Science.gov

Sample records for r7t7-type nuclear glass

  1. The effect of composition on the leaching of three nuclear waste glasses: R7T7, AVM and VRZ

    NASA Astrophysics Data System (ADS)

    Frugier, Pierre; Martin, Christelle; Ribet, Isabelle; Advocat, Thierry; Gin, Stéphane

    2005-11-01

    The influence of composition variations on long-term glass behavior was investigated for three nuclear glass composition domains: the French SON 68 (R7T7-type) glass, the Na-Mg borosilicate AVM glass and the aluminosilicate VRZ glass defined as part of the investigation of new containment matrices based on zirconolite (CaZrTi 2O 7). The initial alteration rates for glasses from different domains are comparable. Conversely, the alteration kinetics at advanced stages of reaction progress are very different, with decreases in the rates corresponding to different kinetic profiles, i.e. altered thickness versus time. The altered glass thickness can depend on the initial alteration rate and especially on the decrease in the rate, or it can be determined by the high residual alteration rate. The variation of the alteration rates over time appears to be related to the alteration film that forms on the surface of the material in particular the presence of any secondary crystalline phases. For AVM glass, the high residual rate is attributed to phyllosilicate phases rich in magnesium.

  2. Dissolution mechanism of the SON68 reference nuclear waste glass: New data in dynamic system in silica saturation conditions

    NASA Astrophysics Data System (ADS)

    Neeway, J.; Abdelouas, A.; Grambow, B.; Schumacher, S.

    2011-08-01

    The alteration of SON68 glass (inactive R7T7 type nuclear waste glass) was studied to measure the long-term residual dissolution rate under different conditions. Experiments were conducted in flow-through conditions (solution flow rate 3-5 mL/day) at pH 8.0, 9.5, and 10.5 under various initial Si concentrations, a glass surface-to-volume ratio near 14,000 m -1 and at a temperature of 90 °C. This set of long-term experiments (200 days) showed leaching rates dependent on the initial silica concentration and the initial pH. Interpretation of results at pH 8.0 was difficult due to the use of a synthetic water used to represent waters found at a potential French repository site. Because very small glass powder sizes were used (Ø = 1 μm), a complete dissolution of the pristine glass was achieved at low initial silica concentrations where higher leaching rates were produced. In all cases, initial high normalized leaching rates were observed followed by a decrease in leaching rate with rate levels ranging from 9 (±4) to 5 (±3) × 10 -4 g m -2 d -1 at 200 days under silica saturated conditions at pH 9.5 and 10.5, respectively. We have compared these results to previous results obtained in similar leaching conditions. Modeling using the GM2004 model program and model output values were shown to be in agreement with experimental results.

  3. Turning nuclear waste into glass

    SciTech Connect

    Pegg, Ian L.

    2015-02-15

    Vitrification has emerged as the treatment option of choice for the most dangerous radioactive waste. But dealing with the nuclear waste legacy of the Cold War will require state-of-the-art facilities and advanced glass formulations.

  4. Hydration aging of nuclear waste glass.

    PubMed

    Bates, J K; Jardine, L J; Steindler, M J

    1982-10-01

    The aging of simulated nuclear waste glass by contact with a controlled-temperature, humid atmosphere results in the formation of a double hydration layer penetrating into the glass and in the formation of minerals on the glass surface. The hydration process described here provides insight into the aging kinetics of naturally occurring glasses and also suggests that simulated aging reactions are necessary for demonstrating that nuclear waste forms can meet projected Nuclear Regulatory Commission requirements. PMID:17776709

  5. Natural analogues of nuclear waste glass corrosion.

    SciTech Connect

    Abrajano, T.A. Jr.; Ebert, W.L.; Luo, J.S.

    1999-01-06

    This report reviews and summarizes studies performed to characterize the products and processes involved in the corrosion of natural glasses. Studies are also reviewed and evaluated on how well the corrosion of natural glasses in natural environments serves as an analogue for the corrosion of high-level radioactive waste glasses in an engineered geologic disposal system. A wide range of natural and experimental corrosion studies has been performed on three major groups of natural glasses: tektite, obsidian, and basalt. Studies of the corrosion of natural glass attempt to characterize both the nature of alteration products and the reaction kinetics. Information available on natural glass was then compared to corresponding information on the corrosion of nuclear waste glasses, specifically to resolve two key questions: (1) whether one or more natural glasses behave similarly to nuclear waste glasses in laboratory tests, and (2) how these similarities can be used to support projections of the long-term corrosion of nuclear waste glasses. The corrosion behavior of basaltic glasses was most similar to that of nuclear waste glasses, but the corrosion of tektite and obsidian glasses involves certain processes that also occur during the corrosion of nuclear waste glasses. The reactions and processes that control basalt glass dissolution are similar to those that are important in nuclear waste glass dissolution. The key reaction of the overall corrosion mechanism is network hydrolysis, which eventually breaks down the glass network structure that remains after the initial ion-exchange and diffusion processes. This review also highlights some unresolved issues related to the application of an analogue approach to predicting long-term behavior of nuclear waste glass corrosion, such as discrepancies between experimental and field-based estimates of kinetic parameters for basaltic glasses.

  6. Crystallization during processing of nuclear waste glass

    SciTech Connect

    Hrma, Pavel R.

    2010-12-01

    In glass processing situations involving glass crystallization, various crystalline forms nucleate, grow, and dissolve, typically in a nonuniform temperature field of molten glass subjected to convection. Nuclear waste glasses are remarkable examples of multicomponent vitrified mixtures involving partial crystallization. In the glass melter, crystals form and dissolve during batch-to-glass conversion, melter processing, and product cooling. Crystals often agglomerate and sink, and they may settle at the melter bottom. Within the body of cooling glass, multiple phases crystallize in a non-uniform time-dependent temperature field. Self-organizing periodic distribution (the Liesegnang effect) is common. Various crystallization phenomena that occur in glassmaking are reviewed.

  7. Production of Synthetic Nuclear Melt Glass.

    PubMed

    Molgaard, Joshua J; Auxier, John D; Giminaro, Andrew V; Oldham, Colton J; Gill, Jonathan; Hall, Howard L

    2016-01-01

    Realistic surrogate nuclear debris is needed within the nuclear forensics community to test and validate post-detonation analysis techniques. Here we outline a novel process for producing bulk surface debris using a high temperature furnace. The material developed in this study is physically and chemically similar to trinitite (the melt glass produced by the first nuclear test). This synthetic nuclear melt glass is assumed to be similar to the vitrified material produced near the epicenter (ground zero) of any surface nuclear detonation in a desert environment. The process outlined here can be applied to produce other types of nuclear melt glass including that likely to be formed in an urban environment. This can be accomplished by simply modifying the precursor matrix to which this production process is applied. The melt glass produced in this study has been analyzed and compared to trinitite, revealing a comparable crystalline morphology, physical structure, void fraction, and chemical composition. PMID:26779720

  8. Systems approach to nuclear waste glass development

    SciTech Connect

    Jantzen, C M

    1986-01-01

    Development of a host solid for the immobilization of nuclear waste has focused on various vitreous wasteforms. The systems approach requires that parameters affecting product performance and processing be considered simultaneously. Application of the systems approach indicates that borosilicate glasses are, overall, the most suitable glasses for the immobilization of nuclear waste. Phosphate glasses are highly durable; but the glass melts are highly corrosive and the glasses have poor thermal stability and low solubility for many waste components. High-silica glasses have good chemical durability, thermal stability, and mechanical stability, but the associated high melting temperatures increase volatilization of hazardous species in the waste. Borosilicate glasses are chemically durable and are stable both thermally and mechanically. The borosilicate melts are generally less corrosive than commercial glasses, and the melt temperature miimizes excessive volatility of hazardous species. Optimization of borosilicate waste glass formulations has led to their acceptance as the reference nuclear wasteform in the United States, United Kingdom, Belgium, Germany, France, Sweden, Switzerland, and Japan.

  9. Mechanical properties of nuclear waste glasses

    NASA Astrophysics Data System (ADS)

    Connelly, A. J.; Hand, R. J.; Bingham, P. A.; Hyatt, N. C.

    2011-01-01

    The mechanical properties of nuclear waste glasses are important as they will determine the degree of cracking that may occur either on cooling or following a handling accident. Recent interest in the vitrification of intermediate level radioactive waste (ILW) as well as high level radioactive waste (HLW) has led to the development of new waste glass compositions that have not previously been characterised. Therefore the mechanical properties, including Young's modulus, Poisson's ratio, hardness, indentation fracture toughness and brittleness of a series of glasses designed to safely incorporate wet ILW have been investigated. The results are presented and compared with the equivalent properties of an inactive simulant of the current UK HLW glass and other nuclear waste glasses from the literature. The higher density glasses tend to have slightly lower hardness and indentation fracture toughness values and slightly higher brittleness values, however, it is shown that the variations in mechanical properties between these different glasses are limited, are well within the range of published values for nuclear waste glasses, and that the surveyed data for all radioactive waste glasses fall within relatively narrow range.

  10. Advances in processing nuclear waste glasses

    SciTech Connect

    Plodinec, M J

    1988-01-01

    The vitrification of nuclear waste glasses is presenting unique challenges to glass technologists. On the one hand, the composition of the most important constituent of the glass batch/--/the waste/--/may vary widely. On the other hand, the vitrification process itself must be tightly controlled to ensure product quality, public safety, and process reliability. This has led to several important developments in waste vitrification technology, all aimed at improving process control. These include use of process models, use of artificial intelligence techniques, and improved control and measurement of glass redox. 19 refs., 2 figs., 2 tabs.

  11. Thermochemical modeling of nuclear waste glass

    SciTech Connect

    Spear, K.E.; Besmann, T.M.; Beahm, E.C.

    1998-06-01

    The development of assessed and consistent phase equilibria and thermodynamic data for major glass constituents used to incorporate high-level nuclear waste is discussed in this paper. The initial research has included the binary Na{sub 2}O-SiO{sub 2}, Na{sub 2}O-Al{sub 2}O{sub 3}, and SiO{sub 2}-Al{sub 2}O{sub 3} systems. The nuclear waste glass is assumed to be a supercooled liquid containing the constituents in the glass at temperatures of interest for nuclear waste storage. Thermodynamic data for the liquid solutions were derived from mathematical comparisons of phase diagram information and the thermodynamic data available for crystalline solid phases. An associate model is used to describe the liquid solution phases. Utilizing phase diagram information provides very stringent limits on the relative thermodynamic stabilities of all phases which exist in a given system.

  12. Extrapolation of nuclear waste glass aging

    SciTech Connect

    Byers, C.D.; Ewing, R.C.; Jercinovic, M.J.; Keil, K.

    1984-01-01

    Increased confidence is provided to the extrapolation of long-term waste form behavior by comparing the alteration of experimentally aged natural basaltic glass to the condition of the same glass as it has been geologically aged. The similarity between the laboratory and geologic alterations indicates that important aging variables have been identified and incorporated into the laboratory experiments. This provides credibility to the long-term predictions made for waste form borosilicate glasses using similar experimental procedures. In addition, these experiments have demonstrated that the aging processes for natural basaltic glass are relevant to the alteration of nuclear waste glasses, as both appear to react via similar processes. The alteration of a synthetic basaltic glass was measured in MCC-1 tests done at 90/sup 0/C, a SA/V of 0.1 cm/sup -1/ and time periods up to 182 days. Tests were also done using (1) MCC-2 procedures at 190/sup 0/C, a SA/V of 0.1 cm/sup -1/ and time periods up to 91 days and (2) hydration tests in saturated water vapor at 240/sup 0/C, a SA/V of approx. 10/sup 6/ cm/sup -1/, and time periods up to 63 days. These results are compared to alteration observed in natural basaltic glasses of great age. 6 references, 6 figures, 1 table.

  13. THERMOCHEMICAL MODELING OF NUCLEAR WASTE GLASS

    EPA Science Inventory

    The development of assessed and consistent phase equilibria and thermodynamic data for major glass constituents used to incorporate high-level nuclear waste is discussed in this paper. The initial research has included the binary Na{sub 2}O-SiO{sub 2}, Na{sub 2}O-Al{sub 2}O{sub ...

  14. Glass produced by underground nuclear explosions. [Rainier

    SciTech Connect

    Schwartz, L.; Piwinskii, A.; Ryerson, F.; Tewes, H.; Beiriger, W.

    1983-01-01

    Detonation of an underground nuclear explosive produces a strong shock wave which propagates spherically outward, vaporizing the explosive and nearby rock and melting, the surrounding rock. The vaporized material expands adiabatically, forming a cavity. As the energy is dissipated during the cavity formation process, the explosive and rock debris condense and mix with the melted rock. The melt flows to the bottom of the cavity where it is quenched by fractured rock fragments falling from above as the cavity collapses. Measurements indicate that about 740 tonnes of rock and/or soil are melted for every kiloton (10/sup 12/ calories) of explosive energy, or about 25% of the explosive energy goes to melting rock. The resulting glass composition reflects the composition of the unaltered rock with explosive debris. The appearance ranges from white pumice to dense, dark lava. The bulk composition and color vary with the amount of explosive iron incorporated into the glass. The refractory explosion products are mixed with the solidified melt, although the degree of mixing is variable. Electron microprobe studies of glasses produced by Rainier in welded tuff have produced the following results: glasses are dehydrated relative to the host media, glasses are extremely heterogeneous on a 20 ..mu..m scale, a ubiquitous feature is the presence of dark marble-cake regions in the glass, which were locally enriched in iron and may be related to the debris, optically amorphous regions provide evidence of shock melting, only limited major element redistribution and homogenization occur within the cavity.

  15. Thermodynamic model of natural, medieval and nuclear waste glass durability

    SciTech Connect

    Jantzen, C.M.; Plodinec, M.J.

    1983-01-01

    A thermodynamic model of glass durability based on hydration of structural units has been applied to natural glass, medieval window glasses, and glasses containing nuclear waste. The relative durability predicted from the calculated thermodynamics correlates directly with the experimentally observed release of structural silicon in the leaching solution in short-term laboratory tests. By choosing natural glasses and ancient glasses whose long-term performance is known, and which bracket the durability of waste glasses, the long-term stability of nuclear waste glasses can be interpolated among these materials. The current Savannah River defense waste glass formulation is as durable as natural basalt from the Hanford Reservation (10/sup 6/ years old). The thermodynamic hydration energy is shown to be related to the bond energetics of the glass. 69 references, 2 figures, 1 table.

  16. Irradiation effects in simplified nuclear waste glasses

    NASA Astrophysics Data System (ADS)

    Boizot, Bruno; Ollier, Nadège; Olivier, Florent; Petite, Guillaume; Ghaleb, Dominique; Malchukova, Euguenia

    2005-10-01

    The structural evolution of simplified nuclear waste glasses under β-irradiation (2.5 MeV) has been studied up to cumulated doses of the order of 109 Gy. A rapid saturation of the point defect creation is observed at a very low level (in large contrast with what is observed on pure silica). At large doses, we also observe an increase of the polymerization of the vitreous lattice, and the appearance of dissolved molecular oxygen, which however does not coalesce into bubbles. These evolutions can be linked with the diffusion of alkaline ions in the material. The effects of the glass composition (mixed alkali effect, specific role of some particular cations, which are known to block the structural evolution) have been also investigated in order to study the possibility of decreasing alkaline mobility under irradiation.

  17. Compositional threshold for Nuclear Waste Glass Durability

    SciTech Connect

    Kruger, Albert A.; Farooqi, Rahmatullah; Hrma, Pavel R.

    2013-04-24

    Within the composition space of glasses, a distinct threshold appears to exist that separates "good" glasses, i.e., those which are sufficiently durable, from "bad" glasses of a low durability. The objective of our research is to clarify the origin of this threshold by exploring the relationship between glass composition, glass structure and chemical durability around the threshold region.

  18. Spectroscopic investigation of U, Np and Th in nuclear glasses

    NASA Astrophysics Data System (ADS)

    Calas, G.; Galoisy, L. V.; Petit-Maire, D.

    2011-12-01

    Vitrification of high-level radioactive waste in borosilicate glasses is currently used on an industrial scale in several countries. The fundamental properties of the waste forms are their chemical and mechanical durability against the forcing conditions represented by chemical alteration or internal/external irradiation. The waste immobilized in glass is composed of over 30 different nuclear fission and activation products, as well as minor actinides. The oxidation state and local atomic coordination of long-lived radionuclides are important parameters to understand the long-term evolution of the glass. We present an overview of the local structure around actinides in glasses similar to the French nuclear glass. X-Ray absorption spectroscopy has been used to probe the local environment around uranium, neptunium and thorium in these glasses. It is combined with with UV-visible spectroscopy, used to get selective information on the surrounding of U(IV), U(V) and U(VI) in glasses. Our spectroscopic data show that U, Np and Th occur in nuclear glasses in a peculiar surrounding showing significant differences with the crystal chemistry of these elements in crystalline compounds. Element speciation may be used as a pertinent parameter to follow the long-term stability of nuclear glasses, either under irradiation or during the alteration of the glass.

  19. Thermal characterization of iron phosphate glasses for nuclear waste disposal

    NASA Astrophysics Data System (ADS)

    Pinheiro, A. S.; da Costa, Z. M.; Bell, M. J. V.; Anjos, V.; Dantas, N. O.; Reis, S. T.

    2011-10-01

    This paper reports on the thermal properties of iron phosphate glasses with the following wt.% composition: 40Fe 2O 3-60P 2O 5. Such glasses are currently being investigated for nuclear waste disposal. Open photoacoustic cell (OPC) and heat capacity techniques were performed to determine thermal diffusivity, thermal conductivity and heat capacity of the glasses. Results were compared with borosilicate glass where OPC and Thermal lens where performed. Moreover, the present paper demonstrates the semiconducting-like behavior of iron phosphate glasses.

  20. Control of Nepheline Crystallization in Nuclear Waste Glass

    SciTech Connect

    Fox, Kevin

    2008-07-01

    Glass frits with a high B{sub 2}O{sub 3} concentration have been designed which, when combined with high-alumina concentration nuclear waste streams, will form glasses with durabilities that are acceptable for repository disposal and predictable using a free energy of hydration model. Two glasses with nepheline discriminator values closest to 0.62 showed significant differences in normalized boron release between the quenched and heat treated versions of each glass. X-ray diffraction confirmed that nepheline crystallized in the glass with the lowest nepheline discriminator value, and nepheline may also exist in the second glass as small nanocrystals. The high-B{sub 2}O{sub 3} frit was successful in producing simulated waste glasses with no detectable nepheline crystallization at waste loadings of up to 45 wt%. The melt rate of this frit was also considerably better than other frits with increased concentrations of Na{sub 2}O.

  1. Gamma radiation induced changes in nuclear waste glass containing Eu

    NASA Astrophysics Data System (ADS)

    Mohapatra, M.; Kadam, R. M.; Mishra, R. K.; Kaushik, C. P.; Tomar, B. S.; Godbole, S. V.

    2011-10-01

    Gamma radiation induced changes were investigated in sodium-barium borosilicate glasses containing Eu. The glass composition was similar to that of nuclear waste glasses used for vitrifying Trombay research reactor nuclear waste at Bhabha Atomic Research Centre, India. Photoluminescence (PL) and electron paramagnetic resonance (EPR) techniques were used to study the speciation of the rare earth (RE) ion in the matrix before and after gamma irradiation. Judd-Ofelt ( J- O) analyses of the emission spectra were done before and after irradiation. The spin counting technique was employed to quantify the number of defect centres formed in the glass at the highest gamma dose studied. PL data suggested the stabilisation of the trivalent RE ion in the borosilicate glass matrix both before and after irradiation. It was also observed that, the RE ion distributes itself in two different environments in the irradiated glass. From the EPR data it was observed that, boron oxygen hole centre based radicals are the predominant defect centres produced in the glass after irradiation along with small amount of E’ centres. From the spin counting studies the concentration of defect centres in the glass was calculated to be 350 ppm at 900 kGy. This indicated the fact that bulk of the glass remained unaffected after gamma irradiation up to 900 kGy.

  2. Iron Phosphate Glasses: An Alternative for Vitrifying Certain Nuclear Wastes

    SciTech Connect

    Delbert E. Day; Chandra S. Ray; Cheol-Woon Kim

    2004-12-28

    Vitrification of nuclear waste in a glass is currently the preferred process for waste disposal. DOE currently approves only borosilicate (BS) type glasses for such purposes. However, many nuclear wastes, presently awaiting disposal, have complex and diverse chemical compositions, and often contain components that are poorly soluble or chemically incompatible in BS glasses. Such problematic wastes can be pre-processed and/or diluted to compensate for their incompatibility with a BS glass matrix, but both of these solutions increases the wasteform volume and the overall cost for vitrification. Direct vitrification using alternative glasses that utilize the major components already present in the waste is preferable, since it avoids pre-treating or diluting the waste, and, thus, minimizes the wasteform volume and overall cost.

  3. Hydrogen speciation in hydrated layers on nuclear waste glass

    SciTech Connect

    Aines, R.D.; Weed, H.C.; Bates, J.K.

    1987-01-15

    The hydration of an outer layer on nuclear waste glasses is known to occur during leaching, but the actual speciation of hydrogen (as water or hydroxyl groups) in these layers has not been determined. As part of the Nevada Nuclear Waste Storage Investigations Project, we have used infrared spectroscopy to determine hydrogen speciations in three nuclear waste glass compositions (SRL-131 & 165, and PNL 76-68), which were leached at 90{sup 0}C (all glasses) or hydrated in a vapor-saturated atmosphere at 202{sup 0}C (SRL-131 only). Hydroxyl groups were found in the surface layers of all the glasses. Molecular water was found in the surface of SRL-131 and PNL 76-68 glasses that had been leached for several months in deionized water, and in the vapor-hydrated sample. The water/hydroxyl ratio increases with increasing reaction time; molecular water makes up most of the hydrogen in the thick reaction layers on vapor-phase hydrated glass while only hydroxyl occurs in the least reacted samples. Using the known molar absorptivities of water and hydroxyl in silica-rich glass the vapor-phase layer contained 4.8 moles/liter of molecular water, and 0.6 moles water in the form hydroxyl. A 15 {mu}m layer on SRL-131 glass formed by leaching at 90{sup 0}C contained a total of 4.9 moles/liter of water, 2/3 of which was as hydroxyl. The unreacted bulk glass contains about 0.018 moles/liter water, all as hydroxyl. The amount of hydrogen added to the SRL-131 glass was about 70% of the original Na + Li content, not the 300% that would result from alkali=hydronium ion interdiffusion. If all the hydrogen is then assumed to be added as the result of alkali-H{sup +} interdiffusion, the molecular water observed may have formed from condensation of the original hydroxyl groups.

  4. Electron beam irradiation effects in Trombay nuclear waste glass

    NASA Astrophysics Data System (ADS)

    Mohapatra, M.; Kadam, R. M.; Mishra, R. K.; Dutta, D.; Pujari, P. K.; Kaushik, C. P.; Kshirsagar, R. J.; Tomar, B. S.; Godbole, S. V.

    2011-10-01

    Spectroscopic investigations were carried out on electron beam irradiated sodium barium borosilicate glasses, which is the base glass for immobilization of nuclear high level radioactive waste, generated from the research reactors at Bhabha Atomic Research Centre, Trombay. This was done in order to access the defects generated in it under long term irradiation. Electron paramagnetic resonance was used to identify the defect centers generated in the borosilicate glass after irradiation. In addition, positron annihilation spectroscopy and infrared investigations were done on the samples to evaluate the radiation induced changes in the glass. It was found that, boron-oxygen and silicon based hole centers along with E' centers are getting formed in the glass after irradiation due to the breaking of the Si sbnd O bonds at regular tetrahedron sites of Si sbnd O sbnd Si. The positron annihilation spectroscopy data gave an idea regarding the free volume size and fraction of the glasses before and after irradiation. It was seen that, after irradiation the free volume size in the glass increased with creation of additional sites. Microwave power variation and temperature variation studies suggested the formation of at least five different radicals in the irradiated glasses. The spin Hamiltonian parameter of all the radical species were determined by computer simulation. An electron paramagnetic resonance spin counting technique was employed to evaluate the defect concentration in the glasses after irradiation.

  5. NUCLEAR WASTE GLASSES CONTINUOUS MELTING AND BULK VITRIFICAITON

    SciTech Connect

    KRUGER AA; HRMA PR

    2008-03-24

    This contribution addresses various aspects of nuclear waste vitrification. Nuclear wastes have a variety of components and composition ranges. For each waste composition, the glass must be formulated to possess acceptable processing and product behavior defined in terms of physical and chemical properties that guarantee the glass can be easily made and resist environmental degradation. Glass formulation is facilitated by developing property-composition models, and the strategy of model development and application is reviewed. However, the large variability of waste compositions presents numerous additional challenges: insoluble solids and molten salts may segregate; foam may hinder heat transfer and slow down the process; molten salts may accumulate in container refractory walls; the glass on cooling may precipitate crystalline phases. These problems need targeted exploratory research. Examples of specific problems and their possible solutions are discussed.

  6. Natural glass analogues to alteration of nuclear waste glass: A review and recommendations for further study

    SciTech Connect

    McKenzie, W.F.

    1990-01-01

    The purpose of this report is to review previous work on the weathering of natural glasses; and to make recommendations for further work with respect to studying the alteration of natural glasses as it relates quantifying rates of dissolution. the first task was greatly simplified by the published papers of Jercinovic and Ewing (1987) and Byers, Jercinovic, and Ewing (1987). The second task is obviously the more difficult of the two and the author makes no claim of completeness in this regard. Glasses weather in the natural environment by reacting with aqueous solutions producing a rind of secondary solid phases. It had been proposed by some workers that the thickness of this rind is a function of the age of the glass and thus could be used to estimate glass dissolution rates. However, Jercinovic and Ewing (1987) point out that in general the rind thickness does not correlate with the age of the glass owing to the differences in time of contact with the solution compared to the actual age of the sample. It should be noted that the rate of glass dissolution is also a function of the composition of both the glass and the solution, and the temperature. Quantification of the effects of these parameters (as well as time of contact with the aqueous phase and flow rates) would thus permit a prediction of the consequences of glass-fluid interactions under varying environmental conditions. Defense high- level nuclear waste (DHLW), consisting primarily of liquid and sludge, will be encapsulated by and dispersed in a borosilicate glass before permanent storage in a HLW repository. This glass containing the DHLW serves to dilute the radionuclides and to retard their dispersion into the environment. 318 refs.

  7. Durabiliy of two simulated nuclear waste glasses, a frit glass, and tektite in aqueous solutions: Final report, Volume I

    SciTech Connect

    Hagen, D.A.; Altstetter, C.J.; Brown, S.D.

    1988-05-01

    High level nuclear waste is commonly incorporated into glass for disposal. Therefore the long term aqueous durability of the waste glass is important. The leaching behavior of three simulated nuclear waste glasses (AH10, AH165, and Frit 165) and a natural glass (tektite) were examined using nuclear reaction analysis, leachate solution analysis, and microscopy. The three simulated waste glasses developed hydrated layers which increased in thickness by t/sup /1/2//. The hydrated layer in Frit 165 reached a constant thickness of about one micron. Alkali were preferentially removed from the Frit 165 and AH10. The tektite corroded by slow uniform dissolution. 94 refs., 68 figs., 13 tabs.

  8. Spectroscopic investigations on glasses, glass-ceramics and ceramics developed for nuclear waste immobilization

    NASA Astrophysics Data System (ADS)

    Caurant, D.

    2014-05-01

    Highly radioactive nuclear waste must be immobilized in very durable matrices such as glasses, glass-ceramics and ceramics in order to avoid their dispersion in the biosphere during their radioactivity decay. In this paper, we present various examples of spectroscopic investigations (optical absorption, Raman, NMR, EPR) performed to study the local structure of different kinds of such matrices used or envisaged to immobilize different kinds of radioactive wastes. A particular attention has been paid on the incorporation and the structural role of rare earths—both as fission products and actinide surrogates—in silicate glasses and glass-ceramics. An example of structural study by EPR of a ceramic (hollandite) irradiated by electrons (to simulate the effect of the β-irradiation of radioactive cesium) is also presented.

  9. Redox of Simulated Nuclear Waste Glass Forming Melts

    SciTech Connect

    Vick, Sara C.; Sundaram, S. K.

    2001-12-01

    Glasses are found in most reduction-oxidation (redox) items that are used everyday; from automobiles to planes. With stability of most glasses, they are being used to store hazardous waste materials. Many elements have different oxidation states and are found in multiple states in glasses. Redox of glasses has significant effect on processing of waste glass melts in melters as well as properties of the waste forms. Nuclear waste glasses generally have complex chemistry (including several redox ions) and form corrosive melts. Basic objective: study the redox of the glasses containing Fe and Ni with square wave voltammetry. A basic simulated frit glass was used for vitrification. The frit composition used was 57.90% SiO2, 17.70% Na2O, 14.70% B2O3, 5.70% Li2O, 2.00% MgO, 1.00% TiO2, 0.50% ZrO2, and 0.50% La2O3. Batch glasses were synthesized and then dopants of Fe2O3 , NiO, and a combination of Fe2O3-NiO were added in 1-wt % amounts. The glass was melted at 1150 C and held for 24 hours. It was poured to the top of a medium sized Pt/Rh crucible and placed in a furnace at 1150 C. The glass powder was allowed to melt for five minutes before the testing apparatus was placed in the melt. The testing apparatus was composed of a Pt/Rh working electrode, Pt/Rh counter electrode, and a Zr/Al reference electrode. The counter electrode is placed in the melt until it is touching the bottom of the crucible creating a closed circuit. Both the reference electrode and working electrode are located half way down the counter electrode. The test showed that melt resistivity was high indicating the amount of conductivity in the melt. Sample melt volume and area of the working electrode were high. Adjusting the crucible size and sizing other electrodes will improve the measurements. Future work: testing NiO glass and Fe2O3-NiO glass to see the interaction between the Fe and the Ni and synthesis of 2 wt %, 3 wt %, and 5-wt % Fe2O3 doped glasses to study effects of Fe concentration.

  10. Redox reaction and foaming in nuclear waste glass melting

    SciTech Connect

    Ryan, J.L.

    1995-08-01

    This document was prepared by Pacific Northwest Laboratory (PNL) and is an attempt to analyze and estimate the effects of feed composition variables and reducing agent variables on the expected chemistry of reactions occurring in the cold cap and in the glass melt in the nuclear waste glass Slurry-fed, joule-heated melters as they might affect foaming during the glass-making process. Numerous redox reactions of waste glass components and potential feed additives, and the effects of other feed variables on these reactions are reviewed with regard to their potential effect on glass foaming. A major emphasis of this report is to examine the potential positive or negative aspects of adjusting feed with formic acid as opposed to other feed modification techniques including but not limited to use of other reducing agents. Feed modification techniques other than the use of reductants that should influence foaming behavior include control of glass melter feed pH through use of nitric acid. They also include partial replacement of sodium salts by lithium salts. This latter action (b) apparently lowers glass viscosity and raises surface tension. This replacement should decrease foaming by decreasing foam stability.

  11. Expeditious dissolution dynamic nuclear polarization without glassing agents.

    PubMed

    Lama, Bimala; Collins, James H P; Downes, Daniel; Smith, Adam N; Long, Joanna R

    2016-03-01

    The hyperpolarization of metabolic substrates at low temperature using dynamic nuclear polarization (DNP), followed by rapid dissolution and injection into an MRSI or NMR system, allows in vitro or in vivo observation and tracking of biochemical reactions and metabolites in real time. This article describes an elegant approach to sample preparation which is broadly applicable for the rapid polarization of aqueous small-molecule substrate solutions and obviates the need for glassing agents. We demonstrate its utility for solutions of sodium acetate, pyruvate and butyrate. The polarization behavior of substrates prepared using rapid freezing without glassing agents enabled a 1.5-3-fold time savings in polarization buildup, whilst removing the need for toxic glassing agents used as standard for dissolution DNP. The achievable polarization with fully aqueous substrate solutions was equal to that observed using standard approaches and glassing agents. Copyright 2016 John Wiley & Sons, Ltd. PMID:26915792

  12. Archaeological analogs and the future of nuclear waste glass

    NASA Astrophysics Data System (ADS)

    Verney-Carron, Aurélie; Gin, Stéphane; Libourel, Guy

    2010-11-01

    Nuclear energy produces long-lived radioactive waste. Glass containment matrices are used to stabilize such waste and to prevent radionuclide dispersion. Over the past few decades, phenomenological models have been developed to predict the long-term behavior of these materials in anticipation of disposal in a deep geological formation. But considering the geological time scales necessary for radioactive decay validating these models is a challenge. Here we show how the validation of the predictive capacity of a mechanistic model applied to archaeological glass alteration bridges the gap between the short-term laboratory data and the long-term evolution of natural system in complex environment. This model applied to nuclear glass provides reliable uncertainties on long-term alteration rates and demonstrates that present models used in the safety calculations are conservative.

  13. Radiation and Thermal Ageing of Nuclear Waste Glass

    SciTech Connect

    Weber, William J

    2014-01-01

    The radioactive decay of fission products and actinides incorporated into nuclear waste glass leads to self-heating and self-radiation effects that may affect the stability, structure and performance of the glass in a closed system. Short-lived fission products cause significant self-heating for the first 600 years. Alpha decay of the actinides leads to self-radiation damage that can be significant after a few hundred years, and over the long time periods of geologic disposal, the accumulation of helium and radiation damage from alpha decay may lead to swelling, microstructural evolution and changes in mechanical properties. Four decades of research on the behavior of nuclear waste glass are reviewed.

  14. Observations of Nuclear Explosive Melt Glass Textures and Surface Areas

    SciTech Connect

    Kersting, A B; Smith, D K

    2006-01-17

    This memo report summarizes our current knowledge of the appearance of melt glass formed and subsequently deposited in the subsurface after an underground nuclear test. We have collected archived pictures and melt glass samples from a variety of underground nuclear tests that were conducted at the Nevada Test Site (NTS) during the U.S. nuclear testing program. The purpose of our work is to better determine the actual variation in texture and surface area of the melt glass material. This study is motivated by our need to better determine the rate at which the radionuclides incorporated in the melt glass are released into the subsurface under saturated and partially saturated conditions. The rate at which radionuclides are released from the glass is controlled by the dissolution rate of the glass. Glass dissolution, in turn, is a strong function of surface area, glass composition, water temperature and water chemistry (Bourcier, 1994). This work feeds into an ongoing experimental effort to measure the change in surface area of analog glasses as a function of dissolution rate. The conclusions drawn from this study help bound the variation in the textures of analog glass samples needed for the experimental studies. The experimental work is a collaboration between Desert Research Institute (DRI) and Earth and Environmental Sciences-Lawrence Livermore National Laboratory (EES-LLNL). On March 4, 1999 we hosted a meeting at LLNL to present and discuss our findings. The names of the attendees appear at the end of this memo. This memo report further serves to outline and summarize the conclusions drawn from our meeting. The United States detonated over 800 underground nuclear tests at the NTS between 1951 and 1992. In an effort to evaluate the performance of the nuclear tests, drill-back operations were carried out to retrieve samples of rock in the vicinity of the nuclear test. Drill-back samples were sent to Los Alamos National Laboratory (LANL) and Lawrence Livermore National Laboratory (LLNL) and analyzed for diagnostic purposes. As a result of these activities, a body of knowledge consisting of personal accounts, photos, reports and archived solid samples was gained regarding the physical nature of the melt glass that formed during an underground nuclear test. In this memo report, we summarize previously published reports, compile archived photos, document and describe melt glass samples and summarized discussions from former field engineers and radiochemists who had direct knowledge of drill-back samples. All the information presented in the report was gathered from unclassified sources. We have included as wide a variation of samples as we could document. Unfortunately, as part of the drill-back and diagnostic efforts, it was not common practice to photograph or physically describe the material returned to the surface.

  15. Helium solubility in SON68 nuclear waste glass

    SciTech Connect

    Fares, Toby; Peuget, Sylvain; Bouty, Olivier; Broudic, Veronique; Maugeri, Emilio; Bes, Rene; Jegou, Christophe; Chamssedine, Fadel; Sauvage, Thierry; Deschanels, Xavier

    2012-12-15

    Helium behavior in a sodium borosilicate glass (SON68) dedicated to the immobilization of high-level nuclear waste is examined. Two experimental approaches on nonradioactive glass specimens are implemented: pressurized helium infusion experiments and {sup 3}He ion implantation experiments. The temperature variation of helium solubility in SON68 glass was determined and analyzed with the harmonic oscillator model to determine values of the energy of interaction E(0) at the host sites (about -4000 J/mol), the vibration frequency (about 1.7 x 10{sup 11} s{sup -1}), and the density of solubility sites (2.2 x 10{sup 21} sites cm{sup -3}). The implantation experiments show that a non diffusive transport phenomenon (i.e., athermal diffusion) is involved in the material when the helium concentration exceeds 2.3 x 10{sup 21} He cm{sup -3}, and thus probably as soon as it exceeds the density of solubility sites accessible to helium in the glass. We propose that this transport mechanism could be associated with the relaxation of the stress gradient induced by the implanted helium profile, which is favored by the glass damage. Microstructural characterization by TEM and ESEM of glass specimens implanted with high helium concentrations showed a homogeneous microstructure free of bubbles, pores, or cracking at a scale of 10 nm. (authors)

  16. Role of Self-Irradiation in Corrosion of Nuclear Waste Glasses

    SciTech Connect

    Ojovan, M. I.; Lee, W. E.

    2006-07-01

    The effect of self irradiation on corrosion mechanisms of nuclear waste glasses is examined. Self irradiation is shown to have a strong impact on corrosion of nuclear waste glasses under conditions where hydrolytic dissolution is suppressed and the corrosion is controlled solely by diffusion-controlled ion exchange. In contrast glasses corroding via hydrolytic reactions are affected only slightly by self irradiation. (authors)

  17. Resumption of nuclear glass alteration: State of the art

    NASA Astrophysics Data System (ADS)

    Fournier, Maxime; Gin, Stéphane; Frugier, Pierre

    2014-05-01

    Studies of nuclear glass alteration kinetics have shown that after the beginning of a rate drop due to the approach of silica saturation of the solution and the formation of a passivating layer, a resumption of alteration is possible. This phenomenon corresponding to an acceleration of the glass dissolution rate is systematically associated with the precipitation of zeolites and, to a lesser extent, calcium silicate hydrates. Secondary phases which precipitate from the major glass network-forming elements (Si, Al) strongly impact the dissolution kinetics. The literature data are generally consistent and the results are reproducible, showing that the resumption of alteration is observed at high pH, temperature, and S/V ratio during laboratory experiments. The studies also show that the resumption of alteration is strongly dependent on the composition of the glass and the leaching solutions. The wide range of glass compositions studied (about 60 glasses in the articles reviewed) and the variable test conditions (temperature, pH, and solution composition) make it extremely difficult to compare and compile the data, or to decorrelate the effects of the composition on the time before the resumption of alteration and on its magnitude. The observations to date have led to a proposed macroscopic mechanism based on the loss of the passivating properties of the alteration layer after consumption of a fraction of the network-forming elements by precipitation of zeolites. No multiscale mechanistic approach exists, however, to account for the nucleation and growth of zeolites at the expense of the glass. For example, the effect of aluminum in the gel or in solution on the glass alteration kinetics is not sufficiently understood today. Although thermodynamic models have been proposed to delimit the ranges of glass compositions subject to a resumption of alteration, their development is hampered by inadequate knowledge of the newly formed phases and their nucleation-growth mechanism, and by gaps in the thermodynamic databases. Their development is also constrained by the capability of the models to take Si-Al-Ca interactions into account in the alteration gels.

  18. MILLIMETER-WAVE MONITORING OF NUCLEAR WASTE GLASS MELTS - AN OVERVIEW

    EPA Science Inventory

    Molten glass characteristics of temperature, resistivity, and viscosity can be monitored reliably in the high temperature and chemically corrosive environment of nuclear waste glass melters using millimeter-wave sensor technology. Millimeter-waves are ideally suited for such meas...

  19. Impact of nuclear dipoles on polarization echoes in glasses

    NASA Astrophysics Data System (ADS)

    Bazrafshan, M.; Fickenscher, G.; Schickfus, M. v.; Fleischmann, A.; Enss, C.

    2007-12-01

    A few years ago surprising magnetic field effects were found in non- magnetic glasses at low temperatures (approx 10 mK). It has since been established that this effect can be attributed to the tunnelling motion of particles carrying nuclear quadrupole moments. The magnetic field effect saturates when the nuclear Zeeman energy becomes larger than the quadrupole splitting. For glycerol this saturation field is around 60 mT. Recently we have observed an additional magnetic field effect which saturates at about 10 times smaller field. This novel phenomenon was studied systematically with 2-pulse dielectric polarization echoes on a series of glycerol samples with different degrees of deuteration. These experiments clearly demonstrate that it originates from the interaction between magnetic dipole moments, giving rise to an energy splitting of approximately 30 kHz. The impact of the nuclear dipoles becomes visible in a quantum beating at zero field and a magnetic field dependence of the echo amplitude. Numerical calculations were performed and compared to the experimental results, shedding light on the microscopic nature of tunnelling systems in glasses.

  20. Lead iron phosphate glass as a containment medium for disposal of high-level nuclear waste

    DOEpatents

    Boatner, Lynn A.; Sales, Brian C.

    1989-01-01

    Lead-iron phosphate glasses containing a high level of Fe.sub.2 O.sub.3 for use as a storage medium for high-level radioactive nuclear waste. By combining lead-iron phosphate glass with various types of simulated high-level nuclear waste, a highly corrosion resistant, homogeneous, easily processed glass can be formed. For corroding solutions at 90.degree. C., with solution pH values in the range between 5 and 9, the corrosion rate of the lead-iron phosphate nuclear waste glass is at least 10.sup.2 to 10.sup.3 times lower than the corrosion rate of a comparable borosilicate nuclear waste glass. The presence of Fe.sub.2 O.sub.3 in forming the lead-iron phosphate glass is critical. Lead-iron phosphate nuclear waste glass can be prepared at temperatures as low as 800.degree. C., since they exhibit very low melt viscosities in the 800.degree. to 1050.degree. C. temperature range. These waste-loaded glasses do not readily devitrify at temperatures as high as 550.degree. C. and are not adversely affected by large doses of gamma radiation in H.sub.2 O at 135.degree. C. The lead-iron phosphate waste glasses can be prepared with minimal modification of the technology developed for processing borosilicate glass nuclear wasteforms.

  1. Glass former composition and method for immobilizing nuclear waste using the same

    SciTech Connect

    Cadoff, L.H.; Smith-Magowan, D.B.

    1988-07-26

    In a method of immobilizing nuclear waste in glass where a glass forming composition is prepared which comprises a slurry of alkoxide glass forming components containing hydrolyzed glass-forming silicon compound in a liquid carrier, where the composition is heated at an elevated temperature to reduce the volume thereof and provide a glass former, the glass former is mixed with nuclear waste at up to 500/sup 0/C, and the resultant mixture is melted at about 700/sup 0/-1500/sup 0/C, the improvement is described which makes the composition resistant to coagulation comprising using the hydrolyzed glass-forming silicon compound in the form of particulate solids having a particle size of 0.1-0.7 micrometer in diameter, so that the liquid carrier is substantially free of the dissolved hydrolyzed glass-forming silicon compound.

  2. Final technical report: Effects of water on properties of the simulated nuclear waste glasses

    SciTech Connect

    Li, H.; Tomozawa, M.

    1996-02-01

    For isolation of nuclear wastes through the vitrification process, waste slurry is mixed with borosilicate based glass and remelted at high temperature. During these processes, water can enter into the final waste glass. It is known that water in silica and silicate glasses changes various glass properties, such as chemical durability, viscosity and electrical conductivity. These properties are very important for processing and assuring the quality and safety controls of the waste glasses. The objective of this project was to investigate the effect of water in the simulated nuclear waste glasses on various glass properties, including chemical durability, glass transition temperature, liquidus temperature, viscosity and electrical conductivity. This report summarizes the results of this investigation conducted at Rensselaer during the past one year.

  3. Development of glass vitrification at SRL as a waste treatment technique for nuclear weapon components

    SciTech Connect

    Coleman, J.T.; Bickford, D.F.

    1991-01-01

    This report discusses the development of vitrification for the waste treatment of nuclear weapons components at the Savannah River Site. Preliminary testing of surrogate nuclear weapon electronic waste shows that glass vitrification is a viable, robust treatment method.

  4. Development of glass vitrification at SRL as a waste treatment technique for nuclear weapon components

    SciTech Connect

    Coleman, J.T.; Bickford, D.F.

    1991-12-31

    This report discusses the development of vitrification for the waste treatment of nuclear weapons components at the Savannah River Site. Preliminary testing of surrogate nuclear weapon electronic waste shows that glass vitrification is a viable, robust treatment method.

  5. Glass former composition and method for immobilizing nuclear waste using the same

    DOEpatents

    Cadoff, Laurence H. (Wilkins Township, Allegheny County, PA); Smith-Magowan, David B. (Washington, DC)

    1988-01-01

    An alkoxide glass former composition has silica-containing constituents present as solid particulates of a particle size of 0.1 to 0.7 micrometers in diameter in a liquid carrier phase substantially free of dissolved silica. The glass former slurry is resistant to coagulation and may contain other glass former metal constituents. The immobilization of nuclear waste employs the described glass former by heating the same to reduce the volume, mixing the same with the waste, and melting the resultant mixture to encapsulate the waste in the resultant glass.

  6. Determination of alpha dose rate profile at the HLW nuclear glass/water interface

    NASA Astrophysics Data System (ADS)

    Mougnaud, S.; Tribet, M.; Rolland, S.; Renault, J.-P.; Jgou, C.

    2015-07-01

    Alpha irradiation and radiolysis can affect the alteration behavior of High Level Waste (HLW) nuclear glasses. In this study, the way the energy of alpha particles, emitted by a typical HLW glass, is deposited in water at the glass/water interface is investigated, with the aim of better characterizing the dose deposition at the glass/water interface during water-induced leaching mechanisms. A simplified chemical composition was considered for the nuclear glass under study, wherein the dose rate is about 140 Gy/h. The MCNPX calculation code was used to calculate alpha dose rate and alpha particle flux profiles at the glass/water interface in different systems: a single glass grain in water, a glass powder in water and a water-filled ideal crack in a glass package. Dose rate decreases within glass and in water as distance to the center of the grain increases. A general model has been proposed to fit a dose rate profile in water and in glass from values for dose rate in glass bulk, alpha range in water and linear energy transfer considerations. The glass powder simulation showed that there was systematic overlapping of radiation fields for neighboring glass grains, but the water dose rate always remained lower than the bulk value. Finally, for typical ideal cracks in a glass matrix, an overlapping of irradiation fields was observed while the crack aperture was lower than twice the alpha range in water. This led to significant values for the alpha dose rate within the crack volume, as long as the aperture remained lower than 60 ?m.

  7. Structural analysis of some sodium and alumina rich high-level nuclear waste glasses

    SciTech Connect

    Goel, Ashutosh; McCloy, John S.; Fox, Kevin M.; Leslie, Clifford J.; Riley, Brian J.; Rodriguez, Carmen P.; Schweiger, Michael J.

    2012-02-01

    Sodium and aluminum rich high level nuclear waste glasses are prone to nepheline (NaAlSiO4) crystallization. Since nepheline removes three moles of glass forming oxides (Al2O3 and SiO2) per each mole of Na2O, its formation can result in sever deterioration of the chemical durability. The present study aims at investigating the relationships between the molecular-level structure of sodium alumino-borosilicate based simulated high-level nuclear waste glasses and their crystallization behavior by infrared spectroscopy (FTIR) and x-ray diffraction, respectively. The molecular structure of most of the investigated glasses comprises of a mixture of Q2 and Q3 (Si) units while aluminum and boron are predominantly present in tetrahedral and trigonal coordination, respectively. The increasing boron content has been shown to suppress the nepheline formation in the glasses. The structural influence of various glass components on nepheline crystallization has been discussed.

  8. Nano-Continuum Modeling of a Nuclear Glass Specimen Altered for 25 Years

    SciTech Connect

    Steefel, Carl

    2014-01-06

    The purpose of this contribution is to report on preliminary nano-continuum scale modeling of nuclear waste glass corrosion. The focus of the modeling is an experiment involving a French glass SON68 specimen leached for 25 years in a granitic environment. In this report, we focus on capturing the nano-scale concentration profiles. We use a high resolution continuum model with a constant grid spacing of 1 nanometer to investigate the glass corrosion mechanisms.

  9. ALKALI/ AKALINE-EARTH CONTENT EFFECTS ON PROPERTIES OF HIGH-ALUMINA NUCLEAR WASTE GLASSES

    SciTech Connect

    McCloy, John S.; Rodriguez, Carmen P.; Windisch, Charles F.; Leslie, Clifford J.; Schweiger, Michael J.; Riley, Brian J.; Vienna, John D.

    2010-10-01

    A series of high alumina (>20 mass %) borosilicate glasses have been made and characterized based on the assumption that the primary modifier cation field strength plays a significant role in mediating glass structure of nuclear waste glasses. Any crystallization upon quenching or after heat treatment at 950 C for 24 hours was identified and quantified by X-ray diffraction. Particular note was take of any aluminosilicates formed, such as those in the nepheline group (MAlSiO4 where M=K, Na, Li), as these remove multiple glass-formers from the network upon crystallization. The relative roles of potassium, sodium, lithium, calcium, and magnesium on glass structure and crystallization in high alumina glasses were explored using Raman and infrared vibrational spectroscopy. Strong evidence was found for the importance of 4 membered rings in glasses with 10 mol % alkaline earths (Ca, Mg).

  10. ASSESSMENT OF NEPHELINE PRECIPITATION IN NUCLEAR WASTE GLASS VIA THERMOCHEMICAL MODELING

    EPA Science Inventory

    A thermochemical representation of the Na-Al-Si-B-O system relevant for nuclear waste glass has been developed based on the associate species approach for the glass solution phase. Thermochemical data were assessed and associate species data determined for binary and ternary sub...

  11. Electrical power supply and controls for a remotely operated glass melter for nuclear waste

    SciTech Connect

    Haideri, A.Q.

    1986-09-01

    An electrical power supply and the controls and instruments used for a joule-heated glass melter for nuclear waste are discussed. Remotely replaceable interconnection wiring assemblies for the power, controls, and instruments are also described.

  12. The effect of chromium oxide on the properties of simulated nuclear waste glasses

    SciTech Connect

    Vojtech, O.; Sussmilch, J.; Urbanec, Z.

    1996-02-01

    A study of the effect of chromium on the properties of selected glasses was performed in the frame of a Contract between Battelle, Pacific Northwest Laboratories and Nuclear Research Institute, ReZ. In the period from July 1994 to June 1995 two borosilicate glasses of special composition were prepared according to the PNL procedure and their physical and structural characteristics of glasses were studied. This Final Report contains a vast documentation on the properties of all glasses studied. For the preparation of the respective technology more detailed study of physico-chemical properties and crystallinity of investigated systems would be desirable.

  13. West Valley high-level nuclear waste glass development: a statistically designed mixture study

    SciTech Connect

    Chick, L.A.; Bowen, W.M.; Lokken, R.O.; Wald, J.W.; Bunnell, L.R.; Strachan, D.M.

    1984-10-01

    The first full-scale conversion of high-level commercial nuclear wastes to glass in the United States will be conducted at West Valley, New York, by West Valley Nuclear Services Company, Inc. (WVNS), for the US Department of Energy. Pacific Northwest Laboratory (PNL) is supporting WVNS in the design of the glass-making process and the chemical formulation of the glass. This report describes the statistically designed study performed by PNL to develop the glass composition recommended for use at West Valley. The recommended glass contains 28 wt% waste, as limited by process requirements. The waste loading and the silica content (45 wt%) are similar to those in previously developed waste glasses; however, the new formulation contains more calcium and less boron. A series of tests verified that the increased calcium results in improved chemical durability and does not adversely affect the other modeled properties. The optimization study assessed the effects of seven oxide components on glass properties. Over 100 melts combining the seven components into a wide variety of statistically chosen compositions were tested. Viscosity, electrical conductivity, thermal expansion, crystallinity, and chemical durability were measured and empirically modeled as a function of the glass composition. The mathematical models were then used to predict the optimum formulation. This glass was tested and adjusted to arrive at the final composition recommended for use at West Valley. 56 references, 49 figures, 18 tables.

  14. Fracture during cooling of cast borosilicate glass containing nuclear wastes

    SciTech Connect

    Smith, P.K.; Baxter, C.A.

    1981-09-01

    Procedures and techniques were evaluated to mitigate thermal stress fracture in waste glass as the glass cools after casting. The two principal causes of fracture identified in small-scale testing are internal thermal stresses arising from excessive thermal gradients when cooled too fast, and shear fracturing in the surface of the glass because the stainless steel canister shrinks faster than the glass on cooling. Acoustic emission and ceramographic techniques were used to outline an annealing schedule that requires at least three weeks of controlled cooling below 550/sup 0/C to avoid excessive thermal gradients and corresponding stresses. Fracture arising from canister interactions cannot be relieved by slow cooling, but can be eliminated for stainless steel canisters by using ceramic paper, ceramic or graphite paste linings, or by choosing a canister material with a thermal expansion coefficient comparable to, or less than, that of the glass.

  15. Characterization of high-level nuclear waste glass using magnetic measurements

    SciTech Connect

    Senftle, F.E.; Thorpe, A.N.; Grant, J.R.; Barkatt, A.

    1994-12-31

    Magnetic measurements constitute a promising method for the characterization of nuclear waste glasses in view of their simplicity and small sample weight requirements. Initial studies of simulated high-level waste glasses show that the Curie constant is generally a useful indicator of the Fe{sup 2+}:Fe{sup 3+} ratio. Glasses produced by air-cooling in large vessels show systematic deviations between experimental and calcined values, which are indicative of the presence of small amounts of crystalline iron-containing phases. Most of the iron in these phases becomes dissolved in the glass upon re-heating and more rapid quenching. The studies further show that upon leaching the glass in water some of the iron in the surface regions of the glass is converted to a form which has high temperature-independent magnetic susceptibility.

  16. Physical and chemical characteristics of lead-iron phosphate nuclear waste glasses

    SciTech Connect

    Sales, B.C.; Boatner, L.A.

    1985-05-01

    Experimental determinations of the properties of lead-iron phosphate glasses pertinent to their application to the problem of permanently disposing of high-level nuclear wastes have been carried out. These investigations included studies of the composition and physical properties of nuclear waste glasses (NWG), as well as the effect of preparation conditions. Lead-iron phosphate nuclear waste glasses were prepared by dissolving simulated US defense wastes or simulated commercial power reactor wastes in molten lead-iron phosphate melts at temperatures between 900 and 1050/sup 0/C. The measured physical and chemical properties of the nuclear waste glasses formed by cooling these melts and annealing included the following: (1) aqueous corrosion resistance as a function of the solution pH, solution temperature, and glass composition, (2) glass density, (3) thermal expansion coefficient, (4) glass transition temperature and softening point, (5) heat capacity, (6) critical cooling rate, (7) temperature for the maximum crystallization rate, (8) relative solubility of waste oxides in the glass melt, (9) reactions between the molten glass and the melting crucible (Pt, ZrO/sub 2/, Al/sub 2/O/sub 3/), and (10 studies of possible metal cannister materials. Experimental results for the lead-iron phosphate NWG are compared to available data for borosilicate NWG. Relative to borosilicate NWG, the lead-iron phosphate glasses have several distinct advantages which include a much lower aqueous corrosion rate, a lower preparation temperature, and the ability to immobilize many types of commercial and defense-related high-level radioactive wastes. 34 refs., 18 figs., 10 tabs.

  17. Lead-iron phosphate glass: a stable storage medium for high-level nuclear waste.

    PubMed

    Sales, B C; Boatner, L A

    1984-10-01

    Results are presented which show that lead-iron phosphate glasses are a promising new waste form for the safe immobilization of both high-level defense and high-level commercial radioactive waste. Relative to the borosilicate nuclear waste glasses that are currently the "reference" waste form for the long-term disposal of nuclear waste, lead-iron phosphate glasses have several distinct advantages: (i) an aqueous corrosion rate that is about 1000 times lower, (ii) a processing temperature that is 100 degrees to 250 degrees C lower, and (iii) a much lower melt viscosity in the temperature range from 800 degrees to 1000 degrees C. Most significantly, the lead-iron phosphate waste form can be processed using a technology similar to that developed for borosilicate nuclear waste glasses. PMID:17815418

  18. Simulation of Self-Irradiation of High-Sodium Content Nuclear Waste Glasses

    SciTech Connect

    Pankov, Alexey S.; Ojovan, Michael I.; Batyukhnova, Olga G.

    2007-07-01

    Alkali-borosilicate glasses are widely used in nuclear industry as a matrix for immobilisation of hazardous radioactive wastes. Durability or corrosion resistance of these glasses is one of key parameters in waste storage and disposal safety. It is influenced by many factors such as composition of glass and surrounding media, temperature, time and so on. As these glasses contain radioactive elements most of their properties including corrosion resistance are also impacted by self-irradiation. The effect of external gamma-irradiation on the short-term (up to 27 days) dissolution of waste borosilicate glasses at moderate temperatures (30 deg. to 60 deg. C) was studied. The glasses studied were Magnox Waste glass used for immobilisation of HLW in UK, and K-26 glass used in Russia for ILW immobilisation. Glass samples were irradiated under {gamma}-source (Co-60) up to doses 1 and 11 MGy. Normalised rates of elemental release and activation energy of release were measured for Na, Li, Ca, Mg, B, Si and Mo before and after irradiation. Irradiation up to 1 MGy results in increase of leaching rate of almost all elements from both MW and K-26 with the exception of Na release from MW glass. Further irradiation up to a dose of 11 MGy leads to the decrease of elemental release rates to nearly initial value. Another effect of irradiation is increase of activation energies of elemental release. (authors)

  19. A comparison of the performance of nuclear waste glasses by modeling

    SciTech Connect

    Grambow, B.; Strachan, D.M.

    1988-12-01

    Through a combination of data collection and computer modeling, the dissolution mechanism of nuclear waste glasses has been investigated and more clearly defined. Glass dissolution can be described as a dissolution/precipitation process in which glass dissolves in aqueous solution and solids precipitate as the solubility products are exceeded. The dissolution process is controlled by activity of the rate-limiting specie H/sub 4/SiO/sub 4/. As a concentration of H/sub 4/SiO/sub 4/ increases, the rate of dissolution decreases until a final reaction rate is reached. Between the forward reaction rate (early time) and final reaction rate (very long time), glasses may exhibit an intermediate root time dependence caused by a transport resistance for the diffusion of H/sub 4/SiO/sub 4/ within the gel layer on the glass surface. In this report, three glasses are studied: JSS-A, PNL 76-68, and SRL-131. Data from static and dynamic leach tests are assembled, plotted, and successfully modeled. The kinetic parameters for these glasses are reported. With four parameters derived from experiments for each glass, the model can be used to calculate the effects of changes in the initial composition of the water contacting the glass. The effects of convective flow can also be modeled. Furthermore, glasses of different compositions can be readily compared. 49 refs., 27 figs., 5 tabs.

  20. THE IMPACT OF KINETICS ON NEPHELINE FORMATION IN NUCLEAR WASTE GLASSES

    SciTech Connect

    Amoroso, J.

    2011-03-07

    Sixteen glass compositions were selected to study the potential impacts of the kinetics of nepheline formation in high-level nuclear waste (HLW) glass. The chosen compositions encompassed a relatively large nepheline discriminator (ND) range, 0.40-0.66, and included a relatively broad range, and amount of, constituents including high aluminum and high boron concentrations. All glasses were fabricated in the laboratory and subsequently exposed to six different cooling treatments. The cooling treatments consisted of three 'stepped' profiles and their corresponding 'smooth' profiles. Included in the cooling treatment was the Defense Waste Processing Facility (DWPF) canister centerline cooling (CCC) profile in addition to a 'faster' and a 'slower' total cooling line. After quenching and heat treating, x-ray diffraction confirmed the type and amount of any resultant crystallization. The target compositions were shown to be consistent with the measured compositions. Two quenched glasses and several treated glasses exhibited minor amounts of spinel and spinel-like phases. Nepheline was not observed in any of the quenched glasses but was observed in many of the treated glasses. The amount of nepheline ranged from approximately 2wt% to 30wt% for samples cooled over shorter times and longer times respectively. Differences were observed in the amount of nepheline crystallization after smooth and stepped cooling and increased with total cooling time. In some glasses, nepheline crystallization appeared to be directly proportional to total cooling time while the total amount of nepheline crystallization varied, suggesting that the nepheline crystallization rate was independent of (or at least faster than) cooling rate but, varied depending on the glass composition. On the contrary, in another glass, nepheline crystallization appeared to be inversely proportional to cooling rate. The high alumina glasses, predicted to form nepheline according to the ND, did not precipitate nepheline. Additionally, analysis from different regions of treated glasses indicated that nepheline nucleation and growth occurs at the glass/crucible and glass/atmosphere interfaces. Furthermore, the measured amount of non-nepheline phases appeared independent of the sampling region. It is postulated that crucible-scale methods used to heat treat HLW glass, such as the CCC method, artificially induce nepheline formation in the glass. The results of this study suggest nepheline kinetics can vary significantly depending on glass composition and, more importantly, glasses fabricated using current DWPF conditions are potentially susceptible to the impact of nepheline kinetics. This report summarizes the supporting research and provides the basis for continued research on nepheline kinetics and its effects on HLW glasses.

  1. Overview of chemical modeling of nuclear waste glass dissolution

    SciTech Connect

    Bourcier, W.L.

    1991-02-01

    Glass dissolution takes place through metal leaching and hydration of the glass surface accompanied by development of alternation layers of varying crystallinity. The reaction which controls the long-term glass dissolution rate appears to be surface layer dissolution. This reaction is reversible because the buildup of dissolved species in solution slows the dissolution rate due to a decreased dissolution affinity. Glass dissolution rates are therefore highly dependent on silica concentrations in solution because silica is the major component of the alteration layer. Chemical modeling of glass dissolution using reaction path computer codes has successfully been applied to short term experimental tests and used to predict long-term repository performance. Current problems and limitations of the models include a poorly defined long-term glass dissolution mechanism, the use of model parameters determined from the same experiments that the model is used to predict, and the lack of sufficient validation of key assumptions in the modeling approach. Work is in progress that addresses these issues. 41 refs., 7 figs., 2 tabs.

  2. Production and dissolution of nuclear explosive melt glasses at underground test sites in the Pacific Region

    SciTech Connect

    Bourcier, W.L.; Smith, D.K.

    1998-11-06

    From 1975 to 1996 the French detonated 140 underground nuclear explosions beneath the atolls of Mururoa and Fangataufa in the South Pacific; from 1965 to 1971 the United States detonated three high yield nuclear tests beneath Amchitka Island in the Aleutian chain. Approximately 800 metric tons of basalt is melted per kiloton of nuclear yield; almost lo7 metric tons of basalt were melted in these tests. Long-lived and toxic radionuclides are partitioned into the melt glass at the time of explosion and are released by dissolution with seawater under saturated conditions. A glass dissolution model predicts that nuclear melt glasses at these sites will dissolve in lo6 to lo7 yea

  3. EELS Spectrum Imaging and Tomography Studies of Simulated Nuclear Waste Glasses

    SciTech Connect

    Yang, Guang; Saghi, Zineb; Xu, Xiaojing; Hand, Russell; Moebus, Guenter

    2007-07-01

    Electron energy loss spectroscopy (EELS) fine structure is a powerful technique for analyzing oxidation levels of rare-earth oxides and coordination numbers in glasses and ceramics, especially for boron. To exploit the unique advantage of EELS over x-ray absorption spectroscopy (XAS)/x-ray absorption near edge structure (XANES), namely nm-scale spatial resolution, EELS spectrum imaging across precipitates in glasses has been employed to detect lateral changes of EELS fine structure. Alkali borosilicate (ABS) glasses doped with Cr{sub 2}O{sub 3}, CeO{sub 2} and ZrO{sub 2} or Fe{sub 2}O{sub 3} were melted to simulate high level radionuclide immobilization glasses. Precipitates with diameter in the range of {approx}20 nm to {approx}500 nm were found homogeneously distributed in the glasses. Ce valence was found to be mainly +3 in the glass matrix, and +4 in crystalline precipitates, while some amorphous particles show +3 as well. Another powerful TEM technique for the analysis of glass-nano-composites is electron tomography, as it is up to now the only technique for the three-dimensional reconstruction of nano-particles. A 3D reconstructed nuclear waste glass is presented in this paper by using a tilt series of ADF STEM images covering a glass fragment of {approx}3{mu}m field of view containing several tens of nano-particles distributed throughout its volume. (authors)

  4. Progress toward bridging from atomistic to continuum modeling to predict nuclear waste glass dissolution.

    SciTech Connect

    Zapol, Peter; Bourg, Ian; Criscenti, Louise Jacqueline; Steefel, Carl I.; Schultz, Peter Andrew

    2011-10-01

    This report summarizes research performed for the Nuclear Energy Advanced Modeling and Simulation (NEAMS) Subcontinuum and Upscaling Task. The work conducted focused on developing a roadmap to include molecular scale, mechanistic information in continuum-scale models of nuclear waste glass dissolution. This information is derived from molecular-scale modeling efforts that are validated through comparison with experimental data. In addition to developing a master plan to incorporate a subcontinuum mechanistic understanding of glass dissolution into continuum models, methods were developed to generate constitutive dissolution rate expressions from quantum calculations, force field models were selected to generate multicomponent glass structures and gel layers, classical molecular modeling was used to study diffusion through nanopores analogous to those in the interfacial gel layer, and a micro-continuum model (K{mu}C) was developed to study coupled diffusion and reaction at the glass-gel-solution interface.

