Science.gov

Sample records for radar emitter signals

  1. Robust Radar Emitter Recognition Based on the Three-Dimensional Distribution Feature and Transfer Learning.

    PubMed

    Yang, Zhutian; Qiu, Wei; Sun, Hongjian; Nallanathan, Arumugam

    2016-01-01

    Due to the increasing complexity of electromagnetic signals, there exists a significant challenge for radar emitter signal recognition. To address this challenge, multi-component radar emitter recognition under a complicated noise environment is studied in this paper. A novel radar emitter recognition approach based on the three-dimensional distribution feature and transfer learning is proposed. The cubic feature for the time-frequency-energy distribution is proposed to describe the intra-pulse modulation information of radar emitters. Furthermore, the feature is reconstructed by using transfer learning in order to obtain the robust feature against signal noise rate (SNR) variation. Last, but not the least, the relevance vector machine is used to classify radar emitter signals. Simulations demonstrate that the approach proposed in this paper has better performances in accuracy and robustness than existing approaches. PMID:26927111

  2. Hybrid radar emitter recognition based on rough k-means classifier and relevance vector machine.

    PubMed

    Yang, Zhutian; Wu, Zhilu; Yin, Zhendong; Quan, Taifan; Sun, Hongjian

    2013-01-01

    Due to the increasing complexity of electromagnetic signals, there exists a significant challenge for recognizing radar emitter signals. In this paper, a hybrid recognition approach is presented that classifies radar emitter signals by exploiting the different separability of samples. The proposed approach comprises two steps, namely the primary signal recognition and the advanced signal recognition. In the former step, a novel rough k-means classifier, which comprises three regions, i.e., certain area, rough area and uncertain area, is proposed to cluster the samples of radar emitter signals. In the latter step, the samples within the rough boundary are used to train the relevance vector machine (RVM). Then RVM is used to recognize the samples in the uncertain area; therefore, the classification accuracy is improved. Simulation results show that, for recognizing radar emitter signals, the proposed hybrid recognition approach is more accurate, and presents lower computational complexity than traditional approaches. PMID:23344380

  3. Hybrid Radar Emitter Recognition Based on Rough k-Means Classifier and Relevance Vector Machine

    PubMed Central

    Yang, Zhutian; Wu, Zhilu; Yin, Zhendong; Quan, Taifan; Sun, Hongjian

    2013-01-01

    Due to the increasing complexity of electromagnetic signals, there exists a significant challenge for recognizing radar emitter signals. In this paper, a hybrid recognition approach is presented that classifies radar emitter signals by exploiting the different separability of samples. The proposed approach comprises two steps, namely the primary signal recognition and the advanced signal recognition. In the former step, a novel rough k-means classifier, which comprises three regions, i.e., certain area, rough area and uncertain area, is proposed to cluster the samples of radar emitter signals. In the latter step, the samples within the rough boundary are used to train the relevance vector machine (RVM). Then RVM is used to recognize the samples in the uncertain area; therefore, the classification accuracy is improved. Simulation results show that, for recognizing radar emitter signals, the proposed hybrid recognition approach is more accurate, and presents lower computational complexity than traditional approaches. PMID:23344380

  4. Knowledge-based signal processing for radar ESM systems

    NASA Astrophysics Data System (ADS)

    Roe, J.; Cussons, S.; Feltham, A.

    1990-10-01

    Radar electronic support measures (ESM) systems perform the functions of threat detection and area surveillance to determine the identity and bearing of surrounding radar emitters. Automatic ESM systems incorporate a passive receiver to measure the parameters of detected radar pulses and an automatic processor to rapidly sort pulses and identify the emitters. Current processors use algorithmic processing methods which are inflexible and do not fully utilize available sources of a priori information. The paper discusses the role of knowledge-based processing methods and how they may be applied to the key ESM signal-processing functions of deinterleaving, merge and emitter identification. ESM processors are required to sort input pulse data streams exceeding one million pulses per second and minimize the reporting latency of new emitters. The paper further discusses the requirements to achieve real-time operation of knowledge-based ESM processing techniques.

  5. Ghost signals in Allison emittance scanners

    SciTech Connect

    Stockli, Martin P.; Leitner, M.; Moehs, D.P.; Keller, R.; Welton, R.F.; /SNS Project, Oak Ridge /Tennessee U.

    2004-12-01

    For over 20 years, Allison scanners have been used to measure emittances of low-energy ion beams. We show that scanning large trajectory angles produces ghost signals caused by the sampled beamlet impacting on an electric deflection plate. The ghost signal strength is proportional to the amount of beam entering the scanner. Depending on the ions, and their velocity, the ghost signals can have the opposite or the same polarity as the main beam signals. The ghost signals cause significant errors in the emittance estimates because they appear at large trajectory angles. These ghost signals often go undetected because they partly overlap with the real signals, are mostly below the 1% level, and often hide in the noise. A simple deflection plate modification is shown to reduce the ghost signal strength by over 99%.

  6. Ghost Signals In Allison Emittance Scanners

    SciTech Connect

    Stockli, Martin P.; Leitner, M.; Keller, R.; Moehs, D.P.; Welton, R. F.

    2005-03-15

    For over 20 years, Allison scanners have been used to measure emittances of low-energy ion beams. We show that scanning large trajectory angles produces ghost signals caused by the sampled beamlet impacting on an electric deflection plate. The ghost signal strength is proportional to the amount of beam entering the scanner. Depending on the ions, and their velocity, the ghost signals can have the opposite or the same polarity as the main beam signals. The ghost signals cause significant errors in the emittance estimates because they appear at large trajectory angles. These ghost signals often go undetected because they partly overlap with the real signals, are mostly below the 1% level, and often hide in the noise. A simple deflection plate modification is shown to reduce the ghost signal strength by over 99%.

  7. Interception of LPI radar signals

    NASA Astrophysics Data System (ADS)

    Lee, Jim P.

    1991-11-01

    Most current radars are designed to transmit short duration pulses with relatively high peak power. These radars can be detected easily by the use of relatively modest EW intercept receivers. Three radar functions (search, anti-ship missile (ASM) seeker, and navigation) are examined to evaluate the effectiveness of potential low probability of intercept (LPI) techniques, such as waveform coding, antenna profile control, and power management that a radar may employ against current Electronic Warfare (EW) receivers. The general conclusion is that it is possible to design a LPI radar which is effective against current intercept EW receivers. LPI operation is most easily achieved at close ranges and against a target with a large radar cross section. The general system sensitivity requirement for the detection of current and projected LPI radars is found to be on the order of -100 dBmi which cannot be met by current EW receivers. Finally, three potential LPI receiver architectures, using channelized, superhet, and acousto-optic receivers with narrow RF and video bandwidths are discussed. They have shown some potential in terms of providing the sensitivity and capability in an environment where both conventional and LPI signals are present.

  8. Radar signal categorization using a neural network

    NASA Technical Reports Server (NTRS)

    Anderson, James A.; Gately, Michael T.; Penz, P. Andrew; Collins, Dean R.

    1991-01-01

    Neural networks were used to analyze a complex simulated radar environment which contains noisy radar pulses generated by many different emitters. The neural network used is an energy minimizing network (the BSB model) which forms energy minima - attractors in the network dynamical system - based on learned input data. The system first determines how many emitters are present (the deinterleaving problem). Pulses from individual simulated emitters give rise to separate stable attractors in the network. Once individual emitters are characterized, it is possible to make tentative identifications of them based on their observed parameters. As a test of this idea, a neural network was used to form a small data base that potentially could make emitter identifications.

  9. Packet radar spectrum recovery for physiological signals.

    PubMed

    Yavari, Ehsan; Padasdao, Bryson; Lubecke, Victor; Boric-Lubecke, Olga

    2013-01-01

    Packet Doppler radar is investigated for extracting physiological signals. System on Chip is employed as a signal source in packet mode, and it transmits signals intermittently at 2.405 GHz to save power. Reflected signals are demodulated directly by spectral analysis of received pulses in the baseband. Spectral subtraction, using data from an empty room, is applied to extract the periodic movement. It was experimentally demonstrated that frequency of the periodic motion can be accurately extracted using this technique. Proposed approach reduces the computation complexity of the signal processing part effectively. PMID:24110048

  10. 28. Perimeter acquisition radar building room #302, signal process and ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    28. Perimeter acquisition radar building room #302, signal process and analog receiver room - Stanley R. Mickelsen Safeguard Complex, Perimeter Acquisition Radar Building, Limited Access Area, between Limited Access Patrol Road & Service Road A, Nekoma, Cavalier County, ND

  11. Radar transponder apparatus and signal processing technique

    SciTech Connect

    Axline, R.M. Jr.; Sloan, G.R.; Spalding, R.E.

    1994-12-31

    An active, phase-coded, time-grating transponder and a synthetic-aperture radar (SAR) and signal processor means, in combination, allow the recognition and location of the transponder (tag) in the SAR image and allow communication of information messages from the transponder to the SAR. The SAR is an illuminating radar having special processing modifications in an image-formation processor to receive an echo from a remote transponder, after the transponder receives and retransmits the SAR illuminations, and to enhance tile transponder`s echo relative to surrounding ground clutter by recognizing special transponder modulations from phase-shifted from the transponder retransmissions. The remote radio-frequency tag also transmits information to the SAR through a single antenna that also serves to receive the SAR illuminations. Unique tag-modulation and SAR signal processing techniques, in combination, allow the detection and precise geographical location of the tag, through the reduction of interfering signals from ground clutter, and allow communication of environmental and status information from said tag to be communicated to said SAR.

  12. Radar transponder apparatus and signal processing technique

    DOEpatents

    Axline, Jr., Robert M.; Sloan, George R.; Spalding, Richard E.

    1996-01-01

    An active, phase-coded, time-grating transponder and a synthetic-aperture radar (SAR) and signal processor means, in combination, allow the recognition and location of the transponder (tag) in the SAR image and allow communication of information messages from the transponder to the SAR. The SAR is an illuminating radar having special processing modifications in an image-formation processor to receive an echo from a remote transponder, after the transponder receives and retransmits the SAR illuminations, and to enhance the transponder's echo relative to surrounding ground clutter by recognizing special transponder modulations from phase-shifted from the transponder retransmissions. The remote radio-frequency tag also transmits information to the SAR through a single antenna that also serves to receive the SAR illuminations. Unique tag-modulation and SAR signal processing techniques, in combination, allow the detection and precise geographical location of the tag through the reduction of interfering signals from ground clutter, and allow communication of environmental and status information from said tag to be communicated to said SAR.

  13. Radar transponder apparatus and signal processing technique

    DOEpatents

    Axline, R.M. Jr.; Sloan, G.R.; Spalding, R.E.

    1996-01-23

    An active, phase-coded, time-grating transponder and a synthetic-aperture radar (SAR) and signal processor means, in combination, allow the recognition and location of the transponder (tag) in the SAR image and allow communication of information messages from the transponder to the SAR. The SAR is an illuminating radar having special processing modifications in an image-formation processor to receive an echo from a remote transponder, after the transponder receives and retransmits the SAR illuminations, and to enhance the transponder`s echo relative to surrounding ground clutter by recognizing special transponder modulations from phase-shifted from the transponder retransmissions. The remote radio-frequency tag also transmits information to the SAR through a single antenna that also serves to receive the SAR illuminations. Unique tag-modulation and SAR signal processing techniques, in combination, allow the detection and precise geographical location of the tag through the reduction of interfering signals from ground clutter, and allow communication of environmental and status information from said tag to be communicated to said SAR. 4 figs.

  14. Auxiliary signal processing system for a multiparameter radar

    NASA Technical Reports Server (NTRS)

    Chandrasekar, V.; Gray, G. R.; Caylor, I. J.

    1993-01-01

    The design of an auxiliary signal processor for a multiparameter radar is described with emphasis on low cost, quick development, and minimum disruption of radar operations. The processor is based around a low-cost digital signal processor card and personal computer controller. With the use of such a concept, an auxiliary processor was implemented for the NCAR CP-2 radar during a 1991 summer field campaign and allowed measurement of additional polarimetric parameters, namely, the differential phase and the copolar cross correlation. Sample data are presented from both the auxiliary and existing radar signal processors.

  15. Signal processing techniques for stepped frequency ultra-wideband radar

    NASA Astrophysics Data System (ADS)

    Nguyen, Lam

    2014-05-01

    The U.S. Army Research Laboratory (ARL) has developed the impulse-based, ground vehicle-based, forward-looking ultra-wideband (UWB), synthetic aperture radar (SAR) to detect concealed targets. Although the impulse-based architecture offers its own advantages, one of the important challenges is that when using this architecture it is very difficult to transmit a radar signal with an arbitrary bandwidth and shape. This feature is crucial for the radar to be compliant with the local frequency authority. In addition, being able to transmit signals with an arbitrary spectral shape is an important step in creating the next generation of smart (cognitive) radars. Therefore, we have designed a next-generation prototype radar to take advantage of the stepped frequency architecture. The design and building of the radar hardware is underway. In this paper, we study the radar transmit and acquisition scheme; the trade-offs between SAR image performance and various key radar parameters; and data reconstruction techniques for radar signals with an arbitrary spectrum. This study demonstrates performance, provides some guidelines for the radar design, and serves as a foundation for the signal and image processing stage.

  16. Signal to Noise Analysis of iRadar sensors

    SciTech Connect

    Fritzke, A; Top, P

    2009-09-10

    This document follows my process of testing; comparing; and contrasting several iRadars signal to noise ratios for both HH and VV polarization. A brief introduction is given explaining the basics of iRadar technology and what data I was collecting. The process section explains the steps I took to collect my data along with any procedures I followed. The analysis section compares and contrasts five different radars and the two different polarizations. The analysis also details the radars viewing limitations and area. Finally, the report delves into the effects of two radars interfering with each other. A conclusion goes over the success and findings of the project.

  17. Analysis of Low Probability of Intercept (LPI) Radar Signals Using Cyclostationary Processing

    NASA Astrophysics Data System (ADS)

    Lime, Antonio F., Jr.

    2002-09-01

    LPI (Low Probability of Intercept) radar is a class of radar systems that possess certain performance characteristics that make them nearly undetectable by today's digital intercept receivers. This presents a significant tactical problem in the battle space. To detect these types of radar, new digital receivers that use sophisticated signal processing techniques are required This thesis investigates the use of cyclostationary processing to extract the modulation parameters from a variety of continuous-wave (CW) low-probability-of-intercept (LPI) radar waveforms. The cyclostationary detection techniques described exploit the fact that digital signals vary in time with single or multiple periodicities, because they have spectral correlation, namely, non-zero correlation between certain frequency components, at certain frequency shifts. The use of cyclostationary signal processing in a non-cooperative intercept receiver can help identify the particular emitter and can help develop electronic attacks. LPI CW waveforms examined include Frank codes, polyphase codes (Pt through P4), Frequency Modulated CW (FMCW), Costas frequencies as well as several frequency-shift-keying/phase-shift-keying (FSK/PSK) waveforms. It is shown that for signal-to-noise ratios of OdB and -6 dB, the cyclostationary signal processing can extract the modulation parameters necessary in order to distinguish among the various types of LPI modulations.

  18. High accuracy signal model and simulation for radar systems

    NASA Astrophysics Data System (ADS)

    Sun, Hanwei; Hu, Cheng; Zeng, Tao

    Radar Signal Models play extremely important role in radar echo simulation and signal process-ing. The traditional signal model is based on the `Stop-and-Go' model commonly used in radar systems. The Model neglects the relative movement between radar and target during pulse propagation, and can satisfy the precision requirement in most radar systems. However the `Stop-and-Go' assumption will collapse in some advanced radar systems nowadays, such as high resolution synthetic aperture radar (SAR) system, geosynchronous SAR system and ground-based radar (GBR) system. For example in high resolution SAR system, the `Stop-and-Go' assumption will introduce Doppler error which has terrible effect on the image formation. In recent years, high accuracy signal models have been discussed in several special radar systems. However, these publications discuss the solutions from the view of signal processing, and few discussions are from the view of echo simulation. Since the echo simulation is a necessary ap-proach to validate signal processing, the signal models of them must be matched. Moreover, these publications are aimed at specific radar systems and there is still lack of a general signal model applying to all the situations. This paper focuses on a high accuracy radar signal model based on universal situation suited to for both echo simulation and signal processing, thus algorithm derivation is not our purpose. The model contains two different forms: the transmit-oriented form and the receive-oriented form. They are not equivalent and cannot be directly transformed each other. The two forms are based on the transmitting time and receiving time respectively, therefore the propagation delay definitions and signal expressions are different. Besides, the implementation methods of the two forms are also different. In the transmit-oriented form, the received signal is obtained by shifting the transmitted signal in terms of the propagation delay, which has high computational efficiency but low accuracy because of the discrete characteristics of the digital signal. In the receive-oriented form, the received signal is obtained by substituting propagation delay into the formula expression of the received signal, which has high accuracy but low computational efficiency. This paper classifies the two forms at the first time and proposes the model derivation. Numerical simulation examples illustrate that both of the forms are suited to most radar systems, especially to high resolution SAR system and geosynchronous SAR system in which the `Stop-and-Go' assumption is in failure, the model proposed can satisfy the demands well.

  19. Radar Signal Propagation and Detection Through Ice

    NASA Astrophysics Data System (ADS)

    Kofman, Wlodek; Orosei, Roberto; Pettinelli, Elena

    2010-06-01

    In this paper we describe the existing and planned radar measurements of the planetary bodies. The dielectric properties of water ice and other potential surface and subsurface materials are discussed, as well as their dependency on temperature and structure. We then evaluate the performance of subsurface sounding radars using these parameters. Finally we describe some laboratory technique to help interpret the radar data, presenting some results obtained using dielectric spectroscopy methods.

  20. Synthetic aperture radar signal processing: Trends and technologies

    NASA Technical Reports Server (NTRS)

    Curlander, John C.

    1993-01-01

    An overview of synthetic aperture radar (SAR) technology is presented in vugraph form. The following topics are covered: an SAR ground data system; SAR signal processing algorithms; SAR correlator architectures; and current and future trends.

  1. Time-frequency analysis of synthetic aperture radar signals

    SciTech Connect

    Johnston, B.

    1996-08-01

    Synthetic aperture radar (SAR) has become an important tool for remote sensing of the environment. SAR is a set of digital signal processing algorithms that are used to focus the signal returned to the radar because radar systems in themselves cannot produce the high resolution images required in remote sensing applications. To reconstruct an image, several parameters must be estimated and the quality of output image depends on the degree of accuracy of these parameters. In this thesis, we derive the fundamental SAR algorithms and concentrate on the estimation of one of its critical parameters. We show that the common technique for estimating this particular parameter can sometimes lead to erroneous results and reduced quality images. We also employ time-frequency analysis techniques to examine variations in the radar signals caused by platform motion and show how these results can be used to improve output image quality.

  2. Signal Processing System for the CASA Integrated Project I Radars

    SciTech Connect

    Bharadwaj, Nitin; Chandrasekar, V.; Junyent, Francesc

    2010-09-01

    This paper describes the waveform design space and signal processing system for dual-polarization Doppler weather radar operating at X band. The performance of the waveforms is presented with ground clutter suppression capability and mitigation of range velocity ambiguity. The operational waveform is designed based on operational requirements and system/hardware requirements. A dual Pulse Repetition Frequency (PRF) waveform was developed and implemented for the first generation X-band radars deployed by the Center for Collaborative Adaptive Sensing of the Atmosphere (CASA). This paper presents an evaluation of the performance of the waveforms based on simulations and data collected by the first-generation CASA radars during operations.

  3. Automatic signal processing of front monitor radar for tunneling machines

    SciTech Connect

    Sato, Toru; Takeda, Kenya; Nagamatsu, Takashi; Wakayama, Toshio; Kimura, Iwane; Shinbo, Tetsuya

    1997-03-01

    It is planned to install a front monitoring impulse radar on the surface of the rotating drill of tunneling machines in order to detect obstacles such as casing pipes of vertical borings. The conventional aperture synthesis technique can no more be applied to such cases because the radar image of a pipe dies not constituent a hyperbola as is the case for linear scanning radars. The authors have developed a special purpose signal processing algorithm with the aid of the discrete model fitting method, which can be used for any pattern of scanning. The details of the algorithm are presented together with the results of numerical simulations and test site experiments.

  4. Predictability of GNSS signal observations in support of Space Situational Awareness using passive radar

    NASA Astrophysics Data System (ADS)

    Mahmud, M. S.; Lambert, A.; Benson, C.

    2015-07-01

    GNSS signals have been proposed as emitters of opportunity to enhance Space Situational Awareness (SSA) by tracking small items of space debris using bistatic radar. Although the scattered GNSS signal levels from small items of space debris are incredibly low, the dynamic disturbances of the observed object are very small, and the phase of the scattered signals is well behaved. It is therefore plausible that coherent integration periods on the order of many minutes could be achieved. However, even with long integration periods, very large receiver arrays with extensive, but probably viable, processing are required to recover the scattered signal. Such large arrays will be expensive, and smaller more affordable arrays will collect insufficient signal power to detect the small objects (relative to wavelength) that are necessary to maintain the necessary phase coherency. The investments necessary to build a large receiver array are unlikely without substantial risk reduction. Pini and Akos have previously reported on use of very large radio telescopes to analyse the short-term modulation performance of GNSS satellite signals. In this work we report on tracking of GPS satellites with a radio-astronomy VLBI antenna system to assess the stability of the observed GPS signal over a time period indicative of that proposed for passive radar. We also confirm some of the processing techniques that may be used in both demonstrations and the final system. We conclude from the limited data set that the signal stability when observed by a high-gain tracking antenna and compared against a high quality, low phase-noise clock is excellent, as expected. We conclude by framing further works to reduce risk for a passive radar SSA capability using GNSS signals. http://www.ignss.org/Conferences/PastConferencePapers/2015ConferencePastPapers/2015PeerReviewedPapers/tabid/147/Default.aspx

  5. Integration of radio-frequency transmission and radar in general software for multimodal battlefield signal modeling

    NASA Astrophysics Data System (ADS)

    Yamamoto, Kenneth K.; Reznicek, Nathan J.; Wilson, D. Keith

    2013-05-01

    The Environmental Awareness for Sensor and Emitter Employment (EASEE) software, being developed by the U. S. Army Engineer Research and Development Center (ERDC), provides a general platform for predicting sensor performance and optimizing sensor selection and placement in complex terrain and weather conditions. It incorporates an extensive library of target signatures, signal propagation models, and sensor systems. A flexible object-oriented design supports efficient integration and simulation of diverse signal modalities. This paper describes the integration of modeling capabilities for radio-frequency (RF) transmission and radar systems from the U. S. Navy Electromagnetic Propagation Integrated Resource Environment (EMPIRE), which contains nearly twenty different realistic RF propagation models. The integration utilizes an XML-based interface between EASEE and EMPIRE to set inputs for and run propagation models. To accommodate radars, fundamental improvements to the EASEE software architecture were made to support active-sensing scenarios with forward and backward propagation of the RF signals between the radar and target. Models for reflecting targets were defined to apply a target-specific, directionally dependent reflection coefficient (i.e., scattering cross section) to the incident wavefields.

  6. Windshear detection radar signal processing studies

    NASA Technical Reports Server (NTRS)

    Baxa, Ernest G., Jr.

    1993-01-01

    This final report briefly summarizes research work at Clemson in the Radar Systems Laboratory under the NASA Langley Research Grant NAG-1-928 in support of the Antenna and Microwave Branch, Guidance and Control Division, program to develop airborne sensor technology for the detection of low altitude windshear. A bibliography of all publications generated by Clemson personnel is included. An appendix provides abstracts of all publications.

  7. Signal processing at the Poker Flat MST radar

    NASA Technical Reports Server (NTRS)

    Carter, D. A.

    1983-01-01

    Signal processing for Mesosphere-Stratosphere-Troposphere (MST) radar is carried out by a combination of hardware in high-speed, special-purpose devices and software in a general-purpose, minicomputer/array processor. A block diagram of the signal processing system is presented, and the steps in the processing pathway are described. The current processing capabilities are given, and a system offering greater coherent integration speed is advanced which hinges upon a high speed preprocessor.

  8. Radar antenna pointing for optimized signal to noise ratio.

    SciTech Connect

    Doerry, Armin Walter; Marquette, Brandeis

    2013-01-01

    The Signal-to-Noise Ratio (SNR) of a radar echo signal will vary across a range swath, due to spherical wavefront spreading, atmospheric attenuation, and antenna beam illumination. The antenna beam illumination will depend on antenna pointing. Calculations of geometry are complicated by the curved earth, and atmospheric refraction. This report investigates optimizing antenna pointing to maximize the minimum SNR across the range swath.

  9. Radar signal propagation through the ionosphere of Europa

    NASA Astrophysics Data System (ADS)

    Grima, Cyril; Blankenship, Donald D.; Schroeder, Dustin M.

    2015-11-01

    We review the current state of knowledge of the Europan plasma environment, its effects on radio wave propagation, and its impact on the performance and design of future radar sounders for the exploration of Europa's ice crust. The Europan ionosphere is produced in two independently-rotating hemispheres by photo-ionization of the neutral exosphere and interaction with the Io plasma torus, respectively. This combination is responsible for temporal and longitudinal ionospheric heterogeneities not well constrained by observations. When Europa's ionosphere is active, the maximum cut-off frequency is 1 MHz at the surface. The main impacts on radar signal propagation are dispersive phase shift and Faraday rotation, both a function of the total electron content (up to 4×1015 m-2) and the Jovian magnetic field strength at Europa (~420 nT). The severity of these impacts decrease with increasing center frequency and increase with altitude, latitude, and bandwidth. The 9 MHz channels on the Radar for Icy Moons Exploration (RIME) and proposed Radar for Europa Assessment and Sounding: Ocean to Near-surface (REASON) will be sensitive to the Europan ionosphere. For these or similar radar sounders, the ionospheric signal distortion from dispersive phase shift can be corrected with existing techniques, which would also enable the estimation of the total electron content below the spacecraft. At 9 MHz, the Faraday fading is not expected to exceed 6 dB under the worst conditions. At lower frequencies, any active or passive radio probing of the ice shell exploration would be limited to frequencies above 1-8 MHz (depending on survey configuration) below which Faraday rotation angle would lead to signal fading and detection ambiguity. Radar instruments could be sensitive to neutrals and electrons added in the exosphere from any plume activity if present.

  10. Location plan for Signal Corps Radar (S.C.R.) 296 Station 5, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Location plan for Signal Corps Radar (S.C.R.) 296 Station 5, October 8, 1943 - Fort Barry, Signal Corps Radar 296, Station 5, Transmitter Building Foundation, Point Bonita, Marin Headlands, Sausalito, Marin County, CA

  11. Detail view of southeast corner of Signal Corps Radar (S.C.R.) ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Detail view of southeast corner of Signal Corps Radar (S.C.R.) 296 Station 5 Transmitter Building foundation, showing Signal Corps Radar (S.C.R.) 296 Station 5 Tower concrete pier in background, camera facing north - Fort Barry, Signal Corps Radar 296, Station 5, Transmitter Building Foundation, Point Bonita, Marin Headlands, Sausalito, Marin County, CA

  12. Optimizing chaos-based signals for complex radar targets.

    PubMed

    Carroll, T L

    2007-09-01

    There has been interest in the use of chaotic signals for radar, but most researchers consider only a few chaotic systems and how these signals perform for the detection of point targets. The range of possible chaotic signals is far greater than what most of these researchers consider, so to demonstrate this, I use a chaotic map whose parameters may be adjusted by a numerical optimization routine, producing different chaotic signals that are modulated onto a carrier and optimized for different situations. It is also suggested that any advantage for these chaos-based signals may come in the detection of complex targets, not point targets, and I compare the performance of chaos-based signals to a standard radar signal, the linear frequency modulated chirp. I find that I can optimize a chaos-based signal to increase the cross-correlation with the reflection from one complex target compared to the cross-correlation with the reflection from a different target, thus allowing the identification of a complex target. I am also able to increase the cross-correlation of the reflection from a complex target compared with the cross-correlation with the reflection from spatially extended clutter. I show that a larger output signal-to-noise ratio is possible if I cross-correlate with a reference signal that is different from the transmitted signal, and I justify my results by showing how the ambiguity diagram for a chaos-based signal can be different than the ambiguity diagram for a noise signal. PMID:17902985

  13. Numerical Modeling of Doppler Radar Signals of Strombolian Eruptions

    NASA Astrophysics Data System (ADS)

    Gouhier, M.; Donnadieu, F.

    2006-12-01

    VOLDORAD is a ground-based UHF Doppler radar developed specifically for the remote sounding of volcanic eruptions. Its 23.5 cm wavelength allows us to monitor and quantify eruption intensity in real time from several km, with negligible attenuation by meteorological effects or volcanic ash. In particular, the signal can penetrate inside volcanic jets or plumes to measure the reflectivity and velocities of ejecta in several sampling volumes. The precise knowledge of these parameters is crucial to monitoring the evolution of an eruption and to provide more stringent constraints on assumptions included in models of volcanic processes. To improve our interpretation of radar signals, we have developed a numerical model simulating radar echoes from Strombolian jets. Ballistic projectiles of various sizes are accelerated upwards, over a range of angles, by gas with a given imposed initial velocity , and the equations of motion are solved with a fourth-order Runge-Kutta algorithm. The power backscattered to the radar is simulated by Rayleigh scattering from spheres. Taking into account the sounding geometry used for measurements on Etna in July 2001, our model is able to reproduce many characteristic trends of the time series and Doppler spectra measured during repeated Strombolian outbursts. Models show that measured radar velocities depend mostly on jet geometry, particle size, and initial gas velocity. For wide emission angles, measured radial velocities can be considered as the real ejecta velocities, whereas in the case of narrow vertical or asymmetrical jets, real velocity might be underestimated. However, video analyses confirm that for the majority of explosions, although most particles concentrate in the inner part of the jets, many blocks are also emitted at wide angles. For instance, maximum radial velocities recorded during the July 4 episode of Etna reached 70 m/s. The model radar signal obtained is strongly dependent on the degree of coupling between projectile and the gas phase, and this in turn depends on the projectile size. Comparing measured with computed reflectivities provides constraints on particle size distribution. In particular, particle size has a larger effect on reflectivity than particle number. Such constraints allow us to estimate the initial gas velocity, crucial to improve gas flux estimation.

  14. Digital Radar-Signal Processors Implemented in FPGAs

    NASA Technical Reports Server (NTRS)

    Berkun, Andrew; Andraka, Ray

    2004-01-01

    High-performance digital electronic circuits for onboard processing of return signals in an airborne precipitation- measuring radar system have been implemented in commercially available field-programmable gate arrays (FPGAs). Previously, it was standard practice to downlink the radar-return data to a ground station for postprocessing a costly practice that prevents the nearly-real-time use of the data for automated targeting. In principle, the onboard processing could be performed by a system of about 20 personal- computer-type microprocessors; relative to such a system, the present FPGA-based processor is much smaller and consumes much less power. Alternatively, the onboard processing could be performed by an application-specific integrated circuit (ASIC), but in comparison with an ASIC implementation, the present FPGA implementation offers the advantages of (1) greater flexibility for research applications like the present one and (2) lower cost in the small production volumes typical of research applications. The generation and processing of signals in the airborne precipitation measuring radar system in question involves the following especially notable steps: The system utilizes a total of four channels two carrier frequencies and two polarizations at each frequency. The system uses pulse compression: that is, the transmitted pulse is spread out in time and the received echo of the pulse is processed with a matched filter to despread it. The return signal is band-limited and digitally demodulated to a complex baseband signal that, for each pulse, comprises a large number of samples. Each complex pair of samples (denoted a range gate in radar terminology) is associated with a numerical index that corresponds to a specific time offset from the beginning of the radar pulse, so that each such pair represents the energy reflected from a specific range. This energy and the average echo power are computed. The phase of each range bin is compared to the previous echo by complex conjugate multiplication to obtain the mean Doppler shift (and hence the mean and variance of the velocity of precipitation) of the echo at that range.

  15. Signal based motion compensation for synthetic aperture radar

    SciTech Connect

    John Kirk

    1999-06-07

    The purpose of the Signal Based Motion Compensation (SBMC) for Synthetic Aperture Radar (SAR) effort is to develop a method to measure and compensate for both down range and cross range motion of the radar in order to provide high quality focused SAR imagery in the absence of precision measurements of the platform motion. Currently SAR systems require very precise navigation sensors for motion compensation. These sensors are very expensive and are often supplied in pairs for reliability. In the case of GPS they can be jammed, further degrading performance. This makes for a potentially very expensive and possibly vulnerable SAR system. SBMC can eliminate or reduce the need for these expensive navigation sensors thus reducing the cost of budget minded SAR systems. The results on this program demonstrated the capability of the SBMC approach.

  16. Multiplexed Signal Distribution Using Fiber Network For Radar Applications

    NASA Astrophysics Data System (ADS)

    Meena, D.; Prakasam, L. G. M.; Pandey, D. C.; Shivaleela, E. S.; Srinivas, T.

    2011-10-01

    Most of the modern Active phased Array Radars consist of multiple receive modules in an Antenna array. This demands the distribution of various Local Oscillator Signals (LOs) for the down conversion of received signals to the Intermediate Frequency (IF) band signals. This is normally achieved through Radio Frequency (RF) cables with Complex distribution networks which adds additional weight to the Arrays. Similarly these kinds of receivers require Control/Clock signals which are digital in nature, for the synchronization of all receive modules of the radar system which are also distributed through electrical cables. In addition some of the control messages (Digital in nature) are distributed through Optical interfaces. During Transmit operation, the RF transmit Signal is also distributed through the same receiver modules which will in turn distribute to all the elements of the Array which require RF cables which are bulky in nature. So it is very essential to have a multiplexed Signal distribution scheme through the existing Optical Interface for distribution of these signals which are RF and Digital in nature. This paper discusses about various distribution schemes for the realization in detail. We propose a distribution network architecture where existing fibers can be further extended for the distribution of other types of signals also. In addition, it also briefs about a comparative analysis done on these schemes by considering the complexity and space constraint factors. Thus we bring out an optimum scheme which will lead to the reduction in both hardware complexity and weight of the array systems. In addition, being an Optical network it is free from Electromagnetic interference which is a crucial requirement in an array environment.

  17. Detection and Classification of Low Probability of Intercept Radar Signals Using Parallel Filter Arrays and Higher Order Statistics

    NASA Astrophysics Data System (ADS)

    Taboada, Fernando L.

    2002-09-01

    Low probability of intercept (LPI) is that property of an emitter that because of its low power, wide bandwidth, frequency variability, or other design attributes, makes it difficult to be detected or identified by means of passive intercept devices such as radar warning, electronic support and electronic intelligence receivers. In order to detect LPI radar waveforms new signal processing techniques are required. This thesis first develops a MATLAB toolbox to generate important types of LPI waveforms based on frequency and phase modulation. The power spectral density and the periodic ambiguity function are examined for each waveforms. These signals are then used to test a novel signal processing technique that detects the waveforms parameters and classifies the intercepted signal in various degrees of noise. The technique is based on the use of parallel filter (sub-band) arrays and higher order statistics (third-order cumulant estimator). Each sub-band signal is treated individually and is followed by the third-order estimator in order to suppress any symmetrical noise that might be present. The significance of this technique is that it separates the LPI waveforms in small frequency bands, providing a detailed time-frequency description of the unknown signal. Finally, the resulting output matrix is processed by a feature extraction routine to detect the waveforms parameters. Identification of the signal is based on the modulation parameters detected.

