new mechanism to control microbial pathogenicity by quorum sensing modulation has generated the search for quorum sensing inhibitor from natural resources. The objective of this research was to evaluate the ability of Hydnophytum formicarum Jack (Rubiaceae) ethanol extract to antagonize cell-to cell communication. Pulverized H. formicarum tuber was macerated in ethyl alcohol 96% and evaporated to yield ethanol extract. A dillution technique using Luria-Bertani (LB) medium was used to observe the capability of the extract to reduce the violacein production in Chromobacterium violaceum. Samples in two-fold dilution were prepared to obtain 2 - 0.0625 mg/mL concentration. The effects on swimming, swarming and twitching motility as well as the formation of biofilm towards Pseudomonas aeruginosa PAO1 were recorded over control. All experiments were done in triplicate. The architecture of Ps. aeruginosa biofilm treated with samples was examined by CLSM (Confocal Laser Scanning Microscopy) . Our results suggested that the ethanol extract of H. formicarum caused violacein production inhibition. Furthermore, inhibition of Ps. aeruginosa motility and biofilm formation were recorded to be significant over control in a concentration dependent manner. H. formicarum serves as a potential source for new QS-based antibacterial drugs towards Ps. aeruginosa. PMID:26408889

  19. Composition, anti-quorum sensing and antimicrobial activity of essential oils from Lippia alba

    PubMed Central

    Olivero-Verbel, Jesus; Barreto-Maya, Ana; Bertel-Sevilla, Angela; Stashenko, Elena E.

    2014-01-01

    Many Gram-negative pathogens have the ability to produce N-acylhomoserine lactones (AHLs) as signal molecules for quorum sensing (QS). This cell-cell communication system allows them to coordinate gene expression and regulate virulence. Strategies to inhibit QS are promising for the control of infectious diseases or antibiotic resistant bacterial pathogens. The aim of the present study was to evaluate the anti-quorum sensing (anti-QS) and antibacterial potential of five essential oils isolated from Lippia alba on the Tn-5 mutant of Chromobacterium violaceum CV026, and on the growth of the gram-positive bacteria S. aureus ATCC 25923. The anti-QS activity was detected through the inhibition of the QS-controlled violacein pigment production by the sensor bacteria. Results showed that two essential oils from L. alba, one containing the greatest geranial:neral and the other the highest limonene:carvone concentrations, were the most effective QS inhibitors. Both oils also had small effects on cell growth. Moreover, the geranial/neral chemotype oil also produced the maximum zone of growth inhibition against S. aureus ATCC 25923. These data suggest essential oils from L. alba have promising properties as QS modulators, and present antibacterial activity on S. aureus. PMID:25477905

  20. Acyl-Homoserine Lactone Quorum Sensing in the Roseobacter Clade

    PubMed Central

    Zan, Jindong; Liu, Yue; Fuqua, Clay; Hill, Russell T.

    2014-01-01

    Members of the Roseobacter clade are ecologically important and numerically abundant in coastal environments and can associate with marine invertebrates and nutrient-rich marine snow or organic particles, on which quorum sensing (QS) may play an important role. In this review, we summarize current research progress on roseobacterial acyl-homoserine lactone-based QS, particularly focusing on three relatively well-studied representatives, Phaeobacter inhibens DSM17395, the marine sponge symbiont Ruegeria sp. KLH11 and the dinoflagellate symbiont Dinoroseobacter shibae. Bioinformatic survey of luxI homologues revealed that over 80% of available roseobacterial genomes encode at least one luxI homologue, reflecting the significance of QS controlled regulatory pathways in adapting to the relevant marine environments. We also discuss several areas that warrant further investigation, including studies on the ecological role of these diverse QS pathways in natural environments. PMID:24402124

  1. The hierarchy quorum sensing network in Pseudomonas aeruginosa.

    PubMed

    Lee, Jasmine; Zhang, Lianhui

    2015-01-01

    Pseudomonas aeruginosa causes severe and persistent infections in immune compromised individuals and cystic fibrosis sufferers. The infection is hard to eradicate as P. aeruginosa has developed strong resistance to most conventional antibiotics. The problem is further compounded by the ability of the pathogen to form biofilm matrix, which provides bacterial cells a protected environment withstanding various stresses including antibiotics. Quorum sensing (QS), a cell density-based intercellular communication system, which plays a key role in regulation of the bacterial virulence and biofilm formation, could be a promising target for developing new strategies against P. aeruginosa infection. The QS network of P. aeruginosa is organized in a multi-layered hierarchy consisting of at least four interconnected signaling mechanisms. Evidence is accumulating that the QS regulatory network not only responds to bacterial population changes but also could react to environmental stress cues. This plasticity should be taken into consideration during exploration and development of anti-QS therapeutics. PMID:25249263

  2. Quorum Sensing Activity of Hafnia alvei Isolated from Packed Food

    PubMed Central

    Tan, Jia-Yi; Yin, Wai-Fong; Chan, Kok-Gan

    2014-01-01

    Quorum sensing (QS) is a mechanism adopted by bacteria to regulate expression of genes according to population density. N-acylhomoserine lactones (AHLs) are a type of QS signalling molecules commonly found in Gram-negative bacteria which have been reported to play a role in microbial spoilage of foods and pathogenesis. In this study, we isolated an AHL-producing Hafnia alvei strain (FB1) from spherical fish pastes. Analysis via high resolution triple quadrupole liquid chromatography/mass spectrometry (LC/MS) on extracts from the spent supernatant of H. alvei FB1 revealed the existence of two short chain AHLs: N-(3-oxohexanoyl) homoserine lactone (3-oxo-C6-HSL) and N-(3-oxo- octanoyl) homoserine lactone (3-oxo-C8-HSL). To our knowledge, this is the first report of the production of AHLs, especially 3-oxo-C8-HSL, by H. alvei. PMID:24736131

  3. Individual-based model for quorum sensing with background flow.

    PubMed

    Uecker, Hannes; Uecke, Hannes; Müller, Johannes; Hense, Burkhard A

    2014-07-01

    Quorum sensing is a wide-spread mode of cell-cell communication among bacteria in which cells release a signalling substance at a low rate. The concentration of this substance allows the bacteria to gain information about population size or spatial confinement. We consider a model for N cells which communicate with each other via a signalling substance in a diffusive medium with a background flow. The model consists of an initial boundary value problem for a parabolic PDE describing the exterior concentration u of the signalling substance, coupled with N ODEs for the masses ai of the substance within each cell. The cells are balls of radius R in R3, and under some scaling assumptions we formally derive an effective system of N ODEs describing the behaviour of the cells. The reduced system is then used to study the effect of flow on communication in general, and in particular for a number of geometric configurations. PMID:24849771

  4. Modeling a synthetic multicellular clock: Repressilators coupled by quorum sensing

    NASA Astrophysics Data System (ADS)

    Garcia-Ojalvo, Jordi; Elowitz, Michael B.; Strogatz, Steven H.

    2004-07-01

    Diverse biochemical rhythms are generated by thousands of cellular oscillators that somehow manage to operate synchronously. In fields ranging from circadian biology to endocrinology, it remains an exciting challenge to understand how collective rhythms emerge in multicellular structures. Using mathematical and computational modeling, we study the effect of coupling through intercell signaling in a population of Escherichia coli cells expressing a synthetic biological clock. Our results predict that a diverse and noisy community of such genetic oscillators interacting through a quorum-sensing mechanism should self-synchronize in a robust way, leading to a substantially improved global rhythmicity in the system. As such, the particular system of coupled genetic oscillators considered here might be a good candidate to provide the first quantitative example of a synchronization transition in a population of biological oscillators.

  5. Quorum-sensing regulation in staphylococci—an overview

    PubMed Central

    Le, Katherine Y.; Otto, Michael

    2015-01-01

    Staphylococci are frequent human commensals and some species can cause disease. Staphylococcus aureus in particular is a dangerous human pathogen. In staphylococci, the ability to sense the bacterial cell density, or quorum, and to respond with genetic adaptations is due to one main system, which is called accessory gene regulator (Agr). The extracellular signal of Agr is a post-translationally modified peptide containing a thiolactone structure. Under conditions of high cell density, Agr is responsible for the increased expression of many toxins and degradative exoenzymes, and decreased expression of several colonization factors. This regulation is important for the timing of virulence factor expression during infection and the development of acute disease, while low activity of Agr is associated with chronic staphylococcal infections, such as those involving biofilm formation. Accordingly, drugs inhibiting Agr are being evaluated for their capacity to control acute forms of S. aureus infection. PMID:26579084

  6. Bacterial autoinducer-2 detection via an engineered quorum sensing protein.

    PubMed

    Raut, Nilesh; Joel, Smita; Pasini, Patrizia; Daunert, Sylvia

    2015-03-01

    Autoinducer-2 (AI-2) is a Quorum Sensing (QS) molecule utilized by bacteria in interspecies communication. More recently, it is identified to be vital in regulating QS pathways in a number of human and foodborne pathogens. Methods to detect AI-2 in a rapid and highly sensitive manner can help in the early detection of bacterial infections. Herein, we describe a rapid, selective, and highly sensitive protein based biosensing system employing the Fluorescence Resonance Energy Transfer (FRET) between a protein fusion LuxP-EGFP and 7-diethylamino-3-[N-(2-maleimidoethyl)carbamoyl]coumarin (MDCC). The developed biosensing system, which can detect AI-2 at subnanomolar levels, was successfully applied to detect AI-2 in clinical samples such as saliva and blood serum. PMID:25654248

  7. Quorum sensing activity of Hafnia alvei isolated from packed food.

    PubMed

    Tan, Jia-Yi; Yin, Wai-Fong; Chan, Kok-Gan

    2014-01-01

    Quorum sensing (QS) is a mechanism adopted by bacteria to regulate expression of genes according to population density. N-acylhomoserine lactones (AHLs) are a type of QS signalling molecules commonly found in Gram-negative bacteria which have been reported to play a role in microbial spoilage of foods and pathogenesis. In this study, we isolated an AHL-producing Hafnia alvei strain (FB1) from spherical fish pastes. Analysis via high resolution triple quadrupole liquid chromatography/mass spectrometry (LC/MS) on extracts from the spent supernatant of H. alvei FB1 revealed the existence of two short chain AHLs: N-(3-oxohexanoyl) homoserine lactone (3-oxo-C6-HSL) and N-(3-oxo- octanoyl) homoserine lactone (3-oxo-C8-HSL). To our knowledge, this is the first report of the production of AHLs, especially 3-oxo-C8-HSL, by H. alvei. PMID:24736131

  8. Crowd Synchrony and Quorum Sensing in Delay-Coupled Lasers

    NASA Astrophysics Data System (ADS)

    Zamora-Munt, Jordi; Masoller, C.; Garcia-Ojalvo, Jordi; Roy, Rajarshi

    2010-12-01

    Crowd synchrony and quorum sensing arise when a large number of dynamical elements communicate with each other via a common information pool. Previous evidence has shown that this type of coupling leads to synchronization, when coupling is instantaneous and the number of coupled elements is large enough. Here we consider a situation in which the transmission of information between the system components and the coupling pool is not instantaneous. To that end, we model a system of semiconductor lasers optically coupled to a central laser with a delay. Our results show that, even though the lasers are nonidentical due to their distinct optical frequencies, zero-lag synchronization arises. By changing a system parameter, we can switch between two different types of synchronization transition. The dependence of the transition with respect to the delay-coupling parameters is studied.

  9. Studying bacterial quorum-sensing at the single cell level

    NASA Astrophysics Data System (ADS)

    Delfino Perez, Pablo; Pelakh, Leslie; Young, Jonathan; Johnson, Elaine; Hagen, Stephen

    2010-03-01

    Like many bacterial species, Vibrio fischeri can detect its own population density through a quorum sensing (QS) mechanism. The bacterium releases a signal molecule (AI, autoinducer), which accumulates at high population density and triggers a genetic switch. In V.fischeri this leads to bioluminescence. Little is known about how stochastic gene expression affects QS at the level of single cells. We are imaging the luminescence of individual V.fischeri cells in a flow chamber and directly measuring the intercell variability in AI activation of the QS circuit. Our single-cell luminescence experiments allow us to track cells over time and characterize variations in their response to AI levels. We find heterogeneous response to the external signal: at a given AI concentration some cells may be strongly luminescent while others are virtually dark. The analysis of noise in the individual cell response can eventually lead to a better understanding of how cells use QS to gather information about their environment.

  10. Structural Basis for Bacterial Quorum Sensing-mediated Oxalogenesis*

    PubMed Central

    Oh, Juntaek; Goo, Eunhye; Hwang, Ingyu; Rhee, Sangkee

    2014-01-01

    The Burkholderia species utilize acetyl-CoA and oxaloacetate, substrates for citrate synthase in the TCA cycle, to produce oxalic acid in response to bacterial cell to cell communication, called quorum sensing. Quorum sensing-mediated oxalogenesis via a sequential reaction by ObcA and ObcB counteracts the population-collapsing alkaline pH of the stationary growth phase. Thus, the oxalic acid produced plays an essential role as an excreted public good for survival of the group. Here, we report structural and functional analyses of ObcA, revealing mechanistic features distinct from those of citrate synthase. ObcA exhibits a unique fold, in which a (?/?)8-barrel fold is located in the C-domain with the N-domain inserted into a loop following ?1 in the barrel fold. Structural analyses of the complexes with oxaloacetate and with a bisubstrate adduct indicate that each of the oxaloacetate and acetyl-CoA substrates is bound to an independent site near the metal coordination shell in the barrel fold. In catalysis, oxaloacetate serves as a nucleophile by forming an enolate intermediate mediated by Tyr322 as a general base, which then attacks the thioester carbonyl carbon of acetyl-CoA to yield a tetrahedral adduct between the two substrates. Therefore, ObcA catalyzes its reaction by combining the enolase and acetyltransferase superfamilies, but the presence of the metal coordination shell and the absence of general acid(s) produces an unusual tetrahedral CoA adduct as a stable product. These results provide the structural basis for understanding the first step in oxalogenesis and constitute an example of the functional diversity of an enzyme for survival and adaptation in the environment. PMID:24616091

  11. Bacterial attraction and quorum sensing inhibition in Caenorhabditis elegans exudates.

    PubMed

    Kaplan, Fatma; Badri, Dayakar V; Zachariah, Cherian; Ajredini, Ramadan; Sandoval, Francisco J; Roje, Sanja; Levine, Lanfang H; Zhang, Fengli; Robinette, Steven L; Alborn, Hans T; Zhao, Wei; Stadler, Michael; Nimalendran, Rathika; Dossey, Aaron T; Brüschweiler, Rafael; Vivanco, Jorge M; Edison, Arthur S

    2009-08-01

    Caenorhabditis elegans, a bacterivorous nematode, lives in complex rotting fruit, soil, and compost environments, and chemical interactions are required for mating, monitoring population density, recognition of food, avoidance of pathogenic microbes, and other essential ecological functions. Despite being one of the best-studied model organisms in biology, relatively little is known about the signals that C. elegans uses to interact chemically with its environment or as defense. C. elegans exudates were analyzed by using several analytical methods and found to contain 36 common metabolites that include organic acids, amino acids, and sugars, all in relatively high abundance. Furthermore, the concentrations of amino acids in the exudates were dependent on developmental stage. The C. elegans exudates were tested for bacterial chemotaxis using Pseudomonas putida (KT2440), a plant growth promoting rhizobacterium, Pseudomonas aeruginosa (PAO1), a soil bacterium pathogenic to C. elegans, and Escherichia coli (OP50), a non-motile bacterium tested as a control. The C. elegans exudates attracted the two Pseudomonas species, but had no detectable antibacterial activity against P. aeruginosa. To our surprise, the exudates of young adult and adult life stages of C. elegans exudates inhibited quorum sensing in the reporter system based on the LuxR bacterial quorum sensing (QS) system, which regulates bacterial virulence and other factors in Vibrio fischeri. We were able to fractionate the QS inhibition and bacterial chemotaxis activities, thus demonstrating that these activities are chemically distinct. Our results demonstrate that C. elegans can attract its bacterial food and has the potential of partially regulating the virulence of bacterial pathogens by inhibiting specific QS systems. PMID:19649780

  12. BACTERIAL ATTRACTION AND QUORUM SENSING INHIBITION IN CAENORHABDITIS ELEGANS EXUDATES

    PubMed Central

    KAPLAN, FATMA; BADRI, DAYAKAR V.; ZACHARIAH, CHERIAN; AJREDINI, RAMADAN; SANDOVAL, FRANCISCO J; ROJE, SANJA; LEVINE, LANFANG H.; ZHANG, FENGLI; ROBINETTE, STEVEN L.; ALBORN, HANS T.; ZHAO, WEI; STADLER, MICHAEL; NIMALENDRAN, RATHIKA; DOSSEY, AARON T.; BRÜSCHWEILER, RAFAEL; VIVANCO, JORGE M.; EDISON, ARTHUR S.

    2014-01-01

    Caenorhabditis elegans, a bacterivorous nematode, lives in complex rotting fruit, soil, and compost environments, and chemical interactions are required for mating, monitoring population density, recognition of food, avoidance of pathogenic microbes, and other essential ecological functions. Despite being one of the best-studied model organisms in biology, relatively little is known about the signals that C. elegans uses to chemically interact with its environment or as defense. C. elegans exudates were analyzed using several analytical methods and found to contain 36 common metabolites including organic acids, amino acids and sugars, all in relatively high abundance. Furthermore, the concentrations of amino acids in the exudates were dependent on developmental stage. The C. elegans exudates were tested for bacterial chemotaxis using Pseudomonas putida (KT2440), a plant growth promoting rhizobacterium, Pseudomonas aeruginosa (PAO1), a soil bacterium pathogenic to C. elegans, and E. coli (OP50), a non-motile bacterium tested as a control. The C. elegans exudates attracted the two Psuedomonas species, but had no detectable antibacterial activity against P. aeruginosa. To our surprise, the exudates of young adult and adult life stages of C. elegans exudates inhibited quorum sensing in the reporter system based on the LuxR bacterial quorum sensing (QS) system, which regulates bacterial virulence and other factors in Vibrio fischeri. We were able to fractionate the QS inhibition and bacterial chemotaxis activities, demonstrating that these activities are chemically distinct. Our results demonstrate that C. elegans can attract its bacterial food and has the potential of partially regulating the virulence of bacterial pathogens by inhibiting specific QS systems. PMID:19649780

  13. Bacteria clustering by polymers induces the expression of quorum sense controlled phenotypes

    PubMed Central

    Lui, Leong T.; Xue, Xuan; Sui, Cheng; Brown, Alan; Pritchard, David I.; Halliday, Nigel; Winzer, Klaus; Howdle, Steven M.; Fernandez-Trillo, Francisco; Krasnogor, Natalio; Alexander, Cameron

    2014-01-01

    Bacteria deploy a range of chemistries to regulate their behaviour and respond to their environment. Quorum sensing is one mean by which bacteria use chemical reactions to modulate pre-infection behaviour such as surface attachment. Polymers that can interfere with bacterial adhesion or the chemical reactions used for quorum sensing are thus a potential means to control bacterial population responses. Here we report how polymeric “bacteria sequestrants”, designed to bind to bacteria through electrostatic interactions and thus inhibit bacterial adhesion to surfaces, induce the expression of quorum sensing controlled phenotypes as a consequence of cell clustering. A combination of polymer and analytical chemistry, biological assays and computational modelling has been used to characterise the feedback between bacteria clustering and quorum sensing signaling. We have also derived design principles and chemical strategies for controlling bacterial behaviour at the population level. PMID:24256871

  14. Bacteria clustering by polymers induces the expression of quorum-sensing-controlled phenotypes

    NASA Astrophysics Data System (ADS)

    Lui, Leong T.; Xue, Xuan; Sui, Cheng; Brown, Alan; Pritchard, David I.; Halliday, Nigel; Winzer, Klaus; Howdle, Steven M.; Fernandez-Trillo, Francisco; Krasnogor, Natalio; Alexander, Cameron

    2013-12-01

    Bacteria deploy a range of chemistries to regulate their behaviour and respond to their environment. Quorum sensing is one method by which bacteria use chemical reactions to modulate pre-infection behaviour such as surface attachment. Polymers that can interfere with bacterial adhesion or the chemical reactions used for quorum sensing are therefore a potential means to control bacterial population responses. Here, we report how polymeric ‘bacteria sequestrants’, designed to bind to bacteria through electrostatic interactions and therefore inhibit bacterial adhesion to surfaces, induce the expression of quorum-sensing-controlled phenotypes as a consequence of cell clustering. A combination of polymer and analytical chemistry, biological assays and computational modelling has been used to characterize the feedback between bacteria clustering and quorum sensing signalling. We have also derived design principles and chemical strategies for controlling bacterial behaviour at the population level.

  15. A generic metric to quantify quorum sensing activation dynamics

    PubMed Central

    Pai, Anand; Srimani, Jaydeep K; Tanouchi, Yu; You, Lingchong

    2014-01-01

    Quorum sensing (QS) enables bacteria to sense and respond to changes in their population density. It plays a critical role in controlling different biological functions, including bioluminescence and bacterial virulence. It has also between widely adapted to program robust dynamics in one or multiple cellular populations. While QS systems across bacteria all appear to function similarly – as density-dependent control systems, there is tremendous diversity among these systems in terms of signaling components and network architectures. This diversity hampers efforts to quantify the general control properties of QS. For a specific QS module, it remains unclear how to most effectively characterize its regulatory properties, in a manner that allows quantitative predictions of the activation dynamics of the target gene. Using simple kinetic models, here we show that the dominant temporal dynamics of QS-controlled target activation can be captured by a generic metric, ‘sensing potential’, defined at a single time point. We validate these predictions using synthetic QS circuits in Escherichia coli. Our work provides a computational framework and experimental methodology to characterize diverse natural QS systems and provides a concise yet quantitative criterion for selecting or optimizing a QS system for synthetic biology applications. PMID:24011134

  16. Plant-Derived Natural Products as Sources of Anti-Quorum Sensing Compounds

    PubMed Central

    Koh, Chong-Lek; Sam, Choon-Kook; Yin, Wai-Fong; Tan, Li Ying; Krishnan, Thiba; Chong, Yee Meng; Chan, Kok-Gan

    2013-01-01

    Quorum sensing is a system of stimuli and responses in relation to bacterial cell population density that regulates gene expression, including virulence determinants. Consequently, quorum sensing has been an attractive target for the development of novel anti-infective measures that do not rely on the use of antibiotics. Anti-quorum sensing has been a promising strategy to combat bacterial infections as it is unlikely to develop multidrug resistant pathogens since it does not impose any selection pressure. A number of anti-quorum sensing approaches have been documented and plant-based natural products have been extensively studied in this context. Plant matter is one of the major sources of chemicals in use today in various industries, ranging from the pharmaceutical, cosmetic, and food biotechnology to the textile industries. Just like animals and humans, plants are constantly exposed to bacterial infections, it is therefore logical to expect that plants have developed sophisticated of chemical mechanisms to combat pathogens. In this review, we have surveyed the various types of plant-based natural products that exhibit anti-quorum sensing properties and their anti-quorum sensing mechanisms. PMID:23669710

  17. Quorum Sensing: An Under-Explored Phenomenon in the Phylum Actinobacteria.

    PubMed

    Polkade, Ashish V; Mantri, Shailesh S; Patwekar, Umera J; Jangid, Kamlesh

    2016-01-01

    Quorum sensing is known to play a major role in the regulation of secondary metabolite production, especially, antibiotics, and morphogenesis in the phylum Actinobacteria. Although it is one of the largest bacterial phylum, only 25 of the 342 genera have been reported to use quorum sensing. Of these, only nine have accompanying experimental evidence; the rest are only known through bioinformatic analysis of gene/genome sequences. It is evident that this important communication mechanism is not extensively explored in Actinobacteria. In this review, we summarize the different quorum sensing systems while identifying the limitations of the existing screening strategies and addressing the improvements that have taken place in this field in recent years. The ?-butyrolactone system turned out to be almost exclusively limited to this phylum. In addition, methylenomycin furans, AI-2 and other putative AHL-like signaling molecules are also reported in Actinobacteria. The lack of existing screening systems in detecting minute quantities and of a wider range of signaling molecules was a major reason behind the limited information available on quorum sensing in this phylum. However, recent improvements in screening strategies hold a promising future and are likely to increase the discovery of new signaling molecules. Further, the quorum quenching ability in many Actinobacteria has a great potential in controlling the spread of plant and animal pathogens. A systematic and coordinated effort is required to screen and exploit the enormous potential that quorum sensing in the phylum Actinobacteria has to offer for human benefit. PMID:26904007

  18. Quorum Sensing: An Under-Explored Phenomenon in the Phylum Actinobacteria

    PubMed Central

    Polkade, Ashish V.; Mantri, Shailesh S.; Patwekar, Umera J.; Jangid, Kamlesh

    2016-01-01

    Quorum sensing is known to play a major role in the regulation of secondary metabolite production, especially, antibiotics, and morphogenesis in the phylum Actinobacteria. Although it is one of the largest bacterial phylum, only 25 of the 342 genera have been reported to use quorum sensing. Of these, only nine have accompanying experimental evidence; the rest are only known through bioinformatic analysis of gene/genome sequences. It is evident that this important communication mechanism is not extensively explored in Actinobacteria. In this review, we summarize the different quorum sensing systems while identifying the limitations of the existing screening strategies and addressing the improvements that have taken place in this field in recent years. The γ-butyrolactone system turned out to be almost exclusively limited to this phylum. In addition, methylenomycin furans, AI-2 and other putative AHL-like signaling molecules are also reported in Actinobacteria. The lack of existing screening systems in detecting minute quantities and of a wider range of signaling molecules was a major reason behind the limited information available on quorum sensing in this phylum. However, recent improvements in screening strategies hold a promising future and are likely to increase the discovery of new signaling molecules. Further, the quorum quenching ability in many Actinobacteria has a great potential in controlling the spread of plant and animal pathogens. A systematic and coordinated effort is required to screen and exploit the enormous potential that quorum sensing in the phylum Actinobacteria has to offer for human benefit. PMID:26904007

  19. Impacts of quorum sensing on microbial metabolism and human health.

    PubMed

    Yong, Yang-Chun; Zhong, Jian-Jiang

    2013-01-01

    Bacteria were considered to be lonely 'mutes' for hundreds of years. However, recently it was found that bacteria usually coordinate their behaviors at the population level by producing (speaking), sensing (listening), and responding to small signal molecules. This so-called quorum sensing (QS) regulation enables bacteria to live in a 'society' with cell-cell communication and controls many important bacterial behaviors. In this chapter, QS systems and their signal molecules for Gram-negative and Gram-positive bacteria are introduced. Most interestingly, QS regulates the important bacterial behaviors such as metabolism and pathogenesis. QS-regulated microbial metabolism includes antibiotic synthesis, pollutant biodegradation, and bioenergy production, which are very relevant to human health. QS is also well-known for its involvement in bacterial pathogenesis, such as iin nfections by Pseudomonas aeruginosa and Staphylococcus aureus. Novel disease diagnosis strategies and antimicrobial agents have also been developed based on QS regulation on bacterial infections. In addition, to meet the requirements for the detection/quantification of QS signaling molecules for research and application, different biosensors have been constructed, which will also be reviewed here. QS regulation is essential to bacterial survival and important to human health. A better understanding of QS could lead better control/manipulation of bacteria, thus making them more helpful to people. PMID:22767136

  20. Inhibition of quorum sensing-mediated biofilm formation in Pseudomonas aeruginosa by a locally isolated Bacillus cereus.

    PubMed

    Wahman, Shaimaa; Emara, Mohamed; Shawky, Riham M; El-Domany, Ramadan A; Aboulwafa, Mohammad Mabrouk

    2015-12-01

    Quorum sensing has been shown to play a crucial role in Pseudomonas aeruginosa pathogenesis where it activates expression of myriad genes that regulate the production of important virulence factors such as biofilm formation. Antagonism of quorum sensing is an excellent target for antimicrobial therapy and represents a novel approach to combat drug resistance. In this study, Chromobacterium violaceum biosensor strain was employed as a fast, sensitive, reliable, and easy to use tool for rapid screening of soil samples for Quorum Sensing Inhibitors (QSI) and the optimal conditions for maximal QSI production were scrutinized. Screening of 127 soil isolates showed that 43 isolates were able to breakdown the HHL signal. Out of the 43 isolates, 38 isolates were able to inhibit the violet color of the biosensor and to form easily detectable zones of color inhibition around their growth. A confirmatory bioassay was carried out after concentrating the putative positive cell-free lysates. Three different isolates that belonged to Bacillus cereus group were shown to have QSI activities and their QSI activities were optimized by changing their culture conditions. Further experiments revealed that the cell-free lysates of these isolates were able to inhibit biofilm formation by P. aeruginosa clinical isolates. PMID:26288125

  1. Anti-quorum sensing potential of the mangrove Rhizophora annamalayana.

    PubMed

    Musthafa, Khadar Syed; Sahu, Sunil Kumar; Ravi, Arumugam Veera; Kathiresan, Kandasamy

    2013-10-01

    The present study was carried out to assess the anti-quorum sensing (anti-QS) activity of bark extract obtained from the mangrove plant Rhizophora annamalayana Kathir. against Gram-negative bacteria. In microtitre plate assay, the bark extract at a concentration of 1 mg/ml inhibited the QS-dependent violacein production in Chromobacterium violaceum ATCC 12472. Further, the QS-dependent bioluminescence production in the aquatic bacterial pathogen Vibrio harveyi MTCC 3438 was also reduced to the level of 99 % when treated with the same concentration of the extract. Gas chromatography-mass spectrum analysis identified the presence of seven different chemical constituents, 1H-purin-6-amine, cycloheptasiloxane, cyclooctasiloxane, cyclononasiloxane, cyclononasiloxane octadecamethyl, cyclodecasiloxane eicosamethyl and 1,1,1,5,7,7,7-heptamethyl-3,3-bis(trimethylsiloxy)tetrasiloxane. The molecular docking analysis of the identified compounds revealed that the compounds cyclononasiloxane octadecamethyl and cyclodecasiloxane eicosamethyl exhibited the best docking energy with the QS receptors of C. violaceum and V. harveyi with that of the natural ligand N -hexanoyl- L -homoserine lactone (C6-HSL) and furanosyl borate diester (AI-2). Similarly, another compound 1,1,1,5,7,7,7-heptamethyl-3,3-bis(trimethylsiloxy)tetrasiloxane showed best docking energy only against C6-HSL. Thus, the results of the present study divulge the activity of R. annamalayana bark extract to interfere with bacterial QS. PMID:23591758

  2. Mycofabricated biosilver nanoparticles interrupt Pseudomonas aeruginosa quorum sensing systems

    PubMed Central

    Singh, Braj R.; Singh, Brahma N.; Singh, Akanksha; Khan, Wasi; Naqvi, Alim H.; Singh, Harikesh B.

    2015-01-01

    Quorum sensing (QS) is a chemical communication process that Pseudomonas aeruginosa uses to regulate virulence and biofilm formation. Disabling of QS is an emerging approach for combating its pathogenicity. Silver nanoparticles (AgNPs) have been widely applied as antimicrobial agents against human pathogenic bacteria and fungi, but not for the attenuation of bacterial QS. Here we mycofabricated AgNPs (mfAgNPs) using metabolites of soil fungus Rhizopus arrhizus BRS-07 and tested their effect on QS-regulated virulence and biofilm formation of P. aeruginosa. Transcriptional studies demonstrated that mfAgNPs reduced the levels of LasIR-RhlIR. Treatment of mfAgNPs inhibited biofilm formation, production of several virulence factors (e.g. LasA protease, LasB elastrase, pyocyanin, pyoverdin, pyochelin, rhamnolipid, and alginate) and reduced AHLs production. Further genes quantification analyses revealed that mfAgNPs significantly down-regulated QS-regulated genes, specifically those encoded to the secretion of virulence factors. The results clearly indicated the anti-virulence property of mfAgNPs by inhibiting P. aeruginosa QS signaling. PMID:26347993

  3. Quorum-sensing and cheating in bacterial biofilms.

    PubMed

    Popat, Roman; Crusz, Shanika A; Messina, Marco; Williams, Paul; West, Stuart A; Diggle, Stephen P

    2012-12-01

    The idea from human societies that self-interest can lead to a breakdown of cooperation at the group level is sometimes termed the public goods dilemma. We tested this idea in the opportunistic bacterial pathogen, Pseudomonas aeruginosa, by examining the influence of putative cheats that do not cooperate via cell-to-cell signalling (quorum-sensing, QS). We found that: (i) QS cheating occurs in biofilm populations owing to exploitation of QS-regulated public goods; (ii) the thickness and density of biofilms was reduced by the presence of non-cooperative cheats; (iii) population growth was reduced by the presence of cheats, and this reduction was greater in biofilms than in planktonic populations; (iv) the susceptibility of biofilms to antibiotics was increased by the presence of cheats; and (v) coercing cooperator cells to increase their level of cooperation decreases the extent to which the presence of cheats reduces population productivity. Our results provide clear support that conflict over public goods reduces population fitness in bacterial biofilms, and that this effect is greater than in planktonic populations. Finally, we discuss the clinical implications that arise from altering the susceptibility to antibiotics. PMID:23034707

  4. Quorum-sensing Salmonella selectively trigger protein expression within tumors

    PubMed Central

    Swofford, Charles A.; Van Dessel, Nele; Forbes, Neil S.

    2015-01-01

    Salmonella that secrete anticancer proteins have the potential to eliminate tumors, but nonspecific expression causes damage to healthy tissue. We hypothesize that Salmonella, integrated with a density-dependent switch, would only express proteins in tightly packed colonies within tumors. To test this hypothesis, we cloned the lux quorum-sensing (QS) system and a GFP reporter into nonpathogenic Salmonella. Fluorescence and bacterial density were measured in culture and in a tumor-on-a-chip device to determine the critical density necessary to initiate expression. QS Salmonella were injected into 4T1 tumor-bearing mice to quantify GFP expression in vivo using immunofluorescence. At densities below 0.6 × 1010 cfu/g in tumors, less than 3% of QS Salmonella expressed GFP. Above densities of 4.2 × 1010 cfu/g, QS Salmonella had similar expression levels to constitutive controls. GFP expression by QS colonies was dependent upon the distance to neighboring bacteria. No colonies expressed GFP when the average distance to neighbors was greater than 155 µm. Calculations of autoinducer concentrations showed that expression was sigmoidally dependent on density and inversely dependent on average radial distance. Based on bacterial counts from excised tissue, the liver density (0.0079 × 1010 cfu/g) was less than the critical density (0.11 × 1010 cfu/g) necessary to initiate expression. QS Salmonella are a promising tool for cancer treatment that will target drugs to tumors while preventing damage to healthy tissue. PMID:25737556

  5. Quorum sensing and social networking in the microbial world

    PubMed Central

    Atkinson, Steve; Williams, Paul

    2009-01-01

    For many years, bacterial cells were considered primarily as selfish individuals, but, in recent years, it has become evident that, far from operating in isolation, they coordinate collective behaviour in response to environmental challenges using sophisticated intercellular communication networks. Cell-to-cell communication between bacteria is mediated by small diffusible signal molecules that trigger changes in gene expression in response to fluctuations in population density. This process, generally referred to as quorum sensing (QS), controls diverse phenotypes in numerous Gram-positive and Gram-negative bacteria. Recent advances have revealed that bacteria are not limited to communication within their own species but are capable of ‘listening in’ and ‘broadcasting to’ unrelated species to intercept messages and coerce cohabitants into behavioural modifications, either for the good of the population or for the benefit of one species over another. It is also evident that QS is not limited to the bacterial kingdom. The study of two-way intercellular signalling networks between bacteria and both uni- and multicellular eukaryotes as well as between eukaryotes is just beginning to unveil a rich diversity of communication pathways. PMID:19674996

  6. Bacterial quorum sensing and nitrogen cycling in rhizosphere soil

    SciTech Connect

    DeAngelis, K.M.; Lindow, S.E.; Firestone, M.K.

    2008-10-01

    Plant photosynthate fuels carbon-limited microbial growth and activity, resulting in increased rhizosphere nitrogen (N)-mineralization. Most soil organic N is macromolecular (chitin, protein, nucleotides); enzymatic depolymerization is likely rate-limiting for plant N accumulation. Analyzing Avena (wild oat) planted in microcosms containing sieved field soil, we observed increased rhizosphere chitinase and protease specific activities, bacterial cell densities, and dissolved organic nitrogen (DON) compared to bulk soil. Low-molecular weight DON (<3000 Da) was undetectable in bulk soil but comprised 15% of rhizosphere DON. Extracellular enzyme production in many bacteria requires quorum sensing (QS), cell-density dependent group behavior. Because proteobacteria are considered major rhizosphere colonizers, we assayed the proteobacterial QS signals acyl-homoserine lactones (AHLs), which were significantly increased in the rhizosphere. To investigate the linkage between soil signaling and N cycling, we characterized 533 bacterial isolates from Avena rhizosphere: 24% had chitinase or protease activity and AHL production; disruption of QS in 7 of 8 eight isolates disrupted enzyme activity. Many {alpha}-Proteobacteria were newly found with QS-controlled extracellular enzyme activity. Enhanced specific activities of N-cycling enzymes accompanied by bacterial density-dependent behaviors in rhizosphere soil gives rise to the hypothesis that QS could be a control point in the complex process of rhizosphere N-mineralization.

  7. Mycofabricated biosilver nanoparticles interrupt Pseudomonas aeruginosa quorum sensing systems.

    PubMed

    Singh, Braj R; Singh, Brahma N; Singh, Akanksha; Khan, Wasi; Naqvi, Alim H; Singh, Harikesh B

    2015-01-01

    Quorum sensing (QS) is a chemical communication process that Pseudomonas aeruginosa uses to regulate virulence and biofilm formation. Disabling of QS is an emerging approach for combating its pathogenicity. Silver nanoparticles (AgNPs) have been widely applied as antimicrobial agents against human pathogenic bacteria and fungi, but not for the attenuation of bacterial QS. Here we mycofabricated AgNPs (mfAgNPs) using metabolites of soil fungus Rhizopus arrhizus BRS-07 and tested their effect on QS-regulated virulence and biofilm formation of P. aeruginosa. Transcriptional studies demonstrated that mfAgNPs reduced the levels of LasIR-RhlIR. Treatment of mfAgNPs inhibited biofilm formation, production of several virulence factors (e.g. LasA protease, LasB elastrase, pyocyanin, pyoverdin, pyochelin, rhamnolipid, and alginate) and reduced AHLs production. Further genes quantification analyses revealed that mfAgNPs significantly down-regulated QS-regulated genes, specifically those encoded to the secretion of virulence factors. The results clearly indicated the anti-virulence property of mfAgNPs by inhibiting P. aeruginosa QS signaling. PMID:26347993

  8. Functions and regulation of quorum-sensing in Agrobacterium tumefaciens

    PubMed Central

    Lang, Julien; Faure, Denis

    2014-01-01

    In Agrobacterium tumefaciens, horizontal transfer and vegetative replication of oncogenic Ti plasmids involve a cell-to-cell communication process called quorum-sensing (QS). The determinants of the QS-system belong to the LuxR/LuxI class. The LuxI-like protein TraI synthesizes N-acyl-homoserine lactone molecules which act as diffusible QS-signals. Beyond a threshold concentration, these molecules bind and activate the LuxR-like transcriptional regulator TraR, thereby initiating the QS-regulatory pathway. For the last 20 years, A. tumefaciens has stood as a prominent model in the understanding of the LuxR/LuxI type of QS systems. A number of studies also unveiled features which are unique to A. tumefaciens QS, some of them being directly related to the phytopathogenic lifestyle of the bacteria. In this review, we will present the current knowledge of QS in A. tumefaciens at both the genetic and molecular levels. We will also describe how interactions with plant host modulate the QS pathway of A. tumefaciens, and discuss what could be the advantages for the agrobacteria to use such a tightly regulated QS-system to disseminate the Ti plasmids. PMID:24550924

  9. Virulence of Burkholderia mallei quorum-sensing mutants.

    PubMed

    Majerczyk, Charlotte; Kinman, Loren; Han, Tony; Bunt, Richard; Greenberg, E Peter

    2013-05-01

    Many Proteobacteria use acyl-homoserine lactone-mediated quorum-sensing (QS) to activate specific sets of genes as a function of cell density. QS often controls the virulence of pathogenic species, and in fact a previous study indicated that QS was important for Burkholderia mallei mouse lung infections. To gain in-depth information on the role of QS in B. mallei virulence, we constructed and characterized a mutant of B. mallei strain GB8 that was unable to make acyl-homoserine lactones. The QS mutant showed virulence equal to that of its wild-type parent in an aerosol mouse infection model, and growth in macrophages was indistinguishable from that of the parent strain. Furthermore, we assessed the role of QS in B. mallei ATCC 23344 by constructing and characterizing a mutant strain producing AiiA, a lactonase enzyme that degrades acyl-homoserine lactones. Although acyl-homoserine lactone levels in cultures of this strain are very low, it showed full virulence. Contrary to the previous report, we conclude that QS is not required for acute B. mallei infections of mice. QS may be involved in some stage of chronic infections in the natural host of horses, or the QS genes may be remnants of the QS network in B. pseudomallei from which this host-adapted pathogen evolved. PMID:23429539

  10. Quorum-Sensing Kinetics in Saccharomyces cerevisiae: A Symphony of ARO Genes and Aromatic Alcohols.

    PubMed

    Avbelj, Martina; Zupan, Jure; Kranjc, Luka; Raspor, Peter

    2015-09-30

    The kinetics of quorum sensing in Saccharomyces cerevisiae were studied using a mini-fermentation platform. The quorum-sensing molecules were monitored using our previous HPLC approach that is here supported by quantitative real-time PCR analysis of the quorum-sensing genes. We thus initially confirm correlations between peak production rates of the monitored quorum-sensing molecules 2-phenylethanol, tryptophol, and tyrosol and peak expression of the genes responsible for their synthesis: ARO8, ARO9, and ARO10. This confirms the accuracy of our previously implemented kinetic model, thus favoring its use in further studies in this field. We also show that the quorum-sensing kinetics are precisely dependent on the population growth phase and that tyrosol production is also regulated by cell concentration, which has not been reported previously. Additionally, we show that during wine fermentation, ethanol stress reduces the production of 2-phenylethanol, tryptophol, and tyrosol, which opens new challenges in the control of wine fermentation. PMID:26367540

  11. Type 2 quorum sensing monitoring, inhibition and biofilm formation in marine microrganisms.

    PubMed

    Liaqat, Iram; Bachmann, Robert Thomas; Edyvean, Robert G J

    2014-03-01

    The quorum sensing (QS) dependent behaviour of micro-organisms, in particular expression of virulence genes, biofilm formation and dispersal, have provided impetus for investigating practical approaches to interfere with microbial QS. This study tests Halomonas pacifica and Marinobacter hydrocarbonoclasticus, two halophilic marine micro-organism, for their AI-2 dependent QS signalling and the effect of two well-known quorum-sensing inhibitors (QSIs), patulin and penicillic acid, on biofilm formation. We report, for the first time, the successful amplification of a putative luxS gene in H. pacifica using degenerated primers and AI-2 dependent QS as well as inhibition using QSIs. Penicillic acid had a strong inhibitory effect on AI-2 induction of H. pacifica at non-growth inhibitory concentrations, while patulin has an adverse effect only at the highest concentration (25 μM). QSIs effect on biofilm forming capability was isolate specific, with maximum inhibition at 25 μM of patulin in H. pacifica. In M. hydrocarbonoclasticus, no adverse effects were noted at any tested concentration of either QSIs. Detection of bioluminescence and the presence of a putative luxS gene provide biochemical and genetic evidence for the production of a signalling molecule(s) which is the essential first step in characterizing H. pacifica QS. This study highlights the importance of AI-2 dependent QS in a marine setting, not previously reported. It further suggests that QSI compounds must be selected in the specific system in which they are to function, and they cannot easily be transferred from one QS system to another. PMID:24166155

  12. Quorum sensing inhibitory activities of surface immobilized antibacterial dihydropyrrolones via click chemistry.

    PubMed

    Ho, Kitty K K; Chen, Renxun; Willcox, Mark D P; Rice, Scott A; Cole, Nerida; Iskander, George; Kumar, Naresh

    2014-02-01

    Device-related infection remains a major barrier to the use of biomaterial implants as life-saving devices. This study aims to examine the effectiveness and mechanism of action of surface attached dihydropyrrolones (DHPs), a quorum sensing (QS) inhibitor, against bacterial colonization. DHPs were covalently attached on glass surfaces via copper-catalyzed azide-alkyne 1,3-dipolar cycloaddition (CuAAC) click reaction. The covalent attachment of DHP surfaces was confirmed by X-ray photoelectron spectroscopy (XPS) and contact angle measurements, and the antimicrobial efficacy of the DHP coatings was assessed by confocal laser scanning microscopy (CLSM) and image analysis. The results demonstrated that covalently bound DHP compounds are effective in reducing the adhesion by up to 97% (p < 0.05) for both Pseudomonas aeruginosa and Staphylococcus aureus. Furthermore, using the green fluorescent protein (Gfp)-based reporter technology, it is demonstrated that surface attached DHPs were able to repress the expression of a lasB-gfp reporter fusion of P. aeruginosa by 72% (p < 0.001) without affecting cell viability. This demonstrates the ability of the covalently bound QS inhibitor to inhibit QS and suggests the existence of a membrane-based pathway(s) for QS inhibition. Hence, strategies based on incorporation of QS inhibitors such as DHPs represent a potential approach for prevention of device-related infections. PMID:24345737

  13. The Role of the QseC Sensor Kinase in Salmonella enterica serovar Typhimurium Quorum Sensing and Swine Colonization

    Technology Transfer Automated Retrieval System (TEKTRAN)

    At least two quorum sensing molecules, autoinducer-3 (AI-3) and norepinephrine (NE), are present in the gastrointestinal tract and activate the E. coli QseBC quorum sensing system. AI-3 is produced by enteric bacteria, whereas NE is produced by the animal host, often during stress. Both 10% pre-co...

  14. Genome Sequence Analysis Reveals Evidence of Quorum-Sensing Genes Present in Aeromonas hydrophila strain KOR1, Isolated from a Mangrove Plant (Kandelia obovata).

    PubMed

    Yin, Mengqing; Ma, Zhiping; Cai, Zhonghua; Lin, Guanghui; Zhou, Jin

    2015-01-01

    Aeromonas hydrophila strain KOR1, isolated from mangrove rhizosphere soil, has the ability to produce the quorum-sensing signal molecule. Here, we report the 4.78-Mb genome sequence of strain KOR1, and found its quorum-sensing encoding gene LuxR. The data will be crucial to understanding the quorum-sensing-dependent phenotypes of this bacterium. PMID:26659690

  15. Genome Sequence Analysis Reveals Evidence of Quorum-Sensing Genes Present in Aeromonas hydrophila strain KOR1, Isolated from a Mangrove Plant (Kandelia obovata)

    PubMed Central

    Yin, Mengqing; Ma, Zhiping; Cai, Zhonghua

    2015-01-01

    Aeromonas hydrophila strain KOR1, isolated from mangrove rhizosphere soil, has the ability to produce the quorum-sensing signal molecule. Here, we report the 4.78-Mb genome sequence of strain KOR1, and found its quorum-sensing encoding gene LuxR. The data will be crucial to understanding the quorum-sensing-dependent phenotypes of this bacterium. PMID:26659690

  16. The Vibrio harveyi quorum-sensing system uses shared regulatory components to discriminate between multiple autoinducers

    PubMed Central

    Waters, Christopher M.; Bassler, Bonnie L.

    2006-01-01

    The quorum-sensing bacterium Vibrio harveyi produces and responds to three autoinducers (AIs), and this sensory information converges to control the expression of bioluminescence, biofilm formation, type III secretion (TTS), and protease production. The AIs are detected by cognate sensor histidine kinases that all relay phosphate to the shared response regulator LuxO. LuxO indirectly represses the master regulator of quorum sensing, LuxR, through the activation of multiple genes encoding small regulatory RNAs (called qrr genes for Quorum Regulatory RNA). Here we use differential fluorescence induction to identify 50 quorum-sensing-controlled promoters. Some promoters only showed significant responses in the simultaneous presence of all three AIs, while others displayed substantial responses to the individual AIs. A differential response to each AI input state was also observed for qrr and luxR expression and LuxR protein production. Individual cell analyses revealed that, in each case, all the bacteria in the population respond in unison to the various AI inputs. We propose that the V. harveyi quorum-sensing transition is not switch-like but rather operates in a graded manner, and that this signaling arrangement, which uses shared regulatory proteins, nonetheless provides V. harveyi a mechanism to respond uniquely to different AI input states. PMID:17015436

  17. Quorum Sensing Controls Swarming Motility of Burkholderia glumae through Regulation of Rhamnolipids

    PubMed Central

    Nickzad, Arvin; Lépine, François; Déziel, Eric

    2015-01-01

    Burkholderia glumae is a plant pathogenic bacterium that uses an acyl-homoserine lactone-mediated quorum sensing system to regulate protein secretion, oxalate production and major virulence determinants such as toxoflavin and flagella. B. glumae also releases surface-active rhamnolipids. In Pseudomonas aeruginosa and Burkholderia thailandensis, rhamnolipids, along with flagella, are required for the social behavior called swarming motility. In the present study, we demonstrate that quorum sensing positively regulates the production of rhamnolipids in B. glumae and that rhamnolipids are necessary for swarming motility also in this species. We show that a rhlA- mutant, which is unable to produce rhamnolipids, loses its ability to swarm, and that this can be complemented by providing exogenous rhamnolipids. Impaired rhamnolipid production in a quorum sensing-deficient B. glumae mutant is the main factor responsible for its defective swarming motility behaviour. PMID:26047513

  18. Quorum Sensing Controls Swarming Motility of Burkholderia glumae through Regulation of Rhamnolipids.

    PubMed

    Nickzad, Arvin; Lépine, François; Déziel, Eric

    2015-01-01

    Burkholderia glumae is a plant pathogenic bacterium that uses an acyl-homoserine lactone-mediated quorum sensing system to regulate protein secretion, oxalate production and major virulence determinants such as toxoflavin and flagella. B. glumae also releases surface-active rhamnolipids. In Pseudomonas aeruginosa and Burkholderia thailandensis, rhamnolipids, along with flagella, are required for the social behavior called swarming motility. In the present study, we demonstrate that quorum sensing positively regulates the production of rhamnolipids in B. glumae and that rhamnolipids are necessary for swarming motility also in this species. We show that a rhlA- mutant, which is unable to produce rhamnolipids, loses its ability to swarm, and that this can be complemented by providing exogenous rhamnolipids. Impaired rhamnolipid production in a quorum sensing-deficient B. glumae mutant is the main factor responsible for its defective swarming motility behaviour. PMID:26047513

  19. The effect of the chemical, biological, and physical environment on quorum sensing in structured microbial communities

    PubMed Central

    Horswill, Alexander R.; Stoodley, Paul; Stewart, Philip S.

    2006-01-01

    As researchers attempt to study quorum sensing in relevant clinical or environmental settings, it is apparent that many factors have the potential to affect signaling. These factors span a range of physical, chemical, and biological variables that can impact signal production, stability and distribution. Optimizing experimental systems to natural or clinical environments may be crucial for defining when and where quorum sensing occurs. These points are illustrated in our case study of S. aureus signaling in biofilms, where signal stability may be affected by the host environment. The basic signaling schemes have been worked out at the molecular level for a few of the major quorum-sensing systems. As these studies continue to refine our understanding of these mechanisms, an emerging challenge is to identify if and when the local environment can affect signaling. PMID:17047948

  20. Influence of polyphenols on bacterial biofilm formation and quorum-sensing.

    PubMed

    Huber, Birgit; Eberl, Leo; Feucht, Walter; Polster, Jürgen

    2003-01-01

    Many bacteria utilize sophisticated regulatory systems to ensure that some functions are only expressed when a particular population density has been reached. The term 'quorum-sensing' has been coined to describe this form of density-dependent gene regulation which relies on the production and perception of small signal molecules by bacterial cells. As in many pathogenic bacteria the production of virulence factors is quorum-sensing regulated, it has been suggested that this form of gene regulation allows the bacteria to remain invisible to the defence systems of the host until the population is sufficiently large to successfully establish the infection. Here we present first evidence that polyphenolic compounds can interfere with bacterial quorum-sensing. Since polyphenols are widely distributed in the plant kingdom, they may be important for promoting plant fitness. PMID:14713169

  1. Facultative cheating supports the coexistence of diverse quorum-sensing alleles.

    PubMed

    Pollak, Shaul; Omer-Bendori, Shira; Even-Tov, Eran; Lipsman, Valeria; Bareia, Tasneem; Ben-Zion, Ishay; Eldar, Avigdor

    2016-02-23

    Bacterial quorum sensing enables bacteria to cooperate in a density-dependent manner via the group-wide secretion and detection of specific autoinducer molecules. Many bacterial species show high intraspecific diversity of autoinducer-receptor alleles, called pherotypes. The autoinducer produced by one pherotype activates its coencoded receptor, but not the receptor of another pherotype. It is unclear what selection forces drive the maintenance of pherotype diversity. Here, we use the ComQXPA system of Bacillus subtilis as a model system, to show that pherotype diversity can be maintained by facultative cheating-a minority pherotype exploits the majority, but resumes cooperation when its frequency increases. We find that the maintenance of multiple pherotypes by facultative cheating can persist under kin-selection conditions that select against "obligate cheaters" quorum-sensing response null mutants. Our results therefore support a role for facultative cheating and kin selection in the evolution of quorum-sensing diversity. PMID:26787913

  2. The Effect of Magnetic Fields on the Quorum Sensing-Regulated Luminescence of Vibrio fischeri

    NASA Astrophysics Data System (ADS)

    Barron, Addie; Hagen, Steve; Son, Minjun

    2015-03-01

    Quorum sensing (QS) is a mechanism by which bacteria communicate through the secretion and detection of extracellular signaling molecules known as autoinducers. This research focuses on the quorum sensing regulated bioluminescence of Vibrio fischeri, a marine bacterium that lives in symbiosis with certain fish and squid species. Previous studies of V. harveyi, a close relative of V. fisheri, indicate that a strong magnetic field has a positive effect on V.harveyi bioluminescence. However the effect of magnetic fields on quorum sensing-regulated luminescence is in general poorly understood. We grew V. fischeri in solid and liquid growth media, subject to strong static magnetic fields, and imaged the bioluminescence over a period of forty-eight hours. Luminescence patterns were analyzed in both the spatial and time dimensions. We find no indication that a magnetic field influences Vibrio fischeri luminescence either positively or negatively. This research was funded by the Grant Number NSF DMR-1156737.

  3. Anti-quorum sensing potential of Adenanthera pavonina

    PubMed Central

    Vasavi, Halkare Suryanarayana; Arun, Ananthapadmanabha Bhagwath; Rekha, Punchappady-Devasya

    2015-01-01

    Background: Quorum sensing (QS) in Pseudomonas aeruginosa plays a key role in virulence factor production, biofilm formation and antimicrobial resistance. Because of emerging antimicrobial resistance in P. aeruginosa, there is a need to find an alternate nonantibiotic agent for the control of infections caused by this organism. Objective: To evaluate anti-QS activity of Adenanthera pavonina L., a medicinal plant used in traditional medicine. Materials and Methods: Preliminary screening for anti-QS activity of ethanol extract of A. pavonina was carried out using Chromobacterium violaceum CV026 biosensor strain and inhibition of QS-regulated violacein production was quantified using C. violaceum ATCC12472. Bioassay guided fractionation of ethanol extract resulted in ethyl acetate fraction (AEF) with strong anti-QS activity and AEF was evaluated for inhibition of QS-regulated pyocyanin production, proteolytic, elastolytic activity, swarming motility and biofilm formation in P. aeruginosa PAO1. Results: AEF, at 0.5 mg/ml, inhibited pyocyanin production completely and at 1 mg/ml of AEF, complete inhibition of proteolytic and elastolytic activities were observed. However, viability of P. aeruginosa PAO1 was not affected at the tested concentrations of AEF as observed by cell count. Swarming motility was inhibited at the concentration of 0.1 mg/ml of AEF. Thin layer chromatography and biosensor overlay of AEF showed violacein inhibition zone at Rf value 0.63. Conclusion: From the results of this study, it can be concluded that A. pavonina extracts can be used as effective anti-QS agents. PMID:25598643

  4. [Construct a molecular switch based on bacterial quorum sensing].