  5. Performing a chemical durability test on radioactive high-level nuclear waste glass

    SciTech Connect

    Beam, D.C.; Napier, J.A.; McCurry, J.D.; Bibler, N.E.

    1990-01-01

    Savannah River Site (SRS), currently is storing {approximately}30 million gallons of highly radioactive nuclear wastes. The Defense Waste Processing Facility (DWPF) nearing completion at SRS will incorporate the radionuclides in these wastes into solid borosilicate glass for final disposal in a geologic repository. Because of the variability of the wastes in the tanks, borosilicate glasses of different compositions will be produced by the DWPF during the 20--25 years required to solidify all the wastes at SRS. A chemical durability test, the Product Consistency Test (PCT), has been developed at SRS to measure the consistency of the durability of these glasses. This paper describes the remote and hands-on procedures for performing the PCT on these radioactive glasses. Results will be presented that indicate the good precision of the PCT and indicate some of the chemistry involved in leaching radioactive elements from the glass. 9 refs., 1 fig., 4 tabs.

  6. Effects of composition on properties in an 11-component nuclear waste glass system

    SciTech Connect

    Chick, L.A.; Piepel, G.F.; Mellinger, G.B.; May, R.P.; Gray, W.J.; Buckwalter, C.Q.

    1981-09-01

    Ninety simplified nuclear waste glass compositions within an 11-component oxide composition matrix were tested for crystallinity, viscosity, volatility, and chemical durability. Empirical models of property response as a function of glass composition were developed using statistical experimental design and modeling techniques. A new statistical technique was developed to calculate the effects of oxide components on each property. Independent melts were used to check the prediction accuracy of the models.

  7. An international initiative on long-term behavior of high-level nuclear waste glass

    SciTech Connect

    Gin, Stephane; Criscenti, Louise J.; Ebert, W. L.; Ferrand, Karine; Geisler, Thorsten; Harrison, Mike T.; Inagaki, Yaohiro; Mitsui, Seiichiro; Mueller, Karl T.; Marra, James C.; Pantano, Carlo G.; Pierce, Eric M.; Ryan, Joseph V.; Schofield, James M.; Steefel, Carl I.; Vienna, John D.

    2013-06-01

    Nations producing borosilicate glass as an immobilization material for radioactive wastes resulting from spent nuclear fuel reprocessing have reinforced scientific collaboration to obtain consensus on mechanisms controlling the long-term dissolution rate of glass. This goal is deemed to be crucial for the development of reliable performance assessment models for geological disposal. The collaborating laboratories all conduct fundamental and/or applied research with modern materials science techniques. The paper briefly reviews the radioactive waste vitrification programmes of the six participant nations and summarizes the state-of-the-art of glass corrosion science, emphasizing common scientific needs and justifications for on-going initiatives.

  8. Measurement of leaching from simulated nuclear-waste glass using radiotracers

    SciTech Connect

    Bates, J.K.; Jardine, L.J.; Steindler, M.J.

    1982-09-01

    The use of radiotracer spiking as a method of measuring the leaching from simulated nuclear-waste glass is shown to give results comparable with other analytical detection methods. The leaching behavior of /sup 85/Sr, /sup 106/Ru, /sup 133/Ba, /sup 137/Cs, /sup 141/Ce, /sup 152/Eu, and other isotopes is measured for several defense waste glasses. These tests show that radiotracer spiking is a sensitive, multielement technique that can provide leaching data, for actual waste elements, that are difficult to obtain by other methods. Additionally, a detailed procedure is described that allows spiked glass to be prepared with a suitable distribution of radionuclides.

  9. AN APPROACH TO THERMOCHEMICAL MODELING OF NUCLEAR WASTE GLASS

    EPA Science Inventory

    This initial work is aimed at developing a basic understanding of the phase equilibria and solid solution behavior of the constituents of waste glass. Current, experimentally determined values are less than desirable since they depend on measurement of the leach rate under non-r...

  10. Reaction sintered glass: A durable matrix for spinel-forming nuclear waste compositions

    NASA Astrophysics Data System (ADS)

    Gong, W. L.; Lutze, W.; Ewing, R. C.

    2000-01-01

    Glass formation by reaction sintering under isostatic pressure is an innovative process to vitrify refractory-rich high-level radioactive waste. We used a typical defense waste composition, containing spinel-forming components such as 4 wt% of Cr 2O 3, 23 wt% Al 2O 3, 13 wt% Fe 2O 3, and 9 wt% UO 2, with CeO 2 simulating UO 2. Reaction sintered silicate glasses with waste loading up to 45 wt% were prepared within three hours, by hot pressing at 800C. The glass former was amorphous silica. Simulated waste was added as calcined oxides. The reaction sintered glass samples were characterized using scanning and analytical electron microscopy. The results show that extensive reaction sintering took place and a continuous glass phase formed. Waste components such as Na 2O, CaO, MnO 2, and Fe 2O 3, dissolved completely in the continuous glass phase. Cr 2O 3, Al 2O 3, and CeO 2 were only partially dissolved due to incomplete dissolution (Al 2O 3) or super-saturation and reprecipitation (Cr 2O 3 and CeO 2). The precipitation mechanism is related to a time dependent alkali content in the developing glass phase. Short-term corrosion tests in water showed that the glasses are chemically more durable than melted nuclear waste glasses. Based on hydration energies calculations, the long-term chemical durability of our reaction sintered glasses is expected to be comparable to that of rhyolitic and tektite glasses.

  11. Deformation mechanisms during nanoindentation of sodium borosilicate glasses of nuclear interest

    NASA Astrophysics Data System (ADS)

    Kilymis, D. A.; Delaye, J.-M.

    2014-07-01

    In this paper we analyze results of Molecular Dynamics simulations of Vickers nanoindentation, performed for sodium borosilicate glasses of interest in the nuclear industry. Three glasses have been studied in their pristine form, as well as a disordered one that is analogous to the real irradiated glass. We focused in the behavior of the glass during the nanoindentation in order to reveal the mechanisms of deformation and how they are affected by microstructural characteristics. Results have shown a strong dependence on the SiO2 content of the glass, which promotes densification due to the open structure of SiO4 tetrahedra and also due to the strength of Si-O bonds. Densification for the glasses is primarily expressed by the relative decrease of the Si-O-Si and Si-O-B angles, indicating rotation of the structural units and decrease of free volume. The increase of alkali content on the other hand results to higher plasticity of the matrix and increased shear flow. The most important effect on the deformation mechanism of the disordered glasses is that of the highly depolymerized network that will also induce shear flow and, in combination with the increased free volume, will result in the decreased hardness of these glasses, as has been previously observed.

  12. Deformation mechanisms during nanoindentation of sodium borosilicate glasses of nuclear interest

    SciTech Connect

    Kilymis, D. A.; Delaye, J.-M.

    2014-07-07

    In this paper we analyze results of Molecular Dynamics simulations of Vickers nanoindentation, performed for sodium borosilicate glasses of interest in the nuclear industry. Three glasses have been studied in their pristine form, as well as a disordered one that is analogous to the real irradiated glass. We focused in the behavior of the glass during the nanoindentation in order to reveal the mechanisms of deformation and how they are affected by microstructural characteristics. Results have shown a strong dependence on the SiO{sub 2} content of the glass, which promotes densification due to the open structure of SiO{sub 4} tetrahedra and also due to the strength of Si-O bonds. Densification for the glasses is primarily expressed by the relative decrease of the Si-O-Si and Si-O-B angles, indicating rotation of the structural units and decrease of free volume. The increase of alkali content on the other hand results to higher plasticity of the matrix and increased shear flow. The most important effect on the deformation mechanism of the disordered glasses is that of the highly depolymerized network that will also induce shear flow and, in combination with the increased free volume, will result in the decreased hardness of these glasses, as has been previously observed.

  13. Radiation damage of alkali borate glasses for application in safe nuclear waste disposal

    NASA Astrophysics Data System (ADS)

    Baccaro, S.; Catallo, N.; Cemmi, A.; Sharma, G.

    2011-01-01

    The Electron Paramagnetic Resonance technique has been used to study the time decay of paramagnetic species induced by gamma irradiation and the radiation hardness of different alkali borate glasses for their application in safe nuclear waste disposal. Glasses with different composition have been prepared by conventional melt-quenching. Glass compositions have been chosen to elucidate the role of different alkali cations and of aluminium oxide on the borate glass network. The paramagnetic states detected in these glasses have been attributed, according to the literature, to the formation of hole centers associated with threefold coordinated boron. The results indicate that the time decay trend of the different glasses is slow and that the constant decay does not appear related to the chemical composition. Moreover, the undesired strong fading of the radiation-induced signal during the first 24 h after irradiation, observable in silicate glasses has not been detected. Although no species detectable by a X band spectrometer have been generated, the interaction of lithium borate glasses with air seem to accelerate the system decay rate. Annealing was finally performed and optimized, investigating the correlation between the chemical composition and the radiation damage recovery.

  14. The role of natural glasses as analogues in projecting the long-term alteration of high-level nuclear waste glasses: Part 1

    SciTech Connect

    Mazer, J.J.

    1993-12-31

    The common observation of glasses persisting in natural environments for long periods of time (up to tens of millions of years) provides compelling evidence that these materials can be kinetically stable in a variety of subsurface environments. This paper reviews how natural and historical synthesized glasses can be employed as natural analogues for understanding and projecting the long-term alteration of high-level nuclear waste glasses. The corrosion of basaltic glass results in many of the same alteration features found in laboratory testing of the corrosion of high-level radioactive waste glasses. Evidence has also been found indicating similarities in the rate controlling processes, such as the effects of silica concentration on corrosion in groundwater and in laboratory leachates. Naturally altered rhyolitic glasses and tektites provide additional evidence that can be used to constrain estimates of long-term waste glass alteration. When reacted under conditions where water is plentiful, the corrosion for these glasses is dominated by network hydrolysis, while the corrosion is dominated by molecular water diffusion and secondary mineral formation under conditions where water contact is intermittent or where water is relatively scarce. Synthesized glasses that have been naturally altered result in alkali-depleted alteration features that are similar to those found for natural glasses and for nuclear waste glasses. The characteristics of these alteration features appear to be dependent on the alteration conditions which affect the dominant reaction processes during weathering. In all cases, care must be taken to ensure that the information being provided by natural analogues is related to nuclear waste glass corrosion in a clear and meaningful way.

  15. Solid-State NMR Examination of Alteration Layers on a Nuclear Waste Glasses

    SciTech Connect

    Murphy, Kelly A.; Washton, Nancy M.; Ryan, Joseph V.; Pantano, Carlo G.; Mueller, Karl T.

    2013-06-01

    Solid-state NMR is a powerful tool for probing the role and significance of alteration layers in determining the kinetics for the corrosion of nuclear waste glass. NMR methods are used to probe the chemical structure of the alteration layers to elucidate information about their chemical complexity, leading to increased insight into the mechanism of altered layer formation. Two glass compositions were examined in this study: a glass preliminarily designed for nuclear waste immobilization (called AFCI) and a simplified version of this AFCI glass (which we call SA1R). Powdered glasses with controlled and known particles sizes were corroded at 90 °C for periods of one and five months with a surface-area to solution-volume ratio of 100,000 m-1. 1H-29Si CP-CPMG MAS NMR, 1H-27Al CP-MAS NMR, 1H-11B CP-MAS NMR, and 1H-23Na CP-MAS NMR experiments provide isolated structural information about the alteration layers, which differ in structure from that of the pristine glass. Both glasses studied here develop alteration layers composed primarily of [IV]Si species. Aluminum is also retained in the alteration layers, perhaps facilitated by the observed increase in coordination from [IV]Al to [VI]Al, which correlates with a loss of charge balancing cations. 1H-11B CP-MAS NMR observations indicated a retention of boron in hydrated glass layers, which has not been characterized by previous work. For the AFCI glass, secondary phase formation begins during the corrosion times considered here, and these neophases are detected within the alteration layers. We identify precursor phases as crystalline sodium metasilicates. An important finding is that layer thickness depends on the length of the initial alteration stages and varies only with respect to silicon species during the residual rate regime.

  16. An approach to thermochemical modeling of nuclear waste glass

    SciTech Connect

    Besmann, T.M.; Beahm, E.C.; Spear, K.E.

    1998-11-01

    This initial work is aimed at developing a basic understanding of the phase equilibria and solid solution behavior of the constituents of waste glass. Current, experimentally determined values are less than desirable since they depend on measurement of the leach rate under non-realistic conditions designed to accelerate processes that occur on a geologic time scale. The often-used assumption that the activity of a species is either unity or equal to the overall concentration of the metal can also yield misleading results. The associate species model, a recent development in thermochemical modeling, will be applied to these systems to more accurately predict chemical activities in such complex systems as waste glasses.

  17. AN ALTERNATIVE HOST MATRIX BASED ON IRON PHOSPHATE GLASSES FOR THE VITRIFICATION OF SPECIALIZED NUCLEAR WASTE FORMS

    EPA Science Inventory

    Borosilicate glass is the only material currently approved and being used to vitrify high level nuclear waste. Unfortunately, many high level nuclear waste feeds in the U.S. contain components which are chemically incompatible with borosilicate glasses. Current plans call for vit...

  18. Lead-iron phosphate glass as a containment medium for the disposal of high-level nuclear wastes

    DOEpatents

    Boatner, L.A.; Sales, B.C.

    1984-04-11

    Disclosed are lead-iron phosphate glasses containing a high level of Fe/sub 2/O/sub 3/ for use as a storage medium for high-level radioactive nuclear waste. By combining lead-iron phosphate glass with various types of simulated high-level nuclear waste

  19. Current Understanding and Remaining Challenges in Modeling Long-Term Degradation of Borosilicate Nuclear Waste Glasses

    SciTech Connect

    Vienna, John D.; Ryan, Joseph V.; Gin, Stephane; Inagaki, Yaohiro

    2013-12-01

    Chemical durability is not a single material property that can be uniquely measured. Instead it is the response to a host of coupled material and environmental processes whose rates are estimated by a combination of theory, experiment, and modeling. High-level nuclear waste (HLW) glass is perhaps the most studied of any material yet there remain significant technical gaps regarding their chemical durability. The phenomena affecting the long-term performance of HLW glasses in their disposal environment include surface reactions, transport properties to and from the reacting glass surface, and ion exchange between the solid glass and the surrounding solution and alteration products. The rates of these processes are strongly influenced and are coupled through the solution chemistry, which is in turn influenced by the reacting glass and also by reaction with the near-field materials and precipitation of alteration products. Therefore, those processes must be understood sufficiently well to estimate or bound the performance of HLW glass in its disposal environment over geologic time-scales. This article summarizes the current state of understanding of surface reactions, transport properties, and ion exchange along with the near-field materials and alteration products influences on solution chemistry and glass reaction rates. Also summarized are the remaining technical gaps along with recommended approaches to fill those technical gaps.

  20. Rhenium solubility in borosilicate nuclear waste glass: implications for the processing and immobilization of technetium-99.

    PubMed

    McCloy, John S; Riley, Brian J; Goel, Ashutosh; Liezers, Martin; Schweiger, Michael J; Rodriguez, Carmen P; Hrma, Pavel; Kim, Dong-Sang; Lukens, Wayne W; Kruger, Albert A

    2012-11-20

    The immobilization of technetium-99 ((99)Tc) in a suitable host matrix has proven to be a challenging task for researchers in the nuclear waste community around the world. In this context, the present work reports on the solubility and retention of rhenium, a nonradioactive surrogate for (99)Tc, in a sodium borosilicate glass. Glasses containing target Re concentrations from 0 to 10,000 ppm [by mass, added as KReO(4) (Re(7+))] were synthesized in vacuum-sealed quartz ampules to minimize the loss of Re from volatilization during melting at 1000 °C. The rhenium was found as Re(7+) in all of the glasses as observed by X-ray absorption near-edge structure. The solubility of Re in borosilicate glasses was determined to be ~3000 ppm (by mass) using inductively coupled plasma optical emission spectroscopy. At higher rhenium concentrations, additional rhenium was retained in the glasses as crystalline inclusions of alkali perrhenates detected with X-ray diffraction. Since (99)Tc concentrations in a glass waste form are predicted to be <10 ppm (by mass), these Re results implied that the solubility should not be a limiting factor in processing radioactive wastes, assuming Tc as Tc(7+) and similarities between Re(7+) and Tc(7+) behavior in this glass system. PMID:23101883

  1. Multicomponent leach tests in Standard Canadian Shield Saline Solution on glasses containing simulated nuclear waste

    SciTech Connect

    Heimann, R.B.; Wood, D.D.; Hamon, R.F.

    1984-01-01

    Leaching experiments on borosilicate glass frit and simulated nuclear waste glasses were performed as a preliminary to leaching experiments on glasses incorporating radioactive waste. The experimental design included (1) simulated waste glass, (2) ASTM Grade-2 titanium container material, (3) clay buffer material, (4) Standard Canadian Shield Saline Solution, and (5) granitic rock. Cumulative fractions of release for boron were determined, as well as the solution concentrations of silicon, iron, strontium and cesium. The leach rates for boron after 28 d were approximately 5 x 10/sup -6/ kg x m/sup -2/ x s/sup -1/ in Hastelloy vessels. There is an apparently strong relationship between the clay/groundwater ratio, the concentration of iron in the solution, and the concentrations of silicon, strontium, and cesium.

  2. Photoluminescence investigations of rare earth (Eu and Gd) incorporated nuclear waste glass

    NASA Astrophysics Data System (ADS)

    Mohapatra, M.; Mishra, R. K.; Kaushik, C. P.; Godbole, S. V.

    2010-12-01

    Rare earth ion (Eu and Gd) bearing sodium-barium borosilicate glasses, used for vitrification of Trombay research rector nuclear waste were characterized by photoluminescence (PL) technique. This was done in order to identify the oxidation states and the coordination geometries of the ions in the glass matrix. It was observed that both the RE ions were stabilized in their 3+ oxidation state in an asymmetric geometry. Spectral analysis of the Eu-glass was carried out to evaluate the J-O intensity parameters and various radiative properties such as radiative transition rate ( AR), radiative and non-radiative lifetimes ( τR and τNR) and luminescence branching ratio ( βR). These properties suggested that amount of covalence existing between the rare earth ions and surrounding oxygens is relatively higher and there is existence of short range ordering in the glass.

  3. Comprehensive data base of high-level nuclear waste glasses: September 1987 status report: Volume 1, Discussion and glass durability data

    SciTech Connect

    Kindle, C.H.; Kreiter, M.R.

    1987-12-01

    The Materials Characterization Center (MCC) at Pacific Northwest Laboratory is assembling a comprehensive data base (CDB) of experimental data collected for high-level nuclear waste package components. Data collected throughout the world are included in the data base; current emphasis is on waste glasses and their properties. The goal is to provide a data base of properties and compositions and an analysis of dominant property trends as a function of composition. This data base is a resource that nuclear waste producers, disposers, and regulators can use to compare properties of a particular high-level nuclear waste glass product with the properties of other glasses of similar compositions. Researchers may use the data base to guide experimental tests to fill gaps in the available knowledge or to refine empirical models. The data are incorporated into a computerized data base that will allow the data to be extracted based on, for example, glass composition or test duration. 3 figs.

  4. Low-temperature lithium diffusion in simulated high-level boroaluminosilicate nuclear waste glasses

    SciTech Connect

    Neeway, James J.; Kerisit, Sebastien N.; Gin, Stephane; Wang, Zhaoying; Zhu, Zihua; Ryan, Joseph V.

    2014-12-01

    Ion exchange is recognized as an integral, if underrepresented, mechanism influencing glass corrosion. However, due to the formation of various alteration layers in the presence of water, it is difficult to conclusively deconvolute the mechanisms of ion exchange from other processes occurring simultaneously during corrosion. In this work, an operationally inert non-aqueous solution was used as an alkali source material to isolate ion exchange and study the solid-state diffusion of lithium. Specifically, the experiments involved contacting glass coupons relevant to the immobilization of high-level nuclear waste, SON68 and CJ-6, which contained Li in natural isotope abundance, with a non-aqueous solution of 6LiCl dissolved in dimethyl sulfoxide at 90 °C for various time periods. The depth profiles of major elements in the glass coupons were measured using time-of-flight secondary ion mass spectrometry (ToF-SIMS). Lithium interdiffusion coefficients, DLi, were then calculated based on the measured depth profiles. The results indicate that the penetration of 6Li is rapid in both glasses with the simplified CJ-6 glass (D6Li ≈ 4.0-8.0 × 10-21 m2/s) exhibiting faster exchange than the more complex SON68 glass (DLi ≈ 2.0-4.0 × 10-21 m2/s). Additionally, sodium ions present in the glass were observed to participate in ion exchange reactions; however, different diffusion coefficients were necessary to fit the diffusion profiles of the two alkali ions. Implications of the diffusion coefficients obtained in the absence of alteration layers to the long-term performance of nuclear waste glasses in a geological repository system are also discussed.

  5. Identification of colloids in nuclear waste glass reactions

    SciTech Connect

    Cunnane, J.C.; Bates, J.K.

    1991-01-01

    Characterization data for particulates formed under a variety of laboratory leaching conditions that simulate glass reaction in a repository environment are presented. Data on the particle size distributions and filterable fractions for neptunium, plutonium, americium, and curium were obtained by filtrations through a series of filters with pore sizes ranging from 1 {mu}m to 3.8 nm. The neptunium was found to be largely nonfilterable. Americium and plutonium were associated with filterable particles. The particles with which the americium, plutonium, and curium were associated were characterized using transmission electron microscopy (TEM) examination techniques. 8 refs., 1 fig., 2 tabs.

  6. ANNUAL PROGRESS REPORT. IRON PHOSPHATE GLASSES: AN ALTERNATIVE FOR VITRIFYING CERTAIN NUCLEAR WASTES

    EPA Science Inventory

    A high priority has been given to investigating the vitrification of three specific nuclear wastes in iron phosphate glasses (IPG). These wastes, which were recommended by the Tank Focus Area (TFA) group of Hanford, are poorly suited for vitrification in the currently DOE-approve...

  7. Nuclear waste glass product consistency test (PCT): Version 7.0. Revision 3

    SciTech Connect

    Jantzen, C.M.; Bibler, N.E.; Beam, D.C.; Ramsey, W.G.

    1994-06-01

    Liquid high-level nuclear waste will be immobilized at the Savannah River Site (SRS) by vitrification in borosilicate glass. The glass will be produced in the Defense Waste Processing Facility (DWPF), poured into stainless steel canisters, and eventually disposed of in a geologic repository. In order to comply with the Waste Acceptance Product Specifications (WAPS), the durability of the glass needs to be measured during production to assure its long term stability and radionuclide release properties. A durability test, designated the Product Consistency Test (PCT), was developed for DWPF glass in order to meet the WAPS requirements. The response of the PCT procedure was based on extensive testing with glasses of widely different compositions. The PCT was determined to be very reproducible, to yield reliable results rapidly, and to be easily performed in shielded cell facilities with radioactive samples. Version 7.0 of the PCT procedure is attached. This draft version has been submitted to ASTM for full committee (C26, Nuclear Fuel Cycle) ballot after being balloted successfully through subcommittee C26.13 on Repository Waste Package Materials Testing.

  8. Crystallization of neodymium-rich phases in silicate glasses developed for nuclear waste immobilization

    NASA Astrophysics Data System (ADS)

    Caurant, D.; Majerus, O.; Loiseau, P.; Bardez, I.; Baffier, N.; Dussossoy, J. L.

    2006-08-01

    Glass-ceramics containing neodymium-rich crystalline phases can be obtained by crystallization of silicate glasses (nucleation + crystal growth heat treatments) or by controlled cooling of melts. Such materials could be envisaged as durable matrices for conditioning minor actinides- and Pu-rich nuclear wastes if the partitioning ratio of the wastes between crystalline phase and residual glass is high (principle of double containment barrier). In radioactive waste forms, Nd would be partially substituted by actinides and neutron absorbers (Gd). In this work, two silicate glass compositions leading to efficient nucleation and crystallization of either zirconolite (Ca 1- xNd xZrTi 2- xAl xO 7, x < 1) or apatite (Ca 2Nd 8Si 6O 26) in their bulk were studied as potential waste forms. The effect of the method used to prepare glass-ceramics (controlled cooling from the melt or nucleation + crystal growth from the glass) on both the microstructure and the structure of the neodymium-rich crystalline phase was studied. The highest number of zirconolite or apatite crystals in the bulk was obtained using the nucleation + crystal growth method. However, the percentage of neodymium incorporated in zirconolite crystals remained too small to make realistic the use of such materials for the conditioning of actinides in comparison with more durable bulk ceramics.

  9. FTIR spectra and properties of iron borophosphate glasses containing simulated nuclear wastes

    NASA Astrophysics Data System (ADS)

    Liao, Qilong; Wang, Fu; Chen, Kuiru; Pan, Sheqi; Zhu, Hanzhen; Lu, Mingwei; Qin, Jianfa

    2015-07-01

    30 wt.% simulated nuclear wastes were successfully immobilized by B2O3-doped iron phosphate base glasses. The structure and thermal stability of the prepared wasteforms were characterized by Fourier transform infrared spectroscopy and differential thermal analysis, respectively. The subtle structural variations attributed to different B2O3 doping modes have been discussed in detail. The results show that the thermal stability and glass forming tendency of the iron borophosphate glass wasteforms are faintly affected by different B2O3 doping modes. The main structural networks of iron borophosphate glass wasteforms are PO43-, P2O74-, [BO4] groups. Furthermore, for the wasteform prepared by using 10B2O3-36Fe2O3-54P2O5 as base glass, the distributions of Fe-O-P bonds, [BO4], PO43- and P2O74- groups are optimal. In general, the dissolution rate (DR) values of the studied iron borophosphate wasteforms are about 10-8 g cm-2 min-1. The obtained conclusions can offer some useful information for the disposal of high-level radioactive wastes using boron contained phosphate glasses.

  10. Characteristics of colloids generated during the corrosion of nuclear waste glasses in groundwater

    SciTech Connect

    Feng, X.; Buck, E.C.; Mertz, C.; Bates, J.K.; Cunnane, J.C.; Chaiko, D.

    1993-10-01

    Aqueous colloidal suspensions were generated by reacting nuclear waste glasses with groundwater at 90{degrees}C at different ratios of the glass surface area to solution volume (S/V). The colloids have been characterized in terms of size, charge, identity, and stability with respect to salt concentration, pH, and time, by examination using dynamic light scattering, electrophoretic mobility, and transmission electron microscopy. The colloids are predominately produced by precipitation from solution, possibly with contribution from reacted layers that have spallated from the glass. These colloids are silicon-rich minerals. The colloidal suspensions agglomerate when the salinity of the solutions increase. The following implications for modeling the colloidal transport of contaminants have been derived from this study: (1) The sources of the colloids are not only solubility-limited real colloids and the pseudo colloids formed by adsorption of radionuclides onto a groundwater colloid, but also from the spalled surface layers of reacted waste glasses. (2) In a repository, the local environment is likely to be glass-reaction dominated and the salt concentration is likely to be high, leading to rapid colloid agglomeration and settling; thus, colloid transport may be insignificant. (3) If large volumes of groundwater contact the glass reaction site, the precipitated colloids may become resuspended, and colloid transport may become important. (4) Under most conditions, the colloids are negatively charged and will deposit readily on positively charged surfaces. Negatively charged surfaces will, in general, facilitate colloid stability and transport.

  11. Helium bubble formation in nuclear glass by in-situ TEM ion implantation

    NASA Astrophysics Data System (ADS)

    Gutierrez, G.; Peuget, S.; Hinks, J. A.; Greaves, G.; Donnelly, S. E.; Oliviero, E.; Jgou, C.

    2014-09-01

    The effect of helium implantation fluences on He bubble nucleation and growth mechanisms in nuclear borosilicate glass has been characterized using in-situ transmission electron microscopy experiments. Observations of implanted glass at 143 K indicate that a helium concentration of around 3 at.% is required to nucleate a significant density of nanosized bubbles. He bubble growth is observed for concentration higher than the number of host sites (>4 at.%). These results highlight the large capacity of the glassy network for incorporating helium atoms.

  12. Interaction study between nuclear waste-glass melt and ceramic melter bellow liner materials

    NASA Astrophysics Data System (ADS)

    Sengupta, Pranesh

    2011-04-01

    Identification of proper materials for plant scale vitrification furnaces, engaged in immobilization of high level nuclear waste has always been a great challenge. Fast degradation of pour spout materials very often cause problem towards smooth pouring of waste-glass melt in canister and damages bellow kept in between. The present experimental study describes the various reaction products that form due to interaction between waste-glass melt and potential bellow liner materials such as copper, stainless steel and nickel based Superalloys (Alloy 690, 625). The results indicate that copper based material has lesser tendency to form adherent glassy layer.

  13. Molecular Dynamics Simulation of Lead Borate and Related Glasses in Multicomponent Systems for Low Melting Vitrification of Nuclear Wastes

    NASA Astrophysics Data System (ADS)

    Kato, S.; Sakida, S.; Benino, Y.; Nanba, T.

    2011-03-01

    Glasses based on lead oxide have excellent properties in general such as low melting point, high chemical durability and high stability of glassy form, which are suitable for the preservation of volatile nuclear wastes in a permanent vitrified form. In order to confirm the long-term performance of lead borate based glasses it is necessary to establish dissolution and diffusion processes based on a reliable model of the glass structure. In the present study molecular dynamics (MD) simulation of lead borate based glasses was carried out introducing a dummy negative point charge to reproduce asymmetric PbOn units. Parameters for the dummy charge were optimized based on the comparison between calculated radial distribution function and experimental one. Asymmetric coordination around Pb, for example trigonal bipyramid, was successfully reproduced in the MD simulated binary and ternary glass models. The simple model using the dummy charge was confirmed to be valid for further simulations of multicomponent glasses containing nuclear wastes and heavy elements.

  14. Rhenium Solubility in Borosilicate Nuclear Waste Glass: Implications for the Processing and Immobilization of Technetium-99

    SciTech Connect

    McCloy, John S.; Riley, Brian J.; Goel, Ashutosh; Liezers, Martin; Schweiger, Michael J.; Rodriguez, Carmen P.; Hrma, Pavel R.; Kim, Dong-Sang; Lukens, Wayne W.; Kruger, Albert A.

    2012-10-26

    The immobilization of 99Tc in a suitable host matrix has proved to be an arduous task for the researchers in nuclear waste community around the world. At the Hanford site in Washington State, the total amount of 99Tc in low-activity waste (LAW) is ~1300 kg and the current strategy is to immobilize the 99Tc in borosilicate glass with vitrification. In this context, the present article reports on the solubility/retention of rhenium, a nonradioactive surrogate for 99Tc, in a LAW borosilicate glass. Due to the radioactive nature of technetium, rhenium was chosen as a simulant because of the similarity between their ionic radii and other chemical aspects. The glasses containing Re (0 – 10,000 ppm by mass) were synthesized in vacuum-sealed quartz ampoules in order to minimize the loss of Re by volatilization during melting at 1000 °C. The rhenium was found to predominantly exist as Re (VII) in all the glasses as observed by X-ray absorption near-edge structure (XANES). The solubility of Re in borosilicate glasses was determined to be ~3000 ppm (by mass) with inductively coupled plasma-optical emission spectroscopy (ICP-OES). At higher rhenium concentrations, some additional material was retained in the glasses in the form of crystalline inclusions that were detected by X-ray diffraction (XRD) and laser ablation-ICP mass spectrometry (LA-ICP-MS). The implications of these results on the immobilization of 99Tc from radioactive wastes in borosilicate glasses have been discussed.

  15. Behaviour of simplified nuclear waste glasses under gold ions implantation: A microluminescence study

    NASA Astrophysics Data System (ADS)

    de Bonfils, J.; Panczer, G.; de Ligny, D.; Peuget, S.; Champagnon, B.

    2007-05-01

    Simplified nuclear borosilicate glasses doped with rare-earth elements were irradiated by gold ions. Thanks to fluorescence line narrowing spectroscopy (selective excitated photoluminescence), two major Eu3+ sites distributions were identified in the case of pre-irradiated samples due to the splitting of the 5D0 → 7F1 transition triplet. Evolution of europium ion environments under irradiation in these glasses was studied by non-selective microluminescence at room temperature. As well, spectroscopic studies demonstrated strong broadening in the distribution of the rare-earth environment for increasing irradiation doses. Determination of the luminescence asymmetric ratio allowed us to conclude that the symmetry of the sites is lowered by high energy nuclear deposits. Environment modifications under irradiation are attributed to a site distribution enlargement within the same two site distributions, a silicate and a borate one, and to lower symmetry mean sites.

  16. THERMOCHEMICAL MODELS FOR NUCLEAR WASTE GLASS SUBSYSTEMS - MGO-CAO AND MGO-AL2O3

    EPA Science Inventory

    A relatively simple model, the associate species model, is being applied to nuclear waste glass compositions in order to accurately predict behavior and thermodynamic activities in the material. In the model, the glass is treated as a supercooled liquid, with the liquid species ...

  17. Pyrochlore based glass-ceramics for the immobilization of actinide-rich nuclear wastes: From concept to reality

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Zhang, Z.; Thorogood, G.; Vance, E. R.

    2013-01-01

    Pyrochlore based glass-ceramics have been developed, from concept to reality, for the immobilization of actinide-rich nuclear wastes. Compared with zirconolite based glass-ceramics, they are less sensitive to the processing redox conditions and can double actinide waste loadings thus decreasing volumes of the consolidated waste forms, and subsequently reducing the interim storage and disposal costs. More importantly, they provide an alternative flexible system to tackle radioactive wastes arising from the advanced nuclear reactors.

  18. Nepheline Crystallization in Nuclear Waste Glasses: Progress toward acceptance of high-alumina formulations

    SciTech Connect

    McCloy, John S.; Schweiger, Michael J.; Rodriguez, Carmen P.; Vienna, John D.

    2011-09-01

    We have critically compiled and analyzed historical data for investigating the quantity of nepheline (NaAlSiO4) precipitation as a function of composition in simulated nuclear waste glasses. To understand composition we used two primary methods: 1) investigating the Al2O3-SiO2-Na2O ternary with filtering for different B2O3 levels and 2) creating a quadrant system consisting of compositions reduced to two metric numbers. These metrics are 1) the nepheline discriminator (ND) which depends only on the SiO2 content by weight normalized to the total weight of the Al2O3-SiO2-Na2O sub-mixture and 2) the optical basicity (OB) which contains contributions from all constituents in the glass. Nepheline precipitation is expected to be suppressed at high SiO2 levels (ND >0.62) or at low basicities (OB <0.55 to 0.57). Changes in sodium aluminosilicate glass OB due to additions of CaO and B2O3 correlate with observed effects on nepheline formation. We propose that additional composition space is available for formulating high-waste-loading, high-Al2O3 nuclear waste glasses when Na2O levels are less than ~0.125 (normalized by weight on the Al2O3-SiO2-Na2O sub-mixture). However, this compositional space is considerably extended to higher Na2O levels when adding >5 wt% B2O3. The OB concept can help further refine regions of nepheline-free glass formation.

  19. Conversion of Nuclear Waste into Nuclear Waste Glass: Experimental Investigation and Mathematical Modeling

    SciTech Connect

    Hrma, Pavel

    2014-12-18

    The melter feed, slurry, or calcine charged on the top of a pool of molten glass forms a floating layer of reacting material called the cold cap. Between the cold-cap top, which is covered with boiling slurry, and its bottom, where bubbles separate it from molten glass, the temperature changes by up to 1000 K. The processes that occur over this temperature interval within the cold cap include liberation of gases, conduction and consumption of heat, dissolution of quartz particles, formation and dissolution of intermediate crystalline phases, and generation of foam and gas cavities. These processes have been investigated using thermal analyses, optical and electronic microscopies, x-ray diffraction, as well as other techniques. Properties of the reacting feed, such as heat conductivity and density, were measured as functions of temperature. Investigating the structure of quenched cold caps produced in a laboratory-scale melter complemented the crucible studies. The cold cap consists of two main layers. The top layer contains solid particles dissolving in the glass-forming melt and open pores through which gases are escaping. The bottom layer contains bubbly melt or foam where bubbles coalesce into larger cavities that move sideways and release the gas to the atmosphere. The feed-to-glass conversion became sufficiently understood for representing the cold-cap processes via mathematical models. These models, which comprise heat transfer, mass transfer, and reaction kinetics models, have been developed with the final goal to relate feed parameters to the rate of glass melting.

  20. Obsidians and tektites: Natural analogues for water diffusion in nuclear waste glasses

    SciTech Connect

    Mazer, J.J.; Bates, J.K.; Bradley, C.R.; Stevenson, C.M.

    1991-11-01

    Projected scenarios for the proposed Yucca Mountain repository include significant periods of time when high relative humidity atmospheres will be present, thus the reaction processes of interest will include those known to occur under these conditions. The ideal natural analog for the proposed Yucca Mountain repository would consist of natural borosilicate glasses exposed to expected repository conditions for thousands of years; however, the prospects for identifying such an analog are remote, but an important caveat for using natural analog studies is to relate the reaction processes in the analog to those in the system of interest, rather than a strict comparison of the glass compositions. In lieu of this, identifying natural glasses that have reacted via reaction processes expected in the repository is the most attractive option. The goal of this study is to quantify molecular water diffusion in the natural analogs obsidian and tektites. Results from this study can be used in assessing the importance of factors affecting molecular water diffusion in nuclear waste glasses, relative to other identified reaction processes. In this way, a better understanding of the long-term reaction mechanism can be developed and incorporated into performance assessment models. 17 refs., 4 figs.

  1. Fibrous-glass aerosols: a literature review. Special report. [On nuclear submarines

    SciTech Connect

    Laverty, B.R.

    1987-10-02

    The submarine atmospheric is a topic of interest, considering that once submerged, the craft relies on its own electrostatic precipitators (ESP's), scrubbers, and filters to create, ideally, an environment with minimal aerosolized toxic materials and other by-products. Historically, atmosphere sampling aboard nuclear submarines has shown contaminants. Other contaminants include: ozone, (major source: by-product of the ESP's); freon, (major source: ship's refrigeration system and air-conditioning plants); hydrogen, (major source: ship's batteries); carbon dioxide, (major source: human respiration); and carbon monoxide, (major source: cigarette smoking). Contaminants tested for but not found were elemental mercury and asbestos. Considering that asbestos is no longer recommended for use, secondary to its carcinogenic and co-carcinogenic qualities, fibrous glass has become a common substitute. One use of fibrous glass aboard the Ohio class submarine is acoustic and thermal insulation around perforated ducting, which runs through many exposed, high traffic spaces, i.e. crew's berthing spaces. Although the raw fibrous glass is protected from the environment it is possible, through natural wear and tear of the housing material, that at some time the insulating material may become exposed and mechanically aerosolized. Obvious questions then are: a) do submarine aerosols contain fiber glass, and b) are there health hazards related to the inhalation of these fibers. This paper reviews the current knowledge as to the health hazard of exposure.

  2. Conversion of Nuclear Waste into Nuclear Waste Glass: Experimental Investigation and Mathematical Modeling

    DOE PAGESBeta

    Hrma, Pavel

    2014-12-18

    The melter feed, slurry, or calcine charged on the top of a pool of molten glass forms a floating layer of reacting material called the cold cap. Between the cold-cap top, which is covered with boiling slurry, and its bottom, where bubbles separate it from molten glass, the temperature changes by up to 1000 K. The processes that occur over this temperature interval within the cold cap include liberation of gases, conduction and consumption of heat, dissolution of quartz particles, formation and dissolution of intermediate crystalline phases, and generation of foam and gas cavities. These processes have been investigated usingmore » thermal analyses, optical and electronic microscopies, x-ray diffraction, as well as other techniques. Properties of the reacting feed, such as heat conductivity and density, were measured as functions of temperature. Investigating the structure of quenched cold caps produced in a laboratory-scale melter complemented the crucible studies. The cold cap consists of two main layers. The top layer contains solid particles dissolving in the glass-forming melt and open pores through which gases are escaping. The bottom layer contains bubbly melt or foam where bubbles coalesce into larger cavities that move sideways and release the gas to the atmosphere. The feed-to-glass conversion became sufficiently understood for representing the cold-cap processes via mathematical models. These models, which comprise heat transfer, mass transfer, and reaction kinetics models, have been developed with the final goal to relate feed parameters to the rate of glass melting.« less

  3. Relaxation transition in glass-forming polybutadiene as revealed by nuclear resonance X-ray scattering

    NASA Astrophysics Data System (ADS)

    Kanaya, Toshiji; Inoue, Rintaro; Saito, Makina; Seto, Makoto; Yoda, Yoshitaka

    2014-04-01

    We investigated the arrest mechanism of molecular motions in a glass forming polybutadiene near the glass transition using a new nuclear resonance synchrotron X-ray scattering technique to cover a wide time range (10-9 to 10-5 s) and a scattering vector Q range (9.6-40 nm-1), which have never been accessed by other methods. Owing to the wide time and Q ranges it was found for the first time that a transition of the ?-process to the slow ?-process (or the Johari-Goldstein process) was observed in a Q range higher than the first peak in the structure factor S(Q) at the critical temperature Tc in the mode coupling theory. The results suggest the important roles of hopping motions below Tc, which was predicted by the recent extended mode coupling theory and the cooperative motions due to the strong correlation at the first peak in S(Q) in the arrest mechanism.

  4. Raman Spectra, Structural Units and Durability of Nuclear Waste Glasses With Variations in Composition and Crystallization: Implications for Intermediate Order in the Glass Network

    SciTech Connect

    Raman, Swaminathan Venkat

    2002-11-01

    The Raman spectra of nuclear waste glasses are composed of large variations in half-width and intensity for the commonly observed bridging (Q0) and nonbridging (Q1 to Q4) bands in silicate structures. With increase in waste concentration in a boroaluminosilicate melt, the bands of quenched glasses are distinctly localized with half-width and intensity indicative of increase in atomic order. Since the nuclear waste glasses contain disparate components, and since the bands depart from the typical random network, a systematic study for the origin of these bands as a function of composition and crystallization was undertaken. From a comparative study of Raman spectra of boroaluminosilicate glasses containing Na2O-ZrO2, Na2O-MgO, MgO-Na2O-ZrO2, Na2O-CaO-ZrO2, Na2O-CaO, and Na2O-MgO-CaF2 component sets and orthosilicate crystals of zircon and forsterite, intermediate order is inferred. An edge-sharing polyhedral structural unit is proposed to account for narrow bandwidth and high intensity for Q2 antisymmetric modes, and decreased leaching of sodium with ZrO2 concentration in glass. The intense Q4 band in nuclear waste glass is similar to the intertetrahedral antisymmetric modes in forsterite. The Raman spectra of zircon contains intratetrahedral quartz-like peaks and intertetrahedral non-bridging silicate peaks. The quartz-like peaks nearly vanish in the background of forsterite spectrum. This difference between the Raman spectra of the two orthosilicate crystals presumably results from their biaxial and uniaxial effects on polarizability ellipsoids. The results also reveal formation of 604, 956 and 961 cm-1 defect bands with composition and crystallization.

  5. Interstitial sites for He incorporation in nuclear glasses and links to the structure: Results from numerical investigation

    NASA Astrophysics Data System (ADS)

    Kerrache, Ali; Delaye, Jean-Marc

    2014-05-01

    To investigate rare gases incorporation in glasses in relation with nuclear waste confinement, a wide range of borosilicate glasses have been studied by means of molecular dynamics simulations. The rare gases solubility is related to the number of interstitial sites accessible for these gases. To elucidate any relation between the number of interstitial sites and the glass composition, a large set of glass compositions that contain the most representative components in nuclear glasses is considered. We are mainly interested in SBN glasses (SiO2-B2O3-Na2O). A composition dependent force field was used to model the interactions between the atoms. Delaunay tessellation method was used to characterize the different topologies accessible for rare gases and analyze the interstitial sites distribution. In order to investigate irradiation effects by nuclear energy deposition on the number of interstitial sites accessible for He, disordered glasses representative of structures submitted to series of displacement cascades, were prepared by modifying the preparation procedure and the number of interstitial site changes were analyzed.

  6. Identification of a Secondary Crystallized Phase formed during Nuclear Glasses Leaching - Effect of the Leached Glass Composition

    NASA Astrophysics Data System (ADS)

    Thien, Bruno; Godon, Nicole; Frugier, Pierre; Gin, Stphane; Ayral, Andr

    2010-05-01

    Silicate glass leaching in a unrenewed aqueous solution leads to gel formation at the glass water interface. This amorphous hydrated layer sometimes behaves like a diffusion barrier: the glass alteration rate decreases according to an inverse square root of time equation. In the case of Mg-containing glasses, the alteration rate usually remains quasi constant and seems to be controlled by the growth of secondary crystallized phases. These phases consume elements from solution. They can sustain gel dissolution inducing a decrease of its passivating properties. Long-term behaviour modelling of Mg-containing glasses designed for the confinement of fission products (AVM glasses, Atelier de vitrification de Marcoule, France) first requires a precise identification of these Mg-rich phases. Experimental investigations were performed on several glass samples using X-ray diffraction (XRD), 27Al and 29Si MAS NMR and elemental chemical analysis. Aluminous hectorite Na0.45(Mg2.28Li0.11Al0.39Fe0.06M0.16)(Si3.21Al0.79)O10(OH)2, with M being a divalent cation, was identified. 25 glasses were required for a full representation in term variations of AVM glasses composition range. Their residual alteration rates were proved to significantly depend on glass composition since a one order of magnitude difference was measured between the less and the most altered glasses. Nevertheless, the same crystallized phase was evidenced whatever the glass composition and whatever the initial composition of the solution (pure water or Mg-rich groundwater). Only a shift of the (060) peak between 1.521 and 1.530 was evidenced. It can be attributed to slight composition variations. Relations between the glass magnesium fraction, the amount of precipitated hectorite, the residual rate, and the measured pH are not obvious. However, hectorite precipitation was proved to depend on pH, being favoured between pH50C 9 and 9.5. Moreover, the higher the amount of precipitated hectorite, the lower the solution pH. Self regulation of hectorite precipitation evidences that all mechanisms involved are strongly interdependent.

  7. Model for the conversion of nuclear waste melter feed to glass

    SciTech Connect

    Pokorny, Richard; Hrma, Pavel R.

    2014-02-01

    The rate of batch-to-glass conversion is a primary concern for the vitrification of nuclear waste, as it directly influences the life cycle of the cleanup process. This study describes the development of an advanced model of the cold cap, which augments the previous model by further developments on the structure and the dynamics of the foam layer. The foam layer on the bottom of the cold cap consists of the primary foam, cavities, and the secondary foam, and forms an interface through which the heat is transferred to the cold cap. Other model enhancements include the behavior of intermediate crystalline phases and the dissolution of quartz particles. The model relates the melting rate to feed properties and melter conditions, such as the molten glass temperature, foaminess of the feed, or the heat fraction supplied to the cold cap from the plenum space. The model correctly predicts a 25% increase in melting rate when changing the alumina source in the melter feed from Al(OH)3 to AlO(OH). It is expected that this model will be incorporated in the full glass melter model as its integral component.

  8. Physical and thermal properties of simulated nuclear waste glasses and their melts. Final report

    SciTech Connect

    Pye, L.D.

    1985-02-01

    The physical and thermal properties of three simulated nuclear waste glasses (high iron, TDS and high alumina) and their melts were measured. The low temperature properties included: thermal diffusivity, thermal expansion, Young's modulus, modulus of rupture, Poisson's ratio, annealing point, glass transition temperature, dilatometric softening point, and specific heat. The high-temperature properties included: viscosity, density, and thermal diffusivity. The measurement of thermal diffusivity at low temperatures was based on a method described by Plummer. In this work, however, temperature-time data pairs were collected in a digital form and fed directly into a numerical analysis program. In this way, excellent agreement between measured and calculated values of thermal diffusivity was obtained for a standard glass, e.g., vitreous silica. High-temperature thermal diffusivity was measured by the method of Van Zee and Babcock. As in the low temperature diffusivity measurements, temperature-time data pairs were collected and analyzed numerically. The remaining properties were measured by normal methods. In most instances, data were first obtained on reference materials as a means of verifying experimental procedures and methods of analysis.

  9. Model for the conversion of nuclear waste melter feed to glass

    NASA Astrophysics Data System (ADS)

    Pokorny, Richard; Hrma, Pavel

    2014-02-01

    The rate of batch-to-glass conversion is a primary concern for the vitrification of nuclear waste, as it directly influences the life cycle of the cleanup process. This study describes the development of an advanced model of the cold cap, which augments the previous model by further developments on the structure and the dynamics of the foam layer. The foam layer on the bottom of the cold cap consists of the primary foam, cavities, and the secondary foam, and forms an interface through which the heat is transferred to the cold cap. Other model enhancements include the behavior of intermediate crystalline phases and the dissolution of quartz particles. The model relates the melting rate to feed properties and melter conditions, such as the molten glass temperature, foaminess of the melt, or the heat fraction supplied to the cold cap from the plenum space. The model correctly predicts a 25% increase in melting rate when changing the alumina source in the melter feed from Al(OH)3 to AlO(OH). It is expected that this model will be incorporated in the full glass melter model as its integral component.

  10. Apatite- and monazite-bearing glass-crystal composites for the immobilization of low-level nuclear and hazardous wastes

    SciTech Connect

    Wronkiewicz, D.J.; Wolf, S.F.; DiSanto, T.S.

    1995-12-31

    This study demonstrates that glass-crystal composite waste forms can be produced from waste streams containing high proportions of phosphorus, transition metals, and/or halides. The crystalline phases produced in crucible-scale melts include apatite, monazite, spinels, and a Zr-Si-Fe-Ti phase. These phases readily incorporated radionuclide and toxic metals into their crystal structures, while corrosion tests have demonstrated that glass-crystal composites can be up to 300-fold more durable than simulated high-level nuclear waste glasses, such as SRL 202U.

  11. (6)Li, (7)Li Nuclear Magnetic Resonance Investigation of Lithium Coordination in Binary Phosphate Glasses

    SciTech Connect

    Alam, T.M.; Boyle, T.J.; Brow, R.K.; Conzone, S.

    1999-02-08

    {sup 6}Li and {sup 7}Li solid state magic angle spinning (MAS) nuclear magnetic resonance (NMR) spectroscopy has been used to investigate the local coordination environment of lithium in a series of xLi{sub 2}O {center_dot} (1-x)P{sub 2}O{sub 5} glasses, where 0.05 {le} x {le} 0.55. Both the {sup 6}Li and {sup 7}Li show chemical shift variations with changes in the Li{sub 2}O concentration, but the observed {sup 6}Li NMR chemical shifts closely approximate the true isotropic chemical shift and can provide a measure of the lithium bonding environment. The {sup 6}Li NMR results indicate that in this series of lithium phosphate glasses the Li atoms have an average coordination between four and five. The results for the metaphosphate glass agree with the coordination number and range of chemical shifts observed for crystalline LiPO{sub 3}. An increase in the {sup 6}Li NMR chemical shift with increasing Li{sub 2}O content was observed for the entire concentration range investigated, correlating with increased cross-linking of the phosphate tetrahedral network by O-Li-O bridges. The {sup 6}Li chemical shifts were also observed to vary monotonically through the anomalous glass transition temperature (T{sub g}) minimum. This continuous chemical shift variation shows that abrupt changes in the Li coordination environment do not occur as the Li{sub 2}O concentration is increased, and such abrupt changes can not be used to explain the T{sub g} minimum.

  12. Characterization of borate glasses by W-band pulse electron-nuclear double resonance spectroscopy

    SciTech Connect

    Kordas, George; Goldfarb, Daniella

    2008-10-21

    (100-x) mol % B{sub 2}O{sub 3} x mol %Me{sub 2}O (Me=Li,Na,K) glasses, exposed to {gamma}-{sup 60}Co irradiation to produce paramagnetic states, were characterized by W-band (95 GHz) pulse electron-nuclear double resonance (ENDOR) spectroscopy in order to characterize local structures occurring in the range of compositions between x=16 and x=25 at which the 'boron oxide' anomaly occurs. The high resolution of nuclear frequencies allowed resolving the {sup 7}Li and {sup 11}B ENDOR lines. In the samples with x=16 and x=20 glasses, {sup 11}B hyperfine couplings of 16, 24, and 36 MHz were observed and attributed to the tetraborate, triborate, and boron oxygen hole center (BOHC) structures, respectively. The x=25 samples showed hyperfine couplings of 15 MHz for the tetraborate and 36 MHz for BOHC. Density functional theory (DFT) calculations predicted for these structures negative hyperfine couplings, which were confirmed by W-band ENDOR. This suggests that a spin polarization mechanism accounts for the negative hyperfine structure splitting.

  13. Characterization of borate glasses by W-band pulse electron-nuclear double resonance spectroscopy

    NASA Astrophysics Data System (ADS)

    Kordas, George; Goldfarb, Daniella

    2008-10-01

    (100-x)mol% B2O3 x mol % Me2O (Me=Li,Na,K) glasses, exposed to ?-Co60 irradiation to produce paramagnetic states, were characterized by W-band (95GHz ) pulse electron-nuclear double resonance (ENDOR) spectroscopy in order to characterize local structures occurring in the range of compositions between x =16 and x =25 at which the "boron oxide" anomaly occurs. The high resolution of nuclear frequencies allowed resolving the Li7 and B11 ENDOR lines. In the samples with x =16 and x =20 glasses, B11 hyperfine couplings of 16, 24, and 36MHz were observed and attributed to the tetraborate, triborate, and boron oxygen hole center (BOHC) structures, respectively. The x =25 samples showed hyperfine couplings of 15MHz for the tetraborate and 36MHz for BOHC. Density functional theory (DFT) calculations predicted for these structures negative hyperfine couplings, which were confirmed by W-band ENDOR. This suggests that a spin polarization mechanism accounts for the negative hyperfine structure splitting.

  14. Characterization of borate glasses by W-band pulse electron-nuclear double resonance spectroscopy.

    PubMed

    Kordas, George; Goldfarb, Daniella

    2008-10-21

    (100-x) mol % B(2)O(3) x mol % Me(2)O (Me = Li,Na,K) glasses, exposed to gamma-(60)Co irradiation to produce paramagnetic states, were characterized by W-band (95 GHz) pulse electron-nuclear double resonance (ENDOR) spectroscopy in order to characterize local structures occurring in the range of compositions between x=16 and x=25 at which the "boron oxide" anomaly occurs. The high resolution of nuclear frequencies allowed resolving the (7)Li and (11)B ENDOR lines. In the samples with x=16 and x=20 glasses, (11)B hyperfine couplings of 16, 24, and 36 MHz were observed and attributed to the tetraborate, triborate, and boron oxygen hole center (BOHC) structures, respectively. The x=25 samples showed hyperfine couplings of 15 MHz for the tetraborate and 36 MHz for BOHC. Density functional theory (DFT) calculations predicted for these structures negative hyperfine couplings, which were confirmed by W-band ENDOR. This suggests that a spin polarization mechanism accounts for the negative hyperfine structure splitting. PMID:19045204

  15. Radiation effects in moist-air systems and the influence of radiolytic product formation on nuclear waste glass corrosion

    SciTech Connect

    Wronkiewicz, D.J.; Bates, J.K.; Buck, E.C.; Hoh, J.C.; Emery, J.W.; Wang, L.M.

    1997-07-01

    Ionizing radiation may affect the performance of glass in an unsaturated repository site by interacting with air, water vapor, or liquid water to produce a variety of radiolytic products. Tests were conducted to examine the effects of radiolysis under high gas/liquid ratios. Results indicate that nitrate is the predominant radiolytic product produced following both gamma and alpha radiation exposure, with lesser amounts of nitrite and carboxylic acids. The formation of nitrogen acids during exposure to long-lived, alpha-particle-emitting transuranic elements indicates that these acids may play a role in influencing nuclear waste form reactions in a long-term unsaturated disposal scenario. Experiments were also conducted with samples that simulate the composition of Savannah River Plant nuclear waste glasses. Radiolytic product formation in batch tests (340 m{sup {minus}1}, 90 C) resulted in a small increase in the release rates of many glass components, such as alkali and alkaline earth elements, although silicon and uranium release rates were slightly reduced indicating an overall beneficial effect of radiation on waste form stability. The radiolytic acids increased the rate of ion exchange between the glass and the thin film of condensate, resulting in accelerated corrosion rates for the glass. The paragenetic sequence of alteration phases formed on both the irradiated and nonirradiated glass samples reacted in the vapor hydration tests matches closely with those developed during volcanic glass alteration in naturally occurring saline-alkaline lake systems. This correspondence suggests that the high temperatures used in these tests have not changed the underlying glass reaction mechanism relate to that which controls glass reactions under ambient surficial conditions.

  16. Heat Transfer in Waste Glass Melts - Measurement and Implications for Nuclear Waste Vitrification

    NASA Astrophysics Data System (ADS)

    Wang, Chuan

    Thermal properties of waste glass melts, such as high temperature density and thermal conductivity, are relevant to heat transfer processes in nuclear waste vitrification. Experimental measurement techniques were developed and applied to four nuclear waste glasses representative of those currently projected for treatment of Hanford HLW and LAW streams to study heat flow mechanisms in nuclear waste vitrification. Density measurement results by Archimedes' method indicated that densities of the melts investigated varied considerably with composition and temperature. Thermal diffusivities of waste melts were determined at nominal melter operating temperatures using a temperature-wave technique. Thermal conductivities were obtained by combining diffusivity data with the experimentally-acquired densities of the melts and their known heat capacities. The experimental results display quite large positive dependences of conductivities on temperature for some samples and much weaker positive temperature dependences for others. More importantly, there is observed a big change in the slopes of the conductivities versus temperature as temperature is increased for two of the melts, but not for the other two. This behavior was interpreted in terms of the changing contributions of radiation and conduction with temperature and composition dependence of the absorption coefficient. Based on the obtained thermal conductivities, a simple model for a waste glass melter was set up, which was used to analyze the relative contributions of conduction and radiation individually and collectively to the overall heat flow and to investigate factors and conditions that influence the radiation contribution to heat flow. The modeling results showed that unlike the case at lower temperatures, the radiant energy flow through waste melts could be predominant compared with conduction at temperature of about 900 °C or higher. However, heat flow due to radiation was roughly equal to that from conduction as temperatures below about 700 °C. Moreover, the effect was reduced for higher absorption coefficient samples. Modeling further demonstrated that geometry exerts a significant influence on the radiation contribution to heat transfer. Room temperature radiation absorption coefficients of the same samples were determined using FTIR, which were compared with those estimated by modeling.

  17. Dynamics of asymmetric binary glass formers. I. A dielectric and nuclear magnetic resonance spectroscopy study

    SciTech Connect

    Kahlau, R.; Bock, D.; Schmidtke, B.; Rössler, E. A.

    2014-01-28

    Dielectric spectroscopy as well as {sup 2}H and {sup 31}P nuclear magnetic resonance spectroscopy (NMR) are applied to probe the component dynamics of the binary glass former tripropyl phosphate (TPP)/polystyrene (PS/PS-d{sub 3}) in the full concentration (c{sub TPP}) range. In addition, depolarized light scattering and differential scanning calorimetry experiments are performed. Two glass transition temperatures are found: T{sub g1}(c{sub TPP}) reflects PS dynamics and shows a monotonic plasticizer effect, while the lower T{sub g2}(c{sub TPP}) exhibits a maximum and is attributed to (faster) TPP dynamics, occurring in a slowly moving or immobilized PS matrix. Dielectric spectroscopy probing solely TPP identifies two different time scales, which are attributed to two sub-ensembles. One of them, again, shows fast TPP dynamics (α{sub 2}-process), the other (α{sub 1}-process) displays time constants identical with those of the slow PS matrix. Upon heating the α{sub 1}-fraction of TPP decreases until above some temperature T{sub c} only a single α{sub 2}-population exists. Inversely, below T{sub c} a fraction of the TPP molecules is trapped by the PS matrix. At low c{sub TPP} the α{sub 2}-relaxation does not follow frequency-temperature superposition (FTS), instead it is governed by a temperature independent distribution of activation energies leading to correlation times which follow Arrhenius laws, i.e., the α{sub 2}-relaxation resembles a secondary process. Yet, {sup 31}P NMR demonstrates that it involves isotropic reorientations of TPP molecules within a slowly moving or rigid matrix of PS. At high c{sub TPP} the super-Arrhenius temperature dependence of τ{sub 2}(T), as well as FTS are recovered, known as typical of the glass transition in neat systems.

  18. Relaxation transition in glass-forming polybutadiene as revealed by nuclear resonance X-ray scattering.

    PubMed

    Kanaya, Toshiji; Inoue, Rintaro; Saito, Makina; Seto, Makoto; Yoda, Yoshitaka

    2014-04-14

    We investigated the arrest mechanism of molecular motions in a glass forming polybutadiene near the glass transition using a new nuclear resonance synchrotron X-ray scattering technique to cover a wide time range (10(-9) to 10(-5) s) and a scattering vector Q range (9.6-40 nm(-1)), which have never been accessed by other methods. Owing to the wide time and Q ranges it was found for the first time that a transition of the ?-process to the slow ?-process (or the Johari-Goldstein process) was observed in a Q range higher than the first peak in the structure factor S(Q) at the critical temperature T(c) in the mode coupling theory. The results suggest the important roles of hopping motions below T(c), which was predicted by the recent extended mode coupling theory and the cooperative motions due to the strong correlation at the first peak in S(Q) in the arrest mechanism. PMID:24735317

  19. Silicate Glasses In Nuclear Harsh Environment: Application Of Thermostimulated Luminescence To Radiation Damage Study

    NASA Astrophysics Data System (ADS)

    Kersey, A. D.; Dandridge, A.; Tveten, A. B.

    1989-04-01

    It is well known that when a silica optical fiber is irradiated by neutrons or heavy ions, there is an attenuation of the transmission of the signal which is due to the creation of specific radiation damage. We have been able to show the creation of alpha radiation damage in borosilicate glass and glass used for radioactive waste confining in studying their properties of thermostimulated luminescence after high alpha irradiation. We have been able to correlate these radiation damages with interatomic bond break which implies oxygen. To extend this research to all silica optical fiber, the thermostimulated luminescence mechanisms of vitreous silica have been analysed. To exalt its properties in thermostimulated luminescence it has been doped with aluminium. Then, the creation of alpha radiation damage has been searched in this vitreous silica doped with aluminium. The next step of the study is an extending of this method to detect the effect of neutronic or heavy ions irradiation on vitreous silica samples which constitutes the basic material of optical fiber used in nuclear harsh environment.

  20. Dynamics of asymmetric binary glass formers. II. Results from nuclear magnetic resonance spectroscopy

    SciTech Connect

    Bock, D.; Kahlau, R.; Pötzschner, B.; Körber, T.; Wagner, E.; Rössler, E. A.

    2014-03-07

    Various {sup 2}H and {sup 31}P nuclear magnetic resonance (NMR) spectroscopy techniques are applied to probe the component dynamics of the binary glass former tripropyl phosphate (TPP)/polystyrene-d{sub 3} (PS) over the full concentration range. The results are quantitatively compared to those of a dielectric spectroscopy (DS) study on the same system previously published [R. Kahlau, D. Bock, B. Schmidtke, and E. A. Rössler, J. Chem. Phys. 140, 044509 (2014)]. While the PS dynamics does not significantly change in the mixtures compared to that of neat PS, two fractions of TPP molecules are identified, one joining the glass transition of PS in the mixture (α{sub 1}-process), the second reorienting isotropically (α{sub 2}-process) even in the rigid matrix of PS, although at low concentration resembling a secondary process regarding its manifestation in the DS spectra. Pronounced dynamical heterogeneities are found for the TPP α{sub 2}-process, showing up in extremely stretched, quasi-logarithmic stimulated echo decays. While the time window of NMR is insufficient for recording the full correlation functions, DS results, covering a larger dynamical range, provide a satisfactory interpolation of the NMR data. Two-dimensional {sup 31}P NMR spectra prove exchange within the broadly distributed α{sub 2}-process. As demonstrated by {sup 2}H NMR, the PS matrix reflects the faster α{sub 2}-process of TPP by performing a spatially highly hindered motion on the same timescale.

  1. Comprehensive data base of high-level nuclear waste glasses: September 1987 status report: Volume 2, Additional appendices

    SciTech Connect

    Kindle, C.H.; Kreiter, M.R.

    1987-12-01

    The Materials Characterization Center (MCC) is assembling a comprehensive data base (CDB) of experimental data collected for high-level nuclear waste package components. The status of the CDB is summarized in Volume I of this report. Volume II contains appendices that present data from the data base and an evaluation of glass durability models applied to the data base.

  2. MASBAL: A computer program for predicting the composition of nuclear waste glass produced by a slurry-fed ceramic melter

    SciTech Connect

    Reimus, P.W.