  18. Advanced Signal Analysis for Forensic Applications of Ground Penetrating Radar

    SciTech Connect

    Steven Koppenjan; Matthew Streeton; Hua Lee; Michael Lee; Sashi Ono

    2004-06-01

    Ground penetrating radar (GPR) systems have traditionally been used to image subsurface objects. The main focus of this paper is to evaluate an advanced signal analysis technique. Instead of compiling spatial data for the analysis, this technique conducts object recognition procedures based on spectral statistics. The identification feature of an object type is formed from the training vectors by a singular-value decomposition procedure. To illustrate its capability, this procedure is applied to experimental data and compared to the performance of the neural-network approach.

  19. Topography adjacent to Signal Corps Radar (S.C.R.) 296 Station 5, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Topography adjacent to Signal Corps Radar (S.C.R.) 296 Station 5, showing conditions before construction, May 28, 1943, this drawing shows the Bonita Ridge access road retaining wall and general conditions at Bonita Ridge before the construction of Signal Corps Radar (S.C.R.) 296 Station 5 - Fort Barry, Signal Corps Radar 296, Station 5, Transmitter Building Foundation, Point Bonita, Marin Headlands, Sausalito, Marin County, CA

  20. Synthetic aperture radar signal processing on the MPP

    NASA Technical Reports Server (NTRS)

    Ramapriyan, H. K.; Seiler, E. J.

    1987-01-01

    Satellite-borne Synthetic Aperture Radars (SAR) sense areas of several thousand square kilometers in seconds and transmit phase history signal data several tens of megabits per second. The Shuttle Imaging Radar-B (SIR-B) has a variable swath of 20 to 50 km and acquired data over 100 kms along track in about 13 seconds. With the simplification of separability of the reference function, the processing still requires considerable resources; high speed I/O, large memory and fast computation. Processing systems with regular hardware take hours to process one Seasat image and about one hour for a SIR-B image. Bringing this processing time closer to acquisition times requires an end-to-end system solution. For the purpose of demonstration, software was implemented on the present Massively Parallel Processor (MPP) configuration for processing Seasat and SIR-B data. The software takes advantage of the high processing speed offered by the MPP, the large Staging Buffer, and the high speed I/O between the MPP array unit and the Staging Buffer. It was found that with unoptimized Parallel Pascal code, the processing time on the MPP for a 4096 x 4096 sample subset of signal data ranges between 18 and 30.2 seconds depending on options.

  1. Graphical derivations of radar, sonar, and communication signals

    NASA Technical Reports Server (NTRS)

    Altes, R. A.; Titlebaum, E. L.

    1975-01-01

    The designer of a communication system often has knowledge concerning the changes in distance between transmitter and receiver as a function of time. This information can be exploited to reduce multipath interference via proper signal design. A radar or sonar may also have good a priori information about possible target trajectories. Such knowledge can again be used to reduce the receiver's response to clutter (MTI), to enhance signal-to-noise ratio, or to simplify receiver design. There are also situations in which prior knowledge about trajectories is lacking. The system should then utilize a single-filter pair which is insensitive to the effects induced by relative motion between transmitter, receiver, and reflectors. For waveforms with large time-bandwidth products, such as long pulse trains, it is possible to graphically derive signal formats for both situations (trajectory known and unknown). Although the exact form of the signal is sometimes not specified by the graphical procedure, the problem in such cases is reduced to one which has already been solved, i.e., the generation of an impulse equivalent code.

  2. Determining human target facing orientation using bistatic radar micro-Doppler signals

    NASA Astrophysics Data System (ADS)

    Fairchild, Dustin P.; Narayanan, Ram M.

    2014-06-01

    Micro-Doppler radar signals can be used to separate moving human targets from stationary clutter and also to identify and classify human movements. Traditional micro-Doppler radar systems which use a single sensor, monostatic system, suffer from the drawback that only the radial component of the micro-Doppler signal will be observed by the radar operator. This reduces the sensitivity of human activity recognition if the movements are not directly towards or away with respect to the line-of-sight to the radar antenna. In this paper, we propose the use of two bistatic micro-Doppler sensors to overcome this limitation. By using multiple sensors, the orientation of oscillating targets with respect to the radar line-of-sight can be inferred, thereby providing additional information to the radar operator. This approach can be used to infer the facing direction of the human with respect to the radar beam.

  3. Discrimination against interfering signals at the Poker Flat MST radar

    NASA Technical Reports Server (NTRS)

    Carter, D. A.

    1983-01-01

    Several on line and off line data processing techniques are used to remove interfering signals due to ground clutter, aircraft, instrumental effects, and external transmissions from the desired atmospheric echoes of Mesosphere Stratosphere, Troposphere (MST) radar. The on line, real time techniques are necessarily simple in order to minimize processing delays. This algorithm examines the individual Doppler spectra which are computed every two to four seconds (for oblique antenna beams). The total spectral power in each individual spectrum is computed by summing all the spectral points. If this integrated power increases from one spectrum to the next by a factor greater than a preselected threshold, then that spectrum is not added to the spectral sum. Succeeding spectra are compared to the last acceptable spectrum. Only a certain maximum number of spectra are allowed to be rejected in succession.

  4. Detail view of northwest side of Signal Corps Radar (S.C.R.) ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Detail view of northwest side of Signal Corps Radar (S.C.R.) 296 Station 5 Transmitter Building foundation, showing portion of concrete gutter drainage system and asphalt floor tiles, camera facing north - Fort Barry, Signal Corps Radar 296, Station 5, Transmitter Building Foundation, Point Bonita, Marin Headlands, Sausalito, Marin County, CA

  5. View of Signal Corps Radar (S.C.R.) 296 Station 5 Transmitter ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View of Signal Corps Radar (S.C.R.) 296 Station 5 Transmitter Building foundation, showing Fire Control Stations (Buildings 621 and 622) and concrete stairway (top left) camera facing southwest - Fort Barry, Signal Corps Radar 296, Station 5, Transmitter Building Foundation, Point Bonita, Marin Headlands, Sausalito, Marin County, CA

  6. Radar/sonar signal design for bounded Doppler shifts

    NASA Astrophysics Data System (ADS)

    Altes, R. A.

    1982-07-01

    In many detection and estimation problems, Doppler frequency shifts are bounded. For clutter or multipath that is uniformly distributed in range and symmetrically distributed in Doppler shift relative to the signal, detectability of a point target or a communication signal is improved by minimizing the weighted volume of the magnitude-squared autoambiguity function. When clutter Doppler shifts are bounded, this volume is in a strip containing the range axis on the range-Doppler plane. For scattering function estimation, e.g., for weather radar, Doppler flow meters, and distributed target classifiers, it is again relevant to minimize ambiguity volume in a strip. Strip volume is minimized by using a pulse train, but such a signal has unacceptably large range sidelobe for most applications. Other waveforms that have relatively small sidelobe level within a strip on the range-Doppler plane, as well as small ambiguity volume in the strip, are obtained. The waveforms are composed of pulse pairs that are phase modulated with Golay complementary codes.

  7. Hybrid optical/electronic signal processor for laser radar signals in fire control systems

    NASA Astrophysics Data System (ADS)

    Findley, George B., Jr.; Anderson, Christopher S.; Townley, S. K.; Pascale, Michael J.; Watson, Lee V.; Jenkinson, Howard A.

    1992-07-01

    This paper reports on the development of a hybrid optical/electronic signal processor for laser radar signals in fire control applications. The breadboard system being developed consists of three subsystems: (1) a signal generator producing target-representative signals, (2) the signal processor consisting of a radiometric channel and a Doppler channel, and (3) a data acquisition, analysis, and display subsystem. The radiometric channel provides target ladar cross section (LCS) resolved in crossrange, while the Doppler channel provides target radial velocity, also resolved in crossrange. Data from the two channels is fused and processed within the data analysis subsystem. Results are to be displayed in near real-time. The breadboard system will be used to demonstrate the capabilities of hybrid signal processor technology and to investigate processing laser radar returns for noncooperative target recognition, target orientation determination, and target trajectory estimation functions. It is anticipated that these functions will enhance the effectiveness of advanced fire control systems in future helicopters and ground vehicles.

  8. Guiding radar signals by arrays of laser-induced filaments: finite-difference analysis.

    PubMed

    Musin, Roman R; Shneider, Mikhail N; Zheltikov, Aleksei M; Miles, Richard B

    2007-08-10

    Circular arrays of plasma filaments induced by femtosecond laser pulses in atmospheric air are shown to support guided modes of electromagnetic radiation in the centimeter and millimeter wavelength range. With the refractive index of laser-induced filaments being lower than the refractive index of nonionized air, arrays of such filaments can serve as a structured waveguide cladding, providing an index guiding of radar signals in a nonionized gas region. In spite of attenuation of radar radiation induced by plasma absorption, filament-array waveguides are shown to enhance radar signal transmission relative to freely propagating radar beams. PMID:17694103

  9. Measurement of human heartbeat and respiration signals using phase detection radar.

    PubMed

    Kim, Hyoung Jong; Kim, Ki Ho; Hong, Yun Seok; Choi, Jin Joo

    2007-10-01

    This article introduces a low-cost phase detection radar aimed at measuring the human heartbeat and respiration signals without any physical connections to the human body. A continuous-wave radar targeting the chest will detect the phase difference, resulted by the time-varying target position of the heartbeat, between the transmitted signal and the reflected signal. We have tested the developed radar to measure the heartbeat and respiration signals at a distance of about 40 cm from the chest. PMID:17979445

  10. Rapid and stable measurement of respiratory rate from Doppler radar signals using time domain autocorrelation model.

    PubMed

    Guanghao Sun; Matsui, Takemi

    2015-08-01

    Noncontact measurement of respiratory rate using Doppler radar will play a vital role in future clinical practice. Doppler radar remotely monitors the tiny chest wall movements induced by respiration activity. The most competitive advantage of this technique is to allow users fully unconstrained with no biological electrode attachments. However, the Doppler radar, unlike other contact-type sensors, is easily affected by the random body movements. In this paper, we proposed a time domain autocorrelation model to process the radar signals for rapid and stable estimation of the respiratory rate. We tested the autocorrelation model on 8 subjects in laboratory, and compared the respiratory rates detected by noncontact radar with reference contact-type respiratory effort belt. Autocorrelation model showed the effects of reducing the random body movement noise added to Doppler radar's respiration signals. Moreover, the respiratory rate can be rapidly calculated from the first main peak in the autocorrelation waveform within 10 s. PMID:26737655

  11. Computer-aided methods of the LPI radar signal detection and classification

    NASA Astrophysics Data System (ADS)

    Grishin, Yury; Janczak, Dariusz

    2008-01-01

    The paper describes a possible structure of the LPI radar signal classification algorithm based on using a computer system with elements of the artificial intelligence (AI). Such an algorithm uses a combination of different signal processing tools such as the Wigner-Ville Distribution, the Wavelet Transform and the Cyclostationary Signal Analysis. The efficiency of these transformations with respect to different kinds of digital LPI radar signal modulation is considered. For a final classification and parameters extraction on the base of time-frequency or bifrequency representation the artificial intelligence methods can be used. One of the possible approaches to solving the radar signal classification problem is to use a proposed in the paper algorithm which consists of several steps: time-frequency or bifrequency transformations, a noise reduction procedure with using a two-dimensional filter, the RBF artificial neural network (NN) probability density function estimator which extracts the feature vector used for the final radar signal classification without an operator.

  12. Non-contact physiological signal detection using continuous wave Doppler radar.

    PubMed

    Qiao, Dengyu; He, Tan; Hu, Boping; Li, Ye

    2014-01-01

    The aim of this work is to show non-contact physiological signal monitoring system based on continuous-wave (CW) Doppler radar, which is becoming highly attractive in the field of health care monitoring of elderly people. Two radar signal processing methods were introduced in this paper: one to extract respiration and heart rates of a single person and the other to separate mixed respiration signals. To verify the validity of the methods, physiological signal is obtained from stationary human subjects using a CW Doppler radar unit. The sensor operating at 24 GHz is located 0.5 meter away from the subject. The simulation results show that the respiration and heart rates are clearly extracted, and the mixed respiration signals are successfully separated. Finally, reference respiration and heart rate signals are measured by an ECG monitor and compared with the results tracked by the CW Doppler radar monitoring system. PMID:24211989

  13. Optical processing of pulsed Doppler and FM stepped radar signals.

    PubMed

    Casasent, D; Casasayas, F

    1975-06-01

    A real-time radar processor with an electron beam addressed KD(2)PO(4) light valve as the input electrical-to-optical transducer is described. The input format, output plane pattern, and the required optical processing of pulsed Doppler and FM stepped radar data on this system are discussed. Experimental output plane patterns with actual radar data are presented. Although these data are processed off-line, the processing is performed at real-time data rates. PMID:20154832

  14. Resolution function of nonsinusoidal radar signals. I - Range-velocity resolution with rectangular pulses

    NASA Astrophysics Data System (ADS)

    Mohamed, Nasser J.

    1990-05-01

    A generalization of a previously published ambiguity function that applies to radar known as large-relative-bandwidth radar, carrier-free radar, impulse radar, or nonsinusoidal radar is discussed. This radar has recently attracted attention because of its ability to penetrate absorbing materials used in the stealth technology. Another good application is the detection of moving targets with a small radar cross section by a look-down radar, which calls for a thumbtack ambiguity function. Since a small radar cross section in this application is typically due to the small size of the target that is coated with absorbing material, the antistealth feature of the nonsinusoidal radar is implicitly being used. The principle is presented of a resolution function (tentatively called the range-velocity or the range-Doppler resolution function) based on processing a nonsinusoidal signal consisting of N characters with a time separation TD and each character consisting of a sequence of L binary pulses of duration T. It is shown that range-velocity resolution functions approaching the ideal thumbtack function are easy to obtain. The blind speeds of the pulse-Doppler radar with sinusoidal carrier do not inherently occur, and all velocities are observed as true velocities rather than as velocities modulo the first blind speed (velocity ambiguity).

  15. Asymptotically optimal detection/localization of LPI signals of emitters using distributed sensors

    NASA Astrophysics Data System (ADS)

    Vankayalapati, Naresh; Kay, Steven

    2010-04-01

    The interception of low probability of intercept signals has become increasingly difficult due to the availability of waveform agile transmitters and increased spectral bandwidth. Current detection techniques based on energy detection ignore the important cross-sensor correlation information. Additionally, existing TDOA/FDOA based localization techniques pair up the sensors and perform only pair-wise processing which is highly inefficient. To circumvent this problem we show how to use multiple spatially distributed sensors to detect and localize an emitter whose waveform is completely unknown. We present the generalized likelihood ratio detector which optimally combines the multiple sensor information for improved detection. Additionally, as part of the detector the MLE for target location is available, leading to improved localization.

  16. Model of human breathing reflected signal received by PN-UWB radar.

    PubMed

    Mabrouk, Mohamed; Rajan, Sreeraman; Bolic, Miodrag; Batkin, Izmail; Dajani, Hilmi R; Groza, Voicu Z

    2014-01-01

    Human detection is an integral component of civilian and military rescue operations, military surveillance and combat operations. Human detection can be achieved through monitoring of vital signs. In this article, a mathematical model of human breathing reflected signal received in PN-UWB radar is proposed. Unlike earlier published works, both chest and abdomen movements are considered for modeling the radar return signal along with the contributions of fundamental breathing frequency and its harmonics. Analyses of recorded reflected signals from three subjects in different postures and at different ranges from the radar indicate that ratios of the amplitudes of the harmonics contain information about posture and posture change. PMID:25571006

  17. Optimal Signal Processing of Frequency-Stepped CW Radar Data

    NASA Technical Reports Server (NTRS)

    Ybarra, Gary A.; Wu, Shawkang M.; Bilbro, Griff L.; Ardalan, Sasan H.; Hearn, Chase P.; Neece, Robert T.

    1995-01-01

    An optimal signal processing algorithm is derived for estimating the time delay and amplitude of each scatterer reflection using a frequency-stepped CW system. The channel is assumed to be composed of abrupt changes in the reflection coefficient profile. The optimization technique is intended to maximize the target range resolution achievable from any set of frequency-stepped CW radar measurements made in such an environment. The algorithm is composed of an iterative two-step procedure. First, the amplitudes of the echoes are optimized by solving an overdetermined least squares set of equations. Then, a nonlinear objective function is scanned in an organized fashion to find its global minimum. The result is a set of echo strengths and time delay estimates. Although this paper addresses the specific problem of resolving the time delay between the two echoes, the derivation is general in the number of echoes. Performance of the optimization approach is illustrated using measured data obtained from an HP-851O network analyzer. It is demonstrated that the optimization approach offers a significant resolution enhancement over the standard processing approach that employs an IFFT. Degradation in the performance of the algorithm due to suboptimal model order selection and the effects of additive white Gaussion noise are addressed.

  18. Optimal Signal Processing of Frequency-Stepped CW Radar Data

    NASA Technical Reports Server (NTRS)

    Ybarra, Gary A.; Wu, Shawkang M.; Bilbro, Griff L.; Ardalan, Sasan H.; Hearn, Chase P.; Neece, Robert T.

    1995-01-01

    An optimal signal processing algorithm is derived for estimating the time delay and amplitude of each scatterer reflection using a frequency-stepped CW system. The channel is assumed to be composed of abrupt changes in the reflection coefficient profile. The optimization technique is intended to maximize the target range resolution achievable from any set of frequency-stepped CW radar measurements made in such an environment. The algorithm is composed of an iterative two-step procedure. First, the amplitudes of the echoes are optimized by solving an overdetermined least squares set of equations. Then, a nonlinear objective function is scanned in an organized fashion to find its global minimum. The result is a set of echo strengths and time delay estimates. Although this paper addresses the specific problem of resolving the time delay between the first two echoes, the derivation is general in the number of echoes. Performance of the optimization approach is illustrated using measured data obtained from an HP-X510 network analyzer. It is demonstrated that the optimization approach offers a significant resolution enhancement over the standard processing approach that employs an IFFT. Degradation in the performance of the algorithm due to suboptimal model order selection and the effects of additive white Gaussion noise are addressed.

  19. On the Doppler Frequency Shifts of Radar Signals Backscattered from the Sea Surface

    NASA Astrophysics Data System (ADS)

    Ermakov, S. A.; Kapustin, I. A.; Kudryavtsev, V. N.; Sergievskaya, I. A.; Shomina, O. V.; Chapron, B.; Yurovskiy, Yu. Yu.

    2014-09-01

    We study the frequency spectra of the radar signals scattered from the wind waves on the sea surface in the full-scale experiment. Two types of the radar Doppler shifts of the spectrum maximum, namely, the averaged shift of the instantaneous spectrum of the scattered signal and the shift of the maximum of the signal time-averaged spectrum as functions of the incidence angle and the wind velocity and direction are analyzed for different sounding-wave polarizations. Significant difference between the average shift of the instantaneous spectrum and the shift of the average-spectrum maximum is demonstrated. This difference is attributed to the radar-signal modulation effect in the field of long surface waves. The obtained results are very important for correct retrieval of the velocities of the surface currents using the data of the satellite-borne measurements of the radar Doppler shifts.

  20. Signal processing for airborne doppler radar detection of hazardous wind shear as applied to NASA 1991 radar flight experiment data

    NASA Technical Reports Server (NTRS)

    Baxa, Ernest G., Jr.

    1992-01-01

    Radar data collected during the 1991 NASA flight tests have been selectively analyzed to support research directed at developing both improved as well as new algorithms for detecting hazardous low-altitude windshear. Analysis of aircraft attitude data from several flights indicated that platform stability bandwidths were small compared to the data rate bandwidths which should support an assumption that radar returns can be treated as short time stationary. Various approaches at detection of weather returns in the presence of ground clutter are being investigated. Non-coventional clutter rejection through spectrum mode tracking and classification algorithms is a subject of continuing research. Based upon autoregressive modeling of the radar return time sequence, this approach may offer an alternative to overcome errors in conventional pulse-pair estimates. Adaptive filtering is being evaluated as a means of rejecting clutter with emphasis on low signal-to-clutter ratio situations, particularly in the presence of discrete clutter interference. An analysis of out-of-range clutter returns is included to illustrate effects of ground clutter interference due to range aliasing for aircraft on final approach. Data are presented to indicate how aircraft groundspeed might be corrected from the radar data as well as point to an observed problem of groundspeed estimate bias variation with radar antenna scan angle. A description of how recorded clutter return data are mixed with simulated weather returns is included. This enables the researcher to run controlled experiments to test signal processing algorithms. In the summary research efforts involving improved modelling of radar ground clutter returns and a Bayesian approach at hazard factor estimation are mentioned.

  1. Waveform Design for Radar STAP in Signal Dependent Interference

    NASA Astrophysics Data System (ADS)

    Setlur, Pawan; Rangaswamy, Muralidhar

    2016-01-01

    Waveform design is a pivotal component of the fully adaptive radar construct. In this paper we consider waveform design for radar space time adaptive processing (STAP), accounting for the waveform dependence of the clutter correlation matrix. Due to this dependence, in general, the joint problem of receiver filter optimization and radar waveform design becomes an intractable, non-convex optimization problem, Nevertheless, it is however shown to be individually convex either in the filter or in the waveform variables. We derive constrained versions of: a) the alternating minimization algorithm, b) proximal alternating minimization, and c) the constant modulus alternating minimization, which, at each step, iteratively optimizes either the STAP filter or the waveform independently. A fast and slow time model permits waveform design in radar STAP but the primary bottleneck is the computational complexity of the algorithms.

  2. Earth curvature and atmospheric refraction effects on radar signal propagation.

    SciTech Connect

    Doerry, Armin Walter

    2013-01-01

    The earth isn't flat, and radar beams don't travel straight. This becomes more noticeable as range increases, particularly at shallow depression/grazing angles. This report explores models for characterizing this behavior.

  3. Theoretical and experimental study of EKB radar ground-scatter signals at nearby frequencies

    NASA Astrophysics Data System (ADS)

    Kutelev, Konstantin; Berngardt, Oleg; Grkovich, Konstantin; Mikhailov, Nikita

    SuperDARN radars have wide possibilities for diagnostics of different motions in the ionosphere. The radars allow studying small-, medium- and large-scale irregularities. The radars have good time resolution (about 1 minute for full scan) and wide territory coverage (azimuthal coverage - 50 degrees, maximal range 3000 km). EKB radar is the first russian radar of SuperDARN kind, installed by ISTP SB RAS near Ekaterinburg. The radar started its operation in December 2012. Mostly SuperDARN radars are used to investigate irregular structure of the ionosphere. In the work we present original approach that allows diagnose regular ionosphere. The approach is based on sounding at three close frequencies and on analysis of ground-scattered signal properties. As theoretical analysis shows the use of three-frequency sounding technique allows one to estimate following characteristics of the model quasiparabolic F-layer in a middle point of path: its critical frequency, the height of its maximum and layer thickness. For this purpose we use known dependence of a minimal group path of signal on radar frequency. The key problem for the described technique is optimizing the frequency step between sounding signals. From the one side, the frequency step should be large enough. This is necessary for the difference in group delays be larger than radar range resolution (15-60km). From the other side, significant variation of frequency leads to a significant movement of path midpoint. This leads to signifficant errors in estimating ionospheric paramters due to theirs horizontal gradients. To solve this problem we perform a simulation of ground-scattered signal at EKB radar in different geophysical conditions. We use IRI-2007 as a model of the ionosphere. We simulate experiment at different levels of solar activity, in different seasons and daytime. By using geometrooptical ray tracing method we calculate a signal minimal group paths for a set of frequencies. According to these data we determine the minimal frequency step that provides difference between group pathes bigger than radar range resolution. Our study shows that for EKB radar the optimal frequency step is about 300kHz. The simulation results was used for scheduling EKB radar for several monthes at one of the channels. The results of processing this data are also presented in the work. Work was done under financial support of II.12.2.3. FSI program.

  4. Radar signal pre-processing to suppress surface bounce and multipath

    SciTech Connect

    Paglieroni, David W; Mast, Jeffrey E; Beer, N. Reginald

    2013-12-31

    A method and system for detecting the presence of subsurface objects within a medium is provided. In some embodiments, the imaging and detection system operates in a multistatic mode to collect radar return signals generated by an array of transceiver antenna pairs that is positioned across the surface and that travels down the surface. The imaging and detection system pre-processes that return signal to suppress certain undesirable effects. The imaging and detection system then generates synthetic aperture radar images from real aperture radar images generated from the pre-processed return signal. The imaging and detection system then post-processes the synthetic aperture radar images to improve detection of subsurface objects. The imaging and detection system identifies peaks in the energy levels of the post-processed image frame, which indicates the presence of a subsurface object.

  5. Definition and fabrication of an airborne scatterometer radar signal processor

    NASA Technical Reports Server (NTRS)

    1976-01-01

    A hardware/software system which incorporates a microprocessor design and software for the calculation of normalized radar cross section in real time was developed. Interface is provided to decommutate the NASA ADAS data stream for aircraft parameters used in processing and to provide output in the form of strip chart and pcm compatible data recording.

  6. Generating nonlinear FM chirp radar signals by multiple integrations

    DOEpatents

    Doerry, Armin W.

    2011-02-01

    A phase component of a nonlinear frequency modulated (NLFM) chirp radar pulse can be produced by performing digital integration operations over a time interval defined by the pulse width. Each digital integration operation includes applying to a respectively corresponding input parameter value a respectively corresponding number of instances of digital integration.

  7. Design of an FMCW radar baseband signal processing system for automotive application.

    PubMed

    Lin, Jau-Jr; Li, Yuan-Ping; Hsu, Wei-Chiang; Lee, Ta-Sung

    2016-01-01

    For a typical FMCW automotive radar system, a new design of baseband signal processing architecture and algorithms is proposed to overcome the ghost targets and overlapping problems in the multi-target detection scenario. To satisfy the short measurement time constraint without increasing the RF front-end loading, a three-segment waveform with different slopes is utilized. By introducing a new pairing mechanism and a spatial filter design algorithm, the proposed detection architecture not only provides high accuracy and reliability, but also requires low pairing time and computational loading. This proposed baseband signal processing architecture and algorithms balance the performance and complexity, and are suitable to be implemented in a real automotive radar system. Field measurement results demonstrate that the proposed automotive radar signal processing system can perform well in a realistic application scenario. PMID:26811804

  8. Quantitative estimation of Tropical Rainfall Mapping Mission precipitation radar signals from ground-based polarimetric radar observations

    NASA Astrophysics Data System (ADS)

    Bolen, Steven M.; Chandrasekar, V.

    2003-06-01

    The Tropical Rainfall Mapping Mission (TRMM) is the first mission dedicated to measuring rainfall from space using radar. The precipitation radar (PR) is one of several instruments aboard the TRMM satellite that is operating in a nearly circular orbit with nominal altitude of 350 km, inclination of 35, and period of 91.5 min. The PR is a single-frequency Ku-band instrument that is designed to yield information about the vertical storm structure so as to gain insight into the intensity and distribution of rainfall. Attenuation effects on PR measurements, however, can be significant and as high as 10-15 dB. This can seriously impair the accuracy of rain rate retrieval algorithms derived from PR signal returns. Quantitative estimation of PR attenuation is made along the PR beam via ground-based polarimetric observations to validate attenuation correction procedures used by the PR. The reflectivity (Zh) at horizontal polarization and specific differential phase (Kdp) are found along the beam from S-band ground radar measurements, and theoretical modeling is used to determine the expected specific attenuation (k) along the space-Earth path at Ku-band frequency from these measurements. A theoretical k-Kdp relationship is determined for rain when Kdp ? 0.5/km, and a power law relationship, k = a Zhb, is determined for light rain and other types of hydrometers encountered along the path. After alignment and resolution volume matching is made between ground and PR measurements, the two-way path-integrated attenuation (PIA) is calculated along the PR propagation path by integrating the specific attenuation along the path. The PR reflectivity derived after removing the PIA is also compared against ground radar observations.

  9. SHUTTLE IMAGING RADAR: PHYSICAL CONTROLS ON SIGNAL PENETRATION AND SUBSURFACE SCATTERING IN THE EASTERN SAHARA.

    USGS Publications Warehouse

    Schaber, Gerald G.; McCauley, John F.; Breed, Carol S.; Olhoeft, Gary R.

    1986-01-01

    It is found that the Shuttle Imaging Radar A (SIR-A) signal penetration and subsurface backscatter within the upper meter or so of the sediment blanket in the Eastern Sahara of southern Egypt and northern Sudan are enhanced both by radar sensor parameters and by the physical and chemical characteristics of eolian and alluvial materials. The near-surface stratigraphy, the electrical properties of materials, and the types of radar interfaces found to be responsible for different classes of SIR-A tonal response are summarized. The dominant factors related to efficient microwave signal penetration into the sediment blanket include 1) favorable distribution of particle sizes, 2) extremely low moisture content and 3) reduced geometric scattering at the SIR-A frequency (1. 3 GHz). The depth of signal penetration that results in a recorded backscatter, called radar imaging depth, was documented in the field to be a maximum of 1. 5 m, or 0. 25 times the calculated skin depth, for the sediment blanket. The radar imaging depth is estimated to be between 2 and 3 m for active sand dune materials.

  10. Wideband signal design for over-the-horizon radar in cochannel interference

    NASA Astrophysics Data System (ADS)

    Luo, Zhongtao; Lu, Kun; Chen, Xuyuan; He, Zishu

    2014-12-01

    Ship detection in heavy sea clutter is a big challenge for over-the-horizon (OTH) radar. Wideband signal is helpful for improving range resolution and the signal-to-clutter ratio. In this paper, to support OTH radar employing wideband in cochannel interference, we propose environmental sensing-based waveform (ESBW) strategy, by considering transmit waveform design as an active approach and cognitive loop for the time-varying environment. In ESBW strategy, OTH radar monitors the environment in real time, estimates interference characteristics, designs transmit waveform adaptively, and employs traditional signal processing structure to detect targets in the presence of interference. ESBW optimization problem employs the criteria of maximizing the output signal-to-interference-plus-noise ratio (SINR) of matched filter and similarity constraint for reasonable range resolution and sidelobe levels. The analytic solution to this constrained problem is developed, so that ESBW design algorithm's efficiency is guaranteed, with adjustable SINR and autocorrelation function. A simulated scenario with strong interference and colored noise has been introduced. Simulation results demonstrate that OTH radar with ESBW strategy detects the target successfully in the background of cochannel interference.

  11. Real-time weighting of Gaussian beam on synthetic aperture radar (SAR) signals

    NASA Astrophysics Data System (ADS)

    Li, Aiming; Bian, SongLing; Liu, Jiaren; Tao, ChunKan; Nie, Shouping

    1994-08-01

    Based on the Gaussian cross-sections of laser beam, real-time weighting of Gaussian beam on synthetic aperture radar (SAR) range signals has performed. Sidelobe height of range point spread function of SAR processor is decreased efficiently and imaging quality is improved.

  12. Optimization of the interperiod processing of signals with clutter rejection in an incoherent radar system

    NASA Astrophysics Data System (ADS)

    Kiselev, A. Z.

    1981-12-01

    An energy criterion was used to optimize an algorithm for clutter rejection in an incoherent radar system. Explicit formulas are obtained for the weight vector and the efficiency of the algorithm, and attention is given to the conditions under which these formulas can be applied to signal processing in the postdetector channel.

  13. Joint DOD/DOA estimation in MIMO radar exploiting time-frequency signal representations

    NASA Astrophysics Data System (ADS)

    Zhang, Yimin D.; Amin, Moeness G.; Himed, Braham

    2012-12-01

    In this article, we consider the joint estimation of direction-of-departure (DOD) and direction-of-arrival (DOA) information of maneuvering targets in a bistatic multiple-input multiple-output (MIMO) radar system that exploits spatial time-frequency distribution (STFD). STFD has been found useful in solving various array processing problems, such as direction finding and blind source separation, where nonstationary signals with time-varying spectral characteristics are encountered. The STFD approach to array processing has been primarily limited to conventional problems for passive radar platform that deals with signal arrivals, while its use in a MIMO radar configuration has received much less attention. This paper examines the use of STFD in MIMO radar systems with application to direction finding of moving targets with nonstationary signatures. Within this framework, we consider the use of joint transmit and receive apertures for the improved estimation of both target time-varying Doppler signatures and joint DOD/DOA. It is demonstrated that the STFD is an effective tool in MIMO radar processing when moving targets produce Doppler signatures that are highly localized in the time-frequency domain.

  14. Photonic generation and independent steering of multiple RF signals for software defined radars.

    PubMed

    Ghelfi, Paolo; Laghezza, Francesco; Scotti, Filippo; Serafino, Giovanni; Pinna, Sergio; Bogoni, Antonella

    2013-09-23

    As the improvement of radar systems claims for digital approaches, photonics is becoming a solution for software defined high frequency and high stability signal generation. We report on our recent activities on the photonic generation of flexible wideband RF signals, extending the proposed architecture to the independent optical beamforming of multiple signals. The scheme has been tested generating two wideband signals at 10 GHz and 40 GHz, and controlling their independent delays at two antenna elements. Thanks to the multiple functionalities, the proposed scheme allows to improve the effectiveness of the photonic approach, reducing its cost and allowing flexibility, extremely wide bandwidth, and high stability. PMID:24104176

  15. Emitter frequency refinement based on maximum likelihood

    NASA Astrophysics Data System (ADS)

    Xu, Xin; Wang, Huijuan

    2015-07-01

    Frequency estimation via signal sorting is widely recognized as one of the most practical technologies in signal processing. However, the estimated frequencies via signal sorting may be inaccurate and biased due to signal fluctuation under different emitter working modes, problems of transmitter circuit, environmental noises or certain unknown interference sources. Therefore, it has become an important issue to further analyze and refine signal frequencies after signal sorting. To address the above problem, we have brought forward an iterative frequency refinement method based on maximum likelihood. Iteratively, the initial estimated signal frequency values are refined. Experimental results indicate that the refined signal frequencies are more informative than the initial ones. As another advantage of our method, noises and interference sources could be filtered out simultaneously. The efficiency and flexibility enables our method to apply in a wide application area, i.e., communication, electronic reconnaissance and radar intelligence analysis.

  16. Complex, aperiodic random signal modulation on pulse-LFM chirp radar waveform

    NASA Astrophysics Data System (ADS)

    Govoni, Mark A.; Li, Hongbin

    2010-04-01

    In an effort to enhance the security of radar, the plausibility of using a complex, aperiodic random signal to modulate a pulse linear frequency modulation (LFM) or "chirp" radar waveform across both its fast-time and slow-time samples is investigated. A non-conventional threat is considered when illustrating the effectiveness of the proposed waveform as an electronic counter-countermeasure (ECCM). Results are derived using stretch processing and are assessed using the receiver cross-correlation function with a consideration for the unmodulated case as a basis for comparison. A tailored radar ambiguity function is also included in the analysis, and is used to demonstrate how the proposed waveform possesses an ideal characteristic suitable for combating today's electronic warfare (EW) threats while preserving its inherent functionality to detect targets.

  17. Synthetic aperture radar signal data compression using block adaptive quantization

    NASA Technical Reports Server (NTRS)

    Kuduvalli, Gopinath; Dutkiewicz, Melanie; Cumming, Ian

    1994-01-01

    This paper describes the design and testing of an on-board SAR signal data compression algorithm for ESA's ENVISAT satellite. The Block Adaptive Quantization (BAQ) algorithm was selected, and optimized for the various operational modes of the ASAR instrument. A flexible BAQ scheme was developed which allows a selection of compression ratio/image quality trade-offs. Test results show the high quality of the SAR images processed from the reconstructed signal data, and the feasibility of on-board implementation using a single ASIC.

  18. Model-Based Information Extraction From Synthetic Aperture Radar Signals

    NASA Astrophysics Data System (ADS)

    Matzner, Shari A.