    PubMed

    Zhang, Zhiwei; Wu, Sheng

    2013-09-01

    Engineering the existing or manual assembling biosynthetic pathways involves two important issues: the activity and expression level of key enzymes in the pathway. Concerning the enzyme expression study, the conventional approach is to use strong promoter to initiate the overexpression of the target protein. The excessive expression of the target protein usually result in the intracellular accumulation of a large number of inactive inclusion bodies, thereby seriously affect the physiological state of the cell and the effective functioning of the relevant biological pathways. To solve this problem, we would like to design a molecular switch to precisely manipulate the expression level of key enzymes in the biosynthetic process, which has important practical value for the study of metabolic rhythm of the biosynthetic pathway and to promote the efficiency of the biosynthetic pathway. Based on the basic principles of quorum sensing existing in the bacterial community and combining the dynamic characteristics of the enzymatic catalysis, we first established cell-cell communication mechanisms mediated by signal molecule homoserine lactone (AHL) in the E. coli community and target protein EGFP was expressed under the control of the promoter P(lux1). In the process of cell growth, AHL accumulated to a certain concentration to start the expression of target gene egfp. At the different cell growth stages, AHL-degrading enzyme AiiA was induced and resulted in the degradation of AHL molecule in a controlled environment, thereby controlling the transcription efficiency of target gene egfp and ultimately achieve the precise control of the level of expression of the target protein EGFP. The detection of cell growth state, the mRNA level and protein expression level of the target gene showed the artificially designed molecular switch can control the level of expression of a target gene in a convenient and efficient manner with a spatial and temporal regulation of rigor. The molecular switch is expected to be widely used in the field of metabolic engineering and synthetic biology research areas. PMID:24409693

  5. N-Acyl Homoserine Lactone-Mediated Quorum Sensing with Special Reference to Use of Quorum Quenching Bacteria in Membrane Biofouling Control

    PubMed Central

    Paul, Diby

    2014-01-01

    Membrane biofouling remains a severe problem to be addressed in wastewater treatment systems affecting reactor performance and economy. The finding that many wastewater bacteria rely on N-acyl homoserine lactone-mediated quorum sensing to synchronize their activities essential for biofilm formations; the quenching bacterial quorum sensing suggests a promising approach for control of membrane biofouling. A variety of quorum quenching compounds of both synthetic and natural origin have been identified and found effective in inhibition of membrane biofouling with much less environmental impact than traditional antimicrobials. Work over the past few years has demonstrated that enzymatic quorum quenching mechanisms are widely conserved in several prokaryotic organisms and can be utilized as a potent tool for inhibition of membrane biofouling. Such naturally occurring bacterial quorum quenching mechanisms also play important roles in microbe-microbe interactions and have been used to develop sustainable nonantibiotic antifouling strategies. Advances in membrane fabrication and bacteria entrapment techniques have allowed the implication of such quorum quenching bacteria for better design of membrane bioreactor with improved antibiofouling efficacies. In view of this, the present paper is designed to review and discuss the recent developments in control of membrane biofouling with special emphasis on quorum quenching bacteria that are applied in membrane bioreactors. PMID:25147787

  6. Inhibition of quorum sensing in Serratia marcescens H30 by molecular regulation.

    PubMed

    Zhu, H; Shen, Y L; Wei, D Z; Zhu, J W

    2008-06-01

    Quorum sensing in Serratia marcescens, which uses two types of signaling molecules-N-acyl homoserine lactones and furanosyl borate diester-play important regulatory roles in the synthesis of 2,3-butanediol and prodigiosin. In the hope of understanding the effect of quorum sensing on physiologic metabolism, we established two molecular strategies, one to express acyl-homoserine lactone hydrolase to inactivate AI-1 signaling molecule using an expression vector with lactose as the inducer and the other to mutate luxS gene with a suicide plasmid pUTKm2 to inhibit the synthesis of AI-2 signaling molecule. PMID:18320272

  7. Assessment of Anti-Quorum Sensing Activity for Some Ornamental and Medicinal Plants Native to Egypt

    PubMed Central

    Zaki, Ahmed A.; Shaaban, Mona I.; Hashish, Nadia E.; Amer, Mohamed A.; Lahloub, Mohamed-Farid

    2013-01-01

    This study investigated the effects of some plant extracts on the bacterial communication system, expressed as quorum sensing (QS) activity. Quorum sensing has a directly proportional effect on the amount of certain compounds, such as pigments, produced by the bacteria. Alcohol extracts of 23 ornamental and medicinal plants were tested for anti-QS activity by the Chromobacterium violaceum assay using the agar cup diffusion method. The screening revealed the anti-QS activity of six plants; namely the leaves of Adhatoda vasica Nees, Bauhinia purpurea L., Lantana camara L., Myoporum laetum G. Forst.; the fruits of Piper longum L.; and the aerial parts of Taraxacum officinale F.H. Wigg. PMID:23641343

  8. Assessment of anti-quorum sensing activity for some ornamental and medicinal plants native to egypt.

    PubMed

    Zaki, Ahmed A; Shaaban, Mona I; Hashish, Nadia E; Amer, Mohamed A; Lahloub, Mohamed-Farid

    2013-03-01

    This study investigated the effects of some plant extracts on the bacterial communication system, expressed as quorum sensing (QS) activity. Quorum sensing has a directly proportional effect on the amount of certain compounds, such as pigments, produced by the bacteria. Alcohol extracts of 23 ornamental and medicinal plants were tested for anti-QS activity by the Chromobacterium violaceum assay using the agar cup diffusion method. The screening revealed the anti-QS activity of six plants; namely the leaves of Adhatoda vasica Nees, Bauhinia purpurea L., Lantana camara L., Myoporum laetum G. Forst.; the fruits of Piper longum L.; and the aerial parts of Taraxacum officinale F.H. Wigg. PMID:23641343

  9. Dynamical quorum sensing and clustering dynamics in a population of spatially distributed active rotators

    NASA Astrophysics Data System (ADS)

    Sakaguchi, Hidetsugu; Maeyama, Satomi

    2013-02-01

    A model of clustering dynamics is proposed for a population of spatially distributed active rotators. A transition from excitable to oscillatory dynamics is induced by the increase of the local density of active rotators. It is interpreted as dynamical quorum sensing. In the oscillation regime, phase waves propagate without decay, which generates an effectively long-range interaction in the clustering dynamics. The clustering process becomes facilitated and only one dominant cluster appears rapidly as a result of the dynamical quorum sensing. An exact localized solution is found to a simplified model equation, and the competitive dynamics between two localized states is studied numerically.

  10. A model for signal transduction during quorum sensing in Vibrio harveyi

    NASA Astrophysics Data System (ADS)

    Banik, Suman K.; Fenley, Andrew T.; Kulkarni, Rahul V.

    2009-12-01

    We present a framework for analyzing luminescence regulation during quorum sensing in the bioluminescent bacterium Vibrio harveyi. Using a simplified model for signal transduction in the quorum sensing pathway, we identify key dimensionless parameters that control the system's response. These parameters are estimated using experimental data on luminescence phenotypes for different mutant strains. The corresponding model predictions are consistent with results from other experiments which did not serve as input for determining model parameters. Furthermore, the proposed framework leads to novel testable predictions for luminescence phenotypes and for responses of the network to different perturbations.

  11. Synthesis, quorum sensing inhibition and docking studies of 1,5-dihydropyrrol-2-ones.

    PubMed

    Goh, Wai-Kean; Gardner, Christopher R; Chandra Sekhar, Kondapalli V G; Biswas, Nripendra N; Nizalapur, Shashidhar; Rice, Scott A; Willcox, Mark; Black, David StC; Kumar, Naresh

    2015-12-01

    Gram-negative bacteria such as Pseudomonas aeruginosa and Escherichia coli use N-acylated l-homoserine lactones (AHLs) as autoinducers (AIs) for quorum sensing (QS), a chief regulatory and cell-to-cell communication system. QS is responsible for social adaptation, virulence factor production, biofilm production and antibiotic resistance in bacteria. Fimbrolides, a class of halogenated furanones isolated from the red marine alga Delisea pulchra, have been shown to exhibit promising QS inhibitory activity against various Gram-negative and Gram-positive bacterial strains. In this work, various lactam analogues of fimbrolides viz., 1,5-dihydropyrrol-2-ones, were designed and synthesized via an efficient lactamization protocol. All the synthesized analogues were tested for QS inhibition against the E. coli AHL-monitor strain JB357 gfp (ASV). Compound 17a emerged as the most potent compound, followed by 9c, with AIC40 values (the ratio of synthetic inhibitor to natural AHL signaling molecule that is required to lower GFP expression to 40%) of 1.95 and 19.00, respectively. Finally, the potential binding interactions between the synthesized molecules and the LasR QS receptor were studied by molecular docking. Our results indicate that 1,5-dihydropyrrol-2-ones have the ability to serve as potential leads for the further development of novel QS inhibitors as antimicrobial therapeutics. PMID:26547407

  12. Quercetin Influences Quorum Sensing in Food Borne Bacteria: In-Vitro and In-Silico Evidence

    PubMed Central

    Gopu, Venkadesaperumal; Meena, Chetan Kumar; Shetty, Prathapkumar Halady

    2015-01-01

    Quorum sensing (QS) plays a vital role in regulating the virulence factor of many food borne pathogens, which causes severe public health risk. Therefore, interrupting the QS signaling pathway may be an attractive strategy to combat microbial infections. In the current study QS inhibitory activity of quercetin and its anti-biofilm property was assessed against food-borne pathogens using a bio-sensor strain. In addition in-silico techniques like molecular docking and molecular dynamics simulation studies were applied to screen the quercetin’s potentiality as QS inhibitor. Quercetin (80μg/ml) showed the significant reduction in QS-dependent phenotypes like violacein production, biofilm formation, exopolysaccharide (EPS) production, motility and alginate production in a concentration-dependent manner. Synergistic activity of conventional antibiotics with quercetin enhanced the susceptibility of all tested pathogens. Furthermore, Molecular docking analysis revealed that quercetin binds more rigidly with LasR receptor protein than the signaling compound with docking score of -9.17Kcal/mol. Molecular dynamics simulation predicted that QS inhibitory activity of quercetin occurs through the conformational changes between the receptor and quercetin complex. Above findings suggest that quercetin can act as a competitive inhibitor for signaling compound towards LasR receptor pathway and can serve as a novel QS-based antibacterial/anti-biofilm drug to manage food-borne pathogens. PMID:26248208

  13. Quorum-sensing signals in the microbial community of the cabbage white butterfly larval midgut

    PubMed Central

    Borlee, Bradley R; Geske, Grant D; Robinson, Courtney J; Blackwell, Helen E; Handelsman, Jo

    2014-01-01

    The overall goal of this study was to examine the role of quorum-sensing (QS) signals in a multispecies microbial community. Toward this aim, we studied QS signals produced by an indigenous member and an invading pathogen of the microbial community of the cabbage white butterfly (CWB) larval midgut (Pieris rapae). As an initial step, we characterized the QS system in Pantoea CWB304, which was isolated from the larval midgut. A luxI homolog, designated panI, is necessary for the production of N-acyl-l-homoserine lactones (AHLs) by Pantoea CWB304. To determine whether AHL signals are exchanged in the alkaline environment of the midgut, we constructed AHL-sensing bioluminescent reporter strains in Pantoea CWB304 and a panI mutant of this strain. In the gut of the CWB larvae, the reporter in an AHL-deficient Pantoea CWB304 detected AHLs when coinoculated with the wild type. To study the role of AHL signals produced by a community invader, we examined pathogenesis of Pseudomonas aeruginosa PAO1 in CWB larvae. Mortality induced by P. aeruginosa PAO1 was significantly reduced when signaling was interrupted by either a potent chemical inhibitor of QS or mutations in the lasI and rhlI AHL synthases of P. aeruginosa PAO1. These results show that AHLs are exchanged among bacteria in the alkaline gut of CWB larvae and contribute to disease caused by P. aeruginosa PAO1. PMID:18650927

  14. Artificially Constructed Quorum-Sensing Circuits Are Used for Subtle Control of Bacterial Population Density

    PubMed Central

    Wang, Zhaoshou; Wu, Xin; Peng, Jianghai; Hu, Yidan; Fang, Baishan; Huang, Shiyang

    2014-01-01

    Vibrio fischeri is a typical quorum-sensing bacterium for which lux box, luxR, and luxI have been identified as the key elements involved in quorum sensing. To decode the quorum-sensing mechanism, an artificially constructed cell–cell communication system has been built. In brief, the system expresses several programmed cell-death BioBricks and quorum-sensing genes driven by the promoters lux pR and PlacO-1 in Escherichia coli cells. Their transformation and expression was confirmed by gel electrophoresis and sequencing. To evaluate its performance, viable cell numbers at various time periods were investigated. Our results showed that bacteria expressing killer proteins corresponding to ribosome binding site efficiency of 0.07, 0.3, 0.6, or 1.0 successfully sensed each other in a population-dependent manner and communicated with each other to subtly control their population density. This was also validated using a proposed simple mathematical model. PMID:25119347

  15. Novel glycolipids synthesized using plant essential oils and their application in quorum sensing inhibition and as antibiofilm agents.

    PubMed

    Mukherji, Ruchira; Prabhune, Asmita

    2014-01-01

    Essential oils (EOs) form an important part of traditional medicine so their anti-microbial and, in the recent past, antiquorum sensing activity has been well studied. However it is likely that due to their hydrophobic nature and reduced solubility in aqueous environments full potential of their activity cannot be realized. hence it is only rational to formulate a process to make these molecules more polar in nature. The present paper reports synthesis of sophorolipids using 12 different essential oils as substrates, thus providing surfactant-like properties to these EOs. The synthesis protocol makes the use of Candida bombicola ATCC 22214 as producer organism. The production process required 7 days of incubation at 28°C and 180?rpm. Preliminary characterization of the synthesized essential oil sophorolipids (EOSLs) was performed using thin layer chromatography (TLC) and Fourier transform infrared spectroscopy (FTIR). Additionally, essential oils that were incapable of mediating quorum sensing inhibition (QSI) on their own became potent quorum sensing inhibitors upon conversion into their corresponding EOSLs. Antibiofilm potential of these EOSLs was also demonstrated using V. cholerae as test organism. Use of essential oils as substrates for glycolipid synthesis has not been attempted previously, and hence this is the first report. PMID:24558341

  16. Novel Glycolipids Synthesized Using Plant Essential Oils and Their Application in Quorum Sensing Inhibition and as Antibiofilm Agents

    PubMed Central

    Prabhune, Asmita

    2014-01-01

    Essential oils (EOs) form an important part of traditional medicine so their anti-microbial and, in the recent past, antiquorum sensing activity has been well studied. However it is likely that due to their hydrophobic nature and reduced solubility in aqueous environments full potential of their activity cannot be realized. hence it is only rational to formulate a process to make these molecules more polar in nature. The present paper reports synthesis of sophorolipids using 12 different essential oils as substrates, thus providing surfactant-like properties to these EOs. The synthesis protocol makes the use of Candida bombicola ATCC 22214 as producer organism. The production process required 7 days of incubation at 28°C and 180 rpm. Preliminary characterization of the synthesized essential oil sophorolipids (EOSLs) was performed using thin layer chromatography (TLC) and Fourier transform infrared spectroscopy (FTIR). Additionally, essential oils that were incapable of mediating quorum sensing inhibition (QSI) on their own became potent quorum sensing inhibitors upon conversion into their corresponding EOSLs. Antibiofilm potential of these EOSLs was also demonstrated using V. cholerae as test organism. Use of essential oils as substrates for glycolipid synthesis has not been attempted previously, and hence this is the first report. PMID:24558341

  17. Rosmarinic acid is a homoserine lactone mimic produced by plants that activates a bacterial quorum-sensing regulator.

    PubMed

    Corral-Lugo, Andrés; Daddaoua, Abdelali; Ortega, Alvaro; Espinosa-Urgel, Manuel; Krell, Tino

    2016-01-01

    Quorum sensing is a bacterial communication mechanism that controls genes, enabling bacteria to live as communities, such as biofilms. Homoserine lactone (HSL) molecules function as quorum-sensing signals for Gram-negative bacteria. Plants also produce previously unidentified compounds that affect quorum sensing. We identified rosmarinic acid as a plant-derived compound that functioned as an HSL mimic. In vitro assays showed that rosmarinic acid bound to the quorum-sensing regulator RhlR of Pseudomonas aeruginosa PAO1 and competed with the bacterial ligand N-butanoyl-homoserine lactone (C4-HSL). Furthermore, rosmarinic acid stimulated a greater increase in RhlR-mediated transcription in vitro than that of C4-HSL. In P. aeruginosa, rosmarinic acid induced quorum sensing-dependent gene expression and increased biofilm formation and the production of the virulence factors pyocyanin and elastase. Because P. aeruginosa PAO1 infection induces rosmarinic acid secretion from plant roots, our results indicate that rosmarinic acid secretion is a plant defense mechanism to stimulate a premature quorum-sensing response. P. aeruginosa is a ubiquitous pathogen that infects plants and animals; therefore, identification of rosmarinic acid as an inducer of premature quorum-sensing responses may be useful in agriculture and inform human therapeutic strategies. PMID:26732761

  18. Whole-Genome Analysis of Quorum-Sensing Burkholderia sp. Strain A9

    PubMed Central

    Chen, Jian Woon; Tee, Kok Keng; Chang, Chien-Yi; Yin, Wai-Fong; Chan, Xin-Yue

    2015-01-01

    Burkholderia spp. rely on N-acyl homoserine lactone as quorum-sensing signal molecules which coordinate their phenotype at the population level. In this work, we present the whole genome of Burkholderia sp. strain A9, which enables the discovery of its N-acyl homoserine lactone synthase gene. PMID:25745000

  19. Acyl homoserine lactone-based quorum sensing in a methanogenic archaeon

    PubMed Central

    Zhang, Guishan; Zhang, Fan; Ding, Gang; Li, Jie; Guo, Xiaopeng; Zhu, Jinxing; Zhou, Liguang; Cai, Shichun; Liu, Xiaoli; Luo, Yuanming; Zhang, Guifeng; Shi, Wenyuan; Dong, Xiuzhu

    2012-01-01

    Acyl homoserine lactone (AHL)-based quorum sensing commonly refers to cell density-dependent regulatory mechanisms found in bacteria. However, beyond bacteria, this cell-to-cell communication mechanism is poorly understood. Here we show that a methanogenic archaeon, Methanosaeta harundinacea 6Ac, encodes an active quorum sensing system that is used to regulate cell assembly and carbon metabolic flux. The methanogen 6Ac showed a cell density-dependent physiology transition, which was related to the AHL present in the spent culture and the filI gene-encoded AHL synthase. Through extensive chemical analyses, a new class of carboxylated AHLs synthesized by FilI protein was identified. These carboxylated AHLs facilitated the transition from a short cell to filamentous growth, with an altered carbon metabolic flux that favoured the conversion of acetate to methane and a reduced yield in cellular biomass. The transcriptomes of the filaments and the short cell forms differed with gene expression profiles consistent with the physiology. In the filaments, genes encoding the initial enzymes in the methanogenesis pathway were upregulated, whereas those for cellular carbon assimilation were downregulated. A luxI–luxR ortholog filI–filR was present in the genome of strain 6Ac. The carboxylated AHLs were also detected in other methanogen cultures and putative filI orthologs were identified in other methanogenic genomes as well. This discovery of AHL-based quorum sensing systems in methanogenic archaea implies that quorum sensing mechanisms are universal among prokaryotes. PMID:22237544

  20. Pseudomonas aeruginosa quorum sensing molecules correlate with clinical status in cystic fibrosis

    PubMed Central

    Halliday, Nigel; Cámara, Miguel; Barrett, David A.; Williams, Paul; Forrester, Douglas L.; Simms, Rebecca; Smyth, Alan R.; Honeybourne, David; Whitehouse, Joanna L.; Nash, Edward F.; Dewar, Jane; Clayton, Andrew; Knox, Alan J.; Fogarty, Andrew W.

    2015-01-01

    Pseudomonas aeruginosa produces quorum sensing signal molecules that are potential biomarkers for infection. A prospective study of 60 cystic fibrosis patients with chronic P. aeruginosa, who required intravenous antibiotics for pulmonary exacerbations, was undertaken. Clinical measurements and biological samples were obtained at the start and end of the treatment period. Additional data were available for 29 of these patients when they were clinically stable. Cross-sectionally, quorum sensing signal molecules were detectable in the sputum, plasma and urine of 86%, 75% and 83% patients, respectively. They were positively correlated between the three biofluids. Positive correlations were observed for most quorum sensing signal molecules in sputum, plasma and urine, with quantitative measures of pulmonary P. aeruginosa load at the start of a pulmonary exacerbation. Plasma concentrations of 2-nonyl-4-hydroxy-quinoline (NHQ) were significantly higher at the start of a pulmonary exacerbation compared to clinical stability (p<0.01). Following the administration of systemic antibiotics, plasma 2-heptyl-4-hydroxyquinoline (p=0.02) and NHQ concentrations (p<0.01) decreased significantly. In conclusion, quorum sensing signal molecules are detectable in cystic fibrosis patients with pulmonary P. aeruginosa infection and are positively correlated with quantitative measures of P. aeruginosa. NHQ correlates with clinical status and has potential as a novel biomarker for P. aeruginosa infection. PMID:26022946

  1. SigMol: repertoire of quorum sensing signaling molecules in prokaryotes

    PubMed Central

    Rajput, Akanksha; Kaur, Karambir; Kumar, Manoj

    2016-01-01

    Quorum sensing is a widespread phenomenon in prokaryotes that helps them to communicate among themselves and with eukaryotes. It is driven through quorum sensing signaling molecules (QSSMs) in a density dependent manner that assists in numerous biological functions like biofilm formation, virulence factors secretion, swarming motility, bioluminescence, etc. Despite immense implications, dedicated resources of QSSMs are lacking. Therefore, we have developed SigMol (http://bioinfo.imtech.res.in/manojk/sigmol), a specialized repository of these molecules in prokaryotes. SigMol harbors information on QSSMs pertaining to different quorum sensing signaling systems namely acylated homoserine lactones (AHLs), diketopiperazines (DKPs), 4-hydroxy-2-alkylquinolines (HAQs), diffusible signal factors (DSFs), autoinducer-2 (AI-2) and others. Database contains 1382 entries of 182 unique signaling molecules from 215 organisms. It encompasses biological as well as chemical aspects of signaling molecules. Biological information includes genes, preliminary bioassays, identification assays and applications, while chemical detail comprises of IUPAC name, SMILES and structure. We have provided user-friendly browsing and searching facilities for easy data retrieval and comparison. We have gleaned information of diverse QSSMs reported in literature at a single platform ‘SigMol’. This comprehensive resource will assist the scientific community in understanding intraspecies, interspecies or interkingdom networking and further help to unfold different facets of quorum sensing and related therapeutics. PMID:26490957

  2. SigMol: repertoire of quorum sensing signaling molecules in prokaryotes.

    PubMed

    Rajput, Akanksha; Kaur, Karambir; Kumar, Manoj

    2016-01-01

    Quorum sensing is a widespread phenomenon in prokaryotes that helps them to communicate among themselves and with eukaryotes. It is driven through quorum sensing signaling molecules (QSSMs) in a density dependent manner that assists in numerous biological functions like biofilm formation, virulence factors secretion, swarming motility, bioluminescence, etc. Despite immense implications, dedicated resources of QSSMs are lacking. Therefore, we have developed SigMol (http://bioinfo.imtech.res.in/manojk/sigmol), a specialized repository of these molecules in prokaryotes. SigMol harbors information on QSSMs pertaining to different quorum sensing signaling systems namely acylated homoserine lactones (AHLs), diketopiperazines (DKPs), 4-hydroxy-2-alkylquinolines (HAQs), diffusible signal factors (DSFs), autoinducer-2 (AI-2) and others. Database contains 1382: entries of 182: unique signaling molecules from 215: organisms. It encompasses biological as well as chemical aspects of signaling molecules. Biological information includes genes, preliminary bioassays, identification assays and applications, while chemical detail comprises of IUPAC name, SMILES and structure. We have provided user-friendly browsing and searching facilities for easy data retrieval and comparison. We have gleaned information of diverse QSSMs reported in literature at a single platform 'SigMol'. This comprehensive resource will assist the scientific community in understanding intraspecies, interspecies or interkingdom networking and further help to unfold different facets of quorum sensing and related therapeutics. PMID:26490957

  3. Whole-Genome Analysis of Aeromonas hydrophila Strain 187, Exhibiting Quorum-Sensing Activity

    PubMed Central

    Chan, Xin-Yue; Chua, Kek Heng; Yin, Wai-Fong; Puthucheary, S. D.

    2014-01-01

    Aeromonas hydrophila is a quorum-sensing (QS) bacterium that causes diarrhea in humans upon infection. Here, we report the genome of pathogenic Aeromonas hydrophila strain 187, which possesses a QS gene responsible for signaling molecule N-acyl homoserine lactone (AHL) synthesis and has been found to be located at contig 36. PMID:25540357

  4. Whole-Genome Sequencing Analysis of Quorum-Sensing Aeromonas hydrophila Strain M023 from Freshwater

    PubMed Central

    Tan, Wen-Si; Yin, Wai-Fong; Chang, Chien-Yi

    2015-01-01

    Aeromonas hydrophila is a well-known waterborne pathogen that recently was found to infect humans. Here, we report the draft genome of a freshwater isolate from a Malaysian waterfall, A. hydrophila strain M023, which portrays N-acylhomoserine lactone-dependent quorum sensing. PMID:25700404

  5. A Mathematical model to investigate quorum sensing regulation and its heterogenecity in pseudomonas syringae on leaves

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The bacterium Pseudomonas syringae is a plant-pathogen, which through quorum sensing (QS), controls virulence. In this paper, by means of mathematical modeling, we investigate QS of this bacterium when living on leaf surfaces. We extend an existing stochastic model for the formation of Pseudomonas s...

  6. MicroBQs: a centralized database for use in studying bacterial biofilms and quorum sensing

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biofilm formation in many bacterial species may be negatively or positively regulated by cell-to-cell signaling systems referred to as quorum sensing (QS). To assist in understanding research related to biofilms, QS, and the role of QS in biofilm formation, a comprehensive, centralized database, kn...

  7. Degradation of N-acyl homoserine lactone quorum sensing signal molecules by forest root-associated fungi.

    PubMed

    Uroz, Stephane; Heinonsalo, Jussi

    2008-08-01

    A collection of mycorrhizal and nonmycorrhizal root-associated fungi coming from forest environments was screened for their ability to degrade N-acyl homoserine lactones (AHL) or to prevent AHL recognition by producing quorum sensing inhibitors (QSI). No production of QS-inhibitors or -activators was detected using the two biosensors Chromobacterium violaceum CV026 and Agrobacterium tumefaciens in the culture supernatant of these fungi. However, the ability to degrade C6- and 3O,C6-HSL was detected for three fungal isolates. Acidification assay revealed that the AHL were degraded by a lactonase activity for two of these isolates. These results demonstrated for the first time that the forest root-associated fungi are capable of degrading the AHL signal molecules. PMID:18400006

  8. Quorum Sensing Determines the Choice of Antiphage Defense Strategy in Vibrio anguillarum

    PubMed Central

    Tan, Demeng; Svenningsen, Sine Lo

    2015-01-01

    ABSTRACT Selection for phage resistance is a key driver of bacterial diversity and evolution, and phage-host interactions may therefore have strong influence on the genetic and functional dynamics of bacterial communities. In this study, we found that an important, but so far largely overlooked, determinant of the outcome of phage-bacterial encounters in the fish pathogen Vibrio anguillarum is bacterial cell-cell communication, known as quorum sensing. Specifically, V. anguillarum PF430-3 cells locked in the low-cell-density state (?vanT mutant) express high levels of the phage receptor OmpK, resulting in a high susceptibility to phage KVP40, but achieve protection from infection by enhanced biofilm formation. By contrast, cells locked in the high-cell-density state (?van? mutant) are almost completely unsusceptible due to quorum-sensing-mediated downregulation of OmpK expression. The phenotypes of the two quorum-sensing mutant strains are accurately reflected in the behavior of wild-type V. anguillarum, which (i) displays increased OmpK expression in aggregated cells compared to free-living variants in the same culture, (ii) displays a clear inverse correlation between ompK mRNA levels and the concentration of N-acylhomoserine lactone quorum-sensing signals in the culture medium, and (iii) survives mainly by one of these two defense mechanisms, rather than by genetic mutation to phage resistance. Taken together, our results demonstrate that V. anguillarum employs quorum-sensing information to choose between two complementary antiphage defense strategies. Further, the prevalence of nonmutational defense mechanisms in strain PF430-3 suggests highly flexible adaptations to KVP40 phage infection pressure, possibly allowing the long-term coexistence of phage and host. PMID:26081633

  9. How ants use quorum sensing to estimate the average quality of a fluctuating resource.

    PubMed

    Franks, Nigel R; Stuttard, Jonathan P; Doran, Carolina; Esposito, Julian C; Master, Maximillian C; Sendova-Franks, Ana B; Masuda, Naoki; Britton, Nicholas F

    2015-01-01

    We show that one of the advantages of quorum-based decision-making is an ability to estimate the average value of a resource that fluctuates in quality. By using a quorum threshold, namely the number of ants within a new nest site, to determine their choice, the ants are in effect voting with their feet. Our results show that such quorum sensing is compatible with homogenization theory such that the average value of a new nest site is determined by ants accumulating within it when the nest site is of high quality and leaving when it is poor. Hence, the ants can estimate a surprisingly accurate running average quality of a complex resource through the use of extraordinarily simple procedures. PMID:26153535

  10. How ants use quorum sensing to estimate the average quality of a fluctuating resource

    PubMed Central

    Franks, Nigel R.; Stuttard, Jonathan P.; Doran, Carolina; Esposito, Julian C.; Master, Maximillian C.; Sendova-Franks, Ana B.; Masuda, Naoki; Britton, Nicholas F.

    2015-01-01

    We show that one of the advantages of quorum-based decision-making is an ability to estimate the average value of a resource that fluctuates in quality. By using a quorum threshold, namely the number of ants within a new nest site, to determine their choice, the ants are in effect voting with their feet. Our results show that such quorum sensing is compatible with homogenization theory such that the average value of a new nest site is determined by ants accumulating within it when the nest site is of high quality and leaving when it is poor. Hence, the ants can estimate a surprisingly accurate running average quality of a complex resource through the use of extraordinarily simple procedures. PMID:26153535

  11. Selective Chemical Inhibition of agr Quorum Sensing in Staphylococcus aureus Promotes Host Defense with Minimal Impact on Resistance

    PubMed Central

    Sully, Erin K.; Malachowa, Natalia; Elmore, Bradley O.; Alexander, Susan M.; Femling, Jon K.; Gray, Brian M.; DeLeo, Frank R.; Otto, Michael; Cheung, Ambrose L.; Edwards, Bruce S.; Sklar, Larry A.; Horswill, Alexander R.; Hall, Pamela R.; Gresham, Hattie D.

    2014-01-01

    Bacterial signaling systems are prime drug targets for combating the global health threat of antibiotic resistant bacterial infections including those caused by Staphylococcus aureus. S. aureus is the primary cause of acute bacterial skin and soft tissue infections (SSTIs) and the quorum sensing operon agr is causally associated with these. Whether efficacious chemical inhibitors of agr signaling can be developed that promote host defense against SSTIs while sparing the normal microbiota of the skin is unknown. In a high throughput screen, we identified a small molecule inhibitor (SMI), savirin (S. aureus virulence inhibitor) that disrupted agr-mediated quorum sensing in this pathogen but not in the important skin commensal Staphylococcus epidermidis. Mechanistic studies employing electrophoretic mobility shift assays and a novel AgrA activation reporter strain revealed the transcriptional regulator AgrA as the target of inhibition within the pathogen, preventing virulence gene upregulation. Consistent with its minimal impact on exponential phase growth, including skin microbiota members, savirin did not provoke stress responses or membrane dysfunction induced by conventional antibiotics as determined by transcriptional profiling and membrane potential and integrity studies. Importantly, savirin was efficacious in two murine skin infection models, abating tissue injury and selectively promoting clearance of agr+ but not ?agr bacteria when administered at the time of infection or delayed until maximal abscess development. The mechanism of enhanced host defense involved in part enhanced intracellular killing of agr+ but not ?agr in macrophages and by low pH. Notably, resistance or tolerance to savirin inhibition of agr was not observed after multiple passages either in vivo or in vitro where under the same conditions resistance to growth inhibition was induced after passage with conventional antibiotics. Therefore, chemical inhibitors can selectively target AgrA in S. aureus to promote host defense while sparing agr signaling in S. epidermidis and limiting resistance development. PMID:24945495

  12. Endemic malagasy Dalbergia species inhibit quorum sensing in Pseudomonas aeruginosa PAO1.

    PubMed

    Rasamiravaka, Tsiry; Jedrzejowski, Anaïs; Kiendrebeogo, Martin; Rajaonson, Sanda; Randriamampionona, Denis; Rabemanantsoa, Christian; Andriantsimahavandy, Abel; Rasamindrakotroka, Andry; Duez, Pierre; El Jaziri, Mondher; Vandeputte, Olivier M

    2013-05-01

    Various species of the plant genus Dalbergia are traditionally used as medicine for sundry ailments and some of them have been shown recently to quench the virulence of Gram-positive and Gram-negative bacteria. Cell-to-cell communication mechanisms, quorum sensing (QS) in particular, are key regulators of virulence in many pathogenic bacteria. Screening n-hexane extracts of leaves, roots and bark of endemic Malagasy Dalbergia species for their capacity to antagonize QS mechanisms in Pseudomonas aeruginosa PAO1 showed that many reduced the expression of the QS-regulated genes lasB and rhlA. However, only the extract of Dalbergia trichocarpa bark (DTB) showed a significant reduction of QS gene expression without any effect on the aceA gene encoding a QS-independent isocitrate lyase. Further characterization of DTB impact on QS revealed that the QS systems las and rhl are inhibited and that swarming, twitching, biofilm formation and the production of pyocyanin, elastase and proteases are also hampered in the presence of the DTB extract. Importantly, compared with the known QS inhibitor naringenin, the DTB extract showed a stronger negative effect on twitching, biofilm formation and tobramycin resistance. Preliminary structural characterization of these potent biofilm disrupters suggests that they belong to the phytosterols. The strong inhibition of motility and biofilm formation suggests that the DTB extract contains agents disrupting biofilm architecture, which is an important observation in the context of the design of new drugs targeting biofilm-encapsulated pathogens. PMID:23449917

  13. Tea polyphenols as an antivirulence compound Disrupt Quorum-Sensing Regulated Pathogenicity of Pseudomonas aeruginosa.

    PubMed

    Yin, Honging; Deng, Yifeng; Wang, Huafu; Liu, Wugao; Zhuang, Xiyi; Chu, Weihua

    2015-01-01

    Green tea, a water extract of non-fermented leaves of Camellia sinensis L., is one of the nonalcoholic beverages in China. It is becoming increasingly popular worldwide, because of its refreshing, mild stimulant and medicinal properties. Here we examined the quorum sensing inhibitory potentials of tea polyphenols (TP) as antivirulence compounds both in vitro and in vivo. Biosensor assay data suggested minimum inhibitory concentrations (MICs) of TP against selected pathogens were 6.25 ~ 12.5 mg/mL. At sub-MIC, TP can specifically inhibit the production of violacein in Chromobacterium violaceum 12472 with almost 98% reduction at 3.125 mg/mL without affecting its growth rate. Moreover, TP exhibited inhibitory effects on virulence phenotypes regulated by QS in Pseudomonas aeruginosa. The total proteolytic activity, elastase, swarming motility and biofilm formation were reduced in a concentration-dependent manner. In vivo, TP treatment resulted in the reduction of P. aeruginosa pathogenicity in Caenorhabditis elegans. When its concentration was 3.125 mg/mL, the survival rate reached 63.3%. In the excision wound infection model, the wound contraction percentage in treatment groups was relatively increased and the colony-forming units (CFU) in the wound area were significantly decreased. These results suggested that TP could be developed as a novel non-antibiotic QS inhibitor without killing the bacteria but as an antivirulence compound to control bacterial infection. PMID:26548447

  14. Inhibition of quorum sensing, biofilm, and spoilage potential in Shewanella baltica by green tea polyphenols.

    PubMed

    Zhu, Junli; Huang, Xuzheng; Zhang, Fang; Feng, Lifang; Li, Jianrong

    2015-12-01

    We investigated the quorum sensing (QS) system of Shewanella baltica and the anti-QS related activities of green tea polyphenols (TP) against spoilage bacteria in refrigerated large yellow croaker. Autoinducer-2 (AI-2) and the diketopiperazines (DKPs) cyclo-(L-Pro-L-Leu) and cyclo-(L-Pro-L-Phe) were detected in the culture extract of S. baltica XH2, however, no N-acylhomoserine lactones (AHLs) activity was observed. Green TP at sub-inhibitory concentrations interfered with AI-2 and DKPs activities of S. baltica without inhibiting cell growth and promoted degradation of AI-2. The green TP treatment inhibited biofilm development, exopolysaccharide production and swimming motility of S. baltica in a concentration- dependent manner. In addition, green TP decreased extracellular protease activities and trimethylamine production in S. baltica. A transcriptional analysis showed that green TP repressed the luxS and torA genes in S. baltica, which agreed with the observed reductions in QS activity and the spoilage phenotype. Epigallocatechin gallate (EGCG)-enriched in green TP significantly inhibited AI-2 activity of S. baltica. These findings strongly suggest that green TP could be developed as a new QS inhibitor for seafood preservation to enhance shelf life. PMID:26626353

  15. Identification of Anti-virulence Compounds That Disrupt Quorum-Sensing Regulated Acute and Persistent Pathogenicity

    PubMed Central

    Bandyopadhaya, Arunava; Lesic, Biljana; He, Jianxin; Kitao, Tomoe; Righi, Valeria; Milot, Sylvain; Tzika, Aria; Rahme, Laurence

    2014-01-01

    Etiological agents of acute, persistent, or relapsing clinical infections are often refractory to antibiotics due to multidrug resistance and/or antibiotic tolerance. Pseudomonas aeruginosa is an opportunistic Gram-negative bacterial pathogen that causes recalcitrant and severe acute chronic and persistent human infections. Here, we target the MvfR-regulated P. aeruginosa quorum sensing (QS) virulence pathway to isolate robust molecules that specifically inhibit infection without affecting bacterial growth or viability to mitigate selective resistance. Using a whole-cell high-throughput screen (HTS) and structure-activity relationship (SAR) analysis, we identify compounds that block the synthesis of both pro-persistence and pro-acute MvfR-dependent signaling molecules. These compounds, which share a benzamide-benzimidazole backbone and are unrelated to previous MvfR-regulon inhibitors, bind the global virulence QS transcriptional regulator, MvfR (PqsR); inhibit the MvfR regulon in multi-drug resistant isolates; are active against P. aeruginosa acute and persistent murine infections; and do not perturb bacterial growth. In addition, they are the first compounds identified to reduce the formation of antibiotic-tolerant persister cells. As such, these molecules provide for the development of next-generation clinical therapeutics to more effectively treat refractory and deleterious bacterial-human infections. PMID:25144274

  16. Tea polyphenols as an antivirulence compound Disrupt Quorum-Sensing Regulated Pathogenicity of Pseudomonas aeruginosa

    PubMed Central

    Yin, Honging; Deng, Yifeng; Wang, Huafu; Liu, Wugao; Zhuang, Xiyi; Chu, Weihua

    2015-01-01

    Green tea, a water extract of non-fermented leaves of Camellia sinensis L., is one of the nonalcoholic beverages in China. It is becoming increasingly popular worldwide, because of its refreshing, mild stimulant and medicinal properties. Here we examined the quorum sensing inhibitory potentials of tea polyphenols (TP) as antivirulence compounds both in vitro and in vivo. Biosensor assay data suggested minimum inhibitory concentrations (MICs) of TP against selected pathogens were 6.25 ~ 12.5 mg/mL. At sub-MIC, TP can specifically inhibit the production of violacein in Chromobacterium violaceum 12472 with almost 98% reduction at 3.125 mg/mL without affecting its growth rate. Moreover, TP exhibited inhibitory effects on virulence phenotypes regulated by QS in Pseudomonas aeruginosa. The total proteolytic activity, elastase, swarming motility and biofilm formation were reduced in a concentration-dependent manner. In vivo, TP treatment resulted in the reduction of P. aeruginosa pathogenicity in Caenorhabditis elegans. When its concentration was 3.125 mg/mL, the survival rate reached 63.3%. In the excision wound infection model, the wound contraction percentage in treatment groups was relatively increased and the colony-forming units (CFU) in the wound area were significantly decreased. These results suggested that TP could be developed as a novel non-antibiotic QS inhibitor without killing the bacteria but as an antivirulence compound to control bacterial infection. PMID:26548447

  17. Ligand-Induced Asymmetry in Histidine Sensor Kinase Complex Regulates Quorum Sensing

    SciTech Connect

    Neiditch,M.; Federle, M.; Pompeani, A.; Kelly, R.; Swem, D.; Jeffrey, P.; Bassler, B.; Hughson, F.

    2006-01-01

    Bacteria sense their environment using receptors of the histidine sensor kinase family, but how kinase activity is regulated by ligand binding is not well understood. Autoinducer-2 (AI-2), a secreted signaling molecule originally identified in studies of the marine bacterium Vibrio harveyi, regulates quorum-sensing responses and allows communication between different bacterial species. AI-2 signal transduction in V. harveyi requires the integral membrane receptor LuxPQ, comprised of periplasmic binding protein (LuxP) and histidine sensor kinase (LuxQ) subunits. Combined X-ray crystallographic and functional studies show that AI-2 binding causes a major conformational change within LuxP, which in turn stabilizes a quaternary arrangement in which two LuxPQ monomers are asymmetrically associated. We propose that formation of this asymmetric quaternary structure is responsible for repressing the kinase activity of both LuxQ subunits and triggering the transition of V. harveyi into quorum-sensing mode.

  18. A nitric oxide-responsive quorum sensing circuit in Vibrio harveyi regulates flagella production and biofilm formation.

    PubMed

    Henares, Bernadette M; Xu, Yueming; Boon, Elizabeth M

    2013-01-01

    Cell signaling plays an important role in the survival of bacterial colonies. They use small molecules to coordinate gene expression in a cell density dependent manner. This process, known as quorum sensing, helps bacteria regulate diverse functions such as bioluminescence, biofilm formation and virulence. In Vibrio harveyi, a bioluminescent marine bacterium, four parallel quorum-sensing systems have been identified to regulate light production. We have previously reported that nitric oxide (NO), through the H-NOX/HqsK quorum sensing pathway contributes to light production in V. harveyi through the LuxU/LuxO/LuxR quorum sensing pathway. In this study, we show that nitric oxide (NO) also regulates flagellar production and enhances biofilm formation. Our data suggest that V. harveyi is capable of switching between lifestyles to be able to adapt to changes in the environment. PMID:23965964

  19. A Nitric Oxide-Responsive Quorum Sensing Circuit in Vibrio harveyi Regulates Flagella Production and Biofilm Formation

    PubMed Central

    Henares, Bernadette M.; Xu, Yueming; Boon, Elizabeth M.

    2013-01-01

    Cell signaling plays an important role in the survival of bacterial colonies. They use small molecules to coordinate gene expression in a cell density dependent manner. This process, known as quorum sensing, helps bacteria regulate diverse functions such as bioluminescence, biofilm formation and virulence. In Vibrio harveyi, a bioluminescent marine bacterium, four parallel quorum-sensing systems have been identified to regulate light production. We have previously reported that nitric oxide (NO), through the H-NOX/HqsK quorum sensing pathway contributes to light production in V. harveyi through the LuxU/LuxO/LuxR quorum sensing pathway. In this study, we show that nitric oxide (NO) also regulates flagellar production and enhances biofilm formation. Our data suggest that V. harveyi is capable of switching between lifestyles to be able to adapt to changes in the environment. PMID:23965964

  20. Intra-Species Bacterial Quorum Sensing Studied at Single Cell Level in a Double Droplet Trapping System

    PubMed Central

    Bai, Yunpeng; Patil, Santoshkumar N.; Bowden, Steven D.; Poulter, Simon; Pan, Jie; Salmond, George P. C.; Welch, Martin; Huck, Wilhelm T. S.; Abell, Chris

    2013-01-01

    In this paper, we investigated the intra-species bacterial quorum sensing at the single cell level using a double droplet trapping system. Escherichia coli transformed to express the quorum sensing receptor protein, LasR, were encapsulated in microdroplets that were positioned adjacent to microdroplets containing the autoinducer, N-(3-oxododecanoyl)- l-homoserine lactone (OdDHL). Functional activation of the LasR protein by diffusion of the OdDHL across the droplet interface was measured by monitoring the expression of green fluorescent protein (GFP) from a LasR-dependent promoter. A threshold concentration of OdDHL was found to induce production of quorum-sensing associated GFP by E. coli. Additionally, we demonstrated that LasR-dependent activation of GFP expression was also initiated when the adjacent droplets contained single E. coli transformed with the OdDHL synthase gene, LasI, representing a simple quorum sensing circuit between two droplets. PMID:23698779

  1. Inhibiting N-acyl-homoserine lactone synthesis and quenching Pseudomonas quinolone quorum sensing to attenuate virulence

    PubMed Central

    Chan, Kok-Gan; Liu, Yi-Chia; Chang, Chien-Yi

    2015-01-01

    Bacteria sense their own population size, tune the expression of responding genes, and behave accordingly to environmental stimuli by secreting signaling molecules. This phenomenon is termed as quorum sensing (QS). By exogenously manipulating the signal transduction bacterial population behaviors could be controlled, which may be done through quorum quenching (QQ). QS related regulatory networks have been proven their involvement in regulating many virulence determinants in pathogenic bacteria in the course of infections. Interfering with QS signaling system could be a novel strategy against bacterial infections and therefore requires more understanding of their fundamental mechanisms. Here we review the development of studies specifically on the inhibition of production of N-acyl-homoserine lactone (AHL), a common proteobacterial QS signal. The opportunistic pathogen, Pseudomonas aeruginosa, equips the alkylquinolone (AQ)-mediated QS which also plays crucial roles in its pathogenicity. The studies in QQ targeting on AQ are also discussed. PMID:26539190

  2. Lack of AHL-based quorum sensing in Pseudomonas fluorescens isolated from milk

    PubMed Central

    Martins, Maurilio L.; Pinto, Uelinton M.; Riedel, Kathrin; Vanetti, Maria C.D.; Mantovani, Hilário C.; de Araújo, Elza F.

    2014-01-01

    Numerous bacteria coordinate gene expression in response to small signalling molecules in many cases known as acylhomoserine lactones (AHLs), which accumulate as a function of cell density in a process known as quorum sensing. This work aimed to determine if phenotypes that are important to define microbial activity in foods such as biofilm formation, swarming motility and proteolytic activity of two Pseudomonas fluorescens strains, isolated from refrigerated raw milk, are influenced by AHL molecules. The tested P. fluorescens strains did not produce AHL molecules in none of the evaluated media. We found that biofilm formation was dependent on the culture media, but it was not influenced by AHLs. Our results indicate that biofilm formation, swarming motility and proteolytic activity of the tested P. fluorescens strains are not regulated by acyl-homoserine lactones. It is likely that AHL-dependent quorum sensing system is absent from these strains. PMID:25477941

  3. Dynamical quorum-sensing in oscillators coupled through an external medium

    PubMed Central

    Schwab, David J.; Baetica, Ania; Mehta, Pankaj

    2012-01-01

    Many biological and physical systems exhibit population-density dependent transitions to synchronized oscillations in a process often termed “dynamical quorum sensing”. Synchronization frequently arises through chemical communication via signaling molecules distributed through an external medium. We study a simple theoretical model for dynamical quorum sensing: a heterogenous population of limit-cycle oscillators diffusively coupled through a common medium. We show that this model exhibits a rich phase diagram with four qualitatively distinct physical mechanisms that can lead to a loss of coherent population-level oscillations, including a novel mechanism arising from effective time-delays introduced by the external medium. We derive a single pair of analytic equations that allow us to calculate phase boundaries as a function of population density and show that the model reproduces many of the qualitative features of recent experiments on BZ catalytic particles as well as synthetically engineered bacteria. PMID:23087494

  4. The art of antibacterial warfare: Deception through interference with quorum sensing-mediated communication.

    PubMed

    Rampioni, Giordano; Leoni, Livia; Williams, Paul

    2014-08-01

    Almost a century on from the discovery of penicillin, the war against bacterial infection still rages compounded by the emergence of strains resistant to virtually every clinically approved antibiotic and the dearth of new antibacterial agents entering the clinic. Consequently there is renewed interest in drugs which attenuate virulence rather than bacterial growth. Since the metaphors of warfare are often used to describe the battle between pathogen and host, we will describe in such a context, the molecular communication (quorum sensing) mechanisms used by bacteria to co-ordinate virulence at the population level. Recent progress in exploiting this information through the design of anti-virulence deception strategies that disrupt quorum sensing through signal molecule inactivation, inhibition of signal molecule biosynthesis or the blockade of signal transduction and their advantages and disadvantages are considered. PMID:24823895

  5. Dynamical quorum-sensing in oscillators coupled through an external medium

    NASA Astrophysics Data System (ADS)

    Schwab, David J.; Baetica, Ania; Mehta, Pankaj

    2012-11-01

    Many biological and physical systems exhibit population-density-dependent transitions to synchronized oscillations in a process often termed “dynamical quorum sensing”. Synchronization frequently arises through chemical communication via signaling molecules distributed through an external medium. We study a simple theoretical model for dynamical quorum sensing: a heterogenous population of limit-cycle oscillators diffusively coupled through a common medium. We show that this model exhibits a rich phase diagram with four qualitatively distinct physical mechanisms that can lead to a loss of coherent population-level oscillations, including a novel mechanism arising from effective time-delays introduced by the external medium. We derive a single pair of analytic equations that allow us to calculate phase boundaries as a function of population density and show that the model reproduces many of the qualitative features of recent experiments on Belousov-Zhabotinsky catalytic particles as well as synthetically engineered bacteria.

  6. A negative feedback loop involving small RNAs accelerates Vibrio cholerae’s transition out of quorum-sensing mode

    PubMed Central

    Svenningsen, Sine L.; Waters, Christopher M.; Bassler, Bonnie L.

    2008-01-01

    Quorum sensing is a cell-to-cell communication process that allows bacteria to measure their population numbers and to synchronously alter gene expression in response to changes in cell population density. At the core of the Vibrio cholerae quorum-sensing signal transduction pathway lie four redundant small RNAs (sRNAs), named the Quorum Regulatory RNAs (Qrr1–4). Expression of qrr1–4 is cell population density-dependent due to a requirement for the quorum-sensing controlled phosphorylated response regulator LuxO-P, which is abundant only at low cell population density. When expressed, Qrr1–4 repress translation of HapR, the “master” quorum-sensing transcription factor. Here we show a negative feedback loop in which HapR activates transcription of the qrr genes, which indirectly leads to hapR repression. Efficient feedback activation of the qrr genes requires the simultaneous presence of LuxO-P (present only at low cell population density) and HapR (present only at high cell population density). For this reason, the feedback loop does not influence quorum sensing at steady-state low or high cell population density. However, LuxO-P and HapR are simultaneously present immediately following the switch from high to low cell density conditions. In this state, the HapR feedback loop dramatically accelerates V. cholerae’s transition from the high to the low cell density mode. PMID:18198339

  7. An allelopathic competition model with quorum sensing and delayed toxicant production.

    PubMed

    Fergola, Paolo; Cerasuolo, Marianna; Beretta, Edoardo

    2006-01-01

    The dynamics of a differential functional equation system representing an allelopathic competition is analyzed. The delayed allelochemical production process is represented by means of a distributed delay term in a linear quorum-sensing model. Sufficient conditions for local asymptotic stability properties of biologically meaningful steady-state solutions are given in terms of the parameters of the system. A global asymptotic stability result is also proved by constructing a suitable Lyapunov functional. Some simulations confirm the analytical results. PMID:20361806

  8. Arthroamide, a Cyclic Depsipeptide with Quorum Sensing Inhibitory Activity from Arthrobacter sp.

    PubMed

    Igarashi, Yasuhiro; Yamamoto, Kazuki; Fukuda, Takao; Shojima, Akane; Nakayama, Jiro; Carro, Lorena; Trujillo, Martha E

    2015-11-25

    Nonfilamentous actinobacteria have been less studied as secondary metabolite producers than their filamentous counterparts such as Streptomyces. From our collection of nonfilamentous actinobacteria isolated from sandstone, an Arthrobacter strain was found to produce a new cyclic peptide arthroamide (1) together with the known compound turnagainolide A (2). These compounds inhibited the quorum sensing signaling of Staphylococcus aureus in the submicromolar to micromolar range. PMID:26575343

  9. Quorum Sensing in Chromobacterium violaceum: DNA Recognition and Gene Regulation by the CviR Receptor ? †

    PubMed Central

    Stauff, Devin L.; Bassler, Bonnie L.

    2011-01-01

    The bacterial pathogen Chromobacterium violaceum uses a LuxIR-type quorum-sensing system to detect and respond to changes in cell population density. CviI synthesizes the autoinducer C10-homoserine lactone (C10-HSL), and CviR is a cytoplasmic DNA binding transcription factor that activates gene expression following binding to C10-HSL. A number of behaviors are controlled by quorum sensing in C. violaceum. However, few genes have been shown to be directly controlled by CviR, in part because the DNA motif bound by CviR is not well characterized. Here, we define the DNA sequence required for promoter recognition by CviR. Using in vivo data generated from a library of point mutations in a CviR-regulated promoter, we find that CviR binds to a palindrome with the ideal sequence CTGNCCNNNNGGNCAG. We constructed a position weight matrix using these in vivo data and scanned the C. violaceum genome to predict CviR binding sites. We measured direct activation of the identified promoters by CviR and found that CviR controls the expression of the promoter for a chitinase, a type VI secretion-related gene, a transcriptional regulator gene, a guanine deaminase gene, and cviI. Indeed, regulation of cviI expression by CviR generates a canonical quorum-sensing positive-feedback loop. PMID:21622734

  10. From deep-sea volcanoes to human pathogens: a conserved quorum-sensing signal in Epsilonproteobacteria.

    PubMed

    Pérez-Rodríguez, Ileana; Bolognini, Marie; Ricci, Jessica; Bini, Elisabetta; Vetriani, Costantino

    2015-05-01

    Chemosynthetic Epsilonproteobacteria from deep-sea hydrothermal vents colonize substrates exposed to steep thermal and redox gradients. In many bacteria, substrate attachment, biofilm formation, expression of virulence genes and host colonization are partly controlled via a cell density-dependent mechanism involving signal molecules, known as quorum sensing. Within the Epsilonproteobacteria, quorum sensing has been investigated only in human pathogens that use the luxS/autoinducer-2 (AI-2) mechanism to control the expression of some of these functions. In this study we showed that luxS is conserved in Epsilonproteobacteria and that pathogenic and mesophilic members of this class inherited this gene from a thermophilic ancestor. Furthermore, we provide evidence that the luxS gene is expressed--and a quorum-sensing signal is produced--during growth of Sulfurovum lithotrophicum and Caminibacter mediatlanticus, two Epsilonproteobacteria from deep-sea hydrothermal vents. Finally, we detected luxS transcripts in Epsilonproteobacteria-dominated biofilm communities collected from deep-sea hydrothermal vents. Taken together, our findings indicate that the epsiloproteobacterial lineage of the LuxS enzyme originated in high-temperature geothermal environments and that, in vent Epsilonproteobacteria, luxS expression is linked to the production of AI-2 signals, which are likely produced in situ at deep-sea vents. We conclude that the luxS gene is part of the ancestral epsilonproteobacterial genome and represents an evolutionary link that connects thermophiles to human pathogens. PMID:25397946

  11. Quorum Sensing Activity of Aeromonas Caviae Strain YL12, A Bacterium Isolated from Compost

    PubMed Central

    Lim, Yan-Lue; Ee, Robson; Yin, Wai-Fong; Chan, Kok-Gan

    2014-01-01

    Quorum sensing is a well-studied cell-to-cell communication method that involves a cell-density dependent regulation of genes expression mediated by signalling molecules. In this study, a bacterium isolated from a plant material compost pile was found to possess quorum sensing activity based on bioassay screening. Isolate YL12 was identified using matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometry and molecular typing using rpoD gene which identified the isolate as Aeromonas caviae. High resolution tandem mass spectrometry was subsequently employed to identify the N-acyl homoserine lactone profile of Aeromonas caviae YL12 and confirmed that this isolate produced two short chain N-acyl homoserine lactones, namely C4-HSL and C6, and the production was observed to be cell density-dependent. Using the thin layer chromatography (TLC) bioassay, both AHLs were found to activate C. violaceum CV026, whereas only C6-HSL was revealed to induce bioluminescence expression of E. coli [pSB401]. The data presented in this study will be the leading steps in understanding the role of quorum sensing in Aeromonas caviae strain YL12. PMID:24759107

  12. The Role of the CAI-1 Fatty Acid Tail in the Vibrio cholerae Quorum Sensing Response

    PubMed Central

    Perez, Lark J.; Ng, Wai-Leung; Marano, Paul; Brook, Karolina; Bassler, Bonnie L.; Semmelhack, Martin F.

