Science.gov

Sample records for radar absorbing structures

  1. Microcellular ceramic foams for radar absorbing structures

    SciTech Connect

    Huling, J.; Phillips, D.

    1996-09-01

    This is the final report of a one-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The goal of this project is to develop a lightweight, semi-structural, radar-absorbing ceramic foam that can be incorporated into aircraft exhaust systems to replace many of the currently used dense ceramic parts and thereby improve the radar cross section. Although the conventional processes for producing ceramic foams have not been able to provide materials that meet the design specifications for high strength at low density, we have developed and demonstrated a novel sol-gel emulsion process for preparing microcellular ceramic foams in which compositional and microstructural control is expected to provide the requisite high-temperature radar-absorption, strength-to-weight ratio, and thermal insulative properties.

  2. Radar Absorbing Materials for Cube Stealth Satellite

    NASA Astrophysics Data System (ADS)

    Micheli, D.; Pastore, R.; Vricella, A.; Marchetti, M.

    A Cube Stealth Satellite is proposed for potential applications in defense system. Particularly, the faces of the satellite exposed to the Earth are made of nanostructured materials able to absorb radar surveillance electromagnetic waves, conferring stealth capability to the cube satellite. Microwave absorbing and shielding material tiles are proposed using composite materials consisting in epoxy-resin and carbon nanotubes filler. The electric permittivity of the composite nanostructured materials is measured and discussed. Such data are used by the modeling algorithm to design the microwave absorbing and the shielding faces of the cube satellite. The electromagnetic modeling takes into account for several incidence angles (0-80°), extended frequency band (2-18 GHz), and for the minimization of the electromagnetic reflection coefficient. The evolutionary algorithm used for microwave layered microwave absorber modeling is the recently developed Winning Particle Optimization. The mathematical model of the absorbing structure is finally experimentally validated by comparing the electromagnetic simulation to the measurement of the manufactured radar absorber tile. Nanostructured composite materials manufacturing process and electromagnetic reflection measurements methods are described. Finally, a finite element method analysis of the electromagnetic scattering by cube stealth satellite is performed.

  3. Multilayer Radar Absorbing Non-Woven Material

    NASA Astrophysics Data System (ADS)

    Dedov, A. V.; Nazarov, V. G.

    2016-06-01

    We study the electrical properties of multilayer radar absorbing materials obtained by adding nonwoven sheets of dielectric fibers with an intermediate layer of electrically conductive carbon fibers. Multilayer materials that absorb electromagnetic radiation in a wide frequency range are obtained by varying the content of the carbon fibers. The carbon-fiber content dependent mechanism of absorption of electromagnetic radiation by sheets and multilayer materials is considered.

  4. Graphene based tunable fractal Hilbert curve array broadband radar absorbing screen for radar cross section reduction

    SciTech Connect

    Huang, Xianjun; Hu, Zhirun; Liu, Peiguo

    2014-11-15

    This paper proposes a new type of graphene based tunable radar absorbing screen. The absorbing screen consists of Hilbert curve metal strip array and chemical vapour deposition (CVD) graphene sheet. The graphene based screen is not only tunable when the chemical potential of the graphene changes, but also has broadband effective absorption. The absorption bandwidth is from 8.9GHz to 18.1GHz, ie., relative bandwidth of more than 68%, at chemical potential of 0eV, which is significantly wider than that if the graphene sheet had not been employed. As the chemical potential varies from 0 to 0.4eV, the central frequency of the screen can be tuned from 13.5GHz to 19.0GHz. In the proposed structure, Hilbert curve metal strip array was designed to provide multiple narrow band resonances, whereas the graphene sheet directly underneath the metal strip array provides tunability and averagely required surface resistance so to significantly extend the screen operation bandwidth by providing broadband impedance matching and absorption. In addition, the thickness of the screen has been optimized to achieve nearly the minimum thickness limitation for a nonmagnetic absorber. The working principle of this absorbing screen is studied in details, and performance under various incident angles is presented. This work extends applications of graphene into tunable microwave radar cross section (RCS) reduction applications.

  5. Modelling Absorbent Phenomena of Absorbent Structure

    NASA Astrophysics Data System (ADS)

    Sayeb, S.; Ladhari, N.; Ben Hassen, M.; Sakli, F.

    Absorption, retention and strike through time, as evaluating criteria of absorbent structures quality were studied. Determination of influent parameters on these criteria were realized by using the design method of experimental sets. In this study, the studied parameters are: Super absorbent polymer (SAP)/fluff ratio, compression and the porosity of the non woven used as a cover stock. Absorption capacity and retention are mostly influenced by SAP/fluff ratio. However, strike through time is affected by compression. Thus, a modelling of these characteristics in function of the important parameter was established.

  6. Graphene-enabled electrically switchable radar-absorbing surfaces.

    PubMed

    Balci, Osman; Polat, Emre O; Kakenov, Nurbek; Kocabas, Coskun

    2015-01-01

    Radar-absorbing materials are used in stealth technologies for concealment of an object from radar detection. Resistive and/or magnetic composite materials are used to reduce the backscattered microwave signals. Inability to control electrical properties of these materials, however, hinders the realization of active camouflage systems. Here, using large-area graphene electrodes, we demonstrate active surfaces that enable electrical control of reflection, transmission and absorption of microwaves. Instead of tuning bulk material property, our strategy relies on electrostatic tuning of the charge density on an atomically thin electrode, which operates as a tunable metal in microwave frequencies. Notably, we report large-area adaptive radar-absorbing surfaces with tunable reflection suppression ratio up to 50 dB with operation voltages <5 V. Using the developed surfaces, we demonstrate various device architectures including pixelated and curved surfaces. Our results provide a significant step in realization of active camouflage systems in microwave frequencies. PMID:25791719

  7. Graphene-enabled electrically switchable radar-absorbing surfaces

    NASA Astrophysics Data System (ADS)

    Balci, Osman; Polat, Emre O.; Kakenov, Nurbek; Kocabas, Coskun

    2015-03-01

    Radar-absorbing materials are used in stealth technologies for concealment of an object from radar detection. Resistive and/or magnetic composite materials are used to reduce the backscattered microwave signals. Inability to control electrical properties of these materials, however, hinders the realization of active camouflage systems. Here, using large-area graphene electrodes, we demonstrate active surfaces that enable electrical control of reflection, transmission and absorption of microwaves. Instead of tuning bulk material property, our strategy relies on electrostatic tuning of the charge density on an atomically thin electrode, which operates as a tunable metal in microwave frequencies. Notably, we report large-area adaptive radar-absorbing surfaces with tunable reflection suppression ratio up to 50 dB with operation voltages <5 V. Using the developed surfaces, we demonstrate various device architectures including pixelated and curved surfaces. Our results provide a significant step in realization of active camouflage systems in microwave frequencies.

  8. Graphene-enabled electrically switchable radar absorbing surfaces

    NASA Astrophysics Data System (ADS)

    Balci, Osman; Polat, Emre Ozan; Kakenov, Nurbek; Kocabas, Coskun

    2015-03-01

    Radar absorbing materials are used in stealth technologies for concealment of an object from radar detection. Resistive and/or magnetic composite materials are used to reduce the backscattered microwave signals. Inability to control electrical properties of these materials however, hinders the realization of active camouflage systems which require adaptive surfaces operating in microwave frequencies. Here, using large-area graphene electrodes, we demonstrate a new class of active surfaces which enables unprecedented ability to control reflection, transmission and absorption of microwaves by electrical means. Instead of tuning bulk material property, our strategy relies on electrostatic tuning of the charge density on an atomically thin electrode which operates as a tunable metal in microwave frequencies. Notably, we fabricated large area adaptive radar absorbing surfaces with tunable reflection suppression ratio up to 50 dB with operation voltages less than 5 V. These electrically switchable radar absorbing surfaces provide a significant step in realization of active camouflage systems and adaptive cloaking in microwave frequencies, which cannot be realized by conventional materials.

  9. Effect of weight fraction of carbon black and number of plies of E-glass fiber to reflection loss of E-glass/ripoxy composite for radar absorbing structure (RAS)

    NASA Astrophysics Data System (ADS)

    Widyastuti, Ramadhan, Rizal; Ardhyananta, Hosta; Zainuri, Mochamad

    2013-09-01

    Nowadays, studies on investigating radar absorbing structure (RAS) using fiber reinforced polymeric (FRP) composite materials are becoming popular research field because the electromagnetic properties of FRP composites can be tailored effectively by just adding some electromagnetic powders, such as carbon black, ferrite, carbonyl iron, and etc., to the matrix of composites. The RAS works not only as a load bearing structure to hold the antenna system, but also has the important function of absorbing the in-band electromagnetic wave coming from the electromagnetic energy of tracking systems. In this study, E-glass fiber reinforced ripoxy resin composite was fabricated by blending the conductive carbon black (Ketjenblack EC300J) with the binder matrix of the composite material and maximizing the coefficient of absorption more than 90% (more than -10 dB) within the X-band frequency (8 - 12 GHz). It was measured by electrical conductivity (LCR meter) and vector network analyzer (VNA). Finally, the composite RAS with 0.02 weight fraction of carbon black and 4 plies of E-glass fiber showed thickness of 2.1 mm, electrical conductivity of 8.33 × 10-6 S/m, and maximum reflection loss of -27.123 dB, which can absorb more than 90% of incident EM wave throughout the entire X-band frequency range, has been developed.

  10. Thermal structure and radar backscatter

    NASA Astrophysics Data System (ADS)

    Topliss, B. J.; Stepanczak, M.; Guymer, Trevor H.; Cotton, David P.

    1994-12-01

    Infrared (IR) remote sensing from satellites is a well-proven technique for measuring sea surface temperature (SST) and for detecting and monitoring oceanographic features which have strong thermal contrast. Unfortunately, cloud cover often limits the continuity of the datasets and therefore their usefulness. There is some evidence that radar backscatter can be modified by sea surface temperature structure which raises the possibility that sensors such as synthetic aperture radar, scatterometers and altimeters could provide an all-weather complement to those operating in the IR. As a background, the results of a project which used coincident airborne radar and IR measurements of an eddy system in the Tyrrhenian Sea during October 1989 are briefly described. During a 5-day period, variations in radar backscatter of several dB occurred in a region where SST varied by 2 - 3 degree(s)C. The correlation between normalized radar cross section, sigma naught ((sigma) 0 or sigma-0) and SST appeared to depend on the ambient wind. Unfortunately, no satellite radar data were available during the experiment, since Geosat had just failed and ERS-1 was not due for launch until 1991. Building on this work, a study has commenced in which preliminary analyses of ERS-1 altimeter data, from tracks which repeat every 3 days, have been conducted for a section of the Gulf Stream after it has separated from the US coast. The along track variation of sigma naught has been compared with contemporaneous NOAA AVHRR-2 imagery and the relationship between SST structure and sigma naught for individual passes is discussed in terms of environmental parameters such as the local wind field and ocean currents. The possibility of the interaction of environmental parameters such as waves and currents are explored and some evidence for both wave enhancement and attenuation at the north wall of the Gulf Stream is illustrated. Tentative explanations for relationships observed by the various analysis

  11. Knitted radar absorbing materials (RAM) based on nickel-cobalt magnetic materials

    NASA Astrophysics Data System (ADS)

    Teber, Ahmet; Unver, Ibrahim; Kavas, Huseyin; Aktas, Bekir; Bansal, Rajeev

    2016-05-01

    There has been a long-standing interest in the development of flexible, lightweight, thin, and reconfigurable radar absorbing materials (RAM) for military applications such as camouflaging ground-based hardware against airborne radar observation. The use of polymeric Polyacrylonitrile (PAN) fabrics as a host matrix for magnetic metal nano-particles (either at the yarn-stage or after weaving the fabric) for shielding and absorbing applications has been described in the literature. In our experimental investigation, the relative concentrations of Nickel and Cobalt as well as the coating time are varied with a view to optimizing the microwave absorption characteristics of the resulting PAN-based composite material in the radar-frequency bands (X, Ku, and K). It is found that the PAN samples with the shortest coating time have the best return losses (under -20 dB return loss over a moderate bandwidth).

  12. Structured Metal Film as Perfect Absorber

    NASA Astrophysics Data System (ADS)

    Xiong, Xiang; Jiang, Shang-Chi; Peng, Ru-Wen; Wang, Mu

    2014-03-01

    With standing U-shaped resonators, fish-spear-like resonator has been designed for the first time as the building block to assemble perfect absorbers. The samples have been fabricated with two-photon polymerization process and FTIR measurement results support the effectiveness of the perfect absorber design. In such a structure the polarization-dependent resonance occurs between the tines of the spears instead of the conventional design where the resonance occurs between the metallic layers separated by a dielectric interlayer. The incident light neither transmits nor reflects back which results in unit absorbance. The power of light is trapped between the tines of spears and finally be absorbed. The whole structure is covered with a continuous metallic layer with good thermo-conductance, which provides an excellent approach to deal with heat dissipation, is enlightening in exploring metamaterial absorbers.

  13. Delineate subsurface structures with ground penetrating radar

    SciTech Connect

    Wyatt, D.E.; Hu, L.Z.; Ramaswamy, M.; Sexton, B.G.

    1992-10-01

    High resolution ground penetrating radar (GPR) surveys were conducted at the Savannah River Site in South Carolina in late 1991 to demonstrate the radar techniques in imaging shallow utility and soil structures. Targets of interest at two selected sites, designated as H- and D-areas, were a buried backfilled trench, buried drums, geologic stratas, and water table. Multiple offset 2-D and single offset 3-D survey methods were used to acquire high resolution radar data. This digital data was processed using standard seismic processing software to enhance signal quality and improve resolution. Finally, using a graphics workstation, the 3D data was interpreted. In addition, a small 3D survey was acquired in The Woodlands, Texas, with very dense spatial sampling. This data set adequately demonstrated the potential of this technology in imaging subsurface features.

  14. Delineate subsurface structures with ground penetrating radar

    SciTech Connect

    Wyatt, D.E. ); Hu, L.Z. ); Ramaswamy, M. ); Sexton, B.G. )

    1992-01-01

    High resolution ground penetrating radar (GPR) surveys were conducted at the Savannah River Site in South Carolina in late 1991 to demonstrate the radar techniques in imaging shallow utility and soil structures. Targets of interest at two selected sites, designated as H- and D-areas, were a buried backfilled trench, buried drums, geologic stratas, and water table. Multiple offset 2-D and single offset 3-D survey methods were used to acquire high resolution radar data. This digital data was processed using standard seismic processing software to enhance signal quality and improve resolution. Finally, using a graphics workstation, the 3D data was interpreted. In addition, a small 3D survey was acquired in The Woodlands, Texas, with very dense spatial sampling. This data set adequately demonstrated the potential of this technology in imaging subsurface features.

  15. Emittance of a radar absorber coated with an infrared layer in the 3~5microm window.

    PubMed

    Liu, Lingyun; Gong, Rongzhou; Cheng, Yongshan; Zhang, Fengguo; He, Huahui; Huang, Dexiu

    2005-12-12

    By use of the Kubelka-Munk theory, the Mie theory and the independent scattering approximation, we obtain the explicit expression of the emittance of an infrared coating attached to a radar absorber with a high emittance, in the 3~5microm window. Taking aluminum particles with spherical shape as the pigments within the coating, we give the dependence of the coating emittance with respect to the particle radius, the thickness of the coating. At a volume fraction of 0.05, we propose the optimum particle radius range of the pigment particles is around 0.35~0.6microm. When the thickness of the coating exceeds 300microm, the decrease of emittance at 4microm wavelength becomes negligible. Too much thickness of IR layer wouldn't contribute to the decrease of emittance. We study the influence of the infrared coating on the performance of the radar absorber, and believe that not too much thick infrared coating consisting of spherical Al particles wouldn't result in a remarkable deterioration of the absorbing ability of the radar absorber. PMID:19503253

  16. A shock absorber model for structure-borne noise analyses

    NASA Astrophysics Data System (ADS)

    Benaziz, Marouane; Nacivet, Samuel; Thouverez, Fabrice

    2015-08-01

    Shock absorbers are often responsible for undesirable structure-borne noise in cars. The early numerical prediction of this noise in the automobile development process can save time and money and yet remains a challenge for industry. In this paper, a new approach to predicting shock absorber structure-borne noise is proposed; it consists in modelling the shock absorber and including the main nonlinear phenomena responsible for discontinuities in the response. The model set forth herein features: compressible fluid behaviour, nonlinear flow rate-pressure relations, valve mechanical equations and rubber mounts. The piston, base valve and complete shock absorber model are compared with experimental results. Sensitivity of the shock absorber response is evaluated and the most important parameters are classified. The response envelope is also computed. This shock absorber model is able to accurately reproduce local nonlinear phenomena and improves our state of knowledge on potential noise sources within the shock absorber.

  17. Imaging radar investigations of the Sudbury structure

    NASA Technical Reports Server (NTRS)

    Lowman, P. D.; Singhroy, V. H.; Slaney, V. R.

    1992-01-01

    This paper reports preliminary results of airborne imaging radar studies of the Sudbury structure carried out in preparation for a CCRS European Remote Sensing Satellite (ERS-1) investigation. The data used were synthetic aperture radar (SAR) C-band (5.66 cm) images acquired from about 6 km altitude in 1987. They cover the Sudbury area in both wide and narrow swath modes, with east-west flight paths and north-south illumination directions. Narrow swath resolution is 6 m in range and azimuth; wide swath resolution is 20 m in range and 10 m in azimuth. The STAR imagery has proven highly effective for field use, providing excellent rendition of topography and topographically expressed structure. Reasons for this include the illumination geometry, notably the look azimuth normal to the long axis of the Sudbury structure and Penokean fold axes, the good spatial resolution, and the short wavelength. Forested areas in the Sudbury area tend to be uniformly rough at C-band wavelength, with backscatter dominated by local incidence angle (i.e., topography). Field work using the SAR imagery has to date been concentrated in the North Range and Superior Province as far north as the Benny greenstone belt. This area was chosen for initial investigation of the original size and shape of the Sudbury structure because the effects of the Penokean Orogeny were minimal there. Field work using SAR indicates that there has been little postimpact deformation of the North Range or adjacent Superior Province rock. There appears to be no evidence for an outer ring concentric with the North Range as indicated by early Landsat imagery. The apparent ring shown by Landsat is visible on the SAR imagery as the intersection of two regional fracture patterns not related to the Sudbury structure. There is no outer ring visible southwest of the structure. This can reasonably be explained by Penokean deformation, but there is no outer ring to the northeast cutting the relatively undeformed Huronian

  18. Broadband terahertz metamaterial absorber based on sectional asymmetric structures.

    PubMed

    Gong, Cheng; Zhan, Mingzhou; Yang, Jing; Wang, Zhigang; Liu, Haitao; Zhao, Yuejin; Liu, Weiwei

    2016-01-01

    We suggest and demonstrate the concept and design of sectional asymmetric structures which can manipulate the metamaterial absorber's working bandwidth with maintaining the other inherent advantages. As an example, a broadband terahertz perfect absorber is designed to confirm its effectiveness. The absorber's each cell integrates four sectional asymmetric rings, and the entire structure composed of Au and Si3N4 is only 1.9 μm thick. The simulation results show the bandwidth with absorptivity being larger than 90% is extended by about 2.8 times comparing with the conventional square ring absorber. The composable small cell, ultra-thin, and broadband absorption with polarization and incident angle insensitivity will make the absorber suitable for the applications of focal plane array terahertz imaging. PMID:27571941

  19. Simulation of terahertz metamaterial absorbers with microbolometer structure

    NASA Astrophysics Data System (ADS)

    Ding, Jie; Wang, Jun; Guo, Xiaopei; Jiang, Yadong; Fan, Lin

    2014-09-01

    The metamaterial absorber in terahertz (THz) region, with the metal pattern layer/dielectric spacer/metal reflective layer sandwich structure, is characterized in this paper. The principle of metamaterial absorber absorbing terahertz wave was introduced firstly. The top layer of metamaterial absorber is a periodically patterned with metallic subwavelength structure, which also serves as an electric resonator. The bottom layer is a thick metal plane, which is used to reduce THz wave transmittance. The dielectric layer between two metallic layers results in magnetic resonance and the resonance depends on the thickness and dielectric constant of the dielectric layer. The absorption of metamaterial absorber to terahertz wave was simulated with CST software. The relationship between the size of the metamaterial structure and absorption frequency was analyzed with the simulation results. The results indicate that the absorption frequency is affected by the cell constant and geometric structure of top metal pattern, and absorption rate is related to both the thickness of dielectric layer and the size of resonator. In the end, the possibility of integrating the metamaterial absorber with micro-bridge structure to design room temperature terahertz detector was discussed, and the manufacturing process was introduced about room temperature terahertz detector with high THz wave absorption rate.

  20. Radar response from vegetation with nodal structure

    NASA Technical Reports Server (NTRS)

    Blanchard, B. J.; Oneill, P. E.

    1984-01-01

    Radar images from the SEASAT synthetic aperture radar (SAR) produced unusually high returns from corn and sorghum fields, which seem to indicate a correlation between nodal separation in the stalk and the wavelength of the radar. These images also show no difference in return from standing or harvested corn. Further investigation using images from the Shuttle Imaging Radar (SIR-A) substantiated these observations and showed a degradation of the high return with time after harvest. From portions of corn and sweet sorghum stalks that were sampled to measure stalk water content, it was determined that near and after maturity the water becomes more concentrated in the stalk nodes. The stalk then becomes a linear sequence of alternating dielectrics as opposed to a long slender cylinder with uniform dielectric properties.

  1. Reversibly tunable coupled and decoupled super absorbing structures

    NASA Astrophysics Data System (ADS)

    Zhang, Nan; Dong, Ziye; Ji, Dengxin; Song, Haomin; Zeng, Xie; Liu, Zhejun; Jiang, Suhua; Xu, Yun; Bernussi, Ayrton; Li, Wei; Gan, Qiaoqiang

    2016-02-01

    We differentiate the spacer-dependent peak shift in coupled and decoupled super absorbing structures based on magnetic resonance and interference mechanism, respectively, which is experimentally validated by low-cost and large-area structures fabricated using lithography-free processes. The reversible real-time spectral tunability is then demonstrated by incorporating a thermally tunable polymeric spacer layer.

  2. Acoustic metamaterial structures based on multi-frequency vibration absorbers

    NASA Astrophysics Data System (ADS)

    Pai, P. Frank; Peng, Hao

    2014-03-01

    This paper presents a new metamaterial beam based on multi-frequency vibration absorbers for broadband vibration absorption. The proposed metamaterial beam consists of a uniform isotropic beam and small two-mass spring-mass- damper subsystems at many locations along the beam to act as multi-frequency vibration absorbers. For an infinite metamaterial beam, governing equations of a unit cell are derived using the extended Hamilton principle. The existence of two stopbands is demonstrated using a model based on averaging material properties over a cell length and a model based on finite element modeling and the Bloch-Floquet theory for periodic structures. For a finite metamaterial beam, because these two idealized models cannot be used for finite beams and/or elastic waves having short wavelengths, a finite-element method is used for detailed modeling and analysis. The concepts of negative effective mass and effective stiffness and how the spring-mass-damper subsystem creates two stopbands are explained in detail. Numerical simulations reveal that the actual working mechanism of the proposed metamaterial beam is based on the concept of conventional mechanical vibration absorbers. For an incoming wave with a frequency in one of the two stopbands, the absorbers are excited to vibrate in their optical modes to create shear forces to straighten the beam and stop the wave propagation. For an incoming wave with a frequency outside of but between the two stopbands, it can be efficiently damped out by the damper with the second mass of each absorber. Hence, the two stopbands are connected into a wide stopband. Numerical examples validate the concept and show that the structure's boundary conditions do not have significant influence on the absorption of high-frequency waves. However, for absorption of low-frequency waves, the structure's boundary conditions and resonance frequencies and the location and spatial distribution of absorbers need to be considered in design, and it

  3. Failure mechanisms in energy-absorbing composite structures

    NASA Astrophysics Data System (ADS)

    Johnson, Alastair F.; David, Matthew

    2010-11-01

    Quasi-static tests are described for determination of the energy-absorption properties of composite crash energy-absorbing segment elements under axial loads. Detailed computer tomography scans of failed specimens were used to identify local compression crush failure mechanisms at the crush front. These mechanisms are important for selecting composite materials for energy-absorbing structures, such as helicopter and aircraft sub-floors. Finite element models of the failure processes are described that could be the basis for materials selection and future design procedures for crashworthy structures.

  4. Broadband terahertz metamaterial absorber based on sectional asymmetric structures

    PubMed Central

    Gong, Cheng; Zhan, Mingzhou; Yang, Jing; Wang, Zhigang; Liu, Haitao; Zhao, Yuejin; Liu, Weiwei

    2016-01-01

    We suggest and demonstrate the concept and design of sectional asymmetric structures which can manipulate the metamaterial absorber’s working bandwidth with maintaining the other inherent advantages. As an example, a broadband terahertz perfect absorber is designed to confirm its effectiveness. The absorber’s each cell integrates four sectional asymmetric rings, and the entire structure composed of Au and Si3N4 is only 1.9 μm thick. The simulation results show the bandwidth with absorptivity being larger than 90% is extended by about 2.8 times comparing with the conventional square ring absorber. The composable small cell, ultra-thin, and broadband absorption with polarization and incident angle insensitivity will make the absorber suitable for the applications of focal plane array terahertz imaging. PMID:27571941

  5. Characterizing Englacial and Subglacial Temperature Structure Using Airborne Radar Sounding

    NASA Astrophysics Data System (ADS)

    Schroeder, D. M.; Seroussi, H. L.

    2015-12-01

    The temperature structure of ice sheet and glaciers is a fundamental control on ice flow, rheology, and stability. However, it is difficult to observationally constrain temperature structures at the catchment to ice-sheet scale. The englacial attenuation of radar sounding data is strongly dependent on the temperature structure of the ice sheets. Therefore, echo strength profiles from airborne radar sounding observation do contain temperature information. However, direct interpretation of englacial attenuation rates from radar sounding profiles is often difficult or impossible due to the ambiguous contribution the geometric and material properties of the bed to echo strength variations. To overcome this challenge, we presents techniques that treat radar sounding echo strength and ice thickness profiles as continuous signals, taking advantage of along-profile ice thickness and echo strength variations to constrain the spatial pattern of englacial attenuation and basal reflectivity. We then apply these techniques to an airborne radar sounding survey in order to characterize the englacial and subglacial temperature structure of the Thwaites Glacier catchment in West Antarctic. We then interpreted this structure in context of local ice sheet velocity, advection, force balance, and bed conditions using the ISSM ice sheet model.

  6. Beyond Radar Backscatter: Estimating Forest Structure and Biomass with Radar Interferometry and Lidar Remote Sensing

    NASA Astrophysics Data System (ADS)

    Lavalle, M.; Ahmed, R.

    2014-12-01

    Mapping forest structure and aboveground biomass globally is a major challenge that the remote sensing community has been facing for decades. Radar backscatter is sensitive to biomass only up to a certain amount (about 150 tons/ha at L-band and 300 tons/ha at P-band), whereas lidar remote sensing is strongly limited by poor spatial coverage. In recent years radar interferometry, including its extension to polarimetric radar interferometry (PolInSAR), has emerged as a new technique to overcome the limitations of radar backscatter. The idea of PolInSAR is to use jointly interferometric and polarimetric radar techniques to separate different scattering mechanisms and retrieve the vertical structure of forests. The advantage is to map ecosystem structure continuously over large areas and independently of cloud coverage. Experiments have shown that forest height - an important proxy for biomass - can be estimated using PolInSAR with accuracy between 15% and 20% at plot level. At AGU we will review the state-of-art of repeat-pass PolInSAR for biomass mapping, including its potential and limitations, and discuss how merging lidar data with PolInSAR data can be beneficial not only for product cross-validation but also for achieving better estimation of ecosystem properties over large areas. In particular, lidar data are expected to aid the inversion of PolInSAR models by providing (1) better identification of ground under the canopy, (2) approximate information of canopy structure in limited areas, and (3) maximum tree height useful for mapping PolInSAR temporal decorrelation. We will show our tree height and biomass maps using PolInSAR L-band JPL/UAVSAR data collected in tropical and temperate forests, and P-band ONERA/TROPISAR data acquired in French Guiana. LVIS lidar data will be used, as well as SRTM data, field measurements and inventory data to support our study. The use of two different radar frequencies and repeat-pass JPL UAVSAR data will offer also the

  7. Broadband polarization-insensitive absorber based on gradient structure metamaterial

    NASA Astrophysics Data System (ADS)

    Yang, Guo-Hui; Liu, Xiao-Xin; Lv, Yue-Long; Fu, Jia-Hui; Wu, Qun; Gu, Xuemai

    2014-05-01

    Metamaterial absorber (MA) is a hot spot in the research on electromagnetic absorbers. In this paper, a metamaterial based broadband polarization-insensitive absorber is proposed. The absorber is fabricated with FR-4 dielectric substrate foiled with copper. The top layer of the unit cell of the MA is composed of resistors mounted crosswire and gradient split ring resonator (SRR) with a square metal patch (SMP) in it. The overall structure is symmetrical, which makes the MA polarization-insensitive. The gradient SRRs and SMPs resonate at adjacent frequencies resulting in broadband property. The absorption rates of the MA for TE and TM wave are calculated through the simulated S-parameters. The bandwidth is 9.9 GHz, where the absorption rate maintains 60% up to 98.28% in both cases and the relative bandwidth is 57.13%. Both broadband and polarization-insensitivity properties are achieved, which demonstrate promising application prospect of the proposed MA in shielding and stealth technology.

  8. Shock Absorbers Save Structures and Lives during Earthquakes

    NASA Technical Reports Server (NTRS)

    2015-01-01

    With NASA funding, North Tonawanda, New York-based Taylor Devices Inc. developed fluidic shock absorbers to safely remove the fuel and electrical connectors from the space shuttles during launch. The company is now employing the technology as seismic dampers to protect structures from earthquakes. To date, 550 buildings and bridges have the dampers, and not a single one has suffered damage in the wake of an earthquake.

  9. Radar meteor orbital structure of Southern Hemisphere cometary dust streams

    NASA Technical Reports Server (NTRS)

    Baggaley, W. Jack; Taylor, Andrew D.

    1992-01-01

    The Christchurch, New Zealand meteor orbit radar (AMOR) with its high precision and sensitivity, permits studies of the orbital fine structure of cometary streams. PC generated graphics are presented of data on some Southern Hemisphere Streams. Such data can be related to the formation phase and subsequent dynamical processes of dust streams.

  10. Crash-Energy Absorbing Composite Structure and Method of Fabrication

    NASA Technical Reports Server (NTRS)

    Kellas, Sotiris (Inventor); Carden, Huey D. (Inventor)

    1998-01-01

    A stand-alone, crash-energy absorbing structure and fabrication method are provided. A plurality of adjoining rigid cells are each constructed of resin-cured fiber reinforcement and are arranged in a geometric configuration. The geometric configuration of cells is integrated by means of continuous fibers wrapped thereabout in order to maintain the cells in the geometric configuration. The cured part results in a net shape, stable structure that can function on its own with no additional reinforcement and can withstand combined loading while crushing in a desired direction.

  11. A Novel, Real-Valued Genetic Algorithm for Optimizing Radar Absorbing Materials

    NASA Technical Reports Server (NTRS)

    Hall, John Michael

    2004-01-01

    A novel, real-valued Genetic Algorithm (GA) was designed and implemented to minimize the reflectivity and/or transmissivity of an arbitrary number of homogeneous, lossy dielectric or magnetic layers of arbitrary thickness positioned at either the center of an infinitely long rectangular waveguide, or adjacent to the perfectly conducting backplate of a semi-infinite, shorted-out rectangular waveguide. Evolutionary processes extract the optimal physioelectric constants falling within specified constraints which minimize reflection and/or transmission over the frequency band of interest. This GA extracted the unphysical dielectric and magnetic constants of three layers of fictitious material placed adjacent to the conducting backplate of a shorted-out waveguide such that the reflectivity of the configuration was 55 dB or less over the entire X-band. Examples of the optimization of realistic multi-layer absorbers are also presented. Although typical Genetic Algorithms require populations of many thousands in order to function properly and obtain correct results, verified correct results were obtained for all test cases using this GA with a population of only four.

  12. Exploring inner structure of Titan's dunes from Cassini Radar observations

    NASA Astrophysics Data System (ADS)

    Sharma, P.; Heggy, E.; Farr, T. G.

    2013-12-01

    Linear dunes discovered in the equatorial regions of Titan by the Cassini-Huygens mission are morphologically very similar to many terrestrial linear dune fields. These features have been compared with terrestrial longitudinal dune fields like the ones in Namib desert in western Africa. This comparison is based on the overall parallel orientation of Titan's dunes to the predominant wind direction on Titan, their superposition on other geomorphological features and the way they wrap around topographic obstacles. Studying the internal layering of dunes has strong implications in understanding the hypothesis for their origin and evolution. In Titan's case, although the morphology of the dunes has been studied from Cassini Synthetic Aperture Radar (SAR) images, it has not been possible to investigate their internal structure in detail as of yet. Since no radar sounding data is available for studying Titan's subsurface yet, we have developed another technique to examine the inner layering of the dunes. In this study, we utilize multiple complementary radar datasets, including radar imaging data for Titan's and Earth's dunes and Ground Penetrating Radar (GPR)/radar sounding data for terrestrial dunes. Based on dielectric mixing models, we suggest that the Cassini Ku-band microwaves should be able to penetrate up to ~ 3 m through Titan's dunes, indicating that the returned radar backscatter signal would include contributions from both surface and shallow subsurface echoes. This implies that the shallow subsurface properties can be retrieved from the observed radar backscatter (σ0). In our analysis, the variation of the radar backscatter as a function of dune height is used to provide an insight into the layering in Titan's dunes. We compare the variation of radar backscatter with elevation over individual dunes on Titan and analogous terrestrial dunes in three sites (Great Sand Sea, Siwa dunes and Qattaniya dunes) in the Egyptian Sahara. We observe a strong, positive

  13. Space Shuttle Radar Images of Terrestrial Impact Structures: SIR-C/X-SAR

    NASA Astrophysics Data System (ADS)

    McHone, J. F.; Blumberg, D. G.; Greeley, R.; Underwood, J. R., Jr.

    1995-09-01

    ; 2.8 km dia) Wind-blown sands which cover much of this relatively small feature make it difficult to distinguish from numerous dark sandstone outcrops using only optical images. Radar, however, penetrates the shallow sand mantle to reveal a nearly complete radar-bright bullseye pattern typical of central-uplift style impact structure. Oasis Structure (24 degrees 35'N; 24 degrees 24'E; >11.5 km dia) Oasis astrobleme was originally described as an elevated ring of sandstone some 5.1 km wide in desert sands. Examination of optical satellite images detected subtle concentric patterns more than 11 km across [2]. SIR-C images reveal strong arcuate reflectors buried beneath the sand at an even larger diameter of greater than 17 km. Aurounga (19 degrees 06'N; 019 degrees 15'E; 12.6 km dia) Although this highly circular depression has been noticed in numerous remote sensing studies, eg.[3], it usually has been associated with a large volcanic field and attributed to endogenic forces. Recent reports of shatter cones [4] and microscopic shock metamorphic effects [5] now demonstrate an impact origin. The radar-dark ring is a sand-filled trough which interupts a regional pattern of yardangs, wind-cut parallel ridges and grooves, developed in surrounding sandstones. Amguid (26 degrees 05'N; 004 degrees 23'E; 450 m dia) Situated in elevated rocky highlands [6], the small Amguid crater is nearly overprinted by surrounding radar backscatter. A dry central bowl is partially filled with smoothly surfaced fine-grained playa deposits which absorb radar energy and/or reflect it away from the spacecraft. The result is a distinct radar-dark disk within a bright regional ground clutter. Spider (16 degrees 44'S; 126 degrees 05'E; 13 km dia) Named for a radially splayed fault system in its center, Spider is the exposed root structure of a central-uplift impact feature [7]. Radar slope effects on processed data clearly delineate its size and internal complexity. Henbury craters (24 degrees 35'S

  14. Collision induced ultraviolet structure in nitrogen radar REMPI spectra

    SciTech Connect

    McGuire, S. Miles, R.

    2014-12-28

    We present 2 + 2 radar REMPI measurements in molecular nitrogen under atmospheric conditions and observe a strong interference in the (1,0) vibrational band of the a{sup 1}Π{sub g} ← X{sup 1}Σ{sub g}{sup +} electronic manifold. The interference is suppressed by using circularly polarized light, permitting rotational analysis of the 2 + 2 radar REMPI spectrum. It is observed in pure nitrogen, though the structure varies with gas composition. The structure also varies with temperature and pressure. These results indicate that it is collision induced. We hypothesize that the source of the interference is a 3 + 1 REMPI process through the a{sup ″1}Σ{sub g}{sup +} electronic state.

  15. Influence of Structural Parameters on a Novel Metamaterial Absorber Structure at K-band Frequency

    NASA Astrophysics Data System (ADS)

    Cuong, Tran Manh; Thuy, Nguyen Thi; Tuan, Le Anh

    2016-05-01

    Metamaterials nowadays continue to gain attention thanks to their special electromagnetic characteristics. An increasing number of studies are being conducted on the absolute electromagnetic absorber configurations of high impedance surface materials at a certain frequency band. These configurations are usually fabricated with a layer of metal structure based on a dielectric sheet. In this study, we present an optimal design of a novel electromagnetic absorber metamaterial configuration working at a 23-GHz frequency range (K band).