    2011-07-01

    Synthetic aperture radar (SAR) is a remote sensing technology for imaging areas of the earth's surface. SAR has been successfully used for monitoring characteristics of the natural environment such as land cover type and tree density. With the advent of higher resolution sensors, it is now theoretically possible to extract information about individual structures such as buildings from SAR imagery. This information could be used for disaster response and security-related intelligence. SAR has an advantage over other remote sensing technologies for these applications because SAR data can be collected during the night and in rainy or cloudy conditions. This research presents a model-based method for extracting information about a building -- its height and roof slope -- from a single SAR image. Other methods require multiple images or ancillary data from specialized sensors, making them less practical. The model-based method uses simulation to match a hypothesized building to an observed SAR image. The degree to which a simulation matches the observed data is measured by mutual information. The success of this method depends on the accuracy of the simulation and on the reliability of the mutual information similarity measure. Electromagnetic theory was applied to relate a building's physical characteristics to the features present in a SAR image. This understanding was used to quantify the precision of building information contained in SAR data, and to identify the inputs needed for accurate simulation. A new SAR simulation technique was developed to meet the accuracy and efficiency requirements of model-based information extraction. Mutual information, a concept from information theory, has become a standard for measuring the similarity between medical images. Its performance in the context of matching a simulation image to a SAR image was evaluated in this research, and it was found to perform well under certain conditions. The factors that affect its performance, and the model-based method overall, were found to include the size of the building and its orientation. Further refinements that expand the range of operational conditions for the method would lead to a practical tool for collecting information about buildings using SAR technology. This research was performed using SAR data from MIT-Lincoln Laboratory.

  19. Shuttle Imaging Radar - Physical controls on signal penetration and subsurface scattering in the Eastern Sahara

    NASA Technical Reports Server (NTRS)

    Schaber, G. G.; Mccauley, J. F.; Breed, C. S.; Olhoeft, G. R.

    1986-01-01

    Interpretation of Shuttle Imaging Radar-A (SIR-A) images by McCauley et al. (1982) dramatically changed previous concepts of the role that fluvial processes have played over the past 10,000 to 30 million years in shaping this now extremely flat, featureless, and hyperarid landscape. In the present paper, the near-surface stratigraphy, the electrical properties of materials, and the types of radar interfaces found to be responsible for different classes of SIR-A tonal response are summarized. The dominant factors related to efficient microwave signal penetration into the sediment blanket include (1) favorable distribution of particle sizes, (2) extremely low moisture content and (3) reduced geometric scattering at the SIR-A frequency (1.3 GHz). The depth of signal penetration that results in a recorded backscatter, here called 'radar imaging depth', was documented in the field to be a maximum of 1.5 m, or 0.25 of the calculated 'skin depth', for the sediment blanket. Radar imaging depth is estimated to be between 2 and 3 m for active sand dune materials. Diverse permittivity interfaces and volume scatterers within the shallow subsurface are responsible for most of the observed backscatter not directly attributable to grazing outcrops. Calcium carbonate nodules and rhizoliths concentrated in sandy alluvium of Pleistocene age south of Safsaf oasis in south Egypt provide effective contrast in premittivity and thus act as volume scatterers that enhance SIR-A portrayal of younger inset stream channels.

  20. Time-Frequency Distribution Analyses of Ku-Band Radar Doppler Echo Signals

    NASA Astrophysics Data System (ADS)

    Bujaković, Dimitrije; Andrić, Milenko; Bondžulić, Boban; Mitrović, Srđan; Simić, Slobodan

    2015-03-01

    Real radar echo signals of a pedestrian, vehicle and group of helicopters are analyzed in order to maximize signal energy around central Doppler frequency in time-frequency plane. An optimization, preserving this concentration, is suggested based on three well-known concentration measures. Various window functions and time-frequency distributions were optimization inputs. Conducted experiments on an analytic and three real signals have shown that energy concentration significantly depends on used time-frequency distribution and window function, for all three used criteria.

  1. Cramer-Rao Bound for Gaussian Random Processes and Applications to Radar Processing of Atmospheric Signals

    NASA Technical Reports Server (NTRS)

    Frehlich, Rod

    1993-01-01

    Calculations of the exact Cramer-Rao Bound (CRB) for unbiased estimates of the mean frequency, signal power, and spectral width of Doppler radar/lidar signals (a Gaussian random process) are presented. Approximate CRB's are derived using the Discrete Fourier Transform (DFT). These approximate results are equal to the exact CRB when the DFT coefficients are mutually uncorrelated. Previous high SNR limits for CRB's are shown to be inaccurate because the discrete summations cannot be approximated with integration. The performance of an approximate maximum likelihood estimator for mean frequency approaches the exact CRB for moderate signal to noise ratio and moderate spectral width.

  2. Linear photonic technique for fixed and time varying RF phase shifts of radar signals.

    PubMed

    Attygalle, Manik; Stepanov, Dmitrii

    2012-07-30

    A simple linear photonic technique is proposed to achieve fixed or time varying radio-frequency (RF) phase shifts which can be used in applications such as radar signal manipulation. The technique is based on fixing or tuning the wavelength of an RF modulated optical signal within the reflection band of a fiber Bragg grating (FBG) filter with a step group delay profile. The scheme is verified in a realistic simulation to achieve a Doppler shift in a pulsed CW signal return. PMID:23038350

  3. Work flow of signal processing data of ground penetrating radar case of rigid pavement measurements

    NASA Astrophysics Data System (ADS)

    Handayani, Gunawan

    2015-04-01

    The signal processing of Ground Penetrating Radar (GPR) requires a certain work flow to obtain good results. Even though the Ground Penetrating Radar data looks similar with seismic reflection data, but the GPR data has particular signatures that the seismic reflection data does not have. This is something to do with coupling between antennae and the ground surface. Because of this, the GPR data should be treated differently from the seismic signal data processing work flow. Even though most of the processing steps still follow the same work flow of seismic reflection data such as: filtering, predictive deconvolution etc. This paper presents the work flow of GPR processing data on rigid pavement measurements. The processing steps start from raw data, de-Wow process, remove DC and continue with the standard process to get rid of noises i.e. filtering process. Some radargram particular features of rigid pavement along with pile foundations are presented.

  4. Radar signal analysis of ballistic missile with micro-motion based on time-frequency distribution

    NASA Astrophysics Data System (ADS)

    Wang, Jianming; Liu, Lihua; Yu, Hua

    2015-12-01

    The micro-motion of ballistic missile targets induces micro-Doppler modulation on the radar return signal, which is a unique feature for the warhead discrimination during flight. In order to extract the micro-Doppler feature of ballistic missile targets, time-frequency analysis is employed to process the micro-Doppler modulated time-varying radar signal. The images of time-frequency distribution (TFD) reveal the micro-Doppler modulation characteristic very well. However, there are many existing time-frequency analysis methods to generate the time-frequency distribution images, including the short-time Fourier transform (STFT), Wigner distribution (WD) and Cohen class distribution, etc. Under the background of ballistic missile defence, the paper aims at working out an effective time-frequency analysis method for ballistic missile warhead discrimination from the decoys.

  5. Simulation and signal processing of through wall UWB radar for human being's periodic motions detection

    NASA Astrophysics Data System (ADS)

    Li, Jing; Liu, Fengshan; Xu, Penglong; Zeng, Zhaofa

    2013-05-01

    The human's Micro-Doppler signatures resulting from breathing, arm, foot and other periodic motion can provide valuable information about the structure of the moving parts and may be used for identification and classification purposes. In this paper, we carry out simulate with FDTD method and through wall experiment with UWB radar for human being's periodic motion detection. In addition, Advancements signal processing methods are presented to classify and to extract the human's periodic motion characteristic information, such as Micro-Doppler shift and motion frequency. Firstly, we apply the Principal Component Analysis (PCA) with singular value decomposition (SVD) to denoise and extract the human motion signal. Then, we present the results base on the Hilbert-Huang transform (HHT) and the S transform to classify and to identify the human's micro-Doppler shift characteristics. The results demonstrate that the combination of UWB radar and various processing methods has potential to detect human's Doppler signatures effectively.

  6. Work flow of signal processing data of ground penetrating radar case of rigid pavement measurements

    SciTech Connect

    Handayani, Gunawan

    2015-04-16

    The signal processing of Ground Penetrating Radar (GPR) requires a certain work flow to obtain good results. Even though the Ground Penetrating Radar data looks similar with seismic reflection data, but the GPR data has particular signatures that the seismic reflection data does not have. This is something to do with coupling between antennae and the ground surface. Because of this, the GPR data should be treated differently from the seismic signal data processing work flow. Even though most of the processing steps still follow the same work flow of seismic reflection data such as: filtering, predictive deconvolution etc. This paper presents the work flow of GPR processing data on rigid pavement measurements. The processing steps start from raw data, de-Wow process, remove DC and continue with the standard process to get rid of noises i.e. filtering process. Some radargram particular features of rigid pavement along with pile foundations are presented.

  7. Comparative of signal processing techniques for micro-Doppler signature extraction with automotive radar systems

    NASA Astrophysics Data System (ADS)

    Rodriguez-Hervas, Berta; Maile, Michael; Flores, Benjamin C.

    2014-05-01

    In recent years, the automotive industry has experienced an evolution toward more powerful driver assistance systems that provide enhanced vehicle safety. These systems typically operate in the optical and microwave regions of the electromagnetic spectrum and have demonstrated high efficiency in collision and risk avoidance. Microwave radar systems are particularly relevant due to their operational robustness under adverse weather or illumination conditions. Our objective is to study different signal processing techniques suitable for extraction of accurate micro-Doppler signatures of slow moving objects in dense urban environments. Selection of the appropriate signal processing technique is crucial for the extraction of accurate micro-Doppler signatures that will lead to better results in a radar classifier system. For this purpose, we perform simulations of typical radar detection responses in common driving situations and conduct the analysis with several signal processing algorithms, including short time Fourier Transform, continuous wavelet or Kernel based analysis methods. We take into account factors such as the relative movement between the host vehicle and the target, and the non-stationary nature of the target's movement. A comparison of results reveals that short time Fourier Transform would be the best approach for detection and tracking purposes, while the continuous wavelet would be the best suited for classification purposes.

  8. Wind-speed inversion from HF radar first-order backscatter signal

    NASA Astrophysics Data System (ADS)

    Shen, Wei; Gurgel, Klaus-Werner; Voulgaris, George; Schlick, Thomas; Stammer, Detlef

    2012-01-01

    Land-based high-frequency (HF) radars have the unique capability of continuously monitoring ocean surface environments at ranges up to 200 km off the coast. They provide reliable data on ocean surface currents and under slightly stricter conditions can also give information on ocean waves. Although extraction of wind direction is possible, estimation of wind speed poses a challenge. Existing methods estimate wind speed indirectly from the radar derived ocean wave spectrum, which is estimated from the second-order sidebands of the radar Doppler spectrum. The latter is extracted at shorter ranges compared with the first-order signal, thus limiting the method to short distances. Given this limitation, we explore the possibility of deriving wind speed from radar first-order backscatter signal. Two new methods are developed and presented that explore the relationship between wind speed and wave generation at the Bragg frequency matching that of the radar. One of the methods utilizes the absolute energy level of the radar first-order peaks while the second method uses the directional spreading of the wind generated waves at the Bragg frequency. For both methods, artificial neural network analysis is performed to derive the interdependence of the relevant parameters with wind speed. The first method is suitable for application only at single locations where in situ data are available and the network has been trained for while the second method can also be used outside of the training location on any point within the radar coverage area. Both methods require two or more radar sites and information on the radio beam direction. The methods are verified with data collected in Fedje, Norway, and the Ligurian Sea, Italy using beam forming HF WEllen RAdar (WERA) systems operated at 27.68 and 12.5 MHz, respectively. The results show that application of either method requires wind speeds above a minimum value (lower limit). This limit is radar frequency dependent and is 2.5 and 4.0 m/s for 27.68 and 12.5 MHz, respectively. In addition, an upper limit is identified which is caused by wave energy saturation at the Bragg wave frequency. Estimation of this limit took place through an evaluation of a year long database of ocean spectra generated by a numerical model (third generation WAM). It was found to be at 9.0 and 11.0 m/s for 27.68 and 12.5 MHz, respectively. Above this saturation limit, conventional second-order methods have to be applied, which at this range of wind speed no longer suffer from low signal-to-noise ratios. For use in operational systems, a hybrid of first- and second-order methods is recommended.

  9. Testbed for development of a DSP-based signal processing subsystem for an Earth-orbiting radar scatterometer

    NASA Technical Reports Server (NTRS)

    Clark, Douglas J.; Lux, James P.; Shirbacheh, Mike

    2002-01-01

    A testbed for evaluation of general-purpose digital signal processors in earth-orbiting radar scatterometers is discussed. Because general purpose DSP represents a departure from previous radar signal processing techniques used on scatterometers, there was a need to demonstrate key elements of the system to verify feasibility for potential future scatterometer instruments. Construction of the testbed also facilitated identification of an appropriate software development environment and the skills mix necessary to perform the work.

  10. Synthetic-aperture imaging laser radar: laboratory demonstration and signal processing

    NASA Astrophysics Data System (ADS)

    Beck, Steven M.; Buck, Joseph R.; Buell, Walter F.; Dickinson, Richard P.; Kozlowski, David A.; Marechal, Nicholas J.; Wright, Timothy J.

    2005-12-01

    The spatial resolution of a conventional imaging laser radar system is constrained by the diffraction limit of the telescope's aperture. We investigate a technique known as synthetic-aperture imaging laser radar (SAIL), which employs aperture synthesis with coherent laser radar to overcome the diffraction limit and achieve fine-resolution, long-range, two-dimensional imaging with modest aperture diameters. We detail our laboratory-scale SAIL testbed, digital signal-processing techniques, and image results. In particular, we report what we believe to be the first optical synthetic-aperture image of a fixed, diffusely scattering target with a moving aperture. A number of fine-resolution, well-focused SAIL images are shown, including both retroreflecting and diffuse scattering targets, with a comparison of resolution between real-aperture imaging and synthetic-aperture imaging. A general digital signal-processing solution to the laser waveform instability problem is described and demonstrated, involving both new algorithms and hardware elements. These algorithms are primarily data driven, without a priori knowledge of waveform and sensor position, representing a crucial step in developing a robust imaging system.

  11. Quantifying the accuracy of snow water equivalent estimates using broadband radar signal phase

    NASA Astrophysics Data System (ADS)

    Deeb, E. J.; Marshall, H. P.; Lamie, N. J.; Arcone, S. A.

    2014-12-01

    Radar wave velocity in dry snow depends solely on density. Consequently, ground-based pulsed systems can be used to accurately measure snow depth and snow water equivalent (SWE) using signal travel-time, along with manual depth-probing for signal velocity calibration. Travel-time measurements require a large bandwidth pulse not possible in airborne/space-borne platforms. In addition, radar backscatter from snow cover is sensitive to grain size and to a lesser extent roughness of layers at current/proposed satellite-based frequencies (~ 8 - 18 GHz), complicating inversion for SWE. Therefore, accurate retrievals of SWE still require local calibration due to this sensitivity to microstructure and layering. Conversely, satellite radar interferometry, which senses the difference in signal phase between acquisitions, has shown a potential relationship with SWE at lower frequencies (~ 1 - 5 GHz) because the phase of the snow-refracted signal is sensitive to depth and dielectric properties of the snowpack, as opposed to its microstructure and stratigraphy. We have constructed a lab-based, experimental test bed to quantify the change in radar phase over a wide range of frequencies for varying depths of dry quartz sand, a material dielectrically similar to dry snow. We use a laboratory grade Vector Network Analyzer (0.01 - 25.6 GHz) and a pair of antennae mounted on a trolley over the test bed to measure amplitude and phase repeatedly/accurately at many frequencies. Using ground-based LiDAR instrumentation, we collect a coordinated high-resolution digital surface model (DSM) of the test bed and subsequent depth surfaces with which to compare the radar record of changes in phase. Our plans to transition this methodology to a field deployment during winter 2014-2015 using precision pan/tilt instrumentation will also be presented, as well as applications to airborne and space-borne platforms toward the estimation of SWE at high spatial resolution (on the order of meters) over large regions (> 100 square kilometers).

  12. FFT methods in signal processing of the coal interface detector radar

    NASA Technical Reports Server (NTRS)

    Kajfez, D.

    1980-01-01

    The FM radar for the coal interface detector, operating in the frequency band 2 to 4 GHz, is intended for the display of thicknesses between 2 cm and 20 cm. Because of such a short range, the thickness information is contained in the very few lowest spectral components of the output signal. To overcome this inconvenience, the Fourier series of the output signal was augmented to approximate a Fourier integral. This modification in the signal processing resulted in a higher spectral density, which in turn enabled an easier identification of the interface position in the laboratory. The orientation and spacing of the receiving and transmitting antennas is found to have an important influence on the system performance.

  13. The application of digital signal processing techniques to a teleoperator radar system

    NASA Technical Reports Server (NTRS)

    Pujol, A.

    1982-01-01

    A digital signal processing system was studied for the determination of the spectral frequency distribution of echo signals from a teleoperator radar system. The system consisted of a sample and hold circuit, an analog to digital converter, a digital filter, and a Fast Fourier Transform. The system is interfaced to a 16 bit microprocessor. The microprocessor is programmed to control the complete digital signal processing. The digital filtering and Fast Fourier Transform functions are implemented by a S2815 digital filter/utility peripheral chip and a S2814A Fast Fourier Transform chip. The S2815 initially simulates a low-pass Butterworth filter with later expansion to complete filter circuit (bandpass and highpass) synthesizing.

  14. Thermally enhanced signal strength and SNR improvement of photoacoustic radar module

    PubMed Central

    Wang, Wei; Mandelis, Andreas

    2014-01-01

    A thermally enhanced method for improving photoacoustic imaging depth and signal-to-noise (SNR) ratio is presented in this paper. Experimental results showed that the maximum imaging depth increased by 20% through raising the temperature of absorbing biotissues (ex-vivo beef muscle) uniformly from 37 to 43C, and the SNR was increased by 8%. The parameters making up the Gruneisen constant were investigated experimentally and theoretically. The studies showed that the Gruneisen constant of biotissues increases with temperature, and the results were found to be consistent with the photoacousitc radar theory. PMID:25136501

  15. Prediction of attenuation of the 28 GHz COMSTAR beacon signal using radar and measured rain drop spectra

    NASA Technical Reports Server (NTRS)

    Goldhirsh, J.

    1977-01-01

    Disdrometer measurements and radar reflectivity measurements were injected into a computer program to estimate the path attenuation of the signal. Predicted attenuations when compared with the directly measured ones showed generally good correlation on a case by case basis and very good agreement statistically. The utility of using radar in conjunction with disdrometer measurements for predicting fade events and long term fade distributions associated with earth-satellite telecommunications is demonstrated.

  16. On-Board Fiber-Optic Network Architectures for Radar and Avionics Signal Distribution

    NASA Technical Reports Server (NTRS)

    Alam, Mohammad F.; Atiquzzaman, Mohammed; Duncan, Bradley B.; Nguyen, Hung; Kunath, Richard

    2000-01-01

    Continued progress in both civil and military avionics applications is overstressing the capabilities of existing radio-frequency (RF) communication networks based on coaxial cables on board modem aircrafts. Future avionics systems will require high-bandwidth on- board communication links that are lightweight, immune to electromagnetic interference, and highly reliable. Fiber optic communication technology can meet all these challenges in a cost-effective manner. Recently, digital fiber-optic communication systems, where a fiber-optic network acts like a local area network (LAN) for digital data communications, have become a topic of extensive research and development. Although a fiber-optic system can be designed to transport radio-frequency (RF) signals, the digital fiber-optic systems under development today are not capable of transporting microwave and millimeter-wave RF signals used in radar and avionics systems on board an aircraft. Recent advances in fiber optic technology, especially wavelength division multiplexing (WDM), has opened a number of possibilities for designing on-board fiber optic networks, including all-optical networks for radar and avionics RF signal distribution. In this paper, we investigate a number of different novel approaches for fiber-optic transmission of on-board VHF and UHF RF signals using commercial off-the-shelf (COTS) components. The relative merits and demerits of each architecture are discussed, and the suitability of each architecture for particular applications is pointed out. All-optical approaches show better performance than other traditional approaches in terms of signal-to-noise ratio, power consumption, and weight requirements.

  17. Polarimetric Radar Observations of Arctic Clouds: Signal Processing and First Results from the may 2013 Iop

    NASA Astrophysics Data System (ADS)

    Galletti, M.; Oue, M.; Verlinde, J.

    2013-12-01

    The ARM Climate Research Facility site at the North Slope of Alaska in Barrow provides polarimetric radar observations of Arctic clouds at X, Ka and W bands. During the May 2013 Scanning radar Intensive Observation Period, raw I and Q data were acquired with the X-SAPR and the Ka-W SACR for the purpose of validating existing, and testing new signal processing procedures specifically tailored for Arctic observations. The raw I and Q datasets were collected on May 3rd 2013 for the case of low-level boundary layer mixed-phase arctic clouds and on May 6th 2013 for the case of a synoptic low moving in from the west. http://www.arm.gov/campaigns/nsa2013nsasr The present paper describes the impact of signal processing procedures on the data, and establishes dual-polarization radar as a valuable tool for the microphysical characterization of ice clouds. In particular, the X-SAPR operates at STSR mode, making available differential reflectivity ZDR, copolar correlation coefficient ρhv, specific differential phase KDP and Degree of Polarization at Simultaneous Transmit DOPS. Low-level boundary layer mixed-phase Arctic clouds are characterized by layers of supercooled liquid water aloft, which present a stark polarimetric contrast with respect to the associated ice precipitation fallout. The ice particles falling from boundary layer Arctic clouds on May 2nd, 3rd and 4th 2013 (winds were very weak or absent) showed the remarkable property of being composed exclusively by large dendrites - fern-like, stellars, twelve-branched - indicating deposition as the main accretion mechanism. http://www.flickr.com/photos/michele_galletti/sets/72157633422079814/ Boundary Layer mixed-phase Arctic clouds provide an exceptional natural laboratory for the exploration of polarimetric signatures in presence of dendritic ice particles. The first-ever X-band analysis of differential reflectivity ZDR of mixed-phase Arctic clouds is presented in [1]. For the May 6th case, ice particle populations associated with frontal systems underwent more significant vertical mixing, and therefore more significant break-up and aggregation, with the overall result that ice particles possessed less geometrical symmetry, and consequently less prominent polarimetric contrast was detected by the radars. [1] Oue, Galletti, Verlinde "Observations of X-band differential reflectivity in Arctic mixed-phase clouds", submitted.

  18. Advanced signal processing method for ground penetrating radar feature detection and enhancement

    NASA Astrophysics Data System (ADS)

    Zhang, Yu; Venkatachalam, Anbu Selvam; Huston, Dryver; Xia, Tian

    2014-03-01

    This paper focuses on new signal processing algorithms customized for an air coupled Ultra-Wideband (UWB) Ground Penetrating Radar (GPR) system targeting highway pavements and bridge deck inspections. The GPR hardware consists of a high-voltage pulse generator, a high speed 8 GSps real time data acquisition unit, and a customized field-programmable gate array (FPGA) control element. In comparison to most existing GPR system with low survey speeds, this system can survey at normal highway speed (60 mph) with a high horizontal resolution of up to 10 scans per centimeter. Due to the complexity and uncertainty of subsurface media, the GPR signal processing is important but challenging. In this GPR system, an adaptive GPR signal processing algorithm using Curvelet Transform, 2D high pass filtering and exponential scaling is proposed to alleviate noise and clutter while the subsurface features are preserved and enhanced. First, Curvelet Transform is used to remove the environmental and systematic noises while maintain the range resolution of the B-Scan image. Then, mathematical models for cylinder-shaped object and clutter are built. A two-dimension (2D) filter based on these models removes clutter and enhances the hyperbola feature in a B-Scan image. Finally, an exponential scaling method is applied to compensate the signal attenuation in subsurface materials and to improve the desired signal feature. For performance test and validation, rebar detection experiments and subsurface feature inspection in laboratory and field configurations are performed.

  19. Radar and communication band signal processing using time-integration processors

    NASA Astrophysics Data System (ADS)

    Berg, N. J.; Casseday, M. W.; Abramovitz, I. J.; Lee, J. N.

    1980-01-01

    A new architecture for performing time-integration correlation is described. The correlator uses a surface acoustic wave (SAW) delay line, and features the optical interference of two coherent light beams which have been Bragg-diffracted by SAW's propagating in the line. The time integration is performed by a photodiode array which detects the diffracted light. Time-bandwidth products exceeding one-million (50 MHz times 30 ms) have been achieved. This two-beam SAW acousto-optic time-integrating correlator has been used to detect a number of wideband spread-spectrum signals. It has several attributes which make it particularly well suited for use as a spread-spectrum signal processor. These include linearity of operation, large time aperture over which the correlation can be observed, and the ability to determine the center frequency and bandwidth of the signals. The suitability of this correlator for use as a signal processor in spread-spectrum systems is considered. In addition, a two-dimensional realization of this correlator is proposed for frequency scanning correlation. The use of this frequency scanning correlator as an LPI radar signal processor is discussed.

  20. Evaluation of environmental radioxenon isotopical signals from a singular large source emitter

    NASA Astrophysics Data System (ADS)

    Saey, P. R. J.; Bowyer, T. W.; Aldener, M.; Becker, A.; Cooper, M. W.; Elmgren, K.; Faanhof, A.; Hayes, J. C.; Hosticka, B.; Lidey, L. S.

    2009-04-01

    In the framework of the verification of the Comprehensive Nuclear-Test-Ban Treaty (CTBT) the atmospheric background of environmental radioxenon is been studied near areas that could be affected by man-made sources. It was recently shown that radiopharmaceutical facilities (RPF) make a major contribution to the general background of 133Xe and other xenon isotopes both in the northern and southern hemisphere. The daily IMS noble gas measurements around the globe are influenced from such anthropogenic sources that could mask radioxenon signals from a nuclear explosion. To distinguish a nuclear explosion signal from releases from civil nuclear facilities, not only the activity concentration but also the ratio of different radioxenon isotopes (131mXe, 133mXe, 133Xe and 135Xe) plays a crucial role, since the ratios can be used to discriminate source types. Theoretical release and ratio studies were recently published, but no measurements close to radiopharmaceutical facilities have ever been performed. The world's fourth largest radiopharmaceutical facility, NTP Radioisotopes Ltd, is located in Pelindaba, South Africa. Other than a small nuclear power plant, located 1300 km southwest, near Cape Town and a small research reactor in the DR of Congo, located 2700 km northwest, this is the only facility that is known to emit any radioxenon on the African continent south of the Equator. This source is likely very dominant with respect to xenon emission. This makes it a point source, which is a unique situation, as all other worldwide large radiopharmaceutical facilities are situated in regions surrounded by many other nuclear facilities. Between 10 November and 22 December 2008, radioxenon was measured continuously with a radioactive xenon measurement system, at the North-West University, Mafikeng, South Africa, which is situated 250 km northwest of Pelindaba. Fifty-six 12-hour samples were measured with a beta-gamma coincidence detector, of which 55 contained 133Xe with values between 0.11 and 27.1 mBq/m3. Eleven samples contained 135Xe and three samples 133mXe. It is furthermore worth mentioning that none of the samples contained 131mXe. In parallel, stack samples were taken at the NTP facility on an almost daily basis and measured with a high purity germanium gamma detector nearby at a local laboratory of NECSA. These stack measurements correspond to a daily release of around 1-10 TBq. This is consistent with typical release rates published for this type of facility and well below exposure guidelines thus not dangerous to the public. On the other hand it is expected to be high enough to increase the radioxenon background in wide regions around such facilities and has a potential impact on the monitoring capability of the highly sensitive CTBT xenon monitoring systems. This paper will report on the activities measured at the facility stack and in Mafikeng, which allows for analysis and comparison with activity predictions based on atmospheric transport modelling. Finally the activity ratios measured shall be discussed in view of their implication for the xenon monitoring capability of the CTBT verification regime. Disclaimer The views expressed in this publication are those of the authors and do not necessarily reflect the views of the CTBTO Preparatory Commission or any of the institutions mentioned herein. . Acknowledgement This project is performed in the framework of European Council Joint Action no. 2007/468/CFSP on support for activities of the Preparatory Commission of the Comprehensive Nuclear-Test-Ban Treaty Organisation (CTBTO) monitoring and verification capabilities in the framework of the implementation of the European Union Strategy against Proliferation of Weapons of Mass Destruction.

  1. Dielectric Constant Modelling with SoilAir Composition and Its Effect on Sar Radar Signal Backscattered over Soil Surface

    PubMed Central

    Zribi, Mehrez; Le Morvan, Aurlie; Baghdadi, Nicolas

    2008-01-01

    The objective of this paper is to present the contribution of a new dielectric constant characterisation for the modelling of radar backscattering behaviour. Our analysis is based on a large number of radar measurements acquired during different experimental campaigns (Orgeval'94, Pays de Caux'98, 99). We propose a dielectric constant model, based on the combination of contributions from both soil and air fractions. This modelling clearly reveals the joint influence of the air and soil phases, in backscattering measurements over rough surfaces with large clods. A relationship is established between the soil fraction and soil roughness, using the Integral Equation Model (IEM), fitted to real radar data. Finally, the influence of the air fraction on the linear relationship between moisture and the backscattered radar signal is discussed.

  2. Physics-based deformations of ground penetrating radar signals to improve the detection of buried explosives

    NASA Astrophysics Data System (ADS)

    Sakaguchi, Rayn T.; Morton, Kennth D.; Collins, Leslie M.; Torrione, Peter A.

    2014-05-01

    A number of recent algorithms have shown improved performance in detecting buried explosive threats by statistically modeling target responses observed in ground penetrating radar (GPR) signals. These methods extract features from known examples of target responses to train a statistical classifier. The statistical classifiers are then used to identify targets emplaced in previously unseen conditions. Due to the variation in target GPR responses caused by factors such as differing soil conditions, classifiers require training on a large, varied dataset to encompass the signal variation expected in operational conditions. These training collections generally involve burying each target type in a number of soil conditions, at a number of burial depths. The cost associated with both burying the targets, and collecting the data is extremely high. Thus, the conditions and depths sampled cover only a subset of possible scenarios. The goal of this research is to improve the ability of a classifier to generalize to new conditions by deforming target responses in accordance with the physical properties of GPR signals. These signal deformations can simulate a target response under different conditions than those represented in the data collection. This research shows that improved detection performance in previously unseen conditions can be achieved by utilizing deformations, even when the training dataset is limited.

  3. Radar signal return from near-shore surface and shallow subsurface features, Darien Province, Panama

    NASA Technical Reports Server (NTRS)

    Hanson, B. C.; Dellwig, L. F.

    1973-01-01

    The AN/APQ-97 radar imagery over eastern Panama is analyzed. The imagery was directed toward extraction of geologic and engineering data and the establishment of operational parameters. Subsequent investigations emphasized landform identification and vegetation distribution. The parameters affecting the observed return signal strength from such features are considered. Near-shore ocean phenomena were analyzed. Tidal zone features such as mud flats and reefs were identified in the near range, but were not detectable in the far range. Surface roughness dictated the nature of reflected energy (specular or diffuse). In surf zones, changes in wave train orientation relative to look direction, the slope of the surface, and the physical character of the wave must be considered. It is concluded that the establishment of the areal extent of the tidal flats, distributary channels, and reefs is practical only in the near to intermediate range under minimal low tide conditions.

  4. Detection capability of a pulsed Ground Penetrating Radar utilizing an oscilloscope and Radargram Fusion Approach for optimal signal quality

    NASA Astrophysics Data System (ADS)

    Seyfried, Daniel; Schoebel, Joerg

    2015-07-01

    In scientific research pulsed radars often employ a digital oscilloscope as sampling unit. The sensitivity of an oscilloscope is determined in general by means of the number of digits of its analog-to-digital converter and the selected full scale vertical setting, i.e., the maximal voltage range displayed. Furthermore oversampling or averaging of the input signal may increase the effective number of digits, hence the sensitivity. Especially for Ground Penetrating Radar applications high sensitivity of the radar system is demanded since reflection amplitudes of buried objects are strongly attenuated in ground. Hence, in order to achieve high detection capability this parameter is one of the most crucial ones. In this paper we analyze the detection capability of our pulsed radar system utilizing a Rohde & Schwarz RTO 1024 oscilloscope as sampling unit for Ground Penetrating Radar applications, such as detection of pipes and cables in the ground. Also effects of averaging and low-noise amplification of the received signal prior to sampling are investigated by means of an appropriate laboratory setup. To underline our findings we then present real-world radar measurements performed on our GPR test site, where we have buried pipes and cables of different types and materials in different depths. The results illustrate the requirement for proper choice of the settings of the oscilloscope for optimal data recording. However, as we show, displaying both strong signal contributions due to e.g., antenna cross-talk and direct ground bounce reflection as well as weak reflections from objects buried deeper in ground requires opposing trends for the oscilloscope's settings. We therefore present our Radargram Fusion Approach. By means of this approach multiple radargrams recorded in parallel, each with an individual optimized setting for a certain type of contribution, can be fused in an appropriate way in order to finally achieve a single radargram which displays all contributions occurring originally at different strengths in an equalized and normalized way by means of appropriate digital signal post-processing.

  5. On the extraction of directional sea-wave spectra from synthetic- aperture radar-signal arrays without matched filtering.

    USGS Publications Warehouse

    Wildey, R.L.

    1980-01-01

    An economical method of digitally extracting sea-wave spectra from synthetic-aperture radar-signal records, which can be performed routinely in real or near-real time with the reception of telemetry from Seasat satellites, would be of value to a variety of scientific disciplines. This paper explores techniques for such data extraction and concludes that the mere fact that the desired result is devoid of phase information does not, of itself, lead to a simplification in data processing because of the nature of the modulation performed on the radar pulse by the backscattering surface. -from Author

  6. Data processing of ground-penetrating radar signals for the detection of discontinuities using polarization diversity

    NASA Astrophysics Data System (ADS)

    Tebchrany, Elias; Sagnard, Florence; Baltazart, Vincent; Tarel, Jean-Phillippe

    2014-05-01

    In civil engineering, ground penetrating radar (GPR) is used to survey pavement thickness at traffic speed, detect and localize buried objects (pipes, cables, voids, cavities), zones of cracks and discontinuities in concrete or soils. In this work, a ground-coupled radar made of a pair of transmitting and receiving bowtie-slot antennas is moved linearly on the soil surface to detect the reflected waves induced by discontinuities in the subsurface. The GPR system operates in the frequency domain using a step-frequency continuous wave (SFCW) using a Vector Network Analyzer (VNA) in an ultra-wide band [0.3 ; 4] GHz. The detection of targets is usually focused on time imaging. Thus, the targets (limited in size) are usually shown by diffraction hyperbolas on a Bscan image that is an unfocused depiction of the scatterers. The contrast in permittivity and the ratio between the size of the object and the wavelength are important parameters in the detection process. Thus, we have made a first study on the use of polarization diversity to obtain additional information relative to the contrast between the soil and the target and the dielectric characteristics of a target. The two main polarizations configurations of the radar have been considered in the presence of objects having a pipe geometry: the TM (Transverse Magnetic) and TE (Transverse Electric. To interpret the diffraction hyperbolas on a Bscan image, we have used pre-processing techniques are necessary to reduce the clutter signal which can overlap and obscure the target responses, particularly shallow objects. The clutter, which can be composed of the direct coupling between the antennas and the reflected wave from the soil surface, the scattering on the heterogeneities due to the granular nature of the subsurface material, and some additive noise, varies with soil dielectric characteristics and/or surface roughness and leads to uncertainty in the measurements (additive noise). Because of the statistical nature of the clutter, we have considered and quantified the performance of the Principal Component Analysis (PCA) and the Independent Component Analysis (ICA) in remove or minimizing the clutter using the receiver operating characteristics (ROC) graph. The study has been focused in the preferred polarization on simulated and experimental scenarios of soil structures with a few parameters such as the presence of a different target depths which are capable to perturb the first arrival times made of clutter components, and different dielectric characteristics (conductive or dielectric) of a given target (pipe).

