Science.gov

Sample records for r-134a refrigerant cooling

  1. Two-Phase Cooling Method Using R134a Refrigerant to Cool Power Electronic Devices

    SciTech Connect

    Lowe, Kirk T; Tolbert, Leon M; Ayers, Curtis William; Ozpineci, Burak; Campbell, Jeremy B

    2007-01-01

    This paper presents a two-phase cooling method using R134a refrigerant to dissipate the heat energy (loss) generated by power electronics (PE) such as those associated with rectifiers, converters, and inverters for a specific application in hybrid-electric vehicles (HEVs). The cooling method involves submerging PE devices in an R134a bath, which limits the junction temperature of PE devices while conserving weight and volume of the heat sink without sacrificing equipment reliability. First, experimental tests that included an extended soak for more than 300 days were performed on a submerged IGBT and gate-controller card to study dielectric characteristics, deterioration effects, and heat flux capability of R134a. Results from these tests illustrate that R134a has high dielectric characteristics, no deterioration on electrical components, and a heat flux of 114 W/cm 2 for the experimental configuration. Second, experimental tests that included simultaneous operation with a mock automotive air-conditioner (A/C) system were performed on the same IGBT and gate controller card. Data extrapolation from these tests determined that a typical automotive A/C system has more than sufficient cooling capacity to cool a typical 30 kW traction inverter. Last, a discussion and simulation of active cooling of the IGBT junction layer with R134a refrigerant is given. This technique will drastically increase the forward current ratings and reliability of the PE device

  2. Floating Refrigerant Loop Based on R-134a Refrigerant Cooling of High-Heat Flux Electronics

    SciTech Connect

    Lowe, K.T.

    2005-10-07

    The Oak Ridge National Laboratory (ORNL) Power Electronics and Electric Machinery Research Center (PEEMRC) have been developing technologies to address the thermal issues associated with hybrid vehicles. Removal of the heat generated from electrical losses in traction motors and their associated power electronics is essential for the reliable operation of motors and power electronics. As part of a larger thermal control project, which includes shrinking inverter size and direct cooling of electronics, ORNL has developed U.S. Patent No. 6,772,603 B2, ''Methods and Apparatus for Thermal Management of Vehicle Systems and Components'' [1], and patent pending, ''Floating Loop System for Cooling Integrated Motors and Inverters Using Hot Liquid Refrigerant'' [2]. The floating-loop system provides a large coefficient of performance (COP) for hybrid-drive component cooling. This loop (based on R-134a) is integrated with a vehicle's existing air-conditioning (AC) condenser, which dissipates waste heat to the ambient air. Because the temperature requirements for cooling of power electronics and electric machines are not as low as that required for passenger compartment air, this adjoining loop can operate on the high-pressure side of the existing AC system. This arrangement also allows the floating loop to run without the need for the compressor and only needs a small pump to move the liquid refrigerant. For the design to be viable, the loop must not adversely affect the existing system. The loop should also provide a high COP, a flat-temperature profile, and low-pressure drop. To date, the floating-loop test prototype has successfully removed 2 kW of heat load in a 9 kW automobile passenger AC system with and without the automotive AC system running. The COP for the tested floating-loop system ranges from 40-45, as compared to a typical AC system COP of about 2-4. The estimated required waste-heat load for future hybrid applications is 5.5 kW and the existing system could be

  3. Study on the Materials for Compressor and Reliability of Refrigeration Circuit in Refrigerator with R134a Refrigerant

    NASA Astrophysics Data System (ADS)

    Komatsubara, Takeo; Sunaga, Takasi; Takahasi, Yasuki

    R134a was selected as the alternative refrigerant for R12 because of the similar thermodynamic properties with R12. But refrigeration oil for R12 couldn't be used for R134a because of the immiscibility with R134a. To solve this problem we researched miscible oil with R134a and selected polyol ester oil (POE) as refrigeration oil. But we found sludge deposition into capillary tube after life test of refrigerator with POE and detected metal soap, decomposed oil and alkaline ions by analysis of sludge. This results was proof of phenomena like oil degradation, precipitation of process materials and wear of compressor. Therefore we improved stability and lubricity of POE, reevaluated process materials and contaminations in refrigerating circuit. In this paper we discuss newly developed these technologies and evaluation results of it by life test of refrigerator.

  4. Pilot retrofit test of refrigerant R-134a for GDSCC

    NASA Technical Reports Server (NTRS)

    Albus, J.; Brown, B.; Dungao, M.; Spencer, G.

    1994-01-01

    NASA has issued an interim policy requiring all of its Centers to eliminate consumption (purchase) of stratospheric ozone-depleting substances, including chlorofluorocarbons (CFC's), by 1995. Also, plans must be outlined for the eventual phase out of their usage. The greatest source of CFC consumption and usage at the Goldstone Deep Space Communications Complex is refrigerant R-12, which is used in many of the facility's air-conditioning systems. A pilot retrofit test shows that retrofitting R-12 air-conditioning systems with hydrofluorocarbon R-13a would be a workable means to comply with the R-12 portion of NASA's policy. Results indicate acceptable cost levels and nearly equivalent system performance.

  5. Performance and energy saving analysis of a refrigerator using hydrocarbon mixture (HC-R134a) as working fluid

    NASA Astrophysics Data System (ADS)

    Mohtar, M. N.; Nasution, H.; Aziz, A. A.

    2015-12-01

    The use of hydrocarbon mixture as a working fluid in a refrigerator system is rarely explored. Almost all domestic refrigerators use hydroflourocarbon R134a (HFC-R134a) as refrigerants. In this study, hydrocarbon gas (HC-R134a) is used as the alternative refrigerant to replace HFC-R134a. It has a composition of R290 (56%), R600a (54.39%) and additive (0.1%wt) blended for the trials. The experiments were conducted with 105 g and 52.5 g refrigerant mass charge, subjected to internal heat load of 0, 1, 2, 3 and 4 kg respectively. The study investigates the coefficient of performance of the refrigerator (COPR) and energy consumption. The results show that the use of HC-R134a as the replaceable refrigerant can save energy ranging from 2.04% to 7.09%, as compared to the conventional HFC-R134a refrigerant. Naturally, the COPR improvement and temperature distribution using HC-R134a are much better than HFC-R134a

  6. An analysis of the performance of an ejector refrigeration cycle working with R134a

    NASA Astrophysics Data System (ADS)

    Memet, F.; Preda, A.

    2015-11-01

    In the context of recent developments in the field of energy, the aspect related to energy consumption is of great importance for specialists. Many industries rely on refrigeration technologies, a great challenge being expressed by attempts in energy savings in this sector. In this respect, efforts oriented towards efficient industrial refrigeration systems have revealed the necessity of a proper design. The most commonly used method of cooling is based on vapor compression cycles. Compared to vapor compression refrigeration systems, an ejector refrigeration system shows an inferior performance, indicated by the Coefficient of Performance of the cycle, but it is more attractive from energy saving point of view. In this respect, the present study deals with a theoretically analysis of an Ejector Refrigeration System, started with the presentation of the typical ejector design. It is stated that ejector refrigeration is a thermally driven system which requires low grade thermal energy for its working. After a short description of the analyzed system, are given equations for thermal loads and Coefficient of Performance calculation, on First Law basis. The working fluid considered in this research is Freon R134a. The developed study is focused on the effect of generating temperature variation on the Coefficient of Performance (COP) and on the work input to the pump when the cooling effect, the condensation temperature, the evaporation temperature and the reference state temperature are kept constant. Are obtained results in the following conditions: the condensation temperature is tc = 33°C, the evaporation temperature is te = 3°C, the reference state temperature is to = 23°C. The generating temperature varies in the range 82 ÷ 92°C and the cooling effect is 1 kW. Also, are known the isentropic efficiencies of the ejector, which are 0.90, and the isentropic efficiency of the pump, which is 0.75. Calculation will reveal that the Coefficient of Performance is

  7. Two-phase flow dynamics during boiling of R134a refrigerant in minichannels

    NASA Astrophysics Data System (ADS)

    Khovalyg, D. M.; Baranenko, A. V.

    2015-03-01

    This study is devoted to complex experimental investigation of two-phase flow boiling of R134a refrigerant in a minichannel having a hydraulic diameter of 540 μm at heat fluxes up to 70 kW/m2 and mass fluxes up to 700 kg/(m2 s). Flow regimes, pressure drop, heat transfer coefficient, and behavior of instabilities are analyzed as functions of vapor quality. On the basis of experimental data, the methods for calculating two-phase pressure drop in a minichannel with a diameter of about 500 μm are determined, and new correlation is proposed for estimating the heat-transfer coefficient; the region of stable boiling of the refrigerant is also determined.

  8. A Study of the Heat Transfer Coefficient of a Mini Channel Evaporator with R-134a as Refrigerant

    NASA Astrophysics Data System (ADS)

    Dollera, E. B.; Villanueva, E. P.

    2015-09-01

    The present study is to evaluate the heat transfer coefficient of the minichannel copper blocks used as evaporator with R-134a as the refrigerant. Experiments were conducted using three evaporator specimens of different channel hydraulic diameters (1.0mm, 2.0mm, 3.0mm). The total length for each channel is 640 mm. The dimension of each is 100mm.x50mm.x20mm. and the outside surfaces were machined to have fins. They were connected to a standard vapour compression refrigeration system. During each run of the experiment, the copper block evaporator was placed inside a small wind tunnel where controlled flow of air from a forced draft fan was introduced for the cooling process. The experimental set-up used data acquisition software and computer-aided simulation software was used to simulate the pressure drop and temperature profiles of the evaporator during the experimental run. The results were then compared with the Shah correlation. The Shah correlation over predicted and under predicted the values as compared with the experimental results for all of the three diameters and high variation for Dh=1.0mm. This indicates that the Shah correlation at small diameters is not the appropriate equation for predicting the heat transfer coefficient. The trend of the heat transfer coefficient is increasing as the size of the diameter increases.

  9. Experimental Performance of R-1234yf and R-1234ze as Drop-in Replacements for R-134a in Domestic Refrigerators

    SciTech Connect

    Karber, Kyle M; Abdelaziz, Omar; Vineyard, Edward Allan

    2012-01-01

    Concerns about anthropogenic climate change have generated an interest in low global warming potential (GWP) refrigerants and have spawned policies and regulations that encourage the transition to low GWP refrigerants. Recent research has largely focused on hydrofluoroolefins (HFOs), including R-1234yf (GWP = 4) as a replacement for R-134a (GWP = 1430) in automotive air-conditioning applications. While R-1234yf and R-1234ze (GWP = 6) have been investigated theoretically as a replacements for R-134a in domestic refrigeration, there is a lack of experimental evidence. This paper gives experimental performance data for R-1234yf and R-1234ze as drop-in replacements for R134a in two household refrigerators one baseline and one advanced technology. An experiment was conducted to evaluate and compare the performance of R-134a to R-1234yf and R-1234ze, using AHAM standard HRF-1 to evaluate energy consumption. These refrigerants were tested as drop-in replacements, with no performance enhancing modifications to the refrigerators. In Refrigerator 1 and 2, R-1234yf had 2.7% and 1.3% higher energy consumption than R-134a, respectively. This indicates that R-1234yf is a suitable drop-in replacement for R-134a in domestic refrigeration applications. In Refrigerator 1 and 2, R-1234ze had 16% and 5.4% lower energy consumption than R-134a, respectively. In order to replace R-134a with R-1234ze in domestic refrigerators the lower capacity would need to be addressed, thus R-1234ze might not be suitable for drop-in replacement.

  10. Equation of state and thermmodynamic properties of 1,1,1,2-tetrafluoroethane (refrigerant R134a)

    SciTech Connect

    Vas`kov, E.T.

    1995-08-01

    An equation of state and tables of thermodynamic properties of R134a in the saturation state and in the one-phase region are obtained in the temperature interval 320-500 K at pressures ranging from 0.01 to 7.5 MPa.

  11. Quantification of the refrigerants R22 and R134a in mixtures by means of different polymers and reflectometric interference spectroscopy.

    PubMed

    Dieterle, F; Belge, G; Betsch, C; Gauglitz, G

    2002-11-01

    The aim of this study was the quantification of vapors of the ozone-depleting refrigerant R22 in the presence of its most important substitute R134a, by the use of the reflectometric interference spectroscopy and polymers as sensitive layers. First, the sorption characteristic of different types of polymers exposed to the vapors of the two analytes was investigated. Then, binary mixtures of the two refrigerants were measured with an array set-up on the basis of six polymer sensors. The measurements were evaluated by the use of neural networks, whereby low limits of detection of 0.45 percentage volume (vol. %)for R22 and 1.45 vol. % for R134a could be established. Additionally, one polar polymer and one microporous polymer were selected for the measurements with a low-cost set-up. The quantification of R22 in the presence of R134a with this low-cost set-up was possible with a limit of detection of 0.44 vol. %, which would enable a fast and economical monitoring at recycling stations. PMID:12434242

  12. Speed-of-sound measurements in gaseous binary refrigerant mixtures of difluoromethane (R-32) + 1,1,1,2-tetrafluoroethane (R-134a)

    SciTech Connect

    Hozumi, Tsutomu; Sato, Haruki; Watanabe, Koichi

    1997-05-01

    One hundred ninety-three speed-of-sound values in gaseous difluoromethane (R-32, CH{sub 2}F{sub 2}) + 1,1,1,2-tetrafluoroethane (R-134a, CF{sub 3}CH{sub 2}F) have been measured using a spherical resonator. The measurements have been carried out at temperatures from 303 K to 343 K, pressures up to 240 kPa, and mole fractions of R-32 from 0.16 to 0.90. The experimental uncertainties in the temperature, pressure, and speed of sound for the binary mixture are estimated to be not greater than {+-}8 mK, {+-}0.1 kPa, and {+-}0.0072%, respectively. The samples purified and analyzed by the manufacturers were used and were better than 99.99 mass % for R-32 and 99.98 and 99.99 mass % for two different R-134a samples. The authors have accurately determined the compositions of the binary refrigerant mixture, R-32 + R-134a, and the second acoustic virial coefficients from the speed-of-sound measurements.

  13. Application of a new selection algorithm to the development of a wide-range equation of state for refrigerant R134a

    SciTech Connect

    Shubert, K.B.; Ely, J.F.

    1995-01-01

    Refrigerants R134a (1,1,1,2-tetrafluoroethane) is a leading substitute for refrigerant R12. As such, there has been worldwide activity to develop accurate wide-range equations of state for this fluid. In this study, we have developed a new selection algorithm for determining high-accuracy equations of state in the Helmholtz representation. This method combines least-squares regression analysis with simulated annealing optimization. Simulated annealing, unlike stepwise regression, allows for the controlled acceptance of random increases in the objective function. Thus, this procedure produces a computationally efficient selection algorithm which is not susceptible to the function-space local-minima problems present in a purely stepwise regression approach. Two equations are presented in this work and compared against experimental data and other high-accuracy equations of state for R134a. One equation was produced strictly by using stepwise a regression algorithm, while the other was produced using the simulated-annealing selection algorithm. In both cases the temperature dependence of the equations was restricted to have no terms whose exponents were greater than five.

  14. Comparative study of cryogen spray cooling with R-134a and R-404a: implications for laser treatment of dark human skin

    NASA Astrophysics Data System (ADS)

    Dai, Tianhong; Yaseen, Mohammad A.; Diagaradjane, Parmeswaran; Chang, David W.; Anvari, Bahman

    2006-07-01

    Cutaneous laser treatment in dark skin patients is challenging due to significant light absorption by the melanin at the basal layer of epidermis, which can result in irreversible nonspecific thermal injury to the epidermis. Cryogen spray cooling (CSC) with R-134a (boiling point ≈ -26.2°C at 1 atm), which is currently used during cutaneous laser treatment, has shown poor efficacy in protecting dark human skin. We investigated the potential of CSC with R-404a (boiling point ≈ -46.5°C at 1 atm), which has a lower boiling point than R-134a, for improved therapeutic outcome in dark human skin at three levels: in vitro (epoxy resin skin phantom), ex vivo (normal dark human skin sample), and in vivo (skin of the rabbit external ear). The skin phantom was used to acquire the surface and internal temperature profiles in response to CSC with R-134a or R-404a at various spurt durations, based upon which CSC-induced heat removal from the skin phantom was estimated using an algorithm that solved a one-dimensional inverse heat conduction problem. CSC with R-404a increased the temperature reductions within the phantom and subsequently the amount of heat removal from the phantom in comparison to that with R-134a. Normal ex vivo Fitzpatrick types V-VI human skin samples were used to investigate the thermal response of dark human skin epidermis to CSC (R-134a or R-404a) at various spurt durations in conjunction with 595-nm pulsed dye laser irradiation at various radiant exposures. Cryogen R-404a increased the threshold radiant exposures for irreversible thermal injury to the epidermis in dark pigmentation skin. No obvious CSC-induced morphological changes to human skin was observed when sprayed with R404-a spurts using durations up to 300 ms. In vivo rabbit ear vasculature was used as a model of cutaneous anomalies to assess the influences of CSC (with R-134a or R-404a) on the photothermolysis of dermal blood vessels. CSC (R-134a or R-404a) with the spurt durations of 100 to

  15. Roughness and surface material effects on nucleate boiling heat transfer from cylindrical surfaces to refrigerants R-134a and R-123

    SciTech Connect

    Jabardo, Jose M. Saiz

    2009-04-15

    This paper presents results of an experimental investigation carried out to determine the effects of the surface roughness of different materials on nucleate boiling heat transfer of refrigerants R-134a and R-123. Experiments have been performed over cylindrical surfaces of copper, brass and stainless steel. Surfaces have been treated by different methods in order to obtain an average roughness, Ra, varying from 0.03 {mu}m to 10.5 {mu}m. Boiling curves at different reduced pressures have been raised as part of the investigation. The obtained results have shown significant effects of the surface material, with brass being the best performing and stainless steel the worst. Polished surfaces seem to present slightly better performance than the sand paper roughened. Boiling on very rough surfaces presents a peculiar behavior characterized by good thermal performance at low heat fluxes, the performance deteriorating at high heat fluxes with respect to smoother surfaces. (author)

  16. An experimental study on sub-cooled flow boiling CHF of R134a at low pressure condition with atmospheric pressure (AP) plasma assisted surface modification

    SciTech Connect

    Kim, Seung Jun; Zou, Ling; Jones, Barclay G.

    2015-02-01

    In this study, sub-cooled flow boiling critical heat flux tests at low pressure were conducted in a rectangular flow channel with one uniformly heated surface, using simulant fluid R-134a as coolant. The experiments were conducted under the following conditions: (1) inlet pressure (P) of 400-800 kPa, (2) mass flux (G) of 124-248 kg/m2s, (3) inlet sub-cooling enthalpy (ΔHi) of 12~ 26 kJ/kg. Parametric trends of macroscopic system parameters (G, P, Hi) were examined by changing inlet conditions. Those trends were found to be generally consistent with previous understandings of CHF behavior at low pressure condition (i.e. reduced pressure less than 0.2). A fluid-to-fluid scaling model was utilized to convert the test data obtained with the simulant fluid (R-134a) into the prototypical fluid (water). The comparison between the converted CHF of equivalent water and CHF look-up table with same operation conditions were conducted, which showed good agreement. Furthermore, the effect of surface wettability on CHF was also investigated by applying atmospheric pressure plasma (AP-Plasma) treatment to modify the surface characteristic. With AP-Plasma treatment, the change of microscopic surface characteristic was measured in terms of static contact angle. The static contact angle was reduced from 80° on original non-treated surface to 15° on treated surface. An enhancement of 18% on CHF values under flow boiling conditions were observed on AP-Plasma treated surfaces compared to those on non-treated heating surfaces.

  17. Refrigerant directly cooled capacitors

    DOEpatents

    Hsu, John S.; Seiber, Larry E.; Marlino, Laura D.; Ayers, Curtis W.

    2007-09-11

    The invention is a direct contact refrigerant cooling system using a refrigerant floating loop having a refrigerant and refrigeration devices. The cooling system has at least one hermetic container disposed in the refrigerant floating loop. The hermetic container has at least one electronic component selected from the group consisting of capacitors, power electronic switches and gating signal module. The refrigerant is in direct contact with the electronic component.

  18. Experimental performance of ozone-safe alternative refrigerants: Experimental performance comparisons of R32, R125, R143a, R218, R134a, R152a, R124, R142b, RC318 and R143 in a refrigeration circuit

    NASA Astrophysics Data System (ADS)

    Sand, James R.; Vineyard, Edward A.; Nowak, Richard J.

    1990-02-01

    Several compounds proposed as near term or longer range substitutes for the regulated chlorofluorocarbon (CFC) refrigerants were tested in a breadboard vapor-compression circuit, and their performance was evaluated relative to more commonly used refrigerants. The limited physical property information available in the literature for these alternative compounds was used to fit an equation of state so coefficients of performance (COPs) and capacities calculated from refrigerant property subroutines could be compared to those obtained experimentally. Comparisons of measured and modeled performance are given for 11 alternatives and for R22, R12, and R114. Estimates of compressor efficiency with each refrigerant are provided. Several of the alternatives exhibited better performance than the more widely used refrigerants at some or all of the conditions tested. Ozone-safe, alternative refrigerants that performed better than CFC counterparts at selected conditions are R152a, R143a, R134a, R134, and R142b.

  19. Formation of gas hydrate with CFC alternative R-134a

    SciTech Connect

    Mori, Y.H.; Mori, T. )

    1989-07-01

    Gas hydrates are a class of solids, in which molecules of various compounds (guest species) are enclosed in icelike lattices that are made of hydrogen-bonded water molecules. Some CFC's (chlorofluorocarbons) such as R 11 (trichlorotrifluoromethane; CCl/sub 3/F) and R-12 (dichlorodifluoromethane, CCl/sub 2/F/sub 2/) are known to form gas hydrates, serving as guest species, which can exist at temperatures up to about 281.6 and 285.2 {Kappa}, respectively. The R-11 and R-12 hydrates had been considered the most favorable substances as cool storage media for residential air conditioning systems till restrictions on the use of CFC's became increasingly tight. R-134a (1,1,1,2-tetrafluoroethane, CF/sub 3/CH/sub 2/F) is currently considered a prospective substitute for R-12. In the present work, the authors explore if R-134a can form a gas hydrate and, if it can, to determine, with a reasonable accuracy for practical purpose, the highest temperature at which the hydrate can exist, i.e., the temperature of the quadruple point where the hydrate, R-134a in both vaporous and liquid states, and water in liquid state would coexist.

  20. TEST REPORT #33: Compressor Calorimeter Test of R-410A Alternative: R-32/R-134a Mixture Using a Scroll Compressor

    SciTech Connect

    Shrestha, Som; Sharma, Vishaldeep; Abdelaziz, Omar

    2014-02-18

    This report investigates the tested performance of lower - GWP candidate refrigerant, 94.07 wt% R - 32 + 5.93 wt % R - 134 a mixture (hereafter referred to as R - 32/134a), as an alternative to baseline refrigerant R - 410 A using a 36,000 Btu/hr compressor calorimeter located at the Heat Exchanger Advanced Testing Facility at Oak Ridge National Laboratory . These tests were conducted during May and August 2013. R - 410A is a near - azeotropic blend of R - 32 and R - 125 with 0.5/0.5 mass fraction and has a GWP 100 of 2100. R - 32 and R - 134a are pure refrigerants and have GWP 100 of 716 and 1370 1, respectively. Based on the GWP 100 values of pure refrigerants and their mass fraction in the blend, GWP 100 of R - 32/134a, which is under development by National Refrigerant, is 755. This report compares various performance parameters, such as cooling capacity, compressor power, refrigerant mass flow rate, EER, isentropic efficiency and discharge temperature of the alternative refrigerant to that of R - 410 A.

  1. IR assessment of R134a temperature in circular micro-channels

    NASA Astrophysics Data System (ADS)

    Mihai, Ioan; Suciu, Cornel; Patuleanu, Liliana; Sprinceana, Silviu

    2015-02-01

    Miniature cooling systems performances are increasing, as they permit dissipation of heat fluxes on increasing surfaces. Such cooling systems frequently use micro and nano circular tubes, with rectangular or other various shaped crosssections, as they allow obtaining higher performance micro heat exchangers. The present paper illustrates the differences between temperature variations, experimentally measured inside and outside circular micro-channels by aid of thermo vision, and compared to values experimentally measured outside the micro-channels by aid of heat sensors and to theoretically evaluated temperatures inside. The experimental measurements were performed on a setup conceived for the cooling of electronic components or small bio-surfaces in the order of magnitude of a few square centimeters. The set-up allows reaching minimum negative temperatures of -22 °C. The experimental setup uses a rotary compressor with variable speed and working pressures implicitly, which allows obtaining different temperatures at the setup's evaporator. The present work correlates experimentally measured temperatures with ones determined theoretically for the flow of R134a refrigerant through cylindrical micro-channels made of copper.

  2. Thermophysical properties of 1,1,1,2-tetrafluoroethane (R-134a)

    SciTech Connect

    Basu, R.S.; Wilson, D.P. )

    1989-05-01

    The present hypothesis of depletion of the stratospheric ozone layer by some chlorofluorocarbons has prompted a lot of research and development of new stratospherically safe fluids in various uses such as refrigerants, blowing agents in foams, aerosol propellants, solvents, and many other uses. In the areas of certain refrigeration needs 1,1,12-tetrafluoroethane (R-134a) has been considered as a possible alternate to the use of dichloro-difluoromethane (R-12), the most commonly used refrigerant. R-12 is estimated to have a higher potential for ozone depletion. This will require a large number of thermophysical property data to help in designing equipment and also in manufacturing R-134a. This paper is intended to fill that need. The paper details the measurement and correlation of some of the important thermophysical properties such as vapor pressure, liquid density, and pressure-volume-temperature. The measured P-V-T data have been used to generate a Martin-Hou-type equation of state for this fluid over a wide range of temperature and pressure. Correlating equations are also developed for vapor pressure, liquid density, and ideal-gas specific heat. Ideal-gas specific heat has been estimated from measured spectroscopic data. The correlating equations can be used to generate the thermodynamic tables and charts. The critical temperature of R-134a has also been measured. Critical density and pressure have been estimated from measured data. The data and the correlations presented here are expected to be very useful to the refrigeration industry in the development of R-134a as a working fluid for refrigeration applications.

  3. Oil cooled, hermetic refrigerant compressor

    DOEpatents

    English, William A.; Young, Robert R.

    1985-01-01

    A hermetic refrigerant compressor having an electric motor and compressor assembly in a hermetic shell is cooled by oil which is first cooled in an external cooler 18 and is then delivered through the shell to the top of the motor rotor 24 where most of it is flung radially outwardly within the confined space provided by the cap 50 which channels the flow of most of the oil around the top of the stator 26 and then out to a multiplicity of holes 52 to flow down to the sump and provide further cooling of the motor and compressor. Part of the oil descends internally of the motor to the annular chamber 58 to provide oil cooling of the lower part of the motor, with this oil exiting through vent hole 62 also to the sump. Suction gas with entrained oil and liquid refrigerant therein is delivered to an oil separator 68 from which the suction gas passes by a confined path in pipe 66 to the suction plenum 64 and the separated oil drops from the separator to the sump. By providing the oil cooling of the parts, the suction gas is not used for cooling purposes and accordingly increase in superheat is substantially avoided in the passage of the suction gas through the shell to the suction plenum 64.

  4. Oil cooled, hermetic refrigerant compressor

    DOEpatents

    English, W.A.; Young, R.R.

    1985-05-14

    A hermetic refrigerant compressor having an electric motor and compressor assembly in a hermetic shell is cooled by oil which is first cooled in an external cooler and is then delivered through the shell to the top of the motor rotor where most of it is flung radially outwardly within the confined space provided by the cap which channels the flow of most of the oil around the top of the stator and then out to a multiplicity of holes to flow down to the sump and provide further cooling of the motor and compressor. Part of the oil descends internally of the motor to the annular chamber to provide oil cooling of the lower part of the motor, with this oil exiting through vent hole also to the sump. Suction gas with entrained oil and liquid refrigerant therein is delivered to an oil separator from which the suction gas passes by a confined path in pipe to the suction plenum and the separated oil drops from the separator to the sump. By providing the oil cooling of the parts, the suction gas is not used for cooling purposes and accordingly increase in superheat is substantially avoided in the passage of the suction gas through the shell to the suction plenum. 3 figs.

  5. Computing Isentropic Flow Properties of Air/R-134a Mixtures

    NASA Technical Reports Server (NTRS)

    Kvaternik, Ray

    2006-01-01

    MACHRK is a computer program that calculates isentropic flow properties of mixtures of air and refrigerant R-134a (tetrafluoroethane), which are used in transonic aerodynamic testing in a wind tunnel at Langley Research Center. Given the total temperature, total pressure, static pressure, and mole fraction of R-134a in a mixture, MACHRK calculates the Mach number and the following associated flow properties: dynamic pressure, velocity, density, static temperature, speed of sound, viscosity, ratio of specific heats, Reynolds number, and Prandtl number. Real-gas effects are taken into account by treating the gases comprising the mixture as both thermally and calorically imperfect. The Redlich-Kwong equation of state for mixtures and the constant-pressure ideal heat-capacity equation for the mixture are used in combination with the departure- function approach of thermodynamics to obtain the equations for computing the flow properties. In addition to the aforementioned calculations for air/R-134a mixtures, a research version of MACHRK can perform the corresponding calculations for mixtures of air and R-12 (dichlorodifluoromethane) and for air/SF6 mixtures. [R-12 was replaced by R-134a because of environmental concerns. SF6 has been considered for use in increasing the Reynolds-number range.

  6. Compressor Calorimeter Test of R-404A Alternatives ARM-31a, D2Y-65, L-40, and R32 + R-134a Mixture using a Scroll Compressor

    SciTech Connect

    Shrestha, Som S; Sharma, Vishaldeep; Abdelaziz, Omar

    2013-08-01

    As a contribution to the AHRI Low-GWP Alternative Refrigerants Evaluation Program (AREP), this study compares the performance of four lower-GWP alternative refrigerants, ARM-31a, D2Y-65, L-40, and R-32 + R-134a mixture, to that of refrigerant R-404A (baseline) in a scroll compressor designed for medium temperature refrigeration applications. These comparisons were carried out via compressor calorimeter tests performed on a compressor designed for refrigerant R-404A and having a nominal rated capacity of 23,500 Btu/hr. Tests were conducted over a suction dew point temperature range of -10 F to 35 F in 5 F increments and a discharge dew point temperature range of 70 F to 140 F in 10 F increments. All the tests were performed with 20 F superheat, 40 F superheat, and 65 F suction temperature. A liquid subcooling level of 10 F to 15 F was maintained for all the test conditions. However, the cooling capacities reported in this study are normalized for 0 F subcooling. The tests showed that the compressor energy efficiency ratio (EER) and cooling capacity with all four alternative refrigerants tested are higher at higher saturation suction and saturation discharge temperature and lower at lower saturation suction and saturation discharge temperature, compared to that of R-404A. Discharge temperatures of all the alternative refrigerants were higher than that of R-404A at all test conditions.