    1987-07-01

    This report is a user's manual for the MASBAL computer program. MASBAL's objectives are to predict the composition of nuclear waste glass produced by a slurry-fed ceramic melter based on a knowledge of process conditions; to generate simulated data that can be used to estimate the uncertainty in the predicted glass composition as a function of process uncertainties; and to generate simulated data that can be used to provide a measure of the inherent variability in the glass composition as a function of the inherent variability in the feed composition. These three capabilities are important to nuclear waste glass producers because there are constraints on the range of compositions that can be processed in a ceramic melter and on the range of compositions that will be acceptable for disposal in a geologic repository. MASBAL was developed specifically to simulate the operation of the West Valley Component Test system, a commercial-scale ceramic melter system that will process high-level nuclear wastes currently stored in underground tanks at the site of the Western New York Nuclear Services Center (near West Valley, New York). The program is flexible enough, however, to simulate any slurry-fed ceramic melter system. 4 refs., 16 figs., 5 tabs.

  3. The dual effect of Mg on the long-term alteration rate of AVM nuclear waste glasses

    NASA Astrophysics Data System (ADS)

    Thien, Bruno M. J.; Godon, Nicole; Ballestero, Anthony; Gin, Stéphane; Ayral, André

    2012-08-01

    Inactive Mg-containing nuclear waste glasses simulating actual HLW glasses produced at the AVM facility since 1995 (Marcoule, France), were leached in aqueous solution in order to assess their long term behaviour. The focus was on the effect of Mg. Our findings show that the distribution of Mg between the gel and the secondary crystalline phases strongly influences the glass dissolution rate. The glasses were leached in initially pure water (T = 50 °C, surface/volume ratio (S/V) = 55 cm-1) with and without addition of Mg2+ in the solution. "Mg-free" AVM glasses were also leached in initially pure water (50 °C, 200 cm-1) with and without addition of Mg2+ in the solution. Accurate identification of Mg-smectite secondary phases and gel composition calculations enable us to explain the different observed behaviours. Glass AVM 10 was the less altered glass in pure water. Its gel is more protective than the other probably because it is mainly balanced by Mg2+. The addition of Mg2+ in the solution triggers the precipitation of smectite (not observed in pure water experiments), which consumes silicon from the gel, leading finally to a significant increase of the glass alteration. We also focused on the AVM 6 glass which was the most altered glass in pure water of available AVM glasses. Contrary to AVM 10, the gel of AVM 6 is mainly balanced by Na+. The addition of Mg2+ in the solution allows the replacement of Na by Mg within the gel. This reaction clearly improves the gel properties and allows the rate to decrease more rapidly, in spite of the precipitation of smectite (also observed in pure water experiments). Finally, the two glasses were altered in synthetic groundwater (SGW) with a high Mg-Ca content. As expected from the previous observations, AVM 10 was insensitive to the presence of alkaline earths in the leaching solution whereas AVM 6 glass exhibited a lower rate than in pure water thanks to the incorporation of Mg and Ca within the gel.

  4. Contribution of atom-probe tomography to a better understanding of glass alteration mechanisms: application to a nuclear glass specimen altered 25 years in a granitic environment

    SciTech Connect

    Gin, Stephane; Ryan, Joseph V.; Schreiber, Daniel K.; Neeway, James J.; Cabie, M.

    2013-06-01

    We report and discuss results of atom probe tomography (APT) and energy-filtered transmission electron microscopy (EFTEM) applied to a borosilicate glass sample of nuclear interest altered for nearly 26 years at 90°C in a confined granitic medium in order to better understand the rate-limiting mechanisms under conditions representative of a deep geological repository for vitrified radioactive waste. The APT technique allows the 3D reconstruction of the elemental distribution at the reactive interphase with sub-nanometer precision. Profiles of the B distribution at pristine glass/hydrated glass interface obtained by different techniques are compared to show the challenge of accurate measurements of diffusion profiles at this buried interface on the nanometer length scale. Our results show that 1) Alkali from the glass and hydrogen from the solution exhibit anti-correlated 15 ± 3 nm wide gradients located between the pristine glass and the hydrated glass layer, 2) boron exhibits an unexpectedly sharp profile located just at the outside of the alkali/H interdiffusion layer; this sharp profile is more consistent with a dissolution front than a diffusion-controlled release of boron. The resulting apparent diffusion coefficients derived from the Li and H profiles are DLi = 1.5 × 10-22 m2.s-1 and DH = 6.8 × 10-23 m2.s-1. These values are around two orders of magnitude lower than those observed at the very beginning of the alteration process, which suggests that interdiffusion is slowed at high reaction progress by local conditions that could be related to the porous structure of the interphase. As a result, the accessibility of water to the pristine glass could be the rate-limiting step in these conditions. More generally, these findings strongly support the importance of interdiffusion coupled with hydrolysis reactions of the silicate network on the long-term dissolution rate, contrary to what has been suggested by recent interfacial dissolution-precipitation models for silicate minerals.

  5. The determination of the Fe sup 2+ /Fe sup 3+ ratio in simulated nuclear waste glass by ion chromatography

    SciTech Connect

    Jantzen, C.M.

    1990-10-01

    Liquid high-level nuclear waste will be immobilized at the Savannah River Site (SRS) by vitrification in borosilicate glass in the Defense Waste Processing Facility (DWPF). In this facility, control of the oxidation/reduction (redox) equilibrium in the glass melter is critical for processing of the nuclear waste. Therefore, the development of a rapid and reliable analytical method for the determination of the redox equilibrium is of considerable interest. Redox has been determined by measuring the ratio of ferrous to ferric ions in the glass melt. Two analytical techniques for glass redox measurement have been investigated for the DWPF: Mossbauer Spectroscopy which may be subject to interferences from the radiation in actual waste, and a rapid and simple chemical dissolution/spectrophotometric technique. Comparisons of these techniques have been made at several laboratories including Clemson University. In the study attached, the determination of the redox ratio by Ion Chromatography (IC) was investigated as a potential new technology. Clemson University performed IC analyses on the same glasses as previously examined by wet chemical and Mossbauer techniques. Results from all three techniques were highly correlated and IC was reported to be a promising new technology for redox measurement. 19 refs., 19 figs., 5 tabs.

  6. Measurement of the nuclear electromagnetic cascade development in glass at energies above 200 GeV

    NASA Technical Reports Server (NTRS)

    Gillespie, C. R.; Huggett, R. W.; Humphreys, D. R.; Jones, W. V.; Levit, L. B.

    1971-01-01

    The longitudinal development of nuclear-electromagnetic cascades with energies greater than 200 GeV was measured in a low-Z (glass) absorber. This was done in the course of operating an ionization spectrometer at mountain altitude in an experiment to study the properties of gamma rays emitted from individual interactions at energies around 10,000 GeV. The ionization produced by a cascade is sampled by 20 sheets of plastic scintillator spaced uniformly in depth every 2.2 radiation lengths. Adjacent pairs of scintillators are viewed by photomultipliers which measure the mean ionization produced by an individual cascade in 10 layers each 1.1 interaction length (4.4 radiation lengths) thick. The longitudinal development of the cascades was measured for about 250 cascades having energies ranging from 200 GeV to 2500 GeV. The observations are compared with the predictions of calculations made for this specific spectrometer using a three-dimensional Monte Carlo model of the nuclear-electromagnetic cascade.

  7. Cerium, uranium, and plutonium behavior in glass-bonded sodalite, a ceramic nuclear waste form.

    SciTech Connect

    Lewis, M. A.; Lexa, D.; Morss, L. R.; Richmann, M. K.

    1999-09-03

    Glass-bonded sodalite is being developed as a ceramic waste form (CWF) to immobilize radioactive fission products, actinides, and salt residues from electrometallurgical treatment of spent nuclear reactor fuel. The CWF consists of about 75 mass % sodalite, 25 mass % glass, and small amounts of other phases. This paper presents some results and interpretation of physical measurements to characterize the CWF structure, and dissolution tests to measure the release of matrix components and radionuclides from the waste form. Tests have been carried out with specimens of the CWF that contain rare earths at concentrations similar to those expected in the waste form. Parallel tests have been carried out on specimens that have uranium or plutonium as well as the rare earths at concentrations similar to those expected in the waste forms; in these specimens UCl{sub 3} forms UO{sub 2} and PuCl{sub 3} forms PuO{sub 2}. The normalized releases of rare earths in dissolution tests were found to be much lower than those of matrix elements (B, Si, Al, Na). When there is no uranium in the CWF, the release of cerium is two to ten times lower than the release of the other rare earths. The low release of cerium may be due to its tetravalent state in uranium-free CWF. However, when there is uranium in the CWF, the release of cerium is similar to that of the other rare earths. This trivalent behavior of cerium is attributed to charge transfer or covalent interactions among cerium, uranium, and oxygen in (U,Ce)O{sub 2}.

  8. Examining the role of canister cooling conditions on the formation of nepheline from nuclear waste glasses

    SciTech Connect

    Christian, J. H.

    2015-09-01

    Nepheline (NaAlSiO?) crystals can form during slow cooling of high-level waste (HLW) glass after it has been poured into a waste canister. Formation of these crystals can adversely affect the chemical durability of the glass. The tendency for nepheline crystallization to form in a HLW glass increases with increasing concentrations of Al?O? and Na?O.

  9. Examining the role of canister cooling conditions on the formation of nepheline from nuclear waste glasses

    SciTech Connect

    Christian, J. H.

    2015-09-01

    Nepheline (NaAlSiO₄) crystals can form during slow cooling of high-level waste (HLW) glass after it has been poured into a waste canister. Formation of these crystals can adversely affect the chemical durability of the glass. The tendency for nepheline crystallization to form in a HLW glass increases with increasing concentrations of Al₂O₃ and Na₂O.

  10. Isothermal crystallization kinetics in simulated high-level nuclear waste glass

    SciTech Connect

    Vienna, J.D.; Hrma, P.; Smith, D.E.

    1997-12-31

    Crystallization kinetics of a simulated high-level waste (HLW) glass were measured and modelled. Kinetics of acmite growth in the standard HW39-4 glass were measured using the isothermal method. A time-temperature-transformation (TTT) diagram was generated from these data. Classical glass-crystal transformation kinetic models were empirically applied to the crystallization data. These models adequately describe the kinetics of crystallization in complex HLW glasses (i.e., RSquared = 0.908). An approach to measurement, fitting, and use of TTT diagrams for prediction of crystallinity in a HLW glass canister is proposed.

  11. Reaction and devitrification of a prototype nuclear-waste-storage glass with hot magnesium-rich brine

    SciTech Connect

    Komarneni, S.; Freeborn, W.P.; Scheetz, B.E.; White, W.B.; McCarthy, G.J.

    1982-10-01

    PNL 76-68, a prototype nuclear waste storage glass, was reacted under hydrothermal conditions at 100, 200, and 300 C with NBT-6a (Ca-Mg-K-Na-Cl) brine. Reaction products were identified, the state of the residual glass determined, and the concentrations of various elements remaining in the solutions analyzed. Solid products formed by reaction of the glass and brine talc (hydrated magnesium silicate), powellite (CaMoO/sub 4/), hematite (Fe/sub 2/O/sub 3/) and rarely an unidentified uranium-containing phase. Glass fragments were leached to depths of 300 to 500 ..mu..m, depending on time and temperature. Most elements were extracted, but the silicate framework remained intact. Distinct diffusion fronts due to K/Na exchange and Mg/Zn exchange were identified. A complex compositional layering develops in the outer reaction rind. The concentration of silica in brine solution was lower by an order of magnitude than the concentration of silica in deionized water reacted under similar conditions. The concentration of cesium, strontium, uranium, rare earths, and other alkali and alkaline earth elements in solution increases exponentially with temperature of reaction. Behavior of the transition metals is more complex. In general the extraction of elements from the glass by hydrothermal brine leads to concentrations in solution that are from 10 to 100 times higher than the concentrations obtained by deionized water extraction under similar conditions of temperature and pressure.

  12. Resarch investigation on dense scintillation glass for use in total absorption nuclear cascade detectors

    NASA Technical Reports Server (NTRS)

    Hensler, J. R.

    1973-01-01

    Three approaches to the development of a high density scintillation glass were investigated: They include the increase of density of glass systems containing cerium - the only systems which were known to show scintillation, the testing of a novel silicate glass system containing significant concentrations of silver produced by ion exchange and never tested previously, and the hot pressing of a diphasic compact of low density scintillation glass with high density passive glass. In first two cases, while ultraviolet excited fluorescence was maintained in the glasses showing high density, scintillation response to high energy particles was not retained in the case of the cerium containing glasses or developed in the case of the silver containing glasses. In the case of the compacts, the extremely long path length caused by the multiple internal reflections which occur in such a body resulted in attenuation even with glasses of high specific transmission. It is not clear why the scintillation efficiency is not maintained in the higher density cerium containing glasses.

  13. IMPACT OF URANIUM AND THORIUM ON HIGH TIO2 CONCENTRATION NUCLEAR WASTE GLASSES

    SciTech Connect

    Fox, K.; Edwards, T.

    2012-01-11

    This study focused on the potential impacts of the addition of Crystalline Silicotitanate (CST) and Monosodium Titanate (MST) from the Small Column Ion Exchange (SCIX) process on the Defense Waste Processing Facility (DWPF) glass waste form and the applicability of the DWPF process control models. MST from the Salt Waste Processing Facility (SWPF) is also considered in the study. The KT08-series of glasses was designed to evaluate any impacts of the inclusion of uranium and thorium in glasses containing the SCIX components. All but one of the study glasses were found to be amorphous by X-ray diffraction (XRD). One of the slowly cooled glasses contained a small amount of trevorite, which is typically found in DWPF-type glasses and had no practical impact on the durability of the glass. The measured Product Consistency Test (PCT) responses for the study glasses and the viscosities of the glasses were well predicted by the current DWPF models. No unexpected issues were encountered when uranium and thorium were added to the glasses with SCIX components.

  14. Simultaneous nuclear reaction analyses of boron and phosphorus in thin borophosphosilicate glass films using /(?,p) reactions

    NASA Astrophysics Data System (ADS)

    Walsh, D. S.; Doyle, B. L.

    2000-03-01

    A method combining (?,p) nuclear reaction analysis (NRA) and ellipsometry has been developed for measuring the boron and phosphorus content of borophosphosilicate glass (BPSG) used for interlevel dielectrics in integrated circuits. Yields from the 31P(?,p 0) 34S ( Q=0.63 MeV) and 10B(?,p 0) 13C ( Q=4.06 MeV) reactions are coupled with ellipsometry thickness measurements to determine the average atomic percent of B and P in the film. We have determined that 6.0 MeV incident ?'s with a detector angle of 135 and about 100 ?m of Mylar range foil are optimum for our system. The yield for the 10B(?,p 0) 13C reaction is quite constant in our energy range of interest (5.8-6 MeV) but the yield for the 31P(?,p 0) 34S is not. Consequently, a simple conversion from "standard" BPSG reference samples (independently quantified by ICP mass spectrometry) is adequate to calculate a film's %B content. The %P calculation is more complex, involving a three-dimensional fit of the P yield data and measured film thickness to the film %P content. This fit is based upon yield data from a matrix of standard film samples. The technique is sensitive to 0.1% with an accuracy of 3-10% depending on the sample. This measurement method is now used routinely at Sandia National Laboratories in support of our fabrication process lines.

  15. Analytical electron microscopy study of colloids from nuclear waste glass reaction

    SciTech Connect

    Buck, E.C.; Bates, J.K.; Cunnane, J.C.; Ebert, W.L.; Feng, X.; Wronkiewicz, D.J.

    1992-12-31

    An Analytical Electron Microscopy study of colloidal particles formed during reaction of wste glass has been performed. The effect of waste glass test parameters on colloid formation is examined. Characterization of phases present in the leachate of these tests has shown that layers spalled from the glass and precipitated phases are both sources of colloids in the leachate. Elements, such as uranium, have been found to concentrate within colloidal particles in the leachate.

  16. Analytical electron microscopy study of colloids from nuclear waste glass reaction

    SciTech Connect

    Buck, E.C.; Bates, J.K.; Cunnane, J.C.; Ebert, W.L.; Feng, X.; Wronkiewicz, D.J.

    1992-01-01

    An Analytical Electron Microscopy study of colloidal particles formed during reaction of wste glass has been performed. The effect of waste glass test parameters on colloid formation is examined. Characterization of phases present in the leachate of these tests has shown that layers spalled from the glass and precipitated phases are both sources of colloids in the leachate. Elements, such as uranium, have been found to concentrate within colloidal particles in the leachate.

  17. INTRINSIC DOSIMETRY OF GLASS CONTAINERS USED TO TRANSPORT NUCLEAR MATERIALS: Potential Implications to the Field of Nuclear Forensics

    SciTech Connect

    Schwantes, Jon M.; Miller, Steven D.; Piper, Roman K.; Murphy, Mark K.; Amonette, James E.; Bonde, Steven E.; Duckworth, Douglas C.

    2008-09-15

    Thermoluminescence (TL) and Electron Paramagnetic Resonance (EPR) dosimetry were used to measure dose effects in borosilicate glass with time, from 10 minutes to ~60 days following exposure to a dose of up to 10,000 Rad. TL and EPR results were consistent and performed similarly, with both techniques capable of achieving an estimated limit of detection of between 50-100 Rad. Three peaks were identified in the TL glow curve at roughly 110oC, 205oC, and 225oC. The intensity of the 205oC peak was the dominant peak over the time period of this study. The stability of all of the peaks with time since irradiation increased with their corresponding temperature and little or no variation was observed in the glow curve response to a specified total dose attained at different dose rates. The intensity of the 205oC peak decreased logarithmically with time regardless of total dose. Based upon a conservative limit of detection of 330 Rad, a 10,000 Rad dose would still be detected 2.7E3 years after exposure. This paper introduces the concept of intrinsic dosimetry, the consideration of a measured dose received to container walls in concert with the physical characteristics of the radioactive material contained inside those walls, as a method for gathering rather unique pathway information about the history of that sample. Three hypothetical scenarios are presented to introduce this method and to illustrate how intrinsic dosimetry might benefit the fields of nuclear forensics and waste management.

  18. LITHIUM-7, BORON-10, BORON-11, and OXYGEN-17 Nuclear Magnetic Resonance Studies of Lithium Borate Glasses and Related Compounds.

    NASA Astrophysics Data System (ADS)

    Feller, Steven Allen

    1980-06-01

    Nuclear Magnetic Resonance (NMR) studies of lithium borate glasses employing the two stable isotopes of boron, B('10) and B('11), were used in the formulation of a consistent structural model throughout the glass-forming region. The ideas of Krogh-Moe were used in which the glasses are viewed as mixtures of units found in corresponding crystalline compounds. For low-alkali oxide content glasses the results are in good agreement with those obtained by Jellison and Bray in sodium borate glasses. These glasses are viewed as being mixtures of boroxol, tetraborate and diborate units. Intermediate-alkali oxide content glasses satisfy a model proposed in this thesis in which diborate and tetraborate units are destroyed to form loose N('4) and metaborate units. For high-alkali oxide content glasses the results are in good agreement with a model proposed by Yun and Yun and Bray in which loose N('4), metaborate, pyroborate and orthoborate units exist. Li(,2)O, enriched in O('17), was synthesized in such a way that H(,2)O enriched to 54% O('17) was efficiently transferred into Li(,2)O. It is hypothesized that the synthesis of Li(,2)O enriched in O('17) as well as the synthesis of the other alkali oxides (e.g. Na(,2)O, K(,2)O, Rb(,2)O and Cs(,2)O) will greatly enlarge the range of O('17) NMR studies of glasses and related compounds. Li('7) and O('17) NMR studies of Li(,2)O revealed structureless derivative spectra of linewidths 9.9 gauss and 5.8 gauss, respectively. These experimental results were compared to a second-moment calculation of the linewidths using the anti-fluorite crystal structure for Li(,2)O. O('17) NMR studies of two lithium borate compounds, lithium metaborate (Li(,2)O(.)B(,2)O(,3)) and lithium orthoborate (3Li(,2)O(.)B(,2)O(,3)) were used to identify the quadrupole parameters of bridging and non-bridging oxygen atoms. These results, in conjunction with B('11) NMR results from these compounds, were used to determine charge densities associated with the boron and oxygen atoms by means of the simplifying approximations of Townes and Dailey.

  19. CRYSTALLIZATION IN MULTICOMPONENT GLASSES

    SciTech Connect

    KRUGER AA; HRMA PR

    2009-10-08

    In glass processing situations involving glass crystallization, various crystalline forms nucleate, grow, and dissolve, typically in a nonuniform temperature field of molten glass subjected to convection. Nuclear waste glasses are remarkable examples of multicomponent vitrified mixtures involving partial crystallization. In the glass melter, crystals form and dissolve during batch-to-glass conversion, melter processing, and product cooling. Crystals often agglomerate and sink, and they may settle at the melter bottom. Within the body of cooling glass, multiple phases crystallize in a non-uniform time-dependent temperature field. Self-organizing periodic distribution (the Liesegnang effect) is common. Various crystallization phenomena that occur in glass making are reviewed.

  20. First principles process-product models for vitrification of nuclear waste: Relationship of glass composition to glass viscosity, resistivity, liquidus temperature, and durability

    SciTech Connect

    Jantzen, C.M.

    1991-12-31

    Borosilicate glasses will be used in the USA and in Europe to immobilize radioactive high level liquid wastes (HLLW) for ultimate geologic disposal. Process and product quality models based on glass composition simplify the fabrication of the borosilicate glass while ensuring glass processability and quality. The process model for glass viscosity is based on a relationship between the glass composition and its structural polymerization. The relationship between glass viscosity and electrical resistivity is also shown to relate to glass polymerization. The process model for glass liquidus temperature calculates the solubility of the liquidus phases based on the free energies of formation of the precipitating species. The durability product quality model is based on the calculation of the thermodynamic hydration free energy from the glass composition.

  1. First principles process-product models for vitrification of nuclear waste: Relationship of glass composition to glass viscosity, resistivity, liquidus temperature, and durability

    SciTech Connect

    Jantzen, C.M.

    1991-01-01

    Borosilicate glasses will be used in the USA and in Europe to immobilize radioactive high level liquid wastes (HLLW) for ultimate geologic disposal. Process and product quality models based on glass composition simplify the fabrication of the borosilicate glass while ensuring glass processability and quality. The process model for glass viscosity is based on a relationship between the glass composition and its structural polymerization. The relationship between glass viscosity and electrical resistivity is also shown to relate to glass polymerization. The process model for glass liquidus temperature calculates the solubility of the liquidus phases based on the free energies of formation of the precipitating species. The durability product quality model is based on the calculation of the thermodynamic hydration free energy from the glass composition.

  2. The reaction of synthetic nuclear waste glass in steam and hydrothermal solution

    SciTech Connect

    Ebert, W.L.; Bates, J.K.

    1989-12-31

    Glass monoliths of the WVCM 44, WVCM 50, SRL 165, and SRL 202 compositions were reacted in steam and in hydrothermal liquid at 200{degree}C. The glass reaction resulted in the formation of leached surface layers in both environments. The reaction in steam proceeds at a very low rate until precipitates form, after which the glass reaction proceeds at a greater rate. Precipitates were formed on all glass types reacted in steam. The assemblage of phases formed was unique to each glass type, but several precipitates were common to all glasses, including analcime, gyrolite, and weeksite. Reaction in steam occurs in a thin layer of condensed water which becomes saturated with respect to the observed phases after only a few days of reaction. The reaction in steam is accelerated relative to reaction in hydrothermal liquid in the sense that secondary phases from after a shorter reaction time, that is, after less glass has reacted, because of the smaller effective leachant volume present in the steam environment. A knowledge of the secondary phases which form and their influence on the glass reaction rate is crucial to the modeling effort of the repository program. 9 refs., 3 figs., 2 tabs.

  3. Towards optimization of nuclear waste glass: Constraints, property models, and waste loading

    SciTech Connect

    Hrma, P.

    1994-04-01

    Vitrification of both low- and high-level wastes from 177 tanks at Hanford poses a great challenge to glass makers, whose task is to formulate a system of glasses that are acceptable to the federal repository for disposal. The enormous quantity of the waste requires a glass product of the lowest possible volume. The incomplete knowledge of waste composition, its variability, and lack of an appropriate vitrification technology further complicates this difficult task. A simple relationship between the waste loading and the waste glass volume is presented and applied to the predominantly refractory (usually high-activity) and predominantly alkaline (usually low-activity) waste types. Three factors that limit waste loading are discussed, namely product acceptability, melter processing, and model validity. Glass formulation and optimization problems are identified and a broader approach to uncertainties is suggested.

  4. Effect of Callovo-Oxfordian clay rock on the dissolution rate of the SON68 simulated nuclear waste glass

    NASA Astrophysics Data System (ADS)

    Neeway, James J.; Abdelouas, Abdesselam; Ribet, Solange; El Mendili, Yassine; Schumacher, Stéphan; Grambow, Bernd

    2015-04-01

    Long-term storage of high-level nuclear waste glass in France is expected to occur in an engineered barrier system (EBS) located in a subsurface Callovo-Oxfordian (COx) clay rock formation in the Paris Basin in northeastern France. Understanding the behavior of glass dissolution in the complex system is critical to be able to reliably model the performance of the glass in this complex environment. To simulate this multi-barrier repository scenario in the laboratory, several tests have been performed to measure glass dissolution rates of the simulated high-level nuclear waste glass, SON68, in the presence of COx claystone at 90 °C. Experiments utilized a High-Performance Liquid Chromatography (HPLC) pump to pass simulated Bure site COx pore water through a reaction cell containing SON68 placed between two COx claystone cores for durations up to 200 days. Silicon concentrations at the outlet were similar in all experiments, even the blank experiment with only the COx claystone (∼4 mg/L at 25 °C and ∼15 mg/L at 90 °C). The steady-state pH of the effluent, measured at room temperature, was roughly 7.1 for the blank and 7.3-7.6 for the glass-containing experiments demonstrating the pH buffering capacity of the COx claystone. Dissolution rates for SON68 in the presence of the claystone were elevated compared to those obtained from flow-through experiments conducted with SON68 without claystone in silica-saturated solutions at the same temperature and similar pH values. Additionally, through surface examination of the monoliths, the side of the monolith in direct contact with the claystone was seen to have a corrosion thickness 2.5× greater than the side in contact with the bulk glass powder. Results from one experiment containing 32Si-doped SON68 also suggest that the movement of Si through the claystone is controlled by a chemically coupled transport with a Si retention factor, Kd, of 900 mL/g.

  5. Leaching Savannah River Plant nuclear waste glass in a saturated tuff environment

    SciTech Connect

    Bibler, N.E.; Wicks, G.G.; Oversby, V.M.

    1984-11-01

    Samples of SRP glass containing either simulated or actual radioactive waste were leached at 90{sup 0}C under conditions simulating a saturated tuff repository environment. The leach vessels were fabricated of tuff and actual tuff groundwater was used. Thus, the glass was leached only in the presence of those materials (including the Type 304L stainless steel canister material) that would be in the actual repository. Tests were performed for time periods up t 6 months at a SA/V ratio of 100 m{sup -1}. Results with glass containing simulated waste indicated that stainless steel canister material around the glass did not significantly affect the leaching. Based on Li and B (elements not in significant concentrations in the tuff or tuff groundwater), glass containing simulated waste leached identically to glass containing actual radioactive waste. The tuff buffered the pH so that only a slight increase was observed as a result of leaching. Results with glass containing actual radioactive waste indicated that tuff reduced the concentrations of Cs-137, Sr-90, and Pu-238 in the free groundwater in the simulated repository by 10 to 100X. Also, radiolysis of the groundwater by the glass (approximately 1000 rad/h) did not significantly affect the pH in the presence of tuff. Measured normalized mass losses in the presence of tuff for the glass based on Cs-137, Sr-90, and Pu-238 in the free groundwater were extremely low, nominally 0.02, 0.02, and 0.005 g/m{sup 2}, respectively, indicating that the glass-tuff system retained radionuclides well. 9 references, 2 figures, 3 tables.

  6. Nepheline crystallization in boron-rich alumino-silicate glasses as investigated by multi-nuclear NMR, Raman, & Mössbauer spectroscopies

    SciTech Connect

    Mccloy, John S.; Washton, Nancy M.; Gassman, Paul L.; Marcial, Jose; Weaver, Jamie L.; Kukkadapu, Ravi K.

    2015-02-01

    A spectroscopic study was conducted on 6 complex simulant nuclear waste glasses using multi-nuclear NMR, Raman and Mössbauer spectroscopies to explore the role of glass-forming elements Si, Al, B, along with Na and Fe and to understand their connectivity with the goal of understanding melt structure precursors to deleterious feldspathoid nepheline-like crystals formation. NMR showed the appearance of two sites for Al, Si, and Na in the samples which crystallized significant amounts of nepheline, and B speciation changed, typically resulting in more B(IV) after nepheline crystallization. Raman spectroscopy suggested a major part of the glass structure is composed of metaborate chains or rings, thus significant numbers of non-bridging oxygens and a separation of the borate from the alumino-silicate network. Mössbauer combined with Fe redox chemical measurements showed that Fe plays a minor role in these glasses, mostly as Fe3+, but that iron oxide spinel forms with nepheline in all cases. Models of the glass network, speciation of B, and allocation of non-bridging oxygens were computed. The Yun-Dell-Bray model failed to predict the observed high concentration of NBO necessary to explain the metaborate features in the Raman spectra, and it largely over-estimated B(IV) fraction. The model assuming Na-Al-Si moieties and using experimental B(IV) fraction predicted a large amount of NBO consistent with Raman spectra. An alternative notation for appreciating the glass network is suggested and then used to investigate the changes the glass due to crystallization of sodium nepheline and the residual glass network. From a theoretical standpoint, it may be preferred to picture nuclear waste glasses by the Lebedev theory of glass structure where “microcrystallites” of ordered nuclei (or embryos) exist in the matrix of more disordered glass.

  7. The liquidus temperature of nuclear waste glasses: an international Round-Robin Study

    SciTech Connect

    Riley, Brian J.; Hrma, Pavel R.; Vienna, John D.; Schweiger, Michael J.; Rodriguez, Carmen P.; Crum, Jarrod V.; Lang, Jesse B.; Marra, James C.; Johnson, Fabienne; Peeler, David K.; Leonelli, Cristina; Ferrari, Anna M.; Lancellotti, Isabella; Dussossoy, Jean-Lue A.; Hand, Russell J.; Schofield, James M.; Connelly, Andrew J.; Short, Rick; Harrison, Mike T.

    2012-12-01

    Ten institutions from five countries participated in a Round Robin study to contribute to the Precision and Bias section of an American Society for Testing and Materials standard procedure that Pacific Northwest National Laboratory (PNNL) is developing for measuring the liquidus temperature (TL) of radioactive and simulated waste glasses. In this study, three separate TL measurement methods were a gradient temperature (GT) method, a uniform temperature (UT) method, and a crystal fraction extrapolation (CF) method. Three different glasses were measured with a combination of these three methods. The TL values reported by different institutions are generally consistent and vary within a narrow range. The precision of a TL measurement was evaluated as ±10°C regardless of the method used for making the measurement. The Round Robin glasses were all previously studied at PNNL and included ARG-1 (Glass A), Zr-9 (Glass B), and AmCm2-19 (Glass C), with measured TL values spanning the temperature range ~960-1240°C. The three methods discussed here in more detail are the GT, UT, and CF methods. A best-case precision for TL has been obtained from the data, even though the data were not acquired for all three glasses using all three methods from each participating organization.

  8. Effect of clayey groundwater on the dissolution rate of the simulated nuclear waste glass SON68

    NASA Astrophysics Data System (ADS)

    Jollivet, P.; Frugier, P.; Parisot, G.; Mestre, J. P.; Brackx, E.; Gin, S.; Schumacher, S.

    2012-01-01

    The influence of clayey groundwater on the dissolution rate of SON68 glass was investigated under rate drop conditions. Leaching in contact with groundwater resulted in larger amounts of altered glass than obtained with initially pure water. Clayey groundwater delays the rate drop and subsequently results in dissolution rates higher than in pure water. This effect is due to the presence of magnesium, which precipitates in secondary phases with silicon while the other elements found in clayey water have no effect on the glass kinetics. Modeling the test results showed that the precipitation of secondary magnesium phases sustains the dissolution of the passivating layer of the glass and lowers the leachate pH, thereby increasing the diffusivity of this layer. The simulations also showed that the precipitation of magnesium phases is not limited by their precipitation kinetics, but is controlled by their solubility and the flow of silicon from glass dissolution. When all the magnesium in solution has precipitated, the pH slowly returns to the values usually measured during leaching of glass in initially pure water. Then the dissolution rate reflects the values measured in pure water. This study demonstrates that the reactivity of magnesium phases in the geological environment and the transport of magnesium in solution could have a significant impact on the long-term behavior of the glass.

  9. An International Initiative on Long-Term Behavior of High-Level Nuclear Waste Glass

    SciTech Connect

    Gin, Stephane; Abdelouas, Abdesselam; Criscenti, Louise J; Ebert, William L; Ferrand, K; Geisler, T; Harrison, Michael T; Inagaki, Y; Mitsui, S; Mueller, K T; Marra, James C; Pantano, Carlo G; Pierce, Eric M; Ryan, Joseph V; Schofield, J M; Steefel, Carl I; Vienna, John D.

    2013-01-01

    Nations using borosilicate glass as an immobilization material for radioactive waste have reinforced the importance of scientific collaboration to obtain a consensus on the mechanisms controlling the longterm dissolution rate of glass. This goal is deemed to be crucial for the development of reliable performance assessment models for geological disposal. The collaborating laboratories all conduct fundamental and/or applied research using modern materials science techniques. This paper briefly reviews the radioactive waste vitrification programs of the six participant nations and summarizes the current state of glass corrosion science, emphasizing the common scientific needs and justifications for on-going initiatives.

  10. Oscillations of echo amplitude in glasses in a magnetic field induced by nuclear dipole-dipole interaction

    NASA Astrophysics Data System (ADS)

    Shumilin, A. V.; Parshin, D. A.

    2009-08-01

    The influence of a magnetic field on the dipole echo amplitude in glasses (at temperatures of about 10 mK) induced by the dipole-dipole interaction of nuclear spins has been theoretically studied. It has been shown that a change in the mutual position of nuclear spins at tunneling and the Zeeman energy E H of their interaction with the external magnetic field lead to a nonmonotonic magnetic-field dependence of the dipole echo amplitude. The approximation that the nuclear dipole-dipole interaction energy E d is much smaller than the Zeeman energy has been found to be valid in the experimentally important cases. It has been shown that the dipole echo amplitude in this approximation may be described by a simple universal analytic function independent of the microscopic structure of the two-level systems. An excellent agreement of the theory with the experimental data has been obtained without fitting parameters (except for the unknown echo amplitude).

  11. Annual progress report to Battelle Pacific Northwest National Laboratories on prediction of phase separation of simulated nuclear waste glasses

    SciTech Connect

    Sung, Y.M.; Tomozawa, M.

    1996-02-01

    The objective of this research is to predict the immiscibility boundaries of multi-component borosilicate glasses, on which many nuclear waste glass compositions are based. The method used is similar to the prediction method of immiscibility boundaries of multi-component silicate glass systems successfully made earlier and is based upon the superposition of immiscibility boundaries of simple systems using an appropriate parameter. This method is possible because many immiscibility boundaries have similar shapes and can be scaled by a parameter. In the alkali and alkaline earth binary silicate systems, for example, the critical temperature and compositions were scaled using the Debye-Hueckel theory. In the present study on borosilicate systems, first, immiscibility boundaries of various binary alkali and alkaline borate glass systems (e.g. BaO-B{sub 2}O{sub 3}) were examined and their critical temperatures were evaluated in terms of Debye-Hueckel theory. The mixing effects of two alkali and alkaline-earth borate systems on the critical temperature were also explored. Next immiscibility boundaries of ternary borosilicate glasses (e.g. Na{sub 2}O-SiO{sub 2}-B{sub 2}O{sub 3}, K{sub 2}O-SiO{sub 2}-B{sub 2}O{sub 3}, Rb{sub 2}O-SiO{sub 2}-B{sub 2}O{sub 3}, and Cs{sub 2}O-SiO{sub 2}-B{sub 2}O{sub 3}) were examined. Their mixing effects are currently under investigation.

  12. Development of Vitrification Process and Glass Formulation for Nuclear Waste Conditioning

    SciTech Connect

    Petitjean, V.; Fillet, C.; Boen, R.; Veyer, C.; Flament, T.

    2002-02-26

    The vitrification of high-level waste is the internationally recognized standard to minimize the impact to the environment resulting from waste disposal as well as to minimize the volume of conditioned waste to be disposed of. COGEMA has been vitrifying high-level waste industrially for over 20 years and is currently operating three commercial vitrification facilities based on a hot metal crucible technology, with outstanding records of safety, reliability and product quality. To further increase the performance of vitrification facilities, CEA and COGEMA have been developing the cold crucible melter technology since the beginning of the 1980s. This type of melter is characterized by a virtually unlimited equipment service life and a great flexibility in dealing with various types of waste and allowing development of high temperature matrices. In complement of and in parallel with the vitrification process, a glass formulation methodology has been developed by the CEA in order to tailor matrices for the wastes to be conditioned while providing the best adaptation to the processing technology. The development of a glass formulation is a trade-off between material properties and qualities, technical feasibility, and disposal safety criteria. It involves non-radioactive and radioactive laboratories in order to achieve a comprehensive matrix qualification. Several glasses and glass ceramics have thus been studied by the CEA to be compliant with industrial needs and waste characteristics: glasses or other matrices for a large spectrum of fission products, or for high contents of specifics elements such as sodium, phosphate, iron, molybdenum, or actinides. New glasses or glass-ceramics designed to minimize the final wasteform volume for solutions produced during the reprocessing of high burnup fuels or to treat legacy wastes are now under development and take benefit from the latest CEA hot-laboratories and technology development. The paper presents the CEA state-of-the-art in developing matrices or glasses and provides several examples.

  13. Corrosion behavior of a powdered simulated nuclear waste glass: A corrosion model including diffusion process

    NASA Astrophysics Data System (ADS)

    Inagaki, Y.; Furuya, H.; Idemitsu, K.; Yonezawa, S.

    1994-01-01

    Static corrosion tests were performed with a powdered simulated waste glass in deionized water at 90°C for periods of up to 130 days. It was observed that normalized elemental mass loss (NL) values for soluble elements (Li, B, Na and Mo) were larger than those for Si by a factor of three and continued to increase after saturation of Si. A corrosion model (diffusion-combined model), where a diffusion model is combined with a dissolution/precipitation model (reaction path model), was developed and applied to the analysis of experimental results. In the diffusion-combined model, it is assumed that less-soluble elements dissolve into the solution congruently with the silica glass matrix (glass matrix dissolution). On the other hand, it is assumed that soluble elements diffuse through the glass to the surface and dissolve into the solution, in addition to the glass matrix dissolution. The diffusion-combined model can explain the experimental results well, and it is found that the diffusion coefficient is the most effective parameter determining the corrosion behavior.

  14. Minor component study for simulated high-level nuclear waste glasses (Draft)

    SciTech Connect

    Li, H.; Langowskim, M.H.; Hrma, P.R.; Schweiger, M.J.; Vienna, J.D.; Smith, D.E.

    1996-02-01

    Hanford Site single-shell tank (SSI) and double-shell tank (DSI) wastes are planned to be separated into low activity (or low-level waste, LLW) and high activity (or high-level waste, HLW) fractions, and to be vitrified for disposal. Formulation of HLW glass must comply with glass processibility and durability requirements, including constraints on melt viscosity, electrical conductivity, liquidus temperature, tendency for phase segregation on the molten glass surface, and chemical durability of the final waste form. A wide variety of HLW compositions are expected to be vitrified. In addition these wastes will likely vary in composition from current estimates. High concentrations of certain troublesome components, such as sulfate, phosphate, and chrome, raise concerns about their potential hinderance to the waste vitrification process. For example, phosphate segregation in the cold cap (the layer of feed on top of the glass melt) in a Joule-heated melter may inhibit the melting process (Bunnell, 1988). This has been reported during a pilot-scale ceramic melter run, PSCM-19, (Perez, 1985). Molten salt segregation of either sulfate or chromate is also hazardous to the waste vitrification process. Excessive (Cr, Fe, Mn, Ni) spinel crystal formation in molten glass can also be detrimental to melter operation.

  15. Effect of a magnetic field on the dipole echo in glasses caused by nuclear quadrupole moments

    NASA Astrophysics Data System (ADS)

    Shumilin, A. V.; Parshin, D. A.

    2009-04-01

    The effect of a magnetic field on the amplitude of the dipole echo in glasses at a temperature of about 10 mK caused by the presence of nonspherical nuclei with electric quadrupole moments in the glass has been considered theoretically. It has been shown that in this case, the two-level systems (TLSs) that determine the properties of glasses at low temperatures are transformed into more complicated multilevel systems. These systems have new properties as compared to usual TLSs and, in particular, exhibit oscillations of the electric dipole echo amplitude in the magnetic field. A general formula that describes the echo amplitude in an arbitrarily split TLS has been derived in perturbation theory. Detailed analytic and numerical analysis of the formula has been performed. The theory agrees qualitatively and quantitatively well with the experimental data.

  16. Deuteron NMR (Nuclear Magnetic Resonance) in relation to the glass transition in polymers

    NASA Technical Reports Server (NTRS)

    Roessler, E.; Sillescu, H.; Spiess, H. W.; Wallwitz, R.

    1983-01-01

    H-2NMR is introduced as a tool for investigating slow molecular motion in the glass transition region of amorphous polymers. In particular, we compare H-2 spin alignment echo spectra of chain deuterated polystyrene with model calculations for restricted rotational Brownian motion. Molecular motion in the polyztyrene-toluene system has been investigated by analyzing H-2NMR of partially deuterated polystyrene and toluene, respectively. The diluent mobility in the mixed glass has been decomposed into solid and liquid components where the respective average correlation times differ by more than 5 decades.

  17. Kinetics of Cold-Cap Reactions for Vitrification of Nuclear Waste Glass Based on Simultaneous Differential Scanning Calorimetry - Thermogravimetry (DSC-TGA) and Evolved Gas Analysis (EGA)

    SciTech Connect

    Rodriguez, Carmen P.; Pierce, David A.; Schweiger, Michael J.; Kruger, Albert A.; Chun, Jaehun; Hrma, Pavel R.

    2013-12-03

    For vitrifying nuclear waste glass, the feed, a mixture of waste with glass-forming and modifying additives, is charged onto the cold cap that covers 90-100% of the melt surface. The cold cap consists of a layer of reacting molten glass floating on the surface of the melt in an all-electric, continuous glass melter. As the feed moves through the cold cap, it undergoes chemical reactions and phase transitions through which it is converted to molten glass that moves from the cold cap into the melt pool. The process involves a series of reactions that generate multiple gases and subsequent mass loss and foaming significantly influence the mass and heat transfers. The rate of glass melting, which is greatly influenced by mass and heat transfers, affects the vitrification process and the efficiency of the immobilization of nuclear waste. We studied the cold-cap reactions of a representative waste glass feed using both the simultaneous differential scanning calorimetry thermogravimetry (DSC-TGA) and the thermogravimetry coupled with gas chromatography-mass spectrometer (TGA-GC-MS) as complementary tools to perform evolved gas analysis (EGA). Analyses from DSC-TGA and EGA on the cold-cap reactions provide a key element for the development of an advanced cold-cap model. It also helps to formulate melter feeds for higher production rate.

  18. On the cooperative nature of the ?-process in neat and binary glasses: a dielectric and nuclear magnetic resonance spectroscopy study.

    PubMed

    Bock, D; Kahlau, R; Micko, B; Ptzschner, B; Schneider, G J; Rssler, E A

    2013-08-14

    By means of dielectric as well as (2)H and (31)P nuclear magnetic resonance spectroscopy (NMR) the component dynamics of the binary glass tripropyl phosphate (TPP)/polystyrene (PS/PS-d3) is selectively investigated for concentrations distributed over the full range. We study the secondary (?-) relaxation below T(g), which is found in all investigated samples containing TPP, but not in neat polystyrene. The dielectric spectrum of the ?-process is described by an asymmetric distribution of activation energies, essentially not changing in the entire concentration regime; its most probable value is E/k ? 24 T(g). Persistence of the ?-process is confirmed by (31)P NMR Hahn-echo and spin-lattice relaxation experiments on TPP, which identify the nature of the ?-process as being highly spatially hindered as found for other (neat) glasses studied previously, or re-investigated within this work. The corresponding (2)H NMR experiments on PS-d3 confirm the absence of a ?-process in neat PS-d3, but reveal a clear signature of a ?-process in the mixture, i.e., polystyrene monomers perform essentially the same type of secondary relaxation as the TPP molecules. Yet, there are indications that some fractions of PS-d3 as well as TPP molecules become immobilized in the mixture in contrast to the case of neat glasses. We conclude that in a binary glass the ?-process introduced by one component induces a highly similar motion in the second component, and this may be taken as an indication of its cooperative nature. PMID:23947872

  19. Europium Structural Effect on a Borosilicate Glass of Nuclear Interest: Combining Experimental Techniques with Reverse Monte Carlo Modelling to Investigate Short to Medium Range Order

    NASA Astrophysics Data System (ADS)

    Bouty, O.; Delaye, J. M.; Peuget, S.; Charpentier, T.

    In-depth understanding of the effects of actinides in borosilicate glass matrices used for nuclear waste disposal is of great importance for nuclear spent fuel reprocessing cycle and fission products immobilization. This work carried out on ternary simplified glasses (Si, B, Na) doped respectively with 1 mol. % and 3.85 mol. % europium, presents a comprehensive study on the behaviour of trivalent europium taken as a surrogate of trivalent actinides. Neutron scattering, Wide Angle X- ray Scattering, Nuclear Magnetic Resonance, Raman Spectroscopy and Reverse Monte Carlo simulations were performed. For both glasses, it was found that europium coordination number was around 6 0.2, revealing an octahedral spatial configuration. Europium species accommodates in both silicate and borate site distributions but preferentially in the silicate network. Europium induces a IVB/IIIB ratio decrease and a silicate network polymerization according to NMR 29Si chemical shift and Raman spectra evolution.

  20. New functionality of chalcogenide glasses for radiation sensing of nuclear wastes.

    PubMed

    Ailavajhala, M S; Gonzalez-Velo, Y; Poweleit, C D; Barnaby, H J; Kozicki, M N; Butt, D P; Mitkova, M

    2014-03-30

    Data about gamma radiation induced effects in Ge40Se60 chalcogenide thin films and radiation induced silver diffusion within these are presented. Blanket films and devices were created to study the structural changes, diffusion products, and device performance. Raman spectroscopy, X-ray diffraction, current vs. voltage (I-V) and impedance measurements expound the behavior of Ge40Se60 glass and silver diffusion within this glass under radiation. Raman study shows that there is a decrease in the area ratio between edge shared and corner shared structural units revealing structural reorganization occurring in the glasses as a result of gamma radiation. X-ray diffraction studies revealed that with sufficiently radiation dose it is also possible to create Ag2Se in selenium-depleted systems. Oxidation of the Ge enriched chalcogenide backbone is confirmed through the electrical performance of the sensing elements based on these films. Combination of these structural and diffusion products influences the device performance. The I-V behavior is characterized by increase in current and then stabilization as a function of radiation dose. Additionally, device modeling is also presented using Silvaco software and analytical methods to shed light on the device behavior. This type of sensor design and material characterizations facilitate in improving the radiation sensing capabilities of silver containing chalcogenide glass thin films. PMID:24332317

  1. ANNUAL REPORT. IRON PHOSPHATE GLASSES: AN ALTERNATIVE FOR VITRIFYING CERTAIN NUCLEAR WASTES

    EPA Science Inventory

    The two multifaceted objectives of this research project are to (1) investigate the feasibility of vitrifying 2 or 3 high priority wastes, as identified by the Tank Focus Area group, using iron phosphate glasses (i.e., determine chemical durability as a function of waste loading,...

  2. Cold-cap reactions in vitrification of nuclear waste glass: experiments and modeling

    SciTech Connect

    Chun, Jaehun; Pierce, David A.; Pokorny, Richard; Hrma, Pavel R.

    2013-05-01

    Cold-cap reactions are multiple overlapping reactions that occur in the waste-glass melter during the vitrification process when the melter feed is being converted to molten glass. In this study, we used differential scanning calorimetry (DSC) to investigate cold-cap reactions in a high-alumina high-level waste melter feed. To separate the reaction heat from both sensible heat and experimental instability, we employed the run/rerun method, which enabled us to define the degree of conversion based on the reaction heat and to estimate the heat capacity of the reacting feed. Assuming that the reactions are nearly independent and can be approximated by the nth order kinetics, we obtained the kinetic parameters using the Kissinger method combined with least squares analysis. The resulting mathematical simulation of the cold-cap reactions provides a key element for the development of an advanced cold-cap model.

  3. Development and testing of matrices for the encapsulation of glass and ceramic nuclear waste forms.

    SciTech Connect

    Wald, J.W.; Brite, D.W.; Gurwell, W.E.; Buckwalter, C.Q.; Bunnell, L.R.; Gray, W.J.; Blair, H.T.; Rusin, J.M.

    1982-02-01

    This report details the results of research on the matrix encapsulation of high level wastes at PML over the past few years. The demonstrations and tests described were designed to illustrate how the waste materials are effected when encapsulated in an inert matrix. Candidate materials evaluated for potential use as matrices for encapslation of pelletized ceramics or glass marbles were categorized into four groups: metals, glasses, ceramics, and graphite. Two processing techniques, casting and hot pressing, were investigated as the most promising methods of formation or densification of the matrices. The major results reported deal with the development aspects. However, chemical durability tests (leach tests) of the matrix materials themselves and matrix-waste form composites are also reported. Matrix waste forms can provide a low porosity, waste-free barrier resulting in increased leach protection, higher impact strength and improved thermal conductivity compared to unencapsulated glass or ceramic waste materials. Glass marbles encapsulated in a lead matrix offer the most significant improvement in waste form stability of all combinations evaluated. This form represents a readily demonstrable process that provides high thermal conductivity, mechanical shock resistance, radiation shielding and increased chemical durability through both a chemical passivation mechanism and as a physical barrier. Other durable matrix waste forms evaluated, applicable primarily to ceramic pellets, involved hot-pressed titanium or TiO/sub 2/ materials. In the processing of these forms, near 100% dense matrices were obtained. The matrix materials had excellent compatibility with the waste materials and superior potential chemical durability. Cracking of the hot-pressed ceramic matrix forms, in general, prevented the realization of their optimum properties.

  4. Processing constraints on high-level nuclear waste glasses for Hanford Waste Vitrification Plant

    SciTech Connect

    Hrma, P.R.

    1993-09-01

    The work presented in this paper is a part of a major technology program supported by the U.S. Department of Energy (DOE) in preparation for the planned operation of the Hanford Waste Vitrification Plant (HWVP). Because composition of Hanford waste varies greatly, processability is a major concern for successful vitrification. This paper briefly surveys general aspects of waste glass processability and then discusses their ramifications for specific examples of Hanford waste streams.

  5. Effect of Alumina Source on the Rate of Melting Demonstrated with Nuclear Waste Glass Batch

    SciTech Connect

    Pierce, David A.; Hrma, Pavel R.; Marcial, Jose; Riley, Brian J.; Schweiger, Michael J.

    2012-03-30

    The melting behaviors of three glass batches formulated to vitrify high-level waste were compared. These batches, otherwise identical, differed in the alumina source: one was prepared with corundum (Al2O3), another with gibbsite [Al(OH)3], and the other with boehmite [AlO(OH)]. Batch samples, in the form of loose batches or pressed pellets, were heated at 5C/min up to 1200C. The expansion of pellets was monitored photographically. Quenched samples of batches, heated in crucibles, were thin-sectioned, investigated with optical microscopy, and analyzed with X-ray diffraction to quantify crystalline phases. Finally, batch-to-glass conversion was investigated with thermal analysis. Corundum was still present in one batch up to 900C whereas gibbsite and boehmite dissolved below 500C. In the batch with corundum, quartz, the source of silica, dissolved marginally earlier than in the batches with gibbsite and boehmite. Unlike the batch with corundum that exhibited considerable foaming, the batches with gibbsite and boehmite did not produce primary foam and made a more homogeneous glass. The occurrence of primary foam in the batch with corundum is a likely cause of a low rate of melting within the cold cap of a large-scale electric melter.

  6. Quantitative fluid inclusion gas analysis of airburst, nuclear, impact and fulgurite glasses.

    SciTech Connect

    Parnell, John; Newsom, Horton E.; Blamey, Nigel J. F.; Boslough, Mark Bruce Elrick

    2010-10-01

    We present quantitative fluid inclusion gas analysis on a suite of violently-formed glasses. We used the incremental crush mass spectrometry method (Norman & Blamey, 2001) to analyze eight pieces of Libyan Desert Glass (LDG). As potential analogues we also analyzed trinitite, three impact crater glasses, and three fulgurites. The 'clear' LDG has the lowest CO{sub 2} content and O{sub 2}/Ar ratios are two orders of magnitude lower than atmospheric. The 'foamy' glass samples have heterogeneous CO{sub 2} contents and O{sub 2}/Ar ratios. N{sub 2}/Ar ratios are similar to atmospheric (83.6). H{sub 2} and He are elevated but it is difficult to confirm whether they are of terrestrial or meteoritic origin. Combustion cannot account for oxygen depletion that matches the amount of CO{sub 2} produced. An alternative mechanism is required that removes oxygen without producing CO{sub 2}. Trinitite has exceedingly high CO{sub 2} which we attribute to carbonate breakdown of the caliche at ground zero. The O{sub 2}/Ar ratio for trinitite is lower than atmospheric but higher than all LDG samples. N{sub 2}/Ar ratios closely match atmospheric. Samples from Lonar, Henbury and Aouelloul impact craters have atmospheric N{sub 2}/Ar ratios. O{sub 2}/Ar ratios at Lonar and Henbury are 9.5 to 9.9 whereas the O{sub 2}/Ar ratio is 0.1 for the Aouelloul sample. In most fulgurites the N{sub 2}/Ar ratio is higher than atmospheric, possibly due to interference from CO. Oxygen ranges from 1.3 to 19.3%. Gas signatures of LDG inclusions neither match those from the craters, trinitite nor fulgurites. It is difficult to explain both the observed depletion of oxygen in the LDG and a CO{sub 2} level that is lower than it would be if the CO{sub 2} were simply a product of hydrocarbon combustion in air. One possible mechanism for oxygen depletion is that as air turbulently mixed with a hot jet of vaporized asteroid from an airburst and expanded, the atmospheric oxygen reacted with the metal vapor to form metal oxides that condensed. This observation is compatible with the model of Boslough & Crawford (2008) who suggest that an airburst incinerates organic materials over a large area, melting surface materials that then quench to form glass. Bubbles would contain a mixture of pre-existing atmosphere with combustion products from organic material and products of the reaction between vaporized cosmic materials (including metals) and terrestrial surface and atmosphere.

  7. Application of the NNWSI [Nevada Nuclear Waste Storage Investigations] unsaturated test method to actinide doped SRL [Savannah River Laboratory] 165 type glass

    SciTech Connect

    Bates, J.K.; Gerding, T.J.

    1990-08-01

    The results of tests done using the Unsaturated Test Method are presented. These tests, done to determine the suitability of glass in a potential high-level waste repository as developed by the Nevada Nuclear Waste Storage Investigations Project, simulate conditions anticipated for the post-containment phase of the repository when only limited contact between the waste form and water is expected. The reaction of glass occurs via processes that are initiated due to glass/water vapor and glass/liquid water contact. Vapor interaction results in the initiation of an exchange process between water and the more mobile species (alkalis and boron) in the glass. The liquid reaction produces interactions similar to those seen in standard leaching tests, except due to the limited amount of water present and the presence of partially sensitized 304L stainless steel, the formation of reaction products greatly exceeds that found in MCC-1 type leach tests. The effect of sensitized stainless steel on the reaction is to enhance breakdown of the glass matrix thereby increasing the release of the transuranic elements from the glass. However, most of the Pu and Am released is entrained by either the metal components of the test or by the reaction phases, and is not released to solution. 16 refs., 20 figs., 17 tabs.

  8. Development of a device for helium thermal diffusion investigations by IBA in self-irradiated nuclear glass

    NASA Astrophysics Data System (ADS)

    Raepsaet, C.; Peuget, S.; Khodja, H.; Gutierrez, G.; Hoarau, J.; Sauvage, T.

    2014-07-01

    To minimize the amount of nuclear waste issuing from the nuclear power plants, the solution adopted in France consists in the reprocessing of spent fuel to isolate long lived and high level radioactive waste (minor actinides and fission products). They are incorporated into a glassy matrix in order to be placed in dedicated long-term disposal repository. The confinement of the radioelements depends strongly on the integrity of the glassy matrix which could be damaged by the radiations and the generation of helium produced by ?-decays of the minor actinides. In the past few years, several studies were conducted in order to understand the behaviour of helium, especially its thermal diffusion into the glassy matrix [1-3]. However none were conducted on self-irradiated samples and a validation on radioactive glasses and in the temperature range of the repository conditions is still needed. For this purpose, a specific setup was developed on the analysis chamber of the nuclear microprobe dedicated to radioactive samples in Saclay [4]. The temperature of the sample is controlled during all the experiment, in the range from 143 to 323 K; 3He ions are implanted at low temperature. Helium profiles are measured at low temperature using the 3He(d,p)4He reaction, as-implanted and after several stages of annealing. We will present the developed setup and show the preliminary results of the measurements made on non-active samples.

  9. Direct conversion of surplus fissile materials, spent nuclear fuel, and other materials to high-level-waste glass

    SciTech Connect

    Forsberg, C.W.; Elam, K.R.

    1995-01-31

    With the end of the cold war the United States, Russia, and other countries have excess plutonium and other materials from the reductions in inventories of nuclear weapons. The United States Academy of Sciences (NAS) has recommended that these surplus fissile materials (SFMs) be processed so they are no more accessible than plutonium in spent nuclear fuel (SNF). This spent fuel standard, if adopted worldwide, would prevent rapid recovery of SFMs for the manufacture of nuclear weapons. The NAS recommended investigation of three sets of options for disposition of SFMs while meeting the spent fuel standard: (1) incorporate SFMs with highly radioactive materials and dispose of as waste, (2) partly burn the SFMs in reactors with conversion of the SFMs to SNF for disposal, and (3) dispose of the SFMs in deep boreholes. The US Government is investigating these options for SFM disposition. A new method for the disposition of SFMs is described herein: the simultaneous conversion of SFMs, SNF, and other highly radioactive materials into high-level-waste (HLW) glass. The SFMs include plutonium, neptinium, americium, and {sup 233}U. The primary SFM is plutonium. The preferred SNF is degraded SNF, which may require processing before it can be accepted by a geological repository for disposal.

  10. Effect of composition and radiation on the Hertzian indentation behavior of nuclear waste glasses. [77-MeV alpha particles

    SciTech Connect

    Matzke, H.; Kahl, L.; Routbort, J.L.; Saidl, J.

    1983-01-01

    The Hertzian indentation technique has been used to determine the fracture toughness, K/sub Ic/ of two borosilicate glasses developed to contain high-level nuclear waste. For the product VG 98/12, adding selected groups of fission products leaves K/sub Ic/ unchanged, but addition of Pb lowers K/sub Ic/ by approx. 20%. Radiation with 77 MeV ..cap alpha..-particles to a dose of approx. 10/sup 15/ ..cap alpha../cm/sup 2/ increases K/sub Ic/ by approx. 75%. For the product SM 58 LW 11, the fracture toughness was measured on pieces taken from different parts of a large cylinder to investigate the effects of segregation phenomena and of partial crystallization and formation of small cristobalite inclusions which decrease K/sub Ic/ by approx. 25%.

  11. Biological effect of Acidithiobacillus thiooxidans on some potentially toxic elements during alteration of SON 68 nuclear glass

    NASA Astrophysics Data System (ADS)

    Bachelet, M.; Crovisier, J. L.; Stille, P.; Vuilleumier, S.; Geoffroy, V.

    2009-04-01

    Although underground nuclear waste repositories are not expected to be favourable places for microbial activity, one should not exclude localized action of extremophilic bacteria on some materials involved in the storage concept. Among endogenous or accidentally introduced acidophiles, some are susceptible to lead to a locally drastic decreased in pH, with potential consequences on materials corrosion. Experiments were performed with Acidithiobacillus thiooxidans on 100-125 m french reference nuclear glass SON68 grains in a mineral medium under static conditions during 60 days at 25degC. Growth medium was periodically renewed and analyzed by ICP-AES and ICP-MS spectrometry for both major, trace and ultra-trace elements. Biofilm formation was evidenced by confocal laser microscopy, staining DNA with ethidium bromide and exopolysaccharides with calcofluor white. Biofilm thickness around material grains exceeded 20 m under the chosen experimental conditions. It can be noticed that while numerous studies on biofilm formation upon interaction between Acidithiobacillus ferrooxidans and materials are found in the literature, evidence for biofilm formation is still scarce for the case of the acidophilic bacterium A. thiooxidans. Presence of biofilm is a key parameter for material alteration at the solid/solution interface in biotic systems. Indeed, various constitutive elements of materials trapped in the polyanionic polymer of biofilm may also influence the alteration process. In particular, biofilm may reduce the alteration rate of materials by forming a protective barrier at their surface (Aouad et al., 2008). In this study, glass alteration rates, determined using strontium as tracer, showed that the progressive formation of a biofilm on the surface of glass has a protective effect against its alteration. Uranium and rare earth elements (REE) are efficiently trapped in the biogenic compartment of the system (exopolysaccharides + bacterial cells). Besides, the ratio biotic/abiotic concentrations of REE and U in the leachant decreases with increasing time which seems to indicate a good capacity of EPS for long term trapping of potentially toxic elements. Aouad G., Crovisier J.-L., Damidot D., Stille P., Hutchens E., Mutterer J., Meyer J.-M., and Geoffroy V. A. (2008) Interactions between municipal solid waste incinerator bottom ash and bacteria (Pseudomonas aeruginosa). Science of The Total Environment 393((2-3)), 385-393.

  12. Noble metal behavior during melting of simulated high-level nuclear waste glass feeds

    SciTech Connect

    Anderson, L.D.; Dennis, T.; Elliott, M.L.; Hrma, P.

    1993-04-01

    Noble metals and their oxides can settle in waste glass melters and cause electrical shorting. Simulated waste feeds from Hanford, Savannah River, and Germany were heat treated for 1 hour in a gradient furnace at temperatures ranging from approximately 600{degrees}C--1000{degrees}C and examined by electron microscopy to determine shapes, sizes, and distribution of noble metal particles as a function of temperature. Individual noble metal particles and agglomerates of rhodium (Rh), ruthenium (RuO{sub 2}), and palladium (Pd), as well as their alloys, were seen. the majority of particles and agglomerates were generally less than 10 microns; however, large agglomerations (up to 1 mm) were found in the German feed. Detailed particle distribution and characterization was performed for a Hanford waste to provide input to computer modeling of particle settling in the melter.

  13. Damage inhomogeneity in the core region of displacement cascades in simplified nuclear glasses

    NASA Astrophysics Data System (ADS)

    Delaye, J.-M.; Ghaleb, D.

    2006-02-01

    Displacement cascades at energies ranging from 16 keV to 70 keV were simulated by classical molecular dynamics. Damage inhomogeneity was observed in each case: the atomic density was diminished by the incident projectile to a variable extent depending on the regions concerned. The regions near the initial projectile position are largely annealed, and regions near the end of the cascade are relatively unaffected because of the low residual projectile energy. However, maximum damage occurs in intermediate regions from collisions with incident projectiles at energies ranging from about 10 keV to 25 keV. This phenomenon illustrates the competition between structure annealing and projectile-induced damage: both increase with the local energy, but with different dynamics. At the highest energies, annealing wins out over damage, restoring the glass structure to its pristine state; hence the good structural behaviour in the zones closest to the initial projectile position, which are subjected to the greatest local temperature rise.

  14. CHEMICAL DECOMPOSITION OF HIGH-LEVEL NUCLEAR WASTE STORAGE/DISPOSAL GLASSES UNDER IRRADIATION

    EPA Science Inventory

    The Offices of Energy Research and Environmental Management are immediately concerned with the development of storage/immobilization media for high-level nuclear wastes and excess weapons plutonium. These media must be stable and free of risk to the public or to the environment f...

  15. RHENIUM SOLUBILITY IN BOROSILICATE NUCLEAR WASTE GLASS IMPLICATIONS FOR THE PROCESSING AND IMMOBILIZATION OF TECHNETIUM-99 (AND SUPPORTING INFORMATION WITH GRAPHICAL ABSTRACT)

    SciTech Connect

    AA KRUGER; A GOEL; CP RODRIGUEZ; JS MCCLOY; MJ SCHWEIGER; WW LUKENS; JR, BJ RILEY; D KIM; M LIEZERS; P HRMA

    2012-08-13

    The immobilization of 99Tc in a suitable host matrix has proved a challenging task for researchers in the nuclear waste community around the world. At the Hanford site in Washington State in the U.S., the total amount of 99Tc in low-activity waste (LAW) is {approx} 1,300 kg and the current strategy is to immobilize the 99Tc in borosilicate glass with vitrification. In this context, the present article reports on the solubility and retention of rhenium, a nonradioactive surrogate for 99Tc, in a LAW sodium borosilicate glass. Due to the radioactive nature of technetium, rhenium was chosen as a simulant because of previously established similarities in ionic radii and other chemical aspects. The glasses containing target Re concentrations varying from 0 to10,000 ppm by mass were synthesized in vacuum-sealed quartz ampoules to minimize the loss of Re by volatilization during melting at 1000 DC. The rhenium was found to be present predominantly as Re7 + in all the glasses as observed by X-ray absorption near-edge structure (XANES). The solubility of Re in borosilicate glasses was determined to be {approx}3,000 ppm (by mass) using inductively coupled plasma-optical emission spectroscopy (ICP-OES). At higher rhenium concentrations, some additional material was retained in the glasses in the form of alkali perrhenate crystalline inclusions detected by X-ray diffraction (XRD) and laser ablation-ICP mass spectrometry (LA-ICP-MS). Assuming justifiably substantial similarities between Re7 + and Tc 7+ behavior in this glass system, these results implied that the processing and immobilization of 99Tc from radioactive wastes should not be limited by the solubility of 99Tc in borosilicate LAW glasses.