  7. The application of multi-dimensional access memories to radar signal processing systems

    NASA Astrophysics Data System (ADS)

    Hayes, David; Strawhorne, Bill

    1986-07-01

    A multi-dimensional access memory (MDAM) allows a word to be accessed from store either in the manner it was entered or as part of a bit slice of equally spaced or contiguous words. Conceptually, data may be regarded as being stored in an n dimensional hypercube of side length equal to the word length that usefully maps onto a wide range of signal processing operations, (e.g., FFTs, matrix inversion, multiple moments, distance metrics, sorts, searches and correlation decodes), when associated processing units that can carry out both bit parallel and bit serial arithmetic are used. The mapping of the natural multi-dimensionality of a signal processing task onto the MDAM structure is shown to be particularly useful when bit serial, word parallel processors are employed. In these circumstances the facilities of the MDAM make possible a range of useful operations that could only be implemented with great inefficiency using conventional memories. Furthermore, the MDAM considerably simplifies address generation for the I/O of real and complex words (e.g., the corner turn of incoming samples) while allowing useful permutations, such as barrel shifts, to be applied on each memory access for a insignificant cost in extra circuitry. Highly efficient and deeply pipelined, implementations of MDAM/processor structures are discussed that are particulary well suited to VLSI methodologies, in that very wide bandwidth interconnection networks of high complexity can be achieved at relatively low gate and pin counts. Thus, it is possible to form highly parallel multi-MDAM/processor structures that support very high levels of concurrency, identified as necessary for future radar signal processing systems. Moreover these structures translate over classes of operations that are not normally associated with each other. Consequently, these forms can be made extremely general and modular to produce powerful and compact processing kernels for programmable systems that embody high level signal processing constructs in their VLSI fabric and lead to high performance at the minimum silicon cost.

  8. Statistical analysis of Bernoulli, logistic, and tent maps with applications to radar signal design

    NASA Astrophysics Data System (ADS)

    Garcs, Hctor; Flores, Benjamin C.

    2006-05-01

    The uniqueness of the Bernoulli frequency modulated signal, and other chaos-based FM signals, can be exploited to improve the performance of the Synthetic Aperture Radar systems. Recent work suggests that the Bernoulli map has an unusual behavior compared to other one dimensional discrete maps, such as Logistic or Tent maps. Additional work indicates that the sum of consecutive Bernoulli samples is generally non-Gaussian, except when the map parameters A= 0.5 and B = 1.8. This motivates us to analyze the behavioral differences of the maps for various parameters using the Lyapunov exponent, pseudo-phase spatial trajectory and neighbor samples correlation. Specifically, the correlation of Bernoulli samples is analyzed in terms of the probability density function which is derived from experimental data. Some of statistical tools used include the Forbenius-Perron Operator, and the correlation properties of chaotic sequences. In addition, other measurements of chaos derived from nonlinear dynamical modeling will be used such as: the Lyapunov exponent and the bifurcation diagram. Results show differences between the calculated features; for example, the Lyapunov exponent is bigger for Bernoulli FM than Logistic or Tent FM. In summary, we determined that Bernoulli FM is more chaotic than Logistic or Tent FM. We have also found another singularity in the correlation of sequence samples for the Bernoulli map.

  9. The design and development of signal-processing algorithms for an airborne x-band Doppler weather radar

    NASA Technical Reports Server (NTRS)

    Nicholson, Shaun R.

    1994-01-01

    Improved measurements of precipitation will aid our understanding of the role of latent heating on global circulations. Spaceborne meteorological sensors such as the planned precipitation radar and microwave radiometers on the Tropical Rainfall Measurement Mission (TRMM) provide for the first time a comprehensive means of making these global measurements. Pre-TRMM activities include development of precipitation algorithms using existing satellite data, computer simulations, and measurements from limited aircraft campaigns. Since the TRMM radar will be the first spaceborne precipitation radar, there is limited experience with such measurements, and only recently have airborne radars become available that can attempt to address the issue of the limitations of a spaceborne radar. There are many questions regarding how much attenuation occurs in various cloud types and the effect of cloud vertical motions on the estimation of precipitation rates. The EDOP program being developed by NASA GSFC will provide data useful for testing both rain-retrieval algorithms and the importance of vertical motions on the rain measurements. The purpose of this report is to describe the design and development of real-time embedded parallel algorithms used by EDOP to extract reflectivity and Doppler products (velocity, spectrum width, and signal-to-noise ratio) as the first step in the aforementioned goals.

  10. System design, signal-processing procedures, and preliminary results for the Canadian (London, Ontario) VHF atmospheric radar

    NASA Astrophysics Data System (ADS)

    Hocking, W. K.

    1997-03-01

    Hardware, software, and design features of a new VHF atmospheric radar situated in Canada are described, with particular emphasis being placed on the flexibility which has been implemented at quite low cost. Called CLOVAR (Canadian (London, Ontario) VHF atmospheric radar), the instrument has now been operational since November 1993. It is located at 43°04.44'N, 81°20.20'W, operates at a frequency of 40.68 MHz, and is owned and operated by the nearby University of Western Ontario in London, Ontario, Canada. There are some unique features about this system, including its low-cost design, flexible beam-steering, and on-line software analysis procedures. In this paper we elaborate on these new developments and especially demonstrate the new signal processing algorithms currently in use. These new algorithms include procedures for rejection of signals due to aircraft, removal of instrumental drift, and full on-line spectral fitting of Gaussian functions. Typical data from the system are presented, including experimental data acquired with multibeam experiments, monthly mean vertical velocities, and some interesting results obtained during a solar eclipse. The radar can also function as an efficient meteor radar for determination of high-level winds, and this capability will also be briefly described. A special program of comparisons with colocated radiosonde flights is also discussed.

  11. Analysis and improved design considerations for airborne pulse Doppler radar signal processing in the detection of hazardous windshear

    NASA Technical Reports Server (NTRS)

    Lee, Jonggil

    1990-01-01

    High resolution windspeed profile measurements are needed to provide reliable detection of hazardous low altitude windshear with an airborne pulse Doppler radar. The system phase noise in a Doppler weather radar may degrade the spectrum moment estimation quality and the clutter cancellation capability which are important in windshear detection. Also the bias due to weather return Doppler spectrum skewness may cause large errors in pulse pair spectral parameter estimates. These effects are analyzed for the improvement of an airborne Doppler weather radar signal processing design. A method is presented for the direct measurement of windspeed gradient using low pulse repetition frequency (PRF) radar. This spatial gradient is essential in obtaining the windshear hazard index. As an alternative, the modified Prony method is suggested as a spectrum mode estimator for both the clutter and weather signal. Estimation of Doppler spectrum modes may provide the desired windshear hazard information without the need of any preliminary processing requirement such as clutter filtering. The results obtained by processing a NASA simulation model output support consideration of mode identification as one component of a windshear detection algorithm.

  12. Estimation of the penetration effects of the Ka-band radar signal into the Arctic sea ice snowpack.

    NASA Astrophysics Data System (ADS)

    Guerreiro, Kvin; Fleury, Sara; Kouraev, Alexei; Rmy, Frdrique; Zakharova, Elena; Blumstein, Denis

    2015-04-01

    In the context of quantifying Arctic sea ice volume at global scale, altimetry provides a unique tool to estimate sea ice thickness through the freeboard method that mainly consists in evaluating the thickness of emerged sea ice. Most of the altimeters employed to retrieve sea ice thickness operate at Ku-band frequency (13.6 Ghz). Over Arctic sea ice and at this frequency, the radar signal is only slightly affected by scattering and absorbtion due to the presence of snow over the ice. Therefore, it is commonly admitted that most of the return echo comes from the ice surface. Launched in February 2013, the Saral-AltiKa mission carries a Ka-band (36.5 Ghz) altimeter that is a great opportunity to expand the study of sea ice thickness. However, unlike the Ku-band operating systems, most of the Ka-band signal does not reach the sea ice surface and is scattered by overlying snow layers. For this reason and in order to obtain the best estimate of sea ice thickness with Ka-band radar, it is crucial to evaluate the bias due to penetration of the radar signal into the snowpack at this frequency. We combine both Ku and Ka band radar observations to study the influence of radar penetration into the snow and estimate the extinction coefficient over Arctic sea ice. Our results are of the same order of magnitude of what is found in Antarctica. This research has been done in the framework of CNES TOSCA SICKays and IDEX Transversalit InHERA projects.

  13. Real-time MST radar signal processing using a microcomputer running under FORTH

    NASA Technical Reports Server (NTRS)

    Bowhill, S. A.

    1983-01-01

    Data on power, correlation time, and velocity were obtained at the Urbana radar using microcomputer and a single floppy disk drive. This system includes the following features: (1) measurement of the real and imaginary components of the received signal at 20 altitudes spaced by 1.5 km; (2) coherent integration of these components over a 1/8-s time period; (3) continuous real time display of the height profiles of the two coherently integrated components; (4) real time calculation of the 1 minute averages of the power and autocovariance function up to 6 lags; (5) output of these data to floppy disk once every 2 minutes; (6) display of the 1 minute power profiles while the data are stored to the disk; (7) visual prompting for the operator to change disks when required at the end of each hour of data; and (8) continuous audible indication of the status of the interrupt service routine. Accomplishments were enabled by two developments: the use of a new correlation algorithm and the use of the FORTH language to manage the various low level and high level procedures involved.

  14. Spectral analysis of ground penetrating radar signals in concrete, metallic and plastic targets

    NASA Astrophysics Data System (ADS)

    Santos, Vinicius Rafael N. dos; Al-Nuaimy, Waleed; Porsani, Jorge Luís; Hirata, Nina S. Tomita; Alzubi, Hamzah S.

    2014-01-01

    The accuracy of detecting buried targets using ground penetrating radar (GPR) depends mainly on features that are extracted from the data. The objective of this study is to test three spectral features and evaluate the quality to provide a good discrimination among three types of materials (concrete, metallic and plastic) using the 200 MHz GPR system. The spectral features which were selected to check the interaction of the electromagnetic wave with the type of material are: the power spectral density (PSD), short-time Fourier transform (STFT) and the Wigner-Ville distribution (WVD). The analyses were performed with simulated data varying the sizes of the targets and the electrical properties (relative dielectric permittivity and electrical conductivity) of the soil. To check if the simulated data are in accordance with the real data, the same approach was applied on the data obtained in the IAG/USP test site. A noticeable difference was found in the amplitude of the studies' features in the frequency domain and these results show the strength of the signal processing to try to differentiate buried materials using GPR, and so can be used in urban planning and geotechnical studies.

  15. Lunar ground penetrating radar: Minimizing potential data artifacts caused by signal interaction with a rover body

    NASA Astrophysics Data System (ADS)

    Angelopoulos, Michael; Redman, David; Pollard, Wayne H.; Haltigin, Timothy W.; Dietrich, Peter

    2014-11-01

    Ground-penetrating radar (GPR) is the leading geophysical candidate technology for future lunar missions aimed at mapping shallow stratigraphy (<5 m). The instrument's exploration depth and resolution capabilities in lunar materials, as well as its small size and lightweight components, make it a very attractive option from both a scientific and engineering perspective. However, the interaction between a GPR signal and the rover body is poorly understood and must be investigated prior to a space mission. In doing so, engineering and survey design strategies should be developed to enhance GPR performance in the context of the scientific question being asked. This paper explores the effects of a rover (simulated with a vertical metal plate) on GPR results for a range of heights above the surface and antenna configurations at two sites: (i) a standard GPR testing site with targets of known position, size, and material properties, and; (ii) a frozen lake for surface reflectivity experiments. Our results demonstrate that the GPR antenna configuration is a key variable dictating instrument design, with the XX polarization considered optimal for minimizing data artifact generation. These findings could thus be used to help guide design requirements for an eventual flight instrument.

  16. The modification of X and L band radar signals by monomolecular sea slicks

    NASA Technical Reports Server (NTRS)

    Huehnerfuss, H.; Alpers, W.; Cross, A.; Garrett, W. D.; Keller, W. C.; Plant, W. J.; Schuler, D. L.; Lange, P. A.; Schlude, F.

    1983-01-01

    One methyl oleate and two oleyl alcohol surface films were produced on the surface of the North Sea under comparable oceanographic and meteorological conditions in order to investigate their influence on X and L band radar backscatter. Signals are backscattered in these bands primarily by surface waves with lengths of about 2 and 12 cm, respectively, and backscattered power levels in both bands were reduced by the slicks. The reduction was larger at X band than at L band, however, indicating that shorter waves are more intensely damped by the surface films. The oleyl alcohol film caused greater attenuation of short gravity waves than the film of methyl oleate, thus demonstrating the importance of the physicochemical properties of films on the damping of wind-generated gravity capillary waves. Finally, these experiments indicate a distinct dependence of the degree of damping on the angle between wind and waves. Wind-generated waves traveling in the wind direction are more intensely damped by surface films than are waves traveling at large angles to the wind.

  17. Planetary Radar

    NASA Technical Reports Server (NTRS)

    Ostro, S. J.

    1992-01-01

    Planetary radar astronomy is the study of solar system entities (the moon, asteroids, and comets, as well as the major planets and their satellites and ring systems) by transmitting radio signals towards a target and receiving and analyzing the echoes.

  18. Development of a ground signal processor for digital synthetic array radar data

    NASA Technical Reports Server (NTRS)

    Griffin, C. R.; Estes, J. M.

    1981-01-01

    A modified APQ-102 sidelooking array radar (SLAR) in a B-57 aircraft test bed is used, with other optical and infrared sensors, in remote sensing of Earth surface features for various users at NASA Johnson Space Center. The video from the radar is normally recorded on photographic film and subsequently processed photographically into high resolution radar images. Using a high speed sampling (digitizing) system, the two receiver channels of cross-and co-polarized video are recorded on wideband magnetic tape along with radar and platform parameters. These data are subsequently reformatted and processed into digital synthetic aperture radar images with the image data available on magnetic tape for subsequent analysis by investigators. The system design and results obtained are described.

  19. Estimation of High-Frequency Earth-Space Radio Wave Signals via Ground-Based Polarimetric Radar Observations

    NASA Technical Reports Server (NTRS)

    Bolen, Steve; Chandrasekar, V.

    2002-01-01

    Expanding human presence in space, and enabling the commercialization of this frontier, is part of the strategic goals for NASA's Human Exploration and Development of Space (HEDS) enterprise. Future near-Earth and planetary missions will support the use of high-frequency Earth-space communication systems. Additionally, increased commercial demand on low-frequency Earth-space links in the S- and C-band spectra have led to increased interest in the use of higher frequencies in regions like Ku and Ka-band. Attenuation of high-frequency signals, due to a precipitating medium, can be quite severe and can cause considerable disruptions in a communications link that traverses such a medium. Previously, ground radar measurements were made along the Earth-space path and compared to satellite beacon data that was transmitted to a ground station. In this paper, quantitative estimation of the attenuation along the propagation path is made via inter-comparisons of radar data taken from the Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar (PR) and ground-based polarimetric radar observations. Theoretical relationships between the expected specific attenuation (k) of spaceborne measurements with ground-based measurements of reflectivity (Zh) and differential propagation phase shift (Kdp) are developed for various hydrometeors that could be present along the propagation path, which are used to estimate the two-way path-integrated attenuation (PIA) on the PR return echo. Resolution volume matching and alignment of the radar systems is performed, and a direct comparison of PR return echo with ground radar attenuation estimates is made directly on a beam-by-beam basis. The technique is validated using data collected from the TExas and Florida UNderflights (TEFLUN-B) experiment and the TRMM large Biosphere-Atmosphere experiment in Amazonia (LBA) campaign. Attenuation estimation derived from this method can be used for strategiC planning of communication systems for future HEDS missions.

  20. Robust multiplatform RF emitter localization

    NASA Astrophysics Data System (ADS)

    Al Issa, Huthaifa; Ordóñez, Raúl

    2012-06-01

    In recent years, position based services has increase. Thus, recent developments in communications and RF technology have enabled system concept formulations and designs for low-cost radar systems using state-of-the-art software radio modules. This research is done to investigate a novel multi-platform RF emitter localization technique denoted as Position-Adaptive RF Direction Finding (PADF). The formulation is based on the investigation of iterative path-loss (i.e., Path Loss Exponent, or PLE) metrics estimates that are measured across multiple platforms in order to autonomously adapt (i.e. self-adjust) of the location of each distributed/cooperative platform. Experiments conducted at the Air-Force Research laboratory (AFRL) indicate that this position-adaptive approach exhibits potential for accurate emitter localization in challenging embedded multipath environments such as in urban environments. The focus of this paper is on the robustness of the distributed approach to RF-based location tracking. In order to localize the transmitter, we use the Received Signal Strength Indicator (RSSI) data to approximate distance from the transmitter to the revolving receivers. We provide an algorithm for on-line estimation of the Path Loss Exponent (PLE) that is used in modeling the distance based on Received Signal Strength (RSS) measurements. The emitter position estimation is calculated based on surrounding sensors RSS values using Least-Square Estimation (LSE). The PADF has been tested on a number of different configurations in the laboratory via the design and implementation of four IRIS wireless sensor nodes as receivers and one hidden sensor as a transmitter during the localization phase. The robustness of detecting the transmitters position is initiated by getting the RSSI data through experiments and then data manipulation in MATLAB will determine the robustness of each node and ultimately that of each configuration. The parameters that are used in the functions are the median values of RSSI and rms values. From the result it is determined which configurations possess high robustness. High values obtained from the robustness function indicate high robustness, while low values indicate lower robustness.

  1. Selective Emitters

    NASA Technical Reports Server (NTRS)

    Chubb, Donald L. (Inventor)

    1992-01-01

    This invention relates to a small particle selective emitter for converting thermal energy into narrow band radiation with high efficiency. The small particle selective emitter is used in combination with a photovoltaic array to provide a thermal to electrical energy conversion device. An energy conversion apparatus of this type is called a thermo-photovoltaic device. In the first embodiment, small diameter particles of a rare earth oxide are suspended in an inert gas enclosed between concentric cylinders. The rare earth oxides are used because they have the desired property of large emittance in a narrow wavelength band and small emittance outside the band. However, it should be emphasized that it is the smallness of the particles that enhances the radiation property. The small particle selective emitter is surrounded by a photovoltaic array. In an alternate embodiment, the small particle gas mixture is circulated through a thermal energy source. This thermal energy source can be a nuclear reactor, solar receiver, or combustor of a fossil fuel.

  2. Hail statistic in Western Europe based on a hyrid cell-tracking algorithm combining radar signals with hailstone observations

    NASA Astrophysics Data System (ADS)

    Fluck, Elody

    2015-04-01

    Hail statistic in Western Europe based on a hybrid cell-tracking algorithm combining radar signals with hailstone observations Elody Fluck¹, Michael Kunz¹ , Peter Geissbühler², Stefan P. Ritz² With hail damage estimated over Billions of Euros for a single event (e.g., hailstorm Andreas on 27/28 July 2013), hail constitute one of the major atmospheric risks in various parts of Europe. The project HAMLET (Hail Model for Europe) in cooperation with the insurance company Tokio Millennium Re aims at estimating hail probability, hail hazard and, combined with vulnerability, hail risk for several European countries (Germany, Switzerland, France, Netherlands, Austria, Belgium and Luxembourg). Hail signals are obtained from radar reflectivity since this proxy is available with a high temporal and spatial resolution using several hail proxies, especially radar data. The focus in the first step is on Germany and France for the periods 2005- 2013 and 1999 - 2013, respectively. In the next step, the methods will be transferred and extended to other regions. A cell-tracking algorithm TRACE2D was adjusted and applied to two dimensional radar reflectivity data from different radars operated by European weather services such as German weather service (DWD) and French weather service (Météo-France). Strong convective cells are detected by considering 3 connected pixels over 45 dBZ (Reflectivity Cores RCs) in a radar scan. Afterwards, the algorithm tries to find the same RCs in the next 5 minute radar scan and, thus, track the RCs centers over time and space. Additional information about hailstone diameters provided by ESWD (European Severe Weather Database) is used to determine hail intensity of the detected hail swaths. Maximum hailstone diameters are interpolated along and close to the individual hail tracks giving an estimation of mean diameters for the detected hail swaths. Furthermore, a stochastic event set is created by randomizing the parameters obtained from the tracking approach of the historical event catalogue (length, width, orientation, diameter). This stochastic event set will be used to quantify hail risk and to estimate probable maximum loss (e.g., PML200) for a given industry motor or property (building) portfolio.

  3. Extended emitter target tracking using GM-PHD filter.

    PubMed

    Zhu, Youqing; Zhou, Shilin; Gao, Gui; Zou, Huanxin; Lei, Lin

    2014-01-01

    If equipped with several radar emitters, a target will produce more than one measurement per time step and is denoted as an extended target. However, due to the requirement of all possible measurement set partitions, the exact probability hypothesis density filter for extended target tracking is computationally intractable. To reduce the computational burden, a fast partitioning algorithm based on hierarchy clustering is proposed in this paper. It combines the two most similar cells to obtain new partitions step by step. The pseudo-likelihoods in the Gaussian-mixture probability hypothesis density filter can then be computed iteratively. Furthermore, considering the additional measurement information from the emitter target, the signal feature is also used in partitioning the measurement set to improve the tracking performance. The simulation results show that the proposed method can perform better with lower computational complexity in scenarios with different clutter densities. PMID:25490206

  4. Extended Emitter Target Tracking Using GM-PHD Filter

    PubMed Central

    Zhu, Youqing; Zhou, Shilin; Gao, Gui; Zou, Huanxin; Lei, Lin

    2014-01-01

    If equipped with several radar emitters, a target will produce more than one measurement per time step and is denoted as an extended target. However, due to the requirement of all possible measurement set partitions, the exact probability hypothesis density filter for extended target tracking is computationally intractable. To reduce the computational burden, a fast partitioning algorithm based on hierarchy clustering is proposed in this paper. It combines the two most similar cells to obtain new partitions step by step. The pseudo-likelihoods in the Gaussian-mixture probability hypothesis density filter can then be computed iteratively. Furthermore, considering the additional measurement information from the emitter target, the signal feature is also used in partitioning the measurement set to improve the tracking performance. The simulation results show that the proposed method can perform better with lower computational complexity in scenarios with different clutter densities. PMID:25490206

  5. A study of radar altimetry signal penetration over percolation facies of the Greenland Ice Sheet as part of the 2011 CryoSat-2 Validation Experiment

    NASA Astrophysics Data System (ADS)

    de la Pena, S.; Nienow, P.; Wingham, D.

    2011-12-01

    The percolation zone of the Greenland Ice Sheet (GrIS) has a highly variable snowpack structure characterized by the presence of ice lenses, pipes and layers in the volume below the surface. The stratified snowpack and the abrupt densification of near-surface snow, caused by seasonal melt in this region, affect the penetration depth of radar signals and is a potential source of errors for elevation change estimates performed by satellite radar altimetry. As the percolation zone extends further up the ice sheet, it is important to investigate trends and short term variations in radar volume backscatter over large length scales. Continuous monitoring of accumulation and densification processes in this region will lead to improvements in elevation estimates made with radar altimetry, and ultimately to more accurate mass balance estimations. We present results from the 2011 CryoSat-2 Validation Experiment over Greenland, with the aim of comparing for the first time observations from SIRAL, the radar altimeter onboard CryoSat-2, with near-simultaneous field and airborne measurements. The main objective of this comparison is to characterize near-surface snow structure and Ku-Band radar signatures along the western slope of the GrIS (~2000-2600m) to improve our understanding of the SIRAL radar signal interaction with different snow facies. The area of study covers the transition from the percolation zone into the dry snow zone, at elevations between 2000m and 2600m. The observations reveal the effects that the summer melt intensity's elevation gradient has on near surface snowpack. Widespread ice layers were found buried under winter accumulation in areas believed until recently to have little or no seasonal melt. In-situ snow density and structure observations were made along with airborne radar altimetry and Very High Bandwidth (VHB) ground radar measurements to analyse volume backscatter with a spatial resolution not obtainable by satellite, and to assess the relationship between radar penetration depth and snow density.

  6. Advanced intermittent clutter filtering for radar wind profiler: signal separation through a Gabor frame expansion and its statistics

    NASA Astrophysics Data System (ADS)

    Lehmann, V.; Teschke, G.

    2008-05-01

    A new signal processing method is presented for the suppression of intermittent clutter echoes in radar wind profilers. This clutter type is a significant problem during the seasonal bird migration and often results in large discrepancies between profiler wind measurements and independent reference data. The technique presented makes use of a discrete Gabor frame expansion of the coherently averaged time series data in combination with a statistical filtering approach to exploit the different signal characteristics between signal and clutter. The rationale of this algorithm is outlined and the mathematical methods used are presented in due detail. A first test using data obtained with an operational 482 MHz wind profiler indicates that the method outperforms the previously used clutter suppression algorithm.

  7. Using the inverse Chirp-Z transform for time-domain analysis of simulated radar signals

    SciTech Connect

    Frickey, D.A.

    1995-01-01

    There exists a need to develop a method to locate underground voids, or caches. In the past, ground penetrating radar (GPR) operating in the time domain mode has been used. In this paper, we turn our attention to stepped frequency radar, capable of making frequency domain reflection coefficient measurements. We then apply the inverse Chirp-Z transform (ICZT) to this data, generating a time domain response. The scenario under consideration is that of an airborne radar passing over the surface of the earth. The radar is directed toward the surface and is capable of measuring the reflection coefficient, seen looking toward the earth, as a function of frequency. The frequency domain -data in this work is simulated and is generated from a transmission line model of the problem. Using the ICZT we convert this frequency domain data to the time domain. Once in the time domain, reflections due to discontinuities appear at times indicating their relative distance from the source. The discontinuities occurring beyond the surface of the earth could be indicative of underground structures. The ICZT allows a person to zoom in on the time span of interest by specifying the starting time, the time resolution, and the number of time steps.

  8. Radarclinometry: Bootstrapping the radar reflectance function from the image pixel-signal frequency distribution and an altimetry profile

    USGS Publications Warehouse

    Wildey, R.L.

    1988-01-01

    A method is derived for determining the dependence of radar backscatter on incidence angle that is applicable to the region corresponding to a particular radar image. The method is based on enforcing mathematical consistency between the frequency distribution of the image's pixel signals (histogram of DN values with suitable normalizations) and a one-dimensional frequency distribution of slope component, as might be obtained from a radar or laser altimetry profile in or near the area imaged. In order to achieve a unique solution, the auxiliary assumption is made that the two-dimensional frequency distribution of slope is isotropic. The backscatter is not derived in absolute units. The method is developed in such a way as to separate the reflectance function from the pixel-signal transfer characteristic. However, these two sources of variation are distinguishable only on the basis of a weak dependence on the azimuthal component of slope; therefore such an approach can be expected to be ill-conditioned unless the revision of the transfer characteristic is limited to the determination of an additive instrumental background level. The altimetry profile does not have to be registered in the image, and the statistical nature of the approach minimizes pixel noise effects and the effects of a disparity between the resolutions of the image and the altimetry profile, except in the wings of the distribution where low-number statistics preclude accuracy anyway. The problem of dealing with unknown slope components perpendicular to the profiling traverse, which besets the one-to-one comparison between individual slope components and pixel-signal values, disappears in the present approach. In order to test the resulting algorithm, an artificial radar image was generated from the digitized topographic map of the Lake Champlain West quadrangle in the Adirondack Mountains, U.S.A., using an arbitrarily selected reflectance function. From the same map, a one-dimensional frequency distribution of slope component was extracted. The algorithm recaptured the original reflectance function to the degree that, for the central 90% of the data, the discrepancy translates to a RMS slope error of 0.1 ???. For the central 99% of the data, the maximum error translates to 1 ???; at the absolute extremes of the data the error grows to 6 ???. ?? 1988 Kluwer Academic Publishers.

  9. A UWB Radar Signal Processing Platform for Real-Time Human Respiratory Feature Extraction Based on Four-Segment Linear Waveform Model.

    PubMed

    Hsieh, Chi-Hsuan; Chiu, Yu-Fang; Shen, Yi-Hsiang; Chu, Ta-Shun; Huang, Yuan-Hao

    2016-02-01

    This paper presents an ultra-wideband (UWB) impulse-radio radar signal processing platform used to analyze human respiratory features. Conventional radar systems used in human detection only analyze human respiration rates or the response of a target. However, additional respiratory signal information is available that has not been explored using radar detection. The authors previously proposed a modified raised cosine waveform (MRCW) respiration model and an iterative correlation search algorithm that could acquire additional respiratory features such as the inspiration and expiration speeds, respiration intensity, and respiration holding ratio. To realize real-time respiratory feature extraction by using the proposed UWB signal processing platform, this paper proposes a new four-segment linear waveform (FSLW) respiration model. This model offers a superior fit to the measured respiration signal compared with the MRCW model and decreases the computational complexity of feature extraction. In addition, an early-terminated iterative correlation search algorithm is presented, substantially decreasing the computational complexity and yielding negligible performance degradation. These extracted features can be considered the compressed signals used to decrease the amount of data storage required for use in long-term medical monitoring systems and can also be used in clinical diagnosis. The proposed respiratory feature extraction algorithm was designed and implemented using the proposed UWB radar signal processing platform including a radar front-end chip and an FPGA chip. The proposed radar system can detect human respiration rates at 0.1 to 1 Hz and facilitates the real-time analysis of the respiratory features of each respiration period. PMID:25667357

  10. Signal analysis by means of time-frequency (Wigner-type) distributions -- Applications to sonar and radar echoes

    SciTech Connect

    Gaunaurd, G.; Strifors, H.C.

    1996-09-01

    Time series data have been traditionally analyzed in either the time or the frequency domains. For signals with a time-varying frequency content, the combined time-frequency (TF) representations, based on the Cohen class of (generalized) Wigner distributions (WD`s) offer a powerful analysis tool. Using them, it is possible to: (1) trace the time-evolution of the resonance features usually present in a standard sonar cross section (SCS), or in a radar cross section (RCS) and (2) extract target information that may be difficult to even notice in an ordinary SCS or RCS. After a brief review of the fundamental properties of the WD, the authors discuss ways to reduce or suppress the cross term interference that appears in the WD of multicomponent systems. These points are illustrated with a variety of three-dimensional (3-D) plots of Wigner and pseudo-Wigner distributions (PWD), in which the strength of the distribution is depicted as the height of a Wigner surface with height scales measured by various color shades or pseudocolors. The authors also review studies they have made of the echoes returned by conducting or dielectric targets in the atmosphere, when they are illuminated by broadband radar pings. A TF domain analysis of these impulse radar returns demonstrates their superior informative content. These plots allow the identification of targets in an easier and clearer fashion than by the conventional RCS of narrowband systems. The authors show computed and measured plots of WD and PWD of various types of aircraft to illustrate the classification advantages of the approach at any aspect angle. They also show analogous results for metallic objects buried underground, in dielectric media, at various depths.

  11. In vessel detection of delayed neutron emitters from clad failure in sodium cooled nuclear reactors: An estimation of the signal

    NASA Astrophysics Data System (ADS)

    Filliatre, P.; Jammes, C.; Chapoutier, N.; Jeannot, J.-P.; Jadot, F.; Batail, R.; Verrier, D.

    2014-04-01

    The detection of clad failures is mandatory in sodium-cooled fast neutron reactors in compliance with the "clean sodium" concept. An in-vessel detection system, sensitive to delayed neutrons from fission products released into the primary coolant by failures, partially tested in SUPERPHENIX, is foreseen in current SFR projects in order to reduce significantly the delay before an alarm is issued. In this paper, an estimation of the signal received by such a system in case of a failure is derived, taking the French project ASTRID as a working example. This failure induced signal is compared to that of the contribution of the neutrons from the core itself. The sensitivity of the system is defined in terms of minimal detectable surface of clad failure. Possible solutions to improve this sensitivity are discussed, involving either the sensor itself, or the hydraulic design of the vessel in the early stage of the reactor conception.

  12. Sub-nanosecond ranging possibilities of optical radar at various signal levels and transmitted pulse widths

    NASA Technical Reports Server (NTRS)

    Poultney, S. K.

    1971-01-01

    The behavior of the photomultiplier is considered, as well as the method of derivation of the photomultiplier output pulse and its relation to the reflected light pulse width and amplitude, and the calibration of range precision and accuracy. Pulsed laser radars with light pulse widths of 30, 3, and 0.1 nanosec a considered, with the 0.1 nanosec system capable of highest precision in several modes of operation, including a high repetition rate, single photoelectron reception mode. An alternate calibration scheme using a fast, triggerable light pulser is described in detail.

  13. Ground-penetrating radar signal processing for the detection of buried objects

    NASA Astrophysics Data System (ADS)

    Walters, Mitchell; Garcia, Ephrahim

    2011-06-01

    In this work the singular value decomposition (SVD) is used to analyze matrices of ground penetrating radar (GPR) data. The targets to be detected are Russian PMN antipersonnel landmines and improvised explosive devices constructed from 155mm artillery shells. Target responses are simulated with GPRmax 2D, a simulation package based on the Finite- Difference-Time-Domain method. First, the utility of the SVD for image enhancement and reconstruction is demonstrated. Then the singular values and singular vectors of the decomposed matrices are analyzed with the goal of finding properties that will aid in the development of automated underground detection algorithms.

  14. Capillary-Based Multi-Nanoelectrospray Emitters

    PubMed Central

    Kelly, Ryan T.; Page, Jason S.; Zhao, Rui; Qian, Wei-Jun; Mottaz, Heather M.; Tang, Keqi; Smith, Richard D.

    2008-01-01

    We describe the coupling of liquid chromatography (LC) separations with mass spectrometry (MS) using nanoelectrospray ionization (nanoESI) multi-emitters. The array of 19 emitters reduced the flow rate delivered to each emitter, allowing the enhanced sensitivity that is characteristic of nanoESI to be extended to higher flow rate separations. The signal for peptides from spiked proteins in a human plasma tryptic digest increased 11-fold on average when the multi-emitters were employed, due to increased ionization efficiency and improved ion transfer efficiency through a newly designed heated multi-capillary MS inlet. Additionally, the LC peak signal-to-noise ratio increased ?7-fold when the multi-emitter configuration was used. The low dead volume of the emitter arrays preserved peak shape and resolution for robust capillary LC separations using total flow rates of 2-?L/min. PMID:18044958

  15. Research on a kind of high precision and fast signal processing algorithm for FM/CW laser radar

    NASA Astrophysics Data System (ADS)

    Xu, Xinke; Liu, Guodong; Chen, Fengdong; Liu, Bingguo; Zhuang, Zhitao; Lu, Cheng; Gan, Yu

    2014-12-01

    Range accuracy and efficiency are two important indicators for Frequency modulated continuous wave (FM/CW) laser radar, improving the accuracy and efficiency of extracting beat frequency are key factors for them. Multiple Modulation Zoom Spectrum Analysis (ZFFT) and the Chirp-Z Transform (CZT) are two widely used methods for improving frequency estimation. The paper through analyze advantages and disadvantages of these methods, proposes a high accuracy and fast signal processing method which is ZFFT-CZT, it combines advantages that ZFFT can reduce data size, and CZT can zoom in frequency of any interested band. The processing of ZFFT-CZT is following: firstly ZFFT is conducted by conducting Fourier transform on short time signal to calculate amount of frequency shift, and transforming high-frequency signal into low-frequency signal of long time sampling, then CZT is conducted by choosing any interested band to continue subdividing the spectral peaks, which can reduce picket fence effect. By simulate experiment based on ZFFT-CZT method, two closed targets at distance of 50m and 50.001m are measured, and the measurement errors are 40?m and 34?m respectively. It proved that ZFFT-CZT has a small amount of calculation, which can meet the requirement of high precision frequency extraction.