  7. R-134a (1,1,1,2-Tetrafluoroethane) Inhalation Induced Reactive Airways Dysfunction Syndrome.

    PubMed

    Doshi, Viral; Kham, Nang; Kulkarni, Shreedhar; Kapitan, Kent; Henkle, Joseph; White, Peter

    2016-01-01

    R-134a (1,1,1,2-tetrafluoroethane) is widely used as a refrigerant and as an aerosol propellant. Inhalation of R-134a can lead to asphyxia, transient confusion, and cardiac arrhythmias. We report a case of reactive airways dysfunction syndrome secondary to R-134a inhalation. A 60-year-old nonsmoking man without a history of lung disease was exposed to an air conditioner refrigerant spill while performing repairs beneath a school bus. Afterward, he experienced worsening shortness of breath with minimal exertion, a productive cough, and wheezing. He was also hypoxic. He was admitted to the hospital for further evaluation. Spirometry showed airflow obstruction with an FEV1 1.97 L (45% predicted). His respiratory status improved with bronchodilators and oral steroids. A repeat spirometry 2 weeks later showed improvement with an FEV1 2.5 L (60% predicted). Six months after the incident, his symptoms had improved, but he was still having shortness of breath on exertion and occasional cough. PMID:25137406

  8. Magnetic refrigeration for maser amplifier cooling

    NASA Technical Reports Server (NTRS)

    Johnson, D. L.

    1982-01-01

    The development of a multifrequency upconverter-maser system for the DSN has created the need to develop a closed-cycle refrigerator (CCR) capable of providing more than 3 watts of refrigeration capability at 4.5 K. In addition, operating concerns such as the high cost of electrical power consumption and the loss of maser operation due to CCR failures require that improvements be made to increase the efficiency and reliability of the CCR. One refrigeration method considered is the replacement of the Joule-Thomson expansion circuit with a magnetic refrigeration. Magnetic refrigerators can provide potentially reliable and highly efficient refrigeration at a variety of temperature ranges and cooling power. The concept of magnetic refrigeration is summarized and a literature review of existing magnetic refrigerator designs which have been built and tested and that may also be considered as possibilities as a 4 K to 15 K magnetic refrigeration stage for the DSN closed-cycle refrigerator is provided.

  9. Compatibility of manufacturing process fluids with R-134a and polyolester lubricant. Final report

    SciTech Connect

    Cavestri, R.C.; Schooley, D.L.

    1996-07-01

    This report includes a broad list of processing fluids that are known to be used to manufacture air conditioning and refrigeration products. Sixty-four process fluids from this list were selected for compatibility studies with R-134a and ICI EMKARATE RL32H (32 ISO) polyolester lubricant. Solutions or suspensions of the process fluid residues in polyolester lubricant were heated for 14 days at 175{degrees}C (347{degrees}F) in evacuated sealed glass tubes containing only valve steel coupons. Miscibility tests were performed at 90 wt.% R-134a, 10 wt.% polyolester lubricant with process fluid residue contaminate and were scanned in 10{degrees}C (18{degrees}F) increments over a temperature range of ambient to -40{degrees}C (-40{degrees}F). Any sign of turbidity, haze formation or oil separation was considered the immiscibility point.

  10. Characterization of R-134a superheated droplet detector for neutron detection.

    PubMed

    Mondal, Prasanna Kumar; Sarkar, Rupa; Chatterjee, Barun Kumar

    2014-08-01

    R-134a (C2H2F4) is a low cost, easily available and chlorine free refrigerant, which in its superheated state can be used as an efficient neutron detector. Due to its high solubility in water the R-134a based superheated droplet detectors (SDD) are usually very unstable unless the detector is fabricated using a suitable additive, which stabilizes the detector. The SDD is known to have superheated droplets distributed in a short-lived and in a relatively long-lived metastable states. We have studied the detector response to neutrons using a (241)AmBe neutron source and obtained the temperature variation of the nucleation parameters and the interstate kinetics of these droplets using a two-state model. PMID:24675477

  11. Hydrogen Refrigerator Would Cool Below 10 K

    NASA Technical Reports Server (NTRS)

    Jones, J. A.

    1986-01-01

    Closed-cycle hydrogen refrigerator uses low-level heat energy to cool objects to temperature of 10 K. Refrigerator needs only fraction of energy of previous equipment with similar low-temperature capability. Unit compact and light in weight. With valves as only moving parts, reliable for many years. Refrigeration concept adapted to cooling superconducting magnets on magnetically levitated railcars, nuclear-particle accelerators, and variety of other cryogenic equipment.

  12. Condensation pressure drop of R22, R134a and R410A in a single circular microtube

    NASA Astrophysics Data System (ADS)

    Son, Chang-Hyo; Oh, Hoo-Kyu

    2012-08-01

    The condensation pressure drop characteristics for pure refrigerants R22, R134a, and a binary refrigerant mixture R410A without lubricating oil in a single circular microtube were investigated experimentally. The test section consists of 1,220 mm length with horizontal copper tube of 3.38 mm outer diameter and 1.77 mm inner diameter. The experiments were conducted at refrigerant mass flux of 450-1,050 kg/m2s, and saturation temperature of 40°C. The main experimental results showed that the condensation pressure drop of R134a is higher than that of R22 and R410A for the same mass flux. The experimental data were compared against 14 two-phase pressure drop correlations. A new pressure drop model that is based on a superposition model for refrigerants condensing in the single circular tube is presented.

  13. Microscopic structure of liquid 1-1-1-2-tetrafluoroethane (R134a) from Monte Carlo simulation.

    PubMed

    Do, Hainam; Wheatley, Richard J; Hirst, Jonathan D

    2010-10-28

    1-1-1-2-tetrafluoroethane (R134a) is one of the most commonly used refrigerants. Its thermophysical properties are important for evaluating the performance of refrigeration cycles. These can be obtained via computer simulation, with an insight into the microscopic structure of the liquid, which is not accessible to experiment. In this paper, vapour-liquid equilibrium properties of R134a and its liquid microscopic structure are investigated using coupled-decoupled configurational-bias Monte Carlo simulation in the Gibbs ensemble, with a recent potential [J. Phys. Chem. B 2009, 113, 178]. We find that the simulations agree well with the experimental data, except at the vicinity of the critical region. Liquid R134a packs like liquid argon, with a coordination number in the first solvation shell of 12 at 260 K. The nearest neighbours prefer to be localized in three different spaces around the central molecule, in such a manner that the dipole moments are in a parallel alignment. Analysis of the pair interaction energy shows clear association of R134a molecules, but no evidence for C-HF type hydrogen bonding is found. The above findings should be of relevance to a broad range of fluoroalkanes. PMID:20830386

  14. Elastic Metal Alloy Refrigerants: Thermoelastic Cooling

    SciTech Connect

    2010-10-01

    BEETIT Project: UMD is developing an energy-efficient cooling system that eliminates the need for synthetic refrigerants that harm the environment. More than 90% of the cooling and refrigeration systems in the U.S. today use vapor compression systems which rely on liquid to vapor phase transformation of synthetic refrigerants to absorb or release heat. Thermoelastic cooling systems, however, use a solid-state material—an elastic shape memory metal alloy—as a refrigerant and a solid to solid phase transformation to absorb or release heat. UMD is developing and testing shape memory alloys and a cooling device that alternately absorbs or creates heat in much the same way as a vapor compression system, but with significantly less energy and a smaller operational footprint.

  15. Cooling performance and evaluation of automotive refrigeration system for a passenger car

    NASA Astrophysics Data System (ADS)

    Prajitno, Deendarlianto, Majid, Akmal Irfan; Mardani, Mahardeka Dhias; Wicaksono, Wendi; Kamal, Samsul; Purwanto, Teguh Pudji; Fauzun

    2016-06-01

    A new design of automotive refrigeration system for a passenger car was proposed. To ensure less energy consumption and optimal thermal comfort, the performance of the system were evaluated. This current research was aimed to evaluate the refrigeration characteristics of the system for several types of cooling load. In this present study, a four-passenger wagon car with 1500 cc gasoline engine that equipped by a belt driven compressor (BDC) was used as the tested vehicle. To represent the tropical condition, a set of lamps and wind sources are installed around the vehicle. The blower capacity inside a car is varied from 0.015 m/s to 0.027 m/s and the compressor speed is varied at variable 820, 1400, and 2100 rpm at a set temperature of 22°C. A set of thermocouples that combined by data logger were used to measure the temperature distribution. The system uses R-134a as the refrigerant. In order to determine the cooling capacity of the vehicle, two conditions were presented: without passengers and full load conditions. As the results, cooling capacity from any possible heating sources and transient characteristics of temperature in both systems for the cabin, engine, compressor, and condenser are presented in this work. As the load increases, the outlet temperature of evaporator also increases due to the increase of condensed air. This phenomenon also causes the increase of compressor work and compression ratio which associated to the addition of specific volume in compressor inlet.

  16. Potential Refrigerants for Power Electronics Cooling

    SciTech Connect

    Starke, M.R.

    2005-10-24

    In the past, automotive refrigerants have conventionally been used solely for the purpose of air conditioning. However, with the development of hybrid-electric vehicles and the incorporation of power electronics (PEs) into the automobile, automotive refrigerants are taking on a new role. Unfortunately, PEs have lifetimes and functionalities that are highly dependent on temperature and as a result thermal control plays an important role in the performance of PEs. Typically, PEs are placed in the engine compartment where the internal combustion engine (ICE) already produces substantial heat. Along with the ICE heat, the additional thermal energy produced by PEs themselves forces designers to use different cooling methods to prevent overheating. Generally, heat sinks and separate cooling loops are used to maintain the temperature. Disturbingly, the thermal control system can consume one third of the total volume and may weigh more than the PEs [1]. Hence, other avenues have been sought to cool PEs, including submerging PEs in automobile refrigerants to take advantage of two-phase cooling. The objective of this report is to explore the different automotive refrigerants presently available that could be used for PE cooling. Evaluation of the refrigerants will be done by comparing environmental effects and some thermo-physical properties important to two-phase cooling, specifically measuring the dielectric strengths of potential candidates. Results of this report will be used to assess the different candidates with good potential for future use in PE cooling.

  17. Investigation on the boiling heat transfer characteristics of R404A and R134a under stratified flow condition

    NASA Astrophysics Data System (ADS)

    Balachander, P.; Raja, B.

    2015-06-01

    An experimental investigation on the flow boiling heat transfer characteristics of R404A and R134a for low mass flux and heat flux conditions in a smooth horizontal tube is reported. Refrigerant saturation temperatures -15, -10, -5 and 0 °C were considered for the flow boiling conditions. The influence of the mass flux, heat flux and saturation temperature on the heat transfer coefficients of R404A and R134a are discussed in detail. The predominant flow pattern for the tested conditions is confirmed to be the stratified-wavy flow. The study revealed that the heat transfer coefficient is a strong function of the heat flux, throughout the flow boiling process, and the nucleate boiling contribution is much higher for R404A compared to that of R134a. The heat transfer characteristic of R404A is compared with that of R134a, to understand their relative performance in low temperature appliances. A modified correlation for the flow boiling heat transfer coefficient of R404A is developed to fit the experimental results of R404A.

  18. Feasibility of cool storage systems in refrigeration

    NASA Astrophysics Data System (ADS)

    Elmahgary, Yehia; Kekkonen, Veikko; Laitinen, Ari; Pihala, Hannu

    1989-05-01

    In the present report, the economic viability and technical feasibility of selected cool storage systems are considered. Cool storage has clear potential for several applications: in connection with air-conditioning systems, domestic refrigerating and freezing systems; commercially e.g., in the dairy and vegetable industries; and in deep freezing, as in the meat industry. Air-conditioning has limited significance in Finland. For this reason it was not investigated in this study. In domestic refrigeration and freezing two systems were investigated; a controlled cooling/heating system and a simple built-in system in individual refrigerators and freezers. The central cooling/heating system in houses was found to be economically unattractive. It also has several technical drawbacks. The simple built-in system appeared to be promising. The amount of savings is rationally a function of the difference between day and night tariffs and the costs of installing an automatic switch and storage media. In the vegetable and dairy industries cool storage also has considerable potential. Several systems were investigated in this respect and compared to the conventional system. The cool storage system using Cristopia balls, one of the most common commercial systems available in Europe, was not economical at a tariff difference of 10 p/k Wh or more. Cool storage for freezing in meat plants was also investigated.

  19. A helium refrigerator with features for supercritical pressure cooling

    NASA Astrophysics Data System (ADS)

    Wu, K. C.; Brown, D. P.; Schlafke, A. P.; Sondericker, J. H.

    1983-08-01

    The cold end of the helium refrigerator with features for supercritical pressure cooling where it deviates from a conventional refrigerator is described. Two methods of transporting cooling from the load are considered. The first uses a cold circulating pump to circulate helium around the load. The second simply uses the J-T flow from the refrigerator to transport cooling. Measurements have been performed to verify refrigerator capacity. The refrigerator configuration is illustrated, and results of the capacity of the refrigerator and performance data for the ejector and the circulating pump are presented. Operating experience is discussed.

  20. Dry Dilution Refrigerator with High Cooling Power

    NASA Astrophysics Data System (ADS)

    Uhlig, K.

    2008-03-01

    We present the construction concept and cooling capacity measurements of a 3,4He dilution refrigerator (DR), which was pre-cooled by a commercial pulse tube refrigerator (PTR). No cryogens are needed for the operation of this type of cryostat. The condensation of the helium mash was done in an integrated Joule-Thomson circuit, which was part of the dilution unit. The composition of the dilution unit was standard, but its components (still, heat exchangers, mixing chamber) were designed for high 3He flow. For thermometry, calibrated RuO chip resistance thermometers were available. In order to condense the mixture before an experiment, the fridge was operated like a Joule-Thomson liquefier with a relatively high inlet pressure (4 bar), where the liquid fraction of the circulating 3,4He mixture was accumulated in the dilution unit. The condensation took about 2 hours, and after 2 more hours of running, the temperature of the mixing chamber approached its minimum temperature of 10 mK. The maximum flow rate of the fridge was 1 mmol/s, and the refrigeration capacity of the mixing chamber was 700 μW at 100 mK. High cooling capacity, ease of operation and reliability distinguish this type of milli-Kelvin cooler.

  1. Floating Loop System For Cooling Integrated Motors And Inverters Using Hot Liquid Refrigerant

    DOEpatents

    Hsu, John S [Oak Ridge, TN; Ayers, Curtis W [Kingston, TN; Coomer, Chester [Knoxville, TN; Marlino, Laura D [Oak Ridge, TN

    2006-02-07

    A floating loop vehicle component cooling and air-conditioning system having at least one compressor for compressing cool vapor refrigerant into hot vapor refrigerant; at least one condenser for condensing the hot vapor refrigerant into hot liquid refrigerant by exchanging heat with outdoor air; at least one floating loop component cooling device for evaporating the hot liquid refrigerant into hot vapor refrigerant; at least one expansion device for expanding the hot liquid refrigerant into cool liquid refrigerant; at least one air conditioning evaporator for evaporating the cool liquid refrigerant into cool vapor refrigerant by exchanging heat with indoor air; and piping for interconnecting components of the cooling and air conditioning system.

  2. Condensation heat transfer and pressure drop of R-134a saturated vapour inside a brazed compact plate fin heat exchanger with serrated fin

    NASA Astrophysics Data System (ADS)

    Ramana Murthy, K. V.; Ranganayakulu, C.; Ashok Babu, T. P.

    2016-05-01

    This paper presents the experimental heat transfer coefficient and pressure drop measured during R-134a saturated vapour condensation inside a small brazed compact plate fin heat exchanger with serrated fin surface. The effects of saturation temperature (pressure), refrigerant mass flux, refrigerant heat flux, effect of fin surface characteristics and fluid properties are investigated. The average condensation heat transfer coefficients and frictional pressure drops were determined experimentally for refrigerant R-134a at five different saturated temperatures (34, 38, 40, 42 and 44 °C). A transition point between gravity controlled and forced convection condensation has been found for a refrigerant mass flux around 22 kg/m2s. In the forced convection condensation region, the heat transfer coefficients show a three times increase and 1.5 times increase in frictional pressure drop for a doubling of the refrigerant mass flux. The heat transfer coefficients show weak sensitivity to saturation temperature (Pressure) and great sensitivity to refrigerant mass flux and fluid properties. The frictional pressure drop shows a linear dependence on the kinetic energy per unit volume of the refrigerant flow. Correlations are provided for the measured heat transfer coefficients and frictional pressure drops.

  3. Stability and activity of lipase in subcritical 1,1,1,2-tetrafluoroethane (R134a).

    PubMed

    Yu, Gang; Xue, Yong; Xu, Wei; Zhang, Jing; Xue, Chang Hu

    2007-12-01

    The stability and activity of commercial immobilized lipase from Candida antarctica (Novozym 435) in subcritical 1,1,1,2-tetrafluoroethane (R134a) was investigated. The esterification of oleic acid with glycerol was studied as a model reaction in subcritical R134a and in solvent-free conditions. The results indicated that subcritical R134a treatment led to significant increase of activity of Novozym 435, and a maximum residual activity of 300% was measured at 4 MPa, 30 degrees C after 7 h incubation. No deactivation of Novozym 435 treated with subcritical R134a under different operation factors (pressure 2-8 MPa, temperature 30-60 degrees C, incubation time 1-12 h, water content 1:1, 1:2, 1:5 enzyme/water, depressurization rate 4 MPa/1 min, 4 MPa/30 min, 4 MPa/90 min) was observed. While the initial reaction rate was high in subcritical R134a, higher conversion was obtained in solvent-free conditions. Though the apparent conversion of the reaction is lower in subcritical R134a, it is more practicable, especially at low enzyme concentrations desired at commercial scales. PMID:17909872

  4. Improved Regenerative Sorbent-Compressor Refrigerator

    NASA Technical Reports Server (NTRS)

    Jones, Jack A.

    1992-01-01

    Conceptual regenerative sorbent-compressor refrigerator attains regeneration efficiency and, therefore, overall power efficiency and performance greater than conventional refrigerators. Includes two fluid loops. In one, CH2FCF3 (R134a) ciculates by physical adsorption and desorption in four activated-charcoal sorption compressors. In other, liquid or gas coolant circulated by pump. Wave of regenerative heating and cooling propagates cyclically like peristatic wave among sorption compressors and associated heat exchangers. Powered by electricity, oil, gas, solar heat, or waste heat. Used as air conditioners, refrigerators, and heat pumps in industrial, home, and automotive applications.

  5. Advanced Refrigerant-Based Cooling Technologies for Information and Communication Infrastructure (ARCTIC)

    SciTech Connect

    Salamon, Todd

    2012-12-13

    of a 100 kW prototype data center installation of the refrigerant-based modular cooling technology were dramatic in terms of energy efficiency and the ability to cool high-heat-density equipment. The prototype data center installation consisted of 10 racks each loaded with 10 kW of high-heat-density IT equipment with the racks arranged in a standard hot-aisle/cold-aisle configuration with standard cabinet spacing. A typical chilled-water CRAC unit would require approximately 16 kW to cool such a heat load. In contrast, the refrigerant-based modular cooling technology required only 2.3 kW of power for the refrigerant pump and shelf-level fans, a reduction of 85 percent. Differences in hot-aisle and cold-aisle temperature were also substantially reduced, mitigating many issues that arise in purely air-based cooling systems, such as mixing of hot and cold air streams, or from placing high-heat-density equipment in close proximity. The technology is also such that it is able to retro-fit live equipment without service interruption, which is particularly important to the large installed ICT customer base, thereby providing a means of mitigating reliability and performance concerns during the installation, training and validation phases of product integration. Moreover, the refrigerant used in our approach, R134a, is a widely-used, non-toxic dielectric liquid which, unlike water, is non-conducting and non-corrosive and will not damage electronics in the case of a leak a triple-play win over alternative water-based liquid coolant technologies. Finally, through use of a pumped refrigerant, pressures are modest (~60 psi), and toxic lubricants and oils are not required, in contrast to compressorized refrigerant systems another environmental win. Project Activities - The ARCTIC project goal was to further develop and dramatically accelerate the commercialization of this game-changing, refrigerant-based, liquid-cooling technology and achieve a revolutionary increase in energy

  6. Keeping Cool With Solar-Powered Refrigeration

    NASA Technical Reports Server (NTRS)

    2003-01-01

    In the midst of developing battery-free, solar-powered refrigeration and air conditioning systems for habitats in space, David Bergeron, the team leader for NASA's Advanced Refrigerator Technology Team at Johnson Space Center, acknowledged the need for a comparable solar refrigerator that could operate in conjunction with the simple lighting systems already in place on Earth. Bergeron, a 20-year veteran in the aerospace industry, founded the company Solus Refrigeration, Inc., in 1999 to take the patented advanced refrigeration technology he co-developed with his teammate, Johnson engineer Michael Ewert, to commercial markets. Now known as SunDanzer Refrigeration, Inc., Bergeron's company is producing battery-free, photovoltaic (PV) refrigeration systems under license to NASA, and selling them globally.

  7. Prediction of flow boiling heat transfer data for R134a, R600a and R290 in minichannels

    NASA Astrophysics Data System (ADS)

    Mikielewicz, Dariusz; Jakubowska, Blanka

    2014-12-01

    In the paper presented is the analysis of the results of calculations using a model to predict flow boiling of refrigerants such as R134a, R600a and R290. The latter two fluids were not used in the development of the model semiempirical correction. For that reason the model was verified with present experimental data. The experimental research was conducted for a full range of quality variation and a relatively wide range of mass velocity. The aim of the present study was also to test the sensitivity of developed model to a selection of the model of two-phase flow multiplier and the nonadiabatic effects. For that purpose two models have been analysed namely the one due to Muller-Steinhagen and Heck, and Friedel. In addition, the work shows the importance of taking surface tension into account in the calculation of the flow structure.

  8. 110. COMPRESSOR FOR REFRIGERANT COOLING BY WEST WALL OF MECHANICAL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    110. COMPRESSOR FOR REFRIGERANT COOLING BY WEST WALL OF MECHANICAL EQUIPMENT ROOM (201), LSB (BLDG. 751) - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 East, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  9. 4. INTERIOR VIEW OF CLUB HOUSE REFRIGERATION UNIT, SHOWING COOLING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. INTERIOR VIEW OF CLUB HOUSE REFRIGERATION UNIT, SHOWING COOLING COILS AND CORK-LINED ROOM. CAMERA IS BETWEEN SEVEN AND EIGHT FEET ABOVE FLOOR LEVEL, FACING SOUTHEAST. - Swan Falls Village, Clubhouse 011, Snake River, Kuna, Ada County, ID

  10. Comparison of dilution effects of R134a and nitrogen on flammable hydrofluorocarbons

    NASA Astrophysics Data System (ADS)

    Li, Zhenming; Gong, Maoqiong; Wu, Jianfeng; Zhou, Yuan

    2009-12-01

    An experimental apparatus has been built to measure the flammability limits of combustible gases based on Chinese national standard GB/T 12474-90. The flammability limits of four binary mixtures of R161/R134a, R152a/R134a, R161/N2 and R152a/N2 were measured with this apparatus at atmospheric pressure and ambient temperature. The fuel inertization points (FIP) of these mixtures can be found from the envelopes. Comparisons were made with the literature data; good agreement for most measurements was obtained. R134a was found to have a better dilution effect than nitrogen in reducing the flammability of hydrofluorocarbons.

  11. Compounds produced by motor burnouts of refrigeration systems

    SciTech Connect

    Koester, C.; Hawley-Fedder, R.; Foiles, L.

    1995-05-24

    The phase-out of chlorofluorocarbons has necessitated the introduction of alternate refrigerants. R22 (CF{sub 2}ClH), R134a (CF{sub 3}CH{sub 2}F), and R507 (50/50 CHF{sub 2}CF{sub 3}/CF{sub 3}CH{sub 3}) are newer fluids which are used in cooling systems. Recently, concern over the possible formation of toxic compounds during electrical arcing through these fluids has prompted us to identify their electrical breakdown products by electron ionization GC/MS. For example, it is known that perfluoroisobutylene (PFIB), which have an threshold limit value of 10 ppb (set by the American Conference of Government Industrial Hygienists), is produced from the thermal and electrical breakdown of some refrigerants. We have used specially designed test cells, equipped with electrodes, to simulate the electrical breakdown of R22, R134a, and R507 in refrigeration systems.

  12. R1234yf vs. R134a Flow Boiling Heat Transfer Inside a 3.4 mm ID Microfin Tube

    NASA Astrophysics Data System (ADS)

    Diani, A.; Mancin, S.; Rossetto, L.

    2014-11-01

    The refrigerant charge minimization as well as the use of eco-friendly fluids can be considered two of the most important targets for these applications to cope with the new environmental challenges. This paper compares the R1234yf and R134a flow boiling heat transfer and pressure drop measurements inside a small microfin tube with internal diameter at the fin tip of 3.4 mm. This study is carried out in an experimental facility built at the Dipartimento di Ingegneria Industriale of the University of Padova especially designed to study both single and two phase heat transfer processes. The microfin tube is brazed inside a copper plate and electrically heated from the bottom. Several T -type thermocouples are inserted in the wall to measure the temperature distribution during the phase change process. In particular, the experimental measurements were carried out at constant saturation temperature of 30 °C, by varying the refrigerant mass velocity between 190 kg m-2 s-1 and 940 kg m-2 s-1, the vapour quality from 0.2 to 0.99, at different imposed heat fluxes. The two refrigerants are compared considering the values of the two-phase heat transfer coefficient and pressure drop.

  13. Alternative refrigerant performance: Field test of a nonchlorofluorocarbon chiller at Fort Leonard Wood, MO. Final report

    SciTech Connect

    Sohn, C.W.; Tomlinson, J.J.; Herring, N.C.; Boughton, B.E.

    1995-01-01

    Production of chlorofluorocarbon (CFC) refrigerants will stop permanently by the end of 1995, and air-conditioning and refrigeration (AC/R) systems will have to use alternatives to CFC. The U.S. Army`s AC/R systems have a total cooling capacity of more than 1 million tons; approximately 55 percent of these systems use CFC-based refrigerants. Chillers currently using CFC refrigerants must be replaced or converted to operate with non-CFC refrigerants. The U.S. Army Construction Engineering Research Laboratories (USACERL) and the U.S. Army Center for Public Works (USACPW) are doing research to find an efficient, alternative refrigerant for Army installations. The current project monitored the performance of a non-CFC (R-134a) centrifugal chiller at Fort Leonard Wood (FLW), MO. Performance of this chiller under field conditions was compared with the manufacturer`s published ratings. Operational characteristics of the R-134a chiller were obtained by measuring electrical energy consumption, cooling delivered to the chiller cooling loop, and heat rejected by the condenser. Results indicated an average performance of approximately 0.68 kilowatts per ton (kW/ton) for the study period. The manufacturer`s design projection was 0.73 kW/ton. The performance evaluation of the R-134a system shows that it is an efficient addition to the FLW facility.

  14. Computer Programs for Calculating the Isentropic Flow Properties for Mixtures of R-134a and Air

    NASA Technical Reports Server (NTRS)

    Kvaternik, Raymond G.

    2000-01-01

    Three computer programs for calculating the isentropic flow properties of R-134a/air mixtures which were developed in support of the heavy gas conversion of the Langley Transonic Dynamics Tunnel (TDT) from dichlorodifluoromethane (R-12) to 1,1,1,2 tetrafluoroethane (R-134a) are described. The first program calculates the Mach number and the corresponding flow properties when the total temperature, total pressure, static pressure, and mole fraction of R-134a in the mixture are given. The second program calculates tables of isentropic flow properties for a specified set of free-stream Mach numbers given the total pressure, total temperature, and mole fraction of R-134a. Real-gas effects are accounted for in these programs by treating the gases comprising the mixture as both thermally and calorically imperfect. The third program is a specialized version of the first program in which the gases are thermally perfect. It was written to provide a simpler computational alternative to the first program in those cases where real-gas effects are not important. The theory and computational procedures underlying the programs are summarized, the equations used to compute the flow quantities of interest are given, and sample calculated results that encompass the operating conditions of the TDT are shown.

  15. Ion signals with R134a and R134 in a parallel plate proportional counter

    NASA Astrophysics Data System (ADS)

    Norbeck, Edwin; Olson, J. E.; Onel, Y.

    2006-10-01

    The electrical signals from a PPAC (parallel plate avalanche counter) are identical for R134a (1,1,1,2-tetrafluoroethane) and R134 (1,1,2,2-tetrafluoroethane) except for the ion part, which, for R134a, is slower and smaller, but with the same area. The two compounds are identical except for the location of one fluorine atom. With three fluorine atoms on one end, the more common R134a has a large electric dipole moment, about the same as water; while R134 is symmetric, with no dipole moment. The attraction of the polar R134a molecules interferes with the motion of the ions, which results in a longer ion collection time. The counter is two circular plates of 1.0 cm^2 area separated by 0.5 mm operating at 700 torr and 2120 V. The ion signal is constant for a time t0 and then goes linearly to zero at time t1. The values of t0 and t1 are 1.3 μs and 1.8 μs for R134a, but only 0.8 μs and 1.3 μs for R134. These are not precise times because the signals are very small and the values depend on the location of the primary ion formation (from a ^137Cs γ source). During the constant part of the signal the ions are moving between the plates. The signal goes toward zero as the ions are collected at the cathode. For both gasses the large signal from electrons is fast with a full width at half maximum of only 1.0 ns.

  16. Annular flow of R-134a through a high aspect ratio duct: Local void fraction, droplet velocity and droplet size measurements

    SciTech Connect

    Trabold, T.A.; Kumar, R.; Vassallo, P.F.

    1998-11-01

    Local measurements were made in annular flow of R-134a through a vertical duct. Using a gamma densitometer, hot-film anemometer and laser Doppler velocimeter, profiles of void fraction, liquid droplet frequency and droplet velocity were acquired across the narrow test section dimension. Based upon these results, data for liquid droplet size were obtained and compared to previous experimental results from the literature. These data are useful for developing an improved understanding of practical two-phase refrigerant flows, and for assessment of advanced two-fluid computer codes.

  17. Advanced Adiabatic Demagnetization Refrigerators for Continuous Cooling

    NASA Technical Reports Server (NTRS)

    Chu, Paul C. W.

    2004-01-01

    The research at Houston was focused on optimizing the design of superconducting magnets for advanced adiabatic demagnetization refrigerators (ADRs), assessing the feasibility of using high temperature superconducting (HTS) magnets in ADRs in the future, and developing techniques to deposit HTS thin and thick films on high strength, low thermal conductivity substrates for HTS magnet leads. Several approaches have been tested for the suggested superconducting magnets.

  18. Optimal design of gas adsorption refrigerators for cryogenic cooling

    NASA Technical Reports Server (NTRS)

    Chan, C. K.