  16. Quasicrystalline Approach to Prediting the Spinel-Nepheline Liquidus: Application to Nuclear Waste Glass Processing

    SciTech Connect

    Jantzen, Carol

    2005-10-10

    The crystal-melt equilibria in complex fifteen component melts are modeled based on quasicrystalline concepts. A pseudobinary phase diagram between acmite (which melts incongruently to a transition metal ferrite spinel) and nepheline is defined. The pseudobinary lies within the Al{sub 2}O{sub 3}-Fe{sub 2}O{sub 3}-Na{sub 2}O-SiO{sub 2} quaternary system that defines the crystallization of basalt glass melts. The pseudobinary provides the partitioning of species between the melt and the primary liquidus phases. The medium range order of the melt and the melt-crystal exchange equilibria are defined based on a constrained mathematical treatment that considers the crystallochemical coordination of the elemental species in acmite and nepheline. The liquidus phases that form are shown to be governed by the melt polymerization and the octahedral site preference energies. This quasicrystalline liquidus model has been used to prevent unwanted crystallization in the world's largest high level waste (HLW) melter for the past three years while allowing >10 wt% higher waste loadings to be processed.

  17. Nuclear Spin Lattice Relaxation and Conductivity Studies of the Non-Arrhenius Conductivity Behavior in Lithium Fast Ion Conducting Sulfide Glasses

    SciTech Connect

    Benjamin Michael Meyer

    2003-05-31

    As time progresses, the world is using up more of the planet's natural resources. Without technological advances, the day will eventually arrive when these natural resources will no longer be sufficient to supply all of the energy needs. As a result, society is seeing a push for the development of alternative fuel sources such as wind power, solar power, fuel cells, and etc. These pursuits are even occurring in the state of Iowa with increasing social pressure to incorporate larger percentages of ethanol in gasoline. Consumers are increasingly demanding that energy sources be more powerful, more durable, and, ultimately, more cost efficient. Fast Ionic Conducting (FIC) glasses are a material that offers great potential for the development of new batteries and/or fuel cells to help inspire the energy density of battery power supplies. This dissertation probes the mechanisms by which ions conduct in these glasses. A variety of different experimental techniques give a better understanding of the interesting materials science taking place within these systems. This dissertation discusses Nuclear Magnetic Resonance (NMR) techniques performed on FIC glasses over the past few years. These NMR results have been complimented with other measurement techniques, primarily impedance spectroscopy, to develop models that describe the mechanisms by which ionic conduction takes place and the dependence of the ion dynamics on the local structure of the glass. The aim of these measurements was to probe the cause of a non-Arrhenius behavior of the conductivity which has been seen at high temperatures in the silver thio-borosilicate glasses. One aspect that will be addressed is if this behavior is unique to silver containing fast ion conducting glasses. more specifically, this study will determine if a non-Arrhenius correlation time, {tau}, can be observed in the Nuclear Spin Lattice Relaxation (NSLR) measurements. If so, then can this behavior be modeled with a new single distribution of activation energies (DAE) to calculate the corresponding conductivity and relaxation rates as a function of temperature and frequency?

  18. Thermal Conductivity of Glasses Induced by Nuclear Quadrupole Interaction at Ultra Low Temperatures

    NASA Astrophysics Data System (ADS)

    Polishchuk, I. Y.; Burin, A. L.

    2011-03-01

    It is investigated how nuclear degrees of freedom of tunneling system (TS) inherent in amorphous solids influence its acoustic properties. It was shown in our previous papers that below 10 mK nuclear quadrupole interaction breaks down the coherent tunneling. This phenomenon results in appearance of the quasi-gap in the distribution function for the tunneling amplitude splitting. The quasi-gap is responsible for the plateau in the temperature dependence of the real part of a dielectric permittivity or speed of sound. In this paper we are interested in ultrasonic absorption and thermal conductivity which are intimately connected. We demonstrate that there exists a temperature interval in a millikelvin region where the sound absorption behavior changes drastically from the behavior predicted by the standard tunneling model (STM). In particular, the sound absorption increases approximately by an order of magnitude. Since in the millikelvin region the heat transport is due to acoustic phonons, the thermal conductivity also should demonstrate a strong increase as compared to standard tunneling model. The application of a strong magnetic field is known to restore the coherent tunneling and the standard distribution for the tunneling splitting amplitude. Thus, one can expect that in a strong magnetic field the thermal conductivity should drop in the temperature interval where the coherent tunneling was initially destroyed.

  19. Initial comparison of leach behavior between fully radioactive and simulated nuclear waste glass through long-term testing: Part 2, Reacted layer analysis

    SciTech Connect

    Bates, J.K.; Feng, X.; Bradley, C.R.; Buck, E.C.

    1992-04-01

    An initial comparison of glass behavior of simulated nuclear waste glasses has been made through long-term testing of general glass types SRL165, SRL131 and SRL200. The data demonstrate that up to 560 days at S/V of 2000/m, the reacted layers consist of one outer clay layer, which is undetermined by discontinuous etch pits. The regions between the etch pits are alkali depleted. The surface layer becomes thicker as test duration progresses and the reacted layer after the same test time is thinner at higher S/V than at lower S/V. The relative glass durability measured by the thickness of the reacted layer is 165/42S > 131/11S > 200S, which is consistent with solution analyses. In general, the reacted layers on all glass compositions are poorly crystallized which makes the clay identification difficult. The diffraction spacings and EDS compositions for 131/11S and 200S, although not unique to, are consistent with Na (or Ca-) montmorillonite or nontronite. Both of these are dioctahedral smectite.

  20. Initial comparison of leach behavior between fully radioactive and simulated nuclear waste glass through long-term testing: Part 2, Reacted layer analysis

    SciTech Connect

    Bates, J.K.; Feng, X.; Bradley, C.R.; Buck, E.C.

    1992-01-01

    An initial comparison of glass behavior of simulated nuclear waste glasses has been made through long-term testing of general glass types SRL165, SRL131 and SRL200. The data demonstrate that up to 560 days at S/V of 2000/m, the reacted layers consist of one outer clay layer, which is undetermined by discontinuous etch pits. The regions between the etch pits are alkali depleted. The surface layer becomes thicker as test duration progresses and the reacted layer after the same test time is thinner at higher S/V than at lower S/V. The relative glass durability measured by the thickness of the reacted layer is 165/42S > 131/11S > 200S, which is consistent with solution analyses. In general, the reacted layers on all glass compositions are poorly crystallized which makes the clay identification difficult. The diffraction spacings and EDS compositions for 131/11S and 200S, although not unique to, are consistent with Na (or Ca-) montmorillonite or nontronite. Both of these are dioctahedral smectite.

  1. Micro-fluidics and integrated optics glass sensor for in-line micro-probing of nuclear samples

    SciTech Connect

    Schimpf, A.; Bucci, D.; Broquin, J.E.; Canto, F.; Magnaldo, A.; Couston, L.

    2012-08-15

    We study the miniaturization of Thermal Lens Spectrometry (TLS) towards Lab-on-chip integration in order to reduce the volume of fluid assays in nuclear process control. TLS is of great interest in this context since it combines the advantages of optical detection methods with an inherent suitability for small-scale samples. After validating the experimental principle in a classical thermal lens crossed-beam setup, we show the integration of a Young-interferometer with a microcapillary on a glass substrate, reducing the necessary sample size to 400 nl. The interferometer translates the photo-thermally induced refractive index change in the fluid to a phase shift of the fringe pattern, which can then be detected by a camera. Measurements of Co(II) in ethanol yield a detection limit of c = 5 x 10{sup -4} M for the crossed-beam setup and c = 6 x 10{sup -3} M for the integrated sensor. At an interaction length of 10 m, it detects a minimum absorbance of K = 1.2 x 10{sup -4} in a probed volume of 14 pl. (authors)

  2. Micro-fluidics and integrated optics glass sensor for in-line micro-probing of nuclear samples

    SciTech Connect

    Schimpf, A.; Canto, F.; Bucci, D.; Magnaldo, A.; Couston, L.; Broquin, J. E.

    2011-07-01

    We study the miniaturisation of Thermal Lens Spectrometry (TLS) towards Lab-on-chip integration in order to reduce the volume of fluid assays in nuclear process control. TLS is of great interest in this context since it combines the advantages of optical detection methods with an inherent suitability for small-scale samples. After validating the experimental principle in a classical thermal lens crossed-beam setup, we show the integration of a Young-interferometer with a microcapillary on a glass substrate, reducing the necessary sample size to 400 nl. The interferometer translates the photo-thermally induced refractive index change in the fluid to a phase shift of the fringe pattern, which can then be detected by a camera. Measurements of Co(II) in ethanol yield a detection limit of c = 5 x 10{sup -4} M for the crossed-beam setup and c = 6x10{sup -3} M for the integrated sensor. At an interaction length of 10 {mu}m, it detects a minimum absorbance of AU = 6 x 10{sup -5} in a probed volume of 10 pl. (authors)

  3. Effect of different glasses in glass bonded zeolite

    SciTech Connect

    Lewis, M.A.; Ackerman, J.P.; Verma, S.

    1995-05-01

    A mineral waste form has been developed for chloride waste salt generated during the pyrochemical treatment of spent nuclear fuel. The waste form consists of salt-occluded zeolite powders bound within a glass matrix. The zeolite contains the salt and immobilizes the fission products. The zeolite powders are hot pressed to form a mechanically stable, durable glass bonded zeolite. Further development of glass bonded zeolite as a waste form requires an understanding of the interaction between the glass and the zeolite. Properties of the glass that enhance binding and durability of the glass bonded zeolite need to be identified. Three types of glass, boroaluminosilicate, soda-lime silicate, and high silica glasses, have a range of properties and are now being investigated. Each glass was hot pressed by itself and with an equal amount of zeolite. MCC-1 leach tests were run on both. Soda-lime silicate and high silica glasses did not give a durable glass bonded zeolite. Boroaluminosilicate glasses rich in alkaline earths did bind the zeolite and gave a durable glass bonded zeolite. Scanning electron micrographs suggest that the boroaluminosilicate glasses wetted the zeolite powders better than the other glasses. Development of the glass bonded zeolite as a waste form for chloride waste salt is continuing.

  4. Glass science tutorial: Lecture No. 7, Waste glass technology for Hanford

    SciTech Connect

    Kruger, A.A.

    1995-07-01

    This paper presents the details of the waste glass tutorial session that was held to promote knowledge of waste glass technology and how this can be used at the Hanford Reservation. Topics discussed include: glass properties; statistical approach to glass development; processing properties of nuclear waste glass; glass composition and the effects of composition on durability; model comparisons of free energy of hydration; LLW glass structure; glass crystallization; amorphous phase separation; corrosion of refractories and electrodes in waste glass melters; and glass formulation for maximum waste loading.

  5. A 25-year laboratory experiment on French SON68 nuclear glass leached in a granitic environment - First investigations

    NASA Astrophysics Data System (ADS)

    Guittonneau, C.; Gin, S.; Godon, N.; Mestre, J. P.; Dugne, O.; Allegri, P.

    2011-01-01

    We have investigated a 25.75-year old leaching experiment to improve our understanding of the mechanisms controlling glass dissolution in geological disposal conditions. A SON68 glass block was leached in slowly renewed synthetic groundwater (at 90 °C, 100 bar) in contact with some pieces of granite and Ni-Cr-Mo alloy as environmental storage materials. One hundred and sixty-three samplings were carried out over the entire duration of the experiment and were used to calculate the mean thickness of the altered glass (28 (±9) μm) and the glass dissolution rate. After few months, the rate remained very constant at 6 × 10 -3 g m -2 d -1 which is about 20 times higher than the residual rate measured in a batch reactor at the same temperature. At the end of the experiment, mainly SEM analyses were performed on the entire glass block. Surprisingly, the glass alteration layer has neither a homogeneous thickness, nor a homogeneous morphology. The location of the sampling valve (at half height of the glass block) seems to divide the glass block into two parts. In the upper half (above the sampling valve), the general morphology of the alteration layer consists in a relatively simple and uniform gel and some secondary phases which are rare-earth phosphates. The mean measured thickness of this alteration layer is 6.7 (±0.3) μm. However, in the lower half of the glass block, the gel is globally larger and frequently contains rounded shapes which are rare-earth phosphates. This section is edged by secondary phases bearing Mg, Na, Zn and Ni. The mean measured thickness is 81.3 (±1.1) μm in the lower half. In this experiment, the flow rate which leads to the hydrodynamic transport of the soluble species must be a key factor for the local glass alteration process. We have also shown that this unexpected behavior is likely due to heterogeneities of the chemistry of the solution. This conclusion is supported by the behavior of Mg. This element, supplied by the inlet solution, precipitates with Si and forms clay minerals and therefore weakens the passivating properties of the gel. Mg-rich clay minerals are only observed in the lower half of the glass block. Further investigations are necessary to better understand the coupling between the hydrodynamics and chemistry in this experiment. However, based on this study, we can conclude that glass in disposal should be very sensitive to the water renewal near the glass surface.

  6. Intrinsic dosimetry of glass containers used to transport nuclear materials: Potential implications to the fields of waste management and nuclear forensics

    SciTech Connect

    Schwantes, Jon M.; Miller, Steve D.; Piper, Roman K.; Murphy, Mark K.; Amonette, James E.; Bonde, Steven E.; Duckworth, Douglas C.

    2009-04-12

    Thermoluminescence (TL) and Electron Paramagnetic Resonance (EPR) dosimetry were used to measure dose effects in borosilicate glass with time, from 10 min to w60 days following exposure to a dose of up to 100 Gy. TL and EPR results were consistent and performed similarly, with both techniques capable of achieving an estimated limit of detection of between 0.5 and 1 Gy. Three peaks were identified in the TL glow curve at roughly 110 C, 205 C, and 225 C. The intensity of the 205 C peak was the dominant peak over the time period of this study. The stability of all of the peaks with time since irradiation increased with their corresponding temperature and no significant variation was observed in the glow curve response to a specified total dose attained at different dose rates. The intensity of the 205 C peak decreased logarithmically with time regardless of total dose. Based upon a conservative limit of detection of 3.3 Gy, a 100 Gy dose would still be detected 2.7E3 years after exposure. Here, we introduce the concept of intrinsic dosimetry, the measurement of the total absorbed dose received by the walls of a container containing radioactive material. The foreseen advantage of intrinsic dosimetry comes from considering the measured absorbed dose received by containers in concert with the characteristics (amount, type) of the source of that dose, the radioactive material contained within the walls of the container, in order to provide enhanced information about the history of an unknown sample in question. Three hypothetical scenarios are presented to introduce this method and to illustrate how intrinsic dosimetry might benefit the fields of nuclear forensics and waste management.

  7. IR and Raman Spectroscopy of Sodium-Aluminophosphate Glasses for Immobilizing High-Level Wastes from Spent Nuclear Fuel Reprocessing

    NASA Astrophysics Data System (ADS)

    Stefanovsky, S. V.; Myasoedov, B. F.; Remizov, M. B.; Belanova, E. A.

    2014-09-01

    The structure of sodium-aluminophosphate glasses containing constituents of high-level wastes (cesium, magnesium, copper, and molybdenum oxides) from uranium-graphite reactors was studied by IR and Raman spectroscopy coupled with x-ray diffraction. The structural network was shown to be composed of short P-O chains with embedded AlO4 tetrahedra. Cross-linking by Mg2+ was possible in the Mg-bearing samples. The effect of the other oxides (Cs2O, MoO3, CuO) on the glass structure was negligible for the occurring amounts. The glasses devitrified partially upon quenching and more strongly upon annealing. This was reflected in splitting of the vibrational bands for bonds in the glass anionic structural motif.

  8. Secondary phase formation and the microstructural evolution of surface layers during vapor phase alteration of the French SON 68 nuclear waste glass at 200{degrees}C

    SciTech Connect

    Gong, W.L.; Ewing, R.C.; Wang, L.M.

    1995-12-31

    The SON 68 inactive {open_quotes}R7T7{close_quotes} composition is the French reference glass for the LWR nuclear waste glass. Vapor phase alteration was used to accelerate the reaction progress of glass corrosion and to develop the characteristic suite of secondary, alteration phases. Extensive solid-state characterization (AEM/SEM/HRTEM) was completed on six inactive R7T7 waste glasses which were altered in the presence of saturated water vapor (200{degrees}C) for 91, 241, 908, 1000, 1013, and 1021 days. The AEM samples were examined in cross-section (lattice-fringe imaging, micro-diffraction, and quantitative thin-film EDS analysis). The glass monoliths were invariably covered with a thin altered rind. The layer became thicker with time: 0.5 {mu}m for 22 days; 4 {mu}m for 91 days; 6 {mu}m for 241 days; 10 {mu}m for 908 days; 26 {mu}m for 1013 days; and <35 {mu}m for 1021 days. The composite alteration layer of the SON 68 samples is at least four time less thick than that of the SRL 131 glass composition. Six distinctive zones, based on phase chemistry and microstructure, were distinguished within the well-developed surface layers. Numerous crystalline phases such as analcime, tobermorite, apatite, and weeksite were identified on the surfaces of the reacted glasses as precipitates. Two crystalline phases, Ag{sub 2}TeO{sub 3} and (Ca,Sr)Mo{sub 3}O{sub 9}(OH){sub 2}, were found within the inner zones of surface layers, and they must have nucleated in situ, indicating that Ag, Te, Sr, and Mo can be retained within the surface layer. The majority of the surface layer volume is composed of two morphologically and chemically different structures: one consists of well-crystallized fibrous smectite aggregates occurring along with cavities, the A-domain; and the other consists of poorly-crystallized regions containing needle-like smectite (montmorillonite) crystallites, a silica-rich amorphous matrix, and possibly ZrO{sub 2} particles, the B-domain.

  9. Dynamics of asymmetric non-polymeric binary glass formers-A nuclear magnetic resonance and dielectric spectroscopy study.

    PubMed

    Ptzschner, B; Mohamed, F; Lichtinger, A; Bock, D; Rssler, E A

    2015-10-21

    We study a dynamically asymmetric binary glass former with the low-Tg component m-tri-cresyl phosphate (m-TCP: Tg = 206 K) and a spirobichroman derivative as a non-polymeric high-Tg component (Tg = 382 K) by means of (1)H nuclear magnetic resonance (NMR), (31)P NMR, and dielectric spectroscopy which allow component-selectively probing the dynamics. The entire concentration range is covered, and two main relaxation processes with two Tg are identified, Tg 1 and Tg 2. The slower one is attributed to the high-Tg component (?1-process), and the faster one is related to the m-TCP molecules (?2-process). Yet, there are indications that a small fraction of m-TCP is associated also with the ?1-process. While the ?1-relaxation only weakly broadens upon adding m-TCP, the ?2-relaxation becomes extremely stretched leading to quasi-logarithmic correlation functions at low m-TCP concentrations-as probed by (31)P NMR stimulated echo experiments. Frequency-temperature superposition does not apply for the ?2-process and it reflects an isotropic, liquid-like motion which is observed even below Tg 1, i.e., in the matrix of the arrested high-Tg molecules. As proven by 2D (31)P NMR, the corresponding dynamic heterogeneities are of transient nature, i.e., exchange occurs within the distribution G(ln?? 2). At Tg 1 a crossover is found for the temperature dependence of (mean) ?? 2(T) from non-Arrhenius above to Arrhenius below Tg 1 which is attributed to intrinsic confinement effects. This "fragile-to-strong" transition also leads to a re-decrease of Tg 2(cm - TCP) at low concentration cm - TCP, i.e., a maximum is observed in Tg 2(cm - TCP) while Tg 1(cm - TCP) displays the well-known plasticizer effect. Although only non-polymeric components are involved, we re-discover essentially all features previously reported for polymer-plasticizer systems. PMID:26493914

  10. Dynamics of asymmetric non-polymeric binary glass formersA nuclear magnetic resonance and dielectric spectroscopy study

    NASA Astrophysics Data System (ADS)

    Ptzschner, B.; Mohamed, F.; Lichtinger, A.; Bock, D.; Rssler, E. A.

    2015-10-01

    We study a dynamically asymmetric binary glass former with the low-Tg component m-tri-cresyl phosphate (m-TCP: Tg = 206 K) and a spirobichroman derivative as a non-polymeric high-Tg component (Tg = 382 K) by means of 1H nuclear magnetic resonance (NMR), 31P NMR, and dielectric spectroscopy which allow component-selectively probing the dynamics. The entire concentration range is covered, and two main relaxation processes with two Tg are identified, Tg1 and Tg2. The slower one is attributed to the high-Tg component (?1-process), and the faster one is related to the m-TCP molecules (?2-process). Yet, there are indications that a small fraction of m-TCP is associated also with the ?1-process. While the ?1-relaxation only weakly broadens upon adding m-TCP, the ?2-relaxation becomes extremely stretched leading to quasi-logarithmic correlation functions at low m-TCP concentrationsas probed by 31P NMR stimulated echo experiments. Frequency-temperature superposition does not apply for the ?2-process and it reflects an isotropic, liquid-like motion which is observed even below Tg1, i.e., in the matrix of the arrested high-Tg molecules. As proven by 2D 31P NMR, the corresponding dynamic heterogeneities are of transient nature, i.e., exchange occurs within the distribution G(ln??2). At Tg1 a crossover is found for the temperature dependence of (mean) ??2(T) from non-Arrhenius above to Arrhenius below Tg1 which is attributed to intrinsic confinement effects. This "fragile-to-strong" transition also leads to a re-decrease of Tg2(cm-TCP) at low concentration cm-TCP, i.e., a maximum is observed in Tg2(cm-TCP) while Tg1(cm-TCP) displays the well-known plasticizer effect. Although only non-polymeric components are involved, we re-discover essentially all features previously reported for polymer-plasticizer systems.

  11. DEVELOPMENT OF GLASS COMPOSITIONS TO IMMOBILIZE ALKALI, ALKALINE EARTH, LANTHANIDE AND TRANSITION METAL FISSION PRODUCTS FROM NUCLEAR FUEL REPROCESSING

    SciTech Connect

    Marra, James C.; Billings, Amanda Y.; Crum, Jarrod V.; Ryan, Joseph V.; Vienna, John D.

    2010-02-26

    The Advanced Fuel Cycle Initiative (AFCI) waste management strategy revolves around specific treatment of individual or groups of separated waste streams. A goal for the separations processes is to efficiently manage the waste to be dispositioned as high level radioactive waste. The Advanced Fuel Cycle Initiative (AFCI) baseline technology for immobilization of the lanthanide (Ln) and transition metal fission product (TM) wastes is vitrification into a borosilicate glass. A current interest is to evaluate the feasibility of vitrifying combined waste streams to most cost effectively immobilize the wastes resulting from aqueous fuel reprocessing. Studies showed that high waste loadings are achievable for the Ln only (Option 1) stream. Waste loadings in excess of 60 wt % (on a calcined oxide basis) were demonstrated via a lanthanide borosilicate (LaBS) glass. The resulting glasses had excellent relative durability as determined by the Product Consistency Test (PCT). For a combined Ln and TM waste stream glass (Option 2), noble metal solubility was found to limit waste loading. However, the measured PCT normalized elemental releases for this glass were at least an order of magnitude below that of Environmental Assessment (EA) glass. Current efforts to evaluate the feasibility of vitrifying combined Ln, TM, alkali (Cs is the primary radionuclide of concern) and alkaline earth (Sr is the primary radionuclide of concern) wastes (Option 3) have shown that these approaches are feasible. However, waste loading limitations with respect to heat load (Cs/Sr loading), molybdenum solubility and/or noble metal solubility will likely be realized and must be considered in determining the cost effectiveness of these approaches.

  12. DEVELOPMENT OF GLASS COMPOSITIONS TO IMMOBILIZE ALKALI, ALKALINE EARTH, LANTHANIDE AND TRANSITION METAL FISSION PRODUCTS FROM NUCLEAR FUEL REPROCESSING

    SciTech Connect

    Marra, J.; Billings, A.

    2009-06-24

    The Advanced Fuel Cycle Initiative (AFCI) waste management strategy revolves around specific treatment of individual or groups of separated waste streams. A goal for the separations processes is to efficiently manage the waste to be dispositioned as high level radioactive waste. The Advanced Fuel Cycle Initiative (AFCI) baseline technology for immobilization of the lanthanide (Ln) and transition metal fission product (TM) wastes is vitrification into a borosilicate glass. A current interest is to evaluate the feasibility of vitrifying combined waste streams to most cost effectively immobilize the wastes resulting from aqueous fuel reprocessing. Studies showed that high waste loadings are achievable for the Ln only (Option 1) stream. Waste loadings in excess of 60 wt % (on a calcined oxide basis) were demonstrated via a lanthanide borosilicate (LaBS) glass. The resulting glasses had excellent relative durability as determined by the Product Consistency Test (PCT). For a combined Ln and TM waste stream glass (Option 2), noble metal solubility was found to limit waste loading. However, the measured PCT normalized elemental releases for this glass were at least an order of magnitude below that of Environmental Assessment (EA) glass. Current efforts to evaluate the feasibility of vitrifying combined Ln, TM, alkali (Cs is the primary radionuclide of concern) and alkaline earth (Sr is the primary radionuclide of concern) wastes (Option 3) have shown that these approaches are feasible. However, waste loading limitations with respect to heat load (Cs/Sr loading), molybdenum solubility and/or noble metal solubility will likely be realized and must be considered in determining the cost effectiveness of these approaches.

  13. Physics and chemistry of the transition of glass to authigenic minerals: State of Nevada, agency for nuclear projects/nuclear waste project office

    SciTech Connect

    Morgenstein, M.E.

    1984-11-01

    The purpose of this paper is to provide a basic review of the topic of volcanic-glass hydration and the diagenetic formation of authigenic minerals from the hydrated-glass products. The Yucca Mountain Draft Environmental Assessment (DEA) of December 1984 indicates that: most of the available glass in the proximity of the repository horizon has been already hydrated and authigenic minerals which could form have already done so, zeolites could form from as yet unreacted glass during transport of water exiting from the repository, and the zeolites and other authigenic minerals provide sorptive barriers to radionuclide migration. This document surveys the available literature and concludes that the topic appears more complex than as it is treated in the DEA. It is concluded that an insufficient quantity of raw data exists. This paucity of information does not allow the determination of which authigenic minerals (if any) may form from the alteration of volcanic glass in Yucca Mountain; and consequently, radionuclide retardation leading from this reaction process is undeterminable. Appendix A and B contain a critical review of this publication. 29 refs., 6 tabs.

  14. High level nuclear waste glass corrosion in synthetic clay pore solution and retention of actinides in secondary phases

    NASA Astrophysics Data System (ADS)

    Bosbach, D.; Luckscheiter, B.; Brendebach, B.; Denecke, M. A.; Finck, N.

    2009-03-01

    The corrosion of the simulated high level waste glass GP WAK1 in synthetic clay pore solution was studied in batch-type experiments at 323 and 363 K with special focus on the effect of high carbonate concentration in solution. The corrosion rate after 130 days was <10-4g m-2 d-1 - no significant effect of the carbonate was identified. During glass corrosion, crystalline secondary phases (powellite, barite, calcite, anhydrite and clay-like Mg(Ca,Fe)-silicates) were formed. To obtain a molecular level picture of radionuclide speciation within the alteration layer, spectroscopic methods have been applied including grazing incidence X-ray absorption spectroscopy (XAS) to study the structural changes in the coordination of uranyl upon alteration layer formation. The number of equatorial oxygen atoms increases from 4 in the bulk glass to 5 in the alteration layer. Furthermore, reduced coordination symmetry was found. Hectorite, a frequently observed secondary clay mineral within the glass alteration layer, was synthesized in the presence of trivalent f-elements (e.g. Eu) and structurally characterized using time-resolved laser fluorescence spectroscopy. Structural incorporation into the octahedral layer is indicated.

  15. The behavior of silicon and boron in the surface of corroded nuclear waste glasses : an EFTEM study.

    SciTech Connect

    Buck, E. C.; Smith, K. L.; Blackford, M. G.

    1999-11-23

    Using electron energy-loss filtered transmission electron microscopy (EFTEM), we have observed the formation of silicon-rich zones on the corroded surface of a West Valley (WV6) glass. This layer is approximately 100-200 nm thick and is directly underneath a precipitated smectite clay layer. Under conventional (C)TEM illumination, this layer is invisible; indeed, more commonly used analytical techniques, such as x-ray energy dispersive spectroscopy (EDS), have failed to describe fully the localized changes in the boron and silicon contents across this region. Similar silicon-rich and boron-depleted zones were not found on corroded Savannah River Laboratory (SRL) borosilicate glasses, including SRL-EA and SRL-51, although they possessed similar-looking clay layers. This study demonstrates a new tool for examining the corroded surfaces of materials.

  16. Mapping of rare earth elements in nuclear waste glass-ceramic using micro laser-induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Wang, X.; Motto-Ros, V.; Panczer, G.; De Ligny, D.; Yu, J.; Benoit, J. M.; Dussossoy, J. L.; Peuget, S.

    2013-09-01

    A micro-LIBS system was set up based on a quadruple Nd:YAG laser at 266 nm coupled with a microscope. Elemental mapping was performed on a Mo-rich glass-ceramic sample containing CaMoO4 crystallites hundreds of microns in length and about 25 μm in section diameter. The topography of single-shot laser-induced craters was characterized using an atomic force microscope (AFM), which revealed a crater size less than 7 μm. Mappings of Mo, Ca, Sr, Al, Fe, Zr and rare earth elements such as Eu, Nd, Pr and La were undertaken. Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) was conducted to validate the micro-LIBS analysis. Principal components analysis calculation was used to investigate the correlation of elements in the two phases of glass-ceramic. Correlation between Ca, Sr, rare earth elements and Mo indicates their preferential incorporation into the calcium molybdate crystalline phase. Anti-correlation between Fe, Zr, Al and Mo revealed their affinity to the glass phase.

  17. A Two-Stage Layered Mixture Experiment Design for a Nuclear Waste Glass Application-Part 1

    SciTech Connect

    Cooley, Scott K.; Piepel, Gregory F.; Gan, Hao; Kot, Wing; Pegg, Ian L.

    2003-12-01

    A layered experimental design involving mixture variables was generated to support developing property-composition models for high-level waste (HLW) glasses. The design was generated in two stages, each having unique characteristics. Each stage used a layered design having an outer layer, an inner layer, a center point, and some replicates. The layers were defined by single- and multi-variable constraints. The first stage involved 15 glass components treated as mixture variables. For each layer, vertices were generated and optimal design software was used to select alternative subsets of vertices and calculate design optimality measures. Two partial quadratic mixture models, containing 25 terms for the outer layer and 30 terms for the inner layer, were the basis for the optimal design calculations. Distributions of predicted glass property values were plotted and evaluated for the alternative subsets of vertices. Based on the optimality measures and the predicted property distributions, a ''best'' subset of vertices was selected for each layer to form a layered design for the first stage. The design for the second stage was selected to augment the first-stage design. The discussion of the second-stage design begins in this Part 1 and is continued in Part 2 (Cooley and Piepel, 2003b).

  18. Glass consistency and glass performance

    SciTech Connect

    Plodinec, M.J.; Ramsey, W.G.

    1994-07-01

    Glass produced by the Defense Waste Processing Facility (DWPF) will have to consistently be more durable than a benchmark glass (evaluated using a short-term leach test), with high confidence. The DWPF has developed a Glass Product Control Program to comply with this specification. However, it is not clear what relevance product consistency has on long-term glass performance. In this report, the authors show that DWPF glass, produced in compliance with this specification, can be expected to effectively limit the release of soluble radionuclides to natural environments. However, the release of insoluble radionuclides to the environment will be limited by their solubility, and not glass durability.

  19. (77)Se nuclear spin-lattice relaxation in binary Ge-Se glasses: insights into floppy versus rigid behavior of structural units.

    PubMed

    Sen, Sabyasachi; Kaseman, Derrick C; Hung, Ivan; Gan, Zhehong

    2015-04-30

    The mechanism of (77)Se nuclear spin-lattice relaxation is investigated in binary Ge-Se glasses. The (77)Se nuclides in Se-Se-Se chain sites relax faster via dipolar coupling fluctuation compared to those in Ge-Se-Ge sites shared by GeSe4 tetrahedra that relax slower via the fluctuation of the chemical shift anisotropy. The relaxation rate for the Se-Se-Se sites decreases markedly with increasing magnetic field, whereas that for the Ge-Se-Ge sites displays no appreciable dependence on the magnetic field such that the extent of differential relaxation between the two Se environments becomes small at high fields on the order of 19.6 T. The corresponding dynamical correlation time is three orders of magnitude shorter (∼10(-9) s) for the Se-Se-Se sites, compared to that for the Ge-Se-Ge sites (∼10(-6) s). The large decoupling in the time scale between these Se environments provides direct experimental support to the commonly made assumption that the selenium chains are mechanically floppy, and the interconnected GeSe4 tetrahedra form the rigid elements in the selenide glass structure. PMID:25848959

  20. Nuclear magnetic resonance and dielectric noise study of spectral densities and correlation functions in the glass forming monoalcohol 2-ethyl-1-hexanol

    NASA Astrophysics Data System (ADS)

    Schildmann, S.; Reiser, A.; Gainaru, R.; Gainaru, C.; Bhmer, R.

    2011-11-01

    The spectral densities related to various relaxation processes of the glass former 2-ethyl-1-hexanol (2E1H), a monohydroxy alcohol, are probed using several nuclear magnetic resonance (NMR) experiments as well as via dielectric noise spectroscopy (DNS). On the basis of the spectral density relating to voltage fluctuations, i.e., without the application of external electrical fields, DNS enables the detection of the structural relaxation and of the prominent, about two decades slower Debye process. The NMR-detected spectral density, sensitive to the orientational fluctuations of the hydroxyl deuteron, also reveals dynamics slower than the structural relaxation, but not as slow as the Debye process. Rotational and translational correlation functions of 2E1H are probed using stimulated-echo NMR techniques which could only resolve the structural dynamics or faster processes. The experimental results are discussed with reference to models that were suggested to describe the dynamics in supercooled alcohols.

  1. Waste glass weathering

    SciTech Connect

    Bates, J.K.; Buck, E.C.

    1993-12-31

    The weathering of glass is reviewed by examining processes that affect the reaction of commercial, historical, natural, and nuclear waste glass under conditions of contact with humid air and slowly dripping water, which may lead to immersion in nearly static solution. Radionuclide release data from weathered glass under conditions that may exist in an unsaturated environment are presented and compared to release under standard leaching conditions. While the comparison between the release under weathering and leaching conditions is not exact, due to variability of reaction in humid air, evidence is presented of radionuclide release under a variety of conditions. These results suggest that both the amount and form of radionuclide release can be affected by the weathering of glass.

  2. Biodegradation of the french reference nuclear glass SON 68 by Acidithiobacillus thiooxidans : protective effect of the biofilm,U and REE retention

    NASA Astrophysics Data System (ADS)

    Bachelet, M.; Crovisier, J.; Stille, P.; Boutin, R.; Vuilleumier, S.; Geoffroy, V.

    2008-12-01

    Although underground nuclear waste repositories are not expected to be favourable places for microbial activity, one should not exclude localized action of extremophilic bacteria on some materials involved in the storage concept. Among endogenous or accidentally introduced acidophiles, some are susceptible to lead to a locally drastic decreased in pH with potential consequences on materials corrosion. Experiments were performed with Acidithiobacillus thiooxidans on 100-125 ?m french reference nuclear glass SON68 grains in a mineral medium under static conditions during 60 days at 25C. Growth medium was periodically renewed and analyzed by ICP-AES and ICP-MS spectrometry for both major, traces and ultra-traces elements. Biofilm formation was evidenced by confocal laser microscopy, staining DNA with ethidium bromide and exopolysaccharides with calcofluor white. Biofilm thickness around material grains exceeded 20 ?m under the chosen experimental conditions. It can be noticed that while numerous studies on biofilm formation upon interaction between Acidithiobacillus ferrooxidans and materials can be found in the literature, evidence for biofilm formation is still scarce for the case of the acidophilic bacterium A. thiooxidans. Presence of biofilm is a key parameter for material alteration at the solid/solution interface in biotic systems. Indeed, various constitutive elements of materials trapped in the polyanionic polymer of biofilm may also influence the alteration process. In particular, biofilm may reduce the alteration rate of materials by forming a protective barrier at their surface (Aouad et al., 2008). In this study, glass alteration rates, determined using strontium, molybdenum and caesium as tracers, showed that the biofilm has a protective effect against glass alteration. U and REE are efficiently trapped in the biogenic compartment of the system (exopolysaccharides (EPS) + bacterial cells). Biofilm analysis are in progress to determine whether these elements are in bacterial cells or in the EPS. . Aouad G., Crovisier J.-L., Damidot D., Stille P., Hutchens E., Mutterer J., Meyer J.-M., and Geoffroy V. A. (2008) Interactions between municipal solid waste incinerator bottom ash and bacteria (Pseudomonas aeruginosa). Science of The Total Environment 393(2-3), 385-393.

  3. Glass recycling

    SciTech Connect

    Dalmijn, W.L.; Houwelingen, J.A. van

    1995-12-31

    Glass recycling in the Netherlands has grown from 10,000 to 300,000 tonnes per annum. The various advantages and problems of the glass cycle with reference to the state of the art in the Netherlands is given. Special attention is given to new technologies for the automated sorting of cullet with detection systems. In Western Europe the recycling of glass has become a success story. Because of this, the percentage of glass cullet used in glass furnaces has increased. To meet the quality demands of the glass industry, automated sorting for the removal of stones, non-ferrous metals and other impurities had to be developed and incorporated in glass recycling plants. In Holland, Germany and other countries, the amount of glass collected has reached a level that color-sorting becomes necessary to avoid market saturation with mixed cullet. Recently, two systems for color-sorting have been developed and tested for the separation of bottles and cullet in the size range of 20--50 mm. With the increased capacity of the new glass recycling plants, 120,000--200,000 tpy, the quality systems have also to be improved and automated. These quality control systems are based on the automated sorting technology developed earlier for the glass recycling plants. The data obtained are automatically processed and printed. The sampling system and its relation to the theory of Gy will be described. Results of both developments in glass recycling plants will be described.

  4. Glass Artworks

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Several NASA technologies have played part in growth and cost containment of studio glass art, among them a foam type insulation developed to meet a need for lightweight material that would reduce flame spread in aircraft fire. Foam comes in several forms and is widely used by glass artists, chiefly as an insulator for the various types of ovens used in glass working. Another Spinoff is alumina crucibles to contain molten glass. Before alumina crucibles were used, glass tanks were made of firebrick which tended to erode under high temperatures and cause impurities; this not only improved quality but made the process more cost effective. One more NASA technology that found its way into glass art working is a material known as graphite board, a special form of graphite originally developed for rocket motor applications. This graphite is used to exact compound angles and creates molds for poured glass artworks of dramatic design.

  5. Glass corrosion in natural environments

    NASA Technical Reports Server (NTRS)

    Thorpe, Arthur N.; Barkatt, Aaron

    1992-01-01

    Experiments carried out during the progress period are summarized. Experiments carried out involving glass samples exposed to solutions of Tris have shown the appearance of 'spikes' upon monitoring glass dissolution as a function of time. The periodic 'spikes' observed in Tris-based media were interpreted in terms of cracking due to excessive stress in the surface region of the glass. Studies of the interactions of silicate glasses with metal ions in buffered media were extended to systems containing Al. Caps buffer was used to establish the pH. The procedures used are described and the results are given. Preliminary studies were initiated as to the feasibility of adding a slowly dissolving solid compound of the additive to the glass-water system to maintain a supply of dissolved additive. It appears that several magnesium compounds have a suitable combination of solubility and affinity towards silicate glass surfaces to have a pronounced retarding effect on the extraction of uranium from the glass. These preliminary findings raise the possibility that introducing a magnesium source into geologic repositories for nuclear waste glass in the form of a sparingly soluble Mg-based backfill material may cause a substantial reduction in the extent of long-term glass corrosion. The studies described also provide mechanistic understanding of the roles of various metal solutes in the leachant. Such understanding forms the basis for developing long-term predictions of nuclear waste glass durability under repository conditions. From what is known about natural highly reduced glasses such as tektites, it is clear that iron is dissolved as ferrous iron with little or no ferric iron. The reducing conditions were high enough to cause metallic iron to exsolve out of the glass in the form of submicroscopic spherules. As the nuclear waste glass is much less reduced, a study was initiated on other natural glasses in addition to the nuclear waste glass. Extensive measurements were carried out on these glasses in order to characterize their magnetic properties. Results of these studies are described.

  6. Effect of composition and temperature on viscosity and electrical conductivity of borosilicate glasses for Hanford nuclear waste immobilization

    SciTech Connect

    Hrma, P.; Piepel, G.F.; Smith, D.E.; Redgate, P.E.; Schweiger, M.J.

    1993-04-01

    Viscosity and electrical conductivity of 79 simulated borosilicate glasses in the expected range of compositions to be produced in the Hanford Waste Vitrification Plant were measured within the temperature span from 950 to 1250[degree]C. The nine major oxide components were SiO[sub 2], B[sub 2]O[sub 3], Li[sub 2]O, Na[sub 2]O, CaO, MgO, Fe[sub 2]O[sub 3], Al[sub 2]O[sub 3], and ZrO[sub 2]. The test compositions were generated statistically. The data were fitted by Fulcher and Arrhenius equations with temperature coefficients being multilinear functions of the mass fractions of the oxide components. Mixture models were also developed for the natural logarithm of viscosity and that of electrical conductivity at 1150[degree]C. Least squares regression was used to obtain component coefficients for all the models.

  7. Origin of cluster spin glass and nuclear Schottky anomaly in Mn50Ni38.5Sn11.5 alloy

    NASA Astrophysics Data System (ADS)

    Ray, Mayukh K.; Bagani, K.; Mukhopadhyay, P. K.; Banerjee, S.

    2015-02-01

    The magnetic ground state of the Mn50Ni38.5Sn11.5 alloy is investigated through dc/ac magnetization and low-temperature (?0.15 \\text{K}) specific-heat (Cp(T)) measurements. The dc and ac magnetization measurements indicate that the system can be identified as a cluster spin glass (CSG) phase in a ferromagnetic (FM) background, and as a conjunction of these two phases an exchange bias effect (EBE) is observed in this system. The presence of coexisting phases is further supported by our Cp(T) measurement. We attribute the existence of the CSG phase to the antiferromagnetic (AFM) interaction arising from the Mn-Mn antisite disorder which further enhances through martensite transformation. The anomalous increase of C p below 0.7 K is due to the nuclear Schottky anomaly arising from the hyperfine splitting of the nuclear levels of Mn atoms. Detailed reasons for the observed behaviours are discussed in the paper.

  8. glass ceramic

    NASA Astrophysics Data System (ADS)

    Hassaan, M. Y.; Salem, S. M.; Moustafa, M. G.; Kubuki, S.; Matsuda, K.; Nishida, T.

    2014-04-01

    Glass sample with a composition of Li1.3Nb0.3Fe1.7(PO4)3, prepared by a conventional melt-quenching method, was heat treated to obtain glass ceramics of NASICON type. Glass transition ( T g) and crystallization ( T c) temperatures of as-quenched glass sample were determined by differential thermal analysis (DTA). X-ray diffraction (XRD) patterns also confirmed the formation of glass sample. After heat treatment above T c, precipitation of crystalline particles with NASICON-type structure was confirmed by XRD. Valency and local structure of Fe atoms were investigated by Mössbauer spectroscopy at room temperature. DC-conductivity and impedance measurements of the glass ceramics proved the increased electrical conduction caused by heat treatment.

  9. Structural studies of mixed glass former 0.35Na2O + 0.65[xB2O3 + (1 - x)P2O5] glasses by Raman and 11B and 31P magic angle spinning nuclear magnetic resonance spectroscopies.

    PubMed

    Christensen, Randilynn; Olson, Garrett; Martin, Steve W

    2013-02-21

    The mixed glass former (MGF) effect (MGFE) is defined as a nonlinear and nonadditive change in the ionic conductivity with changing glass former composition at constant modifier composition. In this study, sodium borophosphate 0.35Na(2)O + 0.65[xB(2)O(3) + (1 - x)P(2)O(5)], 0 ? x ? 1, glasses which have been shown to exhibit a positive MGFE have been prepared and examined using Raman and (11)B and (31)P magic angle spinning nuclear magnetic resonance (MAS NMR) spectroscopies. Through examination of the short-range order (SRO) structures found in the ternary glasses, it was determined that the minority glass former, B for 0.1 ? x ? 0.7 and P for 0.7 ? x ? 0.9, is "overmodified" and contains more Na(+) ions than would be expected from simple linear mixing of the binary sodium borate, x = 1, and sodium phosphate, x = 0, glasses, respectively. Changes in the intermediate range order (IRO) structures were suggested by changes in the NMR spectral chemical shifts and Raman spectra wavenumber shifts over the full composition range x in the Raman and MAS NMR spectra. The changes observed in the chemical shifts of (31)P MAS NMR spectra with x are found to be too large to be caused solely by changing sodium modification of the phosphate SRO structural groups, and this indicates that internetwork bonding between phosphorus and boron through bridging oxygens (BOs), P-O-B, must be a major contributor to the IRO structure of these glasses. While not fully developed, a first-order thermodynamic analysis based upon the Gibbs free energies of formation of the various SRO structural units in this system has been developed and can be used to account for the preferential formation of tetrahedral boron groups, B(4), by the reaction of B(3) with P(2) groups to form B(4) and P(3) groups, respectively, where the superscript denotes the number of BOs on these units, in these glasses. This preference for B(4) units appears to be a predominate cause of the changing modifier to glass former ratio with composition x in these ternary MGF glasses and appears to be associated with the large negative value of the Gibbs free energy of formation of this group. PMID:23281937

  10. Glass-An Environmental Protector

    SciTech Connect

    MARRA, JAMES

    2004-11-01

    From asbestos abatement to lead paint removal to nuclear waste stabilization and even to heavy metal removal using microorganisms, glass has great potential as a solution to many environmental problems. The ability to accommodate an array of chemical elements within the glass structure has facilitated the use of glass as a medium for the stabilization of numerous hazardous substances. The resulting glasses have proven to be durable enough for direct land disposal. In many cases, the stabilized forms have been deemed suitable for re-use in other applications. As recycling and hazardous material treatment become even more important in the global materials cycle, it is a certainty that glass will assume a prominent role.

  11. Glass electrolytes

    SciTech Connect

    Not Available

    1984-06-25

    The objective of this research is a glass electrolyte for use in sodium/sulfur batteries that has a low resistivity (100 ohm-cm at 300/sup 0/C) and is stable in the cell environment. Experiments in this program are focussed on glasses in the quaternary system: soda, alumina, zirconia and silica. The FY 1983 research on glass analogs of NASICON, parallel thermodynamic calculations, and a review of the literature in the areas of glass conductivity and corrosion resistance led to selection of this system for more detailed investigation. The main program elements are: (1) conductivity measurements at 300 to 500/sup 0/C; (2) differential thermal analysis for determination of glass-transition and crystallization temperatures; (3) static corrosion tests at 400/sup 0/C using Na, Na/sub 2/S/sub 4/, and S; (4) mechanical strength and fracture toughness measurements; and (5) sodium/sulfur cell tests at 350/sup 0/C. Elements (1) and (2) are nearly completed; element (3) is being initiated using the glasses prepared for (1) and (2), and elements (4) and (5) will begin in the first and second quarters of FY 1985, respectively. Fourteen quaternary glasses having a broad range of compositions have been made. The resistivities of these glasses at 300/sup 0/C extended from 130 to 3704 ohm-cm; the activation energies for conduction extended from 0.488 to 0.684 eV, and the glass transition temperatures extended from 397 to 685/sup 0/C. Through a multiple linear regression analysis of these data response surfaces were generated for resistivity, activation energy for conduction, and glass transition temperature over the composition region within the quaternary system that is bounded by SiO/sub 2/, Na/sub 2/O/sub 3/, Na/sub 2/AlO/sub 4/ and Na/sub 2/ZrO/sub 3/. These response surfaces indicated a new region of high conductivity and high glass transition temperature in the neighborhood of 42% soda, 31% silica and 27% alumina plus zirconia.

  12. Photochromic glass

    SciTech Connect

    Hoffmann, H.J.

    1990-12-31

    This article deals with the general properties of photochromic inorganic glasses and the darkening and regeneration dynamics as well as the main photochemical and photophysical reactions occurring in the glasses. It concludes with applications of photochromic systems to self-adjusting window panes. This controlled flow of radiant energy could lead to important energy savings by decreasing the cooling and heating loads in buildings and automobiles.

  13. Silicate Glass Corrosion Mechanism revisited

    NASA Astrophysics Data System (ADS)

    Geisler, Thorsten; Lenting, Christoph; Dohmen, Lars

    2015-04-01

    Understanding the mechanism(s) of aqueous corrosion of nuclear waste borosilicate glasses is essential to predict their long-term aqueous durability in a geologic repository. Several observations have been made with compositionally different silicate glasses that cannot be explained by any of the established glass corrosion models. These models are based on diffusion-controlled ion exchange and subsequent structural reorganisation of a leached, hydrated residual glass, leaving behind a so-called gel layer. In fact, the common observation of lamellar to more complex pattern formation observed in experiment and nature, the porous structure of the corrosion layer, an atomically sharp boundary between the corrosion zone and the underlying pristine glass, as well as results of novel isotope tracer and in situ, real time experiments rather support an interface-coupled glass dissolution-silica reprecipitation model. In this model, the congruent dissolution of the glass is coupled in space and time to the precipitation and growth of amorphous silica at an inwardly moving reaction front. We suggest that these coupled processes have to be considered to realistically model the long-term performance of silicate glasses in aqueous environments.

  14. Failure analysis of the lithium battery: A study of the header deposit on the cell top and diffusion within the electrode glass seal using nuclear microanalysis and FFTIR spectroscopy

    NASA Technical Reports Server (NTRS)

    Hassan, Razi A.

    1991-01-01

    The Solid Rocket Booster Range Safety System (SRBRSS) uses a lithium/poly-carbon monofluoride primary battery as a source of electrical power. After cell fabrication and activation, some battery cells have shown self discharge. One possible source of this cell discharge has been suggested to be the formation and growth of a conducting crystallized chemical compound across the glass bead insulator, electrically shorting the glass bead to the casing. This laboratory has begun an analysis of this compound, the glass seal holding the cathode into place, and the cell electrolyte, using Fast Fourier Transform Infrared (FFTIR) Analysis, Rutherford Backscattering Spectroscopy (RBS), and Nuclear Reaction Microanalysis. Preliminary measurements have confirmed the existence of lithium, nitrogen, fluorine, and oxygen on a reddish-brown deposit covering parts of the glass seal holding the positive electrode in place. Cells using Li metal electrodes, have many advantages over conventional primary batteries. One principal disadvantage of using Li batteries on a commercial basis would be the environmental impact of the fluorocarbon material. Another would be the relatively high expense of (CF)n.

  15. DURABLE GLASS FOR THOUSANDS OF YEARS

    SciTech Connect

    Jantzen, C.

    2009-12-04

    The durability of natural glasses on geological time scales and ancient glasses for thousands of years is well documented. The necessity to predict the durability of high level nuclear waste (HLW) glasses on extended time scales has led to various thermodynamic and kinetic approaches. Advances in the measurement of medium range order (MRO) in glasses has led to the understanding that the molecular structure of a glass, and thus the glass composition, controls the glass durability by establishing the distribution of ion exchange sites, hydrolysis sites, and the access of water to those sites. During the early stages of glass dissolution, a 'gel' layer resembling a membrane forms through which ions exchange between the glass and the leachant. The hydrated gel layer exhibits acid/base properties which are manifested as the pH dependence of the thickness and nature of the gel layer. The gel layer ages into clay or zeolite minerals by Ostwald ripening. Zeolite mineral assemblages (higher pH and Al{sup 3+} rich glasses) may cause the dissolution rate to increase which is undesirable for long-term performance of glass in the environment. Thermodynamic and structural approaches to the prediction of glass durability are compared versus Ostwald ripening.

  16. Durability of Silicate Glasses: An Historical Approach

    SciTech Connect

    Farges, Francois; Etcheverry, Marie-Pierre; Haddi, Amine; Trocellier, Patrick; Curti, Enzo; Brown, Gordon E. Jr.

    2007-02-02

    We present a short review of current theories of glass weathering, including glass dissolution, and hydrolysis of nuclear waste glasses, and leaching of historical glasses from an XAFS perspective. The results of various laboratory leaching experiments at different timescales (30 days to 12 years) are compared with results for historical glasses that were weathered by atmospheric gases and soil waters over 500 to 3000 years. Good agreement is found between laboratory experiments and slowly leached historical glasses, with a strong enrichment of metals at the water/gel interface. Depending on the nature of the transition elements originally dissolved in the melt, increasing elemental distributions are expected to increase with time for a given glass durability context.

  17. Durability of Silicate Glasses: An Historical Approach

    SciTech Connect

    Farges, Francois; Etcheverry, Marie-Pierre; Haddi, Amine; Trocellier, Patrick; Curti, Enzo; Brown, Gordon E., Jr.; /SLAC, SSRL

    2007-01-02

    We present a short review of current theories of glass weathering, including glass dissolution, and hydrolysis of nuclear waste glasses, and leaching of historical glasses from an XAFS perspective. The results of various laboratory leaching experiments at different timescales (30 days to 12 years) are compared with results for historical glasses that were weathered by atmospheric gases and soil waters over 500 to 3000 years. Good agreement is found between laboratory experiments and slowly leached historical glasses, with a strong enrichment of metals at the water/gel interface. Depending on the nature of the transition elements originally dissolved in the melt, increasing elemental distributions are expected to increase with time for a given glass durability context.

  18. Glass Ceramic Formulation Data Package

    SciTech Connect

    Crum, Jarrod V.; Rodriguez, Carmen P.; McCloy, John S.; Vienna, John D.; Chung, Chul-Woo

    2012-06-17

    A glass ceramic waste form is being developed for treatment of secondary waste streams generated by aqueous reprocessing of commercial used nuclear fuel (Crum et al. 2012b). The waste stream contains a mixture of transition metals, alkali, alkaline earths, and lanthanides, several of which exceed the solubility limits of a single phase borosilicate glass (Crum et al. 2009; Caurant et al. 2007). A multi-phase glass ceramic waste form allows incorporation of insoluble components of the waste by designed crystallization into durable heat tolerant phases. The glass ceramic formulation and processing targets the formation of the following three stable crystalline phases: (1) powellite (XMoO4) where X can be (Ca, Sr, Ba, and/or Ln), (2) oxyapatite Yx,Z(10-x)Si6O26 where Y is alkaline earth, Z is Ln, and (3) lanthanide borosilicate (Ln5BSi2O13). These three phases incorporate the waste components that are above the solubility limit of a single-phase borosilicate glass. The glass ceramic is designed to be a single phase melt, just like a borosilicate glass, and then crystallize upon slow cooling to form the targeted phases. The slow cooling schedule is based on the centerline cooling profile of a 2 foot diameter canister such as the Hanford High-Level Waste canister. Up to this point, crucible testing has been used for glass ceramic development, with cold crucible induction melter (CCIM) targeted as the ultimate processing technology for the waste form. Idaho National Laboratory (INL) will conduct a scaled CCIM test in FY2012 with a glass ceramic to demonstrate the processing behavior. This Data Package documents the laboratory studies of the glass ceramic composition to support the CCIM test. Pacific Northwest National Laboratory (PNNL) measured melt viscosity, electrical conductivity, and crystallization behavior upon cooling to identify a processing window (temperature range) for melter operation and cooling profiles necessary to crystallize the targeted phases in the waste form.

  19. Iron phosphate glass containing simulated fast reactor waste: Characterization and comparison with pristine iron phosphate glass

    NASA Astrophysics Data System (ADS)

    Joseph, Kitheri; Asuvathraman, R.; Venkata Krishnan, R.; Ravindran, T. R.; Govindaraj, R.; Govindan Kutty, K. V.; Vasudeva Rao, P. R.

    2014-09-01

    Detailed characterization was carried out on an iron phosphate glass waste form containing 20 wt.% of a simulated nuclear waste. High temperature viscosity measurement was carried out by the rotating spindle method. The Fe3+/Fe ratio and structure of this waste loaded iron phosphate glass was investigated using Mössbauer and Raman spectroscopy respectively. Specific heat measurement was carried out in the temperature range of 300-700 K using differential scanning calorimeter. Isoconversional kinetic analysis was employed to understand the crystallization behavior of the waste loaded iron phosphate glass. The glass forming ability and glass stability of the waste loaded glass were also evaluated. All the measured properties of the waste loaded glass were compared with the characteristics of pristine iron phosphate glass.

  20. Nuclear magnetic resonance spectroscopic investigations of phase biaxiality in the nematic glass of a shape-persistent V-shaped mesogen

    NASA Astrophysics Data System (ADS)

    Figueirinhas, Joo L.; Feio, Gabriel; Cruz, Carlos; Lehmann, Matthias; Khn, Christiane; Dong, Ronald Y.

    2010-11-01

    Deuterium and carbon-13 NMR spectroscopy were used to study both the high temperature uniaxial nematic and the low temperature biaxial nematic glass of a shape-persistent V-shaped mesogen. It was found that biaxial ordering determined in the domains of the latter has symmetry lower than D2h and is compatible with C2h symmetry or lower. In particular, elements of the ordering matrix including biaxial phase order parameters were determined from H2 NMR at two temperatures, one just below the glass transition, and the other deep inside the biaxial glass, which allowed for the characterization of the dominant molecular motions at these temperatures. C13 NMR magic angle spinning sideband patterns, collected both in the high temperature nematic phase and in the nematic glass, clearly show the difference between them in terms of the phase symmetry.

  1. Pinhole Glasses

    ERIC Educational Resources Information Center

    Colicchia, Giuseppe; Hopf, Martin; Wiesner, Hartmut; Zollman, Dean

    2008-01-01

    Eye aberrations are commonly corrected by lenses that restore vision by altering rays before they pass through the cornea. Some modern promoters claim that pinhole glasses are better than conventional lenses in correcting all kinds of refractive defects such as myopia (nearsighted), hyperopia (farsighted), astigmatisms, and presbyopia. Do pinhole…

  2. Pinhole Glasses

    ERIC Educational Resources Information Center

    Colicchia, Giuseppe; Hopf, Martin; Wiesner, Hartmut; Zollman, Dean

    2008-01-01

    Eye aberrations are commonly corrected by lenses that restore vision by altering rays before they pass through the cornea. Some modern promoters claim that pinhole glasses are better than conventional lenses in correcting all kinds of refractive defects such as myopia (nearsighted), hyperopia (farsighted), astigmatisms, and presbyopia. Do pinhole

  3. The incorporation of P, S, Cr, F, Cl, I, Mn, Ti, U, and Bi into simulated nuclear waste glasses: Literature study

    SciTech Connect

    Langowski, M.H.

    1996-02-01

    Waste currently stored on the Hanford Reservation in underground tanks will be into High Level Waste (HLW) and Low Level Waste (LLW). The HLW melter will high-level and transuranic wastes to a vitrified form for disposal in a geological repository. The LLW melter will vitrify the low-level waste which is mainly a sodium solution. Characterization of the tank wastes is still in progress, and the pretreatment processes are still under development Apart from tank-to-tank variations, the feed delivered to the HLW melter will be subject to process control variability which consists of blending and pretreating the waste. The challenge is then to develop glass formulation models which can produce durable and processable glass compositions for all potential vitrification feed compositions and processing conditions. The work under HLW glass formulation is to study and model glass and melt pro functions of glass composition and temperature. The properties of interest include viscosity, electrical conductivity, liquidus temperature, crystallization, immiscibility durability. It is these properties that determine the glass processability and ac waste glass. Apart from composition, some properties, such as viscosity are affected by temperature. The processing temperature may vary from 1050{degrees}C to 1550{degrees}C dependent upon the melter type. The glass will also experience a temperature profile upon cooling. The purpose of this letter report is to assess the expected vitrification feed compositions for critical components with the greatest potential impact on waste loading for double shell tank (DST) and single shell tank (SST) wastes. The basis for critical component selection is identified along with the planned approach for evaluation. The proposed experimental work is a crucial part of model development and verification.

  4. Phase Stability Determinations of DWPF Waste Glasses

    SciTech Connect

    Marra, S.L.

    1999-10-22

    Liquid high-level nuclear waste will be immobilized at the Savannah River Site (SRS) by vitrification in borosilicate glass. To fulfill this requirement, glass samples were heat treated at various times and temperatures. These results will provide guidance to the repository program about conditions to be avoided during shipping, handling and storage of DWPF canistered waste forms.

  5. Prediction of glass durability as a function of environmental conditions

    SciTech Connect

    Jantzen, C.M.

    1988-01-01

    A thermodynamic model of glass durability is applied to natural, ancient, and nuclear waste glasses. The durabilities of over 150 different natural and man-made glasses, including actual ancient Roman and Islamic glasses (Jalame ca. 350 AD, Nishapur 10-11th century AD and Gorgon 9-11th century AD), are compared. Glass durability is a function of the thermodynamic hydration free energy, ..delta..G/sub hyd/, which can be calculated from glass composition and solution pH. The durability of the most durable nuclear waste glasses examined was /approximately/10/sup 6/ years. The least durable waste glass formulations were comparable in durability to the most durable simulated medieval window glasses of /approximately/10/sup 3/ years. In this manner, the durability of nuclear waste glasses has been interpolated to be /approximately/10/sup 6/ years and no less than 10/sup 3/ years. Hydration thermodynamics have been shown to be applicable to the dissolution of glass in various natural environments. Groundwater-glass interactions relative to geologic disposal of nuclear waste, hydration rind dating of obsidians, andor other archeological studies can be modeled, e.g., the relative durabilities of six simulated medieval window glasses have been correctly predicted for both laboratory (one month) and burial (5 years) experiments. Effects of solution pH on glass dissolution has been determined experimentally for the 150 different glasses and can be predicted theoretically by hydration thermodynamics. The effects of solution redox on dissolution of glass matrix elements such as SI and B have shown to be minimal. The combined effects of solution pH and Eh have been described and unified by construction of thermodynamically calculated Pourbaix (pH-Eh) diagrams for glass dissolution. The Pourbaix diagrams have been quantified to describe glass dissolution as a function of environmental conditions by use of the data derived from hydration thermodynamics. 56 refs., 7 figs.

  6. Surface reactions of natural glasses

    SciTech Connect

    White, A.F.

    1986-12-31

    Reactions at natural glass surfaces are important in studies involving nuclear waste transport due to chemical control on ground water in host rocks such as basalt and tuff, to potential diffusion into natural hydrated glass surfaces and as natural analogs for waste glass stability. Dissolution kinetics can be described by linear surface reaction coupled with cation interdiffusion with resulting rates similar to those of synthetic silicate glasses. Rates of Cs diffusion into hydrated obsidian surfaces between 25{sup 0} and 75{sup 0}C were determined by XPS depth profiles and loss rates from aqueous solutions. Calculated diffusion coefficients were ten others of magnitude more rapid than predicted from an Arrhenius extrapolation of high temperature tracer diffusion data due to surface hydration reactions.

  7. Prediction of glass durability as a function of glass composition and test conditions: Thermodynamics and kinetics

    SciTech Connect

    Jantzen, C.M.

    1988-01-01

    The long-term durability of nuclear waste glasses can be predicted by comparing their performance to natural and ancient glasses. Glass durability is a function of the kinetic and thermodynamic stability of glass in solution. The relationship between the kinetic and thermodynamic aspects of glass durability can be understood when the relative contributions of glass composition and imposed test conditions are delineated. Glass durability has been shown to be a function of the thermodynamic hydration free energy which can be calculated from the glass composition. Hydration thermodynamics also furnishes a quantitative frame of reference to understand how various test parameters affect glass durability. Linear relationships have been determined between the logarithmic extent of hydration and the calculated hydration free energy for several different test geometries. Different test conditions result in different kinetic reactivity parameters such as the exposed glass surface area (SA), the leachant solution volume (V), and the length of time that the glass is in the leachant (t). Leachate concentrations are known to be a function of the kinetic test parameter (SAV)t. The relative durabilities of glasses, including pure silica, obsidians, nuclear waste glasses, medieval window glasses, and frit glasses define a plane in three dimensional ..delta..G/sub hyd/-concentration-(SAV)t space. At constant kinetic conditions, e.g., test geometry and test duration, the three dimensional plane is intersected at constant (SAV)t and the ..delta..G/sub hyd/-concentration plots have similar slopes. The slope represents the natural logarithm of the theoretical slope, (12.303 RT), for the rate of glass dissolution. 53 refs., 4 figs.