    2013-01-01

    Quorum sensing is a mechanism of chemical communication among bacteria that enables collective behaviors. In V. cholerae, the etiological agent of the disease cholera, quorum sensing controls group behaviors including virulence factor production and biofilm formation. The major V. cholerae quorum-sensing system consists of the extracellular signal molecule called CAI-1 and its cognate membrane bound receptor called CqsS. Here, the ligand binding activity of CqsS is probed with structural analogs of the natural signal. Enabled by our discovery of a structurally simplified analog of CAI-1, we prepared and analyzed a focused library. The molecules were designed to probe the effects of conformational and structural changes along the length of the fatty acid tail of CAI-1. Our results, combined with pharmacophore modeling, suggest a molecular basis for signal molecule recognition and receptor fidelity with respect to the fatty acid tail portion of CAI-1. These efforts provide novel probes to enhance discovery of anti-virulence agents for the treatment of V. cholerae. PMID:23092313

  13. Measurement of the Copy Number of the Master Quorum-Sensing Regulator of a Bacterial Cell

    NASA Astrophysics Data System (ADS)

    Teng, Shu-Wen; Wang, Yufang; Tu, Kimberly C.; Long, Tao; Mehta, Pankaj; Wingreen, Ned S.; Bassler, Bonnie L.; Ong, N. P.

    2010-05-01

    Quorum sensing is the mechanism by which bacteria communicate and synchronize group behaviors. Quantitative information on parameters such as the copy number of particular quorum-sensing proteins should contribute strongly to understanding how the quorum-sensing network functions. Here we show that the copy number of the master regulator protein LuxR in Vibrio harveyi, can be determined in vivo by exploiting small-number fluctuations of the protein distribution when cells undergo division. When a cell divides, both its volume and LuxR protein copy number N are partitioned with slight asymmetries. We have measured the distribution functions describing the partitioning of the protein fluorescence and the cell volume. The fluorescence distribution is found to narrow systematically as the LuxR population increases while the volume partitioning is unchanged. Analyzing these changes statistically, we have determined that N = 80-135 dimers at low cell density and 575 dimers at high cell density. In addition, we have measured the static distribution of LuxR over a large (3,000) clonal population. Combining the static and time-lapse experiments, we determine the magnitude of the Fano factor of the distribution. This technique has broad applicability as a general, in vivo technique for measuring protein copy number and burst size.

  14. Antibacterial and Anti-Quorum Sensing Molecular Composition Derived from Quercus cortex (Oak bark) Extract.

    PubMed

    Deryabin, Dmitry G; Tolmacheva, Anna A

    2015-01-01

    Quercus cortex (Oak bark) has been used in European folk medicine since medieval times for treatment of diarrhea, stomatitis, pharyngitis and skin inflammations. Its antimicrobial activity is a well-known therapeutic property of oak bark, and its novel anti-quorum sensing (QS) ability has also been described recently. In this study, we examined the bioactive compounds of Quercus cortex extract and compared their direct antibacterial and regulatory anti-QS effects against Chromobacterium violaceum CV026 in a biotest. Evaluation of the original Quercus cortex extract showed weak antibacterial and prominent anti-QS activities that were retained and completely restored when the samples were dried and re-hydrated. The one-step liquid chromatography result indicated that the anti-QS activity might be determined by hydrophobic compounds; however, the subsequent reverse phase high performance liquid chromatography led to dissipation and loss of the activity. The gas chromatography-mass spectrometry gave excellent resolution between a majority of the compounds. Based on this result, 10 of the 35 identified small molecules were selected for further screening. The subsequent investigation indicated several compounds determined both the antibacterial and anti-QS activities of the Quercus cortex extract. Direct antibacterial activity was shown for 1,2,3-benzenetriol and 4-propyl-1,3-benzenediol, while sub-inhibitory concentrations of these compounds led to anti-QS effects. Five compounds: 4-(3-hydroxy-1-propenyl)-2-methoxy-phenol; 3,4,5-trimethoxyphenol; 4-hydroxy-3-methoxybenzaldehyde; 7-hydroxy-6-methoxy-2H-1-benzopyran-2-one and 2H-1-benzopyran-2-one were characterized as QS inhibitors independent of any effect on bacterial growth. Biologically relevant concentrations of each single component showed weak activity only while reconstruction of the small molecule composition derived from the Quercus cortex extract provided comparable complementary activity against C. violaceum CV026 in the biotest as the crude extract. PMID:26393551

  15. New Life for an Old Drug: the Anthelmintic Drug Niclosamide Inhibits Pseudomonas aeruginosa Quorum Sensing

    PubMed Central

    Imperi, Francesco; Massai, Francesco; Ramachandran Pillai, Cejoice; Longo, Francesca; Zennaro, Elisabetta; Rampioni, Giordano; Visca, Paolo

    2013-01-01

    The need for novel antibacterial strategies and the awareness of the importance of quorum sensing (QS) in bacterial infections have stimulated research aimed at identifying QS inhibitors (QSIs). However, clinical application of QSIs identified so far is still distant, likely due to their unsuitability for use in humans. A promising way to overcome this problem is searching for anti-QS side activity among the thousands of drugs approved for clinical use in the treatment of different diseases. Here, we applied this strategy to the search for QSIs, by screening a library of FDA-approved compounds for their ability to inhibit the QS response in the Gram-negative pathogen Pseudomonas aeruginosa. We found that the anthelmintic drug niclosamide strongly inhibits the P. aeruginosa QS response and production of acyl-homoserine lactone QS signal molecules. Microarray analysis showed that niclosamide affects the transcription of about 250 genes, with a high degree of target specificity toward the QS-dependent regulon. Phenotypic assays demonstrated that niclosamide suppresses surface motility and production of the secreted virulence factors elastase, pyocyanin, and rhamnolipids, and it reduces biofilm formation. In accordance with the strong antivirulence activity disclosed in vitro, niclosamide prevented P. aeruginosa pathogenicity in an insect model of acute infection. Besides the finding that an FDA-approved drug has a promising antivirulence activity against one of the most antibiotic-resistant bacterial pathogens, this work provides a proof of concept that a lateral anti-QS activity can be detected among drugs already used in humans, validating a new approach to identify QSIs that could easily move into clinical applications. PMID:23254430

  16. Natural Guided Genome Engineering Reveals Transcriptional Regulators Controlling Quorum-Sensing Signal Degradation

    PubMed Central

    Mothe, Nicolas; Velours, Christophe; Legrand, Pierre; Moréra, Solange; Faure, Denis

    2015-01-01

    Quorum-quenching (QQ) are natural or engineered processes disrupting the quorum-sensing (QS) signalling which controls virulence and persistence (e.g. biofilm) in numerous bacteria. QQ involves different enzymes including lactonases, amidases, oxidases and reductases which degrade the QS molecules such as N-acylhomoserine lactones (NAHL). Rhodococcus erythropolis known to efficiently degrade NAHL is proposed as a biocontrol agent and a reservoir of QQ-enzymes for biotechnology. In R. erythropolis, regulation of QQ-enzymes remains unclear. In this work, we performed genome engineering on R. erythropolis, which is recalcitrant to reverse genetics, in order to investigate regulation of QQ-enzymes at a molecular and structural level with the aim to improve the QQ activity. Deep-sequencing of the R. erythropolis enhanced variants allowed identification of a punctual mutation in a key-transcriptional factor QsdR (Quorum sensing degradation Regulation) which regulates the sole QQ-lactonase QsdA identified so far. Using biophysical and structural studies on QsdR, we demonstrate that QQ activity can be improved by modifying the regulation of QQ-enzymes degrading QS signal. This modification requiring the change of only one amino-acid in a transcriptional factor leads to an enhanced R. erythropolis in which the QS-signal degradation pathway is strongly activated. PMID:26554837

  17. Modulation of Host Biology by Pseudomonas aeruginosa Quorum Sensing Signal Molecules: Messengers or Traitors

    PubMed Central

    Liu, Yi-Chia; Chan, Kok-Gan; Chang, Chien-Yi

    2015-01-01

    Bacterial cells sense their population density and respond accordingly by producing various signal molecules to the surrounding environments thereby trigger a plethora of gene expression. This regulatory pathway is termed quorum sensing (QS). Plenty of bacterial virulence factors are controlled by QS or QS-mediated regulatory systems and QS signal molecules (QSSMs) play crucial roles in bacterial signaling transduction. Moreover, bacterial QSSMs were shown to interfere with host cell signaling and modulate host immune responses. QSSMs not only regulate the expression of bacterial virulence factors but themselves act in the modulation of host biology that can be potential therapeutic targets. PMID:26617576

  18. Organ-level quorum sensing directs regeneration in hair stem cell populations.

    PubMed

    Chen, Chih-Chiang; Wang, Lei; Plikus, Maksim V; Jiang, Ting Xin; Murray, Philip J; Ramos, Raul; Guerrero-Juarez, Christian F; Hughes, Michael W; Lee, Oscar K; Shi, Songtao; Widelitz, Randall B; Lander, Arthur D; Chuong, Cheng Ming

    2015-04-01

    Coordinated organ behavior is crucial for an effective response to environmental stimuli. By studying regeneration of hair follicles in response to patterned hair plucking, we demonstrate that organ-level quorum sensing allows coordinated responses to skin injury. Plucking hair at different densities leads to a regeneration of up to five times more neighboring, unplucked resting hairs, indicating activation of a collective decision-making process. Through data modeling, the range of the quorum signal was estimated to be on the order of 1 mm, greater than expected for a diffusible molecular cue. Molecular and genetic analysis uncovered a two-step mechanism, where release of CCL2 from injured hairs leads to recruitment of TNF-?-secreting macrophages, which accumulate and signal to both plucked and unplucked follicles. By coupling immune response with regeneration, this mechanism allows skin to respond predictively to distress, disregarding mild injury, while meeting stronger injury with full-scale cooperative activation of stem cells. PMID:25860610

  19. The role of quorum sensing in Escherichia coli (ETEC) virulence factors.

    PubMed

    Sturbelle, Régis Tuchtenhagen; de Avila, Luciana Farias da Costa; Roos, Talita Bandeira; Borchardt, Jéssica Lopes; da Conceição, Rita de Cássia dos Santos; Dellagostin, Odir Antonio; Leite, Fábio Pereira Leivas

    2015-11-18

    Quorum sensing (QS) is a signaling system among bacteria mediated by auto-inducer substances (AI). Whenever the concentration of these molecules reaches a threshold corresponding to a high cell density or quorum, the whole population starts a coordinated expression of specific genes. Studies have shown that epinephrine is also responsible for activating specific bacterial genes. This work aimed to investigate the role of conditioned medium (containing AI), epinephrine and their association on growth, motility, F4 fimbriae and heat-labile toxin (LT) expression on enterotoxigenic Escherichia coli (ETEC, E68). A significant increase in motility, F4 and LT expression, was observed in the ETEC culture supplemented with conditioned medium and epinephrine. These findings suggest that ETEC uses some components of conditioned medium (e.g., AI molecules), host molecules (epinephrine), and their association to modulate the expression of important virulence genes. PMID:26386492

  20. A Quorum-Quenching Approach To Investigate the Conservation of Quorum-Sensing-Regulated Functions within the Burkholderia cepacia Complex

    PubMed Central

    Wopperer, Julia; Cardona, Silvia T.; Huber, Birgit; Jacobi, Christoph A.; Valvano, Miguel A.; Eberl, Leo

    2006-01-01

    Taxonomic studies of the past few years have shown that the Burkholderia cepacia complex, a heterogeneous group of B. cepacia-like organisms, consists of at least nine species. B. cepacia complex strains are ubiquitously distributed in nature and have been used for biocontrol, bioremediation, and plant growth promotion purposes. At the same time, B. cepacia complex strains have emerged as important opportunistic pathogens of humans, particularly those with cystic fibrosis. All B. cepacia complex species investigated thus far use quorum-sensing (QS) systems that rely on N-acylhomoserine lactone (AHL) signal molecules to express certain functions, including the production of extracellular proteases, swarming motility, biofilm formation, and pathogenicity, in a population-density-dependent manner. In this study we constructed a broad-host-range plasmid that allowed the heterologous expression of the Bacillus sp. strain 240B1 AiiA lactonase, which hydrolyzes the lactone ring of various AHL signal molecules, in all described B. cepacia complex species. We show that expression of AiiA abolished or greatly reduced the accumulation of AHL molecules in the culture supernatants of all tested B. cepacia complex strains. Phenotypic characterization of wild-type and transgenic strains revealed that protease production, swarming motility, biofilm formation, and Caenorhabditis elegans killing efficiency was regulated by AHL in the large majority of strains investigated. PMID:16461713

  1. The Quorum Sensing Regulator CinR Hierarchically Regulates Two Other Quorum Sensing Pathways in Ligand-Dependent and -Independent Fashions in Rhizobium etli

    PubMed Central

    Zheng, Huiming; Mao, Yiling; Zhu, Qingcheng; Ling, Jun; Zhang, Na; Naseer, Nawar

    2015-01-01

    ABSTRACT Many rhizobial species use complex N-acyl-homoserine lactone (AHL)-based quorum sensing (QS) systems to monitor their population density and regulate their symbiotic interactions with their plant hosts. There are at least three LuxRI-type regulatory systems in Rhizobium etli CFN42: CinRI, RaiRI, and TraRI. In this study, we show that CinI, RaiI, and TraI are responsible for synthesizing all AHLs under the tested conditions. The activation of these AHL synthase genes requires their corresponding LuxR-type counterparts. We further demonstrate that CinRI is at the top of the regulatory cascade that activates RaiRI and TraRI QS systems. Moreover, we discovered that CinR possesses a specific affinity to bind cinI promoter in the absence of its cognate AHL ligand, thereby activating cinI transcription. Addition of AHLs leads to improved binding to the cinI promoter and enhanced cinI expression. Furthermore, we found that compared to the wild type, the cinR mutation displayed reduced nodule formation, and cinR, raiR, and traI mutants show significantly lower levels of nitrogen fixation activity than the wild type. These results suggest that the complex QS regulatory systems in R. etli play an important role in its symbiosis with legume hosts. IMPORTANCE Many bacteria use quorum sensing (QS) to monitor their cell densities and coordinately regulate a number of physiological functions. Rhizobia often have diverse and complex LuxR/LuxI-type quorum sensing systems that may be involved in symbiosis and N2 fixation. In this study, we identified three LuxR/LuxI-type QS systems in Rhizobium etli CFN42: CinRI, RaiRI, and TraRI. We established a complex network of regulation between these QS components and found that these QS systems played important roles in symbiosis processes. PMID:25691531

  2. Expression and Quorum Sensing Regulation of Type III Secretion System Genes of Vibrio harveyi during Infection of Gnotobiotic Brine Shrimp

    PubMed Central

    Ruwandeepika, H. A. Darshanee; Karunasagar, Indrani; Bossier, Peter; Defoirdt, Tom

    2015-01-01

    Type III secretion systems enable pathogens to inject their virulence factors directly into the cytoplasm of the host cells. The type III secretion system of Vibrio harveyi, a major pathogen of aquatic organisms and a model species in quorum sensing studies, is repressed by the quorum sensing master regulator LuxR. In this study, we found that during infection of gnotobiotic brine shrimp larvae, the expression levels of three type III secretion operons in V. harveyi increased within the first 12h after challenge and decreased again thereafter. The in vivo expression levels were highest in a mutant with a quorum sensing system that is locked in low cell density configuration (minimal LuxR levels) and lowest in a mutant with a quorum sensing system that is locked in the high cell density configuration (maximal LuxR levels), which is consistent with repression of type III secretion by LuxR. Remarkably, in vivo expression levels of the type III secretion system genes were much (> 1000 fold) higher than the in vitro expression levels, indicating that (currently unknown) host factors significantly induce the type III secretion system. Given the fact that type III secretion is energy-consuming, repression by the quorum sensing master regulators might be a mechanism to save energy under conditions where it does not provide an advantage to the cells. PMID:26636765

  3. Expression and Quorum Sensing Regulation of Type III Secretion System Genes of Vibrio harveyi during Infection of Gnotobiotic Brine Shrimp.

    PubMed

    Ruwandeepika, H A Darshanee; Karunasagar, Indrani; Bossier, Peter; Defoirdt, Tom

    2015-01-01

    Type III secretion systems enable pathogens to inject their virulence factors directly into the cytoplasm of the host cells. The type III secretion system of Vibrio harveyi, a major pathogen of aquatic organisms and a model species in quorum sensing studies, is repressed by the quorum sensing master regulator LuxR. In this study, we found that during infection of gnotobiotic brine shrimp larvae, the expression levels of three type III secretion operons in V. harveyi increased within the first 12h after challenge and decreased again thereafter. The in vivo expression levels were highest in a mutant with a quorum sensing system that is locked in low cell density configuration (minimal LuxR levels) and lowest in a mutant with a quorum sensing system that is locked in the high cell density configuration (maximal LuxR levels), which is consistent with repression of type III secretion by LuxR. Remarkably, in vivo expression levels of the type III secretion system genes were much (> 1000 fold) higher than the in vitro expression levels, indicating that (currently unknown) host factors significantly induce the type III secretion system. Given the fact that type III secretion is energy-consuming, repression by the quorum sensing master regulators might be a mechanism to save energy under conditions where it does not provide an advantage to the cells. PMID:26636765

  4. RpoN Regulates Virulence Factors of Pseudomonas aeruginosa via Modulating the PqsR Quorum Sensing Regulator

    PubMed Central

    Cai, Zhao; Liu, Yang; Chen, Yicai; Yam, Joey Kuok Hoong; Chew, Su Chuen; Chua, Song Lin; Wang, Ke; Givskov, Michael; Yang, Liang

    2015-01-01

    The alternative sigma factor RpoN regulates many cell functions, such as motility, quorum sensing, and virulence in the opportunistic pathogen Pseudomonas aeruginosa (P. aeruginosa). P. aeruginosa often evolves rpoN-negative variants during the chronic infection in cystic fibrosis patients. It is unclear how RpoN interacts with other regulatory mechanisms to control virulence of P. aeruginosa. In this study, we show that RpoN modulates the function of PqsR, a quorum sensing receptor regulating production of virulence factors including the phenazine pyocyanin. The ?rpoN mutant is able to synthesize 4-quinolone signal molecule HHQ but unable to activate PqsR and Pseudomonas quinolone signal (pqs) quorum sensing. The ?rpoN mutant produces minimal level of pyocyanin and is unable to produce the anti-staphylococcal agents. Providing pqsR in trans in the ?rpoN mutant restores its pqs quorum sensing and virulence factor production to the wild-type level. Our study provides evidence that RpoN has a regulatory effect on P. aeruginosa virulence through modulating the function of the PqsR quorum sensing regulator. PMID:26633362

  5. RpoN Regulates Virulence Factors of Pseudomonas aeruginosa via Modulating the PqsR Quorum Sensing Regulator.

    PubMed

    Cai, Zhao; Liu, Yang; Chen, Yicai; Yam, Joey Kuok Hoong; Chew, Su Chuen; Chua, Song Lin; Wang, Ke; Givskov, Michael; Yang, Liang

    2015-01-01

    The alternative sigma factor RpoN regulates many cell functions, such as motility, quorum sensing, and virulence in the opportunistic pathogen Pseudomonas aeruginosa (P. aeruginosa). P. aeruginosa often evolves rpoN-negative variants during the chronic infection in cystic fibrosis patients. It is unclear how RpoN interacts with other regulatory mechanisms to control virulence of P. aeruginosa. In this study, we show that RpoN modulates the function of PqsR, a quorum sensing receptor regulating production of virulence factors including the phenazine pyocyanin. The ?rpoN mutant is able to synthesize 4-quinolone signal molecule HHQ but unable to activate PqsR and Pseudomonas quinolone signal (pqs) quorum sensing. The ?rpoN mutant produces minimal level of pyocyanin and is unable to produce the anti-staphylococcal agents. Providing pqsR in trans in the ?rpoN mutant restores its pqs quorum sensing and virulence factor production to the wild-type level. Our study provides evidence that RpoN has a regulatory effect on P. aeruginosa virulence through modulating the function of the PqsR quorum sensing regulator. PMID:26633362

  6. Structure and Inhibition of a Quorum Sensing Target from Streptococcus pneumoniae

    PubMed Central

    Singh, Vipender; Shi, Wuxian; Almo, Steven C.; Evans, Gary B.; Furneaux, Richard H.; Tyler, Peter C.; Zheng, Renjian; Schramm, Vern L.

    2008-01-01

    Streptococcus pneumoniae 5?-methylthioadenosine/S-adenosylhomocysteine hydrolase (MTAN) catalyzes the hydrolytic deadenylation of its substrates to form adenine and 5-methylthioribose or S-ribosylhomocysteine (SRH). MTAN is not found in mammals but is involved in bacterial quorum sensing. MTAN gene disruption affects growth and pathogenicity of bacteria, making it a target for antibiotic design. Kinetic isotope effects and computational studies have established a dissociative SN1 transition state for E. coli MTAN and transition state analogues resembling the transition state are powerful inhibitors of the enzyme (Singh, V., Lee, J. L., Núñez, S., Howell, P. L. and Schramm, V. L. (2005) Biochemistry 44, 11647-11659). The MTAN from S. pneumoniae has 40% sequence identity to E. coli MTAN, but exhibits remarkably distinct kinetic and inhibitory properties. 5?-Methylthio-Immucillin-A (MT-ImmA) is a transition state analogue resembling an early SN1 transition state. It is a weak inhibitor of S. pneumoniae MTAN with a Ki of 1.0 ?M. The X-ray structure of S. pneumoniae MTAN with MT-ImmA indicates a dimer with the methylthio group in a flexible hydrophobic pocket. Replacing the methyl group with phenyl (PhT-ImmA), tolyl (p-TolT-ImmA) or ethyl (EtT-ImmA) groups increases the affinity to give Ki values of 335 nM, 60 nM and 40 nM, respectively. DADMe-Immucillins are geometric and electrostatic mimics of a fully-dissociated transition state and bind more tightly than Immucillins. MT-DADMe-Immucillin-A inhibits with a Ki value of 24 nM and replacing the 5?-methyl group with p-Cl-phenyl (p-Cl-PhT-DADMe-ImmA) gave a Ki* value of 0.36 nM. The inhibitory potential of DADMe-Immucillins relative to the Immucillins supports a fully dissociated transition state structure for S. pneumoniae MTAN. Comparison of active site contacts in the X-ray crystal structures of E. coli and S. pneumoniae MTAN with MT-ImmA would predict equal binding, yet most analogues bind 103 to 104 fold more tightly to the E. coli enzyme. Catalytic site efficiency is primarily responsible for this difference since kcat/Km for S. pneumoniae MTAN is <10-2 that of E. coli MTAN. PMID:17059210

  7. N-Acyl-l-Homoserine Lactone Quorum Sensing Controls Butanediol Fermentation in Serratia plymuthica RVH1 and Serratia marcescens MG1

    PubMed Central

    Van Houdt, Rob; Moons, Pieter; Hueso Buj, Maria; Michiels, Chris W.

    2006-01-01

    Butanediol fermentation in two Serratia species is shown to be affected by N-acyl-l-homoserine lactone-dependent quorum sensing. Knockout of quorum-sensing signal production caused a shift towards enhanced acid production, resulting in early growth arrest, which was reversible by the addition of synthetic signal molecules. PMID:16740963

  8. Draft Genome Sequence of Aeromonas caviae Strain L12, a Quorum-Sensing Strain Isolated from a Freshwater Lake in Malaysia

    PubMed Central

    Chin, Pui-San; Tee, Kok Keng; Chang, Chien-Yi; Yin, Wai-Fong; Sheng, Kit-Yeng

    2015-01-01

    Here, we present the draft genome sequence of Aeromonas caviae strain L12, which shows quorum-sensing activity. The availability of this genome sequence is important to the research of the quorum-sensing regulatory system in this isolate. PMID:25745006

  9. Prevention of bacterial quorum sensing in aquifer materials and effect on bioclogging

    NASA Astrophysics Data System (ADS)

    Baveye, P.; Superak, C.; Farris, K.

    2012-12-01

    In aquifer materials that are clogged as a result of the growth and metabolism of bacteria, microscopic observations usually show the bacterial cells to be present in aggregates that tend to be strategically located at constrictions in the pore space, either strained there, or accumulating at these spots for metabolic advantages. Aggregation appears to be fostered by exopolymer production, but can also occur purely as a result of electrostatic interactions. On membranes, research has shown that if bacteria are discouraged from aggregating, for example by eliminating the biochemical means (e.g., "quorum sensing") by which they communicate in order to do so, biofouling of the membranes is significantly delayed and in some cases even largely alleviated. In this context, the goal of the research described in this presentation was to determine if a similar situation might arise when quorum quenchers are added to the liquid injected in columns of fine sand inoculated with various bacterial strains. Traditional saturated hydraulic conductivity and piezometer measurements asre complemented with detailed microscopic observations in the pore space. Perspectives on the possible use of quorum quenchers in practical situations is discussed.

  10. Quorum sensing inhibition by Asparagopsis taxiformis, a marine macro alga: separation of the compound that interrupts bacterial communication.

    PubMed

    Jha, Bhavanath; Kavita, Kumari; Westphal, Jenny; Hartmann, Anton; Schmitt-Kopplin, Philippe

    2013-01-01

    The majority of the marine algal species, though completing their life cycle in seawater, are rarely susceptible to fouling, making them an important source of quorum sensing (QS) inhibitory substances. The separation and characterization of QS inhibitors are crucial for any potential application. Thirty marine macroalgae were tested for QS inhibition activity by using Chromobacterium violaceum CV026 as the reporter strain, and among them, Asparagopsis taxiformis showed antibacterial, as well as antiquorum, sensing activities. Cinnamaldehyde (75 mM) and methanol were used as positive and negative controls, respectively. The antiquorum sensing activity of A. taxiformis was further confirmed using the sensor strain, Serratia liquefaciens MG44, having green fluorescent protein (gfp). Methanolic extract of the alga was fractionated by solid phase extraction (SPE), and each fraction was tested for QS inhibition. Two types of activities were observed-zone of clearance (antibacterial activity) and zone of inhibition with or without finger-like projections (QS inhibition). Out of five SPE cartridges, Bond Elut PH showed clear separation of these two fractions. The Ion Cyclotron Resonance Fourier Transformation Mass Spectrometer (ICR-FT/MS) analysis of the fractions further supported the bioassay results. The presence of strong QS inhibitory compound in A. taxiformis indicates its potential use in antifouling preparations. PMID:23344114

  11. Quorum Sensing Signal Synthesis May Represent a Selective Advantage Independent of Its Role in Regulation of Bioluminescence in Vibrio fischeri.

    PubMed

    Chong, Grace; Kimyon, Onder; Manefield, Mike

    2013-01-01

    The evolution of biological signalling systems and apparently altruistic or cooperative traits in diverse organisms has required selection against the subversive tendencies of self-interested biological entities. The bacterial signalling and response system known as quorum sensing or Acylated Homoserine Lactone (AHL) mediated gene expression is thought to have evolved through kin selection. In this in vitro study on the model quorum sensing bioluminescent marine symbiont Vibrio fischeri, competition and long-term sub culturing experiments suggest that selection for AHL synthesis (encoded by the AHL synthase gene luxI) is independent of the quorum sensing regulated phenotype (bioluminescence encoded by luxCDABE). Whilst results support the hypothesis that signal response (AHL binding and transcriptional activation encoded by the luxR gene) is maintained through indirect fitness benefits (kin selection), signal synthesis is maintained in the V. fischeri genome over evolutionary time through direct fitness benefits at the individual level from an unknown function. PMID:23825662

  12. Quorum Sensing Signal Synthesis May Represent a Selective Advantage Independent of Its Role in Regulation of Bioluminescence in Vibrio fischeri

    PubMed Central

    Chong, Grace; Kimyon, Önder; Manefield, Mike

    2013-01-01

    The evolution of biological signalling systems and apparently altruistic or cooperative traits in diverse organisms has required selection against the subversive tendencies of self-interested biological entities. The bacterial signalling and response system known as quorum sensing or Acylated Homoserine Lactone (AHL) mediated gene expression is thought to have evolved through kin selection. In this in vitro study on the model quorum sensing bioluminescent marine symbiont Vibrio fischeri, competition and long-term sub culturing experiments suggest that selection for AHL synthesis (encoded by the AHL synthase gene luxI) is independent of the quorum sensing regulated phenotype (bioluminescence encoded by luxCDABE). Whilst results support the hypothesis that signal response (AHL binding and transcriptional activation encoded by the luxR gene) is maintained through indirect fitness benefits (kin selection), signal synthesis is maintained in the V. fischeri genome over evolutionary time through direct fitness benefits at the individual level from an unknown function. PMID:23825662

  13. Aryl-homoserine lactone quorum sensing in stem-nodulating photosynthetic bradyrhizobia

    PubMed Central

    Ahlgren, Nathan A.; Harwood, Caroline S.; Schaefer, Amy L.; Giraud, Eric; Greenberg, E. Peter

    2011-01-01

    Many Proteobacteria possess LuxI-LuxR–type quorum-sensing systems that produce and detect fatty acyl-homoserine lactone (HSL) signals. The photoheterotroph Rhodopseudomonas palustris is unusual in that it produces and detects an aryl-HSL, p-coumaroyl-HSL, and signal production requires an exogenous source of p-coumarate. A photosynthetic stem-nodulating member of the genus Bradyrhizobium produces a small molecule signal that elicits an R. palustris quorum-sensing response. Here, we show that this signal is cinnamoyl-HSL and that cinnamoyl-HSL is produced by the LuxI homolog BraI and detected by BraR. Cinnamoyl-HSL reaches concentrations on the order of 50 nM in cultures of stem-nodulating bradyrhizobia grown in the presence or absence of cinnamate. Acyl-HSLs often reach concentrations of 0.1–30 ?M in bacterial cultures, and generally, LuxR-type receptors respond to signals in a concentration range from 5 to a few hundred nanomolar. Our stem-nodulating Bradyrhizobium strain responds to picomolar concentrations of cinnamoyl-HSL and thus, produces cinnamoyl-HSL in excess of the levels required for a signal response without an exogenous source of cinnamate. The ability of Bradyrhizobium to produce and respond to cinnamoyl-HSL shows that aryl-HSL production is not unique to R. palustris, that the aromatic acid substrate for aryl-HSL synthesis does not have to be supplied exogenously, and that some acyl-HSL quorum-sensing systems may function at very low signal production and response levels. PMID:21471459

  14. Aryl-homoserine lactone quorum sensing in stem-nodulating photosynthetic bradyrhizobia.

    PubMed

    Ahlgren, Nathan A; Harwood, Caroline S; Schaefer, Amy L; Giraud, Eric; Greenberg, E Peter

    2011-04-26

    Many Proteobacteria possess LuxI-LuxR-type quorum-sensing systems that produce and detect fatty acyl-homoserine lactone (HSL) signals. The photoheterotroph Rhodopseudomonas palustris is unusual in that it produces and detects an aryl-HSL, p-coumaroyl-HSL, and signal production requires an exogenous source of p-coumarate. A photosynthetic stem-nodulating member of the genus Bradyrhizobium produces a small molecule signal that elicits an R. palustris quorum-sensing response. Here, we show that this signal is cinnamoyl-HSL and that cinnamoyl-HSL is produced by the LuxI homolog BraI and detected by BraR. Cinnamoyl-HSL reaches concentrations on the order of 50 nM in cultures of stem-nodulating bradyrhizobia grown in the presence or absence of cinnamate. Acyl-HSLs often reach concentrations of 0.1-30 ?M in bacterial cultures, and generally, LuxR-type receptors respond to signals in a concentration range from 5 to a few hundred nanomolar. Our stem-nodulating Bradyrhizobium strain responds to picomolar concentrations of cinnamoyl-HSL and thus, produces cinnamoyl-HSL in excess of the levels required for a signal response without an exogenous source of cinnamate. The ability of Bradyrhizobium to produce and respond to cinnamoyl-HSL shows that aryl-HSL production is not unique to R. palustris, that the aromatic acid substrate for aryl-HSL synthesis does not have to be supplied exogenously, and that some acyl-HSL quorum-sensing systems may function at very low signal production and response levels. PMID:21471459

  15. Control of acetic acid fermentation by quorum sensing via N-acylhomoserine lactones in Gluconacetobacter intermedius.

    PubMed

    Iida, Aya; Ohnishi, Yasuo; Horinouchi, Sueharu

    2008-04-01

    A number of gram-negative bacteria regulate gene expression in a cell density-dependent manner by quorum sensing via N-acylhomoserine lactones (AHLs). Gluconacetobacter intermedius NCI1051, a gram-negative acetic acid bacterium, produces three different AHLs, N-decanoyl-l-homoserine lactone, N-dodecanoyl-L-homoserine lactone, and an N-dodecanoyl-L-homoserine lactone with a single unsaturated bond in its acyl chain, as determined by liquid chromatography-tandem mass spectrometry. Two genes encoding an AHL synthase and a cognate regulator were cloned from strain NCI1051 and designated ginI and ginR, respectively. Disruption of ginI or ginR abolished AHL production, indicating that NCI1051 contains a single set of quorum-sensing genes. Transcriptional analysis showed that ginI is activated by GinR, which is consistent with the finding that there is an inverted repeat whose nucleotide sequence is similar to the sequence bound by members of the LuxR family at position -45 with respect to the transcriptional start site of ginI. A single gene, designated ginA, located just downstream of ginI is transcribed by read-through from the GinR-inducible ginI promoter. A ginA mutant, as well as the ginI and ginR mutants, grew more rapidly in medium containing 2% (vol/vol) ethanol and accumulated acetic acid at a higher rate with a greater final yield than parental strain NCI1051. In addition, these mutants produced larger amounts of gluconic acid than the parental strain. These data demonstrate that the GinI/GinR quorum-sensing system in G. intermedius controls the expression of ginA, which in turn represses oxidative fermentation, including acetic acid and gluconic acid fermentation. PMID:18245283

  16. Attenuation of adhesion, quorum sensing and biofilm mediated virulence of carbapenem resistant Escherichia coli by selected natural plant products.

    PubMed

    Thakur, Pallavi; Chawla, Raman; Tanwar, Ankit; Chakotiya, Ankita Singh; Narula, Alka; Goel, Rajeev; Arora, Rajesh; Sharma, Rakesh Kumar

    2016-03-01

    The multi-drug resistance offered by Carbapenem Resistant Escherichia coli (Family: Enterobacteriaceae; Class: Gammaproteobacteria) against third line antibiotics can be attributed towards its ability to develop biofilm. Such process involves adhesion and quorum-sensing induced colonization leading to biomass development. The present study explored the anti-adhesion, anti-quorum sensing and anti-biofilm potential of 05 pre-standardized potent herbals. Berberis aristata (PTRC-2111-A) exhibited maximum potential in all these activities i.e. 91.3% ± 0.05% (Anti-adhesion), 96.06% ± 0.05% (Anti-Quorum sensing) and 51.3% ± 0.07% (Anti-Biofilm formation) respectively. Camellia sinensis (PTRC-31911-A) showed both anti-adhesion (84.1% ± 0.03%) and anti-quorum sensing (90.0%) potential while Holarrhena antidysenterica (PTRC-8111-A) showed only anti-quorum sensing potential as compared to standards/antibiotics. These findings were in line with the molecular docking analysis of phytoligands against Lux S and Pilin receptors. Furthermore, the pairwise correlation analysis of the tested activities with qualitative, quantitative and bioactivity functional descriptors revealed that an increased content of alkaloid, moderate content of flavonoids and decreased content of tannins supported all the three activities. In addition, nitric oxide and superoxide scavenging activity were found to be correlated with anti-quorum sensing activity. The findings indicated clearly that B. aristata (Family: Berberidaceae) and C. sinensis (Family: Theaceae) were potent herbal leads with significant therapeutic potential which further needs to be explored at pre-clinical level in the future. PMID:26792674

  17. Distribution of Quorum-Sensing Genes in the Burkholderia cepacia Complex

    PubMed Central

    Lutter, E.; Lewenza, S.; Dennis, J. J.; Visser, M. B.; Sokol, P. A.

    2001-01-01

    The distribution of quorum-sensing genes among strains from seven genomovars of the Burkholderia cepacia complex was examined by PCR. cepR and cepI were amplified from B. cepacia genomovars I and III, B. stabilis, and B. vietnamiensis. cepR was also amplified from B. multivorans and B. cepacia genomovar VI. bviIR were amplified from B. vietnamiensis. All genomovars produced N-octanoyl-l-homoserine lactone and N-hexanoyl-l-homoserine lactone. B. vietnamiensis and B. cepacia genomovar VII produced additional N-acyl-l-homoserine lactones. PMID:11402012

  18. Collective Behavior of Quorum-Sensing Run-and-Tumble Particles under Confinement

    NASA Astrophysics Data System (ADS)

    Rein, Markus; Heinß, Nike; Schmid, Friederike; Speck, Thomas

    2016-02-01

    We study a generic model for quorum-sensing bacteria in circular confinement. Every bacterium produces signaling molecules, the local concentration of which triggers a response when a certain threshold is reached. If this response lowers the motility, then an aggregation of bacteria occurs which differs fundamentally from standard motility-induced phase separation due to the long-ranged nature of the concentration of signal molecules. We analyze this phenomenon analytically and by numerical simulations employing two different protocols leading to stationary cluster and ring morphologies, respectively.

  19. Quorumpeps database: chemical space, microbial origin and functionality of quorum sensing peptides

    PubMed Central

    Wynendaele, Evelien; Bronselaer, Antoon; Nielandt, Joachim; D’Hondt, Matthias; Stalmans, Sofie; Bracke, Nathalie; Verbeke, Frederick; Van De Wiele, Christophe; De Tré, Guy; De Spiegeleer, Bart

    2013-01-01

    Quorum-sensing (QS) peptides are biologically attractive molecules, with a wide diversity of structures and prone to modifications altering or presenting new functionalities. Therefore, the Quorumpeps database (http://quorumpeps.ugent.be) is developed to give a structured overview of the QS oligopeptides, describing their microbial origin (species), functionality (method, result and receptor), peptide links and chemical characteristics (3D-structure-derived physicochemical properties). The chemical diversity observed within this group of QS signalling molecules can be used to develop new synthetic bio-active compounds. PMID:23180797

  20. Engineering quorum sensing signaling of Pseudomonas for enhanced wastewater treatment and electricity harvest: A review.

    PubMed

    Yong, Yang-Chun; Wu, Xiang-Yang; Sun, Jian-Zhong; Cao, Ying-Xiu; Song, Hao

    2015-12-01

    Cell-cell communication that enables synchronized population behaviors in microbial communities dictates various biological processes. It is of great interest to unveil the underlying mechanisms of fine-tuning cell-cell communication to achieve environmental and energy applications. Pseudomonas is a ubiquitous microbe in environments that had wide applications in bioremediation and bioenergy generation. The quorum sensing (QS, a generic cell-cell communication mechanism) systems of Pseudomonas underlie the aromatics biodegradation, denitrification and electricity harvest. Here, we reviewed the recent progresses of the genetic strategies in engineering QS circuits to improve efficiency of wastewater treatment and the performance of microbial fuel cells. PMID:25455678

  1. Quorum-Sensing Mutations Affect Attachment and Stability of Burkholderia cenocepacia Biofilms

    PubMed Central

    Tomlin, Kerry L.; Malott, Rebecca J.; Ramage, Gordon; Storey, Douglas G.; Sokol, Pamela A.; Ceri, H.

    2005-01-01

    Biofilm formation in Burkholderia cenocepacia has been shown to rely in part on acylhomoserine lactone-based quorum sensing. For many other bacterial species, it appears that both the initial adherence and the later stages of biofilm maturation are affected when quorum sensing pathways are inhibited. In this study, we examined the effects of mutations in the cepIR and cciIR quorum-sensing systems of Burkholderia cenocepacia K56-2 with respect to biofilm attachment and antibiotic resistance. We also examined the role of the cepIR system in biofilm stability and structural development. Using the high-throughput MBEC assay system to produce multiple equivalent biofilms, the biomasses of both the cepI and cepR mutant biofilms, measured by crystal violet staining, were less than half of the value observed for the wild-type strain. Attachment was partially restored upon providing functional gene copies via multicopy expression vectors. Surprisingly, neither the cciI mutant nor the double cciI cepI mutant was deficient in attachment, and restoration of the cciI gene resulted in less attachment than for the mutants. Meanwhile, the cciR mutant did show a significant reduction in attachment, as did the cciR cepIR mutant. While there was no change in antibiotic susceptibility with the individual cepIR and cciIR mutants, the cepI cciI mutant biofilms were more sensitive to ciprofloxacin. A significant increase in sensitivity to removal by sodium dodecyl sulfate was seen for the cepI and cepR mutants. Flow cell analysis of the individual cepIR mutant biofilms indicated that they were both structurally and temporally impaired in attachment and development. These results suggest that biofilm structural defects might be present in quorum-sensing mutants of B. cenocepacia that affect the stability and resistance of the adherent cell mass, providing a basis for future studies to design preventative measures against biofilm formation in this species, an important lung pathogen of cystic fibrosis patients. PMID:16151106

  2. Realization of morphing logic gates in a repressilator with quorum sensing feedback

    NASA Astrophysics Data System (ADS)

    Agrawal, Vidit; Kang, Shivpal Singh; Sinha, Sudeshna

    2014-03-01

    We demonstrate how a genetic ring oscillator network with quorum sensing feedback can operate as a robust logic gate. Specifically we show how a range of logic functions, namely AND/NAND, OR/NOR and XOR/XNOR, can be realized by the system, thus yielding a versatile unit that can morph between different logic operations. We further demonstrate the capacity of this system to yield complementary logic operations in parallel. Our results then indicate the computing potential of this biological system, and may lead to bio-inspired computing devices.

  3. Dynamical quorum sensing and synchronization in collections of excitable and oscillatory catalytic particles

    NASA Astrophysics Data System (ADS)

    Tinsley, M. R.; Taylor, A. F.; Huang, Z.; Wang, F.; Showalter, K.

    2010-06-01

    We present experimental studies of interacting excitable and oscillatory catalytic particles in well-stirred and spatially distributed systems. A number of distinct paths to synchronized oscillatory behavior are described. We present an example of a Kuramoto type transition in a well-stirred system with a collective rhythm emerging on increasing the number density of oscillatory particles. Groups of spatially distributed oscillatory particles become entrained to a common frequency by organizing centers. Quorum sensing type transitions are found in populations of globally and locally coupled excitable particles, with a sharp transition from steady state to fully synchronized behavior at a critical density or group size.

  4. Collective Behavior of Quorum-Sensing Run-and-Tumble Particles under Confinement.

    PubMed

    Rein, Markus; Heinß, Nike; Schmid, Friederike; Speck, Thomas

    2016-02-01

    We study a generic model for quorum-sensing bacteria in circular confinement. Every bacterium produces signaling molecules, the local concentration of which triggers a response when a certain threshold is reached. If this response lowers the motility, then an aggregation of bacteria occurs which differs fundamentally from standard motility-induced phase separation due to the long-ranged nature of the concentration of signal molecules. We analyze this phenomenon analytically and by numerical simulations employing two different protocols leading to stationary cluster and ring morphologies, respectively. PMID:26894736

  5. A Tangled Web: Regulatory Connections between Quorum Sensing and Cyclic Di-GMP

    PubMed Central

    Srivastava, Disha

    2012-01-01

    Bacteria sense and respond to environmental cues to control important developmental processes. Two widely conserved and important strategies that bacteria employ to sense changes in population density and local environmental conditions are quorum sensing (QS) and cyclic di-GMP (c-di-GMP) signaling, respectively. The importance of these pathways in controlling a broad variety of functions, including virulence, biofilm formation, and motility, has been recognized in many species. Recent research has shown that these pathways are intricately intertwined. Here we review the regulatory connections between QS and c-di-GMP signaling. We propose that the integration of QS with c-di-GMP allows bacteria to assimilate information about the local bacterial population density with other physicochemical environmental signals within the broader c-di-GMP signaling network. PMID:22661686

  6. AinS quorum sensing regulates the Vibrio fischeri acetate switch.

    PubMed

    Studer, Sarah V; Mandel, Mark J; Ruby, Edward G

    2008-09-01

    The marine bacterium Vibrio fischeri uses two acyl-homoserine lactone (acyl-HSL) quorum-sensing systems. The earlier signal, octanoyl-HSL, produced by AinS, is required for normal colonization of the squid Euprymna scolopes and, in culture, is necessary for a normal growth yield. In examining the latter requirement, we found that during growth in a glycerol/tryptone-based medium, wild-type V. fischeri cells initially excrete acetate but, in a metabolic shift termed the acetate switch, they subsequently utilize the acetate, removing it from the medium. In contrast, an ainS mutant strain grown in this medium does not remove the excreted acetate, which accumulates to lethal levels. The acetate switch is characterized by the induction of acs, the gene encoding acetyl coenzyme A (acetyl-CoA) synthetase, leading to uptake of the excreted acetate. Wild-type cells induce an acs transcriptional reporter 25-fold, coincident with the disappearance of the extracellular acetate; in contrast, the ainS mutant did not display significant induction of the acs reporter. Supplementation of the medium of an ainS mutant with octanoyl-HSL restored normal levels of acs induction and acetate uptake. Additional mutant analyses indicated that acs regulation was accomplished through the regulator LitR but was independent of the LuxIR quorum-signaling pathway. Importantly, the acs mutant of V. fischeri has a competitive defect when colonizing the squid, indicating the importance of proper control of acetate metabolism in the light of organ symbiosis. This is the first report of quorum-sensing control of the acetate switch, and it indicates a metabolic connection between acetate utilization and cell density. PMID:18487321

  7. Inhaled Lactonase Reduces Pseudomonas aeruginosa Quorum Sensing and Mortality in Rat Pneumonia

    PubMed Central

    Lafleur, John; Lepidi, Hubert; Papazian, Laurent; Rolain, Jean-Marc; Raoult, Didier; Elias, Mikael; Silby, Mark W.; Bzdrenga, Janek; Bregeon, Fabienne; Chabriere, Eric

    2014-01-01

    Rationale The effectiveness of antibiotic molecules in treating Pseudomonas aeruginosa pneumonia is reduced as a result of the dissemination of bacterial resistance. The existence of bacterial communication systems, such as quorum sensing, has provided new opportunities of treatment. Lactonases efficiently quench acyl-homoserine lactone-based bacterial quorum sensing, implicating these enzymes as potential new anti-Pseudomonas drugs that might be evaluated in pneumonia. Objectives The aim of the present study was to evaluate the ability of a lactonase called SsoPox-I to reduce the mortality of a rat P. aeruginosa pneumonia. Methods To assess SsoPox-I-mediated quorum quenching, we first measured the activity of the virulence gene lasB, the synthesis of pyocianin, the proteolytic activity of a bacterial suspension and the formation of biofilm of a PAO1 strain grown in the presence of lactonase. In an acute lethal model of P. aeruginosa pneumonia in rats, we evaluated the effects of an early or deferred intra-tracheal treatment with SsoPox-I on the mortality, lung bacterial count and lung damage. Measurements and Primary Results SsoPox-I decreased PAO1 lasB virulence gene activity, pyocianin synthesis, proteolytic activity and biofilm formation. The early use of SsoPox-I reduced the mortality of rats with acute pneumonia from 75% to 20%. Histological lung damage was significantly reduced but the lung bacterial count was not modified by the treatment. A delayed treatment was associated with a non-significant reduction of mortality. Conclusion These results demonstrate the protective effects of lactonase SsoPox-I in P. aeruginosa pneumonia and open the way for a future therapeutic use. PMID:25350373

  8. Oregano essential oil-pectin edible films as anti-quorum sensing and food antimicrobial agents

    PubMed Central

    Alvarez, Maria V.; Ortega-Ramirez, Luis A.; Gutierrez-Pacheco, M. Melissa; Bernal-Mercado, A. Thalia; Rodriguez-Garcia, Isela; Gonzalez-Aguilar, Gustavo A.; Ponce, Alejandra; Moreira, Maria del R.; Roura, Sara I.; Ayala-Zavala, J. Fernando

    2014-01-01

    Edible films can be used as carriers for antimicrobial compounds to assure food safety and quality; in addition, pathogenesis of food bacteria is related to a cell to cell communication mechanism called quorum sensing (QS). Oregano essential oil (OEO) has proved to be useful as food antimicrobial; however, its food applications can be compromised by the volatile character of its active constituents. Therefore, formulation of edible films containing OEO can be an alternative to improve its food usages. QS inhibitory activity of OEO and pectin-OEO films was evaluated using Chromobacterium violaceum as bacterial model. Additionally, antibacterial activity was tested against Escherichia coli O157:H7, Salmonella Choleraesuis, Staphylococcus aureus, and Listeria monocytogenes. OEO was effective to inhibit bacterial growth at MIC of 0.24 mg/mL for all tested bacteria and MBC of 0.24, 0.24, 0.48, and 0.24 mg/mL against E. coli O157:H7, S. Choleraesuis, S. aureus, and L. monocytogenes, respectively. Pectin-films incorporated with 36.1 and 25.9 mg/mL of OEO showed inhibition diameters of 16.3 and 15.2 mm for E. coli O157:H7; 18.1 and 24.2 mm for S. Choleraesuis; 20.8 and 20.3 mm for S. aureus; 21.3 and 19.3 mm for L. monocytogenes, respectively. Pectin-OEO film (15.7 mg/mL) was effective against E. coli O157:H7 (9.3 mm), S. aureus (9.7 mm), and L. monocytogenes (9.2 mm), but not for S. Choleraesuis. All concentrations of OEO (0.0156, 0.0312, 0.0625 and 0.125 mg/mL) and pectin-OEO films (15.7, 25.9 and 36.1 mg/mL) showed a significant anti-QS activity expressed as inhibition of violacein production by C. violaceum. Additionally, the application of pectin-OEO films was effective reducing total coliforms, yeast, and molds of shrimp and cucumber slices stored at 4°C during 15 d. These results demonstrated the potential of pectin films enriched with OEO as food related microorganisms and QS inhibitors. PMID:25566215

  9. Coral-associated bacteria, quorum sensing disrupters, and the regulation of biofouling.

    PubMed

    Golberg, Karina; Pavlov, Valentina; Marks, Robert S; Kushmaro, Ariel

    2013-01-01

    Marine biofouling, the settlement of microorganisms and macroorganisms on structures submerged in seawater, although economically detrimental, is a successful strategy for survival in hostile environments, where coordinated bacterial communities establish biofilms via the regulation of quorum sensing (QS) communication systems. The inhibition of QS activity among bacteria isolated from different coral species was investigated to gain further insight into its potency in the attenuation, or even the prevention, of undesirable biofouling on marine organisms. It is hypothesized that coral mucus/microorganism interactions are competitive, suggesting that the dominant communities secrete QS disruptive compounds. One hundred and twenty bacterial isolates were collected from healthy coral species and screened for their ability to inhibit QS using three bioreporter strains. Approximately 12, 11, and 24% of the isolates exhibited anti-QS activity against Escherichia coli pSB1075, Chromobacterium violaceum CV026, and Agrobacterium tumefaciens KYC55 indicator strains, respectively. Isolates with positive activity against the bioluminescent monitor strains were scanned via a cytotoxic/genotoxic, E. coli TV1061 and DPD2794 antimicrobial panel. Isolates detected by C. violaceum CV026 and A. tumefaciens KYC55 reporter strains were tested for their ability to inhibit the growth of these reporter strains, which were found to be unaffected. Tests of the Favia sp. coral isolate Fav 2-50-7 (>98% similarity to Vibrio harveyi) for its ability to attenuate the formation of biofilm showed extensive inhibitory activity against biofilms of Pseudomonas aeruginosa and Acinetobacter baumannii. To ascertain the stability and general structure of the active compound, cell-free culture supernatants exposed to an increasing temperature gradient or to digestion by proteinase K, were shown to maintain potent QS attenuation and the ability to inhibit the growth of biofilms. Mass spectrometry confirmed the presence of a low molecular mass compound. The anti-QS strategy exemplified in the coral mucus is a model with potentially wide applications, including countering the ecological threat posed by biofilms. Manipulating synchronized bacterial behavior by detecting new QS inhibitors will facilitate the discovery of new antifouling compounds. PMID:23777289

  10. Oregano essential oil-pectin edible films as anti-quorum sensing and food antimicrobial agents.

    PubMed

    Alvarez, Maria V; Ortega-Ramirez, Luis A; Gutierrez-Pacheco, M Melissa; Bernal-Mercado, A Thalia; Rodriguez-Garcia, Isela; Gonzalez-Aguilar, Gustavo A; Ponce, Alejandra; Moreira, Maria Del R; Roura, Sara I; Ayala-Zavala, J Fernando

    2014-01-01

    Edible films can be used as carriers for antimicrobial compounds to assure food safety and quality; in addition, pathogenesis of food bacteria is related to a cell to cell communication mechanism called quorum sensing (QS). Oregano essential oil (OEO) has proved to be useful as food antimicrobial; however, its food applications can be compromised by the volatile character of its active constituents. Therefore, formulation of edible films containing OEO can be an alternative to improve its food usages. QS inhibitory activity of OEO and pectin-OEO films was evaluated using Chromobacterium violaceum as bacterial model. Additionally, antibacterial activity was tested against Escherichia coli O157:H7, Salmonella Choleraesuis, Staphylococcus aureus, and Listeria monocytogenes. OEO was effective to inhibit bacterial growth at MIC of 0.24 mg/mL for all tested bacteria and MBC of 0.24, 0.24, 0.48, and 0.24 mg/mL against E. coli O157:H7, S. Choleraesuis, S. aureus, and L. monocytogenes, respectively. Pectin-films incorporated with 36.1 and 25.9 mg/mL of OEO showed inhibition diameters of 16.3 and 15.2 mm for E. coli O157:H7; 18.1 and 24.2 mm for S. Choleraesuis; 20.8 and 20.3 mm for S. aureus; 21.3 and 19.3 mm for L. monocytogenes, respectively. Pectin-OEO film (15.7 mg/mL) was effective against E. coli O157:H7 (9.3 mm), S. aureus (9.7 mm), and L. monocytogenes (9.2 mm), but not for S. Choleraesuis. All concentrations of OEO (0.0156, 0.0312, 0.0625 and 0.125 mg/mL) and pectin-OEO films (15.7, 25.9 and 36.1 mg/mL) showed a significant anti-QS activity expressed as inhibition of violacein production by C. violaceum. Additionally, the application of pectin-OEO films was effective reducing total coliforms, yeast, and molds of shrimp and cucumber slices stored at 4°C during 15 d. These results demonstrated the potential of pectin films enriched with OEO as food related microorganisms and QS inhibitors. PMID:25566215

  11. Quorum Sensing Activity of Serratia fonticola Strain RB-25 Isolated from an Ex-landfill Site

    PubMed Central

    Ee, Robson; Lim, Yan-Lue; Tee, Kok-Keng; Yin, Wai-Fong; Chan, Kok-Gan

    2014-01-01

    Quorum sensing is a unique bacterial communication system which permits bacteria to synchronize their behaviour in accordance with the population density. The operation of this communication network involves the use of diffusible autoinducer molecules, termed N-acylhomoserine lactones (AHLs). Serratia spp. are well known for their use of quorum sensing to regulate the expression of various genes. In this study, we aimed to characterized the AHL production of a bacterium designated as strain RB-25 isolated from a former domestic waste landfill site. It was identified as Serratia fonticola using matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometry analysis and this was confirmed by 16S ribosomal DNA sequencing. High resolution triple quadrupole liquid chromatography-mass spectrometry analysis of S. fonticola strain RB-25 spent culture supernatant indicated the existence of three AHLs namely: N-butyryl-L-homoserine lactone (C4-HSL), N-hexanoyl-L-homoserine lactone (C6-HSL) and N-(3-oxohexanoyl) homoserine-lactone (3-oxo-C6 HSL). This is the first report of the production of these AHLs in S. fonticola. PMID:24625739

  12. Anti-quorum sensing activity of essential oils from Colombian plants.

    PubMed

    Jaramillo-Colorado, Beatriz; Olivero-Verbel, Jesus; Stashenko, Elena E; Wagner-Döbler, Irene; Kunze, Brigitte

    2012-01-01

    Essential oils from Colombian plants were characterised by GC-MS, and assayed for anti-quorum sensing activity in bacteria sensor strains. Two major chemotypes were found for Lippia alba, the limonene-carvone and the citral (geranial-neral). For other species, the main components included ?-pinene (Ocotea sp.), ?-pinene (Swinglea glutinosa), cineol (Elettaria cardamomun), ?-zingiberene (Zingiber officinale) and pulegone (Minthostachys mollis). Several essential oils presented promising inhibitory properties for the short chain AHL quorum sensing (QS) system, in Escherichia coli containing the biosensor plasmid pJBA132, in particular Lippia alba. Moderate activity as anti-QS using the same plasmid, were also found for selected constituents of essential oils studied here, such as citral, carvone and ?-pinene, although solely at the highest tested concentration (250?µg?mL(-1)). Only citral presented some activity for the long chain AHL QS system, in Pseudomonas putida containing the plasmid pRK-C12. In short, essential oils from Colombian flora have promising properties as QS modulators. PMID:21936639

  13. PepO, a CovRS-controlled endopeptidase, disrupts Streptococcus pyogenes quorum sensing.

    PubMed

    Wilkening, Reid V; Chang, Jennifer C; Federle, Michael J

    2016-01-01

    Group A Streptococcus (GAS, Streptococcus pyogenes) is a human-restricted pathogen with a capacity to both colonize asymptomatically and cause illnesses ranging from pharyngitis to necrotizing fasciitis. An understanding of how and when GAS switches between genetic programs governing these different lifestyles has remained an enduring mystery and likely requires carefully tuned environmental sensors to activate and silence genetic schemes when appropriate. Herein, we describe the relationship between the Control of Virulence (CovRS, CsrRS) two-component system and the Rgg2/3 quorum-sensing pathway. We demonstrate that responses of CovRS to the stress signals Mg(2+) and a fragment of the antimicrobial peptide LL-37 result in modulated activity of pheromone signaling of the Rgg2/3 pathway through a means of proteolysis of SHP peptide pheromones. This degradation is mediated by the cytoplasmic endopeptidase PepO, which is the first identified enzymatic silencer of an RRNPP-type quorum-sensing pathway. These results suggest that under conditions in which the virulence potential of GAS is elevated (i.e. enhanced virulence gene expression), cellular responses mediated by the Rgg2/3 pathway are abrogated and allow individuals to escape from group behavior. These results also indicate that Rgg2/3 signaling is instead functional during non-virulent GAS lifestyles. PMID:26418177

  14. Silencing quorum sensing and ICE mobility through antiactivation and ribosomal frameshifting

    PubMed Central

    Ramsay, Joshua P; Ronson, Clive W

    2015-01-01

    Mobile genetic elements run an evolutionary gauntlet to maintain their mobility in the face of selection against their selfish dissemination but, paradoxically, they can accelerate the adaptability of bacteria through the gene-transfer events that they facilitate. These temporally conflicting evolutionary forces have shaped exquisite regulation systems that silence mobility and maximize the competitive fitness of the host bacterium, but maintain the ability of the element to deliver itself to a new host should the opportunity arise. Here we review the excision regulation system of the Mesorhizobium loti symbiosis island ICEMlSymR7A, a 502-kb integrative and conjugative element (ICE) capable of converting non-symbiotic mesorhizobia into plant symbionts. ICEMlSymR7A excision is activated by quorum sensing, however, both quorum sensing and excision are strongly repressed in the vast majority of cells by dual-target antiactivation and programmed ribosomal-frameshifting mechanisms. We examine these recently discovered regulatory features under the light of natural selection and discuss common themes that can be drawn from recent developments in ICE biology. PMID:26942047

  15. Determinants governing ligand specificity of the Vibrio harveyi LuxN quorum-sensing receptor

    PubMed Central

    Ke, Xiaobo; Miller, Laura C.; Bassler, Bonnie L.