    1983-01-01

    The design of gas adsorption refrigerators used for cryogenic cooling in the temperature range of 4K to 120K was examined. The functional relationships among the power requirement for the refrigerator, the system mass, the cycle time and the operating conditions were derived. It was found that the precool temperature, the temperature dependent heat capacities and thermal conductivities, and pressure and temperature variations in the compressors have important impacts on the cooling performance. Optimal designs based on a minimum power criterion were performed for four different gas adsorption refrigerators and a multistage system. It is concluded that the estimates of the power required and the system mass are within manageable limits in various spacecraft environments.

  19. Optimal design of gas adsorption refrigerators for cryogenic cooling

    SciTech Connect

    Chan, C.K.

    1983-12-01

    The design of gas adsorption refrigerators used for cryogenic cooling in the temperature range of 4K to 120K was examined. The functional relationships among the power requirement for the refrigerator, the system mass, the cycle time and the operating conditions were derived. It was found that the precool temperature, the temperature dependent heat capacities and thermal conductivities, and pressure and temperature variations in the compressors have important impacts on the cooling performance. Optimal designs based on a minimum power criterion were performed for four different gas adsorption refrigerators and a multistage system. It is concluded that the estimates of the power required and the system mass are within manageable limits in various spacecraft environments.

  20. Cool sound: the future of refrigeration? Thermodynamic and heat transfer issues in thermoacoustic refrigeration

    NASA Astrophysics Data System (ADS)

    Herman, C.; Travnicek, Z.

    2006-04-01

    During the past two decades the thermoacoustic refrigeration and prime mover cycles gained importance in a variety of refrigeration applications. Acoustic work, sound, can be used to generate temperature differences that allow the transport of heat from a low temperature reservoir to an ambient at higher temperature, thus forming a thermoacoustic refrigeration system. The thermoacoustic energy pumping cycle can also be reversed: temperature difference imposed along the stack plates can lead to sound generation. In this situation the thermoacoustic system operates as a prime mover. Sound generated by means of this thermoacoustic energy conversion process can be utilized to drive different types of refrigeration devices that require oscillatory flow for their operation, such as thermoacoustic refrigerators, pulse tubes and Stirling engines. In order for a thermoacoustic refrigeration or prime mover system as well as a thermoacoustic prime mover driving a non-thermoacoustic refrigeration system to be competitive on the current market, it has to be optimized in order to improve its overall performance. Optimization can involve improving the performance of the entire system as well as its components. The paper addresses some of the thermodynamic and heat transfer issues relevant in improving the performance of the thermoacoustic system, such as optimization for maximum COP, maximum cooling load and the role of the heat exchangers. Results obtained using the two optimization criteria are contrasted in the paper to illustrate the complexity of the optimization process.

  1. Air Conditioning with Magnetic Refrigeration : An Efficient, Green Compact Cooling System Using Magnetic Refrigeration

    SciTech Connect

    2010-09-01

    BEETIT Project: Astronautics is developing an air conditioning system that relies on magnetic fields. Typical air conditioners use vapor compression to cool air. Vapor compression uses a liquid refrigerant to circulate within the air conditioner, absorb the heat, and pump the heat out into the external environment. Astronautics’ design uses a novel property of certain materials, called “magnetocaloric materials”, to achieve the same result as liquid refrigerants. These magnetocaloric materials essentially heat up when placed within a magnetic field and cool down when removed, effectively pumping heat out from a cooler to warmer environment. In addition, magnetic refrigeration uses no ozone-depleting gases and is safer to use than conventional air conditioners which are prone to leaks.

  2. Two-Phase Frictional Pressure Drop Multipliers for SUVA R-134a Flowing in a Rectangular Duct

    SciTech Connect

    P Vassallo; K Keller

    2004-12-13

    The adiabatic two-phase frictional multipliers for SUVA, R-134a flowing in a rectangular duct (with D{sub H} = 4.8 mm) have been measured for 3 nominal system pressures (0.9 MPa, 1.38 MPa and 2.41 MPa) and 3 nominal mass fluxes (510, 1020 and 2040 kg/m{sup 2}/s). The data is compared with several classical correlations to assess their predictive capabilities. The Lockhart-Martinelli model gives reasonable results at the lowest pressure and mass flux, near the operating range of most refrigeration systems, but gives increasingly poor comparisons as the pressure and mass flux is increased. The Chisholm B-coefficient model is found to best predict the data over the entire range of test conditions; however, there is significant disagreement at the highest pressure tested (with the model over predicting the data upwards of 100% for some cases). The data shows an increased tendency toward homogeneous flow as the pressure and flow rate are increased, and in fact the homogeneous model best predicts the bulk of the data at the highest pressure tested.

  3. Viscosity measurements of ammonia, R32, and R134a. Vapor buoyancy and radial acceleration in capillary viscometers

    SciTech Connect

    Laesecke, A.; Lueddecke, T.O.D.; Hafer, R.F.; Morris, D.J.

    1999-03-01

    The saturated liquid viscosity of ammonia (NH{sub 3}) and of the hydrofluorocarbons, difluoromethane (CH{sub 2}F{sub 2}, R32) and 1,1,1,2-tetrafluoroethane (CF{sub 3}-CH{sub 2}F, R134a), was measured in a sealed gravitational viscometer with a straight vertical capillary. The combined temperature range was from 250 to 350 K. The estimated uncertainty of the ammonia measurements if {+-}3.3 and {+-}2 to 24% for the hydrofluorocarbons with a coverage factor of two. The results are compared with literature data which have been measured with capillary viscometers of different design. Agreement within the combined experimental uncertainty is achieved when some of the literature data sets are corrected for the vapor buoyancy effect and when a revised radial acceleration correction is applies to data which were obtained in viscometers with coiled capillaries. An improved correction for the radial acceleration is proposed. It is necessary to extend international viscometry standards to sealed gravitational capillary instruments because the apparent inconsistencies between refrigerant viscosity data from different laboratories cannot be explained by contaminated samples.

  4. Maximum cooling and maximum efficiency of thermoacoustic refrigerators

    NASA Astrophysics Data System (ADS)

    Tartibu, L. K.

    2016-01-01

    This work provides valid experimental evidence on the difference between design for maximum cooling and maximum efficiency for thermoacoustic refrigerators. In addition, the influence of the geometry of the honeycomb ceramic stack on the performance of thermoacoustic refrigerators is presented as it affects the cooling power. Sixteen cordierite honeycomb ceramic stacks with square cross sections having four different lengths of 26, 48, 70 and 100 mm are considered. Measurements are taken at six different locations of the stack hot ends from the pressure antinode, namely 100, 200, 300, 400, 500 and 600 mm respectively. Measurement of temperature difference across the stack ends at steady state for different stack geometries are used to compute the cooling load and the coefficient of performance. The results obtained with atmospheric air showed that there is a distinct optimum depending on the design goal.

  5. Floating loop method for cooling integrated motors and inverters using hot liquid refrigerant

    DOEpatents

    Hsu, John S.; Ayers, Curtis W.; Coomer, Chester; Marlino, Laura D.

    2007-03-20

    A method for cooling vehicle components using the vehicle air conditioning system comprising the steps of: tapping the hot liquid refrigerant of said air conditioning system, flooding a heat exchanger in the vehicle component with said hot liquid refrigerant, evaporating said hot liquid refrigerant into hot vapor refrigerant using the heat from said vehicle component, and returning said hot vapor refrigerant to the hot vapor refrigerant line in said vehicle air conditioning system.

  6. Computer model for air-cooled refrigerant condensers with specified refrigerant circuiting

    SciTech Connect

    Ellison, R.D.; Creswick, F.A.; Fischer, S.K.; Jackson, W.L.

    1981-01-01

    A computer model for an air-cooled refrigerant condensor is presented; the model is intended for use in detailed design analyses or in simulation of the performance of existing heat exchangers that have complex refrigerant circuiting or unusual air-side geometries. The model relies on a tube-by-tube computational approach calculating the thermal and fluid-flow performance of each tube in the heat exchanger individually, using local temperatures and heat transfer coefficients. The refrigerant circuiting must be specified; the joining or branching of parallel circuits is accommodated using appropriate mixing expressions. Air-side heat exchange correlations may be specified so that various surface geometries can be investigated. Results of the analyses of two condensers are compared to experiment.

  7. Alternative Drop-in Refrigerant to R22 for Refrigerating System of Refrigerated Warehouse

    NASA Astrophysics Data System (ADS)

    Bandoh, Yuriko; Furuyama, Kyoko; Saito, Motomu; Sato, Haruki; Morimoto, Masanori; Iwasaki, Minoru; Tonouchi, Takashi; Kotani, Yasuhisa

    We tested to use several compositions of a four-component-mixture R 32/125/134a/600 as a refrigerant for replacing R 22 in refrigeration system of refrigerated warehouses. R 32, R 125, and R 134a are hydrofluorocarbons and R 600 is normal butane. The refrigeration system designed for R 22 can be used without any change or with very minor change. By using appropriate composition of the four-component refrigerant, existing refrigeration system can provide best performance because the adjusted properties of the refrigerant can somewhat compensate for the individual hardware problems. Practical operation test was done by using a refrigeration system of nominal cooling capacity of 30.2 kW with a 22 kW two-stage compressor which equipped for an 858m3 refrigerated warehouse maintaining at -30°C. The pressure condition and the coefficient of performance of R 32/125/134a/600 are similar to R 22 from a theoretical viewpoint. The power consumption of R 32/125/134a/600 was small enough or not to be worse than that of R22, which was confirmed from the actual test results.

  8. Transient phenomena in a low cooling thermoacoustic refrigerator

    NASA Astrophysics Data System (ADS)

    Dhuley, R. C.; Atrey, M. D.

    2014-01-01

    A one-dimensional theoretical model is developed to describe the transient state phenomena in a low cooling standing wave Thermoacoustic Refrigerator. The model is based on the Linear Theory of Thermoacoustics. It uses Implicit Finite Difference method to calculate the temporal evolution of temperature and steady state temperature distribution in the refrigerator stack and the resonator. The cold temperatures predicted by the model are compared with those obtained by techniques given in literature, and show a very good match. Due to simplistic assumptions in the model and its one-dimensional nature, the cooldown rates are shown to be very fast compared to other experimental findings in literature. It is also seen that the resonator takes a long time to cool down compared to the stack.

  9. Combined refrigeration system with a liquid pre-cooling heat exchanger

    DOEpatents

    Gaul, Christopher J.

    2003-07-01

    A compressor-pump unit for use in a vapor-compression refrigeration system is provided. The compressor-pump unit comprises a driving device including a rotatable shaft. A compressor is coupled with a first portion of the shaft for compressing gaseous refrigerant within the vapor-compression refrigeration system. A liquid pump is coupled with a second portion of the shaft for receiving liquid refrigerant having a first pressure and for discharging the received liquid refrigerant at a second pressure with the second pressure being higher than the first pressure by a predetermined amount such that the discharged liquid refrigerant is subcooled. A pre-cooling circuit is connected to the liquid pump with the pre-cooling circuit being exposed to the gaseous refrigerant whereby the gaseous refrigerant absorbs heat from the liquid refrigerant, prior to the liquid refrigerant entering the liquid pump.

  10. Experimental and analytical study of inverted annular flow film boiling heat transfer in a vertical tube using R-134a

    NASA Astrophysics Data System (ADS)

    El Nakla, Meamer A.

    An experimental investigation of inverted annular film boiling heat transfer has been performed for vertical up-flow in a round tube. The working fluid was R-134a and the flow conditions covered a pressure range of 640 to 2390 kPa (water equivalent range: 4000 to 14000 kPa) and a mass flux range of 500 to 4000 kgm-2s-1 (water equivalent range: 700 to 5700 kgm-2s-1 ). The inlet qualities of the tests ranged from -0.75 to -0.03. The hot-patch technique is used to obtain the subcooled film boiling measurements. The parametric trends of the heat transfer coefficient with respect to mass flux, inlet quality, heat flux and pressure are examined and compared to reported parametric trends from the literature. The comparison shows agreement between observed effects of flow parameters with those reported by other researchers. The heat transfer vs. quality curve is divided into four different regions. It is shown that these regions are dependent on pressure, mass flux and local quality. A two-fluid one-dimensional model has been developed to predict the wall temperature of an internally-heated tube during IAFB. The model is derived using basic conservation equations of mass, momentum and energy. To simplify the derivation of the constitutive heat transfer relations, flow between two parallel plates is assumed. The model features shear stress and interfacial relations that make it accurately predicts the parametric effects and heat transfer characteristics of IAFB over a wide range of flow conditions. The model predicts wall temperatures of R-134a-cooled tubes with an average error of -1.21% and an RMS error of 6.37%. This corresponds to average and RMS errors in predicted heat transfer coefficients of 1.33% and 10.07%, respectively. Using water data, the model predicts wall temperatures with an average error of -1.76% and an RMS error of 7.78% which corresponds to average and RMS errors in predicted heat transfer coefficients of 4.16% and 15.06%, respectively.

  11. Gifford-McMahon/Joule-Thomson Refrigerator Cools to 2.5 K

    NASA Technical Reports Server (NTRS)

    Britcliffe, Michael; Fernandez, Jose; Hanson, Theodore

    2005-01-01

    A compact refrigerator designed specifically for cooling a microwave maser low-noise amplifier is capable of removing heat at a continuous rate of 180 mW at a temperature of 2.5 K. This refrigerator is a combination of (1) a commercial Gifford-McMahon (GM) refrigerator nominally rated for cooling to 4 K and (2) a Joule-Thomson (J-T) circuit. The GM refrigerator pre-cools the J-T circuit, which provides the final stage of cooling. The refrigerator is compact and capable of operating in any orientation. Moreover, in comparison with a typical refrigerator heretofore used to cool a maser to 4.5 K, this refrigerator is simpler and can be built at less than half the cost.

  12. Development of atmospheric characteristics of chlorine-free alternative fluorocarbons. Report on R-134a and E-143a

    SciTech Connect

    Orkin, V.L.; Khamaganov, V.G.; Guschin, A.G.; Kasimovskaya, E.E.; Larin, I.K.

    1993-04-01

    Rate constants have been measured for the gas phase reaction of OH radicals with 1,1,1,2-tetrafluoroethane R-134a (CH{sub 2}F-CF{sub 3}) and methyl trifluoromethyl ether E-143a (CH{sub 3}-O-CF{sub 3}) over the temperature range 298--460 K. Arrhenius expressions were derived for atmospheric modeling. The infrared absorption cross-sections for R-134a and E-143a have been measured in the region from 400 to 1600 cm{sup {minus}1} and the integrated band strengths have been calculated. The atmospheric lifetimes R-134a and E-143a have been estimated to be 11.6 years and 4.1 years respectively. Global warming potentials have been estimated over time horizons of 20, 50, 100, 200, and 500 years.

  13. Heat and mass transfer characteristics of absorption of R134a into DMAC in a horizontal tube absorber

    NASA Astrophysics Data System (ADS)

    Harikrishnan, L.; Maiya, M. P.; Tiwari, S.; Wohlfeil, A.; Ziegler, F.

    2009-10-01

    In this paper the heat and mass transfer characteristics of a horizontal tube absorber for the mixture R134a/DMAC in terms of experimentally gained heat and mass transfer coefficients are presented. The heat transfer coefficient is mainly dependent on the solution’s mass flow rate. The mass transfer coefficient is strongly related to the subcooling of the solution. The data are compared to experimental absorption characteristics of water into aqueous lithium bromide in an absorption chiller. The mass transfer coefficients are of similar size whereas the heat transfer coefficients are about one order of magnitude smaller for R134a-DMAC.

  14. Positive Displacement Compressor Technology for Refrigeration

    NASA Astrophysics Data System (ADS)

    Nagatomo, Shigemi

    Trends of compressor technologies for refrigerators, freezers and condensing units are presented in this paper. HFC refrigerants such as R134a and R404C are promising candidates as an altemative for R12. Performance of reciprocating and rotary compressors in the operation with R134A is described. In addition, compressor technologies such as efficiency improvement are described in the cases of reciprocating, rotary and scroll compressors.

  15. Heating surface material’s effect on subcooled flow boiling heat transfer of R134a

    SciTech Connect

    Ling Zou; Barclay G. Jones

    2012-11-01

    In this study, subcooled flow boiling of R134a on copper (Cu) and stainless steel (SS) heating surfaces was experimentally investigated from both macroscopic and microscopic points of view. By utilizing a high-speed digital camera, bubble growth rate, bubble departure size, and nucleation site density, were able to be observed and analyzed from the microscopic point of view. Macroscopic characteristics of the subcooled flow boiling, such as heat transfer coefficient, were able to be measured as well. Experimental results showed that there are no obvious difference between the copper and the stainless surface with respect to bubble dynamics, such as contact angle, growth rate and departure size. On the contrary, the results clearly showed a trend that the copper surface had a better performance than the stainless steel surface in terms of heat transfer coefficient. It was also observed that wall heat fluxes on both surfaces were found highly correlated with nucleation site density, as bubble hydrodynamics are similar on these two surfaces. The difference between these two surfaces was concluded as results of different surface thermal conductivities.

  16. Tetrafluoroethane (R134a) hydrate formation within variable volume reactor accompanied by evaporation and condensation.

    PubMed

    Jeong, K; Choo, Y S; Hong, H J; Yoon, Y S; Song, M H

    2015-03-01

    Vast size hydrate formation reactors with fast conversion rate are required for the economic implementation of seawater desalination utilizing gas hydrate technology. The commercial target production rate is order of thousand tons of potable water per day per train. Various heat and mass transfer enhancement schemes including agitation, spraying, and bubbling have been examined to maximize the production capacities in scaled up design of hydrate formation reactors. The present experimental study focused on acquiring basic knowledge needed to design variable volume reactors to produce tetrafluoroethane hydrate slurry. Test vessel was composed of main cavity with fixed volume of 140 ml and auxiliary cavity with variable volume of 0 ∼ 64 ml. Temperatures at multiple locations within vessel and pressure were monitored while visual access was made through front window. Alternating evaporation and condensation induced by cyclic volume change provided agitation due to density differences among water and vapor, liquid and hydrate R134a as well as extended interface area, which improved hydrate formation kinetics coupled with latent heat release and absorption. Influences of coolant temperature, piston stroke/speed, and volume change period on hydrate formation kinetics were investigated. Suggestions of reactor design improvement for future experimental study are also made. PMID:25832270

  17. The vapor pressure of 1, 1, 1, 2-tetrafluoroethane (R134a) and chlorodifluoromethane (R22)

    SciTech Connect

    Goodwin, A.R.H.; Defibaugh, D.R.; Weber, L.A. )

    1992-09-01

    The authors measured the vapor pressure of chlorodifluoromethane (commonly known as R22) at temperatures between 217.1 and 248.5 K and of 1,1,1,2-tetrafluoroethane (commonly known as R134a) in the temperature range 214.4 to 264.7 K using a comparative ebulliometer. For 1,1,1,2-tetrafluoroethane at pressures between 220.8 and 1017.7 kPa (corresponding to temperatures in the range 265.6 to 313.2 K), additional measurements were made with a Burnett apparatus. The results have been combined for 1, 1, 1, 2-tetrafluoroethane with those already published from this laboratory at higher pressures to obtain a smoothing equation for the vapor pressure from 215 K to the critical temperature. For chlorodifluoromethane the results have been combined with certain published results to provide an equation for the vapor pressure at temperatures from 217 K to the critical temperature. 58 refs., 6 figs., 2 tabs.

  18. Tetrafluoroethane (R134a) hydrate formation within variable volume reactor accompanied by evaporation and condensation

    NASA Astrophysics Data System (ADS)

    Jeong, K.; Choo, Y. S.; Hong, H. J.; Yoon, Y. S.; Song, M. H.

    2015-03-01

    Vast size hydrate formation reactors with fast conversion rate are required for the economic implementation of seawater desalination utilizing gas hydrate technology. The commercial target production rate is order of thousand tons of potable water per day per train. Various heat and mass transfer enhancement schemes including agitation, spraying, and bubbling have been examined to maximize the production capacities in scaled up design of hydrate formation reactors. The present experimental study focused on acquiring basic knowledge needed to design variable volume reactors to produce tetrafluoroethane hydrate slurry. Test vessel was composed of main cavity with fixed volume of 140 ml and auxiliary cavity with variable volume of 0 ˜ 64 ml. Temperatures at multiple locations within vessel and pressure were monitored while visual access was made through front window. Alternating evaporation and condensation induced by cyclic volume change provided agitation due to density differences among water and vapor, liquid and hydrate R134a as well as extended interface area, which improved hydrate formation kinetics coupled with latent heat release and absorption. Influences of coolant temperature, piston stroke/speed, and volume change period on hydrate formation kinetics were investigated. Suggestions of reactor design improvement for future experimental study are also made.

  19. Tetrafluoroethane (R134a) hydrate formation within variable volume reactor accompanied by evaporation and condensation

    SciTech Connect

    Jeong, K.; Choo, Y. S.; Hong, H. J.; Yoon, Y. S.; Song, M. H.

    2015-03-15

    Vast size hydrate formation reactors with fast conversion rate are required for the economic implementation of seawater desalination utilizing gas hydrate technology. The commercial target production rate is order of thousand tons of potable water per day per train. Various heat and mass transfer enhancement schemes including agitation, spraying, and bubbling have been examined to maximize the production capacities in scaled up design of hydrate formation reactors. The present experimental study focused on acquiring basic knowledge needed to design variable volume reactors to produce tetrafluoroethane hydrate slurry. Test vessel was composed of main cavity with fixed volume of 140 ml and auxiliary cavity with variable volume of 0 ∼ 64 ml. Temperatures at multiple locations within vessel and pressure were monitored while visual access was made through front window. Alternating evaporation and condensation induced by cyclic volume change provided agitation due to density differences among water and vapor, liquid and hydrate R134a as well as extended interface area, which improved hydrate formation kinetics coupled with latent heat release and absorption. Influences of coolant temperature, piston stroke/speed, and volume change period on hydrate formation kinetics were investigated. Suggestions of reactor design improvement for future experimental study are also made.

  20. Electron swarm coefficients in 1,1,1,2 tetrafluoroethane (R134a) and its mixtures with Ar

    NASA Astrophysics Data System (ADS)

    de Urquijo, J.; Juárez, A. M.; Basurto, E.; Hernández-Ávila, J. L.

    2009-02-01

    Using a pulsed Townsend technique, we have measured the drift velocity, the longitudinal diffusion coefficient and the effective ionisation coefficient of electrons in R134a and R134a-Ar over a wide range of the density-reduced electric field intensity, E/N. Regarding the measurement of the electron drift velocities and of the effective ionization coefficients, we have covered a wider range than that hitherto achieved for pure R134a. Both the electron drift velocity and the effective ionisation coefficient have been found in very good agreement with those published in the literature, covering a shorter range of E/N. On the other hand, the swarm coefficients on R134a-Ar are, to the best of our knowledge, the first to be published. It is hoped that these data will be of interest for the test/derivation of electron collision cross sections for this important hydrofluorocarbon gas, which is nowadays of great use in gaseous detectors.

  1. The 1- to 4-K refrigeration techniques for cooling masers on a beam waveguide antenna

    NASA Technical Reports Server (NTRS)

    Johnson, D. L.

    1986-01-01

    The status of technology is reported for various 1- to 4-K commercially available refrigeration systems capable of producing 1.5-K refrigeration to cool masers and superconducting cavity oscillators on the proposed beam waveguide antenna. The design requirements for the refrigeration system and the cryostat are presented. A continuously operating evaporation refrigerator that uses capillary tubing to provide a continuous, self-regulating flow of helium at approximately 1.5 K has been selected as the first refrigerator design for the beam waveguide antenna.

  2. Flow boiling heat transfer study of R-134a/R-290/R-600a mixture in 9.52 and 12.7 mm smooth horizontal tubes: Experimental investigation

    SciTech Connect

    Raja, B.; Mohan Lal, D.; Saravanan, R.

    2009-03-15

    A detailed experimental investigation is carried out to study the flow boiling heat transfer behavior of R-134a/R-290/R-600a (91%/4.068%/4.932% by mass) refrigerant mixture in smooth horizontal tubes of diameter 9.52 and 12.7 mm. The heat transfer coefficients of the mixture are experimentally measured under varied heat flux conditions for stratified flow patterns using a coaxial counter-current heat exchanger test section. The tests are conducted for refrigerant inlet temperatures between -9 and 5 C and mass flow rates ranging from 3 to 5 g s{sup -1}. Kattan-Thome-Favrat maps are used to confirm the flow patterns for the tested conditions. The magnitude of the heat transfer coefficient with respect to flow patterns and different mechanisms of boiling are discussed. The heat transfer coefficient of the refrigerant mixture is also compared with that of R-134a for selected working conditions. The significance of nucleate boiling in the overall heat transfer process under these testing conditions is highlighted. (author)

  3. Using electron-tunneling refrigerators to cool electrons, membranes, and sensors

    NASA Astrophysics Data System (ADS)

    Miller, Nathan A.

    Many cryogenic devices require temperatures near 100 mK for optimal performance, such as thin-film, superconducting detectors. Examples include the submillimeter SCUBA camera on the James Clerk Maxwell Telescope, high-resolution X-ray sensors for semiconductor defect analysis, and a planned satellite to search for polarization in the cosmic microwave background. The cost, size, and complexity of refrigerators used to reach 100 mK (dilution and adiabatic demagnetization refrigerators) are significant and alternative technologies are desirable. We demonstrate work on developing a new option for cooling detectors to 100 mK bath temperatures. Solid-state refrigerators based on Normal metal/Insulator/Superconductor (NIS) tunnel junctions can provide cooling from pumped 3He bath temperatures (˜300 mK) to 100 mK. The cooling mechanism is the preferential tunneling of the highest energy (hottest) electrons from the normal metal through the biased tunnel junctions into the superconductor. When NIS refrigerators are combined with a micro-machined membrane, both the electrons and phonons of the membrane can be cooled. We have developed NIS-cooled membranes with both large temperature reductions and large cooling powers. We have shown the first cooling of a bulk material by cooling a neutron transmutation doped (NTD) thermistor. The fabrication of NIS refrigerators can be integrated with existing detector technology. For the first time, we have successfully integrated NIS refrigerators with both mm-wave and X-ray detectors. In particular, we have cooled X-ray detectors by more than 100 mK and have achieved a resolution of <10 eV at 6 keV at a bath temperature 85 mK above the transition temperature of the detector. The use of integrated NIS refrigerators makes the remarkable performance of cryogenic detectors available from 300 mK platforms. We have also performed preliminary work towards building a general-purpose cooling platform for microelectronics devices on separate

  4. Sub-cooled liquid nitrogen cryogenic system with neon turbo-refrigerator for HTS power equipment

    NASA Astrophysics Data System (ADS)

    Yoshida, S.; Hirai, H.; Nara, N.; Ozaki, S.; Hirokawa, M.; Eguchi, T.; Hayashi, H.; Iwakuma, M.; Shiohara, Y.

    2014-01-01

    We developed a prototype sub-cooled liquid nitrogen (LN) circulation system for HTS power equipment. The system consists of a neon turbo-Brayton refrigerator with a LN sub-cooler and LN circulation pump unit. The neon refrigerator has more than 2 kW cooling power at 65 K. The LN sub-cooler is a plate-fin type heat exchanger and is installed in a refrigerator cold box. In order to carry out the system performance tests, a dummy cryostat having an electric heater was set instead of a HTS power equipment. Sub-cooled LN is delivered into the sub-cooler by the LN circulation pump and cooled within it. After the sub-cooler, sub-cooled LN goes out from the cold box to the dummy cryostat, and comes back to the pump unit. The system can control an outlet sub-cooled LN temperature by adjusting refrigerator cooling power. The refrigerator cooling power is automatically controlled by the turbo-compressor rotational speed. In the performance tests, we increased an electric heater power from 200 W to 1300 W abruptly. We confirmed the temperature fluctuation was about ±1 K. We show the cryogenic system details and performance test results in this paper.

  5. Super-heavy electron material as metallic refrigerant for adiabatic demagnetization cooling.

    PubMed

    Tokiwa, Yoshifumi; Piening, Boy; Jeevan, Hirale S; Bud'ko, Sergey L; Canfield, Paul C; Gegenwart, Philipp

    2016-09-01

    Low-temperature refrigeration is of crucial importance in fundamental research of condensed matter physics, because the investigations of fascinating quantum phenomena, such as superconductivity, superfluidity, and quantum criticality, often require refrigeration down to very low temperatures. Currently, cryogenic refrigerators with (3)He gas are widely used for cooling below 1 K. However, usage of the gas has been increasingly difficult because of the current worldwide shortage. Therefore, it is important to consider alternative methods of refrigeration. We show that a new type of refrigerant, the super-heavy electron metal YbCo2Zn20, can be used for adiabatic demagnetization refrigeration, which does not require (3)He gas. This method has a number of advantages, including much better metallic thermal conductivity compared to the conventional insulating refrigerants. We also demonstrate that the cooling performance is optimized in Yb1-x Sc x Co2Zn20 by partial Sc substitution, with x ~ 0.19. The substitution induces chemical pressure that drives the materials to a zero-field quantum critical point. This leads to an additional enhancement of the magnetocaloric effect in low fields and low temperatures, enabling final temperatures well below 100 mK. This performance has, up to now, been restricted to insulators. For nearly a century, the same principle of using local magnetic moments has been applied for adiabatic demagnetization cooling. This study opens new possibilities of using itinerant magnetic moments for cryogen-free refrigeration. PMID:27626073

  6. Super-heavy electron material as metallic refrigerant for adiabatic demagnetization cooling

    PubMed Central

    Tokiwa, Yoshifumi; Piening, Boy; Jeevan, Hirale S.; Bud’ko, Sergey L.; Canfield, Paul C.; Gegenwart, Philipp

    2016-01-01

    Low-temperature refrigeration is of crucial importance in fundamental research of condensed matter physics, because the investigations of fascinating quantum phenomena, such as superconductivity, superfluidity, and quantum criticality, often require refrigeration down to very low temperatures. Currently, cryogenic refrigerators with 3He gas are widely used for cooling below 1 K. However, usage of the gas has been increasingly difficult because of the current worldwide shortage. Therefore, it is important to consider alternative methods of refrigeration. We show that a new type of refrigerant, the super-heavy electron metal YbCo2Zn20, can be used for adiabatic demagnetization refrigeration, which does not require 3He gas. This method has a number of advantages, including much better metallic thermal conductivity compared to the conventional insulating refrigerants. We also demonstrate that the cooling performance is optimized in Yb1−xScxCo2Zn20 by partial Sc substitution, with x ~ 0.19. The substitution induces chemical pressure that drives the materials to a zero-field quantum critical point. This leads to an additional enhancement of the magnetocaloric effect in low fields and low temperatures, enabling final temperatures well below 100 mK. This performance has, up to now, been restricted to insulators. For nearly a century, the same principle of using local magnetic moments has been applied for adiabatic demagnetization cooling. This study opens new possibilities of using itinerant magnetic moments for cryogen-free refrigeration. PMID:27626073

  7. Flow boiling heat transfer of R134a, R236fa and R245fa in a horizontal 1.030 mm circular channel

    SciTech Connect

    Ong, Chin L.; Thome, John R.