  16. Tuned vibration absorbers with nonlinear viscous damping for damped structures under random load

    NASA Astrophysics Data System (ADS)

    Shum, K. M.

    2015-06-01

    The classical problem for the application of a tuned vibration absorber is to minimize the response of a structural system, such as displacement, velocity, acceleration or to maximize the energy dissipated by tuned vibration absorber. The development of explicit optimal absorber parameters is challenging for a damped structural system since the fixed points no longer exist in the frequency response curve. This paper aims at deriving a set of simple design formula of tuned vibration absorber with nonlinear viscous damping based on the frequency tuning for harmonic load for a damped structural system under white noise excitation. The vibration absorbers being considered include tuned mass damper (TMD) and liquid column vibration absorber (LCVA). Simple approximate expression for the standard deviation velocity response of tuned vibration absorber for damped primary structure is also derived in this study to facilitate the estimation of the damping coefficient of TMD with nonlinear viscous damping and the head loss coefficient of LCVA. The derived results indicate that the higher the structural inherent damping the smaller the supplementary damping provided by a tuned vibration absorber. Furthermore, the optimal damping of tuned vibration absorber is shown to be independent of structural damping when it is tuned using the frequency tuning for harmonic load. Finally, the derived closed-form expressions are demonstrated to be capable of predicting the optimal parameters of tuned vibration absorbers with sufficient accuracy for preliminary design of tuned vibration absorbers with nonlinear viscous damping for a damped primary structure.

  17. Imaging Absorbing Structures Embedded in Thick Diffusing Media.

    NASA Astrophysics Data System (ADS)

    Dilworth, David Saunders

    Linear systems models and confocal imaging techniques are applied to the problem of imaging absorbing structures embedded in thick diffusing media. At the microscopic level, the model is linear in complex field and space variant; at the macroscopic level where spatial averaging processes are considered the model is linear in irradiance and space variant, thereby becoming mathematically more tractable. We describe the planar confocal imager, in which a small spot of light scans the front surface of a diffuser, and the light distribution on the back surface is sampled for each position of the scanning spot. A composite image is then formed by selection of one pixel from each of the 25,600 images, viz., a pixel from a spot opposite or nearly opposite from the scanning spot. The overall process is effectively a confocal imaging process. The planar system can be modified to create 3-D confocal imaging, where many stereo image pairs are created of the absorbing structures within a thick diffuser. Techniques for both planar and exfoliative deconvolution are investigated. Planar deconvolution sharpens images affected by space invariant processes in which the image point spread function is always the same. Exfoliatative deconvolution is a systematic method for sharpening images formed by space variant processes in which the point spread function varies in accordance with the depth of the embedded object. Results from planar and 3-D confocal scanning verify the linear systems model and demonstrate that the broad beam point spread function width (the point spread function formed by conventional, non-confocal imaging) can be reduced by a factor of 2. Results from planar and exfoliative deconvolution demonstrate that the confocal point spread function width can be reduced by a factor of 1.5. Preliminary optical and data processing techniques are discussed for developing a coherent confocal scanner. The image resolution from this type of scanner will be determined by the

  18. Sound-absorbing slabs and structures based on granular materials (bound and unbound). [energy absorbing efficiency of porous material

    NASA Technical Reports Server (NTRS)

    Petre-Lazar, S.; Popeea, G.

    1974-01-01

    Sound absorbing slabs and structures made up of bound or unbound granular materials are considered and how to manufacture these elements at the building site. The raw material is a single grain powder (sand, expanded blast furnace slag, etc.) that imparts to the end products an apparent porosity of 25-45% and an energy dissipation within the structure leading to absorption coefficients that can be compared with those of mineral wool and urethane.

  19. Inflatable Space Structures Technology Development for Large Radar Antennas

    NASA Technical Reports Server (NTRS)

    Freeland, R. E.; Helms, Richard G.; Willis, Paul B.; Mikulas, M. M.; Stuckey, Wayne; Steckel, Gary; Watson, Judith

    2004-01-01

    There has been recent interest in inflatable space-structures technology for possible applications on U.S. Department of Defense (DOD) missions because of the technology's potential for high mechanical-packaging efficiency, variable stowed geometry, and deployment reliability. In recent years, the DOD sponsored Large Radar Antenna (LRA) Program applied this new technology to a baseline concept: a rigidizable/inflatable (RI) perimeter-truss structure supporting a mesh/net parabolic reflector antenna. The program addressed: (a) truss concept development, (b) regidizable materials concepts assessment, (c) mesh/net concept selection and integration, and (d) developed potential mechanical-system performance estimates. Critical and enabling technologies were validated, most notably the orbital radiation durable regidized materials and the high modulus, inflatable-deployable truss members. These results in conjunction with conclusions from previous mechanical-packaging studies by the U.S. Defense Advanced Research Projects Agency (DARPA) Special Program Office (SPO) were the impetus for the initiation of the DARPA/SPO Innovative Space-based Antenna Technology (ISAT) Program. The sponsor's baseline concept consisted of an inflatable-deployable truss structure for support of a large number of rigid, active radar panels. The program's goal was to determine the risk associated with the application of these new RI structures to the latest in radar technologies. The approach used to define the technology maturity level of critical structural elements was to: (a) develop truss concept baseline configurations (s), (b) assess specific inflatable-rigidizable materials technologies, and (c) estimate potential mechanical performance. The results of the structures portion of the program indicated there was high risk without the essential materials technology flight experiments, but only moderate risk if the appropriate on-orbit demonstrations were performed. This paper covers both

  20. Random filtering structure-based compressive sensing radar

    NASA Astrophysics Data System (ADS)

    Zhang, Jindong; Ban, YangYang; Zhu, Daiyin; Zhang, Gong

    2014-12-01

    Recently with an emerging theory of `compressive sensing' (CS), a radically new concept of compressive sensing radar (CSR) has been proposed in which the time-frequency plane is discretized into a grid. Random filtering is an interesting technique for efficiently acquiring signals in CS theory and can be seen as a linear time-invariant filter followed by decimation. In this paper, random filtering structure-based CSR system is investigated. Note that the sparse representation and sensing matrices are required to be as incoherent as possible; the methods for optimizing the transmit waveform and the FIR filter in the sensing matrix separately and simultaneously are presented to decrease the coherence between different target responses. Simulation results show that our optimized results lead to smaller coherence, with higher sparsity and better recovery accuracy observed in the CSR system than the nonoptimized transmit waveform and sensing matrix.

  1. Polarization insensitive metamaterial absorber based on E-shaped all-dielectric structure

    NASA Astrophysics Data System (ADS)

    Li, Liyang; Wang, Jun; Ma, Hua; Wang, Jiafu; Du, Hongliang; Qu, Shaobo

    2015-04-01

    In this paper, we designed a metamaterial absorber performed in microwave frequency band. This absorber is composed of E-shaped dielectrics which are arranged along different directions. The E-shaped all-dielectric structure is made of microwave ceramics with high permittivity and low loss. Within about 1 GHz frequency band, more than 86% absorption efficiency was observed for this metamaterial absorber. This absorber is polarization insensitive and is stable for incident angles. It is figured out that the polarization insensitive absorption is caused by the nearly located varied resonant modes which are excited by the E-shaped all-dielectric resonators with the same size but in the different direction. The E-shaped dielectric absorber contains intensive resonant points. Our research work paves a way for designing all-dielectric absorber.

  2. Fine structure of the lower atmosphere as seen by high resolution radar

    NASA Technical Reports Server (NTRS)

    Richter, J. H.; Gossard, E. E.; Jensen, D. R.

    1972-01-01

    A ground-based vertically pointing FM-CW radar is described that permits remote probing of the refractive index structure in the troposphere. The radar has the characteristics of extremely high sensitivity, ultrahigh range resolution, and close minimum detection range without clutter. The sounder routinely detects layer structures in the lower troposphere. These layers are always associated with gradients in the vertical refractive index profile, and are frequently very thin, approaching the resolution of the radar (1 m). Very often they are perturbed by wave motions. Examples of various wave patterns are presented, and an explanation is given for organized substructures frequently superimposed on larger scale wave motions.

  3. Exotensioned structural members with energy-absorbing effects

    SciTech Connect

    Brockwell, Michael Ian

    2014-01-07

    Structural members having enhanced load bearing capacity per unit mass include a skeleton structure formed from strips of material. Notches may be placed on the strips and a weave of tensile material placed in the notches and woven around the skeleton structure. At least one pair of structural members can be jointed together to provide very strong joints due to a weave patterns of tensile material, such as Kevlar, that distributes stress throughout the structure, preventing stress from concentrating in one area. Methods of manufacturing such structural members include molding material into skeletons of desired cross section using a matrix of molding segments. Total catastrophic failures in composite materials are substantially avoided and the strength to weight ratio of structures can be increased.

  4. Exotensioned structural members with energy-absorbing effects

    SciTech Connect

    Brockwell, Michael Ian

    2015-08-11

    Structural members having enhanced load bearing capacity per unit mass include a skeleton structure formed from strips of material. Notches may be placed on the strips and a weave of tensile material placed in the notches and woven around the skeleton structure. At least one pair of structural members can be jointed together to provide very strong joints due to a weave patterns of tensile material, such as Kevlar, that distributes stress throughout the structure, preventing stress from concentrating in one area. Methods of manufacturing such structural members include molding material into skeletons of desired cross section using a matrix of molding segments. Total catastrophic failures in composite materials are substantially avoided and the strength to weight ratio of structures can be increased.

  5. Hydrological appraisal of operational weather radar rainfall estimates in the context of different modelling structures

    NASA Astrophysics Data System (ADS)

    Zhu, D.; Xuan, Y.; Cluckie, I.

    2014-01-01

    Radar rainfall estimates have become increasingly available for hydrological modellers over recent years, especially for flood forecasting and warning over poorly gauged catchments. However, the impact of using radar rainfall as compared with conventional raingauge inputs, with respect to various hydrological model structures, remains unclear and yet to be addressed. In the study presented by this paper, we analysed the flow simulations of the upper Medway catchment of southeast England using the UK NIMROD radar rainfall estimates, using three hydrological models based upon three very different structures (e.g. a physically based distributed MIKE SHE model, a lumped conceptual model PDM and an event-based unit hydrograph model PRTF). We focused on the sensitivity of simulations in relation to the storm types and various rainfall intensities. The uncertainty in radar rainfall estimates, scale effects and extreme rainfall were examined in order to quantify the performance of the radar. We found that radar rainfall estimates were lower than raingauge measurements in high rainfall rates; the resolutions of radar rainfall data had insignificant impact at this catchment scale in the case of evenly distributed rainfall events but was obvious otherwise for high-intensity, localised rainfall events with great spatial heterogeneity. As to hydrological model performance, the distributed model had consistent reliable and good performance on peak simulation with all the rainfall types tested in this study.

  6. Hydrological appraisal of operational weather radar rainfall estimates in the context of different modelling structures

    NASA Astrophysics Data System (ADS)

    Zhu, D.; Xuan, Y.; Cluckie, I.

    2013-08-01

    Radar rainfall estimates have become increasingly available for hydrological modellers over recent years, especially for flood forecasting and warning over poorly gauged catchments. However, the impact of using radar rainfall as compared with conventional raingauge inputs, with respect to various hydrological model structures, remains unclear and yet to be addressed. In the study presented by this paper, we analysed the flow simulations of the Upper Medway catchment of Southeast England using the UK NIMROD radar rainfall estimates using three hydrological models based upon three very different structures, e.g. a physically based distributed MIKE SHE model, a lumped conceptual model PDM and an event-based unit hydrograph model PRTF. We focused on the sensitivity of simulations in relation to the storm types and various rainfall intensities. The uncertainty in radar-rainfall estimates, scale effects and extreme rainfall were examined in order to quantify the performance of the radar. We found that radar rainfall estimates were lower than raingauge measurements in high rainfall rates; the resolutions of radar rainfall data had insignificant impact at this catchment scale in the case of evenly distributed rainfall events but was obvious otherwise for high-intensity, localised rainfall events with great spatial heterogeneity. As to hydrological model performance, the distributed model had consistent reliable and good performance on peak simulation with all the rainfall types tested in this study.

  7. ESTIMATION OF TROPICAL FOREST STRUCTURE AND BIOMASS FROM FUSION OF RADAR AND LIDAR MEASUREMENTS (Invited)

    NASA Astrophysics Data System (ADS)

    Saatchi, S. S.; Dubayah, R.; Clark, D. B.; Chazdon, R.

    2009-12-01

    Radar and Lidar instruments are active remote sensing sensors with the potential of measuring forest vertical and horizontal structure and the aboveground biomass (AGB). In this paper, we present the analysis of radar and lidar data acquired over the La Selva Biological Station in Costa Rica. Radar polarimetry at L-band (25 cm wavelength), P-band (70 cm wavelength) and interferometry at C-band (6 cm wavelength) and VV polarization were acquired by the NASA/JPL airborne synthetic aperture radar (AIRSAR) system. Lidar images were provided by a large footprint airborne scanning Lidar known as the Laser Vegetation Imaging Sensor (LVIS). By including field measurements of structure and biomass over a variety of forest types, we examined: 1) sensitivity of radar and lidar measurements to forest structure and biomass, 2) accuracy of individual sensors for AGB estimation, and 3) synergism of radar imaging measurements with lidar imaging and sampling measurements for improving the estimation of 3-dimensional forest structure and AGB. The results showed that P-band radar combined with any interformteric measurement of forest height can capture approximately 85% of the variation of biomass in La Selva at spatial scales larger than 1 hectare. Similar analysis at L-band frequency captured only 70% of the variation. However, combination of lidar and radar measurements improved estimates of forest three-dimensional structure and biomass to above 90% for all forest types. We present a novel data fusion approach based on a Baysian estimation model with the capability of incorporating lidar samples and radar imagery. The model was used to simulate the potential of data fusion in future satellite mission scenarios as in BIOMASS (planned by ESA) at P-band and DESDynl (planned by NASA) at L-band. The estimation model was also able to quantify errors and uncertainties associated with the scale of measurements, spatial variability of forest structure, and differences in radar and lidar

  8. Harnessing snap-through instability for shape-recoverable energy-absorbing structure

    NASA Astrophysics Data System (ADS)

    Kang, Sung; Shan, Sicong; Raney, Jordan; Wang, Pai; Candido, Francisco; Lewis, Jennifer; Bertoldi, Katia

    2015-03-01

    Energy absorbing materials and structures are used in numerous areas for maintaining structural integrity, protection and comfort. To absorb/dissipate energy from shock/vibration, one generally relies on processes such as plastic deformation and damping as the case of metal foams and suspensions. Because plastic deformation and damping induce irreversible change in the energy-absorbing systems such as shape changes and degradation of damping elements by heat dissipation, it would be desirable to develop a new energy-absorption mechanism with reversibility. Furthermore, it would be desirable to implement energy-absorption mechanisms whose behavior is not affected by the rate of loading. Here, we report a shape-recoverable system that absorbs energy without degradation by harnessing multistability in elastic structures. Using numerical simulations, we investigate geometrical parameters that determine the onset of the snap-through and multi-stability. We subsequently manufacture structures with different geometrical parameters and sizes using a scalable direct-write 3D printing approach. We experimentally demonstrate reversible energy-absorption in these structures at strain rates over three orders of magnitudes, with reduced peak acceleration under impact by up to one order of magnitude compared with control samples. Our findings can open new opportunities for scalable design and manufacturing of energy-absorbing materials and structures.

  9. An `H'-shape three-dimensional meta-material used in honeycomb structure absorbing material

    NASA Astrophysics Data System (ADS)

    Huang, Daqing; Kang, Feiyu; Zhou, Zhuohui; Cheng, Hongfei; Ding, Heyan

    2015-03-01

    An `H'-shape three-dimensional meta-material structure which loaded on the sidewall of honeycomb structure absorbing material was designed and fabricated in this project. The simulation results demonstrated a super-wide absorption band below -10 dB between 2.3 and 18 GHz, which expanded 7 GHz compared with the absorber without meta-material. The relative impedance curve was analyzed, which showed that the meta-material has little impact on the impedance-matching characteristics of the honeycomb structure absorbing material. We further studied the distribution of both electronic field energy and magnetic field energy. The former one indicated that the low-frequency absorption peaks could easily be moved by adjusting the parameters of the parallel-plate capacitors which generate electric resonance, and the latter one illustrated that the three-dimensional meta-material could generate magnetic resonance between units which would not exist in two-dimensional meta-material. Then we verified the simulation results through experiment which display a similar absorbing curve. The differences between simulation results and experiment results were caused by the addition substrate of the meta-material, which could not be eliminated in this experiment. However, it still implied that we can obtain a meta-material absorber that has a super-wide absorbing band if we can put the meta-material on the sidewall of the honeycomb without attachments.

  10. The design of impact absorbing structures for additive manufacture

    NASA Astrophysics Data System (ADS)

    Brennan-Craddock, J.; Brackett, D.; Wildman, R.; Hague, R.

    2012-08-01

    Additive manufacturing (AM) is increasingly becoming a viable manufacturing process due to dramatic advantages that it facilitates in the area of design complexity. This paper investigates the potential of additively manufactured lattice structures for the application of tailored impact absorption specifically for conformal body protection. It explores lattice cell types based on foam microstructures and assesses their suitability for impact absorption. The effect of varying the cell strut edge design is also investigated. The implications of scaling these cells up for AM are discussed as well as the design issues regarding the handling of geometric complexity and the requirement for body conformity. The suitability of AM materials for this application is also discussed.

  11. Control of flexible spacecraft structures using H-infinity wave absorbing control

    NASA Astrophysics Data System (ADS)

    Strong, Ronald E.

    1994-12-01

    This work studies the use of a wave absorbing control law for vibration suppression of flexible spacecraft structures. A major advantage of this method is that it does not involve truncation into a finite dimensional mathematical model. A closed loop scattering matrix was derived which gives the relationship between incoming waves, outgoing waves, sensor and actuator. The control law was determined by minimizing the H-infinity norm of this matrix. The control law was applied to the Naval Postgraduate School's Flexible Spacecraft Simulator (FSS) for vibration suppression. The simulator's flexible beam was controlled using piezoceramic wafers as sensors and actuators. The H-infinity wave absorbing controller contributed significant damping to the structure, especially at the first mode of 1 Hz. Therefore, wave absorbing control and piezoceramic sensors and actuators offer a viable approach for vibration suppression of space structures.

  12. A noncontact FMCW radar sensor for displacement measurement in structural health monitoring.

    PubMed

    Li, Cunlong; Chen, Weimin; Liu, Gang; Yan, Rong; Xu, Hengyi; Qi, Yi

    2015-01-01

    This paper investigates the Frequency Modulation Continuous Wave (FMCW) radar sensor for multi-target displacement measurement in Structural Health Monitoring (SHM). The principle of three-dimensional (3-D) displacement measurement of civil infrastructures is analyzed. The requirements of high-accuracy displacement and multi-target identification for the measuring sensors are discussed. The fundamental measuring principle of FMCW radar is presented with rigorous mathematical formulas, and further the multiple-target displacement measurement is analyzed and simulated. In addition, a FMCW radar prototype is designed and fabricated based on an off-the-shelf radar frontend and data acquisition (DAQ) card, and the displacement error induced by phase asynchronism is analyzed. The conducted outdoor experiments verify the feasibility of this sensing method applied to multi-target displacement measurement, and experimental results show that three targets located at different distances can be distinguished simultaneously with millimeter level accuracy. PMID:25822139

  13. A Noncontact FMCW Radar Sensor for Displacement Measurement in Structural Health Monitoring

    PubMed Central

    Li, Cunlong; Chen, Weimin; Liu, Gang; Yan, Rong; Xu, Hengyi; Qi, Yi

    2015-01-01

    This paper investigates the Frequency Modulation Continuous Wave (FMCW) radar sensor for multi-target displacement measurement in Structural Health Monitoring (SHM). The principle of three-dimensional (3-D) displacement measurement of civil infrastructures is analyzed. The requirements of high-accuracy displacement and multi-target identification for the measuring sensors are discussed. The fundamental measuring principle of FMCW radar is presented with rigorous mathematical formulas, and further the multiple-target displacement measurement is analyzed and simulated. In addition, a FMCW radar prototype is designed and fabricated based on an off-the-shelf radar frontend and data acquisition (DAQ) card, and the displacement error induced by phase asynchronism is analyzed. The conducted outdoor experiments verify the feasibility of this sensing method applied to multi-target displacement measurement, and experimental results show that three targets located at different distances can be distinguished simultaneously with millimeter level accuracy. PMID:25822139

  14. The tectonics of Titan: Global structural mapping from Cassini RADAR

    NASA Astrophysics Data System (ADS)

    Liu, Zac Yung-Chun; Radebaugh, Jani; Harris, Ron A.; Christiansen, Eric H.; Neish, Catherine D.; Kirk, Randolph L.; Lorenz, Ralph D.

    2016-05-01

    The Cassini RADAR mapper has imaged elevated mountain ridge belts on Titan with a linear-to-arcuate morphology indicative of a tectonic origin. Systematic geomorphologic mapping of the ridges in Synthetic Aperture RADAR (SAR) images reveals that the orientation of ridges is globally E-W and the ridges are more common near the equator than the poles. Comparison with a global topographic map reveals the equatorial ridges are found to lie preferentially at higher-than-average elevations. We conclude the most reasonable formation scenario for Titan's ridges is that contractional tectonism built the ridges and thickened the icy lithosphere near the equator, causing regional uplift. The combination of global and regional tectonic events, likely contractional in nature, followed by erosion, aeolian activity, and enhanced sedimentation at mid-to-high latitudes, would have led to regional infilling and perhaps covering of some mountain features, thus shaping Titan's tectonic landforms and surface morphology into what we see today.

  15. Additive manufacturing of RF absorbers

    NASA Astrophysics Data System (ADS)

    Mills, Matthew S.

    The ability of additive manufacturing techniques to fabricate integrated electromagnetic absorbers tuned for specific radio frequency bands within structural composites allows for unique combinations of mechanical and electromagnetic properties. These composites and films can be used for RF shielding of sensitive electromagnetic components through in-plane and out-of-plane RF absorption. Structural composites are a common building block of many commercial platforms. These platforms may be placed in situations in which there is a need for embedded RF absorbing properties along with structural properties. Instead of adding radar absorbing treatments to the external surface of existing structures, which adds increased size, weight and cost; it could prove to be advantageous to integrate the microwave absorbing properties directly into the composite during the fabrication process. In this thesis, a method based on additive manufacturing techniques of composites structures with prescribed electromagnetic loss, within the frequency range 1 to 26GHz, is presented. This method utilizes screen printing and nScrypt micro dispensing to pattern a carbon based ink onto low loss substrates. The materials chosen for this study will be presented, and the fabrication technique that these materials went through to create RF absorbing structures will be described. The calibration methods used, the modeling of the RF structures, and the applications in which this technology can be utilized will also be presented.

  16. Finite Element Analysis of an Energy Absorbing Sub-floor Structure

    NASA Technical Reports Server (NTRS)

    Moore, Scott C.

    1995-01-01

    As part of the Advanced General Aviation Transportation Experiments program, the National Aeronautics and Space Administration's Langley Research Center is conducting tests to design energy absorbing structures to improve occupant survivability in aircraft crashes. An effort is currently underway to design an Energy Absorbing (EA) sub-floor structure which will reduce occupant loads in an aircraft crash. However, a recent drop test of a fuselage specimen with a proposed EA sub-floor structure demonstrated that the effects of sectioning the fuselage on both the fuselage section's stiffness and the performance of the EA structure were not fully understood. Therefore, attempts are underway to model the proposed sub-floor structure on computers using the DYCAST finite element code to provide a better understanding of the structure's behavior in testing, and in an actual crash.

  17. Planetary benchmarks. [structural design criteria for radar reference devices on planetary surfaces

    NASA Technical Reports Server (NTRS)

    Uphoff, C.; Staehle, R.; Kobrick, M.; Jurgens, R.; Price, H.; Slade, M.; Sonnabend, D.

    1978-01-01

    Design criteria and technology requirements for a system of radar reference devices to be fixed to the surfaces of the inner planets are discussed. Offshoot applications include the use of radar corner reflectors as landing beacons on the planetary surfaces and some deep space applications that may yield a greatly enhanced knowledge of the gravitational and electromagnetic structure of the solar system. Passive retroreflectors with dimensions of about 4 meters and weighing about 10 kg are feasible for use with orbiting radar at Venus and Mars. Earth-based observation of passive reflectors, however, would require very large and complex structures to be delivered to the surfaces. For Earth-based measurements, surface transponders offer a distinct advantage in accuracy over passive reflectors. A conceptual design for a high temperature transponder is presented. The design appears feasible for the Venus surface using existing electronics and power components.

  18. Utilization of monolayer MoS2 in Bragg stacks and metamaterial structures as broadband absorbers

    NASA Astrophysics Data System (ADS)

    Mukherjee, Bablu; Simsek, Ergun

    2016-06-01

    We numerically study the possibility of using atomically thin transition metal dichalcogenides (TMDs) for applications requiring broadband absorption in the visible range of the electromagnetic spectrum. We demonstrate that when monolayer TMDs are positioned into a finite-period of multilayer Bragg stack geometry, they make broadband, wide-angle, almost polarization-independent absorbers. In our study, we consider molybdenum disulfide (MoS2) and silicon dioxide (SiO2) as semiconducting and dielectric thin film of alternate high- and low- index films, respectively. By optimizing the thickness of the SiO2 film, we find that monolayer MoS2 based Bragg stacks can absorb 94.7% of the incident energy in the visible (350-700 nm). Similar structures can be engineered to make perfect reflectors for saturable absorption applications. We also demonstrate that bandwidth of metamaterial absorbers can be expanded using monolayer TMDs.

  19. Planetary Radar

    NASA Technical Reports Server (NTRS)

    Neish, Catherine D.; Carter, Lynn M.

    2015-01-01

    This chapter describes the principles of planetary radar, and the primary scientific discoveries that have been made using this technique. The chapter starts by describing the different types of radar systems and how they are used to acquire images and accurate topography of planetary surfaces and probe their subsurface structure. It then explains how these products can be used to understand the properties of the target being investigated. Several examples of discoveries made with planetary radar are then summarized, covering solar system objects from Mercury to Saturn. Finally, opportunities for future discoveries in planetary radar are outlined and discussed.

  20. High-resolution interferometric radar images of equatorial spread F scattering structures using Capon's method

    NASA Astrophysics Data System (ADS)

    Zewdie, G. K.; Rodrigues, F. S.; Paula, E. R.

    2015-12-01

    Coherent backscatter radar imaging techniques use measurements made by multiple antenna baselines (visibility estimates) to infer the spatial distribution of the scatterers (brightness function) responsible for the observed echoes. It has been proposed that the Capon method for spectral estimation can be used for high-resolution estimation of the brightness distribution. We investigate the application of the Capon method to measurements made by a small (7-baseline) 30 MHz ionospheric coherent backscatter radar interferometer in Sao Luis, Brazil. The longest baseline of the interferometer is only 15 times the wavelength of radar signal (10 m), and the ionospheric radar soundings have been made using only 4-8 kW transmitters. Nevertheless, we have been able to obtain high-resolution (kilometric scales in the zonal direction) images of scattering structures during equatorial spread F (ESF) events over a wide field of view (+/- 10 degrees off zenith). We will present numerical simulations demonstrating the performance of the technique for the Sao Luis radar setup as well as results of the Capon technique applied to actual measurements. We will discuss the behavior of the ESF scattering structures as seen in the Capon images. The high-resolution images can assist our interpretation of plasma instabilities in the equatorial ionosphere and serve to test our ability to model the behavior of ionospheric irregularities during space weather events such as those associated with ESF.

  1. Space shuttle observations of terrestrial impact structures using SIR-C and X-SAR radars

    NASA Astrophysics Data System (ADS)

    McHone, John F.; Greeley, Ronald; Williams, Kevin K.; Blumberg, Dan G.; Kuzmin, Ruslan O.

    2002-03-01

    Ten terrestrial impact structures were imaged during two flights of the 1994 Space Radar Laboratory (SRL) experiment. These craters include Wolf Creek, Australia; Roter Kamm, Namibia; Zhamanshin, Kazakhstan; B.P. and Oasis, Libya; Aorounga, Chad; Amguid, Algeria; and Spider, Connolly Basin and Henbury, Australia. SRL contained two co-registered instruments; the United States SIR-C polarimetric radar system operating in L-band (?=24 cm) and C-band (?=5.6 cm), and the joint German/Italian X-SAR vertically-polarized radar operating in X-band (?=3 cm). Comparisons show SRL images to be complementary to, or in some cases superior to, corresponding optical images for evaluating size, location, and relative age of impact features. Regardless of wavelength or polarization, craters with significant relief appear prominently on radar as a result of slope and roughness effects. In desert regions, longer wavelengths penetrate dry sand mantles to reveal hidden crater dimensions or associated buried landforms. Radar polarities and wavelengths are particularly sensitive to vegetation, surface roughness, and soil moisture or electrical properties. In the more temperate environments of Kazakhstan and Australia, SRL images show detailed stream patterns that reveal the location and structure of otherwise obscured impact features.

  2. Compact Intracloud Discharge Locations Compared To Thunderstorm Radar Echo Structure

    NASA Astrophysics Data System (ADS)

    Karunarathna, N.; Marshall, T. C.; Stolzenburg, M.; Karunarathne, S.

    2014-12-01

    In this presentation we study positive polarity Compact Intracloud Discharges (CIDs), which are also known as Narrow Bipolar Pulses (NBPs). Positive NBPs are classified according to their location, found using a three-dimensional time-of-arrival method, within the thundercloud radar echo. Using NEXRAD radar data, the NBPs are classified as occurring (1) in the Updraft region, (2) Outside of the Updraft region, or (3) in the Anvil region. Total of 177 positive NBPs found on one storm day in several Florida storms were analyzed and categorized into the above groups. A large majority of the NBPs occurred in the Updraft region (over 80%), while about 15% occurred in Outside of the updraft region and only few percent occurred in the Anvil region. The NBPs were more common in or above high radar reflectivity regions ≥ 30 dBZ, yet many were associated with ≤ 30 dBZ and even ≤ 20 dBZ regions. There are also cases of re-occurrence of an NBP in close proximity (within 500 m in x and y position) to previous NBP locations: 38 of these re-occurrences were doublets, and there were seven triplets present. One case with four very close (within about 350 m horizontally and with only 23 - 494 s time separation) proximate occurrences can be seen in our data set. Recently Karunarathne et al. [2014] have identified three main types of NBPs according to their electromagnetic wave shapes as (a) clean bipolar, (b) those with secondary peaks and (c) those with faster rise time and longer duration. In this study, the presence of these wave shape types within the updraft, outside of the updraft and the anvil region are analyzed. The majority (over 50 %) of the NBPs in the updraft region comprised with type (b) NBPs. Outside of the updraft and the anvil contained majority of type (c) NBPs. Outside of the updraft, only a very few type (a) NBPs are found among this set of 177 examples.

  3. An adaptive piezoelectric vibration absorber enhanced by a negative capacitance applied to a shell structure

    NASA Astrophysics Data System (ADS)

    Gripp, J. A. B.; Góes, L. C. S.; Heuss, O.; Scinocca, F.

    2015-12-01

    Piezoelectric shunt damping is a well-known technique to damp mechanical vibrations of a structure, using a piezoelectric transducer to convert mechanical vibration energy into electrical energy, which is dissipated in an electrical resistance. Resonant shunts consisting of a resistance and an inductance connected to a piezoelectric transducer are used to damp structural vibrations in narrow frequency bands, but their performance is very sensitive to variations in structural modal frequencies and transducer capacitance. In order to overcome this drawback, a piezoelectric shunt damping technique with improved performance and robustness is presented in this paper. The design of the adaptive circuit considers the variation of the host structure’s natural frequency as a project parameter. This paper describes an adaptive resonant piezoelectric vibration absorber enhanced by a synthetic negative capacitance applied to a shell structure. The resonant shunt circuit autonomously adapts its inductance value by comparing the phase difference of the vibration velocity and the current flowing through the shunt circuit. Moreover, a synthetic negative capacitance is added to the shunt circuit to enhance the vibration attenuation provided by the piezoelectric absorber. The circuitry is implemented using analog components. Validation of the proposed method is done by bonding the piezoelectric absorber on a free-formed metallic shell.

  4. An interferometric radar for displacement measurement and its application in civil engineering structures

    NASA Astrophysics Data System (ADS)

    Su, D.; Nagayama, T.; Sun, Z.; Fujino, Y.

    2012-04-01

    Recent progress in radar techniques and systems has led to the development of a microwave interferometer, potentially suitable for non-contact displacement monitoring of civil engineering structures. This paper describes a new interferometric radar system, named IBIS-S, which is possible to measure the static or dynamic displacement at multiple points of structures simultaneously with high accuracy. In this paper, the technical characteristics and specification of the radar system is described. Subsequently, the actual displacement sensitivity of the equipment is illustrated using the laboratory tests with random motion upon a shake table. Finally the applications of the radar system to the measurement on a cable-stayed bridge and a prestressed concrete bridge are presented and discussed. Results show that the new system is an accurate and effective method to measure displacements of multiple targets of structures. It should be noted that the current system can only measure the vibration of the target position along the sensor's line of sight. Hence, proper caution should be taken when designing the sensor posture and prior knowledge of the direction of motion is necessary.

  5. The structure of the X-ray absorber in Mrk 915 revealed by Swift.

    NASA Astrophysics Data System (ADS)

    Severgnini, P.; Ballo, L.; Braito, V.; Caccianiga, A.; Campana, S.; Della Ceca, R.; Moretti, A.; Vignali, C.

    2015-11-01

    In this paper, we present the results obtained with a monitoring programme (23 days long) performed with Swift-XRT on the local Seyfert galaxy Mrk 915. The light-curve analysis shows a significant count rate variation (about a factor of 2-3) on a time-scale of a few days, while the X-ray colours show a change in the spectral curvature below 2 keV and the presence of two main spectral states. From the spectral analysis we find that the observed variations can be explained by the change of the intrinsic nuclear power (about a factor of 1.5) coupled with a change of the properties of an ionized absorber. The quality of the data prevents us from firmly establishing if the spectral variation is due to a change in the ionization state and/or in the covering factor of the absorbing medium. The latter scenario would imply a clumpy structure of the ionized medium. By combining the information provided by the light curve and the spectral analyses, we can derive some constraints on the location of the absorber under the hypotheses of either homogeneous or clumpy medium. In both cases, we find that the absorber should be located inside the outer edge of an extended torus and, in particular, under the clumpy hypothesis, it should be located near, or just outside, to the broad emission line region.

  6. Radar observations of the asteroid's structure from deep interior to regolith

    NASA Astrophysics Data System (ADS)

    Ciarletti, Valerie; Herique, Alain

    2016-04-01

    Our knowledge of the internal structure of asteroids entirely relies on inferences from remote sensing observations of the surface and theoretical modeling. Is the body a monolithic piece of rock or a rubble-pile, how high is the porosity? What is the typical size of the constituent blocs? Are these blocs homogeneous or heterogeneous? The body is covered by a regolith whose properties remain largely unknown in term of depth, size distribution and spatial variability. Is it resulting from fine particles re-accretion or from thermal fracturing? After several asteroid orbiting missions, theses crucial and yet basic questions remain open. Direct measurements of asteroid deep interior and regolith structure are needed to better understand the asteroid accretion and dynamical evolution and to provide answers that will directly improve our ability to understand the formation and evolution of the Near Earth Asteroids (NEA), that will allow us to model the mechanisms driving NEA deflection and other risk mitigation techniques. Radars operating at distance from a spacecraft are the only instruments capable of achieving this science objective of characterizing the internal structure and heterogeneity from submetric to global scale for the benefit of science as well as for planetary defense or exploration. The AIM mission will have two complementary radars on-board, operating at different frequencies in order to meet the objectives requirements. The deep interior structure tomography requires a low-frequency radar (LFR) in order to propagate throughout the complete body (this LFR will be a direct heritage of the CONSERT radar designed for the Rosetta mission). Ihe characterization of the first ten meters of the subsurface with a metric resolution to identify layering and to reconnect surface measurements to internal structure will be achieved with a higher frequency radar(HFR), the design of which is based on the WISDOM radar developed for the ExoMars mission. Both radars are

  7. Narrow bipolar pulse locations compared to thunderstorm radar echo structure

    NASA Astrophysics Data System (ADS)

    Karunarathna, Nadeeka; Marshall, Thomas C.; Stolzenburg, Maribeth; Karunarathne, Sumedhe

    2015-11-01

    The locations of 172 positive narrow bipolar pulses (NBPs) found on one day in Florida are superimposed on radar reflectivity data from that day. All 172 NBPs were found within the reflectivity of a thundercloud or at the edge of the reflectivity. The NBPs were classified into three groups: (I) in or above the high-reflectivity core of the storm, (II) in the convective region but not Group I, or (III) in the anvil region. Groups I, II, and III had, respectively, 79%, 17%, and 4% of the NBPs. Of the 136 NBPs in Group I, 43% occurred within the reflectivity core and 57% occurred above the core. A sequence of 34 positive NBPs during 1 h of one thunderstorm suggests that the majority of NBPs occurred during the rapid growth of two thunderstorm cells. Positive NBPs seem to recur in some storm locations; 67 (39%) of the NBPs were part of a recurrent set. We found 28 cases of NBPs recurring in approximately the same location, including 22 doublets, 3 triplets, 2 quadruplets, and 1 sextuplet. Analyses of one quadruplet and one sextuplet showed that these 10 positive NBPs occurred just above and/or right beside the high-reflectivity core on the downshear side of the core. Our data lead us to a hypothesis that NBPs occurring between the thunderstorm's upper positive charge and upper negative screening charge are initiated by small-scale charge regions with positive charge above negative charge, or opposite the orientation of the large-scale storm charges.