  8. Na, Mg, Ni and Cs distribution and speciation after long-term alteration of a simulated nuclear waste glass: A micro-XAS/XRF/XRD and wet chemical study

    NASA Astrophysics Data System (ADS)

    Curti, Enzo; Dhn, Rainer; Farges, Franois; Vespa, Marika

    2009-04-01

    Microscopic distribution and speciation of Na, Mg, Ni and Cs in a simulated (inactive) nuclear waste glass were studied using micro X-ray fluorescence (?-XRF) and micro X-ray absorption spectroscopy (?-XAS), after aqueous leaching during 12 years at 90 C. Na and Mg are major constituents of the glass that can be used to determine the progress of the glass corrosion process and the nature of secondary alteration phases. Ni and Cs represent dose determining long-lived radionuclides ( 59Ni, 135Cs) in vitrified nuclear waste. The Na-Mg ?-XRF maps revealed that the core regions of the glass fragments are apparently unaltered and compositionally homogeneous, whereas rims and interstitial spaces are enriched with Mg-rich smectite formed during the leaching process. The micro X-ray absorption near edge structure (?-XANES) spectra collected at the Mg K-edge in the altered zones show three sharp resonances typical for crystalline Mg-silicates. These resonances are distinctive of Mg occupying undistorted octahedral positions. In contrast, the ?-XANES spectra collected in the core zones of the glass fragments lack this resonance pattern and are identical to the spectra measured on the pristine (unleached) MW glass. Micro extended X-ray absorption fine structure (?-EXAFS) and ?-XANES analyses at the Ni K-edge revealed three distinct Ni(II) species: (a) Ni uniformly distributed in the glass matrix, (b) micro-inclusions with high Ni concentrations and (c) Ni associated to the Mg-clay. The comparison with reference spectra of unleached MW and other Ni-bearing silicate glasses indicated that species (a) represents the original coordinative environment of Ni in the glass. The ?-EXAFS analyses revealed that species (b) is structural Ni in trevorite (NiFe 2O 4), which probably formed through unmixing processes during the cooling of the glass melt. The ?-EXAFS of species (c) could be successfully modeled assuming specific adsorption or incorporation of Ni into the lattice of trioctahedral Mg-clay minerals. Alternative models assuming other elements (Ni, Al, Fe) in addition to Mg in the second shell could not be fitted successfully. Aqueous concentration data were used to calculate the speciation of the leaching solutions. Saturation index (SI) calculations indicate undersaturation with respect to NiCO 3 and NiSO 47H 2O, but oversaturation with respect to ?-Ni(OH) 2. The latter result is probably due to the omission of Ni borate and Ni silicate complexes in the speciation calculations, for which formation constants are not available. With the help of estimation techniques, we could infer that such complexes would dominate the Ni speciation and consequently reduce the SI below the saturation of ?-Ni(OH) 2. The ?-XRF maps show that Cs is uniformly distributed in the MW glass, since no region with high Cs concentration could be detected. The Cs L III-edge ?-XAS spectra were all very similar independently of the degree of alteration, indicating similar coordination environments of Cs in the core regions of the glass as well as in the secondary clays. These spectra largely differ from that measured for pollucite (a potential secondary Cs-phase in altered glasses) implying that the coordination environments of Cs in the MW glass and in pollucite are fundamentally different. The present study shows that ?-XRF and ?-XAS are essential tools in determining the fate and the retention mechanisms of radionuclides released from nuclear waste during aqueous alteration. Our spectroscopic analyses allowed us to exclude formation of specific Ni and Cs secondary solids (e.g. nepouite, ?-Ni(OH) 2, pollucite) during the aqueous alteration. Ni and Cs are instead distributed as trace elements in the alteration phases formed by major elements during the leaching process. Our results imply that solid solution and/or adsorption equilibria, rather than pure phase solubility equilibria, are the adequate chemical models to determine Ni and Cs aqueous concentrations in performance assessments for radioactive waste repositories.

  9. Hot isostatically-pressed aluminosilicate glass-ceramic with natural crystalline analogues for immobilizing the calcined high-level nuclear waste at the Idaho Chemical Processing Plant

    SciTech Connect

    Raman, S.

    1993-12-01

    The additives Si, Al, MgO, P{sub 2}O{sub 5} were mechanically blended with fluorinelsodium calcine in varying proportions. The batches were vacuum sealed in stainless steel canisters and hot isostatically pressed at 20,000 PSI and 1000 C for 4 hours. The resulting suite of glass-ceramic waste forms parallels the natural rocks in microstructural and compositional heterogeneity. Several crystalline phases ar analogous in composition and structure to naturally occurring minerals. Additional crystalline phases are zirconia and Ca-Mg borate. The glasses are enriched in silica and alumina. Approximately 7% calcine elements occur dissolved in this glass and the total glass content in the waste forms averages 20 wt%. The remainder of the calcine elements are partitioned into crystalline phases at 75 wt% calcine waste loading. The waste forms were tested for chemical durability in accordance with the MCC1-test procedure. The leach rates are a function of the relative proportions of additives and calcine, which in turn influence the composition and abundances of the glass and crystalline phases. The DOE leach rate criterion of less than 1 g/m{sup 2}-day is met by all the elements B, Cs and Na are increased by lowering the melt viscosity. This is related to increased crystallization or devitrification with increases in MgO addition. This exploratory work has shown that the increases in waste loading occur by preferred partitioning of the calcine components among crystalline and glass phases. The determination of optimum processing parameters in the form of additive concentration levels, homogeneous blending among the components, and pressure-temperature stabilities of phases must be continued to eliminate undesirable effects of chemical composition, microstructure and glass devitrification.

  10. Temperature effects on waste glass performance

    SciTech Connect

    Mazer, J.J.

    1991-02-01

    The temperature dependence of glass durability, particularly that of nuclear waste glasses, is assessed by reviewing past studies. The reaction mechanism for glass dissolution in water is complex and involves multiple simultaneous reaction proceeded, including molecular water diffusion, ion exchange, surface reaction, and precipitation. These processes can change in relative importance or dominance with time or changes in temperature. The temperature dependence of each reaction process has been shown to follow an Arrhenius relationship in studies where the reaction process has been isolated, but the overall temperature dependence for nuclear waste glass reaction mechanisms is less well understood, Nuclear waste glass studies have often neglected to identify and characterize the reaction mechanism because of difficulties in performing microanalyses; thus, it is unclear if such results can be extrapolated to other temperatures or reaction times. Recent developments in analytical capabilities suggest that investigations of nuclear waste glass reactions with water can lead to better understandings of their reaction mechanisms and their temperature dependences. Until a better understanding of glass reaction mechanisms is available, caution should be exercised in using temperature as an accelerating parameter. 76 refs., 1 tab.

  11. Current status of the GLASS code

    SciTech Connect

    Hootman, H.E. ); Honeck, H.C. )

    1991-01-01

    This paper summarizes the current status of the Generalized Lattice Analysis SubSystem (GLASS) computer code and its supporting cross section libraries. GLASS was developed at the Savannah River Site (SRS) in the early 1970's. The GLASS code has been instrumental in supporting safe Heavy Water Reactor (HWR) operations and predicting material production at SRS for more than 20 years. The Department of Energy Office of New Production Reactors (ONPR) program has chosen to use the GLASS code for the design of the HWR option of the New Production Reactor (NPR). A substantial body of validation calculations have been performed and additional validation calculations will be performed to qualify the new GLASS multigroup cross section libraries derived from the ENDF/B-5 and 6 nuclear data files. Several improvements to the code are in progress. Many other improvements are planned to bring GLASS up to modern physics and compute technology.

  12. Current status of the GLASS code

    SciTech Connect

    Hootman, H.E.; Honeck, H.C.

    1991-12-31

    This paper summarizes the current status of the Generalized Lattice Analysis SubSystem (GLASS) computer code and its supporting cross section libraries. GLASS was developed at the Savannah River Site (SRS) in the early 1970`s. The GLASS code has been instrumental in supporting safe Heavy Water Reactor (HWR) operations and predicting material production at SRS for more than 20 years. The Department of Energy Office of New Production Reactors (ONPR) program has chosen to use the GLASS code for the design of the HWR option of the New Production Reactor (NPR). A substantial body of validation calculations have been performed and additional validation calculations will be performed to qualify the new GLASS multigroup cross section libraries derived from the ENDF/B-5 and 6 nuclear data files. Several improvements to the code are in progress. Many other improvements are planned to bring GLASS up to modern physics and compute technology.

  13. Metal glasses

    NASA Astrophysics Data System (ADS)

    Belen'kii, Aleksei Iakovlevich

    1987-02-01

    Methods of producing amorphous alloys of various systems (e.g., Pd-Si, Fe-B, Ni-P, Ni-Nb, Ni-Ta, Co-Gd, Fe-Gd, Mg-Zn,and Ca-Al) are briefly discussed, and the atomic structure and properties of such alloys are examined. In particular, attention is given to anomalies in the low-temperature behavior of amorphous alloys, their electrical and magnetic properties, strength, ductility, and corosion stability. Some aplications of metal glasses are mentioned.

  14. Structure of rhenium-containing sodium borosilicate glass

    SciTech Connect

    Goel, Ashutosh; McCloy, John S.; Windisch, Charles F.; Riley, Brian J.; Schweiger, Michael J.; Rodriguez, Carmen P.; Ferreira, Jose M.

    2013-03-01

    A series of sodium borosilicate glasses were synthesized with increasing fractions of KReO4 or Re2O7, to 10000 ppm (1 mass%) target Re in glass, to assess the effects of large concentrations of rhenium on glass structure and to estimate the solubility of technetium, a radioactive component in typical low active waste nuclear waste glasses. Magic angle spinning nuclear magnetic resonance (MAS-NMR), Fourier transform infrared (FTIR) spectroscopy, and Raman spectroscopy were performed to characterize the glasses as a function of Re source additions. In general, silicon was found coordinated in a mixture of Q2 and Q3 structural units, while Al was 4-coordinated and B was largely 3-coordinate and partially 4-coordinated. The rhenium source did not appear to have significant effects on the glass structure. Thus, at the up to the concentrations that remain in dissolved in glass, ~3000 ppm Re by mass maximum. , the Re appeared to be neither a glass-former nor a strong glass modifier., Rhenium likely exists in isolated ReO4- anions in the interstices of the glass network, as evidenced by the polarized Raman spectrum of the Re glass in the absence of sulfate. Analogous to SO42-¬ in similar glasses, ReO4- is likely a network modifier and forms alkali salt phases on the surface and in the bulk glass above solubility.

  15. Facets of glass physics

    NASA Astrophysics Data System (ADS)

    Berthier, Ludovic; Ediger, Mark D.

    2016-01-01

    Glasses constitute a widespread form of solid matter, and glass production has been an important human technology for more than 3000 years. Despite that long history, new ways to understand the fundamental physics of glasses continue to emerge.

  16. Glass Furnace Project: October 1981-March 1982

    SciTech Connect

    Armstrong, K M; Klingler, L M

    1982-05-14

    The purpose of the Glass Furnace Project is to evaluate the use of a joule-heated glass furnace, fitted with a Mound-developed offgas system, to reduce the volume of contaminated waste typical of that from nuclear power plants. As part of the project, several different waste types, including dry solid waste, ion exchange resin, and sludge, will be burned in the glass furnace unit. Burned combustion characteristics and radionuclide behavior in the glass furnace and associated offgas system will be monitored to determine optimum operating conditions. The project will provide an evaluation of the glass furnace as a volume reduction technique for the nuclear power industry as well as design criteria that can be used in constructing such a system by the end of FY-1984. The first half of FY-1982 was devoted to completion of the installation, checkout, and startup of the furnace unit and control systems. Compatibility studies to determine the effects of refractory and simulated waste on the soda-lime glass matrix were also performed in conjunction with the Mound Glass Ceramics group. These studies include chemical durability testing to discern the optimum waste loading of the glass. Finally, an experimental procedure was designed to determine the combustion efficiency of the incinerator. The combustion offgas will be monitored during experimentation to determine such related parameters as optimum feedrate and total oxygen requirements.

  17. GlassForm

    SciTech Connect

    2011-09-16

    GlassForm is a software tool for generating preliminary waste glass formulas for a given waste stream. The software is useful because it reduces the number of verification melts required to develop a suitable additive composition. The software includes property models that calculate glass properties of interest from the chemical composition of the waste glass. The software includes property models for glass viscosity, electrical conductivity, glass transition temperature, and leach resistance as measured by the 7-day product consistency test (PCT).

  18. Borosilicate glass alteration driven by magnesium carbonates

    NASA Astrophysics Data System (ADS)

    Debure, M.; Frugier, P.; De Windt, L.; Gin, S.

    2012-01-01

    The alteration of simplified synthetic glass, representative of the French reference nuclear glass R7T7, in presence of hydromagnesite has been experimentally investigated and modeled. Magnesium in solution is known to potentially enhance glass alteration; nuclear glass clayed host rocks contain magnesium and can dissolve to maintain the concentration of magnesium in solution. For modeling purposes, it was suitable to study a simple system. Hydromagnesite was therefore chosen as a simple model mineral in order to check the influence of an Mg-rich mineral on glass alteration. Since the models use thermodynamic and kinetic parameters measured in pure water and pH-buffered solutions, changing the solution composition or adding minerals is a key step towards the validation of the modeling assumptions before using the model for predictive purposes. Experiments revealed that glass alteration is enhanced in presence of hydromagnesite. Modeling was performed using the GRAAL model implemented within the CHESS/HYTEC reactive transport code. Modeling proved useful both for explaining the mechanisms involved and quantifying the impact on glass alteration: Mg coming from hydromagnesite dissolution reacts with Si provided by the glass in order to form magnesium silicates. This reaction decreases the pH down to neutral conditions where magnesium silicates are more soluble than at the natural alkali pH imposed by glass or hydromagnesite dissolution. The driving force of the magnesium silicate precipitation is eventually the interdiffusion of alkali within the altered amorphous glass layer as this mechanism consumes protons. The model's ability to describe the concentrations of elements in solution and formed solids whatever the glass/hydromagnesite ratio strongly supports the basic modeling hypothesis.

  19. IMPACT STRENGTH OF GLASS AND GLASS CERAMIC

    SciTech Connect

    Bless, S.; Tolman, J.

    2009-12-28

    Strength of glass and glass ceramic was measured with a bar impact technique. High-speed movies show regions of tensile and compressive failure. The borosilicate glass had a compressive strength of at least 2.2 GPa, and the glass ceramic at least 4 GPa. However, the BSG was much stronger in tension than GC. In ballistic tests, the BSG was the superior armor.

  20. Glass viscosity calculation based on a global statistical modelling approach

    SciTech Connect

    Fluegel, Alex

    2007-02-01

    A global statistical glass viscosity model was developed for predicting the complete viscosity curve, based on more than 2200 composition-property data of silicate glasses from the scientific literature, including soda-lime-silica container and float glasses, TV panel glasses, borosilicate fiber wool and E type glasses, low expansion borosilicate glasses, glasses for nuclear waste vitrification, lead crystal glasses, binary alkali silicates, and various further compositions from over half a century. It is shown that within a measurement series from a specific laboratory the reported viscosity values are often over-estimated at higher temperatures due to alkali and boron oxide evaporation during the measurement and glass preparation, including data by Lakatos et al. (1972) and the recently published High temperature glass melt property database for process modeling by Seward et al. (2005). Similarly, in the glass transition range many experimental data of borosilicate glasses are reported too high due to phase separation effects. The developed global model corrects those errors. The model standard error was 9-17C, with R^2 = 0.985-0.989. The prediction 95% confidence interval for glass in mass production largely depends on the glass composition of interest, the composition uncertainty, and the viscosity level. New insights in the mixed-alkali effect are provided.

  1. Chemical Principles Revisited: The Chemistry of Glass.

    ERIC Educational Resources Information Center

    Kolb, Doris; Kolb, Kenneth E.

    1979-01-01

    Presents a detailed discussion on the chemistry of glass. Topics discussed include: natural glass, early history, modern glass composition, raw materials for glass melting, chemically modified glasses, modern glass forming, glass ceramics, and new developments in glass research. (BT)

  2. Gaseous Sulfate Solubility in Glass: Experimental Method

    SciTech Connect

    Bliss, Mary

    2013-11-30

    Sulfate solubility in glass is a key parameter in many commercial glasses and nuclear waste glasses. This report summarizes key publications specific to sulfate solubility experimental methods and the underlying physical chemistry calculations. The published methods and experimental data are used to verify the calculations in this report and are expanded to a range of current technical interest. The calculations and experimental methods described in this report will guide several experiments on sulfate solubility and saturation for the Hanford Waste Treatment Plant Enhanced Waste Glass Models effort. There are several tables of sulfate gas equilibrium values at high temperature to guide experimental gas mixing and to achieve desired SO3 levels. This report also describes the necessary equipment and best practices to perform sulfate saturation experiments for molten glasses. Results and findings will be published when experimental work is finished and this report is validated from the data obtained.

  3. A simple method for tuning the glass transition process in inorganic phosphate glasses

    PubMed Central

    Fulchiron, Ren; Belyamani, Imane; Otaigbe, Joshua U.; Bounor-Legar, Vronique

    2015-01-01

    The physical modification of glass transition temperature (Tg) and properties of materials via blending is a common practice in industry and academia and has a large economic advantage. In this context, simple production of hitherto unattainable new inorganic glass blends from already existing glass compositions via blending raises much hope with the potential to provide new glasses with new and improved properties, that cannot be achieved with classical glass synthesis, for a plethora of applications such as computers screens, glass-to-metal seals, and storage materials for nuclear wastes. Here, we demonstrate that blends of the specific glass compositions studied are miscible in all proportions, an unreported phenomenon in hard condensed matter like glass. Interestingly, excellent agreement was found between the obtained data and calculated Tgs from theoretical equations (Supplementary information) for predicting the composition dependence of Tg for miscible blends with weak but significant specific interactions between the blend components. That this blending method is at present not applied to inorganic glasses reflects the fact that water and chemically resistant phosphate glasses with relatively low Tgs have become available only recently. PMID:25666949

  4. A simple method for tuning the glass transition process in inorganic phosphate glasses

    NASA Astrophysics Data System (ADS)

    Fulchiron, René; Belyamani, Imane; Otaigbe, Joshua U.; Bounor-Legaré, Véronique

    2015-02-01

    The physical modification of glass transition temperature (Tg) and properties of materials via blending is a common practice in industry and academia and has a large economic advantage. In this context, simple production of hitherto unattainable new inorganic glass blends from already existing glass compositions via blending raises much hope with the potential to provide new glasses with new and improved properties, that cannot be achieved with classical glass synthesis, for a plethora of applications such as computers screens, glass-to-metal seals, and storage materials for nuclear wastes. Here, we demonstrate that blends of the specific glass compositions studied are miscible in all proportions, an unreported phenomenon in hard condensed matter like glass. Interestingly, excellent agreement was found between the obtained data and calculated Tgs from theoretical equations (Supplementary information) for predicting the composition dependence of Tg for miscible blends with weak but significant specific interactions between the blend components. That this blending method is at present not applied to inorganic glasses reflects the fact that water and chemically resistant phosphate glasses with relatively low Tgs have become available only recently.

  5. Inverted glass harp.

    PubMed

    Quinn, Daniel B; Rosenberg, Brian J

    2015-08-01

    We present an analytical treatment of the acoustics of liquid-filled wine glasses, or "glass harps." The solution is generalized such that under certain assumptions it reduces to previous glass harp models, but also leads to a proposed musical instrument, the "inverted glass harp," in which an empty glass is submerged in a liquid-filled basin. The versatility of the solution demonstrates that all glass harps are governed by a family of solutions to Laplace's equation around a vibrating disk. Tonal analyses of recordings for a sample glass are offered as confirmation of the scaling predictions. PMID:26382336

  6. Inverted glass harp

    NASA Astrophysics Data System (ADS)

    Quinn, Daniel B.; Rosenberg, Brian J.

    2015-08-01

    We present an analytical treatment of the acoustics of liquid-filled wine glasses, or "glass harps." The solution is generalized such that under certain assumptions it reduces to previous glass harp models, but also leads to a proposed musical instrument, the "inverted glass harp," in which an empty glass is submerged in a liquid-filled basin. The versatility of the solution demonstrates that all glass harps are governed by a family of solutions to Laplace's equation around a vibrating disk. Tonal analyses of recordings for a sample glass are offered as confirmation of the scaling predictions.

  7. Silicon oxycarbide glass for the immobilisation of irradiated graphite waste

    NASA Astrophysics Data System (ADS)

    Lloyd, James W.; Stennett, Martin C.; Hand, Russell J.

    2016-02-01

    Silicon oxycarbide glass has been investigated as a potential immobilisation medium for irradiated graphite waste from nuclear power generation. The glass was synthesised via sol-gel techniques using alkoxysilane precursors. Attempts to produce a wasteform via conventional sintering were unsuccessful, but dense wasteforms were achieved by spark plasma sintering (SPS). Microstructural investigations showed that the addition of graphite to the glass did not alter the structure of the matrix; no reaction between the graphite and the glass matrix was observed. Silicon oxycarbide glass is a viable candidate for encapsulation of graphite waste prior to disposal.

  8. Electro-optic properties of high-refractive-index glasses

    NASA Astrophysics Data System (ADS)

    Borrelli, Nicholas F.; Aitken, B. G.; Newhouse, Mark A.; Hall, Douglas W.

    1989-12-01

    The electrooptic Kerr effect and its wavelength dispersion have been measured in glasses representing several compositional systems. The measured Kerr effect was large for glasses having large refractive indices, including 1) glasses containing high concentrations of the heavy metals Pb, Bi, and Tl; 2) glasses with high Nb, Ta, and Ti content; and 3) tellurite glasses. Comparison of Xeff(w=w+0+0), obtained from the measured electrooptic data, to values computed from literature values of Xeff(w=w+w-w) suggest an opposition of the electronic and nuclear contributions to the DC effect.

  9. Glass-silicon column

    DOEpatents

    Yu, Conrad M.

    2003-12-30

    A glass-silicon column that can operate in temperature variations between room temperature and about 450.degree. C. The glass-silicon column includes large area glass, such as a thin Corning 7740 boron-silicate glass bonded to a silicon wafer, with an electrode embedded in or mounted on glass of the column, and with a self alignment silicon post/glass hole structure. The glass/silicon components are bonded, for example be anodic bonding. In one embodiment, the column includes two outer layers of silicon each bonded to an inner layer of glass, with an electrode imbedded between the layers of glass, and with at least one self alignment hole and post arrangement. The electrode functions as a column heater, and one glass/silicon component is provided with a number of flow channels adjacent the bonded surfaces.

  10. Electron Spin Resonance Study of Fe3+ and Mn2+ Ions in 17-Year-Old Nuclear-Waste-Glass Simulants Containing PuO2 with Different Degrees of 238Pu Substitution

    SciTech Connect

    Griscom, David L.; Weber, William J.

    2011-03-01

    Three samples of a model nuclear waste glass, DRG-P1, P2, and P3, were prepared at PNNL in 1982 with identical chemical compositions but were respectively batched with 0.0, 0.1, and 0.9 wt% of 238PuO2 (half life 87.8 years) partially replacing the 1.0 wt% 239PuO2 present in DRG-P1. In 1999, samples of these glasses were sent to the Naval Research Laboratory for electron spin resonance (ESR) measurements. No radiation-induced point defects were observed. Profound alpha decay-induced changes in the ESR spectra of the batched iron-group ions were found. The spectra recorded for DRG-P1 were shown by absolute spin counts to have ESR intensities equivalent to ~85% of the sum of the batched 8.28 mole% Fe3+ and 2.79 mole% Mn2+, assuming all of those ions to behave as paramagnetic S=5/2 states at room temperature. Separate experiments and calculations ruled out the possibility of precipitated magnetite-like precipitates comprising even so much as 0.01% of the total iron. A relatively weak ESR spectral feature observed at g=4.3 is the known signature of dilute Fe3+ in glasses. However, the strongest ESR signal was found to be characterized by a first-derivative zero crossing at g=2.06 and a peak-to-peak derivative linewidth of ~150 mT, which is virtually invariant in shape with both measurement temperature and alpha-decay dose. It was discovered that these broad line shapes could be accurately simulated as weighted sums of Lorentzian shape functions of differing widths but having the same g value. The absence of any measurable anisotropy in the broad line, coupled with the temperature invariance of its width, imply the existence of extremely strong exchange interactions within clusters of Fe3+, Fe2+, Mn2+, and Ni2+ ions characterized by extremely short-range magnetic order. The result is a speromagnetic system rather than exhibiting a distinct Nel temperature. The most evident ESR effect of 17 years of 238Pu decay is the (irreversible) lowering of the intensity of the "broad line" in rough proportion to the amount of 238Pu in the sample, with concomitant increases in the amplitude of the g=4.3 feature. It was additionally observed that cooling these glasses to successively lower temperatures gives rise to reversible lowering of the broad-line intensity and increasing of the strength of the g=4.3 feature when compared with theoretical expectation for non-interacting paramagnets. The truly remarkable observation that the broad lines could be simulated as weighted sums of pure Lorentzian functions of differing widths fortuitously opened the way for high precision measurements of the ESR intensities of experimental spectra that are far broader than the magnetic field range of the available laboratory electromagnets. The areas under the simulated absorption curves fitted to the experimental spectra in the manner described provided an empirical measure of the degrees to which the present model nuclear waste glasses had been affected by alpha-decay self irradiation. Specifically, the broad-line ESR integrated-intensity data as a function of 238Pu alphadecay dose (proportional to the 238Pu doping level in these fixed-time experiments) proved to be accurately fitted by a simple saturating exponential function asymptotic to zero for infinite-time self irradiation. This result promises a precise means of extrapolating thousands of years into the future the process of "super-vitrification" that results from the creation and rapid quenching of thermal spikes due to alpha decay in glasses immobilizing 239Pu and other actinide elements. In addition, because the ESR spectra of several very different candidate high-level nuclear waste (HLW) glass compositions containing even higher amounts of Fe2O3 are also shown here to be decomposable into sums of pure Lorentzians, the analytical method we describe should be applicable to these and many other HLW glasses containing both iron-group oxides and radionuclides.

  11. Levitation yields purer glass.

    PubMed

    Flinn, Edward D

    2004-02-01

    Recent developments regarding the development of REA1 Glass, a new glass which can be used in laser and optical communicatoins applications, are reviewed. The glass contains rare earth oxides, aluminum oxides, and silicon dioxide and is formulated in the Electrostatic Levitator at NASA Marshall Space Center. Because a variety of rare-earth elements can be incorporated into the glass, glasses with specific properties for specific tasks can be crafted. PMID:14968787

  12. Comparison of mechanical properties of glass-bonded sodalite and borosilicate glass high-level waste forms

    SciTech Connect

    O'Holleran, T. P.; DiSanto, T.; Johnson, S. G.; Goff, K. M.

    2000-05-09

    Argonne National Laboratory has developed a glass-bonded sodalite waste form to immobilize the salt waste stream from electrometallurgical treatment of spent nuclear fuel. The waste form consists of 75 vol.% crystalline sodalite and 25 vol.% glass. Microindentation fracture toughness measurements were performed on this material and borosilicate glass from the Defense Waste Processing Facility using a Vickers indenter. Palmqvist cracking was confined for the glass-bonded sodalite waste form, while median-radial cracking occurred in the borosilicate glass. The elastic modulus was measured by an acoustic technique. Fracture toughness, microhardness, and elastic modulus values are reported for both waste forms.

  13. Surface layer effects on waste glass corrosion

    SciTech Connect

    Feng, X.

    1993-12-31

    Water contact subjects waste glass to chemical attack that results in the formation of surface alteration layers. Two principal hypotheses have been advanced concerning the effect of surface alteration layers on continued glass corrosion: (1) they act as a mass transport barrier and (2) they influence the chemical affinity of the glass reaction. In general, transport barrier effects have been found to be less important than affinity effects in the corrosion of most high-level nuclear waste glasses. However, they can be important under some circumstances, for example, in a very alkaline solution, in leachants containing Mg ions, or under conditions where the matrix dissolution rate is very low. The latter suggests that physical barrier effect may affect the long-term glass dissolution rate. Surface layers influence glass reaction affinity through the effects of the altered glass and secondary phases on the solution chemistry. The reaction affinity may be controlled by various precipitates and crystalline phases, amorphous silica phases, gel layer, or all the components of the glass. The surface alteration layers influence radionuclide release mainly through colloid formation, crystalline phase incorporation, and gel layer retention. This paper reviews current understanding and uncertainties.

  14. DEVELOPMENT OF GLASS MATRICES FOR HLW RADIOACTIVE WASTES

    SciTech Connect

    Jantzen, C.

    2010-03-18

    Vitrification is currently the most widely used technology for the treatment of high level radioactive wastes (HLW) throughout the world. Most of the nations that have generated HLW are immobilizing in either borosilicate glass or phosphate glass. One of the primary reasons that glass has become the most widely used immobilization media is the relative simplicity of the vitrification process, e.g. melt waste plus glass forming frit additives and cast. A second reason that glass has become widely used for HLW is that the short range order (SRO) and medium range order (MRO) found in glass atomistically bonds the radionuclides and governs the melt properties such as viscosity, resistivity, sulphate solubility. The molecular structure of glass controls contaminant/radionuclide release by establishing the distribution of ion exchange sites, hydrolysis sites, and the access of water to those sites. The molecular structure is flexible and hence accounts for the flexibility of glass formulations to waste variability. Nuclear waste glasses melt between 1050-1150 C which minimizes the volatility of radioactive components such as Tc{sup 99}, Cs{sup 137}, and I{sup 129}. Nuclear waste glasses have good long term stability including irradiation resistance. Process control models based on the molecular structure of glass have been mechanistically derived and have been demonstrated to be accurate enough to control the world's largest HLW Joule heated ceramic melter in the US since 1996 at 95% confidence.

  15. Picture Wall (Glass Structures)

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Photo shows a subway station in Toronto, Ontario, which is entirely glass-enclosed. The all-glass structure was made possible by a unique glazing concept developed by PPG Industries, Pittsburgh, Pennsylvania, one of the largest U.S. manufacturers of flat glass. In the TVS glazing system, transparent glass "fins" replace conventional vertical support members used to provide support for wind load resistance. For stiffening, silicone sealant bonds the fins to adjacent glass panels. At its glass research center near Pittsburgh, PPG Industries uses the NASTRAN computer program to analyze the stability of enclosures made entirely of glass. The company also uses NASTRAN to simulate stresses on large containers of molten glass and to analyze stress effects of solar heating on flat glass.

  16. Photoluminescence in glasses and glass ceramics

    NASA Astrophysics Data System (ADS)

    Ehrt, Doris

    2009-07-01

    Photoluminescence in the UV-VIS region is a very sensitive analytical method and also an important optical property of glasses and glass ceramics for different applications which depends strongly on active centers, surrounding host glass composition and their interactions. Fluoride, phosphate, and silicate glasses of high intrinsic UV transmission and high purity doped with active luminescent ions of different electronic configurations (s2: As3+, Sb3+, Sn2+, Pb2+; d0: Ti4+, Nb+, Mo6+, Ta5+, W6; d10: Zn2+, Ag+ and Cu+, d5: Mn2+, fn like Sm3+, Eu3+, Eu2+, Tb3+) were investigated. Some glasses were transformed in glass ceramics. Distribution of coordination and change in the case of Zn2+ and Mn2+ were detected. Mn2+ can substitute Zn2+ in glass and also in crystal phases, Zn2SiO4 (willemite) and ZnAl2O4 (gahnite). But the larger RE ions cannot do it. So, the luminescence can be increased or decreased by the transformation of glasses in glass ceramics. Blue, green and red photoluminescence emission with various lifetimes, ?e ~ 1 ?s to 25 ms, were registered.

  17. Reaction cured glass and glass coatings

    NASA Technical Reports Server (NTRS)

    Goldstein, H. E.; Leiser, D. B.; Katvala, V. W. (Inventor)

    1978-01-01

    The invention relates to reaction cured glass and glass coatings prepared by reacting a compound selected from the group consisting of silicon tetraboride, silicon hexaboride, other boron silicides, boron and mixtures with a reactive glass frit composed of a porous high silica borosilicate glass and boron oxide. The glassy composites of the present invention are useful as coatings on low density fibrous porous silica insulations used as heat shields and for articles such as reaction vessels that are subjected to high temperatures with rapid heating and cooling and that require resistance to temperature and repeated thermal shock at temperatures up to about 1482C (2700PF).

  18. GlassForm

    Energy Science and Technology Software Center (ESTSC)

    2011-09-16

    GlassForm is a software tool for generating preliminary waste glass formulas for a given waste stream. The software is useful because it reduces the number of verification melts required to develop a suitable additive composition. The software includes property models that calculate glass properties of interest from the chemical composition of the waste glass. The software includes property models for glass viscosity, electrical conductivity, glass transition temperature, and leach resistance as measured by the 7-daymore » product consistency test (PCT).« less

  19. Compositional Models of Glass/Melt Properties and their Use for Glass Formulation

    DOE PAGESBeta

    Vienna, John D.; USA, Richland Washington

    2014-12-18

    Nuclear waste glasses must simultaneously meet a number of criteria related to their processability, product quality, and cost factors. The properties that must be controlled in glass formulation and waste vitrification plant operation tend to vary smoothly with composition allowing for glass property-composition models to be developed and used. Models have been fit to the key glass properties. The properties are transformed so that simple functions of composition (e.g., linear, polynomial, or component ratios) can be used as model forms. The model forms are fit to experimental data designed statistically to efficiently cover the composition space of interest. Examples ofmore » these models are found in literature. The glass property-composition models, their uncertainty definitions, property constraints, and optimality criteria are combined to formulate optimal glass compositions, control composition in vitrification plants, and to qualify waste glasses for disposal. An overview of current glass property-composition modeling techniques is summarized in this paper along with an example of how those models are applied to glass formulation and product qualification at the planned Hanford high-level waste vitrification plant.« less

  20. Compositional Models of Glass/Melt Properties and their Use for Glass Formulation

    SciTech Connect

    Vienna, John D.; USA, Richland Washington

    2014-12-18

    Nuclear waste glasses must simultaneously meet a number of criteria related to their processability, product quality, and cost factors. The properties that must be controlled in glass formulation and waste vitrification plant operation tend to vary smoothly with composition allowing for glass property-composition models to be developed and used. Models have been fit to the key glass properties. The properties are transformed so that simple functions of composition (e.g., linear, polynomial, or component ratios) can be used as model forms. The model forms are fit to experimental data designed statistically to efficiently cover the composition space of interest. Examples of these models are found in literature. The glass property-composition models, their uncertainty definitions, property constraints, and optimality criteria are combined to formulate optimal glass compositions, control composition in vitrification plants, and to qualify waste glasses for disposal. An overview of current glass property-composition modeling techniques is summarized in this paper along with an example of how those models are applied to glass formulation and product qualification at the planned Hanford high-level waste vitrification plant.

  1. 6. Looking glass aircraft in the project looking glass historic ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. Looking glass aircraft in the project looking glass historic district. View to north. - Offutt Air Force Base, Looking Glass Airborne Command Post, Looking Glass Avenue between Comstat Drive & Nightwatch Avenue, Offutt Air Force Base, Bellevue, Sarpy County, NE

  2. Hyperpolarized cesium ions doped in a glass material

    NASA Astrophysics Data System (ADS)

    Ishikawa, Kiyoshi

    2014-12-01

    Hyperpolarized (HP) 133 Cs nuclear magnetic resonance signals were measured from borosilicate glass cell walls during optical pumping of cesium vapor at high magnetic field (9.4 T). Significant signal enhancements were observed when additional heating of the cell wall was provided by intense but non-resonant laser irradiation, with integrated HP 133 Cs NMR signals and line widths varying as a function of heating laser power (and hence glass temperature). Given that virtually no Cs ions would originally be present in the glass, absorbed HP Cs atoms rarely met thermally-polarized Cs ions already at the surface; thus, spin-exchange via nuclear dipole interaction cannot be the primary mechanism for injecting spin polarization into the glass. Instead, it is concluded that the absorption and transport of HP atoms into the glass material itself is the dominant mechanism of nuclear spin injection at high temperatures-the first reported experimental demonstration of such a mechanism.

  3. Oxynitride glass fibers

    NASA Technical Reports Server (NTRS)

    Patel, Parimal J.; Messier, Donald R.; Rich, R. E.

    1991-01-01

    Research at the Army Materials Technology Laboratory (AMTL) and elsewhere has shown that many glass properties including elastic modulus, hardness, and corrosion resistance are improved markedly by the substitution of nitrogen for oxygen in the glass structure. Oxynitride glasses, therefore, offer exciting opportunities for making high modulus, high strength fibers. Processes for making oxynitride glasses and fibers of glass compositions similar to commercial oxide glasses, but with considerable enhanced properties, are discussed. We have made glasses with elastic moduli as high as 140 GPa and fibers with moduli of 120 GPa and tensile strengths up to 2900 MPa. AMTL holds a U.S. patent on oxynitride glass fibers, and this presentation discusses a unique process for drawing small diameter oxynitride glass fibers at high drawing rates. Fibers are drawn through a nozzle from molten glass in a molybdenum crucible at 1550 C. The crucible is situated in a furnace chamber in flowing nitrogen, and the fiber is wound in air outside of the chamber, making the process straightforward and commercially feasible. Strengths were considerably improved by improving glass quality to minimize internal defects. Though the fiber strengths were comparable with oxide fibers, work is currently in progress to further improve the elastic modulus and strength of fibers. The high elastic modulus of oxynitride glasses indicate their potential for making fibers with tensile strengths surpassing any oxide glass fibers, and we hope to realize that potential in the near future.

  4. Laboratory work in support of West Valley glass development

    SciTech Connect

    Bunnell, L.R.

    1988-05-01

    Over the past six years, Pacific Northwest Laboratory (PNL) has conducted several studies in support of waste glass composition development and testing of glass compositions suitable for immobilizing the nuclear wastes stored at West Valley, New York. As a result of pilot-scale testing conducted by PNL, the glass composition was changed from that originally recommended in response to changes in the waste stream, and several processing-related problems were discovered. These problems were solved, or sufficiently addressed to determine their likely effect on the glass melting operations to be conducted at West Valley. This report describes the development of the waste glass composition, WV-205, and discusses solutions to processing problems such as foaming and insoluble sludges, as well as other issues such as effects of feed variations on processing of the resulting glass. An evaluation of the WV-205 glass from a repository perspective is included in the appendix to this report.

  5. Defense Waste Processing Facility (DWPF) startup test program: Glass characterization

    SciTech Connect

    Jantzen, C.M.

    1992-07-01

    Liquid high-level nuclear waste will be immobilized at the Savannah River Site (SRS) by vitrification in borosilicate glass. The glass will be processed in the Defense Waste Processing Facility (DWPF) and poured into stainless steel canisters for eventual geologic disposal. Six simulated glass compositions will be processed in the DWPF during initial startup. The glass in 86 of the first 106 full sized canisters will be sampled and characterized. Extensive glass characterization will determine the following: (1) sampling frequency for radioactive operation, (2) verification of the compositionally dependent process-product models, (3) verification of melter mixing, (4) representativeness of the glass from the canister throat sampler, and (5) homogeneity of the canister glass.

  6. Defense Waste Processing Facility (DWPF) startup test program: Glass characterization

    SciTech Connect

    Jantzen, C.M.

    1992-01-01

    Liquid high-level nuclear waste will be immobilized at the Savannah River Site (SRS) by vitrification in borosilicate glass. The glass will be processed in the Defense Waste Processing Facility (DWPF) and poured into stainless steel canisters for eventual geologic disposal. Six simulated glass compositions will be processed in the DWPF during initial startup. The glass in 86 of the first 106 full sized canisters will be sampled and characterized. Extensive glass characterization will determine the following: (1) sampling frequency for radioactive operation, (2) verification of the compositionally dependent process-product models, (3) verification of melter mixing, (4) representativeness of the glass from the canister throat sampler, and (5) homogeneity of the canister glass.

  7. FOAM GLASS INSULATION FROM WASTE GLASS

    EPA Science Inventory

    Waste glass has proven to be effective for the production of foam glass insulation both in the bulk or rigid board form and pellet form. Problems inherent with the use of water, carbon black and calcium carbonate as the foaming agents, have been identified and many have been solv...

  8. Retention of Halogens in Waste Glass

    SciTech Connect

    Hrma, Pavel R.

    2010-05-01

    In spite of their potential roles as melting rate accelerators and foam breakers, halogens are generally viewed as troublesome components for glass processing. Of five halogens, F, Cl, Br, I, and At, all but At may occur in nuclear waste. A nuclear waste feed may contain up to 10 g of F, 4 g of Cl, and ≤100 mg of Br and I per kg of glass. The main concern is halogen volatility, producing hazardous fumes and particulates, and the radioactive iodine 129 isotope of 1.7x10^7-year half life. Because F and Cl are soluble in oxide glasses and tend to precipitate on cooling, they can be retained in the waste glass in the form of dissolved constituents or as dispersed crystalline inclusions. This report compiles known halogen-retention data in both high-level waste (HLW) and low-activity waste (LAW) glasses. Because of its radioactivity, the main focus is on I. Available data on F and Cl were compiled for comparison. Though Br is present in nuclear wastes, it is usually ignored; no data on Br retention were found.

  9. Glass in Class

    ERIC Educational Resources Information Center

    Greaves, Neville

    2005-01-01

    Glass is reviewed from fabrication to application, laying emphasis on the wide-ranging physics involved. This begins with liquids and solids and the way in which glasses are defined and can be demonstrated in the classroom. At the atomic level the regular structure of crystals and their irregular counterparts in glasses are explained through…

  10. Glass in Class

    ERIC Educational Resources Information Center

    Greaves, Neville

    2005-01-01

    Glass is reviewed from fabrication to application, laying emphasis on the wide-ranging physics involved. This begins with liquids and solids and the way in which glasses are defined and can be demonstrated in the classroom. At the atomic level the regular structure of crystals and their irregular counterparts in glasses are explained through

  11. Accelerated glass reaction under PCT conditions

    SciTech Connect

    Ebert, W.L.; Bates, J.K.; Buck, E.C.; Bradley, C.R.

    1992-01-01

    Static leach tests similar to PCT (Product Consistency Test) were performed for up to 2 years to assess long-term reaction behavior of high-level nuclear waste glasses similar to those at Defense Waste Processing Facility. These tests show the reaction rate to decrease with the reaction time from an initially high rate to a low rate, but then to accelerate to a higher rate after reaction times of about 1 year, depending on glass surface area/leachant volume ratio used. Solution concentrations of soluble glass components increase as the reaction is accelerated, while release of other glass components into solution is controlled by secondary phases. Net result is that transformation of glass to stable phases is accelerated while the solution becomes enriched in soluble components not effectively contained in secondary phases. Rate becomes linear in time after the acceleration and may be similar to the initial forward rate. A current model of glass reaction predicts that the glass reaction will be accelerated upon the formation of secondary phases which lower the silicic acid solution concentration. These tests show total Si concentration to increase upon reaction acceleration, however, which may be due to the slightly higher pH attained with the acceleration. The sudden change in the reaction rate is likely due to secondary phase formation. 17 refs, 2 tabs, 3 figs.

  12. Accelerated glass reaction under PCT conditions

    SciTech Connect

    Ebert, W.L.; Bates, J.K.; Buck, E.C.; Bradley, C.R.

    1992-12-31

    Static leach tests similar to PCT (Product Consistency Test) were performed for up to 2 years to assess long-term reaction behavior of high-level nuclear waste glasses similar to those at Defense Waste Processing Facility. These tests show the reaction rate to decrease with the reaction time from an initially high rate to a low rate, but then to accelerate to a higher rate after reaction times of about 1 year, depending on glass surface area/leachant volume ratio used. Solution concentrations of soluble glass components increase as the reaction is accelerated, while release of other glass components into solution is controlled by secondary phases. Net result is that transformation of glass to stable phases is accelerated while the solution becomes enriched in soluble components not effectively contained in secondary phases. Rate becomes linear in time after the acceleration and may be similar to the initial forward rate. A current model of glass reaction predicts that the glass reaction will be accelerated upon the formation of secondary phases which lower the silicic acid solution concentration. These tests show total Si concentration to increase upon reaction acceleration, however, which may be due to the slightly higher pH attained with the acceleration. The sudden change in the reaction rate is likely due to secondary phase formation. 17 refs, 2 tabs, 3 figs.

  13. Critical review of glass performance modeling

    SciTech Connect

    Bourcier, W.L.

    1994-07-01

    Borosilicate glass is to be used for permanent disposal of high-level nuclear waste in a geologic repository. Mechanistic chemical models are used to predict the rate at which radionuclides will be released from the glass under repository conditions. The most successful and useful of these models link reaction path geochemical modeling programs with a glass dissolution rate law that is consistent with transition state theory. These models have been used to simulate several types of short-term laboratory tests of glass dissolution and to predict the long-term performance of the glass in a repository. Although mechanistically based, the current models are limited by a lack of unambiguous experimental support for some of their assumptions. The most severe problem of this type is the lack of an existing validated mechanism that controls long-term glass dissolution rates. Current models can be improved by performing carefully designed experiments and using the experimental results to validate the rate-controlling mechanisms implicit in the models. These models should be supported with long-term experiments to be used for model validation. The mechanistic basis of the models should be explored by using modern molecular simulations such as molecular orbital and molecular dynamics to investigate both the glass structure and its dissolution process.

  14. WASTE GLASS MELTER PROCESS MONITORING WITH MILLIMETER WAVES

    EPA Science Inventory

    Millimeter-wave technologies can provide novel and reliable online monitoring capability for many important parameters inside nuclear waste glass melters, including temperature, emissivity, density, and viscosity. The physical and analytical basis for millimeter-wave monitoring o...

  15. Radiation coloration resistant glass

    DOEpatents

    Tomozawa, M.; Watson, E.B.; Acocella, J.

    1986-11-04

    A radiation coloration resistant glass is disclosed which is used in a radiation environment sufficient to cause coloration in most forms of glass. The coloration resistant glass includes higher proportions by weight of water and has been found to be extremely resistant to color change when exposed to such radiation levels. The coloration resistant glass is free of cerium oxide and has more than about 0.5% by weight water content. Even when exposed to gamma radiation of more than 10[sup 7] rad, the coloration resistant glass does not lose transparency. 3 figs.

  16. Radiation coloration resistant glass

    DOEpatents

    Tomozawa, Minoru (Troy, NY); Watson, E. Bruce (Troy, NY); Acocella, John (Troy, NY)

    1986-01-01

    A radiation coloration resistant glass is disclosed which is used in a radiation environment sufficient to cause coloration in most forms of glass. The coloration resistant glass includes higher proportions by weight of water and has been found to be extremely resistant to color change when exposed to such radiation levels. The coloration resistant glass is free of cerium oxide and has more than about 0.5% by weight water content. Even when exposed to gamma radiation of more than 10.sup.7 rad, the coloration resistant glass does not lose transparency.

  17. Oxynitride glass production procedure

    DOEpatents

    Weidner, Jerry R.; Schuetz, Stanley T.; O'Brien, Michael H.

    1991-01-01

    The invention is a process for the preparation of high quality oxynitride glasses without resorting to high pressures. Nitrogen-containing compounds such as Si.sub.3 N.sub.4 are first encapsulated in a low melting temperature glass. Particles of the encapsulated nitrogen-containing compound are mixed with other oxide glass-formers and melted in an atmosphere of flowing nitrogen and in the presence of buffering gas to form the oxynitride glass. Glasses containing up to 15 at % nitrogen have been prepared by this method.

  18. Acoustics of glass harmonicas

    NASA Astrophysics Data System (ADS)

    Rossing, Thomas D.

    2001-05-01

    Glass musical instruments are probably as old as glassmaking. At least as early as the 17th century it was discovered that wine glasses, when rubbed with a wet finger, produced a musical tone. A collection of glasses played in this manner is called a glass harp. Another type of glass harmonica, called the armonica by its inventor Benjamin Franklin, employs glass bowls or cups turned by a horizontal axle, so the performer need only touch the rim of the bowls as they rotate to set them into vibration. We discuss the modes of vibration of both types of glass harmonica, and describe the different sounds that are emitted by rubbing, tapping, or bowing them. Rubbing with a wet finger tends to excite only the (2,0) mode and its harmonics through a ``stick-slip'' process, while tapping excites the other modes as well.

  19. High-Temperature Studies of Glass Dissolution Rates Close to Saturation

    SciTech Connect

    Zavarin, M; Roberts, S; Zhao, P; Williams, R; Rose, T; Rainer, A; Pawloski, G

    2004-06-14

    Most long-lived radionuclides associated with an underground nuclear test are incorporated into a melt glass and are released by glass dissolution to become part of the hydrologic source term (HST) (Pawloski et al., 2001). Although the rates of rhyolite glass dissolution are well known under conditions where the fluid is far from saturation with respect to glass, the rates are not well known under conditions where the fluid approaches saturation. These rates are commonly much lower than the far-fromsaturation rates, often by a factor greater than 100. In recent HST simulations (Pawloski et al., 2001; Pawloski et al., 2000; Tompson et al., 1999), we conservatively estimated steady-state release rates based on a far-from-saturation fluid conditions. In recent CHESHIRE near-field simulations (Pawloski et al., 2001), it was predicted that {approx}30% of the nuclear melt glass dissolved over 1000 years. Although the ''far-from-saturation rate'' approach provides a conservative estimate of glass dissolution, it may greatly overestimate the rates of melt glass dissolution. At CHESHIRE, less conservative estimates suggest that only {approx}1% of the nuclear melt glass will dissolve in 1000 years. Lower glass dissolution rates result in lower radionuclide release rates from nuclear melt glass. The following report documents glass dissolution experiments performed to measure glass dissolution rates close to saturation.

  20. High-temperature glass and glass coatings

    NASA Technical Reports Server (NTRS)

    Goldstein, H. E.; Katvala, V. E.; Leiser, D. B.

    1977-01-01

    Reaction-cured glasses resist thermal shock and maintain properties over range of -100 degrees Centrigrade to +1,480 degrees Centigrade. Stability makes these excellent materials for high-temperature glassware and tubing or as coatings for porous materials.

  1. Random pinning glass model

    PubMed Central

    Karmakar, Smarajit; Parisi, Giorgio

    2013-01-01

    Glass transition, in which viscosity of liquids increases dramatically upon decrease of temperature without any major change in structural properties, remains one of the most challenging problems in condensed matter physics despite tremendous research efforts in past decades. On the other hand, disordered freezing of spins in magnetic materials with decreasing temperature, the so-called spin glass transition, is understood relatively better. A previously found similarity between some spin glass models and the structural glasses inspired development of theories of structural glasses based on the scenario of spin glass transition. This scenario, although it looks very appealing, is still far from being well established. One of the main differences between standard spin systems and molecular systems is the absence of quenched disorder and the presence of translational invariance: it often is assumed that this difference is not relevant, but this conjecture still needs to be established. The quantities, which are well-defined and characterized for spin models, are not easily calculable for molecular glasses because of the lack of quenched disorder that breaks the translational invariance in the system. Thus the characterization of the similarity between spin and the structural glass transition remains an elusive subject. In this study, we introduced a model structural glass with built-in quenched disorder that alleviates this main difference between the spin and molecular glasses, thereby helping us compare these two systems: the possibility of producing a good thermalization at rather low temperatures is one of the advantages of this model. PMID:23382186

  2. Photonucleation in silicate glasses

    NASA Astrophysics Data System (ADS)

    Goller, Martin Herbert

    The possibility of implementing gold-based photosensitivity in magnesium-aluminosilicate glasses was investigated. The compositional range was centered around the precipitation field of cordierite. The glass composition was varied by introducing alkali oxides to reduce the melting and processing temperatures since these conditions are also important for the photosensitivity process. A compromise was found among melting, processing and crystalline phases developed during heat treatment. Further studies addressed the introduction of the dopants necessary to obtain photosensitivity including the compounds of cerium and ZnO. Thermal analysis methods were used to determine the glass transformation temperature and the crystallization temperatures for the glasses. The phase development in crystallized glasses was analyzed using X-ray diffraction. High-temperature X-ray diffraction was used to follow the kinetics of the phase development. The glasses were also characterized using UV-VIS-spectroscopy, fluorescence spectroscopy and vibrational spectroscopy. Theoretical investigations were made concerning basicity of the glass and non-bridging oxygen content of the glass in relation to the presence of photosensitivity. Using this analysis, the glasses in this work were compared with those previously reported. Light scattering of small particles in glass was studied both theoretically and experimentally using a commercial photosensitive lithium-aluminosilicate glass containing silver. This glass was also investigated concerning its crystallization behavior arising from different irradiation/heat treatment parameters. From this study it was shown that the optical parameters, i.e., the refractive index and absorption coefficient must be determined accurately for each system, if a quantitative estimate of particle size is desired. It was not possible to generate photosensitivity in the intended system, even with additives of cerium compounds and ZnO as previously reported for other systems. The basicity analysis and the non-bridging oxygen analysis indicate that the nature of the composition is not favorable to photosensitivity. The results suggest the merit of this approach when attempting to predict photosensitivity in other glass forming systems.

  3. Application of the hydration thermodynamic model for glass durability under saturated tuff repository conditions

    SciTech Connect

    Ramsey, W.G.; Jantzen, C.M.

    1990-12-31

    The effects of tuff repository groundwater on glass dissolution and surface layer formation was examined utilizing the hydration thermodynamic model. A 28 day MCC-1 monolithic durability test was performed on the following glasses: SiO{sub 2}, obsidian, basalt, medieval window glasses, frit glass, and simulated nuclear waste glass. Silica dissolution was compared with the pH corrected free energy of hydration and shown to have the theoretical slope, ln(1/2.303RT), in agreement with MCC-1 tests using deionized water. X-ray diffraction and scanning electron microscopy identified clays of the saponite family and carbonates, on the glass surfaces leached in tuff groundwater. 31 refs.

  4. Reversing Glass Wettability

    NASA Technical Reports Server (NTRS)

    Frazier, D. O.; Smith, J. E., Jr.; Kaukler, W. F.

    1985-01-01

    Treatment reverses wettability of glassware: Liquids that normally wet glass no longer do, and those that do not wet glass are made to do so. Useful in research on container effects in nucleation and growth of secondary phase from solution. Treatment consists of spreading 3 percent (by weight) solution of silicone oil in hexane isomers over glass, drying in air, and curing at 300 degrees C in vacuum for one hour.

  5. Diamond turning of glass

    SciTech Connect

    Blackley, W.S.; Scattergood, R.O.

    1988-12-01

    A new research initiative will be undertaken to investigate the critical cutting depth concepts for single point diamond turning of brittle, amorphous materials. Inorganic glasses and a brittle, thermoset polymer (organic glass) are the principal candidate materials. Interrupted cutting tests similar to those done in earlier research are Ge and Si crystals will be made to obtain critical depth values as a function of machining parameters. The results will provide systematic data with which to assess machining performance on glasses and amorphous materials

  6. Correlation of nuclear criticality safety computer codes with plutonium benchmark experiments and derivation of subcritical limits. [MGBS, TGAN, KEFF, HRXN, GLASS, ANISN, SPBL, and KENO

    SciTech Connect

    Clark, H.K.

    1981-10-01

    A compilation of benchmark critical experiments was made for essentially one-dimensional systems containing plutonium. The systems consist of spheres, series of experiments with cylinders and cuboids that permit extrapolation to infinite cylinders and slabs, and large cylinders for which separability of the neutron flux into a product of spatial components is a good approximation. Data from the experiments were placed in a form readily usable as computer code input. Aqueous solutions of Pu(NO/sub 3/)/sub 4/ are treated as solutions of PuO/sub 2/ in nitric acid. The apparent molal volume of PuO/sub 2/ as a function of plutonium concentration was derived from analyses of solution density data and was incorporated in the Savannah River Laboratory computer codes along with density tables for nitric acid. The biases of three methods of calculation were established by correlation with the benchmark experiments. The oldest method involves two-group diffusion theory and has been used extensively at the Savannah River Laboratory. The other two involve S/sub n/ transport theory with, in one method, Hansen-Roach cross sections and, in the other, cross sections derived from ENDF/B-IV. Subcritical limits were calculated by all three methods. Significant differences were found among the results and between the results and limits currently in the American National Standard for Nuclear Criticality Safety in Operations with Fissionable Materials Outside Reactor (ANSI N16.1), which were calculated by yet another method, despite the normalization of all four methods to the same experimental data. The differences were studied, and a set of subcritical limits was proposed to supplement and in some cases to replace those in the ANSI Standard, which is currently being reviewed.

  7. Glass--Sand + Imagination

    NASA Astrophysics Data System (ADS)

    Kolb, Kenneth E.; Kolb, Doris K.

    2000-07-01

    Glass is older than recorded history, and yet it is as new as tomorrow! How, when, or where man first learned to make glass is not known, but we do know that the ancient Egyptians were making glass articles as early as 2,600 B.C.E. (The making of glass beads may have begun as much as 3000 years earlier.) They used it to make jewelry and luxury items, such as decorative bowls and perfume bottles, available only to the wealthy.

  8. Apollo 15 green glasses.

    NASA Technical Reports Server (NTRS)

    Ridley, W. I.; Reid, A. M.; Warner, J. L.; Brown, R. W.

    1973-01-01

    The samples analyzed include 28 spheres, portions of spheres, and angular fragments from soil 15101. Emerald green glasses from other soils are identical to those from 15101. The composition of the green glass is unlike that of any other major lunar glass group. The Fe content is comparable to that in mare basalts, but Ti is much lower. The Mg content is much higher than in most lunar materials analyzed to date, and the Cr content is also high. The low Al content is comparable to that of mare basalt glasses.

  9. Drugstore Reading Glasses

    NASA Astrophysics Data System (ADS)

    Erlichson, Herman

    2006-03-01

    The occasion for this paper was my reading of a paper in the February 2005 issue of TPT. As one gets older the near point of the eye begins to recede.2 This is called presbyopia.3 An alternative to purchasing glasses from an optometrist is to purchase an inexpensive pair of reading glasses in a pharmacy. The pharmacy has these glasses ordered by diopters corresponding to the strength of the lens needed for a particular presbyopic eye. The glasses are, of course, not available for myopic eyes.

  10. Rare Earth Phosphate Glass and Glass-Ceramic Proton Conductors

    SciTech Connect

    De Jonghe, Lutgard C.; Ray, Hannah L.; Wang, Ruigang

    2008-12-03

    The structure and conductivity of cerium and lanthanum phosphate glasses and glass-ceramics were investigated. The effects of varying the metal to phosphate ratio in the glasses, doping LaP3O9 glasses with Ce, and recrystallization of CeP3O9 glasses, on the glasses' microstructure and total conductivity were investigated using XRD, SEM, and AC impedance techniques. Strong increases in conductivity occurred when the glasses were recrystallized: the conductivity of a cerium metaphosphate glass increased conductivity after recrystallization from 10-7.5 S/cm to 10-6 S/cm at 400oC.

  11. Getting Started with Glass

    ERIC Educational Resources Information Center

    White, Heather

    2007-01-01

    The metamorphosis of glass when heated is a magical process to students, yet teachers are often reluctant to try it in class. The biggest challenge in working with glass in the classroom is to simplify procedures just enough to ensure student success while maintaining strict safety practices so no students are injured. Project concepts and safety…

  12. Getting Started with Glass

    ERIC Educational Resources Information Center

    White, Heather

    2007-01-01

    The metamorphosis of glass when heated is a magical process to students, yet teachers are often reluctant to try it in class. The biggest challenge in working with glass in the classroom is to simplify procedures just enough to ensure student success while maintaining strict safety practices so no students are injured. Project concepts and safety

  13. Surface Conductive Glass.

    ERIC Educational Resources Information Center

    Tanaka, John; Suib, Steven L.

    1984-01-01

    Discusses the properties of surface-conducting glass and the chemical nature of surface-conducting stannic (tin) oxide. Also provides the procedures necessary for the preparation of surface-conducting stannic oxide films on glass substrates. The experiment is suitable for the advanced inorganic chemistry laboratory. (JN)

  14. Helium diffusion in curium-doped borosilicate waste glass

    NASA Astrophysics Data System (ADS)

    Fares, T.; Peuget, S.; Bouty, O.; Deschanels, X.; Magnin, M.; Jégou, C.

    2011-09-01

    The isothermal release of helium from 244Cm-doped borosilicate glass has been studied as a function of time at different annealing temperatures. Helium measurements were performed using a micro gas chromatograph coupled to a furnace installed in a hot cell at ATALANTE nuclear research facility. Plane-parallel glass samples were prepared from glass discs that had been stored for 5.1 years at room temperature, accumulating around 10 19 alpha decays per gram of glass, a level that will be reached in current nuclear glass packages several thousand years after disposal. The experimental helium release data were simulated using a 3D numerical model to determine the helium diffusion coefficients. The extracted diffusion coefficients follow the Arrhenius law with an activation energy of 0.61 ± 0.03 eV and a pre-exponential factor of (5.7 ± 1.6) × 10 -3 cm 2 s -1. The results were compared with literature data on damaged and undamaged glasses to assess the effect of glass damage on helium release. The helium release results are consistent with a thermal diffusion mechanism involving only one population of helium atoms. The helium diffusion coefficients were unaffected by the glass alpha damage.

  15. Defense HLW Glass Degradation Model

    SciTech Connect

    D. Strachan

    2004-10-20

    The purpose of this report is to document the development of a model for calculating the release rate for radionuclides and other key elements from high-level radioactive waste (HLW) glasses under exposure conditions relevant to the performance of the repository. Several glass compositions are planned for the repository, some of which have yet to be identified (i.e., glasses from Hanford and Idaho National Engineering and Environmental Laboratory). The mechanism for glass dissolution is the same for these glasses and the glasses yet to be developed for the disposal of DOE wastes. All of these glasses will be of a quality consistent with the glasses used to develop this report.

  16. Oxide glass structure evolution under swift heavy ion irradiation

    NASA Astrophysics Data System (ADS)

    Mendoza, C.; Peuget, S.; Charpentier, T.; Moskura, M.; Caraballo, R.; Bouty, O.; Mir, A. H.; Monnet, I.; Grygiel, C.; Jegou, C.

    2014-04-01

    The effects of ion tracks on the structure of oxide glasses were examined by irradiating a silica glass and two borosilicate glass specimens containing 3 and 6 oxides with krypton ions (74 MeV) and xenon ions (92 MeV). Structural changes in the glass were observed by Raman and nuclear magnetic resonance spectroscopy using a multinuclear approach (11B, 23Na, 27Al and 29Si). The structure of irradiated silica glass resembles a structure quenched at very high temperature. Both borosilicate glass specimens exhibited depolymerization of the borosilicate network, a lower boron coordination number, and a change in the role of a fraction of the sodium atoms after irradiation, suggesting that the final borosilicate glass structures were quenched from a high temperature state. In addition, a sharp increase in the concentration of three membered silica rings and the presence of large amounts of penta- and hexacoordinate aluminum in the irradiated 6-oxide glass suggest that the irradiated glass is different from a liquid quenched at equilibrium, but it is rather obtained from a nonequilibrium liquid that is partially relaxed by very rapid quenching within the ion tracks.

  17. The leaching behavior of borate waste glass SL-1

    SciTech Connect

    Sheng, J.; Luo, S.; Tang, B.

    1999-11-01

    Vitrification is an attractive approach for treatment of the borate waste from nuclear power plants. SL-1 glass is a suitable borosilicate glass form to solidify the borate waste containing relatively high quantities of B and Na. The leaching behavior of SL-1 glass in deionized water has been investigated. Compared to the HLW-glass, the network structure of SL-1 glass is weak. It was found that the ion-exchange reactions dominated the glass corrosion process with water in low temperature leading conditions. The ion-exchange and network hydrolysis reactions together controlled the glass dissolution in high temperature leaching conditions. There was a peak in leach rate at about 70 C and a valley at about 100 C. The surface layer thickness was about 25 {micro}m. Na was almost totally depleted in the surface layer. At low temperature, the glass corrosion increases with leaching time. The glass corrosion remains about constant with leaching time at 90 C. The surface layer formed at 90 C is protective, which is less porous than the surface layer formed at 40 and 70 C.

  18. The leaching behavior of borate waste glass SL-1

    SciTech Connect

    Sheng, J. ); Luo, S.; Tang, B. )

    1999-01-01

    Vitrification is an attractive approach for treatment of the borate waste from nuclear power plants. SL-1 glass is a suitable borosilicate glass form to solidify the borate waste containing relatively high quantities of B and Na. The leaching behavior of SL-1 glass in deionized water has been investigated. Compared to the HLW-glass, the network structure of SL-1 glass is weak. It was found that the ion-exchange reactions dominated the glass corrosion process with water in low temperature leading conditions. The ion-exchange and network hydrolysis reactions together controlled the glass dissolution in high temperature leaching conditions. There was a peak in leach rate at about 70 C and a valley at about 100 C. The surface layer thickness was about 25 [micro]m. Na was almost totally depleted in the surface layer. At low temperature, the glass corrosion increases with leaching time. The glass corrosion remains about constant with leaching time at 90 C. The surface layer formed at 90 C is protective, which is less porous than the surface layer formed at 40 and 70 C.

  19. Laser machinable glass

    NASA Astrophysics Data System (ADS)

    Koyo, Hirotaka; Shojiya, Masanori; Tsunetomo, Keiji

    2004-10-01

    Recently we found that titanium ions in glass are effective to reduce the ablation threshold in the UV laser irradiation. In case of Nd:YAG fourth harmonic generation (FHG, wavelength: 266 nm) irradiation, glass containing titanium ions showed 1/10 times smaller threshold compared with conventional one used for optics or windows. We named this Ti-containing glass Laser Machinable Glass (LMG). In this paper we present some applications made of LMG, a 4x4 planar micro hole array (PMH) for optical fibers alignment, a micro well array for reaction of a small amount of chemicals, and a micro channel used in the bio-chemical field. Using LMG for laser machining, all samples were fabricated precisely without cracking and chipping. We also successfully synthesized new Ti-containing laser machinable glass with thermal expansion coefficient below 40x10-7 K-1. The ablation threshold of this low-thermal-expansion glass was about 1.4 times lower than that of Pyrex. Moreover, this glass showed 25 times higher durability to NaOH (pH=10) than Pyrex.