    2009-04-15

    This research focuses on acquiring accurate flow boiling heat transfer data and flow pattern visualization for three refrigerants, R134a, R236fa and R245fa in a 1.030 mm channel. We investigate trends in the data, and their possible mechanisms, for mass fluxes from 200 to 1600 kg/m{sup 2}s, heat fluxes from 2.3 kW/m{sup 2} to 250 kW/m{sup 2} at T{sub sat} = 31 C and {delta}T{sub sub} from 2 to 9 K. The local saturated flow boiling heat transfer coefficients display a heat flux and a mass flux dependency but no residual subcooling influence. The changes in heat transfer trends correspond well with flow regime transitions. These were segregated into the isolated bubble (IB) regime, the coalescing bubble (CB) regime, and the annular (A) regime for the three fluids. The importance of nucleate boiling and forced convection in these small channels is still relatively unclear and requires further research. (author)

  8. IMPACTS OF REFRIGERANTLINE LENGTH ON SYSTEM EFFICIENCY IN RESIDENTIAL HEATING AND COOLING SYSTEMS USING REFRIGERANT DISTRIBUTION.

    SciTech Connect

    ANDREWS, J.W.

    2001-04-01

    The effects on system efficiency of excess refrigerant line length are calculated for an idealized residential heating and cooling system. By excess line length is meant refrigerant tubing in excess of the 25 R provided for in standard equipment efficiency test methods. The purpose of the calculation is to provide input for a proposed method for evaluating refrigerant distribution system efficiency. A refrigerant distribution system uses refrigerant (instead of ducts or pipes) to carry heat and/or cooling effect from the equipment to the spaces in the building in which it is used. Such systems would include so-called mini-splits as well as more conventional split systems that for one reason or another have the indoor and outdoor coils separated by more than 25 ft. This report performs first-order calculations of the effects on system efficiency, in both the heating and cooling modes, of pressure drops within the refrigerant lines and of heat transfer between the refrigerant lines and the space surrounding them.

  9. An investigation of a model of the flow pattern transition mechanism in relation to the identification of annular flow of R134a in a vertical tube using various void fraction models and flow regime maps

    SciTech Connect

    Dalkilic, A.S.; Wongwises, S.

    2010-09-15

    In the present study, new experimental data are presented for literature on the prediction of film thickness and identification of flow regime during the co-current downward condensation in a vertical smooth copper tube having an inner diameter of 8.1 mm and a length of 500 mm. R134a and water are used as working fluids in the tube side and annular side of a double tube heat exchanger, respectively. Condensation experiments are done at mass fluxes of 300 and 515 kg m{sup -2} s{sup -1}. The condensing temperatures are between 40 and 50 C; heat fluxes are between 12.65 and 66.61 kW m{sup -2}. The average experimental heat transfer coefficient of the refrigerant HFC-134a is calculated by applying an energy balance based on the energy transferred from the test section. A mathematical model by Barnea et al. based on the momentum balance of liquid and vapor phases is used to determine the condensation film thickness of R134a. The comparative film thickness values are determined indirectly using relevant measured data together with various void fraction models and correlations reported in the open literature. The effects of heat flux, mass flux, and condensation temperature on the film thickness and condensation heat transfer coefficient are also discussed for the laminar and turbulent flow conditions. There is a good agreement between the film thickness results obtained from the theoretical model and those obtained from six of 35 void fraction models in the high mass flux region of R134a. In spite of their different valid conditions, six well-known flow regime maps from the literature are found to be predictive for the annular flow conditions in the test tube in spite of their different operating conditions. (author)

  10. Performance investigation of a waste heat driven pressurized adsorption refrigeration cycle

    NASA Astrophysics Data System (ADS)

    Habib, K.

    2015-12-01

    This article presents performance investigation of a waste heat driven two bed pressurised adsorption refrigeration system. In this study, highly porous activated carbon (AC) of type Maxsorb III has been selected as adsorbent while n-butane, R-134a, R410a, R507a and carbon dioxide (CO2) are chosen as refrigerants. All the five refrigerants work at above atmospheric pressure. Among the five pairs studied, the best pairs will be identified which will be used to provide sufficient cooling capacity for a driving heat source temperature above 60°C. Results indicate that for a driving source temperature above 60°C, AC-R410a pair provides highest cooling capacity while AC-CO2 pairs works better when the heat source temperature falls below 60°C.

  11. Enhancing the performance of the domestic refrigerator with hot gas injection to suction line

    NASA Astrophysics Data System (ADS)

    Berman, E. T.; Hasan, S.; Mutaufiq

    2016-04-01

    The purpose of this study was to determine the increase in performance of a domestic refrigerator that uses hot gas injection (IHG) to the suction line. The experiment was conducted by flowing refrigerant from the discharge line to the suction line. To get performance data, measurements performed on the liquid brine as cooling load with various temperatures (range from 3°C to – 3°C). The working fluid is used as a cooling medium is R-134a. The experimental results showed that the injection of hot gas to the suction line generates an increase in the coefficient of performance systems (COPs) of 7% and is able to lower the discharge temperature, causing the compressor to work lighter/easier, saving electric power needed by the refrigerator.

  12. Estudio del proceso de ebullicion en el interior de un tubo multipuerto extruido en aluminio con mini-canales de geometria triangular usando R32 y R134a como fluidos de trabajo

    NASA Astrophysics Data System (ADS)

    Ramirez Rivera, Francisco Alberto

    The use of multiport mini-channel tubes in compact exchangers has increased in the last few years. They contributing to improve thermal efficient, compactness, energy conservation and required lower refrigerants charge by which reduction of greenhouse gases emission. Those mentioned advantages are very important aspects with regard to modern refrigeration systems design. For that reason, several experimental investigation have been carried out in order to characterize the flow boiling heat transfer process and frictional pressure drop in tubes with parallel channels. Since, the ability to estimate pressure drop and heat transfer coefficient for specific conditions is a fundamental issue to optimise the design of compact heat exchanger. In this study, the characteristics of two- phase flow pressure drop and convective boiling heat transfer have been investigated experimentally inside multiport mini-channel aluminium tube with triangular geometry, hydraulic diameter 0.715 mm and heating length of 1205 mm using R32 and R134a as working fluids. A wide experimental campaign has been carried out to complete an array of measurement under different conditions for both refrigerants studied. The experimental conditions examined included: mass velocity 275-1230 kgm -2s-1, heat flux 0.75-9.30 kWm-2, saturation temperature, 5°C, 7.5°C, 12.5°C, vapour quality 0.012-0.51. The database presented consists of 312 averages values, 223 averages values were recorded for R134a and 89 for R32. The flow boiling averages values were calculated selecting a sample of 40 readings (steps 20s) in stable conditions for all measured variables at each mass velocity tested.

  13. Continuous Magnetic Refrigerators for Cooling in the 0.05 to 10 K Range

    NASA Technical Reports Server (NTRS)

    Shirron, Peter; DiPirro, Michael; Canavan, Edgar; Tuttle, James; Panek, John; Jackson, Michael; King, Todd; Numazawa, Takenori; Krebs, Carolyn (Technical Monitor)

    2001-01-01

    Low temperature refrigeration is an increasingly vital technology for NASA's Space Science program since most detectors being developed for x-ray, IR and sub-millimeter missions must be cooled to below 100 mK in order to meet the requirements for energy and spatial resolution. For space applications, magnetic refrigeration has an inherent advantage over alternative techniques because it does not depend on gravity. Adiabatic demagnetization refrigerators, or ADRs, are relatively simple, solid state devices. The basic elements are a magnetocaloric refrigerant (usually an encapsulated paramagnetic salt) located in the bore of a superconducting magnet, and a heat switch linking the salt to a heat sink. The alignment of magnetic spins with the magnetic field causes the refrigerant to warm as the magnetic field increases and cool as the field decreases. Thus the simple process of magnetizing the refrigerant to high field with the heat switch closed, then demagnetizing it with the heat switch open allows one to obtain temperatures well below 100 mK using a heat sink as warm as 4.2 K. The refrigerant can maintain a low temperature for a length of time depending on the applied and parasitic heat loads, its mass, and the initial magnetic field strength. Typically ADRs are designed for 12-24 hours of hold time, after which they must be warmed up and recycled.

  14. Simulation of chip-size electrocaloric refrigerator with high cooling-power density

    NASA Astrophysics Data System (ADS)

    Gu, Haiming; Craven, Brent; Qian, Xiaoshi; Li, Xinyu; Cheng, Ailan; Zhang, Q. M.

    2013-03-01

    The large electrocaloric effect that found in ferroelectric polymers creates unique opportunity for developing high performance chip scale solid state refrigerator. This letter presents a finite volume simulation study and shows that by employing solid state regenerators and the micro-heat pumping mechanism used in the thermoacoustic cooling, a compact Electrocaloric Oscillatory Refrigeration (ECOR) device can be realized. The simulation results demonstrate that a 1 cm-long ECOR device can provide 9 W/cm3 volumetric cooling power density at 20 K temperature span. By tuning the device parameters in the model, the ECOR can reach more than 50% of the Carnot efficiency.

  15. Enhanced naphthenic refrigeration oils for household refrigerator systems

    SciTech Connect

    Reyes-Gavilan, J.L.; Flak, G.T.; Tritcak, T.R.; Barbour, C.B.

    1997-12-31

    Due to industry concerns about the successful employment of hydrofluorocarbon-immiscible hydrocarbon oils in refrigeration systems, enhanced naphthenic refrigeration oils have been developed. These products have been designed to be more dispersible with hydrofluorocarbon (HFC) refrigerants, such as R-134a, in order to facilitate lubricant return to the compressor and to ensure proper energy efficiency of the system. Bench tests and system performance evaluations indicate the feasibility of these oils for use in household refrigeration applications. Results of these evaluations are compared with those obtained with polyol esters and typical naphthenic mineral oils employed in chlorofluorocarbon (CFC) and hydrochlorofluorocarbon (HCFC) refrigeration applications.

  16. Liquid thermal conductivity of binary mixtures of pentafluoroethane (R125) and 1,1,1,2-tetrafluoroethane (R134a)

    SciTech Connect

    Jeong, S.U.; Kim, M.S.; Ro, S.T.

    1999-01-01

    Thermal conductivities of zeotropic mixtures of R125 (CF{sub 3}CHF{sub 2}) and R134a (CF{sub 3}CH{sub 2}F) in the liquid phase are reported. Thermal conductivities have been measured by a transient hot-wire method with one bare platinum wire. Measurements have been carried out in the temperature range of 233 to 323 K and in the pressure range of 2 to 20 MPa. The dependence of thermal conductivity on temperature, pressure, and composition of the binary mixture is presented. Measured thermal conductivity data are correlated as a function of temperature, pressure, and overall composition of the mixture. The uncertainty of the measurements was estimated to be better than 2%.

  17. Cooling of superconducting devices by liquid storage and refrigeration unit

    SciTech Connect

    Laskaris, Evangelos Trifon; Urbahn, John Arthur; Steinbach, Albert Eugene

    2013-08-20

    A system is disclosed for cooling superconducting devices. The system includes a cryogen cooling system configured to be coupled to the superconducting device and to supply cryogen to the device. The system also includes a cryogen storage system configured to supply cryogen to the device. The system further includes flow control valving configured to selectively isolate the cryogen cooling system from the device, thereby directing a flow of cryogen to the device from the cryogen storage system.

  18. Nearly Azeotropic Mixtures To Replace Refrigerant 12

    NASA Technical Reports Server (NTRS)

    Jones, Jack A.

    1992-01-01

    Number of nearly azeotropic fluid mixtures have saturation pressures similar to Refrigerant 12 while being about 2 percent as damaging to ozone layer. Five mixtures of R134a, R152a, R124, and R142b have low boiling-point spreads, low toxicity, and low ozone-damaging capability, are nonflammable, and more compatible with conventional oils than R134a. Pressure of combinations nearly equal to R12, and mixtures may be good "drop-in substitutes". Overall composition not altered by leakage. Usable in commercial, automotive, and household refrigerators and air conditioners.

  19. A robust platform cooled by superconducting electronic refrigerators

    SciTech Connect

    Nguyen, H. Q.; Meschke, M.; Pekola, J. P.

    2015-01-05

    A biased tunnel junction between a superconductor and a normal metal can cool the latter electrode. Based on a recently developed cooler with high power and superior performance, we have integrated it with a dielectric silicon nitride membrane, and cooled phonons from 305 mK down to 200 mK. Without perforation and covered under a thin alumina layer, the membrane is rigorously transformed into a cooling platform that is robust and versatile for multiple practical purposes. We discussed our results and possibilities to further improve the device.

  20. A Unique Approach to Power Electronics and Motor Cooling in a Hybrid Electric Vehicle Environment

    SciTech Connect

    Ayers, Curtis William; Hsu, John S; Lowe, Kirk T; Conklin, Jim

    2007-01-01

    An innovative system for cooling the power electronics of hybrid electric vehicles is presented. This system uses a typical automotive refrigerant R-134a (1,1,1,2 tetrafluoroethane) as the cooling fluid in a system that can be used as either part of the existing vehicle passenger air conditioning system or separately and independently of the existing air conditioner. Because of the design characteristics, the cooling coefficient of performance is on the order of 40. Because liquid refrigerant is used to cool the electronics directly, high heat fluxes can result while maintaining an electronics junction temperature at an acceptable value. In addition, an inverter housing that occupies only half the volume of a conventional inverter has been designed to take advantage of this cooling system. Planned improvements should result in further volume reductions while maintaining a high power level.

  1. High-Performance, Low Environmental Impact Refrigerants

    NASA Technical Reports Server (NTRS)

    McCullough, E. T.; Dhooge, P. M.; Glass, S. M.; Nimitz, J. S.

    2001-01-01

    Refrigerants used in process and facilities systems in the US include R-12, R-22, R-123, R-134a, R-404A, R-410A, R-500, and R-502. All but R-134a, R-404A, and R-410A contain ozone-depleting substances that will be phased out under the Montreal Protocol. Some of the substitutes do not perform as well as the refrigerants they are replacing, require new equipment, and have relatively high global warming potentials (GWPs). New refrigerants are needed that addresses environmental, safety, and performance issues simultaneously. In efforts sponsored by Ikon Corporation, NASA Kennedy Space Center (KSC), and the US Environmental Protection Agency (EPA), ETEC has developed and tested a new class of refrigerants, the Ikon (registered) refrigerants, based on iodofluorocarbons (IFCs). These refrigerants are nonflammable, have essentially zero ozone-depletion potential (ODP), low GWP, high performance (energy efficiency and capacity), and can be dropped into much existing equipment.

  2. Small quantum absorption refrigerator in the transient regime: Time scales, enhanced cooling, and entanglement.

    PubMed

    Brask, Jonatan Bohr; Brunner, Nicolas

    2015-12-01

    A small quantum absorption refrigerator, consisting of three qubits, is discussed in the transient regime. We discuss time scales for coherent dynamics, damping, and approach to the steady state, and we study cooling and entanglement. We observe that cooling can be enhanced in the transient regime, in the sense that lower temperatures can be achieved compared to the steady-state regime. This is a consequence of coherent dynamics but can occur even when this dynamics is strongly damped by the dissipative thermal environment, and we note that precise control over couplings or timing is not needed to achieve enhanced cooling. We also show that the amount of entanglement present in the refrigerator can be much larger in the transient regime compared to the steady state. These results are of relevance to future implementations of quantum thermal machines. PMID:26764626

  3. On-chip micro-refrigerators for sub-Kelvin cooling

    NASA Astrophysics Data System (ADS)

    Leoni, R.

    1999-07-01

    Thin-film tunnel junctions made of a normal metal, an insulating layer and a superconductor (this structures are also called NIS junctions), are able to cool down the metal electrons by means of the tunneling mechanism. This fact opens the possibility to refrigerate small detectors by means of a local cooling of the chip. Another important application of the NIS junctions is high sensitive thermometry. These NIS coolers, together with their relative thermometers, are fabricated by using micro and nano-electronic techniques. This fact makes them very compact devices, allowing sub-Kelvin cooling with no moving parts. The present status of the art on Peltier refrigeration by NIS junctions will be reviewed in this work.

  4. Small quantum absorption refrigerator in the transient regime: Time scales, enhanced cooling, and entanglement

    NASA Astrophysics Data System (ADS)

    Brask, Jonatan Bohr; Brunner, Nicolas

    2015-12-01

    A small quantum absorption refrigerator, consisting of three qubits, is discussed in the transient regime. We discuss time scales for coherent dynamics, damping, and approach to the steady state, and we study cooling and entanglement. We observe that cooling can be enhanced in the transient regime, in the sense that lower temperatures can be achieved compared to the steady-state regime. This is a consequence of coherent dynamics but can occur even when this dynamics is strongly damped by the dissipative thermal environment, and we note that precise control over couplings or timing is not needed to achieve enhanced cooling. We also show that the amount of entanglement present in the refrigerator can be much larger in the transient regime compared to the steady state. These results are of relevance to future implementations of quantum thermal machines.

  5. Study of a Vuilleumier cycle cryogenic refrigerator for detector cooling on the limb scanning infrared radiometer

    NASA Technical Reports Server (NTRS)

    Russo, S. C.

    1976-01-01

    A program to detect and monitor the presence of trace constituents in the earth's atmosphere by using the Limb Scanning Infrared Radiometer (LSIR) is reported. The LSIR, which makes radiometric measurements of the earth's limb radiance profile from a space platform, contains a detector assembly that must be cooled to a temperature of 65 + or - 2 K. The feasibility of cooling the NASA-type detector package with Vuilleumier (VM) cryogenic refrigerator was investigated to develop a preliminary conceptual design of a VM refrigerator that is compatible with a flight-type LSIR instrument. The scope of the LSIR program consists of analytical and design work to establish the size, weight, power consumption, interface requirements, and other important characteristics of a cryogenic cooler that would meet the requirements of the LSIR. The cryogenic cooling requirements under the conditions that NASA specified were defined. Following this, a parametric performance analysis was performed to define the interrelationships between refrigeration characteristics and mission requirements. This effort led to the selection of an optimum refrigerator design for the LSIR mission.

  6. Vapor-liquid equilibrium, coexistence curve, and critical locus for pentafluoroethane + 1,1,1,2-tetrafluoroethane (R125/R134a)

    SciTech Connect

    Higashi, Yukihiro

    1999-03-01

    The vapor-liquid equilibrium for pentafluoroethane (R125) + 1,1,1,2-tetrafluoroethane (R134a) was measured along four isotherms between 283 K and 313 K. The vapor-liquid coexistence curve at constant composition near the mixture critical point was measured by the observation of the meniscus disappearance. The critical temperatures and critical densities of the 0.2670 and 0.6648 mole fraction of R125 were determined from the saturation densities along the coexistence curve in the critical region. In addition, the critical locus for the R125/R134a mixture is correlated as a function of composition.

  7. High sensitivity spectroscopic and thermal characterization of cooling efficiency for optical refrigeration materials

    NASA Astrophysics Data System (ADS)

    Melgaard, Seth D.; Seletskiy, Denis V.; Di Lieto, Alberto; Tonelli, Mauro; Sheik-Bahae, Mansoor

    2012-03-01

    Since recent demonstration of cryogenic optical refrigeration, a need for reliable characterization tools of cooling performance of different materials is in high demand. We present our experimental apparatus that allows for temperature and wavelength dependent characterization of the materials' cooling efficiency and is based on highly sensitive spectral differencing technique or two-band differential spectral metrology (2B-DSM). First characterization of a 5% w.t. ytterbium-doped YLF crystal showed quantitative agreement with the current laser cooling model, as well as measured a minimum achievable temperature (MAT) at 110 K. Other materials and ion concentrations are also investigated and reported here.

  8. Comprehensive Compressor Calorimeter Testing of Lower-GWP Alternative Refrigerants for Heat Pump and Medium Temperature Refrigeration Applications

    SciTech Connect

    Shrestha, Som S; Sharma, Vishaldeep; Abdelaziz, Omar

    2014-01-01

    In response to environmental concerns raised by the use of refrigerants with high Global Warming Potential (GWP), the Air-Conditioning, Heating, and Refrigeration Institute (AHRI) has launched an industry-wide cooperative research program, referred to as the Low-GWP Alternative Refrigerants Evaluation Program (AREP), to identify and evaluate promising alternative refrigerants for major product categories. This paper reports one of the Oak Ridge National Laboratory (ORNL) contributions to AREP. It compares performance of alternative refrigerants to that of R-410A and R-404A for heat pump and medium temperature applications, respectively. The alternatives reported in this paper are: R-32, DR-5, and L-41a for R-410A and ARM-31a, D2Y-65, L-40, and a mixture of R-32 and R-134a for R-404A. All performance comparison tests were conducted using scroll compressors of ~1.85 tons (6.5 kW) cooling capacity. Tests were conducted over a range of combinations of saturation suction and saturation discharge temperatures for both compressors. The tests showed that, in general, energy efficiency ratio (EER) and cooling capacity of R-410A alternative refrigerants were slightly lower than that of the baseline refrigerant with a moderate increases in discharge temperature. On the other hand, R-404A alternative refrigerants showed relative performance dependence on saturation suction and saturation discharge temperatures and larger increases in discharge temperature than for the R-410A alternatives. This paper summarizes the relative performance of all alternative refrigerants compared to their respective baseline.

  9. The Prospects of Alternatives to Vapor Compression Technology for Space Cooling and Food Refrigeration Applications

    SciTech Connect

    Brown, Daryl R.; Dirks, James A.; Fernandez, Nicholas; Stout, Tyson E.

    2010-03-31

    Five alternatives to vapor compression technology were qualitatively evaluated to determine their prospects for being better than vapor compression for space cooling and food refrigeration applications. The results of the assessment are summarized in the report. Overall, thermoacoustic and magnetic technologies were judged to have the best prospects for competing with vapor compression technology, with thermotunneling, thermoelectric, and thermionic technologies trailing behind in that order.

  10. A closed-cycle refrigerator for cooling maser amplifiers below 4 Kelvin

    NASA Technical Reports Server (NTRS)

    Britcliffe, M.

    1989-01-01

    A helium refrigerator utilizing the Gifford-McMahon/Joule-Thomson (GM/JT) cycle was designed and tested to demonstrate the feasibility of using small closed-cycle refrigerators as an alternative to batch-filled cryostats for operating temperatures below 4 K. The systems could be used to cool low-noise microwave maser amplifiers located in large parabolic antennas. These antennas tilt vertically, making conventional liquid-filled dewars difficult to use. The system could also be used for a non-tilting beam waveguide antenna to reduce the helium consumption of a liquid helium cryostat. The prototype system is adjustable to provide 700 mW of cooling at 2.5 K to 3 W at 4.3 K. Performance of the unit is not significantly affected by physical orientation. The volume occupied by the refrigerator is less than 0.1 cu m. Two JT expansion stages are used to maximize cooling capacity per unit mass flow. The heat exchangers were designed to produce minimum pressure drop in the return gas stream. Pressure drop for the entire JT return circuit is less than 5 kpa at a mass flow of 0.06 g/sec when operating at 2.5 K.

  11. THERMODYNAMIC EVALUATION OF FIVE ALTERNATIVE REFRIGERANTS IN VAPOR-COMPRESSION CYCLES

    EPA Science Inventory

    The paper gives results of a thermodynamic evaluation of five alternative refrigerants in a vapor-compression refrigeration cycle, utilizing throttling, super-heating, and combined throttling and superheating. ive alternative refrigerants (R32, R125, R134a, R143a, and R152a) were...

  12. The Prospects of Alternatives to Vapor Compression Technology for Space Cooling and Food Refrigeration Applications

    SciTech Connect

    Brown, Daryl R.; Stout, Tyson E.; Dirks, James A.; Fernandez, Nicholas

    2012-12-01

    This article identifies and describes five alternative cooling technologies (magnetic, thermionic, thermoacoustic, thermoelectric, and thermotunnel) and qualitatively assesses the prospects of each technology relative to vapor compression for space cooling and food refrigeration applications. Assessment of the alternatives was based on the theoretical maximum % of Carnot efficiency, the current state of development, the best % of Carnot efficiency currently achieved, developmental barriers, and the extent of development activity. The prospect for each alternative was assigned an overall qualitative rating based on the subjective, composite view of the five characteristics.

  13. R&D on The Cooling Systems Using Natural Refrigerants

    NASA Astrophysics Data System (ADS)

    Yanagi, Hideharu

    The use of waste heat of low temperatures is an important problem from the environmental considerations. Notice that adsorption cycles have a distinct advantage over other systems of their ability to produce cooling by using low waste heat as 60 to 80°C and also being absolutely benign for the environment. However the present available adsorption chillers are still heavier and larger in size. Hence their compactness and cost reduction as well as higher efficiency are urgent tasks for wider use. This review discusses recent development on adsorption heat pumps as well as forthcoming applications. The sources are mainly papers and discussions at the IEA Annex 24 Workshop in Turin, Italy (1999), FOA6 (Fundamental of Adsorption) Conference in Presquile de Giens, France (1998) and ISHPC (International Sorption Heat Pump Conference) in Munich, Germany (1999).

  14. ARTI Refrigerant Database

    SciTech Connect

    Calm, J.M.

    1992-04-30

    The Refrigerant Database consolidates and facilitates access to information to assist industry in developing equipment using alternative refrigerants. The underlying purpose is to accelerate phase out of chemical compounds of environmental concern. The database provides bibliographic citations and abstracts for publications that may be useful in research and design of air- conditioning and refrigeration equipment. The complete documents are not included, though some may be added at a later date. The database identifies sources of specific information on R-32, R-123, R-124, R- 125, R-134a, R-141b, R142b, R-143a, R-152a, R-290 (propane), R-717 (ammonia), ethers, and others as well as azeotropic and zeotropic blends of these fluids. It addresses polyalkylene glycol (PAG), ester, and other lubricants. It also references documents addressing compatibility of refrigerants and lubricants with metals, plastics, elastomers, motor insulation, and other materials used in refrigerant circuits.

  15. Commissioning report of the MuCool 5 Tesla solenoid coupled with helium refrigerator

    SciTech Connect

    Geynisman, Michael; /Fermilab

    2010-05-01

    MuCool 5T solenoid was successfully cooled down and operated coupled with MTA 'Brown' refrigerator. The system performed as designed with substantial performance margin. All process alarms and interlocks, as well as ODH and fire alarms, were active and performed as designed. The cooldown of the refrigerator started from warm conditions and took 44 hours to accumulate liquid helium level and solenoid temperature below 5K. Average liquid nitrogen consumption for the refrigerator precool and solenoid shield was measured as 20 gal/hr (including boil-off). Helium losses were small (below 30 scfh). The system was stable and with sufficient margin of performance and ran stably without wet expansion engine. Quench response demonstrated proper operation of the relieving devices and pointed to necessity of improving tightness of the relieving manifolds. Boil-off test demonstrated average heat load of 3 Watts for the unpowered solenoid. The solenoid can stay up to 48 hours cold and minimally filled if the nitrogen shield is maintained. A list of improvements includes commencing into operations the second helium compressor and completion of improvements and tune-ups for system efficiency.

  16. Cooling enhancement in optical refrigeration by non-resonant optical cavities

    NASA Astrophysics Data System (ADS)

    Farfan, B. G.; Gragossian, A.; Symonds, G.; Ghasemkhani, M. R.; Albrecht, A. R.; Sheik-Bahae, M.; Epstein, R. I.

    2016-05-01

    We present a study of cooling enhancement in optical refrigerators by the implementation of advanced non-resonant optical cavities. Cavity designs have been studied to maximize pump light-trapping to improve absorption and thereby increase the efficiency of optical refrigeration. The approaches of non-resonant optical cavities by Herriott-cell and totalinternal- reflection were studied. Ray-tracing simulations and experiments were performed to analyze and optimize the different light-trapping configurations. Light trapping was studied for laser sources with high quality beams and for beams with large divergences, roughly corresponding to the output from fiber lasers and from diode lasers, respectively. We present a trade-off analysis between performance, reliability, and manufacturability.

  17. Refrigerator-freezer energy testing with alternative refrigerants

    NASA Astrophysics Data System (ADS)

    Vineyard, E. A.; Sand, J. R.; Miller, W. A.

    1989-07-01

    As a result of the Montreal Protocol that limits the production of ozone-depleting refrigerants, manufacturers are searching for alternatives to replace the R12 that is presently used in residential refrigerator-freezers. Before an alternative can be selected, several issues must be resolved. Among these are energy impacts, system compatibility, cost, and availability. In an effort to determine the energy impacts of some of the alternatives, energy consumption tests were performed in accordance with section 8 of the Association of Home Appliance Manufacturers (AHAM) standard for household refrigerators and household freezers. The results are presented for an 18 cubic foot (0.51 cubic meter), top-mount refrigerator-freezer with a static condenser using the following refrigerants: R12, R500, R12/Dimethyl-ether (DME), R22/R142b, and R134a. Conclusions from the AHAM test are that R500 and R12 /DME have a reduced energy consumption relative to R12 when replaced in the test unit with no modifications to the refrigeration system. Run times were slightly lower than R12 for both refrigerants indicating a higher capacity. While the R134a and R22/R142b results were less promising, changes to the refrigeration system, such as a different capillary tube or compressor, may improve performance.

  18. Foaming characteristics of HFC refrigerants

    SciTech Connect

    Goswami, D.Y.; Shah, D.O.; Jotshi, C.K.; Bhagwat, S.; Leung, M.; Gregory, A.S.

    1997-06-01

    A detailed study was conducted at the University of Florida to experimentally determine the absorption and desorption rates of HFC and blended refrigerants in polyolester lubricant and to define the characteristics of the foam formed when the refrigerant leaves the refrigerant/lubricant mixture after being exposed to a pressure drop. The alternative refrigerants examined include HFC-32 (R-32), R-125, R-134a, and R-143a. Also examined were blended refrigerants R-404A, R407C, and R410A. These refrigerants were tested with two ISO 68 polyolesters (Witco SL68 and ICI RL 68H). To establish baseline results, refrigerants R-12 and R-22 were tested with mineral oils ISO32 (3GS) and ISO 68 (4GS).

  19. Supercritical fluid extraction of polybrominated diphenyl ethers (PBDEs) from house dust with supercritical 1,1,1,2-tetrafluoroethane (R134a).