  8. Structural investigation of the Grenville Province by radar and other imaging and nonimaging sensors

    NASA Technical Reports Server (NTRS)

    Lowman, P. D., Jr.; Blodget, H. W.; Webster, W. J., Jr.; Paia, S.; Singhroy, V. H.; Slaney, V. R.

    1984-01-01

    The structural investigation of the Canadian Shield by orbital radar and LANDSAT, is outlined. The area includes parts of the central metasedimentary belt and the Ontario gneiss belt, and major structures as well-expressed topographically. The primary objective is to apply SIR-B data to the mapping of this key part of the Grenville orogen, specifically ductile fold structures and associated features, and igneous, metamorphic, and sedimentary rock (including glacial and recent sediments). Secondary objectives are to support the Canadian RADARSAT project by evaluating the baseline parameters of a Canadian imaging radar satellite planned for late in the decade. The baseline parameters include optimum incidence and azimuth angles. The experiment is to develop techniques for the use of multiple data sets.

  9. Identification of Structural Changes Caused by Weed Infection in Agriculture by Optical and Radar Data

    NASA Astrophysics Data System (ADS)

    Nador, Gizella; Surek, Gyorgy; Fenyes, Diana; Ocsai, Katalin; Linda Toth, Gracia; Akos Gera, David; Hubik, Iren; Simon, Andras; Torok, Cecilia

    2011-03-01

    In most cases the healthy, weed-free cropland has a regular geometric structure determined by sowing technique and plant-to-plant distances. Several plant diseases and weed infections can cause disorders and structural changes in cropland. According to our experience, this type of geometrical changes can be well detected by using polarimetric radar images (RADARSAT2, ALOS PALSAR) with different polarizations (dual, quad) and wavelengths (C, L band).We analyze agricultural damages resulting in structural changes in different croplands. In this paper we propose to complete the methodology of identifying these agricultural damages based on the integrated use of optical and radar satellite images. We focused on the detection of ragweed infection on sunflower lands. According to our results it is possible to develop a methodology based on the quantitative evaluation of polarimetric features which enables us to identify ragweed infected sunflower lands before the beginning of pollen scattering (beginning of August).

  10. Active vibration absorber for the CSI evolutionary model - Design and experimental results. [Controls Structures Interaction

    NASA Technical Reports Server (NTRS)

    Bruner, Anne M.; Belvin, W. Keith; Horta, Lucas G.; Juang, Jer-Nan

    1991-01-01

    The development of control of large flexible structures technology must include practical demonstrations to aid in the understanding and characterization of controlled structures in space. To support this effort, a testbed facility has been developed to study practical implementation of new control technologies under realistic conditions. The paper discusses the design of a second order, acceleration feedback controller which acts as an active vibration absorber. This controller provides guaranteed stability margins for collocated sensor/actuator pairs in the absence of sensor/actuator dynamics and computational time delay. Experimental results in the presence of these factors are presented and discussed. The robustness of this design under model uncertainty is demonstrated.

  11. Final report of LDRD project: Electromagnetic impulse radar for detection of underground structures

    SciTech Connect

    Loubriel, G.; Aurand, J.; Buttram, M.; Zutavern, F.; Brown, D.; Helgeson, W.

    1998-03-01

    This report provides a summary of the LDRD project titled: Electromagnetic impulse radar for the detection of underground structures. The project met all its milestones even with a tight two year schedule and total funding of $400 k. The goal of the LDRD was to develop and demonstrate a ground penetrating radar (GPR) that is based on high peak power, high repetition rate, and low center frequency impulses. The idea of this LDRD is that a high peak power, high average power radar based on the transmission of short impulses can be utilized effect can be utilized for ground penetrating radar. This direct time-domain system the authors are building seeks to increase penetration depth over conventional systems by using: (1) high peak power, high repetition rate operation that gives high average power, (2) low center frequencies that better penetrate the ground, and (3) short duration impulses that allow for the use of downward looking, low flying platforms that increase the power on target relative to a high flying platform. Specifically, chirped pulses that are a microsecond in duration require (because it is difficult to receive during transmit) platforms above 150 m (and typically 1 km) while this system, theoretically could be at 10 m above the ground. The power on target decays with distance squared so the ability to use low flying platforms is crucial to high penetration. Clutter is minimized by time gating the surface clutter return. Short impulses also allow gating (out) the coupling of the transmit and receive antennas.

  12. Mesoscale atmospheric organized structures over the Asian marginal seas on satellite radar images

    SciTech Connect

    Mitnik, L.M. |; Hsu, M.K.; Liu, C.T.; Chen, K.S.

    1994-12-31

    Mesoscale organized cloud structures are regularly observed on the satellite visible and infrared images obtained over the Asian marginal seas and over the Pacific ocean during winter monsoon. These structures originate in the marine boundary layer of the atmosphere as a result of roll and cellular convection when dry cold air mass from Asia moves over the warmer sea surface or from an interaction of air flow with coastal orography. The organized variations manifest themselves also in the fields of other meteorological parameters: temperature, humidity, vertical and horizontal wind speed. Sometimes they are registered in cloudless conditions. Spectrum of their sizes is broad; from below 1 km to about 100 km. The Okean satellite real aperture radar (RAR) and ERS-1 synthetic aperture radar (SAR) images were used for investigation of the sea surface roughness distribution (reflecting the horizontal sea surface wind variations) during mesoscale organized convection. The X-band Okean RAR has a swath width of 460 km and a spatial resolution of 1--3 km. The S-band ERS-1 SAR images having a swath of 100 km and a spatial resolution of about 15 m demonstrate the features of the surface wind field with sizes of order 1 km and less. Model calculations of the NRCS were performed both for X-band and S-band radar sensing for simple two-component models describing typical sea surface wind distributions for a number of mesoscale organized structures.

  13. Design of energy absorbing materials and composite structures based on porous shape memory alloys (SE)

    NASA Astrophysics Data System (ADS)

    Zhao, Ying

    Recently, attention has been paid to porous shape memory alloys. This is because the alloys show large and recoverable deformation, i.e. superelasticity and shape memory effect. Due to their light weight and potential large deformations, porous shape memory alloys have been considered as excellent candidates for energy absorption materials. In the present study, porous NiTi alloy with several different porosities are processed by spark plasma sintering (SPS). The compression behavior of the porous NiTi is examined with an aim of using it for a possible high energy absorbing material. Two models for the macroscopic compression behavior of porous shape memory alloy (SMA) are presented in this work, where Eshelby's inhomogeneous inclusion method is used to predict the effective elastic and superelastic behavior of a porous SMA based on the assumption of stress-strain curve. The analytical results are compared with experimental data for porous NiTi with 13% porosity, resulting in a reasonably good agreement. Based on the study upon porous NiTi, an energy absorbing composite structure made of a concentric NiTi spring and a porous NiTi rod is presented in this PhD dissertation. Both NiTi spring and porous NiTi rod are of superelastic grade. Ductile porous NiTi cylindrical specimens are fabricated by spark plasma sintering. The composite structure exhibits not only high reversible force-displacement behavior for small to intermediate loading but also high energy absorbing property when subjected to large compressive loads. A model for the compressive force-displacement curve of the composite structure is presented. The predicted curve is compared to the experimental data, resulting in a reasonably good agreement.

  14. Plasmonic Structure Enhanced Exciton Generation at the Interface between the Perovskite Absorber and Copper Nanoparticles

    PubMed Central

    Lin, Kuen-Feng; Chiang, Chien-Hung; Wu, Chun-Guey

    2014-01-01

    The refractive index and extinction coefficient of a triiodide perovskite absorber (TPA) were obtained by fitting the transmittance spectra of TPA/PEDOT:PSS/ITO/glass using the transfer matrix method. Cu nanoplasmonic structures were designed to enhance the exciton generation in the TPA and to simultaneously reduce the film thickness of the TPA. Excitons were effectively generated at the interface between TPA and Cu nanoparticles, as observed through the 3D finite-difference time-domain method. The exciton distribution is advantageous for the exciton dissociation and carrier transport. PMID:25295290

  15. Dependence of acoustic properties of sound absorbing fibrous materials on their structure

    NASA Astrophysics Data System (ADS)

    Voronina, N. N.

    1984-07-01

    The performance of sound absorbing structures is characterized by two acoustic parameters: the dimensionless wave impedance (referred to the wave impedance of air) and the propagation constant. Both parameters can be defined as complex quantities whose real and imaginary parts were evaluated for various materials. On the basis of experimental data, semiempirical relations were established describing these parameters as functions of the density and of the fiber thickness, in the case of fibrous materials, as well as their frequency characteristics. The results given in pertain to fiberglass, mineral cotton wool, and nylon fiber.

  16. Observations of frontal zone structures with a VHF Doppler radar and radiosondes, part 1.2A

    NASA Technical Reports Server (NTRS)

    Larsen, M. F.; Rottger, J.

    1984-01-01

    The SOUSY-VHF-Radar is a pulsed coherent radar operating at 53.5 MHz and located near Bad Lauterbert, West Germany. Since 1977, the facility, operated by the Max-Planck-Institut fur Aeronomie, has been used to make a series of frontal passage observations in the spring and fall. Experiments in winter have been difficult because part of the transmitting and receiving array is usually covered by snow during that part of the year. Wavelengths around 6 m are known to be sensitive to the vertical temperature structure of the atmosphere (GREEN and GAGE, 1980; RASTOGI and ROTTGER, 1982). Thus, it has been possible to use radars operating at frequencies near 500 MHz to locate the tropopause. Comparisons between radar data and radiosonde data have shown that there is a large gradient in the radar reflectivity at the height where the radiosonde tropopause occurs. An experiment carried out by ROTTGER (1979) on March 15 to 16, 1977, showed that the radar's sensitivity to the vertical temperature structure could also be used to locate the position of fronts. The SOUSY-VHF-Radar consists of a transmitting array, also used for receiving in some configurations, that can be scanned in the off-vertical direction but not at sufficiently low elevation angles to study the horizontal extent of structures.

  17. Microburst wind structure and evaluation of Doppler radar for airport wind shear detection

    NASA Technical Reports Server (NTRS)

    Wilson, J. W.; Roberts, R. D.; Kessinger, C.; Mccarthy, J.

    1984-01-01

    The horizontal and vertical structure of airflow within microbursts has been determined using Doppler weather radar data from the Joint Airport Weather Studies (JAWS) Project. It is shown that the downdraft typically associated with microbursts is about 1 km wide and begins to spread horizontally at a height below 1 km. The median time from initial divergence at the surface to maximum differential wind velocity across the microburst is five minutes. The height of maximum differential velocity is about 75 m, and the median velocity differential is 22 m/s over an average distance of 3.1 km. The outflow of the air is asymmetric, averaging twice as strong along the maximum axis compared to the mininum axis. Some technical requirements for a radar system to detect microbursts and to provide aircraft with early warnings of the onset of windshear are identified.

  18. Incoherent scatter radar observations of irregular structure in mid-latitude sporadic E layers

    NASA Technical Reports Server (NTRS)

    Miller, K. L.; Smith, L. G.

    1978-01-01

    The basic experiments used phase-coded pulses to record electron density profiles with a resolution of 600 m in range and 300 m in horizontal extent, while scanning in azimuth. Data from incoherent scatter radar were compared with simultaneous ionosonde observations. Observations of sporadic E layers by incoherent scatter radar were discussed in terms of the effects of the neutral wind system acting on metallic ions. Several features were noted in the data, which support the wind shear mechanism of layer formation. The sporadic E layers often contained a pronounced small-scale structure, especially at times when partially transparent echoes were observed by the ionosonde. Under specific conditions, the ions in a meteor trail can be converged by a shear in the neutral wind into a relatively small irregularity at the center of a sporadic E layer.

  19. Adaptive Radar Detection of a Subspace Signal Embedded in Subspace Structured Plus Gaussian Interference Via Invariance

    NASA Astrophysics Data System (ADS)

    De Maio, Antonio; Orlando, Danilo

    2016-04-01

    This paper deals with adaptive radar detection of a subspace signal competing with two sources of interference. The former is Gaussian with unknown covariance matrix and accounts for the joint presence of clutter plus thermal noise. The latter is structured as a subspace signal and models coherent pulsed jammers impinging on the radar antenna. The problem is solved via the Principle of Invariance which is based on the identification of a suitable group of transformations leaving the considered hypothesis testing problem invariant. A maximal invariant statistic, which completely characterizes the class of invariant decision rules and significantly compresses the original data domain, as well as its statistical characterization are determined. Thus, the existence of the optimum invariant detector is addressed together with the design of practically implementable invariant decision rules. At the analysis stage, the performance of some receivers belonging to the new invariant class is established through the use of analytic expressions.

  20. The structure of the convective atmospheric boundary layer as revealed by lidar and Doppler radars

    NASA Astrophysics Data System (ADS)

    Eilts, M. D.; Sundara-Rajan, A.; Doviak, R. J.

    1985-02-01

    Results on the structure of the convective atmospheric boundary layer based on the analyses of data from the instrumented NSSL-KTVY tower, airborne Doppler lidar, and ground-based Doppler radars are presented. The vertically averaged wind over the boundary layer was found to be insensitive to baroclinicity, supporting the hypothesis of Arya and Wyngaard (1975). The computed momentum flux profiles were affected by baroclinicity. Horizontal wind spectra from lidar, radar, and tower data compared well with each other both in shape and magnitude. A consistent peak found near 4 km in all the computed spectra might have been caused by horizontally symmetric cells with horizontal wavelength 4 times the boundary-layer height as shown in Kuettner (1971) for the case of weak wind shear.

  1. The structure of the convective atmospheric boundary layer as revealed by lidar and Doppler radars

    NASA Technical Reports Server (NTRS)

    Eilts, M. D.; Sundara-Rajan, A.; Doviak, R. J.

    1985-01-01

    Results on the structure of the convective atmospheric boundary layer based on the analyses of data from the instrumented NSSL-KTVY tower, airborne Doppler lidar, and ground-based Doppler radars are presented. The vertically averaged wind over the boundary layer was found to be insensitive to baroclinicity, supporting the hypothesis of Arya and Wyngaard (1975). The computed momentum flux profiles were affected by baroclinicity. Horizontal wind spectra from lidar, radar, and tower data compared well with each other both in shape and magnitude. A consistent peak found near 4 km in all the computed spectra might have been caused by horizontally symmetric cells with horizontal wavelength 4 times the boundary-layer height as shown in Kuettner (1971) for the case of weak wind shear.

  2. Using particle filter to track horizontal variations of atmospheric duct structure from radar sea clutter

    NASA Astrophysics Data System (ADS)

    Zhao, X. F.; Huang, S. X.

    2012-08-01

    This paper addresses the problem of estimating range-varying parameters of the height-dependent refractivity over the sea surface from radar sea clutter. In the forward simulation, the split-step Fourier parabolic equation (PE) is used to compute the radar clutter power in the complex refractive environments. Making use of the inherent Markovian structure of the split-step Fourier PE solution, the refractivity from clutter (RFC) problem is formulated within a nonlinear recursive Bayesian state estimation framework. Particle filter (PF) that is a technique for implementing a recursive Bayesian filter by Monte Carlo simulations is used to track range-varying characteristics of the refractivity profiles. Basic ideas of employing PF to solve RFC problem are introduced. Both simulation and real data results are presented to check up the feasibility of PF-RFC performances.

  3. Using particle filter to track horizontal variations of atmospheric duct structure from radar sea clutter

    NASA Astrophysics Data System (ADS)

    Zhao, X. F.; Huang, S. X.; Wang, D. X.

    2012-11-01

    This paper addresses the problem of estimating range-varying parameters of the height-dependent refractivity over the sea surface from radar sea clutter. In the forward simulation, the split-step Fourier parabolic equation (PE) is used to compute the radar clutter power in the complex refractive environments. Making use of the inherent Markovian structure of the split-step Fourier PE solution, the refractivity from clutter (RFC) problem is formulated within a nonlinear recursive Bayesian state estimation framework. Particle filter (PF), which is a technique for implementing a recursive Bayesian filter by Monte Carlo simulations, is used to track range-varying characteristics of the refractivity profiles. Basic ideas of employing PF to solve RFC problem are introduced. Both simulation and real data results are presented to confirm the feasibility of PF-RFC performances.

  4. Optimized aperiodic multilayer structures for use as narrow-angular absorbers

    SciTech Connect

    Granier, Christopher H. Dowling, Jonathan P.; Afzal, Francis O.; Lorenzo, Simón G.; Reyes, Mario; Veronis, Georgios

    2014-12-28

    In this paper, we investigate aperiodic multilayer structures for use as narrow-angular absorbers. The layer thicknesses and materials are optimized using a genetic global optimization algorithm coupled to a transfer matrix code to maximize the angular selectivity in the absorptance at a single or multiple wavelengths. We first consider structures composed of alternating layers of tungsten and silicon or silica, and find that it is not possible to achieve angular selectivity in the absorptance with such structures. We next consider structures composed of alternating layers of silicon and silica, and show that when optimized they exhibit high angular selectivity in absorptance. In addition, as the angular selectivity in absorptance increases, the wavelength range of high angular selectivity also decreases. Optimizing the material composition of the multilayer structures, in addition to optimizing the layer thicknesses, leads to marginal improvement in angular selectivity. Finally, we show that by optimizing the absorptance of the multilayer structures at multiple wavelengths, we can obtain structures exhibiting almost perfect absorptance at normal incidence and narrow angular width in absorptance at these wavelengths. Similar to the structures optimized at a single wavelength, the wavelength range of high angularly selective absorptance is narrow.

  5. COS-GTO: QSO Absorbers, Galaxies and Large-scale Structures in the Local Universe.

    NASA Astrophysics Data System (ADS)

    Green, James

    2009-07-01

    This is a program to probe the large scale structure of baryons in the universe, including addressing questions of baryon fraction, physical conditions and relationships between absorbers and large-scale structures of galaxies. Besides these specific goals, this proposed GTO program also probes a large enough total path length in Ly alpha and OVI to add significantly to what STIS/FUSE has already observed. Several Galactic High Velocity Cloud Complexes also are probed by these sightlines, particularly the M Complex. The total path length of this proposed program for Ly alpha large-scale structure surveys is delta_z 5.5. We have selected a variety of targets to address these questions, under the following subcategories:1. Target 8 bright BL Lac objects to search for low contrast Ly alpha absorbers from the warm-hot interstellar medium {WHIM}. Science drivers: What are physical conditions and extent of warm-hot IGM in the current epoch? Can we discover metal-poor WHIM using very broad Ly alpha lines? What is the number density of such lines {dN/dz} and what is their relationship if any with tentative Chandra detections of even hotter gas?2. Ly alpha cloud sizes: The targets are a bright AGN pair which yield tangential distance separations of 100-500 kpc at z=0.01-0.05, where galaxy surveys are excellent. This pair has two filaments and two voids in this distance range. Science drivers: What are the characteristic sizes of Ly alpha absorbers, weak metal-line absorbers and absorbers in voids? Better size determinations will tighten current estimates of the baryon content of the photoionzed IGM .3. Probes of starburst outflows: The targets are bright AGN, <= 100 kpc in projection out of the minor axis of nearby starburst galaxies. Science drivers: Outflowing, unbound winds have been implicated as a primary mechanism to enrich the IGM in mass, metals and energy. But do starburst winds from massive galaxies escape the galaxy's gravitational potential? If so, what is the

  6. RF-Thermal-Structural Analysis of a Waveguide Higher Order Mode Absorber

    SciTech Connect

    G. Cheng; E. F. Daly; R. A. Rimmer; M. Stirbet; L. Vogel; H. Wang; K. M. Wilson

    2007-07-03

    For an ongoing high current cryomodule project, a total of 5 higher order mode (HOM) absorbers are required per cavity. The load is designed to absorb Radio Frequency (RF) heat induced by HOMs in a 748.5MHz cavity. Each load is targeted at a 4 kW dissipation capability. Water cooling is employed to remove the heat generated in ceramic tiles and by surface losses on the waveguide walls. A sequentially coupled RF-thermal-structural analysis was developed in ANSYS to optimize the HOM load design. Frequency-dependent dielectric material properties measured from samples and RF power spectrum calculated by the beam-cavity interaction codes were considered. The coupled field analysis capability of ANSYS avoided mapping of results between separate RF and thermal/structural simulation codes. For verification purposes, RF results obtained from ANSYS were compared to those from MAFIA, HFSS, and Microwave Studio. Good agreement was reached and this confirms that multiple-field coupled analysis is a desirable choice in analysis of HOM loads. Similar analysis could be performed on other particle accelerator components where distributed RF heating and surface current induced losses are inevitable.

  7. Absorbable energy monitoring scheme: new design protocol to test vehicle structural crashworthiness.

    PubMed

    Ofochebe, Sunday M; Enibe, Samuel O; Ozoegwu, Chigbogu G

    2016-05-01

    In vehicle crashworthiness design optimization detailed system evaluation capable of producing reliable results are basically achieved through high-order numerical computational (HNC) models such as the dynamic finite element model, mesh-free model etc. However the application of these models especially during optimization studies is basically challenged by their inherent high demand on computational resources, conditional stability of the solution process, and lack of knowledge of viable parameter range for detailed optimization studies. The absorbable energy monitoring scheme (AEMS) presented in this paper suggests a new design protocol that attempts to overcome such problems in evaluation of vehicle structure for crashworthiness. The implementation of the AEMS involves studying crash performance of vehicle components at various absorbable energy ratios based on a 2DOF lumped-mass-spring (LMS) vehicle impact model. This allows for prompt prediction of useful parameter values in a given design problem. The application of the classical one-dimensional LMS model in vehicle crash analysis is further improved in the present work by developing a critical load matching criterion which allows for quantitative interpretation of the results of the abstract model in a typical vehicle crash design. The adequacy of the proposed AEMS for preliminary vehicle crashworthiness design is demonstrated in this paper, however its extension to full-scale design-optimization problem involving full vehicle model that shows greater structural detail requires more theoretical development. PMID:27441279

  8. Stability and Electronic Structures of CuxS Solar Cell Absorbers: Preprint

    SciTech Connect

    Wei, S. H.; Xu, Q.; Huang, B.; Zhao, Y.; Yan, Y.; Noufi, R.

    2012-07-01

    Cu{sub x}S is one of the most promising solar cell absorber materials that has the potential to replace the leading thin-film solar cell material Cu(In,Ga)Se{sub 2} for high efficiency and low cost. In the past, solar cells based on Cu{sub x}S have reached efficiency as high as 10%, but it also suffers serious stability issues. To further improve its efficiency and especially the stability, it is important to understand the stability and electronic structure of Cu{sub x}S. However, due to the complexity of their crystal structures, no systematic theoretical studies have been carried out to understand the stability and electronic structure of the Cu{sub x}S systems. In this work, using first-principles method, we have systematically studied the crystal and electronic band structures of Cu{sub x}S (1.25 < x {le} 2). For Cu{sub 2}S, we find that all the three chalcocite phases, i.e., the low-chalcocite, the high-chalcocite, and the cubic-chalcocite phases, have direct bandgaps around 1.3-1.5 eV, with the low-chalcocite being the most stable one. However, Cu vacancies can form spontaneously in these compounds, causing instability of Cu{sub 2}S. We find that under Cu-rich condition, the anilite Cu{sub 1.75}S is the most stable structure. It has a predicted bandgap of 1.4 eV and could be a promising solar cell absorber.

  9. Solution structure of a cyanobacterial phytochrome GAF domain in the red-light-absorbing ground state.

    PubMed

    Cornilescu, Gabriel; Ulijasz, Andrew T; Cornilescu, Claudia C; Markley, John L; Vierstra, Richard D

    2008-11-01

    The unique photochromic absorption behavior of phytochromes (Phys) depends on numerous reversible interactions between the bilin chromophore and the associated polypeptide. To help define these dynamic interactions, we determined by NMR spectroscopy the first solution structure of the chromophore-binding cGMP phosphodiesterase/adenylcyclase/FhlA (GAF) domain from a cyanobacterial Phy assembled with phycocyanobilin (PCB). The three-dimensional NMR structure of Synechococcus OS-B' cyanobacterial Phy 1 in the red-light-absorbing state of Phy (Pr) revealed that PCB is bound to Cys138 of the GAF domain via the A-ring ethylidene side chain and is buried within the GAF domain in a ZZZsyn,syn,anti configuration. The D ring of the chromophore sits within a hydrophobic pocket and is tilted by approximately 80 degrees relative to the B/C rings by contacts with Lys52 and His169. The solution structure revealed remarkable flexibility for PCB and several adjacent amino acids, indicating that the Pr chromophore has more freedom in the binding pocket than anticipated. The propionic acid side chains of rings B and C and Arg101 and Arg133 nearby are especially mobile and can assume several distinct and energetically favorable conformations. Mutagenic studies on these arginines, which are conserved within the Phy superfamily, revealed that they have opposing roles, with Arg101 and Arg133 helping stabilize and destabilize the far-red-light-absorbing state of Phy (Pfr), respectively. Given the fact that the Synechococcus OS-B' GAF domain can, by itself, complete the Pr --> Pfr photocycle, it should now be possible to determine the solution structure of the Pfr chromophore and surrounding pocket using this Pr structure as a framework. PMID:18762196

  10. Experimental application of a vibration absorber in structural vibration reduction using tunable fluid mass driven by micropump

    NASA Astrophysics Data System (ADS)

    Lee, Chun-Ying; Chen, Chun-Yuan

    2015-07-01

    A new design of tuned mass damper was proposed in this study to reduce the structural vibration of a machine platform subjected to varying excitation frequency, e.g. disturbance from the unbalance mass of motor in different rotational speeds. The absorber mass was changed by pumping of fluid between the liquid chambers of the vibration absorber. With the stiffness remained unchanged, the absorber's natural frequency could be tuned accordingly. Thus, reduction in machine vibration could be obtained by tuning the natural frequency of the absorber according to the frequency of external harmonic disturbance. Firstly, the variations of natural frequency and damping ratio of the absorber with different tuned masses were measured experimentally. The natural frequency results showed that the adjustable ranges for the first two modes could all reach more than 30%. Then, the absorber was installed on a machine platform and its performance was investigated under external disturbance at the natural frequency of the platform. It was found that, due to the effect of damping increase originated from the fluid sloshing inside liquid chamber, the vibration reduction effect from the absorber was limited. To improve this situation, we added a horizontal separation panel inside the liquid chambers, and the experimental results showed that the liquid sloshing was alleviated, and effectively reduced the damping ratio of absorber. Thus, the system became more stable and the control efficiency was effectively improved.

  11. Forest Attributes from Radar Interferometric Structure and its Fusion with Optical Remote Sensing

    NASA Technical Reports Server (NTRS)

    Treuhaft, Robert N.; Law, Beverly E.; Asner, Gregory P.

    2004-01-01

    The possibility of global, three-dimensional remote sensing of forest structure with interferometric synthetic aperture radar (InSAR) bears on important forest ecological processes, particularly the carbon cycle. InSAR supplements two-dimensional remote sensing with information in the vertical dimension. Its strengths in potential for global coverage complement those of lidar (light detecting and ranging), which has the potential for high-accuracy vertical profiles over small areas. InSAR derives its sensitivity to forest vertical structure from the differences in signals received by two, spatially separate radar receivers. Estimation of parameters describing vertical structure requires multiple-polarization, multiple-frequency, or multiple-baseline InSAR. Combining InSAR with complementary remote sensing techniques, such as hyperspectral optical imaging and lidar, can enhance vertical-structure estimates and consequent biophysical quantities of importance to ecologists, such as biomass. Future InSAR experiments will supplement recent airborne and spaceborne demonstrations, and together with inputs from ecologists regarding structure, they will suggest designs for future spaceborne strategies for measuring global vegetation structure.

  12. fs Laser surface nano-structuring of high refractory ceramics to enhance solar radiation absorbance

    NASA Astrophysics Data System (ADS)

    Cappelli, E.; Orlando, S.; Sciti, D.; Bellucci, A.; Lettino, A.; Trucchi, D. M.

    2014-10-01

    High refractory pressure-less sintered ternary composite ceramics of AlN-SiC-MoSi2 (ASMY), polished by mechanical grinding to a surface roughness R a ~40 nm, have been treated in vacuum by fs Ti:sapphire laser, operating at 800 nm wavelength, 100 fs pulse duration, and increasing fluence, to generate a "black ceramic material", able to minimize solar radiation reflectance, in such a way that they could be used as the absorber material in an innovative conversion module of solar radiation into electrical energy. Disk specimens of approximately 3 cm in diameter and 3 mm thick have been treated by normal incident laser beam, generating a scanning pattern of parallel lines, at a lateral distance of about 80 μm, using a stage in motion, in the x, y, z directions, driven by a computer. The experimental conditions of laser treatment (energy fluence, speed of transition and lateral distance of steps) have been optimized to maximize the absorption properties of the patterned surface. In some samples this value was increased by about 15 %, compared to untreated surface, up to a value of final absorbance of about 95 %, all over the range of solar radiation spectrum (from UV to NIR). The morphological and chemical effects have been evaluated by SEM-EDS analysis. At higher fluence, we obtained the characteristic ablation craters and corresponding local material decomposition, while at lower fluence (over the ablation threshold) an ordered periodic nano-structure has been obtained, exploitable for its high capacity of entrapment of visible light. The laser treated ceramic specimen, characterized by very high absorption properties and reflectivity values lower than 4 %, has been used as active absorber material in a conversion module, installed in a solar test platform.

  13. Different Structural Changes Occur in the Blue- and Green-Absorbing Proteorhodopsin During the Primary Photoreaction†

    PubMed Central

    Amsden, Jason J.; Kralj, Joel M.; Bergo, Vladislav B.; Spudich, Elena N.; Spudich, John L.; Rothschild, Kenneth J.

    2013-01-01

    We examine the structural changes during the primary photoreaction in blue-absorbing proteorhodopsin (BPR), a light-driven retinylidene proton pump, using low-temperature FTIR difference spectroscopy. Comparison of the light induced BPR difference spectrum recorded at 80 K to that of green-absorbing proteorhodopsin (GPR) reveals that there are several differences in the BPR and GPR primary photoreactions despite the similar structure of the retinal chromophore and all-trans → 13-cis isomerization. Strong bands near 1700 cm−1 assigned previously to a change in hydrogen bonding of Asn230 in GPR are still present in BPR but in addition bands in the same region are assigned on the basis of site-directed mutagenesis to changes occurring in Gln105. In the amide II region bands are assigned on the basis of total-N15 labeling to structural changes of the protein backbone, although no such bands were previously observed for GPR. A band at 3642 cm−1 in BPR, assigned to the OH stretching mode of a water molecule on the basis of H218O substitution, appears at a different frequency than a band at 3626 cm−1 previously assigned to a water molecule in GPR. However, the substitution of Gln105 for Leu105 in BPR leads to the appearance of both bands at 3642 and 3626 cm−1 indicating the waters assigned in BPR and GPR exist in separate distinct locations and can coexist in the GPR-like Q105L mutant of BPR. These results indicate that there exist significant differences in the conformational changes occurring in these two types proteorhodopsin during the initial photoreaction despite their similar chromophores structures, which might reflect a different arrangement of water in the active site as well as substitution of a hydrophilic for hydrophobic residue at residue 105. PMID:18842006

  14. The internal structure of the Brunt Ice Shelf, Antarctica from ice-penetrating radar

    NASA Astrophysics Data System (ADS)

    King, Edward; De Rydt, Jan; Gudmundsson, Hilmar

    2016-04-01

    The Brunt Ice Shelf is a small feature on the Coats Land Coast of the Weddell Sea, Antarctica. It is unusual among Antarctic ice shelves because the ice crossing the grounding line from the ice sheet retains no structural integrity, so the ice shelf comprises icebergs of continental ice cemented together by sea ice, with the whole blanketed by in-situ snowfall. The size and distribution of the icebergs is governed by the thickness profile along the grounding line. Where bedrock troughs discharge thick ice to the ice shelf, the icebergs are large and remain close together with little intervening sea ice. Where bedrock ridges mean the ice crossing the grounding line is thin, the icebergs are small and widely-scattered with large areas of sea ice between them. To better understand the internal structure of the Brunt Ice Shelf and how this might affect the flow dynamics we conducted ice-penetrating radar surveys during December 2015 and January 2016. Three different ground-based radar systems were used, operating at centre frequencies of 400, 50 and 10 MHz respectively. The 400 MHz system gave detailed firn structure and accumulation profiles as well as time-lapse profiles of the active propagation of a crevasse. The 50 MHz system provided intermediate-level detail of iceberg distribution and thickness as well as information on the degree of salt water infiltration into the accumulating snow pack. The 10 MHz system used a high-power transmitter in an attempt to measure ice thickness beneath salt-impregnated ice. In this poster we will present example data from each of the three radar systems which will demonstrate the variability of the internal structure of the ice shelf. We will also present preliminary correlations between the internal structure and the surface topography from satellite data.

  15. Optimised Mapping of Flood Extent and Floodplain Structures by Radar EO-Methods

    NASA Astrophysics Data System (ADS)

    Stabel, E.; Löffler, E.

    2004-06-01

    Today, river dynamics and hydrological behaviour are strongly influenced by human activities both in the catchment areas and the floodplains. The knowledge of recent and historical river dynamics and related morphological and structural changes on the land surface (e.g. sedimentation, accumulation, river bed movement) is an essential factor in assessing the flood risk and the vulnerability of human resources and structures. Operational Earth Observation (EO) systems provide data to monitor and to analyse both river dynamics and small surface changes. Especially, radar-based systems and interferometric data analysis are of high interest. Along selected sites in the River Odra area, we analysed the potential of radar-based EO-applications for the detection of structural changes, validated by fieldwork. It is shown that the coherence information is of great significance: On the one hand, it could be used to eliminate misclassifications of the flood extent caused by double bounce scattering, corner reflection and smooth surfaces. On the other hand the production of RGB's type Interferometric Signatures (coherence, average, difference of tandem pairs) proofed to be a powerful tool to visualise the flood dynamics in space and time but also the morphologic structure in the floodplain. As conclusion, it is shown that the combined analysis of radar backscatter and coherence information will be very useful in the flood application domain, especially with respect to risk assessment and vulnerability mapping. In addition, the methods described will support the collection of relevant base data claimed by the EU water framework directive. Keywords: Spaceborne Earth Observation, SAR Interferometry, Coherence Analysis, River Dynamics, Flood, Floodplain Structures, Floodplain Management

  16. Simultaneous fine structure observation of wind and temperature profiles by the Arecibo 430-MHz radar and in situ measurements

    NASA Technical Reports Server (NTRS)

    Thomas, D.; Bertin, F.; Petitdidier, M.; Teitelbaum, H.; Woodman, R. F.

    1986-01-01

    A simultaneous campaign of balloon and radar measurements took place on March 14 to 16, 1984, above the Arecibo 430-MHz radar. This radar was operating with a vertical resolution of 150 m following two antenna beam directions: 15 deg. from the zenith, respectively, in the N-S and E-W directions. The main results concerning the comparison between the flight and simultaneous radar measurements obtained on March 15, 1984 are analyzed. The radar return power profile (S/N ratio in dB) exhibits maxima which are generally well correlated with step-like structures in the potential temperature profile. These structures are generally considered as the consequence of the mixing processes induced by the turbulence. A good correlation appears in the altitude range 12.5 to 19 km between wind shears induced by a wave structure observed in the meridional wind and the radar echo power maxima. This wave structure is characterized by a vertical wavelength of about 2.5 km, and a period in the range 30 to 40 hours. These characteristics are deduced from the twice daily rawinsonde data launched from the San Juan Airport by the National Weather Service. These results pointed out an example of the interaction between wave and turbulence in the upper troposphere and lower stratosphere. Turbulent layers are observed at locations where wind shears related to an internal inertia-gravity wave are maxima.

  17. Interhemispheric structure and variability of the 5-day planetary wave from meteor radar wind measurements

    NASA Astrophysics Data System (ADS)

    Iimura, H.; Fritts, D. C.; Janches, D.; Singer, W.; Mitchell, N. J.

    2015-11-01

    A study of the quasi-5-day wave (5DW) was performed using meteor radars at conjugate latitudes in the Northern and Southern hemispheres. These radars are located at Esrange, Sweden (68° N) and Juliusruh, Germany (55° N) in the Northern Hemisphere, and at Tierra del Fuego, Argentina (54° S) and Rothera Station, Antarctica (68° S) in the Southern Hemisphere. The analysis was performed using data collected during simultaneous measurements by the four radars from June 2010 to December 2012 at altitudes from 84 to 96 km. The 5DW was found to exhibit significant short-term, seasonal, and interannual variability at all sites. Typical events had planetary wave periods that ranged between 4 and 7 days, durations of only a few cycles, and infrequent strongly peaked variances and covariances. Winds exhibited rotary structures that varied strongly among sites and between events, and maximum amplitudes up to ~ 20 m s-1. Mean horizontal velocity covariances tended to be largely negative at all sites throughout the interval studied.