  16. Emittance Exchange Results

    SciTech Connect

    Fliller III,R.; Koeth, T.

    2009-05-04

    The promise of next-generation light sources depends on the availability of ultra-low emittance electron sources. One method of producing low transverse emittance beams is to generate a low longitudinal emittance beam and exchange it with a large transverse emittance. Experiments are underway at Fermilab's A0 Photoinjector and ANL's Argonne Wakefield Accelerator using the exchange scheme of Kim and Sessler. The experiment at the A0 Photoinjector exchanges a large longitudinal emittance with a small transverse emittance. AWA expects to exchange a large transverse emittance with a small longitudinal emittance. In this paper we discuss recent results at A0 and AWA and future plans for these experiments.

  17. Emittance exchange results

    SciTech Connect

    Fliller, R.P., III; Koeth, T.; /Rutgers U., Piscataway

    2009-09-01

    The promise of next-generation light sources depends on the availability of ultra-low emittance electron sources. One method of producing low transverse emittance beams is to generate a low longitudinal emittance beam and exchange it with a large transverse emittance. Experiments are underway at Fermilab's A0 Photoinjector and ANL's Argonne Wakefield Accelerator using the exchange scheme of Kim and Sessler. The experiment at the A0 Photoinjector exchanges a large longitudinal emittance with a small transverse emittance. AWA expects to exchange a large transverse emittance with a small longitudinal emittance. In this paper we discuss recent results at A0 and AWA and future plans for these experiments.

  18. Scalable Microstructured Photoconductive Terahertz Emitters

    NASA Astrophysics Data System (ADS)

    Winnerl, Stephan

    2012-04-01

    The development of scalable emitters for pulsed broadband terahertz (THz) radiation is reviewed. Their large active area in the 1 - 100 mm2 range allows for using the full power of state-of-the-art femtosecond lasers for excitation of charge carriers. Large fields for acceleration of the photogenerated carriers are achieved at moderate voltages by interdigitated electrodes. This results in efficient emission of single-cycle THz waves. THz field amplitudes in the range of 300 V/cm and 17 kV/cm are reached for excitation with 10 nJ pulses from Ti:sapphire oscillators and for excitation with 5 ?J pulses from amplified lasers, respectively. The corresponding efficiencies for conversion of near-infrared to THz radiation are 2.5 10-4 (oscillator excitation) and 2 10-3 (amplifier excitation). In this article the principle of operation of scalable emitters is explained and different technical realizations are described. We demonstrate that the scalable concept provides freedom for designing optimized antenna patterns for different polarization modes. In particular emitters for linearly, radially and azimuthally polarized radiation are discussed. The success story of photoconductive THz emitters is closely linked to the development of mode-locked Ti:sapphire lasers. GaAs is an ideal photoconductive material for THz emitters excited with Ti:sapphire lasers, which are widely used in research laboratories. For many applications, especially in industrial environments, however, fiber-based lasers are strongly preferred due to their lower cost, compactness and extremely stable operation. Designing photoconductive emitters on InGaAs materials, which have a low enough energy gap for excitation with fiber lasers, is challenging due to the electrical properties of the materials. We discuss why the challenges are even larger for microstructured THz emitters as compared to conventional photoconductive antennas and present first results of emitters suitable for excitation with ytterbium-based fiber lasers. Furthermore an alternative concept, namely the lateral photo-Dember emitter, is presented. Due to the strong THz output scalable emitters are well suited for THz systems with fast data acquisition. Here the application of scalable emitters in THz spectrometers without mechanical delay stages, providing THz spectra with 1 GHz spectral resolution and a signal-to-noise ratio of 37 dB within 1 s, is presented. Finally a few highlight experiments with radiation from scalable THz emitters are reviewed. This includes a brief discussion of near-field microscopy experiments as well as an overview over gain studies of quantum-cascade lasers.

  19. Ground-penetrating radar methods

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ground-penetrating radar geophysical methods are finding greater and greater use in agriculture. With the ground-penetrating radar (GPR) method, an electromagnetic radio energy (radar) pulse is directed into the subsurface, followed by measurement of the elapsed time taken by the radar signal as it ...

  20. Asymmetrical field emitter

    SciTech Connect

    Fleming, James G.; Smith, Bradley K.

    1995-01-01

    Providing a field emitter with an asymmetrical emitter structure having a very sharp tip in close proximity to its gate. One preferred embodiment of the present invention includes an asymmetrical emitter and a gate. The emitter having a tip and a side is coupled to a substrate. The gate is connected to a step in the substrate. The step has a top surface and a side wall that is substantially parallel to the side of the emitter. The tip of the emitter is in close proximity to the gate. The emitter is at an emitter potential, and the gate is at a gate potential such that with the two potentials at appropriate values, electrons are emitted from the emitter. In one embodiment, the gate is separated from the emitter by an oxide layer, and the emitter is etched anisotropically to form its tip and its asymmetrical structure.

  1. Asymmetrical field emitter

    DOEpatents

    Fleming, J.G.; Smith, B.K.

    1995-10-10

    A method is disclosed for providing a field emitter with an asymmetrical emitter structure having a very sharp tip in close proximity to its gate. One preferred embodiment of the present invention includes an asymmetrical emitter and a gate. The emitter having a tip and a side is coupled to a substrate. The gate is connected to a step in the substrate. The step has a top surface and a side wall that is substantially parallel to the side of the emitter. The tip of the emitter is in close proximity to the gate. The emitter is at an emitter potential, and the gate is at a gate potential such that with the two potentials at appropriate values, electrons are emitted from the emitter. In one embodiment, the gate is separated from the emitter by an oxide layer, and the emitter is etched anisotropically to form its tip and its asymmetrical structure. 17 figs.

  2. Statistical processing of ground-penetrating radar signals for mine detection

    NASA Astrophysics Data System (ADS)

    Duston, Brian M.; Lang, David A.

    2001-10-01

    The Mine Hunter/Killer Close-In Detector (MH/K CID) uses Ground Penetrating Radar (GPR) as it's primary sensor. The GPR processor requires a sensitive detection algorithm to detect anomalies that may indicate the presence of a buried land mine. A general formula for a statistical detector is presented, consisting of a median filter to eliminate outliers, a local mean estimator using a Blackman window and a local covariance estimator. Advanced methods for robust estimation of the covariance matrix are presented and evaluated using data collected by the CID over buried land mines. This GPR detector is used as a preprocessor for image processing and mine classification algorithms that are used by a sensor fusion processor to determine when to activate the 'Killer' mechanism to neutralize the buried mine.

  3. Planetary radars have announced our presence - Thoughts on short duration signals, verification and responses

    NASA Technical Reports Server (NTRS)

    Boyce, Peter B.

    1991-01-01

    The idea is set forth that criteria are developed to assess whether a particular limited-duration signal is evidence of extraterrestrial intelligence (ETI). The nature of short-duration signals is discussed to set the stage for a description of the NASA Microwave Observing Program. Criteria for evaluating the possibility of ETI origin for a signal include length, strength, band width, and accompaniment by a pseudorandom repetition. SETI is described as an educational document that can be employed to illustrate the real difficulties of interstellar communication. It is concluded that to avoid the negative aspects of SETI activities such as the notion of fashioning a return signal the intergenerational nature of interstellar communication be emphasized for the public.

  4. Removal of systematic seasonal atmospheric signal from interferometric synthetic aperture radar ground deformation time series

    NASA Astrophysics Data System (ADS)

    Samsonov, Sergey V.; Trishchenko, Alexander P.; Tiampo, Kristy; González, Pablo J.; Zhang, Yu; Fernández, José

    2014-09-01

    Applying the Multidimensional Small Baseline Subset interferometric synthetic aperture radar algorithm to about 1500 Envisat and RADARSAT-2 interferograms spanning 2003-2013, we computed time series of ground deformation over Naples Bay Area in Italy. Two active volcanoes, Vesuvius and Campi Flegrei, are located in this area in close proximity to the densely populated city of Naples. For the first time, and with remarkable clarity, we observed decade-long elevation-dependent seasonal oscillations of the vertical displacement component with a peak-to-peak amplitude of up to 3.0 cm, substantially larger than the long-term deformation rate (<0.6 cm/yr). Analysis, utilizing surface weather and radiosonde data, linked observed oscillations with seasonal fluctuations of water vapor, air pressure, and temperature in the lower troposphere. The modeled correction is in a good agreement with observed results. The mean, absolute, and RMS differences are 0.014 cm, 0.073 cm, and 0.087 cm, respectively. Atmospherically corrected time series confirmed continuing subsidence at Vesuvius previously observed by geodetic techniques.

  5. Threshold detection of radar signals off the sea surface in non-Gaussian clutter and deterministic interference: II - statistical analysis of ROI surface data

    SciTech Connect

    Middleton, D.

    1996-05-02

    The purpose of this report is to motivate and outline a program of data analysis, for data obtained from radar returns from ocean surfaces perturbed by internal waves and wind-wave interactions. The ultimate aims of this analysis are to provide the appropriate statistics of the signals returned from these ocean surfaces for: (1) use in implementing and evaluating optimum and near-optimum signal processing procedures for detecting and evaluating (i.e., measuring) these internal wave effects and, (2) to provide quantitative physical insight into both the surface scatter and subsurface mechanisms which determine the received radar signals. Here the focus is initially on the needed statistics of the radar returns. These are primarily: (i) the (instantaneous) amplitude and envelope probability densities, (pdf`s) and distributions (PDFS) of the returns and, (ii) analogous statistics for the intensities (associated with the pixel data). Also required are: (iii) space-time covariance data of the returns, for further improvement of detection capabilities. Preliminary evidence and earlier experiments suggest that these data [(i), (ii)] are nongaussian and strongly so at times. This in turn, if not properly taken into account, can greatly degrade signal detection in the usual weak-signal regimes [1],[2].

  6. Emittance Theory for Thin Film Selective Emitter

    NASA Technical Reports Server (NTRS)

    Chubb, Donald L.; Lowe, Roland A.; Good, Brian S.

    1994-01-01

    Thin films of high temperature garnet materials such as yttrium aluminum garnet (YAG) doped with rare earths are currently being investigated as selective emitters. This paper presents a radiative transfer analysis of the thin film emitter. From this analysis the emitter efficiency and power density are calculated. Results based on measured extinction coefficients for erbium-YAG and holmium-YAG are presented. These results indicated that emitter efficiencies of 50 percent and power densities of several watts/sq cm are attainable at moderate temperatures (less than 1750 K).

  7. Modelisation du Signal Radar EN Milieu Stratifie et Evaluation de Techniques de Mesure de L'humidite du Sol

    NASA Astrophysics Data System (ADS)

    Boisvert, Johanne

    La presente etude se penche sur des problemes relies a l'echantillonnage de l'humidite de sol et a l'estimation du signal radar sur sols nus. Le travail se divise en deux volets. Le volet 1 evalue trois techniques de mesure de l'humidite du sol (gravimetrie, reflectometrie temporelle et sonde dielectrique) et deux protocoles d'echantillonnage. Dans le volet 2, un modele de simulation du signal en milieu stratifie est developpe, et les estimes de signal obtenus sont compares aux estimes bases uniquement sur une valeur moyenne d'humidite du sol prise sur une profondeur fixe d'echantillonnage. Les differences entre les deux estimes dependent de la frequence et du choix judicieux de la profondeur d'echantillonnage; elles sont plus importantes aux faibles angles et en polarisation HV, puis VV. Le modele de simulation a aussi ete utilise pour etudier la profondeur de penetration du signal et en deduire la profondeur optimale d'echantillonnage en tenant compte des caracteristiques du signal. Une variation de 25 ^circ de l'angle d'incidence a peu d'effet sur la profondeur de penetration en bande Ku; l'ecart reste inferieur ou egal a 0,5 cm en bande C mais peut atteindre 1,3 cm en bande L. L'impact de la polarisation est nul en bande Ku mais croi t avec l'angle d'incidence en bande C et L. A 50^circ, il est, en moyenne de 1 cm en bande C et de 2 cm en bande L. En polarisation VV, la profondeur croi t avec une augmentation de l'angle alors que l'effet est inverse en polarisation HH. Deux methodes pour estimer la profondeur d'echantillonnage en conditions operationnelles sont presentees. Lorsqu'on inverse un modele pour estimer l'humidite du sol a partir du signal, ces methodes permettent aussi d'estimer l'epaisseur de sol representee par l'humidite ainsi estimee.

  8. Doppler frequency in interplanetary radar and general relativity

    NASA Technical Reports Server (NTRS)

    Mcvittie, G. C.

    1972-01-01

    The change of frequency of an interplanetary radar signal sent from the earth to another planet or to a space probe is worked out according to general relativity. The Schwarzschild spacetime is employed and its null geodesics control the motion of the signals. Exact Doppler frequency formulas are derived for one-way and two-way radar in terms of an arbitrary Schwarzschild radial coordinate. A reduction to the special relativity case is used to interpret the formulas in terms of the relative radial velocity of emitter and target. The general relativity corrections are worked out approximately for each of three possible Schwarzschild radial coordinates, and a numerical example is given. The amount of the correction is different according as one or the other of the Schwarzschild coordinates is identified with the radius vector deduced from classical celestial mechanics. The identification problem is discussed.

  9. Interface and post-processing requirements to insert an acousto-optic range-Doppler processor into an advanced radar digital signal processor

    NASA Astrophysics Data System (ADS)

    Durrett, Rodney A.; Dean, R.; McCarthy, Daniel F.; Viveiros, Edward A.; Caraway, Willie

    1995-06-01

    The interfacing and post-processing requirements for the development and insertion of an acousto-optic (AO), range-Doppler processor will be described. This system has been configured to operate as an integral part of the signal processing chain of an advanced spread- spectrum radar developed by the US Army Missile Command (MICOM). This MICOM radar transmits a continuous repeated, biphase-coded waveform and processes a block of received data to detect and track targets i range and Doppler in the presence of severe ground clutter. Multiple code rates are processed to extend the range window through application of residue number techniques. Range and Doppler processing are achieved in the AO processor using an additive triple-product processor architecture that coherently detects the range-Doppler information on a high-speed, custom 3D CCD detector array developed by the Army Research Laboratory. We present the interfaces to the radar and the post-processing of the data produced by the AO range-Doppler processor into the format required by the MICOM signal processor. The interfaces comprise the extraction of digital in-phase and quadrature data, the condition of this data for the AO range-Doppler processor, and the insertion of the post- processed optical data into the radar signal processor. Timing and latency issues are critical to real-time operation (creating range-Doppler images at approximately 1600 Hz frames rates) within the MICOM radar. The post-processing section cover optical processor architecture/post-processing tradeoffs, focusing on requirements, algorithms, and hardware implementation.

  10. Emittance Theory for Cylindrical Fiber Selective Emitter

    NASA Technical Reports Server (NTRS)

    Chubb, Donald L.

    1998-01-01

    A fibrous rare earth selective emitter is approximated as an infinitely long cylinder. The spectral emittance, epsilon(lambda), is obtained by solving the radiative transfer equations with appropriate boundary conditions and uniform temperature. For optical depths, Kappa(R) = alpha(lambda)R, where alpha(lambda) is the extinction coefficient and R is the cylinder radius, greater than 1 the spectral emittance is nearly at its maximum value. There is an optimum cylinder radius, R(opt), for maximum emitter efficiency, eta(E). Values for R(opt) are strongly dependent on the number of emission bands of the material. The optimum radius decreases slowly with increasing emitter temperature, while the maximum efficiency and useful radiated power increase rapidly with increasing temperature.

  11. Signal processing and image formation using low-frequency ultra-wideband radar data

    NASA Astrophysics Data System (ADS)

    Nguyen, Lam H.; Ressler, Marc; Soumekh, Mehrdad

    2004-09-01

    In support of the U.S. Army Night Vision And Electronic Sensors Directorate (NVESD), the U.S. Army Research Laboratory (ARL) has developed infrastructures, tools, and algorithms to evaluate the data set. This paper focuses on the signal processing and image formation using data from a low-frequency ultra-wideband sensor. We examine various issues that are associated with this class of SAR databases such as radio frequency interference (RFI), the effects of spectral notches, and errors in motion measurement to image quality. We show the pre-processing steps such as frequency and phase calibration, radio frequency interference extraction. We also show the application of digital spotlight technique to correct motion errors introduced by the measurement system. Finally, we show the resulting SAR imagery of various minefields.

  12. Apodized RFI filtering of synthetic aperture radar images

    SciTech Connect

    Doerry, Armin Walter

    2014-02-01

    Fine resolution Synthetic Aperture Radar (SAR) systems necessarily require wide bandwidths that often overlap spectrum utilized by other wireless services. These other emitters pose a source of Radio Frequency Interference (RFI) to the SAR echo signals that degrades SAR image quality. Filtering, or excising, the offending spectral contaminants will mitigate the interference, but at a cost of often degrading the SAR image in other ways, notably by raising offensive sidelobe levels. This report proposes borrowing an idea from nonlinear sidelobe apodization techniques to suppress interference without the attendant increase in sidelobe levels. The simple post-processing technique is termed Apodized RFI Filtering (ARF).

  13. 1999 IEEE radar conference

    SciTech Connect

    1999-07-01

    This conference addresses the stringent radar technology demands facing the next century: target detection, tracking and identification; changing target environment; increased clutter mitigation techniques; air traffic control; transportation; drug smuggling; remote sensing, and other consumer oriented applications. A timely discussion covers how to minimize costs for these emerging areas. Advanced radar technology theory and applications are also presented. Topics covered include: signal processing; space time adaptive processing/antennas; surveillance technology; radar systems; dual use; and phenomenology.

  14. Bistatic-radar investigation

    NASA Technical Reports Server (NTRS)

    Howard, H. T.; Tyler, G. L.

    1972-01-01

    A bistatic-radar study during the Apollo 15 flight is reviewed, with the orbiting command module as one terminal. Bistatic-radar slopes are compared to geological maps of Copernicus and Riphaeus mountain regions and Kepler region. Basic theory is discussed, including the radar echoes composed of the sum of the reflections from the moon area that is mutually visible from the spacecraft and earth. A signal receiving system and data processing system are outlined schematically.

  15. Support vector data description for detecting the air-ground interface in ground penetrating radar signals

    NASA Astrophysics Data System (ADS)

    Wood, Joshua; Wilson, Joseph

    2011-06-01

    In using GPR images for landmine detection it is often useful to identify the air-ground interface in the GRP signal for alignment purposes. A common simple technique for doing this is to assume that the highest return in an A-scan is from the reflection due to the ground and to use that as the location of the interface. However there are many situations, such as the presence of nose clutter or shallow sub-surface objects, that can cause the global maximum estimate to be incorrect. A Support Vector Data Description (SVDD) is a one-class classifier related to the SVM which encloses the class in a hyper-sphere as opposed to using a hyper-plane as a decision boundary. We apply SVDD to the problem of detection of the air-ground interface by treating each sample in an A-scan, with some number of leading and trailing samples, as a feature vector. Training is done using a set of feature vectors based on known interfaces and detection is done by creating feature vectors from each of the samples in an A-scan, applying the trained SVDD to them and selecting the one with the least distance from the center of the hyper-sphere. We compare this approach with the global maximum approach, examining both the performance on human truthed data and how each method affects false alarm and true positive rates when used as the alignment method in mine detection algorithms.

  16. Comparison of algorithms for finding the air-ground interface in ground penetrating radar signals

    NASA Astrophysics Data System (ADS)

    Wood, Joshua; Bolton, Jeremy; Casella, George; Collins, Leslie; Gader, Paul; Glenn, Taylor; Ho, Jeffery; Lee, Wen; Mueller, Richard; Smock, Brandon; Torrione, Peter; Watford, Ken; Wilson, Joseph

    2011-06-01

    In using GPR images for landmine detection it is often useful to identify the air-ground interface in the GPR signal for alignment purposes. A number of algorithms have been proposed to solve the air-ground interface detection problem, including some which use only A-scan data, and others which track the ground in B-scans or C-scans. Here we develop a framework for comparing these algorithms relative to one another and we examine the results. The evaluations are performed on data that have been categorized in terms of features that make the air-ground interface difficult to find or track. The data also have associated human selected ground locations, from multiple evaluators, that can be used for determining correctness. A distribution is placed over each of the human selected ground locations, with the sum of these distributions at the algorithm selected location used as a measure of its correctness. Algorithms are also evaluated in terms of how they affect the false alarm and true positive rates of mine detection algorithms that use ground aligned data.

  17. Subsurface "radar" camera

    NASA Technical Reports Server (NTRS)

    Jain, A.

    1977-01-01

    Long-wave length multiple-frequency radar is used for imaging and determining depth of subsurface stratified layers. Very-low frequency radar signals pinpoint below-ground strata via direct imagery techniques. Variation of frequency and scanning angle adjusts image depth and width.

  18. Using antennas separated in flight direction to avoid effect of emitter clock drift in geolocation

    DOEpatents

    Ormesher, Richard C.; Bickel, Douglas L

    2012-10-23

    The location of a land-based radio frequency (RF) emitter is determined from an airborne platform. RF signaling is received from the RF emitter via first and second antennas. In response to the received RF signaling, signal samples for both antennas are produced and processed to determine the location of the RF emitter.

  19. Photonically Engineered Incandescent Emitter

    DOEpatents

    Gee, James M.; Lin, Shawn-Yu; Fleming, James G.; Moreno, James B.

    2005-03-22

    A photonically engineered incandescence is disclosed. The emitter materials and photonic crystal structure can be chosen to modify or suppress thermal radiation above a cutoff wavelength, causing the emitter to selectively emit in the visible and near-infrared portions of the spectrum. An efficient incandescent lamp is enabled thereby. A method for fabricating a three-dimensional photonic crystal of a structural material, suitable for the incandescent emitter, is also disclosed.

  20. Photonically engineered incandescent emitter

    DOEpatents

    Gee, James M.; Lin, Shawn-Yu; Fleming, James G.; Moreno, James B.

    2003-08-26

    A photonically engineered incandescence is disclosed. The emitter materials and photonic crystal structure can be chosen to modify or suppress thermal radiation above a cutoff wavelength, causing the emitter to selectively emit in the visible and near-infrared portions of the spectrum. An efficient incandescent lamp is enabled thereby. A method for fabricating a three-dimensional photonic crystal of a structural material, suitable for the incandescent emitter, is also disclosed.

  1. A microprogrammable radar controller

    NASA Technical Reports Server (NTRS)

    Law, D. C.

    1986-01-01

    The Wave Propagation Lab. has completed the design and construction of a microprogrammable radar controller for atmospheric wind profiling. Unlike some radar controllers using state machines or hardwired logic for radar timing, this design is a high speed programmable sequencer with signal processing resources. A block diagram of the device is shown. The device is a single 8 1/2 inch by 10 1/2 inch printed circuit board and consists of three main subsections: (1) the host computer interface; (2) the microprogram sequencer; and (3) the signal processing circuitry. Each of these subsections are described in detail.

  2. Radar Imaging of Non-Uniformly Rotating Targets via a Novel Approach for Multi-Component AM-FM Signal Parameter Estimation

    PubMed Central

    Wang, Yong

    2015-01-01

    A novel radar imaging approach for non-uniformly rotating targets is proposed in this study. It is assumed that the maneuverability of the non-cooperative target is severe, and the received signal in a range cell can be modeled as multi-component amplitude-modulated and frequency-modulated (AM-FM) signals after motion compensation. Then, the modified version of Chirplet decomposition (MCD) based on the integrated high order ambiguity function (IHAF) is presented for the parameter estimation of AM-FM signals, and the corresponding high quality instantaneous ISAR images can be obtained from the estimated parameters. Compared with the MCD algorithm based on the generalized cubic phase function (GCPF) in the authors’ previous paper, the novel algorithm presented in this paper is more accurate and efficient, and the results with simulated and real data demonstrate the superiority of the proposed method. PMID:25806870

  3. Diamond fiber field emitters

    DOEpatents

    Blanchet-Fincher, Graciela B. (Wilmington, DE); Coates, Don M. (Santa Fe, NM); Devlin, David J. (Los Alamos, NM); Eaton, David F. (Wilmington, DE); Silzars, Aris K. (Landenburg, PA); Valone, Steven M. (Santa Fe, NM)

    1996-01-01

    A field emission electron emitter comprising an electrode formed of at least one diamond, diamond-like carbon or glassy carbon composite fiber, said composite fiber having a non-diamond core and a diamond, diamond-like carbon or glassy carbon coating on said non-diamond core, and electronic devices employing such a field emission electron emitter.

  4. Pulsed hybrid field emitter

    DOEpatents

    Sampayan, Stephen E.

    1998-01-01

    A hybrid emitter exploits the electric field created by a rapidly depoled ferroelectric material. Combining the emission properties of a planar thin film diamond emitter with a ferroelectric alleviates the present technological problems associated with both types of emitters and provides a robust, extremely long life, high current density cathode of the type required by emerging microwave power generation, accelerator technology and display applications. This new hybrid emitter is easy to fabricate and not susceptible to the same failures which plague microstructure field emitter technology. Local electrode geometries and electric field are determined independently from those for optimum transport and brightness preservation. Due to the large amount of surface charge created on the ferroelectric, the emitted electrons have significant energy, thus eliminating the requirement for specialized phosphors in emissive flat-panel displays.

  5. Pulsed hybrid field emitter

    DOEpatents

    Sampayan, S.E.

    1998-03-03

    A hybrid emitter exploits the electric field created by a rapidly depoled ferroelectric material. Combining the emission properties of a planar thin film diamond emitter with a ferroelectric alleviates the present technological problems associated with both types of emitters and provides a robust, extremely long life, high current density cathode of the type required by emerging microwave power generation, accelerator technology and display applications. This new hybrid emitter is easy to fabricate and not susceptible to the same failures which plague microstructure field emitter technology. Local electrode geometries and electric field are determined independently from those for optimum transport and brightness preservation. Due to the large amount of surface charge created on the ferroelectric, the emitted electrons have significant energy, thus eliminating the requirement for specialized phosphors in emissive flat-panel displays. 11 figs.

  6. Intelligent radar data processing

    NASA Astrophysics Data System (ADS)

    Holzbaur, Ulrich D.

    The application of artificial intelligence principles to the processing of radar signals is considered theoretically. The main capabilities required are learning and adaptation in a changing environment, processing and modeling information (especially dynamics and uncertainty), and decision-making based on all available information (taking its reliability into account). For the application to combat-aircraft radar systems, the tasks include the combination of data from different types of sensors, reacting to electronic counter-countermeasures, evaluation of how much data should be acquired (energy and radiation management), control of the radar, tracking, and identification. Also discussed are related uses such as monitoring the avionics systems, supporting pilot decisions with respect to the radar system, and general applications in radar-system R&D.

  7. Micropower impulse radar imaging

    SciTech Connect

    Hall, M.S.

    1995-11-01

    From designs developed at the Lawrence Livermore National Laboratory (LLNL) in radar and imaging technologies, there exists the potential for a variety of applications in both public and private sectors. Presently tests are being conducted for the detection of buried mines and the analysis of civil structures. These new systems use a patented ultra-wide band (impulse) radar technology known as Micropower Impulse Radar (GPR) imaging systems. LLNL has also developed signal processing software capable of producing 2-D and 3-D images of objects embedded in materials such as soil, wood and concrete. My assignment while at LLNL has focused on the testing of different radar configurations and applications, as well as assisting in the creation of computer algorithms which enable the radar to scan target areas of different geometeries.

  8. Attenuation of Weather Radar Signals Due to Wetting of the Radome by Rainwater or Incomplete Filling of the Beam Volume

    NASA Technical Reports Server (NTRS)

    Merceret, Francis J.; Ward, Jennifer G.

    2000-01-01

    A search of scientific literature, both printed and electronic, was undertaken to provide quantitative estimates of attenuation effects of rainfall on weather radar radomes. The emphasis was on C-band (5 cm) and S-Band (10 cm) wavelengths. An empirical model was developed to estimate two-way wet radome losses as a function of frequency and rainfall rate for both standard and hydrophobic radomes. The model fits most of the published data within +/- 1 dB at both target wavelengths for rain rates from less than ten to more than 200 mm/hr. Rainfall attenuation effects remain under 1 dB at both frequencies regardless of radome type for rainfall rates up to 10 mm/hr. S-Band losses with a hydrophobic radome such as that on the WSR-88D remain under 1 dB up to 100 mm/hr. C-Band losses on standard radomes such as that on the Patrick AFB (Air Force Base) WSR-74C can reach as much as 5 dB at 50 mm/hr. In addition, calculations were performed to determine the reduction in effective reflectivity, Z, when a radar target is smaller than the sampling volume of the radar. Results are presented for both the Patrick Air Force Base WSR-74C and the WSR-88D as a function of target size and range.

  9. Enhanced Mars Radar Observations with the Goldstone Solar System Radar

    NASA Astrophysics Data System (ADS)

    Haldemann, A. F. C.; Jurgens, R. F.; Anderson, F. S.; Slade, M. A.

    2000-10-01

    The Goldstone Solar System Radar (GSSR) has successfully collected radar echo data from Mars over the past 30 years. GSSR radar data were critical in assessing the Viking Lander 1 as well as the Mars Pathfinder landing sites. A reprocessing to common format of the last ten years worth of GSSR Mars delay-Doppler sub-Earth radar track profiles was recently completed in aid of landing site characterization. The radar data obtained since 1988 by the GSSR comprise some 73 delay-Doppler radar tracks. Sixteen of those tracks also have interferometric radar data, which has never been processed, because the signal to noise is insufficient to constrain both the phases and the radar scattering parameters. The new topographic data from the Mars Orbiter Laser Altimeter on the Mars Global Surveyor spacecraft offer the best means to finally make radar maps that extend the radar properties coverage some 3 to 4 degrees beyond the sub-Earth radar track. This would be a significant expansion of the dataset, and is all the more warranted as the radar spatial resolution improves away from the sub-Earth track. At the outer edges the radar resolution cell is of the same order of size as the landing site ellipses for future mission (approximately 20 km diameter). Initial results of processing the interferometric data will be presented at the meeting. The 2001 Mars opposition offers an opportunity to fill in some areas where radar data are lacking in the current dataset. We are planning 18 radar experiments from May through July of 2001. The goal of the observations will be to provide new, interferometric, improved-spatial-resolution radar data over the equatorial regions (latitudes -2 to +7) of Mars, in particular over the so-called Hematite Site in Sinus Meridiani. This work was carried out at the Jet Propulsion Laboratory, a division of the California Institute of Technology, with funding from the Mars Data Analysis Program of NASA OSS.

  10. Multitone harmonic radar

    NASA Astrophysics Data System (ADS)

    Mazzaro, Gregory J.; Martone, Anthony F.

    2013-05-01

    Nonlinear radar exploits the electronic response from a target whose reflected frequencies are different from those transmitted. Reception of frequencies that are not part of the transmitted probe distinguishes the received signal from a linear return produced by clutter and indicates the presence of electronics. Presented in this paper is a type of nonlinear radar that transmits multiple frequencies and listens for a harmonic of these frequencies as well as other frequencies near that harmonic. A laboratory test-bed has been constructed to demonstrate the multitone radar concept. Measurements of nonlinear responses from RF devices probed by multiple tones are reported.

  11. Technology: Photonics illuminates the future of radar

    NASA Astrophysics Data System (ADS)

    McKinney, Jason D.

    2014-03-01

    The first implementation of a fully photonics-based coherent radar system shows how photonic methods for radio-frequency signal generation and measurement may facilitate the development of software-defined radar systems. See Letter p.341

  12. Obstacle penetrating dynamic radar imaging system

    DOEpatents

    Romero, Carlos E.; Zumstein, James E.; Chang, John T.; Leach, Jr.. Richard R.

    2006-12-12

    An obstacle penetrating dynamic radar imaging system for the detection, tracking, and imaging of an individual, animal, or object comprising a multiplicity of low power ultra wideband radar units that produce a set of return radar signals from the individual, animal, or object, and a processing system for said set of return radar signals for detection, tracking, and imaging of the individual, animal, or object. The system provides a radar video system for detecting and tracking an individual, animal, or object by producing a set of return radar signals from the individual, animal, or object with a multiplicity of low power ultra wideband radar units, and processing said set of return radar signals for detecting and tracking of the individual, animal, or object.

  13. Analysis, comparison, and modeling of radar interferometry, date of surface deformation signals associated with underground explosions, mine collapses and earthquakes. Phase I: underground explosions, Nevada Test Site

    SciTech Connect

    Foxall, W; Vincent, P; Walter, W

    1999-07-23

    We have previously presented simple elastic deformation modeling results for three classes of seismic events of concern in monitoring the CTBT--underground explosions, mine collapses and earthquakes. Those results explored the theoretical detectability of each event type using synthetic aperture radar interferometry (InSAR) based on commercially available satellite data. In those studies we identified and compared the characteristics of synthetic interferograms that distinguish each event type, as well the ability of the interferograms to constrain source parameters. These idealized modeling results, together with preliminary analysis of InSAR data for the 1995 mb 5.2 Solvay mine collapse in southwestern Wyoming, suggested that InSAR data used in conjunction with regional seismic monitoring holds great potential for CTBT discrimination and seismic source analysis, as well as providing accurate ground truth parameters for regional calibration events. In this paper we further examine the detectability and ''discriminating'' power of InSAR by presenting results from InSAR data processing, analysis and modeling of the surface deformation signals associated with underground explosions. Specifically, we present results of a detailed study of coseismic and postseismic surface deformation signals associated with underground nuclear and chemical explosion tests at the Nevada Test Site (NTS). Several interferograms were formed from raw ERS-1/2 radar data covering different time spans and epochs beginning just prior to the last U.S. nuclear tests in 1992 and ending in 1996. These interferograms have yielded information about the nature and duration of the source processes that produced the surface deformations associated with these events. A critical result of this study is that significant post-event surface deformation associated with underground nuclear explosions detonated at depths in excess of 600 meters can be detected using differential radar interferometry. An immediate implication of this finding is that underground nuclear explosions may not need to be captured coseismically by radar images acquired before and after an event in order to be detectable. This has obvious advantages in CTBT monitoring since suspect seismic events--which usually can be located within a 100 km by 100 km area of an ERS-1/2 satellite frame by established seismic methods-can be imaged after the event has been identified and located by existing regional seismic networks. Key Words: InSAR, SLC images, interferogram, synthetic interferogram, ERS-1/2 frame, phase unwrapping, DEM, coseismic, postseismic, source parameters.

  14. DIAMOND SECONDARY EMITTER

    SciTech Connect

    BEN-ZVI, I.; RAO, T.; BURRILL, A.; CHANG, X.; GRIMES, J.; RANK, J.; SEGALOV, Z.; SMEDLEY, J.

    2005-10-09

    We present the design and experimental progress on the diamond secondary emitter as an electron source for high average power injectors. The design criteria for average currents up to 1 A and charge up to 20 nC are established. Secondary Electron Yield (SEY) exceeding 200 in transmission mode and 50 in emission mode have been measured. Preliminary results on the design and fabrication of the self contained capsule with primary electron source and secondary electron emitter will also be presented.

  15. Radar principles

    NASA Technical Reports Server (NTRS)

    Sato, Toru

    1989-01-01

    Discussed here is a kind of radar called atmospheric radar, which has as its target clear air echoes from the earth's atmosphere produced by fluctuations of the atmospheric index of refraction. Topics reviewed include the vertical structure of the atmosphere, the radio refractive index and its fluctuations, the radar equation (a relation between transmitted and received power), radar equations for distributed targets and spectral echoes, near field correction, pulsed waveforms, the Doppler principle, and velocity field measurements.