  20. Fiber-reinforced glass

    SciTech Connect

    Beier, W.; Markman, S.

    1997-12-01

    Fiber-reinforced glass composites are glass or glass ceramic matrices reinforced with long fibers of carbon or silicon carbide. These composites are lighter than steel but just as strong as many steel grades, and can resist higher temperatures. They also have outstanding resistance to impact, thermal shock, and wear, and can be formulated to control thermal and electrical conductivity. With proper tooling, operations such as drilling, grinding, and turning can be completed in half the time required for non-reinforced glass. Currently, fiber-reinforced glass components are primarily used for handling hot glass or molten aluminum during manufacturing operations. But FRG is also under test as an engineering material in a variety of markets, including the aerospace, automotive, and semiconductor industries. Toward this end, research is being carried out to increase the size of components that can be delivered on a production basis, to develop economical methods of achieving complex near-net shapes, and to reduce the cycle time for production of specific shapes. This article focuses on the properties and applications of fiber-reinforced glass composites.

  1. Engineering Glass Passivation Layers -Model Results

    SciTech Connect

    Skorski, Daniel C.; Ryan, Joseph V.; Strachan, Denis M.; Lepry, William C.

    2011-08-08

    The immobilization of radioactive waste into glass waste forms is a baseline process of nuclear waste management not only in the United States, but worldwide. The rate of radionuclide release from these glasses is a critical measure of the quality of the waste form. Over long-term tests and using extrapolations of ancient analogues, it has been shown that well designed glasses exhibit a dissolution rate that quickly decreases to a slow residual rate for the lifetime of the glass. The mechanistic cause of this decreased corrosion rate is a subject of debate, with one of the major theories suggesting that the decrease is caused by the formation of corrosion products in such a manner as to present a diffusion barrier on the surface of the glass. Although there is much evidence of this type of mechanism, there has been no attempt to engineer the effect to maximize the passivating qualities of the corrosion products. This study represents the first attempt to engineer the creation of passivating phases on the surface of glasses. Our approach utilizes interactions between the dissolving glass and elements from the disposal environment to create impermeable capping layers. By drawing from other corrosion studies in areas where passivation layers have been successfully engineered to protect the bulk material, we present here a report on mineral phases that are likely have a morphological tendency to encrust the surface of the glass. Our modeling has focused on using the AFCI glass system in a carbonate, sulfate, and phosphate rich environment. We evaluate the minerals predicted to form to determine the likelihood of the formation of a protective layer on the surface of the glass. We have also modeled individual ions in solutions vs. pH and the addition of aluminum and silicon. These results allow us to understand the pH and ion concentration dependence of mineral formation. We have determined that iron minerals are likely to form a complete incrustation layer and we plan to look more closely at Vivianite [Fe3(PO4)2-8(H2O)] and Siderite [FeCO3] in the next stage of the project.

  2. Glass electrolyte composition

    DOEpatents

    Kucera, G.H.; Roche, M.F.

    1985-01-08

    An ionically conductive glass is disclosed for use as electrolyte in a high temperature electrochemical cell, particularly a cell with sodium anode and sulfur cathode. The glass includes the constituents Na/sub 2/O, ZrO/sub 2/, Al/sub 2/O/sub 3/ and SiO/sub 2/ in selected proportions to be a single phase solid solution substantially free of crystalline regions and undissolved constituents. Other advantageous properties are an ionic conductivity in excess of 2 x 10/sup -3/ (ohm-cm)/sup -1/ at 300/sup 0/C and a glass transition temperature in excess of 500/sup 0/C.

  3. Glass electrolyte composition

    DOEpatents

    Kucera, Gene H. (Downers Grove, IL); Roche, Michael F. (Downers Grove, IL)

    1985-01-01

    An ionically conductive glass is disclosed for use as electrolyte in a high temperature electrochemical cell, particularly a cell with sodium anode and sulfur cathode. The glass includes the constituents Na.sub.2 O, ZrO.sub.2, Al.sub.2 O.sub.3 and SiO.sub.2 in selected proportions to be a single phase solid solution substantially free of crystalline regions and undissolved constituents. Other advantageous properties are an ionic conductivity in excess of 2.times.10.sup.-3 (ohm-cm).sup.-1 at 300.degree. C. and a glass transition temperature in excess of 500.degree. C.

  4. Origin and consequences of silicate glass passivation by surface layers

    PubMed Central

    Gin, Stéphane; Jollivet, Patrick; Fournier, Maxime; Angeli, Frédéric; Frugier, Pierre; Charpentier, Thibault

    2015-01-01

    Silicate glasses are durable materials, but are they sufficiently durable to confine highly radioactive wastes for hundreds of thousands years? Addressing this question requires a thorough understanding of the mechanisms underpinning aqueous corrosion of these materials. Here we show that in silica-saturated solution, a model glass of nuclear interest corrodes but at a rate that dramatically drops as a passivating layer forms. Water ingress into the glass, leading to the congruent release of mobile elements (B, Na and Ca), is followed by in situ repolymerization of the silicate network. This material is at equilibrium with pore and bulk solutions, and acts as a molecular sieve with a cutoff below 1 nm. The low corrosion rate resulting from the formation of this stable passivating layer enables the objective of durability to be met, while progress in the fundamental understanding of corrosion unlocks the potential for optimizing the design of nuclear glass-geological disposal. PMID:25695377

  5. Origin and consequences of silicate glass passivation by surface layers.

    PubMed

    Gin, Stphane; Jollivet, Patrick; Fournier, Maxime; Angeli, Frdric; Frugier, Pierre; Charpentier, Thibault

    2015-01-01

    Silicate glasses are durable materials, but are they sufficiently durable to confine highly radioactive wastes for hundreds of thousands years? Addressing this question requires a thorough understanding of the mechanisms underpinning aqueous corrosion of these materials. Here we show that in silica-saturated solution, a model glass of nuclear interest corrodes but at a rate that dramatically drops as a passivating layer forms. Water ingress into the glass, leading to the congruent release of mobile elements (B, Na and Ca), is followed by in situ repolymerization of the silicate network. This material is at equilibrium with pore and bulk solutions, and acts as a molecular sieve with a cutoff below 1?nm. The low corrosion rate resulting from the formation of this stable passivating layer enables the objective of durability to be met, while progress in the fundamental understanding of corrosion unlocks the potential for optimizing the design of nuclear glass-geological disposal. PMID:25695377

  6. Origin and consequences of silicate glass passivation by surface layers

    NASA Astrophysics Data System (ADS)

    Gin, Stphane; Jollivet, Patrick; Fournier, Maxime; Angeli, Frdric; Frugier, Pierre; Charpentier, Thibault

    2015-02-01

    Silicate glasses are durable materials, but are they sufficiently durable to confine highly radioactive wastes for hundreds of thousands years? Addressing this question requires a thorough understanding of the mechanisms underpinning aqueous corrosion of these materials. Here we show that in silica-saturated solution, a model glass of nuclear interest corrodes but at a rate that dramatically drops as a passivating layer forms. Water ingress into the glass, leading to the congruent release of mobile elements (B, Na and Ca), is followed by in situ repolymerization of the silicate network. This material is at equilibrium with pore and bulk solutions, and acts as a molecular sieve with a cutoff below 1?nm. The low corrosion rate resulting from the formation of this stable passivating layer enables the objective of durability to be met, while progress in the fundamental understanding of corrosion unlocks the potential for optimizing the design of nuclear glass-geological disposal.

  7. Assessment of water/glass interactions in waste glass melter operation

    SciTech Connect

    Postma, A.K.; Chapman, C.C.; Buelt, J.L.

    1980-04-01

    A study was made to assess the possibility of a vapor explosion in a liquid-fed glass melter and during off-standard conditions for other vitrification processes. The glass melter considered is one designed for the vitrification of high-level nuclear wastes and is comprised of a ceramic-lined cavity with electrodes for joule heating and processing equipment required to add feed and withdraw glass. Vapor explosions needed to be considered because experience in other industrial processes has shown that violent interactions can occur if a hot liquid is mixed with a cooler, vaporizable liquid. Available experimental evidence and theoretical analyses indicate that destructive glass/water interactions are low probability events, if they are possible at all. Under standard conditions, aspects of liquid-fed melter operation which work against explosive interactions include: (1) the aqueous feed is near its boiling point; (2) the feed contains high concentrations of suspended particles; (3) molten glass has high viscosity (greater than 20 poise); and (4) the glass solidifies before film boiling can collapse. While it was concluded that vapor explosions are not expected in a liquid-fed melter, available information does not allow them to be ruled out altogether. Several precautionary measures which are easily incorporated into melter operation procedures were identified and additional experiments were recommended.

  8. PbO-free glasses for low temperature packaging

    SciTech Connect

    Brow, R.K.; Bencoe, D.N.; Tallant, D.R.

    1997-10-01

    Zinc polyphosphate glasses were examined as potential candidates for low temperature sealing applications. Glass-formation and properties were determined for the ZnO-P{sub 2}O{sub 5}, ZnO-B{sub 2}O{sub 3}-P{sub 2}O{sub 5} and ZnO-SnO-P{sub 2}O{sub 5} systems, and information about the short-range structures of these glasses was obtained by Raman and solid state nuclear magnetic resonance spectroscopies. In general, the most durable polyphosphate glasses have structures based on relatively short pyrophosphate chain lengths (i.e., 2 P-tetrahedra). Modified phosphate compositions are given, including compositions used to seal float glass substrates at temperatures as low as 500{degrees}C.

  9. The chemistry of copper chalcogenides in waste glasses

    SciTech Connect

    Schreiber, H.D.; Lambert, H.W.

    1994-12-31

    The solubilities of copper chalcogenides (CuS, CuSe, CuTe) were measured in a glass melt which is representative of those proposed for nuclear waste immobilization and circuit board vitrification. CuTe is more soluble than CuS and CuSe in the glass melt under relatively oxidizing conditions. However, the solubilities of all the copper chalcogenides in the glass melt are virtually identical at reducing conditions, probably a result of the redox-controlled solubility of copper metal in all cases. The redox chemistry of a glass melt coexisting with an immiscible copper chalcogenide depends primarily on the prevailing oxygen fugacity, not on the identity of the chalcogenide. The target concentration of less than 0.3 to 0.5 wt% copper in the waste glass should eliminate the precipitation of copper chalcogenides during processing.

  10. The fate of silicon during glass corrosion under alkaline conditions: A mechanistic and kinetic study with the International Simple Glass

    NASA Astrophysics Data System (ADS)

    Gin, Stphane; Jollivet, Patrick; Fournier, Maxime; Berthon, Claude; Wang, Zhaoying; Mitroshkov, Alexandre; Zhu, Zihua; Ryan, Joseph V.

    2015-02-01

    International Simple Glass - a six oxide borosilicate glass selected by the international nuclear glass community to improve the understanding of glass corrosion mechanisms and kinetics - was altered at 90 C in a solution initially saturated with respect to amorphous 29SiO2. The pH90C, was fixed at 9 at the start of the experiment and raised to 11.5 after 209 d by the addition of KOH. Isotope sensitive analytical techniques were used to analyze the solution and altered glass samples, helping to understand the driving forces and rate limiting processes controlling long-term glass alteration. At pH 9, the corrosion rate continuously drops and the glass slowly transforms into a uniform, homogeneous amorphous alteration layer. The mechanisms responsible for this transformation are water penetration through the growing alteration layer and ion exchange. We demonstrate that this amorphous alteration layer is not a precipitate resulting from the hydrolysis of the silicate network; it is mostly inherited from the glass structure from which the most weakly bonded cations (Na, Ca and B) have been released. At pH 11.5, the alteration process is very different: the high solubility of glass network formers (Si, Al, Zr) triggers the rapid and complete dissolution of the glass (dissolution becomes congruent) and precipitation of amorphous and crystalline phases. Unlike at pH 9 where glass corrosion rate decreased by 3 orders of magnitude likely due to the retroaction of the alteration layer on water dynamics/reactivity at the reaction front, the rate at pH 11.5 is maintained at a value close to the forward rate due to both the hydrolysis of the silicate network promoted by OH- and the precipitation of CSH and zeolites. This study provides key information for a unified model for glass dissolution.

  11. The Fate Of Silicon During Glass Corrosion Under Alkaline Conditions: A Mechanistic And Kinetic Study With The International Simple Glass

    SciTech Connect

    Gin, Stephane; Jollivet, Patrick; Fournie, Maxime; Berthon, Claude; Wang, Zhaoying; Mitroshkov, Alexandre V.; Zhu, Zihua; Ryan, Joseph V.

    2015-02-01

    International Simple Glass - a six oxide borosilicate glass selected by the international nuclear glass community to improve the understanding of glass corrosion mechanisms and kinetics - was altered at 90°C in a solution initially saturated with respect to amorphous 29-SiO2. The pH90°C, was fixed at 9 at the start of the experiment and raised to 11.5 after 209 d by the addition of KOH. Isotope sensitive analytical techniques were used to analyze the solution and altered glass samples, helping to understand the driving forces and rate limiting processes controlling long-term glass alteration. At pH 9, the corrosion rate continuously drops and the glass slowly transforms into a uniform, homogeneous and isovolumic amorphous alteration layer. The mechanisms responsible for this transformation are water diffusion through the growing alteration layer and ion exchange. We demonstrate that this amorphous alteration layer is not a precipitate resulting from the hydrolysis of the silicate network; it inherits from the glass structure from which the most weakly bonded cations (Na, Ca and B) have been released. At pH 11.5, the alteration process is very different: the high solubility of glass network formers (Si, Al, Zr) triggers the rapid and complete dissolution of the glass (dissolution becomes congruent) and precipitation of amorphous and crystalline phases. Unlike at pH 9 where glass corrosion rate decreased by 3 orders of magnitude likely due to transport-limiting phenomenon within the amorphous alteration layer, the rate at pH 11.5 is maintained at a value close to the forward rate due to both the hydrolysis of the silicate network and the precipitation of CSH and zeolites. This study provides key information for a unified model for glass dissolution.

  12. Dissolving Bubbles in Glass

    NASA Technical Reports Server (NTRS)

    Weinberg, M. C.; Oronato, P. I.; Uhlmann, D. R.

    1984-01-01

    Analytical expression used to calculate time it takes for stationary bubbles of oxygen and carbon dioxide to dissolve from glass melt. Technique based on analytical expression for bubble radius as function time, with consequences of surface tension included.

  13. Whisker reinforced glass ceramic

    SciTech Connect

    Hirschfeld, D.A.; Brown, J.J. Jr.

    1996-06-03

    The process for making an in-situ whisker reinforced glass-ceramic that is up to 1.5 times as strong as conventional glass-ceramics was developed at Virginia Tech and patented in 1993. This technology has been identified as having commercial potential for use in high temperature heat exchanger applications for the electric power generation field by the National Center for Appropriate Technology (NCAT). This technology was licensed by MATVA, Inc., a small Virginia business, for further development. In particular, the goal of this project was to develop a property database and conduct initial testing of heat exchanger prototypes to demonstrate its potential application. This final report describes how the glass precursor was formed, physical properties of the glass-ceramic, techniques for making heat exchanger prototypes.

  14. Seeing Glass Contractors Clearly.

    ERIC Educational Resources Information Center

    Deliberato, Jerry

    2003-01-01

    Offers seven tips for finding and working with an effective glass contractor. For example, schools should consider the company's reputation and longevity of service, and whether it has in-house engineering capabilities. (EV)

  15. Super ionic conductive glass

    DOEpatents

    Susman, Sherman; Volin, Kenneth J.

    1984-01-01

    An ionically conducting glass for use as a solid electrolyte in a power or secondary cell containing an alkali metal-containing anode and a cathode separated by an alkali metal ion conducting glass having an ionic transference number of unity and the general formula: A.sub.1+x D.sub.2-x/3 Si.sub.x P.sub.3-x O.sub.12-2x/3, wherein A is a network modifier for the glass and is an alkali metal of the anode, D is an intermediate for the glass and is selected from the class consisting of Zr, Ti, Ge, Al, Sb, Be, and Zn and X is in the range of from 2.25 to 3.0. Of the alkali metals, Na and Li are preferred and of the intermediate, Zr, Ti and Ge are preferred.

  16. Super ionic conductive glass

    DOEpatents

    Susman, S.; Volin, K.J.

    Described is an ionically conducting glass for use as a solid electrolyte in a power or secondary cell containing an alkali metal-containing anode and a cathode separated by an alkali metal ion conducting glass having an ionic transference number of unity and the general formula: A/sub 1 + x/D/sub 2-x/3/Si/sub x/P/sub 3 - x/O/sub 12 - 2x/3/, wherein A is a network modifier for the glass and is an alkali metal of the anode, D is an intermediate for the glass and is selected from the class consisting of Zr, Ti, Ge, Al, Sb, Be, and Zn and X is in the range of from 2.25 to 3.0. Of the alkali metals, Na and Li are preferred and of the intermediate, Zr, Ti and Ge are preferred.

  17. Glass Stronger than Steel

    DOE R&D Accomplishments Database

    Yarris, Lynn

    2011-03-28

    A new type of damage-tolerant metallic glass, demonstrating a strength and toughness beyond that of steel or any other known material, has been developed and tested by a collaboration of researchers from Berkeley Lab and Caltech.

  18. Comparison of the corrosion behaviors of the glass-bonded sodalite ceramic waste form and reference HLW glasses.

    SciTech Connect

    Ebert, W. L.; Lewis, M. A.

    1999-05-06

    A glass-bonded sodalite ceramic waste form is being developed for the long-term immobilization of salt wastes that are generated during spent nuclear fuel conditioning activities. A durable waste form is prepared by hot isostatic pressing (HIP) a mixture of salt-loaded zeolite powders and glass frit. A mechanistic description of the corrosion processes is being developed to support qualification of the CWF for disposal. The initial set of characterization tests included two standard tests that have been used extensively to study the corrosion behavior of high level waste (HLW) glasses: the Material Characterization Center-1 (MCC-1) Test and the Product Consistency Test (PCT). Direct comparison of the results of tests with the reference CWF and HLW glasses indicate that the corrosion behaviors of the CWF and HLW glasses are very similar.

  19. Baseline LAW Glass Formulation Testing

    SciTech Connect

    Kruger, Albert A.; Mooers, Cavin; Bazemore, Gina; Pegg, Ian L.; Hight, Kenneth; Lai, Shan Tao; Buechele, Andrew; Rielley, Elizabeth; Gan, Hao; Muller, Isabelle S.; Cecil, Richard

    2013-06-13

    The major objective of the baseline glass formulation work was to develop and select glass formulations that are compliant with contractual and processing requirements for each of the LAW waste streams. Other objectives of the work included preparation and characterization of glasses with respect to the properties of interest, optimization of sulfate loading in the glasses, evaluation of ability to achieve waste loading limits, testing to demonstrate compatibility of glass melts with melter materials of construction, development of glass formulations to support ILAW qualification activities, and identification of glass formulation issues with respect to contract specifications and processing requirements.

  20. Frangible glass canisters

    NASA Technical Reports Server (NTRS)

    Seifert, R.

    1972-01-01

    The need for a canister that can release its contents without disturbing the contents dynamically is discussed. The solution of this problem by the use of a frangible glass canister is considered. The basic theory applicable to frangible glass and the method of initiating a command flaw are discussed. A brief description of the test program and the results of a flight test are presented.

  1. Microstructuring of Photosensitive Glass

    NASA Astrophysics Data System (ADS)

    Sugioka, Koji

    Femtosecond laser direct writing followed by thermal treatment and successive wet etching can form three-dimensional (3D) hollow microstructures inside photosensitive glass. The principles and procedures of this process are explained. Next, the fabrication of 3D microfluidic structures and optical microcomponents is reviewed. Finally, the manufacture of functional microchip devices such as a microfluidic dye laser, optofluidics, and a nano-aquarium by integrating the microcomponents in a single glass chip is demonstrated.

  2. Glass fiber insulation

    SciTech Connect

    Griffith, E.J.; Ngo, T.M.

    1993-06-29

    A composition for a glass fiber insulation is described comprising a loose mat of glass fibers having at least a portion of the surface coated with a water insoluble, non-hygroscopic, amorphous aluminum phosphate polymer having a molar ratio of Al[sub 2]O[sub 3] to P[sub 2]O[sub 5] of less than 1 and providing a substantial thermal resistance.

  3. Display innovations through glass

    NASA Astrophysics Data System (ADS)

    Hamilton, Lori L.

    2016-03-01

    Prevailing trends in thin, lightweight, high-resolution, and added functionality, such as touch sensing, continue to drive innovation in the display market. While display volumes grow, so do consumers’ need for portability, enhanced optical performance, and mechanical reliability. Technical advancements in glass design and process have enabled display innovations in these areas while supporting industry growth. Opportunities for further innovation remain open for glass manufacturers to drive new applications, enhanced functionality, and increased demand.

  4. Metallic glass composition

    DOEpatents

    Kroeger, Donald M.; Koch, Carl C.

    1986-01-01

    A metallic glass alloy that is either iron-based or nickel-based or based on a mixture of iron and nickel, containing lesser amounts of elements selected from the group boron, silicon carbon and phosphorous to which is added an amount of a ductility enhancing element selected from the group cerium, lanthanum, praseodymium and neodymium sufficient to increase ductility of the metallic glass upon annealing.

  5. Glasses for Immobilizing Lanthanide, Alkali, and Alkali-earth Fission Products

    SciTech Connect

    Crum, Jarrod V.; Vienna, John D.

    2009-08-03

    A series of glasses were formulated for the immobilization of a potential waste stream from commercial nuclear fuel reprocessing, the combined lanthanide (LN), alkali, and alkaline earth (Cs/Sr) fission products. These glasses were formulated to meet repository disposal requirements while being processable in a cold-crucible melter. The glasses were fabricated and tested for product consistency test response, phase characterization, density, and glass transition temperature. The results suggest that the combined fission product waste forms are likely to meet repository requirements and generate less glass than if individual streams were vitrified.

  6. Volcanic Glasses: Construction Materials

    NASA Astrophysics Data System (ADS)

    Moskowitz, Samuel E.

    1998-01-01

    Natural glass is the product of rapidly cooled molten rock. Two natural sources of the melt are volcanic eruption and meteoritic impact. Pure glass is an amorphous aggregate. Volcanic glass is a material that could be utilized in the construction of extraterrestrial outposts. Pumice and perlite are volcanic glasses currently used in the building industry. Samples of natural volcanic glass found in the lunar regolith were returned to Earth as part of the Apollo and Luna programs. An alpha proton X-ray spectrometer onboard the Pathfinder recently examined martian rocks located in the vicinity of the lander craft. Preliminary results of chemical composition by weight of SiO2 50-55%, Al203 11-13%, K20 1-2%, Na20 2-5%, CaO 4-6%, MgO 3-7%, FeO 12-14%, S03 2-5%, and MnO <1% were given for two rocks. Parenthetically, the values for K and Mn were perhaps too high, and the analysis was based on X-ray data only. The appreciable amount of silica already found on Mars and empirical evidence to support the hypothesis that the planet once had water sufficient to rapidly cool magma imply the possibility of discovering natural glass of volcanic origin in subsequent missions.

  7. Perspective: The glass transition.

    PubMed

    Biroli, Giulio; Garrahan, Juan P

    2013-03-28

    We provide here a brief perspective on the glass transition field. It is an assessment, written from the point of view of theory, of where the field is and where it seems to be heading. We first give an overview of the main phenomenological characteristics, or "stylised facts," of the glass transition problem, i.e., the central observations that a theory of the physics of glass formation should aim to explain in a unified manner. We describe recent developments, with a particular focus on real space properties, including dynamical heterogeneity and facilitation, the search for underlying spatial or structural correlations, and the relation between the thermal glass transition and athermal jamming. We then discuss briefly how competing theories of the glass transition have adapted and evolved to account for such real space issues. We consider in detail two conceptual and methodological approaches put forward recently, that aim to access the fundamental critical phenomenon underlying the glass transition, be it thermodynamic or dynamic in origin, by means of biasing of ensembles, of configurations in the thermodynamic case, or of trajectories in the dynamic case. We end with a short outlook. PMID:23556751

  8. Reference commercial high-level waste glass and canister definition.

    SciTech Connect

    Slate, S.C.; Ross, W.A.; Partain, W.L.

    1981-09-01

    This report presents technical data and performance characteristics of a high-level waste glass and canister intended for use in the design of a complete waste encapsulation package suitable for disposal in a geologic repository. The borosilicate glass contained in the stainless steel canister represents the probable type of high-level waste product that will be produced in a commercial nuclear-fuel reprocessing plant. Development history is summarized for high-level liquid waste compositions, waste glass composition and characteristics, and canister design. The decay histories of the fission products and actinides (plus daughters) calculated by the ORIGEN-II code are presented.

  9. Experimental hydration studies of natural and synthetic glasses

    SciTech Connect

    Bates, J.K.; Abrajano, T.A. Jr.; Ebert, W.L.; Mazer, J.J.; Gerding, T.J.

    1988-01-01

    The results of a series of hydration experiments on natural glasses (Hawaiian basalt, obsidian) and the nuclear waste glass WV-44 done to examine laboratory methods of accelerating reaction processes are summarized. The glasses were reacted in hydrothermal solution and in saturated vapor water. It was found that different reaction rates and processes were found using the differing conditions, and that laboratory efforts to accelerate and duplicate natural processes must amount for the physical processes that occur naturally. 18 refs., 5 figs., 1 tab.

  10. Infrared spectroscopy and hydrogen isotope geochemistry of hydrous silicate glasses

    SciTech Connect

    Epstein, S.; Stolper, E.

    1992-01-01

    The focus of this project is the combined appication of infrared spectroscopy and stable isotope geochemistry to the study of hydrogen-bearing species dissolved in silicate melts and glasses. We are conducting laboratory experiments aimed at determining the fractionation of D and H between melt species (OH and H{sub 2}O) and hydrous vapor and the diffusivities of these species in glasses and melts. Knowledge of these parameters is critical to understanding the behavior of hydrogen isotopes during igneous processes and hydrothermal processes. These results also could be valuable in application of glass technology to development of nuclear waste disposal strategies.

  11. Containerless synthesis of interesting glasses

    NASA Technical Reports Server (NTRS)

    Weinberg, Michael C.

    1990-01-01

    One aspect of containerless glass experimentation was thoroughly examined: glass forming ability. It is argued that although containerless processing will abet glass formation, other ground-based methods can do the job better. However, these methods have limitations, such as sample dimensions and concomitant ability to make property measurements. Most importantly, perhaps, is the observation that glass properties are a function of preparation procedure. Thus, it seems as though there still is an argument for use of containerless processing for glass forming.

  12. H diffusion in diopside and anorthite glasses

    NASA Astrophysics Data System (ADS)

    Fanara, S.; Becker, H.; Rogalla, D.; Chakraborty, S.

    2010-12-01

    Water or hydrogen content of silicate glasses and melts has a strong influence on many properties and processes. Consequently, H or water diffusion in glasses plays an important role in several processes such as corrosion of glass and degassing of industrial melts or natural magmas. However, it has been difficult to determine H diffusion in glasses at relatively low temperatures. We have developed a method to produce nanometer scale thin films of complex hydrous silicates by pulsed laser deposition (PLD). This enables us to measure diffusivity of H at conditions that were difficult to access before. Anhydrous silicate glasses with compositions along the join anorthite (CaAl2Si2O8) - diopside (CaMgSi2O6) were synthesized at 1600 °C in a box furnace, rapidly quenched and cut in cylinders (3 mm diameter - 2 mm thickness) of which one end was polished. Portions of the dry glasses were powdered and sealed in AuPd capsules with an adequate amount of distilled water to produce hydrous glasses containing up to 4 wt% H2O at pressures below 10 kbar in a Piston Cylinder Apparatus. Water diffusion was investigated using the diffusion couple method. The diffusion couples were prepared by depositing thin films (150 - 200 nm) of the hydrous glasses on the dry cylinders of the same composition using PLD. This has not been possible until now, to the best of our knowledge. Diffusion couple experiments were carried out in cold seal pressure vessels at temperature ranging from 400 - 200 °C and at a pressure of 2 kbar for durations of 2 h and 10 days, respectively. H concentration profiles were measured using Nuclear Reaction Analyses (NRA) at the Dynamitron Tandem Accelerator facility of the University, before and after diffusion experiments. In our first successful experiment carried out on An50Di50 at 350 °C, 2 kbar for 16 h, diffusivity of H is 4.7 10-16 m2/s. This value is about 0.7 log units slower than the proton diffusion coefficient inferred from conductivity data on glasses of the same composition using the Nernst-Einstein equation.

  13. Glass microsphere lubrication

    NASA Technical Reports Server (NTRS)

    Geiger, Michelle; Goode, Henry; Ohanlon, Sean; Pieloch, Stuart; Sorrells, Cindy; Willette, Chris

    1991-01-01

    The harsh lunar environment eliminated the consideration of most lubricants used on earth. Considering that the majority of the surface of the moon consists of sand, the elements that make up this mixture were analyzed. According to previous space missions, a large portion of the moon's surface is made up of fine grained crystalline rock, about 0.02 to 0.05 mm in size. These fine grained particles can be divided into four groups: lunar rock fragments, glasses, agglutinates (rock particles, crystals, or glasses), and fragments of meteorite material (rare). Analysis of the soil obtained from the missions has given chemical compositions of its materials. It is about 53 to 63 percent oxygen, 16 to 22 percent silicon, 10 to 16 percent sulfur, 5 to 9 percent aluminum, and has lesser amounts of magnesium, carbon, and sodium. To be self-supporting, the lubricant must utilize one or more of the above elements. Considering that the element must be easy to extract and readily manipulated, silicon or glass was the most logical choice. Being a ceramic, glass has a high strength and excellent resistance to temperature. The glass would also not contaminate the environment as it comes directly from it. If sand entered a bearing lubricated with grease, the lubricant would eventually fail and the shaft would bind, causing damage to the system. In a bearing lubricated with a solid glass lubricant, sand would be ground up and have little effect on the system. The next issue was what shape to form the glass in. Solid glass spheres was the only logical choice. The strength of the glass and its endurance would be optimal in this form. To behave as an effective lubricant, the diameter of the spheres would have to be very small, on the order of hundreds of microns or less. This would allow smaller clearances between the bearing and the shaft, and less material would be needed. The production of glass microspheres was divided into two parts, production and sorting. Production includes the manufacturing of the microspheres, while sorting entails deciphering the good microspheres from the bad ones. Each process is discussed in detail.

  14. DWPF GLASS BEADS AND GLASS FRIT TRANSPORT DEMONSTRATION

    SciTech Connect

    Adamson, D; Bradley Pickenheim, B

    2008-11-24

    DWPF is considering replacing irregularly shaped glass frit with spherical glass beads in the Slurry Mix Evaporator (SME) process to decrease the yield stress of the melter feed (a non-Newtonian Bingham Plastic). Pilot-scale testing was conducted on spherical glass beads and glass frit to determine how well the glass beads would transfer when compared to the glass frit. Process Engineering Development designed and constructed the test apparatus to aid in the understanding and impacts that spherical glass beads may have on the existing DWPF Frit Transfer System. Testing was conducted to determine if the lines would plug with the glass beads and the glass frit slurry and what is required to unplug the lines. The flow loop consisted of vertical and horizontal runs of clear PVC piping, similar in geometry to the existing system. Two different batches of glass slurry were tested: a batch of 50 wt% spherical glass beads and a batch of 50 wt% glass frit in process water. No chemicals such as formic acid was used in slurry, only water and glass formers. The glass beads used for this testing were commercially available borosilicate glass of mesh size -100+200. The glass frit was Frit 418 obtained from DWPF and is nominally -45+200 mesh. The spherical glass beads did not have a negative impact on the frit transfer system. The transferring of the spherical glass beads was much easier than the glass frit. It was difficult to create a plug with glass bead slurry in the pilot transfer system. When a small plug occurred from setting overnight with the spherical glass beads, the plug was easy to displace using only the pump. In the case of creating a man made plug in a vertical line, by filling the line with spherical glass beads and allowing the slurry to settle for days, the plug was easy to remove by using flush water. The glass frit proved to be much more difficult to transfer when compared to the spherical glass beads. The glass frit impacted the transfer system to the point that the test apparatus had to be disassembled to dislodge the plugs created in the system.

  15. Competitive formation of glasses and glass-matrix composites

    SciTech Connect

    Lu, Zhao Ping; Ma, D.; Liu, Chain T; Chang, Y. Austin

    2007-01-01

    By systematically investigating the effect of chemical composition on the competitive formation of glasses in various systems, we attempt to address two long-standing scientific puzzles upon metallic glasses, i.e., (i) which composition is the best for forming glasses and glass-matrix composites and (ii) what determines the easy glass-forming composition range in a given alloy system. Our findings have led to the construction of a qualitative microstructure selection map, which is useful for guiding the design of bulkier metallic glasses and glass-matrix composites. In addition, our analysis demonstrates that the classical kinetic treatment of glass formation is insufficient; to analyze glass formation properly, it is necessary to go beyond simple assumptions of single polymorphic solidification during crystallization.

  16. Glass and Glass-Ceramic Materials from Simulated Composition of Lunar and Martian Soils: Selected Properties and Potential Applications

    NASA Technical Reports Server (NTRS)

    Ray, C. S.; Sen, S.; Reis, S. T.; Kim, C. W.

    2005-01-01

    In-situ resource processing and utilization on planetary bodies is an important and integral part of NASA's space exploration program. Within this scope and context, our general effort is primarily aimed at developing glass and glass-ceramic type materials using lunar and martian soils, and exploring various applications of these materials for planetary surface operations. Our preliminary work to date have demonstrated that glasses can be successfully prepared from melts of the simulated composition of both lunar and martian soils, and the melts have a viscosity-temperature window appropriate for drawing continuous glass fibers. The glasses are shown to have the potential for immobilizing certain types of nuclear wastes without deteriorating their chemical durability and thermal stability. This has a direct impact on successfully and economically disposing nuclear waste generated from a nuclear power plant on a planetary surface. In addition, these materials display characteristics that can be manipulated using appropriate processing protocols to develop glassy or glass-ceramic magnets. Also discussed in this presentation are other potential applications along with a few selected thermal, chemical, and structural properties as evaluated up to this time for these materials.

  17. Sol-Gel Glasses

    NASA Technical Reports Server (NTRS)

    Mukherjee, S. P.

    1985-01-01

    Multicomponent homogeneous, ultrapure noncrystalline gels/gel derived glasses are promising batch materials for the containerless glass melting experiments in microgravity. Hence, ultrapure, homogeneous gel precursors could be used to: (1) investigate the effect of the container induced nucleation on the glass forming ability of marginally glass forming compositions; and (2) investigate the influence of gravity on the phase separation and coarsening behavior of gel derived glasses in the liquid-liquid immiscibility zone of the nonsilicate systems having a high density phase. The structure and crystallization behavior of gels in the SiO2-GeO2 as a function of gel chemistry and thermal treatment were investigated. As are the chemical principles involved in the distribution of a second network former in silica gel matrix being investigated. The procedures for synthesizing noncrystalline gels/gel-monoliths in the SiO2-GeO2, GeO2-PbO systems were developed. Preliminary investigations on the levitation and thermal treatment of germania silicate gel-monoliths in the Pressure Facility Acoustic Levitator were done.

  18. Jet penetration in glass

    SciTech Connect

    Moran, B.; Glenn, L.A.; Kusubov, A.

    1991-05-01

    We describe a phenomenological model which accounts for the mechanical response of glass to intense impulsive loading. An important aspect of this response is the dilatancy accompanying fracture. We have also conducted a number of experiments with 38.1-mm diameter precision shaped charges to establish the performance against various targets and to allow evaluation of our model. At 3 charge diameters standoff, the data indicate that both virgin and damaged glass offer better (Bernoulli-scaled) resistance to penetration than either of 4340 steel, or 6061-T6 aluminum alloy. Time-resolved measurements indicate two distinct phases of jet penetration in glass: An initial hydrodynamic phase, and a second phase characterized by a slower penetration velocity. Our calculations show that at early time, a crater is formed around the jet and only the tip of the undisturbed jet interacts with the glass. At late time the glass has collapsed on the jet and degraded penetration continues via a disturbed and fragmented jet.

  19. Glass matrix armor

    DOEpatents

    Calkins, Noel C. (Los Alamos, NM)

    1991-01-01

    An armor system which utilizes glass. A plurality of constraint cells are mounted on a surface of a substrate, which is metal armor plate or a similar tough material, such that the cells almost completely cover the surface of the substrate. Each constraint cell has a projectile-receiving wall parallel to the substrate surface and has sides which are perpendicular to and surround the perimeter of the receiving wall. The cells are mounted such that, in one embodiment, the substrate surface serves as a sixth side or closure for each cell. Each cell has inside of it a plate, termed the front plate, which is parallel to and in contact with substantially all of the inside surface of the receiving wall. The balance of each cell is completely filled with a projectile-abrading material consisting of glass and a ceramic material and, in certain embodiments, a polymeric material. The glass may be in monolithic form or particles of ceramic may be dispersed in a glass matrix. The ceramic material may be in monolithic form or may be in the form of particles dispersed in glass or dispersed in said polymer.

  20. Pourbaix diagram for the prediction of waste glass durability in geologic environments

    SciTech Connect

    Jantzen, C.M.

    1987-01-01

    Dissolution of nuclear waste glass occurs by corrosion mechanisms similar to those of metallurgical and mineralogic systems albeit on different time scales. The effects of imposed pH and oxidation potential (Eh) conditions existing in natural environments on metals and minerals have been quantitatively and phenomenologically described in compendiums of Pourbaix (pH-potential) diagrams. Construction of Pourbaix diagrams to quantify the response of nuclear waste glasses to repository specific pH and Eh conditions is demonstrated. The expected long-term effects of groundwater contact on the durability of nuclear waste glasses can then be unified. 40 refs., 4 figs., 1 tab.

  1. Glass strengthening and patterning methods

    DOEpatents

    Harper, David C; Wereszczak, Andrew A; Duty, Chad E

    2015-01-27

    High intensity plasma-arc heat sources, such as a plasma-arc lamp, are used to irradiate glass, glass ceramics and/or ceramic materials to strengthen the glass. The same high intensity plasma-arc heat source may also be used to form a permanent pattern on the glass surface--the pattern being raised above the glass surface and integral with the glass (formed of the same material) by use of, for example, a screen-printed ink composition having been irradiated by the heat source.

  2. Ion-implantation effects in glasses

    SciTech Connect

    Arnold, G.W.

    1981-01-01

    Ion implantation can be used to introduce network damage and to alter the chemical composition in glasses. Structural changes can be inferred from IR measurements near 1000 cm/sup -1/ and by optical absorption near 2150 A. Implantation induced damage decreases the implanted volume in fused silica with consequent changes in the refractive index, near-surface hardness, and surface tensile stress. Prior work in these areas is reviewed. Implantation into alkali silicate glasses depletes the alkali content in the implanted region. These changes allow preferential surface crystallization in Li/sub 2/O . 2SiO/sub 2/ glasses. Crystallization of amorphous SiO/sub 2/ can be induced by implantation of Li. Insight into the crystallization process is obtained by observing the associated ion movement using elastic recoil detection (ERD) and optical techniques. Implantation of 20 keV H shows that saturation of implanted H-sites in fused silica occurs at about 2.2 x 10/sup 21/ H/cm/sup 3/ in agreement with estimates of the number of available interstitial sites. Details of H and D interactions in fused silica were studied as a function of fluence and temperature. Results are of interest to studies of corrosion in glasses considered for nuclear waste encapsulation and for components in fusion reactors.

  3. Transient nucleation in glasses

    NASA Technical Reports Server (NTRS)

    Kelton, K. F.

    1991-01-01

    Nucleation rates in condensed systems are frequently not at their steady state values. Such time dependent (or transient) nucleation is most clearly observed in devitrification studies of metallic and silicate glasses. The origin of transient nucleation and its role in the formation and stability of desired phases and microstructures are discussed. Numerical models of nucleation in isothermal and nonisothermal situations, based on the coupled differential equations describing cluster evolution within the classical theory, are presented. The importance of transient nucleation in glass formation and crystallization is discussed.

  4. SETTLING OF SPINEL IN A HIGH-LEVEL WASTE GLASS MELTER

    SciTech Connect

    Pavel Hrma; Pert Schill; Lubomir Nemec

    2002-01-07

    High-level nuclear waste is being vitrified, i.e., converted to a durable glass that can be stored in a safe repository for hundreds of thousands of years. Waste vitrification is accomplished in reactors called melters to which the waste is charged together with glass-forming additives. The mixture is electrically heated to a temperature as high as 1150 decrees C to create a melt that becomes glass on cooling.

  5. Characterization of Analytical Reference Glass-1 (ARG-1)

    SciTech Connect

    Smith, G.L.

    1993-12-01

    High-level radioactive waste may be immobilized in borosilicate glass at the West Valley Demonstration Project, West Valley, New York, the Defense Waste Processing Facility (DWPF), Aiken, South Carolina, and the Hanford Waste Vitrification Project (HWVP), Richland, Washington. The vitrified waste form will be stored in stainless steel canisters before its eventual transfer to a geologic repository for long-term disposal. Waste Acceptance Product Specifications (WAPS) (DOE 1993), Section 1.1.2 requires that the waste form producers must report the measured chemical composition of the vitrified waste in their production records before disposal. Chemical analysis of glass waste forms is receiving increased attention due to qualification requirements of vitrified waste forms. The Pacific Northwest Laboratory (PNL) has been supporting the glass producers` analytical laboratories by a continuing program of multilaboratory analytical testing using interlaboratory ``round robin`` methods. At the PNL Materials Characterization Center Analytical Round Robin 4 workshop ``Analysis of Nuclear Waste Glass and Related Materials,`` January 16--17, 1990, Pleasanton, California, the meeting attendees decided that simulated nuclear waste analytical reference glasses were needed for use as analytical standards. Use of common standard analytical reference materials would allow the glass producers` analytical laboratories to calibrate procedures and instrumentation, to control laboratory performance and conduct self-appraisals, and to help qualify their various waste forms.

  6. Spectroscopic studies of glass structure

    SciTech Connect

    Brow, R.K.

    1994-08-01

    Today`s understanding of the molecular-level structure of inorganic glasses has been transformed by the availability of a wide range of sensitive spectroscopic probes. Today we can relate glass composition to quantitative distributions of glass-forming cations and to changes in oxygen bonding and modifying cation geometries. Future spectroscopic studies will result in improved descriptions of anion and cation geometries and should provide glass scientists with the capability to optimize atomic arrangements for specific optical, electrical, and thermal properties.

  7. Stained-Glass Pastels

    ERIC Educational Resources Information Center

    Laird, Shirley

    2009-01-01

    The author has always liked the look of stained-glass windows. Usually the designs are simplified and the shapes are easier for younger students to draw. This technique seemed to be the perfect place for her fifth-graders to try their hand at color mixing. The smaller spaces and simple shapes were just what she needed for this group. Her students…

  8. "Stained Glass" Landscape Windows

    ERIC Educational Resources Information Center

    Vannata, Janine

    2008-01-01

    Both adults and children alike marvel at the grand vivid stained-glass windows created by American artist Louis Comfort Tiffany. Today he is commonly recognized as one of America's most influential designers and artists throughout the last nineteenth and early twentieth century. In the lesson described in this article, students created their own…

  9. Stained-Glass Pastels

    ERIC Educational Resources Information Center

    Laird, Shirley

    2009-01-01

    The author has always liked the look of stained-glass windows. Usually the designs are simplified and the shapes are easier for younger students to draw. This technique seemed to be the perfect place for her fifth-graders to try their hand at color mixing. The smaller spaces and simple shapes were just what she needed for this group. Her students

  10. What Glass Ceiling?

    ERIC Educational Resources Information Center

    Lynch, Michael; Post, Katherine

    1996-01-01

    A recent study drawing on data from the Census Bureau and the Bureau of Labor Statistics suggests that the wage gap between men and women has virtually disappeared, and that the so-called "glass ceiling" results more from age and qualifications than from explicit discrimination. (SLD)

  11. Shimmering Stained Glass.

    ERIC Educational Resources Information Center

    Simon, Gail Murray

    1998-01-01

    Presents an art lesson for fifth- and sixth-graders where they create a translucent design of colored cellophane on black paper inspired by the stained-glass windows of the Middle Ages and the artwork of Lewis Comfort Tiffany. Enables the students to become crafts people rather than just observers of the past. (CMK)

  12. CADMIUM PHOSPHATE GLASS

    DOEpatents

    Carpenter, H.W.; Johnson, P.D.

    1963-04-01

    A method of preparing a cadmium phosphate glass that comprises providing a mixture of solid inorganic compounds of cadmuim and phosphate having vaporizable components and heating the resulting composition to a temperature of at least 850 un. Concent 85% C is presented. (AEC)

  13. "Stained Glass" Landscape Windows

    ERIC Educational Resources Information Center

    Vannata, Janine

    2008-01-01

    Both adults and children alike marvel at the grand vivid stained-glass windows created by American artist Louis Comfort Tiffany. Today he is commonly recognized as one of America's most influential designers and artists throughout the last nineteenth and early twentieth century. In the lesson described in this article, students created their own

  14. Glass ceramic toughened with tetragonal zirconia

    DOEpatents

    Keefer, K.D.

    1984-02-10

    A phase transformation-toughened glass ceramic and a process for making it are disclosed. A mixture of particulate network-forming oxide, network-modifying oxide, and zirconium oxide is heated to yield a homogeneous melt, and this melt is then heat treated to precipitate an appreciable quantity of tetragonal zirconia, which is retained at ambient temperature to form a phase transformation-toughened glass ceramic. Nuclearing agents and stabilizing agents may be added to the mixture to facilitate processing and improve the ceramic's properties. Preferably, the mixture is first melted at a temperature from 1200 to 1700/sup 0/C and is then heat-treated at a temperature within the range of 800 to 1200/sup 0/C in order to precipitate tetragonal ZrO/sub 2/. The composition, as well as the length and temperature of the heat treatment, must be carefully controlled to prevent solution of the precipitated tetragonal zirconia and subsequent conversion to the monoclinic phase.

  15. Prediction of radioactive waste glass durability by the hydration thermodynamic model: Application to saturated repository environments

    SciTech Connect

    Jantzen, C.M. ); Ramsey, W.G. . Dept. of Ceramic Engineering)

    1989-01-01

    The effects of groundwater chemistry on glass durability were examined using the hydration thermodynamic model. The relative durabilities of SiO{sub 2}, obsidians, basalts, nuclear waste glasses, medieval window glasses, and a frit glass were determined in tuffaceous groundwater, basaltic groundwater, WIPP-A brine, and Permian-A brine using the monolithic MCC-1 durability test. For all the groundwaters, the free energy of hydration, calculated from the glass composition and the final experimental pH, was linearly related to the logarithm of the measured silica concentration. The linear equation was identical to that observed previously for these glasses during MCC-1 testing in deionized water. In the groundwater-dominated MCC-1 experiments, the pH values for all the glasses tested appeared to be buffered by the groundwater-precipitate chemistry. The behavior of poorly durable glasses demonstrated that the silica release is a function of the ionic strength of the solution. The ionic strength, in turn, reflects the effect of the groundwater chemistry on the pH. Using the hydration thermodynamic model, nuclear waste glass durability in saturated repository environments can be predicted from the glass composition and the groundwater and the groundwater pH. 47 refs., 3 figs. 1 tab.

  16. Keratopathy associated with intracorneal glass

    SciTech Connect

    Mannis, M.J.; Fiori, C.E.; Krachmer, J.H.; Rodrigues, M.M.; Pardos, G.

    1981-05-01

    A progressive nonedematous keratopathy developed in a 36-year-old patient after she was struck in the eye by glass fragments. Biopsy material that was examined by electron microscopy and electron beam microanalysis demonstrated the presence of intracorneal glass fragments, which could not be detected clinically. Retained intracorneal glass, generally thought to be completely inert, can be associated with a chronic keratopathy.

  17. Yesterday's Trash Makes Tomorrow's "Glass"

    ERIC Educational Resources Information Center

    Wayne, Dale

    2010-01-01

    In this article, the author describes a glass art project inspired by Dale Chihuly. This project uses two-liter plastic soda bottles which are cut apart and trimmed. Applying heat using a hair dryer, the plastic curls and takes an uneven blown-glass quality. The "glass" is then painted using acrylic paint. (Contains 2 resources and 1 online

  18. Yesterday's Trash Makes Tomorrow's "Glass"

    ERIC Educational Resources Information Center

    Wayne, Dale

    2010-01-01

    In this article, the author describes a glass art project inspired by Dale Chihuly. This project uses two-liter plastic soda bottles which are cut apart and trimmed. Applying heat using a hair dryer, the plastic curls and takes an uneven blown-glass quality. The "glass" is then painted using acrylic paint. (Contains 2 resources and 1 online…

  19. Barstow heliostat mirror glass characterization

    SciTech Connect

    Lind, M.A.; Buckwalter, C.Q.

    1980-09-01

    The technical analysis performed on the special run of low iron float glass procured from the Ford Glass Division for the ten megawatt solar thermal/electric pilot power plant to be constructed at Barstow, California is discussed. The topics that are addressed include the optical properties and the relative durability of the glass. Two optical parameters, solar transmittance and optical flatness, were measured as referenced in the specification and found to be better than the stated tolerances. The average solar transmittance exceeded 0.890 transmittance units. The glass also exhibited optical angular flatness deviations less than +-1.0 mrad as required. Both qualitative and quantitative accelerated weathering tests were performed on the glass in order to compare its durability to other soda lime float glass and alternate composition glasses of interest to the solar community. In both the quantitative leaching experiments and the more qualitative room temperature and elevated temperature water vapor exposure experiments the heliostat glass exhibited the same characteristics as the other soda-lime silicate float glasses. As a final test for mirroring compatability, selected samples of the production run of the glass were sent to four different commercial manufacturers for mirror coating. None of the manufacturers reported any difficulty silvering the glass. Based on the tests performed, the glass meets or exceeds all optical specifications for the Barstow heliostat field.

  20. Antagonist effects of calcium on borosilicate glass alteration

    NASA Astrophysics Data System (ADS)

    Mercado-Depierre, S.; Angeli, F.; Frizon, F.; Gin, S.

    2013-10-01

    Numerous studies have been conducted on glass and cement durability in contact with water, but very little work to date has focused directly on interactions between the two materials. These interactions are mostly controlled by silicon-calcium reactivity. However, the physical and chemical processes involved remain insufficiently understood to predict the evolution of coupled glass-cement systems used in several industrial applications. Results are reported from borosilicate glass alteration in calcium-rich solutions. Our data show that four distinct behaviors can be expected according to the relative importance of three key parameters: the pH, the reaction progress (short- or long-term alteration) and the calcium concentration. Glass alteration is thus controlled by specific mechanisms depending on the solution chemistry: calcium complexation at the glass surface, precipitation of calcium silicate hydrates (C-S-H) or calcium incorporation in the altered layer. These findings highlight the impact of silicon-calcium interactions on glass durability and open the way for a better understanding of glass-cement mixing in civil engineering applications as well as in nuclear waste storage.

  1. MoO3 incorporation in magnesium aluminosilicate glasses

    NASA Astrophysics Data System (ADS)

    Tan, Shengheng; Ojovan, Michael I.; Hyatt, Neil C.; Hand, Russell J.

    2015-03-01

    Molybdate has a very low solubility in silicate and borosilicate glass systems and its excess presence in nuclear waste glass can cause the formation of a readily soluble "yellow phase". In this study, the incorporation of molybdenum oxide (MoO3) in a magnesium aluminosilicate glass system has been investigated. The prepared glasses show a higher than 90% molybdenum retention rate and up to 5.34 mol% (12.28 wt%) MoO3 can be incorporated into these glasses without causing visible phase separation. The incorporation of MoO3 increases glass density, decreases glass transition and crystallisation temperatures and intensifies Raman bands assigned to vibrations of MoO42- units. When excess molybdate is added liquid-liquid phase separation and crystallisation occurs. The separated phase is spherical, 200-400 nm in diameter and randomly dispersed. Based on powder X-ray diffraction, Raman spectroscopy and transmission electron microscopy, the separated phase is identified as MgMoO4.

  2. Parametric effects on glass reaction in the unsaturated test method

    SciTech Connect

    Woodland, A.B.; Bates, J.K.; Gerding, T.J.

    1991-12-01

    The Unsaturated Test Method has been applied to study glass reaction under conditions that may be present at the potential Yucca Mountain site, currently under evaluation for storage of reprocessed high-level nuclear waste. The results from five separate sets of parametric experiments are presented wherein test parameters ranging from water contact volume to sensitization of metal in contact with the glass were examined. The most significant effect was observed when the volume of water, as controlled by the water inject volume and interval period, was such to allow exfoliation of reacted glass to occur. The extent of reaction was also influenced to a lesser extent by the degree of sensitization of the 304L stainless steel. For each experiment, the release of cations from the glass and alteration of the glass were examined. The major alteration product is a smectite clay that forms both from precipitation from solution and from in-situ alteration of the glass itself. It is this clay that undergoes exfoliation as water drips from the glass. A comparison is made between the results of the parametric experiments with those of static leach tests. In the static tests the rates of release become progressively reduced through 39 weeks while, in contrast, they remain relatively constant in the parametric experiments for at least 300 weeks. This differing behavior may be attributable to the dripping water environment where fresh water is periodically added and where evaporation can occur.

  3. Interactions between the glass fiber coating and oxidized carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Ku-Herrera, J. J.; Avils, F.; Nistal, A.; Cauich-Rodrguez, J. V.; Rubio, F.; Rubio, J.; Bartolo-Prez, P.

    2015-03-01

    Chemically oxidized multiwall carbon nanotubes (MWCNTs) were deposited onto commercial E-glass fibers using a dipping procedure assisted by ultrasonic dispersion. In order to investigate the role of the fiber coating (known as "sizing"), MWCNTs were deposited on the surface of as-received E-glass fibers preserving the proprietary coating as well as onto glass fibers which had the coating deliberately removed. Scanning electron microscopy and Raman spectroscopy were used to assess the distribution of MWCNTs onto the fibers. A rather homogeneous coverage with high density of MWCNTs onto the glass fibers is achieved when the fiber coating is maintained. Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS) and nuclear magnetic resonance (NMR) analyses of the chemical composition of the glass fiber coating suggest that such coating is a complex mixture with multiple oxygen-containing functional groups such as hydroxyl, carbonyl and epoxy. FTIR and XPS of MWCNTs over the glass fibers and of a mixture of MWCNTs and fiber coating provided evidence that the hydroxyl and carboxyl groups of the oxidized MWCNTs react with the oxygen-containing functional groups of the glass fiber coating, forming hydrogen bonding and through epoxy ring opening. Hydrogen bonding and ester formation between the functional groups of the MWCNTs and the silane contained in the coating are also possible.

  4. Attenuation of Glass Dissolution in the Presence of Natural Additives

    NASA Technical Reports Server (NTRS)

    Sang, Jing C.; Barkatt, Aaron; OKeefe, John A.

    1993-01-01

    The study described here explored the dissolution kinetics of glasses in aqueous environments in systems which included a variety of natural crystalline solids in addition to the glass itself and the aqueous phase. The results demonstrated the possibility of a dramatic decrease in the rate of dissolution of silicate glass in the presence of certain varieties of olivine-based materials. This decrease in dissolution rate was shown to be due to the fact that these additives consist mostly of Mg-based material but also contain minor amounts of Al and Ca. The combined presence of Mg with these minor species affected the corrosion rate of the glass as a whole, including its most soluble components such as boron. The study has potentially important implications to the durability of glasses exposed to natural environments. The results may be relevant to the use of active backfill materials in burial sites for nuclear waste glasses as well as to better understanding of the environmental degradation of natural and ancient glasses.

  5. Glass ceramic development for the combined fission products streams

    SciTech Connect

    Kossoy-simakov, Anna-eden; Tang, Ming; Valdez, James A; Usov, Igor O; Sickafus, Kurt E; Crum, Jarrod; Turo, Laura; Riley, Brian

    2011-01-18

    After immobilization, nuclear waste is stored for minimally hundreds of years. In waste-forms {beta}, {gamma}-radiation are main causes for damage. The objectives is to test radiation stability of PNNL synthesized glass-ceramics. Monitoring was done looking for changes in the microstructure or phase composition. These are designed for immobilization of: lanthanides, alkaline metals, alkaline arths, transition metals, high molybdenum content - 6.94%, and multi-phase glass-ceramic. The conclusion on aqueous stability is the PNNL glass ceramics - glass phase erodes but crystalline phases don't and it's more resistant to corrosion than vitrified waste. Leachability tests in accordance with standards will be performed and the results will be compared to XRD.

  6. Toward acceptance of DWPF glass at a Federal Repository

    SciTech Connect

    Plodinec, M.J.; Stevens, W.R. III; Hacker, B.A.; Baxter, R.G.

    1987-01-01

    Construction of the nations's first facility to immobilize defense high-level nuclear waste, the Defense Waste Processing Facility (DWPF) at the Savannah River Plant, is scheduled to be completed soon. The Department of Energy's Office of Civilian Radioactive Waste Management (OCRWM) has set up a Waste Acceptance Process to provide reasonable assurance that the waste glass produced in the DWPF will be acceptable for permanent storage in a federal repository. As part of this process, detailed specifications have been developed for the waste glass itself, the canister which will contain the waste glass, the sealed canister after it is filled with waste glass, and quality assurance of the product. Savannah River has developed a detailed strategy for demonstrating compliance with each of the specifications, which is documented in a Waste Compliance Plan (WCP). In this paper, the compliance strategy, and progress in implementing the WCP are presented. 12 refs., 3 figs.

  7. Synthesis and Vitrification of Nasicon Type Lithium Borophosphate Glasses

    NASA Astrophysics Data System (ADS)

    Nithya, H.; Kawamura, Junichi; Iwai, Yoshiki; Takekawa, Reiji; Kuwata, Naoaki; Matsuda, Yasutaka

    2013-07-01

    NASICON type Li ion conducting Lithium borophosphate (Li3B2(PO4)3) and lead doped lithium borophosphate (Li3+xPbxB2-x(PO4)3 x = 0.2, 0.4, 0.6, 0.8) glass electrolyte has been prepared by melt quenching method. The effect of lead on the structure of the Lithium borophosphate glass network has been studied by Raman and 31P MAS Nuclear Magnetic resonance analysis. The behavior of the glass transition and electrical conductivity has been interpreted as a function of structural changes induced in the glass network when lead is doped in the Lithium borophosphate by means of DSC and ac impedance spectroscopic technique.

  8. Volcanic glass as a natural analog for borosilicate waste glass

    SciTech Connect

    Morgenstein, M.E.; Shettel, D.L.

    1994-12-31

    Obsidian and basaltic glass are opposite end-members of natural volcanic glass compositions. Syngenetic and diagenetic tensile failure in basaltic glass (low silica glass) is pervasive and provides abundant alteration fronts deep into the glass structure. Perlitic fracturing in obsidian (high silica glass) limits the alteration zones to an {open_quotes}onion skin{close_quotes} geometry. Borosilicate waste glass behaves similarly to the natural analog of basaltic glass (sideromelane). During geologic time, established and tensile fracture networks form glass cells (a three-dimensional reticulated pattern) where the production of new fracture surfaces increases through time by geometric progression. This suggests that borosilicate glass monoliths will eventually become rubble. Rates of reaction appear to double for every 12C{degrees} of temperature increase. Published leach rates suggest that the entire inventory of certain radionuclides may be released during the 10,000 year regulatory time period. Steam alteration prior to liquid attack combined with pervasive deep tensile failure behavior may suggest that the glass waste form is not license defensible without a metallic- and/or ceramic-type composite barrier as an overpack.

  9. THE INFLUENCE OF RADIATION AND MULTIVALENT CATION ADDITIONS ON PHASE SEPARATION AND CRYSTALLIZATION OF GLASS

    EPA Science Inventory

    Recent reviews which have dealt with critical issues regarding the suitability of glasses for nuclear waste disposal have identified liquid-liquid immiscibility and crystallization processes as having the potential to alter significantly storage behavior, especially chemical corr...

  10. Neutron-sensing scintillating glass optical fiber detectors

    SciTech Connect

    Bliss, M.; Reeder, P.L.; Craig, R.A.

    1994-07-01

    Pacific Northwest Laboratory (PNL) has developed and tested the highest-transmission neutron-sensing glass fibers reported in the open literature to date. By developing glass compositions specifically for fiber drawing and by using superior oxidationstate controls and rapid quenching, PNL produces, fiber with useful lengths in excess of 200 cm. These long fibers can be used in detectors. Test results on the fibers used as a form-fitting detector around a small storage container containing neutron and gamma ray sources are reported. Excellent neutron-gamma ray discrimination has been achieved. These neutron-sensing glass optical fibers provide for new methods for monitoring the inventory of, preventing the diversion of, and detecting the unauthorized transport of sensitive nuclear materials. As such, it represents a significant potential element in countering the threat of nuclear terrorism.

  11. Oxynitride glass fibers. Patent Application

    SciTech Connect

    Messier, D.R.; Deguire, E.J.

    1985-09-12

    This invention relates to the production of high-elastic-modulus, high-strength, corrosion-resistant oxynitride glass-fibers for improved fiber-reinforced composites. The incorporation of nitrogen into silicon-yttrium-aluminum oxide glasses enhances the properties of bulk glass. This invention is the first demonstation that such glasses can be made into fibers. The addition of nitrogen to pratically any oxide glass fiber composition will produce improvements in properties similar to those shown for the silicon-yttrium-aluminum system.

  12. THE DEVELOPMENT OF RADIOACTIVE GLASS SURROGATES FOR FALLOUT DEBRIS

    SciTech Connect

    Martha R. Finck; Leigh R. Martin; Russel R. Lewis; Kevin P. Carney; Christopher A. McGrath

    2014-01-01

    The production of glass that emulates fallout is desired for the nuclear forensics community for training and measurement exercises. The composition of nuclear fallout is complex varying isotopic compositions . As the gaseous cloud traverses from hotter to cooler regions of the atmosphere, the processes of condensation and nucleation entrain environmental materials, vaporized nuclear materials and fission products. The elemental and isotopic composition of the fission products is altered due to chemical fractionation (i.e. the fission product composition that would be expected from fission of the original nuclear material is altered by differences in condensation rates of the elements); the fallout may be enriched or depleted in volatile or refractory fission products. This work describes preliminary results to synthesize, irradiate and fractionate the fission product content of irradiated particulate glass using a thermal distillation two hours after irradiation. The glass was synthesized using a solution-based polymerization of tetraethyl orthosilicate. Uranium was incorporated into the glass particulate at trace concentrations during polymerization. The particulate was subjected to a short thermal neutron irradiation then heated to 1273 K approximately 2 hours after the end of irradiation. Fission products of 133, 134, 135I, 132, 134Te, 135Xe, 138Cs and 91, 92Sr were observed to be distilled from the particulate. The results of these preliminary studies are discussed.

  13. Shedding Synchrotron Light on a Puzzle of Glasses

    ScienceCinema

    Chumakov, Aleksandr [European Synchrotron Radiation Facility, Grenoble, France

    2010-01-08

    Vibrational dynamics of glasses remains a point of controversial discussions. In particular, the density of vibrational states (DOS) reveals an excess of states above the Debye model called "boson peak." Despite the fact that this universal feature for all glasses has been known for more than 35 years, the nature of the boson peak is still not understood. The application of nuclear inelastic scattering via synchrotron radiation perhaps provides a clearer, more consistent picture of the subject. The distinguishing features of nuclear inelastic scattering relative to, e.g., neutron inelastic scattering, are ideal momentum integration and exact scaling of the DOS in absolute units. This allows for reliable comparison to data from other techniques such as Brillouin light scattering. Another strong point is ideal isotope selectivity: the DOS is measured for a single isotope with a specific low-energy nuclear transition. This allows for special "design" of an experiment to study, for instance, the dynamics of only center-of-mass motions. Recently, we have investigated the transformation of the DOS as a function of several key parameters such as temperature, cooling rate, and density. In all cases the transformation of the DOS is sufficiently well described by a transformation of the continuous medium, in particular, by changes of the macroscopic density and the sound velocity. These results suggest a collective sound-like nature of vibrational dynamics in glasses and cast doubts on microscopic models of glass dynamics. Further insight can be obtained in combined studies of glass with nuclear inelastic and inelastic neutron scattering. Applying two techniques, we have measured the energy dependence of the characteristic correlation length of atomic motions. The data do not reveal localization of atomic vibrations at the energy of the boson peak. Once again, the results suggest that special features of glass dynamics are related to extended motions and not to local models.

  14. Profiles in garbage glass containers

    SciTech Connect

    Miller, C.