  18. Simulation for ground penetrating radar (GPR) study of the subsurface structure of the Moon

    NASA Astrophysics Data System (ADS)

    Fa, Wenzhe

    2013-12-01

    Ground penetrating radar (GPR) is currently within the scope of China's Chang-E 3 lunar mission, to study the shallow subsurface of the Moon. In this study, key factors that could affect a lunar GPR performance, such as frequency, range resolution, and antenna directivity, are discussed firstly. Geometrical optics and ray tracing techniques are used to model GPR echoes, considering the transmission, attenuation, reflection, geometrical spreading of radar waves, and the antenna directivity. The influence on A-scope GPR echoes and on the simulated radargrams for the Sinus Iridum region by surface and subsurface roughness, dielectric loss of the lunar regolith, radar frequency and bandwidth, and the distance between the transmit and receive antennas are discussed. Finally, potential scientific return about lunar subsurface properties from GPR echoes is also discussed. Simulation results suggest that subsurface structure from several to hundreds of meters can be studied from GPR echoes at P and VHF bands, and information about dielectric permittivity and thickness of subsurface layers can be estimated from GPR echoes in combination with regolith composition data.

  19. Chemical and Electronic Surface Structure of 20%-Efficient Cu(in,Ga)Se2 Thin Film Solar Cell Absorbers

    SciTech Connect

    Bar, M.; Repins, I.; Contreras, M. A.; Weinhardt, L.; Noufi, R.; Heske, C.

    2009-01-01

    The chemical and electronic surface structure of 20%-efficient Cu(In,Ga)Se{sub 2} thin film solar cell absorbers was investigated as a function of deposition process termination (i.e., ending the growth process in absence of either Ga or In). In addition to the expected In (Ga) enrichment, direct and inverse photoemission reveal a decreased Cu surface content and a larger surface band gap for the 'In-terminated' absorber.

  20. Structural analysis of lunar subsurface with Chang'E-3 lunar penetrating radar

    NASA Astrophysics Data System (ADS)

    Lai, Jialong; Xu, Yi; Zhang, Xiaoping; Tang, Zesheng

    2016-01-01

    Geological structure of the subsurface of the Moon provides valuable information on lunar evolution. Recently, Chang'E-3 has utilized lunar penetrating radar (LPR), which is equipped on the lunar rover named as Yutu, to detect the lunar geological structure in Northern Imbrium (44.1260N, 19.5014W) for the first time. As an in situ detector, Chang'E-3 LPR has relative higher horizontal and vertical resolution and less clutter impact compared to spaceborne radars and earth-based radars. In this work, we analyze the LPR data at 500 MHz transmission frequency to obtain the shallow subsurface structure of the landing area of Chang'E-3 in Mare Imbrium. Filter method and amplitude recovery algorithms are utilized to alleviate the adverse effects of environment and system noises and compensate the amplitude losses during signal propagation. Based on the processed radar image, we observe numerous diffraction hyperbolae, which may be caused by discrete reflectors beneath the lunar surface. Hyperbolae fitting method is utilized to reverse the average dielectric constant to certain depth (ε bar). Overall, the estimated ε bar increases with the depth and ε bar could be classified into three categories. Average ε bar of each category is 2.47, 3.40 and 6.16, respectively. Because of the large gap between the values of ε bar of neighboring categories, we speculate a three-layered structure of the shallow surface of LPR exploration region. One possible geological picture of the speculated three-layered structure is presented as follows. The top layer is weathered layer of ejecta blanket with its average thickness and bound on error is 0.95±0.02 m. The second layer is the ejecta blanket of the nearby impact crater, and the corresponding average thickness is about 2.30±0.07 m, which is in good agreement with the two primary models of ejecta blanket thickness as a function of distance from the crater center. The third layer is regarded as a mixture of stones and soil. The

  1. 3-D Radar Imaging Reveals Deep Structures and Buried Craters Within the Martian Polar Caps

    NASA Astrophysics Data System (ADS)

    Putzig, N. E.; Foss, F. J., II; Campbell, B. A.; Phillips, R. J.; Smith, I. B.

    2015-12-01

    We use Shallow Radar (SHARAD) observations on thousands of orbital passes by the Mars Reconnaissance Orbiter to produce fully imaged 3-D data volumes encompassing both polar ice caps of Mars. Greatly clarifying the view of subsurface features, a completed volume for Planum Boreum provides new constraints on the nature and timing of emplacement of the northern polar deposits and their relationship to climate. The standard method of mapping subsurface features with single-pass 2-D radargrams has been very fruitful (see Brothers et al. 2015, JGR 120 in press, and references therein), but a full assessment of internal structures has been hindered by interfering off-nadir echoes from spiral troughs and other variable topography prevalent on both caps. By assembling the SHARAD radargrams into a volume and applying a 3-D imaging process (migration) borrowed from seismic processing techniques, we enhance the signal-to-noise ratio while repositioning the echoes to their proper locations, thereby unraveling the interference. As part of the process, we correct ionospheric distortions and delays of the radar echoes (Campbell et al. 2014, IEEE GRSL 11 #3). Interfaces painstakingly mapped in radargrams (e.g., the basal-unit surface, a buried chasma) are clearly visible in the 3-D volume, and new features are revealed. Structures may now be mapped through trough-rich regions, including a widespread sequence that provides corroborative evidence of recent ice ages (Smith et al. 2015, LPSC XLVI #2574). Distinctive radar signatures associated with known, partially buried craters also occur elsewhere in the volume but without surface expression. Presumably, these are fully buried craters that may provide a new means to estimate the age of the deposits. Preliminary work for Planum Australe demonstrates that the 3-D processing currently underway will illuminate deep structures that are broadly obfuscated in 2-D radargrams by a shallow scatterer (Campbell et al. 2015, LPSC XLVI #2366).

  2. Low dielectric electromagnetic absorbing material in 18-40 GHz using large scale photonic crystal structures

    NASA Astrophysics Data System (ADS)

    Narita, T.; Matsumura, K.; Kagawa, Y.

    2007-02-01

    The interaction behavior between a monolithic low dielectric block with unidirectionally aligned through holes and an electromagnetic wave at a frequency range from 18to40GHz has been studied. Hexagonally aligned through holes, whose diameters are 8.0, 9.0, and 10.0mm, are introduced to a polymethylmethacrylate block. The electromagnetic wave reflection and transmission spectra perpendicular to the hole axis show a unique structure dependence, which is related to the diameter of the hole and its arrangement. A large decrease in the reflectance and transmittance appears in the spectra, which originates from the interference effect between the electromagnetic wave and material. It is concluded that the material has a potential for controlling the electromagnetic wave at a tailored target frequency and is expected to be usable as monolithic low dielectric electromagnetic wave absorbing material.

  3. Capturing the Energy Absorbing Mechanisms of Composite Structures under Crash Loading

    NASA Astrophysics Data System (ADS)

    Wade, Bonnie

    As fiber reinforced composite material systems become increasingly utilized in primary aircraft and automotive structures, the need to understand their contribution to the crashworthiness of the structure is of great interest to meet safety certification requirements. The energy absorbing behavior of a composite structure, however, is not easily predicted due to the great complexity of the failure mechanisms that occur within the material. Challenges arise both in the experimental characterization and in the numerical modeling of the material/structure combination. At present, there is no standardized test method to characterize the energy absorbing capability of composite materials to aide crashworthy structural design. In addition, although many commercial finite element analysis codes exist and offer a means to simulate composite failure initiation and propagation, these models are still under development and refinement. As more metallic structures are replaced by composite structures, the need for both experimental guidelines to characterize the energy absorbing capability of a composite structure, as well as guidelines for using numerical tools to simulate composite materials in crash conditions has become a critical matter. This body of research addresses both the experimental characterization of the energy absorption mechanisms occurring in composite materials during crushing, as well as the numerical simulation of composite materials undergoing crushing. In the experimental investigation, the specific energy absorption (SEA) of a composite material system is measured using a variety of test element geometries, such as corrugated plates and tubes. Results from several crush experiments reveal that SEA is not a constant material property for laminated composites, and varies significantly with the geometry of the test specimen used. The variation of SEA measured for a single material system requires that crush test data must be generated for a range of

  4. Digital processing of orbital radar data to enhance geologic structure - Examples from the Canadian Shield

    NASA Technical Reports Server (NTRS)

    Masuoka, Penny M.; Harris, Jeff; Lowman, Paul D., Jr.; Blodget, Herbert W.

    1988-01-01

    Various digital enhancement techniques for SAR are compared using SIR-B and Seasat images of the Canadian Shield. The three best methods for enhancing geological structure were found to be: (1) a simple linear contrast stretch; (2) a mean or median low-pass filter to reduce speckle prior to edge enhancement or a K nearest-neighbor average to cosmetically reduce speckle; and (3) a modification of the Moore-Waltz (1983) technique. Three look directions were coregistered and several means of data display were investigated as means of compensating for radar azimuth biasing.

  5. The use of radar and visual observations to characterize the surface structure of the planet Mercury

    NASA Technical Reports Server (NTRS)

    Clark, P. E.; Kobrick, M.; Jurgens, R. F.

    1985-01-01

    An analysis is conducted of available topographic profiles and scattering parameters derived from earth-based S- and X-band radar observations of Mercury, in order to determine the nature and origin of regional surface variations and structures that are typical of the planet. Attention is given to the proposal that intercrater plains on Mercury formed from extensive volcanic flooding during bombardment, so that most craters were formed on a partially molten surface and were thus obliterated, together with previously formed tectonic features.

  6. Satellite radar interferometry for monitoring and early-stage warning of structural instability in archaeological sites

    NASA Astrophysics Data System (ADS)

    Tapete, D.; Fanti, R.; Cecchi, R.; Petrangeli, P.; Casagli, N.

    2012-08-01

    Satellite interferometric synthetic aperture radar (InSAR) monitoring campaigns were performed on the archaeological heritage of the Roman Forum, Palatino and Oppio Hills in the centre of Rome, Italy, to test the capabilities of persistent scatterer interferometry techniques for the preventive diagnosis of deformation threatening the structural stability of archaeological monuments and buried structures. ERS-1/2 and RADARSAT-1/2 SAR images were processed with the permanent scatterers InSAR (PSInSAR) and SqueeSAR approaches, and the identified measurement points (MP) were radar-interpreted to map the conservation criticalities in relation to the local geohazard factors and active deterioration processes. The multi-temporal reconstruction of past/recent instability events based on the MP deformation time series provided evidences of stabilization for the Domus Tiberiana as a consequence of recent restoration works, as well as of persistent deformation for the Temple of Magna Mater on the Palatino Hill and the structures of the Baths of Trajan on the Oppio Hill. Detailed time series analysis was also exploited to back monitor and understand the nature of the 2010 collapse that occurred close to Nero's Golden House, and to establish an early-stage warning procedure useful to preventively detect potential instability.

  7. Clutter and target discrimination in forward-looking ground penetrating radar using sparse structured basis pursuits

    NASA Astrophysics Data System (ADS)

    Camilo, Joseph A.; Malof, Jordan M.; Torrione, Peter A.; Collins, Leslie M.; Morton, Kenneth D.

    2015-05-01

    Forward-looking ground penetrating radar (FLGPR) is a remote sensing modality that has recently been investigated for buried threat detection. FLGPR offers greater standoff than other downward-looking modalities such as electromagnetic induction and downward-looking GPR, but it suffers from high false alarm rates due to surface and ground clutter. A stepped frequency FLGPR system consists of multiple radars with varying polarizations and bands, each of which interacts differently with subsurface materials and therefore might potentially be able to discriminate clutter from true buried targets. However, it is unclear which combinations of bands and polarizations would be most useful for discrimination or how to fuse them. This work applies sparse structured basis pursuit, a supervised statistical model which searches for sets of bands that are collectively effective for discriminating clutter from targets. The algorithm works by trying to minimize the number of selected items in a dictionary of signals; in this case the separate bands and polarizations make up the dictionary elements. A structured basis pursuit algorithm is employed to gather groups of modes together in collections to eliminate whole polarizations or sensors. The approach is applied to a large collection of FLGPR data for data around emplaced target and non-target clutter. The results show that a sparse structure basis pursuits outperforms a conventional CFAR anomaly detector while also pruning out unnecessary bands of the FLGPR sensor.

  8. Subsurface Structure of Planum Boreum on Mars from Shallow Radar (SHARAD) Soundings

    NASA Astrophysics Data System (ADS)

    Putzig, N. E.; Phillips, R. J.; Seu, R.; Biccari, D.; Safaeinili, A.; Holt, J. W.; Plaut, J. J.; Egan, A. F.; SHARAD Team

    2008-12-01

    We have mapped the subsurface structure beneath Planum Boreum using results from the Shallow Radar (SHARAD) instrument, which has acquired sounding observations on more than 1000 orbital passes across the north polar region of Mars since the beginning of its primary science mission in November of 2006. Two- dimensional profiles beneath the instrument's ground track show a series of returns corresponding to dielectric contrasts in the subsurface to depths of 2 to 3 km. Using interactive subsurface-data interpretation software, we have mapped packets of layers within the North Polar Layered Deposits (NPLD) in three dimensions, from the surface down to returns from underlying materials, which are seen as either a diffusely reflective zone (DRZ) or a more coherent basal reflection. The latter presumably represents an extension of the Early Amazonian Vastitas Borealis Interior Unit (Tanaka et al. 2008, Icarus 196, 318) under the NPLD. The DRZ likely corresponds to a Basal Unit identified previously using surface imagery (Byrne and Murray 2002, JGR 107 E6, 5044) and later mapped as the Rupes Tenuis and Planum Boreum cavi units (Tanaka et al. 2008). This radar unit extends under most---but not all---of the main lobe of the NPLD, into Olympia Planum, and also across Chasma Boreale and partly under the Gemina Lingula lobe. These radar results suggest a revised boundary for the Basal Unit that has important implications for its association with the emplacement of Chasma Boreale. Within the NPLD, four radar units, consisting of alternating packets of strongly reflective layers and quiescent zones that may represent nearly pure water ice, extend into both lobes of the deposits. A fifth radar unit is isolated to eastern Gemina Lingula and occurs between the lower two of the regional units, pinching out below the topographic saddle between the two lobes. The layering associated with the radar units is thought to be the result of variations in dust content within water

  9. Two radars for the AIM mission to characterize the regolith and deep interior structure of the asteroid

    NASA Astrophysics Data System (ADS)

    Ciarletti, V.; Herique, A.; Plettemeier, D.

    2015-12-01

    Very little is known till now about the interior of asteroids. The information available has been so far mainly obtained through remote observations of the surface and inferred from theoretical modeling. Observations of asteroids deep interior and regolith structure are needed to better understand the asteroid accretion and dynamical evolution, and to provide answers that will directly improve our ability to understand and model the mechanisms driving Near Earth Asteroids (NEA) deflection and other risk mitigation techniques. Radar operating from a spacecraft is the only technique capable of characterizing the internal structure and heterogeneity from submetric to global scale for the benefit of science as well as for planetary defence or exploration. Access to the deep interior structure requires a low-frequency radar (LFR) that is able to penetrate and propagate throughout the complete body. The LFR will be a bi-static radar similar to the CONSERT radar designed for the Rosetta mission and will perform a tomography of the asteroid. On the other hand, the characterization of the first tens of meters of the subsurface with a submetric resolution will be achieved by a monostatic radar operating at higher frequencies (HFR). It will allow the identification of the layering and the reconnection of the surface features to the internal structure. Its design will be based on the design of the WISDOM radar developped for the ExoMars mission. This presentation reviews, in the context of the AIDA/AIM mission, the benefits of radar measurements performed from a spacecraft. The concept of both HFR and LFR are presented as well as the expected performances of the instruments.

  10. Detecting forest structure and biomass with C-band multipolarization radar - Physical model and field tests

    NASA Technical Reports Server (NTRS)

    Westman, Walter E.; Paris, Jack F.

    1987-01-01

    The ability of C-band radar (4.75 GHz) to discriminate features of forest structure, including biomass, is tested using a truck-mounted scatterometer for field tests on a 1.5-3.0 m pygmy forest of cypress (Cupressus pygmaea) and pine (Pinus contorta ssp, Bolanderi) near Mendocino, CA. In all, 31 structural variables of the forest are quantified at seven sites. Also measured was the backscatter from a life-sized physical model of the pygmy forest, composed of nine wooden trees with 'leafy branches' of sponge-wrapped dowels. This model enabled independent testing of the effects of stem, branch, and leafy branch biomass, branch angle, and moisture content on radar backscatter. Field results suggested that surface area of leaves played a greater role in leaf scattering properties than leaf biomass per se. Tree leaf area index was strongly correlated with vertically polarized power backscatter (r = 0.94; P less than 0.01). Field results suggested that the scattering role of leaf water is enhanced as leaf surface area per unit leaf mass increases; i.e., as the moist scattering surfaces become more dispersed. Fog condensate caused a measurable rise in forest backscatter, both from surface and internal rises in water content. Tree branch mass per unit area was highly correlated with cross-polarized backscatter in the field (r = 0.93; P less than 0.01), a result also seen in the physical model.

  11. Two radars for AIM mission: A direct observation of the asteroid's structure from deep interior to regolith

    NASA Astrophysics Data System (ADS)

    Herique, A.; Ciarletti, V.

    2015-10-01

    Our knowledge of the internal structure of asteroids is, so far, indirect - relying entirely on inferences from remote sensing observations of the surface, and theoretical modeling. What are the bulk properties of the regolith and deep interior? And what are the physical processes that shape their internal structures? Direct measurements are needed to provide answers that will directly improve our ability to understand and model the mechanisms driving Near Earth Asteroids (NEA) for the benefit of science as well as for planetary defense or exploration. Radar tomography is the only technique to characterize internal structure from decimetric scale to global scale. This paper reviews the benefits of direct measurement of the asteroid interior. Then the radar concepts for both deep interior and shallow subsurface are presented and the radar payload proposed for the AIDA/AIM mission is outlined.

  12. Ocean eddy structure by satellite radar altimetry required for iceberg towing

    USGS Publications Warehouse

    Campbell, W.J.; Cheney, R.E.; Marsh, J.G.; Mognard, N.M.

    1980-01-01

    Models for the towing of large tabular icebergs give towing speeds of 0.5 knots to 1.0 knots relative to the ambient near surface current. Recent oceanographic research indicates that the world oceans are not principally composed of large steady-state current systems, like the Gulf Stream, but that most of the ocean momentum is probably involved in intense rings, formed by meanders of the large streams, and in mid-ocean eddies. These rings and eddies have typical dimensions on the order of 200 km with dynamic height anomalies across them of tens-of-centimeters to a meter. They migrate at speeds on the order of a few cm/sec. Current velocities as great as 3 knots have been observed in rings, and currents of 1 knot are common. Thus, the successful towing of icebergs is dependent on the ability to locate, measure, and track ocean rings and eddies. To accomplish this systematically on synoptic scales appears to be possible only by using satelliteborne radar altimeters. Ocean current and eddy structures as observed by the radar altimeters on the GEOS-3 and Seasat-1 satellites are presented and compared. Several satellite programs presently being planned call for flying radar altimeters in polar or near-polar orbits in the mid-1980 time frame. Thus, by the time tows of large icebergs will probably be attempted, it is possible synoptic observations of ocean rings and eddies which can be used to ascertain their location, size, intensity, and translation velocity will be a reality. ?? 1980.

  13. Vertical structure of radar reflectivity in deep intense convective clouds over the tropics

    NASA Astrophysics Data System (ADS)

    Kumar, Shailendra; Bhat, G. S.

    2015-04-01

    This study is based on 10 years of radar reflectivity factor (Z) data derived from the TRMM Precipitation Radar (PR) measurements. We define two types of convective cells, namely, cumulonimbus towers (CbTs) and intense convective clouds (ICCs), essentially following the methodology used in deriving the vertical profiles of radar reflectivity (VPRR). CbT contains Z≥ 20 dBZ at 12 km height with its base height below 3 km. ICCs belong to the top 5% reflectivity population at 3 km and 8 km altitude. Regional differences in the vertical structure of convective cells have been explored for two periods, namely, JJAS (June, July, August and September) and JFM (January, February and March) months. Frequency of occurrences of CbTs and ICCs depend on the region. Africa and Latin America are the most productive regions for the CbTs while the foothills of Western Himalaya contain the most intense profiles. Among the oceanic areas, the Bay of Bengal has the strongest vertical profile, whereas Atlantic Ocean has the weakest profile during JJAS. During JFM months, maritime continent has the strongest vertical profile whereas western equatorial Indian Ocean has the weakest. Monsoon clouds lie between the continental and oceanic cases. The maximum heights of 30 and 40 dBZ reflectivities (denoted by MH30 and MH40, respectively) are also studied. MH40 shows a single mode and peaks around 5.5 km during both JJAS and JFM months. MH30 shows two modes, around 5 km and between 8 km and 10 km, respectively. It is also shown that certain conclusions such as the area/region with the most intense convective cells, depend of the reference height used in defining a convective cell.

  14. Microfabrication of Super Absorbent Polymer Structure Using Nanoimprinting and Swelling Process

    NASA Astrophysics Data System (ADS)

    Inaba, Tomomi; Kano, Tomonori; Miki, Norihisa

    2013-06-01

    Micro-fabrication technologies have been extensively studied to achieve smaller sizes and higher aspect ratios. When the features have sizes of a couple of micrometers or below, nano-imprinting can be an effective method for micro-fabrication at low cost. However, it is difficult to achieve aspect ratio greater than 1. In this research, we propose micro fabrication of super absorbent polymer (SAP) as a new material for micro devices. SAP swells by adding deionized water, which can be used as a post patterning process to enhance the aspect ratio of micro structures. Micropatterning of SAP must be conducted under thoroughly dry conditions and we used nano-imprinting processes. We successfully augmented an aspect ratio of the nano-imprinted micro holes of SAP from 0.65 to 1.2 by the swelling process. The proposed patterning and swelling process of SAP can be applicable to micro-fabricate high-aspect-ratio structures at low cost for high performance lab-on-a-chip.

  15. Cloud and Precipitation Radar

    NASA Astrophysics Data System (ADS)

    Hagen, Martin; Höller, Hartmut; Schmidt, Kersten

    Precipitation or weather radar is an essential tool for research, diagnosis, and nowcasting of precipitation events like fronts or thunderstorms. Only with weather radar is it possible to gain insights into the three-dimensional structure of thunderstorms and to investigate processes like hail formation or tornado genesis. A number of different radar products are available to analyze the structure, dynamics and microphysics of precipitation systems. Cloud radars use short wavelengths to enable detection of small ice particles or cloud droplets. Their applications differ from weather radar as they are mostly orientated vertically, where different retrieval techniques can be applied.

  16. High-volume use of self-cementing spray dry absorber material for structural applications

    NASA Astrophysics Data System (ADS)

    Riley, Charles E.

    Spray dry absorber (SDA) material, or spray dryer ash, is a byproduct of energy generation by coal combustion and sulfur emissions controls. Like any resource, it ought to be used to its fullest potential offsetting as many of the negative environmental impacts of coal combustion as possible throughout its lifecycle. Its cementitious and pozzolanic properties suggest it be used to augment or replace another energy and emissions intensive product: Portland cement. There is excellent potential for spray dryer ash to be used beneficially in structural applications, which will offset CO2 emissions due to Portland cement production, divert landfill waste by further utilizing a plentiful coal combustion by-product, and create more durable and sustainable structures. The research into beneficial use applications for SDA material is relatively undeveloped and the material is highly underutilized. This dissertation explored a specific self-cementing spray dryer ash for use as a binder in structural materials. Strength and stiffness properties of hydrated spray dryer ash mortars were improved by chemical activation with Portland cement and reinforcement with polymer fibers from automobile tire recycling. Portland cement at additions of five percent of the cementitious material was found to function effectively as an activating agent for spray dryer ash and had a significant impact on the hardened properties. The recycled polymer fibers improved the ductility and toughness of the material in all cases and increased the compressive strength of weak matrix materials like the pure hydrated ash. The resulting hardened materials exhibited useful properties that were sufficient to suggest that they be used in structural applications such as concrete, masonry block, or as a hydraulic cement binder. While the long-term performance characteristics remain to be investigated, from an embodied-energy and carbon emissions standpoint the material investigated here is far superior to

  17. Intercomparison of vertical structure of storms revealed by ground-based (NMQ) and spaceborne radars (CloudSat-CPR and TRMM-PR).

    PubMed

    Fall, Veronica M; Cao, Qing; Hong, Yang

    2013-01-01

    Spaceborne radars provide great opportunities to investigate the vertical structure of clouds and precipitation. Two typical spaceborne radars for such a study are the W-band Cloud Profiling Radar (CPR) and Ku-band Precipitation Radar (PR), which are onboard NASA's CloudSat and TRMM satellites, respectively. Compared to S-band ground-based radars, they have distinct scattering characteristics for different hydrometeors in clouds and precipitation. The combination of spaceborne and ground-based radar observations can help in the identification of hydrometeors and improve the radar-based quantitative precipitation estimation (QPE). This study analyzes the vertical structure of the 18 January, 2009 storm using data from the CloudSat CPR, TRMM PR, and a NEXRAD-based National Mosaic and Multisensor QPE (NMQ) system. Microphysics above, within, and below the melting layer are studied through an intercomparison of multifrequency measurements. Hydrometeors' type and their radar scattering characteristics are analyzed. Additionally, the study of the vertical profile of reflectivity (VPR) reveals the brightband properties in the cold-season precipitation and its effect on the radar-based QPE. In all, the joint analysis of spaceborne and ground-based radar data increases the understanding of the vertical structure of storm systems and provides a good insight into the microphysical modeling for weather forecasts. PMID:24459424

  18. Intercomparison of Vertical Structure of Storms Revealed by Ground-Based (NMQ) and Spaceborne Radars (CloudSat-CPR and TRMM-PR)

    PubMed Central

    Fall, Veronica M.; Hong, Yang

    2013-01-01

    Spaceborne radars provide great opportunities to investigate the vertical structure of clouds and precipitation. Two typical spaceborne radars for such a study are the W-band Cloud Profiling Radar (CPR) and Ku-band Precipitation Radar (PR), which are onboard NASA's CloudSat and TRMM satellites, respectively. Compared to S-band ground-based radars, they have distinct scattering characteristics for different hydrometeors in clouds and precipitation. The combination of spaceborne and ground-based radar observations can help in the identification of hydrometeors and improve the radar-based quantitative precipitation estimation (QPE). This study analyzes the vertical structure of the 18 January, 2009 storm using data from the CloudSat CPR, TRMM PR, and a NEXRAD-based National Mosaic and Multisensor QPE (NMQ) system. Microphysics above, within, and below the melting layer are studied through an intercomparison of multifrequency measurements. Hydrometeors' type and their radar scattering characteristics are analyzed. Additionally, the study of the vertical profile of reflectivity (VPR) reveals the brightband properties in the cold-season precipitation and its effect on the radar-based QPE. In all, the joint analysis of spaceborne and ground-based radar data increases the understanding of the vertical structure of storm systems and provides a good insight into the microphysical modeling for weather forecasts. PMID:24459424

  19. Thin Perfect Absorbers for Electromagnetic Waves: Theory, Design, and Realizations

    NASA Astrophysics Data System (ADS)

    Ra'di, Y.; Simovski, C. R.; Tretyakov, S. A.

    2015-03-01

    With recent advances in nanophotonics and nanofabrication, considerable progress has been achieved in realizations of thin composite layers designed for full absorption of incident electromagnetic radiation, from microwaves to the visible. If the layer is structured at a subwavelength scale, thin perfect absorbers are usually called "metamaterial absorbers," because these composite structures are designed to emulate some material responses not reachable with any natural material. On the other hand, many thin absorbing composite layers were designed and used already in the time of the introduction of radar technology, predominantly as a means to reduce radar visibility of targets. In view of a wide variety of classical and new topologies of optically thin metamaterial absorbers and plurality of applications, there is a need for a general, conceptual overview of the fundamental mechanisms of full absorption of light or microwave radiation in thin layers. Here, we present such an overview in the form of a general theory of thin perfectly absorbing layers. Possible topologies of perfect metamaterial absorbers are classified based on their fundamental operational principles. For each of the identified classes, we provide design equations and give examples of particular realizations. The concluding section provides a summary and gives an outlook on future developments in this field.

  20. Original Size of the Sudbury Structure: Evidence from Field Investigations and Imaging Radar

    NASA Technical Reports Server (NTRS)

    Lowmman, Paul D., Jr.

    1999-01-01

    This paper summarizes results of continuing studies of the original size of the Sudbury impact structure, including imaging radar and field investigations of supposed "Sudbury breccia" north of the Sudbury Igneous Comples (SIC). Imaging radar acquired from Canada Centre for Remote Sensing (CCRS) aircraft, European Space Agency Remote Sensing Satellite (ERS-1), and RADARSAT shows no evidence of outer rings concentric with the North Range. Illumination directions are such that these rings, presumably extension fractures, would be conspicuous by look azimuth highlighting if they existed. Field mapping supports this interpretation, showing that supposed ring fractures occupied by Huronian sediments are essentially synclines older than the 1850 Ma impact and are not related to the impact. Field investigations of "Sudbury breccia" north of the SIC shows that most if not all of it is inside or along contacts with diabase dykes of the Sudbury Swarm (ca. 1238 Ma), and hence is far too young to be related to the impact. A recently-discovered occurrence of "Sudbury breccia" south of the SIC, near Creighton, is similarly associated with a NW-trending diabase dyke cutting the SIC, supporting the post-impact age of the breccia. It is concluded that the original north rim of the Sudbury crater was not more than 5 to 10 km north of the present North Range SIC contact, and that published estimates of the crater size (ca 200 km diameter) are incorrect.

  1. Signal processing techniques for damage detection with piezoelectric wafer active sensors and embedded ultrasonic structural radar

    NASA Astrophysics Data System (ADS)

    Yu, Lingyu; Bao, Jingjing; Giurgiutiu, Victor

    2004-07-01

    Embedded ultrasonic structural radar (EUSR) algorithm is developed for using piezoelectric wafer active sensor (PWAS) array to detect defects within a large area of a thin-plate specimen. Signal processing techniques are used to extract the time of flight of the wave packages, and thereby to determine the location of the defects with the EUSR algorithm. In our research, the transient tone-burst wave propagation signals are generated and collected by the embedded PWAS. Then, with signal processing, the frequency contents of the signals and the time of flight of individual frequencies are determined. This paper starts with an introduction of embedded ultrasonic structural radar algorithm. Then we will describe the signal processing methods used to extract the time of flight of the wave packages. The signal processing methods being used include the wavelet denoising, the cross correlation, and Hilbert transform. Though hardware device can provide averaging function to eliminate the noise coming from the signal collection process, wavelet denoising is included to ensure better signal quality for the application in real severe environment. For better recognition of time of flight, cross correlation method is used. Hilbert transform is applied to the signals after cross correlation in order to extract the envelope of the signals. Signal processing and EUSR are both implemented by developing a graphical user-friendly interface program in LabView. We conclude with a description of our vision for applying EUSR signal analysis to structural health monitoring and embedded nondestructive evaluation. To this end, we envisage an automatic damage detection application utilizing embedded PWAS, EUSR, and advanced signal processing.

  2. Studies of high latitude mesospheric turbulence by radar and rocket. I - Energy deposition and wave structure

    NASA Technical Reports Server (NTRS)

    Goldberg, R. A.; Fritts, D. C.; Chou, H.-G.; Schmidlin, F. J.; Barcus, J. R.

    1988-01-01

    The origin of wintertime mesospheric echoes observed with the mesosphere-stratosphere-troposphere radar at Poker Flat, Alaska, was studied by probing the mesosphere with in situ rocket measurements during echo occurrences in the early spring, 1985. Within the height range 65-75 km, the structure of the large scale wave field was identified. In this region, a gravity wave with a vertical wavelength of about 2 km was found superimposed on a wave with a larger amplitude and a vertical wavelength of about 6.6 km. Because of the close correlation between the smaller amplitude wave and the modulation observed in the S/N profiles, it is concluded that the smaller wave was dominant in generating turbulence within the middle atmosphere.

  3. Structural investigation of the Canadian Shield by orbital radar and LANDSAT

    NASA Technical Reports Server (NTRS)

    Lowman, P. D., Jr.; Blodget, H. W.; Webster, W. J., Jr.; Paia, S.; Singhroy, V. H.; Slaney, V. R.

    1984-01-01

    Canadian Shield were studied by orbital radar. The primary objective of the study is scientific: to investigate and clarify the tectonic relationships of the Churchill, Superior, and Grenville Provinces, concentrating on their geologic boundaries, the Nelson and Grenvill Fronts. Theories about its origin range from in-situ regional metamorphism to tectonic sutures resulting from terrain accretion. The SIR-B investigation clarifies this problem. Secondary objectives are technique development, and include: (1) evaluation of the use of orbital radar in high altitude Precambrian terrains; (2) evaluation of look-azimuth biasing in radar and LANDSAT imagery; and (3) investigation of the synergistic use of radar, LANDSAT, and geophysical data in Precambrian studies.

  4. Ion-pair complexes with strong near infrared absorbance: syntheses, crystal structures and spectroscopic properties.

    PubMed

    Pei, Wen-Bo; Wu, Jian-Sheng; Liu, Jian-Lan; Ren, Xiao-Ming; Shen, Lin-Jiang

    2010-01-01

    Three ion-pair complexes, [4-NH(2)-Py](2)[M(mnt)(2)] (4-NH(2)-Py(1+)=4-amino-pyridinium; mnt(2-)=maleonitriledithiolate; M=Pt (1), Pd (2) or Ni (3)), have been synthesized and characterized. In the crystal of 1, the strong H-bonding interaction was found from the protonated N-atom of pyridinium to the CN group of [Pt(mnt)(2)](2-) together with a weak Pt...H interaction between the anion and the cation. The crystals of 2 and 3 are isostructural with very similar lattice parameters and packing structures, which are distinct from the crystal of 1. Two kinds of strong H-bonding interactions are observed in the crystals of 2 and 3 between the CN groups of [M(mnt)(2)](2-) anion and the protonated N-atom of 4-NH(2)-Py(1+) cation as well as the CN groups of [M(mnt)(2)](2-) anion and the amino group of 4-NH(2)-Py(1+) cation. Complex 1 shows an intense near-IR absorbance in acetonitrile and solid state, such an absorption band is probably assigned to IPCT transition as well as a trace amount of [Pt(mnt)(2)](1-) species; complex 3 possesses a weak near-IR absorption band which can be attributed to the mixture of d-d transition in [Ni(mnt)(2)](2-) and IPCT transition as well as a trace amount of [Ni(mnt)(2)](1-) species. PMID:19897406

  5. Temporal and structural evolution of a tropical monsoon cloud system: A case study using X-band radar observations

    NASA Astrophysics Data System (ADS)

    Kumar Das, Subrata; Deshpande, Sachin M.; Shankar Das, Siddarth; Konwar, Mahen; Chakravarty, Kaustav; Kalapureddy, Madhu Chandra Reddy

    2015-10-01

    A mobile X-band (~9.535 GHz) dual-polarization Doppler weather radar system was operated at a tropical site Pune (18.5386°N, 73.8089°E, 582 m AMSL) by the Indian Institute of Tropical Meteorology, Pune, India for observing monsoon clouds. The measurement site was on the leeward (eastern) side of the Western Ghats (WG). This study focuses on the horizontal and vertical structure of monsoon precipitating clouds and its temporal evolution as observed by the X-band radar on August 27, 2011. The radar reflectivity factor (Z, dBZ) is used as a proxy for measure of intensity of cloud system. Result shows that the radar reflectivity has a strong temporal variation in the vertical, with a local peak occurring in the afternoon hours. Relatively shallow structure during the late night and early morning hours is noticed. The observed cloud tops were reached up to 8 km heights with reflectivity maxima of about 35 dBZ at ∼5 km. The spatial and vertical evolution of radar reflectivity is consistent with the large-scale monsoon circulation. The variations in the outgoing longwave radiation (OLR) from the Kalpana-1 satellite and vertical velocity and cloud-mixing ratio from the Modern Era-Retrospective Analysis for Research and Applications (MERRA) reanalysis data are also analyzed. As direct observations of clouds using radars are sparse over the Indian region, the results presented here would be useful to understand the processes related to cloud and precipitation formation in the tropical environment.