    PubMed

    Calvosa, Frank C; Lagalante, Anthony F

    2010-01-15

    The extraction of polybrominated diphenyl ethers (PBDEs) from SRM 2585 (Organic Contaminants in House Dust) was investigated using supercritical fluid R134a as an extraction solvent. Three methods of dust extraction were studied: (1) extraction of dry dust, (2) extraction of dry dust dispersed on Ottawa sand and (3) extraction of dust wet with dichloromethane. For each of the three sample preparation methods, extracts at three temperatures (110, 150, and 200 degrees C) above the critical temperature of R134a were performed. Eight PBDE congeners (BDE-28, -47, -99, 100, -153, -154, -183, and -209) in the SFE extracts were analyzed by liquid chromatography negative-ion atmospheric pressure photoionization tandem mass spectrometry (LC/NI-APPI/MS/MS). The optimum extraction of PBDEs from house dust using supercritical R134a is obtained when the dust is pre-wet with dichloromethane prior to extraction to swell the dust. For all sample preparation methods, higher temperatures afforded higher percent recoveries of the eight PBDE congeners. Only a combination of high-temperature (200 degrees C) and pre-wetting the dust with dichloromethane produced high recovery of the environmentally important, fully brominated PBDE congener, BDE-209. PMID:20006061

  20. In situ refractometry for concentration measurements in refrigeration systems

    SciTech Connect

    Newell, T.A.

    1997-12-31

    An in situ refractometer was developed that is capable of measuring both the concentrations of oil in refrigerants, and the concentrations of aqueous coolant brines. A description of the technique, and example data are presented for R-134a/PAG oil, aqueous ethylene glycol, and aqueous propylene glycol solutions. The R-134a/PAG oil sensor data show a measurement sensitivity of less than 0.1% oil in the refrigerant, although error between data sets shows an uncertainty of approximately {+-}0.8%. Ethylene glycol and propylene glycol data show high signal level variations due to the large variation of the index of refraction between water and the glycols.

  1. Kinetic electrocaloric effect and giant net cooling of lead-free ferroelectric refrigerants

    SciTech Connect

    Bai Yang; Zheng Guangping; Shi Sanqiang

    2010-11-15

    The electrocaloric effect of BaTiO{sub 3} multilayer thick film structure was investigated by direct measurement using differential scanning calorimeter. The samples show a giant electrocaloric effect of 0.89 J/g under E=176 kV/cm, which also depends on the varying rate of applied field, following a general power-law relation. Based on the large net-cooling (0.37 J/g) resulting from the difference in the varying rates of rising and falling fields, the kinetic electrocaloric effect provides a solution for the design of refrigeration cycle in ferroelectric microrefrigerator.

  2. A Robust Cooling Platform for NIS Junction Refrigeration and sub-Kelvin Cryogenic Systems

    NASA Astrophysics Data System (ADS)

    Wilson, B.; Atlas, M.; Lowell, P.; Moyerman, S.; Stebor, N.; Ullom, J.; Keating, B.

    2014-08-01

    Recent advances in Normal metal-insulator-superconductor (NIS) tunnel junctions (Clark et al. Appl Phys Lett 86: 173508, 2005, Appl Phys Lett 84: 4, 2004) have proven these devices to be a viable technology for sub-Kelvin refrigeration. NIS junction coolers, coupled to a separate cold stage, provide a flexible platform for cooling a wide range of user-supplied payloads. Recently, a stage was cooled from 290 to 256 mK (Lowell et al. Appl Phys Lett 102: 082601 2013), but further mechanical and electrical improvements are necessary for the stage to reach its full potential. We have designed and built a new Kevlar suspended cooling platform for NIS junction refrigeration that is both lightweight and well thermally isolated; the calculated parasitic loading is pW from 300 to 100 mK. The platform is structurally rigid with a measured deflection of 25 m under a 2.5 kg load and has an integrated mechanical heat switch driven by a superconducting stepper motor with thermal conductivity G W/K at 300 mK. An integrated radiation shield limits thermal loading and a modular platform accommodates enough junctions to provide nanowatts of continuous cooling power. The compact stage size of 7.6 cm 8.6 cm 4.8 cm and overall radiation shield size of 8.9 cm 10.0 cm 7.0 cm along with minimal electrical power requirements allow easy integration into a range of cryostats. We present the design, construction, and performance of this cooling platform as well as projections for coupling to arrays of NIS junctions and other future applications.

  3. A Superfluid Pulse Tube Refrigerator Without Moving Parts for Sub-Kelvin Cooling

    NASA Technical Reports Server (NTRS)

    Miller, Franklin K.

    2012-01-01

    A report describes a pulse tube refrigerator that uses a mixture of He-3 and superfluid He-4 to cool to temperatures below 300 mK, while rejecting heat at temperatures up to 1.7 K. The refrigerator is driven by a novel thermodynamically reversible pump that is capable of pumping the He-3 He-4 mixture without the need for moving parts. The refrigerator consists of a reversible thermal magnetic pump module, two warm heat exchangers, a recuperative heat exchanger, two cold heat exchangers, two pulse tubes, and an orifice. It is two superfluid pulse tubes that run 180 out of phase. All components of this machine except the reversible thermal pump have been demonstrated at least as proof-of-concept physical models in previous superfluid Stirling cycle machines. The pump consists of two canisters packed with pieces of gadolinium gallium garnet (GGG). The canisters are connected by a superleak (a porous piece of VYCOR glass). A superconducting magnetic coil surrounds each of the canisters.

  4. Continuous Magnetic Refrigerators for Cooling in the 0.05 to 10 K Range: Progress and Future Development

    NASA Technical Reports Server (NTRS)

    Shirron, Peter; DiPirro, Michael; Canavan, Edgar; Tuttle, James; King, Todd; Numazawa, Takenori

    2003-01-01

    Low temperature refrigeration is an increasingly vital technology for NASA s Space Science program since most detectors being developed for x-ray, IR and sub-millimeter missions must be cooled to below 100 mK in order to meet the requirements for energy and spatial resolution. For space applications, magnetic refrigeration has an inherent advantage over alternative techniques because it does not depend on gravity. Adiabatic demagnetization refrigerators, or ADRs, are relatively simple, solid state devices. The basic elements are a magnetocaloric refrigerant (usually an encapsulated paramagnetic salt) located in the bore of a superconducting magne$, and a heat switch linking the salt to a heat sink. The alignment of magnetic spins with the magnetic field causes the refrigerant to warm as the magnetic field increases and cool as the field decreases. Thus the simple process of magnetizing the refrigerant to high field with the heat switch closed, then demagnetizing it with the heat switch open allows one to obtain temperatures well below 100 mK using a heat sink as warm as 4.2 K. The refrigerant can maintain a low temperature for a length of time depending on the applied and parasitic heat loads, its mass, and the initial magnetic field strength. Typically ADRs are designed for 12-24 hours of hold time, after which they must be warmed up and recycled. The drawback to single-shot ADRs is that the cooling power per unit mass is relatively low. Refrigerants that are suitable for low temperature operation necessarily have low magnetic ion density, and therefore low entropy density. Since ADRs store entropy, systems with even modest cooling powers (a few microwatts) at temperatures below 100 mK tend to be massive, averaging 10-15 kg.

  5. Evaporation heat transfer and friction characteristics of R-134a flowing downward in a vertical corrugated tube

    SciTech Connect

    Aroonrat, Kanit; Wongwises, Somchai

    2011-01-15

    Differently from most previous studies, the heat transfer and friction characteristics of the pure refrigerant HFC-134a during evaporation inside a vertical corrugated tube are experimentally investigated. The double tube test sections are 0.5 m long with refrigerant flowing in the inner tube and heating water flowing in the annulus. The inner tubes are one smooth tube and two corrugated tubes, which are constructed from smooth copper tube of 8.7 mm inner diameter. The test runs are performed at evaporating temperatures of 10, 15, and 20 C, heat fluxes of 20, 25, and 30 kW/m{sup 2}, and mass fluxes of 200, 300, and 400 kg/m{sup 2} s. The quality of the refrigerant in the test section is calculated using the temperature and pressure obtained from the experiment. The pressure drop across the test section is measured directly by a differential pressure transducer. The effects of heat flux, mass flux, and evaporation temperature on the heat transfer coefficient and two-phase friction factor are also discussed. It is found that the percentage increases of the heat transfer coefficient and the two-phase friction factor of the corrugated tubes compared with those of the smooth tube are approximately 0-10% and 70-140%, respectively. (author)

  6. The development of high cooling power and low ultimate temperature superfluid Stirling refrigerators

    NASA Astrophysics Data System (ADS)

    Patel, Ashok B.

    The superfluid Stirling refrigerator (SSR) is a recuperative Stirling cycle refrigerator which provides cooling to below 2 K by using a liquid 3He-4He mixture as the working fluid. In 1990, Kotsubo and Swift demonstrated the first SSR, and by 1995, Brisson and Swift had developed an experimental prototype capable of reaching a low temperature of 296 mK. The goal of this thesis was to improve these capabilities by developing a better understanding of the SSR and building SSR's with higher cooling powers and lower ultimate temperatures. This thesis contains four main parts. In the first part, a numerical analysis demonstrates that the optimal design and ultimate performance of a recuperative Stirling refrigerator is fundamentally different from that of a standard regenerative Stirling refrigerator due to a mass flow imbalance within the recuperator. The analysis also shows that high efficiency recuperators remain a key to SSR performance. Due to a quantum effect called Kapitza resistance, the only realistic and economical method of creating higher efficiency recuperators for use with an SSR is to construct the heat exchangers from very thin (12 μm - 25 μm thick) plastic films. The second part of this thesis involves the design and construction of these recuperators. This research resulted in Kapton heat exchangers which are leaktight to superfluid helium and capable of surviving repeated thermal cycling. In the third part of this thesis, two different single stage SSR's are operated to test whether the plastic recuperators would actually improve SSR performance. Operating from a high temperature of 1.0 K and with 1.5% and 3.0% 3He-4He mixtures, these SSR's achieved a low temperature of 291 mK and delivered net cooling powers of 3705 μW at 750 mK, 977 μW at 500 mK, and 409 μW at 400 mK. Finally, this thesis describes the operation of three versions of a two stage SSR. Unfortunately, due to experimental difficulties, the merits of a two stage SSR were not

  7. The Cost of Helium Refrigerators and Coolers for SuperconductingDevices as a Function of Cooling at 4 K

    SciTech Connect

    Green, Michael A.

    2007-08-27

    This paper is an update of papers written in 1991 and in1997 by Rod Byrns and this author concerning estimating the cost ofrefrigeration for superconducting magnets and cavities. The actual costsof helium refrigerators and coolers (escalated to 2007 dollars) areplotted and compared to a correlation function. A correlation functionbetween cost and refrigeration at 4.5 K is given. The capital cost oflarger refrigerators (greater than 10 W at 4.5 K) is plotted as afunction of 4.5-K cooling. The cost of small coolers is plotted as afunction of refrigeration available at 4.2 K. A correlation function forestimating efficiency (percent of Carnot) of both types of refrigeratorsis also given.

  8. Performance prediction of refrigerant-DMF solutions in a single-stage solar-powered absorption refrigeration system at low generating temperatures

    SciTech Connect

    He, L.J.; Tang, L.M.; Chen, G.M.

    2009-11-15

    A theoretical analysis of the coefficient of performance was undertaken to examine the efficiency characteristics of R22 + DMF, R134a + DMF, R32 + DMF as working fluids, respectively, for a single-stage and intermittent absorption refrigerator which allows the use of heat pipe evacuated tubular collectors. The modeling and simulation of the performance considers both solar collector system and the absorption cooling system. The typical meteorological year file containing the weather parameters for Hangzhou is used to simulate the system. The results show that the system is in phase with the weather. In order to increase the reliability of the system, a hot water storage tank is essential. The optimum ratio of storage tank per solar collector area for Hangzhou's climate for a 1.0 kW system is 0.035-0.043L. Considering the relative low pressure and the high coefficient of performance, R134a + DMF mixture presents interesting properties for its application in solar absorption cycles at moderate condensing and absorbing temperatures when the evaporating temperatures in the range from 278 K to 288 K which are highly useful for food preservation and for air-conditioning in rural areas. (author)

  9. Miscibility comparison for three refrigerant mixtures and four component refrigerants

    SciTech Connect

    Kang, H.M.; Pate, M.B.

    1999-07-01

    Miscibility data were taken and compared for seven different refrigerants when mixed with the same polyol ester (POE) lubricant. Four of the seven refrigerants were single-component refrigerants while three of the refrigerants were mixtures composed of various combinations of the pure refrigerants. The purpose of this research was to investigate the difference in miscibility characteristics between refrigerant mixtures and their respective component refrigerants. The POE lubricant was a penta erythritol mixed-acid type POE which has a viscosity ISO32. The four pure refrigerants were R-32, R-125, R-134a, and R-143a and the three refrigerant mixtures were R-404A, R407C, and R-410A. The miscibility tests were performed in a test facility consisting of a series of miniature test cells submerged in a constant temperature bath. The test cells were constructed to allow for complete visibility of the refrigerant/lubricant mixtures under all test conditions. The tests were performed over a concentration range of 0 to 100% and a temperature range of {minus}40 to 194 F. The miscibility test results for refrigerant mixtures are compared to component refrigerants. In all cases, the refrigerant mixtures appear to have better miscibility than their most immiscible pure component.

  10. 4 K to 20 K rotational-cooling magnetic refrigerator capable of 1-mW to >1-W operation

    SciTech Connect

    Barclay, J.A.

    1980-02-01

    The low-temperature, magnetic entropy of certain single-crystal paramagnetic materials, such as DyPO/sub 4/, changes dramatically as the crystal rotates in a magnetic field. A new magnetic refrigerator design based on the anisotropic nature of such materials is presented. The key advantages of the rotational-cooling concept are (1) a single, rotary motion is required, (2) magnetic field shaping is not a problem because the entire working material is in a constant field, and (3) the refrigerator can be smaller than comparable magnetic refrigerators because the working material is entirely inside the magnet at all times. The main disadvantage of the rotational-cooling concept is that small-dimension single crystals are required.

  11. Coherence-assisted single-shot cooling by quantum absorption refrigerators

    NASA Astrophysics Data System (ADS)

    Mitchison, Mark T.; Woods, Mischa P.; Prior, Javier; Huber, Marcus

    2015-11-01

    The extension of thermodynamics into the quantum regime has received much attention in recent years. A primary objective of current research is to find thermodynamic tasks which can be enhanced by quantum mechanical effects. With this goal in mind, we explore the finite-time dynamics of absorption refrigerators composed of three quantum bits (qubits). The aim of this finite-time cooling is to reach low temperatures as fast as possible and subsequently extract the cold particle to exploit it for information processing purposes. We show that the coherent oscillations inherent to quantum dynamics can be harnessed to reach temperatures that are colder than the steady state in orders of magnitude less time, thereby providing a fast source of low-entropy qubits. This effect demonstrates that quantum thermal machines can surpass classical ones, reminiscent of quantum advantages in other fields, and is applicable to a broad range of technologically important scenarios.

  12. ARTI Refrigerant Database

    SciTech Connect

    Calm, J.M.

    1992-11-09

    The database provides bibliographic citations and abstracts for publications that may be useful in research and design of air- conditioning and refrigeration equipment. The database identifies sources of specific information on R-32, R-123, R-124, R-125, R-134, R-134a, R-141b, R-142b, R-143a, R-152a, R-245ca, R-290 (propane), R- 717 (ammonia), ethers, and others as well as azeotropic and zeotropic and zeotropic blends of these fluids. It addresses lubricants including alkylbenzene, polyalkylene glycol, ester, and other synthetics as well as mineral oils. It also references documents on compatibility of refrigerants and lubricants with metals, plastics, elastomers, motor insulation, and other materials used in refrigerant circuits. A computerized version is available that includes retrieval software.

  13. An Assessment of Thermodynamic Models for HFC Refrigerant Mixtures Through the Critical-Point Calculation

    NASA Astrophysics Data System (ADS)

    Akasaka, Ryo

    2008-08-01

    An assessment of thermodynamic models for HFC refrigerant mixtures based on Helmholtz energy equations of state was made through critical-point calculations for ternary and quaternary mixtures. The calculations were performed using critical-point criteria expressed in terms of the Helmholtz free energy. For three ternary mixtures: difluoromethane (R-32) + pentafluoroethane (R-125) + 1,1,1,2-tetrafluoroethane (R-134a), R-125 + R-134a + 1,1,1-trifluoroethane (R-143a), and carbon dioxide (CO2) + R-32 + R-134a, and one quaternary mixture, R-32 + R-125 + R-134a + R-143a, calculated critical points were compared with experimental values, and the capability of the mixture models for representing the critical behavior was discussed.

  14. Membrane-Based Absorption Refrigeration Systems: Nanoengineered Membrane-Based Absorption Cooling for Buildings Using Unconcentrated Solar & Waste Heat

    SciTech Connect

    2010-09-01

    BEETIT Project: UFL is improving a refrigeration system that uses low quality heat to provide the energy needed to drive cooling. This system, known as absorption refrigeration system (ARS), typically consists of large coils that transfer heat. Unfortunately, these large heat exchanger coils are responsible for bulkiness and high cost of ARS. UFL is using new materials as well as system design innovations to develop nanoengineered membranes to allow for enhanced heat exchange that reduces bulkiness. UFL’s design allows for compact, cheaper and more reliable use of ARS that use solar or waste heat.

  15. Evaluation of performance and composition shift of zeotropic mixtures in a Lorenz-Meutzner refrigerator/freezer

    SciTech Connect

    Baskin, E.; Smith, N.D.; Delafield, F.R.; Tufts, M.W.

    1999-07-01

    Results from previous testing of this refrigerator/freezer using a 750 Btu/h compressor and several zeotropic mixtures revealed a performance enhancement up to 16% above that of hydrofluorocarbon R-134a. In the study presented in this paper, the Lorenz-Meutzner (LM) refrigerator/freezer equipped with a 1060 Btu/h compressor, two evaporators, and two intercoolers was experimentally tested in an environmental chamber according to the Association of Home Appliance Manufacturers/Department of Energy (AHAM/DOE) testing standards using several hydrofluoropropane-based zeotropic mixtures. The results are compared to baseline testing with R-134a and results obtained using the 750 Btu/h compressor. Hydrofluorocarbons R-245ca/R-152a performed comparably to R-134a. R-245ca/hydrocarbon R-270 (cyclopropane C{sub 3}H{sub 6}) outperformed all zeotropic mixtures and R-134a by at least 12.2 {+-} 0.7%. All refrigerants performed better using the larger compressor due to its inherently better efficiency. Refrigerant samples taken during refrigerator/freezer operation revealed substantial composition shifts (e.g., a 30% running composition shift of R-134a in the R-245ca/R-134a mixture). Sand et al. (1993) obtained an approximately 20% energy reduction using steady-state on-cycle energy consumption results; a comparison was made between chlorofluorocarbon R-12 and a hydrofluorocarbon R-32/hydrochlorofluorocarbon R-124 mixture. Lorenz and Meutzner (1975), originators of the Lorenz-Meutzner refrigerator/freezer design, state that the following parameters influence the optimum performance of the design: (1) heat exchanger size, (2) capillary tube length, (3) refrigerant charge, and (4) compressor size. This work investigates three of these parameters--capillary tube length, compressor size, and refrigerant charge.

  16. Design of oil-free simple turbo type 65 K/6 KW helium and neon mixture gas refrigerator for high temperature superconducting power cable cooling

    NASA Astrophysics Data System (ADS)

    Saji, N.; Asakura, H.; Yoshinaga, S.; Ishizawa, T.; Miyake, A.; Obata, M.; Nagaya, S.

    2002-05-01

    For the requirement of HTS facility cooling, we propose oil-free simple turbo-type refrigerator. The working gas is a helium and neon mixture. Two single-stage turbo compressors and two expansion turbines are applied to the cycle. The rotor consists of the compressor impeller, turbine impeller and driving motor, and is supported by foil type gas bearing. The refrigerator requires two rotating machines with excellent reliability and compactness, and the motor power required is 72.5 kW for a refrigeration load of 6 kW. For the cooling of power cable, sub-cooled pressurized liquid nitrogen and a circulation pump must be provided. If the estimated distance between inter-cooling stations is quite long, for example 5 km, plural refrigerators may be set up on one cooling station.

  17. Thermotile Refrigerators

    NASA Technical Reports Server (NTRS)

    Park, Brian V.

    1994-01-01

    Thermoelectric tiles provide cooling exactly where needed. Thermotile is modular thermoelectric cooling unit that incorporates sensor and electronic circuitry in addition to thermoelectric device. Refrigerator/freezer is lined with thermotiles clipped into supporting lattices. Small fans used to circulate air in refrigerator and freezer compartments. Elimination of conventional mechanical refrigeration machinery reduces number of moving parts and completely eliminates noise and vibration. Data capabilities of thermotile refrigeration system used for diagnosis of defects or monitoring local temperatures. Thermotiles produced by automated manufacturing techniques. Custom shapes molded as needed.

  18. System performance characteristics of a helical rotary screw air-cooled chiller operating over a range of refrigerant charge conditions

    SciTech Connect

    Bailey, M.B.

    1998-12-31

    This paper presents a study involving the operation of a 70-ton helical rotary, dual-circuit, air-cooled chiller while three independent variables are experimentally altered. The independent variables included in the study are refrigerant charge level within the chiller plant, outdoor air temperature, and percentage nominal chiller load. This paper examines the effects of the three independent variables on superheat and subcooling temperatures, chiller kW per ton, chilled water set-point temperature control, and compressor suction and discharge pressures. After analyzing the significance of refrigerant charge, outdoor air temperature, and percentage nominal chiller load on the operation of a chiller plant the consequences of refrigerant undercharge or overcharge are fully investigated and documented. All experimental testing was conducted in a full-scale heating, ventilation, and air-conditioning (HVAC) laboratory using a realistic load profile and actual outdoor air temperature conditions. Experimental testing began with an evacuation, recycle, and recharge of R-22 from both circuits of the chiller. The charge tests included holding the refrigerant charge in circuit No. 2 constant at the manufacturer`s recommended level. The notation adopted for the manufacturer`s recommended charge or nominal charge level was 0% charge. Circuit No. 1`s refrigerant charge was varied from {minus}60% to +15% of nominal charge in 5% increments.

  19. The LSST camera 500-watt -130°C mixed refrigerant cooling system

    NASA Astrophysics Data System (ADS)

    Bowden, Gordon B.; Langton, Brian J.; Little, William A.; Powers, Jacob R.; Schindler, Rafe H.; Spektor, Sam

    2014-07-01

    The LSST Camera has a higher cryogenic heat load than previous CCD telescope cameras due to its large size (634 mm diameter focal plane, 3.2 Giga pixels) and its close coupled front-end electronics operating at low temperature inside the cryostat. Various refrigeration technologies are considered for this telescope/camera environment. MMR-Technology's Mixed Refrigerant technology was chosen. A collaboration with that company was started in 2009. The system, based on a cluster of Joule-Thomson refrigerators running a special blend of mixed refrigerants is described. Both the advantages and problems of applying this technology to telescope camera refrigeration are discussed. Test results from a prototype refrigerator running in a realistic telescope configuration are reported. Current and future stages of the development program are described.

  20. The LSST Camera 500 watt -130 degC Mixed Refrigerant Cooling System

    SciTech Connect

    Bowden, Gordon B.; Langton, Brian J.; Little, William A.; Powers, Jacob R; Schindler, Rafe H.; Spektor, Sam; /MMR-Technologies, Mountain View, CA

    2014-05-28

    The LSST Camera has a higher cryogenic heat load than previous CCD telescope cameras due to its large size (634 mm diameter focal plane, 3.2 Giga pixels) and its close coupled front-end electronics operating at low temperature inside the cryostat. Various refrigeration technologies are considered for this telescope/camera environment. MMR-Technology’s Mixed Refrigerant technology was chosen. A collaboration with that company was started in 2009. The system, based on a cluster of Joule-Thomson refrigerators running a special blend of mixed refrigerants is described. Both the advantages and problems of applying this technology to telescope camera refrigeration are discussed. Test results from a prototype refrigerator running in a realistic telescope configuration are reported. Current and future stages of the development program are described. (auth)

  1. Chemical and thermal stability of refrigerant-lubricant mixtures with metals

    SciTech Connect

    Huttenlocher, D.F.

    1992-07-10

    This report presents completed sealed tube stability test results for the following eight refrigerant/lubricant mixtures: R-22/mineral oil; R-124/alkylbenzene; R-134a/pentaerythritol (PE) ester (mixed acid); R- 134a/PE (branched acid); R-134a/ PE (100 cSt viscosity); R- 142b/alkylbenzene; R-143a/ PE (branched acid); R-152a/alkylbenzene. Partial results are shown for an additional eight refrigerant-lubricant mixtures. Though work is in progress, no data are available at this point in time for the five remaining test mixtures. Reported are: visual observations on aged sealed tubes, gas chromatographic analyses on the vapor phase contents of the tubes, chloride ion contents of HCFC containing mixtures or fluoride ion contents of HFC mixtures, and total acid number values and infrared analysis results for mixtures containing ester lubricants.

  2. Magnetic refrigeration: an eco-friendly technology for the refrigeration at room temperature

    NASA Astrophysics Data System (ADS)

    Aprea, C.; Greco, A.; Maiorino, A.; Masselli, C.

    2015-11-01

    Magnetic refrigeration is an emerging, environment-friendly technology based on a magnetic solid that acts as a refrigerant by magneto-caloric effect (MCE). In the case of ferromagnetic materials MCE is a warming as the magnetic moments of the atom are aligned by the application of a magnetic field, and the corresponding cooling upon removal of the magnetic field. There are two types of magnetic phase changes that may occur at the Curie point: first order magnetic transition (FOMT) and second order magnetic transition (SOMT). The reference cycle for magnetic refrigeration is AMR (Active Magnetic Regenerative cycle) where the magnetic material matrix works both as a refrigerating medium and as a heat regenerating medium, while the fluid flowing in the porous matrix works as a heat transfer medium. Regeneration can be accomplished by blowing a heat transfer fluid in a reciprocating fashion through the regenerator made of magnetocaloric material that is alternately magnetized and demagnetized. In this paper, attention is directed towards the near room-temperature range. We compare the energetic performance of a commercial R134a refrigeration plant to that of a magnetic refrigerator working with an AMR cycle. Attention is devoted to the evaluation of the environmental impact in terms of a greenhouse effect. The comparison is performed in term of TEWI index (Total Equivalent Warming Impact) that takes into account both direct and indirect contributions to global warming. In this paper the AMR cycle works with different magnetic refrigerants: pure gadolinium, second order phase magnetic transition (Pr0.45Sr0.35MnO3) and first order phase magnetic transition alloys (Gd5Si2Ge2, LaFe11.384Mn0.356Si1.26H1.52, LaFe1105Co0.94Si110 and MnFeP0.45As0.55). The comparison, carried out by means of a mathematical model, clearly shows that GdSi2Ge2 and LaFe11.384Mn0.356Si1.26H1.52 has a TEWI index always lower than that of a vapor compression plant. Furthermore, the TEWI of the AMR

  3. Modeling and experimental investigation of dynamics of a directly combined binary turbine system using a mixture (R134a/R123)

    SciTech Connect

    Tanzawa, Yoshiaki; Terashima, Yukio; Amano, Yoshiharu; Hashizume, Takumi; Usui, Akira

    1999-07-01

    The authors binary turbine system that employs steam as the primary working fluid has used R11 as the secondary working fluid because R11 has good characteristics as working fluid in power plants. However, substitute LBMs (low boiling-temperature mediums compared with water) are being developed because of the ozone layer depletion by CFCs. In this paper, modeling and experimental investigations into the dynamics of a directly combined binary turbine system using a mixture of R134a and R123 are described. The system consists mainly of a steam and an LBM turbine, an LBM vapor generator, and an AC generator. The dynamic behavior of the system is discussed from the viewpoint of the network theory. The components of the system are represented as two- or three-port elements of the network and the vapor flow rate and shaft torque are appropriated as the through variable. As a result, a very simple network model based on the dynamics of various turbine systems like this was derived. The validity of the model was proven through comparison with the experimental results, which are the frequency responses examined with respect to generator load changes. In addition, the authors demonstrate that the model is very effective in predicting the dynamic behavior and power generation mechanism of directly combined binary turbine systems.

  4. ARTI Refrigerant Database

    SciTech Connect

    Cain, J.M.

    1993-04-30

    The Refrigerant Database consolidates and facilitates access to information to assist industry in developing equipment using alternative refrigerants. The underlying purpose is to accelerate phase out of chemical compounds of environmental concern. The database provides bibliographic citations and abstracts for publications that may be useful in research and design of air-conditioning and refrigeration equipment. The complete documents are not included. The database identifies sources of specific information on R-32, R-123, R-124, R-125, R-134, R-134a, R-141b, R-142b, R-143a, R-152a, R-245ca, R-290 (propane), R-717 (ammonia), ethers, and others as well as azeotropic and zeotropic blends of these fluids. It addresses lubricants including alkylbenzene, polyalkylene glycol, ester, and other synthetics as well as mineral oils. It also references documents addressing compatibility of refrigerants and lubricants with metals, plastics, elastomers, motor insulation, and other materials used in refrigerant circuits. Incomplete citations or abstracts are provided for some documents to accelerate availability of the information and will be completed or replaced in future updates.

  5. Improving the energy efficiency of refrigeration plants by decreasing the temperature difference in air-cooled condensers

    NASA Astrophysics Data System (ADS)

    Shishov, V. V.; Talyzin, M. S.

    2015-09-01

    The electric energy consumption efficiency is estimated in comparing the real refrigeration machine cycle with the theoretical inverse Carnot cycle. The potential for saving electricity in using aircooled condensers with different values of temperature difference is shown. A procedure for calculating a refrigerating system with the evaporation temperature equal to -10°C, which corresponds at this temperature level to the thermal load of a standard supermarket, is described. The calculation was carried out taking into account the annual profile of temperatures in the indicated locality and based on the possibility of adjusting the condenser capacity for maintaining constant condensation temperature. The payback period in case of using condensers with different values of temperature difference is calculated; for example, in using condensers with a temperature difference of less than 15 K, the payback period will be less than one year. Decreasing the temperature difference results, on one hand, in a larger annual consumption of electric energy by the condenser fans, and on the other hand, it results in a lower condensation pressure, which leads to a smaller annual consumption of energy by the compressor unit. As a result, the total amount of energy consumed by the refrigeration system decreases so that despite a higher cost of condensers designed to operate at lower values of temperature difference, it becomes possible to achieve the above-mentioned payback period. Additionally, the payback period in case of using an air-cooled microchannel aluminum condenser was calculated: in case of using such a condenser with a temperature difference of 8 K instead of the condenser with the temperature difference equal to 15 K, the payback period will be less than half a year. Recommendations for designing new refrigeration systems equipped with air-cooled condensers are given.

  6. Literature survey on thermophysical properties of refrigerants

    SciTech Connect

    Krauss, R.; Stephan, K.