    2014-01-01

    Summary Quorum sensing is a process of bacterial cell-cell communication that relies on the production, release, and receptor-driven detection of extracellular signal molecules called autoinducers. The quorum-sensing bacterium Vibrio harveyi exclusively detects the autoinducer N-((R)-3-hydroxybutanoyl)-L-homoserine lactone (3OH-C4 HSL) via the two-component receptor LuxN. To discover the principles underlying the exquisite selectivity LuxN has for its ligand, we identified LuxN mutants with altered specificity. LuxN uses three mechanisms to verify that the bound molecule is the correct ligand: In the context of the overall ligand-binding site, His210 validates the C3 modification, Leu166 surveys the chain-length, and a strong steady-state kinase bias imposes an energetic hurdle for inappropriate ligands to elicit signal transduction. Affinities for the LuxN Kinaseon and Kinaseoff states underpin whether a ligand will act as an antagonist or an agonist. Mutations that bias LuxN to the agonized, Kinaseoff, state are clustered in a region adjacent to the ligand-binding site, suggesting that this region acts as the switch that triggers signal transduction. Together, our analyses illuminate how a histidine sensor kinase differentiates between ligands and exploits those differences to regulate its signaling activity. PMID:25367076

  16. Sustained Release of a Novel Anti-Quorum-Sensing Agent against Oral Fungal Biofilms

    PubMed Central

    Feldman, Mark; Shenderovich, Julia; Al-Quntar, Abed Al Aziz; Friedman, Michael

    2015-01-01

    Thiazolidinedione-8 (S-8) has recently been identified as a potential anti-quorum-sensing/antibiofilm agent against bacteria and fungi. Based on these results, we investigated the possibility of incorporating S-8 in a sustained-release membrane (SRM) to increase its pharmaceutical potential against Candida albicans biofilm. We demonstrated that SRM containing S-8 inhibits fungal biofilm formation in a time-dependent manner for 72 h, due to prolonged release of S-8. Moreover, the SRM effectively delivered the agent in its active form to locations outside the membrane reservoir. In addition, eradication of mature biofilm by the SRM containing S-8 was also significant. Of note, S-8-containing SRM affected the characteristics of mature C. albicans biofilm, such as thickness, exopolysaccharide (EPS) production, and morphogenesis of fungal cells. The concept of using an antibiofilm agent with no antifungal activity incorporated into a sustained-release delivery system is new in medicine and dentistry. This concept of an SRM containing a quorum-sensing quencher with an antibiofilm effect could pave the way for combating oral fungal infectious diseases. PMID:25645835

  17. Pleiotropic Role of Quorum-Sensing Autoinducer 2 in Photorhabdus luminescens†

    PubMed Central

    Krin, Evelyne; Chakroun, Nesrine; Turlin, Evelyne; Givaudan, Alain; Gaboriau, François; Bonne, Isabelle; Rousselle, Jean-Claude; Frangeul, Lionel; Lacroix, Céline; Hullo, Marie-Françoise; Marisa, Laetitia; Danchin, Antoine; Derzelle, Sylviane

    2006-01-01

    Bacterial virulence is an integrative process that may involve quorum sensing. In this work, we compared by global expression profiling the wild-type entomopathogenic Photorhabdus luminescens subsp. laumondii TT01 to a luxS-deficient mutant unable to synthesize the type 2 quorum-sensing inducer AI-2. AI-2 was shown to regulate more than 300 targets involved in most compartments and metabolic pathways of the cell. AI-2 is located high in the hierarchy, as it controls the expression of several transcriptional regulators. The regulatory effect of AI-2 appeared to be dose dependent. The luxS-deficient strain exhibited decreased biofilm formation and increased type IV/V pilus-dependent twitching motility. AI-2 activated its own synthesis and transport. It also modulated bioluminescence by regulating the synthesis of spermidine. AI-2 was further shown to increase oxidative stress resistance, which is necessary to overcome part of the innate immune response of the host insect involving reactive oxygen species. Finally, we showed that the luxS-deficient strain had attenuated virulence against the lepidopteran Spodoptera littoralis. We concluded that AI-2 is involved mainly in early steps of insect invasion in P. luminescens. PMID:17021191

  18. Quorum sensing and biofilm formation investigated using laser-trapped bacterial arrays

    NASA Astrophysics Data System (ADS)

    Gordon, Vernita; Butler, John; Smalyukh, Ivan; Parsek, Matthew; Wong, Gerard

    2008-03-01

    Studies of individual, free-swimming (planktonic) bacteria have yielded much information about their genetic and phenotypic characteristics and about ``quorum sensing,'' the autoinducing process by which bacteria detect high concentrations of other bacteria. However, in most environments the majority of bacteria are not in the planktonic form but are rather in biofilms, which are highly-structured, dynamic communities of multiple bacteria that adhere to a surface and to each other using an extracellular polysaccharide matrix. Bacteria in biofilms are phenotypically very different from their genetically-identical planktonic counterparts. Among other characteristics, they are much more antibiotic-resistant and virulent. Such biofilms form persistent infections on medical implants and in the lungs of cystic fibrosis patients, where Pseudomonas aeruginosa biofilms are the leading cause of lung damage and, ultimately, death. To understand the importance of different extracellular materials, motility mechanisms, and quorum sensing for biofilm formation and stability, we use single-gene knockout mutants and an infrared laser trap to create a bacterial aggregate that serves as a model biofilm and allows us to measure the importance of these factors as a function of trapping time, surface, and nutritional environment.

  19. Quorum-Sensing Regulation of the Production of Blp Bacteriocins in Streptococcus thermophilus? †

    PubMed Central

    Fontaine, Laetitia; Boutry, Céline; Guédon, Eric; Guillot, Alain; Ibrahim, Mariam; Grossiord, Benoît; Hols, Pascal

    2007-01-01

    The blp gene cluster identified in the genome sequences of Streptococcus thermophilus (blpSt) LMG18311, CNRZ1066, and LMD-9 displays all the characteristics of a class II bacteriocin locus. In the present study, we showed that the blpSt locus is only fully functional in strain LMD-9 and regulates the production of antimicrobial peptides that inhibit strains LMG18311 and CNRZ1066. The blpSt cluster of LMD-9 contains 23 genes that are transcriptionally organized in six operons: blpABCSt (peptide transporter genes and pheromone gene); blpRHSt (two-component regulatory system genes); blpDSt-orf1, blpUSt-orf3, and blpE-FSt (bacteriocin precursors and immunity genes); and blpG-XSt (unknown function). All the operons, except the regulatory unit blpRHSt, were shown to be coregulated at the transcriptional level by a quorum-sensing mechanism involving the mature S. thermophilus pheromone BlpC* (BlpC*St), which was extracellularly detected as two active forms (30 and 19 amino acids). These operons are differentially transcribed depending on growth phase and pheromone concentration. They all contain a motif with two imperfect direct repeats in their mapped promoter regions that could serve as binding sites of the response regulator BlpRSt. Through the construction of deletion mutants, the blpSt locus of strain LMD-9 was shown to encode all the essential functions associated with bacteriocin production, quorum-sensing regulation, and immunity. PMID:17693498

  20. Synchronization and quorum sensing in an ensemble of indirectly coupled chaotic oscillators

    NASA Astrophysics Data System (ADS)

    Li, Bing-Wei; Fu, Chenbo; Zhang, Hong; Wang, Xingang

    2012-10-01

    The fact that the elements in some realistic systems are influenced by each other indirectly through a common environment has stimulated a new surge of studies on the collective behavior of coupled oscillators. Most of the previous studies, however, consider only the case of coupled periodic oscillators, and it remains unknown whether and to what extent the findings can be applied to the case of coupled chaotic oscillators. Here, using the population density and coupling strength as the tuning parameters, we explore the synchronization and quorum sensing behaviors in an ensemble of chaotic oscillators coupled through a common medium, in which some interesting phenomena are observed, including the appearance of the phase synchronization in the process of progressive synchronization, the various periodic oscillations close to the quorum sensing transition, and the crossover of the critical population density at the transition. These phenomena, which have not been reported for indirectly coupled periodic oscillators, reveal a corner of the rich dynamics inherent in indirectly coupled chaotic oscillators, and are believed to have important implications to the performance and functionality of some realistic systems.

  1. ``Quorum sensing'' generated multistability and chaos in a synthetic genetic oscillator

    NASA Astrophysics Data System (ADS)

    Potapov, I.; Zhurov, B.; Volkov, E.

    2012-06-01

    We model the dynamics of the synthetic genetic oscillator Repressilator equipped with quorum sensing. In addition to a circuit of 3 genes repressing each other in a unidirectional manner, the model includes a phase-repulsive type of the coupling module implemented as the production of a small diffusive molecule—autoinducer (AI). We show that the autoinducer (which stimulates the transcription of a target gene) is responsible for the disappearance of the limit cycle (LC) through the infinite period bifurcation and the formation of a stable steady state (SSS) for sufficiently large values of the transcription rate. We found conditions for hysteresis between the limit cycle and the stable steady state. The parameters' region of the hysteresis is determined by the mRNA to protein lifetime ratio and by the level of transcription-stimulating activity of the AI. In addition to hysteresis, increasing AI-dependent stimulation of transcription may lead to the complex dynamic behavior which is characterized by the appearance of several branches on the bifurcation continuation, containing different regular limit cycles, as well as a chaotic regime. The multistability which is manifested as the coexistence between the stable steady state, limit cycles, and chaos seems to be a novel type of the dynamics for the ring oscillator with the added quorum sensing positive feedback.

  2. Regulation of Yersina pestis Virulence by AI-2 Mediated Quorum Sensing

    SciTech Connect

    Segelke, B; Hok, S; Lao, V; Corzett, M; Garcia, E

    2010-03-29

    The proposed research was motivated by an interest in understanding Y. pestis virulence mechanisms and bacteria cell-cell communication. It is expected that a greater understanding of virulence mechanisms will ultimately lead to biothreat countermeasures and novel therapeutics. Y. pestis is the etiological agent of plague, the most devastating disease in human history. Y. pestis infection has a high mortality rate and a short incubation before mortality. There is no widely available and effective vaccine for Y. pestis and multi-drug resistant strains are emerging. Y. pestis is a recognized biothreat agent based on the wide distribution of the bacteria in research laboratories around the world and on the knowledge that methods exist to produce and aerosolize large amounts of bacteria. We hypothesized that cell-cell communication via signaling molecules, or quorum sensing, by Y. pestis is important for the regulation of virulence factor gene expression during host invasion, though a causative link had never been established. Quorum sensing is a mode of intercellular communication which enables orchestration of gene expression for many bacteria as a function of population density and available evidence suggests there may be a link between quorum sensing and regulation of Y. pesits virulence. Several pathogenic bacteria have been shown to regulate expression of virulence factor genes, including genes encoding type III secretion, via quorum sensing. The Y. pestis genome encodes several cell-cell signaling pathways and the interaction of at least three of these are thought to be involved in one or more modes of host invasion. Furthermore, Y. pestis gene expression array studies carried out at LLNL have established a correlation between expression of known virulence factors and genes involved in processing of the AI-2 quorum sensing signal. This was a basic research project that was intended to provide new insights into bacterial intercellular communication and how it is used to regulate virulence in Y. pestis. It is known that many bacteria use intercellular signaling molecules to orchestrate gene expression and cellular function. A fair amount is known about production and uptake of signaling molecules, but very little is known about how intercellular signaling regulates other pathways. Although several studies demonstrate that intercellular signaling plays a role in regulating virulence in other pathogens, the link between signaling and regulation of virulence has not been established. Very little work had been done directly with Y. pestis intercellular signaling apart from the work carried out at LLNL. The research we proposed was intended to both establish a causative link between AI-2 intercellular signaling and regulation of virulence in Y. pestis and elucidate the fate of the AI-2 signaling molecule after it is taken up and processed by Y. pestis. Elucidating the fate of AI-2 was expected to lead directly to the understanding of how AI-2 signal processing regulates other pathways as well as provide new insights in this direction.

  3. Pandoraea sp. Strain E26: Discovery of Its Quorum-Sensing Properties via Whole-Genome Sequence Analysis.

    PubMed

    Chan, Kok-Gan; Yin, Wai-Fong; Tee, Kok Keng; Chang, Chien-Yi; Priya, Kumutha

    2015-01-01

    We report the draft genome sequence of Pandoraea sp. strain E26 isolated from a former landfill site, sequenced by the Illumina MiSeq platform. This genome sequence will be useful to further understand the quorum-sensing system of this isolate. PMID:26021935

  4. Integration of Metabolic and Quorum Sensing Signals Governing the Decision to Cooperate in a Bacterial Social Trait.

    PubMed

    Boyle, Kerry E; Monaco, Hilary; van Ditmarsch, Dave; Deforet, Maxime; Xavier, Joao B

    2015-05-01

    Many unicellular organisms live in multicellular communities that rely on cooperation between cells. However, cooperative traits are vulnerable to exploitation by non-cooperators (cheaters). We expand our understanding of the molecular mechanisms that allow multicellular systems to remain robust in the face of cheating by dissecting the dynamic regulation of cooperative rhamnolipids required for swarming in Pseudomonas aeruginosa. We combine mathematical modeling and experiments to quantitatively characterize the integration of metabolic and population density signals (quorum sensing) governing expression of the rhamnolipid synthesis operon rhlAB. The combined computational/experimental analysis reveals that when nutrients are abundant, rhlAB promoter activity increases gradually in a density dependent way. When growth slows down due to nutrient limitation, rhlAB promoter activity can stop abruptly, decrease gradually or even increase depending on whether the growth-limiting nutrient is the carbon source, nitrogen source or iron. Starvation by specific nutrients drives growth on intracellular nutrient pools as well as the qualitative rhlAB promoter response, which itself is modulated by quorum sensing. Our quantitative analysis suggests a supply-driven activation that integrates metabolic prudence with quorum sensing in a non-digital manner and allows P. aeruginosa cells to invest in cooperation only when the population size is large enough (quorum sensing) and individual cells have enough metabolic resources to do so (metabolic prudence). Thus, the quantitative description of rhlAB regulatory dynamics brings a greater understating to the regulation required to make swarming cooperation stable. PMID:26102206

  5. Pandoraea sp. Strain E26: Discovery of Its Quorum-Sensing Properties via Whole-Genome Sequence Analysis

    PubMed Central

    Yin, Wai-Fong; Tee, Kok Keng; Chang, Chien-Yi; Priya, Kumutha

    2015-01-01

    We report the draft genome sequence of Pandoraea sp. strain E26 isolated from a former landfill site, sequenced by the Illumina MiSeq platform. This genome sequence will be useful to further understand the quorum-sensing system of this isolate. PMID:26021935

  6. Draft Genome Sequence of a Quorum-Sensing Bacterium, Dickeya sp. Strain 2B12, Isolated from a Freshwater Lake

    PubMed Central

    Tan, Kian-Hin; Sheng, Kit-Yeng; Chang, Chien-Yi; Yin, Wai-Fong

    2015-01-01

    Dickeya sp. strain 2B12 was isolated from a freshwater lake in Malaysia. Here, we report the draft genome sequence of Dickeya sp. 2B12 sequenced by the Illumina MiSeq platform. With the genome sequence available, this genome sequence will be useful for the study of quorum-sensing activity in this isolate. PMID:25657288

  7. Role of the luxS Quorum-Sensing System in Biofilm Formation and Virulence of Staphylococcus epidermidis

    PubMed Central

    Xu, Lin; Li, Hualin; Vuong, Cuong; Vadyvaloo, Viveka; Wang, Jianping; Yao, Yufeng; Otto, Michael; Gao, Qian

    2006-01-01

    Nosocomial infections caused by Staphylococcus epidermidis are characterized by biofilm formation on implanted medical devices. Quorum-sensing regulation plays a major role in the biofilm development of many bacterial pathogens. Here, we describe luxS, a quorum-sensing system in staphylococci that has a significant impact on biofilm development and virulence. We constructed an isogenic ΔluxS mutant strain of a biofilm-forming clinical isolate of S. epidermidis and demonstrated that luxS signaling is functional in S. epidermidis. The mutant strain showed increased biofilm formation in vitro and enhanced virulence in a rat model of biofilm-associated infection. Genetic complementation and addition of autoinducer 2-containing culture filtrate restored the wild-type phenotype, demonstrating that luxS repressed biofilm formation through a cell-cell signaling mechanism based on autoinducer 2 secretion. Enhanced production of the biofilm exopolysaccharide polysaccharide intercellular adhesin in the mutant strain is presumably the major cause of the observed phenotype. The agr quorum-sensing system has previously been shown to impact biofilm development and biofilm-associated infection in a way similar to that of luxS, although by regulation of different factors. Our study indicates a general scheme of quorum-sensing regulation of biofilm development in staphylococci, which contrasts with that observed in many other bacterial pathogens. PMID:16369005

  8. Thermoregulation of N-Acyl Homoserine Lactone-Based Quorum Sensing in the Soft Rot Bacterium Pectobacterium atrosepticum?

    PubMed Central

    Latour, Xavier; Diallo, Stéphanie; Chevalier, Sylvie; Morin, Danièle; Smadja, Bruno; Burini, Jean-François; Haras, Dominique; Orange, Nicole

    2007-01-01

    The psychrotolerant bacterium Pectobacterium atrosepticum produces four N-acyl homoserine lactones under a wide range of temperatures. Their thermoregulation differs from that of the exoenzyme production, described as being under quorum-sensing control. A mechanism involved in this thermoregulation consists of controlling N-acyl homoserine lactones synthase production at a transcriptional level. PMID:17468275

  9. Insights into the Quorum-Sensing Activity in Aeromonas hydrophila Strain M013 as Revealed by Whole-Genome Sequencing

    PubMed Central

    Tan, Wen-Si; Yin, Wai-Fong

    2015-01-01

    Aeromonas hydrophila species can be found in warm climates and can survive in different environments. They possess the ability to communicate within their populations, which is known as quorum sensing. In this work, we present the draft genome sequence of A. hydrophila M013, a bacterium isolated from a Malaysian tropical rainforest waterfall. PMID:25555739

  10. Integration of Metabolic and Quorum Sensing Signals Governing the Decision to Cooperate in a Bacterial Social Trait

    PubMed Central

    Boyle, Kerry E.; Monaco, Hilary; van Ditmarsch, Dave; Deforet, Maxime; Xavier, Joao B.

    2015-01-01

    Many unicellular organisms live in multicellular communities that rely on cooperation between cells. However, cooperative traits are vulnerable to exploitation by non-cooperators (cheaters). We expand our understanding of the molecular mechanisms that allow multicellular systems to remain robust in the face of cheating by dissecting the dynamic regulation of cooperative rhamnolipids required for swarming in Pseudomonas aeruginosa. We combine mathematical modeling and experiments to quantitatively characterize the integration of metabolic and population density signals (quorum sensing) governing expression of the rhamnolipid synthesis operon rhlAB. The combined computational/experimental analysis reveals that when nutrients are abundant, rhlAB promoter activity increases gradually in a density dependent way. When growth slows down due to nutrient limitation, rhlAB promoter activity can stop abruptly, decrease gradually or even increase depending on whether the growth-limiting nutrient is the carbon source, nitrogen source or iron. Starvation by specific nutrients drives growth on intracellular nutrient pools as well as the qualitative rhlAB promoter response, which itself is modulated by quorum sensing. Our quantitative analysis suggests a supply-driven activation that integrates metabolic prudence with quorum sensing in a non-digital manner and allows P. aeruginosa cells to invest in cooperation only when the population size is large enough (quorum sensing) and individual cells have enough metabolic resources to do so (metabolic prudence). Thus, the quantitative description of rhlAB regulatory dynamics brings a greater understating to the regulation required to make swarming cooperation stable. PMID:26102206

  11. AN EVALUATION OF ASCORBIC ACID AS A QUORUM SENSING ANALOGUE TO CONTROL GROWTH, SPORULATION, AND ENTEROTOXIN PRODUCTION IN CLOSTRIDIUM PERFRINGENS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Inhibition of quorum sensing by enterotoxin-producing strains of Clostridium perfringens was investigated. Autoinducer-2 (AI-2) activity was measured in the presence and absence of ascorbic acid (vitamin C; concentrations ranging from 10 to 300 mM), an AI-2 analogue. Subsequent effects on AI-2 pro...

  12. Exposure to static magnetic field stimulates quorum sensing circuit in luminescent Vibrio strains of the Harveyi clade.

    PubMed

    Talà, Adelfia; Delle Side, Domenico; Buccolieri, Giovanni; Tredici, Salvatore Maurizio; Velardi, Luciano; Paladini, Fabio; De Stefano, Mario; Nassisi, Vincenzo; Alifano, Pietro

    2014-01-01

    In this study, the evidence of electron-dense magnetic inclusions with polyhedral shape in the cytoplasm of Harveyi clade Vibrio strain PS1, a bioluminescent bacterium living in symbiosis with marine organisms, led us to investigate the behavior of this bacterium under exposure to static magnetic fields ranging between 20 and 2000 Gauss. When compared to sham-exposed, the light emission of magnetic field-exposed bacteria growing on solid medium at 18°C ±0.1°C was increased up to two-fold as a function of dose and growth phase. Stimulation of bioluminescence by magnetic field was more pronounced during the post-exponential growth and stationary phase, and was lost when bacteria were grown in the presence of the iron chelator deferoxamine, which caused disassembly of the magnetic inclusions suggesting their involvement in magnetic response. As in luminescent Vibrio spp. bioluminescence is regulated by quorum sensing, possible effects of magnetic field exposure on quorum sensing were investigated. Measurement of mRNA levels by reverse transcriptase real time-PCR demonstrated that luxR regulatory gene and luxCDABE operon coding for luciferase and fatty acid reductase complex were significantly up-regulated in magnetic field-exposed bacteria. In contrast, genes coding for a type III secretion system, whose expression was negatively affected by LuxR, were down-regulated. Up-regulation of luxR paralleled with down-regulation of small RNAs that mediate destabilization of luxR mRNA in quorum sensing signaling pathways. The results of experiments with the well-studied Vibrio campbellii strain BB120 (originally classified as Vibrio harveyi) and derivative mutants unable to synthesize autoinducers suggest that the effects of magnetic fields on quorum sensing may be mediated by AI-2, the interspecies quorum sensing signal molecule. PMID:24960170

  13. Exposure to Static Magnetic Field Stimulates Quorum Sensing Circuit in Luminescent Vibrio Strains of the Harveyi Clade

    PubMed Central

    Talà, Adelfia; Delle Side, Domenico; Buccolieri, Giovanni; Tredici, Salvatore Maurizio; Velardi, Luciano; Paladini, Fabio; De Stefano, Mario; Nassisi, Vincenzo; Alifano, Pietro

    2014-01-01

    In this study, the evidence of electron-dense magnetic inclusions with polyhedral shape in the cytoplasm of Harveyi clade Vibrio strain PS1, a bioluminescent bacterium living in symbiosis with marine organisms, led us to investigate the behavior of this bacterium under exposure to static magnetic fields ranging between 20 and 2000 Gauss. When compared to sham-exposed, the light emission of magnetic field-exposed bacteria growing on solid medium at 18°C ±0.1°C was increased up to two-fold as a function of dose and growth phase. Stimulation of bioluminescence by magnetic field was more pronounced during the post-exponential growth and stationary phase, and was lost when bacteria were grown in the presence of the iron chelator deferoxamine, which caused disassembly of the magnetic inclusions suggesting their involvement in magnetic response. As in luminescent Vibrio spp. bioluminescence is regulated by quorum sensing, possible effects of magnetic field exposure on quorum sensing were investigated. Measurement of mRNA levels by reverse transcriptase real time-PCR demonstrated that luxR regulatory gene and luxCDABE operon coding for luciferase and fatty acid reductase complex were significantly up-regulated in magnetic field-exposed bacteria. In contrast, genes coding for a type III secretion system, whose expression was negatively affected by LuxR, were down-regulated. Up-regulation of luxR paralleled with down-regulation of small RNAs that mediate destabilization of luxR mRNA in quorum sensing signaling pathways. The results of experiments with the well-studied Vibrio campbellii strain BB120 (originally classified as Vibrio harveyi) and derivative mutants unable to synthesize autoinducers suggest that the effects of magnetic fields on quorum sensing may be mediated by AI-2, the interspecies quorum sensing signal molecule. PMID:24960170

  14. Novel Reporter for Identification of Interference with Acyl Homoserine Lactone and Autoinducer-2 Quorum Sensing

    PubMed Central

    Weiland-Bräuer, Nancy; Pinnow, Nicole

    2014-01-01

    Two reporter strains were established to identify novel biomolecules interfering with bacterial communication (quorum sensing [QS]). The basic design of these Escherichia coli-based systems comprises a gene encoding a lethal protein fused to promoters induced in the presence of QS signal molecules. Consequently, these E. coli strains are unable to grow in the presence of the respective QS signal molecules unless a nontoxic QS-interfering compound is present. The first reporter strain designed to detect autoinducer-2 (AI-2)-interfering activities (AI2-QQ.1) contained the E. coli ccdB lethal gene under the control of the E. coli lsrA promoter. The second reporter strain (AI1-QQ.1) contained the Vibrio fischeri luxI promoter fused to the ccdB gene to detect interference with acyl-homoserine lactones. Bacteria isolated from the surfaces of several marine eukarya were screened for quorum-quenching (QQ) activities using the established reporter systems AI1-QQ.1 and AI2-QQ.1. Out of 34 isolates, two interfered with acylated homoserine lactone (AHL) signaling, five interfered with AI-2 QS signaling, and 10 were demonstrated to interfere with both signal molecules. Open reading frames (ORFs) conferring QQ activity were identified for three selected isolates (Photobacterium sp., Pseudoalteromonas sp., and Vibrio parahaemolyticus). Evaluation of the respective heterologously expressed and purified QQ proteins confirmed their ability to interfere with the AHL and AI-2 signaling processes. PMID:25527543

  15. Traveling waves in response to a diffusing quorum sensing signal in spatially-extended bacterial colonies.

    PubMed

    Langebrake, Jessica B; Dilanji, Gabriel E; Hagen, Stephen J; De Leenheer, Patrick

    2014-12-21

    In the behavior known as quorum sensing (QS), bacteria release diffusible signal molecules known as autoinducers, which by accumulating in the environment induce population-wide changes in gene expression. Although QS has been extensively studied in well-mixed systems, the ability of diffusing QS signals to synchronize gene expression in spatially extended colonies is not well understood. Here we investigate the one-dimensional spatial propagation of QS-circuit activation in a simple, analytically tractable reaction-diffusion model for the LuxR-LuxI circuit, which regulates bioluminescence of the marine bacterium Aliivibrio fischeri. The quorum activation loop is modeled by a Hill function with a cooperativity exponent (m=2.2). The model is parameterized from laboratory data and captures the major empirical properties of the LuxR-LuxI system and its QS regulation of A. fischeri bioluminescence. Our simulations of the model show propagating waves of activation or deactivation of the QS circuit in a spatially extended colony. We further prove analytically that the model equations possess a traveling wave solution. This mathematical proof yields the rate of autoinducer degradation that is compatible with a traveling wave of gene expression as well as the critical degradation rate at which the nature of the wave switches from activation to deactivation. Our results can be used to predict the direction and activating or deactivating nature of a wave of gene expression in experimentally controlled bacterial populations subject to a diffusing autoinducer signal. PMID:25109591

  16. A small-RNA-mediated negative feedback loop controls quorum-sensing dynamics in Vibrio harveyi

    PubMed Central

    Tu, Kimberly C; Waters, Christopher M; Svenningsen, Sine L; Bassler, Bonnie L

    2008-01-01

    The bioluminescent marine bacterium Vibrio harveyi uses a cell-to-cell communication process called quorum sensing (QS) to co-ordinate behaviours in response to changes in population density. QS is accomplished through the secretion and detection of extracellular signalling molecules called autoinducers. At the centre of the V. harveyi QS circuit are five small regulatory RNAs called Qrr1–5 which destabilize the mRNA of luxR, encoding LuxR, the master transcriptional regulator of QS target genes. Here we show that LuxR directly activates transcription of qrr2, qrr3 and qrr4, leading to the rapid downregulation of luxR. The LuxR-binding sites in the promoters of qrr2, qrr3 and qrr4 were identified and mutated to determine the consequences of this regulatory loop on QS dynamics. Disruption of the loop delays the transition from high to low cell density, and more significantly, decreases the cell density at which the population reaches a quorum. Our results suggest that feedback is essential for optimizing the dynamics of the transitions between individual and group behaviours. PMID:18808382

  17. Label-Free Critical Micelle Concentration Determination of Bacterial Quorum Sensing Molecules

    PubMed Central

    Davis, B.M.; Richens, J.L.; O'Shea, P.

    2011-01-01

    A practical label-free method for the rapid determination of small-molecule critical micelle concentration (CMC) using a fixed-angle light-scattering technique is described. Change in 90° light scattering at a fixed wavelength of incident radiation with increasing bacterial quorum molecule concentration and the observation of a break point is used to determine CMC. In our study, this technique is utilized to investigate the aqueous CMC of previously uncharacterized Pseudomonas aeruginosa quorum sensing signaling molecules (QSSM) belonging to the n-acylhomoserine lactone and 2-alkyl-4-quinolone classes. Several were found to form micelles within a physiologically relevant concentration range and potential roles of these micelles as QSSM transporters are discussed. The influence of temperature and the presence of biological membranes or serum proteins on QSSM CMC are also investigated and evidence is obtained to suggest the QSSMs studied are capable of both membrane and serum protein interaction. This demonstrates that the fixed-angle light-scattering technique outlined can be used simply and rapidly to determine small-molecule CMC under a variety of conditions. PMID:21723835

  18. The social biology of quorum sensing in a naturalistic host pathogen system.

    PubMed

    Zhou, Liqin; Slamti, Leyla; Nielsen-LeRoux, Christina; Lereclus, Didier; Raymond, Ben

    2014-10-20

    Many microorganisms cooperate by secreting products that are commonly available to neighboring cells. These "public goods" include autoinduced, quorum-sensing (QS) molecules and the virulence factors activated by these signals. Public goods cooperation is exploitable by cheaters, cells that avoid the costs of production but gain an advantage by freeloading on the products of others. QS signals and responses can be cooperative under artificial laboratory conditions, but it remains unclear whether QS is cooperative in nature: little is known about the frequency of cheaters in natural populations, and cheaters may do poorly because of the importance of QS in major transcriptional networks. Here, we investigate the cooperative nature of QS in a natural system: the Gram-positive insect pathogen Bacillus thuringiensis and the larvae of the diamondback moth, Plutella xylostella. Although we find evidence of cooperation, QS null mutants are not effective cheats in vivo and cannot outcompete wild-type strains. We show that spatial structure limits mutant fitness and that well-separated microcolonies occur in vivo because of the strong population bottlenecks occurring during natural infection. We argue that spatial structure and low densities are the norm in early-stage infections, and this can explain why QS cheaters are rare in B. thuringiensis and its relatives. These results contrast with earlier experiments describing the high fitness of Gram-negative QS cheaters and suggest that QS suppression ("quorum quenching") can be clinically effective without having negative impacts on the evolution of virulence. PMID:25308072

  19. Targeting quorum sensing by designing azoline derivatives to inhibit the N-hexanoyl homoserine lactone-receptor CviR: Synthesis as well as biological and theoretical evaluations.

    PubMed

    Bucio-Cano, Alejandro; Reyes-Arellano, Alicia; Correa-Basurto, José; Bello, Martiniano; Torres-Jaramillo, Jenifer; Salgado-Zamora, Héctor; Curiel-Quesada, Everardo; Peralta-Cruz, Javier; Avila-Sorrosa, Alcives

    2015-12-15

    To counteract bacterial resistance, we investigated the interruption of quorum sensing mediated by non-classical bioisosteres of the N-hexanoyl homoserine lactone with an azoline core. For this purpose, a set of selected 2-substituted azolines was synthesized, establishing the basis for a new protocol to synthesize 2-amino imidazolines. The synthesized compounds were evaluated as inhibitors of violacein production in Chromobacterium violaceum. Theoretical studies on bioisostere-protein interactions were performed using CviR. The results show that some azolines decreased violacein production, suggesting an antiquorum sensing profile against Gram-negative bacteria. Docking and molecular dynamic simulations together with binding free energy calculations revealed the exact binding and inhibitory profiles. These theoretical results show relationship with the in vitro activity of the azoline series. PMID:26654469

  20. Conformational change-induced repeat domain expansion regulates Rap phosphatase quorum-sensing signal receptors.

    PubMed

    Parashar, Vijay; Jeffrey, Philip D; Neiditch, Matthew B

    2013-01-01

    The large family of Gram-positive quorum-sensing receptors known as the RNPP proteins consists of receptors homologous to the Rap, NprR, PlcR, and PrgX proteins that are regulated by imported oligopeptide autoinducers. Rap proteins are phosphatases and transcriptional anti-activators, and NprR, PlcR, and PrgX proteins are DNA binding transcription factors. Despite their obvious importance, the mechanistic basis of oligopeptide receptor regulation is largely unknown. Here, we report the X-ray crystal structure of the Bacillus subtilis quorum-sensing receptor RapJ in complex with the centrally important oligopeptide autoinducer competence and sporulation factor (CSF, also termed PhrC), a member of the Phr family of quorum-sensing signals. Furthermore, we present the crystal structure of RapI. Comparison of the RapJ-PhrC, RapI, RapH-Spo0F, and RapF-ComA(C) crystal structures reveals the mechanistic basis of Phr activity. More specifically, when complexed with target proteins, Rap proteins consist of a C-terminal tetratricopeptide repeat (TPR) domain connected by a flexible helix-containing linker to an N-terminal 3-helix bundle. In the absence of a target protein or regulatory peptide, the Rap protein 3-helix bundle adopts different conformations. However, in the peptide-bound conformation, the Rap protein N-terminal 3-helix bundle and linker undergo a radical conformational change, form TPR-like folds, and merge with the existing C-terminal TPR domain. To our knowledge, this is the first example of conformational change-induced repeat domain expansion. Furthermore, upon Phr binding, the entire Rap protein is compressed along the TPR superhelical axis, generating new intramolecular contacts that lock the Rap protein in an inactive state. The fact that Rap proteins are conformationally flexible is surprising considering that it is accepted dogma that TPR proteins do not undergo large conformational changes. Repeat proteins are widely used as scaffolds for the development of designed affinity reagents, and we propose that Rap proteins could be used as scaffolds for engineering novel ligand-switchable affinity reagents. PMID:23526881

  1. Plausible Drug Targets in the Streptococcus mutans Quorum Sensing Pathways to Combat Dental Biofilms and Associated Risks.

    PubMed

    Kaur, Gurmeet; Rajesh, Shrinidhi; Princy, S Adline

    2015-12-01

    Streptococcus mutans, a Gram positive facultative anaerobe, is one among the approximately seven hundred bacterial species to exist in human buccal cavity and cause dental caries. Quorum sensing (QS) is a cell-density dependent communication process that respond to the inter/intra-species signals and elicit responses to show behavioral changes in the bacteria to an aggressive forms. In accordance to this phenomenon, the S. mutans also harbors a Competing Stimulating Peptide (CSP)-mediated quorum sensing, ComCDE (Two-component regulatory system) to regulate several virulence-associated traits that includes the formation of the oral biofilm (dental plaque), genetic competence and acidogenicity. The QS-mediated response of S. mutans adherence on tooth surface (dental plaque) imparts antibiotic resistance to the bacterium and further progresses to lead a chronic state, known as periodontitis. In recent years, the oral streptococci, S. mutans are not only recognized for its cariogenic potential but also well known to worsen the infective endocarditis due to its inherent ability to colonize and form biofilm on heart valves. The review significantly appreciate the increasing complexity of the CSP-mediated quorum-sensing pathway with a special emphasis to identify the plausible drug targets within the system for the development of anti-quorum drugs to control biofilm formation and associated risks. PMID:26543259

  2. Deinococcus radiodurans can interfere with quorum sensing by producing an AHL-acylase and an AHL-lactonase.

    PubMed

    Koch, Gudrun; Nadal-Jimenez, Pol; Cool, Robbert H; Quax, Wim J

    2014-07-01

    Bacterial communication via the secretion of small diffusible compounds allows microorganisms to regulate gene expression in a coordinated manner. As many virulence traits are regulated in this fashion, disruption of chemical communication has been proposed as novel antimicrobial therapy. Quorum-quenching enzymes have been a promising discovery in this field as they interfere with the communication of Gram-negative bacteria. AHL-lactonases and AHL-acylases have been described in a variety of bacterial strains; however, usually only one of these two groups of enzymes has been described in a single species. We report here the presence of a member of each group of enzymes in the extremophile bacterium Deinococcus radiodurans. Co-occurrence of both enzymes in a single species increases the chance of inactivating foreign AHL signals under different conditions. We demonstrate that both enzymes are able to degrade the quorum-sensing molecules of various pathogens subsequently affecting virulence gene expression. These studies add the quorum-quenching enzymes of D. radiodurans to the list of potent quorum-quenchers and highlight the idea that quorum quenching could have evolved in some bacteria as a strategy to gain a competitive advantage by altering gene expression in other species. PMID:24863934

  3. Disruption of epithelial barrier by quorum-sensing N-3-(oxododecanoyl)-homoserine lactone is mediated by matrix metalloproteinases.

    PubMed

    Eum, Sung Yong; Jaraki, Dima; Bertrand, Luc; András, Ibolya E; Toborek, Michal

    2014-06-01

    The intestinal epithelium forms a selective barrier maintained by tight junctions (TJs) and separating the luminal environment from the submucosal tissues. N-acylhomoserine lactone (AHL) quorum-sensing molecules produced by gram-negative bacteria in the gut can influence homeostasis of the host intestinal epithelium. In the present study, we evaluated the regulatory mechanisms affecting the impact of two representative long- and short-chain AHLs, N-3-(oxododecanoyl)-homoserine lactone (C12-HSL) and N-butyryl homoserine lactone (C4-HSL), on barrier function of human intestinal epithelial Caco-2 cells. Treatment with C12-HSL, but not with C4-HSL, perturbed Caco-2 barrier function; the effect was associated with decreased levels of the TJ proteins occludin and tricellulin and their delocalization from the TJs. C12-HSL also induced matrix metalloprotease (MMP)-2 and MMP-3 activation via lipid raft- and protease-activated receptor (PAR)-dependent signaling. Pretreatment with lipid raft disruptors, PAR antagonists, or MMP inhibitors restored the C12-HSL-induced loss of the TJ proteins and increased permeability of Caco-2 cell monolayers. These results indicate that PAR/lipid raft-dependent MMP-2 and -3 activation followed by degradation of occludin and tricellulin are involved in C12-HSL-induced alterations of epithelial paracellular barrier functions. PMID:24742991

  4. Using Surface Enhanced Raman Scattering to Analyze the Interactions of Protein Receptors with Bacterial Quorum Sensing Modulators

    PubMed Central

    2015-01-01

    Many members of the LuxR family of quorum sensing (QS) transcriptional activators, including LasR of Pseudomonas aeruginosa, are believed to require appropriate acyl-homoserine lactone (acyl-HSL) ligands to fold into an active conformation. The failure to purify ligand-free LuxR homologues in nonaggregated form at the high concentrations required for their structural characterization has limited the understanding of the mechanisms by which QS receptors are activated. Surface-enhanced Raman scattering (SERS) is a vibrational spectroscopy technique that can be applied to study proteins at extremely low concentrations in their active state. The high sensitivity of SERS has allowed us to detect molecular interactions between the ligand-binding domain of LasR (LasRLBD) as a soluble apoprotein and modulators of P. aeruginosa QS. We found that QS activators and inhibitors produce differential SERS fingerprints in LasRLBD, and in combination with molecular docking analysis provide insight into the relevant interaction mechanism. This study reveals signal-specific structural changes in LasR upon ligand binding, thereby confirming the applicability of SERS to analyze ligand-induced conformational changes in proteins. PMID:25927541

  5. Small RNA-mediated switch-like regulation in bacterial quorum sensing.

    PubMed

    Liu, Xi; Zhou, Peipei; Wang, Ruiqi

    2013-10-01

    Quorum sensing (QS) is a signalling mechanism by which bacteria produce, release and then detect and respond to changes in their density and biosignals called autoinducers (AIs). There are multiple feedback loops in the QS system of Vibrio harveyi. However, how these feedback loops function to control signal processing remains unclear. In this study, the authors present a computational model for the switch-like regulation of signal transduction by small regulatory RNA-mediated QS based on intertwined network involving AIs, LuxO, LuxU, Qrr sRNAs and LuxR. In agreement with experimental observations, the model suggests that different feedbacks play critical roles in the switch-like regulation. The authors results reveal that V. harveyi uses multiple feedbacks to precisely control signal transduction. PMID:24067418

  6. Tandem Mass Spectrometry Detection of Quorum Sensing Activity in Multidrug Resistant Clinical Isolate Acinetobacter baumannii

    PubMed Central

    Chan, Kok-Gan; Cheng, Huey Jia; Chen, Jian Woon; Yin, Wai-Fong; Ngeow, Yun Fong

    2014-01-01

    Many Proteobacteria communicate via production followed by response of quorum sensing molecules, namely, N-acyl homoserine lactones (AHLs). These molecules consist of a lactone moiety with N-acyl side chain with various chain lengths and degrees of saturation at C-3 position. AHL-dependent QS is often associated with regulation of diverse bacterial phenotypes including the expression of virulence factors. With the use of biosensor and high resolution liquid chromatography tandem mass spectrometry, the AHL production of clinical isolate A. baumannii 4KT was studied. Production of short chain AHL, namely, N-hexanoyl-homoserine lactone (C6-HSL) and N-octanoyl-homoserine lactone (C8-HSL), was detected. PMID:25101326

  7. 6-Gingerol reduces Pseudomonas aeruginosa biofilm formation and virulence via quorum sensing inhibition

    PubMed Central

    Kim, Han-Shin; Lee, Sang-Hoon; Byun, Youngjoo; Park, Hee-Deung

    2015-01-01

    Pseudomonas aeruginosa is a well-known pathogenic bacterium that forms biofilms and produces virulence factors via quorum sensing (QS). Interfering with normal QS interactions between signal molecules and their cognate receptors is a developing strategy for attenuating its virulence. Here we tested the hypothesis that 6-gingerol, a pungent oil of fresh ginger, reduces biofilm formation and virulence by antagonistically binding to P. aeruginosa QS receptors. In silico studies demonstrated molecular binding occurs between 6-gingerol and the QS receptor LasR through hydrogen bonding and hydrophobic interactions. Experimentally 6-gingerol reduced biofilm formation, several virulence factors (e.g., exoprotease, rhamnolipid, and pyocyanin), and mice mortality. Further transcriptome analyses demonstrated that 6-gingerol successfully repressed QS-induced genes, specifically those related to the production of virulence factors. These results strongly support our hypothesis and offer insight into the molecular mechanism that caused QS gene repression. PMID:25728862

  8. Synthesis and biological evaluation of novel N-?-haloacylated homoserine lactones as quorum sensing modulators

    PubMed Central

    Syrpas, Michail; Ruysbergh, Ewout; Stevens, Christian V; De Kimpe, Norbert

    2014-01-01

    Summary Novel N-?-haloacylated homoserine lactones, in which a halogen atom was introduced at the ?-position of the carbonyl function of the N-acyl chain, have been studied as quorum sensing (QS) modulators and compared with a library of natural N-acylated homoserine lactones (AHLs). The series of novel analogues consists of ?-chloro, ?-bromo and ?-iodo AHL analogues. Furthermore, the biological QS activity of the synthetic AHL analogues compared to the natural AHLs was evaluated. Halogenated analogues demonstrated a reduced activity in the Escherichia coli JB523 bioassay, with the ?-iodo lactones being the less active ones and the ?-chloro AHLs the most potent QS agonists. Most of the ?-haloacylated analogues did not exhibit a significant reduction when tested in the QS inhibition test. Therefore, these novel analogues could be utilized as chemical probes for QS structure–activity studies. PMID:25383125

  9. Synthesis and quorum sensing inhibitory activity of key phenolic compounds of ginger and their derivatives.

    PubMed

    Kumar, N Vijendra; Murthy, Pushpa S; Manjunatha, J R; Bettadaiah, B K

    2014-09-15

    Phenolic components of ginger (Zingiber officinale Roscoe) viz. [6]-gingerol, [6]-shogaol and zingerone exhibited quorum sensing inhibitory activity (QSI) against Chromobacterium violaceum and Pseudomonas aeruginosa. The inhibitory activity of all the compounds was studied by zone inhibition, pyocyanin, and violacein assay. All the compounds displayed good inhibition at 500ppm. [6]-Azashogaol, a new derivative of [6]-shogaol has been synthesized by Beckmann rearrangement of its oxime in the presence of ZnCl2. The structure elucidation of this new derivative was carried out by 1D ((1)H NMR and (13)C NMR) and 2D-NMR (COSY, HSQC and NOESY) spectral studies. This compound showed good QSI activity against P. aeruginosa. An isoxazoline derivative of [6]-gingerol was prepared and it exhibited good QSI activity. Present study illustrated that, the phenolic compounds of ginger and their derivatives form a class of compounds with promising QSI activity. PMID:24767081

  10. Anti-quorum sensing activity of medicinal plants in southern Florida.

    PubMed

    Adonizio, Allison L; Downum, Kelsey; Bennett, Bradley C; Mathee, Kalai

    2006-05-24

    Bacterial intercellular communication, or quorum sensing (QS), controls the pathogenesis of many medically important organisms. Anti-QS compounds are known to exist in marine algae and have the ability to attenuate bacterial pathogenicity. We hypothesized that terrestrial plants traditionally used as medicines may also produce anti-QS compounds. To test this hypothesis, 50 medicinal plants from southern Florida were screened for anti-QS activity using two biomonitor strains, Chromobacterium violaceum and Agrobacterium tumefaciens. Of these plants, six showed QS inhibition: Conocarpus erectus L. (Combretaceae), Chamaecyce hypericifolia (L.) Millsp. (Euphorbiaceae), Callistemon viminalis (Sol. ex Gaertn.) G. Don (Myrtaceae), Bucida burceras L. (Combretaceae), Tetrazygia bicolor (Mill.) Cogn. (Melastomataceae), and Quercus virginiana Mill. (Fagaceae). This study introduces not only a new mode of action and possible validation for traditional plant use, but also a potentially new therapeutic direction for the treatment of bacterial infections. PMID:16406418

  11. Dynamics and Mechanism of A Quorum Sensing Network Regulated by Small RNAs in Vibrio Harveyi

    NASA Astrophysics Data System (ADS)

    Shen, Jian-Wei

    2011-03-01

    Bacterial quorum sensing (QS) has attracted much interests and it is an important process of cell communication. Recently, Bassler et al. studied the phenomena of QS regulated by small RNAs and the experimental data showed that small RNAs played important role in the QS of Vibrio harveyi and it can permit the fine-tuning of gene regulation and maintenance of homeostasis. According to Michaelis—Menten kinetics and mass action law in this paper, we construct a mathematical model to investigate the mechanism induced QS by coexist of small RNA and signal molecular (AI) and show that there are periodic oscillation when the time delay and Hill coefficient exceed a critical value and the periodic oscillation produces the change of concentration and induces QS. These results are fit to the experimental results. In the meanwhile, we also get some theoretical value of Hopf Bifurcation on time deday. In addition, we also find this network is robust against noise.

  12. Anti-quorum sensing activity of selected sponge extracts: a case study of Pseudomonas aeruginosa.

    PubMed

    Pejin, Boris; Talevska, Aleksandra; Ciric, Ana; Glamoclija, Jasmina; Nikolic, Milos; Talevski, Trajce; Sokovic, Marina

    2014-01-01

    The anti-quorum sensing activities towards the bacterium Pseudomonas aeruginosa PA01 (pyocyanin production, biofilm formation and twitching and flagella motility) of two crude extracts (methanol and acetone) of the freshwater sponge Ochridaspongia rotunda (Arndt, 1937) were evaluated in vitro for the first time. Both extracts demonstrated P. aeruginosa pyocyanin inhibitory activity, reducing its production for 49.90% and 42.44%, respectively. In addition, they both showed higher anti-biofilm activity (48.29% and 53.99%, respectively) than ampicillin (30.84%). Finally, O. rotunda extracts effectively reduced twitching and flagella motility of P. aeruginosa. Taken all together, these results suggest that endemic sponge species from the oldest lake in Europe may offer novel bioactive natural products with promising medicinal potential towards P. aeruginosa infections. PMID:25039944

  13. Chitinolytic Activity in Chromobacterium violaceum: Substrate Analysis and Regulation by Quorum Sensing

    PubMed Central

    Chernin, Leonid S.; Winson, Michael K.; Thompson, Jacquelyn M.; Haran, Shoshan; Bycroft, Barrie W.; Chet, Ilan; Williams, Paul; Stewart, Gordon S. A. B.

    1998-01-01

    Quorum sensing control mediated by N-acyl homoserine lactone (AHL) signaling molecules has been established as a key feature of the regulation of exoenzyme production in many gram-negative bacteria. In Chromobacterium violaceum ATCC 31532 a number of phenotypic characteristics, including production of the purple pigment violacein, hydrogen cyanide, antibiotics, and exoproteases are known to be regulated by the endogenous AHL N-hexanoyl-l-homoserine lactone (HHL). In this study we show that C. violaceum produces a set of chitinolytic enzymes whose production is regulated by HHL. The chitinolytic activity was induced in strains grown in the presence of chitin as the sole carbon source and quantitated in the secreted proteins by using p-nitrophenol analogs of disaccharide, trisaccharide, and tetrasaccharide oligomers of N-acetylglucosamine. By using 4-methylumbelliferyl analogs of the same oligomers of N-acetylglucosamine as substrates for proteins separated and renatured by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, at least six enzymes were detected: a chitobiase with high specificity to a dimeric substrate of 87 kDa, two N-acetylglucosaminidases with apparent molecular masses of 162 and 133 kDa, two endochitinases of 108 and 67 kDa, and a chitobiosidase of 56 kDa. In addition, two unidentified bands of >205 kDa were found where a tetrameric chitin derivative was used as a substrate. A pleiotropic mini-Tn5 mutant of C. violaceum (CV026) that is defective in HHL production and other quorum-sensing-regulated factors was also found to be completely deficient in chitinolytic activity. Growth of this mutant on minimal medium with chitin supplemented with culture supernatant from the C. violaceum wild-type strain or 10 ?M synthetic HHL restored chitinase production to the level shown by the parental strain. These results constitute the most complete evidence so far for regulation of chitinolytic activity by AHL signaling in a gram-negative bacterium. PMID:9721280

  14. Modelling antibiotic- and anti-quorum sensing treatment of a spatially-structured Pseudomonas aeruginosa population.

    PubMed

    Anguige, K; King, J R; Ward, J P

    2005-11-01

    The bacterial cell to cell signalling system known as quorum sensing (QS) is essential for the regulation of virulence in many pathogens and offers a specific biochemical target for novel antibacterial therapies. Expanding on earlier work, in which consideration was given to the primary QS system (lasR system) in a homogeneous population of the common human pathogen Pseudomonas aeruginosa, we build a simple spatial model of an early-stage P. aeruginosa biofilm subject to treatment with topically applied anti-QS drugs (of two specific kinds) and conventional antibiotics. In the case of a slowly growing biofilm we show that both kinds of anti-quorum sensing drug are effective in reducing the level of the relevant signal molecule (3-oxo-C12-homoserine lactone; henceforth AHL), in each case obtaining an explicit bound on the steady-state AHL profile in terms of a prescribed surface drug concentration. Using numerical methods, we are also able to reproduce the hysteretic phenomena exhibited by the homogeneous model, in particular showing that for each kind of anti-QS drug there is a parameter regime in which a catastrophic collapse occurs in the steady-state AHL concentration as the surface drug concentration passes some critical value; an alternative way of interpreting this result is to say that, for a prescribed surface drug concentration, there is a critical biofilm depth such that treatment is successful until this depth is reached, but fails thereafter. In the thick-biofilm limit we show that the critical concentration of each drug increases exponentially with the biofilm thickness (or, conversely, that the critical depth increases logarithmically with surface drug concentration); this is dramatically different to the behaviour observed in the corresponding homogeneous model, where the critical concentrations grow linearly with bacterial carrying capacity, and thus highlights the relative difficulty of treating a large, spatially-structured population with diffusing antibacterials. PMID:16012802

  15. Immune Subversion and Quorum-Sensing Shape the Variation in Infectious Dose among Bacterial Pathogens

    PubMed Central

    Gama, João Alves; Abby, Sophie S.; Vieira-Silva, Sara; Dionisio, Francisco; Rocha, Eduardo P. C.

    2012-01-01

    Many studies have been devoted to understand the mechanisms used by pathogenic bacteria to exploit human hosts. These mechanisms are very diverse in the detail, but share commonalities whose quantification should enlighten the evolution of virulence from both a molecular and an ecological perspective. We mined the literature for experimental data on infectious dose of bacterial pathogens in humans (ID50) and also for traits with which ID50 might be associated. These compilations were checked and complemented with genome analyses. We observed that ID50 varies in a continuous way by over 10 orders of magnitude. Low ID50 values are very strongly associated with the capacity of the bacteria to kill professional phagocytes or to survive in the intracellular milieu of these cells. Inversely, high ID50 values are associated with motile and fast-growing bacteria that use quorum-sensing based regulation of virulence factors expression. Infectious dose is not associated with genome size and shows insignificant phylogenetic inertia, in line with frequent virulence shifts associated with the horizontal gene transfer of a small number of virulence factors. Contrary to previous proposals, infectious dose shows little dependence on contact-dependent secretion systems and on the natural route of exposure. When all variables are combined, immune subversion and quorum-sensing are sufficient to explain two thirds of the variance in infectious dose. Our results show the key role of immune subversion in effective human infection by small bacterial populations. They also suggest that cooperative processes might be important for successful infection by bacteria with high ID50. Our results suggest that trade-offs between selection for population growth-related traits and selection for the ability to subvert the immune system shape bacterial infectiousness. Understanding these trade-offs provides guidelines to study the evolution of virulence and in particular the micro-evolutionary paths of emerging pathogens. PMID:22319444

  16. The role of quorum sensing system in antimicrobial induced ampC expression in Pseudomonas aeruginosa biofilm.

    PubMed

    Zhao, Jingming; Jiang, Handong; Cheng, Wei; Wu, Jinxiang; Zhao, Jiping; Wang, Junfei; Dong, Liang

    2015-05-01

    The aim of this study was to evaluate the effects of quorum sensing (QS) systems in Pseudomonas aeruginosa (P. aeruginosa) on the expression of ampC gene induced by antibiotics. An in vitro dynamic model of P. aeruginosa biofilms was established in a silicon tube in once-flowthrough system at 37?°C. Biofilm generation was identified by argentation. Biofilm morphology of standard P. aeruginosa strain (PAO-1) and QS systems deficient strains (PDO100, rhlI deficient strain; PAO-JP1, lasI deficient strain; and PAO-MW1, rhlI and lasI deficient strain) were observed by optical microscope. The expression of ampC in PAO1, PAO1 with QS inhibitor (furanone C-30) and the QS deficient strains before and after induced by antibiotics were quantified by real-time quantitative PCR. The biofilms of PAO-1 and PDO100 were much thicker and denser than that of PAO-JP1 and PAO-MW1. Being induced by antibiotics, the expression of ampC in PAO1 and PDO100 was significantly higher than that in PAO-MW1 and PAO-JP1. With the effect of furanone C-30, the expression of ampC in PAO1 induced by antibiotics was reduced in a dose-dependent manner. QS system, especially the las system, plays an important role in both biofilm formation and antimicrobials induced ampC expression and furanone C-30 is a potent inhibitor for P. aeruginosa QS system. PMID:25112215

  17. Microbial Communication, Cooperation and Cheating: Quorum Sensing Drives the Evolution of Cooperation in Bacteria

    PubMed Central

    Czárán, Tamás; Hoekstra, Rolf F.