  6. Subsurface structure of Planum Boreum from Mars Reconnaissance Orbiter Shallow Radar soundings

    NASA Astrophysics Data System (ADS)

    Putzig, Nathaniel E.; Phillips, Roger J.; Campbell, Bruce A.; Holt, John W.; Plaut, Jeffrey J.; Carter, Lynn M.; Egan, Anthony F.; Bernardini, Fabrizio; Safaeinili, Ali; Seu, Roberto

    2009-12-01

    We map the subsurface structure of Planum Boreum using sounding data from the Shallow Radar (SHARAD) instrument onboard the Mars Reconnaissance Orbiter. Radar coverage throughout the 1,000,000-km 2 area reveals widespread reflections from basal and internal interfaces of the north polar layered deposits (NPLD). A dome-shaped zone of diffuse reflectivity up to 12 μs (˜1-km thick) underlies two-thirds of the NPLD, predominantly in the main lobe but also extending into the Gemina Lingula lobe across Chasma Boreale. We equate this zone with a basal unit identified in image data as Amazonian sand-rich layered deposits [Byrne, S., Murray, B.C., 2002. J. Geophys. Res. 107, 5044, 12 pp. doi:10.1029/2001JE001615; Fishbaugh, K.E., Head, J.W., 2005. Icarus 174, 444-474; Tanaka, K.L., Rodriguez, J.A.P., Skinner, J.A., Bourke, M.C., Fortezzo, C.M., Herkenhoff, K.E., Kolb, E.J., Okubo, C.H., 2008. Icarus 196, 318-358]. Elsewhere, the NPLD base is remarkably flat-lying and co-planar with the exposed surface of the surrounding Vastitas Borealis materials. Within the NPLD, we delineate and map four units based on the radar-layer packets of Phillips et al. [Phillips, R.J., and 26 colleagues, 2008. Science 320, 1182-1185] that extend throughout the deposits and a fifth unit confined to eastern Gemina Lingula. We estimate the volume of each internal unit and of the entire NPLD stack (821,000 km 3), exclusive of the basal unit. Correlation of these units to models of insolation cycles and polar deposition [Laskar, J., Levrard, B., Mustard, J.F., 2002. Nature 419, 375-377; Levrard, B., Forget, F., Montmessin, F., Laskar, J., 2007. J. Geophys. Res. 112, E06012, 18 pp. doi:10.1029/2006JE002772] is consistent with the 4.2-Ma age of the oldest preserved NPLD obtained by Levrard et al. [Levrard, B., Forget, F., Montmessin, F., Laskar, J., 2007. J. Geophys. Res. 112, E06012, 18 pp. doi:10.1029/2006JE002772]. We suggest a dominant layering mechanism of dust-content variation during

  7. Structural Analysis of Lunar Subsurface with Chang'E 3 Lunar Penetrating Radar

    NASA Astrophysics Data System (ADS)

    Xu, Yi; Lai, Jialong; Tang, Zesheng

    2015-04-01

    Geological structure of the subsurface of the Moon provides valuable information for our understanding of lunar evolution. Recently, Chang'E 3 has utilized lunar penetrating radar (LPR), which is equipped on the lunar rover named as Yutu, to detect the lunar geological structure in Northern Imbrium (44.1260N, 19.5014W) for the first time. As an in-situ detector, Chang'E 3 LPR has higher horizontal and vertical resolution and less clutter impact compared to spaceborne radars such as Chandrayaan-1 and Kaguya. In this work, we analyze the LPR data at 500 MHz transmission frequency to obtain the shallow subsurface structure of the landing area of Chang'E 3 in Mare Imbrium. First, filter method and amplitude recover algorithms are introduced for data processing to alleviate the adverse effects of environment and system noises and compensate the amplitude losses during signal propagation. Next, based on the processed LPR data, we present the methods to determine the interfaces between layers. A three-layered structure of the shallow surface of the Moon has been observed. The corresponding real part of relative dielectric constant is inverted with deconvolution method. The average dielectric constants of the surface, second and third layer is 2.8, 3.2 and 3.6, respectively. The phenomenon that the average dielectric constant increases with the depth is consistent with prior art. With the obtained dielectric constants, the thickness of each layer can be calculated. One possible geological picture of the observed three-layered structure is presented as follows. The top layer is lunar regolith with its thickness ranging from 0.59 m to 0.9 m. The second layer is the ejecta blanket of the nearby impact crater, and the corresponding thickness is between 3.6m to 3.9m, which is in good agreement with the model of ejecta blanket thickness (height) as a function of distance from the crater center proposed by Melosh in 1989. The third layer is regarded as early lunar regolith with 4

  8. A polarization insensitive and broadband metamaterial absorber based on three-dimensional structure

    NASA Astrophysics Data System (ADS)

    Tang, Jingyao; Xiao, Zhongyin; Xu, Kaikai; Liu, Dejun

    2016-08-01

    In this paper, we propose a three-dimensional metamaterial absorber based on tailored resistive film patch array. The numerical results show that a broadband abs orption more than 90% can be achieved from 58.6 to 91.4 GHz for either transverse electric or magnetic polarization wave at normal incidence. And the E-field, surface current and power loss density distributions in the absorber are investigated to explain the physical mechanism of high absorption. In addition, the absorption efficiency of oblique incidence is also elucidated. According to the analysis of the E-field and power loss density distributions, we explain the absorption differences between TE and TM mode at oblique incidence. The proposed metamaterial absorber will pave the way for practical applications, such as sensing, imaging and stealth technology. Importantly, the design idea has the ability to be extended to terahertz, infrared and optical region.

  9. Vertical and horizontal structure of atmospheric waves observed with the Indonesian regional CPEA radar network

    NASA Astrophysics Data System (ADS)

    Nakamura, T.; Sridharan, S.; Tsuda, T.; Vincent, R.; Kozu, T.

    Although the global structure of tides and planetary waves in the middle atmosphere including MLT Mesosphere Lower Thermosphere has extensively been studied with ground-based and satellite observations structures of atmospheric waves within thousands of km are rarely reported by observations Such structures of a regional scale should reflect locality and are expected to include information of wave sources as well as interactions with smaller scale waves We have carried out meteor MF radar observations in the MLT region at three locations Kototabang 100E 0S West Sumatra Pontianak 109E 0N West Kalimantan and Pameungpeuk 107 5E 7 5S West Jawa in Indonesia as an activity of CPEA Coupling Processes of Equatorial Atmosphere project The diurnal variaiton of wind velocities over the equator at Pontianak and Kototabang with an average amplitude of 10 - 20 m s at 86 - 90 km showed significant difference indicating strong effect of non-migrating diurnal tides The significant phase difference between the two site 9 deg distance suggesting existence of high zonal wave number 4 waves Enhancement of diurnal variation of MLT wind seems to correlate with the enhancement of diurnal oscillation in the OLR outgoing longwave radiation of the Asia-Pacific area Vertical propagation of tides and other atmospheric waves are also addressed by comparing OLR data radiosonde observations during CPEA campaigns and other observational data

  10. Characterizing Vegetation 3D structure Globally using Spaceborne Lidar and Radar.

    NASA Astrophysics Data System (ADS)

    Simard, M.; Pinto, N.; Riddick, S.

    2008-12-01

    We characterized global vegetation 3D structure using ICEsat-I/Geoscience Laser Altimeter (GLAS) and improved spatial resolution using ALOS/Phased Array L-band Synthetic Aperture radar (PALSAR) data over 3 sites in the United States. GLAS is a 70m footprint lidar altimeter sampling the ground along-track every 170m with a track separation near the equator around 30km. Forest type classes were initially defined according to the Global Land Cover 2000 map (GLC2000), and 5-degree latitude intervals. This strategy enabled analysis of canopy structure as a function of land cover type and latitude. This produced an irregular grid geographically consistant with GLC2000. To estimate canopy height we removed the ground component from the lidar waveform and computed the centroid of the component due to the forest canopy. Canopy height within a grid cell was produced by computing the weighted mean of the GLAS estimates contained within that cell. The weights were used to reduce the impact of slope on Lidar height estimation errors. Slope is the single most significant source of error when estimating height with a large footprint lidar. It stretches the waveform and causes false estimates of canopy height. The Shuttle Radar Topography Mission (SRTM) elevation data was used to derive slope and weights. Thus, data points located in flat areas were assigned a higher weight than points located in slopes. For each forest type, we modeled the relationship between Lidar-estimated canopy height and five environmental variables: temperature, precipitation, slope, elevation, and anthropogenic disturbance. This ecological model was constructed using the machine learning method Random Forest, due to its flexibility and non-parametric nature. Model accuracy was calculated by subsampling the Lidar data set: using 75% of the data set to produce the map previously described and the remaining 25% for validation. This approach was chosen to characterize individual forest canopy types and their

  11. Resolute Bay Incoherent Scatter Radar observations of plasma structures in the vicinity of polar holes

    NASA Astrophysics Data System (ADS)

    Makarevich, Roman A.; Lamarche, L. J.; Nicolls, M. J.

    2015-09-01

    The Resolute Bay Incoherent Scatter Radar North (RISR-N) data collected between January 2012 and June 2013 are employed to identify and analyze 14 events with significant plasma density depressions (Ne<4 × 1010 m-3) in the winter polar cap ionosphere. The RISR-N observations near a magnetic latitude (MLAT) of 85°N refer to the region poleward of the previously identified polar hole-auroral cavity region 70°-80° MLAT where extremely low densities (down to 2 × 108 m-3 near 300 km in altitude) are found at times. Multipoint observations by RISR-N are also characterized by multiple series of propagating local density enhancements (plasma structures) both well outside and in the vicinity of polar holes. A superposed epoch analysis of plasma density and convection reveals that the density depressions tend to reach their minimum near the reversal of the meridional convection component. The wavelet analysis of plasma density time series shows that the wave power is enhanced within the depressions and tends to peak near the density minimum. The plasma structures are more elongated at mesoscales (>150 km), with no apparent differences between structure shapes outside and inside low-density regions. The structure propagation velocity is perpendicular to its elongation direction and consistent with that of the large-scale plasma convection. The observations indicate that large-scale density depressions can form under a variety of convection conditions and that plasma structuring processes outside the depressions may be responsible for their partial filling.

  12. Flexible metamaterial absorbers for stealth applications at terahertz frequencies.

    PubMed

    Iwaszczuk, Krzysztof; Strikwerda, Andrew C; Fan, Kebin; Zhang, Xin; Averitt, Richard D; Jepsen, Peter Uhd

    2012-01-01

    We have wrapped metallic cylinders with strongly absorbing metamaterials. These resonant structures, which are patterned on flexible substrates, smoothly coat the cylinder and give it an electromagnetic response designed to minimize its radar cross section. We compare the normal-incidence, small-beam reflection coefficient with the measurement of the far-field bistatic radar cross section of the sample, using a quasi-planar THz wave with a beam diameter significantly larger than the sample dimensions. In this geometry we demonstrate a near-400-fold reduction of the radar cross section at the design frequency of 0.87 THz. In addition we discuss the effect of finite sample dimensions and the spatial dependence of the reflection spectrum of the metamaterial. PMID:22274387

  13. Imaging Structure, Stratigraphy and Groundwater with Ground-Penetrating Radar on the Big Island, Hawaii

    NASA Astrophysics Data System (ADS)

    Shapiro, S. R.; Tchakirides, T. F.; Brown, L. D.

    2004-12-01

    A series of exploratory ground-penetrating radar (GPR) surveys were carried out on the Big Island, Hawaii in March of 2004 to evaluate the efficacy of using GPR to address hydrological, volcanological, and tectonic issues in extrusive basaltic materials. Target sites included beach sands, nearshore lava flows, well-developed soil covers, lava tubes, and major fault zones. Surveys were carried out with a Sensors and Software T Pulse Ekko 100, which was equipped with 50, 100, and 200 MHz antennae. Both reflection profiles and CMP expanding spreads were collected at most sites to provide both structural detail and in situ velocity estimation. In general, the volcanic rocks exhibited propagation velocities of ca 0.09-0.10 m/ns, a value which we interpret to reflect the large air-filled porosity of the media. Penetration in the nearshore area was expectedly small (less than 1 m), which we attribute to seawater infiltration. However, surveys in the volcanics away from the coast routinely probed to depths of 10 m or greater, even at 100 MHz. While internal layering and lava tubes could be identified from individual profiles, the complexity of returns suggests that 3D imaging is required before detailed stratigraphy can be usefully interpreted. A pilot 3D survey over a lava tube complex supports this conclusion, although it was prematurely terminated by bad weather. Although analysis of the CMP data does not show a clear systematic variation in radar velocity with age of flow, the dataset is too limited to support any firm conclusions on this point. Unusually distinct, subhorizontal reflectors on several profiles seem to mark groundwater. In one case, the water seems to lie within a lava tube with an air-filled roof zone. Surveys over part of the controversial Hilana fault zone clearly image the fault as a steeply dipping feature in the subsurface, albeit only to depths of a few meters. The results suggest, however, that deeper extensions of the faults could be mapped by

  14. Reduction of the radar cross section of arbitrarily shaped cavity structures

    NASA Technical Reports Server (NTRS)

    Chou, R.; Ling, H.; Lee, S. W.

    1987-01-01

    The problem of the reduction of the radar cross section (RCS) of open-ended cavities was studied. The issues investigated were reduction through lossy coating materials on the inner cavity wall and reduction through shaping of the cavity. A method was presented to calculate the RCS of any arbitrarily shaped structure in order to study the shaping problem. The limitations of this method were also addressed. The modal attenuation was studied in a multilayered coated waveguide. It was shown that by employing two layers of coating, it was possible to achieve an increase in both the magnitude of attenuation and the frequency band of effectiveness. The numerical method used in finding the roots of the characteristic equation breaks down when the coating thickness is very lossy and large in terms of wavelength. A new method of computing the RCS of an arbitrary cavity was applied to study the effects of longitudinal bending on RCS reduction. The ray and modal descriptions for the fields in a parallel plate waveguide were compared. To extend the range of validity of the Shooting and Bouncing Ray (SBR) method, the simple ray picture must be modified to account for the beam blurring.

  15. Ionospheric Structure from GPS and Radar Observations for Radio Array Calibration.

    NASA Astrophysics Data System (ADS)

    Salah, J. E.; Coster, A. J.; Goncharenko, L. P.; Oberoi, D.; Rideout, W.

    2007-12-01

    As part of the development of the Murchison Widefield Array (MWA) for solar, heliospheric and ionospheric observations, GPS receivers will be deployed at the site in Western Australia to assist in the calibration of the array. The MWA will operate in the frequency range of 80 to 300 MHz where ionospheric effects are the primary limiting factor for the array's measurement accuracy of Faraday rotation and other remote sensing techniques that will be applied. In preparation for the deployment, three GPS receivers (Model GSV4004B) were operated at Haystack Observatory during the month of December 2006 in conjunction with the Millstone Hill Incoherent Scatter Radar (ISR). High resolution time variations of total electron content (TEC) from GPS and ISR for a geomagnetically-quiet period (Dec 7, 2006) and during storm conditions (Dec 14, 2006) have been compared revealing excellent agreement between the instruments as well as providing estimates of plasmaspheric content and small scale structure induced by gravity wave and auroral disturbance effects. In the analysis of the GPS data, initial estimates were made of the effects of temperature on GPS receiver calibration and will be reported in this paper. This research was supported by NSF; the GPS receivers were provided courtesy of AFRL/AFOSR.

  16. Adaptive reconstruction of radar reflectivity maps based on their space-time structure

    NASA Astrophysics Data System (ADS)

    Park, Shinju; Berenguer, Marc

    2013-04-01

    The production of Radar Quantitative Precipitation Estimates (QPE) requires processing the observations to ensure their quality and its conversion into the variable of interest (i.e. precipitation rates). This processing is done through a chain of algorithms applied to mitigate the sources of uncertainty affecting radar observations. Some algorithms involve the reconstruction of the meteorological signal in areas where the signal is lost or strongly contaminated, for instance in areas affected by ground, sea clutter, total beam blockage or severe path attenuation by heavy rain. For post-processing of radar uncorrected moment data, the reconstruction has been done with spatial interpolation after the identification of clutter based on the analysis of statistical properties of radar measurements. The aim of this work has been to develop an improved reconstruction method that adapts to the different rainfall situations by using the information of the time and space variability of the rainfall field. The n-dimensional semi-variogram is formulated to reconstruct the radar fields in a n-Dimensional Ordinary Kriging framework: i.e., (i) the horizontal plane, (ii) the closest non-contaminated PPI, and (iii) the closest radar volume scan in time. The last one takes into account the effect of the motion that is very similar to the extrapolation of reflectivity observations to the future in many nowcasting algorithms. Each formulation of the reconstruction methods and their combinations have been studied. The radar fields have been reconstructed over the areas labeled as clutter (with a fuzzy logic algorithm) under different rainfall situations, including scattered convection, organized convection, and widespread precipitation. Also, the comparison between the reconstructed radar rainfall accumulations and collocated raingauge observations have been used for the evaluation.

  17. Structural Analysis of Central Luzon, Philippines, Using Shuttle Radar Topography Mission DEM

    NASA Astrophysics Data System (ADS)

    Torres, R.; Mouginis-Mark, P.; Garbeil, H.; Bautista, L.; Ramos, E.

    2002-12-01

    Central Luzon Island (13-16°N, 120-122°E), which is bounded to the east by Philippine Trench, to the west by Manila Trench, to the north by Digdig-Dingalan Fault (DDF) and to the south by Verde Island Passage Fault (VIPF), is one of the most seismically and volcanologically active regions in the Philippines. Active seismicity and violent earthquakes in the region are evidently related to the activities along the subduction zones and branches of the Philippine Fault system. Volcanic eruptions and periodic swarms of volcanic earthquakes were also observed in three active volcanoes, i.e., Pinatubo, Taal Volcano Island and Banahaw, while young calderas of Taal and Laguna de Bay are demonstrably fault-bounded. We use the Shuttle Radar Topography Mission (SRTM) data with 90 m spatial resolution to conduct regional mapping of the faults and volcanic structures in this region. Of particular interests are the NE-SW set of normal faults within the Macolod Corridor, the right-lateral Marikina Valley Fault System (MVFS), the prevalence of N-S trending structures and the series of NW-SE structures that parallel to sub-parallel the active branches of the Philippine Fault. Using ENVI software package, we processed the SRTM data into shaded relief images and examined the lineament features from different azimuth directions and angles of artificial illumination. The prominent NW-SE structures in this area revealed by SRTM data were formed as sinistral shears that parallel the seismically active DDF and VIPF. The N-S trending structures, including some segments of MVFS and N-S oriented fold axes, were apparently generated by an earlier E-W compression, but recently displayed dextral movement with localized vertical component and pull-apart zones. The overprinting of recent fault kinematics on previously formed structures suggest a dramatic shift of regional stress distribution in Central Luzon. The dextral movement along MVFS and the extensional NE-SW faults within the Macolod

  18. Producing Science-Ready Radar Datasets for the Retrieval of Forest Structure Parameters from Backscatter: Correcting for Terrain Topography and Changes in Vegetation Reflectivity

    NASA Technical Reports Server (NTRS)

    Simard, M.; Riel, Bryan; Hensley, S.; Lavalle, Marco

    2011-01-01

    Radar backscatter data contain both geometric and radiometric distortions due to underlying topography and the radar viewing geometry. Our objective is to develop a radiometric correction algorithm specific to the UAVSAR system configuration that would improve retrieval of forest structure parameters. UAVSAR is an airborne Lband radar capable of repeat?pass interferometry producing images with a spatial resolution of 5m. It is characterized by an electronically steerable antenna to compensate for aircraft attitude. Thus, the computation of viewing angles (i.e. look, incidence and projection) must include aircraft attitude angles (i.e. yaw, pitch and roll) in addition to the antenna steering angle. In this presentation, we address two components of radiometric correction: area projection and vegetation reflectivity. The first correction is applied by normalization of the radar backscatter by the local ground area illuminated by the radar beam. The second is a correction due to changes in vegetation reflectivity with viewing geometry.

  19. Multiple-layer Radiation Absorber

    NASA Astrophysics Data System (ADS)

    Baker, Robert M. L.; Baker, Bonnie Sue

    A structure is discussed for absorbing incident radiation, either electromagnetic (EM) or sound. Such a surface structure is needed, for example, in a highly sensitive high-frequency gravitational wave or HFGW detector such as the Li-Baker. The multi-layer absorber, which is discussed, is constructed with metamaterial [MM] layer or layers on top. This MM is configured for a specific EM or sound radiation frequency band, which absorbs incident EM or sound radiation without reflection. Below these top MM layers is a substrate of conventional EM-radiation absorbing or acoustical absorbing reflective material, such as an array of pyramidal foam absorbers. Incident radiation is partially absorbed by the MM layer or layers, and then it is more absorbed by the lower absorbing and reflecting substrate. The remaining reflected radiation is even further absorbed by the MM layers on its "way out_ so that essentially all of the incident radiation is absorbed _ a nearly perfect black-body absorber. In a HFGW detector a substrate, such as foam absorbers, may outgas into a high vacuum and reduce the capability of the vacuum-producing equipment, however, the layers above this lowest substrate will seal the absorbing and reflecting substrate from any external vacuum. The layers also serve to seal the absorbing material against air or water flow past the surfaces of aircraft, watercraft or submarines. Other applications for such a multiple-level radiation absorber include stealth aircraft, missiles and submarines.

  20. Ultrathin multi-slit metamaterial as excellent sound absorber: Influence of micro-structure

    NASA Astrophysics Data System (ADS)

    Ren, S. W.; Meng, H.; Xin, F. X.; Lu, T. J.

    2016-01-01

    An ultrathin (subwavelength) hierarchy multi-slit metamaterial with simultaneous negative effective density and negative compressibility is proposed to absorb sound over a wide frequency range. Different from conventional acoustic metamaterials having only negative real parts of acoustic parameters, the imaginary parts of effective density and compressibility are both negative for the proposed metamaterial, which result in superior viscous and thermal dissipation of sound energy. By combining the slit theory of sound absorption with the double porosity theory for porous media, a theoretical model is developed to investigate the sound absorption performance of the metamaterial. To verify the model, a finite element model is established to calculate the effective density, compressibility, and sound absorption of the metamaterial. It is theoretically and numerically confirmed that, upon introducing micro-slits into the meso-slits matrix, the multi-slit metamaterial possesses indeed negative imaginary parts of effective density and compressibility. The influence of micro-slits on the acoustical performance of the metamaterial is analyzed in the context of its specific surface area and static flow resistivity. This work shows great potential of multi-slit metamaterials in noise control applications that require both small volume and small weight of sound-absorbing materials.

  1. Using Ground Penetrating Radar to Image Paleotopography and Structural Controls at Coral Pink Sand Dunes, Kane County, Utah

    NASA Astrophysics Data System (ADS)

    Rozar, E. J.; Bradford, J. H.; Ford, R. L.; Wilkins, D. E.

    2014-12-01

    The Coral Pink Sand Dunes (CPSD) are one of the largest dune fields in the Great Basin-Colorado Plateau Transition Zone. The dune field rests on Navajo Sandstone, and is bisected by the Sevier Normal Fault, which also forms the bedrock escarpment along the eastern boundary of the lower dune field (LDF). Limited ground penetrating radar (GPR) collected previously, as well as recent ground-based LiDAR data and geomorphic observations, suggest that underlying bedrock is topographically lower in the center of the LDF than on its margins. In order to image the dune-bedrock interface and any structures contained within the bedrock, including buried faults, 50-MHz and 100-MHz GPR antennae with 400-V transmitters were used to conduct over 25 transects, totaling several kilometers, across the LDF. We recorded radar reflections at depths of up to 30 m within the bedrock beneath the modern dunes. Outcrops and/or shallow boreholes along some transects provide ground truth for dune-bedrock contacts. The resulting radar profiles suggest at least two antithetic fault zones within the LDF that, in places, appear to control the location of smaller dunes. Further examination of the relationship between these fault zones and dune forms, as imaged with LiDAR, will help inform whether or not these structural controls affect variation in dune type and patterning across the LDF, and may also explain why the CPSD exist in this location.

  2. Estimating Forest Vertical Structure from Multialtitude, Fixed-Baseline Radar Interferometric and Polarimetric Data

    NASA Technical Reports Server (NTRS)

    Treuhaft, Robert N.; Law, Beverly E.; Siqueira, Paul R.

    2000-01-01

    Parameters describing the vertical structure of forests, for example tree height, height-to-base-of-live-crown, underlying topography, and leaf area density, bear on land-surface, biogeochemical, and climate modeling efforts. Single, fixed-baseline interferometric synthetic aperture radar (INSAR) normalized cross-correlations constitute two observations from which to estimate forest vertical structure parameters: Cross-correlation amplitude and phase. Multialtitude INSAR observations increase the effective number of baselines potentially enabling the estimation of a larger set of vertical-structure parameters. Polarimetry and polarimetric interferometry can further extend the observation set. This paper describes the first acquisition of multialtitude INSAR for the purpose of estimating the parameters describing a vegetated land surface. These data were collected over ponderosa pine in central Oregon near longitude and latitude -121 37 25 and 44 29 56. The JPL interferometric TOPSAR system was flown at the standard 8-km altitude, and also at 4-km and 2-km altitudes, in a race track. A reference line including the above coordinates was maintained at 35 deg for both the north-east heading and the return southwest heading, at all altitudes. In addition to the three altitudes for interferometry, one line was flown with full zero-baseline polarimetry at the 8-km altitude. A preliminary analysis of part of the data collected suggests that they are consistent with one of two physical models describing the vegetation: 1) a single-layer, randomly oriented forest volume with a very strong ground return or 2) a multilayered randomly oriented volume; a homogeneous, single-layer model with no ground return cannot account for the multialtitude correlation amplitudes. Below the inconsistency of the data with a single-layer model is followed by analysis scenarios which include either the ground or a layered structure. The ground returns suggested by this preliminary analysis seem

  3. Studying the fine structure of coherent echo spectra using data from Irkutsk incoherent scatter radar

    NASA Astrophysics Data System (ADS)

    Berngardt, O. I.; Potekhin, A. P.

    2009-12-01

    Studying the processes generating different-scale inhomogeneities is one of the challenging problems of ionospheric physics. Plasma instabilities are one of the physical mechanisms by which small-scale inhomogeneities are formed. The main forms of instability in the ionospheric E-layer are two-stream and gradient-drift ones. The inhomogeneities generated by them lead to an abnormally intense radio scattering of different wavelengths (known as coherent echo (CE) or radio aurora) in the E-layer. Therefore, the method of radiowave backscattering is among the widely used methods for studying such inhomogeneities. The CE phenomenon has been investigated most intensely at high and equatorial latitudes, where the conditions for the CE origination are formed rather regularly. For the last decade, CE has also been intensely studied at midlatitudes, where it is observed less frequently and its formation conditions are less known. In 1998-2006, the purposeful studies of the midlatitude CE peculiarities were performed at the Irkutsk incoherent scatter (IS) radar, with a particular emphasis on its coherent properties. It was for the first time found out that the spectra of some data sets had a fine comb-shaped structure, which generated well-known single-humped CE spectra as a result of statistical averaging. In the scope of this study, unique coherent methods for processing individual data sets of CE signals were developed, making it possible to reveal the peculiarities of unaveraged CE-signal spectra. To describe these peculiarities, we proposed a new model of the inhomogeneity spectrum, which is the superposition of the discrete set of spatial harmonics with close wave numbers. The model was shown to adequately describe the scattered signal characteristics observed experimentally.

  4. Internal structure of Planum Boreum, from Mars advanced radar for subsurface and ionospheric sounding data

    NASA Astrophysics Data System (ADS)

    Selvans, M. M.; Plaut, J. J.; Aharonson, O.; Safaeinili, A.

    2010-09-01

    An investigation of the internal structure of the ice-rich Planum Boreum (PB) deposit at the north pole of Mars is presented, using 178 orbits of Mars advanced radar for subsurface and ionospheric sounding data. For each radargram, bright, laterally extensive surface and subsurface reflectors are identified and the time delay between them is converted to unit thicknesses, using a real dielectric constant of 3. Results include maps of unit thickness, for PB and its two constituent units, the stratigraphically older basal unit (BU) and the stratigraphically younger north polar layered deposits (NPLD). Maps of the individual units' surface elevation are also provided. Estimates of water ice volume in each unit are (1.3 ± 0.2) × 106 km3 in PB, (7.8 ± 1.2) × 105 km3 in the NPLD, and (4.5 ± 1.0) × 105 km3 in the BU. No lithospheric deflection is apparent under PB, in agreement with previous findings for only the Gemina Lingula lobe, which suggests that a thick elastic lithosphere has existed at the north pole of Mars since before the emplacement of the BU. The extent of BU material in the Olympia Planum lobe of PB is directly detected, providing a more accurate map of BU extent than previously available from imagery and topography. A problematic area for mapping the BU extent and thickness is in the distal portion of the 290°E-300°E region, where MARSIS data show no subsurface reflectors, even though the BU is inferred to be present from other lines of evidence.

  5. Inner Shelf Current Structure Under Different Forcing Mechanisms— Combining ADCP and HF Radar Measurements

    NASA Astrophysics Data System (ADS)

    Kastner, S.; Kirincich, A.; Lentz, S. J.

    2014-12-01

    Our understanding of wind and wave driven currents in the coastal ocean has been limited by our inability to measure currents within a few meters of the surface. To improve our understanding of current dynamics in the upper few meters of the ocean we combine 8 months of ADCP measurements from the Martha's Vineyard Coastal Observatory with high-frequency (HF) radar measurements of surface currents. These techniques compliment each other, as the HF radar can only observe the surface velocities, and the ADCP cannot take accurate measurements in the upper few meters of the water column. We find that currents can vary significantly over the upper two meters of the inner shelf. Extrapolations to the surface based on the ADCP data are inconsistent with that observed by the HF radar. When different types of forcing conditions were examined, it was found that this difference is most evident in cases when wind stresses are weak (radar observations were onshore, in the opposite direction of the near-surface ADCP observations. Models indicate this difference can be attributed in part to Stokes' drift, measured by the HF radar but not the ADCP. When the ADCP velocities are corrected for Stokes' drift, the difference between the HF radar surface current and the top ADCP current is consistent with a simple model of near-surface wind-driven current shear. This suggests future attempts to extrapolate ADCP currents toward the surface should consider wind-driven shear. This result can be used to more accurately estimate onshore transport, which has applications in calculating nutrient and pollutant transport.

  6. The detectability of archaeological structures beneath the soil using the ground penetrating radar technique

    NASA Astrophysics Data System (ADS)

    Ferrara, C.; Barone, P. M.; Pajewski, L.; Pettinelli, E.; Rossi, G.

    2012-04-01

    The traditional excavation tools applied to Archaeology (i.e. trowels, shovels, bulldozers, etc.) produce, generally, a fast and invasive reconstruction of the ancient past. The geophysical instruments, instead, seem to go in the opposite direction giving, rapidly and non-destructively, geo-archaeological information. Moreover, the economic aspect should not be underestimated: where the former invest a lot of money in order to carry out an excavation or restoration, the latter spend much less to manage a geophysical survey, locating precisely the targets. Survey information gathered using non-invasive methods contributes to the creation of site strategies, conservation, preservation and, if necessary, accurate location of excavation and restoration units, without destructive testing methods, also in well-known archaeological sites [1]-[3]. In particular, Ground Penetrating Radar (GPR) has, recently, become the most important physical technique in archaeological investigations, allowing the detection of targets with both very high vertical and horizontal resolution, and has been successfully applied both to archaeological and diagnostic purposes in historical and monumental sites [4]. GPR configuration, antenna frequency and survey modality can be different, depending on the scope of the measurements, the nature of the site or the type of targets. Two-dimensional (2D) time/depth slices and radargrams should be generated and integrated with information obtained from other buried or similar artifacts to provide age, structure and context of the surveyed sites. In the present work, we present three case-histories on well-known Roman archaeological sites in Rome, in which GPR technique has been successfully used. To obtain 2D maps of the explored area, a bistatic GPR (250MHz and 500MHz antennas) was applied, acquiring data along several parallel profiles. The GPR results reveal the presence of similar circular anomalies in all the investigated archaeological sites. In

  7. Inversion for the statistical structure of subsurface water content from ground-penetrating radar reflection data: Initial results and interpretation

    NASA Astrophysics Data System (ADS)

    Irving, J.; Knight, R.; Holliger, K.

    2007-12-01

    The distribution of subsurface water content can be an excellent indicator of soil texture, which strongly influences the unsaturated hydraulic properties controlling vadose zone contaminant transport. Characterizing the heterogeneity in subsurface water content for use in numerical transport models, however, is an extremely difficult task as conventional hydrological measurement techniques do not offer the combined high spatial resolution and coverage required for accurate simulations. A number of recent studies have shown that ground-penetrating radar (GPR) reflection images may contain useful information regarding the statistical structure of subsurface water content. Comparisons of the horizontal correlation structures of radar images and those obtained from water content measurements have shown that, in some cases, the statistical characteristics are remarkably similar. However, a key issue in these studies is that a reflection GPR image is primarily related to changes in subsurface water content, and not the water content distribution directly. As a result, statistics gathered on the reflection image have a very complex relationship with the statistics of the underlying water content distribution, this relationship depending on a number of factors including the frequency of the GPR antennas used. In this work, we attempt to address the above issue by posing the estimation of the statistical structure of water content from reflection GPR data as an inverse problem. Using a simple convolution model for a radar image, we first derive a forward model relating the statistical structure of a radar image to that of the underlying water content distribution. We then use this forward model to invert for the spatial statistics of the water content distribution, given the spatial statistics of the GPR reflection image as data. We do this within a framework of uncertainty, such that realistic statistical bounds can be placed on the information that is inferred. In other

  8. Micropower impulse radar imaging

    SciTech Connect

    Hall, M.S.

    1995-11-01

    From designs developed at the Lawrence Livermore National Laboratory (LLNL) in radar and imaging technologies, there exists the potential for a variety of applications in both public and private sectors. Presently tests are being conducted for the detection of buried mines and the analysis of civil structures. These new systems use a patented ultra-wide band (impulse) radar technology known as Micropower Impulse Radar (GPR) imaging systems. LLNL has also developed signal processing software capable of producing 2-D and 3-D images of objects embedded in materials such as soil, wood and concrete. My assignment while at LLNL has focused on the testing of different radar configurations and applications, as well as assisting in the creation of computer algorithms which enable the radar to scan target areas of different geometeries.

  9. Analysis of Wave Propagation in Stratified Structures Using Circuit Analogues, with Application to Electromagnetic Absorbers

    ERIC Educational Resources Information Center

    Sjoberg, Daniel

    2008-01-01

    This paper presents an overview of how circuit models can be used for analysing wave propagation in stratified structures. Relatively complex structures can be analysed using models which are accessible to undergraduate students. Homogeneous slabs are modelled as transmission lines, and thin sheets between the slabs are modelled as lumped…

  10. Multispectral metamaterial absorber.

    PubMed

    Grant, J; McCrindle, I J H; Li, C; Cumming, D R S

    2014-03-01

    We present the simulation, implementation, and measurement of a multispectral metamaterial absorber (MSMMA) and show that we can realize a simple absorber structure that operates in the mid-IR and terahertz (THz) bands. By embedding an IR metamaterial absorber layer into a standard THz metamaterial absorber stack, a narrowband resonance is induced at a wavelength of 4.3 μm. This resonance is in addition to the THz metamaterial absorption resonance at 109 μm (2.75 THz). We demonstrate the inherent scalability and versatility of our MSMMA by describing a second device whereby the MM-induced IR absorption peak frequency is tuned by varying the IR absorber geometry. Such a MSMMA could be coupled with a suitable sensor and formed into a focal plane array, enabling multispectral imaging. PMID:24690713

  11. Internal structure of a barrier beach as revealed by ground penetrating radar (GPR): Chesil beach, UK

    NASA Astrophysics Data System (ADS)

    Bennett, Matthew R.; Cassidy, Nigel J.; Pile, Jeremy

    2009-03-01

    Chesil Beach (Dorset) is one of the most famous coastal landforms on the British coast. The gravel beach is over 18 km long and is separated for much of its length from land by a tidal lagoon known as The Fleet. The beach links the Isle of Portland in the east to the mainland in the west. Despite its iconic status there is little available information on its internal geometry and evolutionary history. Here we present a three-fold model for the evolution of Chesil Beach based on a series of nine ground penetrating radar (GPR) traverses located at three sites along its length at Abbotsbury, Langton Herring and at Ferry Bridge. The GPR traverses reveal a remarkably consistent picture of the internal structure of this barrier beach. The first phase of evolution involves the landward transgression of a small sand and gravel beach which closed upon the coast leading to deposition of freshwater peat between 5 and 7 k yr BP. The second evolutionary phase involves the 'bulking-out' of the beach during continued sea level rise, but in the presence of abundant gravel supplied by down-drift erosion of periglacial slope deposits. This episode of growth was associated with a series of washover fans which accumulated on the landward flank of the barrier increasing its breadth and height but without significant landward transgression of the barrier as a whole. The final phase in the evolution of Chesil Beach involves the seaward progradation of the beach crest and upper beach face associated with continued sediment abundance, but during a still-stand or slight fall in relative sea level. This phase may provide further evidence of a slight fall in relative sea level noted elsewhere along the South Coast of Britain and dated to between 1.2 and 2.4 k yr BP. Subsequently the barrier appears to have become largely inactive, except for the reworking of sediment on the beach face during storm events. The case study not only refines the evolutionary picture of Chesil Beach, but

  12. COS-GTO: QSO Absorbers, Galaxies and Large-scale Structures in the Local Universe Part 2

    NASA Astrophysics Data System (ADS)

    Green, James

    2010-09-01

    This is a program to probe the large scale structure of baryons in the universe, including addressing questions of baryon fraction, physical conditions and relationships between absorbers and large-scale structures of galaxies. Besides these specific goals, this proposed GTO program also probes a large enough total path length in Ly alpha and OVI to add significantly to what STIS/FUSE has already observed. Several Galactic High Velocity Cloud Complexes also are probed by these sightlines, particularly the M Complex. The total path length of this proposed program for Ly alpha large-scale structure surveys is delta_z 5.5. We have selected a variety of targets to address these questions, under the following subcategories:1. Target 8 bright BL Lac objects to search for low contrast Ly alpha absorbers from the warm-hot interstellar medium {WHIM}. Science drivers: What are physical conditions and extent of warm-hot IGM in the current epoch? Can we discover metal-poor WHIM using very broad Ly alpha lines? What is the number density of such lines {dN/dz} and what is their relationship if any with tentative Chandra detections of even hotter gas?2. Ly alpha cloud sizes: The targets are a bright AGN pair which yield tangential distance separations of 100-500 kpc at z=0.01-0.05, where galaxy surveys are excellent. This pair has two filaments and two voids in this distance range. Science drivers: What are the characteristic sizes of Ly alpha absorbers, weak metal-line absorbers and absorbers in voids? Better size determinations will tighten current estimates of the baryon content of the photoionzed IGM .3. Probes of starburst outflows: The targets are bright AGN, <= 100 kpc in projection out of the minor axis of nearby starburst galaxies. Science drivers: Outflowing, unbound winds have been implicated as a primary mechanism to enrich the IGM in mass, metals and energy. But do starburst winds from massive galaxies escape the galaxy's gravitational potential? If so, what is the

  13. Investigations on the links between rain intensity or reflectivity structures estimated from radar and drop size distributions

    NASA Astrophysics Data System (ADS)

    Hachani, Sahar; Boudevillain, Brice; Bargaoui, Zoubeida; Delrieu, Guy

    2015-04-01

    During the first Special Observation Period (SOP) of the Hydrological cycle in the Mediterranean Experiment (HyMeX, www.hymex.org) held in fall 2012 in the Northwestern Mediterranean region, an observation network dedicated to rain studies was implemented in the Cévennes region, France. It was mainly constituted by weather radars, micro rain radars, disdrometers and rain gauges. Observations are performed by a network of 25 OTT Parsivel optical disdrometers distributed with inter-distances ranging from a few meters up to about one hundred kilometers. This presentation focuses on the comparison of one optical disdrometer observations located at Villeneuve-de-berg to observations using weather Météo-France / ARAMIS radar located at Bollène which is in a neighborhood of 60 km from the disdrometer.The period from September to November 2012 is studied. To analyze the structure of the rain observed by radar, a window of investigation centered on the disdrometer was selected and the mean spatial values, standard deviation, gradients, and intermittency of radar reflectivity or rainfall intensity were computed for a time step of 5 minutes.Four different windowsizes were analyzed: 1 km², 25 km², 100 km² and 400 km². On the other hand, the total concentration of drops Nt, the characteristic diameter of drops Dc, and a Gamma distribution shape parameter µ were estimated. Gamma distribution for the DSD related to disdrometer observations was estimated according to the modeling framework proposed by Yu et al. (2014). Correlation coefficient between intensity R obtained by the disdrometer and windowaverage R estimated using radar data is nearly 0.70 whatever the window. The highest value is found for the window 25 km² (0.74). Correlation coefficients between Dc and window average R vary from 0.35 for the window 1 km² to 0.4 for the window 400 km². So, they areweak and not sensitive to the choice of the window. Contrarily, formean radar reflectivityZ, correlation

  14. Horizontal structure of midlatitude sporadic-E layers observed by incoherent scatter radar

    NASA Technical Reports Server (NTRS)

    Miller, K. L.; Smith, L. G.