    1998-11-01

    A bibliographic compilation is given on thermophysical properties of the environmentally acceptable hydrofluorocarbon blends R404A, R407C, and R410A. These refrigerant blends are still under investigation and meant to replace the transitional hydrochlorofluorocarbon R22 and the azeotrope R502. In a second part reliable formulations to calculate thermophysical-property surfaces of some selected well investigated fluids used in refrigeration are recommended. The fluids water, air, carbon dioxide, ammonia, R134a, R123, and R152a are subjects of that part.

  7. Literature Survey on Thermophysical Properties of Refrigerants

    NASA Astrophysics Data System (ADS)

    Krauss, R.; Stephan, K.

    1998-11-01

    A bibliographic compilation is given on thermophysical properties of the environmentally acceptable hydrofluorocarbon blends R404A, R407C, and R410A. These refrigerant blends are still under investigation and meant to replace the transitional hydrochlorofluorocarbon R22 and the azeotrope R502. In a second part reliable formulations to calculate thermophysical-property surfaces of some selected well investigated fluids used in refrigeration are recommended. The fluids water, air, carbon dioxide, ammonia, R134a, R123, and R152a are subjects of that part.

  8. Pressure-enthalpy diagrams for alternative refrigerants

    SciTech Connect

    Chen, J.; Kruse, H.

    1996-10-01

    Thermodynamic diagrams, particularly log(p)-h diagrams, have become very convenient tools for refrigeration and air-conditioning industries. To promote alternative refrigerants-related development and application, it is urgently required to provide the industries with reliable engineering diagrams for the most promising candidate refrigerants. A computer program has been developed for automatically producing log(p)-h diagrams for alternative refrigerants. The Lee Kesler Ploecker (LKP) equation of state has been used to calculate thermodynamic data. Some modifications have been made to the LKP to improve the calculation convergency. In this paper three sample diagrams for R134a, a binary R410A and a ternary R407B which have been enclosed and analyzed. To investigate the LKP calculation accuracy details, an extensive deviation analysis has been made for R134a. For mixed refrigerants, good calculation accuracy was achieved by optimizing the binary interactive parameters. The system can produce log(p)-h diagrams with reliable accuracy, high quality, and flexibility to meet any size and color requirements.

  9. Chemical and thermal stability of refrigerant-lubricant mixtures with metals. Quarterly report, 1 April 1992--30 June 1992

    SciTech Connect

    Huttenlocher, D.F.

    1992-07-10

    This report presents completed sealed tube stability test results for the following eight refrigerant/lubricant mixtures: R-22/mineral oil; R-124/alkylbenzene; R-134a/pentaerythritol (PE) ester (mixed acid); R- 134a/PE (branched acid); R-134a/ PE (100 cSt viscosity); R- 142b/alkylbenzene; R-143a/ PE (branched acid); R-152a/alkylbenzene. Partial results are shown for an additional eight refrigerant-lubricant mixtures. Though work is in progress, no data are available at this point in time for the five remaining test mixtures. Reported are: visual observations on aged sealed tubes, gas chromatographic analyses on the vapor phase contents of the tubes, chloride ion contents of HCFC containing mixtures or fluoride ion contents of HFC mixtures, and total acid number values and infrared analysis results for mixtures containing ester lubricants.

  10. Refrigeration for Cryogenic Sensors

    NASA Technical Reports Server (NTRS)

    Gasser, M. G. (Editor)

    1983-01-01

    Research in cryogenically cooled refrigerators is discussed. Low-power Stirling cryocoolers; spacecraft-borne long-life units; heat exchangers; performance tests; split-stirling, linear-resonant, cryogenic refrigerators; and computer models are among the topics discussed.

  11. Superfluid stirling refrigerator: A new method for cooling below 1 Kelvin

    SciTech Connect

    Kotsubo, V.; Swift, G.W.

    1990-01-01

    We have invented and built a new type of cryocooler, which we call the superfluid Stirling refrigerator (SSR). The first prototype reached 0.6 K from a starting temperature of 1.2 K. The working fluid of the SSR is the {sup 3}He solute in a superfluid {sup 3}He--{sup 4}He solution. At low temperatures, the superfluid {sup 4}He is in its quantum ground state, and therefore is thermodynamically inert, while the {sup 3}He solute has the thermodynamic properties of a dense ideal gas. Thus, in principle, any refrigeration cycle that can use an ideal gas can also use the {sup 3}He solute as working fluid. In our SSR prototype, bellows-sealed superleak pistons driven by a room-temperature camshaft work on the {sup 3}He solute. Ultimately, we anticipate elimination of moving parts by analogy with pulse-tube refrigeration. 15 refs., 6 figs.

  12. Economic analysis of wind-powered refrigeration cooling/water-heating systems in food processing. Final report

    SciTech Connect

    Garling, W.S.; Harper, M.R.; Merchant-Geuder, L.; Welch, M.

    1980-03-01

    Potential applications of wind energy include not only large central turbines that can be utilized by utilities, but also dispersed systems for farms and other applications. The US Departments of Energy (DOE) and Agriculture (USDA) currently are establishing the feasibility of wind energy use in applications where the energy can be used as available, or stored in a simple form. These applications include production of hot water for rural sanitation, heating and cooling of rural structures and products, drying agricultural products, and irrigation. This study, funded by USDA, analyzed the economic feasibility of wind power in refrigeration cooling and water heating systems in food processing plants. Types of plants included were meat and poultry, dairy, fruit and vegetable, and aquaculture.

  13. The Use of Water Vapor as a Refrigerant: Impact of Cycle Modifications on Commercial Viability

    SciTech Connect

    Brandon F. Lachner, Jr.; Gregory F. Nellis; Douglas T. Reindl

    2004-08-30

    This project investigated the economic viability of using water as the refrigerant in a 1000-ton chiller application. The most attractive water cycle configuration was found to be a flash-intercooled, two-stage cycle using centrifugal compressors and direct contact heat exchangers. Component level models were developed that could be used to predict the size and performance of the compressors and heat exchangers in this cycle as well as in a baseline, R-134a refrigeration cycle consistent with chillers in use today. A survey of several chiller manufacturers provided information that was used to validate and refine these component models. The component models were integrated into cycle models that were subsequently used to investigate the life-cycle costs of both an R-134a and water refrigeration cycle. It was found that the first cost associated with the water as a refrigerant cycle greatly exceeded the savings in operating costs associated with its somewhat higher COP. Therefore, the water refrigeration cycle is not an economically attractive option to today's R-134a refrigeration system. There are a number of other issues, most notably the requirements associated with purging non-condensable gases that accumulate in a direct contact heat exchanger, which will further reduce the economic viability of the water cycle.

  14. Refrigerator Based on Chemisorption

    NASA Technical Reports Server (NTRS)

    Jones, Jack A.

    1987-01-01

    Reversible chemical reaction generates pressurized oxygen for cooling. Concept for cryogenic refrigerator based on chemical absorption of oxygen by praseodymium/cerium oxide (PCO) compound. Refrigerator produces cryogenic liquid for cooling infrared sensors. Also used for liquefying air and separating oxygen from nitrogen in air. In chemisorption refrigerator, PCO alternately absorbs and desorbs oxygen depending on whether cooled or heated. One pair of compressors accepts oxygen while others releases it. Compressed oxygen liquefied when precooked and expanded.

  15. Numerical investigation of thermoacoustic refrigerator at weak and large amplitudes considering cooling effect

    NASA Astrophysics Data System (ADS)

    Namdar, Ali; Kianifar, Ali; Roohi, Ehsan

    2015-04-01

    In this paper, OpenFOAM package is used for the first time to simulate the thermoacoustic refrigerator. For simulating oscillating inlet pressure, we implemented cosine boundary condition into the OpenFOAM. The governing equations are the unsteady compressible Navier-Stokes equations and the equation of state. The computational domain consists of one plate of the stack, heat exchangers, and resonator. The main result of this paper includes the analysis of the position of the cold heat exchanger versus the displacement of the pressure node at large amplitude for successful operation of the refrigerator. In addition, the effect of the input power on the successful operation of the apparatus has been investigated. It is observed that for higher temperature difference between heat exchangers, the time of steady state solution is longer. We show that to analyze and optimize the thermoacoustic devices, both heat exchangers should be considered, coefficient of performance (COP) should be checked, and the successful operation of the refrigerator should be evaluated.

  16. A Study on Bubble Departure and Bubble Lift-Off in Sub-Cooled Nucleate Boiling Flows

    SciTech Connect

    Wu, Wen; Chen, Peipei; Jones, Barclay G.; Newell, Ty A.

    2006-07-01

    This research examines bubble departure and bubble lift-off phenomena under subcooled nucleate boiling condition, using a high fidelity digital imaging apparatus. Refrigerant R- 134a is chosen as a simulant fluid due to its merits of having smaller surface tension, reduced latent heat, and lower boiling temperature than water. Images at frame rates up to 4000 frames/s were obtained with varying experimental parameters e.g. pressure, inlet sub-cooled level, and flow rate, etc., showing characteristics of bubble behavior under different conditions. Bubble size and position information was calculated via Canny's algorithm for edge detection and Fitzgibbon's algorithm for ellipse fitting. Bubble departure and lift-off radiuses were obtained and compared with existing bubble forces and detachment models proposed by Thorncroft et al., with good agreement observed. (authors)

  17. Supercooling Refrigerator

    NASA Technical Reports Server (NTRS)

    1986-01-01

    A Goddard/Philips research project resulted in a refrigeration system which works without seals, lubricants or bearings. The system, originally developed to cool satellite-based scientific instruments, has an extensive range of potential spinoffs. It is called the Stirling Cycle Cryogenic Cooler and eliminates friction by using electronically controlled linear magnetic bearings. Mechanical failure, contamination are eliminated.

  18. A progress report on using bolometers cooled by adiabatic demagnetization refrigeration

    NASA Technical Reports Server (NTRS)

    Lesyna, L.; Roellig, T.; Savage, M.; Werner, Michael W.

    1989-01-01

    For sensitive detection of astronomical continuum radiation in the 200 micron to 3 mm wavelength range, bolometers are presently the detectors of choice. In order to approach the limits imposed by photon noise in a cryogenically cooled telescope in space, bolometers must be operated at temperatures near 0.1 K. Researchers report progress in building and using bolometers that operate at these temperatures. The most sensitive bolometer had an estimated noise equivalent power (NEP) of 7 x 10(exp 017) W Hz(exp -1/2). Researchers also briefly discuss the durability of paramagnetic salts used to cool the bolometers.

  19. Analysis of Environmentally Friendly Refrigerant Options for Window Air Conditioners

    DOE PAGESBeta

    Bansal, Pradeep; Shen, Bo

    2015-03-12

    This paper presents a technical assessment of environmentally friendly refrigerants as alternatives to R410A for window air conditioners. The alternative refrigerants that are studied for its replacement include R32, a mixture of R32/R125 with 90%/10% molar concentration, R600a, R290, R1234yf, R1234ze and R134a. Baseline experiments were performed on a window unit charged with R410A. The heat pump design model (HPDM) was modified and calibrated with the baseline data and was used to evaluate the comparative performance of the WAC with alternative refrigerants. The paper discusses the advantages and disadvantages of each refrigerants and their suitability for window air conditioners. Amongmore » all the refrigerants studied, R32 offers the best efficiency and the lowest Global Warming Potential (GWP), and hence its use will result in the overall environmental friendliness.« less

  20. Analysis of Environmentally Friendly Refrigerant Options for Window Air Conditioners

    SciTech Connect

    Bansal, Pradeep; Shen, Bo

    2015-03-12

    This paper presents a technical assessment of environmentally friendly refrigerants as alternatives to R410A for window air conditioners. The alternative refrigerants that are studied for its replacement include R32, a mixture of R32/R125 with 90%/10% molar concentration, R600a, R290, R1234yf, R1234ze and R134a. Baseline experiments were performed on a window unit charged with R410A. The heat pump design model (HPDM) was modified and calibrated with the baseline data and was used to evaluate the comparative performance of the WAC with alternative refrigerants. The paper discusses the advantages and disadvantages of each refrigerants and their suitability for window air conditioners. Among all the refrigerants studied, R32 offers the best efficiency and the lowest Global Warming Potential (GWP), and hence its use will result in the overall environmental friendliness.

  1. Status Of Sorption Cryogenic Refrigeration

    NASA Technical Reports Server (NTRS)

    Jones, Jack A.

    1988-01-01

    Report reviews sorption refrigeration. Developed for cooling infrared detectors, cryogenic research, and other advanced applications, sorption refrigerators have few moving parts, little vibration, and lifetimes of 10 years or more. Describes types of sorption stages, multistage and hybrid refrigeration systems, power requirements, cooling capacities, and advantages and disadvantages of various stages and systems.

  2. Magnetocaloric effect and refrigeration cooling power in amorphous Gd7Ru3 alloys

    NASA Astrophysics Data System (ADS)

    Kumar, Pramod; Kumar, Rachana

    2015-07-01

    In this paper, we report the magnetic, heat capacity and magneto-caloric effect (MCE) of amorphous Gd7Ru3 compound. Both, temperature dependent magnetization and heat capacity data reveals that two transitions at 58 K and 34 K. MCE has been calculated in terms of isothermal entropy change (ΔSM) and adiabatic temperature change (ΔTad) using the heat capacity data in different fields. The maximum values of ΔSM and ΔTad are 21 Jmol-1K-1 and 5 K respectively, for field change of 50 kOe whereas relative cooling power (RCP) is ˜735 J/kg for the same field change.

  3. Measured effects of retrofits -- a refrigerant oil additive and a condenser spray device -- on the cooling performance of a heat pump

    SciTech Connect

    Levins, W.P.; Sand, J.R.; Baxter, V.D.; Linkous, R.L.

    1996-05-01

    A 15-year old, 3-ton single package air-to-air heat pump was tested in laboratory environmental chambers simulating indoor and outdoor conditions. After documenting initial performance, the unit was retrofitted with a prototype condenser water-spray device and retested. Results at standard ARI cooling rating conditions (95 F outdoor dry bulb and 80/67 F indoor dry bulb/wet bulb temperatures) showed the capacity increased by about 7%, and the electric power demand dropped by about 8%, resulting in a steady-state EER increase of 17%. Suction and discharge pressures were reduced by 7 and 37 psi, respectively. A refrigerant oil additive formulated to enhance refrigerant-side heat transfer was added at a dose of one ounce per ton of rated capacity, and the unit was tested for several days at the same 95 F outdoor conditions and showed essentially no increase in capacity, and a slight 3% increase in steady-state EER. Adding more additive lowered the EER slightly. Suction and discharge pressures were essentially unchanged. The short-term testing showed that the condenser-spray device was effective in increasing the cooling capacity and lowering the electrical demand on an old and relatively inefficient heat pump, but the refrigerant additive had little effect on the cooling performance of the unit. Sprayer issues to be resolved include the effect of a sprayer on a new, high-efficiency air conditioner/heat pump, reliable long-term operation, and economics.

  4. A new technology for fishing vessels: the use of ejector expansion refrigeration cycle

    NASA Astrophysics Data System (ADS)

    Memet, Feiza; Mitu, Daniela Elena

    2015-02-01

    A challenge that fishing industry is facing is the improvement of the refrigeration technology on board of fishing vessels. This paper deals with vapor compression refrigeration systems included on board of these ships. In these systems, significant thermodynamic losses are encountered in the expansion valve, during throttling process. Because it is possible to improve a thermodynamic process by decreasing irreversibility, in this paper it is used an ejector in order to reduce throttling irreversibility. A new technology results, the use of an ejector as a refrigerant expander leading to the ejector expansion refrigeration cycle. The theoretical study developed here will reveal a performance improvement of the new cycle. Also, because the traditional refrigerant used in marine refrigeration is R 134a, which presents a high value of its Global Warming Potential, the performance analysis is extended for the case of the use of other more environmentally friendly refrigerants: propane and isobutane.

  5. Efficiency of vapor compression heat pumps based on non-azeotropic refrigerant mixtures

    NASA Astrophysics Data System (ADS)

    Mezentseva, N. N.

    2011-06-01

    The work presents the results of cycle computation for vapor compression pumps based on ozone-safe mixed refrigerants. Non-azeotropic binary refrugerants R32/R152a (30/70) and R32/R134a (30/70) were considere as working substances. Properties of non-azeotropic refrigerants were calculated according to the additivity method of thermodynamic functions and method of Lemmon and Jacobsen. Deviations in the values of thermophysical properties obtained with two methods have been determined. It is shown that at the use of nonazeotropic mixture R32/R152a (30/70), energy conversion ratio increases by 2.2-3.6 % compared with the results for R32/R134a (30/70) at temperature difference between the processes of boiling and condensation from 28 to 53 °C.

  6. Fluorescent refrigeration

    DOEpatents

    Epstein, Richard I.; Edwards, Bradley C.; Buchwald, Melvin I.; Gosnell, Timothy R.

    1995-01-01

    Fluorescent refrigeration is based on selective radiative pumping, using substantially monochromatic radiation, of quantum excitations which are then endothermically redistributed to higher energies. Ultimately, the populated energy levels radiatively deexcite emitting, on the average, more radiant energy than was initially absorbed. The material utilized to accomplish the cooling must have dimensions such that the exciting radiation is strongly absorbed, but the fluorescence may exit the material through a significantly smaller optical pathlength. Optical fibers and mirrored glasses and crystals provide this requirement.

  7. Semiconductor-based optical refrigerator

    DOEpatents

    Epstein, Richard I.; Edwards, Bradley C.; Sheik-Bahae, Mansoor

    2002-01-01

    Optical refrigerators using semiconductor material as a cooling medium, with layers of material in close proximity to the cooling medium that carries away heat from the cooling material and preventing radiation trapping. In addition to the use of semiconducting material, the invention can be used with ytterbium-doped glass optical refrigerators.

  8. Support of NASA ADR/ Cross-Enterprise NRA Advanced Adiabatic Demagnetization Refrigerators for Continuous Cooling from 10K to 50mK, Development of a Heat Switch

    NASA Technical Reports Server (NTRS)

    Richards, Paul L.

    2005-01-01

    Mechanical heat switches are used in conjunction with sorption refrigerators, adiabatic demagnetization refrigerators and for other cryogenic tasks including the pre-cooling cryogenic systems. They use a mechanical actuator which closes Au plated Cu jaws on an Au plated Cu bar. The thermal conductance in the closed position is essentially independent of the area of the jaws and proportional to the force applied. It varies linearly with T. It is approximately 10mW/K for 200 N at 1.5K. In some applications, the heat switch can be driven from outside the cryostat by a rotating rod and a screw. Such heat switches are available commercially from several sources. In other applications, including systems for space, it is desirable to drive the switch using a cold linear motor, or solenoid. Superconducting windings are used at temperatures s 4.2K to minimize power dissipation, but are not appropriate for pre-cooling a system at higher temperatures. This project was intended to improve the design of solenoid activated mechanical heat switches and to provide such switches as required to support the development of Advanced Adiabatic Demagnetization Refrigerators for Continuous Cooling from 10 K to 50 mK at GSFC. By the time funding began in 5/1/01, the immediate need for mechanical heat switches at GSFC had subsided but, at the same time, the opportunity had arisen to improve the design of mechanical heat switching by incorporating a "latching solenoid". In this device, the solenoid current is required only for changing the state of the switch and not during the whole time that the switch is closed.

  9. Manufacture of refrigeration oils

    SciTech Connect

    Chesluk, R.P.; Platte, H.J.; Sequeira, A.J.

    1981-12-08

    Lubricating oils suitable for use in refrigeration equipment in admixture with fluorinated hydrocarbon refrigerants are produced by solvent extraction of naphthenic lubricating oil base stocks, cooling the resulting extract mixture, optionally with the addition of a solvent modifier, to form a secondary raffinate and a secondary extract, and recovering a dewaxed oil fraction of lowered pour point from the secondary raffinate as a refrigeration oil product. The process of the invention obviates the need for a separate dewaxing operation, such as dewaxing with urea, as conventionally employed for the production of refrigeration oils.

  10. Prediction of Heat Transfer Characteristics of Binary Refrigerant Mixtures in a Plate-Fin Condenser

    NASA Astrophysics Data System (ADS)

    Yara, Tomoyasu; Koyama, Shigeru

    The heat transfer characteristics of binary refrigerant mixtures in a plate-fin condenser are experimentally investigated using a vapor compression heat transformer, in which binary refrigerant mixtures of R 134a/ R 123 are used as the working fluid and water is used as both heat sink and source. Pure refrigerants of R 22 and R 134a are also tested as the working fluid. The experimental ranges of heat flux and mass velocity are from 2 to 20 kW/m2 and from 50 to 100 kg/m2s, respectively. The heat transfer characteristics of the condensation and vapor single-phase flow of pure and mixed refrigerants are discussed, and empirical correlation equations of the condensate heat transfer and vapor single-phase heat transfer are proposed. The correlation equation of water-side heat transfer is also presented. Combining these correlation equations with a correlation equation of vapor mass transfer based on the Chilton-Colburn analogy, a prediction model for condensation of the binary refrigerant mixtures in a plate-fin heat exchanger is developed based on the assumption that the phase equilibrium is only established at the vapor-liquid interface. The calculation results for the pure and mixed refrigerants agree well with the present experimental data. The mass transfer characteristics are also revealed from the calculation results.

  11. Evaporative heat transfer and enhancement performance of serpentine tubes with strip-type inserts using refrigerant-134a

    SciTech Connect

    Hsieh, S.S.; Jang, K.J.; Huang, M.T.

    1999-08-01

    Recent technological implications have given rise to increased interest in enhancement of the in-tube evaporation used in many air conditioning and refrigeration systems. Although many past studies have examined in-tube evaporative heat transfer enhancement and the associated pressure drop with internally finned tubes, in-tube evaporations with strip-type inserts, using R-134a as a refrigerant, have not been conducted. In addition, the fundamental phenomenon of nucleate boiling from a heated wall subject to a strip-type insert is as yet not well understood, especially for the flow in serpentine tubes. In this study, flow boiling tests were conducted in serpentine coil with inserts. To accomplish these tasks, experiments were performed in a seven-pass serpentine test tube with longitudinal strip and cross-strip types inserts, 10.6-mm inside diameter with R-134a as the boiling fluid immersed in a hot water bath.

  12. 46 CFR 154.1720 - Indirect refrigeration.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Indirect refrigeration. 154.1720 Section 154.1720... § 154.1720 Indirect refrigeration. A refrigeration system that is used to cool acetaldehyde, ethylene oxide, or methyl bromide, must be an indirect refrigeration system that does not use vapor compression....

  13. 46 CFR 154.1720 - Indirect refrigeration.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Indirect refrigeration. 154.1720 Section 154.1720... § 154.1720 Indirect refrigeration. A refrigeration system that is used to cool acetaldehyde, ethylene oxide, or methyl bromide, must be an indirect refrigeration system that does not use vapor compression....

  14. 46 CFR 154.1720 - Indirect refrigeration.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Indirect refrigeration. 154.1720 Section 154.1720... § 154.1720 Indirect refrigeration. A refrigeration system that is used to cool acetaldehyde, ethylene oxide, or methyl bromide, must be an indirect refrigeration system that does not use vapor compression....

  15. Composition changes in refrigerant blends for automotive air conditioning

    SciTech Connect

    Jetter, J.J.; Delafield, F.R.; Ng, A.S.; Ratanaphruks, K.; Tufts, M.W.

    1999-07-01

    Three refrigerant blends used to replace the chlorofluorocarbon R-12 in automotive air conditioners were evaluated for composition changes due to typical servicing and leakage. When recommended service procedures were followed, changes in blend compositions were relatively small. Small changes in blend compositions caused no significant changes in refrigeration capacities. However, when recommended procedures were not followed, changes in compositions were relatively large. The amount of change in composition and the resulting effect on performance varied among the three refrigerant blends that were tested. Of the three blends, a quaternary blend containing hydrochlorofluorocarbon R-22 had the greatest changes in composition, while a binary blend containing hydrofluorocarbon R-134a had the smallest changes in composition.

  16. Properties and Cycle Performance of Refrigerant Blends Operating Near and Above the Refrigerant Critical Point, Task 1: Refrigerant Properties

    SciTech Connect

    Mark O. McLinden; Arno Laesecke; Eric W. Lemmon; Joseph W. Magee; Richard A. Perkins

    2002-08-30

    The main goal of this project was to investigate and compare the performance of an R410A air conditioner to that of an R22 air conditioner, with specific interest in performance at high ambient temperatures at which the condenser of the R410A system may be operating above the refrigerant's critical point. Part 1 of this project consisted of measuring thermodynamic properties R125, R410A and R507A, measuring viscosity and thermal conductivity of R410A and R507A and comparing data to mixture models in NIST REFPROP database. For R125, isochoric (constant volume) heat capacity was measured over a temperature range of 305 to 397 K (32 to 124 C) at pressures up to 20 MPa. For R410A, isochoric heat capacity was measured along 8 isochores with a temperature range of 303 to 397 K (30 to 124 C) at pressures up to 18 MPa. Pressure-density-temperature was also measured along 14 isochores over a temperature range of 200 to 400 K (-73 to 127 C) at pressures up to 35 MPa and thermal conductivity along 6 isotherms over a temperature range of 301 to 404 K (28 to 131 C) with pressures to 38 MPa. For R507A, viscosity was measured along 5 isotherms over a temperature range of 301 to 421 K (28 to 148 C) at pressures up to 83 MPa and thermal conductivity along 6 isotherms over a temperature range of 301 to 404 K (28 to 131 C) with pressures to 38 MPa. Mixture models were developed to calculate the thermodynamic properties of HFC refrigerant mixtures containing R32, R125, R134a and/or R125. The form of the model is the same for all the blends considered, but blend-specific mixing functions are required for the blends R32/125 (R410 blends) and R32/134a (a constituent binary of R407 blends). The systems R125/134a, R125/143a, R134a/143a, and R134a/152a share a common, generalized mixing function. The new equation of state for R125 is believed to be the most accurate and comprehensive formulation of the properties for that fluid. Likewise, the mixture model developed in this work is the

  17. Fluorescent refrigeration

    DOEpatents

    Epstein, R.I.; Edwards, B.C.; Buchwald, M.I.; Gosnell, T.R.

    1995-09-05

    Fluorescent refrigeration is based on selective radiative pumping, using substantially monochromatic radiation, of quantum excitations which are then endothermically redistributed to higher energies. Ultimately, the populated energy levels radiatively deexcite emitting, on the average, more radiant energy than was initially absorbed. The material utilized to accomplish the cooling must have dimensions such that the exciting radiation is strongly absorbed, but the fluorescence may exit the material through a significantly smaller optical pathlength. Optical fibers and mirrored glasses and crystals provide this requirement. 6 figs.

  18. PVT measurements on tetrafluoroethane (R134a) along the vapor-liquid equilibrium boundary between 288 and 373 K and in the liquid state from the triple point to 265 K

    SciTech Connect

    Blanke, W.; Klingenberg, G.; Weiss, R.

    1995-09-01

    For the investigations of the gas-liquid phase equilibria, a new apparatus has been developed capable of simultaneously determining the pressure and the liquid and vapor densities using Archmiedes` principle. The relative measurement uncertainties of the liquid and vapor densities of R134a (purity, 99.999%) at 313 K are 2 X 10 {sup -4} and 7 X 10{sup -4}, respectively (95% confidence level). For the measurements in the liquid region along nine quasi-isochores at pressures up to 5MPa, an isochoric apparatus was used. The relative measurement uncertainty of pv/(RT) is less than 1X10{sup -3}. In addition to the investigation of the (p,v,T) properties, the temperature and pressure at the triple point and the vapor pressure between the triple point and 265 K were measured. On the basis of these data, a vapor pressure correlation has been developed that reproduces the measured vapor pressures within the uncertainty of measurement. The results of our measurements of other research groups.

  19. Energy Efficiency and Environmental Impact Analyses of Supermarket Refrigeration Systems

    SciTech Connect

    Fricke, Brian A; Bansal, Pradeep; Zha, Shitong

    2013-01-01

    This paper presents energy and life cycle climate performance (LCCP) analyses of a variety of supermarket refrigeration systems to identify designs that exhibit low environmental impact and high energy efficiency. EnergyPlus was used to model refrigeration systems in a variety of climate zones across the United States. The refrigeration systems that were modeled include the traditional multiplex DX system, cascade systems with secondary loops and the transcritical CO2 system. Furthermore, a variety of refrigerants were investigated, including R-32, R-134a, R-404A, R-1234yf, R-717, and R-744. LCCP analysis was used to determine the direct and indirect carbon dioxide emissions resulting from the operation of the various refrigeration systems over their lifetimes. Our analysis revealed that high-efficiency supermarket refrigeration systems may result in up to 44% less energy consumption and 78% reduced carbon dioxide emissions compared to the baseline multiplex DX system. This is an encouraging result for legislators, policy makers and supermarket owners to select low emission, high-efficiency commercial refrigeration system designs for future retrofit and new projects.

  20. Development of cooling system for 66/6.9kV-20MVA REBCO superconducting transformers with Ne turbo-Brayton refrigerator and subcooled liquid nitrogen

    NASA Astrophysics Data System (ADS)

    Iwakuma, M.; Adachi, K.; Yun, K.; Yoshida, K.; Sato, S.; Suzuki, Y.; Umeno, T.; Konno, M.; Hayashi, H.; Eguchi, T.; Izumi, T.; Shiohara, Y.

    2015-12-01

    We developed a turbo-Brayton refrigerator with Ne gas as a working fluid for a 3 ϕ- 66/6.9kV-2MVA superconducting transformer with coated conductors which was bath-cooled with subcooled LN2. The two-stage compressor and expansion turbine had non-contact magnetic bearings for a long maintenance interval. In the future, we intend to directly install a heat exchanger into the Glass-Fiber-Reinforced-Plastics cryostat of a transformer and make a heat exchange between the working fluid gas and subcooled LN2. In this paper we investigate the behaviour of subcooled LN2 in a test cryostat, in which heater coils were arranged side by side with a flat plate finned-tube heat exchanger. Here a He turbo-Brayton refrigerator was used as a substitute for a Ne turbo-Brayton one. The pressure at the surface of LN2 in the cryostat was one atmosphere. Just under the LN2 surface, a stationary layer of LN2 was created over the depth of 20 cm and temperature dropped from 77 K to 65 K with depth while, in the lower level than that, a natural convection flow of LN2 was formed and temperature was almost uniform over 1 m depth. The boundary plane between the stationary layer and the natural convection region was visible.

  1. Measurement of the cooling capacity of an RMC-Cryosystems Model LTS 4.5-025 closed-cycle helium refrigerator

    NASA Technical Reports Server (NTRS)

    De Zafra, R. L.; Mallison, W. H.; Emmons, L. K.; Koller, D.