    2009-01-01

    An increasing body of empirical evidence suggests that cooperation among clone-mates is common in bacteria. Bacterial cooperation may take the form of the excretion of “public goods”: exoproducts such as virulence factors, exoenzymes or components of the matrix in biofilms, to yield significant benefit for individuals joining in the common effort of producing them. Supposedly in order to spare unnecessary costs when the population is too sparse to supply the sufficient exoproduct level, many bacteria have evolved a simple chemical communication system called quorum sensing (QS), to “measure” the population density of clone-mates in their close neighborhood. Cooperation genes are expressed only above a threshold rate of QS signal molecule re-capture, i.e., above the local quorum of cooperators. The cooperative population is exposed to exploitation by cheaters, i.e., mutants who contribute less or nil to the effort but fully enjoy the benefits of cooperation. The communication system is also vulnerable to a different type of cheaters (“Liars”) who may produce the QS signal but not the exoproduct, thus ruining the reliability of the signal. Since there is no reason to assume that such cheaters cannot evolve and invade the populations of honestly signaling cooperators, the empirical fact of the existence of both bacterial cooperation and the associated QS communication system seems puzzling. Using a stochastic cellular automaton approach and allowing mutations in an initially non-cooperating, non-communicating strain we show that both cooperation and the associated communication system can evolve, spread and remain persistent. The QS genes help cooperative behavior to invade the population, and vice versa; cooperation and communication might have evolved synergistically in bacteria. Moreover, in good agreement with the empirical data recently available, this synergism opens up a remarkably rich repertoire of social interactions in which cheating and exploitation are commonplace. PMID:19684853

  18. A Synthetic Quorum Sensing System Reveals a Potential Private Benefit for Public Good Production in a Biofilm

    PubMed Central

    Zhang, Fang; Kwan, Anna; Xu, Amy; Süel, Gürol M.

    2015-01-01

    Bacteria predominantly reside in microbial communities known as biofilms, where cells are encapsulated and protected by the extracellular matrix (ECM). While all biofilm cells benefit from the ECM, only a subgroup of cells carries the burden of producing this public good. This dilemma provokes the question of how these cells balance the cost of ECM production. Here we show that ECM producing cells have a higher gene expression response to quorum sensing (QS) signals, which can lead to a private benefit. Specifically, we constructed a synthetic quorum-sensing system with designated “Sender” and “Receiver” cells in Bacillus subtilis. This synthetic QS system allowed us to uncouple and independently investigate ECM production and QS in both biofilms and single cells. Results revealed that ECM production directly enhances the response to QS signals, which may offset the cost of ECM production. PMID:26196509

  19. Inhibition of biofilm development of uropathogens by curcumin - an anti-quorum sensing agent from Curcuma longa.

    PubMed

    Packiavathy, Issac Abraham Sybiya Vasantha; Priya, Selvam; Pandian, Shunmugiah Karutha; Ravi, Arumugam Veera

    2014-04-01

    Urinary tract infection is caused primarily by the quorum sensing (QS)-dependent biofilm forming ability of uropathogens. In the present investigation, an anti-quorum sensing (anti-QS) agent curcumin from Curcuma longa (turmeric) was shown to inhibit the biofilm formation of uropathogens, such as Escherichia coli, Pseudomonas aeruginosa PAO1, Proteus mirabilis and Serratia marcescens, possibly by interfering with their QS systems. The antibiofilm potential of curcumin on uropathogens as well as its efficacy in disturbing the mature biofilms was examined under light microscope and confocal laser scanning microscope. The treatment with curcumin was also found to attenuate the QS-dependent factors, such as exopolysaccharide production, alginate production, swimming and swarming motility of uropathogens. Furthermore, it was documented that curcumin enhanced the susceptibility of a marker strain and uropathogens to conventional antibiotics. PMID:24262582

  20. Quorum sensing signals affect spoilage of refrigerated large yellow croaker (Pseudosciaena crocea) by Shewanella baltica.

    PubMed

    Zhu, Junli; Zhao, Aifei; Feng, Lifang; Gao, Haichun

    2016-01-18

    In this work we investigated the specific spoilage organism (SSO) of large yellow croaker (Pseudosciaena crocea) stored at 4°C and role of quorum sensing (QS) system of SSO isolated from the spoiled fish. According to microbial count and 16S rRNA gene of the isolated pure strains, Shewanella, mainly Shewanella baltica and Shewanella putrefaciens, was predominant genera at the end of shelf-life of P. crocea. Among Shewanella isolates, S.baltica02 was demonstrated as SSO in spoilage potential characteristics by inoculation into sterile fish juice using sensory and chemical analyses. Autoinducer 2 and two cyclic dipeptides (DKPs) including cyclo-(l-Pro-l-Leu) and cyclo-(l-Pro-l-Phe), no any AHLs, were detected in cell-free S. baltica culture. Interestingly, S.baltica02 had the highest QS activity among three spoilers of S. baltica. The production of biofilm, trimethylamines (TMA) and putrescine in these spoilers significantly increased in the presence of cyclo-(l-Pro-l-Leu), rather than cyclo-(l-Pro-l-Phe) and 4,5-dihydroxy-2,3-pentanedione (the AI-2 precursor, DPD). In accordance with the effect of signal molecules on the spoilage phenotype, exposure to exogenous cyclo-(l-Pro-l-Leu) was also showed to up-regulate the transcription levels of luxR, torA and ODC, and no effect of luxS indicated that S. baltica could sense cyclo-(l-Pro-l-Leu). In the fish homogenate, exogenous cyclo-(l-Pro-l-Leu) shortened lag phase durations and enhanced growth rates of the dominant bacteria, H2S producing bacteria, under refrigerated storage, while exogenous DPD retarded growth of competing bacteria, such as Enterobacteriaceae. Meanwhile, cyclo-(l-Pro-l-Leu) also promoted the accumulation of metabolites on the spoilage process of homogenate. S.baltica02 luxS mutant preliminarily proved that AI-2 might not play a signaling role in the spoilage. The present study suggested that the spoilage potential of S. baltica in P. crocea might be regulated by DKP-based quorum sensing. PMID:26519730

  1. The Natural Antimicrobial Carvacrol Inhibits Quorum Sensing in Chromobacterium violaceum and Reduces Bacterial Biofilm Formation at Sub-Lethal Concentrations

    PubMed Central

    Burt, Sara A.; Ojo-Fakunle, Victoria T. A.; Woertman, Jenifer; Veldhuizen, Edwin J. A.

    2014-01-01

    The formation of biofilm by bacteria confers resistance to biocides and presents problems in medical and veterinary clinical settings. Here we report the effect of carvacrol, one of the major antimicrobial components of oregano oil, on the formation of biofilms and its activity on existing biofilms. Assays were carried out in polystyrene microplates to observe (a) the effect of 0–0.8 mM carvacrol on the formation of biofilms by selected bacterial pathogens over 24 h and (b) the effect of 0–8 mM carvacrol on the stability of pre-formed biofilms. Carvacrol was able to inhibit the formation of biofilms of Chromobacterium violaceum ATCC 12472, Salmonella enterica subsp. Typhimurium DT104, and Staphylococcus aureus 0074, while it showed no effect on formation of Pseudomonas aeruginosa (field isolate) biofilms. This inhibitory effect of carvacrol was observed at sub-lethal concentrations (<0.5 mM) where no effect was seen on total bacterial numbers, indicating that carvacrol's bactericidal effect was not causing the observed inhibition of biofilm formation. In contrast, carvacrol had (up to 8 mM) very little or no activity against existing biofilms of the bacteria described, showing that formation of the biofilm also confers protection against this compound. Since quorum sensing is an essential part of biofilm formation, the effect of carvacrol on quorum sensing of C. violaceum was also studied. Sub-MIC concentrations of carvacrol reduced expression of cviI (a gene coding for the N-acyl-L-homoserine lactone synthase), production of violacein (pigmentation) and chitinase activity (both regulated by quorum sensing) at concentrations coinciding with carvacrol's inhibiting effect on biofilm formation. These results indicate that carvacrol's activity in inhibition of biofilm formation may be related to the disruption of quorum sensing. PMID:24691035

  2. The proteolytic activity of Pseudomonas Fluorescens 07A isolated from milk is not regulated by quorum sensing signals

    PubMed Central

    Pinto, Uelinton M.; Costa, Esther D.; Mantovani, Hilario C.; Vanetti, M.C.D.

    2010-01-01

    The proteolytic activity of Pseudomonas fluorescens 07A was investigated, and was optimal on tryptone-calcium medium. N-acyl-homoserine lactones (AHLs) were not detected on supernatants of late-exponential and stationary-phase culture broths. Synthetic AHLs or bacterial cell extracts added to the medium did not influence growth or proteolytic activity suggesting that quorum sensing might not regulate protease production in this strain. PMID:24031468

  3. Evidence for a Functional Quorum-Sensing Type AI-1 System in the Extremophilic Bacterium Acidithiobacillus ferrooxidans†

    PubMed Central

    Farah, Carolina; Vera, Mario; Morin, Danièle; Haras, Dominique; Jerez, Carlos A.; Guiliani, Nicolas

    2005-01-01

    Acidithiobacillus ferrooxidans is one of the main acidophilic chemolithotrophic bacteria involved in the bioleaching of metal sulfide ores. The bacterium-mineral interaction requires the development of biofilms, whose formation is regulated in many microorganisms by type AI-1 quorum sensing. Here, we report the existence and characterization of a functional type AI-1 quorum-sensing system in A. ferrooxidans. This microorganism produced mainly acyl-homoserine lactones (AHL) with medium and large acyl chains and different C-3 substitutions, including 3-hydroxy-C8-AHL, 3-hydroxy-C10-AHL, C12-AHL, 3-oxo-C12-AHL, 3-hydroxy-C12-AHL, C14-AHL, 3-oxo-C14-AHL, 3-hydroxy-C14-AHL, and 3-hydroxy-C16-AHL. A quorum-sensing genetic locus that includes two open reading frames, afeI and afeR, which have opposite orientations and code for proteins with high levels of similarity to members of the acyl synthase (I) and transcriptional regulator (R) protein families, respectively, was identified. Overexpression of AfeI in Escherichia coli and the associated synthesis of AHLs confirmed that AfeI is an AHL synthase. As determined by reverse transcription-PCR, the afeI and afeR genes were transcribed in A. ferrooxidans. The transcription levels of the afeI gene were higher in cells grown in sulfur and thiosulfate media than in iron-grown cells. Phosphate starvation induced an increase in the transcription levels of afeI which correlated with an increase in AHL levels. Two afe boxes which could correspond to the AfeR binding sites were identified upstream of the afeI gene. This is the first report of a functional type AI-1 quorum-sensing system in an acidophilic chemolithotrophic microorganism, and our results provide a very interesting opportunity to explore the control and regulation of biofilm formation during the bioleaching process. PMID:16269739

  4. Quorum Sensing Contributes to Activated IgM-Secreting B Cell Homeostasis

    PubMed Central

    Montaudouin, Caroline; Anson, Marie; Hao, Yi; Duncker, Susanne V.; Fernandez, Tahia; Gaudin, Emmanuelle; Ehrenstein, Michael; Kerr, William G.; Colle, Jean-Hervé; Bruhns, Pierre; Daëron, Marc; Freitas, António A.

    2013-01-01

    Maintenance of plasma IgM levels is critical for immune system function and homeostasis in humans and mice. However, the mechanisms that control homeostasis of the activated IgM-secreting B cells are unknown. After adoptive transfer into immune-deficient hosts, B lymphocytes expand poorly, but fully reconstitute the pool of natural IgM-secreting cells and circulating IgM levels. By using sequential cell transfers and B cell populations from several mutant mice, we were able to identify novel mechanisms regulating the size of the IgM-secreting B cell pool. Contrary to previous mechanisms described regulating homeostasis, which involve competition for the same niche by cells having overlapping survival requirements, homeostasis of the innate IgM-secreting B cell pool is also achieved when B cell populations are able to monitor the number of activated B cells by detecting their secreted products. Notably, B cell populations are able to assess the density of activated B cells by sensing their secreted IgG. This process involves the Fc?RIIB, a low-affinity IgG receptor that is expressed on B cells and acts as a negative regulator of B cell activation, and its intracellular effector the inositol phosphatase SHIP. As a result of the engagement of this inhibitory pathway, the number of activated IgM-secreting B cells is kept under control. We hypothesize that malfunction of this quorum-sensing mechanism may lead to uncontrolled B cell activation and autoimmunity. PMID:23209322

  5. The LuxS Based Quorum Sensing Governs Lactose Induced Biofilm Formation by Bacillus subtilis.

    PubMed

    Duanis-Assaf, Danielle; Steinberg, Doron; Chai, Yunrong; Shemesh, Moshe

    2015-01-01

    Bacillus species present a major concern in the dairy industry as they can form biofilms in pipelines and on surfaces of equipment and machinery used in the entire line of production. These biofilms represent a continuous hygienic problem and can lead to serious economic losses due to food spoilage and equipment impairment. Biofilm formation by Bacillus subtilis is apparently dependent on LuxS quorum sensing (QS) by Autoinducer-2 (AI-2). However, the link between sensing environmental cues and AI-2 induced biofilm formation remains largely unknown. The aim of this study is to investigate the role of lactose, the primary sugar in milk, on biofilm formation by B. subtilis and its possible link to QS processes. Our phenotypic analysis shows that lactose induces formation of biofilm bundles as well as formation of colony type biofilm. Furthermore, using reporter strain assays, we observed an increase in AI-2 production by B. subtilis in response to lactose in a dose dependent manner. Moreover, we found that expression of eps and tapA operons, responsible for extracellular matrix synthesis in B. subtilis, were notably up-regulated in response to lactose. Importantly, we also observed that LuxS is essential for B. subtilis biofilm formation in the presence of lactose. Overall, our results suggest that lactose may induce biofilm formation by B. subtilis through the LuxS pathway. PMID:26779171

  6. The LuxS Based Quorum Sensing Governs Lactose Induced Biofilm Formation by Bacillus subtilis

    PubMed Central

    Duanis-Assaf, Danielle; Steinberg, Doron; Chai, Yunrong; Shemesh, Moshe

    2016-01-01

    Bacillus species present a major concern in the dairy industry as they can form biofilms in pipelines and on surfaces of equipment and machinery used in the entire line of production. These biofilms represent a continuous hygienic problem and can lead to serious economic losses due to food spoilage and equipment impairment. Biofilm formation by Bacillus subtilis is apparently dependent on LuxS quorum sensing (QS) by Autoinducer-2 (AI-2). However, the link between sensing environmental cues and AI-2 induced biofilm formation remains largely unknown. The aim of this study is to investigate the role of lactose, the primary sugar in milk, on biofilm formation by B. subtilis and its possible link to QS processes. Our phenotypic analysis shows that lactose induces formation of biofilm bundles as well as formation of colony type biofilm. Furthermore, using reporter strain assays, we observed an increase in AI-2 production by B. subtilis in response to lactose in a dose dependent manner. Moreover, we found that expression of eps and tapA operons, responsible for extracellular matrix synthesis in B. subtilis, were notably up-regulated in response to lactose. Importantly, we also observed that LuxS is essential for B. subtilis biofilm formation in the presence of lactose. Overall, our results suggest that lactose may induce biofilm formation by B. subtilis through the LuxS pathway. PMID:26779171

  7. Silencing the mob: disrupting quorum sensing as a means to fight plant disease.

    PubMed

    Helman, Yael; Chernin, Leonid

    2015-04-01

    Bacteria are able to sense their population's density through a cell-cell communication system, termed 'quorum sensing' (QS). This system regulates gene expression in response to cell density through the constant production and detection of signalling molecules. These molecules commonly act as auto-inducers through the up-regulation of their own synthesis. Many pathogenic bacteria, including those of plants, rely on this communication system for infection of their hosts. The finding that the countering of QS-disrupting mechanisms exists in many prokaryotic and eukaryotic organisms offers a promising novel method to fight disease. During the last decade, several approaches have been proposed to disrupt QS pathways of phytopathogens, and hence to reduce their virulence. Such studies have had varied success in?vivo, but most lend promising support to the idea that QS manipulation could be a potentially effective method to reduce bacterial-mediated plant disease. This review discusses the various QS-disrupting mechanisms found in both bacteria and plants, as well as the different approaches applied artificially to interfere with QS pathways and thus protect plant health. PMID:25113857

  8. Characterization of phenotype variations of luminescent and non-luminescent variants of Vibrio harveyi wild type and quorum sensing mutants.

    PubMed

    Hong, N T X; Baruah, K; Vanrompay, D; Bossier, P

    2016-03-01

    Vibrio harveyi, a luminescent Gram-negative motile marine bacterium, is an important pathogen responsible for causing severe diseases in shrimp, finfish and molluscs leading to severe economic losses. Non-luminescent V. harveyi obtained by culturing luminescent strains under static and dark condition were reported to alter the levels of virulence factors and metalloprotease gene and luxR expression when compared to their luminescent variants. Presently, we conducted an in vitro study aiming at the characterization of virulence-related phenotypic traits of the wild-type V. harveyi BB120 strain and its isogenic quorum sensing mutants before and after switching to the non-luminescent status. We measured the production of caseinase, haemolysin and elastase and examined swimming motility and biofilm formation. Our results showed that switching from the bioluminescent to the non-luminescent state changed the phenotypic physiology or behaviour of V. harveyi resulting in alterations in caseinase and haemolytic activities, swimming motility and biofilm formation. The switching capacity was to a large extent independent from the quorum sensing status, in that quorum sensing mutants were equally capable of making the phenotypic switch. PMID:25865123

  9. Surface polysaccharides and quorum sensing are involved in the attachment and survival of Xanthomonas albilineans on sugarcane leaves.

    PubMed

    Mensi, Imene; Daugrois, Jean-Heinrich; Pieretti, Isabelle; Gargani, Daniel; Fleites, Laura A; Noell, Julie; Bonnot, Francois; Gabriel, Dean W; Rott, Philippe

    2016-02-01

    Xanthomonas albilineans, the causal agent of sugarcane leaf scald, is a bacterial plant pathogen that is mainly spread by infected cuttings and contaminated harvesting tools. However, some strains of this pathogen are known to be spread by aerial means and are able to colonize the phyllosphere of sugarcane before entering the host plant and causing disease. The objective of this study was to identify the molecular factors involved in the survival or growth of X. albilineans on sugarcane leaves. We developed a bioassay to test for the attachment of X. albilineans on sugarcane leaves using tissue-cultured plantlets grown in vitro. Six mutants of strain XaFL07-1 affected in surface polysaccharide production completely lost their capacity to survive on the sugarcane leaf surface. These mutants produced more biofilm in vitro and accumulated more cellular poly-β-hydroxybutyrate than the wild-type strain. A mutant affected in the production of small molecules (including potential biosurfactants) synthesized by non-ribosomal peptide synthetases (NRPSs) attached to the sugarcane leaves as well as the wild-type strain. Surprisingly, the attachment of bacteria on sugarcane leaves varied among mutants of the rpf gene cluster involved in bacterial quorum sensing. Therefore, quorum sensing may affect polysaccharide production, or both polysaccharides and quorum sensing may be involved in the survival or growth of X. albilineans on sugarcane leaves. PMID:25962850

  10. Bench-to-bedside review: Quorum sensing and the role of cell-to-cell communication during invasive bacterial infection

    PubMed Central

    Asad, Shadaba; Opal, Steven M

    2008-01-01

    Bacteria communicate extensively with each other and employ a communal approach to facilitate survival in hostile environments. A hierarchy of cell-to-cell signaling pathways regulates bacterial growth, metabolism, biofilm formation, virulence expression, and a myriad of other essential functions in bacterial populations. The notion that bacteria can signal each other and coordinate their assault patterns against susceptible hosts is now well established. These signaling networks represent a previously unrecognized survival strategy by which bacterial pathogens evade antimicrobial defenses and overwhelm the host. These quorum sensing communication signals can transgress species barriers and even kingdom barriers. Quorum sensing molecules can regulate human transcriptional programs to the advantage of the pathogen. Human stress hormones and cytokines can be detected by bacterial quorum sensing systems. By this mechanism, the pathogen can detect the physiologically stressed host, providing an opportunity to invade when the patient is most vulnerable. These rather sophisticated, microbial communication systems may prove to be a liability to pathogens as they make convenient targets for therapeutic intervention in our continuing struggle to control microbial pathogens. PMID:19040778

  11. The dependence of quorum sensing in Serratia marcescens JG on the transcription of luxS gene.

    PubMed

    Sun, Shu-Jing; Liu, Yu-Chen; Sun, Jiao; Zhu, Hu

    2015-06-01

    Bacteria communicate with one another using chemical signal molecules. This phenomenon termed quorum sensing enables the bacteria to monitor the environment for other bacteria and to alter behavior on a population-wide scale in response to cell density. Serratia marcescens JG, a quorum sensing bacterium, can secrete a furanosyl borate diester autoinducer (AI-2) in the exponential phase of growth. In this study, to further investigate the regulation of AI-2 production in S. marcescens JG, the pfs and luxS promoter fusions to an operon luxCDABE reporter were constructed in a low-copy-number vector pBR322K, which allows an examination of transcription of the genes in the pathway for signal synthesis. The results show that the luxS expression is constitutive, and the transcription of luxS is tightly correlated with AI-2 production in S. marcescens JG because the peaks of AI-2 production and transcriptional level of luxS appear at the same time point. The close relation of the profiles of luxS transcription and AI-2 production was also confirmed with real-time PCR technology. These results support the hypothesis that the quorum sensing in S. marcescens JG is luxS dependent. PMID:25731898

  12. Functional Analysis of the Quorum-Sensing Streptococcal Invasion Locus (sil)

    PubMed Central

    Belotserkovsky, Ilia; Baruch, Moshe; Peer, Asaf; Dov, Eran; Ravins, Miriam; Mishalian, Inbal; Persky, Merav; Smith, Yoav; Hanski, Emanuel

    2009-01-01

    Group A streptococcus (GAS) causes a wide variety of human diseases, and at the same time, GAS can also circulate without producing symptoms, similar to its close commensal relative, group G streptococcus (GGS). We previously identified, by transposon-tagged mutagenesis, the streptococcal invasion locus (sil). sil is a quorum-sensing regulated locus which is activated by the autoinducer peptide SilCR through the two-component system SilA-SilB. Here we characterize the DNA promoter region necessary for SilA-mediated activation. This site is composed of two direct repeats of 10 bp, separated by a spacer of 11 bp. Fusion of this site to gfp allowed us to systematically introduce single-base substitutions in the repeats region and to assess the relative contribution of various positions to promoter strength. We then developed an algorithm giving different weights to these positions, and performed a chromosome-wide bioinformatics search which was validated by transcriptome analysis. We identified 13 genes, mostly bacteriocin related, that are directly under the control of SilA. Having developed the ability to quantify SilCR signaling via GFP accumulation prompted us to search for GAS and GGS strains that sense and produce SilCR. While the majority of GAS strains lost sil, all GGS strains examined still possess the locus and ∼63% are able to respond to exogenously added SilCR. By triggering the autoinduction circle using a minute concentration of synthetic SilCR, we identified GAS and GGS strains that are capable of sensing and naturally producing SilCR, and showed that SilCR can be sensed across these streptococci species. These findings suggest that sil may be involved in colonization and establishment of commensal host-bacterial relationships. PMID:19893632

  13. Quorum Sensing Is Accompanied by Global Metabolic Changes in the Opportunistic Human Pathogen Pseudomonas aeruginosa

    PubMed Central

    Davenport, Peter W.; Griffin, Julian L.

    2015-01-01

    ABSTRACT Pseudomonas aeruginosa uses N-acyl-homoserine lactone (AHL)-dependent quorum sensing (QS) systems to control the expression of secreted effectors. These effectors can be crucial to the ecological fitness of the bacterium, playing roles in nutrient acquisition, microbial competition, and virulence. In this study, we investigated the metabolic consequences of AHL-dependent QS by monitoring the metabolic profile(s) of a lasI rhlI double mutant (unable to make QS signaling molecules) and its wild-type progenitor as they progressed through the growth curve. Analysis of culture supernatants by 1H-nuclear magnetic resonance (1H-NMR) spectroscopy revealed that at the point where AHL concentrations peaked in the wild type, the metabolic footprints (i.e., extracellular metabolites) of the wild-type and lasI rhlI mutant diverged. Subsequent gas chromatography-mass spectrometry (GC-MS)-based analysis of the intracellular metabolome revealed QS-dependent perturbations in around one-third of all identified metabolites, including altered concentrations of tricarboxylic acid (TCA) cycle intermediates, amino acids, and fatty acids. Further targeted fatty acid methyl ester (FAME) GC-MS-based profiling of the cellular total fatty acid pools revealed that QS leads to changes associated with decreased membrane fluidity and higher chemical stability. However, not all of the changes we observed were necessarily a direct consequence of QS; liquid chromatography (LC)-MS analyses revealed that polyamine levels were elevated in the lasI rhlI mutant, perhaps a response to the absence of QS-dependent adaptations. Our data suggest that QS leads to a global readjustment in central metabolism and provide new insight into the metabolic changes associated with QS during stationary-phase adaptation. IMPORTANCE Quorum sensing (QS) is a transcriptional regulatory mechanism that allows bacteria to coordinate their gene expression profile with the population cell density. The opportunistic human pathogen Pseudomonas aeruginosa uses QS to control the production of secreted virulence factors. In this study, we show that QS elicits a global “metabolic rewiring” in P. aeruginosa. This metabolic rerouting of fluxes is consistent with a variety of drivers, ranging from altered QS-dependent transcription of “metabolic genes” through to the effect(s) of global “metabolic readjustment” as a consequence of QS-dependent exoproduct synthesis, as well as a general stress response, among others. To our knowledge, this is the first study of its kind to assess the global impact of QS on the metabolome. PMID:25868647

  14. The Phosphorylation Flow of the Vibrio harveyi Quorum-Sensing Cascade Determines Levels of Phenotypic Heterogeneity in the Population

    PubMed Central

    Plener, Laure; Lorenz, Nicola; Reiger, Matthias; Ramalho, Tiago; Gerland, Ulrich

    2015-01-01

    ABSTRACT Quorum sensing (QS) is a communication process that enables a bacterial population to coordinate and synchronize specific behaviors. The bioluminescent marine bacterium Vibrio harveyi integrates three autoinducer (AI) signals into one quorum-sensing cascade comprising a phosphorelay involving three hybrid sensor kinases: LuxU; LuxO, an Hfq/small RNA (sRNA) switch; and the transcriptional regulator LuxR. Using a new set of V. harveyi mutants lacking genes for the AI synthases and/or sensors, we assayed the activity of the quorum-sensing cascade at the population and single-cell levels, with a specific focus on signal integration and noise levels. We found that the ratios of kinase activities to phosphatase activities of the three sensors and, hence, the extent of phosphorylation of LuxU/LuxO are important not only for the signaling output but also for the degree of noise in the system. The pools of phosphorylated LuxU/LuxO per cell directly determine the amounts of sRNAs produced and, consequently, the copy number of LuxR, generating heterogeneous quorum-sensing activation at the single-cell level. We conclude that the ability to drive the heterogeneous expression of QS-regulated genes in V. harveyi is an inherent feature of the architecture of the QS cascade. IMPORTANCE V. harveyi possesses one of the most complex quorum-sensing (QS) cascades known, using three different autoinducers (AIs) to control the induction of, e.g., bioluminescence, virulence factors, and biofilm and exoprotease production. We constructed various V. harveyi mutants to study the impact of each component and subsystem of the QS signaling cascade on QS activation at the population and single-cell levels. We found that the output was homogeneous only in the presence of all AIs. In the absence of any one AI, QS activation varied from cell to cell, resulting in phenotypic heterogeneity. This study elucidates a molecular design principle which enables a tightly integrated signaling cascade to control the expression of diverse phenotypes within a genetically homogeneous population. PMID:25755191

  15. The flavanone naringenin reduces the production of quorum sensing-controlled virulence factors in Pseudomonas aeruginosa PAO1.

    PubMed

    Vandeputte, Olivier M; Kiendrebeogo, Martin; Rasamiravaka, Tsiry; Stévigny, Caroline; Duez, Pierre; Rajaonson, Sanda; Diallo, Billo; Mol, Adeline; Baucher, Marie; El Jaziri, Mondher

    2011-07-01

    Preliminary screening of the Malagasy plant Combretum albiflorum for compounds attenuating the production of quorum sensing (QS)-controlled virulence factors in bacteria led to the identification of active fractions containing flavonoids. In the present study, several flavonoids belonging to the flavone, flavanone, flavonol and chalcone structural groups were screened for their capacity to reduce the production of QS-controlled factors in the opportunistic pathogen Pseudomonas aeruginosa (strain PAO1). Flavanones (i.e. naringenin, eriodictyol and taxifolin) significantly reduced the production of pyocyanin and elastase in P. aeruginosa without affecting bacterial growth. Consistently, naringenin and taxifolin reduced the expression of several QS-controlled genes (i.e. lasI, lasR, rhlI, rhlR, lasA, lasB, phzA1 and rhlA) in P. aeruginosa PAO1. Naringenin also dramatically reduced the production of the acylhomoserine lactones N-(3-oxododecanoyl)-L-homoserine lactone (3-oxo-C12-HSL) and N-butanoyl-L-homoserine lactone (C4-HSL), which is driven by the lasI and rhlI gene products, respectively. In addition, using mutant strains deficient for autoinduction (?lasI and ?rhlI) and LasR- and RhlR-based biosensors, it was shown that QS inhibition by naringenin not only is the consequence of a reduced production of autoinduction compounds but also results from a defect in the proper functioning of the RlhR-C4-HSL complex. Widely distributed in the plant kingdom, flavonoids are known for their numerous and determinant roles in plant physiology, plant development and in the success of plant-rhizobia interactions, but, as shown here, some of them also have a role as inhibitors of the virulence of pathogenic bacteria by interfering with QS mechanisms. PMID:21546585

  16. Inhibition of quorum sensing in Chromobacterium violaceum by Syzygium cumini L. and Pimenta dioica L.

    PubMed Central

    Vasavi, Halkare Suryanarayana; Arun, Ananthapadmanabha Bhagwath; Rekha, Punchapady Devasya

    2013-01-01

    Objective To investigated into the anti-quorum sensing (QS) activity of Syzygium cumini L. (S. cumini) and Pimenta dioica L. (P. dioica) using Chromobacterium violaceum (C. violaceum) strains. Methods In this study, anti-QS activity of ethanol extract of Syzygium cumini L. and Pimenta dioica L. were screened using C. violaceum CV026 biosensor bioassay. By bioassay guided fractionation of S. cumini and P. dioica, ethyl acetate fraction (EAF) with strong anti-QS activity was separated. Inhibition of QS regulated violacein production in C. violaceum ATCC12472 by EAF was assessed at different concentrations. The effect of EAF on the synthesis of autoinducer like N-acyl homoserine lactone (AHL) was studied in C. violaceum ATCC31532 using its mutant C. violaceum CV026 by standard methods. Results EAF inhibited violacein production in C. violaceum ATCC12472 in a concentration dependent manner without significant reduction in bacterial growth. Complete inhibition of violacein production was evidenced in 0.75-1.0 mg/mL concentration of EAF without inhibiting the synthesis of the AHL. TLC biosensor overlay profile of EAF revealed two translucent spots in S. cumini and P. dioica that inhibited C6-AHL mediated violacein production in C. violaceum CV026. Conclusions This study indicates the anti-QS activity of the tested medicinal plants against C. violaceum. PMID:24093786

  17. Inhibition of quorum sensing in gram-negative bacteria by alkylamine-modified cyclodextrins.

    PubMed

    Morohoshi, Tomohiro; Tokita, Kazuho; Ito, Satoshi; Saito, Yuki; Maeda, Saki; Kato, Norihiro; Ikeda, Tsukasa

    2013-08-01

    N-Acylhomoserine lactones (AHLs) are used as quorum-sensing (QS) signals by gram-negative bacteria. We have reported that the cyclic oligosaccharides known as cyclodextrins (CDs) form inclusion complexes with AHLs and disrupt QS signaling. In this study, a series of CD derivatives were designed and synthesized to improve the QS inhibitory activity over that of native CDs. The production of the red pigment prodigiosin by Serratia marcescens AS-1, which is regulated by AHL-mediated QS, was drastically decreased by adding 10 mg/ml 6-alkylacylamino-?-CD with an alkyl chain ranging from C7 to C12. An improvement in the QS inhibitory activity was also observed for 6-alkylamino-?- or ?-CDs and 2-alkylamino-CDs. Furthermore, 6,6'-dioctylamino-?-CD, which contains two octylamino groups, exhibited greater inhibitory activity than 6-monooctylamino-?-CD. The synthesized CD derivatives also had strong inhibitory effects on QS by other gram-negative bacteria, including Chromobacterium violaceum and Pseudomonas aeruginosa. The synthetic alkylamine-modified CD derivatives had higher equilibrium binding constants for binding with AHL than the native CDs did, consistent with the improved QS inhibition. ¹H NMR measurements suggested that the alkyl side chains of 6-alkylacylamino-?-CDs with alkyl chains up to 6 carbon atoms long could form self-inclusion complexes with the CD unit. PMID:23466297

  18. Inhibition of quorum sensing regulated biofilm formation in Serratia marcescens causing nosocomial infections.

    PubMed

    Bakkiyaraj, Dhamodharan; Sivasankar, Chandran; Pandian, Shunmugiah Karutha

    2012-05-01

    Serratia marcescens is an opportunistic pathogen causing severe urinary tract infections in hospitalized individuals. Infections of S. marcescens are of great concern because of its increasing resistance towards conventional antibiotics. Quorum sensing (QS)-a cell to cell communication-system of S. marcescens acts as a global regulator of almost all the virulence factors and majorly its biofilm formation. Since, the QS system of S. marcescens directly accords to its pathogenesis, targeting QS system will provide an improved strategy to combat drug resistant pathogens. In the present study, QS system of S. marcescens has been used as target and its inhibition has been studied upon exposure to bioactives from coral associated bacteria (CAB). This study also emphasises the potential of CAB in producing bioactive agents with anti-QS and antibiofilm properties. Two CAB isolates CAB 23 and 41 have shown to inhibit biofilm formation and the production of QS dependent virulence factors like prodigiosin, protease, lipase and swarming motility. The study, on the whole explicates the potential of QS system as a target to treat drug resistant bacterial infections. PMID:22487181

  19. Biosynthesis of carbapenem antibiotic and prodigiosin pigment in Serratia is under quorum sensing control.

    PubMed

    Thomson, N R; Crow, M A; McGowan, S J; Cox, A; Salmond, G P

    2000-05-01

    Serratia sp. ATCC 39006 produces the carbapenem antibiotic, carbapen-2-em-3-carboxylic acid and the red pigment, prodigiosin. We have previously reported the characterization of a gene, carR, controlling production of carbapenem in this strain. We now describe further characterization of the carR locus to locate the genes encoding carbapenem biosynthetic and resistance functions. A novel family of diverse proteins showing sequence similarity to the C-terminal domain of CarF (required for carbapenem resistance) is described. We also report the isolation of the locus involved in the biosynthesis of the red pigment, prodigiosin. A cosmid containing approximately 35 kb of the Serratia chromosome encodes synthesis of the pigment in the heterologous host, Erwinia carotovora, demonstrating, for the first time, that the complete prodigiosin biosynthetic gene cluster had been cloned and functionally expressed. We report the isolation of a third locus in Serratia, containing convergently transcribed genes, smaI and smaR, encoding LuxI and LuxR homologues respectively. SmaI directs the synthesis of N-acyl homoserine lactones involved in the quorum sensing process. We demonstrate that biosynthesis of the two secondary metabolites, carbapenem antibiotic and prodigiosin pigment, is under pheromone-mediated transcriptional regulation in this bacterium. Finally, we describe a new prodigiosin-based bioassay for detection of some N-acyl homoserine lactones. PMID:10844645

  20. Quorum sensing-controlled buoyancy through gas vesicles: Intracellular bacterial microcompartments for environmental adaptation

    PubMed Central

    Ramsay, Joshua P.

    2012-01-01

    Gas vesicles are gas-filled microcompartments produced by many cyanobacteria and haloarchaea to regulate buoyancy and control positioning in the water column. Recently we identified the first case of gas vesicle production by a member of the Enterobacteriaceae, Serratia sp ATCC39006. Gas vesicle production enabled colonisation of the air-liquid interface and was positively regulated in low-oxygen conditions, suggesting development of these intracellular organelles is an adpative mechanism facilitating migration to the water surface. Vesicle production was also regulated by the intercellular communication molecule N?butanoyl-L?homoserine lactone (BHL) showing that gas vesicle production is controlled at the population level, through quorum sensing, with BHL acting as a morphogen. Gas vesicle production was also reciprocally regulated with flagella-driven swarming motility by the global regulatory protein RsmA, suggesting a fork in the regulatory pathway that controls induction of these distinct modes of mobility. Here we discuss these findings in the context of the interesting physiology of Serratia 39006 and highlight future prospects for gas vesicle research in this highly tractable strain. PMID:22482022

  1. The Transcriptional Regulator CzcR Modulates Antibiotic Resistance and Quorum Sensing in Pseudomonas aeruginosa

    PubMed Central

    Dieppois, Guennaëlle; Ducret, Véréna; Caille, Olivier; Perron, Karl

    2012-01-01

    The opportunistic pathogen Pseudomonas aeruginosa responds to zinc, cadmium and cobalt by way of the CzcRS two-component system. In presence of these metals the regulatory protein CzcR induces the expression of the CzcCBA efflux pump, expelling and thereby inducing resistance to Zn, Cd and Co. Importantly, CzcR co-regulates carbapenem antibiotic resistance by repressing the expression of the OprD porin, the route of entry for these antibiotics. This unexpected co-regulation led us to address the role of CzcR in other cellular processes unrelated to the metal response. We found that CzcR affected the expression of numerous genes directly involved in the virulence of P. aeruginosa even in the absence of the inducible metals. Notably the full expression of quorum sensing 3-oxo-C12-HSL and C4-HSL autoinducer molecules is impaired in the absence of CzcR. In agreement with this, the virulence of the czcRS deletion mutant is affected in a C. elegans animal killing assay. Additionally, chromosome immunoprecipitation experiments allowed us to localize CzcR on the promoter of several regulated genes, suggesting a direct control of target genes such as oprD, phzA1 and lasI. All together our data identify CzcR as a novel regulator involved in the control of several key genes for P. aeruginosa virulence processes. PMID:22666466

  2. Poly(?-lysine) dendrons as modulators of quorum sensing in Pseudomonas aeruginosa.

    PubMed

    Issa, Rahaf; Meikle, Steve T; James, Stuart; Cooper, Ian R

    2015-05-01

    The opportunistic pathogen Pseudomonas aeruginosa is a significant contributor to recalcitrant multi-drug resistant infections. In a vigorous search for alternative therapeutic approaches, the communication system used by this bacterium to synchronise the expression of genes involved in pathogenicity has been identified as a potential target. Poly(?-lysine) dendrons, composed of three branching generations, were examined herein for their anti-virulence potential and ability to disperse within P. a eruginosa biofilms. These hyperbranched macromolecules reduced attachment and biomass production under different nutrient growth conditions, and at concentrations that were not lethal to planktonic cells (0.2, 0.4 and 0.8 mg/mL). Fluorescent labelling revealed the intracellular localisation and cell-penetrating capacity of the dendron, and showed the rapid uptake and release of unexploited dendron from pre-established P. a eruginosa biofilms. Additionally, the dendron induced complete attenuation of LasA protease, a marker of quorum sensing inactivation, by preventing its accumulation in the external environment. This study thus demonstrates the anti-virulence potential of this class of macromolecules, and could represent a novel therapeutic approach for the treatment of antibiotic-resistant P. a eruginosa infections. PMID:25893386

  3. Evidence for Autoinduction and Quorum Sensing in White Band Disease-Causing Microbes on Acropora cervicornis

    PubMed Central

    Certner, Rebecca H.; Vollmer, Steven V.

    2015-01-01

    Coral reefs have entered a state of global decline party due to an increasing incidence of coral disease. However, the diversity and complexity of coral-associated bacterial communities has made identifying the mechanisms underlying disease transmission and progression extremely difficult. This study explores the effects of coral cell-free culture fluid (CFCF) and autoinducer (a quorum sensing signaling molecule) on coral-associated bacterial growth and on coral tissue loss respectively. All experiments were conducted using the endangered Caribbean coral Acropora cervicornis. Coral-associated microbes were grown on selective media infused with CFCF derived from healthy and white band disease-infected A. cervicornis. Exposure to diseased CFCF increased proliferation of Cytophaga-Flavobacterium spp. while exposure to healthy CFCF inhibited growth of this group. Exposure to either CFCF did not significantly affect Vibrio spp. growth. In order to test whether disease symptoms can be induced in healthy corals, A. cervicornis was exposed to bacterial assemblages supplemented with exogenous, purified autoinducer. Incubation with autoinducer resulted in complete tissue loss in all corals tested in less than one week. These findings indicate that white band disease in A. cervicornis may be caused by opportunistic pathogenesis of resident microbes. PMID:26047488

  4. Quorum sensing, communication and cross-kingdom signalling in the bacterial world.

    PubMed

    Williams, Paul

    2007-12-01

    Although unicellular, bacteria are highly interactive and employ a range of cell-to-cell communication or 'quorum sensing (QS)' systems for promoting collective behaviour within a population. QS is generally considered to facilitate gene expression only when the population has reached a sufficient cell density and depends on the synthesis of small molecules that diffuse in and out of bacterial cells. As the bacterial population density increases, so does the synthesis of QS signal molecules and consequently, their concentration in the external environment increases. Once a critical threshold concentration is reached, a target sensor kinase or response regulator is activated, so facilitating the expression of QS-dependent target genes. Several chemically distinct families of QS signal molecules have been described, of which the N-acylhomoserine lactone (AHL) family in Gram-negative bacteria have been the most intensively investigated. QS contributes to environmental adaptation by facilitating the elaboration of virulence determinants in pathogenic species and plant biocontrol characteristics in beneficial species as well as directing biofilm formation and colony escape. QS also crosses the prokaryotic-eukaryotic boundary in that QS signal molecules influence the behaviour of eukaryotic organisms in both the plant and mammalian worlds such that QS signal molecules may directly facilitate bacterial survival by promoting an advantageous lifestyle within a given environmental niche. PMID:18048907

  5. Death and survival in Streptococcus mutans: differing outcomes of a quorum-sensing signaling peptide

    PubMed Central

    Leung, Vincent; Dufour, Delphine; Lévesque, Céline M.

    2015-01-01

    Bacteria are considered “social” organisms able to communicate with one another using small hormone-like molecules (pheromones) in a process called quorum-sensing (QS). These signaling molecules increase in concentration as a function of bacterial cell density. For most human pathogens, QS is critical for virulence and biofilm formation, and the opportunity to interfere with bacterial QS could provide a sophisticated means for manipulating the composition of pathogenic biofilms, and possibly eradicating the infection. Streptococcus mutans is a well-characterized resident of the dental plaque biofilm, and is the major pathogen of dental caries (cavities). In S. mutans, its CSP QS signaling peptide does not act as a classical QS signal by accumulating passively in proportion to cell density. In fact, particular stresses such as those encountered in the oral cavity, induce the production of the CSP pheromone, suggesting that the pheromone most probably functions as a stress-inducible alarmone by triggering the signaling to the bacterial population to initiate an adaptive response that results in different phenotypic outcomes. This mini-review discusses two different CSP-induced phenotypes, bacterial “suicide” and dormancy, and the underlying mechanisms by which S. mutans utilizes the same QS signaling peptide to regulate two opposite phenotypes. PMID:26557114

  6. Detecting the molecular signature of social conflict: theory and a test with bacterial quorum sensing genes.

    PubMed

    Van Dyken, J David; Wade, Michael J

    2012-04-01

    Extending social evolution theory to the molecular level opens the door to an unparalleled abundance of data and statistical tools for testing alternative hypotheses about the long-term evolutionary dynamics of cooperation and conflict. To this end, we take a collection of known sociality genes (bacterial quorum sensing [QS] genes), model their evolution in terms of patterns that are detectable using gene sequence data, and then test model predictions using available genetic data sets. Specifically, we test two alternative hypotheses of social conflict: (1) the "adaptive" hypothesis that cheaters are maintained in natural populations by frequency-dependent balancing selection as an evolutionarily stable strategy and (2) the "evolutionary null" hypothesis that cheaters are opposed by purifying kin selection yet exist transiently because of their recurrent introduction into populations by mutation (i.e., kin selection-mutation balance). We find that QS genes have elevated within- and among-species sequence variation, nonsignificant signatures of natural selection, and putatively small effect sizes of mutant alleles, all patterns predicted by our evolutionary null model but not by the stable cheater hypothesis. These empirical findings support our theoretical prediction that QS genes experience relaxed selection due to nonclonality of social groups, conditional expression, and the individual-level advantage enjoyed by cheaters. Furthermore, cheaters are evolutionarily transient, persisting in populations because of their recurrent introduction by mutation and not because they enjoy a frequency-dependent fitness advantage. PMID:22437174

  7. Quorum sensing activity and control of yeast-mycelium dimorphism in Ophiostoma floccosum.

    PubMed

    Berrocal, Alexander; Oviedo, Claudia; Nickerson, Kenneth W; Navarrete, José

    2014-07-01

    Quorum sensing (QS) activity in Ophiostoma fungi has not been described. We have examined the growth conditions on the control of dimorphism in Ophiostoma floccosum, an attractive biocontrol agent against blue-stain fungi, and its relationship with QS activity. In a defined culture medium with L-proline as the N source, a high inoculum size (10(7) c.f.u. ml(-1)) was the principal factor that promoted yeast-like growth. Inoculum size effect can be explained by the secretion of a QS molecule(s) (QSMs) responsible for inducing yeast morphology. QSM candidates were extracted from spent medium and their structure was determined by GC-MS. Three cyclic sesquiterpenes were found. The most abundant molecule, and therefore the principal candidate to be the QSM responsible for yeast growth of O. floccosum, was 1,1,4a-trimethyl-5,6-dimethylene-decalin (C15H24). Other two compounds were also detected. PMID:24737073

  8. 2,5-Piperazinedione inhibits quorum sensing-dependent factor production in Pseudomonas aeruginosa PAO1.

    PubMed

    Musthafa, Khadar Syed; Balamurugan, Krishnaswamy; Pandian, Shunmugiah Karutha; Ravi, Arumugam Veera

    2012-12-01

    The effects of 2,5-piperazinedione in reducing the production of quorum sensing (QS)-dependent factors in Pseudomonas aeruginosa PAO1 were assessed both in vitro and in vivo. 2,5-Piperazinedione exhibited a 69% reduction in the azocasein-degrading proteolytic activity and a 48% reduction in the elastolytic activity of PAO1. Further, it showed 85% and 96% reduction in the production of pyocyanin and extracellular polymeric substances (EPS) of PAO1, respectively. In the swimming inhibition assay, 2,5-piperazinedione-treated PAO1 cells exhibited poor swimming motility in swim agar medium. In the in vivo analysis, an enhanced survival of PAO1-preinfected Caenorhabditis elegans was observed after treatment with 2,5-piperazinedione. Regarding the mode of action, in the molecular docking analysis, 2,5-piperazinedione interacts with the amino acid residue of the LasR receptor protein required for binding the natural ligand N -3-oxododecanoyl-l-homoserine lactone (3-oxo-C12-HSL). This demonstrates the probability of 2,5-piperazinedione to interfere with the binding process of 3-oxo-C12-HSL to its receptor protein. Thus, the findings of the present study reveal the potential of 2,5-piperazinedione in reducing the QS-dependent phenotypic features of PAO1. PMID:22359266

  9. Quorum-Sensing Mechanisms Mediated by Farnesol in Ophiostoma piceae: Effect on Secretion of Sterol Esterase

    PubMed Central

    de Salas, Felipe

    2015-01-01

    Ophiostoma piceae CECT 20416 is a dimorphic wood-staining fungus able to produce an extracellular sterol-esterase/lipase (OPE) that is of great biotechnological interest. In this work, we have studied the morphological change of this fungus from yeast to hyphae, which is associated with the cell density-related mechanism known as quorum sensing (QS), and how this affects the secretion of OPE. The data presented here confirm that the molecule E,E-farnesol accumulates as the cell number is growing within the population. The exogenous addition of this molecule or spent medium to the cultures increased the extracellular activity of OPE 2.5 times. This fact was related not to an increase in microbial biomass or in the expression of the gene coding for OPE but to a marked morphological transition in the cultures. Moreover, the morphological transition also occurred when a high cell density was inoculated into the medium. The results suggest that E,E-farnesol regulates through QS mechanisms the morphological transition in the dimorphic fungus O. piceae and that it is associated with a higher extracellular esterase activity. Furthermore, identification and transcriptional analysis of genes tup1 and cyr1, which are involved in the response, was carried out. Here we report enhanced production of a sterol-esterase/lipase of biotechnological interest by means of QS mechanisms. These results may be useful in increasing the production of secreted enzymes of other dimorphic fungi of biotechnological interest. PMID:25888179

  10. ω-Hydroxyemodin Limits Staphylococcus aureus Quorum Sensing-Mediated Pathogenesis and Inflammation

    PubMed Central

    Daly, Seth M.; Elmore, Bradley O.; Kavanaugh, Jeffrey S.; Triplett, Kathleen D.; Figueroa, Mario; Raja, Huzefa A.; El-Elimat, Tamam; Crosby, Heidi A.; Femling, Jon K.; Cech, Nadja B.; Horswill, Alexander R.; Oberlies, Nicholas H.

    2015-01-01

    Antibiotic-resistant pathogens are a global health threat. Small molecules that inhibit bacterial virulence have been suggested as alternatives or adjuncts to conventional antibiotics, as they may limit pathogenesis and increase bacterial susceptibility to host killing. Staphylococcus aureus is a major cause of invasive skin and soft tissue infections (SSTIs) in both the hospital and community settings, and it is also becoming increasingly antibiotic resistant. Quorum sensing (QS) mediated by the accessory gene regulator (agr) controls virulence factor production essential for causing SSTIs. We recently identified ω-hydroxyemodin (OHM), a polyhydroxyanthraquinone isolated from solid-phase cultures of Penicillium restrictum, as a suppressor of QS and a compound sought for the further characterization of the mechanism of action. At concentrations that are nontoxic to eukaryotic cells and subinhibitory to bacterial growth, OHM prevented agr signaling by all four S. aureus agr alleles. OHM inhibited QS by direct binding to AgrA, the response regulator encoded by the agr operon, preventing the interaction of AgrA with the agr P2 promoter. Importantly, OHM was efficacious in a mouse model of S. aureus SSTI. Decreased dermonecrosis with OHM treatment was associated with enhanced bacterial clearance and reductions in inflammatory cytokine transcription and expression at the site of infection. Furthermore, OHM treatment enhanced the immune cell killing of S. aureus in vitro in an agr-dependent manner. These data suggest that bacterial disarmament through the suppression of S. aureus QS may bolster the host innate immune response and limit inflammation. PMID:25645827

  11. Surface enhanced Raman scattering for detection of Pseudomonas aeruginosa quorum sensing compounds

    NASA Astrophysics Data System (ADS)

    Thrift, Will; Bhattacharjee, Arunima; Darvishzadeh-Varcheie, Mahsa; Lu, Ying; Hochbaum, Allon; Capolino, Filippo; Whiteson, Katrine; Ragan, Regina

    2015-08-01

    Pseudomonas aeruginosa (PA), a biofilm forming bacterium, commonly affects cystic fibrosis, burn victims, and immunocompromised patients. PA produces pyocyanin, an aromatic, redox active, secondary metabolite as part of its quorum sensing signaling system activated during biofilm formation. Surface enhanced Raman scattering (SERS) sensors composed of Au nanospheres chemically assembled into clusters on diblock copolymer templates were fabricated and the ability to detect pyocyanin to monitor biofilm formation was investigated. Electromagnetic full wave simulations of clusters observed in scanning electron microcopy images show that the localized surface plasmon resonance wavelength is 696 nm for a dimer with a gap spacing of 1 nm in an average dielectric environment of the polymer and analyte; the local electric field enhancement is on the order of 400 at resonance, relative to free space. SERS data acquired at 785 nm excitation from a monolayer of benzenethiol on fabricated samples was compared with Raman data of pure benzenethiol and enhancement factors as large as 8×109 were calculated that are consistent with simulated field enhancements. Using this system, the limit of detection of pyocyanin in pure gradients was determined to be 10 parts per billion. In SERS data of the supernatant from the time dependent growth of PA shaking cultures, pyocyanin vibrational modes were clearly observable during the logarithmic growth phase corresponding to activation of genes related to biofilm formation. These results pave the way for the use of SERS sensors for the early detection of biofilm formation, leading to reduced healthcare costs and better patient outcomes.

  12. Induction of a quorum sensing pathway by environmental signals enhances group A streptococcal resistance to lysozyme.