    1975-01-01

    The investigation reported is concerned with a model considered by Whitehead (1972). The partial transparency of the sporadic-E layer observed on certain occasions is attributed to regions of high electron density embedded in the layer. Observations obtained with an incoherent scatter radar facility are presented. Taking into account all factors, it is concluded that the partial transparency of sporadic-E layers, on the occasions of these observations, are explained by the Whitehead model.

  15. The structure of a microburst - As observed by ground-based and airborne Doppler radar

    NASA Technical Reports Server (NTRS)

    Mueller, C. K.; Hildebrand, P. H.

    1983-01-01

    Attention is given to the microburst observed near Denver, CO, on June 29, 1982, in the course of the Joint Airport Weather Study (JAWS). The JAWS ground radar network was specifically established to furnish high spatial and temporal resolution multiple Doppler data for microburst observations. The data, which were collected from directly above the microburst, permitted direct measurements of vertical velocities to be made. P-3 surveillance aircraft Doppler data was also available for this microburst, whose considerable complexity is noted.

  16. The structure of turbulence in clouds measured by a high power 94 GHz radar

    NASA Astrophysics Data System (ADS)

    Manheimer, W. M.; Fliflet, A. W.; Linde, G. J.; Cheung, W. J.; Gregers-Hansen, V.; Ngo, M. T.; Danly, B. G.

    2004-05-01

    The Naval Research Laboratory (NRL) has recently developed a 3-10 kW average, 80 kW peak power 94 GHz radar with scanning capability, WARLOC (W Band Advanced Radar for Low Observable Control). This radar is powered by a gyroklystron developed by a team led by NRL. One application has been to image clouds. New capabilities of WARLOC include imaging with greatly improved sensitivity and detail as well as the ability to detect much lower cloud returns. At short scale lengths (˜10 m), the cloud reflectivity has a speckle pattern indicating that it is governed at least in part by stochastic processes. Here WARLOC is used to measure correlation functions and turbulence spectra in clouds. In the inertial range, the Kolmogorov prediction for the correlation function index (2/3) agrees well with the data, but the assumption of isotropy does not. Furthermore, for longer scale lengths, the fluctuations appear to be wave like in the vertical direction, but not in the horizontal direction.

  17. Structured copolymers and their use as absorbents, gels and carriers of metal ions

    DOEpatents

    Hedstrand, D.M.; Helmer, B.J.; Tomalia, D.A.

    1996-10-01

    Dense star polymers or dendrimers having a highly branched interior structure capable of associating or chelating with metal ions are modified by capping with a hydrophobic group capable of providing a hydrophobic outer shell. The modified dendrimers are useful for dispersing metal ions in a non-aqueous polymer matrix. Also dense star polymers or dendrimers having a highly branched hydrophilic interior structure are modified by capping with a hydrophobic group capable of providing a hydrophobic outer shell, which modified polymers are useful as gels and surfactants.

  18. Structured copolymers and their use as absorbents, gels and carriers of metal ions

    DOEpatents

    Hedstrand, David M.; Helmer, Bradley J.; Tomalia, Donald A.

    1996-01-01

    Dense star polymers or dendrimers having a highly branched interior structure capable of associating or chelating with metal ions are modified by capping with a hydrophobic group capable of providing a hydrophobic outer shell. The modified dendrimers are useful for dispersing metal ions in a non-aqueous polymer matrix. Also dense star polymers or dendrimers having a highly branched hydrophilic interior structure are modified by capping with a hydrophobic group capable of providing a hydrophobic outer shell, which modified polymers are useful as gels and surfactants.

  19. Radar and Lidar Radar DEM

    NASA Technical Reports Server (NTRS)

    Liskovich, Diana; Simard, Marc

    2011-01-01

    Using radar and lidar data, the aim is to improve 3D rendering of terrain, including digital elevation models (DEM) and estimates of vegetation height and biomass in a variety of forest types and terrains. The 3D mapping of vegetation structure and the analysis are useful to determine the role of forest in climate change (carbon cycle), in providing habitat and as a provider of socio-economic services. This in turn will lead to potential for development of more effective land-use management. The first part of the project was to characterize the Shuttle Radar Topography Mission DEM error with respect to ICESat/GLAS point estimates of elevation. We investigated potential trends with latitude, canopy height, signal to noise ratio (SNR), number of LiDAR waveform peaks, and maximum peak width. Scatter plots were produced for each variable and were fitted with 1st and 2nd degree polynomials. Higher order trends were visually inspected through filtering with a mean and median filter. We also assessed trends in the DEM error variance. Finally, a map showing how DEM error was geographically distributed globally was created.

  20. Sound Absorbers

    NASA Astrophysics Data System (ADS)

    Fuchs, H. V.; Möser, M.

    Sound absorption indicates the transformation of sound energy into heat. It is, for instance, employed to design the acoustics in rooms. The noise emitted by machinery and plants shall be reduced before arriving at a workplace; auditoria such as lecture rooms or concert halls require a certain reverberation time. Such design goals are realised by installing absorbing components at the walls with well-defined absorption characteristics, which are adjusted for corresponding demands. Sound absorbers also play an important role in acoustic capsules, ducts and screens to avoid sound immission from noise intensive environments into the neighbourhood.

  1. Surface extended x-ray absorption fine structure of low-Z absorbates using fluorescence detection

    SciTech Connect

    Stoehr, J.; Kollin, E.B.; Fischer, D.A.; Hastings, J.B.; Zaera, F.; Sette, F.

    1985-05-01

    Comparison of x-ray fluorescence yield (FY) and electron yield surface extended x-ray absorption fine structure spectra above the S K-edge for c(2 x 2) S on Ni(100) reveals an order of magnitude higher sensitivity of the FY technique. Using FY detection, thiophene (C/sub 4/H/sub 4/S) chemisorption on Ni(100) is studied with S coverages down to 0.08 monolayer. The molecule dissociates at temperatures as low as 100K by interaction with fourfold hollow Ni sites. Blocking of these sites by oxygen leaves the molecule intact.

  2. Chemical and Structural Disorder in Eumelanins: A Possible Explanation for Broadband Absorbance

    PubMed Central

    Tran, M. Linh; Powell, Ben J.; Meredith, Paul

    2006-01-01

    We report the results of an experimental and theoretical study of the electronic and structural properties of a key eumelanin precursor—5,6,-dihydroxyindole-2-carboxylic acid (DHICA)—and its dimeric forms. We have used optical spectroscopy to follow the oxidative polymerization of DHICA to eumelanin and observe red shifting and broadening of the absorption spectrum as the reaction proceeds. First principles density functional theory calculations indicate that DHICA oligomers (possible reaction products of oxidative polymerization) have the gap between the highest occupied molecular orbital and the lowest unoccupied molecular orbital red-shifted gaps with respect to the monomer. Furthermore, different bonding configurations (leading to oligomers with different structures) produce a range of gaps. These experimental and theoretical results lend support to the chemical disorder model where the broadband monotonic absorption characteristic of all melanins is a consequence of the superposition of a large number of nonhomogeneously broadened Gaussian transitions associated with each of the components of a melanin ensemble. These results suggest that the traditional model of eumelanin as an amorphous organic semiconductor is not required to explain its optical properties and should be thoroughly reexamined. These results have significant implications for our understanding of the physics, chemistry, and biological function of these important biological macromolecules. Indeed, one may speculate that the robust functionality of melanins in vitro is a direct consequence of its heterogeneity, i.e., chemical disorder is a “low cost” natural resource in these systems. PMID:16284264

  3. Tuning Electronic Structure, Redox, and Photophysical Properties in Asymmetric NIR-Absorbing Organometallic BODIPYs.

    PubMed

    Zatsikha, Yuriy V; Maligaspe, Eranda; Purchel, Anatolii A; Didukh, Natalia O; Wang, Yefeng; Kovtun, Yuriy P; Blank, David A; Nemykin, Victor N

    2015-08-17

    Stepwise modification of the methyl groups at the α positions of BODIPY 1 was used for preparation of a series of mono- (2, 4, and 6) and diferrocene (3) substituted donor-acceptor dyads in which the organometallic substituents are fully conjugated with the BODIPY π system. All donor-acceptor complexes have strong absorption in the NIR region and quenched steady-state fluorescence, which can be partially restored upon oxidation of organometallic group(s). X-ray crystallography of complexes 2-4 and 6 confirms the nearly coplanar arrangement of the ferrocene groups and the BODIPY π system. Redox properties of the target systems were studied using cyclic voltammetry (CV) and differential pulse voltammetry (DPV). It was found that the first oxidation process in all dyads is ferrocene centered, while the separation between the first and the second ferrocene-centered oxidation potentials in diferrocenyl-containing dyad 3 is ∼150 mV. The density functional theory-polarized continuum model (DFT-PCM) and time-dependent (TD) DFT-PCM methods were used to investigate the electronic structure as well as explain the UV-vis and redox properties of organometallic compounds 2-4 and 6. TDDFT calculations allow for assignment of the charge-transfer and π → π* transitions in the target compounds. The excited state dynamics of the parent BODIPY 1 and dyads 2-4 and 6 were investigated using time-resolved transient spectroscopy. In all organometallic dyads 2-4 and 6 the initially excited state is rapidly quenched by electron transfer from the ferrocene ligand. The lifetime of the charge-separated state was found to be between 136 and 260 ps and demonstrates a systematic dependence on the electronic structure and geometry of BODIPYs 2-4 and 6. PMID:26220063

  4. A Structural Basis for Reversible Photoswitching of Absorbance Spectra in Red Fluorescent Protein rsTagRFP

    SciTech Connect

    Pletnev, Sergei; Subach, Fedor V.; Dauter, Zbigniew; Wlodawer, Alexander; Verkhusha, Vladislav V.

    2012-09-05

    rsTagRFP is the first monomeric red fluorescent protein (FP) with reversibly photoswitchable absorbance spectra. The switching is realized by irradiation of rsTagRFP with blue (440 nm) and yellow (567 nm) light, turning the protein fluorescence ON and OFF, respectively. It is perhaps the most useful probe in this color class that has yet been reported. Because of the photoswitchable absorbance, rsTagRFP can be used as an acceptor in photochromic Foerster resonance energy transfer. Yellow FPs, YPet and mVenus, are demonstrated to be excellent photochromic Foerster resonance energy transfer donors for the rsTagRFP acceptor in its fusion constructs. Analysis of X-ray structures has shown that photoswitching of rsTagRFP is accompanied by cis-trans isomerization and protonation/deprotonation of the chromophore, with the deprotonated cis- and protonated trans-isomers corresponding to its ON and OFF states, respectively. Unlike in other photoswitchable FPs, both conformers of rsTagRFP chromophore are essentially coplanar. Two other peculiarities of the rsTagRFP chromophore are an essentially hydrophobic environment of its p-hydroxyphenyl site and the absence of direct hydrogen bonding between this moiety and the protein scaffold. The influence of the immediate environment on rsTagRFP chromophore was probed by site-directed mutagenesis. Residues Glu145 and His197 were found to participate in protonation/deprotonation of the chromophore accompanying the photoswitching of rsTagRFP fluorescence, whereas residues Met160 and Leu174 were shown to spatially restrict chromophore isomerization, favoring its radiative decay.

  5. Structural analysis of three extensional detachment faults with data from the 2000 Space-Shuttle Radar Topography Mission

    USGS Publications Warehouse

    Spencer, J.E.

    2010-01-01

    The Space-Shuttle Radar Topography Mission provided geologists with a detailed digital elevation model of most of Earth's land surface. This new database is used here for structural analysis of grooved surfaces interpreted to be the exhumed footwalls of three active or recently active extensional detachment faults. Exhumed fault footwalls, each with an areal extent of one hundred to several hundred square kilometers, make up much of Dayman dome in eastern Papua New Guinea, the western Gurla Mandhata massif in the central Himalaya, and the northern Tokorondo Mountains in central Sulawesi, Indonesia. Footwall curvature in profile varies from planar to slightly convex upward at Gurla Mandhata to strongly convex upward at northwestern Dayman dome. Fault curvature decreases away from the trace of the bounding detachment fault in western Dayman dome and in the Tokorondo massif, suggesting footwall flattening (reduction in curvature) following exhumation. Grooves of highly variable wavelength and amplitude reveal extension direction, although structural processes of groove genesis may be diverse.

  6. Study on the characteristics of magneto-sensitive electromagnetic wave-absorbing properties of magnetorheological elastomers

    NASA Astrophysics Data System (ADS)

    Yu, Miao; Yang, Pingan; Fu, Jie; Liu, Shuzhi; Qi, Song

    2016-08-01

    Magnetorheological (MR) materials are a class of materials whose mechanical and electrical properties can be reversible controlled by the magnetic field. In this study, we pioneered research on the effect of a uniform magnetic field with different strengths and directions on the microwave-absorbing properties of magnetorheological elastomers (MREs), in which the ferromagnetic particles are flower-like carbonyl iron powders (CIPs) prepared by an in situ reduction method. The electromagnetic (EM) absorbing properties of the composites have been analyzed by vector network analysis with the coaxial reflection/transmission technique. Under the magnetic field, the columnar or chainlike structures were formed, which allows EM waves to penetrate. Meanwhile, stronger Debye dipolar relaxation and attenuation constant have been obtained when changing the direction of the applied magnetic field. Compared with untreated MREs, not only have the minimum reflection loss (RL) and the effective absorption bandwidth (below ‑20 dB) greatly increased, the frequencies of the absorbing peaks shift about 15%. This suggests that MREs are a magnetic-field-sensitive electromagnetic wave-absorbing material and have great potential in applications such as in anti-radar camouflage, due to the fact that radar can continuously conduct detection at many electromagnetic frequencies, while the MR materials can adjust the microwave-absorption peak according to the radar frequency.

  7. Application of Neutron-Absorbing Structural-Amorphous Metal (SAM) Coatings for Spent Nuclear Fuel (SNF) Container to Enhance Criticality Safety Control

    SciTech Connect

    Choi, J

    2007-01-12

    This report describes the analysis and modeling approaches used in the evaluation for criticality-control applications of the neutron-absorbing structural-amorphous metal (SAM) coatings. The applications of boron-containing high-performance corrosion-resistant material (HPCRM)--amorphous metal as the neutron-absorbing coatings to the metallic support structure can enhance criticality safety controls for spent nuclear fuel in baskets inside storage containers, transportation casks, and disposal containers. The use of these advanced iron-based, corrosion-resistant materials to prevent nuclear criticality in transportation, aging, and disposal containers would be extremely beneficial to the nuclear waste management programs.

  8. The regional and diurnal variability of the vertical structure of precipitation systems in Africa, based on TRMM precipitation radar data

    NASA Astrophysics Data System (ADS)

    Demissie, Yonas; Dejene Demissie, Teferi; D'Odorico, Paolo; Sharma, Rishi

    2013-04-01

    Five years of the Tropical Rainfall Measuring Mission (TRMM) 2A25 radar reflectivity profiles and derived surface rain rates are used to describe the vertical structure of precipitation systems in boreal and austral summer rainy seasons in Africa. The continent is divided into several climatologically rather homogenous regions and those regions are characterized and contrasted. To place the composite reflectivity profiles in context, they are also contrasted against TRMM 2A25 observations over the Amazon. Precipitation systems tend to be deeper and more intense in all of tropical Africa than in the Amazon, and shallow warm-rain events are less common. Storms, in all African regions, are characterized by high echo tops, high hydro-meteor loading aloft, little indication of a radar bright band maximum at the freezing level, and evidence for low-level evaporation. The diurnal modulation is regionally variable. The amplitude of the diurnal cycle of the mean echo top height decreases from the arid margins of the zenithal rain region toward the equatorial region, and is smallest in the Amazon. A secondary predawn (0000-0600 LT) maximum occurs in the Congo, in terms of rainfall frequency, rainfall intensity, and echo tops. The difference between all African regions and the Amazon, and the relatively smaller differences between regions in Africa, can be understood in terms of the climatological humidity, CAPE, and low-level shear values.

  9. The spatial and temporal variability of the vertical structure of precipitation systems in Africa, based on TRMM precipiation radar data

    NASA Astrophysics Data System (ADS)

    Demissie, Fasil; Dejene Demissie, Teferi; Sharma, Rishi

    2014-05-01

    Five years of the Tropical Rainfall Measuring Mission (TRMM) 2A25 radar reflectivity profiles and derived surface rain rates are used to describe the vertical structure of precipitation systems in boreal and austral summer rainy seasons in Africa. The continent is divided into several climatologically rather homogenous regions and those regions are characterized and contrasted. To place the composite reflectivity profiles in context, they are also contrasted against TRMM 2A25 observations over the Amazon. Precipitation systems tend to be deeper and more intense in all of tropical Africa than in the Amazon, and shallow warm-rain events are less common. Storms, in all African regions, are characterized by high echo tops, high hydro-meteor loading aloft, little indication of a radar bright band maximum at the freezing level, and evidence for low-level evaporation. The diurnal modulation is regionally variable. The amplitude of the diurnal cycle of the mean echo top height decreases from the arid margins of the zenithal rain region toward the equatorial region, and is smallest in the Amazon. A secondary predawn (0000-0600 LT) maximum occurs in the Congo, in terms of rainfall frequency, rainfall intensity, and echo tops. The difference between all African regions and the Amazon, and the relatively smaller differences between regions in Africa, can be understood in terms of the climatological humidity, CAPE, and low-level shear values.

  10. Sensitivity of ERS-1 and JERS-1 radar data to biomass and stand structure in Alaskan boreal forest

    SciTech Connect

    Harrell, P.A.; Christensen, N.L. Jr.; Bourgeau-Chavez, L.L.; Kasischke, E.S.; French, N.H.F.

    1995-12-01

    As the boreal system is such an important component of the global carbon budget, it is important that the system and the potential changes be understood, whether from anthropogenic disturbances or global climate change. Thirty-two boreal forest sites were identified and sampled in the central region of Alaska to evaluate the sensitivity of the C-band ERS-1 and the L-band JERS-1 radar platforms to site biophysical properties. The sites selected represent black spruce (Picea mariana) and white spruce (Picea glauca) stands in a post-fire chronosequence. Black spruce biomass ranged from less than 1 kg/m{sup 2} to 5.6 kg/m{sup 2} and white spruce from 8.8 to 21.5 kg/m{sup 2}. Results indicate both ERS-1 and JERS-1 backscatter is responsive to biomass, density, and height, though other factors, principally surface moisture conditions, are often a stronger influence. Sensitivity to forest biomass and structure appears greatest when surface moisture conditions are minimized as a factor. Biomass correlations with the radar backscatter were strongest in the late winter imagery when all sites had a snow cover, and late summer when the surface is most dry. ERS-1 data may be more sensitive to surface moisture conditions than the JERS-1 data due to the shorter wavelength of the C-band sensor, though this is inconclusive because of limited JERS-1 L-band data for comparison.

  11. Neutron Absorbing Alloys

    DOEpatents

    Mizia, Ronald E.; Shaber, Eric L.; DuPont, John N.; Robino, Charles V.; Williams, David B.

    2004-05-04

    The present invention is drawn to new classes of advanced neutron absorbing structural materials for use in spent nuclear fuel applications requiring structural strength, weldability, and long term corrosion resistance. Particularly, an austenitic stainless steel alloy containing gadolinium and less than 5% of a ferrite content is disclosed. Additionally, a nickel-based alloy containing gadolinium and greater than 50% nickel is also disclosed.

  12. Spaceborne radar

    NASA Technical Reports Server (NTRS)

    Moore, R. K.; Eckerman, J.; Meneghini, R.; Atlas, D.; Boerner, W. M.; Cherry, S.; Clark, J. F.; Doviak, R. J.; Goldhirsh, J.; Lhermitte, R. M.

    1981-01-01

    The spaceborne radar panel considered how radar could be used to measure precipitation from satellites. The emphasis was on how radar could be used with radiometry (at microwave, visible (VIS), and infrared (IR) wavelengths) to reduce the uncertainties of measuring precipitation with radiometry alone. In addition, the fundamental electromagnetic interactions involved in the measurements were discussed to determine the key work areas for research and development to produce effective instruments. Various approaches to implementing radar systems on satellites were considered for both shared and dedicated instruments. Finally, a research and development strategy was proposed for establishing the parametric relations and retrieval algorithms required for extracting precipitation information from the radar and associated radiometric data.

  13. The internal structure of sand bars on the Colorado River, Grand Canyon, as determined by ground-penetrating radar

    USGS Publications Warehouse

    Barnhardt, Walter A.; Kayen, Robert; Rubin, David; Minasian, Diane L.

    2001-01-01

    High-resolution, subsurface imagery from ground-penetrating radar (GPR) has revealed the internal structure of sand bars at seven sites on the Colorado River, Grand Canyon. Based on reconnaissance-level surveys, we recognized three stratigraphic units and several intervening unconformities. Unit A, which exhibits hyperbolic reflections and always occurs at the base of the section, is interpreted as bedrock and/or talus. Unit B is a commonly observed sand deposit that overlies unit A and is characterized by reflections that gently dip down toward the river axis. Unit C is a sand deposit up to 2 m thick that always occurs at the top of the section and may represent a flood deposit from 1983. This study demonstrates the utility of GPR for non-destructive investigation of sand-bar thickness and the stratigraphic record of flood events in the Grand Canyon.

  14. Crash compatibility between cars and light trucks: benefits of lowering front-end energy-absorbing structure in SUVs and pickups.

    PubMed

    Baker, Bryan C; Nolan, Joseph M; O'Neill, Brian; Genetos, Alexander P

    2008-01-01

    Passenger vehicles are designed to absorb crash energy in frontal crashes through deformation or crush of energy-absorbing structures forward of the occupant compartment. In collisions between cars and light trucks (i.e., pickups and SUVs), however, the capacity of energy-absorption structures may not be fully utilized because mismatches often exist between the heights of these structures in the colliding vehicles. In 2003 automakers voluntarily committed to new design standards aimed at reducing the height mismatches between cars and light trucks. By September 2009 all new light trucks will have either the primary front structure (typically the frame rails) or a secondary structure connected to the primary structure low enough to interact with the primary structures in cars, which for most cars is about the height of the front bumper. To estimate the overall benefit of the voluntary commitment, the real-world crash experience of light trucks already meeting the height-matching criteria was compared with that of light trucks not meeting the criteria for 2000-2003 model light trucks in collisions with passenger cars during calendar years 2001-2004. The estimated benefits of lower front energy-absorbing structure were a 19 percent reduction (p<0.05) in fatality risk to belted car drivers in front-to-front crashes with light trucks and a 19 percent reduction (p<0.05) in fatality risk to car drivers in front-to-driver-side crashes with light trucks. PMID:18215539

  15. The MST Radar Technique

    NASA Technical Reports Server (NTRS)

    Balsley, B. B.

    1985-01-01

    The past ten year have witnessed the development of a new radar technique to examine the structure and dynamics of the atmosphere between roughly 1 to 100 km on a continuous basis. The technique is known as the MST (for Mesosphere-Stratosphere-Troposphere) technique and is usable in all weather conditions, being unaffected by precipitation or cloud cover. MST radars make use of scattering from small scale structure in the atmospheric refractive index, with scales of the order of one-half the radar wavelength. Pertinent scale sizes for middle atmospheric studies typically range between a fraction of a meter and a few meters. The structure itself arises primarily from atmospheric turbulence. The technique is briefly described along with the meteorological parameters it measures.

  16. Synthesis and absorbing mechanism of two-layer microwave absorbers containing polycrystalline iron fibers and carbonyl iron

    NASA Astrophysics Data System (ADS)

    Ding, Qingwei; Zhang, Mingang; Zhang, Cunrui; Qian, Tianwei

    2013-04-01

    Polycrystalline iron fibers were fabricated by α-FeOOH fiber precursors. Two-layer microwave absorber had been prepared by as-prepared polycrystalline iron fibers and carbonyl iron. The structure, morphology and properties of the composites were characterized with X-ray diffraction, scanning electron microscope and Network Analyzer. The complex permittivity and reflection loss (dB) of the composites were measured employing vector network analyzer model PNA 3629D vector in the frequency range between 30 and 6000 MHz. The thickness effect of the carbonyl iron layer on the microwave loss properties of the composites was investigated. A possible microwave-absorbing mechanism of polycrystalline iron fibers/carbonyl iron composite was proposed. The polycrystalline iron fibers/carbonyl iron composite can find applications in suppression of electromagnetic interference, and reduction of radar signature.

  17. Automotive radar

    NASA Astrophysics Data System (ADS)

    Rohling, Hermann

    2004-07-01

    Radar networks for automtovie short-range applications (up to 30m) based on powerful but inexpensive 24GHz high range resolution pulse or FMCW radar systems have been developed at the Technical University of Hamburg-Harburg. The described system has been integrated in to an experimental vehicle and tested in real street environment. This paper considers the general network design, the individual pulse or FMCW radar sensors, the network signal processing scheme, the tracking procedure and possible automotive applications, respectively. Object position estimation is accomplished by the very precise range measurement of each individual sensor and additional trilateration procedures. The paper concludes with some results obtained in realistic traffic conditions with multiple target situations using 24 GHz radar network.

  18. Signature of recent ice flow acceleration in the radar attenuation and temperature structure of Thwaites Glacier, West Antarctica

    NASA Astrophysics Data System (ADS)

    Schroeder, Dustin; Seroussi, Helene; Chu, Winnie; Young, Duncan

    2016-04-01

    Englacial temperature structure exerts significant control on the rheology and flow of glaciers and ice sheets. It is however logistically prohibitive to directly measure at the glacier-catchment scale. As a result, numerical ice sheet models often make broad assumptions about englacial temperatures based on contemporary ice surface velocities. However, this assumption might break down in regions - like the Amundsen Sea Embayment - that have experienced recent acceleration since temperature and rheology do not respond instantaneously to changes in ice flow regime. To address this challenge, we present a new technique for estimating englacial attenuation rates using bed echoes from radar sounding data. We apply this technique to an airborne survey of Thwaites Glacier and compare the results to temperature and attenuation structures modeled using the numerical Ice Sheet System Model (ISSM) for three surface velocity scenarios. These include contemporary surface velocities, surface velocities from the early 1970s, and ice-sheet balance velocities. We find that the observed attenuation structure is much closer to those modeled with pre-acceleration surface velocities. This suggests that ice sheet models initialized with contemporary surface velocities are likely overestimating the temperature and underestimating the rheology of the fast-flowing trunk and grounding zone of Thwaites Glacier.

  19. Radar history

    NASA Astrophysics Data System (ADS)

    Putley, Ernest

    2008-07-01

    The invention of radar, as mentioned in Chris Lavers' article on warship stealth technology (March pp21-25), continues to be a subject of discussion. Here in Malvern we have just unveiled a blue plaque to commemorate the physicist Albert Percival Rowe, who arrived in 1942 as the head of the Telecommunications Research Establishment (TRE), which was the Air Ministry research facility responsible for the first British radar systems.

  20. Vertical cloud structure observed from shipborne radar and lidar: Midlatitude case study during the MR01/K02 cruise of the research vessel Mirai

    NASA Astrophysics Data System (ADS)

    Okamoto, Hajime; Nishizawa, Tomoaki; Takemura, Toshihiko; Kumagai, Hiroshi; Kuroiwa, Hiroshi; Sugimoto, Nobuo; Matsui, Ichiro; Shimizu, Atsushi; Emori, Seita; Kamei, Akihide; Nakajima, Teruyuki

    2007-04-01

    We observed the vertical distribution of clouds over the Pacific Ocean near Japan in May 2001 using lidar and a 95-GHz radar on the Research Vessel Mirai. Cloud analyses derived from synergy use of radar and lidar observations showed that there were two local maxima of cirrus cloud frequency of occurrence at 7 and 10.5 km and the drizzle frequency of occurrence was about the half compared with that of clouds below 4 km. The number of layers could be also measured using these schemes. Single, double, triple, and quadruple (or more) cloud layers had a 48, 23, 7, and 2% probability of occurrence, respectively. The average number of cloud layers when clouds existed was 1.54. The vertical structure of clouds observed with the radar/lidar system was compared to clouds in the aerosol transport model SPRINTARS, which is based on the CCSR-NIES Atmospheric General Circulation Model. The cloud fraction, radar reflectivity factor, and lidar backscattering coefficient were simulated by the model and compared to those by the observations using height-time cross-sections where the radar sensitivity was taken into account. The overall pattern of cloud fraction was well reproduced, although the model underestimated (overestimated) mean cloud fraction below 8 km (above 8 km). Cloud microphysics in the model could also be validated through comparison of derived model radar and lidar signals in grid mean with observations. The model overestimated ice particle size above 10 km, and simulated particle sizes in water clouds of 10 μm were larger than observed.

  1. Layered Subsurface Structure at the Chang'e-3 Landing Site Derived from Imaging Data: Awaiting Ground Truth from Chang'e-3 Radar Experiments

    NASA Astrophysics Data System (ADS)

    Qiao, L.; Xiao, Z.; Xiao, L.; Zhao, J.

    2014-12-01

    Quantifying the subsurface stratigraphic and tectonic features of the Moon, with a depth from a few to thousands of meters, can provide significant information for solving scientific mysteries concerning regional and global evolution history. In December 2013, the Chinese Chang'e-3 (CE-3) spacecraft, carrying the Yutu (Jade Rabbit) rover, successfully landed on the northern Mare Imbrium, the Moon. The surface in-situ radar experiments by CE-3 mission provide an unprecedented opportunity to study the shallow subsurface geology of the Moon. While the processing and interpretation of radar observations usually depend on certain geophysical models and should consider regional geological settings. In this work, we quantified the subsurface structure at the CE-3 landing site using imaging data and illustrated a multi-layer subsurface structure model including three layers of regolith, two layers of basalt deposits and one layer of ejecta. Our result can provide essential references for CE-3 radar data processing and interpretation. The CE-3 radar observations can in turn validate previous technique for quantifying subsurface geology using imaging data, thus further deepening our understanding of lunar geoscience and exploration.

  2. Jet stream related observations by MST radars

    NASA Technical Reports Server (NTRS)

    Gage, K. S.

    1983-01-01

    An overview of the jet stream and its observation by MST radar is presented. The climatology and synoptic and mesoscale structure of jet streams is briefly reviewed. MST radar observations of jet stream winds, and associated waves and turbulence are then considered. The possibility of using a network of ST radars to track jet stream winds in near real time is explored.

  3. Algorithmic analysis of quantum radar cross sections

    NASA Astrophysics Data System (ADS)

    Lanzagorta, Marco; Venegas-Andraca, Salvador

    2015-05-01

    Sidelobe structures on classical radar cross section graphs are a consequence of discontinuities in the surface currents. In contrast, quantum radar theory states that sidelobe structures on quantum radar cross section graphs are due to quantum interference. Moreover, it is conjectured that quantum sidelobe structures may be used to detect targets oriented off the specular direction. Because of the high data bandwidth expected from quantum radar, it may be necessary to use sophisticated quantum signal analysis algorithms to determine the presence of stealth targets through the sidelobe structures. In this paper we introduce three potential quantum algorithmic techniques to compute classical and quantum radar cross sections. It is our purpose to develop a computer science-oriented tool for further physical analysis of quantum radar models as well as applications of quantum radar technology in various fields.

  4. Structure, optical properties and thermal stability of Al2O3-WC nanocomposite ceramic spectrally selective solar absorbers

    NASA Astrophysics Data System (ADS)

    Gao, Xiang-Hu; Wang, Cheng-Bing; Guo, Zhi-Ming; Geng, Qing-Fen; Theiss, Wolfgang; Liu, Gang

    2016-08-01

    Traditional metal-dielectric composite coating has found important application in spectrally selective solar absorbers. However, fine metal particles can easily diffuse, congregate, or be oxidized at high temperature, which causes deterioration in the optical properties. In this work, we report a new spectrally selective solar absorber coating, composed of low Al2O3 ceramic volume fraction (Al2O3(L)-WC) layer, high Al2O3 ceramic volume fraction (Al2O3(H)-WC layer) and Al2O3 antireflection layer. The features of our work are: 1) compared with the metal-dielectric composites concept, Al2O3-WC nanocomposite ceramic successfully achieves the all-ceramic concept, which exhibits a high solar absorptance of 0.94 and a low thermal emittance of 0.08, 2) Al2O3 and WC act as filler material and host material, respectively, which are different from traditional concept, 3) Al2O3-WC nanocomposite ceramic solar absorber coating exhibits good thermal stability at 600 °C. In addition, the solar absorber coating is successfully modelled by a commercial optical simulation programme, the result of which agrees with the experimental results.

  5. Experimental measurement and theoretical modeling of microwave scattering and the structure of the sea surface influencing radar observations from space

    NASA Technical Reports Server (NTRS)

    Arnold, David; Kong, J. A.

    1992-01-01

    The electromagnetic bias is an error present in radar altimetry of the ocean due to the non-uniform reflection from wave troughs and crests. A study of the electromagnetic bias became necessary to permit error reduction in mean sea level measurements of satellite radar altimeters. Satellite radar altimeters have been used to find the upper and lower bounds for the electromagnetic bias. This report will present a theory using physical optics scattering and an empirical model of the short wave modulation to predict the electromagnetic bias. The predicted electromagnetic bias will be compared to measurements at C and Ku bands.

  6. Terminal Doppler weather radar

    NASA Astrophysics Data System (ADS)

    Michelson, M.; Shrader, W. W.; Wieler, J. G.

    1990-02-01

    The terminal Doppler weather radar (TDWR) system, now under development, will provide automatic detection of microbursts and low-level wind shear. This paper discusses the TDWR performance parameters and describes its structural elements, including the antenna subsystem, the transmitter, the receiver/exciter, the digital signal processor, and the radar product generator/remote monitoring subsystem. Attention is also given to the processes of the base data formation, point target removal, signal-to-noise thresholding, and velocity de-aliasing and to the TDWR algorithms and displays. A schematic diagram of the TDWR system is presented.

  7. Visible light broadband perfect absorbers

    NASA Astrophysics Data System (ADS)

    Jia, X. L.; Meng, Q. X.; Yuan, C. X.; Zhou, Z. X.; Wang, X. O.

    2016-03-01

    The visible light broadband perfect absorbers based on the silver (Ag) nano elliptical disks and holes array are studied using finite difference time domain simulations. The semiconducting indium silicon dioxide thin film is introduced as the space layer in this sandwiched structure. Utilizing the asymmetrical geometry of the structures, polarization sensitivity for transverse electric wave (TE)/transverse magnetic wave (TM) and left circular polarization wave (LCP)/right circular polarization wave (RCP) of the broadband absorption are gained. The absorbers with Ag nano disks and holes array show several peaks absorbance of 100% by numerical simulation. These simple and flexible perfect absorbers are particularly desirable for various potential applications including the solar energy absorber.