  16. Inverse synthetic aperture radar imaging of targets with complex motions based on modified chirp rate-quadratic chirp rate distribution for cubic phase signal

    NASA Astrophysics Data System (ADS)

    Yanyan, Li; Tao, Su; Jibin, Zheng

    2015-01-01

    For targets with complex motions, the time-varying Doppler frequency deteriorates inverse synthetic aperture radar (ISAR) images. After range alignment and phase adjustment, azimuth echoes in a range cell can be modeled as multicomponent cubic phase signals (CPSs). The chirp rate and the quadratic chirp rate of the CPS are identified as the causes of the time-varying Doppler frequency; thus, it is necessary to estimate these two parameters correctly to obtain a well-focused ISAR image. The parameter-estimation algorithm based on the modified chirp rate-quadratic chirp rate distribution (M-CRQCRD) is proposed for the CPS and applied to the ISAR imaging of targets with complex motions. The computational cost of M-CRQCRD is low, because it can be implemented by the fast Fourier transform (FFT) and the nonuniform FFT easily. Compared to two representative parameter-estimation algorithms, the M-CRQCRD can acquire a higher antinoise performance due to the introduction of an optimal lag-time. Through simulations and analyses for the synthetic radar data, the effectiveness of the M-CRQCRD and the imaging algorithm based on the M-CRQCRD are verified.

  17. A complementary filtering technique for deriving aircraft velocity and position information. [onboard navigation system and radar tracking signals for instrument landing approach guidance

    NASA Technical Reports Server (NTRS)

    Niessen, F. R.

    1975-01-01

    An onboard navigation system which employed complementary filtering was developed to provide velocity and position information. The inputs to the mix filter included both acceleration inputs, which provided high-frequency position and velocity information, and radar position inputs, which provided the low-frequency position and velocity information. Onboard aircraft instrumentation, including attitude reference gyros and body-mounted accelerometers, was used to provide the acceleration information. An in-flight comparison of signal quality and accuracy showed good agreement between the complementary filtering system and an aided inertial navigation system. Furthermore, the complementary filtering system was proven to be satisfactory in control and display system applications for both automatic and pilot-in-the-loop instrument approaches and landings.

  18. Radar-82; Proceedings of the International Conference, London, England, October 18-20, 1982

    NASA Astrophysics Data System (ADS)

    Topics related to radar systems are considered, taking into account intrapulse polarization agile radar, search strategies of phased array radars, design and performance considerations in modern phased array radar, a new generation airborne synthetic aperture radar system, results from a new dual band radar for sea surface and aircraft search, modular survivable radar for battlefield surveillance applications, and the Dolphin naval surveillance radar. Other subjects explored are concerned with sequential detection and MTI, adaptive processing techniques, HF/VHF radar, coherent radar processing, multisite radar operation, radar sea clutter, air traffic control, simulation and data processing, aspects of target recognition, low probability of intercept radar and passive operation, signal processing, low sidelobe antennas, and radar returns from weather and land. Attention is also given to beam forming with phased array antennas, optical fiber networks for signal distribution and control in phased array radars, and radar tracking systems. For individual items see A84-10752 to A84-10841

  19. Radar applications overview

    NASA Astrophysics Data System (ADS)

    Greenspan, Marshall

    1996-06-01

    During the fifty years since its initial development as a means of providing early warning of airborne attacks against allied countries during World War II, radar systems have developed to the point of being highly mobile and versatile systems capable of supporting a wide variety of remote sensing applications. Instead of being tied to stationary land-based sites, radar systems have found their way into highly mobile land vehicles as well as into aircraft, missiles, and ships of all sizes. Of all these applications, however, the most exciting revolution has occurred in the airborne platform arena where advanced technology radars can be found in all shapes and sizes...ranging from the large AWACS and Joint STARS long range surveillance and targeting systems to small millimeter wave multi-spectral sensors on smart weapons that can detect and identify their targets through the use of highly sophisticated digital signal processing hardware and software. This paper presents an overview of these radar applications with the emphasis on modern airborne sensors that span the RF spectrum. It will identify and describe the factors that influence the parameters of low frequency and ultra wide band radars designed to penetrate ground and dense foliage environments and locate within them buried mines, enemy armor, and other concealed or camouflaged weapons of war. It will similarly examine the factors that lead to the development of airborne radar systems that support long range extended endurance airborne surveillance platforms designed to detect and precision-located both small high speed airborne threats as well as highly mobile time critical moving and stationary surface vehicles. The mission needs and associated radar design impacts will be contrasted with those of radar systems designed for high maneuverability rapid acquisition tactical strike warfare platforms, and shorter range cued air-to-surface weapons with integral smart radar sensors.

  20. Cancer from internal emitters

    SciTech Connect

    Boecker, B.B.; Griffith, W.C. Jr.

    1995-10-01

    Irradiation from internal emitters, or internally deposited radionuclides, is an important component of radiation exposures encountered in the workplace, home, or general environment. Long-term studies of human populations exposed to various internal emitters by different routes of exposure are producing critical information for the protection of workers and members of the general public. The purpose of this report is to examine recent developments and discuss their potential importance for understanding lifetime cancer risks from internal emitters. The major populations of persons being studied for lifetime health effects from internally deposited radionuclides are well known: Lung cancer in underground miners who inhaled Rn progeny, liver cancer from persons injected with the Th-containing radiographic contrast medium Thorotrast, bone cancer from occupational or medical intakes of {sup 226}Ra or medical injections of {sup 224}Ra, and thyroid cancer from exposures to iodine radionuclides in the environment or for medical purposes.

  1. Imaging Radar for Ecosystem Studies

    NASA Technical Reports Server (NTRS)

    Waring, Richard H.; Way, JoBea; Hunt, E. Raymond J.; Morrissey, Leslie; Ranson, K. Jon; Weishampel, John F.; Oren, Ram; Franklin, Steven E.

    1996-01-01

    Recently a number of satellites have been launched with radar sensors, thus expanding opportunities for global assessment. In this article we focus on the applications of imaging radar, which is a type of sensor that actively generates pulses of microwaves and, in the interval between sending pulses, records the returning signals reflected back to an antenna.

  2. Real-time parallel implementation of Pulse-Doppler radar signal processing chain on a massively parallel machine based on multi-core DSP and Serial RapidIO interconnect

    NASA Astrophysics Data System (ADS)

    Klilou, Abdessamad; Belkouch, Said; Elleaume, Philippe; Le Gall, Philippe; Bourzeix, François; Hassani, Moha M'Rabet

    2014-12-01

    Pulse-Doppler radars require high-computing power. A massively parallel machine has been developed in this paper to implement a Pulse-Doppler radar signal processing chain in real-time fashion. The proposed machine consists of two C6678 digital signal processors (DSPs), each with eight DSP cores, interconnected with Serial RapidIO (SRIO) bus. In this study, each individual core is considered as the basic processing element; hence, the proposed parallel machine contains 16 processing elements. A straightforward model has been adopted to distribute the Pulse-Doppler radar signal processing chain. This model provides low latency, but communication inefficiency limits system performance. This paper proposes several optimizations that greatly reduce the inter-processor communication in a straightforward model and improves the parallel efficiency of the system. A use case of the Pulse-Doppler radar signal processing chain has been used to illustrate and validate the concept of the proposed mapping model. Experimental results show that the parallel efficiency of the proposed parallel machine is about 90%.

  3. Electrochemical formation of field emitters

    SciTech Connect

    Bernhardt, Anthony F.

    1999-01-01

    Electrochemical formation of field emitters, particularly useful in the fabrication of flat panel displays. The fabrication involves field emitting points in a gated field emitter structure. Metal field emitters are formed by electroplating and the shape of the formed emitter is controlled by the potential imposed on the gate as well as on a separate counter electrode. This allows sharp emitters to be formed in a more inexpensive and manufacturable process than vacuum deposition processes used at present. The fabrication process involves etching of the gate metal and the dielectric layer down to the resistor layer, and then electroplating the etched area and forming an electroplated emitter point in the etched area.

  4. Microwave Doppler radar in unobtrusive health monitoring

    NASA Astrophysics Data System (ADS)

    Silva Girão, P.; Postolache, O.; Postolache, G.; Ramos, P. M.; Dias Pereira, J. M.

    2015-02-01

    This article frames the use of microwave Doppler radar in the context of ubiquitous, non-obstructive health monitoring. The use of a 24GHz CW (continuous wave) Doppler radar based on a commercial off-the-shelf transceiver for remote sensing of heart rate and respiration rate based on the acquisition and processing of the signals delivered by the radar is briefly presented.

  5. FACET Emittance Growth

    SciTech Connect

    Frederico, J; Hogan, M.J.; Nosochkov, Y.; Litos, M.D.; Raubenheimer, T.; /SLAC

    2011-04-05

    FACET, the Facility for Advanced Accelerator and Experimental Tests, is a new facility being constructed in sector 20 of the SLAC linac primarily to study beam driven plasma wakefield acceleration. The FACET beamline consists of a chicane and final focus system to compress the 23 GeV, 3.2 nC electron bunches to {approx}20 {micro}m long and {approx}10 {micro}m wide. Simulations of the FACET beamline indicate the short-duration and large, 1.5% rms energy spread beams may suffer a factor of four emittance growth from a combination of chromaticity, incoherent synchrotron radiation (ISR), and coherent synchrotron radiation (CSR). Emittance growth is directly correlated to head erosion in plasma wakefield acceleration and is a limiting factor in single stage performance. Studies of the geometric, CSR, and ISR components are presented. Numerical calculation of the rms emittance can be overwhelmed by long tails in the simulated phase space distributions; more useful definitions of emittance are given. A complete simulation of the beamline is presented as well, which agrees with design specifications.

  6. Shuttle orbiter radar cross-sectional analysis

    NASA Technical Reports Server (NTRS)

    Cooper, D. W.; James, R.

    1979-01-01

    Theoretical and model simulation studies on signal to noise levels and shuttle radar cross section are described. Pre-mission system calibrations, system configuration, and postmission system calibration of the tracking radars are described. Conversion of target range, azimuth, and elevation into radar centered east north vertical position coordinates are evaluated. The location of the impinging rf energy with respect to the target vehicles body axis triad is calculated. Cross section correlation between the two radars is presented.

  7. An MSK Waveform for Radar Applications

    NASA Technical Reports Server (NTRS)

    Quirk, Kevin J.; Srinivasan, Meera

    2009-01-01

    We introduce a minimum shift keying (MSK) waveform developed for use in radar applications. This waveform is characterized in terms of its spectrum, autocorrelation, and ambiguity function, and is compared with the conventionally used bi-phase coded (BPC) radar signal. It is shown that the MSK waveform has several advantages when compared with the BPC waveform, and is a better candidate for deep-space radar imaging systems such as NASA's Goldstone Solar System Radar.

  8. Radar operation in a hostile electromagnetic environment

    SciTech Connect

    Doerry, Armin Walter

    2014-03-01

    Radar ISR does not always involve cooperative or even friendly targets. An adversary has numerous techniques available to him to counter the effectiveness of a radar ISR sensor. These generally fall under the banner of jamming, spoofing, or otherwise interfering with the EM signals required by the radar sensor. Consequently mitigation techniques are prudent to retain efficacy of the radar sensor. We discuss in general terms a number of mitigation techniques.

  9. Effect of Temperature Gradient on Thick Film Selective Emitter Emittance

    NASA Technical Reports Server (NTRS)

    Chubb, Donald L.; Good, Brian S.; Clark, Eric B.; Chen, Zheng

    1997-01-01

    A temperature gradient across a thick (greater than or equal to .1 mm) film selective emitter will produce a significant reduction in the spectral emittance from the no temperature gradient case. Thick film selective emitters of rare earth doped host materials such as yttrium-aluminum-garnet (YAG) are examples where temperature gradient effects are important. In this paper a model is developed for the spectral emittance assuming a linear temperature gradient across the film. Results of the model indicate that temperature gradients will result in reductions the order of 20% or more in the spectral emittance.

  10. Vacuum Rabi spectra of a single quantum emitter.

    PubMed

    Ota, Yasutomo; Ohta, Ryuichi; Kumagai, Naoto; Iwamoto, Satoshi; Arakawa, Yasuhiko

    2015-04-10

    We report the observation of the vacuum Rabi splitting of a single quantum emitter by measuring its direct spontaneous emission into free space. We use a semiconductor quantum dot inside a photonic crystal nanocavity, in conjunction with an appropriate cavity design and filtering with a polarizer and an aperture, enabling the extraction of the inherently weak emitter's signal. The emitter's vacuum Rabi spectra exhibit clear differences from those measured by detecting the cavity photon leakage. Moreover, we observe an asymmetric vacuum Rabi spectrum induced by interference between the emitter and cavity detection channels. Our observations lay the groundwork for accessing various cavity quantum electrodynamics phenomena that manifest themselves only in the emitter's direct spontaneous emission. PMID:25910123

  11. Electromagnetic interference impact of the proposed emitters for the High Frequency Active Auroral Research Program (HAARP)

    NASA Astrophysics Data System (ADS)

    Robertshaw, G. A.; Snyder, A. L.; Weiner, M. M.

    1993-05-01

    The proposed HAARP emitters at the Gakona (Alaska) preferred site and at the Clear AFS (Alaska) alternative site are the Ionospheric Research Instrument (IRI), the Incoherent Scatter Radar (ISR), and the Vertical Incidence Sounder (VIS). The electromagnetic interference (EMI) impact of those emitters on receiving systems in the vicinity of the sites is estimated in this study. The results are intended for use as an input to the Air Force Environmental Impact Statement as part of the Environmental Impact Analysis Process.

  12. Spaceborne radar

    NASA Technical Reports Server (NTRS)

    Moore, R. K.; Eckerman, J.; Meneghini, R.; Atlas, D.; Boerner, W. M.; Cherry, S.; Clark, J. F.; Doviak, R. J.; Goldhirsh, J.; Lhermitte, R. M.

    1981-01-01

    The spaceborne radar panel considered how radar could be used to measure precipitation from satellites. The emphasis was on how radar could be used with radiometry (at microwave, visible (VIS), and infrared (IR) wavelengths) to reduce the uncertainties of measuring precipitation with radiometry alone. In addition, the fundamental electromagnetic interactions involved in the measurements were discussed to determine the key work areas for research and development to produce effective instruments. Various approaches to implementing radar systems on satellites were considered for both shared and dedicated instruments. Finally, a research and development strategy was proposed for establishing the parametric relations and retrieval algorithms required for extracting precipitation information from the radar and associated radiometric data.

  13. Reappraisal of solid selective emitters

    NASA Technical Reports Server (NTRS)

    Chubb, Donald L.

    1990-01-01

    New rare earth oxide emitters show greater efficiency than previous emitters. As a result, based on a simple model the efficiency of these emitters was calculated. Results indicate that the emission band of the selective emitter must be at relatively low energy (less than or equal to .52 eV) to obtain maximum efficiency at moderate emitter temperatures (less than or equal to 1500 K). Thus low bandgap energy PV materials are required to obtain an efficient thermophotovoltaic (TPV) system. Of the 4 specific rare earths (Nd, Ho, Er, Yb) studied Ho has the largest efficiency at moderate temperatures (72 percent at 1500 K). A comparison was made between a selective emitter TPV system and a TPV system that uses a thermal emitter plus a band pass filter to make the thermal emitter behave like a selective emitter. Results of the comparison indicate that only for very optimistic filter and thermal emitter properties will the filter TPV system have a greater efficiency than the selective emitter system.

  14. Rare Earth Garnet Selective Emitter

    NASA Technical Reports Server (NTRS)

    Lowe, Roland A.; Chubb, Donald L.; Farmer, Serene C.; Good, Brian S.

    1994-01-01

    Thin film Ho-YAG and Er-YAG emitters with a platinum substrate exhibit high spectral emittance in the emission band (epsilon(sub lambda) approx. = 0.75, sup 4)|(sub 15/2) - (sup 4)|(sub 13/2),for Er-YAG and epsilon(sub lambda) approx. = 0.65, (sup 5)|(sub 7) - (sup 5)|(sub 8) for Ho-YAG) at 1500 K. In addition, low out-of-band spectral emittance, epsilon(sub lambda) less than 0.2, suggest these materials would be excellent candidates for high efficiency selective emitters in thermophotovoltaic (TPV) systems operating at moderate temperatures (1200-1500 K). Spectral emittance measurements of the thin films were made (1.2 less than lambda less than 3.0 microns) and compared to the theoretical emittances calculated using measured values of the spectral extinction coefficient. In this paper we present the results for a new class of rare earth ion selective emitters. These emitters are thin sections (less than 1 mm) of yttrium aluminum garnet (YAG) single crystal with a rare earth substitutional impurity. Selective emitters in the near IR are of special interest for thermophotovoltaic (TPV) energy conversion. The most promising solid selective emitters for use in a TPV system are rare earth oxides. Early spectral emittance work on rare earth oxides showed strong emission bands in the infrared (0.9 - 3 microns). However, the emittance outside the emission band was also significant and the efficiency of these emitters was low. Recent improvements in efficiency have been made with emitters fabricated from fine (5 - 10 microns) rare earth oxide fibers similar to the Welsbach mantle used in gas lanterns. However, the rare earth garnet emitters are more rugged than the mantle type emitters. A thin film selective emitter on a low emissivity substrate such as gold, platinum etc., is rugged and easily adapted to a wide variety of thermal sources. The garnet structure and its many subgroups have been successfully used as hosts for rare earth ions, introduced as substitutional impurities, in the development of solid state laser crystals. Doping, dependent on the particular ion and crystal structure, may be as high as 100 at. % (complete substitution of yttrium ion with the rare earth ion). These materials have high melting points, 1940 C for YAG (Yttrium Aluminum Garnet), and low emissivity in the near infrared making them excellent candidates for a thin film selective emitter. As previously stated, the spectral emittance of a rare earth emitter is characterized by one or more well defined emission bands. Outside the emission band the emittance(absorptance) is much lower. Therefore, it is expected that emission outside the band for a thin film selective emitter will be dominated by the emitter substrate. For an efficient emitter (power in the emission band/total emitted power) the substrate must have low emittance, epsilon(sub S). This paper presents normal spectral emittance, epsilon(sub lambda), measurements of holmium(Ho) and erbium (Er) doped YAG thin film selective emitters at (1500 K), and compares those results with the theoretical spectral emittance.

  15. Robust Sparse Sensing Using Weather Radar

    NASA Astrophysics Data System (ADS)

    Mishra, K. V.; Kruger, A.; Krajewski, W. F.; Xu, W.

    2014-12-01

    The ability of a weather radar to detect weak echoes is limited by the presence of noise or unwanted echoes. Some of these unwanted signals originate externally to the radar system, such as cosmic noise, radome reflections, interference from co-located radars, and power transmission lines. The internal source of noise in microwave radar receiver is mainly thermal. The thermal noise from various microwave devices in the radar receiver tends to lower the signal-to-noise ratio, thereby masking the weaker signals. Recently, the compressed sensing (CS) technique has emerged as a novel signal sampling paradigm that allows perfect reconstruction of signals sampled at frequencies lower than the Nyquist rate. Many radar and remote sensing applications require efficient and rapid data acquisition. The application of CS to weather radars may allow for faster target update rates without compromising the accuracy of target information. In our previous work, we demonstrated recovery of an entire precipitation scene from its compressed-sensed version by using the matrix completion approach. In this study, we characterize the performance of such a CS-based weather radar in the presence of additive noise. We use a signal model where the precipitation signals form a low-rank matrix that is corrupted with (bounded) noise. Using recent advances in algorithms for matrix completion from few noisy observations, we reconstruct the precipitation scene with reasonable accuracy. We test and demonstrate our approach using the data collected by Iowa X-band Polarimetric (XPOL) weather radars.

  16. Reconfigurable L-Band Radar

    NASA Technical Reports Server (NTRS)

    Rincon, Rafael F.

    2008-01-01

    The reconfigurable L-Band radar is an ongoing development at NASA/GSFC that exploits the capability inherently in phased array radar systems with a state-of-the-art data acquisition and real-time processor in order to enable multi-mode measurement techniques in a single radar architecture. The development leverages on the L-Band Imaging Scatterometer, a radar system designed for the development and testing of new radar techniques; and the custom-built DBSAR processor, a highly reconfigurable, high speed data acquisition and processing system. The radar modes currently implemented include scatterometer, synthetic aperture radar, and altimetry; and plans to add new modes such as radiometry and bi-static GNSS signals are being formulated. This development is aimed at enhancing the radar remote sensing capabilities for airborne and spaceborne applications in support of Earth Science and planetary exploration This paper describes the design of the radar and processor systems, explains the operational modes, and discusses preliminary measurements and future plans.

  17. Preliminary results of noise radar experiments

    NASA Astrophysics Data System (ADS)

    Malanowski, Mateusz; Contartese, Clara; Maslikowski, Lukasz; Baczyk, Marcin; Kulpa, Krzysztof

    2009-06-01

    The paper describes the first results of noise radar experiments carried out at Warsaw University of Technology. The radar system was built with Commercial Off-The-Shelf (COTS) components: log-periodic antennas, an arbitrary waveform generator and a two-channel spectrum analyzer. The radar operated in the continuous-wave mode, and the aim was to detect moving targets in the received signal. The paper shows the system setup as well as the numerical results obtained from the recorded signals.

  18. A Bistatic Parasitical Radar (BIPAR)

    NASA Astrophysics Data System (ADS)

    Hartl, Philipp; Braun, Hans Martin

    1989-01-01

    After decades of remote sensing from aircraft and satellites with cameras and other optical sensors, earth observation by imaging radars becomes more and more suitable because of their night and day and all weather operations capability and their information content being complementary to those of optical sensors. The major problem with microwave sensors (radars) is that there are not enough of them presently in operation and therefore not enough data available for effective radar signature research for civil applications. It is shown that airborne bistatic real aperture radar receivers can be operated with spaceborne transmitters of opportunity. Famous candidates for those systems are high power communications or direct TV satellites illuminating the earth surface with a power denisty of more than 10(-12) Watt/sq meter. The high sophisticated status of signal processing technology today allows the realization of receivers correlating the received direct path signal from a communications satellite with its avoidable reflection on the ground. Coherent integration can improve the signal to noise ratio up to values where the radiometric resolution can satisfy users needs. The development of such parasitic radar receivers could even provide a cost effective way to open up new frequency bands for radar signature research. Advantages of these quiet systems for the purpose of classical radar reconnaissance are evident.

  19. Rare earth garnet selective emitter

    NASA Technical Reports Server (NTRS)

    Lowe, Roland A.; Chubb, Donald L.; Farmer, Serene C.; Good, Brian S.

    1994-01-01

    Thin film Ho-YAG and Er-YAG emitters with a platinum substrate exhibit high spectral emittance in the emission band (epsilon(sub lambda) approximately equal to 0.74, ((4)l(sub 15/2)) - ( (4)l(sub13/2)), for Er-YAG and epsilon(sub lambda) approximately equal to 0.65, ((5)l(sub 7))-((5)l(sub 8)) for Ho-YAG) at excellent candidates for high efficiency selective emitters in the thermophotovoltaics (TPV) systems operating at moderate temperatures (1200-1500K). Spectral emittance measurements of the thin films were made (1.2 less than lambda less than 3.0 microns) and compared to the theoretical emittances calculated using measured values of the spectral extinction coefficient. In this paper we present the results for a new class of rare earth ion selective emitters. These emitters are thin sections (less than 1 mm) of yttrium aluminum garnet (YAG) single crystal with a rare earth substitutional impurity. This paper presents normal spectral emittance, epsilon(sub lambda), measurements of holmium (Ho), and erbium (Er) doped YAG thin film selective emitters at 1500 K, and compares those results with the theoretical spectral emittance.

  20. Imaging synthetic aperture radar

    DOEpatents

    Burns, Bryan L.; Cordaro, J. Thomas

    1997-01-01

    A linear-FM SAR imaging radar method and apparatus to produce a real-time image by first arranging the returned signals into a plurality of subaperture arrays, the columns of each subaperture array having samples of dechirped baseband pulses, and further including a processing of each subaperture array to obtain coarse-resolution in azimuth, then fine-resolution in range, and lastly, to combine the processed subapertures to obtain the final fine-resolution in azimuth. Greater efficiency is achieved because both the transmitted signal and a local oscillator signal mixed with the returned signal can be varied on a pulse-to-pulse basis as a function of radar motion. Moreover, a novel circuit can adjust the sampling location and the A/D sample rate of the combined dechirped baseband signal which greatly reduces processing time and hardware. The processing steps include implementing a window function, stabilizing either a central reference point and/or all other points of a subaperture with respect to doppler frequency and/or range as a function of radar motion, sorting and compressing the signals using a standard fourier transforms. The stabilization of each processing part is accomplished with vector multiplication using waveforms generated as a function of radar motion wherein these waveforms may be synthesized in integrated circuits. Stabilization of range migration as a function of doppler frequency by simple vector multiplication is a particularly useful feature of the invention; as is stabilization of azimuth migration by correcting for spatially varying phase errors prior to the application of an autofocus process.

  1. Monolithic multinozzle emitters for nanoelectrospray mass spectrometry

    DOEpatents

    Wang, Daojing (Daly City, CA); Yang, Peidong (Kensington, CA); Kim, Woong (Seoul, KR); Fan, Rong (Pasadena, CA)

    2011-09-20

    Novel and significantly simplified procedures for fabrication of fully integrated nanoelectrospray emitters have been described. For nanofabricated monolithic multinozzle emitters (NM.sup.2 emitters), a bottom up approach using silicon nanowires on a silicon sliver is used. For microfabricated monolithic multinozzle emitters (M.sup.3 emitters), a top down approach using MEMS techniques on silicon wafers is used. The emitters have performance comparable to that of commercially-available silica capillary emitters for nanoelectrospray mass spectrometry.

  2. Stepped-frequency nonlinear radar simulation

    NASA Astrophysics Data System (ADS)

    Mazzaro, Gregory J.; Gallagher, Kyle A.; Martone, Anthony F.; Narayanan, Ram M.

    2014-05-01

    RF electronic targets cannot be detected by traditional linear radar because their radar cross sections are much smaller than that of nearby clutter. One technology that is capable of separating RF electronic targets from clutter, however, is nonlinear radar. Presented in this paper is a combination of stepped-frequency ultra-wideband radar with nonlinear detection. By stepping the transmit frequency across an ultra-wide bandwidth and recording the amplitude and phase of the harmonic return signal, a nonlinear frequency response of the radar environment is constructed. An inverse Fourier transform of this response reveals the range to a nonlinear target.

  3. Electrochemical formation of field emitters

    DOEpatents

    Bernhardt, A.F.

    1999-03-16

    Electrochemical formation of field emitters, particularly useful in the fabrication of flat panel displays is disclosed. The fabrication involves field emitting points in a gated field emitter structure. Metal field emitters are formed by electroplating and the shape of the formed emitter is controlled by the potential imposed on the gate as well as on a separate counter electrode. This allows sharp emitters to be formed in a more inexpensive and manufacturable process than vacuum deposition processes used at present. The fabrication process involves etching of the gate metal and the dielectric layer down to the resistor layer, and then electroplating the etched area and forming an electroplated emitter point in the etched area. 12 figs.

  4. Amorphous-diamond electron emitter

    DOEpatents

    Falabella, Steven (Livermore, CA)

    2001-01-01

    An electron emitter comprising a textured silicon wafer overcoated with a thin (200 .ANG.) layer of nitrogen-doped, amorphous-diamond (a:D-N), which lowers the field below 20 volts/micrometer have been demonstrated using this emitter compared to uncoated or diamond coated emitters wherein the emission is at fields of nearly 60 volts/micrometer. The silicon/nitrogen-doped, amorphous-diamond (Si/a:D-N) emitter may be produced by overcoating a textured silicon wafer with amorphous-diamond (a:D) in a nitrogen atmosphere using a filtered cathodic-arc system. The enhanced performance of the Si/a:D-N emitter lowers the voltages required to the point where field-emission displays are practical. Thus, this emitter can be used, for example, in flat-panel emission displays (FEDs), and cold-cathode vacuum electronics.

  5. Composite emitters for TPV systems

    NASA Astrophysics Data System (ADS)

    Adair, Peter L.; Rose, M. Frank

    1995-01-01

    One important aspect of thermophotovoltaic (TPV) power systems is the need for an emitter which can produce radiation whereby electricity can be generated from photovoltaic cells. We have developed two types of emitter configurations which can be thermally excited by a heat source. These two configurations allow the emitter to produce the requisite emissions for matching to photovoltaic cells. The first emitter type, the selective line emitter, is made from oxides of the rare earth metals such as erbia and holmia. These emitters are made through a specialized series of processes which begin with nitrates of the rare earth metal and end with rare earth oxide filaments. These emitters produce a discrete line output which can be used with photovoltaic cells whose bandgap is centered at this selective line wavelength. The second approach considered in our laboratory is to produce ``modified'' blackbody emitters which can withstand sufficiently high temperature operation and produce a significant amount of radiant energy. This requires the development of tandem cells which can utilize a significant portion of the emission spectrum. For both emitter types, conventional paper making techniques have been used to combine materials suitable as binders with the radiating material. As a result, this technique allows for fabrication of large area robust emitters which were heretofore unobtainable. Robust emitters made from holmium oxide have exhibited line emission with peak to background ratios greater than 6 to 1. This radiator will be described in some detail as representative of the process and will be used to illustrate the manufacturing technology developed at Auburn University. In this paper, we will describe the techniques for manufacturing both types of emitters, characterize the spectral characteristics, and discuss preliminary designs which would have sufficient area and robustness for various applications.

  6. Middle Atmosphere Program. Handbook for MAP. Volume 30: International School on Atmospheric Radar

    NASA Technical Reports Server (NTRS)

    Fukao, Shoichiro (Editor)

    1989-01-01

    Broad, tutorial coverage is given to the technical and scientific aspects of mesosphere stratosphere troposphere (MST) meteorological radar systems. Control issues, signal processing, atmospheric waves, the historical aspects of radar atmospheric dynamics, incoherent scatter radars, radar echoes, radar targets, and gravity waves are among the topics covered.

  7. Millimeter radar improves target identification

    NASA Astrophysics Data System (ADS)

    McAulay, Alastair D.

    2011-06-01

    Recently developed millimeter wave radar has advantages for target identification over conventional microwave radar which typically use lower frequencies. We describe the pertinent features involved in the construction of the new millimeter wave radar, the pseudo-optical cavity source and the quasi-optical duplexer. The long wavelength relative to light allows the radar beam to penetrate through most weather because the wavelength is larger than the particle size for dust, drizzle rain, fog. Further the mm wave beam passes through an atmospheric transmission window that provides a dip in attenuation. The higher frequency than conventional radar provides higher Doppler frequencies, for example, than X-band radar. We show by simulation that small characteristic vibrations and slow turns of an aircraft become visible so that the Doppler signature improves identification. The higher frequency also reduces beam width, which increases transmit and receive antenna gains. For the same power the transmit beam extends to farther range and the increase in receive antenna gain increases signal to noise ratio for improved detection and identification. The narrower beam can also reduce clutter and reject other noise more readily. We show by simulation that the radar can be used at lower elevations over the sea than conventional radar.

  8. All-digital radar architecture

    NASA Astrophysics Data System (ADS)

    Molchanov, Pavlo A.

    2014-10-01

    All digital radar architecture requires exclude mechanical scan system. The phase antenna array is necessarily large because the array elements must be co-located with very precise dimensions and will need high accuracy phase processing system for aggregate and distribute T/R modules data to/from antenna elements. Even phase array cannot provide wide field of view. New nature inspired all digital radar architecture proposed. The fly's eye consists of multiple angularly spaced sensors giving the fly simultaneously thee wide-area visual coverage it needs to detect and avoid the threats around him. Fly eye radar antenna array consist multiple directional antennas loose distributed along perimeter of ground vehicle or aircraft and coupled with receiving/transmitting front end modules connected by digital interface to central processor. Non-steering antenna array allows creating all-digital radar with extreme flexible architecture. Fly eye radar architecture provides wide possibility of digital modulation and different waveform generation. Simultaneous correlation and integration of thousands signals per second from each point of surveillance area allows not only detecting of low level signals ((low profile targets), but help to recognize and classify signals (targets) by using diversity signals, polarization modulation and intelligent processing. Proposed all digital radar architecture with distributed directional antenna array can provide a 3D space vector to the jammer by verification direction of arrival for signals sources and as result jam/spoof protection not only for radar systems, but for communication systems and any navigation constellation system, for both encrypted or unencrypted signals, for not limited number or close positioned jammers.

  9. Thin-Film Selective Emitter

    NASA Technical Reports Server (NTRS)

    Chubb, Donald L.; Lowe, Roland A.

    1993-01-01

    Direct conversion of thermal energy into electrical energy using a photovoltaic cell is called thermophotovoltaic energy conversion. One way to make this an efficient process is to have the thermal energy source be an efficient selective emitter of radiation. The emission must be near the band-gap energy of the photovoltaic cell. One possible method to achieve an efficient selective emitter is the use of a thin film of rare-earth oxides. The determination of the efficiency of such an emitter requires analysis of the spectral emittance of the thin film including scattering and reflectance at the vacuum-film and film-substrate interfaces. Emitter efficiencies (power emitted in emission band/total emitted power) in the range 0.35-0.7 are predicted. There is an optimum optical depth to obtain maximum efficiency. High emitter efficiencies are attained only for low (less than 0.05) substrate emittance values, both with and without scattering. The low substrate emittance required for high efficiency limits the choice of substrate materials to highly reflective metals or high-transmission materials such as sapphire.

  10. EMITTANCE COMPENSATION FOR MAGNETIZED BEAMS

    SciTech Connect

    KEWISCH,J.; CHANG, X.

    2007-06-25

    Emittance compensation is a well established technique for minimizing the emittance of an electron beam from a RF photo-cathode gun. Longitudinal slices of a bunch have a small emittance, but due to the longitudinal charge distribution of the bunch and time dependent RF fields they are not focused in the same way, so that the direction of their phase ellipses diverges in phase space and the projected emittance is much larger. Emittance compensation reverses the divergence. At the location where the slopes of the phase ellipses coincide the beam is accelerated, so that the space charge forces are reduced. A recipe for emittance compensation is given in. For magnetized beams (where the angular momentum is non-zero) such emittance compensation is not sufficient because variations in the slice radius lead to variations in the angular speed and therefore to an increase of emittance in the rotating game. We describe a method and tools for a compensation that includes the beam magnetization.

  11. Algorithmic analysis of quantum radar cross sections

    NASA Astrophysics Data System (ADS)

    Lanzagorta, Marco; Venegas-Andraca, Salvador

    2015-05-01

    Sidelobe structures on classical radar cross section graphs are a consequence of discontinuities in the surface currents. In contrast, quantum radar theory states that sidelobe structures on quantum radar cross section graphs are due to quantum interference. Moreover, it is conjectured that quantum sidelobe structures may be used to detect targets oriented off the specular direction. Because of the high data bandwidth expected from quantum radar, it may be necessary to use sophisticated quantum signal analysis algorithms to determine the presence of stealth targets through the sidelobe structures. In this paper we introduce three potential quantum algorithmic techniques to compute classical and quantum radar cross sections. It is our purpose to develop a computer science-oriented tool for further physical analysis of quantum radar models as well as applications of quantum radar technology in various fields.

  12. Emittance growth in intense beams

    SciTech Connect

    Wangler, T.P.; Mills, R.S.; Crandall, K.R.

    1987-03-01

    Recent progress in the study of high-current, low-emittance, charged-particle beams may have a significant influence in the design of future linear accelerators and beam-transport systems for higher brightness applications. Three space-charge-induced rms-emittance-growth mechanisms are now well established: (1) charge-density redistribution, (2) kinetic-energy exchange toward equipartitioning, and (3) coherent instabilities driven by periodic focusing systems. We report the results from a numerical simulation study of emittance in a high-current radio-frequency quadrupole (RFQ) linear accelerator, and present a new semiempirical equation for the observed emittance growth, which agrees well with the emittance growth predicted from numerical simulation codes.