    PubMed

    Chang, Jennifer C; Jimenez, Juan Cristobal; Federle, Michael J

    2015-09-01

    The human-restricted pathogen Streptococcus pyogenes (Group A Streptococcus, GAS) is responsible for wide-ranging pathologies at numerous sites in the body but has the proclivity to proliferate in individuals asymptomatically. The ability to survive in diverse tissues is undoubtedly benefited by sensory pathways that recognize environmental cues corresponding to stress and nutrient availability and thereby trigger adaptive responses. We investigated the impact that environmental signals contribute to cell-to-cell chemical communication [quorum sensing (QS)] by monitoring activity of the Rgg2/Rgg3 and SHP-pheromone system in GAS. We identified metal limitation and the alternate carbon source mannose as two environmental indicators likely to be encountered by GAS in the host that significantly induced the Rgg-SHP system. Disruption of the metal regulator MtsR partially accounted for the response to metal depletion, whereas ptsABCD was primarily responsible for QS induction due to mannose, but each sensory system induced Rgg-SHP signaling apparently by different mechanisms. Significantly, we found that induction of QS, regardless of the GAS serotype tested, led to enhanced resistance to the antimicrobial agent lysozyme. These results indicate the benefits for GAS to integrate environmental signals with intercellular communication pathways in protection from host defenses. PMID:26062094

  13. Quorum sensing activity of Citrobacter amalonaticus L8A, a bacterium isolated from dental plaque

    PubMed Central

    Goh, Share-Yuan; Khan, Saad Ahmed; Tee, Kok Keng; Abu Kasim, Noor Hayaty; Yin, Wai-Fong; Chan, Kok-Gan

    2016-01-01

    Cell-cell communication is also known as quorum sensing (QS) that happens in the bacterial cells with the aim to regulate their genes expression in response to increased cell density. In this study, a bacterium (L8A) isolated from dental plaque biofilm was identified as Citrobacter amalonaticus by matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry (MS). Its N-acylhomoserine-lactone (AHL) production was screened by using two types of AHL biosensors namely Chromobacterium violaceum CV026 and Escherichia coli [pSB401]. Citrobacter amalonaticus strain L8A was identified and confirmed producing numerous types of AHL namely N-butyryl-L-homoserine lactone (C4-HSL), N-hexanoyl-L-homoserine lactone (C6-HSL), N-octanoyl-L-homoserine lactone (C8-HSL) and N-hexadecanoyl-L-homoserine lactone (C16-HSL). We performed the whole genome sequence analysis of this oral isolate where its genome sequence reveals the presence of QS signal synthase gene and our work will pave the ways to study the function of the related QS genes in this bacterium. PMID:26860259

  14. Vfm a new quorum sensing system controls the virulence of Dickeya dadantii.

    PubMed

    Nasser, William; Dorel, Corinne; Wawrzyniak, Julien; Van Gijsegem, Frédérique; Groleau, Marie-Christine; Déziel, Eric; Reverchon, Sylvie

    2013-03-01

    Dickeya dadantii is a plant pathogen that secretes cell wall-degrading enzymes (CWDE) that are responsible for soft-rot symptoms. Virulence genes are expressed in a concerted manner and culminate when bacterial multiplication slows. We identify a 25 kb vfm cluster required for D.?dadantii CWDE production and pathogenesis. The vfm cluster encodes proteins displaying similarities both with enzymes involved in amino acid activation and with enzymes involved in fatty acid biosynthesis. These similarities suggest that the vfm genes direct the production of a metabolite. Cell-free supernatant from the D.?dadantii wild-type strain restores CWDE production in vfm mutants. Collectively, our results indicate that vfm genes direct the synthesis of an extracellular signal and constitute a new quorum sensing system. Perception of the signal is achieved by the two-component system VfmH-VfmI, which activates the expression of the vfmE gene encoding an AraC regulator. VfmE then activates both the transcription of the CWDE genes and the expression of the vfm operons. The vfm gene cluster does not seem to be widespread among bacterial species but is conserved in other Dickeya species and could have been laterally transferred to Rahnella. This work highlights that entirely new families of bacterial languages remain to be discovered. PMID:23227918

  15. The quorum-sensing inhibiting effects of stilbenoids and their potential structure-activity relationship.

    PubMed

    Sheng, Ji-Yang; Chen, Tong-Tong; Tan, Xiao-Juan; Chen, Ting; Jia, Ai-Qun

    2015-11-15

    Stilbenoids, known an important phytoalexins in plants, were renowned for their beneficial effects on cardiovascular, neurological and hepatic systems. In the present study, quorum sensing inhibition activity of ten stilbenoids were tested using Chromobacterium violaceum CV026 as the bio-indicator strain and the structure-activity relationship was also investigated. Among them, resveratrol (1), piceatannol (2) and oxyresveratrol (3) showed potential anti-QS activities. At the sub-MIC concentrations, 1-3 demonstrated a statistically significant reduction of violacein in C. violaceum CV026 in a concentration dependent manner. Furthermore, the effects of 1-3 on QS regulated virulence factors in Pseudomonas aeruginosa PAO1 were also evaluated. Our results showed that the stilbenoids 1-3 can markedly decreased the production of pyocyanin and swarming motility of P. aeruginosa PAO1. Further transcriptome analyses showed that 1-3 suppressed the expression of QS-induced genes: lasR, lasI, rhlR and rhlI. PMID:26453007

  16. Chemical composition and disruption of quorum sensing signaling in geographically diverse United States propolis.

    PubMed

    Savka, Michael A; Dailey, Lucas; Popova, Milena; Mihaylova, Ralitsa; Merritt, Benjamin; Masek, Marissa; Le, Phuong; Nor, Sharifah Radziah Mat; Ahmad, Muhammad; Hudson, André O; Bankova, Vassya

    2015-01-01

    Propolis or bee glue has been used for centuries for various purposes and is especially important in human health due to many of its biological and pharmacological properties. In this work we showed quorum sensing inhibitory (QSI) activity of ten geographically distinct propolis samples from the United States using the acyl-homoserine lactone- (AHL-) dependent Chromobacterium violaceum strain CV026. Based on GC-MS chemical profiling the propolis samples can be classified into several groups that are as follows: (1) rich in cinnamic acid derivatives, (2) rich in flavonoids, and (3) rich in triterpenes. An in-depth analysis of the propolis from North Carolina led to the isolation and identification of a triterpenic acid that was recently isolated from Hondurian propolis (Central America) and ethyl ether of p-coumaric alcohol not previously identified in bee propolis. QSI activity was also observed in the second group US propolis samples which contained the flavonoid pinocembrin in addition to other flavonoid compounds. The discovery of compounds that are involved in QSI activity has the potential to facilitate studies that may lead to the development of antivirulence therapies that can be complementary and/or alternative treatments against antibiotic resistant bacterial pathogens and/or emerging pathogens that have yet to be identified. PMID:25960752

  17. Detection of Quorum Sensing Molecules and Biofilm Formation in Ralstonia solanacearum.

    PubMed

    Kumar, J Shiva; Umesha, S; Prasad, K Shiva; Niranjana, P

    2016-03-01

    Many bacteria use small diffusible signaling molecules to communicate each other termed as quorum sensing (QS). Most Gram-negative bacteria use acyl homoserine lactone (AHL) as QS signal molecules. Using these signaling molecules, bacteria are able to express specific genes in response to population density. This work aimed to detect the production of QS signal molecules and biofilm formation in Ralstonia solanacearum isolated from various diseased tomato plants with symptoms of bacterial wilt. A total of 30 R. solanacearum strains were investigated for the production of QS signal molecules using Chromobacterium violaceum CV026 and Agrobacterium tumefaciens NT1 (pZLR4) biosensor systems. All 30 bacterial isolates from various bacterial wilt-affected tomato plants produced AHL molecules that induced the biosensor. The microtiter plate assay demonstrated that of the 30 bacterial isolates, 60 % formed biofilm, among which four isolates exhibited a higher degree of biofilm formation. The biofilm-inducing factor was purified from these four culture supernatants. The structure of the responsible molecule was solved using nuclear magnetic resonance and mass spectroscopy and was determined to be 2-hydroxy-4-((methylamino)(phenyl)methyl) cyclopentanone (HMCP), which was confirmed by chemical synthesis and NMR. The Confocal laser scanning microscopic analysis showed well-developed biofilm architecture of bacteria when treated with HMCP. The knowledge we obtained from this study will be useful for further researcher on the role of HMCP molecule in biofilm formation. PMID:26620535

  18. Influence of quorum sensing in multiple phenotypes of the bacterial pathogen Chromobacterium violaceum.

    PubMed

    de Oca-Mejía, Marielba Montes; Castillo-Juárez, Israel; Martínez-Vázquez, Mariano; Soto-Hernandez, Marcos; García-Contreras, Rodolfo

    2015-03-01

    Chromobacterium violaceum is a bacterial pathogen that communicates through quorum sensing (QS), via the C6-homoserine lactone signal (C6-HSL). It is well known that the production of the pigment violacein is controlled by QS in this microorganism, in fact QS-dependent violacein production is widely used as a marker to evaluate the efficiency of potential anti-QS molecules, such as those extracted from plants. In addition to violacein, the production of chitinase is also known to be controlled by QS, but besides those two phenotypes there is a lack of experimental studies aimed to discover additional process controlled by QS in this organism; therefore, in this work the production of exoprotease, aggregation, biofilm formation, swarming motility, H2O2 resistance as well as carbon and nitrogen utilization was determined in the wild-type strain and the QS negative mutant CVO26. Our results indicate that alkaline exoprotease activity is QS controlled in this organism, that QS increases aggregation, biofilm formation, swarming, that may increase H2O2 stress tolerance, and that it may influence the utilization of several carbon and nitrogen sources. PMID:25722489

  19. Inhibition of quorum sensing mediated biofilm development and virulence in uropathogens by Hyptis suaveolens.

    PubMed

    Salini, Ramesh; Sindhulakshmi, Muthukrishnan; Poongothai, Thirumaran; Pandian, Shunmugiah Karutha

    2015-04-01

    Bacterial urinary tract infections (UTIs) are the most common nosocomial infections, accounting for about 40 % of all hospital-acquired infections. The bacterial spectrum of nosocomial UTIs is broad and the treatment of UTIs is becoming difficult owing to the emergence of drug resistance. Therefore, it is reasonable to investigate novel and alternative therapeutic strategies to treat UTIs. Since UTIs are caused by uropathogens with quorum sensing (QS)-dependent biofilm forming abilities, interruption of QS systems may be a novel approach to combat drug resistance. In the present study, a methanol extract (and hexane extract derived from it) of the medicinal plant Hyptis suaveolens (L.) were shown to have anti-QS activity against the biosensor strain Chromobacterium violaceum (ATCC 12472). Furthermore, the hexane extract of H. suaveolens (HEHS) inhibited biofilm formation by uropathogens such as Escherichia coli, Proteus vulgaris, Proteus mirabilis, Klebsiella pneumoniae and Serratia marcescens. HEHS promotes the loosening of biofilm architecture and strongly inhibits in vitro biofilm formation by uropathogens, which was more apparent from microscopic images. In addition to this, HEHS reduces the production of QS-dependent virulence factors like protease and hemolysin, along with motility. The partial purification and GC-MS analysis of the active fraction revealed the presence of several therapeutically important compounds which may synergistically act on the uropathogens and possibly reduce the QS-dependent phenotypes. These findings suggest HEHS as potential phytotherapeutic agent which can be employed to formulate protective strategies against biofilm linked infections caused by uropathogens. PMID:25656290

  20. Quorum sensing activity of Citrobacter amalonaticus L8A, a bacterium isolated from dental plaque.

    PubMed

    Goh, Share-Yuan; Khan, Saad Ahmed; Tee, Kok Keng; Abu Kasim, Noor Hayaty; Yin, Wai-Fong; Chan, Kok-Gan

    2016-01-01

    Cell-cell communication is also known as quorum sensing (QS) that happens in the bacterial cells with the aim to regulate their genes expression in response to increased cell density. In this study, a bacterium (L8A) isolated from dental plaque biofilm was identified as Citrobacter amalonaticus by matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry (MS). Its N-acylhomoserine-lactone (AHL) production was screened by using two types of AHL biosensors namely Chromobacterium violaceum CV026 and Escherichia coli [pSB401]. Citrobacter amalonaticus strain L8A was identified and confirmed producing numerous types of AHL namely N-butyryl-L-homoserine lactone (C4-HSL), N-hexanoyl-L-homoserine lactone (C6-HSL), N-octanoyl-L-homoserine lactone (C8-HSL) and N-hexadecanoyl-L-homoserine lactone (C16-HSL). We performed the whole genome sequence analysis of this oral isolate where its genome sequence reveals the presence of QS signal synthase gene and our work will pave the ways to study the function of the related QS genes in this bacterium. PMID:26860259

  1. Quorum-sensing regulators in Gram-positive bacteria: 'cherchez le peptide'.

    PubMed

    Monnet, V; Gardan, R

    2015-07-01

    Gram-positive bacteria can regulate gene expression at the population level via a mechanism known as quorum sensing. Oligopeptides serve as the signaling molecules; they are secreted and then are either detected at the bacterial surface by two-component systems or reinternalized via an oligopeptide transport system. In the latter case, imported peptides interact with cognate regulators (phosphatases or transcriptional regulators) that modulate the expression of target genes. These regulators help control crucial functions such as virulence, persistence, conjugation and competence and have been reported in bacilli, enterococci and streptococci. They form the rapidly growing RRNPP group. In this issue of Molecular?Microbiology, Hoover et?al. (2015) highlight the group's importance: they have identified a new family of regulators, Tprs (Transcription factor regulated by a Phr peptide), which work with internalized Phr-like peptides. The mechanisms underlying the expression of the genes that encode these internalized peptides are poorly documented. However, Hoover et?al. (2015) have provided a new insight: an environmental molecule, glucose, can inhibit expression of the Phr-like peptide gene via catabolic repression. This previously undescribed regulatory pathway, controlling the production of a bacteriocin, might influence Streptococcus pneumonia's fitness in the nasopharynx, where galactose is present. PMID:25988215

  2. Anti-Quorum Sensing Potential of Crude Kigelia africana Fruit Extracts

    PubMed Central

    Chenia, Hafizah Y.

    2013-01-01

    The increasing incidence of multidrug-resistant pathogens has stimulated the search for novel anti-virulence compounds. Although many phytochemicals show promising antimicrobial activity, their power lies in their anti-virulence properties. Thus the quorum sensing (QS) inhibitory activity of four crude Kigelia africana fruit extracts was assessed qualitatively and quantitatively using the Chromobacterium violaceum and Agrobacterium tumefaciens biosensor systems. Inhibition of QS-controlled violacein production in C. violaceum was assayed using the qualitative agar diffusion assay as well as by quantifying violacein inhibition using K. africana extracts ranging from 0.31–8.2 mg/mL. Qualitative modulation of QS activity was investigated using the agar diffusion double ring assay. All four extracts showed varying levels of anti-QS activity with zones of violacein inhibition ranging from 9–10 mm. The effect on violacein inhibition was significant in the following order: hexane > dichloromethane > ethyl acetate > methanol. Inhibition was concentration-dependent, with the ?90% inhibition being obtained with ?1.3 mg/mL of the hexane extract. Both LuxI and LuxR activity were affected by crude extracts suggesting that the phytochemicals target both QS signal and receptor. K. africana extracts with their anti-QS activity, have the potential to be novel therapeutic agents, which might be important in reducing virulence and pathogenicity of drug-resistant bacteria in vivo. PMID:23447012

  3. Density-dependent fitness benefits in quorum-sensing bacterial populations.

    PubMed

    Darch, Sophie E; West, Stuart A; Winzer, Klaus; Diggle, Stephen P

    2012-05-22

    It has been argued that bacteria communicate using small diffusible signal molecules to coordinate, among other things, the production of factors that are secreted outside of the cells in a process known as quorum sensing (QS). The underlying assumption made to explain QS is that the secretion of these extracellular factors is more beneficial at higher cell densities. However, this fundamental assumption has never been tested experimentally. Here, we directly test this by independently manipulating population density and the induction and response to the QS signal, using the opportunistic pathogen Pseudomonas aeruginosa as a model organism. We found that the benefit of QS was relatively greater at higher population densities, and that this was because of more efficient use of QS-dependent extracellular "public goods." In contrast, the benefit of producing "private goods," which are retained within the cell, does not vary with cell density. Overall, these results support the idea that QS is used to coordinate the switching on of social behaviors at high densities when such behaviors are more efficient and will provide the greatest benefit. PMID:22566647

  4. Attenuation of quorum sensing controlled virulence of Pseudomonas aeruginosa by cranberry

    PubMed Central

    Harjai, Kusum; Gupta, Ravi Kumar; Sehgal, Himanshi

    2014-01-01

    Background & objectives: Emergence of antimicrobial resistance in Pseudomonas aeruginosa has led to the search for alternative agents for infections control. Natural products have been a good alternative to present antibiotics. The present study was undertaken to evaluate the effectiveness of cranberry in attenuation of virulence of P. aeruginosa in experimental urinary tract infection (UTI) in mouse model. Efforts were also directed to explore the action of cranberry towards virulence of P. aeruginosa through quorum sensing (QS) inhibition. Methods: Efficacy of cranberry was evaluated in an experimental UTI mouse model and on production of QS signals, alginate, pyochelin, haemolysin, phospholipase-C, cell-surface hydrophobicity, uroepithelial cell-adhesion assay and biofilm formation by already standardized methods. Results: Presence of cranberry showed significant decline in the production of QS signals, biofilm formation and virulence factors of P. aeruginosa in vitro (P<0.001). Further, cranberry was found to be useful in prevention of experimental UTI in mouse model as indicated by reduced renal bacterial colonization and kidney tissues destruction. Interpretation & conclusions: The findings of the present study indicated that cranberry inhibited QS and hence elaboration of virulence factors of P. aeruginosa. It also affected the adherence ability of this pathogen. This approach can lead to the discovery of new category of safe anti-bacterial drugs from dietary sources such as cranberry with reduced toxicity without the risk of antibiotic resistance. PMID:24820840

  5. Effects of 14-alpha-lipoyl andrographolide on quorum sensing in Pseudomonas aeruginosa.

    PubMed

    Ma, Li; Liu, Xiangyang; Liang, Haihua; Che, Yizhou; Chen, Caixia; Dai, Huanqin; Yu, Ke; Liu, Mei; Ma, Luyan; Yang, Ching-Hong; Song, Fuhang; Wang, Yuqiang; Zhang, Lixin

    2012-12-01

    In Pseudomonas aeruginosa, the quorum-sensing (QS) system is closely related to biofilm formation. We previously demonstrated that 14-alpha-lipoyl andrographolide (AL-1) has synergistic effects on antibiofilm and antivirulence factors (pyocyanin and exopolysaccharide) of P. aeruginosa when combined with conventional antibiotics, while it has little inhibitory effect on its growth. However, its molecular mechanism remains elusive. Here we investigated the effect of AL-1 on QS systems, especially the Las and Rhl systems. This investigation showed that AL-1 can inhibit LasR-3-oxo-C(12)-homoserine lactone (HSL) interactions and repress the transcriptional level of QS-regulated genes. Reverse transcription (RT)-PCR data showed that AL-1 significantly reduced the expression levels of lasR, lasI, rhlR, and rhlI in a dose-dependent manner. AL-1 not only decreased the expression level of Psl, which is positively regulated by the Las system, but also increased the level of secretion of ExoS, which is negatively regulated by the Rhl system, indicating that AL-1 has multiple effects on both the Las and Rhl systems. It is no wonder that AL-1 showed synergistic effects with other antimicrobial agents in the treatment of P. aeruginosa infections. PMID:22802260

  6. Flavonoids from Piper delineatum modulate quorum-sensing-regulated phenotypes in Vibrio harveyi.

    PubMed

    Martín-Rodríguez, Alberto J; Ticona, Juan C; Jiménez, Ignacio A; Flores, Ninoska; Fernández, José J; Bazzocchi, Isabel L

    2015-09-01

    Quorum sensing (QS), or bacterial cell-to-cell communication, is a key process for bacterial colonization of substrata through biofilm formation, infections, and production of virulence factors. In an ongoing investigation of bioactive secondary metabolites from Piper species, four new flavonoids (1-4), along with five known ones (5-9) were isolated from the leaves of Piper delineatum. Their stereostructures were established by spectroscopic and spectrometric methods, including 1D and 2D NMR experiments, and comparison with data reported in the literature. The compounds were screened for their ability to interfere with QS signaling in the bacterial model Vibrio harveyi. Four compounds from this series (2, 3, 6, and 7) exhibited remarkable activity in the micromolar range, being compounds 3 and 7 particularly attractive since they did not affect bacterial growth. The results suggest that these flavonoids disrupt QS-mediated bioluminescence by interaction with elements downstream LuxO in the QS circuit of V. harveyi, and also, they exhibited a strong dose-dependent inhibition of biofilm formation. The present findings shed light on the QS inhibition mechanisms of flavonoids, underlining their potential applications. PMID:26070141

  7. Caenorhabditis elegans Recognizes a Bacterial Quorum-sensing Signal Molecule through the AWCON Neuron*

    PubMed Central

    Werner, Kristen M.; Perez, Lark J.; Ghosh, Rajarshi; Semmelhack, Martin F.; Bassler, Bonnie L.

    2014-01-01

    In a process known as quorum sensing, bacteria use chemicals called autoinducers for cell-cell communication. Population-wide detection of autoinducers enables bacteria to orchestrate collective behaviors. In the animal kingdom detection of chemicals is vital for success in locating food, finding hosts, and avoiding predators. This behavior, termed chemotaxis, is especially well studied in the nematode Caenorhabditis elegans. Here we demonstrate that the Vibrio cholerae autoinducer (S)-3-hydroxytridecan-4-one, termed CAI-1, influences chemotaxis in C. elegans. C. elegans prefers V. cholerae that produces CAI-1 over a V. cholerae mutant defective for CAI-1 production. The position of the CAI-1 ketone moiety is the key feature driving CAI-1-directed nematode behavior. CAI-1 is detected by the C. elegans amphid sensory neuron AWCON. Laser ablation of the AWCON cell, but not other amphid sensory neurons, abolished chemoattraction to CAI-1. These analyses define the structural features of a bacterial-produced signal and the nematode chemosensory neuron that permit cross-kingdom interaction. PMID:25092291

  8. ?-Hydroxyemodin limits staphylococcus aureus quorum sensing-mediated pathogenesis and inflammation.

    PubMed

    Daly, Seth M; Elmore, Bradley O; Kavanaugh, Jeffrey S; Triplett, Kathleen D; Figueroa, Mario; Raja, Huzefa A; El-Elimat, Tamam; Crosby, Heidi A; Femling, Jon K; Cech, Nadja B; Horswill, Alexander R; Oberlies, Nicholas H; Hall, Pamela R

    2015-04-01

    Antibiotic-resistant pathogens are a global health threat. Small molecules that inhibit bacterial virulence have been suggested as alternatives or adjuncts to conventional antibiotics, as they may limit pathogenesis and increase bacterial susceptibility to host killing. Staphylococcus aureus is a major cause of invasive skin and soft tissue infections (SSTIs) in both the hospital and community settings, and it is also becoming increasingly antibiotic resistant. Quorum sensing (QS) mediated by the accessory gene regulator (agr) controls virulence factor production essential for causing SSTIs. We recently identified ?-hydroxyemodin (OHM), a polyhydroxyanthraquinone isolated from solid-phase cultures of Penicillium restrictum, as a suppressor of QS and a compound sought for the further characterization of the mechanism of action. At concentrations that are nontoxic to eukaryotic cells and subinhibitory to bacterial growth, OHM prevented agr signaling by all four S. aureus agr alleles. OHM inhibited QS by direct binding to AgrA, the response regulator encoded by the agr operon, preventing the interaction of AgrA with the agr P2 promoter. Importantly, OHM was efficacious in a mouse model of S. aureus SSTI. Decreased dermonecrosis with OHM treatment was associated with enhanced bacterial clearance and reductions in inflammatory cytokine transcription and expression at the site of infection. Furthermore, OHM treatment enhanced the immune cell killing of S. aureus in vitro in an agr-dependent manner. These data suggest that bacterial disarmament through the suppression of S. aureus QS may bolster the host innate immune response and limit inflammation. PMID:25645827

  9. A quorum sensing small volatile molecule promotes antibiotic tolerance in bacteria.

    PubMed

    Que, Yok-Ai; Hazan, Ronen; Strobel, Benjamin; Maura, Damien; He, Jianxin; Kesarwani, Meenu; Panopoulos, Panagiotis; Tsurumi, Amy; Giddey, Marlyse; Wilhelmy, Julie; Mindrinos, Michael N; Rahme, Laurence G

    2013-01-01

    Bacteria can be refractory to antibiotics due to a sub-population of dormant cells, called persisters that are highly tolerant to antibiotic exposure. The low frequency and transience of the antibiotic tolerant "persister" trait has complicated elucidation of the mechanism that controls antibiotic tolerance. In this study, we show that 2' Amino-acetophenone (2-AA), a poorly studied but diagnostically important small, volatile molecule produced by the recalcitrant gram-negative human pathogen Pseudomonas aeruginosa, promotes antibiotic tolerance in response to quorum-sensing (QS) signaling. Our results show that 2-AA mediated persister cell accumulation occurs via alteration of the expression of genes involved in the translational capacity of the cell, including almost all ribosomal protein genes and other translation-related factors. That 2-AA promotes persisters formation also in other emerging multi-drug resistant pathogens, including the non 2-AA producer Acinetobacter baumannii implies that 2-AA may play an important role in the ability of gram-negative bacteria to tolerate antibiotic treatments in polymicrobial infections. Given that the synthesis, excretion and uptake of QS small molecules is a common hallmark of prokaryotes, together with the fact that the translational machinery is highly conserved, we posit that modulation of the translational capacity of the cell via QS molecules, may be a general, widely distributed mechanism that promotes antibiotic tolerance among prokaryotes. PMID:24367477

  10. A Quorum Sensing Small Volatile Molecule Promotes Antibiotic Tolerance in Bacteria

    PubMed Central

    Strobel, Benjamin; Maura, Damien; He, Jianxin; Kesarwani, Meenu; Panopoulos, Panagiotis; Tsurumi, Amy; Giddey, Marlyse; Wilhelmy, Julie; Mindrinos, Michael N.; Rahme, Laurence G.

    2013-01-01

    Bacteria can be refractory to antibiotics due to a sub-population of dormant cells, called persisters that are highly tolerant to antibiotic exposure. The low frequency and transience of the antibiotic tolerant “persister” trait has complicated elucidation of the mechanism that controls antibiotic tolerance. In this study, we show that 2’ Amino-acetophenone (2-AA), a poorly studied but diagnostically important small, volatile molecule produced by the recalcitrant gram-negative human pathogen Pseudomonas aeruginosa, promotes antibiotic tolerance in response to quorum-sensing (QS) signaling. Our results show that 2-AA mediated persister cell accumulation occurs via alteration of the expression of genes involved in the translational capacity of the cell, including almost all ribosomal protein genes and other translation-related factors. That 2-AA promotes persisters formation also in other emerging multi-drug resistant pathogens, including the non 2-AA producer Acinetobacter baumannii implies that 2-AA may play an important role in the ability of gram-negative bacteria to tolerate antibiotic treatments in polymicrobial infections. Given that the synthesis, excretion and uptake of QS small molecules is a common hallmark of prokaryotes, together with the fact that the translational machinery is highly conserved, we posit that modulation of the translational capacity of the cell via QS molecules, may be a general, widely distributed mechanism that promotes antibiotic tolerance among prokaryotes. PMID:24367477

  11. Cystic fibrosis–adapted Pseudomonas aeruginosa quorum sensing lasR mutants cause hyperinflammatory responses

    PubMed Central

    LaFayette, Shantelle L.; Houle, Daniel; Beaudoin, Trevor; Wojewodka, Gabriella; Radzioch, Danuta; Hoffman, Lucas R.; Burns, Jane L.; Dandekar, Ajai A.; Smalley, Nicole E.; Chandler, Josephine R.; Zlosnik, James E.; Speert, David P.; Bernier, Joanie; Matouk, Elias; Brochiero, Emmanuelle; Rousseau, Simon; Nguyen, Dao

    2015-01-01

    Cystic fibrosis lung disease is characterized by chronic airway infections with the opportunistic pathogen Pseudomonas aeruginosa and severe neutrophilic pulmonary inflammation. P. aeruginosa undergoes extensive genetic adaptation to the cystic fibrosis (CF) lung environment, and adaptive mutations in the quorum sensing regulator gene lasR commonly arise. We sought to define how mutations in lasR alter host-pathogen relationships. We demonstrate that lasR mutants induce exaggerated host inflammatory responses in respiratory epithelial cells, with increased accumulation of proinflammatory cytokines and neutrophil recruitment due to the loss of bacterial protease–dependent cytokine degradation. In subacute pulmonary infections, lasR mutant–infected mice show greater neutrophilic inflammation and immunopathology compared with wild-type infections. Finally, we observed that CF patients infected with lasR mutants have increased plasma interleukin-8 (IL-8), a marker of inflammation. These findings suggest that bacterial adaptive changes may worsen pulmonary inflammation and directly contribute to the pathogenesis and progression of chronic lung disease in CF patients. PMID:26457326

  12. Protease IV, a quorum sensing-dependent protease of Pseudomonas aeruginosa modulates insect innate immunity.

    PubMed

    Park, Su-Jin; Kim, Soo-Kyoung; So, Yong-In; Park, Ha-Young; Li, Xi-Hui; Yeom, Doo Hwan; Lee, Mi-Nan; Lee, Bok-Luel; Lee, Joon-Hee

    2014-12-01

    In Pseudomonas aeruginosa, quorum sensing (QS) plays an essential role in pathogenesis and the QS response controls many virulence factors. Using a mealworm, Tenebrio molitor as a host model, we found that Protease IV, a QS-regulated exoprotease of P. aeruginosa functions as a key virulence effector causing the melanization and death of T. molitor larvae. Protease IV was able to degrade zymogens of spätzle processing enzyme (SPE) and SPE-activating enzyme (SAE) without the activation of the antimicrobial peptide (AMP) production. Since SPE and SAE function to activate spätzle, a ligand of Toll receptor in the innate immune system of T. molitor, we suggest that Protease IV may interfere with the activation of the Toll signaling. Independently of the Toll pathway, the melanization response, another innate immunity was still generated, since Protease IV directly converted Tenebrio prophenoloxidase into active phenoloxidase. Protease IV also worked as an important factor in the virulence to brine shrimp and nematode. These results suggest that Protease IV provides P. aeruginosa with a sophisticated way to escape the immune attack of host by interfering with the production of AMPs. PMID:25315216

  13. Quorum Sensing-Mediated, Cell Density-Dependent Regulation of Growth and Virulence in Cryptococcus neoformans

    PubMed Central

    Albuquerque, Patrícia; Nicola, André M.; Nieves, Edward; Paes, Hugo Costa; Williamson, Peter R.; Silva-Pereira, Ildinete; Casadevall, Arturo

    2013-01-01

    ABSTRACT Quorum sensing (QS) is a cell density-dependent mechanism of communication between microorganisms, characterized by the release of signaling molecules that affect microbial metabolism and gene expression in a synchronized way. In this study, we investigated cell density-dependent behaviors mediated by conditioned medium (CM) in the pathogenic encapsulated fungus Cryptococcus neoformans. CM produced dose-dependent increases in the growth of planktonic and biofilm cells, glucuronoxylomannan release, and melanin synthesis, important virulence attributes of this organism. Mass spectrometry revealed the presence of pantothenic acid (PA) in our samples, and commercial PA was able to increase growth and melanization, although not to the same extent as CM. Additionally, we found four mutants that were either unable to produce active CM or failed to respond with increased growth in the presence of wild-type CM, providing genetic evidence for the existence of intercellular communication in C. neoformans. C. neoformans CM also increased the growth of Cryptococcus albidus, Candida albicans, and Saccharomyces cerevisiae. Conversely, CM from Cryptococcus albidus, C. albicans, S. cerevisiae, and Sporothrix schenckii increased C. neoformans growth. In summary, we report the existence of a new QS system regulating the growth and virulence factor expression of C. neoformans in vitro and, possibly, also able to regulate growth in other fungi. PMID:24381301

  14. Chemical Composition and Disruption of Quorum Sensing Signaling in Geographically Diverse United States Propolis

    PubMed Central

    Savka, Michael A.; Dailey, Lucas; Popova, Milena; Mihaylova, Ralitsa; Merritt, Benjamin; Masek, Marissa; Le, Phuong; Nor, Sharifah Radziah Mat; Ahmad, Muhammad; Hudson, André O.; Bankova, Vassya

    2015-01-01

    Propolis or bee glue has been used for centuries for various purposes and is especially important in human health due to many of its biological and pharmacological properties. In this work we showed quorum sensing inhibitory (QSI) activity of ten geographically distinct propolis samples from the United States using the acyl-homoserine lactone- (AHL-) dependent Chromobacterium violaceum strain CV026. Based on GC-MS chemical profiling the propolis samples can be classified into several groups that are as follows: (1) rich in cinnamic acid derivatives, (2) rich in flavonoids, and (3) rich in triterpenes. An in-depth analysis of the propolis from North Carolina led to the isolation and identification of a triterpenic acid that was recently isolated from Hondurian propolis (Central America) and ethyl ether of p-coumaric alcohol not previously identified in bee propolis. QSI activity was also observed in the second group US propolis samples which contained the flavonoid pinocembrin in addition to other flavonoid compounds. The discovery of compounds that are involved in QSI activity has the potential to facilitate studies that may lead to the development of antivirulence therapies that can be complementary and/or alternative treatments against antibiotic resistant bacterial pathogens and/or emerging pathogens that have yet to be identified. PMID:25960752

  15. QsIA disrupts LasR dimerization in antiactivation of bacterial quorum sensing

    PubMed Central

    Fan, Hui; Dong, Yihu; Wu, Donghui; Bowler, Matthew W.; Zhang, Lianhui; Song, Haiwei

    2013-01-01

    The human pathogen Pseudomonas aeruginosa coordinates the expression of virulence factors by using quorum sensing (QS), a signaling cascade triggered by the QS signal molecule and its receptor, a member of the LuxR family of QS transcriptional factors (LasR). The QS threshold and response in P. aeruginosa is defined by a QS LasR-specific antiactivator (QslA), which binds to LasR and prevents it from binding to its target promoter. However, how QslA binds to LasR and regulates its DNA binding activity in QS remains elusive. Here we report the crystal structure of QslA in complex with the N-terminal ligand binding domain of LasR. QsIA exists as a functional dimer to interact with the LasR ligand binding domain. Further analysis shows that QsIA binding occupies the LasR dimerization interface and consequently disrupts LasR dimerization, thereby preventing LasR from binding to its target DNA and disturbing normal QS. Our findings provide a structural model for understanding the QslA-mediated antiactivation mechanism in QS through protein–protein interaction. PMID:24319092

  16. Probing Autoinducer-2 Based Quorum Sensing: The Biological Consequences of Molecules Unable to Traverse Equilibrium States

    PubMed Central

    Tsuchikama, Kyoji; Lowery, Colin A.

    2011-01-01

    Bacteria have developed a cell-to-cell communication system, termed quorum sensing (QS), which allows for the population-dependent coordination of their behavior via the exchange of chemical signals. Autoinducer-2 (AI-2), a class of QS signals derived from 4,5-dihydroxy-2,3-pentandione (DPD), has been revealed as a universal signaling molecule in a variety of bacterial species. In spite of the considerable interest, the study of putative AI-2 based QS systems remains a challenging topic in part due to the rapid interconversion between the linear and cyclic forms of DPD. Herein, we report the design and development of efficient syntheses of carbocyclic analogues of DPD, which are locked in the cyclic form. The synthetic analogues were evaluated for the modulation of AI-2 based QS in Vibrio harveyi and Salmonella typhimurium. No agonists were uncovered in either V. harveyi or S. typhimurium assay, whereas weak to moderate antagonists were found against V. harveyi. Based on NMR analyses and DFT calculations, the heterocyclic oxygen atom within DPD appears necessary to promote hydration at the C3 position of cyclic DPD to afford the active tetrahydroxy species. These results also shed light on the interaction between the heterocyclic oxygen atom and receptor proteins as well as the importance of the linear form and dynamic equilibrium of DPD as crucial requirements for activation of AI-2 based QS circuits. PMID:21678949

  17. Antibacterial and quorum sensing regulatory activities of some traditional Eastern-European medicinal plants.

    PubMed

    Tolmacheva, Anna A; Rogozhin, Eugene A; Deryabin, Dmitry G

    2014-06-01

    The objective of this study was to screen extracts of twenty Eastern European medicinal plants, using wild-type and reporter Chromobacterium violaceum bioassays, for novel components that target bacterial cells and their quorum sensing (QS) communication systems. Three types of activity and their combinations were revealed: (i) direct antimicrobial growth-inhibitory activity, (ii) non-specific and specific pro-QS activities, (iii) anti-QS activity. Among seven plant extracts showing direct growth-inhibitory activity, the strongest effect was shown by Arctostaphylos uva-ursi (bearberry) leaves. Many plants stimulated violacein production by wild-type C. violaceum ATCC 31532 in a non-specific manner, and only the herb Bidens tripartita (three-lobe beggarticks) contained compounds that mimic acyl-homoserine lactone and operated as a QS agonist. Anti-QS activity was found in eleven plants including Quercus robur (oak) cortex, Betula verrucosa (birch) buds and Eucalyptus viminalis (Manna Gum) leaves. Subsequent statistical analysis showed differences between antimicrobial and anti-QS activities, whereas both activities were defined by phylogenetic position of medical resource plant. Finally, extract from Quercus robur cortex revealed at least two fractions, showing different anti-QS mechanisms. These data confirm that multicomponent anti-infectious mechanisms are used by plants, which may be useful for drug development. PMID:24914718

  18. Quorum sensing triggers the stochastic escape of individual cells from Pseudomonas putida biofilms

    PubMed Central

    Cárcamo-Oyarce, Gerardo; Lumjiaktase, Putthapoom; Kümmerli, Rolf; Eberl, Leo

    2015-01-01

    The term ‘quorum sensing’ (QS) is generally used to describe the phenomenon that bacteria release and perceive signal molecules to coordinate cooperative behaviour in response to their population size. QS-based communication has therefore been considered a social trait. Here we show that QS signals (N-acyl-homoserine lactones, AHLs) are stochastically produced in young biofilms of Pseudomonas putida and act mainly as self-regulatory signals rather than inducing neighbouring cells. We demonstrate that QS induces the expression of putisolvin biosurfactants that are not public goods, thereby triggering asocial motility of induced cells out of microcolonies. Phenotypic heterogeneity is most prominent in the early stages of biofilm development, whereas at later stages behaviour patterns across cells become more synchronized. Our findings broaden our perspective on QS by showing that AHLs can control the expression of asocial (self-directed) traits, and that heterogeneity in QS can serve as a mechanism to drive phenotypic heterogeneity in self-directed behaviour. PMID:25592773

  19. Understanding of aerobic granulation enhanced by starvation in the perspective of quorum sensing.

    PubMed

    Liu, Xiang; Sun, Supu; Ma, Buyun; Zhang, Chen; Wan, Chunli; Lee, Duu-Jong

    2016-04-01

    Three sequencing batch reactors (M1, M2, and M3) were set up to investigate the influence of different lengths of starvation time (3, 5, and 7 h) on aerobic granulation in the perspective of quorum sensing (QS). Autoinducer-2 (AI-2) level was quantified to evaluate the QS ability of aerobic granules. The results indicated that AI-2 level increased steadily during a cycle of sequencing batch reactors, suggesting that starvation was closely related to AI-2 secretion. In the long-term operation, aerobic granules cultivated using a prolonged starvation period had a better integrity and a higher level of cell adhesiveness despite a slower formation speed. With the extension of the starvation period, the total amount of extracellular polymeric substances (EPS) displayed an increasing tendency. EPS with large molecular weight (MW) also reached a higher level using a prolonged starvation period. However, a higher level of AI-2 and cell adhesiveness was observed in M2, which might be related to more stable granules. The results implied that the starvation period could trigger AI-2 secretion and promoted the production of large MW EPS, leading to cell adhesiveness enhancement and granule formation. Therefore, a combination of different starvation periods was proposed in this study in order to improve aerobic granulation. PMID:26695156

  20. Exploiting Quorum Sensing Interfering Strategies in Gram-Negative Bacteria for the Enhancement of Environmental Applications

    PubMed Central

    Zhang, Weiwei; Li, Chenghua

    2016-01-01

    Quorum sensing (QS) is a widespread intercellular form of communication to coordinate physiological processes and cooperative activities of bacteria at the population level, and it depends on the production, secretion, and detection of small diffusible autoinducers, such as acyl-homoserine lactones (AHLs), auto-inducing oligo-peptides (AIPs) and autoinducer 2. In this review, the function of QS autoinducers of gram-negative bacteria in different aspects of wastewater treatment systems is examined. Based on research primarily performed over the past 10 years, QS involvement in the formation of biofilm and aerobic granules and changes of the microbial community and degradation/transformation pathways is discussed. In particular, the QS pathway in the role of bacterial infections and disease prevention in aquaculture is addressed. Interference of QS autoinducer-regulated pathways is considered potential treatment for a variety of environmentally related problems. This review is expected to serve as a stepping stone for further study and development strategies based on the mediation of QS-regulated pathways to enhance applications in both wastewater treatment systems and aquaculture. PMID:26779175

  1. Hydrophobic interactions drive ligand-receptor recognition for activation and inhibition of staphylococcal quorum sensing

    PubMed Central

    Wright, Jesse S.; Lyon, Gholson J.; George, Elizabeth A.; Muir, Tom W.; Novick, Richard P.

    2004-01-01

    Two-component systems represent the most widely used signaling paradigm in living organisms. Encoding the prototypical two-component system in Gram-positive bacteria, the staphylococcal agr (accessory gene regulator) operon uses a polytopic receptor, AgrC, activated by an autoinducing peptide (AIP), to coordinate quorum sensing with the global synthesis of virulence factors. The agr locus has undergone evolutionary divergence, resulting in the formation of several distinct inter- and intraspecies specificity groups, such that most cross-group AIP-receptor interactions are mutually inhibitory. We have exploited this natural diversity by constructing and analyzing AgrC chimeras generated by exchange of intradomain segments between receptors of different agr groups. Functional chimeras fell into three general classes: receptors with broadened specificity, receptors with tightened specificity, and receptors that lack activation specificity. Testing of these chimeric receptors against a battery of AIP analogs localized the primary ligand recognition site to the receptor distal subdomain and revealed that the AIPs bind primarily to a putative hydrophobic pocket in the receptor. This binding is mediated by a highly conserved hydrophobic patch on the AIPs and is an absolute requirement for interactions in self-activation and cross-inhibition of the receptors. It is suggested that this recognition scheme provides the fundamental basis for agr activation and interference. PMID:15528279

  2. Transcriptional control of quorum sensing and associated metabolic interactions in Pseudomonas syringae strain B728a.

    PubMed

    Scott, Russell A; Lindow, Steven E

    2016-03-01

    Pseudomonas syringae pv. syringae cell densities fluctuate regularly during host plant colonization. Previously we identified nine genes dependent on the quorum-sensing-associated luxR homolog ahlR during epiphytic and apoplastic stages of host colonization. Yet their contributions to host colonization remain obscure, despite ahlR regulon presence within and beyond the P. syringae pan-genome. To elucidate AhIR regulon member functions, we characterized their regulation, interactions with each other, and contributions to the metabolome. We report Psyr_1625, encoding a functional pyruvate deydrogenase-E1 subunit PdhQ, is required to prevent the accumulation of pyruvate in rich media. Furthermore it is exquisitely regulated by both repression of its own promoter by QrpR within a novel clade of the MarR regulator family, and co-transcription on a 5kb transcript originating from the AhlR-driven ahlI promoter, that reads over ahlR and qrpR. Metabolites accumulated during expression of the second AhlR-driven operon (Psyr_1620-1616, paoABCDE), only in a pdhQ mutant background, in addition to pyruvate, are herein associated with derepression of QrpR-repressed pdhQ. AHL signaling, QrpR, and transcriptional read-through events integrate to ensure AHL-dependent expression of a novel metabolism in anticipation of environmental stress, while minimizing endogenously generated cytotoxicity. PMID:26713670

  3. Quorum sensing restrains growth and is rapidly inactivated during domestication of Sinorhizobium meliloti.

    PubMed

    Charoenpanich, Pornsri; Soto, Maria J; Becker, Anke; McIntosh, Matthew

    2015-04-01

    Microbial cooperative behaviours, such as quorum sensing (QS), improve survival and this explains their prevalence throughout the microbial world. However, relatively little is known about the mechanisms by which cooperation promotes survival. Furthermore, cooperation typically requires costly contributions, e.g. exopolysaccharides, which are produced from limited resources. Inevitably, cooperation is vulnerable to damaging mutations which results in mutants that are relieved of the burden of contributing but nonetheless benefit from the contributions of their parent. Unless somehow prevented, such mutants may outcompete and replace the parent. The bacterium Sinorhizobium meliloti uses QS to activate the production of copious levels of exopolysaccharide (EPS). Domestication of this bacterium is typified by the appearance of spontaneous mutants incapable of EPS production, which take advantage of EPS production by the parent and outcompete the parent. We found that all of the mutants were defect in QS, implying that loss of QS is a typical consequence of the domestication of this bacterium. This instability was traced to several QS-regulated processes, including a QS-dependent restraint of growth, providing the mutant with a significant growth advantage. A model is proposed whereby QS restrains population growth to prevent overcrowding and prepares the population for the survival of severe conditions. PMID:25534533

  4. Inhibition of Bacterial Quorum Sensing by Extracts from Aquatic Fungi: First Report from Marine Endophytes

    PubMed Central

    Martín-Rodríguez, Alberto J.; Reyes, Fernando; Martín, Jesús; Pérez-Yépez, Juan; León-Barrios, Milagros; Couttolenc, Alan; Espinoza, César; Trigos, Ángel; Martín, Víctor S.; Norte, Manuel; Fernández, José J.

    2014-01-01

    In our search for quorum-sensing (QS) disrupting molecules, 75 fungal isolates were recovered from reef organisms (endophytes), saline lakes and mangrove rhizosphere. Their QS inhibitory activity was evaluated in Chromobacterium violaceum CVO26. Four strains of endophytic fungi stood out for their potent activity at concentrations from 500 to 50 μg mL−1. The molecular characterization, based on the internal transcribed spacer (ITS) region sequences (ITS1, 5.8S and ITS2) between the rRNA of 18S and 28S, identified these strains as belonging to four genera: Sarocladium (LAEE06), Fusarium (LAEE13), Epicoccum (LAEE14), and Khuskia (LAEE21). Interestingly, three came from coral species and two of them came from the same organism, the coral Diploria strigosa. Metabolic profiles obtained by Liquid Chromatography-High Resolution Mass Spectrometry (LC-HRMS) suggest that a combination of fungal secondary metabolites and fatty acids could be the responsible for the observed activities. The LC-HRMS analysis also revealed the presence of potentially new secondary metabolites. This is, to the best of our knowledge, the first report of QS inhibition by marine endophytic fungi. PMID:25415350

  5. Effects of 14-Alpha-Lipoyl Andrographolide on Quorum Sensing in Pseudomonas aeruginosa

    PubMed Central

    Ma, Li; Liu, Xiangyang; Liang, Haihua; Che, Yizhou; Chen, Caixia; Dai, Huanqin; Yu, Ke; Liu, Mei; Ma, Luyan; Yang, Ching-Hong; Song, Fuhang

    2012-01-01

    In Pseudomonas aeruginosa, the quorum-sensing (QS) system is closely related to biofilm formation. We previously demonstrated that 14-alpha-lipoyl andrographolide (AL-1) has synergistic effects on antibiofilm and antivirulence factors (pyocyanin and exopolysaccharide) of P. aeruginosa when combined with conventional antibiotics, while it has little inhibitory effect on its growth. However, its molecular mechanism remains elusive. Here we investigated the effect of AL-1 on QS systems, especially the Las and Rhl systems. This investigation showed that AL-1 can inhibit LasR–3-oxo-C12-homoserine lactone (HSL) interactions and repress the transcriptional level of QS-regulated genes. Reverse transcription (RT)-PCR data showed that AL-1 significantly reduced the expression levels of lasR, lasI, rhlR, and rhlI in a dose-dependent manner. AL-1 not only decreased the expression level of Psl, which is positively regulated by the Las system, but also increased the level of secretion of ExoS, which is negatively regulated by the Rhl system, indicating that AL-1 has multiple effects on both the Las and Rhl systems. It is no wonder that AL-1 showed synergistic effects with other antimicrobial agents in the treatment of P. aeruginosa infections. PMID:22802260

  6. Methylobacterium-plant interaction genes regulated by plant exudate and quorum sensing molecules

    PubMed Central

    Dourado, Manuella Nóbrega; Bogas, Andrea Cristina; Pomini, Armando M.; Andreote, Fernando Dini; Quecine, Maria Carolina; Marsaioli, Anita J.; Araújo, Welington Luiz

    2013-01-01

    Bacteria from the genus Methylobacterium interact symbiotically (endophytically and epiphytically) with different plant species. These interactions can promote plant growth or induce systemic resistance, increasing plant fitness. The plant colonization is guided by molecular communication between bacteria-bacteria and bacteria-plants, where the bacteria recognize specific exuded compounds by other bacteria (e.g. homoserine molecules) and/or by the plant roots (e.g. flavonoids, ethanol and methanol), respectively. In this context, the aim of this study was to evaluate the effect of quorum sensing molecules (N-acyl-homoserine lactones) and plant exudates (including ethanol) in the expression of a series of bacterial genes involved in Methylobacterium-plant interaction. The selected genes are related to bacterial metabolism (mxaF), adaptation to stressful environment (crtI, phoU and sss), to interactions with plant metabolism compounds (acdS) and pathogenicity (patatin and phoU). Under in vitro conditions, our results showed the differential expression of some important genes related to metabolism, stress and pathogenesis, thereby AHL molecules up-regulate all tested genes, except phoU, while plant exudates induce only mxaF gene expression. In the presence of plant exudates there is a lower bacterial density (due the endophytic and epiphytic colonization), which produce less AHL, leading to down regulation of genes when compared to the control. Therefore, bacterial density, more than plant exudate, influences the expression of genes related to plant-bacteria interaction. PMID:24688531

  7. Evidence for Autoinduction and Quorum Sensing in White Band Disease-Causing Microbes on Acropora cervicornis

    NASA Astrophysics Data System (ADS)

    Certner, Rebecca H.; Vollmer, Steven V.

    2015-06-01

    Coral reefs have entered a state of global decline party due to an increasing incidence of coral disease. However, the diversity and complexity of coral-associated bacterial communities has made identifying the mechanisms underlying disease transmission and progression extremely difficult. This study explores the effects of coral cell-free culture fluid (CFCF) and autoinducer (a quorum sensing signaling molecule) on coral-associated bacterial growth and on coral tissue loss respectively. All experiments were conducted using the endangered Caribbean coral Acropora cervicornis. Coral-associated microbes were grown on selective media infused with CFCF derived from healthy and white band disease-infected A. cervicornis. Exposure to diseased CFCF increased proliferation of Cytophaga-Flavobacterium spp. while exposure to healthy CFCF inhibited growth of this group. Exposure to either CFCF did not significantly affect Vibrio spp. growth. In order to test whether disease symptoms can be induced in healthy corals, A. cervicornis was exposed to bacterial assemblages supplemented with exogenous, purified autoinducer. Incubation with autoinducer resulted in complete tissue loss in all corals tested in less than one week. These findings indicate that white band disease in A. cervicornis may be caused by opportunistic pathogenesis of resident microbes.

  8. Quorum-sensing autoinducers resuscitate dormant Vibrio cholerae in environmental water samples

    PubMed Central

    Bari, S. M. Nayeemul; Roky, M. Kamruzzaman; Mohiuddin, M.; Kamruzzaman, M.; Mekalanos, John J.; Faruque, Shah M.

    2013-01-01

    Cholera epidemics have long been known to spread through water contaminated with human fecal material containing the toxigenic bacterium Vibrio cholerae. However, detection of V. cholerae in water is complicated by the existence of a dormant state in which the organism remains viable, but resists cultivation on routine bacteriological media. Growth in the mammalian intestine has been reported to trigger “resuscitation” of such dormant cells, and these studies have prompted the search for resuscitation factors. Although some positive reports have emerged from these investigations, the precise molecular signals that activate dormant V. cholerae have remained elusive. Quorum-sensing autoinducers are small molecules that ordinarily regulate bacterial gene expression in response to cell density or interspecies bacterial interactions. We have found that isolation of pathogenic clones of V. cholerae from surface waters in Bangladesh is dramatically improved by using enrichment media containing autoinducers either expressed from cloned synthase genes or prepared by chemical synthesis. These results may contribute to averting future disasters by providing a strategy for early detection of V. cholerae in surface waters that have been contaminated with the stools of cholera patients or asymptomatic infected human carriers. PMID:23716683

  9. Global and Phylogenetic Distribution of Quorum Sensing Signals, Acyl Homoserine Lactones, in the Family of Vibrionaceae

    PubMed Central

    Barker Rasmussen, Bastian; Fog Nielsen, Kristian; Machado, Henrique; Melchiorsen, Jette; Gram, Lone; Sonnenschein, Eva C.

    2014-01-01

    Bacterial quorum sensing (QS) and the corresponding signals, acyl homoserine lactones (AHLs), were first described for a luminescent Vibrio species. Since then, detailed knowledge has been gained on the functional level of QS; however, the abundance of AHLs in the family of Vibrionaceae in the environment has remained unclear. Three hundred and one Vibrionaceae strains were collected on a global research cruise and the prevalence and profile of AHL signals in this global collection were determined. AHLs were detected in 32 of the 301 strains using Agrobacterium tumefaciens and Chromobacterium violaceum reporter strains. Ethyl acetate extracts of the cultures were analysed by ultra-high performance liquid chromatography-high resolution mass spectrometry (MS) with automated tandem MS confirmation for AHLs. N-(3-hydroxy-hexanoyl) (OH-C6) and N-(3-hydroxy-decanoyl) (OH-C10) homoserine lactones were the most common AHLs found in 17 and 12 strains, respectively. Several strains produced a diversity of different AHLs, including N-heptanoyl (C7) HL. AHL-producing Vibrionaceae were found in polar, temperate and tropical waters. The AHL profiles correlated with strain phylogeny based on gene sequence homology, however not with geographical location. In conclusion, a wide range of AHL signals are produced by a number of clades in the Vibrionaceae family and these results will allow future investigations of inter- and intra-species interactions within this cosmopolitan family of marine bacteria. PMID:25419995

  10. Quorum Sensing-Dependent Regulation and Blockade of Exoprotease Production in Aeromonas hydrophila

    PubMed Central

    Swift, Simon; Lynch, Martin J.; Fish, Leigh; Kirke, David F.; Tomás, Juan M.; Stewart, Gordon S. A. B.; Williams, Paul

    1999-01-01

    In Aeromonas hydrophila, the ahyI gene encodes a protein responsible for the synthesis of the quorum sensing signal N-butanoyl-l-homoserine lactone (C4-HSL). Inactivation of the ahyI gene on the A. hydrophila chromosome abolishes C4-HSL production. The exoprotease activity of A. hydrophila consists of both serine protease and metalloprotease activities; in the ahyI-negative strain, both are substantially reduced but can be restored by the addition of exogenous C4-HSL. In contrast, mutation of the LuxR homolog AhyR results in the loss of both exoprotease activities, which cannot be restored by exogenous C4-HSL. Furthermore, a substantial reduction in the production of exoprotease by the ahyI+ parent strain is obtained by the addition of N-acylhomoserine lactone analogs that have acyl side chains of 10, 12, or 14 carbons. The inclusion of N-(3-oxododecanoyl)-l-homoserine lactone or N-(3-oxotetradecanoyl)-l-homoserine lactone at 10 ?M in overnight cultures of A. hydrophila abolishes exoprotease production in azocasein assays and reduces the activity of all the exoprotease species seen in zymograms. PMID:10496895

  11. Collective behavior and quorum sensing in a system of communicating microcapsules

    NASA Astrophysics Data System (ADS)

    Kolmakov, German; Bhattacharya, Amitabh; Balazs, Anna

    2009-11-01

    We report the results on collective motion of polymeric microcapsules in a fluid-filled microchannel. We consider the case where motion of the nanoparticle-filled microcapsules is controlled by adhesion at the channel's wall and hydrodynamic coupling between the capsules. Using the hybrid Lattice Boltzmann method for fluid dynamics and Lattice spring model for the micromechanics of elastic solid, we determined how the characteristics of the substrate, the polymeric shell, encapsulated fluid and the surrounding solution affect the capsule's velocity and ``gait'' of the capsule within the system. In numerical computations we find the conditions under which microcapsules communicating through modification of the microchannel surface by released nanoparticles exhibit collective motion, thereby mimicking behavior of the colony of living cells. In particular, we show that this system demonstrates a quorum sensing. That is, the capsules motion depends on population and behavior of neighboring groups of capsules. Finally, the design of a repair-and-go system is presented, in which we show that deposition of nanoparticles from moving microcapsules onto a damaged substrate can be used as an effective tool for selective repair of defects or cracks on the substrate.

  12. Dynamics of AHL mediated quorum sensing under flow and non-flow conditions

    NASA Astrophysics Data System (ADS)

    Meyer, Andrea; Megerle, Judith A.; Kuttler, Christina; Müller, Johannes; Aguilar, Claudio; Eberl, Leo; Hense, Burkhard A.; Rädler, Joachim O.

    2012-04-01

    Quorum sensing (QS) describes the capability of microbes to communicate with each other by the aid of small molecules. Here we investigate the dynamics of QS-regulated gene expression induced by acylhomoserine lactones (AHLs) in Pseudomonas putida IsoF containing a green fluorescent protein-based AHL reporter. The fluorescence time course of individual colonies is monitored following the external addition of a defined AHL concentration to cells which had previously reached the QS-inactive state in AHL-free medium. Using a microfluidic setup the experiment is performed both under flow and non-flow conditions. We find that without supplying external AHL gene expression is induced without flow while flow suppresses the induction. Both without and with flow, at a low AHL concentration the fluorescence onset is significantly delayed while fluorescence starts to increase directly upon the addition of AHL at a high concentration. The differences between no flow and flow can be accounted for using a two-compartment model. This indicates AHL accumulation in a volume which is not affected by the flow. The experiments furthermore show significant cell-to-cell and colony-to-colony variability which is discussed in the context of a compartmentalized QS mechanism.

  13. Individuals in the crowd: studying bacterial quorum-sensing at the single-cell level

    NASA Astrophysics Data System (ADS)

    Delfino Perez, Pablo; Young, Jonathan; Johnson, Elaine L.; Hagen, Stephen J.

    2009-03-01

    Like many bacterial species, the marine bacterium Vibrio fischeri can detect its own population density through a quorum sensing (QS) mechanism. The bacterium releases a small molecule signal -- the autoinducer (AI) -- into its environment: high AI concentration indicates high population density and triggers a genetic switch that, in V.fischeri, leads to bioluminescence. Although the QS behavior of bulk cultures of V.fischeri has been extensively studied, little is known about either the response of individual cells to AI signal levels or the role of noise and local diffusion in QS signaling. We have used a photon-counting camera to record the luminescence of individual V.fischeri cells immobilized in a flow cell and subject to varying concentrations of AI. We observe that light output by individual cells varies not only with bulk AI concentration, but also over time, between cells, with local (micron-scale) population density, and even with the flow rate of the medium. Most of these variations would not be evident in a bulk culture. We will present an analysis of this heterogeneity at the cell level and its implications for the role of noise in QS signaling.