  8. Structure of precipitating systems over Taiwan’s complex terrain during Typhoon Morakot (2009) as revealed by weather radar and rain gauge observations

    NASA Astrophysics Data System (ADS)

    Liou, Yu-Chieng; Wang, Tai-Chi Chen; Tsai, Yi-Chun; Tang, Yu-Shuang; Lin, Pay-Liam; Lee, Yung-An

    2013-12-01

    This study documents from an observational perspective the structure of precipitation systems over the complex topography of Taiwan as Typhoon Morakot (2009) impinged on the island on 8 August 2009. An advanced multiple-Doppler radar synthesis technique particularly designed for dealing with non-flat surfaces is applied to analyze the three-dimensional wind fields over the ocean and terrain. In the northern and southern portion of the analysis domain where the mountain slope is relatively gentle and steep, respectively, the radar reflectivity measurements indicate that the precipitation systems exhibit very distinct features, namely, horizontal translation in the north and abrupt intensification in the south. While still far from the southern mountainous region, a north-south oscillation of an east-west-oriented band of strong radar reflectivity (>40 dBZ) with a horizontal span of 20 km is observed. Along the mountain slopes, the band of strong radar reflectivity has a much wider north-south extent. Both the radar and rain gauge observations show that the major precipitation is primarily confined to the windward side of the mountains. An analysis of the saturated Brunt-Väisälä frequency reveals that the upstream atmosphere is statically unstable, which implies that the lifting of the incoming convective cells by the topography will easily trigger precipitation. Thus, most of the moisture will be consumed before the air reaches the leeward side of the mountains. The long duration and the wide range of heavy precipitation in the mountainous regions resulted in a record-breaking average (over the gauges) rainfall amount of 2000 mm over 4 days. The prevailing winds approaching the mountains are from the west. The cross-barrier wind speed has a maximum (∼40 m s-1) above the mountain crest that can be reasonably explained by a simplified shallow water model. The capability of applying the weather radar to provide a reliable quantitative estimate of the rainfall over

  9. A SPECTROPOLARIMETRIC TEST OF THE STRUCTURE OF THE INTRINSIC ABSORBERS IN THE QUASAR HS 1603+3820

    SciTech Connect

    Misawa, Toru; Kawabata, Koji S.; Eracleous, Michael; Charlton, Jane C.; Kashikawa, Nobunari E-mail: mce@astro.psu.ed E-mail: kawabtkj@hiroshima-u.ac.j

    2010-08-20

    We report the results of a spectropolarimetric observation of the C VI 'mini-broad' absorption line (mini-BAL) in the quasar HS 1603+3820 (z {sub em} = 2.542). The observations were carried out with the FOCAS instrument on the Subaru Telescope and yielded an extremely high polarization sensitivity of {delta}p{approx} 0.1%, at a resolving power of R {approx} 1500. HS 1603+3820 has been the target of a high-resolution spectroscopic monitoring campaign for more than four years, aimed at studying its highly variable C VI mini-BAL profile. Using the monitoring observations in an earlier paper, we were able to narrow down the causes of the variability to the following two scenarios: (1) scattering material of variable optical depth redirecting photons around the absorber and (2) a variable, highly ionized screen between the continuum source and the absorber which modulates the UV continuum incident on the absorber. The observations presented here provide a crucial test of the scattering scenario and lead us to disfavor it because (1) the polarization level is very small (p {approx} 0.6%) throughout the spectrum and (2) the polarization level does not increase across the mini-BAL trough. Thus, the variable screen scenario emerges as our favored explanation of the C VI mini-BAL variability. Our conclusion is bolstered by recent X-ray observations of nearby mini-BAL quasars, which show a rapidly variable soft X-ray continuum that appears to be the result of transmission through an ionized absorber of variable ionization parameter and optical depth.

  10. A Spectropolarimetric Test of the Structure of the Intrinsic Absorbers in the Quasar HS 1603+3820

    NASA Astrophysics Data System (ADS)

    Misawa, Toru; Kawabata, Koji S.; Eracleous, Michael; Charlton, Jane C.; Kashikawa, Nobunari

    2010-08-01

    We report the results of a spectropolarimetric observation of the C VI "mini-broad" absorption line (mini-BAL) in the quasar HS 1603+3820 (z em = 2.542). The observations were carried out with the FOCAS instrument on the Subaru Telescope and yielded an extremely high polarization sensitivity of δp~ 0.1%, at a resolving power of R ~ 1500. HS 1603+3820 has been the target of a high-resolution spectroscopic monitoring campaign for more than four years, aimed at studying its highly variable C VI mini-BAL profile. Using the monitoring observations in an earlier paper, we were able to narrow down the causes of the variability to the following two scenarios: (1) scattering material of variable optical depth redirecting photons around the absorber and (2) a variable, highly ionized screen between the continuum source and the absorber which modulates the UV continuum incident on the absorber. The observations presented here provide a crucial test of the scattering scenario and lead us to disfavor it because (1) the polarization level is very small (p ~ 0.6%) throughout the spectrum and (2) the polarization level does not increase across the mini-BAL trough. Thus, the variable screen scenario emerges as our favored explanation of the C VI mini-BAL variability. Our conclusion is bolstered by recent X-ray observations of nearby mini-BAL quasars, which show a rapidly variable soft X-ray continuum that appears to be the result of transmission through an ionized absorber of variable ionization parameter and optical depth. Based on data collected at Subaru Telescope, which is operated by the National Astronomical Observatory of Japan.

  11. Effect of ammonia etching on structural and electrical properties of Cu2ZnSn(S,Se)4 absorbers

    NASA Astrophysics Data System (ADS)

    Hironiwa, Daisuke; Takai, Ryo; Chantana, Jakapan; Sakai, Noriyuki; Kato, Takuya; Sugimoto, Hiroki; Minemoto, Takashi

    2015-10-01

    The efficiency of Cu2ZnSn(Sx,Se1-x)4 (CZTSSe) solar cells is significantly lower than that of other solar cells such as Cu(In,Ga)Se2 solar cells. This is because the open circuit voltage (Voc) of CZTSSe solar cells is significantly low as compared to theoretical value. Thus, we focus on the improvement of the hetero junction quality by a cleaning process using NH4OH etchant. By the NH4OH etching, the decrease in photoluminescence intensity of CZTSSe absorber is observed, implying that the defects are generated by the etching near the surface of CZTSSe absorbers. Energy dispersive X-ray spectroscopy revealed that the cations such as Cu, Zn and Sn are dissolved out by the etching. Therefore, the NH4OH etching is not adequate to clean the surface of CZTSSe absorbers. Based on the above result, we optimized the condition of chemical bath deposition (CBD) of CdS buffer layers. Voc and fill factor are increased by decreasing the concentration of NH4OH, thereby improving efficiency. This is considered that the defects in space-charge region of CZTSSe solar cells are decreased by optimizing the solution for CBD-CdS. In conclusion, the Voc of CZTSSe solar cells are improved by reducing use of NH4OH in CBD-CdS solution.

  12. Savannah woody structure modelling and mapping using multi-frequency (X-, C- and L-band) Synthetic Aperture Radar data

    NASA Astrophysics Data System (ADS)

    Naidoo, Laven; Mathieu, Renaud; Main, Russell; Kleynhans, Waldo; Wessels, Konrad; Asner, Gregory; Leblon, Brigitte

    2015-07-01

    Structural parameters of the woody component in African savannahs provide estimates of carbon stocks that are vital to the understanding of fuelwood reserves, which is the primary source of energy for 90% of households in South Africa (80% in Sub-Saharan Africa) and are at risk of over utilisation. The woody component can be characterised by various quantifiable woody structural parameters, such as tree cover, tree height, above ground biomass (AGB) or canopy volume, each been useful for different purposes. In contrast to the limited spatial coverage of ground-based approaches, remote sensing has the ability to sense the high spatio-temporal variability of e.g. woody canopy height, cover and biomass, as well as species diversity and phenological status - a defining but challenging set of characteristics typical of African savannahs. Active remote sensing systems (e.g. Light Detection and Ranging - LiDAR; Synthetic Aperture Radar - SAR), on the other hand, may be more effective in quantifying the savannah woody component because of their ability to sense within-canopy properties of the vegetation and its insensitivity to atmosphere and clouds and shadows. Additionally, the various components of a particular target's structure can be sensed differently with SAR depending on the frequency or wavelength of the sensor being utilised. This study sought to test and compare the accuracy of modelling, in a Random Forest machine learning environment, woody above ground biomass (AGB), canopy cover (CC) and total canopy volume (TCV) in South African savannahs using a combination of X-band (TerraSAR-X), C-band (RADARSAT-2) and L-band (ALOS PALSAR) radar datasets. Training and validation data were derived from airborne LiDAR data to evaluate the SAR modelling accuracies. It was concluded that the L-band SAR frequency was more effective in the modelling of the CC (coefficient of determination or R2 of 0.77), TCV (R2 of 0.79) and AGB (R2 of 0.78) metrics in Southern African

  13. Planetary radar

    NASA Technical Reports Server (NTRS)

    Taylor, R. M.

    1980-01-01

    The radar astronomy activities supported by the Deep Space Network during June, July, and August 1980 are reported. The planetary bodies observed were Venus, Mercury, and the asteroid Toro. Data were obtained at both S and X band, and the observations were considered successful.

  14. Electric field measurements of DC and long wavelength structures associated with sporadic-E layers and QP radar echoes

    NASA Technical Reports Server (NTRS)

    Pfaff, R.; Freudenreich, H.; Yokoyama, T.; Yamamoto, M.; Fukao, S.; Mori, H.; Ohtsuki, S.; Iwagami, N.

    2005-01-01

    Electric field and plasma density data gathered on a sounding rocket launched from Uchinoura Space Center, Japan, reveal a complex electrodynamics associated with sporadic-E layers and simultaneous observations of quasiperiodic radar echoes. The electrodynamics are characterized by spatial and temporal variations that differed considerably between the rocket's up-leg and down-leg traversals of the lower ionosphere. Within the main sporadic-E layer (95- 110 km) on the up-leg, the electric fields were variable, with amplitudes of 2 4 mV1m that changed considerably within altitude intervals of 1-3 km. The identification of polarization electric fields coinciding with plasma density enhancements and/or depletions is not readily apparent. Within this region on the down-leg, however, the direction of the electric field revealed a marked change that coincided precisely with the peak of a single, narrow sporadic-E plasma density layer near 102.5 km. This shear was presumably associated with the neutral wind shear responsible for the layer formation. The electric field data above the sporadic-E layer on the upleg, from 110 km to the rocket apogee of 152 km, revealed a continuous train of distinct, large scale, quasi-periodic structures with wavelengths of 10-15 km and wavevectors oriented between the NE-SW quadrants. The electric field structures had typical amplitudes of 3-5 mV/m with one excursion to 9mV/m, and in a very general sense, were associated with perturbations in the plasma density. The electric field waveforms showed evidence for steepening and/or convergence effects and presumably had mapped upwards along the magnetic field from the sporadic-E region below.

  15. Remote sensing of auroral E region plasma structures by radio, radar, and UV techniques at solar minimum

    SciTech Connect

    Basu, S.; Valladares, C.E. ); Basu, S.; Eastes, R.; Huffman, R.E. ); Daniell, R.E. ); Chaturvedi, P.K. ); Livingston, R.C. )

    1993-02-01

    The unique capability of the Polar BEAR satellite to simultaneously image auroral luminosities at multiple ultraviolet (UV) wavelengths and to remote sense large-scale (hundreds to tens of kilometers) and small-scale (kilometers to hundreds of meters) plasma density structures with its multifrequency beacon package is utilized to probe the auroral E region in the vicinity of the incoherent scatter radar (ISR) facility near Sondrestrom. In particular, we present coordinated observations on two nights obtained during the sunspot minimum (sunspot number < 10) January-February 1987 period when good spatial and temporal conjunction was obtained between Polar BEAR overflights and Sondrestrom ISR measurements. With careful coordinated observations we were able to confirm that the energetic particle precipitation responsible for the UV emissions causes the electron density increases in the E region. The integrations up to the topside of these ISR electron density profiles were consistent with the total electron content (TEC) measured by the Polar BEAR satellite. An electron transport model was utilized to determine quantitatively the electron density profiles which could be produced by the particle precipitation, which also produced multiple UV emissions measured by the imager; these profiles were found to be in good agreement with the observed ISR profiles in the E region. This outer scale size is also consistent with the measured phase to amplitude scintillation ratio. An estimate of the linear growth rate of the gradient-drift instability in the E region shows that these plasma density irregularities could have been generated by this process. The mutual consistency of these different sets of measurements provides confidence in the ability of the different techniques to remote sense large- and small-scale plasma density structures in the E region at least during sunspot minimum when the convection-dominated high-latitude F region is fairly weak. 56 refs., 16 figs.

  16. Light scattering by dust particles (PROGRA2 experiment): size and structure effects for transparent and absorbing materials

    NASA Astrophysics Data System (ADS)

    Hadamcik, E.; Renard, J.-B.; Lasue, J.; Levasseur-Regourd, A. C.

    2007-08-01

    1- Introduction Cometary and possibly interplanetary dust particles seem to be mainly made of agglomerates of submicron and micron-sized grains. These particles are among the most primitive in our solar system. Regoliths on asteroidal and planetary surfaces seem to be loose materials produced by impinging meteorites on the surface of small bodies. Comparing their physical properties is thus fundamental to understand their evolution. To interpret remote observations of solar light scattered by dust particles and regoliths, it is necessary to use numerical and experimental simulations [1,2,3]. 2- PROGRA2 experiment PROGRA2 instruments are polarimeters; the light sources are two randomly polarized lasers (632.8 nm and 543.5 nm). Levitating particles (in microgravity or lifted by an air-draught) are studied by imaging polarimetry. Details on the instruments can be found in [4,5]. 3- Samples Two kinds of samples are studied: compact particles in the (1-400) micrometer size range and fluffy aggregates in the same size range, made from submicron and micronsized grains. The materials are transparent silica and absorbing carbon. Some deposited particles are huge agglomerates of micron-sized grains produced by random ballistic deposition of single grains [6,7] or produced by evaporation of mixtures in alcohol of fluffy aggregates of submicron-sized grains. Two samples are made of silica spheres coated by a carbonaceous black compound. Cometary analogues are mixtures of silica and amorphous carbon or Mg-Fe silicates mixed with amorphous carbon. 4- Results Phase curves and their main parameters (negative polarization at small phase angles and maximum polarization, Pmax, at 90-100° phase angle) for the different materials will be compared and related to the physical properties. For example, it is well known by numerical simulations and/or by experiments that the maximum polarization decreases when the size (submicrometer range) of the grains increases [2,8,9]. An inverse rule

  17. Analyses of radar images of small craters

    NASA Astrophysics Data System (ADS)

    Greeley, R.; Christensen, P. R.; McHone, J. F.

    1985-04-01

    Clouds hide the surface of Venus from all but radar imaging systems, supplemented by limited views from land spacecraft. Among the surfaces features likely to be observed by radar are craters that have formed by a variety of processes. In order to assess the radar characteristics of craters, volcanic craters and impact structures on Earth are described as imaged by the Shuttle Imaging Radar (SIR-A) experiment. Although most of the craters are small, this analysis provides insight into the ability to discriminate craters of various origins and provides some basis for interpreting radar images returned from Venus.

  18. Fine spatial structure of flows on satellite radar image of the Baltic Sea

    NASA Astrophysics Data System (ADS)

    Lavrova, O. Yu.; Sabinin, K. D.

    2016-04-01

    Satellite images of the sea surface demonstrate different dynamic processes at the water-air boundary and in the water layer. The objective of this investigation is to identify the fine structure of flows in the mesoscale vortex with the help of a specially developed method for flow estimation by ship wakes in the sea. The method described in this work made it possible to identify the jet nature and surges of flows in the mesoscale cyclonic vortex in the southern part of the Baltic Sea after long western and southwestern winds.

  19. Four-beam measurements of ionospheric structure with MU radar during the low-latitude auroral event of 20-23 October 1989

    SciTech Connect

    Oliver, W.L. Boston Univ., MA ); Fukao, Shoichiro; Takami, Tomoyuki; Tsuda, Toshitaka; Kato, Susumu )

    1991-11-01

    The MU radar was used to observe the ionospheric F-region electron density simultaneously in four oblique beams during the geomagnetic storm of 20-23 October 1989, when the first significant auroral display over Japan since 1960 was observed. The four beams, separated by about 250 km horizontally in the F region, observed drastically different behavior, with independent and extreme changes occurring on time scales of one minute during the period of peak activity, indicating a strongly structured ionosphere streaming over the radar. The authors observed cases in which, simultaneously, a deep trough was seen in one beam, densities exceeding 4 {times} 10{sup 6} cm{sup {minus}3} were seen in another, and a normal ionosphere was seen in a third. During the most disturbed periods the F-layer peak height appeared to rise to 800 km altitude in one beam while it remained near 500 km in another.

  20. A Unifying Framework for Adaptive Radar Detection in Homogeneous Plus Structured Interference— Part II: Detectors Design

    NASA Astrophysics Data System (ADS)

    Ciuonzo, Domenico; De Maio, Antonio; Orlando, Danilo

    2016-06-01

    This paper deals with the problem of adaptive multidimensional/multichannel signal detection in homogeneous Gaussian disturbance with unknown covariance matrix and structured (unknown) deterministic interference. The aforementioned problem extends the well-known Generalized Multivariate Analysis of Variance (GMANOVA) tackled in the open literature. In a companion paper, we have obtained the Maximal Invariant Statistic (MIS) for the problem under consideration, as an enabling tool for the design of suitable detectors which possess the Constant False-Alarm Rate (CFAR) property. Herein, we focus on the development of several theoretically-founded detectors for the problem under consideration. First, all the considered detectors are shown to be function of the MIS, thus proving their CFARness property. Secondly, coincidence or statistical equivalence among some of them in such a general signal model is proved. Thirdly, strong connections to well-known simpler scenarios found in adaptive detection literature are established. Finally, simulation results are provided for a comparison of the proposed receivers.

  1. Metasurface Broadband Solar Absorber

    DOE PAGESBeta

    Azad, Abul K.; Kort-Kamp, Wilton J. M.; Sykora, Milan; Weisse-Bernstein, Nina R.; Luk, Ting S.; Taylor, Antoinette J.; Dalvit, Diego A. R.; Chen, Hou-Tong

    2016-02-01

    Here, we demonstrate a broadband, polarization independent, wide-angle absorber based on a metallic metasurface architecture, which accomplishes greater than 90% absorptance in the visible and near-infrared range of the solar spectrum, and exhibits low absorptivity (emissivity) at mid- and far-infrared wavelengths. The complex unit cell of the metasurface solar absorber consists of eight pairs of gold nano-resonators that are separated from a gold ground plane by a thin silicon dioxide spacer. Moreover, our experimental measurements reveal high-performance absorption over a wide range of incidence angles for both s- and p-polarizations. We also investigate numerically the frequency-dependent field and current distributionsmore » to elucidate how the absorption occurs within the metasurface structure.« less

  2. Metasurface Broadband Solar Absorber

    PubMed Central

    Azad, Abul K.; Kort-Kamp, Wilton J. M.; Sykora, Milan; Weisse-Bernstein, Nina R.; Luk, Ting S.; Taylor, Antoinette J.; Dalvit, Diego A. R.; Chen, Hou-Tong

    2016-01-01

    We demonstrate a broadband, polarization independent, wide-angle absorber based on a metallic metasurface architecture, which accomplishes greater than 90% absorptance in the visible and near-infrared range of the solar spectrum, and exhibits low absorptivity (emissivity) at mid- and far-infrared wavelengths. The complex unit cell of the metasurface solar absorber consists of eight pairs of gold nano-resonators that are separated from a gold ground plane by a thin silicon dioxide spacer. Our experimental measurements reveal high-performance absorption over a wide range of incidence angles for both s- and p-polarizations. We also investigate numerically the frequency-dependent field and current distributions to elucidate how the absorption occurs within the metasurface structure. PMID:26828999

  3. Metasurface Broadband Solar Absorber

    NASA Astrophysics Data System (ADS)

    Azad, Abul K.; Kort-Kamp, Wilton J. M.; Sykora, Milan; Weisse-Bernstein, Nina R.; Luk, Ting S.; Taylor, Antoinette J.; Dalvit, Diego A. R.; Chen, Hou-Tong

    2016-02-01

    We demonstrate a broadband, polarization independent, wide-angle absorber based on a metallic metasurface architecture, which accomplishes greater than 90% absorptance in the visible and near-infrared range of the solar spectrum, and exhibits low absorptivity (emissivity) at mid- and far-infrared wavelengths. The complex unit cell of the metasurface solar absorber consists of eight pairs of gold nano-resonators that are separated from a gold ground plane by a thin silicon dioxide spacer. Our experimental measurements reveal high-performance absorption over a wide range of incidence angles for both s- and p-polarizations. We also investigate numerically the frequency-dependent field and current distributions to elucidate how the absorption occurs within the metasurface structure.

  4. Metasurface Broadband Solar Absorber.

    PubMed

    Azad, Abul K; Kort-Kamp, Wilton J M; Sykora, Milan; Weisse-Bernstein, Nina R; Luk, Ting S; Taylor, Antoinette J; Dalvit, Diego A R; Chen, Hou-Tong

    2016-01-01

    We demonstrate a broadband, polarization independent, wide-angle absorber based on a metallic metasurface architecture, which accomplishes greater than 90% absorptance in the visible and near-infrared range of the solar spectrum, and exhibits low absorptivity (emissivity) at mid- and far-infrared wavelengths. The complex unit cell of the metasurface solar absorber consists of eight pairs of gold nano-resonators that are separated from a gold ground plane by a thin silicon dioxide spacer. Our experimental measurements reveal high-performance absorption over a wide range of incidence angles for both s- and p-polarizations. We also investigate numerically the frequency-dependent field and current distributions to elucidate how the absorption occurs within the metasurface structure. PMID:26828999

  5. TRMM radar

    NASA Technical Reports Server (NTRS)

    Okamoto, Kenichi

    1993-01-01

    The results of a conceptual design study and the performance of key components of the Bread Board Model (BBM) of the Tropical Rainfall Measuring Mission (TRMM) radar are presented. The radar, which operates at 13.8 GHz and is designed to meet TRMM mission objectives, has a minimum measurable rain rate of 0.5 mm/h with a range resolution of 250 m, a horizontal resolution of about 4 km, and a swath width of 220 km. A 128-element active phased array system is adopted to achieve contiguous scanning within the swath. The basic characteristics of BBM were confirmed by experiments. The development of EM started with the cooperation of NASDA and CRL.

  6. Decoloration and mineralization of reactive dyes using electron beam irradiation, Part I: Effect of the dye structure, concentration and absorbed dose (single, binary and ternary systems)

    NASA Astrophysics Data System (ADS)

    Vahdat, Ali; Bahrami, S. Hajir; Arami, M.; Bahjat, A.; Tabakh, F.; Khairkhah, M.

    2012-07-01

    In this study, three different reactive dyes (C.I. Reactive Red 4, C.I. Reactive Blue 2 and C.I. Reactive Yellow 4) and their blend solutions were irradiated with 10 MeV electron beam. Effect of absorbed dose, dye structure and primary solution concentrations on the pH value changes, degree of decoloration and chemical oxygen demand (COD) removal of solutions were investigated. Results show that this method is effective in decomposition and decoloration of the dyes solutions. This method can be applied in mineralization of wastewater containing different dyes.

  7. Passive vibration control in a building-like structure using a tuned-mass-damper and an autoparametric cantilever beam absorber

    NASA Astrophysics Data System (ADS)

    Enriquez-Zarate, J.; Abundis-Fong, H. F.; Silva-Navarro, G.

    2015-04-01

    This article considers a theoretical and experimental comparative analysis in the responses of a three-story building-like structure using two different schemes of passive vibration control. These control schemes are designed to reduce the effects of resonant vibrations generated by an electromechanical shaker located in the base of the building-like structure. The first control scheme consists on the design of a Tuned-Mass-Damper located over the third floor of the structure, and the second control scheme considers the implementation of an autoparametric cantilever beam absorber. The mathematical model of the overall system is obtained using Euler-Lagrange method. In order to validate the frequency response of the main system a finite element model is completed. Some numerical and experimental results are included to show the dynamic behavior and stability performance of the overall mechanical system.

  8. Design and realization of one-dimensional double hetero-structure photonic crystals for infrared-radar stealth-compatible materials applications

    SciTech Connect

    Wang, Zhixun; Cheng, Yongzhi Nie, Yan; Wang, Xian; Gong, Rongzhou

    2014-08-07

    In this paper, a new type one-dimensional (1D) double hetero-structure composite photonic crystal (CPC) for infrared-radar stealth-compatible materials applications was proposed and studied numerically and experimentally. First, based on transfer matrix method of thin-film optical theory, the propagation characteristics of the proposed structure comprising a stack of different alternating micrometer-thick layers of germanium and zinc sulfide were investigated numerically. Calculation results exhibit that this 1D single hetero-structure PC could achieve a flat high reflectivity gradually with increasing the number of the alternating media layers in a single broadband range. Then, based on principles of distributed Bragg reflector micro-cavity, a 1D double hetero-structure CPC comprising four PCs with thickness of 0.797 μm, 0.592 μm, 1.480 μm, and 2.114 μm, respectively, was proposed. Calculation results exhibit that this CPC could achieve a high reflectance of greater than 0.99 in the wavelength ranges of 3–5 μm and 8–14 μm and agreed well with experiment. Further experiments exhibit that the infrared emissivity of the proposed CPC is as low as 0.073 and 0.042 in the wavelength ranges of 3–5 μm and 8–12 μm, respectively. In addition, the proposed CPC can be used to construct infrared-radar stealth-compatible materials due to its high transmittance in radar wave band.

  9. Arecibo radar imagery of Mars: The major volcanic provinces

    NASA Astrophysics Data System (ADS)

    Harmon, John K.; Nolan, Michael C.; Husmann, Diana I.; Campbell, Bruce A.

    2012-08-01

    We present Earth-based radar images of Mars obtained with the upgraded Arecibo S-band (λ = 12.6 cm) radar during the 2005-2012 oppositions. The imaging was done using the same long-code delay-Doppler technique as for the earlier (pre-upgrade) imaging but at a much higher resolution (˜3 km) and, for some regions, a more favorable sub-Earth latitude. This has enabled us to make a more detailed and complete mapping of depolarized radar reflectivity (a proxy for small-scale surface roughness) over the major volcanic provinces of Tharsis, Elysium, and Amazonis. We find that vast portions of these regions are covered by radar-bright lava flows exhibiting circular polarization ratios close to unity, a characteristic that is uncommon for terrestrial lavas and that is a likely indicator of multiple scattering from extremely blocky or otherwise highly disrupted flow surfaces. All of the major volcanoes have radar-bright features on their shields, although the brightness distribution on Olympus Mons is very patchy and the summit plateau of Pavonis Mons is entirely radar-dark. The older minor shields (paterae and tholi) are largely or entirely radar-dark, which is consistent with mantling by dust or pyroclastic material. Other prominent radar-dark features include: the "fan-shaped deposits", possibly glacial, associated with the three major Tharsis Montes shields; various units of the Medusae Fossae Formation; a region south and west of Biblis Patera where "Stealth" deposits appear to obscure Tharsis flows; and a number of "dark-halo craters" with radar-absorbing ejecta blankets deposited atop surrounding bright flows. Several major bright features in Tharsis are associated with off-shield lava flows; these include the Olympus Mons basal plains, volcanic fields east and south of Pavonis Mons, the Daedalia Planum flows south of Arsia Mons, and a broad expanse of flows extending east from the Tharsis Montes to Echus Chasma. The radar-bright lava plains in Elysium are

  10. Radar proves its worth in dam rehabilitation

    SciTech Connect

    1996-08-01

    This article outlines the use of radar techniques to survey the masonry structure of White Marble Dam. The survey used a subsurface interface radar, and this equipment displayed a cross-sectional profile of the entire structure, revealing the size and location of any faults. By avoiding the draining and dredging of the upstream pool, it is estimated that this technique saved three months.

  11. Structural changes caused by radiation-induced reduction and radiolysis: the effect of X-ray absorbed dose in a fungal multicopper oxidase

    PubMed Central

    De la Mora, Eugenio; Lovett, Janet E.; Blanford, Christopher F.; Garman, Elspeth F.; Valderrama, Brenda; Rudino-Pinera, Enrique

    2012-01-01

    X-ray radiation induces two main effects at metal centres contained in protein crystals: radiation-induced reduction and radiolysis and a resulting decrease in metal occupancy. In blue multicopper oxidases (BMCOs), the geometry of the active centres and the metal-to-ligand distances change depending on the oxidation states of the Cu atoms, suggesting that these alterations are catalytically relevant to the binding, activation and reduction of O2. In this work, the X-ray-determined three-dimensional structure of laccase from the basidiomycete Coriolopsis gallica (Cg L), a high catalytic potential BMCO, is described. By combining spectroscopic techniques (UV–Vis, EPR and XAS) and X-ray crystallography, structural changes at and around the active copper centres were related to pH and absorbed X-­ray dose (energy deposited per unit mass). Depletion of two of the four active Cu atoms as well as low occupancies of the remaining Cu atoms, together with different conformations of the metal centres, were observed at both acidic pH and high absorbed dose, correlating with more reduced states of the active coppers. These observations provide additional evidence to support the role of flexibility of copper sites during O2 reduction. This study supports previous observations indicating that interpretations regarding redox state and metal coordination need to take radiation effects explicitly into account. PMID:22525754

  12. Application of sub-image multiresolution analysis of Ground-penetrating radar data in a study of shallow structures

    NASA Astrophysics Data System (ADS)

    Jeng, Yih; Lin, Chun-Hung; Li, Yi-Wei; Chen, Chih-Sung; Yu, Hung-Ming

    2011-03-01

    Fourier-based algorithms originally developed for the processing of seismic data are applied routinely in the Ground-penetrating radar (GPR) data processing, but these conventional methods of data processing may result in an abundance of spurious harmonics without any geological meaning. We propose a new approach in this study based essentially on multiresolution wavelet analysis (MRA) for GPR noise suppression. The 2D GPR section is similar to an image in all aspects if we consider each data point of the GPR section to be an image pixel in general. This technique is an image analysis with sub-image decomposition. We start from the basic image decomposition procedure using conventional MRA approach and establish the filter bank accordingly. With reasonable knowledge of data and noise and the basic assumption of the target, it is possible to determine the components with high S/N ratio and eliminate noisy components. The MRA procedure is performed further for the components containing both signal and noise. We treated the selected component as an original image and applied the MRA procedure again to that single component with a mother wavelet of higher resolution. This recursive procedure with finer input allows us to extract features or noise events from GPR data more effectively than conventional process. To assess the performance of the MRA filtering method, we first test this method on a simple synthetic model and then on experimental data acquired from a control site using 400 MHz GPR system. A comparison of results from our method and from conventional filtering techniques demonstrates the effectiveness of the sub-image MRA method, particularly in removing ringing noise and scattering events. Field study was carried out in a trenched fault zone where a faulting structure was present at shallow depths ready for understanding the feasibility of improving the data S/N ratio by applying the sub-image multiresolution analysis. In contrast to the conventional

  13. Structural changes caused by radiation-induced reduction and radiolysis: the effect of X-ray absorbed dose in a fungal multicopper oxidase

    SciTech Connect

    De la Mora, Eugenio; Lovett, Janet E.; Blanford, Christopher F.; Garman, Elspeth F.; Valderrama, Brenda; Rudino-Pinera, Enrique

    2012-05-01

    Radiation-induced reduction, radiolysis of copper sites and the effect of pH value together with the concomitant geometrical distortions of the active centres were analysed in several fungal (C. gallica) laccase structures collected at cryotemperature. This study emphasizes the importance of careful interpretation when the crystallographic structure of a metalloprotein is described. X-ray radiation induces two main effects at metal centres contained in protein crystals: radiation-induced reduction and radiolysis and a resulting decrease in metal occupancy. In blue multicopper oxidases (BMCOs), the geometry of the active centres and the metal-to-ligand distances change depending on the oxidation states of the Cu atoms, suggesting that these alterations are catalytically relevant to the binding, activation and reduction of O{sub 2}. In this work, the X-ray-determined three-dimensional structure of laccase from the basidiomycete Coriolopsis gallica (Cg L), a high catalytic potential BMCO, is described. By combining spectroscopic techniques (UV–Vis, EPR and XAS) and X-ray crystallography, structural changes at and around the active copper centres were related to pH and absorbed X-ray dose (energy deposited per unit mass). Depletion of two of the four active Cu atoms as well as low occupancies of the remaining Cu atoms, together with different conformations of the metal centres, were observed at both acidic pH and high absorbed dose, correlating with more reduced states of the active coppers. These observations provide additional evidence to support the role of flexibility of copper sites during O{sub 2} reduction. This study supports previous observations indicating that interpretations regarding redox state and metal coordination need to take radiation effects explicitly into account.

  14. Radar observations of structured plasma in high-latitude F region. Final report, 14 January 1980 - 31 March 1981

    SciTech Connect

    Vickrey, J.F.

    1981-03-01

    Coordinated measuremens between the Chatanika radar and the TRIAD satellite were investigated and the production mechanisms responsible for localized high latitude scintillation was examined. The radar measured that latitudinal variations of plasma density and electric field while the satellite measured the latitudinal variation of field aligned current. Field aligned ionization enhancements or plasma blobs with steep poleward and equatorward edges were a common feature of the midnight sector auroral F-region. The plasma blobs are unstable to the current convective instability with growth rate of several millihertz. Field aligned currents have a further destabilizing influence. The presence of plasma density irregularities associated with the blobs were verified by observing scintillation on the TRIAD satellite telemetry signal at 150 MHz. The F-region irregularities exist despite the presence of a highly conducting auroral E-region to which the F-region plasma is connected by the geomagnetic field lines.

  15. Structural dynamics of phenylisothiocyanate in the light-absorbing excited states: Resonance Raman and complete active space self-consistent field calculation study

    SciTech Connect

    Ouyang, Bing Xue, Jia-Dan Zheng, Xuming E-mail: zxm@zstu.edu.cn; Fang, Wei-Hai E-mail: fangwh@dnu.edu.cn

    2014-05-21

    The excited state structural dynamics of phenyl isothiocyanate (PITC) after excitation to the light absorbing S{sub 2}(A′), S{sub 6}(A′), and S{sub 7}(A′) excited states were studied by using the resonance Raman spectroscopy and complete active space self-consistent field method calculations. The UV absorption bands of PITC were assigned. The vibrational assignments were done on the basis of the Fourier transform (FT)-Raman and FT-infrared measurements, the density-functional theory computations, and the normal mode analysis. The A-, B-, and C-bands resonance Raman spectra in cyclohexane, acetonitrile, and methanol solvents were, respectively, obtained at 299.1, 282.4, 266.0, 252.7, 228.7, 217.8, and 208.8 nm excitation wavelengths to probe the corresponding structural dynamics of PITC. The results indicated that the structural dynamics in the S{sub 2}(A′), S{sub 6}(A′), and S{sub 7}(A′) excited states were very different. The conical intersection point CI(S{sub 2}/S{sub 1}) were predicted to play important role in the low-lying excited state decay dynamics. Two major decay channels were predicted for PITC upon excitation to the S{sub 2}(A′) state: the radiative S{sub 2,min} → S{sub 0} transition and the nonradiative S{sub 2} → S{sub 1} internal conversion via CI(S{sub 2}/S{sub 1}). The differences in the decay dynamics between methyl isothiocyanate and PITC in the first light absorbing excited state were discussed. The role of the intersystem crossing point ISC(S{sub 1}/T{sub 1}) in the excited state decay dynamics of PITC is evaluated.