  13. Radar transponder operation with compensation for distortion due to amplitude modulation

    DOEpatents

    Ormesher, Richard C.; Tise, Bertice L.; Axline, Jr., Robert M.

    2011-01-04

    In radar transponder operation, a variably delayed gating signal is used to gate a received radar pulse and thereby produce a corresponding gated radar pulse for transmission back to the source of the received radar pulse. This compensates for signal distortion due to amplitude modulation on the retransmitted pulse.

  14. Highly directional thermal emitter

    SciTech Connect

    Ribaudo, Troy; Shaner, Eric A; Davids, Paul; Peters, David W

    2015-03-24

    A highly directional thermal emitter device comprises a two-dimensional periodic array of heavily doped semiconductor structures on a surface of a substrate. The array provides a highly directional thermal emission at a peak wavelength between 3 and 15 microns when the array is heated. For example, highly doped silicon (HDSi) with a plasma frequency in the mid-wave infrared was used to fabricate nearly perfect absorbing two-dimensional gratings structures that function as highly directional thermal radiators. The absorption and emission characteristics of the HDSi devices possessed a high degree of angular dependence for infrared absorption in the 10-12 micron range, while maintaining high reflectivity of solar radiation (.about.64%) at large incidence angles.

  15. Differential emitter geolocation

    DOEpatents

    Mason, John J.; Romero, Louis A.

    2015-08-18

    An unknown location of a transmitter of interest is determined based on wireless signals transmitted by both the transmitter of interest and a reference transmitter positioned at a known location. The transmitted signals are received at a plurality of non-earthbound platforms each moving in a known manner, and phase measurements for each received signal are used to determine the unknown location.

  16. Radar range measurements in the atmosphere.

    SciTech Connect

    Doerry, Armin Walter

    2013-02-01

    The earth's atmosphere affects the velocity of propagation of microwave signals. This imparts a range error to radar range measurements that assume the typical simplistic model for propagation velocity. This range error is a function of atmospheric constituents, such as water vapor, as well as the geometry of the radar data collection, notably altitude and range. Models are presented for calculating atmospheric effects on radar range measurements, and compared against more elaborate atmospheric models.

  17. Large phased-array radars

    SciTech Connect

    Brookner, D.E.

    1988-12-15

    Large phased-array radars can play a very important part in arms control. They can be used to determine the number of RVs being deployed, the type of targeting of the RVs (the same or different targets), the shape of the deployed objects, and possibly the weight and yields of the deployed RVs. They can provide this information at night as well as during the day and during rain and cloud covered conditions. The radar can be on the ground, on a ship, in an airplane, or space-borne. Airborne and space-borne radars can provide high resolution map images of the ground for reconnaissance, of anti-ballistic missile (ABM) ground radar installations, missile launch sites, and tactical targets such as trucks and tanks. The large ground based radars can have microwave carrier frequencies or be at HF (high frequency). For a ground-based HF radar the signal is reflected off the ionosphere so as to provide over-the-horizon (OTH) viewing of targets. OTH radars can potentially be used to monitor stealth targets and missile traffic.

  18. Coded continuous wave meteor radar

    NASA Astrophysics Data System (ADS)

    Vierinen, Juha; Chau, Jorge L.; Pfeffer, Nico; Clahsen, Matthias; Stober, Gunter

    2016-03-01

    The concept of a coded continuous wave specular meteor radar (SMR) is described. The radar uses a continuously transmitted pseudorandom phase-modulated waveform, which has several advantages compared to conventional pulsed SMRs. The coding avoids range and Doppler aliasing, which are in some cases problematic with pulsed radars. Continuous transmissions maximize pulse compression gain, allowing operation at lower peak power than a pulsed system. With continuous coding, the temporal and spectral resolution are not dependent on the transmit waveform and they can be fairly flexibly changed after performing a measurement. The low signal-to-noise ratio before pulse compression, combined with independent pseudorandom transmit waveforms, allows multiple geographically separated transmitters to be used in the same frequency band simultaneously without significantly interfering with each other. Because the same frequency band can be used by multiple transmitters, the same interferometric receiver antennas can be used to receive multiple transmitters at the same time. The principles of the signal processing are discussed, in addition to discussion of several practical ways to increase computation speed, and how to optimally detect meteor echoes. Measurements from a campaign performed with a coded continuous wave SMR are shown and compared with two standard pulsed SMR measurements. The type of meteor radar described in this paper would be suited for use in a large-scale multi-static network of meteor radar transmitters and receivers. Such a system would be useful for increasing the number of meteor detections to obtain improved meteor radar data products.

  19. Emittance and Phase Space Exchange

    SciTech Connect

    Xiang, Dao; Chao, Alex; /SLAC

    2011-08-19

    Alternative chicane-type beam lines are proposed for exact emittance exchange between horizontal phase space (x; x{prime}) and longitudinal phase space (z; {delta}). Methods to achieve exact phase space exchanges, i.e. mapping x to z, x{prime} to {delta}, z to x and {delta} to x{prime} are suggested. Methods to mitigate the thick-lens effect of the transverse cavity on emittance exchange are discussed. Some applications of the phase space exchanger and the feasibility of an emittance exchange experiment with the proposed chicane-type beam line at SLAC are discussed.

  20. Electromagnetic interference impact of the proposed emitters for the High Frequency Active Auroral Research Program (HAARP). Interim report

    SciTech Connect

    Robertshaw, G.A.; Snyder, A.L.; Weiner, M.M.

    1993-05-14

    The proposed HAARP emitters at the Gakona (Alaska) preferred site and at the Clear AFS (Alaska) alternative site are the Ionospheric Research Instrument (IRI), the Incoherent Scatter Radar (ISR), and the Vertical Incidence Sounder(VIS). The electromagnetic interference (EMI) impact of those emitters on receiving systems in the vicinity of the sites is estimated in this study. The results are intended for use as an input to the Air Force Environmental Impact Statement as part of the Environmental Impact Analysis Process.

  1. Noise radar with broadband microwave ring correlator

    NASA Astrophysics Data System (ADS)

    Susek, Waldemar; Stec, Bronislaw

    2011-06-01

    A principle of quadrature correlation detection of noise signals using an analog broadband microwave correlator is presented in the paper. Measurement results for the correlation function of noise signals are shown and application of such solution in the noise radar for precise determination of distance changes and velocity of these changes is also presented. Results for short range noise radar operation are presented both for static and moving objects. Experimental results using 2,6 - 3,6 GHz noise like waveform for the signal from a breathing human is presented. Conclusions and future plans for applications of presented detection technique in broadband noise radars bring the paper to an end.

  2. Pulsed Phase Shifter Improves Doppler Radar

    NASA Technical Reports Server (NTRS)

    Kobayashi, H. S.; Shores, P. W.; Rozas, P.

    1982-01-01

    Ability of microwave Doppler radar to measure velocity of slow moving nearby target is enhanced by pulsed 90 degrees phase shifter in radar transmission line between circulator and antenna. Because of phase shifting, Doppler frequency is detected as modulation on carrier instead of baseband signal. Carrier is amplified and filtered before demodulation, resulting in strong, clean demodulated Doppler for measurement and display.

  3. Nanodiamond Emitters of Single Photons

    NASA Astrophysics Data System (ADS)

    Vlasov, I. I.; Lukishova, S. G.; Konov, V. I.

    2015-09-01

    Luminescence properties of single color centers were studied in nanodiamonds of different origin. It was found that single photon emitters could be realized even in molecularsized diamond (less than 2 nm) capable of housing stable luminescent center "silicon-vacancy." First results on incorporation of single-photon emitters based on luminescent nanodiamonds in plasmonic nanoantennas to enhance the photon count rate and directionality, diminish the fluorescence decay time, and provide polarization selectivity are presented.

  4. Diamondoid monolayers as electron emitters

    DOEpatents

    Yang, Wanli; Fabbri, Jason D.; Melosh, Nicholas A.; Hussain, Zahid; Shen, Zhi-Xun

    2013-10-29

    Provided are electron emitters based upon diamondoid monolayers, preferably self-assembled higher diamondoid monolayers. High intensity electron emission has been demonstrated employing such diamondoid monolayers, particularly when the monolayers are comprised of higher diamondoids. The application of such diamondoid monolayers can alter the band structure of substrates, as well as emit monochromatic electrons, and the high intensity electron emissions can also greatly improve the efficiency of field-effect electron emitters as applied to industrial and commercial applications.

  5. Diamondoid monolayers as electron emitters

    DOEpatents

    Yang, Wanli (El Cerrito, CA); Fabbri, Jason D. (San Francisco, CA); Melosh, Nicholas A. (Menlo Park, CA); Hussain, Zahid (Orinda, CA); Shen, Zhi-Xun (Stanford, CA)

    2012-04-10

    Provided are electron emitters based upon diamondoid monolayers, preferably self-assembled higher diamondoid monolayers. High intensity electron emission has been demonstrated employing such diamondoid monolayers, particularly when the monolayers are comprised of higher diamondoids. The application of such diamondoid monolayers can alter the band structure of substrates, as well as emit monochromatic electrons, and the high intensity electron emissions can also greatly improve the efficiency of field-effect electron emitters as applied to industrial and commercial applications.

  6. Radar detection of Iapetus

    NASA Astrophysics Data System (ADS)

    Black, G. J.; Campbell, D. B.; Carter, L. M.; Ostro, S. J.

    2002-09-01

    We have obtained echoes from the bright, trailing hemisphere of Iapetus using the Arecibo Observatory's 13-cm radar system on three dates in January 2002. A circularly polarized signal was transmitted and an echo in the opposite circular (OC) sense to that transmitted was clearly received along with a much weaker detection of echo power in the same circular (SC) sense. Prior to this experiment, one expectation may have been that the radar scattering properties of Iapetus may behave like the similar atmosphere-less, icy surfaces of the Galilean satellites which, due to an efficient multiple scattering mechanism, are strong backscatterers with SC reflections stronger than their OC reflections. Instead we find that Iapetus' radar cross section and polarization properties are very different from those of the icy Galilean satellites, and more reminiscent of less efficient and less exotic scattering mechanisms such as dominate the echoes from inner Solar System targets. Thus these observations indicate that there is a significant difference between the surface properties of Iapetus and the icy Galileans despite their overall classification as low temperature, water ice surfaces. A plausible explanation for Iapetus' inefficient scattering is that contaminants in the water ice increase the absorption of the signal and suppress any multiple scattering. Likely contaminants on Iapetus are ammonia and the dark material from Cassini Regio embedded below the surface. Proposed observations will seek to measure Iapetus' radar scattering law and to detect the dark, leading side which was not targeted during this observing session. The Arecibo Observatory is part of the National Astronomy and Ionosphere Center, which is operated by Cornell University under a cooperative agreement with the National Science Foundation.

  7. Balancing radar receiver channels with commutation

    NASA Astrophysics Data System (ADS)

    Doerry, A. W.

    2015-05-01

    The trend in high-performance ground-surveillance radar systems is towards employing multiple receiver channels of data. Often, key to performance is the ability to achieve and maintain balance between the radar channels. This can be quite problematic for high-performance radar modes. It is shown that commutation of radar receiver channels can be employed to facilitate channel balancing. Commutation is the switching, trading, toggling, or multiplexing of the channels between signal paths. Commutation allows modulating the imbalance energy away from the balanced energy in Doppler, where it can be mitigated with filtering.

  8. The Patriot radar in tactical air defense

    NASA Astrophysics Data System (ADS)

    Carey, David R.; Evans, William

    1988-05-01

    The Patriot radar is a C-band, phased-array, multifunction radar that, under the control of the weapon control computer in the engagement control station, performs target search and track; missile search, track, and communications during midcourse guidance; and target-via-missile terminal guidance. This paper describes the functions the radar performs and provides descriptions of the subsystems. The use of a multichannel, multifunction receiver and digital signal processor is emphasized to demonstrate the control and processing for multiple radar actions required to support the tactical air defense mission. A summary of results of an extensive test program at the White Sands Missile Range is presented.

  9. 33 CFR 118.120 - Radar reflectors and racons.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Radar reflectors and racons. 118... BRIDGES BRIDGE LIGHTING AND OTHER SIGNALS § 118.120 Radar reflectors and racons. The District Commander may require or authorize the installation of radar reflectors and racons on bridge structures,...

  10. 33 CFR 118.120 - Radar reflectors and racons.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Radar reflectors and racons. 118... BRIDGES BRIDGE LIGHTING AND OTHER SIGNALS § 118.120 Radar reflectors and racons. The District Commander may require or authorize the installation of radar reflectors and racons on bridge structures,...

  11. 33 CFR 118.120 - Radar reflectors and racons.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Radar reflectors and racons. 118... BRIDGES BRIDGE LIGHTING AND OTHER SIGNALS § 118.120 Radar reflectors and racons. The District Commander may require or authorize the installation of radar reflectors and racons on bridge structures,...

  12. 33 CFR 118.120 - Radar reflectors and racons.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Radar reflectors and racons. 118... BRIDGES BRIDGE LIGHTING AND OTHER SIGNALS § 118.120 Radar reflectors and racons. The District Commander may require or authorize the installation of radar reflectors and racons on bridge structures,...

  13. 33 CFR 118.120 - Radar reflectors and racons.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Radar reflectors and racons. 118... BRIDGES BRIDGE LIGHTING AND OTHER SIGNALS § 118.120 Radar reflectors and racons. The District Commander may require or authorize the installation of radar reflectors and racons on bridge structures,...

  14. TRMM radar

    NASA Technical Reports Server (NTRS)

    Okamoto, Kenichi

    1993-01-01

    The results of a conceptual design study and the performance of key components of the Bread Board Model (BBM) of the Tropical Rainfall Measuring Mission (TRMM) radar are presented. The radar, which operates at 13.8 GHz and is designed to meet TRMM mission objectives, has a minimum measurable rain rate of 0.5 mm/h with a range resolution of 250 m, a horizontal resolution of about 4 km, and a swath width of 220 km. A 128-element active phased array system is adopted to achieve contiguous scanning within the swath. The basic characteristics of BBM were confirmed by experiments. The development of EM started with the cooperation of NASDA and CRL.

  15. Advanced Borehole Radar for Hydrogeology

    NASA Astrophysics Data System (ADS)

    Sato, M.

    2014-12-01

    Ground Penetrating Radar is a useful tool for monitoring the hydrogeological environment. We have developed GPR systems which can be applied to these purposes, and we will demonstrate examples borehole radar measurements. In order to have longer radar detection range, frequency lower than100MHz has been normally adopted in borehole radar. Typical subsurface fractures of our interests have a few mm aperture and radar resolution is much poorer than a few cm in this frequency range. We are proposing and demonstrating to use radar polarimetry to solve this problem. We have demonstrated that a full-polarimetry borehole radar can be used for characterization of subsurface fractures. Together with signal processing for antenna characteristic compensation to equalize the signal by a dipole antenna and slot antennas, we could demonstrate that polarimetric borehole radar can estimate the surface roughness of subsurface fractures, We believe the surface roughness is closely related to water permeability through the fractures. We then developed a directional borehole radar, which uses optical field sensor. A dipole antenna in a borehole has omni-directional radiation pattern, and we cannot get azimuthal information about the scatterers. We use multiple dipole antennas set around the borehole axis, and from the phase differences, we can estimate the 3-diemnational orientation of subsurface structures. We are using optical electric field sensor for receiver of borehole radar. This is a passive sensor and connected only with optical fibers and does not require any electric power supply to operate the receiver. It has two major advantages; the first one is that the receiver can be electrically isolated from other parts, and wave coupling to a logging cable is avoided. Then, secondary, it can operate for a long time, because it does not require battery installed inside the system. It makes it possible to set sensors in fixed positions to monitor the change of environmental conditions for a long period. We demonstrated this idea using cross- hole borehole radar measurement. We think this method is useful for detecting any changes in hydrogeological situations, which will be useful for subsurface storage such as LNG and nuclear waste.

  16. Visible Spectrum Incandescent Selective Emitter

    SciTech Connect

    Sonsight Inc.

    2004-04-30

    The purpose of the work performed was to demonstrate the feasibility of a novel bi-layer selective emitter. Selective emitters are incandescent radiant bodies with emissivities that are substantially larger in a selected part of the radiation spectrum, thereby significantly shifting their radiated spectral distribution from that of a blackbody radiating at the same temperature. The major research objectives involved answering the following questions: (1) What maximum VIS/NIR radiant power and emissivity ratios can be attained at 2650 K? (2) What is the observed emitter body life and how does its performance vary with time? (3) What are the design tradeoffs for a dual heating approach in which both an internally mounted heating coil and electrical resistance self-heating are used? (4) What are the quantitative improvements to be had from utilizing a bi-layer emitter body with a low emissivity inner layer and a partially transmissive outer layer? Two approaches to obtaining selective emissivity were investigated. The first was to utilize large optical scattering within an emitter material with a spectral optical absorption that is much greater within the visible spectrum than that within the NIR. With this approach, an optically thick emitter can radiate almost as if optically thin because essentially, scattering limits the distance below the surface from which significant amounts of internally generated radiation can emerge. The performance of thin emitters was also investigated (for optically thin emitters, spectral emissivity is proportional to spectral absorptivity). These emitters were fabricated from thin mono-layer emitter rods as well as from bi-layer rods with a thin emitter layer mounted on a substrate core. With an initially estimated energy efficiency of almost three times that of standard incandescent bulbs, a number of energy, economic and environmental benefits such as less energy use and cost, reduced CO{sub 2} emissions, and no mercury contamination was initially projected. The work performed provided answers to a number of important questions. The first is that, with the investigated approaches, the maximum sustained emitter efficiencies are about 1.5 times that of a standard incandescent bulb. This was seen to be the case for both thick and thin emitters, and for both mono-layer and bi-layer designs. While observed VIS/NIR ratios represent improvements over standard incandescent bulbs, it does not appear sufficient to overcome higher cost (i.e. up to five times that of the standard bulb) and ensure commercial success. Another result is that high temperatures (i.e. 2650 K) are routinely attainable without platinum electrodes. This is significant for reducing material costs. A novel dual heating arrangement and insulated electrodes were used to attain these temperatures. Another observed characteristic of the emitter was significant grain growth soon after attaining operating temperatures. This is an undesirable characteristic that results in substantially less optical scattering and spectral selectivity, and which significantly limits emitter efficiencies to the values reported. Further work is required to address this problem.

  17. Fly eye radar or micro-radar sensor technology

    NASA Astrophysics Data System (ADS)

    Molchanov, Pavlo; Asmolova, Olga

    2014-05-01

    To compensate for its eye's inability to point its eye at a target, the fly's eye consists of multiple angularly spaced sensors giving the fly the wide-area visual coverage it needs to detect and avoid the threats around him. Based on a similar concept a revolutionary new micro-radar sensor technology is proposed for detecting and tracking ground and/or airborne low profile low altitude targets in harsh urban environments. Distributed along a border or around a protected object (military facility and buildings, camp, stadium) small size, low power unattended radar sensors can be used for target detection and tracking, threat warning, pre-shot sniper protection and provides effective support for homeland security. In addition it can provide 3D recognition and targets classification due to its use of five orders more pulses than any scanning radar to each space point, by using few points of view, diversity signals and intelligent processing. The application of an array of directional antennas eliminates the need for a mechanical scanning antenna or phase processor. It radically decreases radar size and increases bearing accuracy several folds. The proposed micro-radar sensors can be easy connected to one or several operators by point-to-point invisible protected communication. The directional antennas have higher gain, can be multi-frequency and connected to a multi-functional network. Fly eye micro-radars are inexpensive, can be expendable and will reduce cost of defense.

  18. Highly efficient and color tunable thermally activated delayed fluorescent emitters using a "twin emitter" molecular design.

    PubMed

    Kim, Mounggon; Jeon, Sang Kyu; Hwang, Seok-Ho; Lee, Sang-Shin; Yu, Eunsun; Lee, Jun Yeob

    2016-01-01

    High efficiency and color tuning of thermally activated delayed fluorescent emitters were achieved at the same time by designing emitters with a twin emitter molecular design. The control of the interconnect position between two emitters could manage the emission spectrum of the thermally activated delayed fluorescent emitters without affecting the quantum efficiency. PMID:26515454

  19. First radar echoes from cumulus clouds

    NASA Technical Reports Server (NTRS)

    Knight, Charles A.; Miller, L. J.

    1993-01-01

    In attempting to use centimeter-wavelength radars to investigate the early stage of precipitation formation in clouds, 'mantle echoes' are rediscovered and shown to come mostly from scattering by small-scale variations in refractive index, a Bragg kind of scattering mechanism. This limits the usefulness of single-wavelength radar for studies of hydrometeor growth, according to data on summer cumulus clouds in North Dakota, Hawaii, and Florida, to values of reflectivity factor above about 10 dBZe with 10-cm radar, 0 dBZe with 5-cm radar, and -10 dBZe with 3-cm radar. These are limits at or above which the backscattered radar signal from the kinds of clouds observed can be assumed to be almost entirely from hydrometeors or (rarely) other particulate material such as insects. Dual-wavelength radar data can provide the desired information about hydrometeors at very low reflectivity levels if assumptions can be made about the inhomogeneities responsible for the Bragg scattering. The Bragg scattering signal itself probably will be a useful way to probe inhomogeneities one-half the radar wavelength in scale for studying cloud entrainment and mixing processes. However, this use is possible only before scattering from hydrometeors dominates the radar return.

  20. A satellite-based radar wind sensor

    NASA Technical Reports Server (NTRS)

    Xin, Weizhuang

    1991-01-01

    The objective is to investigate the application of Doppler radar systems for global wind measurement. A model of the satellite-based radar wind sounder (RAWS) is discussed, and many critical problems in the designing process, such as the antenna scan pattern, tracking the Doppler shift caused by satellite motion, and backscattering of radar signals from different types of clouds, are discussed along with their computer simulations. In addition, algorithms for measuring mean frequency of radar echoes, such as the Fast Fourier Transform (FFT) estimator, the covariance estimator, and the estimators based on autoregressive models, are discussed. Monte Carlo computer simulations were used to compare the performance of these algorithms. Anti-alias methods are discussed for the FFT and the autoregressive methods. Several algorithms for reducing radar ambiguity were studied, such as random phase coding methods and staggered pulse repitition frequncy (PRF) methods. Computer simulations showed that these methods are not applicable to the RAWS because of the broad spectral widths of the radar echoes from clouds. A waveform modulation method using the concept of spread spectrum and correlation detection was developed to solve the radar ambiguity. Radar ambiguity functions were used to analyze the effective signal-to-noise ratios for the waveform modulation method. The results showed that, with suitable bandwidth product and modulation of the waveform, this method can achieve the desired maximum range and maximum frequency of the radar system.

  1. Eliminating Doppler Effects in Synthetic-Aperture Radar Optical Processors

    NASA Technical Reports Server (NTRS)

    Constantindes, N. J.; Bicknell, T. J.

    1984-01-01

    Pair of photodetectors generates correction signals. Instrument detects Doppler shifts in radar and corrects processing parameters so ambiguities caused by shifts not manifested as double or overlapping images.

  2. A Study of Emittance Measurement at the ILC

    SciTech Connect

    Blair, G.A.; Agapov, I.V.; Carter, J.; Deacon, L.; Angal-Kalinin, D.A.K.; Jenner, L.J.; Ross, M.C.; Seryi, A.; Woodley, M.; /SLAC

    2007-04-16

    The measurement of the International Linear Collider (ILC) emittance in the ILC beam delivery system (BDS) is simulated. Estimates of statistical and machine-related errors are discussed and the implications for related diagnostics R&D are inferred. A simulation of the extraction of the laser-wire Compton signal is also presented.

  3. Coded continuous wave meteor radar

    NASA Astrophysics Data System (ADS)

    Vierinen, J.; Chau, J. L.; Pfeffer, N.; Clahsen, M.; Stober, G.

    2015-07-01

    The concept of coded continuous wave meteor radar is introduced. The radar uses a continuously transmitted pseudo-random waveform, which has several advantages: coding avoids range aliased echoes, which are often seen with commonly used pulsed specular meteor radars (SMRs); continuous transmissions maximize pulse compression gain, allowing operation with significantly lower peak transmit power; the temporal resolution can be changed after performing a measurement, as it does not depend on pulse spacing; and the low signal to noise ratio allows multiple geographically separated transmitters to be used in the same frequency band without significantly interfering with each other. The latter allows the same receiver antennas to be used to receive multiple transmitters. The principles of the signal processing are discussed, in addition to discussion of several practical ways to increase computation speed, and how to optimally detect meteor echoes. Measurements from a campaign performed with a coded continuous wave SMR are shown and compared with two standard pulsed SMR measurements. The type of meteor radar described in this paper would be suited for use in a large scale multi-static network of meteor radar transmitters and receivers. This would, for example, provide higher spatio-temporal resolution for mesospheric wind field measurements.

  4. Airborne Differential Doppler Weather Radar

    NASA Technical Reports Server (NTRS)

    Meneghini, R.; Bidwell, S.; Liao, L.; Rincon, R.; Heymsfield, G.; Hildebrand, Peter H. (Technical Monitor)

    2001-01-01

    The Precipitation Radar aboard the Tropical Rain Measuring Mission (TRMM) Satellite has shown the potential for spaceborne sensing of snow and rain by means of an incoherent pulsed radar operating at 13.8 GHz. The primary advantage of radar relative to passive instruments arises from the fact that the radar can image the 3-dimensional structure of storms. As a consequence, the radar data can be used to determine the vertical rain structure, rain type (convective/stratiform) effective storm height, and location of the melting layer. The radar, moreover, can be used to detect snow and improve the estimation of rain rate over land. To move toward spaceborne weather radars that can be deployed routinely as part of an instrument set consisting of passive and active sensors will require the development of less expensive, lighter-weight radars that consume less power. At the same time, the addition of a second frequency and an upgrade to Doppler capability are features that are needed to retrieve information on the characteristics of the drop size distribution, vertical air motion and storm dynamics. One approach to the problem is to use a single broad-band transmitter-receiver and antenna where two narrow-band frequencies are spaced apart by 5% to 10% of the center frequency. Use of Ka-band frequencies (26.5 GHz - 40 GHz) affords two advantages: adequate spatial resolution can be attained with a relatively small antenna and the differential reflectivity and mean Doppler signals are directly related to the median mass diameter of the snow and raindrop size distributions. The differential mean Doppler signal has the additional property that this quantity depends only on that part of the radial speed of the hydrometeors that is drop-size dependent. In principle, the mean and differential mean Doppler from a near-nadir viewing radar can be used to retrieve vertical air motion as well as the total mean radial velocity. In the paper, we present theoretical calculations for the differential reflectivity and Doppler as functions of the center frequency, frequency difference, and median mass diameter. For a fixed pair of frequencies, the detectability of the differential signals can be expressed as the number of independent samples required to detect rain or snow with a particular median mass diameter. Because sampling numbers on the order of 1000 are needed to detect the differential signal over a range of size distributions, the instrument must be confined to a near-nadir, narrow swath. Radar measurements from a zenith directed radar operated at 9.1 GHz and 10 GHz are used to investigate the qualitative characteristics of the differential signals. Disdrometer and rain gauge data taken at the surface, just below the radar, are used to test whether the differential signals can be used to estimate characteristics of the raindrop size distribution.

  5. MESAR - An advanced experimental phased array radar

    NASA Astrophysics Data System (ADS)

    Billam, E. R.; Harvey, D. H.

    MESAR (Multifunction Electronically Scanned Adaptive Radar) is an experimental phase array radar which exploits recent advances in technology to reduce cost and realize the potential of phased array radar to a far greater extent than has so far been achieved. It employs a solid state active array, has a digital beamformer, and features programmable waveform generation and signal processing. In this paper, the MESAR array, transmit-receive module, digital beamforming, digital waveform generator, digital pulse compressor, and programmable signal processor are described. The system aspects of reliability, duty factor, power, and cost are addressed.

  6. Thermionic converter emitter support arrangement

    DOEpatents

    Allen, Daniel T. (La Jolla, CA)

    1990-01-01

    A support is provided for use in a therminonic converter to support an end of an emitter to keep it out of contact with a surrounding collector while allowing the emitter end to move axially as its temperature changes. The emitter end (34) is supported by a spring structure (44) that includes a pair of Belleville springs, and the spring structure is supported by a support structure (42) fixed to the housing that includes the collector. The support structure is in the form of a sandwich with a small metal spring-engaging element (74) at the front end, a larger metal main support (76) at the rear end that is attached to the housing, and with a ceramic layer (80) between them that is bonded by hot isostatic pressing to the metal element and metal main support. The spring structure can include a loose wafer (120) captured between the Belleville springs.

  7. Thermionic converter emitter support arrangement

    DOEpatents

    Allen, Daniel T. (La Jolla, CA)

    1990-01-01

    A support is provided for use in a thermionic converter to support an end an emitter to keep it out of contact with a surrounding collector while allowing the emitter end to move axially at its temperatures changes. The emitter end (34) is supported by a spring structure (44) that includes a pair of Belleville springs, and the spring structure is supported by a support structure (42) fixed to the housing that includes the collector. The support structure is in the form of a sandwich with a small metal spring-engaging element (74) at the front end, a larger metal main support (76) at the rear end that is attached to the housng, and with a ceramic layer (80) between them that is bonded by hot isostatic pressing to the metal element and metal main support. The spring structure can include a loose wafer (120) captured between the Belleville springs.

  8. Combustion powered thermophotovoltaic emitter system

    SciTech Connect

    McHenry, R.S.

    1995-07-01

    The US Naval Academy (USNA) has recently completed an engineering design project for a high temperature thermophotovoltaic (TPV) photon emitter. The final apparatus was to be portable, completely self contained, and was to incorporate cycle efficiency optimization such as exhaust stream recuperation. Through computer modeling and prototype experimentation, a methane fueled emitter system was designed from structural ceramic materials to fulfill the high temperature requirements necessary for high system efficiency. This paper outlines the engineering design process, discusses obstacles and solutions encountered, and presents the final design.

  9. DC coupled Doppler radar physiological monitor.

    PubMed

    Zhao, Xi; Song, Chenyan; Lubecke, Victor; Boric-Lubecke, Olga

    2011-01-01

    One of the challenges in Doppler radar systems for physiological monitoring is a large DC offset in baseband outputs. Typically, AC coupling is used to eliminate this DC offset. Since the physiological signals of interest include frequency content near DC, it is not desirable to simply use AC coupling on the radar outputs. While AC coupling effectively removes DC offset, it also introduces a large time delay and distortion. This paper presents the first DC coupled IQ demodulator printed circuit board (PCB) design and measurements. The DC coupling is achieved by using a mixer with high LO to RF port isolation, resulting in a very low radar DC offset on the order of mV. The DC coupled signals from the PCB radar system were successfully detected with significant LNA gain without saturation. Compared to the AC coupled results, the DC coupled results show great advantages of less signal distortion and more accurate rate estimation. PMID:22254704

  10. NASA experimental airborne doppler radar and real time processor for wind shear detection

    NASA Technical Reports Server (NTRS)

    Schaffner, Philip H.; Richards, Mark A.; Jones, William R.; Crittenden, Lucille H.

    1992-01-01

    The topics are presented in viewgraph form and include the following: experimental radar system capabilities; an experimental radar system block diagram; wind shear radar signal and data processor (WRSDP); WRSDP hardware architecture; WRSDP system design goals; DSP software development tools; OS-9 software development tools; WRSDP digital signal processing; WRSDP display operational modes; WRSDP division of functions; structure of WRSDP signal and data processing algorithms; and the wind shear radar flight experiment.

  11. Analysis of a combined FMCW pulse radar system for Side Looking Airborne Radar (SLAR) applications

    NASA Astrophysics Data System (ADS)

    Timmerman, R.

    1985-01-01

    A theoretical and practical feasibility study for the development of an FMCW radar, combining features of FMCW and pulse radars was performed for application as SLAR for Earth observation. Design approaches were compared. Simulations with a network analyzer and an intermediate frequency system are presented. The simulation results are similar to a FMCW processed radar signal. A method to simulate the radar system at microwave frequencies is discussed. A block diagram of the final system is given. Noise behavior and transmitter power are discussed.

  12. Wind shear radar simulation

    NASA Technical Reports Server (NTRS)

    Britt, Charles L.

    1988-01-01

    Viewgraphs used in a presentation on wind shear radar simulation are given. Information on a microburst model of radar reflectivity and wind velocity, radar pulse output, the calculation of radar return, microburst power spectrum, and simulation plans are given. A question and answer session is transcribed.

  13. Emittance of investment casting molds

    SciTech Connect

    Havstad, M.A.

    1994-07-15

    This document describes measurements of the directional spectral emittance of four ceramic mold materials. The work was performed with the samples at {approximately} 900{degree}C in a vacuum vessel pumped to {approximately}3 {times} 10{sup {minus}6}Torr. Results conform to expectations derived from prior work done with similar samples.

  14. Shielding in ungated field emitter arrays

    SciTech Connect

    Harris, J. R.; Jensen, K. L.; Shiffler, D. A.; Petillo, J. J.

    2015-05-18

    Cathodes consisting of arrays of high aspect ratio field emitters are of great interest as sources of electron beams for vacuum electronic devices. The desire for high currents and current densities drives the cathode designer towards a denser array, but for ungated emitters, denser arrays also lead to increased shielding, in which the field enhancement factor β of each emitter is reduced due to the presence of the other emitters in the array. To facilitate the study of these arrays, we have developed a method for modeling high aspect ratio emitters using tapered dipole line charges. This method can be used to investigate proximity effects from similar emitters an arbitrary distance away and is much less computationally demanding than competing simulation approaches. Here, we introduce this method and use it to study shielding as a function of array geometry. Emitters with aspect ratios of 10{sup 2}–10{sup 4} are modeled, and the shielding-induced reduction in β is considered as a function of tip-to-tip spacing for emitter pairs and for large arrays with triangular and square unit cells. Shielding is found to be negligible when the emitter spacing is greater than the emitter height for the two-emitter array, or about 2.5 times the emitter height in the large arrays, in agreement with previously published results. Because the onset of shielding occurs at virtually the same emitter spacing in the square and triangular arrays, the triangular array is preferred for its higher emitter density at a given emitter spacing. The primary contribution to shielding in large arrays is found to come from emitters within a distance of three times the unit cell spacing for both square and triangular arrays.

  15. Shielding in ungated field emitter arrays

    NASA Astrophysics Data System (ADS)

    Harris, J. R.; Jensen, K. L.; Shiffler, D. A.; Petillo, J. J.

    2015-05-01

    Cathodes consisting of arrays of high aspect ratio field emitters are of great interest as sources of electron beams for vacuum electronic devices. The desire for high currents and current densities drives the cathode designer towards a denser array, but for ungated emitters, denser arrays also lead to increased shielding, in which the field enhancement factor ? of each emitter is reduced due to the presence of the other emitters in the array. To facilitate the study of these arrays, we have developed a method for modeling high aspect ratio emitters using tapered dipole line charges. This method can be used to investigate proximity effects from similar emitters an arbitrary distance away and is much less computationally demanding than competing simulation approaches. Here, we introduce this method and use it to study shielding as a function of array geometry. Emitters with aspect ratios of 102-104 are modeled, and the shielding-induced reduction in ? is considered as a function of tip-to-tip spacing for emitter pairs and for large arrays with triangular and square unit cells. Shielding is found to be negligible when the emitter spacing is greater than the emitter height for the two-emitter array, or about 2.5 times the emitter height in the large arrays, in agreement with previously published results. Because the onset of shielding occurs at virtually the same emitter spacing in the square and triangular arrays, the triangular array is preferred for its higher emitter density at a given emitter spacing. The primary contribution to shielding in large arrays is found to come from emitters within a distance of three times the unit cell spacing for both square and triangular arrays.