    1991-01-01

    The cooling capacity of a recently purchased RMC-Cryosystems Model LTS 4.5-025 closed-cycle He refrigerator was measured over the range 4-35 K. It is found that the nominal cooling capacity of 250 mW is only met or exceeded over a narrow temperature range around 4.3 + or - 0.5 K, and that, above this range, there exists a considerable region of much lower cooling capacity, not exceeding about 100 mW. It is believed that this behavior results from use of a fixed-aperture Joule-Thompson expansion valve, and might be alleviated if the J-T valve could be adjusted to compensate for changing flow within the 5-20 K temperature range. Present performance may severely limit or prevent effective use in applications where an irreducible heat inflow exists which is greater than about 100 mW, yet substantially less than the quoted capacity at about 4 K.

  2. Large area impingement spray cooling from multiple normal and inclined spray nozzles

    NASA Astrophysics Data System (ADS)

    Yan, Z. B.; Duan, F.; Wong, T. N.; Toh, K. C.; Choo, K. F.; Chan, P. K.; Chua, Y. S.; Lee, L. W.

    2013-07-01

    An inclined spray chamber with four multiple nozzles to cool a 1 kW 6U electronic test card has been designed and tested in this study. The multiple inclined sprays can cover the same heated surface area as that with the multiple normal sprays but halve the volume of the spray chamber. The spray cooling system used R134a as a working fluid in a modified refrigeration cycle. It is observed that increasing mass flow rate and pressure drop across the nozzles improved the heat transfer coefficient with a maximum enhancement of 117 %, and reduced the maximum temperature difference at the heated surface from 13.8 to 8.4 °C in the inclined spray chamber with a heat flux of 5.25 W/cm2, while the heat transfer coefficient of the normal spray increased with a maximum enhancement of 215 % and the maximum temperature difference decreased from 10.8 to 5.4 °C under similar operating conditions. We conclude that the multiple inclined sprays could produce a higher heat transfer coefficient but with an increase in non-uniformity of the surface temperature compared with the multiple normal sprays.

  3. High temperature refrigerator

    DOEpatents

    Steyert, Jr., William A.

    1978-01-01

    A high temperature magnetic refrigerator which uses a Stirling-like cycle in which rotating magnetic working material is heated in zero field and adiabatically magnetized, cooled in high field, then adiabatically demagnetized. During this cycle said working material is in heat exchange with a pumped fluid which absorbs heat from a low temperature heat source and deposits heat in a high temperature reservoir. The magnetic refrigeration cycle operates at an efficiency 70% of Carnot.

  4. Neon helium mixtures as a refrigerant for the FCC beam screen cooling: comparison of cycle design options

    NASA Astrophysics Data System (ADS)

    Kloeppel, S.; Quack, H.; Haberstroh, C.; Holdener, F.

    2015-12-01

    In the course of the studies for the next generation particle accelerators, in this case the Future Circular Collider for hadron-hadron interaction (FCC-hh), different aspects are being investigated. One of these is the heat load on the beam screen, which results mainly from the synchrotron radiation. In case of the FCC-hh, a heat load of 6 MW is expected. The heat has to be absorbed at 40 to 60 K due to vacuum restrictions. In this range, refrigeration is possible with both helium and neon. Our investigations are focused on a mixed refrigerant of these two components, which combines the advantages of both. Especially promising is the possible substitution of the oil flooded screw compressors by more efficient turbo compressors. This paper investigates different flow schemes and mixture compositions with respect to complexity and efficiency. Furthermore, thermodynamic aspects, e.g. whether to use cold or warm secondary cycle compressors are discussed. Additionally, parameters of the main compressor are established.

  5. Downhole pulse tube refrigerators

    SciTech Connect

    Swift, G.; Gardner, D.

    1997-12-01

    This report summarizes a preliminary design study to explore the plausibility of using pulse tube refrigeration to cool instruments in a hot down-hole environment. The original motivation was to maintain Dave Reagor`s high-temperature superconducting electronics at 75 K, but the study has evolved to include three target design criteria: cooling at 30 C in a 300 C environment, cooling at 75 K in a 50 C environment, cooling at both 75 K and 30 C in a 250 C environment. These specific temperatures were chosen arbitrarily, as representative of what is possible. The primary goals are low cost, reliability, and small package diameter. Pulse-tube refrigeration is a rapidly growing sub-field of cryogenic refrigeration. The pulse tube refrigerator has recently become the simplest, cheapest, most rugged and reliable low-power cryocooler. The authors expect this technology will be applicable downhole because of the ratio of hot to cold temperatures (in absolute units, such as Kelvin) of interest in deep drilling is comparable to the ratios routinely achieved with cryogenic pulse-tube refrigerators.

  6. Toxicity Data to Determine Refrigerant Concentration Limits

    SciTech Connect

    Calm, James M.

    2000-09-30

    This report reviews toxicity data, identifies sources for them, and presents resulting exposure limits for refrigerants for consideration by qualified parties in developing safety guides, standards, codes, and regulations. It outlines a method to calculate an acute toxicity exposure limit (ATEL) and from it a recommended refrigerant concentration limit (RCL) for emergency exposures. The report focuses on acute toxicity with particular attention to lethality, cardiac sensitization, anesthetic and central nervous system effects, and other escape-impairing effects. It addresses R-11, R-12, R-22, R-23, R-113, R-114, R-116, R-123, R-124, R-125, R-134, R-134a, R-E134, R-141b, R-142b, R-143a, R-152a, R-218, R-227ea, R-236fa, R-245ca, R-245fa, R-290, R-500, R-502, R-600a, R-717, and R-744. It summarizes additional data for R-14, R-115, R-170 (ethane), R-C318, R-600 (n-butane), and R-1270 (propylene) to enable calculation of limits for blends incorporating them. The report summarizes the data a nd related safety information, including classifications and flammability data. It also presents a series of tables with proposed ATEL and RCL concentrations-in dimensionless form and the latter also in both metric (SI) and inch-pound (IP) units of measure-for both the cited refrigerants and 66 zerotropic and azeotropic blends. They include common refrigerants, such as R-404A, R-407C, R-410A, and R-507A, as well as others in commercial or developmental status. Appendices provide profiles for the cited single-compound refrigerants and for R-500 and R-502 as well as narrative toxicity summaries for common refrigerants. The report includes an extensive set of references.

  7. Stirling Refrigerator

    NASA Astrophysics Data System (ADS)

    Kagawa, Noboru

    A Stirling cooler (refrigerator) was proposed in 1862 and the first Stirling cooler was put on market in 1955. Since then, many Stirling coolers have been developed and marketed as cryocoolers. Recently, Stirling cycle machines for heating and cooling at near-ambient temperatures between 173 and 400K, are recognized as promising candidates for alternative system which are more compatible with people and the Earth. The ideal cycles of Stirling cycle machine offer the highest thermal efficiencies and the working fluids do not cause serious environmental problems of ozone depletion and global warming. In this review, the basic thermodynamics of Stirling cycle are briefly described to quantify the attractive cycle performance. The fundamentals to realize actual Stirling coolers and heat pumps are introduced in detail. The current status of the Stirling cycle machine technologies is reviewed. Some machines have almost achieved the target performance. Also, duplex-Stirling-cycle and Vuilleumier-cycle machines and their performance are introduced.

  8. A high-efficiency traveling-wave thermoacoustic refrigerator for cryogenic cooling operation: thermodynamic design and prelimnianry experiment

    NASA Astrophysics Data System (ADS)

    Ren, Jia; Luo, Ercang; Zhang, Liming; Hu, Jianying; Dai, Wei

    2012-06-01

    This paper theoretically studied a traveling-wave thermoacoustic cryocooler (TWTAC), simultaneously comparing with an inertance-tube pulse tube cryocooler operating in liquid nitrogen temperature range. The same core thermodynamic components are fixed and used in the both cryocoolers. First, thermodynamic design and optimization mainly on their phase shifting devices are made. For 77 K operation, the theoretical results show that the TWTAC has an increase of efficiency by about 10% compared with the inertance pulse tube cryocooler. Then, preliminary experiments on the TWTAC driven by a linear compressor were conducted. So far, the traveling-wave thermoacoustic cryocooler has achieved a no-load refrigeration temperature of 135 K with a pressure ratio of 1.15, and the reasons for huge different between the theoretical and experimental results are being indentified.

  9. Refrigeration for photomultipliers.

    PubMed

    Broadfoot, A L

    1966-08-01

    A closed-cycle mechanical refrigeration system has been adapted to cool photomultipliers automatically. Temperature is adjustable between +50 degrees and -55 degrees C and is stable to within +/-0.30 degrees C. An important feature of the design is the flexible connection to the cold box which allows extensive freedom of motion; this freedom is particularly important in astronomy where the cold box is mounted on the end of a telescope. Liquid Freon refrigerants have been used to cool photomultipliers for rocket flights. A brief description of two methods is given. PMID:20057521

  10. Alternative refrigerants and refrigeration cycles for domestic refrigerators

    SciTech Connect

    Sand, J.R.; Rice, C.L.; Vineyard, E.A.

    1992-12-01

    This project initially focused on using nonazeotropic refrigerant mixtures (NARMs) in a two-evaporator refrigerator-freezer design using two stages of liquid refrigerant subcooling. This concept was proposed and tested in 1975. The work suggested that the concept was 20% more efficient than the conventional one-evaporator refrigerator-freezer (RF) design. After considerable planning and system modeling based on using a NARM in a Lorenz-Meutzner (L-M) RF, the program scope was broadened to include investigation of a ``dual-loop`` concept where energy savings result from exploiting the less stringent operating conditions needed to satisfy cooling, of the fresh food section. A steady-state computer model (CYCLE-Z) capable of simulating conventional, dual loop, and L-M refrigeration cycles was developed. This model was used to rank the performance of 20 ozone-safe NARMs in the L-M refrigeration cycle while key system parameters were systematically varied. The results indicated that the steady-state efficiency of the L-M design was up to 25% greater than that of a conventional cycle. This model was also used to calculate the performance of other pure refrigerants relative to that of dichlorodifluoromethane, R-12, in conventional and dual-loop RF designs. Projected efficiency gains for these cycles were more modest, ranging from 0 to 10%. Individual compressor calorimeter tests of nine combinations of evaporator and condenser temperatures usually used to map RF compressor performance were carried out with R-12 and two candidate L-M NARMs in several compressors. Several models of a commercially produced two-evaporator RF were obtained as test units. Two dual-loop RF designs were built and tested as part of this project.

  11. Liquid to Semisolid Rheological Transition of Normal and High-Oleic Peanut Oils Upon Cooling to Refrigeration Temperatures

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rheological transitions of peanut oils cooled from 20 to 3ºC at 0.5ºC/min were monitored via small strain oscillatory measurements at 0.1 Hz and 1 Pa. Oils were from 9 different cultivars of peanut, and 3 oils were classified as high-oleic (approximately 80% oleic acid). High-oleic oils maintained...

  12. Ideal orifice pulse tube refrigerator performance

    NASA Technical Reports Server (NTRS)

    Kittel, P.

    1992-01-01

    The recent development of orifice pulse tube refrigerators has raised questions as to what limits their ultimate performance. Using an analogy to the Stirling cycle refrigerator, the efficiency (cooling power per unit input power) of an ideal orifice pulse tube refrigerator is shown to be T1/T0, the ratio of the cold temperature to the hot temperature.

  13. On the Influence of Heating Surface Structure on Bubble Detachment in Sub-Cooled Nucleate Boiling Flows

    SciTech Connect

    Wen Wu; Peipei Chen; Jones, Barclay G.; Newell, Ty A.

    2006-07-01

    This research examines the influence of heating surface structure on bubble detachment, which includes bubble departure and bubble lift-off, under sub-cooled nucleate boiling condition, in order to obtain better understanding to the bubble dynamics on horizontal flat heat exchangers. Refrigerant R-134a is chosen as a simulant fluid due to its merits of having smaller surface tension, reduced latent heat, and lower boiling temperature than water. Experiments were run with varying experimental parameters e.g. pressure, inlet sub-cooled level, and flow rate, etc. High speed digital images at frame rates up to 4000 frames/s were obtained, showing characteristics of bubble movement. Bubble radius and center coordinates were calculated via Canny's algorithm for edge detection and Fitzgibbon's algorithm for ellipse fitting. Results were compared against the model proposed by Klausner et al. for prediction of bubble detachment sizes. Good overall agreement was shown, with several minor modifications and suggestions made to the assumptions of the model. (authors)

  14. Pulse Tube Refrigerator

    NASA Astrophysics Data System (ADS)

    Matsubara, Yoichi

    The pulse tube refrigerator is one of the regenerative cycle refrigerators such as Stirling cycle or Gifford-McMahon cycle which gives the cooling temperature below 150 K down to liquid helium temperature. In 1963, W. E. Gifford invented a simple refrigeration cycle which is composed of compressor, regenerator and simple tube named as pulse tube which gives a similar function of the expander in Stirling or Gifford-McMahon cycle. The thermodynamically performance of this pulse tube refrigerator is inferior to that of other regenerative cycles. In 1984, however, Mikulin and coworkers made a significant advance in pulse tube configuration called as orifice pulse tube. After this, several modifications of the pulse tube hot end configuration have been developed. With those modifications, the thermodynamic performance of the pulse tube refrigerator became the same order to that of Stirling and Gifford-McMahon refrigerator. This article reviews the brief history of the pulse tube refrigerator development in the view point of its thermodynamically efficiency. Simplified theories of the energy flow in the pulse tube have also been described.

  15. Refrigeration system having dual suction port compressor

    DOEpatents

    Wu, Guolian

    2016-01-05

    A cooling system for appliances, air conditioners, and other spaces includes a compressor, and a condenser that receives refrigerant from the compressor. The system also includes an evaporator that receives refrigerant from the condenser. Refrigerant received from the condenser flows through an upstream portion of the evaporator. A first portion of the refrigerant flows to the compressor without passing through a downstream portion of the evaporator, and a second portion of the refrigerant from the upstream portion of the condenser flows through the downstream portion of the evaporator after passing through the upstream portion of the evaporator. The second portion of the refrigerant flows to the compressor after passing through the downstream portion of the evaporator. The refrigeration system may be configured to cool an appliance such as a refrigerator and/or freezer, or it may be utilized in air conditioners for buildings, motor vehicles, or other such spaces.

  16. NICE3: Industrial Refrigeration System

    SciTech Connect

    Simon, P.

    1999-09-29

    Energy Concepts has developed an absorption-augmented system as a cost-effective means of achieving more cooling capacity with a substantial reduction in energy consumption and greenhouse gas emissions for industrial refrigeration. It cuts fuel consumption by 30% by combining an internal combustion engine with a mechanical compression refrigeration system and an absorption refrigeration system. The absorption system is powered by engine waste heat. Conventional industrial refrigeration uses mechanical vapor compression, powered by electric motors, which results in higher energy costs. By the year 2010, the new system could cut fuel consumption by 19 trillion Btu and greenhouse emissions by more than 1 million tons per year.

  17. Vapor-liquid coexistence curves in the critical region and the critical temperatures and densities of 1,1,1,2-tetrafluoroethane (R-134a), 1,1,1-trifluoroethane (R-143a), and 1,1,1,2,3,3-hexafluoropropane (R-236ea)

    SciTech Connect

    Aoyama, H.; Kishizawa, G.; Sato, H.; Watanabe, K.

    1996-09-01

    The vapor-liquid coexistence curves in the critical region of 1,1,1,2-tetrafluoroethane (R-134a), 1,1,1-trifluoroethane (R-143a), and 1,1,1,2,3,3-hexafluoropropane (R-236ea) were measured by a visual observation of the meniscus disappearance in an optical cell. Seventeen saturated-vapor and -liquid densities have been measured for R-134a. Thirty-five saturated-vapor and -liquid densities have been measured for R-143a. Twenty-seven saturated-vapor and -liquid densities have been measured for R-236ea. The level and location of the meniscus, as well as the intensity of the critical opalescence were considered in the determination of the critical temperature and density for each fluid. R-134a was found to have (374.083 {+-} 0.010) K and (509 {+-} 1) kg/m{sup 3}, R-143a, (345.860 {+-} 0.010) K and (434 {+-} 1) kg/m{sup 3}, and R-236ea, (412.375 {+-} 0.015) K and (568 {+-} 1) kg/m{sup 3}.

  18. Adsorption Refrigeration System

    SciTech Connect

    Wang, Kai; Vineyard, Edward Allan

    2011-01-01

    Adsorption refrigeration is an environmentally friendly cooling technology which could be driven by recovered waste heat or low-grade heat such as solar energy. In comparison with absorption system, an adsorption system has no problems such as corrosion at high temperature and salt crystallization. In comparison with vapor compression refrigeration system, it has the advantages of simple control, no moving parts and less noise. This paper introduces the basic theory of adsorption cycle as well as the advanced adsorption cycles such as heat and mass recovery cycle, thermal wave cycle and convection thermal wave cycle. The types, characteristics, advantages and drawbacks of different adsorbents used in adsorption refrigeration systems are also summarized. This article will increase the awareness of this emerging cooling technology among the HVAC engineers and help them select appropriate adsorption systems in energy-efficient building design.

  19. Refrigerant poisoning

    MedlinePlus

    A refrigerant is a chemical that makes things cold. This article discusses poisoning from sniffing or swallowing such chemicals. ... occurs when people intentionally sniff a type of refrigerant called Freon. This article is for information only. ...

  20. Malone refrigeration

    SciTech Connect

    Swift, G.W.

    1993-01-01

    Malone refrigeration is the use of a liquid near its critical points without evaporations as working fluid in a regenerative or recuperative refrigeration cycle such as the Stirling and Brayton cycles. It's potential advantages include compactness, efficiency, an environmentally benign working fluid, and reasonable cost. One Malone refrigerator has been built and studied; two more are under construction. Malone refrigeration is such a new, relatively unexplored technology that the potential for inventions leading to improvements in efficiency and simplicity is very high.

  1. Reciprocating Magnetic Refrigerator

    NASA Technical Reports Server (NTRS)

    Johnson, D. L.

    1985-01-01

    Unit cools to 4 K by adiabatic demagnetization. Two porous matrices of paramagnetic material gadolinium/gallium/garnet held in long piston called displacer, machined out of Micarta (phenol formaldehyde polymer). Holes in side of displacer allow heat-exchange fluid to flow to and through matrices within. Piston seals on displacer prevent substantial mixing of fluid in two loops. Magnetic refrigerator provides continuous rather than "one-shot" cooling.

  2. Chemical and thermal stability of refrigerant-lubricant mixtures with metals. Final report

    SciTech Connect

    Huttenlocher, D.F.

    1992-10-09

    This report presents the results of a sealed tube stability study on twenty-one refrigerant-lubricant mixtures selected from the following groupings: HFCs R-32, R-125, R-134, R-134a, R-143a, and R-152a with one or more lubricants selected from among three pentaerythritol esters and three polyalkylene glycols. All lubricants were carefully predried to 25 ppm or less moisture content. HCFCs R-22, R-123, R-124, and R-142b, as well as CFC R-11, with one or more lubricants selected from among two mineral oils and one alkylbenzene fluid. Bach test mixture was aged at three temperature levels.

  3. Chemical and thermal stability of refrigerant-lubricant mixtures with metals

    SciTech Connect

    Huttenlocher, D.F.

    1992-10-09

    This report presents the results of a sealed tube stability study on twenty-one refrigerant-lubricant mixtures selected from the following groupings: HFCs R-32, R-125, R-134, R-134a, R-143a, and R-152a with one or more lubricants selected from among three pentaerythritol esters and three polyalkylene glycols. All lubricants were carefully predried to 25 ppm or less moisture content. HCFCs R-22, R-123, R-124, and R-142b, as well as CFC R-11, with one or more lubricants selected from among two mineral oils and one alkylbenzene fluid. Bach test mixture was aged at three temperature levels.

  4. Halocarbon refrigerant detection methods. Final report

    SciTech Connect

    Tapscott, R.E.; Sohn, C.W.

    1996-01-01

    The Montreal Protocol and the U.S. Clean Air Act limit the production of ozone-depleting substances, including many refrigerants. Three options for cost-effectively phasing out these refrigerants from Army installations are: (1) refrigerant containment, (2) retrofit conversion to accommodate alternative refrigerant, and (3) replacement with cooling systems using alternative refrigerant. This report contributes to the first option by identifying and assessing methods to detect chlorofluorocarbon (CFC), hydrochlorofluorocarbon (HCFC) and hydrofluorocarbon (HFC) refrigerants that leak from air-conditioning and refrigeration systems. As background, the report describes the relevant sections of the Montreal Protocol and the Clean Air Act, and gives an overview of refrigerants. This is followed by a description of the technologies used in refrigerant leak detection, and a survey of detector types available and their price ranges. Appendixes provide an extensive list of detector products and their specifications, plus manufacturer addresses and phone numbers.

  5. Thermal design and verification of an instrument cooling system for infrared detectors utilizing the Oxford Stirling cycle refrigerator

    NASA Technical Reports Server (NTRS)

    Werrett, Stephen; Seivold, Alfred L.

    1990-01-01

    A detailed nodal computer model was developed to thermally represent the hardware, and sensitivity studies were performed to evaluate design parameters and orbital environmental effects of an instrument cooling system for IR detectors. Thermal-vacuum testing showed excellent performance of the system and a correspondence with math model predictions to within 3 K. Results show cold stage temperature sensitivity to cold patch backload, outer stage external surface emittance degradation, and cold stage emittance degradation, respectively. The increase in backload on the cold patch over the mission lifetime is anticipated to be less than 3.0 watts, which translates to less than a 3-degree increase in detector temperatures.

  6. Prediction of Heat Transfer Characteristics of Binary Refrigerant Mixtures in a Falling Film Type Plate-fin Evaporator

    NASA Astrophysics Data System (ADS)

    Yara, Tomoyasu; Koyama, Shigeru

    This paper deals with the characteristics of heat transfer and pressure drop of R 22, R 134a pure refrigerant and R 134a/R123 refrigerant mixtures in a falling film type plate-fin evaporator. The refrigerants have been tested in the ranges of heat flux from 3 to 20 kW/m2 and mass velocity from 50 to 100 kg/m2s. It is clarified that heat transfer characteristics of evaporation in the present experimental range are not affected by shear stress. Taking the fin efficiency into consideration, a correlation equation of heat transfer coefficient is proposed. The characteristic of pressure drop is also proposed by modifying friction factor of Soliman's equation. Furthermore, a prediction model for evaporation of mixtures in a plate fin heat exchanger is developed based on the assumption that the phase equilibrium in a cross-section of the refrigerant path is established. The prediction results are in good agreement with the experimental data.

  7. Refrigerant charge management in a heat pump water heater

    DOEpatents

    Chen, Jie; Hampton, Justin W.

    2016-07-05

    Heat pumps that heat or cool a space and that also heat water, refrigerant management systems for such heat pumps, and methods of managing refrigerant charge. Various embodiments remove idle refrigerant from a heat exchanger that is not needed for transferring heat by opening a refrigerant recovery valve and delivering the idle refrigerant from the heat exchanger to an inlet port on the compressor. The heat exchanger can be isolated by closing an electronic expansion valve, actuating a refrigerant management valve, or both. Refrigerant charge can be controlled by controlling how much refrigerant is drawn from the heat exchanger, by letting some refrigerant back into the heat exchanger, or both. Heat pumps can be operated in different modes of operation, and various components can be interconnected with refrigerant conduit. Some embodiments deliver refrigerant gas to the heat exchanger and drive liquid refrigerant out prior to isolating the heat exchanger.

  8. Cryogenic refrigeration apparatus

    DOEpatents

    Crunkleton, J.A.

    1992-03-31

    A technique for producing a cold environment in a refrigerant system in which input fluid from a compressor at a first temperature is introduced into an input channel of the system and is pre-cooled to a second temperature for supply to one of at least two stages of the system, and to a third temperature for supply to another stage thereof. The temperatures at such stages are reduced to fourth and fifth temperatures below the second and third temperatures, respectively. Fluid at the fourth temperature from the one stage is returned through the input channel to the compressor and fluid at the fifth temperature from the other stage is returned to the compressor through an output channel so that pre-cooling of the input fluid to the one stage occurs by regenerative cooling and counterflow cooling and pre-cooling of the input fluid to the other stage occurs primarily by counterflow cooling. 6 figs.

  9. Cryogenic refrigeration apparatus

    DOEpatents

    Crunkleton, James A.

    1992-01-01

    A technique for producing a cold environment in a refrigerant system in which input fluid from a compressor at a first temperature is introduced into an input channel of the system and is pre-cooled to a second temperature for supply to one of at least two stages of the system, and to a third temperature for supply to another stage thereof. The temperatures at such stages are reduced to fourth and fifth temperatures below the second and third temperatures, respectively. Fluid at the fourth temperature from the one stage is returned through the input channel to the compressor and fluid at the fifth temperature from the other stage is returned to the compressor through an output channel so that pre-cooling of the input fluid to the one stage occurs by regenerative cooling and counterflow cooling and pre-cooling of the input fluid to the other stage occurs primarily by counterflow cooling.

  10. Refrigerant charge management in a heat pump water heater

    DOEpatents

    Chen, Jie; Hampton, Justin W.

    2014-06-24

    Heat pumps that heat or cool a space and that also heat water, refrigerant management systems for such heat pumps, methods of managing refrigerant charge, and methods for heating and cooling a space and heating water. Various embodiments deliver refrigerant gas to a heat exchanger that is not needed for transferring heat, drive liquid refrigerant out of that heat exchanger, isolate that heat exchanger against additional refrigerant flowing into it, and operate the heat pump while the heat exchanger is isolated. The heat exchanger can be isolated by closing an electronic expansion valve, actuating a refrigerant management valve, or both. Refrigerant charge can be controlled or adjusted by controlling how much liquid refrigerant is driven from the heat exchanger, by letting refrigerant back into the heat exchanger, or both. Heat pumps can be operated in different modes of operation, and segments of refrigerant conduit can be interconnected with various components.

  11. Thermoacoustic refrigeration

    NASA Technical Reports Server (NTRS)

    Garrett, Steven L.; Hofler, Thomas J.

    1991-01-01

    A new refrigerator which uses resonant high amplitude sound in inert gases to pump heat is described and demonstrated. The phasing of the thermoacoustic cycle is provided by thermal conduction. This 'natural' phasing allows the entire refrigerator to operate with only one moving part (the loudspeaker diaphragm). The thermoacoustic refrigerator has no sliding seals, requires no lubrication, uses only low-tolerance machine parts, and contains no expensive components. Because the compressor moving mass is typically small and the oscillation frequency is high, the small amount of vibration is very easily isolated. This low vibration and lack of sliding seals makes thermoacoustic refrigeration an excellent candidate for food refrigeration and commercial/residential air conditioning applications. The design, fabrication, and performance of the first practical, autonomous thermoacoustic refrigerator, which will be flown on the Space Shuttle (STS-42), are described, and designs for terrestrial applications are presented.

  12. Malone refrigeration

    SciTech Connect

    Swift, G W

    1992-01-01

    Malone refrigeration is the use of a liquid near its critical point, without evaporation, as working fluid in a refrigeration cycle such as the Stirling cycle. We discuss relevant properties of appropriate liquids, and describe two Malone refrigerators. The first completed several years ago, established the basic principles of use of liquids in such cycles. The second, now under construction, is a linear, free-piston machine.

  13. Thermoelectric refrigerator having improved temperature stabilization means

    DOEpatents

    Falco, Charles M.

    1982-01-01

    A control system for thermoelectric refrigerators is disclosed. The thermoelectric refrigerator includes at least one thermoelectric element that undergoes a first order change at a predetermined critical temperature. The element functions as a thermoelectric refrigerator element above the critical temperature, but discontinuously ceases to function as a thermoelectric refrigerator element below the critical temperature. One example of such an arrangement includes thermoelectric refrigerator elements which are superconductors. The transition temperature of one of the superconductor elements is selected as the temperature control point of the refrigerator. When the refrigerator attempts to cool below the point, the metals become superconductors losing their ability to perform as a thermoelectric refrigerator. An extremely accurate, first-order control is realized.

  14. Malone refrigeration

    SciTech Connect

    Swift, G.W.

    1993-06-01

    Malone refrigeration is the use of a liquid near its critical points without evaporations as working fluid in a regenerative or recuperative refrigeration cycle such as the Stirling and Brayton cycles. It`s potential advantages include compactness, efficiency, an environmentally benign working fluid, and reasonable cost. One Malone refrigerator has been built and studied; two more are under construction. Malone refrigeration is such a new, relatively unexplored technology that the potential for inventions leading to improvements in efficiency and simplicity is very high.

  15. Elastohydrodynamic Lubrication with Polyolester Lubricants and HFC Refrigerants, Final Report, Volume 2

    SciTech Connect

    Gunsel, Selda; Pozebanchuk, Michael

    1999-04-01

    naphthenic mineral oils (NMO), four polyolesters (POE), and two polyvinyl ether (PVE) fluids. These fluids represented viscosity grades of ISO 32 and ISO 68 and are shown in a table. Refrigerants studied included R-22, R-134a, and R-410A. Film thickness measurements were conducted at 23 C, 45 C, and 65 C with refrigerant concentrations ranging from zero to 60% by weight.

  16. Surface tension for 1,1,1-trifluorethane (R-143a), 1,1,1,2-tetrafluoroethane (R-134a), 1,1-dichloro-2,2,3,3,3-pentafluoropropane (R-225ca), and 1,3-dichloro-1,2,2,3,3-pentafluoropropane (R-225cb)

    SciTech Connect

    Higashi, Yukihiro; Shibata, Takahide; Okada, Masaaki

    1997-05-01

    The surface tensions for 1,1,1-trifluoroethane (R-143a), 1,1,1,2-tetrafluoroethane (R-134a), 1,1-dichloro-2,2,3,3,3-pentafluoropropane (R-225ca), and 1,3-dichloro-1,2,2,3,3-pentafluoropropane (R-225cb) have been measured by the differential capillary rise method. The results were obtained in the temperature range between 273 K and 343 K. The experimental uncertainties of temperature and surface tension are estimated to be within {+-}20 mK and {+-}0.15 mN/m, respectively. A correlation for the surface tension as a function of temperature is presented.

  17. Barocaloric effect and the pressure induced solid state refrigerator

    SciTech Connect

    Oliveira, N. A. de

    2011-03-01

    The current refrigerators are based on the heating and cooling of fluids under external pressure variation. The great inconvenience of this refrigeration technology is the damage caused to the environment by the refrigerant fluids. In this paper, we discuss the magnetic barocaloric effect, i.e., the heating or cooling of magnetic materials under pressure variation and its application in the construction of refrigerators using solid magnetic compounds as refrigerant materials and pressure as the external agent. The discussion presented in this paper points out that such a pressure induced solid state refrigerator can be very interesting because it is not harmful to the environment and can exhibit a good performance.

  18. Fast, Low-Duty-Cycle Sorption Refrigerators

    NASA Technical Reports Server (NTRS)

    Johnson, AL; Jones, Jack A.

    1994-01-01

    Metal hydride/hydrogen-sorption refrigerators developed to provide rapid, intermittent cooling at temperatures between 30 and 10 K. In original application, refrigerators cool infrared detectors aboard spacecraft, exhausting heat to outer space via radiators at 250 K. Modified to cool scientific instrumentation on Earth with some loss of efficiency. Require no power during quick cooldown and low heating power during relatively long recharge periods.