  14. Crystal Structure of the Vibrio Cholerae Quorum-Sensing Regulatory Protein HapR

    SciTech Connect

    DeSilva,R.; Kovacikova, G.; Lin, W.; Taylor, R.; Skorupski, K.; Kull, F.

    2007-01-01

    Quorum sensing in Vibrio cholerae involves signaling between two-component sensor protein kinases and the response regulator LuxO to control the expression of the master regulator HapR. HapR, in turn, plays a central role in regulating a number of important processes, such as virulence gene expression and biofilm formation. We have determined the crystal structure of HapR to 2.2- Angstroms resolution. Its structure reveals a dimeric, two-domain molecule with an all-helical structure that is strongly conserved with members of the TetR family of transcriptional regulators. The N-terminal DNA-binding domain contains a helix-turn-helix DNA-binding motif and alteration of certain residues in this domain completely abolishes the ability of HapR to bind to DNA, alleviating repression of both virulence gene expression and biofilm formation. The C-terminal dimerization domain contains a unique solvent accessible tunnel connected to an amphipathic cavity, which by analogy with other TetR regulators, may serve as a binding pocket for an as-yet-unidentified ligand.

  15. Quorum Sensing and Density-Dependent Dispersal in an Aquatic Model System

    PubMed Central

    Fellous, Simon; Duncan, Alison; Coulon, Aurélie; Kaltz, Oliver

    2012-01-01

    Many organisms use cues to decide whether to disperse or not, especially those related to the composition of their environment. Dispersal hence sometimes depends on population density, which can be important for the dynamics and evolution of sub-divided populations. But very little is known about the factors that organisms use to inform their dispersal decision. We investigated the cues underlying density-dependent dispersal in inter-connected microcosms of the freshwater protozoan Paramecium caudatum. In two experiments, we manipulated (i) the number of cells per microcosm and (ii) the origin of their culture medium (supernatant from high- or low-density populations). We found a negative relationship between population density and rates of dispersal, suggesting the use of physical cues. There was no significant effect of culture medium origin on dispersal and thus no support for chemical cues usage. These results suggest that the perception of density – and as a result, the decision to disperse – in this organism can be based on physical factors. This type of quorum sensing may be an adaptation optimizing small scale monitoring of the environment and swarm formation in open water. PMID:23144882

  16. Bioinformatic Prediction of Gene Functions Regulated by Quorum Sensing in the Bioleaching Bacterium Acidithiobacillus ferrooxidans

    PubMed Central

    Banderas, Alvaro; Guiliani, Nicolas

    2013-01-01

    The biomining bacterium Acidithiobacillus ferrooxidans oxidizes sulfide ores and promotes metal solubilization. The efficiency of this process depends on the attachment of cells to surfaces, a process regulated by quorum sensing (QS) cell-to-cell signalling in many Gram-negative bacteria. At. ferrooxidans has a functional QS system and the presence of AHLs enhances its attachment to pyrite. However, direct targets of the QS transcription factor AfeR remain unknown. In this study, a bioinformatic approach was used to infer possible AfeR direct targets based on the particular palindromic features of the AfeR binding site. A set of Hidden Markov Models designed to maintain palindromic regions and vary non-palindromic regions was used to screen for putative binding sites. By annotating the context of each predicted binding site (PBS), we classified them according to their positional coherence relative to other putative genomic structures such as start codons, RNA polymerase promoter elements and intergenic regions. We further used the Multiple EM for Motif Elicitation algorithm (MEME) to further filter out low homology PBSs. In summary, 75 target-genes were identified, 34 of which have a higher confidence level. Among the identified genes, we found afeR itself, zwf, genes encoding glycosyltransferase activities, metallo-beta lactamases, and active transport-related proteins. Glycosyltransferases and Zwf (Glucose 6-phosphate-1-dehydrogenase) might be directly involved in polysaccharide biosynthesis and attachment to minerals by At. ferrooxidans cells during the bioleaching process. PMID:23959118

  17. Bioinformatic prediction of gene functions regulated by quorum sensing in the bioleaching bacterium Acidithiobacillus ferrooxidans.

    PubMed

    Banderas, Alvaro; Guiliani, Nicolas

    2013-01-01

    The biomining bacterium Acidithiobacillus ferrooxidans oxidizes sulfide ores and promotes metal solubilization. The efficiency of this process depends on the attachment of cells to surfaces, a process regulated by quorum sensing (QS) cell-to-cell signalling in many Gram-negative bacteria. At. ferrooxidans has a functional QS system and the presence of AHLs enhances its attachment to pyrite. However, direct targets of the QS transcription factor AfeR remain unknown. In this study, a bioinformatic approach was used to infer possible AfeR direct targets based on the particular palindromic features of the AfeR binding site. A set of Hidden Markov Models designed to maintain palindromic regions and vary non-palindromic regions was used to screen for putative binding sites. By annotating the context of each predicted binding site (PBS), we classified them according to their positional coherence relative to other putative genomic structures such as start codons, RNA polymerase promoter elements and intergenic regions. We further used the Multiple EM for Motif Elicitation algorithm (MEME) to further filter out low homology PBSs. In summary, 75 target-genes were identified, 34 of which have a higher confidence level. Among the identified genes, we found afeR itself, zwf, genes encoding glycosyltransferase activities, metallo-beta lactamases, and active transport-related proteins. Glycosyltransferases and Zwf (Glucose 6-phosphate-1-dehydrogenase) might be directly involved in polysaccharide biosynthesis and attachment to minerals by At. ferrooxidans cells during the bioleaching process. PMID:23959118

  18. Genome sequence of Enterobacter sp. ST3, a quorum sensing bacterium associated with marine dinoflagellate.

    PubMed

    Zhou, Jin; Lao, Yong-Min; Ma, Zhi-Ping; Cai, Zhong-Hua

    2016-03-01

    Phycosphere environment is a typical marine niche, harbor diverse populations of microorganisms, which are thought to play a critical role in algae host and influence mutualistic and competitive interactions. Understanding quorum sensing-based acyl-homoserine lactone (AHL) language may shed light on the interaction between algal-associated microbial communities in the native environment. In this work, we isolated an epidermal bacterium (was tentatively named Enterobacter sp. ST3, and deposited in SOA China, the number is MCCC1K02277-ST3) from the marine dinoflagellate Scrippsiella trochoidea, and found it has the ability to produce short-chain AHL signal. In order to better understand its communication information at molecular level, the genomic map was investigated. The genome size was determined to be 4.81 Mb with a G + C content of 55.59%, comprising 6 scaffolds of 75 contigs containing 4647 protein-coding genes. The functional proteins were predicted, and 3534 proteins were assigned to COG functional categories. An AHL-relating gene, LuxR, was found in upstream position at contig 1. This genome data may provide clues to increase understanding of the chemical characterization and ecological behavior of strain ST3 in the phycosphere microenvironment. PMID:26981407

  19. Genome sequence of Enterobacter sp. ST3, a quorum sensing bacterium associated with marine dinoflagellate

    PubMed Central

    Zhou, Jin; Lao, Yong-Min; Ma, Zhi-Ping; Cai, Zhong-Hua

    2016-01-01

    Phycosphere environment is a typical marine niche, harbor diverse populations of microorganisms, which are thought to play a critical role in algae host and influence mutualistic and competitive interactions. Understanding quorum sensing-based acyl-homoserine lactone (AHL) language may shed light on the interaction between algal-associated microbial communities in the native environment. In this work, we isolated an epidermal bacterium (was tentatively named Enterobacter sp. ST3, and deposited in SOA China, the number is MCCC1K02277-ST3) from the marine dinoflagellate Scrippsiella trochoidea, and found it has the ability to produce short-chain AHL signal. In order to better understand its communication information at molecular level, the genomic map was investigated. The genome size was determined to be 4.81 Mb with a G + C content of 55.59%, comprising 6 scaffolds of 75 contigs containing 4647 protein-coding genes. The functional proteins were predicted, and 3534 proteins were assigned to COG functional categories. An AHL-relating gene, LuxR, was found in upstream position at contig 1. This genome data may provide clues to increase understanding of the chemical characterization and ecological behavior of strain ST3 in the phycosphere microenvironment. PMID:26981407

  20. Genome wide dissection of the quorum sensing signaling pathway in Trypanosoma brucei

    PubMed Central

    Ivens, Alasdair; Rojas, Federico; Cowton, Andrew; Young, Julie; Horn, David; Matthews, Keith

    2013-01-01

    The protozoan parasites Trypanosoma brucei spp. cause important human and livestock diseases in sub Saharan Africa. In the mammalian blood, two developmental forms of the parasite exist: proliferative ‘slender’ forms and arrested ‘stumpy’ forms that are responsible for transmission to tsetse flies. The slender to stumpy differentiation is a density-dependent response that resembles quorum sensing (QS) in microbial systems and is crucial for the parasite life cycle, ensuring both infection chronicity and disease transmission1. This response is triggered by an elusive ‘stumpy induction factor’ (SIF) whose intracellular signaling pathway is also uncharacterized. Laboratory-adapted (monomorphic) trypanosome strains respond inefficiently to SIF but can generate forms with stumpy characteristics when exposed to cell permeable cAMP and AMP analogues. Exploiting this, we have used a genome-wide RNAi library screen to identify the signaling components driving stumpy formation. In separate screens, monomorphic parasites were exposed to 8-(4-chlorophenylthio)-cAMP (pCPTcAMP) or 8-pCPT-2?-O-Me-5?-AMP to select cells that were unresponsive to these signals and hence remained proliferative. Genome-wide ion torrent-based RNA interference Target sequencing identified cohorts of genes implicated in each step of the signaling pathway, from purine metabolism, through signal transducers (kinases, phosphatases) to gene expression regulators. Genes at each step were independently validated in cells naturally capable of stumpy formation, confirming their role in density sensing in vivo, whilst the putative RNA-binding protein, RBP7, was required for normal QS and promoted cell-cycle arrest and transmission competence when overexpressed. This study reveals that QS signaling in trypanosomes shares similarities to fundamental quiescence pathways in eukaryotic cells, its components providing targets for QS-interference based therapeutics. PMID:24336212

  1. Cinnamaldehyde and cinnamaldehyde derivatives reduce virulence in Vibrio spp. by decreasing the DNA-binding activity of the quorum sensing response regulator LuxR

    PubMed Central

    Brackman, Gilles; Defoirdt, Tom; Miyamoto, Carol; Bossier, Peter; Van Calenbergh, Serge; Nelis, Hans; Coenye, Tom

    2008-01-01

    Background To date, only few compounds targeting the AI-2 based quorum sensing (QS) system are known. In the present study, we screened cinnamaldehyde and substituted cinnamaldehydes for their ability to interfere with AI-2 based QS. The mechanism of QS inhibition was elucidated by measuring the effect on bioluminescence in several Vibrio harveyi mutants. We also studied in vitro the ability of these compounds to interfere with biofilm formation, stress response and virulence of Vibrio spp. The compounds were also evaluated in an in vivo assay measuring the reduction of Vibrio harveyi virulence towards Artemia shrimp. Results Our results indicate that cinnamaldehyde and several substituted derivatives interfere with AI-2 based QS without inhibiting bacterial growth. The active compounds neither interfered with the bioluminescence system as such, nor with the production of AI-2. Study of the effect in various mutants suggested that the target protein is LuxR. Mobility shift assays revealed a decreased DNA-binding ability of LuxR. The compounds were further shown to (i) inhibit biofilm formation in several Vibrio spp., (ii) result in a reduced ability to survive starvation and antibiotic treatment, (iii) reduce pigment and protease production in Vibrio anguillarum and (iv) protect gnotobiotic Artemia shrimp against virulent Vibrio harveyi BB120. Conclusion Cinnamaldehyde and cinnamaldehyde derivatives interfere with AI-2 based QS in various Vibrio spp. by decreasing the DNA-binding ability of LuxR. The use of these compounds resulted in several marked phenotypic changes, including reduced virulence and increased susceptibility to stress. Since inhibitors of AI-2 based quorum sensing are rare, and considering the role of AI-2 in several processes these compounds may be useful leads towards antipathogenic drugs. PMID:18793453

  2. Deciphering bacterial universal language by detecting the quorum sensing signal, autoinducer-2, with a whole-cell sensing system.

    PubMed

    Raut, Nilesh; Pasini, Patrizia; Daunert, Sylvia

    2013-10-15

    Bacteria communicate with neighboring bacteria of the same species or of other species by means of chemical signaling molecules. The concentration of such signaling molecules is proportional to the bacterial population size; upon reaching a threshold concentration, corresponding to a threshold cell density, certain specialized genes are expressed. This system of communication among bacteria is known as quorum sensing (QS). QS regulates diverse behaviors, such as formation of biofilms and production of pathogenic factors. Autoinducer-2 (AI-2) is a QS signaling molecule that is used for interspecies communication by both Gram-positive and Gram-negative bacteria. Bacteria are known to play an important role in many diseases, from infections to chronic inflammation. Therefore, QS is involved in a variety of disorders of bacterial origin or where bacteria play a crucial pathogenic role. One such condition is inflammatory bowel disease (IBD), a chronic inflammation of the gastrointestinal (GI) tract that includes debilitating diseases, such as ulcerative colitis (UC) and Crohn's disease (CD). To date, noninvasive methods are unavailable for the diagnosis and monitoring of IBD. We hypothesized that detection of QS molecules in physiological samples, specifically saliva and stool specimens, would provide with a method for the noninvasive, early diagnosis and monitoring of IBD conditions. To that end, we developed and optimized a whole-cell sensing system for AI-2, which is based on Vibrio harveyi strain BB170. Furthermore, we standardized and applied the biosensing system for the quantitative detection of AI-2 in saliva, stool, and intestinal samples from IBD patients. PMID:24047052

  3. Secondary Metabolites Produced by the Marine Bacterium Halobacillus salinus That Inhibit Quorum Sensing-Controlled Phenotypes in Gram-Negative Bacteria?

    PubMed Central

    Teasdale, Margaret E.; Liu, Jiayuan; Wallace, Joselynn; Akhlaghi, Fatemeh; Rowley, David C.

    2009-01-01

    Certain bacteria use cell-to-cell chemical communication to coordinate community-wide phenotypic expression, including swarming motility, antibiotic biosynthesis, and biofilm production. Here we present a marine gram-positive bacterium that secretes secondary metabolites capable of quenching quorum sensing-controlled behaviors in several gram-negative reporter strains. Isolate C42, a Halobacillus salinus strain obtained from a sea grass sample, inhibits bioluminescence production by Vibrio harveyi in cocultivation experiments. With the use of bioassay-guided fractionation, two phenethylamide metabolites were identified as the active agents. The compounds additionally inhibit quorum sensing-regulated violacein biosynthesis by Chromobacterium violaceum CV026 and green fluorescent protein production by Escherichia coli JB525. Bacterial growth was unaffected at concentrations below 200 ?g/ml. Evidence is presented that these nontoxic metabolites may act as antagonists of bacterial quorum sensing by competing with N-acyl homoserine lactones for receptor binding. PMID:19060172

  4. Targeting agr- and agr-Like Quorum Sensing Systems for Development of Common Therapeutics to Treat Multiple Gram-Positive Bacterial Infections

    PubMed Central

    Gray, Brian; Hall, Pamela; Gresham, Hattie

    2013-01-01

    Invasive infection by the Gram-positive pathogen Staphylococcus aureus is controlled by a four gene operon, agr that encodes a quorum sensing system for the regulation of virulence. While agr has been well studied in S. aureus, the contribution of agr homologues and analogues in other Gram-positive pathogens is just beginning to be understood. Intriguingly, other significant human pathogens, including Clostridium perfringens, Listeria monocytogenes, and Enterococcus faecalis contain agr or analogues linked to virulence. Moreover, other significant human Gram-positive pathogens use peptide based quorum sensing systems to establish or maintain infection. The potential for commonality in aspects of these signaling systems across different species raises the prospect of identifying therapeutics that could target multiple pathogens. Here, we review the status of research into these agr homologues, analogues, and other peptide based quorum sensing systems in Gram-positive pathogens as well as the potential for identifying common pathways and signaling mechanisms for therapeutic discovery. PMID:23598501

  5. Isovaleryl-homoserine lactone, an unusual branched-chain quorum-sensing signal from the soybean symbiont Bradyrhizobium japonicum

    PubMed Central

    Lindemann, Andrea; Pessi, Gabriella; Schaefer, Amy L.; Mattmann, Margrith E.; Christensen, Quin H.; Kessler, Aline; Hennecke, Hauke; Blackwell, Helen E.; Greenberg, E. Peter; Harwood, Caroline S.

    2011-01-01

    Many species of Proteobacteria communicate by using LuxI-LuxR–type quorum-sensing systems that produce and detect acyl-homoserine lactone (acyl-HSL) signals. Most of the known signals are straight-chain fatty acyl-HSLs, and evidence indicates that LuxI homologs prefer fatty acid-acyl carrier protein (ACP) over fatty acyl-CoA as the acyl substrate for signal synthesis. Two related LuxI homologs, RpaI and BtaI from Rhodopseudomonas palustris and photosynthetic stem-nodulating bradyrhizobia, direct production of the aryl-HSLs p-coumaroyl-HSL and cinnamoyl-HSL, respectively. Here we report that BjaI from the soybean symbiont Bradyrhizobium japonicum USDA110 is closely related to RpaI and BtaI and catalyzes the synthesis of isovaleryl-HSL (IV-HSL), a branched-chain fatty acyl-HSL. We show that IV-HSL induces expression of bjaI, and in this way IV-HSL functions like many other acyl-HSL quorum-sensing signals. Purified histidine-tagged BjaI was an IV-HSL synthase, which was active with isovaleryl-CoA but not detectably so with isovaleryl-ACP. This suggests that the RpaI-BtaI-BjaI subfamily of acyl-HSL synthases may use CoA- rather than ACP-linked substrates for acyl-HSL synthesis. The bjaI-linked bjaR1 gene is involved in the response to IV-HSL, and BjaR1 is sensitive to IV-HSL at concentrations as low as 10 pM. Low but sufficient levels of IV-HSL (about 5 nM) accumulate in B. japonicum culture fluid. The low levels of IV-HSL synthesis have likely contributed to the fact that the quorum-sensing signal from this bacterium has not been described elsewhere. PMID:21949379

  6. Pyocyanin Stimulates Quorum Sensing-Mediated Tolerance to Oxidative Stress and Increases Persister Cell Populations in Acinetobacter baumannii

    PubMed Central

    Bhargava, Nidhi; Sharma, Prince

    2014-01-01

    Acinetobacter baumannii and Pseudomonas aeruginosa are nosocomial pathogens with overlapping sites of infection. This work reports that the two can coexist stably in mixed-culture biofilms. In a study intended to improve our understanding of the mechanism of their coexistence, it was found that pyocyanin, produced by P. aeruginosa that generally eliminates competition from other pathogens, led to the generation of reactive oxygen species (ROS) in A. baumannii cells, which in response showed a significant (P ≤ 0.05) increase in production of enzymes, specifically, catalase and superoxide dismutase (SOD). This work shows for the first time that the expression of catalase and SOD is under the control of a quorum-sensing system in A. baumannii. In support of this observation, a quorum-sensing mutant of A. baumannii (abaI::Km) was found to be sensitive to pyocyanin compared to its wild type and showed significantly (P ≤ 0.001) lower levels of the antioxidant enzymes, which increased on addition of 5 μM N-(3-hydroxydodecanoyl)-l-homoserine lactone. Likewise, in wild-type A. baumannii, there was a significant (P < 0.01) decrease in the level of anti-oxidant enzymes in the presence of salicylic acid, a known quencher of quorum sensing. In the presence of amikacin and carbenicillin, A. baumannii formed 0.07 and 0.02% persister cells, which increased 4- and 3-fold, respectively, in the presence of pyocyanin. These findings show that pyocyanin induces a protective mechanism in A. baumannii against oxidative stress and also increases its persistence against antibiotics which could be of clinical significance in the case of coinfections with A. baumannii and P. aeruginosa. PMID:24891106

  7. Marine-derived quorum-sensing inhibitory activities enhance the antibacterial efficacy of tobramycin against Pseudomonas aeruginosa.

    PubMed

    Busetti, Alessandro; Shaw, George; Megaw, Julianne; Gorman, Sean P; Maggs, Christine A; Gilmore, Brendan F

    2015-01-01

    Bacterial epiphytes isolated from marine eukaryotes were screened for the production of quorum sensing inhibitory compounds (QSIs). Marine isolate KS8, identified as a Pseudoalteromonas sp., was found to display strong quorum sensing inhibitory (QSI) activity against acyl homoserine lactone (AHL)-based reporter strains Chromobacterium violaceum ATCC 12472 and CV026. KS8 supernatant significantly reduced biofilm biomass during biofilm formation (-63%) and in pre-established, mature P. aeruginosa PAO1 biofilms (-33%). KS8 supernatant also caused a 0.97-log reduction (-89%) and a 2-log reduction (-99%) in PAO1 biofilm viable counts in the biofilm formation assay and the biofilm eradication assay respectively. The crude organic extract of KS8 had a minimum inhibitory concentration (MIC) of 2 mg/mL against PAO1 but no minimum bactericidal concentration (MBC) was observed over the concentration range tested (MBC > 16 mg/mL). Sub-MIC concentrations (1 mg/mL) of KS8 crude organic extract significantly reduced the quorum sensing (QS)-dependent production of both pyoverdin and pyocyanin in P. aeruginosa PAO1 without affecting growth. A combinatorial approach using tobramycin and the crude organic extract at 1 mg/mL against planktonic P. aeruginosa PAO1 was found to increase the efficacy of tobramycin ten-fold, decreasing the MIC from 0.75 to 0.075 µg/mL. These data support the validity of approaches combining conventional antibiotic therapy with non-antibiotic compounds to improve the efficacy of current treatments. PMID:25546516

  8. Complex Regulation of Symbiotic Functions Is Coordinated by MucR and Quorum Sensing in Sinorhizobium meliloti? †

    PubMed Central

    Mueller, Konrad; González, Juan E.

    2011-01-01

    In Sinorhizobium meliloti, the production of exopolysaccharides such as succinoglycan and exopolysaccharide II (EPS II) enables the bacterium to invade root nodules on Medicago sativa and establish a nitrogen-fixing symbiosis. While extensive research has focused on succinoglycan, less is known concerning the regulation of EPS II or the mechanism by which it mediates entrance into the host plant. Previously, we reported that the ExpR/Sin quorum-sensing system is required to produce the symbiotically active low-molecular-weight fraction of this exopolysaccharide. Here, we show that this system induces EPS II production by increasing expression of the expG-expC operon, encoding both a transcriptional regulator (ExpG) and a glycosyl transferase (ExpC). ExpG derepresses EPS II production at the transcriptional level from MucR, a RosR homolog, while concurrently elevating expression of expC, resulting in the synthesis of the low-molecular-weight form. While the ExpR/Sin system abolishes the role of MucR on EPS II production, it preserves a multitude of other quorum-sensing-independent regulatory functions which promote the establishment of symbiosis. In planktonic S. meliloti, MucR properly coordinates a diverse set of bacterial behaviors by repressing a variety of genes intended for expression during symbiosis and enhancing the bacterial ability to induce root nodule formation. Quorum sensing precisely modulates the functions of MucR to take advantage of both the production of symbiotically active EPS II as well as the proper coordination of bacterial behavior required to promote symbiosis. PMID:21057009

  9. Marine-Derived Quorum-Sensing Inhibitory Activities Enhance the Antibacterial Efficacy of Tobramycin against Pseudomonas aeruginosa

    PubMed Central

    Busetti, Alessandro; Shaw, George; Megaw, Julianne; Gorman, Sean P.; Maggs, Christine A.; Gilmore, Brendan F.

    2014-01-01

    Bacterial epiphytes isolated from marine eukaryotes were screened for the production of quorum sensing inhibitory compounds (QSIs). Marine isolate KS8, identified as a Pseudoalteromonas sp., was found to display strong quorum sensing inhibitory (QSI) activity against acyl homoserine lactone (AHL)-based reporter strains Chromobacterium violaceum ATCC 12472 and CV026. KS8 supernatant significantly reduced biofilm biomass during biofilm formation (−63%) and in pre-established, mature P. aeruginosa PAO1 biofilms (−33%). KS8 supernatant also caused a 0.97-log reduction (−89%) and a 2-log reduction (−99%) in PAO1 biofilm viable counts in the biofilm formation assay and the biofilm eradication assay respectively. The crude organic extract of KS8 had a minimum inhibitory concentration (MIC) of 2 mg/mL against PAO1 but no minimum bactericidal concentration (MBC) was observed over the concentration range tested (MBC > 16 mg/mL). Sub-MIC concentrations (1 mg/mL) of KS8 crude organic extract significantly reduced the quorum sensing (QS)-dependent production of both pyoverdin and pyocyanin in P. aeruginosa PAO1 without affecting growth. A combinatorial approach using tobramycin and the crude organic extract at 1 mg/mL against planktonic P. aeruginosa PAO1 was found to increase the efficacy of tobramycin ten-fold, decreasing the MIC from 0.75 to 0.075 µg/mL. These data support the validity of approaches combining conventional antibiotic therapy with non-antibiotic compounds to improve the efficacy of current treatments. PMID:25546516

  10. Endophytic Bacteria Isolated from Common Bean (Phaseolus vulgaris) Exhibiting High Variability Showed Antimicrobial Activity and Quorum Sensing Inhibition.

    PubMed

    Lopes, Ralf Bruno Moura; Costa, Leonardo Emanuel de Oliveira; Vanetti, Maria Cristina Dantas; de Araújo, Elza Fernandes; de Queiroz, Marisa Vieira

    2015-10-01

    Endophytic bacteria play a key role in the biocontrol of phytopathogenic microorganisms. In this study, genotypic diversity was analyzed via repetitive element PCR (rep-PCR) of endophytic isolates of the phylum Actinobacteria that were previously collected from leaves of cultivars of common bean (Phaseolus vulgaris). Considerable variability was observed, which has not been reported previously for this phylum of endophytic bacteria of the common bean. Furthermore, the ethanol extracts from cultures of various isolates inhibited the growth of pathogenic bacteria in vitro, especially Gram-positive pathogens. Extracts from cultures of Microbacterium testaceum BAC1065 and BAC1093, which were both isolated from the 'Talismã' cultivar, strongly inhibited most of the pathogenic bacteria tested. Bean endophytic bacteria were also demonstrated to have the potential to inhibit the quorum sensing of Gram-negative bacteria. This mechanism may regulate the production of virulence factors in pathogens. The ability to inhibit quorum sensing has also not been reported previously for endophytic microorganisms of P. vulgaris. Furthermore, M. testaceum with capacity to inhibit quorum sensing appears to be widespread in common bean. The genomic profiles of M. testaceum were also analyzed via pulsed-field gel electrophoresis, and greater differentiation was observed using this method than rep-PCR; in general, no groups were formed based on the cultivar of origin. This study showed for the first time that endophytic bacteria from common bean plants exhibit high variability and may be useful for the development of strategies for the biological control of diseases in this important legume plant. PMID:26202846

  11. Identification and Characterization of a Second Quorum-Sensing System in Agrobacterium tumefaciens A6

    PubMed Central

    Wang, Chao; Yan, Chunlan; Fuqua, Clay

    2014-01-01

    Quorum sensing (QS) is a widespread mechanism of bacterial communication in which individual cells produce and respond to small chemical signals. In Agrobacterium tumefaciens, an acylhomoserine lactone-dependent QS mechanism is known to regulate the replication and conjugation of the tumor-inducing (Ti) plasmid. Most of the QS regulatory proteins are encoded within the Ti plasmid. Among them, TraI is the LuxI-type enzyme synthesizing the QS signal N-3-oxooctanoyl-l-homoserine lactone (3OC8HSL), TraR is the LuxR-type transcriptional factor that recognizes 3OC8HSL, and TraM is an antiactivator that antagonizes TraR. Recently, we identified a TraM homolog encoded by the traM2 gene in the chromosomal background of A. tumefaciens A6. In this study, we further identified additional homologs (TraI2 and TraR2) of TraI and TraR in this strain. We showed that similar to TraI, TraI2 could predominantly synthesize the QS signal 3OC8HSL. We also showed that TraR2 could recognize 3OC8HSL and activate the tra box-containing promoters as efficiently as TraR. Further analysis showed that traM2, traI2, and traR2 are physically linked on a mobile genetic element that is not related to the Ti plasmid. These findings indicate that A. tumefaciens A6 carries a second QS system that may play a redundant role in the regulation of the replication and conjugation of the Ti plasmid. PMID:24464459

  12. Inhibition of quorum sensing-controlled virulence factors in Pseudomonas aeruginosa by human serum paraoxonase.

    PubMed

    Aybey, Aynur; Demirkan, Elif

    2016-02-01

    The role of quorum sensing (QS) in the regulation of virulence factor production in Pseudomonas aeruginosa is well established. Increased antibiotic resistance in this bacterium has led to the search for new treatment options, and inhibition of the QS system has been explored for potential therapeutic benefits. If the use of QS inhibitory agents were to lead to a reduction in bacterial virulence, new approaches in the treatment of P. aeruginosa infections could be further developed. Accordingly, we examined whether human serum paraoxonase 1 (hPON1), which uses lactonase activity to hydrolyse N-acyl homoserine lactones, could cleave P. aeruginosa-derived signalling molecules. hPON1 was purified using ammonium sulfate precipitation and hydrophobic interaction chromatography (Sepharose 4B-l-tyrosine-1-naphthylamine). Different concentrations of hPON1 were found to reduce various virulence factors including pyocyanin, rhamnolipid, elastase, staphylolytic LasA protease and alkaline protease. Although treatment with 0.1-10 mg hPON1 ml- 1 did not show a highly inhibitory effect on elastase and staphylolytic LasA protease production, it resulted in good inhibitory effects on alkaline protease production at concentrations as low as 0.1 mg ml- 1. hPON1 also reduced the production of pyocyanin and rhamnolipid at a concentration of 1.25 mg ml- 1 (within a range of 0.312-5 mg ml- 1). In addition, rhamnolipid, an effective biosurfactant reported to stimulate the biodegradation of hydrocarbons, was able to degrade oil only in the absence of hPON1. PMID:26654051

  13. Impact of Azithromycin on the Quorum Sensing-Controlled Proteome of Pseudomonas aeruginosa.

    PubMed

    Swatton, J E; Davenport, P W; Maunders, E A; Griffin, J L; Lilley, K S; Welch, M

    2016-01-01

    The macrolide antibiotic, azithromycin (AZM), has been reported to improve the clinical outcome of cystic fibrosis patients, many of whom are chronically-infected with Pseudomonas aeruginosa. However, the highest clinically-achievable concentrations of this drug are well-below the minimum inhibitory concentration for P. aeruginosa, raising the question of why AZM exhibits therapeutic activity. One possibility that has been raised by earlier studies is that AZM inhibits quorum sensing (QS) by P. aeruginosa. To explicitly test this hypothesis the changes brought about by AZM treatment need to be compared with those associated with specific QS mutants grown alongside in the same growth medium, but this has not been done. In this work, we used quantitative 2D-difference gel electrophoresis and 1H-NMR spectroscopy footprint analysis to examine whether a range of clinically-relevant AZM concentrations elicited proteomic and metabolomic changes in wild-type cultures that were similar to those seen in cultures of defined QS mutants. Consistent with earlier reports, over half of the AZM-induced spot changes on the 2D gels were found to affect QS-regulated proteins. However, AZM modulated very few protein spots overall (compared with QS) and collectively, these modulated proteins comprised only a small fraction (12-13%) of the global QS regulon. We conclude that AZM perturbs a sub-regulon of the QS system but does not block QS per se. Reinforcing this notion, we further show that AZM is capable of attenuating virulence factor production in another Gram-negative species that secretes copious quantities of exoenzymes (Serratia marcescens), even in the absence of a functional QS system. PMID:26808156

  14. Acyl-homoserine lactone recognition and response hindering the quorum-sensing regulator EsaR.

    PubMed

    Schu, Daniel J; Scruggs, Jessica M; Geissinger, Jared S; Michel, Katherine G; Stevens, Ann M

    2014-01-01

    During quorum sensing in the plant pathogen Pantoea stewartii subsp. stewartii, EsaI, an acyl-homoserine lactone (AHL) synthase, and the transcription factor EsaR coordinately control capsular polysaccharide production. The capsule is expressed only at high cell density when AHL levels are high, leading to inactivation of EsaR. In lieu of detailed structural information, the precise mechanism whereby EsaR recognizes AHL and is hindered by it, in a response opposite to that of most other LuxR homologues, remains unresolved. Hence, a random mutagenesis genetic approach was designed to isolate EsaR* variants that are immune to the effects of AHL. Error-prone PCR was used to generate the desired mutants, which were subsequently screened for their ability to repress transcription in the presence of AHL. Following sequencing, site-directed mutagenesis was used to generate all possible mutations of interest as single, rather than multiple amino acid substitutions. Eight individual amino acids playing a critical role in the AHL-insensitive phenotype have been identified. The ability of EsaR* variants to bind AHL and the effect of individual substitutions on the overall conformation of the protein were examined through in vitro assays. Six EsaR* variants had a decreased ability to bind AHL. Fluorescence anisotropy was used to examine the relative DNA binding affinity of the final two EsaR* variants, which retained some AHL binding capability but remained unresponsive to it, perhaps due to an inability of the N-terminal domain to transduce information to the C-terminal domain. PMID:25238602

  15. Phylogenetically Novel LuxI/LuxR-Type Quorum Sensing Systems Isolated Using a Metagenomic Approach

    PubMed Central

    Nasuno, Eri; Fujita, Masaki J.; Nakatsu, Cindy H.; Kamagata, Yoichi; Hanada, Satoshi

    2012-01-01

    A great deal of research has been done to understand bacterial cell-to-cell signaling systems, but there is still a large gap in our current knowledge because the majority of microorganisms in natural environments do not have cultivated representatives. Metagenomics is one approach to identify novel quorum sensing (QS) systems from uncultured bacteria in environmental samples. In this study, fosmid metagenomic libraries were constructed from a forest soil and an activated sludge from a coke plant, and the target genes were detected using a green fluorescent protein (GFP)-based Escherichia coli biosensor strain whose fluorescence was screened by spectrophotometry. DNA sequence analysis revealed two pairs of new LuxI family N-acyl-l-homoserine lactone (AHL) synthases and LuxR family transcriptional regulators (clones N16 and N52, designated AubI/AubR and AusI/AusR, respectively). AubI and AusI each produced an identical AHL, N-dodecanoyl-l-homoserine lactone (C12-HSL), as determined by nuclear magnetic resonance (NMR) and mass spectrometry. Phylogenetic analysis based on amino acid sequences suggested that AusI/AusR was from an uncultured member of the Betaproteobacteria and AubI/AubR was very deeply branched from previously described LuxI/LuxR homologues in isolates of the Proteobacteria. The phylogenetic position of AubI/AubR indicates that they represent a QS system not acquired recently from the Proteobacteria by horizontal gene transfer but share a more ancient ancestry. We demonstrated that metagenomic screening is useful to provide further insight into the phylogenetic diversity of bacterial QS systems by describing two new LuxI/LuxR-type QS systems from uncultured bacteria. PMID:22983963

  16. Staphylococcus epidermidis agr Quorum-Sensing System: Signal Identification, Cross Talk, and Importance in Colonization

    PubMed Central

    Olson, Michael E.; Todd, Daniel A.; Schaeffer, Carolyn R.; Paharik, Alexandra E.; Van Dyke, Michael J.; Büttner, Henning; Dunman, Paul M.; Rohde, Holger; Cech, Nadja B.; Fey, Paul D.

    2014-01-01

    Staphylococcus epidermidis is an opportunistic pathogen that is one of the leading causes of medical device infections. Global regulators like the agr quorum-sensing system in this pathogen have received a limited amount of attention, leaving important questions unanswered. There are three agr types in S. epidermidis strains, but only one of the autoinducing peptide (AIP) signals has been identified (AIP-I), and cross talk between agr systems has not been tested. We structurally characterized all three AIP types using mass spectrometry and discovered that the AIP-II and AIP-III signals are 12 residues in length, making them the largest staphylococcal AIPs identified to date. S. epidermidis agr reporter strains were developed for each system, and we determined that cross-inhibitory interactions occur between the agr type I and II systems and between the agr type I and III systems. In contrast, no cross talk was observed between the type II and III systems. To further understand the outputs of the S. epidermidis agr system, an RNAIII mutant was constructed, and microarray studies revealed that exoenzymes (Ecp protease and Geh lipase) and low-molecular-weight toxins were downregulated in the mutant. Follow-up analysis of Ecp confirmed the RNAIII is required to induce protease activity and that agr cross talk modulates Ecp activity in a manner that mirrors the agr reporter results. Finally, we demonstrated that the agr system enhances skin colonization by S. epidermidis using a porcine model. This work expands our knowledge of S. epidermidis agr system function and will aid future studies on cell-cell communication in this important opportunistic pathogen. PMID:25070736

  17. What Does the Talking?: Quorum Sensing Signalling Genes Discovered in a Bacteriophage Genome

    PubMed Central

    Hargreaves, Katherine R.; Kropinski, Andrew M.; Clokie, Martha R. J.

    2014-01-01

    The transfer of novel genetic material into the genomes of bacterial viruses (phages) has been widely documented in several host-phage systems. Bacterial genes are incorporated into the phage genome and, if retained, subsequently evolve within them. The expression of these phage genes can subvert or bolster bacterial processes, including altering bacterial pathogenicity. The phage phiCDHM1 infects Clostridium difficile, a pathogenic bacterium that causes nosocomial infections and is associated with antibiotic treatment. Genome sequencing and annotation of phiCDHM1 shows that despite being closely related to other C. difficile myoviruses, it has several genes that have not been previously reported in any phage genomes. Notably, these include three homologs of bacterial genes from the accessory gene regulator (agr) quorum sensing (QS) system. These are; a pre-peptide (AgrD) of an autoinducing peptide (AIP), an enzyme which processes the pre-peptide (AgrB) and a histidine kinase (AgrC) that detects the AIP to activate a response regulator. Phylogenetic analysis of the phage and C. difficile agr genes revealed that there are three types of agr loci in this species. We propose that the phage genes belonging to a third type, agr3, and have been horizontally transferred from the host. AgrB and AgrC are transcribed during the infection of two different strains. In addition, the phage agrC appears not to be confined to the phiCDHM1 genome as it was detected in genetically distinct C. difficile strains. The discovery of QS gene homologs in a phage genome presents a novel way in which phages could influence their bacterial hosts, or neighbouring bacterial populations. This is the first time that these QS genes have been reported in a phage genome and their distribution both in C. difficile and phage genomes suggests that the agr3 locus undergoes horizontal gene transfer within this species. PMID:24475037

  18. Quercetin sensitizes fluconazole-resistant candida albicans to induce apoptotic cell death by modulating quorum sensing.

    PubMed

    Singh, B N; Upreti, D K; Singh, B R; Pandey, G; Verma, S; Roy, S; Naqvi, A H; Rawat, A K S

    2015-04-01

    Quorum sensing (QS) regulates group behaviors of Candida albicans such as biofilm, hyphal growth, and virulence factors. The sesquiterpene alcohol farnesol, a QS molecule produced by C. albicans, is known to regulate the expression of virulence weapons of this fungus. Fluconazole (FCZ) is a broad-spectrum antifungal drug that is used for the treatment of C. albicans infections. While FCZ can be cytotoxic at high concentrations, our results show that at much lower concentrations, quercetin (QC), a dietary flavonoid isolated from an edible lichen (Usnea longissima), can be implemented as a sensitizing agent for FCZ-resistant C. albicans NBC099, enhancing the efficacy of FCZ. QC enhanced FCZ-mediated cell killing of NBC099 and also induced cell death. These experiments indicated that the combined application of both drugs was FCZ dose dependent rather than QC dose dependent. In addition, we found that QC strongly suppressed the production of virulence weapons-biofilm formation, hyphal development, phospholipase, proteinase, esterase, and hemolytic activity. Treatment with QC also increased FCZ-mediated cell death in NBC099 biofilms. Interestingly, we also found that QC enhances the anticandidal activity of FCZ by inducing apoptotic cell death. We have also established that this sensitization is reliant on the farnesol response generated by QC. Molecular docking studies also support this conclusion and suggest that QC can form hydrogen bonds with Gln969, Thr1105, Ser1108, Arg1109, Asn1110, and Gly1061 in the ATP binding pocket of adenylate cyclase. Thus, this QS-mediated combined sensitizer (QC)-anticandidal agent (FCZ) strategy may be a novel way to enhance the efficacy of FCZ-based therapy of C. albicans infections. PMID:25645848

  19. Quadruple quorum-sensing inputs control Vibrio cholerae virulence and maintain system robustness.

    PubMed

    Jung, Sarah A; Chapman, Christine A; Ng, Wai-Leung

    2015-04-01

    Bacteria use quorum sensing (QS) for cell-cell communication to carry out group behaviors. This intercellular signaling process relies on cell density-dependent production and detection of chemical signals called autoinducers (AIs). Vibrio cholerae, the causative agent of cholera, detects two AIs, CAI-1 and AI-2, with two histidine kinases, CqsS and LuxQ, respectively, to control biofilm formation and virulence factor production. At low cell density, these two signal receptors function in parallel to activate the key regulator LuxO, which is essential for virulence of this pathogen. At high cell density, binding of AIs to their respective receptors leads to deactivation of LuxO and repression of virulence factor production. However, mutants lacking CqsS and LuxQ maintain a normal LuxO activation level and remain virulent, suggesting that LuxO is activated by additional, unidentified signaling pathways. Here we show that two other histidine kinases, CqsR (formerly known as VC1831) and VpsS, act upstream in the central QS circuit of V. cholerae to activate LuxO. V. cholerae strains expressing any one of these four receptors are QS proficient and capable of colonizing animal hosts. In contrast, mutants lacking all four receptors are phenotypically identical to LuxO-defective mutants. Importantly, these four functionally redundant receptors act together to prevent premature induction of a QS response caused by signal perturbations. We suggest that the V. cholerae QS circuit is composed of quadruple sensory inputs and has evolved to be refractory to sporadic AI level perturbations. PMID:25874462

  20. Non-social adaptation defers a tragedy of the commons in Pseudomonas aeruginosa quorum sensing.

    PubMed

    Asfahl, Kyle L; Walsh, Jessica; Gilbert, Kerrigan; Schuster, Martin

    2015-08-01

    In a process termed quorum sensing (QS), the opportunistic bacterial pathogen Pseudomonas aeruginosa uses diffusible signaling molecules to regulate the expression of numerous secreted factors or public goods that are shared within the population. But not all cells respond to QS signals. These social cheaters typically harbor a mutation in the QS receptor gene lasR and exploit the public goods produced by cooperators. Here we show that non-social adaptation under growth conditions that require QS-dependent public goods increases tolerance to cheating and defers a tragedy of the commons. The underlying mutation is in the transcriptional repressor gene psdR. This mutation has no effect on public goods expression but instead increases individual fitness by derepressing growth-limiting intracellular metabolism. Even though psdR mutant populations remain susceptible to invasion by isogenic psdR lasR cheaters, they bear a lower cheater load than do wild-type populations, and they are completely resistant to invasion by lasR cheaters with functional psdR. Mutations in psdR also sustain growth near wild-type levels when paired with certain partial loss-of-function lasR mutations. Targeted sequencing of multiple evolved isolates revealed that mutations in psdR arise before mutations in lasR, and rapidly sweep through the population. Our results indicate that a QS-favoring environment can lead to adaptations in non-social, intracellular traits that increase the fitness of cooperating individuals and thereby contribute to population-wide maintenance of QS and associated cooperative behaviors. PMID:25615439

  1. Biofilm Formation and Quorum-Sensing-Molecule Production by Clinical Isolates of Serratia liquefaciens.

    PubMed

    Remuzgo-Martínez, Sara; Lázaro-Díez, María; Mayer, Celia; Aranzamendi-Zaldumbide, Maitane; Padilla, Daniel; Calvo, Jorge; Marco, Francesc; Martínez-Martínez, Luis; Icardo, José Manuel; Otero, Ana; Ramos-Vivas, José

    2015-05-15

    Serratia spp. are opportunistic human pathogens responsible for an increasing number of nosocomial infections. However, little is known about the virulence factors and regulatory circuits that may enhance the establishment and long-term survival of Serratia liquefaciens in the hospital environment. In this study, two reporter strains, Chromobacterium violaceum CV026 and VIR24, and high-resolution triple-quadrupole liquid chromatography-mass spectrometry (LC-MS) were used to detect and to quantify N-acyl-homoserine lactone (AHL) quorum-sensing signals in 20 S. liquefaciens strains isolated from clinical samples. Only four of the strains produced sufficient amounts of AHLs to activate the sensors. Investigation of two of the positive strains by high-performance liquid chromatography (HPLC)-MS confirmed the presence of significant amounts of short-acyl-chain AHLs (N-butyryl-l-homoserine lactone [C4-HSL] and N-hexanoyl-l-homoserine lactone [C6-HSL]) in both strains, which exhibited a complex and strain-specific signal profile that included minor amounts of other short-acyl-chain AHLs (N-octanoyl-l-homoserine lactone [C8-HSL] and N-3-oxohexanoyl-l-homoserine lactone [OC6-HSL]) and long-acyl-chain (C10, C12, and C14) AHLs. No correlation between biofilm formation and the production of large amounts of AHLs could be established. Fimbria-like structures were observed by transmission electron microscopy, and the presence of the type 1 fimbrial adhesin gene fimH in all strains was confirmed by PCR. The ability of S. liquefaciens to adhere to abiotic surfaces and to form biofilms likely contributes to its persistence in the hospital environment, increasing the probability of causing nosocomial infections. Therefore, a better understanding of the adherence properties of this species will provide greater insights into the diseases it causes. PMID:25746999

  2. Prediction and Analysis of Quorum Sensing Peptides Based on Sequence Features

    PubMed Central

    Rajput, Akanksha; Gupta, Amit Kumar; Kumar, Manoj

    2015-01-01

    Quorum sensing peptides (QSPs) are the signaling molecules used by the Gram-positive bacteria in orchestrating cell-to-cell communication. In spite of their enormous importance in signaling process, their detailed bioinformatics analysis is lacking. In this study, QSPs and non-QSPs were examined according to their amino acid composition, residues position, motifs and physicochemical properties. Compositional analysis concludes that QSPs are enriched with aromatic residues like Trp, Tyr and Phe. At the N-terminal, Ser was a dominant residue at maximum positions, namely, first, second, third and fifth while Phe was a preferred residue at first, third and fifth positions from the C-terminal. A few motifs from QSPs were also extracted. Physicochemical properties like aromaticity, molecular weight and secondary structure were found to be distinguishing features of QSPs. Exploiting above properties, we have developed a Support Vector Machine (SVM) based predictive model. During 10-fold cross-validation, SVM achieves maximum accuracy of 93.00%, Mathew’s correlation coefficient (MCC) of 0.86 and Receiver operating characteristic (ROC) of 0.98 on the training/testing dataset (T200p+200n). Developed models performed equally well on the validation dataset (V20p+20n). The server also integrates several useful analysis tools like “QSMotifScan”, “ProtFrag”, “MutGen” and “PhysicoProp”. Our analysis reveals important characteristics of QSPs and on the basis of these unique features, we have developed a prediction algorithm “QSPpred” (freely available at: http://crdd.osdd.net/servers/qsppred). PMID:25781990

  3. Regulation of Universal Stress Protein Genes by Quorum Sensing and RpoS in Burkholderia glumae

    PubMed Central

    Kim, Hongsup; Goo, Eunhye; Kang, Yongsung; Kim, Jinwoo

    2012-01-01

    Burkholderia glumae possesses a quorum-sensing (QS) system mediated by N-octanoyl-homoserine lactone (C8-HSL) and its cognate receptor TofR. TofR/C8-HSL regulates the expression of a transcriptional regulator, qsmR. We identified one of the universal stress proteins (Usps), Usp2, from a genome-wide analysis of QS-dependent proteomes of B. glumae. In the whole genome of B. glumae BGR1, 11 usp genes (usp1 to usp11) were identified. Among the stress conditions tested, usp1 and usp2 mutants died 1 h after heat shock stress, whereas the other usp mutants and the wild-type strain survived for more than 3 h at 45°C. The expressions of all usp genes were positively regulated by QS, directly by QsmR. In addition, the expressions of usp1 and usp2 were dependent on RpoS in the stationary phase, as confirmed by the direct binding of RpoS-RNA holoenzyme to the promoter regions of the usp1 and usp2 genes. The expression of usp1 was upregulated upon a temperature shift from 37°C to either 28°C or 45°C, whereas the expression of usp2 was independent of temperature stress. This indicates that the regulation of usp1 and usp2 expression is different from what is known about Escherichia coli. Compared to the diverse roles of Usps in E. coli, Usps in B. glumae are dedicated to heat shock stress. PMID:22178971

  4. Decoding the genetic and functional diversity of the DSF quorum-sensing system in Stenotrophomonas maltophilia.

    PubMed

    Huedo, Pol; Yero, Daniel; Martinez-Servat, Sònia; Ruyra, Àngels; Roher, Nerea; Daura, Xavier; Gibert, Isidre

    2015-01-01

    Stenotrophomonas maltophilia uses the Diffusible Signal Factor (DSF) quorum sensing (QS) system to mediate intra- and inter-specific signaling and regulate virulence-related processes. The components of this system are encoded by the rpf cluster, with genes rpfF and rpfC encoding for the DSF synthase RpfF and sensor RpfC, respectively. Recently, we have shown that there exist two variants of the rpf cluster (rpf-1 and rpf-2), distinguishing two groups of S. maltophilia strains. Surprisingly, only rpf-1 strains produce detectable DSF, correlating with their ability to control biofilm formation, swarming motility and virulence. The evolutive advantage of acquiring two different rpf clusters, the phylogenetic time point and mechanism of this acquisition and the conditions that activate DSF production in rpf-2 strains, are however not known. Examination of this cluster in various species suggests that its variability originated most probably by genetic exchange between rhizosphere bacteria. We propose that rpf-2 variant strains make use of a strategy recently termed as "social cheating." Analysis of cellular and extracellular fatty acids (FAs) of strains E77 (rpf-1) and M30 (rpf-2) suggests that their RpfFs have also a thioesterase activity that facilitates the release of unspecific FAs to the medium in addition to DSF. Production of DSF in rpf-1 strains appears in fact to be modulated by some of these extracellular FAs in addition to other factors such as temperature and nutrients, while in rpf-2 strains DSF biosynthesis is derepressed only upon detection of DSF itself, suggesting that they require cohabitation with DSF-producer bacteria to activate their DSF regulatory machinery. Finally, we show that the mixed rpf-1/rpf-2 population presents synergism in DSF production and virulence capacity in an in vivo infection model. Recovery and quantification of DSF from co-infected animals correlates with the observed mortality rate. PMID:26284046

  5. Punicalagin Inhibits Salmonella Virulence Factors and Has Anti-Quorum-Sensing Potential

    PubMed Central

    Li, Guanghui; Yan, Chunhong; Xu, Yunfeng; Feng, Yuqing; Wu, Qian; Lv, Xiaoying; Yang, Baowei; Wang, Xin

    2014-01-01

    Punicalagin, an essential component of pomegranate rind, has been demonstrated to possess antimicrobial activity against several food-borne pathogens, but its activity on the virulence of pathogens and its anti-quorum-sensing (anti-QS) potential have been rarely reported. This study investigated the efficacy of subinhibitory concentrations of punicalagin on Salmonella virulence factors and QS systems. A broth microdilution method was used to determine the MICs of punicalagin for 10 Salmonella strains. Motility assay and quantitative reverse transcription (RT)-PCR were performed to evaluate the effects of punicalagin on the virulence attributes and QS-related genes of Salmonella. The MICs of punicalagin for several Salmonella strains ranged from 250 to 1,000 μg/ml. Motility assays showed that punicalagin, at 1/16× MIC and 1/32× MIC, significantly decreased bacterial swimming and swarming motility, which corresponded to downregulation of the motility-related genes (fliA, fliY, fljB, flhC, and fimD) in RT-PCR assays. RT-PCR also revealed that punicalagin downregulated the expression of most of the selected genes involved in Salmonella virulence. Moreover, a QS inhibition assay indicated that punicalagin dose dependently inhibited the production of violacein by Chromobacterium violaceum and repressed the expression of QS-related genes (sdiA and srgE) in Salmonella. In addition, punicalagin significantly reduced Salmonella invasion of colonic cells (P < 0.01) with no impact on adhesion. These findings suggest that punicalagin has the potential to be developed as an alternative or supplemental agent for prevention of Salmonella infection. PMID:25085489

  6. Decoding the genetic and functional diversity of the DSF quorum-sensing system in Stenotrophomonas maltophilia

    PubMed Central

    Huedo, Pol; Yero, Daniel; Martinez-Servat, Sònia; Ruyra, Àngels; Roher, Nerea; Daura, Xavier; Gibert, Isidre

    2015-01-01

    Stenotrophomonas maltophilia uses the Diffusible Signal Factor (DSF) quorum sensing (QS) system to mediate intra- and inter-specific signaling and regulate virulence-related processes. The components of this system are encoded by the rpf cluster, with genes rpfF and rpfC encoding for the DSF synthase RpfF and sensor RpfC, respectively. Recently, we have shown that there exist two variants of the rpf cluster (rpf-1 and rpf-2), distinguishing two groups of S. maltophilia strains. Surprisingly, only rpf-1 strains produce detectable DSF, correlating with their ability to control biofilm formation, swarming motility and virulence. The evolutive advantage of acquiring two different rpf clusters, the phylogenetic time point and mechanism of this acquisition and the conditions that activate DSF production in rpf-2 strains, are however not known. Examination of this cluster in various species suggests that its variability originated most probably by genetic exchange between rhizosphere bacteria. We propose that rpf-2 variant strains make use of a strategy recently termed as “social cheating.” Analysis of cellular and extracellular fatty acids (FAs) of strains E77 (rpf-1) and M30 (rpf-2) suggests that their RpfFs have also a thioesterase activity that facilitates the release of unspecific FAs to the medium in addition to DSF. Production of DSF in rpf-1 strains appears in fact to be modulated by some of these extracellular FAs in addition to other factors such as temperature and nutrients, while in rpf-2 strains DSF biosynthesis is derepressed only upon detection of DSF itself, suggesting that they require cohabitation with DSF-producer bacteria to activate their DSF regulatory machinery. Finally, we show that the mixed rpf-1/rpf-2 population presents synergism in DSF production and virulence capacity in an in vivo infection model. Recovery and quantification of DSF from co-infected animals correlates with the observed mortality rate. PMID:26284046

  7. Characterization of Type 2 Quorum Sensing in Klebsiella pneumoniae and Relationship with Biofilm Formation

    PubMed Central

    Balestrino, Damien; Haagensen, Janus A. J.; Rich, Chantal; Forestier, Christiane

    2005-01-01

    Quorum sensing is a process by which bacteria communicate by using secreted chemical signaling molecules called autoinducers. Many bacterial species modulate the expression of a wide variety of physiological functions in response to changes in population density by this mechanism. In this study, the opportunistic pathogen Klebsiella pneumoniae was observed to secrete type 2 signaling molecules. A homologue of luxS, the gene required for AI-2 synthesis in Vibrio harveyi, was isolated from the K. pneumoniae genome. A V. harveyi bioassay showed the luxS functionality in K. pneumoniae and its ability to complement the luxS-negative phenotype of Escherichia coli DH5?. Autoinducer activity was detected in the supernatant, and maximum expression of specific messengers detected by quantitative reverse transcription-PCR analysis occurred during the late exponential phase. The highest levels of AI-2 were observed in minimal medium supplemented with glycerol. To determine the potential role of luxS in colonization processes, a K. pneumoniae luxS isogenic mutant was constructed and tested for its capacity to form biofilms in vitro on an abiotic surface and to colonize the intestinal tract in a murine model. No difference was observed in the level of intestinal colonization between the wild-type strain and the luxS mutant. Microscopic analysis of biofilm structures revealed that the luxS mutant was able to form a mature biofilm but with reduced capacities in the development of microcolonies, mostly in the early steps of biofilm formation. These data suggest that a LuxS-dependent signal plays a role in the early stages of biofilm formation by K. pneumoniae. PMID:15805533

  8. CqsA-CqsS quorum-sensing signal-receptor specificity in Photobacterium angustum

    PubMed Central

    Ke, Xiaobo; Miller, Laura C.; Ng, Wai-Leung; Bassler, Bonnie L.