    1997-09-01

    Glass containers are made from sand, limestone, soda ash, cullet (crushed bottles), and various additives, including those used to color brown, green, or blue bottles. Sixty percent of the glass used in the US is clear (flint) and one-fourth is brown (amber). Almost half of the green bottles are imported wind and beer bottles. Other glass products include flat glass such as windows; fiberglass insulation; and glassware. These products use different manufacturing processes and different additives than container glass. This profile covers only container glass. Glass bottles are commonly collected in curb-side programs. Losses due to breakage and the abrasiveness of glass during collection and processing offset their low collection and processing costs. Breakage solutions include installation of interior baffles or nets in the collection trucks, special glass-only truck compartments, and limiting the number of times glass is transferred after collection before final processing. Ten states require deposits on glass bottles for beer and soft drinks and related items.

  15. The performance of Glass GEM

    NASA Astrophysics Data System (ADS)

    Fujiwara, T.; Mitsuya, Y.; Takahashi, H.; Fushie, T.; Kishimito, S.; Guèrard, B.; Uesaka, M.

    2014-11-01

    Here we report the performance of Glass gas electron multipliers (Glass GEMs), which were fabricated with photo-etchable glass. The photo-etchable glass used for substrate is called PEG3 (Hoya Corporation). With this material, we succeeded in fabricating a Glass GEM that was 680 μ m-thick with a hole diameter of 170 μ m and Cr and Cu layer electrodes. A Glass GEM has advantages such as good uniformity, high gain, a flat surface without stretching, cylindrical holes, and the absence of outgassing from the material. We successfully operated a Glass GEM having 100 × 100 m 2 effective area with various gas mixtures. The energy resolution for 5.9 keV X-rays was 18%, obtained by uniform irradiation of the entire effective area. The gas gain of the Glass GEM reached up to 90,000 with a gas mixture of Ne/C 4 (90:10). The Glass GEM was also operated with Ar/C 4 and Ar/C 4 gas. The gain stability measured for Glass GEM showed no significant increase or decrease as a function of elapsed time from applying high voltage. The gain stability over 15 hours of operation was about 10% in high-count-rate irradiation. Gain mapping across the Glass GEM showed good uniformity with a standard deviation of about 10%.

  16. Fluoride glass: Crystallization, surface tension

    NASA Technical Reports Server (NTRS)

    Doremus, R. H.

    1988-01-01

    Fluoride glass was levitated acoustically in the ACES apparatus on STS-11, and the recovered sample had a different microstructure from samples cooled in a container. Further experiments on levitated samples of fluoride glass are proposed. These include nucleation, crystallization, melting observations, measurement of surface tension of molten glass, and observation of bubbles in the glass. Ground experiments are required on sample preparation, outgassing, and surface reactions. The results should help in the development and evaluation of containerless processing, especially of glass, in the development of a contaminent-free method of measuring surface tensions of melts, in extending knowledge of gas and bubble behavior in fluoride glasses, and in increasing insight into the processing and properties of fluoride glasses.

  17. Production of glass or glass-ceramic to metal seals with the application of pressure

    DOEpatents

    Kelly, Michael D. (West Alexandria, OH); Kramer, Daniel P. (Dayton, OH)

    1987-11-10

    In a process for preparing a glass or glass-ceramic to metal seal comprising contacting the glass with the metal and heat-treating the glass and metal under conditions whereby the glass to metal seal is effected and, optionally, the glass is converted to a glass-ceramic, an improvement comprises carrying out the heat-treating step using hot isostatic pressing.

  18. Production of glass or glass-ceramic to metal seals with the application of pressure

    DOEpatents

    Kelly, M.D.; Kramer, D.P.

    1985-01-04

    In a process for preparing a glass or glass-ceramic to metal seal comprising contacting the glass with the metal and heat-treating the glass and metal under conditions whereby the glass to metal seal is effected and, optionally, the glass is converted to a glass-ceramic, an improvement comprises carrying out the heat-treating step using hot isostatic pressing.

  19. Ductile Bulk Metallic Glass

    NASA Astrophysics Data System (ADS)

    Schroers, Jan; Johnson, William L.

    2004-12-01

    We report on experimental evidence of pronounced global plasticity measured in monolithic Pt57.5Cu14.7Ni5.3P22.5 bulk metallic glass under both bending and unconfined compression loading conditions. A plastic strain of 20% is measured, never before seen in metallic glasses. Also, permanent deformation and a strain exceeding 3% before failure is observed during bending of 4mm thick samples. To date, no monolithic metallic material has exhibited such a combination of high strength, extensive ductility, and high elastic limit. The large plasticity is reflected in a high Poisson ratio of 0.42, which causes the tip of a shear band to extend rather than initiate a crack. This results in the formation of multiple shear bands and is the origin of the observed large global ductility and very high fracture toughness, approximately 80 MPa m-1/2.

  20. Glass matrix armor

    SciTech Connect

    Calkins, N.C.

    1991-09-03

    This patent describes an armor system which utilizes glass. A plurality of constraint cells are mounted on a surface of a substrate, which is metal armor plate or a similar tough material, such that the cells almost completely cover the surface of the substrate. Each constraint cell has a projectile receiving wall parallel to the substrate surface and has sides which are perpendicular to and surround the perimeter of the receiving wall. The cells are mounted such that, in one embodiment, the substrate surface serves as a sixth side or closure for each cell. Each cell has inside of it a plate, termed the front plate, which is parallel to and in contact with substantially all of the insides surface of the receiving wall. The balance of each cell is completely filled with a projectile-abrading material consisting of glass and a ceramic material and, in certain embodiments, a polymeric material.

  1. Breaking the glass ceiling.

    PubMed

    Lazarus, A

    1997-03-01

    The glass ceiling is a form of organizational bias and discrimination that prevents qualified professionals from achieving positions of top governance and leadership. This article examines glass ceiling barriers that keep physicians from the upper reaches of management. While these factors apply mainly to women and minority physicians in academia, and are attributable to sexual harassment and discrimination, physicians as a class are frequently denied executive management positions. Such denial results from inadequate preparation for a career in health care administration. Important issues in the professional development of physician executives include mentoring, training and education, administrative experience, and cultural and personality factors. All of those must be considered when making the transition from medicine to management. PMID:10165815

  2. Digitization of stained glass

    NASA Astrophysics Data System (ADS)

    MacDonald, Lindsay W.

    1997-04-01

    Digital photography was applied to the capture of images of the stained glass windows in the historic parish church in Fairford, Gloucestershire, England. Because of their size, the windows had to be photographed in 45 separate sections in order to capture all the detail present in the painting on the glass. The digital images of each section, approximately 3000 by 2300 pixels, were then mosaiced together in order to construct the very high resolution image needed for the complete window. A special backlight panel was constructed for the purpose, and techniques developed for minimizing the effects of reflected light and for calibrating the color of the images. Improvements in the technology for mounting and positioning the camera were identified as the most significant factors currently preventing the widespread adoption of this technology for virtual heritage applications.

  3. Athermal photofluidization of glasses.

    PubMed

    Fang, G J; Maclennan, J E; Yi, Y; Glaser, M A; Farrow, M; Korblova, E; Walba, D M; Furtak, T E; Clark, N A

    2013-01-01

    Azobenzene and its derivatives are among the most important organic photonic materials, with their photo-induced trans-cis isomerization leading to applications ranging from holographic data storage and photoalignment to photoactuation and nanorobotics. A key element and enduring mystery in the photophysics of azobenzenes, central to all such applications, is athermal photofluidization: illumination that produces only a sub-Kelvin increase in average temperature can reduce, by many orders of magnitude, the viscosity of an organic glassy host at temperatures more than 100?K below its thermal glass transition. Here we analyse the relaxation dynamics of a dense monolayer glass of azobenzene-based molecules to obtain a measurement of the transient local effective temperature at which a photo-isomerizing molecule attacks its orientationally confining barriers. This high temperature (T(loc)~800?K) leads directly to photofluidization, as each absorbed photon generates an event in which a local glass transition temperature is exceeded, enabling collective confining barriers to be attacked with near 100% quantum efficiency. PMID:23443549

  4. Athermal photofluidization of glasses

    NASA Astrophysics Data System (ADS)

    Fang, G. J.; Maclennan, J. E.; Yi, Y.; Glaser, M. A.; Farrow, M.; Korblova, E.; Walba, D. M.; Furtak, T. E.; Clark, N. A.

    2013-02-01

    Azobenzene and its derivatives are among the most important organic photonic materials, with their photo-induced trans-cis isomerization leading to applications ranging from holographic data storage and photoalignment to photoactuation and nanorobotics. A key element and enduring mystery in the photophysics of azobenzenes, central to all such applications, is athermal photofluidization: illumination that produces only a sub-Kelvin increase in average temperature can reduce, by many orders of magnitude, the viscosity of an organic glassy host at temperatures more than 100?K below its thermal glass transition. Here we analyse the relaxation dynamics of a dense monolayer glass of azobenzene-based molecules to obtain a measurement of the transient local effective temperature at which a photo-isomerizing molecule attacks its orientationally confining barriers. This high temperature (Tloc~800?K) leads directly to photofluidization, as each absorbed photon generates an event in which a local glass transition temperature is exceeded, enabling collective confining barriers to be attacked with near 100% quantum efficiency.

  5. The formation of crystals in glasses containing rare earth oxides

    NASA Astrophysics Data System (ADS)

    Fadzil, Syazwani Mohd; Hrma, Pavel; Crum, Jarrod; Siong, Khoo Kok; Ngatiman, Mohammad Fadzlee; Said, Riduan Mt

    2014-02-01

    Korean spent nuclear fuel will reach the capacity of the available temporary storage by 2016. Pyroprocessing and direct disposal seems to be an alternative way to manage and reuse spent nuclear fuel while avoiding the wet reprocessing technology. Pyroprocessing produces several wastes streams, including metals, salts, and rare earths, which must be converted into stabilized form. A suitable form for rare earth immobilization is borosilicate glass. The borosilicate glass form exhibits excellent durability, allows a high waste loading, and is easy to process. In this work, we combined the rare earths waste of composition (in wt%) 39.2Nd2O3-22.7CeO2-11.7La2O3-10.9PrO2-1.3Eu2O3-1.3Gd2O3-8.1Sm2O3-4.8Y2O3 with a baseline glass of composition 60.2SiO2-16.0B2O3-12.6Na2O-3.8Al2O3-5.7CaO-1.7ZrO2. Crystallization in waste glasses occurs as the waste loading increases. It may produce complicate glass processing and affect the product quality. To study crystal formation, we initially made glasses containing 5%, 10% and 15% of La2O3 and then glasses with 5%, 10% and 15% of the complete rare earth mix. Samples were heat-treated for 24 hours at temperatures 800C to 1150C in 50C increments. Quenched samples were analyzed using an optical microscope, scanning electron microscope with energy dispersive spectroscopy, and x-ray diffraction. Stillwellite (LaBSiO5) and oxyapatite (Ca2La8Si6O26) were found in glasses containing La2O3, while oxyapatite (Ca2La8Si6O26 and NaNd9Si6O26) precipitated in glasses with additions of mixed rare earths. The liquidus temperature (TL) of the glasses containing 5%, 10% and 15% La2O3 were 800C, 959C and 986C, respectively; while TL was 825C, 1059C and 1267C for glasses with 5%, 10% and 15% addition of mixed rare earth oxides. The component coefficients TB2O3, TSiO2, TCaO, and TRE2O3 were also evaluated using a recently published study.

  6. Bioactive glass in tissue engineering

    PubMed Central

    Rahaman, Mohamed N.; Day, Delbert E.; Bal, B. Sonny; Fu, Qiang; Jung, Steven B.; Bonewald, Lynda F.; Tomsia, Antoni P.

    2011-01-01

    This review focuses on recent advances in the development and use of bioactive glass for tissue engineering applications. Despite its inherent brittleness, bioactive glass has several appealing characteristics as a scaffold material for bone tissue engineering. New bioactive glasses based on borate and borosilicate compositions have shown the ability to enhance new bone formation when compared to silicate bioactive glass. Borate-based bioactive glasses also have controllable degradation rates, so the degradation of the bioactive glass implant can be more closely matched to the rate of new bone formation. Bioactive glasses can be doped with trace quantities of elements such as Cu, Zn and Sr, which are known to be beneficial for healthy bone growth. In addition to the new bioactive glasses, recent advances in biomaterials processing have resulted in the creation of scaffold architectures with a range of mechanical properties suitable for the substitution of loaded as well as non-loaded bone. While bioactive glass has been extensively investigated for bone repair, there has been relatively little research on the application of bioactive glass to the repair of soft tissues. However, recent work has shown the ability of bioactive glass to promote angiogenesis, which is critical to numerous applications in tissue regeneration, such as neovascularization for bone regeneration and the healing of soft tissue wounds. Bioactive glass has also been shown to enhance neocartilage formation during in vitro culture of chondrocyte-seeded hydrogels, and to serve as a subchondral substrate for tissue-engineered osteochondral constructs. Methods used to manipulate the structure and performance of bioactive glass in these tissue engineering applications are analyzed. PMID:21421084

  7. Bioactive glass in tissue engineering.

    PubMed

    Rahaman, Mohamed N; Day, Delbert E; Bal, B Sonny; Fu, Qiang; Jung, Steven B; Bonewald, Lynda F; Tomsia, Antoni P

    2011-06-01

    This review focuses on recent advances in the development and use of bioactive glass for tissue engineering applications. Despite its inherent brittleness, bioactive glass has several appealing characteristics as a scaffold material for bone tissue engineering. New bioactive glasses based on borate and borosilicate compositions have shown the ability to enhance new bone formation when compared to silicate bioactive glass. Borate-based bioactive glasses also have controllable degradation rates, so the degradation of the bioactive glass implant can be more closely matched to the rate of new bone formation. Bioactive glasses can be doped with trace quantities of elements such as Cu, Zn and Sr, which are known to be beneficial for healthy bone growth. In addition to the new bioactive glasses, recent advances in biomaterials processing have resulted in the creation of scaffold architectures with a range of mechanical properties suitable for the substitution of loaded as well as non-loaded bone. While bioactive glass has been extensively investigated for bone repair, there has been relatively little research on the application of bioactive glass to the repair of soft tissues. However, recent work has shown the ability of bioactive glass to promote angiogenesis, which is critical to numerous applications in tissue regeneration, such as neovascularization for bone regeneration and the healing of soft tissue wounds. Bioactive glass has also been shown to enhance neocartilage formation during in vitro culture of chondrocyte-seeded hydrogels, and to serve as a subchondral substrate for tissue-engineered osteochondral constructs. Methods used to manipulate the structure and performance of bioactive glass in these tissue engineering applications are analyzed. PMID:21421084

  8. Analytical Plan for Roman Glasses

    SciTech Connect

    Strachan, Denis M.; Buck, Edgar C.; Mueller, Karl T.; Schwantes, Jon M.; Olszta, Matthew J.; Thevuthasan, Suntharampillai; Heeren, Ronald M.

    2011-01-01

    Roman glasses that have been in the sea or underground for about 1800 years can serve as the independent “experiment” that is needed for validation of codes and models that are used in performance assessment. Two sets of Roman-era glasses have been obtained for this purpose. One set comes from the sunken vessel the Iulia Felix; the second from recently excavated glasses from a Roman villa in Aquileia, Italy. The specimens contain glass artifacts and attached sediment or soil. In the case of the Iulia Felix glasses quite a lot of analytical work has been completed at the University of Padova, but from an archaeological perspective. The glasses from Aquileia have not been so carefully analyzed, but they are similar to other Roman glasses. Both glass and sediment or soil need to be analyzed and are the subject of this analytical plan. The glasses need to be analyzed with the goal of validating the model used to describe glass dissolution. The sediment and soil need to be analyzed to determine the profile of elements released from the glass. This latter need represents a significant analytical challenge because of the trace quantities that need to be analyzed. Both pieces of information will yield important information useful in the validation of the glass dissolution model and the chemical transport code(s) used to determine the migration of elements once released from the glass. In this plan, we outline the analytical techniques that should be useful in obtaining the needed information and suggest a useful starting point for this analytical effort.

  9. Liquidus temperature and chemical durability of selected glasses to immobilize rare earth oxides waste

    NASA Astrophysics Data System (ADS)

    Mohd Fadzil, Syazwani; Hrma, Pavel; Schweiger, Michael J.; Riley, Brian J.

    2015-10-01

    Pyroprocessing is are processing method for managing and reusing used nuclear fuel (UNF) by dissolving it in an electrorefiner with a molten alkali or alkaline earth chloride salt mixture while avoiding wet reprocessing. Pyroprocessing UNF with a LiCl-KCl eutectic salt releases the fission products from the fuel and generates a variety of metallic and salt-based species, including rare earth (RE) chlorides. If the RE-chlorides are converted to oxides, borosilicate glass is a prime candidate for their immobilization because of its durability and ability to dissolve almost any RE waste component into the glass matrix at high loadings. Crystallization that occurs in waste glasses as the waste loading increases may complicate glass processing and affect the product quality. This work compares three types of borosilicate glasses in terms of liquidus temperature (TL): the International Simple Glass designed by the International Working Group, sodium borosilicate glass developed by Korea Hydro and Nuclear Power, and the lanthanide aluminoborosilicate (LABS) glass established in the United States. The LABS glass allows the highest waste loadings (over 50 mass% RE2O3) while possessing an acceptable chemical durability.

  10. Molten Glass for Thermal Storage: Advanced Molten Glass for Heat Transfer and Thermal Energy Storage

    SciTech Connect

    2012-01-01

    HEATS Project: Halotechnics is developing a high-temperature thermal energy storage system using a new thermal-storage and heat-transfer material: earth-abundant and low-melting-point molten glass. Heat storage materials are critical to the energy storage process. In solar thermal storage systems, heat can be stored in these materials during the day and released at night—when the sun is not out—to drive a turbine and produce electricity. In nuclear storage systems, heat can be stored in these materials at night and released to produce electricity during daytime peak-demand hours. Halotechnics new thermal storage material targets a price that is potentially cheaper than the molten salt used in most commercial solar thermal storage systems today. It is also extremely stable at temperatures up to 1200°C—hundreds of degrees hotter than the highest temperature molten salt can handle. Being able to function at high temperatures will significantly increase the efficiency of turning heat into electricity. Halotechnics is developing a scalable system to pump, heat, store, and discharge the molten glass. The company is leveraging technology used in the modern glass industry, which has decades of experience handling molten glass.

  11. Behaviour of ruthenium dioxide particles in borosilicate glasses and melts

    NASA Astrophysics Data System (ADS)

    Pflieger, Rachel; Lefebvre, Leila; Malki, Mohammed; Allix, Mathieu; Grandjean, Agns

    2009-06-01

    Ruthenium-glass systems are formed during the vitrification of nuclear waste. They are also widely used in micro-electronics because of their unique electrical properties. However, the interaction of this element with the glass matrix remains poorly understood. This work focuses on a RuO 2 particles-nuclear alumino-borosilicate glass system in which the electrical conductivity is known to vary considerably with the RuO 2 content and to become electronic above about 0.5-0.7 vol.% RuO 2 [R. Pflieger, M. Malki, Y. Guari, J. Larionova, A. Grandjean, J. Am. Ceram. Soc., accepted for publication]. Some RuO 2 segregation was observed in SEM/TEM investigations but no continuous chain of RuO 2 particles could be seen. Electron relays between the particles are then necessary for a low-rate percolation, such as the nanoclusters suggested by Adachi et al. [K. Adachi, S. Iida, K. Hayashi, J. Mater. Res. 9 (7) (1994) 1866; K. Adachi, H. Kuno, J. Am. Ceram. Soc. 83 (10) (2000) 2441], which could consist in dissolved ruthenium. Indeed, several observations made here clearly indicate the presence of dissolved ruthenium in the glass matrix, like the modification of the glass density in presence of RuO 2 particles or the diffusion-limited growth of RuO 2 particles in the melt.

  12. Mixed polyanion glass cathodes: Iron phosphate vanadate glasses

    SciTech Connect

    Kercher, Andrew K; Ramey, Joanne Oxendine; Carroll, Kyler J; Kiggans Jr, James O; Veith, Gabriel M; Meisner, Roberta; Boatner, Lynn A; Dudney, Nancy J

    2014-01-01

    Mixed polyanion (MP) glasses have been investigated for use as cathodes in lithium ion batteries. MP glass cathodes are similar in composition to theoretically promising crystalline polyanionic (CP) cathodes (e.g., lithium cobalt phosphate, lithium manganese silicate), but with proper polyanion substitution, they can be designed to overcome the key shortcomings of CP cathodes, such as poor electrical conductivity and irreversible phase changes. Iron phosphate/vanadate glasses were chosen as a first demonstration of the MP glass concept. Polyanion substitution with vanadate was shown to improve the intercalation capacity of an iron phosphate glass from almost zero to full theoretical capacity. In addition, the MP glass cathodes also exhibited an unexpected second high-capacity electrochemical reaction. X-ray absorption near-edge structure (XANES) and x-ray diffraction (XRD) of cathodes from cells having different states of charge suggested that this second electrochemical reaction is a glass-state conversion reaction. With a first demonstration established, MP glass materials utilizing an intercalation and/or glass-state conversion reaction are promising candidates for future high-energy cathode research.

  13. Chemical durability of soda-lime-aluminosilicate glass for radioactive waste vitrification

    SciTech Connect

    Eppler, F.H.; Yim, M.S.

    1998-09-01

    Vitrification has been identified as one of the most viable waste treatment alternatives for nuclear waste disposal. Currently, the most popular glass compositions being selected for vitrification are the borosilicate family of glasses. Another popular type that has been around in glass industry is the soda-lime-silicate variety, which has often been characterized as the least durable and a poor candidate for radioactive waste vitrification. By replacing the boron constituent with a cheaper substitute, such as silica, the cost of vitrification processing can be reduced. At the same time, addition of network intermediates such as Al{sub 2}O{sub 3} to the glass composition increases the environmental durability of the glass. The objective of this study is to examine the ability of the soda-lime-aluminosilicate glass as an alternative vitrification tool for the disposal of radioactive waste and to investigate the sensitivity of product chemical durability to variations in composition.

  14. Interactions of silicate glasses with aqueous environments under conditions of prolonged contact and flow

    NASA Technical Reports Server (NTRS)

    Barkatt, Aaron; Saad, E. E.; Adiga, R. B.; Sousanpour, W.; Barkatt, AL.; Feng, X.; O'Keefe, J. A.; Alterescu, S.

    1988-01-01

    This paper discusses mechanisms involving saturation and reactions that lead to the formation of altered phases in silicate glasses considered for use in geologic repositories for nuclear waste. It is shown that the rate of dissolution of silicate glasses exposed to a broad range of contact times, leachant compositions, and surface-to-volume ratios is strongly affected by the presence of reactive species such as Al, Mg, and Fe. The reactive materials may originate in the leachant or, under conditions of high surface-to-volume ratio, in the glass itself. The effects of glass composition on the course of the corrosion process can be viewed in terms of the formation of a surface layer on the leached glass; the type, composition, and structure of this layer control the dissolution behavior of the glass.

  15. Electric-field-induced birefringence properties of high-refractive-index glasses exhibiting large Kerr nonlinearities

    NASA Astrophysics Data System (ADS)

    Borrelli, N. F.; Aitken, B. G.; Newhouse, M. A.; Hall, D. W.

    1991-09-01

    The electro-optic Kerr effect and its wavelength dispersion have been measured in glasses representing several compositional systems. The measured Kerr effect was found to be large for glasses having large refractive indices, including: (i) glasses containing high concentrations of the heavy metals Pb, Bi, and Tl; (ii) glasses with high Nb, Ta, and Ti content; and (iii) tellurite glasses. Comparison of the third-order nonlinear susceptibility, ?eff(? = ? + 0 + 0), obtained from the measured electro-optic data, to values estimated from literature values of the optical frequency value, ?eff(? = ? + ? - ?) suggest an opposition of the electronic and nuclear contributions to the low-frequency electro-optic effect for the glasses containing Ti, Ta, or Nb.

  16. Letter report on PCT/Monolith glass ceramic corrosion tests

    SciTech Connect

    Crawford, Charles L.

    2015-09-24

    The Savannah River National Laboratory (SRNL) is collaborating with personnel from Pacific Northwest National Laboratory (PNNL) to study advanced waste form glass ceramics for immobilization of waste from Used Nuclear Fuel (UNF) separations processes. The glass ceramic waste forms take advantage of both crystalline and glassy phases where ‘troublesome’ elements (e.g., low solubility in glass or very long-lived) partition to highly durable ceramic phases with the remainder of elements residing in the glassy phase. The ceramic phases are tailored to create certain minerals or unique crystalline structures that can host the radionuclides by binding them in their specific crystalline network while not adversely impacting the residual glass network (Crum et al., 2011). Glass ceramics have been demonstrated using a scaled melter test performed in a pilot scale (1/4 scale) cold crucible induction melter (CCIM) (Crum et al., 2014; Maio et al., 2015). This report summarizes recent results from both Phase I and Phase II bench scale tests involving crucible fabrication and corrosion testing of glass ceramics using the Product Consistency Test (PCT). Preliminary results from both Phase I and Phase II bench scale tests involving statistically designed matrices have previously been reported (Crawford, 2013; Crawford, 2014).

  17. Structure and Chemistry in Halide Lead-Tellurite Glasses

    SciTech Connect

    McCloy, John S.; Riley, Brian J.; Lipton, Andrew S.; Windisch, Charles F.; Washton, Nancy M.; Olszta, Matthew J.; Rodriguez, Carmen P.

    2013-02-11

    A series of TeO2-PbO glasses were fabricated with increasing fractions of mixed alkali, alkaline earth, and lanthanide chlorides. The glass and crystal structure was studied with Raman spectroscopy, nuclear magnetic resonance (NMR), X-ray diffraction, and electron microscopy. As the chloride fraction increased, the medium-range order in the glass decreased up to a critical point (~14 mass% of mixed chlorides), above which the glasses became phase-separated. Resulting phases are a TeO2/PbO-rich phase and a crystalline phase rich in alkali chlorides. The 125Te NMR indicates, contrary to previous studies, that Te site distribution did not change with increased concentrations of M+, M2+, and M3+ cations, but rather is controlled by the Te/Pb molar ratio. The 207Pb NMR shows that two Pb species exist and their relative concentration changes nearly linearly with addition of the mixed chlorides, indicating that the additives to the TeO2-PbO glass are accommodated by changing the Pb species. The 23Na and 35Cl NMR indicate that Na and Cl are distributed in the single-phase glass phase up to the critical point, and at higher concentrations partition to crystalline phases. Transmission electron microscopy shows that the sample at the critical point contains ~10 nm seed nuclei that increase in size and concentration with exposure to the electron beam.

  18. Fracture mechanics of cellular glass

    NASA Technical Reports Server (NTRS)

    Zwissler, J. G.; Adams, M. A.

    1981-01-01

    The fracture mechanics of cellular glasses (for the structural substrate of mirrored glass for solr concentrator reflecting panels) are discussed. Commercial and developmental cellular glasses were tested and analyzed using standard testing techniques and models developed from linear fracture mechanics. Two models describing the fracture behavior of these materials were developed. Slow crack growth behavior in cellular glass was found to be more complex than that encountered in dense glasses or ceramics. The crack velocity was found to be strongly dependent upon water vapor transport to the tip of the moving crack. The existence of a static fatigue limit was not conclusively established, however, it is speculated that slow crack growth behavior in Region 1 may be slower, by orders of magnitude, than that found in dense glasses.

  19. Space processing of chalcogenide glass

    NASA Technical Reports Server (NTRS)

    Larsen, D. C.; Ali, M. I.

    1977-01-01

    The manner in which the weightless, containerless nature of in-space processing can be successfully utilized to improve the quality of infrared transmitting chalcogenide glasses is determined. The technique of space processing chalcogenide glass was developed, and the process and equipment necessary to do so was defined. Earthbound processing experiments with As2S3 and G28Sb12Se60 glasses were experimented with. Incorporated into these experiments is the use of an acoustic levitation device.

  20. Structural color from colloidal glasses

    NASA Astrophysics Data System (ADS)

    Magkiriadou, Sofia

    When a material has inhomogeneities at a lengthscale comparable to the wavelength of light, interference can give rise to structural colors: colors that originate from the interaction of the material's microstructure with light and do not require absorbing dyes. In this thesis we study a class of these materials, called photonic glasses, where the inhomogeneities form a dense and random arrangement. Photonic glasses have angle-independent structural colors that look like those of conventional dyes. However, when this work started, there was only a handful of colors accessible with photonic glasses, mostly hues of blue. We use various types of colloidal particles to make photonic glasses, and we study, both theoretically and experimentally, how the optical properties of these glasses relate to their structure and constituent particles. Based on our observations from glasses of conventional particles, we construct a theoretical model that explains the scarcity of yellow, orange, and red photonic glasses. Guided by this model, we develop novel colloidal systems that allow a higher degree of control over structural color. We assemble glasses of soft, core-shell particles with scattering cores and transparent shells, where the resonant wavelength can be tuned independently of the reflectivity. We then encapsulate glasses of these core-shell particles into emulsion droplets of tunable size; in this system, we observe, for the first time, angle-independent structural colors that cover the entire visible spectrum. To enhance color saturation, we begin experimenting with inverse glasses, where the refractive index of the particles is lower than the refractive index of the medium, with promising results. Finally, based on our theoretical model for scattering from colloidal glasses, we begin an exploration of the color gamut that could be achieved with this technique, and we find that photonic glasses are a promising approach to a new type of long-lasting, non-toxic, and tunable pigment.

  1. Structure, biodegradation behavior and cytotoxicity of alkali-containing alkaline-earth phosphosilicate glasses.

    PubMed

    Kansal, Ishu; Reddy, AlluAmarnath; Muoz, Francisco; Choi, Seong-Jun; Kim, Hae-Won; Tulyaganov, Dilshat U; Ferreira, Jos M F

    2014-11-01

    We report on the effect of sodium on the structure, chemical degradation and bioactivity of glasses in the CaO-MgO-SiO2-P2O5-CaF2 system. The (29)Si and (31)P magic angle spinning-nuclear magnetic resonance spectroscopy of melt-quenched glasses with varying Na2O/MgO ratios exhibit a silicate glass network with the dominance of Q(2)(Si) units and phosphorus mainly forming orthophosphate species. Sodium incorporation in the glasses did not induce a significant structural change in the silicate network, while it did influence the phosphate environment due to its lower ionic field strength in comparison with that of magnesium. The apatite forming ability of glasses has been investigated by immersion of glass powders in simulated body fluid (SBF) for time durations varying between 1h and 7 days while their chemical degradation has been studied in Tris-HCl in accordance with ISO-10993-14. Increasing Na(+)/Mg(2+) ratio caused a decrease in the chemical durability of glasses and in the apatite forming ability especially during initial steps of interaction between glass and SBF solution. The cellular responses were observed in vitro on bulk glass samples using mouse-derived pre-osteoblastic MC3T3-E1 cell line. The preliminary study suggested that the increasing alkali-concentration in glasses led to cytotoxicity in the cell culture medium. PMID:25280692

  2. Glass corrosion in natural environment

    NASA Technical Reports Server (NTRS)

    Thorpe, Arthur N.

    1989-01-01

    A series of studies of the effects of solutes which appear in natural aqueous environments, specifically Mg and Al, under controlled conditions, permit characterization of the retardation of silicate glass leaching in water containing such solutes. In the case of Mg the interaction with the glass appears to consist of exchange with alkali ions present in the glass to a depth of several microns. The effect of Al can be observed at much lower levels, indicating that the mechanism in the case of Al involves irreversible formation of aluminosilicate species at the glass surface.

  3. Crystallization of copper metaphosphate glass

    NASA Technical Reports Server (NTRS)

    Bae, Byeong-Soo; Weinberg, Michael C.

    1993-01-01

    The effect of the valence state of copper in copper metaphosphate glass on the crystallization behavior and glass transition temperature has been investigated. The crystallization of copper metaphosphate is initiated from the surface and its main crystalline phase is copper metaphosphate (Cu(PO)3),independent of the (Cu sup 2+)/(Cu(total)). However, the crystal morphology, the relative crystallization rates, and their temperature dependences are affected by the (Cu sup 2+)/(Cu (total)) ratio in the glass. On the other hand, the totally oxidized glass crystallizes from all over the surface. The relative crystallization rate of the reduced glass to the totally oxidized glass is large at low temperature, but small at high temperature. The glass transition temperature of the glass increases as the (Cu sup 2+)/(Cu(total)) ratio is raised. It is also found that the atmosphere used during heat treatment does not influence the crystallization of the reduced glass, except for the formation of a very thin CuO surface layer when heated in air.

  4. Glass rupture disk

    DOEpatents

    Glass, S. Jill (Albuquerque, NM); Nicolaysen, Scott D. (Albuquerque, NM); Beauchamp, Edwin K. (Albuquerque, NM)

    2002-01-01

    A frangible rupture disk and mounting apparatus for use in blocking fluid flow, generally in a fluid conducting conduit such as a well casing, a well tubing string or other conduits within subterranean boreholes. The disk can also be utilized in above-surface pipes or tanks where temporary and controllable fluid blockage is required. The frangible rupture disk is made from a pre-stressed glass with controllable rupture properties wherein the strength distribution has a standard deviation less than approximately 5% from the mean strength. The frangible rupture disk has controllable operating pressures and rupture pressures.

  5. Lightguiding in photochromic glasses.

    PubMed

    Crow, J D; Borrelli, N F; Seward Iii, T P; Chodak, J

    1975-03-01

    Lightguiding in ion-exchanged photochromic glass layers is reported. The guides were formed by ion exchange of Ag(+) for Na(+) or by outdiffusion of F. Guide attenuation was less than 0.2 dB/cm in many cases. The attenuation in the guide was varied over a range of Deltaalpha = 30 dB/cm by illuminating the guide with (1) uv radiation to darken the guide or order of seconds. (2) visible radiation to bleach the guide. Switching times were in the order of seconds. PMID:20134933

  6. Atomic dynamics of tin nanoparticles embedded into porous glass

    NASA Astrophysics Data System (ADS)

    Parshin, P. P.; Zemlyanov, M. G.; Panova, G. Kh.; Shikov, A. A.; Kumzerov, Yu. A.; Naberezhnov, A. A.; Sergueev, I.; Crichton, W.; Chumakov, A. I.; Rffer, R.

    2012-03-01

    The method of resonant nuclear inelastic absorption of synchrotron radiation has been used to study the phonon spectrum for tin nanoparticles (with a natural isotope mixture) embedded into a porous glassy (silica) matrix with an average pore diameter of 7 nm in comparison to the analogous spectrum of bulk tin enriched with 119Sn isotope. Differences between the spectra have been observed, which are related to both the dimensional effects and specific structural features of the porous glass-tin nanocomposite. Peculiarities in the dynamics of tin atoms embedded into nanopores of glass are interpreted in terms of a qualitative model of the nanocomposite structure.

  7. Atomic dynamics of tin nanoparticles embedded into porous glass

    SciTech Connect

    Parshin, P. P.; Zemlyanov, M. G. Panova, G. Kh.; Shikov, A. A.; Kumzerov, Yu. A.; Naberezhnov, A. A.; Sergueev, I.; Crichton, W.; Chumakov, A. I.; Rueffer, R.

    2012-03-15

    The method of resonant nuclear inelastic absorption of synchrotron radiation has been used to study the phonon spectrum for tin nanoparticles (with a natural isotope mixture) embedded into a porous glassy (silica) matrix with an average pore diameter of 7 nm in comparison to the analogous spectrum of bulk tin enriched with {sup 119}Sn isotope. Differences between the spectra have been observed, which are related to both the dimensional effects and specific structural features of the porous glass-tin nanocomposite. Peculiarities in the dynamics of tin atoms embedded into nanopores of glass are interpreted in terms of a qualitative model of the nanocomposite structure.

  8. Method for heating a glass sheet

    DOEpatents

    Boaz, Premakaran Tucker (Livonia, MI)

    1998-01-01

    A method for heating a glass sheet includes the steps of heating a glass sheet to a first predetermined temperature and applying microwave energy to the glass sheet to heat the glass sheet to at least a second predetermined temperature to allow the glass sheet to be formed.

  9. Method for heating a glass sheet

    DOEpatents

    Boaz, P.T.

    1998-07-21

    A method for heating a glass sheet includes the steps of heating a glass sheet to a first predetermined temperature and applying microwave energy to the glass sheet to heat the glass sheet to at least a second predetermined temperature to allow the glass sheet to be formed. 5 figs.

  10. Examination of glass-silicon and glass-glass bonding techniques for microfluidic systems

    SciTech Connect

    Raley, N.F.; Davidson, J.C.; Balch, J.W.

    1995-10-23

    We report here on the results of experiments concerning particular bonding processes potentially useful for ultimate miniaturization of microfluidic systems. Direct anodic bonding of continuous thin pyrex glass of 250 {mu}m thickness to silicon substrates gives multiple, large voids in the glass. Etchback of thick glass of 1200 {mu}m thickness bonded to silicon substrates gives thin continuous glass layers of 189 {mu}m thickness without voids over areas of 5 cm {times} 12 cm. Glass was also successfully bonded to glass by thermal bonding at 800{degrees}C over a 5 cm {times} 7 cm area. Anticipated applications include microfabricated DNA sequencing, flow injection analysis, and liquid and gas chromatography microinstruments.

  11. POROUS WALL, HOLLOW GLASS MICROSPHERES

    SciTech Connect

    Sexton, W.

    2012-06-30

    Hollow Glass Microspheres (HGM) is not a new technology. All one has to do is go to the internet and Google{trademark} HGM. Anyone can buy HGM and they have a wide variety of uses. HGM are usually between 1 to 100 microns in diameter, although their size can range from 100 nanometers to 5 millimeters in diameter. HGM are used as lightweight filler in composite materials such as syntactic foam and lightweight concrete. In 1968 a patent was issued to W. Beck of the 3M{trademark} Company for 'Glass Bubbles Prepared by Reheating Solid Glass Particles'. In 1983 P. Howell was issued a patent for 'Glass Bubbles of Increased Collapse Strength' and in 1988 H. Marshall was issued a patent for 'Glass Microbubbles'. Now Google{trademark}, Porous Wall, Hollow Glass Microspheres (PW-HGMs), the key words here are Porous Wall. Almost every article has its beginning with the research done at the Savannah River National Laboratory (SRNL). The Savannah River Site (SRS) where SRNL is located has a long and successful history of working with hydrogen and its isotopes for national security, energy, waste management and environmental remediation applications. This includes more than 30 years of experience developing, processing, and implementing special ceramics, including glasses for a variety of Department of Energy (DOE) missions. In the case of glasses, SRS and SRNL have been involved in both the science and engineering of vitreous or glass based systems. As a part of this glass experience and expertise, SRNL has developed a number of niches in the glass arena, one of which is the development of porous glass systems for a variety of applications. These porous glass systems include sol gel glasses, which include both xerogels and aerogels, as well as phase separated glass compositions, that can be subsequently treated to produce another unique type of porosity within the glass forms. The porous glasses can increase the surface area compared to 'normal glasses of a 1 to 2 order of magnitude, which can result in unique properties in areas such as hydrogen storage, gas transport, gas separations and purifications, sensors, global warming applications, new drug delivery systems and so on. One of the most interesting porous glass products that SRNL has developed and patented is Porous Wall, Hollow Glass Microspheres (PW-HGMs) that are being studied for many different applications. The European Patent Office (EPO) just recently notified SRS that the continuation-in-part patent application for the PW-HGMs has been accepted. The original patent, which was granted by the EPO on June 2, 2010, was validated in France, Germany and the United Kingdom. The microspheres produced are generally in the range of 2 to 100 microns, with a 1 to 2 micron wall. What makes the SRNL microspheres unique from all others is that the team in Figure 1 has found a way to induce and control porosity through the thin walls on a scale of 100 to 3000 {angstrom}. This is what makes the SRNL HW-HGMs one-of-a-kind, and is responsible for many of their unique properties and potential for various applications, including those in tritium storage, gas separations, H-storage for vehicles, and even a variety of new medical applications in the areas of drug delivery and MRI contrast agents. SRNL Hollow Glass Microspheres, and subsequent, Porous Wall, Hollow Glass Microspheres are fabricated using a flame former apparatus. Figure 2 is a schematic of the apparatus.

  12. Quinary metallic glass alloys

    DOEpatents

    Lin, Xianghong; Johnson, William L.

    1998-01-01

    At least quinary alloys form metallic glass upon cooling below the glass transition temperature at a rate less than 10.sup.3 K/s. Such alloys comprise zirconium and/or hafnium in the range of 45 to 65 atomic percent, titanium and/or niobium in the range of 4 to 7.5 atomic percent, and aluminum and/or zinc in the range of 5 to 15 atomic percent. The balance of the alloy compositions comprise copper, iron, and cobalt and/or nickel. The composition is constrained such that the atomic percentage of iron is less than 10 percent. Further, the ratio of copper to nickel and/or cobalt is in the range of from 1:2 to 2:1. The alloy composition formula is: (Zr,Hf).sub.a (Al,Zn).sub.b (Ti,Nb).sub.c (Cu.sub.x Fe.sub.y (Ni,Co).sub.z).sub.d wherein the constraints upon the formula are: a ranges from 45 to 65 atomic percent, b ranges from 5 to 15 atomic percent, c ranges from 4 to 7.5 atomic percent, d comprises the balance, d.multidot.y is less than 10 atomic percent, and x/z ranges from 0.5 to 2.

  13. Quinary metallic glass alloys

    DOEpatents

    Lin, X.; Johnson, W.L.

    1998-04-07

    At least quinary alloys form metallic glass upon cooling below the glass transition temperature at a rate less than 10{sup 3}K/s. Such alloys comprise zirconium and/or hafnium in the range of 45 to 65 atomic percent, titanium and/or niobium in the range of 4 to 7.5 atomic percent, and aluminum and/or zinc in the range of 5 to 15 atomic percent. The balance of the alloy compositions comprise copper, iron, and cobalt and/or nickel. The composition is constrained such that the atomic percentage of iron is less than 10 percent. Further, the ratio of copper to nickel and/or cobalt is in the range of from 1:2 to 2:1. The alloy composition formula is: (Zr,Hf){sub a}(Al,Zn){sub b}(Ti,Nb){sub c}(Cu{sub x}Fe{sub y}(Ni,Co){sub z}){sub d} wherein the constraints upon the formula are: a ranges from 45 to 65 atomic percent, b ranges from 5 to 15 atomic percent, c ranges from 4 to 7.5 atomic percent, d comprises the balance, d{hor_ellipsis}y is less than 10 atomic percent, and x/z ranges from 0.5 to 2.

  14. Metallic glass velocity sensor

    SciTech Connect

    Butler, J.L.; Butler, S.C.; Massa, D.P.; Cavanagh, G.H.

    1996-04-01

    A metallic glass accelerometer has been developed for use as an underwater sound velocity sensor. The device uses the metallic glass material Metglas 2605SC which has been processed to achieve a virgin coupling coefficient of 0.96. The mechanical to electrical conversion is based on the detection of the change in the inductance of the device as a result of bending motion. The detection method uses a carrier frequency signal which is amplitude modulated by the received signal. This scheme was originally described by Wun-Fogle, Savage and Clark [{open_quote}{open_quote}Sensitive wide frequency range magnetostrictive strain gauge,{close_quote}{close_quote} Sensors and Actuators, 1{underscore}2{underscore}, 323{endash}331 (1987)]. The bender is in the form of a three layered laminate with a closed magnetic path window frame structure. The theory of operation along with measured and calculated results are presented for a prototype element with approximate dimensions 1.5{times}1.0{times}0.1 inches. Calculated and measured results agree for a reduced effective coupling coefficient of 0.72 and operation with a carrier field intensity of 0.87 Oe and carrier frequency of 20 kHz. {copyright} {ital 1996 American Institute of Physics.}

  15. Metallic glass velocity sensor

    NASA Astrophysics Data System (ADS)

    Butler, John L.; Butler, Stephen C.; Massa, Donald P.; Cavanagh, George H.

    1996-04-01

    A metallic glass accelerometer has been developed for use as an underwater sound velocity sensor. The device uses the metallic glass material Metglas 2605SC which has been processed to achieve a virgin coupling coefficient of 0.96. The mechanical to electrical conversion is based on the detection of the change in the inductance of the device as a result of bending motion. The detection method uses a carrier frequency signal which is amplitude modulated by the received signal. This scheme was originally described by Wun-Fogle, Savage and Clark [``Sensitive wide frequency range magnetostrictive strain gauge,'' Sensors and Actuators, 1_2_, 323-331 (1987)]. The bender is in the form of a three layered laminate with a closed magnetic path window frame structure. The theory of operation along with measured and calculated results are presented for a prototype element with approximate dimensions 1.51.00.1 inches. Calculated and measured results agree for a reduced effective coupling coefficient of 0.72 and operation with a carrier field intensity of 0.87 Oe and carrier frequency of 20 kHz.

  16. Mechanical failure and glass transition in metallic glasses

    SciTech Connect

    Egami, Takeshi

    2011-01-01

    The current majority view on the phenomenon of mechanical failure in metallic glasses appears to be that it is caused by the activity of some structural defects, such as free-volumes or shear transformation zones, and the concentration of such defects is small, only of the order of 1%. However, the recent results compel us to revise this view. Through molecular dynamics simulation it has been shown that mechanical failure is the stress-induced glass transition. According to our theory the concentration of the liquid-like sites (defects) is well over 20% at the glass transition. We suggest that the defect concentration in metallic glasses is actually very high, and percolation of such defects causes atomic avalanche and mechanical failure. In this article we discuss the glass transition, mechanical failure and viscosity from such a point of view.

  17. Glass Formulation Development for INEEL Sodium-Bearing Waste

    SciTech Connect

    J.D. Vienna; M.J. Schweiger; D.E. Smith; H.D. Smith; J.V. Crum; D.K. Peeler; I.A. Reamer; C.A. Musick; R.D. Tillotson

    1999-08-03

    For about four decades, radioactive wastes have been collected and calcined from nuclear fuels reprocessing at the Idaho Nuclear Technology and Engineering Center (INTEC), formerly Idaho Chemical Processing Plant (ICPP). Over this time span, secondary radioactive wastes have also been collected and stored as liquid from decontamination, laboratory activities, and fuel-storage activities. These liquid wastes are collectively called sodium-bearing wastes (SBW). About 5.7 million liters of these wastes are temporarily stored in stainless steel tanks at the Idaho National Engineering and Environmental Laboratory (INEEL). Vitrification is being considered as an immobilization step for SBW with a number of treatment and disposal options. A systematic study was undertaken to develop a glass composition to demonstrate direct vitrification of INEEL's SBW. The objectives of this study were to show the feasibility of SBW vitrification, not a development of an optimum formulation. The waste composition is relatively high in sodium, aluminum, and sulfur. A specific composition and glass property restrictions, discussed in Section 2, were used as a basis for the development. Calculations based on first-order expansions of selected glass properties in composition and some general tenets of glass chemistry led to an additive (fit) composition (68.69 mass % SiO{sub 2}, 14.26 mass% B{sub 2}O{sub 3}, 11.31 mass% Fe{sub 2}O{sub 3}, 3.08 mass% TiO{sub 2}, and 2.67 mass % Li{sub 2}O) that meets all property restrictions when melted with 35 mass % of SBW on an oxide basis, The glass was prepared using oxides, carbonates, and boric acid and tested to confirm the acceptability of its properties. Glass was then made using waste simulant at three facilities, and limited testing was performed to test and optimize processing-related properties and confirm results of glass property testing. The measured glass properties are given in Section 4. The viscosity at 1150 C, 5 Pa{center_dot}s, is nearly ideal for waste-glass processing in a standard liquid-fed joule-heated melter. The normalized elemental releases by 7-day PCT are all well below 1 g/m{sup 2}, which is a very conservative set point used in this study. The T{sub L}, ignoring sulfate formation, is less than the 1050 C limit. Based on these observations and the reasonable waste loading of 35 mass 0/0, the SBW glass was a prime candidate for further testing. Sulfate salt segregation was observed in all test melts formed from oxidized carbonate precursors. Melts fabricated using SBW simulants suggest that the sulfate-salt segregation seen in oxide and carbonate melts was much less of a problem. The cause for the difference is likely H{sub 2}SO{sub 4} fuming during the boil-down stage of wet-slurry processing. Additionally, some crucible tests with SBW simulant were conducted at higher temperatures (1250 C), which could increase the volatility of sulfate salts. The fate of sulfate during the melting process is still uncertain and should be the topic of future studies. The properties of the simulant glass confirmed those of the oxide and carbonate glass. Corrosion tests on Inconel 690 electrodes and K-3 refractory blocks conducted at INEEL suggest that the glass is not excessively corrosive. Based on the results of this study, the authors recommend that a glass made of 35% SBW simulant (on a mass oxide and halide basis) and 65% of the additive mix (either filled or raw chemical) be used in demonstrating the direct vitrification of INEEL SBW. It is further recommended that a study be conducted to determine the fate of sulfate during glass processing and the tolerance of the chosen melter technology to sulfate salt segregation and corrosivity of the melt.

  18. Thermochemical study of rare earth and nitrogen incorporation in glasses

    NASA Astrophysics Data System (ADS)

    Zhang, Yahong

    Rare earth containing aluminosilicate, borosilicate, aluminate and nitrogen containing aluminosilicate glasses are technically important materials. They have extraordinary physical and chemical properties such as high glass transition temperature, very low electrical conductivity, and excellent chemical stability. These unique properties lead to applications as coatings on metals and ceramics, optical fibers, semiconductors, and nuclear waste containment materials. In addition, such systems contain the most widely used additives for sintering of Si3N4, SiAlON and SiC ceramics for high temperature applications. Thermodynamic properties and the relations among energetics, structure and bonding are essential to controlling processing parameters to synthesize, at lower cost, materials having better properties. Earlier investigations mainly pertained to specific physical properties of rare-earth doped oxide and oxynitride glasses. Work on the thermodynamic stability and materials compatibility has been very sparse. High temperature solution calorimetry in molten oxide solvents is a powerful tool for the thermodynamic study of refractory materials. With implementation and improvement, this technique has been applied to the first measurement of enthalpies of formation of RE-Si-Al-O glasses, REAlO3 glasses, RE-Si-Al-O-N glasses, and Si3N 4 and Ge3N4 with high pressure spinel structure. The first successful synthesis of REAlO3 glasses has been achieved by containerless melting. Their large enthalpies of crystallization confirm that they are reluctant glass formers. For glasses along the 2REAlO3 -3SiO2 join, the strongly negative heats of mixing support the absence of miscibility gaps except possibly at very high silica content. Energetic evidence has been presented for incipient phase-ordered regions in Gd- or Hf-containing sodium alumino-borosilicate glasses for plutonium immobilization. Linear relations between enthalpies of formation of RESiAlON glasses from elements and nitrogen content indicate that within the experimental composition range, sites occupied by nitrogen ions are roughly energetically equivalent in a given substitution series. The energetics of difference rare-earth substitution appears to be dominated by differences in the acid/base character of the cations.

  19. Studies on the effect of Li{sub 2}SO{sub 4} on the structure of lithium borate glasses

    SciTech Connect

    Ganguli, M.; Rao, K.J.

    1999-02-11

    Thermal and spectroscopic investigations have been carried out on a number of glasses with a wide range of compositions in the pseudoternary glass system, Li{sub 2}SO{sub 4}-Li{sub 2}O-B{sub 2}O{sub 3}, to understand the role of sulfate ions in modifying the borate glass structure. Both nuclear magnetic resonance (NMR) and infrared (IR) spectroscopic results indicate that four-coordinate boron atoms are retained in the glass structure to a greater extent in sulfate-containing glasses than in pure lithium borate glasses. There seems to be some evidence for the existence of sulfoborate-type units in Raman spectra in the region of 800--960 cm{sup {minus}1}. These conclusions are supported by the observed behavior of glass transition temperatures and molar volumes. The possibility of formation of sulfoborate-type units is discussed from bonding and thermodynamic points of view.

  20. Training Guidelines: Glass Furnace Operators.

    ERIC Educational Resources Information Center

    Ceramics, Glass, and Mineral Products Industry Training Board, Harrow (England).

    Technological development in the glass industry is constantly directed towards producing high quality glass at low operating costs. Particularly, changes have taken place in melting methods which mean that the modern furnace operator has greater responsibilities than any of his predecessors. The complexity of control systems, melting rates, tank

  1. Refractory Glass Seals for SOFC

    SciTech Connect

    Chou, Y. S.; Stevenson, Jeffry W.

    2011-07-01

    One of the critical challenges facing planar solid oxide fuel cell (SOFC) technology is the need for reliable sealing technology. Seals must exhibit long-term stability and mechanical integrity in the high temperature SOFC environment during normal and transient operation. Several different approaches for sealing SOFC stacks are under development, including glass or glass-ceramic seals, metallic brazes, and compressive seals. Among glass seals, rigid glass-ceramics, self-healing glass, and composite glass approaches have been investigated under the SECA Core Technology Program. The U.S. Department of Energy's Pacific Northwest National Laboratory (PNNL) has developed the refractory glass approach in light of the fact that higher sealing temperatures (e.g., 930-1000 degrees C) may enhance the ultimate in-service bulk strength and electrical conductivity of contact materials, as well as the bonding strength between contact materials and adjacent SOFC components, such as interconnect coatings and electrodes. This report summarizes the thermal, chemical, mechanical, and electrical properties of the refractory sealing glass.

  2. Space processing of chalcogenide glass

    NASA Technical Reports Server (NTRS)

    Firestone, R. F.; Schramm, S. W.

    1978-01-01

    A program was conducted to develop the technique of space processing for chalcogenide glass, and to define the process and equipment necessary. In the course of this program, successful long term levitation of objects in a 1-g environment was achieved. Glass beads 4 mm diameter were containerless melted and fused together.

  3. Degradable borate glass polyalkenoate cements.

    PubMed

    Shen, L; Coughlan, A; Towler, M; Hall, M

    2014-04-01

    Glass polyalkenoate cements (GPCs) containing aluminum-free borate glasses having the general composition Ag2O-Na2O-CaO-SrO-ZnO-TiO2-B2O3 were evaluated in this work. An initial screening study of sixteen compositions was used to identify regions of glass formation and cement compositions with promising rheological properties. The results of the screening study were used to develop four model borate glass compositions for further study. A second round of rheological experiments was used to identify a preferred GPC formulation for each model glass composition. The model borate glasses containing higher levels of TiO2 (7.5 mol %) tended to have longer working times and shorter setting times. Dissolution behavior of the four model GPC formulations was evaluated by measuring ion release profiles as a function of time. All four GPC formulations showed evidence of incongruent dissolution behavior when considering the relative release profiles of sodium and boron, although the exact dissolution profile of the glass was presumably obscured by the polymeric cement matrix. Compression testing was undertaken to evaluate cement strength over time during immersion in water. The cements containing the borate glass with 7.5 mol % TiO2 had the highest initial compressive strength, ranging between 20 and 30 MPa. No beneficial aging effect was observed-instead, the strength of all four model GPC formulations was found to degrade with time. PMID:24435528

  4. Method of determining glass durability

    DOEpatents

    Jantzen, Carol Maryanne; Pickett, John Butler; Brown, Kevin George; Edwards, Thomas Barry

    1998-01-01

    A process for determining one or more leachate concentrations of one or more components of a glass composition in an aqueous solution of the glass composition by identifying the components of the glass composition, including associated oxides, determining a preliminary glass dissolution estimator, .DELTA.G.sub.p, based upon the free energies of hydration for the component reactant species, determining an accelerated glass dissolution function, .DELTA.G.sub.a, based upon the free energy associated with weak acid dissociation, .DELTA.G.sub.a.sup.WA, and accelerated matrix dissolution at high pH, .DELTA.G.sub.a.sup.SB associated with solution strong base formation, and determining a final hydration free energy, .DELTA.G.sub.f. This final hydration free energy is then used to determine leachate concentrations for elements of interest using a regression analysis and the formula log.sub.10 (N C.sub.i (g/L))=a.sub.i +b.sub.i .DELTA.G.sub.f. The present invention also includes a method to determine whether a particular glass to be produced will be homogeneous or phase separated. The present invention is also directed to methods of monitoring and controlling processes for making glass using these determinations to modify the feedstock materials until a desired glass durability and homogeneity is obtained.

  5. Method of determining glass durability

    DOEpatents

    Jantzen, C.M.; Pickett, J.B.; Brown, K.G.; Edwards, T.B.

    1998-12-08

    A process is described for determining one or more leachate concentrations of one or more components of a glass composition in an aqueous solution of the glass composition by identifying the components of the glass composition, including associated oxides, determining a preliminary glass dissolution estimator, {Delta}G{sub p}, based upon the free energies of hydration for the component reactant species, determining an accelerated glass dissolution function, {Delta}G{sub a}, based upon the free energy associated with weak acid dissociation, {Delta}G{sub a}{sup WA}, and accelerated matrix dissolution at high pH, {Delta}G{sub a}{sup SB} associated with solution strong base formation, and determining a final hydration free energy, {Delta}G{sub f}. This final hydration free energy is then used to determine leachate concentrations for elements of interest using a regression analysis and the formula log{sub 10}(N C{sub i}(g/L))=a{sub i} + b{sub i}{Delta}G{sub f}. The present invention also includes a method to determine whether a particular glass to be produced will be homogeneous or phase separated. The present invention is also directed to methods of monitoring and controlling processes for making glass using these determinations to modify the feedstock materials until a desired glass durability and homogeneity is obtained. 4 figs.

  6. Oxide glass processing in space

    NASA Technical Reports Server (NTRS)

    Happe, R. A.; Topol, L. E.

    1974-01-01

    The experimental work performed thus far has resulted in the preparation of new glass compositions not reported heretofore in the open literature. Recent experiments which have resulted in the formation of 1/4-inch-diameter glass samples from two compositions, suggest that containerless melting and cooling as envisioned for space operations is of real technological significance. To date studies of space glasses have by choice been confined to oxide glasses only. It is felt that the applications for such glasses are more readily predictable than for the other materials, and that many of the principles that will evolve from a study of oxide glasses, which can be melted in air, permit a more direct approach to non-oxide materials in the future. The compositions being studied are all very simple in terms of traditional glass practices, none of them containing more than three major constituents. Future efforts should be concerned with more complex compositions, both to cover a broader range of optical properties and to enhance glass-forming tendencies.

  7. Metal Globules in Agglutinatic Glass

    NASA Astrophysics Data System (ADS)

    Basu, A.; Dorais, M.; McKay, D. S.

    1996-03-01

    Our preliminary analyses show that Ni/Co ratios in micrometer sized metal globules in agglutinatic glass of soil 61181 are mostly above 20, which suggests meteoritic derivation. The excess metal in lunar soils relative to lunar rocks, therefore, is likely to be meteoritic in part and possibly resides in agglutinatic glass.

  8. Liquidus temperature and chemical durability of selected glasses to immobilize rare earth oxides waste

    SciTech Connect

    Mohd Fadzil, Syazwani Binti; Hrma, Pavel R.; Schweiger, Michael J.; Riley, Brian J.

    2015-06-30

    Pyroprocessing is a reprocessing method for managing and reusing used nuclear fuel (UNF) by dissolving it in an electrorefiner with a molten alkali or alkaline earth chloride salt mixture while avoiding wet reprocessing. Pyroprocessing UNF with a LiCl-KCl eutectic salt releases the fission products from the fuel and generates a variety of metallic and salt-based species, including rare earth (RE) chlorides. If the RE-chlorides are converted to oxides, borosilicate glass is a prime candidate for their immobilization because of its durability and ability to dissolve almost any RE waste component into the matrix at high loadings. Crystallization that occurs in waste glasses as the waste loading increases may complicate glass processing and affect the product quality. This work compares three types of borosilicate glasses in terms of liquidus temperature (TL): the International Simple Glass designed by the International Working Group, sodium borosilicate glass developed by Korea Hydro and Nuclear Power, and the lanthanide aluminoborosilicate (LABS) glass established in the United States. The LABS glass allows the highest waste loadings (over 50 mass% RE2O3) while possessing an acceptable chemical durability.

  9. The performance of actinide-containing SRL 165 type glass in unsaturated conditions

    SciTech Connect

    Bates, J.K.; Gerding, T.J.

    1987-12-31

    As part of the effort by the Nevada Nuclear Waste Storage Investigations (NNWSI) Project to evaluate the volcanic tuff beds of Yucca Mountain, Nevada, as a repository for the permanent storage of high-level nuclear waste, the interaction of actinide-doped Savannah River Laboratory (SRL) 165 type glass with the unsaturated repository environment has been studied. The NNWSI Unsaturated Test method has been used, and the results from batch and continuous tests completed through 18 months demonstrate that several interactions are important for controlling both the reaction of the glass and the release of radionuclides. These interactions include (1) the reaction between the glass and moist air with interludes of liquid water contact, which results in the release of alkali metals from the glass; and (2) the reaction between standing water, glass, and presensitized 304 L type stainless steel which results in breakdown of the glass matrix and the release of radionuclides from the glass-metal assemblage. A comparison of the results of the Unsaturated Test with those of parametric experiments illustrates the importance of presensitized steel in enhancing the glass reaction, and demonstrates the applicability of the Unsaturated Test to those conditions anticipated to exist in the NNWSI repository horizon. 10 refs., 8 figs., 1 tab.

  10. Solution of naturally-ocurring glasses in the geological environment

    NASA Astrophysics Data System (ADS)

    Glass, B. P.

    1982-12-01

    As part of a study to investigate the feasibility of putting nuclear wastes in glass containers and burying them on land or dumping them in the ocean, the amount of solution experience by naturally occurring glasses from two land sites and thirty-four deep sea sites was studied. The glasses are microtektites from three strewn fields and from the Zhamanshin impact crater. The microtektites range in age from 0.7 to 35 m.y. and have a wide range in composition. The weight percent SiO2, for example, ranges from 44.8 to 81.7. Although several criteria for determining the amount of solution were considered, most of the conclusions are based on two criteria: (1) width of cracks, and (2) elevation of silica rich inclusions above the adjacent microtektite surface. All the measurements were made on scanning electron microscope photomicrographs of the microtektites.

  11. Commercial Ion Exchange Resin Vitrification in Borosilicate Glass

    SciTech Connect

    Cicero-Herman, C.A.; Workman, P.; Poole, K.; Erich, D.; Harden, J.

    1998-05-01

    Bench-scale studies were performed to determine the feasibility of vitrification treatment of six resins representative of those used in the commercial nuclear industry. Each resin was successfully immobilized using the same proprietary borosilicate glass formulation. Waste loadings varied from 38 to 70 g of resin/100 g of glass produced depending on the particular resin, with volume reductions of 28 percent to 68 percent. The bench-scale results were used to perform a melter demonstration with one of the resins at the Clemson Environmental Technologies Laboratory (CETL). The resin used was a weakly acidic meth acrylic cation exchange resin. The vitrification process utilized represented a approximately 64 percent volume reduction. Glass characterization, radionuclide retention, offgas analyses, and system compatibility results will be discussed in this paper.

  12. Solution of naturally-ocurring glasses in the geological environment

    NASA Technical Reports Server (NTRS)

    Glass, B. P.

    1982-01-01

    As part of a study to investigate the feasibility of putting nuclear wastes in glass containers and burying them on land or dumping them in the ocean, the amount of solution experience by naturally occurring glasses from two land sites and thirty-four deep sea sites was studied. The glasses are microtektites from three strewn fields and from the Zhamanshin impact crater. The microtektites range in age from 0.7 to 35 m.y. and have a wide range in composition. The weight percent SiO2, for example, ranges from 44.8 to 81.7. Although several criteria for determining the amount of solution were considered, most of the conclusions are based on two criteria: (1) width of cracks, and (2) elevation of silica rich inclusions above the adjacent microtektite surface. All the measurements were made on scanning electron microscope photomicrographs of the microtektites.

  13. Ion-beam depth-profiling studies of leached glasses

    SciTech Connect

    Houser, C.A.; Tsong, I.S.T.; White, W.B.; Wintenberg, A.L.; Miller, P.D.; Moak, C.D.

    1981-01-01

    Ion-beam depth-profiling was carried out on three different glasses leached (or hydrated) in deionized water using /sup 1/H(/sup 19/F,..cap alpha gamma..)/sup 16/O nuclear reaction, secondary ion mass spectrometry (SIMS) and sputter-induced photon spectrometry (SIPS) techniques. The depth-profiles show an interdiffusion mechanism in which the sodium ions in the glass are depleted and replaced by hydrogen (H/sup +/) or hydronium (H/sub 3/O/sup +/) ions from the solution. The leaching behavior does not show significant difference whether the glass surface is fractured or polished. Problems of mobile ion migration caused by ion bombardment and loss of hydrogen during analysis are discussed.

  14. Combined Experimental and Computational Approach to Predict the Glass-Water Reaction

    SciTech Connect

    Pierce, Eric M.; Bacon, Diana H.

    2011-10-01

    The use of mineral and glass dissolution rates measured in laboratory experiments to predict the weathering of primary minerals and volcanic and nuclear waste glasses in field studies requires the construction of rate models that accurately describe the weathering process over geologic timescales. Additionally, the need to model the long-term behavior of nuclear waste glass for the purpose of estimating radionuclide release rates requires that rate models be validated with long-term experiments. Several long-term test methods have been developed to accelerate the glass-water reaction [drip test, vapor hydration test, product consistency test B, and pressurized unsaturated flow (PUF)], thereby reducing the duration required to evaluate long-term performance. Currently, the PUF test is the only method that mimics the unsaturated hydraulic properties expected in a subsurface disposal facility and simultaneously monitors the glass-water reaction. PUF tests are being conducted to accelerate the weathering of glass and validate the model parameters being used to predict long-term glass behavior. A one-dimensional reactive chemical transport simulation of glass dissolution and secondary phase formation during a 1.5-year-long PUF experiment was conducted with the Subsurface Transport Over Reactive Multiphases (STORM) code. Results show that parameterization of the computer model by combining direct bench scale laboratory measurements and thermodynamic data provides an integrated approach to predicting glass behavior over the length of the experiment. Over the 1.5-year-long test duration, the rate decreased from 0.2 to 0.01 g/(m2 day) based on B release for low-activity waste glass LAWA44. The observed decrease is approximately two orders of magnitude higher than the decrease observed under static conditions with the SON68 glass (estimated to be a decrease by four orders of magnitude) and suggests that the gel-layer properties are less protective under these dynamic conditions.