  16. A radar survey of M- and X-class asteroids. III. Insights into their composition, hydration state, & structure

    NASA Astrophysics Data System (ADS)

    Shepard, Michael K.; Taylor, Patrick A.; Nolan, Michael C.; Howell, Ellen S.; Springmann, Alessondra; Giorgini, Jon D.; Warner, Brian D.; Harris, Alan W.; Stephens, Robert; Merline, William J.; Rivkin, Andrew; Benner, Lance A. M.; Coley, Dan; Clark, Beth Ellen; Ockert-Bell, Maureen; Magri, Christopher

    2015-01-01

    Using the S-band radar at Arecibo Observatory, we observed thirteen X/M-class asteroids; nine were previously undetected and four were re-observed, bringing the total number of Tholen X/M-class asteroids observed with radar to 29. Of these 29M-class asteroids, 13 are also W-class, defined as M-class objects that also display a 3-μm absorption feature which is often interpreted as the signature of hydrated minerals (Jones, T.D., Lebofsky, L.A., Lewis, J.S., Marley, M.S. [1990]. Icarus 88, 172-192; Rivkin, A.S., Howell, E.S., Britt, D.T., Lebofsky, L.A., Nolan, M.C., Branston, D.D. [1995]. Icarus 117, 90-100; Rivkin, A.S., Howell, E.S., Lebofsky, L.A., Clark, B.E., Britt, D.T. [2000]. Icarus 145, 351-368). Consistent with our previous work (Shepard, M.K. et al. [2008]. Icarus 195, 184-205; Shepard, M.K., Harris, A.W., Taylor, P.A., Clark, B.E., Ockert-Bell, M., Nolan, M.C., Howell, E.S., Magri, C., Giorgini, J.D., Benner, L.A.M. [2011]. Icarus 215, 547-551), we find that 38% of our sample (11 of 29) have radar albedos consistent with metal-dominated compositions. With the exception of 83 Beatrix and 572 Rebekka, the remaining objects have radar albedos significantly higher than the mean S- or C-class asteroid (Magri, C., Nolan, M.C., Ostro, S.J., Giorgini, J.D. [2007]. Icarus 186, 126-151). Seven of the eleven high-radar-albedo asteroids, or 64%, also display a 3-μm absorption feature (W-class) which is thought to be inconsistent with the formation of a metal dominated asteroid. We suggest that the hydration absorption could be a secondary feature caused by low-velocity collisions with hydrated asteroids, such as CI or CM analogs, and subsequent implantation of the hydrated minerals into the upper regolith. There is recent evidence for this process on Vesta (Reddy, V. et al. [2012]. Icarus 221, 544-559; McCord, T.B. et al. [2012]. Nature 491, 83-86; Prettyman, T.H. et al. [2012]. Science 338, 242-246; Denevi, B.W. et al. [2012]. Science 338, 246-249). Eleven

  17. An MSK Radar Waveform

    NASA Technical Reports Server (NTRS)

    Quirk, Kevin J.; Srinivasan, Meera

    2012-01-01

    The minimum-shift-keying (MSK) radar waveform is formed by periodically extending a waveform that separately modulates the in-phase and quadrature- phase components of the carrier with offset pulse-shaped pseudo noise (PN) sequences. To generate this waveform, a pair of periodic PN sequences is each passed through a pulse-shaping filter with a half sinusoid impulse response. These shaped PN waveforms are then offset by half a chip time and are separately modulated on the in-phase and quadrature phase components of an RF carrier. This new radar waveform allows an increase in radar resolution without the need for additional spectrum. In addition, it provides self-interference suppression and configurable peak sidelobes. Compared strictly on the basis of the expressions for delay resolution, main-lobe bandwidth, effective Doppler bandwidth, and peak ambiguity sidelobe, it appears that bi-phase coded (BPC) outperforms the new MSK waveform. However, a radar waveform must meet certain constraints imposed by the transmission and reception of the modulation, as well as criteria dictated by the observation. In particular, the phase discontinuity of the BPC waveform presents a significant impediment to the achievement of finer resolutions in radar measurements a limitation that is overcome by using the continuous phase MSK waveform. The phase continuity, and the lower fractional out-of-band power of MSK, increases the allowable bandwidth compared with BPC, resulting in a factor of two increase in the range resolution of the radar. The MSK waveform also has been demonstrated to have an ambiguity sidelobe structure very similar to BPC, where the sidelobe levels can be decreased by increasing the length of the m-sequence used in its generation. This ability to set the peak sidelobe level is advantageous as it allows the system to be configured to a variety of targets, including those with a larger dynamic range. Other conventionally used waveforms that possess an even greater

  18. Investigation of the vertical structure of clouds over the Western Ghats, India using X-band and Ka-band Doppler radar observations

    NASA Astrophysics Data System (ADS)

    Das, Subrata Kumar

    Investigation of the vertical structure of clouds over the Western Ghats, India using X-band and Ka-band Doppler radar observations Subrata Kumar Das*, S. M. Deshpande, K. Chakravarty and M. C. R. Kalapureddy Indian Institute of Tropical Meteorology, Pune, India ABSTRACT The Western Ghats (WGs) located parallel to the west coast of India receives a huge amount of rainfall during the Indian summer monsoon (ISM) in which topography plays a huge role in it. To understand the dynamics and microphysics of monsoon precipitating clouds over the WGs, a High Altitude Cloud Physics Laboratory (HACPL) has been setup at Mahabaleshwar (17.92 oN, 73.6 oE, ~1.4 km AMSL) in 2012. As part of this laboratory, a mobile X-band (9.5 GHz) and Ka-band (35.29 GHz) dual-polarization Doppler weather radar system is installed at Mandhardev (18.04 oN, 73.87 oE, ~1.3 km AMSL, at 26 km radial distance from the HACPL). The X-band radar shows the dominant cloud movement is from the western side of the WGs to the eastern side, crossing the HACPL and the radar site. The cloud occurrence statistics show a sudden reduction within a distance of ~30 km on the eastern side of WGs indicates the possibility of a rain shadow area. Further, we investigate the vertical structure of cloud over the HACPL, and identified four cloud modes viz., shallow cumulus mode, congestus mode, deep convective mode, and overshooting convection mode. The frequency distribution of cloud-cell base height (CBH) and cloud-cell top height (CTH) shows most of the clouds with base below 2.5 km and tops usually not exceeding 9 km. This indicates the dominance of warm-rain process in the WGs region. The positive relationships between surface rainfall rates and CTH and 0oC isotherm level have observed. Details will be presented in the upcoming symposium.

  19. Advanced Borehole Radar for Hydrogeology

    NASA Astrophysics Data System (ADS)

    Sato, M.

    2014-12-01

    Ground Penetrating Radar is a useful tool for monitoring the hydrogeological environment. We have developed GPR systems which can be applied to these purposes, and we will demonstrate examples borehole radar measurements. In order to have longer radar detection range, frequency lower than100MHz has been normally adopted in borehole radar. Typical subsurface fractures of our interests have a few mm aperture and radar resolution is much poorer than a few cm in this frequency range. We are proposing and demonstrating to use radar polarimetry to solve this problem. We have demonstrated that a full-polarimetry borehole radar can be used for characterization of subsurface fractures. Together with signal processing for antenna characteristic compensation to equalize the signal by a dipole antenna and slot antennas, we could demonstrate that polarimetric borehole radar can estimate the surface roughness of subsurface fractures, We believe the surface roughness is closely related to water permeability through the fractures. We then developed a directional borehole radar, which uses optical field sensor. A dipole antenna in a borehole has omni-directional radiation pattern, and we cannot get azimuthal information about the scatterers. We use multiple dipole antennas set around the borehole axis, and from the phase differences, we can estimate the 3-diemnational orientation of subsurface structures. We are using optical electric field sensor for receiver of borehole radar. This is a passive sensor and connected only with optical fibers and does not require any electric power supply to operate the receiver. It has two major advantages; the first one is that the receiver can be electrically isolated from other parts, and wave coupling to a logging cable is avoided. Then, secondary, it can operate for a long time, because it does not require battery installed inside the system. It makes it possible to set sensors in fixed positions to monitor the change of environmental

  20. Self-imaging of transparent objects and structures in focusing of spatially phase-modulated laser radiation into a weakly absorbing medium

    SciTech Connect

    Bubis, E L

    2011-06-30

    Self-imaging of transparent objects and structures in focusing of a spatially phase-modulated laser beam into an extended weakly absorbing medium is described. The laser power level that is necessary for effective imaging corresponds to the illuminating beam power when thermal self-defocusing starts evolving in the medium. The effect can be described in terms of the ideology of Zernike's classical phase-contrast method. Edge enhancement in visualised images of transparent objects is experimentally demonstrated. Self-imaging of a microscopic object in the form of transparent letters and long-lived refractive-index fluctuations in liquid glycerol is shown. Due to the adaptivity of the process under consideration, unlike the classical case, self-imaging occurs also in the situations where a beam is displaced (undergoes random walk) as a whole in the Fourier plane, for example, in the presence of thermal flows. (image processing)

  1. Terrestrial Radar Interferometry and Structure-from-Motion Data from Nevado del Ruiz, Colombia for Improved Hazard Assessment and Volcano Monitoring

    NASA Astrophysics Data System (ADS)

    Rodgers, M.; Dixon, T. H.; Gallant, E.; López, C. M.; Malservisi, R.; Ordoñez, M.; Richardson, J. A.; Voss, N. K.; Xie, S.

    2015-12-01

    Ground-based remote sensing geodesy has huge potential for volcano monitoring and improved modelling of volcanic hazards. Terrestrial Radar Interferometers (TRI) can rapidly and accurately create DEMs and repeat occupation of sites allows measurement of deformation. Structure-from-Motion (SfM) photogrammetry can be used to construct DEMs and SfM surveys can be carried out with relatively accessible equipment. TRI and SfM techniques are highly complimentary: The upper slopes of a volcano may be cloud covered, but can be imaged by TRI, whereas lower canyons may be in radar shadow, but can be imaged with SfM. Both methods are also complimentary to satellite observations (e.g. SRTM, ASTER), offering some advantages in terms of coverage and resolution. We present the acquisition of two new geodetic datasets at Nevado del Ruiz, Colombia (NRV). NRV is a large glacierised volcano that erupted in 1985, generating a glacier-derived lahar that killed over 23,000 people in the city of Armero and 2,000 people in the town of Chinchina. NRV is the most active volcano in Colombia and since 2012 has generated small eruptions (with no casualties) and constant gas and ash emissions. In early 2015, we collected data from several sites close to the crater of NRV and around the Azufrado drainage (the site of previous debris avalanches and lahars). The TRI was operated from three sites, while drone- and ground-based cameras ventured into the canyons to fill in radar shadow gaps. These data have three primary uses: 1) generation of high-precision DEMs for lahar modelling and visualisation of previous events, 2) imaging of summit glacier motion, and 3) establishing a baseline for long-term deformation studies. We discuss ground-based remote sensing geodetic data from high-tech (TRI) to low-tech (SfM) methods and show the importance of combining these complimentary datasets to improve DEMs for hazard modelling and volcano monitoring.

  2. Absorbing a Little Water: The Structural, Thermodynamic, and Kinetic Relationship between Pyrogallol and Its Tetarto-Hydrate.

    PubMed

    Braun, Doris E; Bhardwaj, Rajni M; Arlin, Jean-Baptiste; Florence, Alastair J; Kahlenberg, Volker; Griesser, Ulrich J; Tocher, Derek A; Price, Sarah L

    2013-09-01

    The anhydrate and the stoichiometric tetarto-hydrate of pyrogallol (0.25 mol water per mol pyrogallol) are both storage stable at ambient conditions, provided that they are phase pure, with the system being at equilibrium at a w (water activity) = 0.15 at 25 °C. Structures have been derived from single crystal and powder X-ray diffraction data for the anhydrate and hydrate, respectively. It is notable that the tetarto-hydrate forms a tetragonal structure with water in channels, a framework that although stabilized by water, is found as a higher energy structure on a computationally generated crystal energy landscape, which has the anhydrate crystal structure as the most stable form. Thus, a combination of slurry experiments, X-ray diffraction, spectroscopy, moisture (de)sorption, and thermo-analytical methods with the computationally generated crystal energy landscape and lattice energy calculations provides a consistent picture of the finely balanced hydration behavior of pyrogallol. In addition, two monotropically related dimethyl sulfoxide monosolvates were found in the accompanying solid form screen. PMID:24027438

  3. Polarization-insensitive FSS-based perfect metamaterial absorbers for GHz and THz frequencies

    NASA Astrophysics Data System (ADS)

    Sabah, Cumali; Dincer, Furkan; Karaaslan, Muharrem; Unal, Emin; Akgol, Oguzhan

    2014-04-01

    New perfect frequency selective surface (FSS) metamaterial absorbers (MAs) based on resonator with dielectric configuration are numerically presented and investigated for both microwave and terahertz frequency ranges. Also, to verify the behaviors of the FSS MAs, one of the MAs is experimentally analyzed and tested in the microwave frequency range. Suggested FSS MAs have simple configuration which introduces flexibility to adjust their FSS metamaterial properties and to rescale the structure easily for any desired frequency range. There is no study which simultaneously includes microwave and terahertz absorbers in a single design in the literature. Besides, numerical simulations verify that the FSS MAs could achieve very high absorption levels at wide angles of incidence for both transverse electric and transverse magnetic waves. The proposed FSS MAs and their variations enable many potential application areas in radar systems, communication, stealth technologies, and so on.

  4. Crystal structure of the photosensing module from a red/far-red light-absorbing plant phytochrome.

    PubMed

    Burgie, E Sethe; Bussell, Adam N; Walker, Joseph M; Dubiel, Katarzyna; Vierstra, Richard D

    2014-07-15

    Many aspects of plant photomorphogenesis are controlled by the phytochrome (Phy) family of bilin-containing photoreceptors that detect red and far-red light by photointerconversion between a dark-adapted Pr state and a photoactivated Pfr state. Whereas 3D models of prokaryotic Phys are available, models of their plant counterparts have remained elusive. Here, we present the crystal structure of the photosensing module (PSM) from a seed plant Phy in the Pr state using the PhyB isoform from Arabidopsis thaliana. The PhyB PSM crystallized as a head-to-head dimer with strong structural homology to its bacterial relatives, including a 5(Z)syn, 10(Z)syn, 15(Z)anti configuration of the phytochromobilin chromophore buried within the cGMP phosphodiesterase/adenylyl cyclase/FhlA (GAF) domain, and a well-ordered hairpin protruding from the Phy-specific domain toward the bilin pocket. However, its Per/Arnt/Sim (PAS) domain, knot region, and helical spine show distinct structural differences potentially important to signaling. Included is an elongated helical spine, an extended β-sheet connecting the GAF domain and hairpin stem, and unique interactions between the region upstream of the PAS domain knot and the bilin A and B pyrrole rings. Comparisons of this structure with those from bacterial Phys combined with mutagenic studies support a toggle model for photoconversion that engages multiple features within the PSM to stabilize the Pr and Pfr end states after rotation of the D pyrrole ring. Taken together, this Arabidopsis PhyB structure should enable molecular insights into plant Phy signaling and provide an essential scaffold to redesign their activities for agricultural benefit and as optogenetic reagents. PMID:24982198

  5. Linearly polarized, Q-switched, erbium-doped fiber laser incorporating a bulk-structured bismuth telluride/polyvinyl alcohol saturable absorber

    NASA Astrophysics Data System (ADS)

    Lee, Jinho; Lee, Junsu; Koo, Joonhoi; Chung, Hojai; Lee, Ju Han

    2016-07-01

    We experimentally demonstrate a linearly polarized, passively Q-switched, erbium (Er)-doped fiber laser using a saturable absorber (SA) based on a composite consisting of a bulk-structured bismuth telluride (Bi2Te3) topological insulator (TI) and polyvinyl alcohol (PVA). The SA was constructed on a polarization maintaining (PM) fiber ferrule platform, which had a sandwich structure. Its saturation intensity and modulation depth were measured to be ˜ and ˜4.1%, respectively. Using the prepared Bi2Te3/PVA SA in a PM Er-doped fiber ring laser, stable Q-switched pulses with a degree of polarization of ˜98.6% and an azimuth angle of ˜-0.34 deg were demonstrated. The minimum pulse width was measured to be ˜1.58 μs at a repetition rate of 47.1 kHz. This experimental demonstration verifies that a thin film based on a bulk-structured Bi2Te3 TI can fit into a sandwich-structured SA based on PM fiber ferrules.

  6. Sensitivity Analysis of Meteor Smoke Size and Derived Daytime Temperature Structure derived from the Poker Flat Incoherent Scatter Radar (PFISR)

    NASA Astrophysics Data System (ADS)

    Abe, G.; Fentzke, J.; Hsu, V. W.; Brum, C. G.

    2012-12-01

    This work describes the microphysical properties and variability of meteoric smoke particles (MSPs) at high latitude using the Poker Flat ISR (65.1N, 147.5W). In addition, we present a novel technique for determining height resolved daytime D region neutral temperatures, which takes into account the presence of charged dust. We discuss the temporal/spatial variability and the relation to meteoric input observed and MSP microphysical properties in the polar mesopause region. The derived nanometer sized MSPs are consistent with size profiles derived previously using radar/rocket techniques and we note that our results imply a lack of heavy cluster ions below 85 km during the observing period. We examine the sensitivity of the derived sizes and temperatures to background atmospheric models and compare the results with available data sets. We find that he sizes in the range of approximately 0.5 to 1.5nm are in good general agreement with previous radar/rocket studies, but that the variability both temporally and with altitude are greater than at lower latitudes. The observed neutral temperatures are in the nominal range of 130 - 160 K between 70-90 km with several instances of larger departures up to 200 K indicating that wave activity may be present. This work provides a template for potential use at many other radar sites for the determination of microphysical properties of MSPs and day-time neutral temperature in the D region that show good general agreement with NRL-MSISE-00 temperatures during the observing period.

  7. Principle and test of a bistatic radar

    NASA Astrophysics Data System (ADS)

    Yang, Zhengqi; Guo, Wanhai; Pan, Dongjin

    This paper presents a summary of the study on certain bistatic radar performances including its coverage, accuracy, resolution and the relationship between these performances and the structure of the system, placing emphasis upon its resolution. In order to check its practicability, tests of a short range bistatic radar used at sea were carried out, and the results indicate a broad applicable prospect.

  8. Electronic structures and optical properties of α-Fe2O3-xSex alloys for solar absorber

    NASA Astrophysics Data System (ADS)

    Xia, Congxin; Jia, Yu; Zhang, Qiming

    2015-05-01

    The band structures and optical properties of α-Fe2O3-xSex alloys are studied by means of first-principles methods, considering different Se contents x. Numerical results show that Se content has an obvious influence on band structures and optical properties of α-Fe2O3-xSex alloys. The band gap values of α-Fe2O3-xSex alloys decrease monotonically when Se concentrations increase, resulting in an obvious increase of the optical absorption edge in the visible range. In particular, our results show that α-Fe2O3-xSex alloys have the direct band gap properties with band gap values when Se content x ≈ 0.17, which is beneficial to solar cell applications.

  9. Composition for absorbing hydrogen

    DOEpatents

    Heung, L.K.; Wicks, G.G.; Enz, G.L.

    1995-05-02

    A hydrogen absorbing composition is described. The composition comprises a porous glass matrix, made by a sol-gel process, having a hydrogen-absorbing material dispersed throughout the matrix. A sol, made from tetraethyl orthosilicate, is mixed with a hydrogen-absorbing material and solidified to form a porous glass matrix with the hydrogen-absorbing material dispersed uniformly throughout the matrix. The glass matrix has pores large enough to allow gases having hydrogen to pass through the matrix, yet small enough to hold the particles dispersed within the matrix so that the hydrogen-absorbing particles are not released during repeated hydrogen absorption/desorption cycles.

  10. Composition for absorbing hydrogen

    DOEpatents

    Heung, Leung K.; Wicks, George G.; Enz, Glenn L.

    1995-01-01

    A hydrogen absorbing composition. The composition comprises a porous glass matrix, made by a sol-gel process, having a hydrogen-absorbing material dispersed throughout the matrix. A sol, made from tetraethyl orthosilicate, is mixed with a hydrogen-absorbing material and solidified to form a porous glass matrix with the hydrogen-absorbing material dispersed uniformly throughout the matrix. The glass matrix has pores large enough to allow gases having hydrogen to pass through the matrix, yet small enough to hold the particles dispersed within the matrix so that the hydrogen-absorbing particles are not released during repeated hydrogen absorption/desorption cycles.

  11. Multiparameter radar and aircraft based studies of microphysical, kinematic, and electrical structure of convective clouds during CaPE

    NASA Astrophysics Data System (ADS)

    Bringi, V. N.

    1994-03-01

    Two storms from the 9 August, 1991 CaPE case were analyzed in-depth focusing on multiparameter radar signature evolution over 60 min. in coordination with 24 aircraft penetrations which provided particle image and electric field data together with vertical air motion, cloud water and other state parameters. A total of five discrete 'cells' were identified in the two storms and their life cycle fully documented. Collaboration with South Dakota School of Mines and University of Alabama at Huntsville has resulted in a full integration of aircraft image and field mill data (from SDSM&T T-28 aircraft) with vertical air motion from dual-Doppler wind synthesis (UAH). The cellular evolution starts with a warm rain phase where updrafts and a very low concentration of large drops dominate the cloud. As the supercooled drops rise in the updraft they freeze and acquire a water-coat possibly by collisions with other liquid drops. The multi-parameter radar signatures clearly identify this mixed-phase zone. The cloud thereafter gets electrified which may intensify to produce lightning depending on cloud vertical growth, and generation of updraft/ downdrafts.

  12. 33 CFR 118.120 - Radar reflectors and racons.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Radar reflectors and racons. 118... BRIDGES BRIDGE LIGHTING AND OTHER SIGNALS § 118.120 Radar reflectors and racons. The District Commander may require or authorize the installation of radar reflectors and racons on bridge structures,...

  13. 33 CFR 118.120 - Radar reflectors and racons.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Radar reflectors and racons. 118... BRIDGES BRIDGE LIGHTING AND OTHER SIGNALS § 118.120 Radar reflectors and racons. The District Commander may require or authorize the installation of radar reflectors and racons on bridge structures,...

  14. 33 CFR 118.120 - Radar reflectors and racons.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Radar reflectors and racons. 118... BRIDGES BRIDGE LIGHTING AND OTHER SIGNALS § 118.120 Radar reflectors and racons. The District Commander may require or authorize the installation of radar reflectors and racons on bridge structures,...

  15. 33 CFR 118.120 - Radar reflectors and racons.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Radar reflectors and racons. 118... BRIDGES BRIDGE LIGHTING AND OTHER SIGNALS § 118.120 Radar reflectors and racons. The District Commander may require or authorize the installation of radar reflectors and racons on bridge structures,...

  16. 33 CFR 118.120 - Radar reflectors and racons.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Radar reflectors and racons. 118... BRIDGES BRIDGE LIGHTING AND OTHER SIGNALS § 118.120 Radar reflectors and racons. The District Commander may require or authorize the installation of radar reflectors and racons on bridge structures,...

  17. Transient fluid-structure interaction of elongated bodies by finite-element method using elliptical and spheroidal absorbing boundaries.

    PubMed

    Bhattacharyya, S K; Premkumar, R

    2003-12-01

    In a domain method of solution of exterior scalar wave equation, the radiation condition needs to be imposed on a truncation boundary of the modeling domain. The Bayliss, Gunzberger, and Turkel (BGT) boundary dampers, which require a circular cylindrical and spherical truncation boundaries in two-(2D) and three-(3D)-dimensional problems, respectively, have been particularly successful in the analysis of scattering and radiation problems. However, for an elongated body, elliptical (2D) or spheroidal (3D) truncation boundaries have potential to reduce the size of modeling domain and hence computational effort. For harmonic problems, such extensions of the first- and second-order BGT dampers are available in the literature. In this paper, BGT dampers in both elliptical and spheroidal coordinate systems have been developed for transient problems involving acoustic radiation as well as fluid-structure interaction and implemented in the context of finite-element method based upon unsymmetric pressure-displacement formulation. Applications to elongated radiators and shells are reported using several numerical examples with excellent comparisons. It is demonstrated that significant computational economy can be achieved for elongated bodies with the use of these dampers. PMID:14714787

  18. Transient fluid-structure interaction of elongated bodies by finite-element method using elliptical and spheroidal absorbing boundaries

    NASA Astrophysics Data System (ADS)

    Bhattacharyya, S. K.; Premkumar, R.

    2003-12-01

    In a domain method of solution of exterior scalar wave equation, the radiation condition needs to be imposed on a truncation boundary of the modeling domain. The Bayliss, Gunzberger, and Turkel (BGT) boundary dampers, which require a circular cylindrical and spherical truncation boundaries in two-(2D) and three-(3D)-dimensional problems, respectively, have been particularly successful in the analysis of scattering and radiation problems. However, for an elongated body, elliptical (2D) or spheroidal (3D) truncation boundaries have potential to reduce the size of modeling domain and hence computational effort. For harmonic problems, such extensions of the first- and second-order BGT dampers are available in the literature. In this paper, BGT dampers in both elliptical and spheroidal coordinate systems have been developed for transient problems involving acoustic radiation as well as fluid-structure interaction and implemented in the context of finite-element method based upon unsymmetric pressure-displacement formulation. Applications to elongated radiators and shells are reported using several numerical examples with excellent comparisons. It is demonstrated that significant computational economy can be achieved for elongated bodies with the use of these dampers.

  19. Structure-Property Relationship for Two-Photon Absorbing Multiporphyrins: Supramolecular Assembly of Highly-Conjugated Multiporphyrinic Ladders and Prisms

    SciTech Connect

    Easwaramoorthi, Shanmugam; Jang, So Young; Yoon, Zin Seok; Lim, Jong Min; Lee, Cheng-Wei; Mai, Chi-Lun; Liu, Yen-Chun; Yeh, Chen-Yu; Vura-Weis, Josh; Wasielewski, Michael R.; Kim, Dongho

    2008-10-03

    Two-photon absorption (TPA) phenomena of a series of single-strand as well as supramolecular self-assembled ladders and prisms of highly conjugated ethyne bridged multiporphyrin dimer, trimer, and star shaped pentamer have been investigated. The ligand mediated self-assembled supramolecular structures were characterized by UV-visible spectroscopy and small- and wide-angle X-ray scattering (SAXS/WAXS) analysis. The TPA cross section values of multiporphyrins increase nonlinearly from {approx}100 to {approx}18000 GM with an increased number of porphyrin units and elongated ?-conjugation length by virtue of charge transfer and excited-state cumulenic configurations. The observed opposite TPA behavior between their supramolecular ladder and prism configurations necessitates the importance of interstrand interactions between the multiporphyrinic units and the overall shape of the assembly. Furthermore, the diminished TPA cross section of the pentamer, despite the increased ?-conjugation resulting from duplex formation suggests that destabilizing the essential functional configurations at the cost of elongation of ?-delocalization pathway must cause unfavorable effects. We have also shown that one- and two-photon allowed energy-levels of linear multiporphyrins are nearly isoenergetic and the latter transition originates exclusively from the extent of ?-delocalization within the molecule. The identical TPA maximum position of the trimer and pentamer indicates that the TPA of the pentamer arises only from its basic trimer unit in spite of its extended two-dimensional {pi}-conjugation pathway involving five porphyrinic units.

  20. Quantification of the absorbed dose in 3D by means of advanced optical diagnostics based on structured illumination

    NASA Astrophysics Data System (ADS)

    Kristensson, Elias; Ceberg, Sofie; Bäck, Sven; Jordan, Kevin

    2015-01-01

    The purpose of this study was to present a novel optical diagnostic tool that corrects for undesired contribution of multiply scattered light, thus opening up for e.g. quantitative optical CT measurements of opaque samples. The approach is based on a technique called Structured Illumination (SI), which is commonly employed within microscopic imaging to enhance the depth-resolution. The concept of SI applies for many types of source-detector arrangements and the configuration employed in this paper relies on side-scattering detection. A nPAG polymer gel phantom was irradiated using 6 MV beam. Three-dimensional information was obtained by translating the sample perpendicular to the direction of light, thus sequentially probing different sections. These were then stacked together to form a 3D representation of the sample. By altering the polarization of the laser light during the data acquisition it was discovered that the aggregates responsible for the scattering of light followed Rayleigh scattering, implying that their individual sizes are smaller than, or in the order of, 500 nm.

  1. Mushroom plasmonic metamaterial infrared absorbers

    SciTech Connect

    Ogawa, Shinpei Fujisawa, Daisuke; Hata, Hisatoshi; Uetsuki, Mitsuharu; Misaki, Koji; Kimata, Masafumi

    2015-01-26

    There has been a considerable amount of interest in the development of various types of electromagnetic wave absorbers for use in different wavelength ranges. In particular, infrared (IR) absorbers with wavelength selectivity can be applied to advanced uncooled IR sensors, which would be capable of identifying objects through their radiation spectrum. In the present study, mushroom plasmonic metamaterial absorbers (MPMAs) for the IR wavelength region were designed and fabricated. The MPMAs consist of a periodic array of thin metal micropatches connected to a thin metal plate with narrow silicon (Si) posts. A Si post height of 200 nm was achieved by isotropic XeF{sub 2} etching of a thin Si layer sandwiched between metal plates. This fabrication procedure is relatively simple and is consistent with complementary metal oxide semiconductor technology. The absorption spectra of the fabricated MPMAs were experimentally measured. In addition, theoretical calculations of their absorption properties were conducted using rigorous coupled wave analysis. Both the calculated and measured absorbance results demonstrated that these MPMAs can realize strong selective absorption at wavelengths beyond the period of the array by varying the micropatch width. Absorbance values greater than 90% were achieved. Dual- or single-mode absorption can also be selected by varying the width of the Si posts. Pixel structures using such MPMAs could be used as high responsivity, high resolution and fast uncooled IR sensors.

  2. Mushroom plasmonic metamaterial infrared absorbers

    NASA Astrophysics Data System (ADS)

    Ogawa, Shinpei; Fujisawa, Daisuke; Hata, Hisatoshi; Uetsuki, Mitsuharu; Misaki, Koji; Kimata, Masafumi

    2015-01-01

    There has been a considerable amount of interest in the development of various types of electromagnetic wave absorbers for use in different wavelength ranges. In particular, infrared (IR) absorbers with wavelength selectivity can be applied to advanced uncooled IR sensors, which would be capable of identifying objects through their radiation spectrum. In the present study, mushroom plasmonic metamaterial absorbers (MPMAs) for the IR wavelength region were designed and fabricated. The MPMAs consist of a periodic array of thin metal micropatches connected to a thin metal plate with narrow silicon (Si) posts. A Si post height of 200 nm was achieved by isotropic XeF2 etching of a thin Si layer sandwiched between metal plates. This fabrication procedure is relatively simple and is consistent with complementary metal oxide semiconductor technology. The absorption spectra of the fabricated MPMAs were experimentally measured. In addition, theoretical calculations of their absorption properties were conducted using rigorous coupled wave analysis. Both the calculated and measured absorbance results demonstrated that these MPMAs can realize strong selective absorption at wavelengths beyond the period of the array by varying the micropatch width. Absorbance values greater than 90% were achieved. Dual- or single-mode absorption can also be selected by varying the width of the Si posts. Pixel structures using such MPMAs could be used as high responsivity, high resolution and fast uncooled IR sensors.

  3. 3D imaging of the internal structure of a rock-cored drumlin using ground-penetrating radar

    NASA Astrophysics Data System (ADS)

    King, Edward; Spagnolo, Matteo; Rea, Brice; Ely, Jeremy; Lee, Joshua

    2016-04-01

    One key question linking subglacial bedform analyses to ice dynamics relates to the flux of sediment at the bed. It is relatively easy to measure the upper surface of subglacial sediments either in active contemporary systems (using ice-penetrating radar surveys) or in relict subglacial terrain (using high-resolution digital elevation models). However, constraining the lower surface of subglacial sediments, i.e. the contact between the bedform sediment and a lower sediment unit or bedrock, is much more difficult, yet it is crucial to any determination of sediment volume and hence flux. Without observations, we are reliant on assumptions about the nature of the lower sediment surface. For example, we might assume that all the drumlins in a particular drumlin field are deposited on a planar surface, or that all comprise a carapace of till over a rock core. A calculation of sediment volume will give very different results leading to very different interpretations of sediment flux. We have been conducting experiments in the use of ground-penetrating radar to find the lower sedimentary surface beneath drumlins near Kirkby Stephen (Northern England), part of the extensive Eden Valley drumlin field. The drumlins comprise diamict overlying a bedrock surface of Carboniferous limestone which outcrops frequently between the drumlins. Here we present the results of a grid survey over one of the drumlins that clearly demonstrate this drumlin comprises a thin carapace of till overlying a stepped limestone bedrock surface. We provide details on the field data acquisition parameters and discuss the implications for further geophysical studies of drumlin fields.

  4. Experimental measurement and theoretical modeling of microwave scattering and the structure of the sea surface influencing radar observations from space

    NASA Technical Reports Server (NTRS)

    Arnold, David; Kong, J. A.

    1992-01-01

    The electromagnetic (EM) bias 'epsilon' is an error present in radar altimetry of the ocean due to the nonuniform reflection from wave troughs and crests. The EM bias is defined as the difference between the mean reflecting surface and the mean sea surface. A knowledge of the EM bias is necessary to permit error reduction in mean sea level measurements by satellite radar altimeters. Direct measurements of the EM bias were made from a Shell Offshore oil production platform in the Gulf of Mexico for a six month period during 1989 and 1990. Measurements of the EM bias were made at 5 and 14 Ghz. During the EM bias experiments by Melville et al., a wire wave gauge was used to obtain the modulation of the high frequency waves by the low frequency waves. It became apparent that the EM bias was primarily caused by the modulation of the short waves. This was reported by Arnold et al. The EM bias is explained using physical optics scattering and an empirical model for the short wave modulation. Measurements of the short wave modulation using a wire wave gauge demonstrated a linear dependence of the normalized bias on the short wave modulation strength, M. The theory accurately predicts this dependence by the relation epsilon = -alphaMH sub 1/3. The wind speed dependence of the normalized bias is explained by the dependence of the short wave modulation strength on the wind speed. While other effects such as long wave tilt and curvature will have an effect on the bias, the primary cause of the bias is shown to be due to the short wave modulation. This report will present a theory using physical optics scattering and an empirical model of the short wave modulation to estimate the EM bias. The estimated EM bias will be compared to measurements at C and Ku bands.

  5. Methods for absorbing neutrons

    DOEpatents

    Guillen, Donna P.; Longhurst, Glen R.; Porter, Douglas L.; Parry, James R.

    2012-07-24

    A conduction cooled neutron absorber may include a metal matrix composite that comprises a metal having a thermal neutron cross-section of at least about 50 barns and a metal having a thermal conductivity of at least about 1 W/cmK. Apparatus for providing a neutron flux having a high fast-to-thermal neutron ratio may include a source of neutrons that produces fast neutrons and thermal neutrons. A neutron absorber positioned adjacent the neutron source absorbs at least some of the thermal neutrons so that a region adjacent the neutron absorber has a fast-to-thermal neutron ratio of at least about 15. A coolant in thermal contact with the neutron absorber removes heat from the neutron absorber.

  6. Externally tuned vibration absorber

    DOEpatents

    Vincent, Ronald J.

    1987-09-22

    A vibration absorber unit or units are mounted on the exterior housing of a hydraulic drive system of the type that is powered from a pressure wave generated, e.g., by a Stirling engine. The hydraulic drive system employs a piston which is hydraulically driven to oscillate in a direction perpendicular to the axis of the hydraulic drive system. The vibration absorbers each include a spring or other resilient member having one side affixed to the housing and another side to which an absorber mass is affixed. In a preferred embodiment, a pair of vibration absorbers is employed, each absorber being formed of a pair of leaf spring assemblies, between which the absorber mass is suspended.

  7. Use of a solid absorbent and an accelerant detection canine for the detection of ignitable liquids burned in a structure fire.

    PubMed

    Nowlan, Mark; Stuart, Allan W; Basara, Gene J; Sandercock, P Mark L

    2007-05-01

    Ignitable Liquid Absorbent (ILA), a commercial solid absorbent intended to assist fire scene investigators in sample location and collection, has been field tested in three separate room fires. The ability of the ILA to detect and absorb different amounts of gasoline, odorless paint thinner, and camp fuel on two different substrates after a full-scale burn was assessed against results from an accelerant detection canine and laboratory analysis using gas chromatography-mass spectrometry (GC-MS). The canine correctly alerted on most of the panels that contained an ignitable liquid after the fire, while the ILA indicator dye failed to indicate in the presence of gasoline and camp fuel. GC-MS results for ignitable liquid residue from each panel and from the ILA showed that ILA absorbed odorless paint thinner and camp fuel from most of the test panels, but failed to absorb gasoline from the panels on which gasoline was confirmed to be present. PMID:17397503

  8. The MST Radar Technique

    NASA Technical Reports Server (NTRS)

    Roettger, J.

    1984-01-01

    The coherent radar technique is reviewed with special emphasis to mesosphere-stratosphere-troposphere (MST) radars operating in the VHF band. Some basic introduction to Doppler radar measurements and the radar equation is followed by an outline of the characteristics of atmospheric turbulence, viewed from the scattering and reflection processes of radar signals. Radar signal acquisition and preprocessing, namely coherent detection, digital sampling, pre-integration and coding, is briefly discussed. The data analysis is represented in terms of the correlation and spectrum analysis, yielding the essential parameters: power, signal-to-noise ratio, average and fluctuating velocity and persistency. The techniques to measure wind velocities, viz. the different modes of the Doppler method as well as the space antenna method are surveyed and the feasibilities of the MST radar interferometer technique are elucidated. A general view on the criteria to design phased array antennas is given. An outline of the hardware of a typical MST radar system is presented.

  9. Doppler radar results

    NASA Technical Reports Server (NTRS)

    Bracalente, Emedio M.

    1992-01-01

    The topics are covered in viewgraph form and include the following: (1) a summary of radar flight data collected; (2) a video of combined aft cockpit, nose camera, and radar hazard displays; (3) a comparison of airborne radar F-factor measurements with in situ and Terminal Doppler Weather Radar (TDWR) F-factors for some sample events; and (4) a summary of wind shear detection performance.

  10. Ni-Zn nanoferrite for radar-absorbing material

    NASA Astrophysics Data System (ADS)

    Lima, U. R.; Nasar, M. C.; Nasar, R. S.; Rezende, M. C.; Araújo, J. H.

    Nanoparticles of nickel-zinc ferrite have been prepared by using the citrate precursor method. According to scanning electron microscopy (SEM), the particle size is nanometric for the powder calcined at 350 °C/3.5 h. The phase formation has been studied by applying different calcining atmospheres, such as air and argon. Pure Ni-Zn ferrite has been observed when calcined in argon at the temperature of 350 °C. Hysteresis analyses have been done with magnetization of 53.01 emu/g at 350 °C and obtaining 84.62 emu/g at 1100 °C due to an optimization of domains formation at high temperature. Measures of reflectivity of Ni-Zn ferrite/epoxy composite have been obtained below 21% at 350 °C and above 96% at 1100 °C with a coercive field of 26.61 Oe. Low value of coercive field increased the mobilization of domains wall and increased the radiation absorption.