    2014-01-01

    Summary Quorum sensing (QS) is a process of bacterial cell-cell communication that relies on the production, detection, and population-wide response to extracellular signal molecules called autoinducers. The QS system commonly found in vibrios and photobacteria consists of the CqsA synthase/CqsS receptor pair. Vibrio cholerae CqsA/S synthesizes and detects (S)-3-hydroxytridecan-4-one (C10-CAI-1), whereas Vibrio harveyi produces and detects a distinct but similar molecule, (Z)-3-aminoundec-2-en-4-one (Ea-C8-CAI-1). To understand the signaling properties of the larger family of CqsA-CqsS pairs, here, we characterize the Photobacterium angustum CqsA/S system. Many photobacterial cqsA genes harbor a conserved frameshift mutation that abolishes CAI-1 production. By contrast, their cqsS genes are intact. Correcting the P. angustum cqsA reading frame restores production of a mixture of CAI-1 moieties, including C8-CAI-1, C10-CAI-1, Ea-C8-CAI-1 and Ea-C10-CAI-1. This signal production profile matches the P. angustum CqsS receptor ligand-detection capability. The receptor exhibits a preference for molecules with 10-carbon tails, and the CqsS Ser168 residue governs this preference. P. angustum can overcome the cqsA frameshift to produce CAI-1 under particular limiting growth conditions presumably through a ribosome slippage mechanism. Thus, we propose that P. angustum uses CAI-1 signaling for adaptation to stressful environments. PMID:24372841

  9. Regulation of Uptake and Processing of the Quorum-Sensing Autoinducer AI-2 in Escherichia coli

    PubMed Central

    Xavier, Karina B.; Bassler, Bonnie L.

    2005-01-01

    AI-2 is a quorum-sensing signaling molecule proposed to be involved in interspecies communication. In Escherichia coli and Salmonella enterica serovar Typhimurium, extracellular AI-2 accumulates in exponential phase, but the amount decreases drastically upon entry into stationary phase. In S. enterica serovar Typhimurium, the reduction in activity is due to import and processing of AI-2 by the Lsr transporter. We show that the Lsr transporter is functional in E. coli, and screening for mutants defective in AI-2 internalization revealed lsrK and glpD. Unlike the wild type, lsrK and glpD mutants do not activate transcription of the lsr operon in response to AI-2. lsrK encodes the AI-2 kinase, and the lsrK mutant fails to activate lsr expression because it cannot produce phospho-AI-2, which is the lsr operon inducer. glpD encodes the glycerol-3-phosphate (G3P) dehydrogenase, which is involved in glycerol and G3P metabolism. G3P accumulates in the glpD mutant and represses lsr transcription by preventing cyclic AMP (cAMP)-catabolite activator protein (CAP)-dependent activation. Dihydroxyacetone phosphate (DHAP) also accumulates in the glpD mutant, and DHAP represses lsr transcription by a cAMP-CAP-independent mechanism involving LsrR, the lsr operon repressor. The requirement for cAMP-CAP in lsr activation explains why AI-2 persists in culture fluids of bacteria grown in media containing sugars that cause catabolite repression. These findings show that, depending on the prevailing growth conditions, the amount of time that the AI-2 signal is present and, in turn, the time that a given community of bacteria remains exposed to this signal can vary greatly. PMID:15601708

  10. Quercetin Sensitizes Fluconazole-Resistant Candida albicans To Induce Apoptotic Cell Death by Modulating Quorum Sensing

    PubMed Central

    Singh, B. R.; Pandey, G.; Verma, S.; Roy, S.; Naqvi, A. H.

    2015-01-01

    Quorum sensing (QS) regulates group behaviors of Candida albicans such as biofilm, hyphal growth, and virulence factors. The sesquiterpene alcohol farnesol, a QS molecule produced by C. albicans, is known to regulate the expression of virulence weapons of this fungus. Fluconazole (FCZ) is a broad-spectrum antifungal drug that is used for the treatment of C. albicans infections. While FCZ can be cytotoxic at high concentrations, our results show that at much lower concentrations, quercetin (QC), a dietary flavonoid isolated from an edible lichen (Usnea longissima), can be implemented as a sensitizing agent for FCZ-resistant C. albicans NBC099, enhancing the efficacy of FCZ. QC enhanced FCZ-mediated cell killing of NBC099 and also induced cell death. These experiments indicated that the combined application of both drugs was FCZ dose dependent rather than QC dose dependent. In addition, we found that QC strongly suppressed the production of virulence weapons—biofilm formation, hyphal development, phospholipase, proteinase, esterase, and hemolytic activity. Treatment with QC also increased FCZ-mediated cell death in NBC099 biofilms. Interestingly, we also found that QC enhances the anticandidal activity of FCZ by inducing apoptotic cell death. We have also established that this sensitization is reliant on the farnesol response generated by QC. Molecular docking studies also support this conclusion and suggest that QC can form hydrogen bonds with Gln969, Thr1105, Ser1108, Arg1109, Asn1110, and Gly1061 in the ATP binding pocket of adenylate cyclase. Thus, this QS-mediated combined sensitizer (QC)-anticandidal agent (FCZ) strategy may be a novel way to enhance the efficacy of FCZ-based therapy of C. albicans infections. PMID:25645848

  11. Quorum sensing-regulated chitin metabolism provides grazing resistance to Vibrio cholerae biofilms

    PubMed Central

    Sun, Shuyang; Tay, Qi Xiang Martin; Kjelleberg, Staffan; Rice, Scott A; McDougald, Diane

    2015-01-01

    Association of Vibrio cholerae with chitinous surfaces of zooplankton is important for its persistence in marine environments, as it provides accessibility to nutrients and resistance to stresses. Predation by heterotrophic protists has a major impact on the survival of V. cholerae. V. cholerae forms biofilms as its main defensive strategy, and quorum sensing (QS) additionally regulates the production of antiprotozoal factors. The role of chitin and QS regulation in V. cholerae grazing resistance was investigated by exposing V. cholerae wild-type (WT) and QS mutant biofilms grown on chitin flakes to the bacteriotrophic, surface-feeding flagellate Rhynchomonas nasuta. V. cholerae formed more biofilm biomass on chitin flakes compared with nonchitinous surfaces. The growth of R. nasuta was inhibited by WT biofilms grown on chitin flakes, whereas the inhibition was attenuated in QS mutant biofilms. The chitin-dependent toxicity was also observed when the V. cholerae biofilms were developed under continuous flow or grown on a natural chitin source, the exoskeleton of Artemia. In addition, the antiprotozoal activity and ammonium concentration of V. cholerae biofilm supernatants were quantified. The ammonium levels (3.5 mM) detected in the supernatants of V. cholerae WT biofilms grown on chitin flakes were estimated to reduce the number of R. nasuta by >80% in add-back experiments, and the supernatant of QS mutant biofilms was less toxic owing to a decrease in ammonium production. Transcriptomic analysis revealed that the majority of genes involved in chitin metabolism and chemotaxis were significantly downregulated in QS mutant biofilms when grown on chitin compared with the WT biofilms. PMID:25615438

  12. Biofilm Formation and Quorum-Sensing-Molecule Production by Clinical Isolates of Serratia liquefaciens

    PubMed Central

    Remuzgo-Martínez, Sara; Lázaro-Díez, María; Mayer, Celia; Aranzamendi-Zaldumbide, Maitane; Padilla, Daniel; Calvo, Jorge; Marco, Francesc; Martínez-Martínez, Luis; Icardo, José Manuel; Otero, Ana

    2015-01-01

    Serratia spp. are opportunistic human pathogens responsible for an increasing number of nosocomial infections. However, little is known about the virulence factors and regulatory circuits that may enhance the establishment and long-term survival of Serratia liquefaciens in the hospital environment. In this study, two reporter strains, Chromobacterium violaceum CV026 and VIR24, and high-resolution triple-quadrupole liquid chromatography–mass spectrometry (LC-MS) were used to detect and to quantify N-acyl-homoserine lactone (AHL) quorum-sensing signals in 20 S. liquefaciens strains isolated from clinical samples. Only four of the strains produced sufficient amounts of AHLs to activate the sensors. Investigation of two of the positive strains by high-performance liquid chromatography (HPLC)-MS confirmed the presence of significant amounts of short-acyl-chain AHLs (N-butyryl-l-homoserine lactone [C4-HSL] and N-hexanoyl-l-homoserine lactone [C6-HSL]) in both strains, which exhibited a complex and strain-specific signal profile that included minor amounts of other short-acyl-chain AHLs (N-octanoyl-l-homoserine lactone [C8-HSL] and N-3-oxohexanoyl-l-homoserine lactone [OC6-HSL]) and long-acyl-chain (C10, C12, and C14) AHLs. No correlation between biofilm formation and the production of large amounts of AHLs could be established. Fimbria-like structures were observed by transmission electron microscopy, and the presence of the type 1 fimbrial adhesin gene fimH in all strains was confirmed by PCR. The ability of S. liquefaciens to adhere to abiotic surfaces and to form biofilms likely contributes to its persistence in the hospital environment, increasing the probability of causing nosocomial infections. Therefore, a better understanding of the adherence properties of this species will provide greater insights into the diseases it causes. PMID:25746999

  13. Quorum sensing-regulated chitin metabolism provides grazing resistance to Vibrio cholerae biofilms.

    PubMed

    Sun, Shuyang; Tay, Qi Xiang Martin; Kjelleberg, Staffan; Rice, Scott A; McDougald, Diane

    2015-08-01

    Association of Vibrio cholerae with chitinous surfaces of zooplankton is important for its persistence in marine environments, as it provides accessibility to nutrients and resistance to stresses. Predation by heterotrophic protists has a major impact on the survival of V. cholerae. V. cholerae forms biofilms as its main defensive strategy, and quorum sensing (QS) additionally regulates the production of antiprotozoal factors. The role of chitin and QS regulation in V. cholerae grazing resistance was investigated by exposing V. cholerae wild-type (WT) and QS mutant biofilms grown on chitin flakes to the bacteriotrophic, surface-feeding flagellate Rhynchomonas nasuta. V. cholerae formed more biofilm biomass on chitin flakes compared with nonchitinous surfaces. The growth of R. nasuta was inhibited by WT biofilms grown on chitin flakes, whereas the inhibition was attenuated in QS mutant biofilms. The chitin-dependent toxicity was also observed when the V. cholerae biofilms were developed under continuous flow or grown on a natural chitin source, the exoskeleton of Artemia. In addition, the antiprotozoal activity and ammonium concentration of V. cholerae biofilm supernatants were quantified. The ammonium levels (3.5 mM) detected in the supernatants of V. cholerae WT biofilms grown on chitin flakes were estimated to reduce the number of R. nasuta by >80% in add-back experiments, and the supernatant of QS mutant biofilms was less toxic owing to a decrease in ammonium production. Transcriptomic analysis revealed that the majority of genes involved in chitin metabolism and chemotaxis were significantly downregulated in QS mutant biofilms when grown on chitin compared with the WT biofilms. PMID:25615438

  14. Serum Lipoproteins Are Critical for Pulmonary Innate Defense against Staphylococcus aureus Quorum Sensing.

    PubMed

    Manifold-Wheeler, Brett C; Elmore, Bradley O; Triplett, Kathleen D; Castleman, Moriah J; Otto, Michael; Hall, Pamela R

    2016-01-01

    Hyperlipidemia has been extensively studied in the context of atherosclerosis, whereas the potential health consequences of the opposite extreme, hypolipidemia, remain largely uninvestigated. Circulating lipoproteins are essential carriers of insoluble lipid molecules and are increasingly recognized as innate immune effectors. Importantly, severe hypolipidemia, which may occur with trauma or critical illness, is clinically associated with bacterial pneumonia. To test the hypothesis that circulating lipoproteins are essential for optimal host innate defense in the lung, we used lipoprotein-deficient mice and a mouse model of Staphylococcus aureus pneumonia in which invasive infection requires virulence factor expression controlled by the accessory gene regulator (agr) operon. Activation of agr and subsequent virulence factor expression is inhibited by apolipoprotein B, the structural protein of low-density lipoprotein, which binds and sequesters the secreted agr-signaling peptide (AIP). In this article, we report that lipoprotein deficiency impairs early pulmonary innate defense against S. aureus quorum-sensing-dependent pathogenesis. Specifically, apolipoprotein B levels in the lung early postinfection are significantly reduced with lipoprotein deficiency, coinciding with impaired host control of S. aureus agr-signaling and increased agr-dependent morbidity (weight loss) and inflammation. Given that lipoproteins also inhibit LTA- and LPS-mediated inflammation, these results suggest that hypolipidemia may broadly impact posttrauma pneumonia susceptibility to both Gram-positive and -negative pathogens. Together with previous reports demonstrating that hyperlipidemia also impairs lung innate defense, these results suggest that maintenance of normal serum lipoprotein levels is necessary for optimal host innate defense in the lung. PMID:26608923

  15. Quorum-sensing inhibitory compounds from extremophilic microorganisms isolated from a hypersaline cyanobacterial mat.

    PubMed

    Abed, Raeid M M; Dobretsov, Sergey; Al-Fori, Marwan; Gunasekera, Sarath P; Sudesh, Kumar; Paul, Valerie J

    2013-07-01

    In this study, extremely halophilic and moderately thermophilic microorganisms from a hypersaline microbial mat were screened for their ability to produce antibacterial, antidiatom, antialgal, and quorum-sensing (QS) inhibitory compounds. Five bacterial strains belonging to the genera Marinobacter and Halomonas and one archaeal strain belonging to the genus Haloterrigena were isolated from a microbial mat. The strains were able to grow at a maximum salinity of 22-25 % and a maximum temperature of 45-60 °C. Hexanes, dichloromethane, and butanol extracts from the strains inhibited the growth of at least one out of nine human pathogens. Only butanol extracts of supernatants of Halomonas sp. SK-1 inhibited growth of the microalga Dunaliella salina. Most extracts from isolates inhibited QS of the acyl homoserine lactone producer and reporter Chromobacterium violaceum CV017. Purification of QS inhibitory dichloromethane extracts of Marinobacter sp. SK-3 resulted in isolation of four related diketopiperazines (DKPs): cyclo(L-Pro-L-Phe), cyclo(L-Pro-L-Leu), cyclo(L-Pro-L-isoLeu), and cyclo(L-Pro-D-Phe). QS inhibitory properties of these DKPs were tested using C. violaceum CV017 and Escherichia coli-based QS reporters (pSB401 and pSB1075) deficient in AHL production. Cyclo(L-Pro-L-Phe) and cyclo(L-Pro-L-isoLeu) inhibited QS-dependent production of violacein by C. violaceum CV017. Cyclo(L-Pro-L-Phe), cyclo(L-Pro-L-Leu), and cyclo(L-Pro-L-isoLeu) reduced QS-dependent luminescence of the reporter E. coli pSB401 induced by 3-oxo-C6-HSL. Our study demonstrated the ability of halophilic and moderately thermophilic strains from a hypersaline microbial mat to produce biotechnologically relevant compounds that could be used as antifouling agents. PMID:23645384

  16. Inhibition of quorum sensing (QS) in Yersinia enterocolitica by an orange extract rich in glycosylated flavanones.

    PubMed

    Truchado, Pilar; Giménez-Bastida, Juan-Antonio; Larrosa, Mar; Castro-Ibáñez, Irene; Espín, Juan Carlos; Tomás-Barberán, Francisco A; García-Conesa, María Teresa; Allende, Ana

    2012-09-12

    Flavanones, flavonoids abundant in Citrus , have been shown to interfere with quorum sensing (QS) and affect related physiological processes. We have investigated the QS-inhibitory effects of an orange extract enriched in O-glycosylated flavanones (mainly naringin, neohesperidin, and hesperidin). The QS-inhibitory capacity of this extract and its main flavanone components was first screened using the bacteriological monitoring system Chromobacterium violaceum . We next examined the ability of the orange extract and of some of the flavanones to (i) reduce the levels of the QS mediators produced by Y. enterocolitica using HPLC-MS/MS, (ii) inhibit biofilm formation, and (iii) inhibit swimming and swarming motility. Additionally, we evaluated changes in the expression of specific genes involved in the synthesis of the lactones (yenI, yenR) and in the flagellar regulon (flhDC, fleB, fliA) by RT-PCR. The results showed that the orange extract and its main flavanone components inhibited QS in C. violaceum, diminished the levels of lactones secreted by Y. enterocolitica to the media, and decreased QS-associated biofilm maturation without affecting bacterial growth. Among the tested compounds, naringin was found to inhibit swimming motility. Exposure to the orange extract and (or) to naringin was also found to be associated with induction of the transcription levels of yenR, flhDC, and fliA. This work shows the in vitro QS-inhibitory effects of an orange extract enriched in flavanones against a human enteropathogen at doses that can be achieved through the diet and suggests that consumption of these natural extracts may have a beneficial antipathogenic effect. PMID:22533445

  17. Global Analysis of Quorum Sensing Targets in the Intracellular Pathogen Brucella melitensis 16 M

    PubMed Central

    2010-01-01

    Many pathogenic bacteria use a regulatory process termed quorum sensing (QS) to produce and detect small diffusible molecules to synchronize gene expression within a population. In Gram-negative bacteria, the detection of, and response to, these molecules depends on transcriptional regulators belonging to the LuxR family. Such a system has been discovered in the intracellular pathogen Brucella melitensis, a Gram-negative bacterium responsible for brucellosis, a worldwide zoonosis that remains a serious public health concern in countries were the disease is endemic. Genes encoding two LuxR-type regulators, VjbR and BabR, have been identified in the genome of B. melitensis 16 M. A ?vjbR mutant is highly attenuated in all experimental models of infection tested, suggesting a crucial role for QS in the virulence of Brucella. At present, no function has been attributed to BabR. The experiments described in this report indicate that 5% of the genes in the B. melitensis 16 M genome are regulated by VjbR and/or BabR, suggesting that QS is a global regulatory system in this bacterium. The overlap between BabR and VjbR targets suggest a cross-talk between these two regulators. Our results also demonstrate that VjbR and BabR regulate many genes and/or proteins involved in stress response, metabolism, and virulence, including those potentially involved in the adaptation of Brucella to the oxidative, pH, and nutritional stresses encountered within the host. These findings highlight the involvement of QS as a major regulatory system in Brucella and lead us to suggest that this regulatory system could participate in the spatial and sequential adaptation of Brucella strains to the host environment. PMID:20387905

  18. The DSF quorum sensing system controls the positive influence of Stenotrophomonas maltophilia on plants.

    PubMed

    Alavi, Peyman; Müller, Henry; Cardinale, Massimiliano; Zachow, Christin; Sánchez, María B; Martínez, José Luis; Berg, Gabriele

    2013-01-01

    The interaction of the Gram-negative bacterium Stenotrophomonas maltophilia with eukaryotes can improve overall plant growth and health, but can also cause opportunistic infections in humans. While the quorum sensing molecule DSF (diffusible signal factor) is responsible for the regulation of phenotypes in pathogenic Stenotrophomonas, up until now, no beneficial effects were reported to be controlled by it. Our objective was to study the function of DSF in the plant growth promoting model strain S. maltophilia R551-3 using functional and transcriptomic analyses. For this purpose, we compared the wild-type strain with a mutant deficient in the rpfF (regulation of pathogenicity factors) gene that is essential for the synthesis of DSF. Oilseed rape seeds treated with the wild-type strain showed a statistically significant increase in germination rate compared with those treated with the rpfF mutant. Similarly, the wild-type strain exhibited better plant growth promotion and a greater efficiency in colonizing oilseed rape compared to the mutant strain. Moreover, only the wild-type was capable of forming structured cell aggregates both in vitro and in the rhizosphere, a characteristic mediated by DSF. Gene transcription analyses showed that numerous genes known to play a role in plant colonization (e.g. chemotaxis, cell motility, biofilm formation, multidrug efflux pumps) are controlled by the rpf/DSF system in S. maltophilia. In addition, we detected new potential functions of spermidine, primarily for both growth promotion and stress protection. Overall, our results showed a correspondence between the regulation of DSF and the positive interaction effect with the plant host. PMID:23874407

  19. The Fungal Quorum-Sensing Molecule Farnesol Activates Innate Immune Cells but Suppresses Cellular Adaptive Immunity

    PubMed Central

    Leonhardt, Ines; Spielberg, Steffi; Weber, Michael; Albrecht-Eckardt, Daniela; Bläss, Markus; Claus, Ralf; Barz, Dagmar; Scherlach, Kirstin; Hertweck, Christian; Löffler, Jürgen; Hünniger, Kerstin

    2015-01-01

    ABSTRACT Farnesol, produced by the polymorphic fungus Candida albicans, is the first quorum-sensing molecule discovered in eukaryotes. Its main function is control of C. albicans filamentation, a process closely linked to pathogenesis. In this study, we analyzed the effects of farnesol on innate immune cells known to be important for fungal clearance and protective immunity. Farnesol enhanced the expression of activation markers on monocytes (CD86 and HLA-DR) and neutrophils (CD66b and CD11b) and promoted oxidative burst and the release of proinflammatory cytokines (tumor necrosis factor alpha [TNF-α] and macrophage inflammatory protein 1 alpha [MIP-1α]). However, this activation did not result in enhanced fungal uptake or killing. Furthermore, the differentiation of monocytes to immature dendritic cells (iDC) was significantly affected by farnesol. Several markers important for maturation and antigen presentation like CD1a, CD83, CD86, and CD80 were significantly reduced in the presence of farnesol. Furthermore, farnesol modulated migrational behavior and cytokine release and impaired the ability of DC to induce T cell proliferation. Of major importance was the absence of interleukin 12 (IL-12) induction in iDC generated in the presence of farnesol. Transcriptome analyses revealed a farnesol-induced shift in effector molecule expression and a down-regulation of the granulocyte-macrophage colony-stimulating factor (GM-CSF) receptor during monocytes to iDC differentiation. Taken together, our data unveil the ability of farnesol to act as a virulence factor of C. albicans by influencing innate immune cells to promote inflammation and mitigating the Th1 response, which is essential for fungal clearance. PMID:25784697

  20. Quorum Sensing Coordinates Brute Force and Stealth Modes of Infection in the Plant Pathogen Pectobacterium atrosepticum

    PubMed Central

    Liu, Hui; Coulthurst, Sarah J.; Pritchard, Leighton; Hedley, Peter E.; Ravensdale, Michael; Humphris, Sonia; Burr, Tom; Takle, Gunnhild; Brurberg, May-Bente; Birch, Paul R. J.; Salmond, George P. C.; Toth, Ian K.

    2008-01-01

    Quorum sensing (QS) in vitro controls production of plant cell wall degrading enzymes (PCWDEs) and other virulence factors in the soft rotting enterobacterial plant pathogen Pectobacterium atrosepticum (Pba). Here, we demonstrate the genome-wide regulatory role of QS in vivo during the Pba–potato interaction, using a Pba-specific microarray. We show that 26% of the Pba genome exhibited differential transcription in a QS (expI-) mutant, compared to the wild-type, suggesting that QS may make a greater contribution to pathogenesis than previously thought. We identify novel components of the QS regulon, including the Type I and II secretion systems, which are involved in the secretion of PCWDEs; a novel Type VI secretion system (T6SS) and its predicted substrates Hcp and VgrG; more than 70 known or putative regulators, some of which have been demonstrated to control pathogenesis and, remarkably, the Type III secretion system and associated effector proteins, and coronafacoyl-amide conjugates, both of which play roles in the manipulation of plant defences. We show that the T6SS and a novel potential regulator, VirS, are required for full virulence in Pba, and propose a model placing QS at the apex of a regulatory hierarchy controlling the later stages of disease progression in Pba. Our findings indicate that QS is a master regulator of phytopathogenesis, controlling multiple other regulators that, in turn, co-ordinately regulate genes associated with manipulation of host defences in concert with the destructive arsenal of PCWDEs that manifest the soft rot disease phenotype. PMID:18566662

  1. Impact of Azithromycin on the Quorum Sensing-Controlled Proteome of Pseudomonas aeruginosa

    PubMed Central

    Swatton, J. E.; Davenport, P. W.; Maunders, E. A.; Griffin, J. L.; Lilley, K. S.; Welch, M.

    2016-01-01

    The macrolide antibiotic, azithromycin (AZM), has been reported to improve the clinical outcome of cystic fibrosis patients, many of whom are chronically-infected with Pseudomonas aeruginosa. However, the highest clinically-achievable concentrations of this drug are well-below the minimum inhibitory concentration for P. aeruginosa, raising the question of why AZM exhibits therapeutic activity. One possibility that has been raised by earlier studies is that AZM inhibits quorum sensing (QS) by P. aeruginosa. To explicitly test this hypothesis the changes brought about by AZM treatment need to be compared with those associated with specific QS mutants grown alongside in the same growth medium, but this has not been done. In this work, we used quantitative 2D-difference gel electrophoresis and 1H-NMR spectroscopy footprint analysis to examine whether a range of clinically-relevant AZM concentrations elicited proteomic and metabolomic changes in wild-type cultures that were similar to those seen in cultures of defined QS mutants. Consistent with earlier reports, over half of the AZM-induced spot changes on the 2D gels were found to affect QS-regulated proteins. However, AZM modulated very few protein spots overall (compared with QS) and collectively, these modulated proteins comprised only a small fraction (12–13%) of the global QS regulon. We conclude that AZM perturbs a sub-regulon of the QS system but does not block QS per se. Reinforcing this notion, we further show that AZM is capable of attenuating virulence factor production in another Gram-negative species that secretes copious quantities of exoenzymes (Serratia marcescens), even in the absence of a functional QS system. PMID:26808156

  2. Interference of quorum sensing in urinary pathogen Serratia marcescens by Anethum graveolens.

    PubMed

    Salini, Ramesh; Pandian, Shunmugiah Karutha

    2015-08-01

    Serratia marcescens is an opportunistic turned obligate pathogen frequently associated with urinary tract infections (UTI) and are multidrug resistant at most instances. Quorum sensing (QS) system, a population-dependent global regulatory system, controls the pathogenesis machinery of S. marcescens as it does in other pathogens. In the present study, methanol extract of a common herb and spice, Anethum graveolens (AGME) was assessed for its anti-QS potential against the clinical isolate of S. marcescens. AGME notably reduced the biofilm formation and QS-dependent virulence factors production in a concentration-dependent manner (64-1024 μg mL(-1)). The light and confocal microscopic images clearly evidenced the antibiofilm activity of AGME (256 μg mL(-1)) at its minimal biofilm inhibitory concentration. Besides, in support of biochemical assays, the expression analysis of QS-regulated genes fimC, bsmA and flhD which are crucial for initial adhesion and motility confirmed their downregulation upon exposure to AGME. LC-MS analysis of AGME revealed 3-O-methyl ellagic acid (3-O-ME) as one of its active principles having nearly similar antibiofilm activity and a reduced inhibition of prodigiosin (27%) and protease (15%) compared to AGME [prodigiosin (47%) and protease (50%)]. UFLC analysis revealed that 0.355 mg g(-1) of 3-O-ME was present in the AGME. AGME and the 3-O-ME significantly interfered the QS system of a QS model strain S. marcescens MG1 and its mutant S. marcescens MG44 which in turn corroborates the anti-QS mechanism of AGME. PMID:26013821

  3. Cold Plasma Inactivation of Bacterial Biofilms and Reduction of Quorum Sensing Regulated Virulence Factors

    PubMed Central

    Ziuzina, Dana; Boehm, Daniela; Patil, Sonal; Cullen, P. J.; Bourke, Paula

    2015-01-01

    The main objectives of this work were to investigate the effect of atmospheric cold plasma (ACP) against a range of microbial biofilms commonly implicated in foodborne and healthcare associated human infections and against P. aeruginosa quorum sensing (QS)-regulated virulence factors, such as pyocyanin, elastase (Las B) and biofilm formation capacity post-ACP treatment. The effect of processing factors, namely treatment time and mode of plasma exposure on antimicrobial activity of ACP were also examined. Antibiofilm activity was assessed for E. coli, L. monocytogenes and S. aureus in terms of reduction of culturability and retention of metabolic activity using colony count and XTT assays, respectively. All samples were treated ‘inpack’ using sealed polypropylene containers with a high voltage dielectric barrier discharge ACP generated at 80 kV for 0, 60, 120 and 300 s and a post treatment storage time of 24 h. According to colony counts, ACP treatment for 60 s reduced populations of E. coli to undetectable levels, whereas 300 s was necessary to significantly reduce populations of L. monocytogenes and S. aureus biofilms. The results obtained from XTT assay indicated possible induction of viable but non culturable state of bacteria. With respect to P. aeruginosa QS-related virulence factors, the production of pyocyanin was significantly inhibited after short treatment times, but reduction of elastase was notable only after 300 s and no reduction in actual biofilm formation was achieved post-ACP treatment. Importantly, reduction of virulence factors was associated with reduction of the cytotoxic effects of the bacterial supernatant on CHO-K1 cells, regardless of mode and duration of treatment. The results of this study point to ACP technology as an effective strategy for inactivation of established biofilms and may play an important role in attenuation of virulence of pathogenic bacteria. Further investigation is warranted to propose direct evidence for the inhibition of QS and mechanisms by which this may occur. PMID:26390435

  4. Quadruple Quorum-Sensing Inputs Control Vibrio cholerae Virulence and Maintain System Robustness

    PubMed Central

    Jung, Sarah A.; Chapman, Christine A.; Ng, Wai-Leung

    2015-01-01

    Bacteria use quorum sensing (QS) for cell-cell communication to carry out group behaviors. This intercellular signaling process relies on cell density-dependent production and detection of chemical signals called autoinducers (AIs). Vibrio cholerae, the causative agent of cholera, detects two AIs, CAI-1 and AI-2, with two histidine kinases, CqsS and LuxQ, respectively, to control biofilm formation and virulence factor production. At low cell density, these two signal receptors function in parallel to activate the key regulator LuxO, which is essential for virulence of this pathogen. At high cell density, binding of AIs to their respective receptors leads to deactivation of LuxO and repression of virulence factor production. However, mutants lacking CqsS and LuxQ maintain a normal LuxO activation level and remain virulent, suggesting that LuxO is activated by additional, unidentified signaling pathways. Here we show that two other histidine kinases, CqsR (formerly known as VC1831) and VpsS, act upstream in the central QS circuit of V. cholerae to activate LuxO. V. cholerae strains expressing any one of these four receptors are QS proficient and capable of colonizing animal hosts. In contrast, mutants lacking all four receptors are phenotypically identical to LuxO-defective mutants. Importantly, these four functionally redundant receptors act together to prevent premature induction of a QS response caused by signal perturbations. We suggest that the V. cholerae QS circuit is composed of quadruple sensory inputs and has evolved to be refractory to sporadic AI level perturbations. PMID:25874462

  5. Pseudomonas aeruginosa Lon and ClpXP proteases: roles in linking carbon catabolite repression system with quorum-sensing system.

    PubMed

    Yang, Nana; Lan, Lefu

    2016-02-01

    Quorum sensing (QS) plays critical roles in virulence gene expression and the pathogenesis of Pseudomonas aeruginosa, an important human pathogen. However, the regulatory effects, especially that occur directly upstream of the QS system, remain largely unknown. Here, we review recent advances in the understanding of the key component of carbon catabolite repression (CCR) system and protein quality control (PQC) system in regulating the QS system in P. aeruginosa. We propose that PQC proteases Lon and ClpXP may have an important role in linking CCR with QS, and thus contribute to the integration of nutritional cues into the regulatory network governing the virulence factors expression in P. aeruginosa. PMID:26045103

  6. Guava leaf extract inhibits quorum-sensing and Chromobacterium violaceum induced lysis of human hepatoma cells: whole transcriptome analysis reveals differential gene expression.

    PubMed

    Ghosh, Runu; Tiwary, Bipransh Kumar; Kumar, Anoop; Chakraborty, Ranadhir

    2014-01-01

    Quorum sensing (QS) is a process mediated via small molecules termed autoinducers (AI) that allow bacteria to respond and adjust according to the cell population density by altering the expression of multitudinous genes. Since QS governs numerous bioprocesses in bacteria, including virulence, its inhibition promises to be an ideal target for the development of novel therapeutics. We found that the aqueous leaf extract of Psidium guajava (GLE) exhibited anti-QS properties as evidenced by inhibition of violacein production in Chromobacterium violaceum and swarming motility of Pseudomonas aeruginosa. The gram-negative bacterium, C. violaceum is a rare pathogen with high mortality rate. In this study, perhaps for the first time, we identified the target genes of GLE in C. violaceum MTCC 2656 by whole transcriptome analysis on Ion Torrent. Our data revealed that GLE significantly down-regulated 816 genes at least three fold, with p value ≤ 0.01, which comprises 19% of the C. violaceum MTCC 2656 genome. These genes were distributed throughout the genome and were associated with virulence, motility and other cellular processes, many of which have been described as quorum regulated in C. violaceum and other gram negative bacteria. Interestingly, GLE did not affect the growth of the bacteria. However, consistent with the gene expression pattern, GLE treated C. violaceum cells were restrained from causing lysis of human hepatoma cell line, HepG2, indicating a positive relationship between the QS-regulated genes and pathogenicity. Overall, our study proposes GLE as a QS inhibitor (QSI) with the ability to attenuate virulence without affecting growth. To the best of our knowledge, this is the first report which provides with a plausible set of candidate genes regulated by the QS system in the neglected pathogen C. violaceum. PMID:25229331

  7. Guava Leaf Extract Inhibits Quorum-Sensing and Chromobacterium violaceum Induced Lysis of Human Hepatoma Cells: Whole Transcriptome Analysis Reveals Differential Gene Expression

    PubMed Central

    Tiwary, Bipransh Kumar; Kumar, Anoop

    2014-01-01

    Quorum sensing (QS) is a process mediated via small molecules termed autoinducers (AI) that allow bacteria to respond and adjust according to the cell population density by altering the expression of multitudinous genes. Since QS governs numerous bioprocesses in bacteria, including virulence, its inhibition promises to be an ideal target for the development of novel therapeutics. We found that the aqueous leaf extract of Psidium guajava (GLE) exhibited anti-QS properties as evidenced by inhibition of violacein production in Chromobacterium violaceum and swarming motility of Pseudomonas aeruginosa. The gram-negative bacterium, C. violaceum is a rare pathogen with high mortality rate. In this study, perhaps for the first time, we identified the target genes of GLE in C. violaceum MTCC 2656 by whole transcriptome analysis on Ion Torrent. Our data revealed that GLE significantly down-regulated 816 genes at least three fold, with p value?0.01, which comprises 19% of the C. violaceum MTCC 2656 genome. These genes were distributed throughout the genome and were associated with virulence, motility and other cellular processes, many of which have been described as quorum regulated in C. violaceum and other gram negative bacteria. Interestingly, GLE did not affect the growth of the bacteria. However, consistent with the gene expression pattern, GLE treated C. violaceum cells were restrained from causing lysis of human hepatoma cell line, HepG2, indicating a positive relationship between the QS-regulated genes and pathogenicity. Overall, our study proposes GLE as a QS inhibitor (QSI) with the ability to attenuate virulence without affecting growth. To the best of our knowledge, this is the first report which provides with a plausible set of candidate genes regulated by the QS system in the neglected pathogen C. violaceum. PMID:25229331

  8. Mutational analysis of the quorum-sensing receptor LasR reveals interactions that govern activation and inhibition by non-lactone ligands

    PubMed Central

    Gerdt, Joseph P.; McInnis, Christine E.; Schell, Trevor L.; Rossi, Francis M.; Blackwell, Helen E.

    2014-01-01

    SUMMARY Gram-negative bacteria use N-acyl L-homoserine lactone (AHL) quorum sensing (QS) signals to regulate the expression of myriad phenotypes. Non-native AHL analogs can strongly attenuate QS receptor activity and thereby QS signaling; however, we currently lack a molecular understanding of the mechanisms by which most of these compounds elicit their agonistic or antagonistic profiles. In this study, we investigated the origins of striking activity profile switches (i.e., receptor activator to inhibitor, and vice versa) observed upon alteration of the lactone head group in certain AHL analogs. Reporter gene assays of mutant versions of the Pseudomonas aeruginosa QS receptor LasR revealed that interactions between the ligands and Trp60, Tyr56, and Ser129 govern whether these ligands behave as LasR activators or inhibitors. Using this knowledge, we propose a model for the modulation of LasR by AHL analogs—encompassing a subtly different interaction with the binding pocket to a global change in LasR conformation. PMID:25242287

  9. Synthetic analogs of bacterial quorum sensors

    SciTech Connect

    Iyer, Rashi S.; Ganguly, Kumkum; Silks, Louis A.

    2013-01-08

    Bacterial quorum-sensing molecule analogs having the following structures: ##STR00001## and methods of reducing bacterial pathogenicity, comprising providing a biological system comprising pathogenic bacteria which produce natural quorum-sensing molecule; providing a synthetic bacterial quorum-sensing molecule having the above structures and introducing the synthetic quorum-sensing molecule into the biological system comprising pathogenic bacteria. Further is provided a method of targeted delivery of an antibiotic, comprising providing a synthetic quorum-sensing molecule; chemically linking the synthetic quorum-sensing molecule to an antibiotic to produce a quorum-sensing molecule-antibiotic conjugate; and introducing the conjugate into a biological system comprising pathogenic bacteria susceptible to the antibiotic.

  10. Synthetic analogs of bacterial quorum sensors

    DOEpatents

    Iyer, Rashi (Los Alamos, NM); Ganguly, Kumkum (Los Alamos, NM); Silks, Louis A. (Los Alamos, NM)

    2011-12-06

    Bacterial quorum-sensing molecule analogs having the following structures: ##STR00001## and methods of reducing bacterial pathogenicity, comprising providing a biological system comprising pathogenic bacteria which produce natural quorum-sensing molecule; providing a synthetic bacterial quorum-sensing molecule having the above structures and introducing the synthetic quorum-sensing molecule into the biological system comprising pathogenic bacteria. Further is provided a method of targeted delivery of an antibiotic, comprising providing a synthetic quorum-sensing molecule; chemically linking the synthetic quorum-sensing molecule to an antibiotic to produce a quorum-sensing molecule-antibiotic conjugate; and introducing the conjugate into a biological system comprising pathogenic bacteria susceptible to the antibiotic.

  11. Inhibition of Quorum Sensing Mediated Virulence Factors Production in Urinary Pathogen Serratia marcescens PS1 by Marine Sponges.

    PubMed

    Annapoorani, Angusamy; Jabbar, Abdul Karim Kamil Abdul; Musthafa, Syed Khadar Syed; Pandian, Shunmugiah Karutha; Ravi, Arumugam Veera

    2012-06-01

    The focal intent of this study was to find out an alternative strategy for the antibiotic usage against bacterial infections. The quorum sensing inhibitory (QSI) activity of marine sponges collected from Palk Bay, India was evaluated against acyl homoserine lactone (AHL) mediated violacein production in Chromobacterium violaceum (ATCC 12472), CV026 and virulence gene expressions in clinical isolate Serratia marcescens PS1. Out of 29 marine sponges tested, the methanol extracts of Aphrocallistes bocagei (TS 8), Haliclona (Gellius) megastoma (TS 25) and Clathria atrasanguinea (TS 27) inhibited the AHL mediated violacein production in C. violaceum (ATCC 12472) and CV026. Further, these sponge extracts inhibited the AHL dependent prodigiosin pigment, virulence enzymes such as protease, hemolysin production and biofilm formation in S. marcescens PS1. However, these sponge extracts were not inhibitory to bacterial growth, which reveals the fact that the QSI activity of these extracts was not related to static or killing effects on bacteria. Based on the obtained results, it is envisaged that the marine sponges could pave the way to prevent quorum sensing (QS) mediated bacterial infections. PMID:23729876

  12. Detection of AI-2 Receptors in Genomes of Enterobacteriaceae Suggests a Role of Type-2 Quorum Sensing in Closed Ecosystems

    PubMed Central

    Rezzonico, Fabio; Smits, Theo H. M.; Duffy, Brion

    2012-01-01

    The LuxS enzyme, an S-ribosyl-homocysteine lyase, catalyzes the production of the signal precursor for autoinducer-2 mediated quorum sensing (QS-2) in Vibrio. Its widespread occurrence among bacteria is often considered the evidence for a universal language for interspecies communication. Presence of the luxS gene and production of the autoinducer-2 (AI-2) signal have repeatedly been the only evidences presented to assign a functional QS-2 to the most diverse species. In fact, LuxS has a primary metabolic role as part of the activated methyl cycle. In this review we have analyzed the distribution of QS-2 related genes in Enterobacteriaceae by moving the focus of the investigation from AI-2 production to the detection of potential AI-2 receptors. The latter are common in pathogens or endosymbionts of animals, but were also found in a limited number of Enterobacteriaceae of the genera Enterobacter, Klebsiella, and Pantoea that live in close association with plants or fungi. Although a precise function of QS-2 in these species has not been identified, they all show an endophytic or endosymbiontic lifestyle that suggests a role of type-2 quorum sensing in the adaptation to closed ecosystems. PMID:22778662

  13. Effects of allicin on the formation of Pseudomonas aeruginosa biofinm and the production of quorum-sensing controlled virulence factors.

    PubMed

    Lihua, Lin; Jianhuit, Wang; Jialini, Yu; Yayin, Li; Guanxin, Liu

    2013-01-01

    The Gram-negative Pseudomonas aeruginosa bacterial pathogen is reputed for its resistance to multiple antibiotics, and this property is strongly associated with the development of biofilms. Bacterial biofilms form by aggregation of microorganisms on a solid surface and secretion of an extracellular polysaccharide substances that acts as a physical protection barrier for the encased bacteria. In addition, the P aeruginosa quorum-sensing system contributes to antibiotic resistance by regulating the expression of several virulence factors, including exotoxin A, elastase, pyoverdin and rhamnolipid. The organosulfur compound allicin, derived from garlic, has been shown to inhibit both surface-adherence of bacteria and production of virulence factors. In this study, the effects of allicin on P aeruginosa biofilm formation and the production of quorum-sensing controlled virulence factors were investigated. The results demonstrated that allicin could inhibit early bacterial adhesion, reduce EPS secretion, and down-regulate virulence factors' production. Collectively, these findings suggest the potential of allicin as a therapeutic agent for controlling P aeruginosa biofilm. PMID:24459829

  14. Enterobacter asburiae Strain L1: Complete Genome and Whole Genome Optical Mapping Analysis of a Quorum Sensing Bacterium

    PubMed Central

    Lau, Yin Yin; Yin, Wai-Fong; Chan, Kok-Gan

    2014-01-01

    Enterobacter asburiae L1 is a quorum sensing bacterium isolated from lettuce leaves. In this study, for the first time, the complete genome of E. asburiae L1 was sequenced using the single molecule real time sequencer (PacBio RSII) and the whole genome sequence was verified by using optical genome mapping (OpGen) technology. In our previous study, E. asburiae L1 has been reported to produce AHLs, suggesting the possibility of virulence factor regulation which is quorum sensing dependent. This evoked our interest to study the genome of this bacterium and here we present the complete genome of E. asburiae L1, which carries the virulence factor gene virK, the N-acyl homoserine lactone-based QS transcriptional regulator gene luxR and the N-acyl homoserine lactone synthase gene which we firstly named easI. The availability of the whole genome sequence of E. asburiae L1 will pave the way for the study of the QS-mediated gene expression in this bacterium. Hence, the importance and functions of these signaling molecules can be further studied in the hope of elucidating the mechanisms of QS-regulation in E. asburiae. To the best of our knowledge, this is the first documentation of both a complete genome sequence and the establishment of the molecular basis of QS properties of E. asburiae. PMID:25196111

  15. The Vibrio cholerae quorum-sensing autoinducer CAI-1: analysis of the biosynthetic enzyme CqsA

    SciTech Connect

    Kelly, R.; Bolitho, M; Higgins, D; Lu, W; Ng, W; Jeffrey, P; Rabinowitz, J; Semmelhack, M; Hughson, F; Bassler, B

    2009-01-01

    Vibrio cholerae, the bacterium that causes the disease cholera, controls virulence factor production and biofilm development in response to two extracellular quorum-sensing molecules, called autoinducers. The strongest autoinducer, called CAI-1 (for cholera autoinducer-1), was previously identified as (S)-3-hydroxytridecan-4-one. Biosynthesis of CAI-1 requires the enzyme CqsA. Here, we determine the CqsA reaction mechanism, identify the CqsA substrates as (S)-2-aminobutyrate and decanoyl coenzyme A, and demonstrate that the product of the reaction is 3-aminotridecan-4-one, dubbed amino-CAI-1. CqsA produces amino-CAI-1 by a pyridoxal phosphate-dependent acyl-CoA transferase reaction. Amino-CAI-1 is converted to CAI-1 in a subsequent step via a CqsA-independent mechanism. Consistent with this, we find cells release {ge}100 times more CAI-1 than amino-CAI-1. Nonetheless, V. cholerae responds to amino-CAI-1 as well as CAI-1, whereas other CAI-1 variants do not elicit a quorum-sensing response. Thus, both CAI-1 and amino-CAI-1 have potential as lead molecules in the development of an anticholera treatment.

  16. Auto Poisoning of the Respiratory Chain by a Quorum-Sensing-Regulated Molecule Favors Biofilm Formation and Antibiotic Tolerance.

    PubMed

    Hazan, Ronen; Que, Yok Ai; Maura, Damien; Strobel, Benjamin; Majcherczyk, Paul Anthony; Hopper, Laura Rose; Wilbur, David J; Hreha, Teri N; Barquera, Blanca; Rahme, Laurence G

    2016-01-25

    Bacterial programmed cell death and quorum sensing are direct examples of prokaryote group behaviors, wherein cells coordinate their actions to function cooperatively like one organism for the benefit of the whole culture. We demonstrate here that 2-n-heptyl-4-hydroxyquinoline-N-oxide (HQNO), a Pseudomonas aeruginosa quorum-sensing-regulated low-molecular-weight excreted molecule, triggers autolysis by self-perturbing the electron transfer reactions of the cytochrome bc1 complex. HQNO induces specific self-poisoning by disrupting the flow of electrons through the respiratory chain at the cytochrome bc1 complex, causing a leak of reducing equivalents to O2 whereby electrons that would normally be passed to cytochrome c are donated directly to O2. The subsequent mass production of reactive oxygen species (ROS) reduces membrane potential and disrupts membrane integrity, causing bacterial cell autolysis and DNA release. DNA subsequently promotes biofilm formation and increases antibiotic tolerance to beta-lactams, suggesting that HQNO-dependent cell autolysis is advantageous to the bacterial populations. These data identify both a new programmed cell death system and a novel role for HQNO as a critical inducer of biofilm formation and antibiotic tolerance. This newly identified pathway suggests intriguing mechanistic similarities with the initial mitochondrial-mediated steps of eukaryotic apoptosis. PMID:26776731

  17. Cross-species comparison of the Burkholderia pseudomallei, Burkholderia thailandensis, and Burkholderia mallei quorum-sensing regulons.

    PubMed

    Majerczyk, Charlotte D; Brittnacher, Mitchell J; Jacobs, Michael A; Armour, Christopher D; Radey, Matthew C; Bunt, Richard; Hayden, Hillary S; Bydalek, Ryland; Greenberg, E Peter

    2014-11-01

    Burkholderia pseudomallei, Burkholderia thailandensis, and Burkholderia mallei (the Bptm group) are close relatives with very different lifestyles: B. pseudomallei is an opportunistic pathogen, B. thailandensis is a nonpathogenic saprophyte, and B. mallei is a host-restricted pathogen. The acyl-homoserine lactone quorum-sensing (QS) systems of these three species show a high level of conservation. We used transcriptome sequencing (RNA-seq) to define the quorum-sensing regulon in each species, and we performed a cross-species analysis of the QS-controlled orthologs. Our analysis revealed a core set of QS-regulated genes in all three species, as well as QS-controlled factors shared by only two species or unique to a given species. This global survey of the QS regulons of B. pseudomallei, B. thailandensis, and B. mallei serves as a platform for predicting which QS-controlled processes might be important in different bacterial niches and contribute to the pathogenesis of B. pseudomallei and B. mallei. PMID:25182491

  18. Systematic Design of a Quorum Sensing-Based Biosensor for Enhanced Detection of Metal Ion in Escherichia Coli.

    PubMed

    Hsu, Chih-Yuan; Chen, Bing-Kun; Hu, Rei-Hsing; Chen, Bor-Sen

    2016-06-01

    With the recent industrial expansion, heavy metals and other pollutants have increasingly contaminated our living surroundings. The non-degradability of heavy metals may lead to accumulation in food chains and the resulting toxicity could cause damage in organisms. Hence, detection techniques have gradually received attention. In this study, a quorum sensing (QS)-based amplifier is introduced to improve the detection performance of metal ion biosensing. The design utilizes diffusible signal molecules, which freely pass through the cell membrane into the environment to communicate with others. Bacteria cooperate via the cell-cell communication process, thereby displaying synchronous behavior, even if only a minority of the cells detect the metal ion. In order to facilitate the design, the ability of the engineered biosensor to detect metal ion is described in a steady state model. The design can be constructed according to user-oriented specifications by selecting adequate components from corresponding libraries, with the help of a genetic algorithm (GA)-based design method. The experimental results validate enhanced efficiency and detection performance of the quorum sensing-based biosensor of metal ions. PMID:26800545

  19. Quorum sensing modulates colony morphology through alkyl quinolones in Pseudomonas aeruginosa

    PubMed Central

    2012-01-01

    Background Acyl-homoserine lactone (acyl-HSL) and alkyl quinolone (AQ) based quorum-sensing (QS) systems are important for Pseudomonas aeruginosa virulence and biofilm formation. The effect of QS on biofilm formation is influenced by various genetic and environmental factors. Here, we used a colony biofilm assay to study the effect of the central acyl-HSL QS regulator, LasR, on biofilm formation and structure in the representative clinical P. aeruginosa isolate ZK2870. Results A lasR mutant exhibited wrinkled colony morphology at 37°C in contrast to the smooth colony morphology of the wild-type. Mutational analysis indicated that wrinkling of the lasR mutant is dependent on pel, encoding a biofilm matrix exopolysaccharide. Suppressor mutagenesis and complementation analysis implicated the AQ signaling pathway as the link between las QS and colony morphology. In this pathway, genes pqsA-D are involved in the synthesis of 4-hydroxyalkyl quinolines ("Series A congeners"), which are converted to 3,4-dihydroxyalkyl quinolines ("Series B congeners", including the well-characterized Pseudomonas Quinolone Signal, PQS) by the product of the LasR-dependent pqsH gene. Measurement of AQ in the wild-type, the lasR pqsA::Tn suppressor mutant as well as the defined lasR, pqsH, and lasR pqsH mutants showed a correlation between 4-hydroxyalkyl quinoline levels and the degree of colony wrinkling. Most importantly, the lasR pqsH double mutant displayed wrinkly morphology without producing any 3,4-dihydroxyalkyl quinolines. Constitutive expression of pqsA-D genes in a lasR pqsR::Tnmutant showed that colony wrinkling does not require the AQ receptor PqsR. Conclusions Taken together, these results indicate that the las QS system represses Pel and modulates colony morphology through a 4-hydroxyalkyl quinoline in a PqsR-independent manner, ascribing a novel function to an AQ other than PQS in P. aeruginosa. PMID:22404951

  20. An evolving perspective on the Pseudomonas aeruginosa orphan quorum sensing regulator QscR

    PubMed Central

    Chugani, Sudha; Greenberg, Everett P.

    2014-01-01

    Many Proteobacteria govern responses to changes in cell density by using acyl-homoserine lactone (AHL) quorum-sensing (QS) signaling. Similar to the LuxI-LuxR system described in Vibrio fischeri, a minimal AHL QS circuit comprises a pair of genes, a luxI-type synthase gene encoding an enzyme that synthesizes an AHL and a luxR-type AHL-responsive transcription regulator gene. In most bacteria that utilize AHL QS, cognate luxI and luxR homologs are found in proximity to each other on the chromosome. However, a number of recent reports have identified luxR homologs that are not linked to luxI homologs; in some cases luxR homologs have been identified in bacteria that have no luxI homologs. A luxR homolog without a linked luxI homologs is termed an orphan or solo. One of the first reports of an orphan was on QscR in Pseudomonas aeruginosa. The qscR gene was revealed by whole genome sequencing and has been studied in some detail. P. aeruginosa encodes two AHL synthases and three AHL responsive receptors, LasI-LasR form a cognate synthase-receptor pair as do RhlI-RhlR. QscR lacks a linked synthase and responds to the LasI-generated AHL. QS regulation of gene expression in P. aeruginosa employs multiple signals and occurs in the context of other interconnected regulatory circuits that control diverse physiological functions. QscR affects virulence of P. aeruginosa, and although it shows sensitivity to the LasI-generated AHL, 3-oxo-dodecanoylhomoserine lactone, it's specificity is relaxed compared to LasR and can respond equally well to several AHLs. QscR controls a set of genes that overlaps the set regulated by LasR. QscR is comparatively easy to purify and study in vitro, and has become a model for understanding the biochemistry of LuxR homologs. In fact there is a crystal structure of QscR bound to the LasI-generated AHL. Here, we review the current state of research concerning QscR and highlight recent advances in our understanding of its structure and biochemistry. PMID:25389523

  1. Co-regulation of {beta}-lactam resistance, alginate production and quorum sensing in Pseudomonas aeruginosa.

    PubMed

    Balasubramanian, Deepak; Kong, Kok-Fai; Jayawardena, Suriya Ravi; Leal, Sixto Manuel; Sautter, Robert Todd; Mathee, Kalai

    2011-02-01

    Development of β-lactam resistance, production of alginate and modulation of virulence factor expression that alters host immune responses are the hallmarks of chronic Pseudomonas aeruginosa infection in cystic fibrosis patients. In this study, we propose that a co-regulatory network exists between these mechanisms. We compared the promoter activities of ampR, algT/U, lasR, lasI, rhlR, rhlI and lasA genes, representing the β-lactam antibiotic resistance master regulatory gene, the alginate switch operon, the las and rhl quorum-sensing (QS) genes, and the LasA staphylolytic protease, respectively. Four isogenic P. aeruginosa strains, the prototypic Alg(-) PAO1, Alg(-) PAOampR, the mucoid Alg(+) PAOmucA22 (Alg(+) PDO300) and Alg(+) PAOmucA22ampR (Alg(+) PDOampR) were used. We found that in the presence of AmpR regulator and β-lactam antibiotic, the extracytoplasmic function sigma factor AlgT/U positively regulated P(ampR), whereas AmpR negatively regulated P(algT/U). On the basis of this finding we suggest the presence of a negative feedback loop to limit algT/U expression. In addition, the functional AlgT/U caused a significant decrease in the expression of QS genes, whereas loss of ampR only resulted in increased P(lasI) and P(lasR) transcription. The upregulation of the las QS system is likely to be responsible for the increased lasA promoter and the LasA protease activities in Alg(-) PAOampR and Alg(+) PDOampR. The enhanced expression of virulence factors in the ampR strains correlated with a higher rate of Caenorhabditis elegans paralysis. Hence, this study shows that the loss of ampR results in increased virulence, and is indicative of the existence of a co-regulatory network between β-lactam resistance, alginate production, QS and virulence factor production, with AmpR playing a central role. PMID:20965918

  2. A sensitive fluorescence reporter for monitoring quorum sensing regulated protease production in Vibrio harveyi.

    PubMed

    Rajamani, Sathish; Sayre, Richard T

    2011-02-01

    Many bacteria produce and secrete proteases during host invasion and pathogenesis. Vibrio harveyi, an opportunistic pathogen of shrimp, is known to use a two-component quorum sensing (QS) mechanism for coordination of gene expression including protease secretion at high population densities. We examined the role of V. harveyi's QS signaling molecules, N-(3-hydroxybutanoyl)-L-homoserine lactone (AI-1) and the boron derivative of autoinducer-2 (BAI-2) in extracellular protease production. A fusion protein, M3CLPY (Rajamani et al., 2007), consisting of a large protease sensitive BAI-2 mutant receptor LuxP (~38kDa) flanked by two protease insensitive cyan and yellow variants of GFP (~28kDa each) was utilized as a substrate to detect secreted protease activity. The M3CLPY fusion, with the addition of wild-type V. harveyi (BB120) cell-free culture filtrate showed a time-dependent loss in fluorescence resonance energy transfer (FRET) associated with the cleavage of the LuxP linker protein and hence separation of the two fluorophores. This cleavage of LuxP linker protein leading to decreased FRET efficiency was further confirmed by immunoblotting using anti-GFP antibody. The addition of cell-free filtrates from strains defective in one or both of the two-component QS pathways: luxN(-) (defective in AI-1), luxS(-) (defective in BAI-2), and luxN(-)/luxS(-) (defective in both AI-1/BAI-2) showed differential levels of protease production. The observed protease activities were most pronounced in wild-type, followed by the AI-1 defective mutant (BB170) and the least for luxS(-) mutant (MM30) and luxN(-)/luxS(-) double mutant (MM32) strains. Incidentally, the lowest protease producing strains MM30 and MM32 were both defective in BAI-2 production. This observation was validated by addition of synthetic BAI-2 to MM30 and MM32 strains to restore protease production. Our results indicate that BAI-2 signaling in the two-component QS pathway plays the key role in regulating extracellular protease production in V. harveyi. PMID:21129419

  3. The influence of quorum sensing in compartment II of the MELiSSA loop

    NASA Astrophysics Data System (ADS)

    Condori, Sandra; Mastroleo, Felice; Wattiez, Ruddy; Leys, Natalie

    MELiSSA (Micro-Ecological Life Support System Alternative) has been conceived as a 5 co