  15. Energetics of glass fragmentation: Experiments on synthetic and natural glasses

    NASA Astrophysics Data System (ADS)

    Kolzenburg, S.; Russell, J. K.; Kennedy, L. A.

    2013-11-01

    Natural silicate glasses are an essential component of many volcanic rock types including coherent and pyroclastic rocks; they span a wide range of compositions, occur in diverse environments, and form under a variety of pressure-temperature conditions. In subsurface volcanic environments (e.g., conduits and feeders), melts intersect the thermodynamically defined glass transition temperature to form glasses at elevated confining pressures and under differential stresses. We present a series of room temperature experiments designed to explore the fundamental mechanical and fragmentation behavior of natural (obsidian) and synthetic glasses (Pyrex™) under confining pressures of 0.1-100 MPa. In each experiment, glass cores are driven to brittle failure under compressive triaxial stress. Analysis of the load-displacement response curves is used to quantify the storage of energy in samples prior to failure, the (brittle) release of elastic energy at failure, and the residual energy stored in the post-failure material. We then establish a relationship between the energy density within the sample at failure and the grain-size distributions (D-values) of the experimental products. The relationship between D-values and energy density for compressive fragmentation is significantly different from relationships established by previous workers for decompressive fragmentation. Compressive fragmentation is found to have lower fragmentation efficiency than fragmentation through decompression (i.e., a smaller change in D-value with increasing energy density). We further show that the stress storage capacity of natural glasses can be enhanced (approaching synthetic glasses) through heat treatment.

  16. Database and Interim Glass Property Models for Hanford HLW Glasses

    SciTech Connect

    Hrma, Pavel R.; Piepel, Gregory F.; Vienna, John D.; Cooley, Scott K.; Kim, Dong-Sang; Russell, Renee L.

    2001-07-24

    The purpose of this report is to provide a methodology for an increase in the efficiency and a decrease in the cost of vitrifying high-level waste (HLW) by optimizing HLW glass formulation. This methodology consists in collecting and generating a database of glass properties that determine HLW glass processability and acceptability and relating these properties to glass composition. The report explains how the property-composition models are developed, fitted to data, used for glass formulation optimization, and continuously updated in response to changes in HLW composition estimates and changes in glass processing technology. Further, the report reviews the glass property-composition literature data and presents their preliminary critical evaluation and screening. Finally the report provides interim property-composition models for melt viscosity, for liquidus temperature (with spinel and zircon primary crystalline phases), and for the product consistency test normalized releases of B, Na, and Li. Models were fitted to a subset of the screened database deemed most relevant for the current HLW composition region.

  17. CHEMICAL ANALYSIS OF SIMULATED HIGH LEVEL WASTE GLASSES TO SUPPORT SULFATE SOLUBILITY MODELING

    SciTech Connect

    Fox, K.; Marra, J.

    2014-08-14

    The U.S. Department of Energy (DOE), Office of Environmental Management (EM) is sponsoring an international, collaborative project to develop a fundamental model for sulfate solubility in nuclear waste glass. The solubility of sulfate has a significant impact on the achievable waste loading for nuclear waste forms both within the DOE complex and to some extent at U.K. sites. The development of enhanced borosilicate glass compositions with improved sulfate solubility will allow for higher waste loadings and accelerated cleanup missions. Much of the previous work on improving sulfate retention in waste glasses has been done on an empirical basis, making it difficult to apply the findings to future waste compositions despite the large number of glass systems studied. A more fundamental, rather than empirical, model of sulfate solubility in glass, under development at Sheffield Hallam University (SHU), could provide a solution to the issues of sulfate solubility. The model uses the normalized cation field strength index as a function of glass composition to predict sulfate capacity, and has shown early success for some glass systems. The objective of the current scope is to mature the sulfate solubility model to the point where it can be used to guide glass composition development for DOE waste vitrification efforts, allowing for enhanced waste loadings and waste throughput. A series of targeted glass compositions was selected to resolve data gaps in the current model. SHU fabricated these glasses and sent samples to the Savannah River National Laboratory (SRNL) for chemical composition analysis. SHU will use the resulting data to enhance the sulfate solubility model and resolve any deficiencies. In this report, SRNL provides chemical analyses for simulated waste glasses fabricated SHU in support of sulfate solubility model development. A review of the measured compositions revealed that there are issues with the B{sub 2}O{sub 3} and Fe{sub 2}O{sub 3} concentrations missing their targeted values by a significant amount for several of the study glasses. SHU is reviewing the fabrication of these glasses and the chemicals used in batching them to identify the source of these issues. The measured sulfate concentrations were all below their targeted values. This is expected, as the targeted concentrations likely exceeded the solubility limit for sulfate in these glass compositions. Some volatilization of sulfate may also have occurred during fabrication of the glasses. Measurements of the other oxides in the study glasses were reasonably close to their targeted values

  18. Containerless glass fiber processing

    NASA Technical Reports Server (NTRS)

    Ethridge, E. C.; Naumann, R. J.

    1986-01-01

    An acoustic levitation furnace system is described that was developed for testing the feasibility of containerless fiber pulling experiments. It is possible to levitate very dense materials such as platinum at room temperature. Levitation at elevated temperatures is much more difficult. Samples of dense heavy metal fluoride glass were levitated at 300 C. It is therefore possible that containerless fiber pulling experiments could be performed. Fiber pulling from the melt at 650 C is not possible at unit gravity but could be possible at reduced gravities. The Acoustic Levitation Furnace is described, including engineering parameters and processing information. It is illustrated that a shaped reflector greatly increases the levitation force aiding the levitation of more dense materials.

  19. The preparation of uranium-doped glass reference materials for environmental measurements

    NASA Astrophysics Data System (ADS)

    Raptis, K.; Ingelbrecht, C.; Wellum, R.; Alonso, A.; De Bolle, W.; Perrin, R.

    2002-03-01

    Seven different uranium glass powders containing 5 mass% uranium with 235U abundances from natural to highly enriched have been prepared for the IRMM support programme to the International Atomic Energy Agency (IAEA) and for the IRMM external NUSIMEP quality control programme (Nuclear Signatures Interlaboratory Measurement Evaluation Programme). The particles will be primarily used, blended with (inactive) matrix glass powder in various ratios to simulate environmental samples containing "hot" particles in order to assess the performance of various separation and measurement techniques. High-purity borosilicate glass was prepared by blending of powders, melting and grinding by ball milling and jet milling to a powder of about 12 ?m. A quantity of this glass was then blended with U 3O 8, melted and milled to powder. Laser diffraction measurements were made to ensure that the particle size distribution of the uranium glass matched that of the matrix glass in order to ensure homogeneous blending. The final yield was 30-40 g of each uranium glass and 1 kg of matrix glass. The glasses have been certified as reference materials for isotope abundances of uranium.

  20. Iodine valence and local environments in borosilicate waste glasses using X-ray absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    McKeown, David A.; Muller, Isabelle S.; Pegg, Ian L.

    2015-01-01

    The radioisotope 129I, a fission product in spent nuclear fuel, has a long half-life, and can be highly mobile in the environment. Iodine K-edge X-ray absorption spectra were collected to characterize the iodine valence and coordination environment in simulated Hanford low activity waste glasses. Both iodine XANES and EXAFS data for eleven borosilicate glasses indicate iodide-like environments within the glass structure, where I- has Na or Li nearest-neighbors, and where the nearest-neighbor cation-type correlates to the most common network-modifying cation in the glass. This is further supported by the systematic increase of iodine incorporation with the combined Na2O + Li2O content in the glass. EXAFS analyses determined I-Na distances near 3.04 Å with coordination numbers near 4.0 and I-Li distances near 2.80 Å with coordination numbers near 3.0. I-Na environments determined for the glasses are similar to the tetrahedral INa4 coordination found in NaI-sodalite. These weakly bound iodine-alkali configurations may be the only pathways for iodine to be retained in the glass. These environments may be precursors to NaI-sodalite crystallization in Na-rich glass. Iodine also shows distinct differences from chlorine in terms of the preferred sites in the glass structure.

  1. Characterization of projected DWPF glasses heat treated to simulate canister centerline cooling

    SciTech Connect

    Marra, S.L.; Jantzen, C.M.

    1992-05-01

    Liquid high-level nuclear waste will be immobilized at the Savannah River Site (SRS) by vitrification in borosilicate glass. The glass will be produced and poured into stainless steel canisters in the Defense Waste Processing Facility (DWPF). Eventually these canistered waste forms will be sent to a geologic repository for final disposal. In order to assure acceptability by the repository, the Department of Energy has defined requirements which DWPF canistered waste forms must meet. These requirements are the Waste Acceptance Preliminary Specifications (WAPS). The WAPS require DWPF to identify the crystalline phases expected to be present in the final glass product. Knowledge of the thermal history of the borosilicate glass during filling and cooldown of the canister is necessary to determine the amount and type of crystalline phases present in the final glass product. Glass samples of seven projected DWPF compositions were cooled following the same temperature profile as that of glass at the centerline of the full-scale DWPF canister. The glasses were characterized by x-ray diffraction and scanning electron microscopy to identify the crystalline phases present The volume percents of each crystalline phase present were determined by quantitative x-ray diffraction. The Product Consistency Test (PCI) was used to determine the durability of the heat-treated glasses.

  2. A literature review of surface alteration layer effects on waste glass behavior

    SciTech Connect

    Feng, X.; Cunnane, J.C.; Bates, J.K.

    1993-05-01

    When in contact with an aqueous solution, nuclear waste glass is subject to a chemical attack that results in progressive alteration. During tills alteration, constituent elements of the glass pass into the solution; elements initially in solution diffuse into, or are adsorbed onto, the solid; and new phases appear. This results in the formation of surface layers on the reacted glass. The glass corrosion and radionuclide release can be better understood by investigating these surface layer effects. In the past decade, there have been numerous studies regarding the effects of surface layers on glass reactions. This paper presents a systematic analysis and summary of the past knowledge regarding the effects of surface layers on glass-water interaction. This paper describes the major formation mechanisms of surface layers; reviews the role of surface layers in controlling mass transport and glass reaction affinity (through crystalline phases, an amorphous silica, a gel layer, or all the components in the glass); and discusses how the surface layers contribute to the retention of radionuclides during glass dissolution.

  3. A literature review of surface alteration layer effects on waste glass behavior

    SciTech Connect

    Feng, X.; Cunnane, J.C.; Bates, J.K.

    1993-01-01

    When in contact with an aqueous solution, nuclear waste glass is subject to a chemical attack that results in progressive alteration. During tills alteration, constituent elements of the glass pass into the solution; elements initially in solution diffuse into, or are adsorbed onto, the solid; and new phases appear. This results in the formation of surface layers on the reacted glass. The glass corrosion and radionuclide release can be better understood by investigating these surface layer effects. In the past decade, there have been numerous studies regarding the effects of surface layers on glass reactions. This paper presents a systematic analysis and summary of the past knowledge regarding the effects of surface layers on glass-water interaction. This paper describes the major formation mechanisms of surface layers; reviews the role of surface layers in controlling mass transport and glass reaction affinity (through crystalline phases, an amorphous silica, a gel layer, or all the components in the glass); and discusses how the surface layers contribute to the retention of radionuclides during glass dissolution.

  4. Effect of Zn- and Ca-oxides on the structure and chemical durability of simulant alkali borosilicate glasses for immobilisation of UK high level wastes

    NASA Astrophysics Data System (ADS)

    Zhang, Hua; Corkhill, Claire L.; Heath, Paul G.; Hand, Russell J.; Stennett, Martin C.; Hyatt, Neil C.

    2015-07-01

    Compositional modification of United Kingdom high level nuclear waste (HLW) glasses was investigated with the aim of understanding the impact of adopting a ZnO/CaO modified base glass on the vitrified product phase assemblage, glass structure, processing characteristics and dissolution kinetics. Crystalline spinel phases were identified in the vitrified products derived from the Na2O/Li2O and the ZnO/CaO modified base glass compositions; the volume fraction of the spinel crystallites increased with increasing waste loading from 15 to 20 wt%. The spinel composition was influenced by the base glass components; in the vitrified product obtained with the ZnO/CaO modified base glass, the spinel phase contained a greater proportion of Zn, with a nominal composition of (Zn0.60Ni0.20Mg0.20)(Cr1.37Fe0.63)O4. The addition of ZnO and CaO to the base glass was also found to significantly alter the glass structure, with changes identified in both borate and silicate glass networks using Raman spectroscopy. In particular, these glasses were characterised by a significantly higher Q3 species, which we attribute to Si-O-Zn linkages; addition of ZnO and CaO to the glass composition therefore enhanced glass network polymerisation. The increase in network polymerisation, and the presence of spinel crystallites, were found to increase the glass viscosity of the ZnO/CaO modified base glass; however, the viscosities were within the accepted range for nuclear waste glass processing. The ZnO/CaO modified glass compositions were observed to be significantly more durable than the Na2O/Li2O base glass up to 28 days, due to a combination of the enhanced network polymerisation and the formation of Ca/Si containing alteration layers.

  5. Product consistency testing of West Valley Compositional Variation Glasses

    SciTech Connect

    Olson, K.M.; Marschman, S.C.; Piepel, G.F.; Whiting, G.K.

    1994-11-01

    Nuclear waste glass produced by the West Valley Demonstration Project (WVDP) must meet the requirements of the Waste Acceptance Preliminary Specification (WAPS) as developed by the US Department of Energy (DOE). To assist WVDP in complying with WAPS, the Materials Characterization Center (MCC) at Pacific Northwest Laboratory (PNL) used the Product Consistency Test (PCT) to evaluate 44 West Valley glasses that had previously been tested in FY 1987 and FY 1988. This report summarizes the results of the PCTs. The glasses tested, which were fabricated as sets of Compositional Variation Glasses for studies performed by the West Valley Support Task (WVST) at PNL during FY 1987 and FY 1988, were doped with Th and U and were variations of West Valley reference glasses. In addition, Approved Reference Material-1 (ARM-1) was used as a test standard (ARM-1 is supplied by the MCC). The PCT was originated at Westinghouse Savannah River Company (WSRC) by C. M. Jantzen and N. R. Bibler (Jantzen and Bibler 1989). The test is a seven-day modified MCC-3 test that uses crushed glass in the size range -100 +200 mesh with deionized water in a Teflon container. There is no agitation during the PCT, and no attempt to include CO{sub 2} from the test environment. Based on B and Li release, the glasses performed about the same as in previous modified MCC-3 testing performed in FY 1987 and FY 1988 (Reimus et al. 1988). The modified MCC-3 tests performed by Reimus et al. were similar to the PCT containers and the exclusion of CO{sub 2} from the tests.

  6. Glass ceramic seals to inconel

    DOEpatents

    McCollister, Howard L. (Albuquerque, NM); Reed, Scott T. (Albuquerque, NM)

    1983-11-08

    A glass ceramic composition prepared by subjecting a glass composition comprising, by weight, 65-80% SiO.sub.2, 8-16%, Li.sub.2 O, 2-8% , Al.sub.2 O.sub.3, 1-8% K.sub.2 O, 1-5% P.sub.2 O.sub.5 and 1.5-7% B.sub.2 O.sub.3, to the following processing steps of heating the glass composition to a temperature sufficient to crystallize lithium metasilicate therein, holding the glass composition at a temperature and for a time period sufficient to dissolve the lithium metasilicate therein thereby creating cristobalite nucleii, cooling the glass composition and maintaining the composition at a temperature and for a time period sufficient to recrystallize lithium metasilicate therein, and thermally treating the glass composition at a temperature and for a time period sufficient to cause growth of cristobalite and further crystallization of lithium metasilicate producing a glass ceramic composition having a specific thermal expansion coefficient and products containing said composition.

  7. Cultivation of Mycoplasmas on glass.

    PubMed

    Purcell, R H; Valdesuso, J R; Cline, W L; James, W D; Chanock, R M

    1971-02-01

    Eight Mycoplasma species of human origin were successfully cultivated on glass. Complement-fixing (CF) antigens prepared from glass-adherent mycoplasmas were potent, specific, and free from anticomplementary activity. PPLO broth medium supplemented with 1 to 5% PPLO serum fraction (bovine), 2.5% fresh yeast extract, and 1% glucose (glycolytic species) or 1% arginine (arginine-utilizing species) supported moderate to luxuriant growth of mycoplasmas on glass. The potency of CF antigens prepared from glass-adherent mycoplasmas varied with the species of Mycoplasma tested and the duration of incubation. When the potency of CF antigens prepared from glass-adherent mycoplasmas was compared with that material sedimented from the broth phase of the same culture, three patterns of growth were observed: M. hominis and M. orale type 2 grew preferentially in the broth phase; M. salivarium, M. orale types 1 and 3, M. pneumoniae, and M. lipophilum preferentially adhered to the glass; and M. fermentans was biphasic. The growth of mycoplasmas on glass provides a simple means of concentrating and purifying such organisms for immunological and biochemical studies. PMID:5547544

  8. Cultivation of Mycoplasmas on Glass

    PubMed Central

    Purcell, R. H.; Valdesuso, J. R.; Cline, W. L.; James, W. D.; Chanock, R. M.

    1971-01-01

    Eight Mycoplasma species of human origin were successfully cultivated on glass. Complement-fixing (CF) antigens prepared from glass-adherent mycoplasmas were potent, specific, and free from anticomplementary activity. PPLO broth medium supplemented with 1 to 5% PPLO serum fraction (bovine), 2.5% fresh yeast extract, and 1% glucose (glycolytic species) or 1% arginine (arginine-utilizing species) supported moderate to luxuriant growth of mycoplasmas on glass. The potency of CF antigens prepared from glass-adherent mycoplasmas varied with the species of Mycoplasma tested and the duration of incubation. When the potency of CF antigens prepared from glass-adherent mycoplasmas was compared with that material sedimented from the broth phase of the same culture, three patterns of growth were observed: M. hominis and M. orale type 2 grew preferentially in the broth phase; M. salivarium, M. orale types 1 and 3, M. pneumoniae, and M. lipophilum preferentially adhered to the glass; and M. fermentans was biphasic. The growth of mycoplasmas on glass provides a simple means of concentrating and purifying such organisms for immunological and biochemical studies. PMID:5547544

  9. Rhenium volatilization in waste glasses

    NASA Astrophysics Data System (ADS)

    Xu, Kai; Pierce, David A.; Hrma, Pavel; Schweiger, Michael J.; Kruger, Albert A.

    2015-09-01

    We investigated volatilization of rhenium (Re), sulfur, cesium, and iodine during the course of conversion of high-level waste melter feed to glass and compared the results for Re volatilization with those in low-activity waste borosilicate glasses. Whereas Re did not volatilize from high-level waste feed heated at 5 K min-1 until 1000 °C, it began to volatilize from low-activity waste borosilicate glass feeds at ∼600 °C, a temperature ∼200 °C below the onset temperature of evaporation from pure KReO4. Below 800 °C, perrhenate evaporation in low-activity waste melter feeds was enhanced by vigorous foaming and generation of gases from molten salts as they reacted with the glass-forming constituents. At high temperatures, when the glass-forming phase was consolidated, perrhenates were transported to the top surface of glass melt in bubbles, typically together with sulfates and halides. Based on the results of this study (to be considered preliminary at this stage), the high-level waste glass with less foaming and salts appears a promising medium for technetium immobilization.

  10. Structure-topology-property correlations of sodium phosphosilicate glasses.

    PubMed

    Hermansen, Christian; Guo, Xiaoju; Youngman, Randall E; Mauro, John C; Smedskjaer, Morten M; Yue, Yuanzheng

    2015-08-14

    In this work, we investigate the correlations among structure, topology, and properties in a series of sodium phosphosilicate glasses with [SiO2]/[SiO2 + P2O5] ranging from 0 to 1. The network structure is characterized by (29)Si and (31)P magic-angle spinning nuclear magnetic resonance and Raman spectroscopy. The results show the formation of six-fold coordinated silicon species in phosphorous-rich glasses. Based on the structural data, we propose a formation mechanism of the six-fold coordinated silicon, which is used to develop a quantitative structural model for predicting the speciation of the network forming units as a function of chemical composition. The structural model is then used to establish a temperature-dependent constraint description of phosphosilicate glass topology that enables prediction of glass transition temperature, liquid fragility, and indentation hardness. The topological constraint model provides insight into structural origin of the mixed network former effect in phosphosilicate glasses. PMID:26277148

  11. Structure-topology-property correlations of sodium phosphosilicate glasses

    NASA Astrophysics Data System (ADS)

    Hermansen, Christian; Guo, Xiaoju; Youngman, Randall E.; Mauro, John C.; Smedskjaer, Morten M.; Yue, Yuanzheng

    2015-08-01

    In this work, we investigate the correlations among structure, topology, and properties in a series of sodium phosphosilicate glasses with [SiO2]/[SiO2 + P2O5] ranging from 0 to 1. The network structure is characterized by 29Si and 31P magic-angle spinning nuclear magnetic resonance and Raman spectroscopy. The results show the formation of six-fold coordinated silicon species in phosphorous-rich glasses. Based on the structural data, we propose a formation mechanism of the six-fold coordinated silicon, which is used to develop a quantitative structural model for predicting the speciation of the network forming units as a function of chemical composition. The structural model is then used to establish a temperature-dependent constraint description of phosphosilicate glass topology that enables prediction of glass transition temperature, liquid fragility, and indentation hardness. The topological constraint model provides insight into structural origin of the mixed network former effect in phosphosilicate glasses.

  12. Are gel-derived glasses different from ordinary glasses?

    NASA Technical Reports Server (NTRS)

    Weinberg, M. C.

    1986-01-01

    A review is presented of some of the previously reported differences and similarities between comparable gel glasses (and gels) and ordinary glasses. In this regard, considerations are made with respect to such factors as structure, physical and thermal properties, and phase transformation behavior. A variety of silicate glass compositions are used for illustrative purposes. The discussion is roughly divided into two sections: low and high temperature behavior. At low temperatures one anticipates that differences between gel and conventional glasses will exist, but such dissimilarities are not expected to persist to high temperatures. However, experimental evidence is presented which indicates the perpetuation of such differences to very high temperatures. A partial resolution for this anomalous behavior is offered.

  13. Fine structure EELS analysis of glasses and glass composites

    NASA Astrophysics Data System (ADS)

    Yang, Guang; Mbus, Gnter; Hand, Russell

    2006-02-01

    EELS is a powerful technique for the study of complex oxide ceramics, especially when exploiting the ELNES sensitivity to cation valency and coordination. The same applies for oxide glasses, with the additional benefit of gaining information about glass order parameters and structural units. The major benefit of ELNES in comparison to Raman, NMR and X-ray alternatives is the high resolution of measurement which makes it particularly suitable for nanocomposites. For doped glasses with some of the extra cations exceeding the solubility limit, we have also analysed the systematic change of oxidation state in transit from the glass matrix into precipitates using the example of CeO2 and the Ce-M-edge pair of spinorbit split lines.

  14. Method for manufacturing glass frit

    DOEpatents

    Budrick, Ronald G.; King, Frank T.; Nolen, Jr., Robert L.; Solomon, David E.

    1977-01-01

    A method of manufacturing a glass frit for use in the manufacture of uniform glass microspheres to serve as containers for laser fusion fuel to be exposed to laser energy which includes the formation of a glass gel which is then dried, pulverized, and very accurately sized to particles in a range of, for example, 125 to 149 micrometers. The particles contain an occluded material such as urea which expands when heated. The sized particles are washed, dried, and subjected to heat to control the moisture content prior to being introduced into a system to form microspheres.

  15. Recent developments in laser glasses

    SciTech Connect

    Weber, M.J.

    1983-01-10

    The past decade has witnessed a proliferation of new glass-forming compositions including oxides, halides, oxyhalides, and chalcogenides. Many of these glasses are applicable to lasers and have greatly expanded the range of optical properties and spectroscopic parameters available to the laser designer. Our knowledge and understanding of many properties of interest for laser action - transparency, linear and nonlinear refractive indices, and damage threshold of the host glass and the absorption spectrum, radiative and nonradiative transition probabilities, fluorescence wavelength, stimulated emission cross section, and spectroscopic inhomogeneities of the lasing ion Nd/sup 3 +/ - are reviewed.

  16. Glass microspheres for medical applications

    NASA Astrophysics Data System (ADS)

    Conzone, Samuel David

    Radioactive dysprosium lithium borate glass microspheres have been developed as biodegradable radiation delivery vehicles for the radiation synovectomy treatment of rheumatoid arthritis. Once injected into a diseased joint, the microspheres deliver a potent dose of radiation to the diseased tissue, while a non-uniform chemical reaction converts the glass into an amorphous, porous, hydrated dysprosium phosphate reaction product. The non-radioactive, lithium-borate component is dissolved from the glass (up to 94% weight loss), while the radioactive 165Dy reacts with phosphate anions in the body fluids, and becomes "chemically" trapped in a solid, dysprosium phosphate reaction product that has the same size as the un-reacted glass microsphere. Ethylene diamine tetraacetate (EDTA) chelation therapy can be used to dissolve the dysprosium phosphate reaction product after the radiation delivery has subsided. The dysprosium phosphate reaction product, which formed in vivo in the joint of a Sprague-Dawley rat, was dissolved by EDTA chelation therapy in <1 week, without causing any detectable joint damage. The combination of dysprosium lithium borate glass microspheres and EDTA chelation therapy provides an unique "tool" for the medical community, which can deliver a large dose (>100 Gy) of localized beta radiation to a treatment site within the body, followed by complete biodegradability. The non-uniform reaction process is a desirable characteristic for a biodegradable radiation delivery vehicle, but it is also a novel material synthesis technique that can convert a glass to a highly porous materials with widely varying chemical composition by simple, low-temperature, glass/solution reaction. The reaction product formed by nonuniform reaction occupies the same volume as the un-reacted glass, and after drying for 1 h at 300°C, has a specific surface area of ≈200 m2/g, a pore size of ≈30 nm, and a nominal crushing strength of ≈10 MPa. Finally, rhenium glass microspheres, composed of micron-sized, metallic rhenium particles dispersed within a magnesium alumino borate glass matrix were produced by sintering ReO2 powder and glass frit at 1050°C. A 50 mg injection of radioactive rhenium glass microspheres containing 3.7 GBq of 186Re and 8.5 GBq of 188Re could be used to deliver a 100 Gy dose to a cancerous tumor, while limiting the total body dose caused by rhenium dissolution to approximately 1 mGy.

  17. Space processing of chalcogenide glasses

    NASA Technical Reports Server (NTRS)

    Larsen, D. C.; Ali, M. A.; Crandall, W. B.

    1974-01-01

    Manufacture of chalcogenide glasses in space will eliminate many of the causes of optical non-homogeneity and contamination that are inherent in earth-bound manufacture. A program is outlined to demonstrate the feasibility of various techniques and processes that will be utilized to manufacture chalcogenide glasses in space. Amorphous character, purity, and homogeneity parameters are being investigated at various stages of the glass forming process. These parameters in merit index form will serve to provide guidelines for the design of the actual melting experiment in space, and for the optimization of the exact chalcogenide composition to be included in the space experiments.

  18. Zirconia solubility in boroaluminosilicate glass

    SciTech Connect

    Raman, S.V.; Bopp, R.; Batcheller, T.A.; Yan, Q.

    1995-12-31

    In the Idaho Chemical Processing Plant (ICPP) waste streams, zirconia is often the waste load limiting species. It modifies the glass network, enhances durability, increases viscosity and induces crystallization. The limits of its dissolution in boroaluminosilicate glass, with magnesia and soda additions were experimentally determined. A ternary compositional surface is evolved to present the isothermal regimes of liquid, liquid + zircon, liquid + forsterite, and liquid phase sintered ceramic. The potential of partitioning the transuranics, transition elements and solutes in these regimes is discussed. The visible Raman spectroscopic results are presented to elucidate the dependence among glass composition, structure and chemical durability.

  19. Structure, surface reactivity and physico-chemical degradation of fluoride containing phospho-silicate glasses

    SciTech Connect

    Kansal, Ishu; Goel, Ashutosh; Tulyaganov, Dilshat U.; Santos, Luis F.; Ferreira, Jose M.

    2011-03-28

    We report on the structure, apatite-forming ability and physicochemical degradation of glasses along fluorapatite [FA; Ca5(PO4)3F] - diopside (Di; CaMgSi2O6) join. A series of glasses with varying FA/Di ratio have been synthesised by melt-quenching technique. The amorphous glasses could be obtained only for compositions up to 40 wt.% of FA. The detailed structural analysis of glasses has been made by infra-red spectroscopy (FTIR), Raman spectroscopy and magic angle spinning-nuclear magnetic resonance spectroscopy (MAS-NMR). Silicon was predominantly present as Q2 (Si) species while phosphorus was found in orthophosphate type environment in all the investigated glasses. The apatite forming ability of glasses was investigated by immersion of glass powders in simulated body fluid (SBF) for time durations varying between 1 h 28 days. An extensive precipitation of calcite (CaCO3) after immersion in SBF was found in all the glasses which considerably masked the formation of hydroxyapatite [HA; Ca5(PO4)3OH] as depicted by X-ray diffraction (XRD) and FTIR. The possible mechanism favouring formation of calcite instead of HA has been explained on the basis of experimental results obtained for structure of glasses, leaching profile of glass powders in SBF solution and pH variation in SBF solution. Further, physico-chemical degradation of glasses has been studied in accordance with ISO 10993-14 Biological evaluation of medical devices Part 14: Identification and quantification of degradation products from ceramics in Tris HCl and citric acid buffer. All the FA containing glasses exhibited a weight gain (instead of weight loss) after immersion in citric acid buffer due to the formation of different crystalline products.

  20. Thermophysical Properties of Multiphase Borosilicate Glass-Ceramic Waste Forms

    SciTech Connect

    Nelson, Andrew T.; Crum, Jarrod V.; Tang, Ming

    2014-01-22

    Multiphase borosilicate glass-ceramics represent one candidate to contain radioactive nuclear waste separated from used nuclear fuel. In this work, the thermophysical properties from room temperature to 1273 K were investigated for four different borosilicate glass-ceramic compositions containing waste loadings from 42 to 60 wt% to determine the sensitivity of these properties to waste loading, as-fabricated microstructure, and potential evolutions in microstructure brought about by temperature transients. The thermal expansion, specific heat capacity, thermal diffusivity, and thermal conductivity are presented. The impact of increasing waste loading is shown to have a small but measurable effect on the thermophysical properties between the four compositions, contrasted to a much greater impact observed when transitioning from predominantly crystalline to amorphous systems. Thermal cycling below 1273 K was not found to measurably impact the thermophysical properties of the compositions investigated here.

  1. Thermo-physical and structural studies of sodium zinc borovanadate glasses in the region of high concentration of modifier oxides

    SciTech Connect

    Chethana, B.K.; Reddy, C. Narayana; Rao, K.J.

    2012-07-15

    Highlights: ? Highly modified sodium zinc borovanadate glasses. ? Structural model for borovanadate glasses. ? Network forming tendency of ZnO in borovanadate glasses. ? Fragility can be limited to NBO concentration in borovanadate glasses. -- Abstract: This paper reports investigation of Na{sub 2}O and ZnO modified borovanadate glasses in the highly modified regime of compositions. These glasses have been prepared by microwave route. Ultraviolet (UV) and visible, infrared (IR), Magic Angle Spinning Nuclear Magnetic Resonance (MAS NMR) and Electron Paramagnetic Resonance (EPR) spectroscopies have been used to characterize the speciation in the glasses. Together with the variation of properties such as molar volume and glass transition temperatures, spectroscopic data indicate that at high levels of modification, ZnO tends to behave like network former. It is proposed that the observed variation of all the properties can be reasonably well understood with a structural model. The model considers that the modification and speciation in glasses are strongly determined by the hierarchy of group electronegativities. Further, it is proposed that the width of the transitions of glasses obtained under same condition reflects the fragility of the glasses. An empirical expression has been suggested to quantify fragility on the basis of width of the transition regions.

  2. Defect recovery and damage reduction in borosilicate glasses under double ion beam irradiation

    NASA Astrophysics Data System (ADS)

    Mir, A. H.; Peuget, S.; Toulemonde, M.; Bulot, P.; Jegou, C.; Miro, S.; Bouffard, S.

    2015-11-01

    A sodium borosilicate glass was irradiated sequentially and simultaneously with alpha particles and gold ions. Alpha particles induced partial recovery of the network damage and mechanical properties in the gold pre-irradiated glass, while no such recovery effect was observed during gold irradiation of the alpha pre-irradiated glass. The damage capacity of the gold ions was significantly reduced during simultaneous irradiation with alpha particles and gold ions. These results highlight that the irradiation sequence of the ions plays an important role in controlling the final damage level; and if properly employed, irradiation can be employed to induce defect recovery. Such results are of paramount importance to understand the radiation damage in nuclear reactor components and in nuclear waste glass matrices which are subjected to multiple particle irradiations.

  3. Simulation of cooling and solidification of three-dimensional bulk borosilicate glass: effect of structural relaxations

    NASA Astrophysics Data System (ADS)

    Barth, N.; George, D.; Ahzi, S.; Rmond, Y.; Joulaee, N.; Khaleel, M. A.; Bouyer, F.

    2014-02-01

    The modeling of the viscoelastic stress evolution and specific volume relaxation of a bulky glass cast is presented in this article and is applied to the experimental cooling process of an inactive nuclear waste vitrification process. The concerned borosilicate glass is solidified and cooled down to ambient temperature in a stainless steel canister, and the thermomechanical response of the package is simulated. There exists a deviant compression of the liquid core due to the large glass package compared to standard tempered glass plates. The stress load development of the glass cast is finally studied for different thermal load scenarios, where the cooling process parameters or the final cooldown rates were changed, and we found a great influence of the studied cooldown rates on the maximum stress build-up at ambient temperature.

  4. The Effect of Foaming and Silica Dissolution on Melter Feed Rheology during Conversion to Glass

    SciTech Connect

    Marcial, Jose; Chun, Jaehun; Hrma, Pavel R.; Schweiger, Michael J.

    2014-11-23

    As the nuclear waste glass melter feed is converted to molten glass, the feed eventually becomes a continuous glass-forming melt in which dissolving refractory constituents are suspended together with numerous gas bubbles. Knowledge of mechanical properties of the melter feed is crucial for understanding the feed-to-glass conversion as it occurs in the cold cap. We measured the viscosity during heating of the feed and correlated it with the independently determined volume fractions of dissolving quartz particles and the gas phase. The measurement was performed with a rotating spindle rheometer on the melter feed heated at 5 K/min starting at several different temperatures. The effect of quartz particles, gas bubbles, and compositional inhomogeneity on the glass-forming melt viscosity was determined by fitting a linear relationship between log viscosity and volume fractions of suspended phases to data.

  5. Simulation of cooling and solidification of three-dimensional bulk borosilicate glass: effect of structural relaxations

    SciTech Connect

    Barth, N.; George, D.; Ahzi, Said; Remond, Y.; Joulaee, N.; Khaleel, Mohammad A.; Bouyer, F.

    2014-02-28

    Abstract The modeling of the viscoelastic stress evolution and specific volume relaxation of a bulky glass cast is presented in this article and is applied to the experimental cooling process of an inactive nuclear waste vitrification process. The concerned borosilicate glass is solidified and cooled down to ambient temperature in a stainless steel canister, and the thermomechanical response of the package is simulated. There exists a deviant compression of the liquid core due to the large glass package compared to standard tempered glass plates. The stress load development of the glass cast is finally studied for different thermal load scenarios, where the cooling process parameters or the final cooldown rates were changed, and we found a great influence of the studied cooldown rates on the maximum stress buildup at ambient temperature.

  6. Galactic Hearts of Glass

    NASA Technical Reports Server (NTRS)

    2006-01-01

    [figure removed for brevity, see original site] Click on image for larger graph

    This artist's concept shows delicate greenish crystals sprinkled throughout the violent core of a pair of colliding galaxies. The white spots represent a thriving population of stars of all sizes and ages. NASA's Spitzer Space Telescope detected more than 20 bright and dusty galactic mergers like the one depicted here, all teeming with the tiny gem-like crystals.

    When galaxies collide, they trigger the birth of large numbers of massive stars. Astronomers believe these blazing hot stars act like furnaces to produce silicate crystals in the same way that glass is made from sand. The stars probably shed the crystals as they age, and as they blow apart in supernovae explosions.

    At the same time the crystals are being churned out, they are also being destroyed. Fast-moving particles from supernova blasts easily convert silicates crystals back to their amorphous, or shapeless, form.

    How is Spitzer seeing the crystals if they are rapidly disappearing? Astronomers say that, for a short period of time at the beginning of galactic mergers, massive stars might be producing silicate crystals faster than they are eliminating them. When our own galaxy merges with the Andromeda galaxy in a few billion years, a similar burst of massive stars and silicate crystals might occur.

    Crystal Storm in Distant Galaxy The graph (see inset above) of infrared data from NASA's Spitzer Space Telescope tells astronomers that a distant galaxy called IRAS 08752+3915 is experiencing a storm of tiny crystals made up of silicates. The crystals are similar to the glass-like grains of sand found on Earth's many beaches.

    The data were taken by Spitzer's infrared spectrograph, which splits light open to reveal its rainbow-like components. The resulting spectrum shown here reveals the signatures of both crystalline (green) and non-crystalline (brown) silicates.

    Spitzer detected the same crystals in 20 additional galaxies, all belonging to a class called ultraluminous infrared galaxies. These extremely bright and dusty galaxies usually consist of two galaxies in the process of smashing into each other. Astronomers believe massive stars at the hearts of the galaxies are churning out clouds of silicate crystals. This phenomenon may represent a short-lived phase in the evolution of galactic mergers.

  7. Potential and challenges of interdisciplinary research on historical window glass, stained glass and reverse glass paintings

    NASA Astrophysics Data System (ADS)

    Trmpler, Stefan; Wolf, Sophie; Kessler, Cordula; Goll, Jrg

    The interdisciplinary study of ancient materials has become an increasingly common strategy, mainly because it has proved to be a highly rewarding approach to studying the age, provenance and production of archaeological objects. The results of such an approach sometimes also provide answers to questions relating not only to socio-cultural, economic or technological developments in a particular region or period (trade, innovation, production etc.), but also the conservation of the materials or artefacts in question. A number of analytical methods, ranging from microscopic to elementary analyses, have been successfully applied to determine the nature of materials and technologies used in the production, as well as to identify the provenance of ancient glass. As far as window glass and stained glass is concerned, the study of architectural context and art history - as well as the technological characteristics of materials - has proved to be most helpful in determining history, production and artistic importance of the objects under study. This paper discusses some of the multidisciplinary studies that the Vitrocentre Romont has conducted on early medieval window glass, stained glass and reverse glass paintings and illustrates the potential of a holistic approach in solving questions about materials, techniques, window design and conservation. It also addresses the limitations of the approach, which are often related to finding appropriate (i.e. non-destructive and possibly portable) methods for the analysis of sometimes extremely fragile stained glass windows.

  8. 7 CFR 2902.30 - Glass cleaners.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 15 2011-01-01 2011-01-01 false Glass cleaners. 2902.30 Section 2902.30 Agriculture... Glass cleaners. (a) Definition. Cleaning products designed specifically for use in cleaning glass... qualifying biobased glass cleaners. By that date, Federal agencies that have the responsibility for...

  9. Properties Of Soda/Yttria/Silica Glasses

    NASA Technical Reports Server (NTRS)

    Angel, Paul W.; Hann, Raiford E.

    1994-01-01

    Experimental study of glass-formation compositional region of soda/ yttria/silicate system and of selected physical properties of glasses within compositional region part of continuing effort to identify glasses with high coefficients of thermal expansion and high softening temperatures, for use as coatings on superalloys and as glass-to-metal seals.

  10. Apollo applications of beta fiber glass

    NASA Technical Reports Server (NTRS)

    Naimer, J.

    1971-01-01

    The physical characteristics of Beta fiber glass are discussed. The application of Beta fiber glass for fireproofing the interior of spacecraft compartments is described. Tests to determine the flammability of Beta fiber glass are presented. The application of Beta fiber glass for commercial purposes is examined.

  11. Containerless Manufacture of Glass Optical Fibers

    NASA Technical Reports Server (NTRS)

    Naumann, R. J.; Ethridge, E. C.

    1985-01-01

    Contamination and crystallization reduced in proposed process. Solid optical fiber drawn from an acoustically levitated lump of molten glass. New material added in solid form, melted and then moved into main body of molten glass. Single axis acoustic levitation furnances levitate glass melts at temperature up to about 700 degrees C. Processing in unit limited to low-melting temperature glasses.

  12. Fiber glass pulling. [in space

    NASA Technical Reports Server (NTRS)

    Workman, Gary L.

    1987-01-01

    Experiments were conducted to determine the viability of performing containerless glass fiber pulling in space. The optical transmission properties and glass-forming capabilities of the heavy metal fluorides are reviewed and the acoustic characteristics required for a molten glass levitation system are examined. The design limitations of, and necessary modifications to the acoustic levitation furnace used in the experiments are discussed in detail. Acoustic levitator force measurements were performed and a thermal map of the furnace was generated from thermocouple data. It was determined that the thermal capability of the furnace was inadequate to melt a glass sample in the center. The substitution of a 10 KW carbon monoxide laser for the original furnace heating elements resulted in improved melt heating.

  13. New infrared transparent oxide glasses

    NASA Astrophysics Data System (ADS)

    Weber, Richard; Tangeman, Jean; Hiera, Kirsten; Scheunemann, Richard; Kim, Jungyun

    2005-05-01

    Glass materials based on rare earth oxides and aluminum oxide can provide a combination of infrared transparency, strength, hardness, and environmental stability in a formable material. This article describes a new family of rare earth oxide-aluminum oxide glass materials that can be made by casting from melts formed in platinum crucibles. The glasses transmit light in the wavelength range from 0.3 to 5 ?m in sections of ~0.3 cm, they have a Vickers hardness of 800-1000, and exhibit excellent environmental stability typical of refractory oxide materials. The composition of the glass can be adjusted to achieve refractive indices in the range 1.7-1.8 and Abbe numbers of 30-60. The materials are promising candidates for passive optical elements or as a host for optically active ions such as Yb or Nd that provide laser action or absorb at laser line wavelengths.

  14. All-glass solar collector

    NASA Technical Reports Server (NTRS)

    Wisnewski, J. P.

    1980-01-01

    Proposed all tempered glass solar collector uses black collection fluid and mirrored bottom to reduce energy loss and overall costs associated with conventional collectors. Collector is more efficient and practically maintenance-free.

  15. Dispersion of barium gallogermanate glass.

    PubMed

    Zelmon, David E; Bayya, Shyam S; Sanghera, Jasbinder S; Aggarwal, Ishwar D

    2002-03-01

    Gallogermanate glasses are the subject of intense study as a result of their unique combination of physical and optical properties, including transmission from 0.4 to beyond 5.0 microm. These glasses can be easily made into large optics with high-index homogeneity for numerous U.S. Department of Defense and commercial visible-IR window applications such as reconnaissance, missile domes, IR countermeasures, avionics, and collision avoidance on automobiles. These applications require a knowledge of the refractive index of glass throughout the region of transmission. Consequently, we have measured the refractive index of BaO-Ga2O3-GeO2 glass from 0.4 to 5.0 microm and calculated the Sellmeier coefficients required for optical device design. PMID:11900015

  16. Glass-formers vs. Assemblers

    NASA Astrophysics Data System (ADS)

    Glotzer, Sharon

    2015-03-01

    In most instances, the formation of a glass signifies an inability of the constituents of a system to self-organize into a well-defined, thermodynamically preferred ordered structure. Thus good ''assemblers'' may make poor glass-formers, and good glass-formers tend to be poor assemblers. How good or bad a system is in assembling or vitrifying/jamming depends on many features of the constituent building blocks, including shape and interactions. In many cases, building blocks whose shapes make them good glass-formers can, through almost imperceptible perturbations, become good assemblers, and vice versa. We examine these issues through consideration of several model systems, including colloidal ''rocks'' and foldable nets. *with E.R. Chen, P. Damasceno, P. Dodd, M. Engel, A.S. Keys, D. Klotsa, E. Teich, and G. van Anders

  17. Fast Crystals and Strong Glasses

    SciTech Connect

    Weitz, David

    2009-11-04

    This talk describes new results on model colloid systems that provide insight into the behavior of fundamental problems in colloid physics, and more generally, for other materials as well. By visualizing the nucleation and growth of colloid crystals, we find that the incipient crystallites are much more disordered than expected, leading to a larger diversity of crystal morphologies. When the entropic contribution of these diverse morphologies is included in the free energy, we are able to describe the behavior very well, and can predict the nucleation rate surprisingly accurately. The talk also describes the glass transition in deformable colloidal particles, and will show that when the internal elasticity of the particles is included, the colloidal glass transition mimics that of molecular glass formers much more completely. These results also suggest that the elasticity at the scale of the fundamental unit, either colloid particle or molecule, determines the nature of the glass transition, as described by the "fragility."

  18. Formation of zirconium metallic glass.

    PubMed

    Zhang, Jianzhong; Zhao, Yusheng

    2004-07-15

    Bulk metallic glasses are commonly produced by the rapid cooling of liquid alloys. They have emerged over the past decade as a novel class of materials, with attractive properties and technological promise. The bulk metallic glasses so far produced contain three or more component elements. These complex compositions are necessary to frustrate the crystallization of the liquid melt on cooling, but can also lead to phase separation, which is detrimental to the thermal and mechanical properties of metallic glasses. Here we report, using X-ray diffraction measurements, the formation of a bulk metallic glass from elemental zirconium at high static pressures and low temperatures (relative to its melting temperature at atmospheric pressure). Amorphous zirconium can be recovered at ambient conditions and demonstrates a superior thermal stability compared to amorphous alloys, which could lead to new high-temperature applications of amorphous metals. PMID:15254533

  19. Glass Furnace Model Version 2

    Energy Science and Technology Software Center (ESTSC)

    2003-05-06

    GFM2.0 is a derivative of the GFM code with substantially altered and enhanced capabilities. Like its predecessor, it is a fully three-dimensional, furnace simulation model that provides a more accurate representation of the entire furnace, and specifically, the glass melting process, by coupling the combustion space directly to the glass batch and glass melt via rigorous radiation heat transport models for both the combustion space and the glass melt. No assumptions are made with regardmore » to interfacial parameters of heat, flux, temperature distribution, and batch coverage as must be done using other applicable codes available. These critical parameters are calculated. GFM2.0 contains a processor structured to facilitate use of the code, including the entry of teh furnace geometry and operating conditions, the execution of the program, and display of the computational results. Furnace simulations can therefore be created in a straightforward manner.« less

  20. Inorganic glass ceramic slip rings

    NASA Technical Reports Server (NTRS)

    Glossbrenner, E. W.; Cole, S. R.

    1972-01-01

    Prototypes of slip rings have been fabricated from ceramic glass, a material which is highly resistant to deterioration due to high temperature. Slip ring assemblies were not structurally damaged by mechanical tests and performed statisfactorily for 200 hours.

  1. 2012 Problem 13: Misty Glass

    NASA Astrophysics Data System (ADS)

    Huang, Shan; Li, Xiao; Gao, Wenli; Zhou, Huijun

    2015-10-01

    Based on diffraction theory, we propose a model to explain the formation of colorful rings created by a misty glass. The model is verified by examining the relation between the size of the ring and size of the droplets.

  2. High Tech Art: Chameleon Glass

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Dichroic Glass is a technology wherein extremely thin films of metal are vacuum deposited on a glass surface. The coated glass shields spacecraft instruments from cosmic radiation and protects human vision from unfiltered sunlight in space. Because the coating process allows some wavelengths of light and color to reflect and others to pass through, a chameleon effect is produced. Murray Schwartz, a former aerospace engineer, has based his business KROMA on this NASA optical technology. He produces dichroic stained glass windows, mobiles and jewelry. The technique involves deposition of super thin layers of metal oxides applied one layer at a time in a specific order and thickness for the desired effect. His product line is unique and has been very successful.

  3. Ion implantation in silicate glasses

    SciTech Connect

    Arnold, G.W.

    1993-12-01

    This review examines the effects of ion implantation on the physical properties of silicate glasses, the compositional modifications that can be brought about, and the use of metal implants to form colloidal nanosize particles for increasing the nonlinear refractive index.

  4. Stereo Compilation (3D) Glasses

    USGS Multimedia Gallery

    Manufactured by the Bausch and Lomb Optical Company. Stereographs and stereo compilation glasses are used in the photogrammetry, which is the process of making maps or scale drawings from photographs, especially aerial photographs. Object ID: USGS-000276...

  5. Metallic Glass Cooling

    NASA Technical Reports Server (NTRS)

    2003-01-01

    A sample of advanced metallic glass alloy cools down during an experiment with the TEMPUS furnace on STS-94, July 7, 1997, MET:5/23:35 (approximate). The sequence shows the sample glowing, then fading to black as scientists began the process of preserving the liquid state, but lowering the temperature below the normal solidification temperature of the alloy. This process is known as undercooling. (10 second clip covering approximately 50 seconds.) TEMPUS (stands for Tiegelfreies Elektromagnetisches Prozessiere unter Schwerelosigkeit (containerless electromagnetic processing under weightlessness). It was developed by the German Space Agency (DARA) for flight aboard Spacelab. The DARA project scientist was Igon Egry. The experiment was part of the space research investigations conducted during the Microgravity Science Laboratory-1R mission (STS-94, July 1-17 1997). DARA and NASA are exploring the possibility of flying an advanced version of TEMPUS on the International Space Station. (354KB JPEG, 2700 x 2038 pixels; downlinked video, higher quality not available) The MPG from which this composite was made is available at http://mix.msfc.nasa.gov/ABSTRACTS/MSFC-0300189.html.

  6. The role of test parameters on the kinetics and thermodynamics of glass leaching. [None

    SciTech Connect

    Jantzen, C M

    1988-01-01

    The relative durabilities of nuclear waste, natural, and ancient glasses have been assessed by standard laboratory leach tests. Different test conditions result in different glass surface areas (SA), leachant volumes (V), and test durations (t). Leachate concentrations are known to be a parabolic function of the kinetic test parameter SAV/center dot/t. Based on durability experiments of glass monoliths at low (SAV)/center dot/ glass durability has been shown to be a logarithmic function of the thermodynamic hydration free energy, ..delta..G/sub hyd/. The thermodynamic hydration free energy, ..delta..G/sub hyd/, can be calculated from glass composition and solution pH. In the repository environment high effective glass surface areas to solution volume ratios may occur as a result of slow groundwater flow rates. The application of hydration thermodynamics to crushed glass, high (SAV)/center dot/t, durability tests has been demonstrated. The relative contributions of the kinetic test parameters, (SAV)/center dot/t, and the thermodynamic parameter, ..delta..G/sub hyd/, have been shown to define a plane in ..delta..G/sub hyd/-concentration-(SAV)/center dot/t space. At constant test conditions, e.g. constant (SAV/center dot/t, the intersection with this surface indicates that all /delta G//sub hyd/-concentration plots should have similar slopes and predict the same relative durabilities for various glasses as a function of glass composition. Using this approach, the durability of nuclear waste glasses has been interpolated to be -- 10/sup 6/ years and no less than 10/sup 3/ years. 28 refs., 24 figs.

  7. Combined Experimental and Computational Approach to Predict the Glass-Water Reaction

    SciTech Connect

    Pierce, Eric M; Bacon, Diana

    2011-01-01

    The use of mineral and glass dissolution rates measured in laboratory experiments to predict the weathering of primary minerals and volcanic and nuclear waste glasses in field studies requires the construction of rate models that accurately describe the weathering process over geologic time-scales. Additionally, the need to model the long-term behavior of nuclear waste glass for the purpose of estimating radionuclide release rates requires that rate models are validated with long-term experiments. Several long-term test methods have been developed to accelerate the glass-water reaction [drip test, vapor hydration test, product consistency test-B, and pressurized unsaturated flow (PUF)], thereby reducing the duration required to evaluate long-term performance. Currently, the PUF test is the only method that mimics the unsaturated hydraulic properties expected in a subsurface disposal facility and simultaneously monitors the glass-water reaction. PUF tests are being conducted to accelerate the weathering of glass and validate the model parameters being used to predict long-term glass behavior. A one-dimensional reactive chemical transport simulation of glass dissolution and secondary phase formation during a 1.5-year long PUF experiment was conducted with the subsurface transport over reactive multi-phases code. Results show that parameterization of the computer model by combining direct bench-scale laboratory measurements and thermodynamic data provides an integrated approach to predicting glass behavior over the length of the experiment. Over the 1.5-year long test duration, the rate decreased from 0.2 to 0.01 g/(m2 d) base on B release. The observed decrease is approximately two orders of magnitude higher than the decrease observed under static conditions with the SON68 glass (estimated to be a decrease by 4 orders of magnitude) and suggest the gel-layer properties are less protective under these dynamic conditions.

  8. Driving bubbles out of glass

    NASA Technical Reports Server (NTRS)

    Mattox, D. M.

    1981-01-01

    Surface tension gradient in melt forces gas bubbles to surface, increasing glass strength and transparency. Conventional chemical and buoyant fining are extremely slow in viscous glasses, but tension gradient method moves 250 um bubbles as rapidly as 30 um/s. Heat required for high temperature part of melt is furnished by stationary electrical or natural-gas heater; induction and laser heating are also possible. Method has many applications in industry processes.

  9. Luminescence of powdered uranium glasses

    NASA Technical Reports Server (NTRS)

    Eubanks, A. G.; Mcgarrity, J. M.; Silverman, J.

    1974-01-01

    Measurement of cathodoluminescence and photoluminescence efficiencies in powdered borosilicate glasses having different particle size and different uranium content. Excitation with 100 to 350 keV electrons and with 253.7 nm light was found to produce identical absolute radiant exitance spectra in powdered samples. The most efficient glass was one containing 29.4 wt% B2O3, 58.8 wt% SiO2, 9.8 wt% Na2O and 2.0 wt% UO2.

  10. Comparison of Macedon and Darwin glass

    USGS Publications Warehouse

    Chapman, D.R.; Keil, Klaus; Annell, C.

    1967-01-01

    Chemical analyses are presented for major and minor elements in two specimens of natural glass reported from Macedon, Victoria, and are compared with new analyses of glass from Mt. Darwin, Tasmania. One specimen of Macedon glass is dark, the other light; both are spongy with relatively large cavities of size uncommon in Darwin glass. Some of the new analyses of Darwin glass extend considerably the compositional range previously reported for Mg, Ni and Co. The chemical composition of Macedon glass cannot be distinguished from that of Darwin glass for any of twenty-five elements investigated. It appears possible that the two specimens of glass reported from Macedon may represent either two mislabelled pieces of Darwin glass, or else a separate natural occurrence of Darwin glass 560 km north of Mt. Darwin. ?? 1967.

  11. Glasses-free randot stereotest.

    PubMed

    Kim, Jonghyun; Hong, Jong-Young; Hong, Keehoon; Yang, Hee Kyung; Han, Sang Beom; Hwang, Jeong-Min; Lee, Byoungho

    2015-06-01

    We proposed a glasses-free randot stereotest using a multiview display system. We designed a four-view parallax barrier system and proposed the use of a random-dot multigram as a set of view images for the glasses-free randot stereotest. The glasses-free randot stereotest can be used to verify the effect of glasses in a stereopsis experience. Furthermore, the proposed system is convertible between two-view and four-view structures so that the motion parallax effect could be verified within the system. We discussed the design principles and the method used to generate images in detail and implemented a glasses-free randot stereotest system with a liquid crystal display panel and a customized parallax barrier. We also developed graphical user interfaces and a method for their calibration for practical usage. We performed experiments with five adult subjects with normal vision. The experimental results show that the proposed system provides a stereopsis experience to the subjects and is consistent with the glasses-type randot stereotest and the Frisby–Davis test. The implemented system is free from monocular cues and provides binocular disparity only. The crosstalk of the system is about 6.42% for four-view and 4.17% for two-view, the time required for one measurement is less than 20 s, and the minimum angular disparity that the system can provide is about 23 arc sec. PMID:26057031

  12. Space processing of chalcogenide glass

    NASA Technical Reports Server (NTRS)

    Ali, M. A.; Larsen, D. C.

    1976-01-01

    The manner in which the weightless, containerless nature of in-space processing can be successfully utilized to improve the quality of infrared transmitting chalcogenide glasses was investigated. The following conclusions were reached: (1) Laboratory experiments have established the techniques, processes and equipment necessary for the production of high purity chalcogenide glasses. (2) Processing techniques have been successfully adopted for Ge28Sb12Se60 glass in a 1-g environment. (3) The Ge28Sb12Se60 glasses that have been processed have optical transmission around 63% (5 mm thick). (4) Laboratory experiments have established that the use of precursor materials in powdered form increases the oxygen contamination of the processed glass. This indicates that high purity precursor materials in bar or pellet form should be used. (5) Modifications were made on the MSFC acoustic levitator in an attempt to improve levitation stability during long-time experiments. Room temperature experiments on As2S3 glasses and high temperature experiments on polystyrene were conducted.

  13. Glasses-free randot stereotest

    NASA Astrophysics Data System (ADS)

    Kim, Jonghyun; Hong, Jong-Young; Hong, Keehoon; Yang, Hee Kyung; Han, Sang Beom; Hwang, Jeong-Min; Lee, Byoungho

    2015-06-01

    We proposed a glasses-free randot stereotest using a multiview display system. We designed a four-view parallax barrier system and proposed the use of a random-dot multigram as a set of view images for the glasses-free randot stereotest. The glasses-free randot stereotest can be used to verify the effect of glasses in a stereopsis experience. Furthermore, the proposed system is convertible between two-view and four-view structures so that the motion parallax effect could be verified within the system. We discussed the design principles and the method used to generate images in detail and implemented a glasses-free randot stereotest system with a liquid crystal display panel and a customized parallax barrier. We also developed graphical user interfaces and a method for their calibration for practical usage. We performed experiments with five adult subjects with normal vision. The experimental results show that the proposed system provides a stereopsis experience to the subjects and is consistent with the glasses-type randot stereotest and the Frisby-Davis test. The implemented system is free from monocular cues and provides binocular disparity only. The crosstalk of the system is about 6.42% for four-view and 4.17% for two-view, the time required for one measurement is less than 20 s, and the minimum angular disparity that the system can provide is about 23 arc sec.

  14. Bioactive Glasses: Frontiers and Challenges.

    PubMed

    Hench, Larry L; Jones, Julian R

    2015-01-01

    Bioactive glasses were discovered in 1969 and provided for the first time an alternative to nearly inert implant materials. Bioglass formed a rapid, strong, and stable bond with host tissues. This article examines the frontiers of research crossed to achieve clinical use of bioactive glasses and glass-ceramics. In the 1980s, it was discovered that bioactive glasses could be used in particulate form to stimulate osteogenesis, which thereby led to the concept of regeneration of tissues. Later, it was discovered that the dissolution ions from the glasses behaved like growth factors, providing signals to the cells. This article summarizes the frontiers of knowledge crossed during four eras of development of bioactive glasses that have led from concept of bioactivity to widespread clinical and commercial use, with emphasis on the first composition, 45S5 Bioglass(®). The four eras are (a) discovery, (b) clinical application, (c) tissue regeneration, and (d) innovation. Questions still to be answered for the fourth era are included to stimulate innovation in the field and exploration of new frontiers that can be the basis for a general theory of bioactive stimulation of regeneration of tissues and application to numerous clinical needs. PMID:26649290

  15. BNFL Report Glass Formers Characterization

    SciTech Connect

    Schumacher, R.F.

    2000-07-27

    The objective of this task was to obtain powder property data on candidate glass former materials, sufficient to guide conceptual design and estimate the cost of glass former handling facilities as requested under Part B1 of BNFL Technical and Development Support. Twenty-nine glass forming materials were selected and obtained from vendors for the characterization of their physical properties, durability in caustic solution, and powder flow characteristics. A glass former was selected based on the characterization for each of the ten oxide classes required for Envelope A, B, and C mixtures. Three blends (A, B, and C) were prepared based on formulations provided by Vitreous State Laboratory and evaluated with the same methods employed for the glass formers. The properties obtained are presented in a series of attached Tables. It was determined that five of the ten glass formers, (kyanite, iron oxide, titania, zircon, and zinc oxide) have the potential to cause some level of solids f low problems. In addition, all of the blends may require consideration for their handling. A number of engineering considerations and recommendations were prepared based on the experimental findings, experience, and other process considerations. Recommendations for future testing are included. In conjunction with future work, it is recommended that a professional consultant be engaged to guide and assist with testing and design input.

  16. BNFL Report Glass Formers Characterization

    SciTech Connect

    Schumacher, R.F.

    2000-07-27

    The objective of this task was to obtain powder property data on candidate glass former materials, sufficient to guide conceptual design and estimate the cost of glass former handling facilities as requested under Part B1 of BNFL Technical and Development Support. Twenty-nine glass forming materials were selected and obtained from vendors for the characterization of their physical properties, durability in caustic solution, and powder flow characteristics. A glass former was selected based on the characterization for each of the ten oxide classes required for Envelope A, B, and C mixtures. Three blends (A, B, and C) were prepared based on formulations provided by Vitreous State Laboratory and evaluated with the same methods employed for the glass formers. The properties obtained are presented in a series of attached Tables. It was determined that five of the ten glass formers, (kyanite, iron oxide, titania, zircon, and zinc oxide) have the potential to cause some level of solids f low problems. The problems might include arching or ratholing in the silo/hopper. In addition, all of the blends may require consideration for their handling.

  17. Tailoring Silicon Oxycarbide Glasses for Oxidative Stability

    NASA Technical Reports Server (NTRS)

    Hurwitz, F. I.; Meador, M. A. B.

    1997-01-01

    Blackglas(Trademark) polysiloxane systems produce silicon oxycarbide glasses by pyrolysis in inert atmosphere. The silicon oxycarbides evidence oxidative degradation that limits their lifetime as composite matrices. The present study characterizes bonding rearrangements in the oxycarbide network accompanying increases in pyrolysis temperature. It also addresses the changes in susceptibility to oxidation due to variations in the distribution of Si bonded species obtained under different processing conditions. The study is carried out using Si-29 nuclear magnetic resonance (NMR) spectroscopy and a design of experiments approach to model the oxidation behavior. The NMR results are compared with those obtained by thermogravimetric analysis (TGA). Samples pyrolyzed under inert conditions are compared to those pyrolyzed in reactive ammonia environments.

  18. Infrared spectroscopy and hydrogen isotope geochemistry of hydrous silicate glasses. Progress report

    SciTech Connect

    Epstein, S.; Stolper, E.

    1992-03-01

    The focus of this project is the combined appication of infrared spectroscopy and stable isotope geochemistry to the study of hydrogen-bearing species dissolved in silicate melts and glasses. We are conducting laboratory experiments aimed at determining the fractionation of D and H between melt species (OH and H{sub 2}O) and hydrous vapor and the diffusivities of these species in glasses and melts. Knowledge of these parameters is critical to understanding the behavior of hydrogen isotopes during igneous processes and hydrothermal processes. These results also could be valuable in application of glass technology to development of nuclear waste disposal strategies.

  19. Changes in surface structure of sodium aluminoborosilicate glasses during aqueous corrosion analyzed by using NMR

    NASA Astrophysics Data System (ADS)

    Ohkubo, Takahiro; Iwadate, Yasuhiko; Deguchi, Kenzo; Ohki, Shinobu; Shimizu, Tadashi

    2015-02-01

    Aqueous corrosion tests were performed for aluminoborosilicate glasses with different Na contents at 90 C for 20 days. Multi-nuclear solid-state nuclear magnetic resonance (NMR) techniques were employed to characterize the structures of the pristine and altered glasses. 11B magic-angle spinning (MAS) NMR spectra showed the same line shape for the pristine and altered glasses, indicating that B species such as BO3 and BO4 were released into the solution congruently with the same fraction during the static dissolution experiments. The reconstruction of Si on the glass surface as hydrated phases was confirmed by the 29Si MAS and 1H ?29Si cross-polarization magic-angle spinning NMR spectra of the altered glasses. 23Na MAS and triple-quantum magic-angle spinning NMR spectra showed that part of the Na released from pristine glasses was incorporated in the hydrated phases, which can be identified by a 23Na chemical shift at ?iso = - 3.3 ppm. The availability of these structural data by employing solid-state NMR techniques can provide a better understanding of the formation of the hydrated phases and the effect of dissolution behavior on the glass composition.

  20. Fabrication of glass microspheres with conducting surfaces

    DOEpatents

    Elsholz, William E. (Acampo, CA)

    1984-01-01

    A method for making hollow glass microspheres with conducting surfaces by adding a conducting vapor to a region of the glass fabrication furnace. As droplets or particles of glass forming material pass through multiple zones of different temperature in a glass fabrication furnace, and are transformed into hollow glass microspheres, the microspheres pass through a region of conducting vapor, forming a conducting coating on the surface of the microspheres.