  19. Multistation refrigeration system

    NASA Technical Reports Server (NTRS)

    Wiebe, E. R. (Inventor)

    1978-01-01

    A closed cycle refrigeration (CCR) system is disclosed for providing cooling at different parts of a maser. The CCR includes a first station for cooling the maser's parts, except the amplifier portion, to 4.5 K. The CCR further includes means with a 3.0 K station for cooling the maser's amplifier to 3.0 K and, thereby, increases the maser's gain and/or bandwith by a significant factor. The means which provide the 3.0 K cooling include a pressure regulator, heat exchangers, an expansion valve, and a vacuum pump, which coact to cause helium, provided from a compressor, to liquefy and thereafter expand so as to vaporize. The heat of vaporization for the helium is provided by the maser amplifier, which is thereby cooled to 3.0 K.

  20. Thermodynamic and transport properties of some alternative ozone-safe refrigerants for industrial refrigeration equipment: Study in Belarus and Ukraine

    NASA Astrophysics Data System (ADS)

    Grebenkov, A. J.; Zhelezny, V. P.; Klepatsky, P. M.; Beljajeva, O. V.; Chernjak, Yu. A.; Kotelevsky, Yu. G.; Timofejev, B. D.

    1996-05-01

    The study of several hydrofluorocarbons (HFC) and fluorocarbons (FC) and their binary mixtures that have no ozone-depleting ability is being carried Out in the framework of Belarus National Program. The fluids include HFCs R134a. R152a, R135, and R32, and FC R218. The following properties are being investigated: ( I ) phase equilibrium parameters including the boiling and condensing curve and critical point, thermophysical properties at these parameters, and heat of evaporation: (2) isobaric and isochoric heat capacity, ethalpy, and entropy in the gas and liquid state: (3) speed of sound, thermal conductivity. viscosity, and density in the gas and liquid state: (4) dielectric properties and surface tension: (5) behavior of combined construction materials inside the refrigerant medium: and (6) solubility in compressor oils and other technological characteristics. The series of results obtained by authors during the period 1990 1993 is presented.

  1. Short-Cycle Adsorption Refrigerator

    NASA Technical Reports Server (NTRS)

    Chan, C. K.

    1988-01-01

    Modular adsorption/Joule-Thomson-effect refrigerator offers fast regeneration; adsorption/desorption cycle time expected to be 1 minute. Pressurized hydrogen generated by bank of compressor modules during heating phase passes through system of check valves and expands in Joule-Thomson junction as it enters refrigeration chamber. Hydrogen absorbs heat from load before it is sucked out by another bank of compressor modules in cooling phase.

  2. Oxygen chemisorption cryogenic refrigerator

    NASA Technical Reports Server (NTRS)

    Jones, Jack A. (Inventor)

    1987-01-01

    The present invention relates to a chemisorption compressor cryogenic refrigerator which employs oxygen to provide cooling at 60 to 100 K. The invention includes dual vessels containing an oxygen absorbent material, alternately heated and cooled to provide a continuous flow of high pressure oxygen, multiple heat exchangers for precooling the oxygen, a Joule-Thomson expansion valve system for expanding the oxygen to partially liquefy it and a liquid oxygen pressure vessel. The primary novelty is that, while it was believed that once oxygen combined with an element or compound the reaction could not reverse to release gaseous oxygen, in this case oxygen will indeed react in a reversible fashion with certain materials and will do so at temperatures and pressures which make it practical for incorporation into a cryogenic refrigeration system.

  3. Superfluid thermodynamic cycle refrigerator

    DOEpatents

    Swift, Gregory W.; Kotsubo, Vincent Y.

    1992-01-01

    A cryogenic refrigerator cools a heat source by cyclically concentrating and diluting the amount of .sup.3 He in a single phase .sup.3 He-.sup.4 He solution. The .sup.3 He in superfluid .sup.4 He acts in a manner of an ideal gas in a vacuum. Thus, refrigeration is obtained using any conventional thermal cycle, but preferably a Stirling or Carnot cycle. A single phase solution of liquid .sup.3 He at an initial concentration in superfluid .sup.4 He is contained in a first variable volume connected to a second variable volume through a superleak device that enables free passage of .sup.4 He while restricting passage of .sup.3 He. The .sup.3 He is compressed (concentrated) and expanded (diluted) in a phased manner to carry out the selected thermal cycle to remove heat from the heat load for cooling below 1 K.

  4. Superfluid thermodynamic cycle refrigerator

    DOEpatents

    Swift, G.W.; Kotsubo, V.Y.

    1992-12-22

    A cryogenic refrigerator cools a heat source by cyclically concentrating and diluting the amount of [sup 3]He in a single phase [sup 3]He-[sup 4]He solution. The [sup 3]He in superfluid [sup 4]He acts in a manner of an ideal gas in a vacuum. Thus, refrigeration is obtained using any conventional thermal cycle, but preferably a Stirling or Carnot cycle. A single phase solution of liquid [sup 3]He at an initial concentration in superfluid [sup 4]He is contained in a first variable volume connected to a second variable volume through a superleak device that enables free passage of [sup 4]He while restricting passage of [sup 3]He. The [sup 3]He is compressed (concentrated) and expanded (diluted) in a phased manner to carry out the selected thermal cycle to remove heat from the heat load for cooling below 1 K. 12 figs.

  5. Thermophysical Properties of the Refrigerant Mixtures R417A and R417B from Dynamic Light Scattering (DLS)

    NASA Astrophysics Data System (ADS)

    Heller, A.; Rausch, M. H.; Flohr, F.; Leipertz, A.; Fröba, A. P.

    2012-03-01

    Dynamic light scattering (DLS) has been used for the measurement of several thermophysical properties of the refrigerant mixtures R417A (50 % by mass 1,1,1,2-tetrafluoroethane—R134a, 46.6 % pentafluoroethane—R125, 3.4 % n-butane—R600) and R417B (79 % by mass R125, 18.25 % R134a, 2.75 % R600). Both refrigerant mixtures are designed for a replacement of R22 (chlorodifluoromethane) in existing refrigeration systems. Thermal diffusivity and sound speed have been obtained by light scattering from the bulk fluid for the liquid phase under saturation conditions over a temperature range from about 283 K up to the liquid-vapor critical point with estimated uncertainties between 1 % and 3 % and between 0.5 % and 2 %, respectively. By applying the method of DLS to a liquid-vapor interface, also called surface light scattering, the saturated liquid kinematic viscosity and surface tension have been determined simultaneously. These properties have been measured from 253.15 K up to the liquid-vapor critical point with estimated uncertainties between 1 % and 3 % for kinematic viscosity and between 1 % and 2 % for surface tension. The measured thermal diffusivity, sound speed, kinematic viscosity, and surface tension are represented by interpolating expressions with differences between the experimental and calculated values that are comparable with but always smaller than the uncertainties. The results are discussed in detail in comparison with literature data and with various prediction methods.

  6. Magnetic refrigeration for low-temperature applications

    NASA Technical Reports Server (NTRS)

    Barclay, J. A.

    1985-01-01

    The application of refrigeration at low temperatures ranging from production of liquid helium for medical imaging systems to cooling of infrared sensors on surveillance satellites is discussed. Cooling below about 15 K with regenerative refrigerators is difficult because of the decreasing thermal mass of the regenerator compared to that of the working material. In order to overcome this difficulty with helium gas as the working material, a heat exchanger plus a Joule-Thomson or other exponder is used. Regenerative magnetic refrigerators with magnetic solids as the working material have the same regenerator problem as gas refrigerators. This problem provides motivation for the development of nonregenerative magnetic refrigerators that span approximately 1 K to approximately 0 K. Particular emphasis is placed on high reliability and high efficiency. Calculations indicate considerable promise in this area. The principles, the potential, the problems, and the progress towards development of successful 4 to 20 K magnetic refrigerators are discussed.

  7. Sorption cryogenic refrigeration - Status and future

    NASA Technical Reports Server (NTRS)

    Jones, Jack A.

    1988-01-01

    The operation principles of sorption cryogenic refrigeration are discussed. Sorption refrigerators have virtually no wear-related moving parts, have negligible vibration, and offer extremely long life (at least ten years), making it possible to obtain efficient, long life and low vibration cooling to as low as 7 K for cryogenic sensors. The physisorption and chemisorption systems recommended for various cooling ranges down to 7 K are described in detail. For long-life cooling at 4-5 K temperatures, a hybrid chemisorption-mechanical refrigeration system is recommended.

  8. Prediction of refrigerant void fraction in horizontal tubes using probabilistic flow regime maps

    SciTech Connect

    Jassim, E.W.; Newell, T.A.; Chato, J.C.

    2008-04-15

    A state of the art review of two-phase void fraction models in smooth horizontal tubes is provided and a probabilistic two-phase flow regime map void fraction model is developed for refrigerants under condensation, adiabatic, and evaporation conditions in smooth, horizontal tubes. Time fraction information from a generalized probabilistic two-phase flow map is used to provide a physically based weighting of void fraction models for different flow regimes. The present model and void fraction models in the literature are compared to data from multiple sources including R11, R12, R134a, R22, R410A refrigerants, 4.26-9.58 mm diameter tubes, mass fluxes from 70 to 900 kg/m{sup 2} s, and a full quality range. The present model has a mean absolute deviation of 3.5% when compared to the collected database. (author)

  9. Vaccine refrigeration

    PubMed Central

    McColloster, Patrick J; Martin-de-Nicolas, Andres

    2014-01-01

    This commentary reviews recent changes in Centers for Disease Control (CDC) vaccine storage guidelines that were developed in response to an investigative report by the Office of the Inspector General. The use of temperature data loggers with probes residing in glycol vials is advised along with storing vaccines in pharmaceutical refrigerators. These refrigerators provide good thermal distribution but can warm to 8 °C in less than one hour after the power is discontinued. Consequently, electric grid instability influences appropriate refrigerator selection and the need for power back-up. System Average Interruption Duration Index (SAIDI) values quantify this instability and can be used to formulate region-specific guidelines. A novel aftermarket refrigerator regulator with a battery back-up power supply and microprocessor control system is also described. PMID:24442209

  10. Modeling and testing of fractionation effects with refrigerant blends in an actual residential heat pump system

    SciTech Connect

    Biancardi, F.R.; Pandy, D.R.; Sienel, T.H.; Michels, H.H.

    1997-12-31

    The heating, ventilating, and air-conditioning (HVAC) industry is actively evaluating and testing hydrofluorocarbon (HFC) refrigerant blends as a means of complying with current and impending national and international environmental regulations restricting the use and disposal of conventional chlorofluorocarbon (CFC) and hydrochlorofluorocarbon (HCFC) refrigerants that contribute to the global ozone-depletion effects. While analyses and system performance tools have shown that HFC refrigerant blends offer certain performance, capacity, and operational advantages, there are significant possible service and operational issues that are raised by the use of blends. Many of these issues occur due to the fractionation of the blends. Therefore, the objective of this program was to conduct analyses and experimental tests aimed at understanding these issues, develop approaches or techniques to predict these effects, and convey to the industry safe and reliable approaches. As a result, analytical models verified by laboratory data have been developed that predict the fractionation effects of HFC refrigerant blends (1) when exposed to selected POE lubricants, (2) during the system charging process from large liquid containers, and (3) during system start-up, operation, and shutdown within various system components (where two-phase refrigerant exists) and during selected system and component leakage scenarios. Model predictions and experimental results are presented for HFC refrigerant blends containing R-32, R-134a, and R-125 and the data are generalized for various operating conditions and scenarios.

  11. The Performance Evaluation of Vapor Compression Heat Pump System Using HFC Alternative Refrigerant Mixtures

    NASA Astrophysics Data System (ADS)

    Taira, Shigeharu; Yazima, Ryuzaburo; Tarutani, Isamu; Koyama, Shigeru

    This paper deals with an experimental study on the performance evaluation of heat pump systems using HFC alternative refrigerants. The tested heat pump systems are modified from the R22 use to alternative refrigerants. Refrigerant mixtures of R410A, R407C. R32/125 and R32/134a are tested. where R410A and R407C launched into global market recently. Pure refrigerants of R22, R32, R125 and R134a are also tested. The experimental results of alternative refrigerants are evaluated in comparison with the result of R22, and the following are confirmed : (1) the performance of R32 is the highest. (2) adding R125 to R32 and R32/134a results into the deterioration of the performance, (3) the use of counter flow-like heat exchangers for a zeotropic refrigerant mixtures are effective, and (4) in case of R410A. the modification of the compressor to fit operating pressure heightens the performance. The effects of the performance of components on the COP are also analyzed based on the measured thermodynamic states at both ends of components in the system. Then, it is clarified that the most effective factor is irreversibility of compressors and the following is the pressure drop in low pressure side including the evaporator and the suction pipe.

  12. Greenhouse gas emissions for refrigerant choices in room air conditioner units.

    PubMed

    Galka, Michael D; Lownsbury, James M; Blowers, Paul

    2012-12-01

    In this work, potential replacement refrigerants for window-mounted room air conditioners (RACs) in the U.S. have been evaluated using a greenhouse gas (GHG) emissions analysis. CO(2)-equivalent emissions for several hydrofluoroethers (HFEs) and other potential replacements were compared to the most widely used refrigerants today. Included in this comparison are pure refrigerants that make up a number of hydrofluorocarbon (HFC) mixtures, pure hydrocarbons, and historically used refrigerants such as propane and ammonia. GHG emissions from direct and indirect sources were considered in this thermodynamic analysis. Propylene, dimethyl ether, ammonia, R-152a, propane, and HFE-152a all performed effectively in a 1 ton window unit and produced slightly lower emissions than the currently used R-22 and R-134a. The results suggest that regulation of HFCs in this application would have some effect on reducing emissions since end-of-life emissions remain at 55% of total refrigerant charge despite EPA regulations that mandate 80% recovery. Even so, offsite emissions due to energy generation dominate over direct GHG emissions and all the refrigerants perform similarly in totals of indirect GHG emissions. PMID:23136858

  13. Thermodynamic study of air-cycle and mercury-vapor-cycle systems for refrigerating cooling air for turbines or other components

    NASA Technical Reports Server (NTRS)

    Nachtigall, Alfred J; Freche, John C; Esgar, Jack B

    1956-01-01

    An analysis of air refrigeration systems indicated that air cycles are generally less satisfactory than simple heat exchangers unless high component efficiencies and high values of heat-exchanger effectiveness can be obtained. A system employing a mercury-vapor cycle appears to be feasible for refrigerating air that must enter the system at temperature levels of approximately 1500 degrees R, and this cycle is more efficient than the air cycle. Weight of the systems was not considered. The analysis of the systems is presented in a generalized dimensionless form.

  14. Performance Evaluation of a 4.5 kW (1.3 Refrigeration Tons) Air-Cooled Lithium Bromide/Water Solar Powered (Hot-Water-Fired) Absorption Unit

    SciTech Connect

    Zaltash, Abdolreza; Petrov, Andrei Y; Linkous, Randall Lee; Vineyard, Edward Allan

    2007-01-01

    During the summer months, air-conditioning (cooling) is the single largest use of electricity in both residential and commercial buildings with the major impact on peak electric demand. Improved air-conditioning technology has by far the greatest potential impact on the electric industry compared to any other technology that uses electricity. Thermally activated absorption air-conditioning (absorption chillers) can provide overall peak load reduction and electric grid relief for summer peak demand. This innovative absorption technology is based on integrated rotating heat exchangers to enhance heat and mass transfer resulting in a potential reduction of size, cost, and weight of the "next generation" absorption units. Rotartica Absorption Chiller (RAC) is a 4.5 kW (1.3 refrigeration tons or RT) air-cooled lithium bromide (LiBr)/water unit powered by hot water generated using the solar energy and/or waste heat. Typically LiBr/water absorption chillers are water-cooled units which use a cooling tower to reject heat. Cooling towers require a large amount of space, increase start-up and maintenance costs. However, RAC is an air-cooled absorption chiller (no cooling tower). The purpose of this evaluation is to verify RAC performance by comparing the Coefficient of Performance (COP or ratio of cooling capacity to energy input) and the cooling capacity results with those of the manufacturer. The performance of the RAC was tested at Oak Ridge National Laboratory (ORNL) in a controlled environment at various hot and chilled water flow rates, air handler flow rates, and ambient temperatures. Temperature probes, mass flow meters, rotational speed measuring device, pressure transducers, and a web camera mounted inside the unit were used to monitor the RAC via a web control-based data acquisition system using Automated Logic Controller (ALC). Results showed a COP and cooling capacity of approximately 0.58 and 3.7 kW respectively at 35 C (95 F) design condition for ambient

  15. Control system for thermoelectric refrigerator

    NASA Technical Reports Server (NTRS)

    Nelson, John L. (Inventor); Criscuolo, Lance (Inventor); Gilley, Michael D. (Inventor); Park, Brian V. (Inventor)

    1996-01-01

    Apparatus including a power supply (202) and control system is provided for maintaining the temperature within an enclosed structure (40) using thermoelectric devices (92). The apparatus may be particularly beneficial for use with a refrigerator (20) having superinsulation materials (46) and phase change materials (112) which cooperate with the thermoelectric device (92) to substantially enhance the overall operating efficiency of the refrigerator (20). The electrical power supply (202) and control system allows increasing the maximum power capability of the thermoelectric device (92) in response to increased heat loads within the refrigerator (20). The electrical power supply (202) and control system may also be used to monitor the performance of the cooling system (70) associated with the refrigerator (20).

  16. Helium dilution refrigeration system

    DOEpatents

    Roach, P.R.; Gray, K.E.

    1988-09-13

    A helium dilution refrigeration system operable over a limited time period, and recyclable for a next period of operation is disclosed. The refrigeration system is compact with a self-contained pumping system and heaters for operation of the system. A mixing chamber contains [sup 3]He and [sup 4]He liquids which are precooled by a coupled container containing [sup 3]He liquid, enabling the phase separation of a [sup 3]He rich liquid phase from a dilute [sup 3]He-[sup 4]He liquid phase which leads to the final stage of a dilution cooling process for obtaining low temperatures. The mixing chamber and a still are coupled by a fluid line and are maintained at substantially the same level with the still cross sectional area being smaller than that of the mixing chamber. This configuration provides maximum cooling power and efficiency by the cooling period ending when the [sup 3]He liquid is depleted from the mixing chamber with the mixing chamber nearly empty of liquid helium, thus avoiding unnecessary and inefficient cooling of a large amount of the dilute [sup 3]He-[sup 4]He liquid phase. 2 figs.

  17. Helium dilution refrigeration system

    DOEpatents

    Roach, Patrick R.; Gray, Kenneth E.

    1988-01-01

    A helium dilution refrigeration system operable over a limited time period, and recyclable for a next period of operation. The refrigeration system is compact with a self-contained pumping system and heaters for operation of the system. A mixing chamber contains .sup.3 He and .sup.4 He liquids which are precooled by a coupled container containing .sup.3 He liquid, enabling the phase separation of a .sup.3 He rich liquid phase from a dilute .sup.3 He-.sup.4 He liquid phase which leads to the final stage of a dilution cooling process for obtaining low temperatures. The mixing chamber and a still are coupled by a fluid line and are maintained at substantially the same level with the still cross sectional area being smaller than that of the mixing chamber. This configuration provides maximum cooling power and efficiency by the cooling period ending when the .sup.3 He liquid is depleted from the mixing chamber with the mixing chamber nearly empty of liquid helium, thus avoiding unnecessary and inefficient cooling of a large amount of the dilute .sup.3 He-.sup.4 He liquid phase.

  18. Refrigeration generation using expander-generator units

    NASA Astrophysics Data System (ADS)

    Klimenko, A. V.; Agababov, V. S.; Koryagin, A. V.; Baidakova, Yu. O.

    2016-05-01

    The problems of using the expander-generator unit (EGU) to generate refrigeration, along with electricity were considered. It is shown that, on the level of the temperatures of refrigeration flows using the EGU, one can provide the refrigeration supply of the different consumers: ventilation and air conditioning plants and industrial refrigerators and freezers. The analysis of influence of process parameters on the cooling power of the EGU, which depends on the parameters of the gas expansion process in the expander and temperatures of cooled environment, was carried out. The schematic diagram of refrigeration generation plant based on EGU is presented. The features and advantages of EGU to generate refrigeration compared with thermotransformer of steam compressive and absorption types were shown, namely: there is no need to use the energy generated by burning fuel to operate the EGU; beneficial use of the heat delivered to gas from the flow being cooled in equipment operating on gas; energy production along with refrigeration generation, which makes it possible to create, using EGU, the trigeneration plants without using the energy power equipment. It is shown that the level of the temperatures of refrigeration flows, which can be obtained by using the EGU on existing technological decompression stations of the transported gas, allows providing the refrigeration supply of various consumers. The information that the refrigeration capacity of an expander-generator unit not only depends on the parameters of the process of expansion of gas flowing in the expander (flow rate, temperatures and pressures at the inlet and outlet) but it is also determined by the temperature needed for a consumer and the initial temperature of the flow of the refrigeration-carrier being cooled. The conclusion was made that the expander-generator units can be used to create trigeneration plants both at major power plants and at small energy.

  19. Recent Refrigeration Cycle Technologies for Household Refrigerators

    NASA Astrophysics Data System (ADS)

    Nagatomo, Shigemi

    The household refrigerator is one of the most important and the biggest energy-consuming home appliances. This paper summarize recent refrigeration cycle developments in the field of domestic household refrigerators based on a survey of publications.

  20. Solar-powered cooling system

    DOEpatents

    Farmer, Joseph C

    2013-12-24

    A solar-powered adsorption-desorption refrigeration and air conditioning system uses nanostructural materials made of high specific surface area adsorption aerogel as the adsorptive media. Refrigerant molecules are adsorbed on the high surface area of the nanostructural material. A circulation system circulates refrigerant from the nanostructural material to a cooling unit.

  1. Thermoelectric refrigerator

    NASA Technical Reports Server (NTRS)

    Park, Brian V. (Inventor); Smith, Jr., Malcolm C. (Inventor); McGrath, Ralph D. (Inventor); Gilley, Michael D. (Inventor); Criscuolo, Lance (Inventor); Nelson, John L. (Inventor)

    1996-01-01

    A refrigerator is provided which combines the benefits of superinsulation materials with thermoelectric devices and phase change materials to provide an environmentally benign system that is energy efficient and can maintain relatively uniform temperatures for extended periods of time with relatively low electrical power requirements. The refrigerator includes a thermoelectric assembly having a thermoelectric device with a hot sink and a cold sink. The superinsulation materials include a plurality of vacuum panels. The refrigerator is formed from an enclosed structure having a door. The vacuum panels may be contained within the walls of the enclosed structure and the door. By mounting the thermoelectric assembly on the door, the manufacturer of the enclosed structure is simplified and the overall R rating of the refrigerator increased. Also an electrical motor and propellers may be mounted on the door to assist in the circulation of air to improve the efficiency of the cold sink and the hot sink. A propeller and/or impeller is preferably mounted within the refrigerator to assist in establishing the desired air circulation flow path.

  2. Magnon-driven quantum dot refrigerators

    NASA Astrophysics Data System (ADS)

    Wang, Yuan; Huang, Chuankun; Liao, Tianjun; Chen, Jincan

    2015-12-01

    A new model of refrigerator consisting of a spin-splitting quantum dot coupled with two ferromagnetic reservoirs and a ferromagnetic insulator is proposed. The rate equation is used to calculate the occupation probabilities of the quantum dot. The expressions of the electron and magnon currents are obtained. The region that the system can work in as a refrigerator is determined. The cooling power and coefficient of performance (COP) of the refrigerator are derived. The influences of the magnetic field, applied voltage, and polarization of two leads on the performance are discussed. The performances of two different magnon-driven quantum dot refrigerators are compared.

  3. Compact acoustic refrigerator

    DOEpatents

    Bennett, Gloria A.

    1992-01-01

    A compact acoustic refrigeration system actively cools components, e.g., electrical circuits (22), in a borehole environment. An acoustic engine (12, 14) includes first thermodynamic elements (12) for generating a standing acoustic wave in a selected medium. An acoustic refrigerator (16, 26, 28) includes second thermodynamic elements (16) located in the standing wave for generating a relatively cold temperature at a first end of the second thermodynamic elements (16) and a relatively hot temperature at a second end of the second thermodynamic elements (16). A resonator volume (18) cooperates with the first and second thermodynamic elements (12, 16) to support the standing wave. To accommodate the high heat fluxes required for heat transfer to/from the first and second thermodynamic elements (12, 16), first heat pipes (24, 26) transfer heat from the heat load (22) to the second thermodynamic elements (16) and second heat pipes (28, 32) transfer heat from first and second thermodynamic elements (12, 16) to the borehole environment.

  4. Compact acoustic refrigerator

    DOEpatents

    Bennett, G.A.

    1992-11-24

    A compact acoustic refrigeration system actively cools components, e.g., electrical circuits, in a borehole environment. An acoustic engine includes first thermodynamic elements for generating a standing acoustic wave in a selected medium. An acoustic refrigerator includes second thermodynamic elements located in the standing wave for generating a relatively cold temperature at a first end of the second thermodynamic elements and a relatively hot temperature at a second end of the second thermodynamic elements. A resonator volume cooperates with the first and second thermodynamic elements to support the standing wave. To accommodate the high heat fluxes required for heat transfer to/from the first and second thermodynamic elements, first heat pipes transfer heat from the heat load to the second thermodynamic elements and second heat pipes transfer heat from first and second thermodynamic elements to the borehole environment. 18 figs.

  5. Compact acoustic refrigerator

    SciTech Connect

    Bennett, G.A.

    1991-12-31

    This invention is comprised of a compact acoustic refrigeration system that actively cools components, e.g., electrical circuits, in a borehole environment. An acoustic engine includes first thermodynamic elements for generating a standing acoustic wave in a selected medium. An acoustic refrigerator includes second thermodynamic elements located in the standing wave for generating a relatively cold temperature at a first end of the second thermodynamic elements and a relatively hot temperature at a second end of the second thermodynamic elements. A resonator volume cooperates with the first and second thermodynamic elements to support the standing wave. To accommodate the high heat fluxes required for heat transfer to/from the first and second thermodynamic elements, first heat pipes transfer heat from the heat load to the second thermodynamic elements and second heat pipes transfer heat from first and second thermodynamic elements to the borehole environment.

  6. Refrigeration Showcases

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Through the Technology Affiliates Program at the Jet Propulsion Laboratory (JPL), valuable modifications were made to refrigerator displays built by Displaymor Manufacturing Company, Inc. By working with JPL, Displaymor could address stiffer requirements that ensure the freshness of foods. The application of the space technology meant that the small business would be able to continue to market its cases without incurring expenses that could threaten the viability of the business, and the future of several dozen jobs. Research and development improvements in air flow distribution and refrigeration coil technology contributed greatly to certifying Displaymor's showcases given the new federal regulations. These modifications resulted in a refrigerator case that will keep foods cooler, longer. Such changes maintained the openness of the display, critical to customer visibility and accessibility, impulse buying, and cross-merchandising.

  7. Method of reducing chlorofluorocarbon refrigerant emissions in the atmosphere

    SciTech Connect

    DeVault, R.C.; Fairchild, P.D.; Biermann, W.J.

    1990-06-19

    This patent describes a method of reducing escape of refrigerant emissions to the atmosphere during removal of a chlorofluorocarbon refrigerant from a vapor compression cooling system or heat pump. The method comprises contacting the chlorofluorocarbon refrigerant during removal with a sorbent material into which the chlorofluorocarbon refrigerant can be dissolved, the sorbent material being selected from the group consisting of N-methyl-2-pyrrolidone, ethyl tetrahydro furfuryl ether, tetramethylene glycol dimethylether, triethylene glycol dimethylether, N,N-dimethyl formamide, dimethylamides, and tetrachloroethane.

  8. Methods development for measuring and classifying flammability/combustibility of refrigerants. Final report

    SciTech Connect

    Heinonen, E.W.; Tapscott, R.E.; Crawford, F.R.

    1994-12-01

    Because of concerns for the effect that chlorofluorocarbon (CFC) fluids currently in use as refrigerants have on the environment, the refrigeration industry is considering the use of natural refrigerants, many of which are potentially flammable. In some cases, these flammable fluids may result in the least environmental damage when considering ozone depletion, global warming, efficiency, and photochemical reactivity. Many potentially flammable fluids have been proven to be effective when used either by themselves or as a part of a binary or ternary mixture. However, despite favorable initial test results, these fluids may not be acceptable to the general public if questions of safety cannot be adequately addressed. Significant research is being conducted to investigate the flammability of these materials. The purpose of this project is to experimentally determine the impact and variability of eleven different parameters which may affect flammability and/or combustibility of refrigerants and refrigerant blends, as a function of composition and test conditions, and to develop a better understanding of methods and conditions to measure the flammability of refrigerants. The refrigerants used in this study are being considered as new refrigerants and reviewed published data on these materials is scarce. The data contained herein should not be considered complete and should be used only to make relative comparisons of the impacts of the test parameters, not to represent the flammability characteristics of the materials. This report documents Task 3 of the test program. During Task 1, technical literature was thoroughly reviewed and a database of available documents was constructed. During Task 2, the test plan for this task was written. The goals of Task 3 are to investigate the flammability characteristics of selected blends of refrigerants R32, R134a, and R125 using an existing explosion sphere and a newly-constructed ASTM E681 apparatus.

  9. A recuperative superfluid stirling refrigerator

    SciTech Connect

    Brisson, J.G.; Swift, G.W.

    1993-07-01

    A superfluid Stirling refrigerator has been built with a counterflow heat exchanger serving as a recuperative regenerator. It has achieved temperatures of 296 mK with a 4% {sup 3}He-{sup 4}He mixture. Cooling power versus temperature and speed is presented for a 6.6% mixture.

  10. Permanent magnet array for the magnetic refrigerator

    NASA Astrophysics Data System (ADS)

    Lee, S. J.; Kenkel, J. M.; Pecharsky, V. K.; Jiles, D. C.

    2002-05-01

    Recent research into the development of magnetic refrigeration (MR) operating at room temperature has shown that it can provide a reliable, energy-efficient cooling system. To enhance the cooling power of the magnetic refrigerator, it is required to use a magnetic refrigerant material with large magnetocaloric effect (MCE) at the appropriate temperature. Most advanced magnetic refrigerant materials show largest MCE at high applied magnetic fields generated by a superconducting magnet. For application of MCE to air conditioners or household refrigerators, it is essential to develop a permanent magnet array to form a compact, strong, and energy-efficient magnetic field generator. Generating a magnetic field well above the remanence of a permanent magnet material is hard to achieve through conventional designs. A permanent magnet array based on a hollow cylindrical flux source is found to provide an appropriate geometry and magnetic field strength for MR applications.