  16. Tangential velocity measurement using interferometric MTI radar

    DOEpatents

    Doerry, Armin W.; Mileshosky, Brian P.; Bickel, Douglas L.

    2006-01-03

    Radar systems use time delay measurements between a transmitted signal and its echo to calculate range to a target. Ranges that change with time cause a Doppler offset in phase and frequency of the echo. Consequently, the closing velocity between target and radar can be measured by measuring the Doppler offset of the echo. The closing velocity is also known as radial velocity, or line-of-sight velocity. Doppler frequency is measured in a pulse-Doppler radar as a linear phase shift over a set of radar pulses during some Coherent Processing Interval (CPI). An Interferometric Moving Target Indicator (MTI) radar can be used to measure the tangential velocity component of a moving target. Multiple baselines, along with the conventional radial velocity measurement, allow estimating the true 3-D velocity of a target.

  17. Comet radar explorer

    NASA Astrophysics Data System (ADS)

    Farnham, Tony; Asphaug, Erik; Barucci, Antonella; Belton, Mike; Bockelee-Morvan, Dominique; Brownlee, Donald; Capria, Maria Teresa; Carter, Lynn; Chesley, Steve; Farnham, Tony; Gaskell, Robert; Gim, Young; Heggy, Essam; Herique, Alain; Klaasen, Ken; Kofman, Wlodek; Kreslavsky, Misha; Lisse, Casey; Orosei, Roberto; Plaut, Jeff; Scheeres, Dan

    The Comet Radar Explorer (CORE) is designed to perform a comprehensive and detailed exploration of the interior, surface, and inner coma structures of a scientifically impor-tant Jupiter family comet. These structures will be used to investigate the origins of cometary nuclei, their physical and geological evolution, and the mechanisms driving their spectacular activity. CORE is a high heritage spacecraft, injected by solar electric propulsion into orbit around a comet. It is capable of coherent deep radar imaging at decameter wavelengths, high resolution stereo color imaging, and near-IR imaging spectroscopy. Its primary objective is to obtain a high-resolution map of the interior structure of a comet nucleus at a resolution of 100 elements across the diameter. This structure shall be related to the surface geology and morphology, and to the structural details of the coma proximal to the nucleus. This is an ideal complement to the science from recent comet missions, providing insight into how comets work. Knowing the structure of the interior of a comet-what's inside-and how cometary activity works, is required before we can understand the requirements for a cryogenic sample return mission. But more than that, CORE is fundamental to understanding the origin of comets and their evolution in time. The mission is made feasible at low cost by the use of now-standard MARSIS-SHARAD reflec-tion radar imaging hardware and data processing, together with proven flight heritage of solar electric propulsion. Radar flight heritage has been demonstrated by the MARSIS radar on Mars Express (Picardi et al., Science 2005; Plaut et al., Science 2007), the SHARAD radar onboard the Mars Reconnaissance Orbiter (Seu et al., JGR 2007), and the LRS radar onboard Kaguya (Ono et al, EPS 2007). These instruments have discovered detailed subsurface structure to depths of several kilometers in a variety of terrains on Mars and the Moon. A reflection radar deployed in orbit about a comet will enjoy significant simplifying benefits compared to using the same instrument for Mars or lunar radar science: (1) The proximity of operations leads to a much higher signal to noise, as much as +30 dB. (2) The lack of an ionosphere simplifies data modeling and analysis. (3) The body is globally illuminated during every data acquisition, minimizing ambiguity or 'clutter' and allowing for tomographic reconstruction. What is novel is the data processing, where instead of a planar radargram approach we coherently process the data into an image of the deep interior. CORE thus uses a MARSIS-SHARAD heritage radar to make coherent reflection sounding measurements, a 'CAT SCAN' of a comet nucleus. What is unique about this mission compared to the Mars radars mentioned above, is that the target is a finite mass of dirty ice in free space, rather than a sheet of dirty ice draped on a planet surface. The depth of penetration (kilometers), attainable resolution (decameters), and the target materials, are more or less the same. This means that the science story is robust, and the radar implementation is robust. The target is comet 10P/Tempel 2, discovered by Wilhelm Tempel in 1873 and observed on most apparitions since. It has been extensively studied, in part because of interest as a CRAF target in the mid-1980s, and much is known about it. Tempel 2 is one of the largest known comet nuclei, 1688 km (about the same size as Halley) [1] and has rotation period 8.9 hours [3,5,6,7,9]. The spin state is evolving with time, spinning up by 10 sec per perihelion pass [5,7]. The comet is active, but not exceedingly so, especially given its size. The water production is measured at 4 1028 mol/sec at its peak [2], a factor of 25 lower than comet Halley, and it is active over only 2% of its surface. The dust environment is well known, producing a factor of 100 less dust than Halley. Comet References: [1] A'Hearn et al., ApJ 347, 1155, 1989 [2] Feldman and Festou, ACM 1991, p. 171, 1992 [3] Jewitt and Luu, AJ 97, 1766, 1989 [4] Lamy et al., Comets II p 223. 2009 [5] Mueller and Ferrin, Icarus 123, 463, 1996 [6] Sekanina, AJ 102, 350, 1991 [7] Schleicher et al., BAAS 41, 1028, 2009 [8] Sykes et al, Icarus 86, 236, 1990 [9] Wisniewsi, Icarus 86, 52, 1990

  18. Space Radar Image of Long Island Optical/Radar

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This pair of images of the Long Island, New York region is a comparison of an optical photograph (top) and a radar image (bottom), both taken in darkness in April 1994. The photograph at the top was taken by the Endeavour astronauts at about 3 a.m. Eastern time on April 20, 1994. The image at the bottom was acquired at about the same time four days earlier on April 16,1994 by the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) system aboard the space shuttle Endeavour. Both images show an area approximately 100 kilometers by 40 kilometers (62 miles by 25 miles) that is centered at 40.7 degrees North latitude and 73.5 degrees West longitude. North is toward the upper right. The optical image is dominated by city lights, which are particularly bright in the densely developed urban areas of New York City located on the left half of the photo. The brightest white zones appear on the island of Manhattan in the left center, and Central Park can be seen as a darker area in the middle of Manhattan. To the northeast (right) of the city, suburban Long Island appears as a less densely illuminated area, with the brightest zones occurring along major transportation and development corridors. Since radar is an active sensing system that provides its own illumination, the radar image shows a great amount of surface detail, despite the night-time acquisition. The colors in the radar image were obtained using the following radar channels: red represents the L-band (horizontally transmitted and received); green represents the L-band (horizontally transmitted and vertically received); blue represents the C-band (horizontally transmitted and vertically received). In this image, the water surface - the Atlantic Ocean along the bottom edge and Long Island Sound shown at the top edge - appears red because small waves at the surface strongly reflect the horizontally transmitted and received L-band radar signal. Networks of highways and railroad lines are clearly visible in the radar image; many of them can also be seen as bright lines i the optical image. The runways of John F. Kennedy International Airport appear as a dark rectangle in Jamaica Bay on the left side of the image. Developed areas appear generally as bright green and orange, while agricultural, protected and undeveloped areas appear darker blue or purple. This contrast can be seen on the barrier islands along the south coast of Long Island, which are heavily developed in the Rockaway and Long Beach areas south and east of Jamaica Bay, but further to the east, the islands are protected and undeveloped.

  19. Architecture for a 1-GHz Digital RADAR

    NASA Technical Reports Server (NTRS)

    Mallik, Udayan

    2011-01-01

    An architecture for a Direct RF-digitization Type Digital Mode RADAR was developed at GSFC in 2008. Two variations of a basic architecture were developed for use on RADAR imaging missions using aircraft and spacecraft. Both systems can operate with a pulse repetition rate up to 10 MHz with 8 received RF samples per pulse repetition interval, or at up to 19 kHz with 4K received RF samples per pulse repetition interval. The first design describes a computer architecture for a Continuous Mode RADAR transceiver with a real-time signal processing and display architecture. The architecture can operate at a high pulse repetition rate without interruption for an infinite amount of time. The second design describes a smaller and less costly burst mode RADAR that can transceive high pulse repetition rate RF signals without interruption for up to 37 seconds. The burst-mode RADAR was designed to operate on an off-line signal processing paradigm. The temporal distribution of RF samples acquired and reported to the RADAR processor remains uniform and free of distortion in both proposed architectures. The majority of the RADAR's electronics is implemented in digital CMOS (complementary metal oxide semiconductor), and analog circuits are restricted to signal amplification operations and analog to digital conversion. An implementation of the proposed systems will create a 1-GHz, Direct RF-digitization Type, L-Band Digital RADAR--the highest band achievable for Nyquist Rate, Direct RF-digitization Systems that do not implement an electronic IF downsample stage (after the receiver signal amplification stage), using commercially available off-the-shelf integrated circuits.

  20. Radar Location Equipment Development Program: Phase I

    SciTech Connect

    Sandness, G.A.; Davis, K.C.

    1985-06-01

    The work described in this report represents the first phase of a planned three-phase project designed to develop a radar system for monitoring waste canisters stored in a thick layer of bedded salt at the Waste Isolation Pilot Plant near Carlsbad, New Mexico. The canisters will be contained in holes drilled into the floor of the underground waste storage facility. It is hoped that these measurements can be made to accuracies of +-5 cm and +-2/sup 0/, respectively. The initial phase of this project was primarily a feasibility study. Its principal objective was to evaluate the potential effectiveness of the radar method in the planned canister monitoring application. Its scope included an investigation of the characteristics of radar signals backscattered from waste canisters, a test of preliminary data analysis methods, an assessment of the effects of salt and bentonite (a proposed backfill material) on the propagation of the radar signals, and a review of current ground-penetrating radar technology. A laboratory experiment was performed in which radar signals were backscattered from simulated waste canisters. The radar data were recorded by a digital data acquisition system and were subsequently analyzed by three different computer-based methods to extract estimates of canister location and tilt. Each of these methods yielded results that were accurate within a few centimeters in canister location and within 1/sup 0/ in canister tilt. Measurements were also made to determine the signal propagation velocities in salt and bentonite (actually a bentonite/sand mixture) and to estimate the signal attenuation rate in the bentonite. Finally, a product survey and a literature search were made to identify available ground-penetrating radar systems and alternative antenna designs that may be particularly suitable for this unique application. 10 refs., 21 figs., 4 tabs.

  1. Ground emitter localization via fusing terrain map and DOA measurements using two miniature UASs

    NASA Astrophysics Data System (ADS)

    Wang, Zhonghai; Blasch, Erik; Pham, Khanh; Shen, Dan; Lin, Peter

    2012-06-01

    This paper presents an emitter localization technique based on the fusion of Direction of Arrival (DOA) measurements obtained from two miniature unmanned aerial systems (UAS) and the terrain map of the interested area. The system's objective is to localize an emitter distributed in an area with 2000m radius in real time and the localization error is less than 100m with 95% confidence. In the system, each UAS is equipped with a three-element smart antenna for scanning the desired frequency band, calculating the received signal's spectrum signature and estimating the emitter's elevation and azimuth DOA. The received signal's DOA, spectrum signature, UAS position, and the time that the signal is received (calculated with respected to the pulse per second (PPS) signal of global positioning system (GPS)) are transmitted to the ground control station. At the ground control station, the DOA coming from the two UAS are aligned using the received signal's spectrum signature and time stamp, and then fused with the UAS position and terrain map to localize the emitter. This paper is focused on the localization scheme including the DOA estimation and emitter localization based on data fusion. The simulation conducted shows that azimuth DOA error (about 1.5) is much smaller than elevation DOA error (about 5), and the achieved localization error is less than 100m in most cases when the UAS and the emitter are located in an area with radius of 2000m.

  2. Joint UK/US Radar Program progress reports for period December 1--31, 1994

    SciTech Connect

    Twogood, R.E.; Brase, J.M.; Mantrom, D.D.; Rino, C.; Chambers, D.H.; Robey, H.F.; Belyea, J.

    1995-01-23

    Topics discussed in this report are current accomplishments in many functions to include: airborne RAR/SAR, radar data processor, ground based SAR signal processing workstation, static airborne radar, multi-aperture space-time array radar, radar field experiments, data analysis and detection theory, management, radar data analysis, modeling and analysis, current meter array, UCSB wave tank, stratified flow facility, Russian Institute of Applied Physics, and budget status.

  3. Imaging radar polarimetry - A review

    NASA Technical Reports Server (NTRS)

    Zebker, Howard A.; Van Zyl, Jakob J.

    1991-01-01

    The authors present a tutorial review of the broad sweep of topics relating to imaging radar polarimetry, ranging from mathematical foundations to hardware and from implementation approaches to signal processing and calibration. The authors examine current developments in sensor technology and implementation for recording polarimetric measurements, and describe techniques and areas of application for this form of remotely sensed data. Those aspects of ground signal processing and calibration peculiar to the polarimetric signals are addressed. Several of the currently operating instruments and some of the implementations planned for future use are discussed.

  4. Fifty years of radar

    NASA Astrophysics Data System (ADS)

    Skolnik, M. I.

    1985-02-01

    A development history of radar technology is presented, with attention to the driving of radar system design advances by the emergence of such weapon systems as long range aircraft and cruise missiles in World War II and the range of current applications for state-of-the-art radar techniques. The applications noted encompass over-the-horizon backscatter radars for aircraft detection at 500-1800 nmi ranges, ultralow sidelobe antenna military radars, a long range, frequency scanning three-dimensional S-band radar, a shipborne phased array radar for the collection of exoatmospheric and endoatmospheric data on ballistic missile reentry vehicles, multimission/multimode X-band fighter aircraft radars, and phased array air defense radars.

  5. Radar simulation program upgrade and algorithm development

    NASA Technical Reports Server (NTRS)

    Britt, Charles L.

    1991-01-01

    The NASA Radar Simulation Program is a comprehensive calculation of the expected output of an airborne coherent pulse Doppler radar system viewing a low level microburst along or near the approach path. Inputs to the program include the radar system parameters and data files that contain the characteristics of the microbursts to be simulated, the ground clutter map, and the discrete target data base which provides a simulation of the moving ground clutter. For each range bin, the simulation calculates the received signal amplitude level by integrating the product of the antenna gain pattern and the scattering source amplitude and phase of a spherical shell volume segment defined by the pulse width, radar range, and ground plane intersection. A series of in-phase and quadrature pulses are generated and stored for further processing if desired. In addition, various signal processing techniques are used to derive the simulated velocity and hazard measurements, and store them for use in plotting and display programs.

  6. Detecting and Mitigating Wind Turbine Clutter for Airspace Radar Systems

    PubMed Central

    2013-01-01

    It is well recognized that a wind turbine has a large radar cross-section (RCS) and, due to the movement of the blades, the wind turbine will generate a Doppler frequency shift. This scattering behavior may cause severe interferences on existing radar systems including static ground-based radars and spaceborne or airborne radars. To resolve this problem, efficient techniques or algorithms should be developed to mitigate the effects of wind farms on radars. Herein, one transponder-based mitigation technique is presented. The transponder is not a new concept, which has been proposed for calibrating high-resolution imaging radars. It modulates the radar signal in a manner that the retransmitted signals can be separated from the scene echoes. As wind farms often occupy only a small area, mitigation processing in the whole radar operation will be redundant and cost inefficient. Hence, this paper uses a transponder to determine whether the radar is impacted by the wind farms. If so, the effects of wind farms are then mitigated with subsequent Kalman filtering or plot target extraction algorithms. Taking airborne synthetic aperture radar (SAR) and pulse Doppler radar as the examples, this paper provides the corresponding system configuration and processing algorithms. The effectiveness of the mitigation technique is validated by numerical simulation results. PMID:24385880

  7. Detecting and mitigating wind turbine clutter for airspace radar systems.

    PubMed

    Wang, Wen-Qin

    2013-01-01

    It is well recognized that a wind turbine has a large radar cross-section (RCS) and, due to the movement of the blades, the wind turbine will generate a Doppler frequency shift. This scattering behavior may cause severe interferences on existing radar systems including static ground-based radars and spaceborne or airborne radars. To resolve this problem, efficient techniques or algorithms should be developed to mitigate the effects of wind farms on radars. Herein, one transponder-based mitigation technique is presented. The transponder is not a new concept, which has been proposed for calibrating high-resolution imaging radars. It modulates the radar signal in a manner that the retransmitted signals can be separated from the scene echoes. As wind farms often occupy only a small area, mitigation processing in the whole radar operation will be redundant and cost inefficient. Hence, this paper uses a transponder to determine whether the radar is impacted by the wind farms. If so, the effects of wind farms are then mitigated with subsequent Kalman filtering or plot target extraction algorithms. Taking airborne synthetic aperture radar (SAR) and pulse Doppler radar as the examples, this paper provides the corresponding system configuration and processing algorithms. The effectiveness of the mitigation technique is validated by numerical simulation results. PMID:24385880

  8. Determination of the Sources of Radar Scattering

    NASA Technical Reports Server (NTRS)

    Moore, R. K.; Zoughi, R.

    1984-01-01

    Fine-resolution radar backscattering measurements were proposed to determine the backscattering sources in various vegetation canopies and surface targets. The results were then used to improve the existing theoretical models of terrain scattering, and also to enhance understanding of the radar signal observed by an imaging radar over a vegetated area. Various experiments were performed on targets such as corn, milo, soybeans, grass, asphalt pavements, soil and concrete walkways. Due to the lack of available references on measurements of this type, the obtained results will be used primarily as a foundation or future experiments. The constituent backscattering characteristics of the vegetation canopies was also examined.

  9. Advances in airborne radar. The new capabilities

    NASA Astrophysics Data System (ADS)

    Stewart, C. M.

    1983-06-01

    The power and speed of the minicomputer, microprocessor, and other signal processing subsystems have had a very significant effect on the operational capability now available from airborne radar. The mechanization of hitherto unrealizable processing strategies has encouraged the development of more sophisticated pulse compression and pulse Doppler radars and allowed them to achieve their full potential within the size and weight constraints of an aircraft installation. The new capabilities in each of the operational roles in which radar is used outlining the techniques employed are reviewed.

  10. SMAP RADAR Processing and Calibration

    NASA Astrophysics Data System (ADS)

    West, R. D.; Jaruwatanadilok, S.; Kwoun, O.; Chaubell, M. J.

    2013-12-01

    The Soil Moisture Active Passive (SMAP) mission uses L-band radar and radiometer measurements to estimate soil moisture with 4% volumetric accuracy at a resolution of 10 km, and freeze-thaw state at a resolution of 1-3 km. Model sensitivities translate the soil moisture accuracy to a radar backscatter accuracy of 1 dB at 3 km resolution and a brightness temperature accuracy of 1.3 K at 40 km resolution. This presentation will describe the level 1 radar processing and calibration challenges and the choices made so far for the algorithms and software implementation. To obtain the desired high spatial resolution the level 1 radar ground processor employs synthetic aperture radar (SAR) imaging techniques. Part of the challenge of the SMAP data processing comes from doing SAR imaging on a conically scanned system with rapidly varying squint angles. The radar echo energy will be divided into range/Doppler bins using time domain processing algorithms that can easily follow the varying squint angle. For SMAP, projected range resolution is about 250 meters, while azimuth resolution varies from 400 meters to 1.2 km. Radiometric calibration of the SMAP radar means measuring, characterizing, and where necessary correcting the gain and noise contributions from every part of the system from the antenna radiation pattern all the way to the ground processing algorithms. The SMAP antenna pattern will be computed using an accurate antenna model, and then validated post-launch using homogeneous external targets such as the Amazon rain forest to look for uncorrected gain variation. Noise subtraction is applied after image processing using measurements from a noise only channel. Variations of the internal electronics are tracked by a loopback measurement which will capture most of the time and temperature variations of the transmit power and receiver gain. Long-term variations of system performance due to component aging will be tracked and corrected using stable external reference targets. Candidate targets include the Amazon rain forest and a model-corrected global ocean measurement. Radio frequency interference (RFI) signals are expected in the L-band frequency window used by the SMAP radar because many other users also operate in this band. Based on results of prior studies at JPL, SMAP L1 radar processing will use a "Slow-time thresholding" or STT algorithm to handle RFI contamination. The STT technique looks at the slow-time series associated with a given range sample, sets an appropriate threshold, and identifies any samples that rise above this threshold as RFI events. The RFI events are removed and the data are azimuth compressed without those samples. Faraday rotation affects L-band signals by rotating the polarization vector during propagation through the ionosphere. This mixes HH, VV, HV, and VH results with each other introducing another source of error. The SMAP radar is not fully polarimetric so the radar data do not provide a correction by themselves. Instead a correction must be derived from other sources. L1 radar processing will use estimates of Faraday rotation derived from externally supplied GPS-based measurements of the ionosphere total electron content (TEC). This work is supported by the SMAP project at the Jet Propulsion Laboratory, California Institute of Technology.

  11. Chemically Etched Open Tubular and Monolithic Emitters for Nanoelectrospray Ionization Mass Spectrometry

    SciTech Connect

    Kelly, Ryan T.; Page, Jason S.; Luo, Quanzhou; Moore, Ronald J.; Orton, Daniel J.; Tang, Keqi; Smith, Richard D.

    2006-11-15

    We have developed a new procedure for fabricating fused silica emitters for electrospray ionization-mass spectrometry (ESI-MS) in which the end of a bare fused silica capillary is immersed into aqueous hydrofluoric acid, and water is pumped through the capillary to prevent etching of the interior. Surface tension causes the etchant to climb the capillary exterior, and the etch rate in the resulting meniscus decreases as a function of distance from the bulk solution. Etching continues until the silica touching the hydrofluoric acid reservoir is completely removed, essentially stopping the etch process. The resulting emitters have no internal taper, making them much less prone to clogging compared to e.g. pulled emitters. The high aspect ratios and extremely thin walls at the orifice facilitate very low flow rate operation; stable ESI-MS signals were obtained for model analytes from 5-μm-diameter emitters at a flow rate of 5 nL/min with a high degree of inter-emitter reproducibility. In extensive evaluation, the etched emitters were found to enable approximately four times as many LC-MS analyses of proteomic samples before failing compared with conventional pulled emitters. The fabrication procedure was also employed to taper the ends of polymer monolith-containing silica capillaries for use as ESI emitters. In contrast to previous work, the monolithic material protrudes beyond the fused silica capillaries, improving the monolith-assisted electrospray process.

  12. A transceiver module of the Mu radar

    NASA Technical Reports Server (NTRS)

    Kato, S.; Ogawa, T.; Tsuda, T.; Sato, T.; Kimura, I.; Fukao, S.

    1983-01-01

    The transceiver (TR) module of a middle and upper atmospheric radar is described. The TR module used in the radar is mainly composed of two units: a mixer (MIX unit) and a power amplifier (PA unit). The former generates the RF wave for transmission and converts the received echo to the IF signal. A 41.5-MHz local signal fed to mixers passes through a digitally controlled 8-bit phase shifter which can change its value up to 1,000 times in a second, so that the MU radar has the ability to steer its antenna direction quickly and flexibly. The MIX unit also contains a buffer amplifier and a gate for the transmitting signal and preamplifier for the received one whose noise figure is less than 5 dB. The PA unit amplifies the RF signal supplied from the MIX unit up to 63.7 dBm (2350 W), and feeds it to the crossed Yagi antenna.

  13. Monitoring by holographic radar systems

    NASA Astrophysics Data System (ADS)

    Catapano, Ilaria; Crocco, Lorenzo; Affinito, Antonio; Gennarelli, Gianluca; Soldovieri, Francesco

    2013-04-01

    Nowadays, radar technology represents a significant opportunity to collect useful information for the monitoring and conservation of critical infrastructures. Radar systems exploit the non-invasive interaction between the matter and the electromagnetic waves at microwave frequencies. Such an interaction allows obtaining images of the region under test from which one can infer the presence of potential anomalies such as deformations, cracks, water infiltrations, etc. This information turns out to be of primary importance in practical scenarios where the probed structure is in a poor state of preservation and renovation works must be planned. In this framework, the aim of this contribution is to describe the potentialities of the holographic radar Rascan 4/4000, a holographic radar developed by Remote Sensing Laboratory of Bauman Moscow State Technical University, as a non-destructive diagnostic tool capable to provide, in real-time, high resolution subsurface images of the sounded structure [1]. This radar provides holograms of hidden anomalies from the amplitude of the interference signal arising between the backscattered signal and a reference signal. The performance of the holographic radar is appraised by means of several experiments. Preliminary tests concerning the imaging below the floor and inside wood structures are carried out in controlled conditions at the Electromagnetic Diagnostic Laboratory of IREA-CNR. After, with reference to bridge monitoring for security aim, the results of a measurement campaign performed on the Musmeci bridge are presented [2]. Acknowledgments This research has been performed in the framework of the "Active and Passive Microwaves for Security and Subsurface imaging (AMISS)" EU 7th Framework Marie Curie Actions IRSES project (PIRSES-GA-2010-269157). REFERENCES [1] S. Ivashov, V. Razevig, I. Vasilyev, A. Zhuravlev, T. Bechtel, L. Capineri, The holographic principle in subsurface radar technology, International Symposium to Commemorate the 60th Anniversary of the Invention of Holography, Springfield, Massachusetts USA, October 27-29, pp. 183-197, 2008. [2] I. Catapano, L. Crocco, A. F. Morabito, F. Soldovieri, "Tomographic imaging of holographic GPR data for non-invasive structural assessment: the Musmeci bridge investigation", Nondestructive testing and evaluation, vol. 27, pp. 229-237, 2012.

  14. Metamaterial selective emitters for photodiodes

    NASA Astrophysics Data System (ADS)

    DeMeo, Dante F.; Pfeister, Nicole A.; Shemelya, Corey M.; Vandervelde, Thomas

    2014-03-01

    This work demonstrates metamaterial (MM) selective thermal emitters for potential use with energy harvesting photodiodes, such as thermophotovoltaic cells. Preliminary structures have been designed, simulated, and fabricated using CST Microwave Studio and microfabrication techniques including electron beam evaporation, atomic layer deposition, and electron beam lithography, respectively. Samples were tested to determine the effect of top layer metal thickness on the absorption of these devices. Preliminary simulation and testing was also performed to design a device for operation at 500C.

  15. Beam emittance measurements at Fermilab

    SciTech Connect

    Wendt, Manfred; Eddy, Nathan; Hu, Martin; Scarpine, Victor; Syphers, Mike; Tassotto, Gianni; Thurman-Keup, Randy; Yang, Ming-Jen; Zagel, James; /Fermilab

    2008-01-01

    We give short overview of various beam emittance measurement methods, currently applied at different machine locations for the Run II collider physics program at Fermilab. All these methods are based on beam profile measurements, and we give some examples of the related instrumentation techniques. At the end we introduce a multi-megawatt proton source project, currently under investigation at Fermilab, with respect to the beam instrumentation challenges.

  16. Alpha particle emitters in medicine

    SciTech Connect

    Fisher, D.R.

    1989-09-01

    Radiation-induced cancer of bone, liver and lung has been a prominent harmful side-effect of medical applications of alpha emitters. In recent years, however, the potential use of antibodies labeled with alpha emitting radionuclides against cancer has seemed promising because alpha particles are highly effective in cell killing. High dose rates at high LET, effectiveness under hypoxic conditions, and minimal expectancy of repair are additional advantages of alpha emitters over antibodies labeled with beta emitting radionuclides for cancer therapy. Cyclotron-produced astatine-211 ({sup 211}At) and natural bismuth-212 ({sup 212}Bi) have been proposed and are under extensive study in the United States and Europe. Radium-223 ({sup 223}Ra) also has favorable properties as a potential alpha emitting label, including a short-lived daughter chain with four alpha emissions. The radiation dosimetry of internal alpha emitters is complex due to nonuniformly distributed sources, short particle tracks, and high relative specific ionization. The variations in dose at the cellular level may be extreme. Alpha-particle radiation dosimetry, therefore, must involve analysis of statistical energy deposition probabilities for cellular level targets. It must also account fully for nonuniform distributions of sources in tissues, source-target geometries, and particle-track physics. 18 refs., 4 figs.

  17. Combustion powered thermophotovoltaic emitter system

    SciTech Connect

    McHenry, R.S.; Harper, M.J.; Lindler, K.W.

    1995-12-31

    The United States Naval Academy, under interagency agreement with the Department of Energy (DOE), has recently completed an engineering design project for a high temperature thermophotovoltaic (TPV) photon emitter. The design was constrained by the physical geometry and photovoltaic cell type of the DOE TPV generator so that a cylindrical emitter at 1,756 K (2,700 F) was dictated. The final apparatus was to be portable, completely self contained, and was to incorporate cycle efficiency optimization such as exhaust stream recuperation. Through computer modeling and prototype experimentation, a methane fueled emitter system was designed from structural ceramic materials to fulfill the DOE requirements. This paper outlines the engineering design process, discusses obstacles and solutions encountered, and presents the final design. The concept of thermophotovoltaic energy conversion dates to the 1960s and has been the subject of broad research effort. This is a direct energy conversion process that converts thermal energy into electricity with only photonic coupling. The process offers high theoretical efficiency, versatile application as a primary or secondary power cycle, and a number of operational advantages resulting from the lack of a working substance or moving parts.

  18. The design and implementation of a multi-waveform radar echo simulator

    NASA Astrophysics Data System (ADS)

    Quan, Yinghui; Gao, Xiaoxiao; Li, Yachao; Xing, Mengdao

    2015-10-01

    Radar simulator is an effective tool for performance assessment of radar systems by accurately reproducing echo signals from complicated environment. This paper presents a design of fast multi-waveform radar echo generation based on deconvolution method. First, scene information is retrieved from outfield data based on improved conjugate gradient algorithm. Then, the new radar echoes are generated through convolution of new transmitted signal and restored scene information. A fast and area-efficient field programmable gate array realization is provided to meet the real-time requirement of radar echo simulation. Finally, a series of experiments are performed to evaluate the effectiveness of proposed radar simulation instrument.

  19. The design and implementation of a multi-waveform radar echo simulator.

    PubMed

    Quan, Yinghui; Gao, Xiaoxiao; Li, Yachao; Xing, Mengdao

    2015-10-01

    Radar simulator is an effective tool for performance assessment of radar systems by accurately reproducing echo signals from complicated environment. This paper presents a design of fast multi-waveform radar echo generation based on deconvolution method. First, scene information is retrieved from outfield data based on improved conjugate gradient algorithm. Then, the new radar echoes are generated through convolution of new transmitted signal and restored scene information. A fast and area-efficient field programmable gate array realization is provided to meet the real-time requirement of radar echo simulation. Finally, a series of experiments are performed to evaluate the effectiveness of proposed radar simulation instrument. PMID:26520973

  20. Test beam results of a low-pressure micro-strip gas chamber with a secondary-electron emitter

    SciTech Connect

    Kwan, S.; Anderson, D.F.; Zimmerman, J.; Sbarra, C.; Salomon, M.

    1994-10-01

    We present recent results, from a beam test, on the angular dependence of the efficiency and the distribution of the signals on the anode strips of a low-pressure microstrip gas chamber with a thick CsI layer as a secondary-electron emitter. New results of CVD diamond films as secondary-electron emitters are discussed.

  1. Radar images analysis for scattering surfaces characterization

    NASA Astrophysics Data System (ADS)

    Piazza, Enrico

    1998-10-01

    According to the different problems and techniques related to the detection and recognition of airplanes and vehicles moving on the Airport surface, the present work mainly deals with the processing of images gathered by a high-resolution radar sensor. The radar images used to test the investigated algorithms are relative to sequence of images obtained in some field experiments carried out by the Electronic Engineering Department of the University of Florence. The radar is the Ka band radar operating in the'Leonardo da Vinci' Airport in Fiumicino (Rome). The images obtained from the radar scan converter are digitized and putted in x, y, (pixel) co- ordinates. For a correct matching of the images, these are corrected in true geometrical co-ordinates (meters) on the basis of fixed points on an airport map. Correlating the airplane 2-D multipoint template with actual radar images, the value of the signal in the points involved in the template can be extracted. Results for a lot of observation show a typical response for the main section of the fuselage and the wings. For the fuselage, the back-scattered echo is low at the prow, became larger near the center on the aircraft and than it decrease again toward the tail. For the wings the signal is growing with a pretty regular slope from the fuselage to the tips, where the signal is the strongest.

  2. Radar channel balancing with commutation

    SciTech Connect

    Doerry, Armin Walter

    2014-02-01

    When multiple channels are employed in a pulse-Doppler radar, achieving and maintaining balance between the channels is problematic. In some circumstances the channels may be commutated to achieve adequate balance. Commutation is the switching, trading, toggling, or multiplexing of the channels between signal paths. Commutation allows modulating the imbalance energy away from the balanced energy in Doppler, where it can be mitigated with filtering.

  3. Radar image of Rio Sao Francisco, Brazil

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This radar image acquired by SRTM shows an area south of the Sao Francisco River in Brazil. The area is predominantly scrub forest. Areas such as these are difficult to map by traditional methods because of frequent cloud cover and local inaccessibility. Image brightness differences in this image are caused by differences in vegetation type and density. Tributaries of the Sao Francisco are visible in the upper right. The Sao Francisco River is a major source of water for irrigation and hydroelectric power. Mapping such regions will allow scientists to better understand the relationships between flooding cycles, forestation and human influences on ecosystems.

    This radar image was obtained by the Shuttle Radar Topography Mission as part of its mission to map the Earth's topography. The image was acquired by just one of SRTM's two antennas, and consequently does not show topographic data but only the strength of the radar signal reflected from the ground. This signal, known as radar backscatter, provides insight into the nature of the surface, including its roughness, vegetation cover, and urbanization.

    The Shuttle Radar Topography Mission (SRTM), launched on February 11, 2000, uses the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. The mission is designed to collect three-dimensional measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter-long (200-foot) mast, an additional C-band imaging antenna and improved tracking and navigation devices. The mission is a cooperative project between the National Aeronautics and Space Administration (NASA), the National Imagery and Mapping Agency (NIMA) and the German and Italian space agencies. It is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Earth Science Enterprise, Washington, DC.

  4. Soviet oceanographic synthetic aperture radar (SAR) research

    SciTech Connect

    Held, D.N.; Gasparovic, R.F.; Mansfield, A.W.; Melville, W.K.; Mollo-Christensen, E.L.; Zebker, H.A.

    1991-01-01

    Radar non-acoustic anti-submarine warfare (NAASW) became the subject of considerable scientific investigation and controversy in the West subsequent to the discovery by the Seasat satellite in 1978 that manifestations of underwater topography, thought to be hidden from the radar, were visible in synthetic aperture radar (SAR) images of the ocean. In addition, the Seasat radar produced images of ship wakes where the observed angle between the wake arms was much smaller than expected from classical Kelvin wake theory. These observations cast doubt on the radar oceanography community's ability to adequately explain these phenomena, and by extension on the ability of existing hydrodynamic and radar scattering models to accurately predict the observability of submarine-induced signatures. If one is of the opinion that radar NAASW is indeed a potentially significant tool in detecting submerged operational submarines, then the Soviet capability, as evidenced throughout this report, will be somewhat daunting. It will be shown that the Soviets have extremely fine capabilities in both theoretical and experimental hydrodynamics, that Soviet researchers have been conducting at-sea radar remote sensing experiments on a scale comparable to those of the United States for several years longer than we have, and that they have both an airborne and spaceborne SAR capability. The only discipline that the Soviet Union appears to be lacking is in the area of digital radar signal processing. If one is of the opinion that radar NAASW can have at most a minimal impact on the detection of submerged submarines, then the Soviet effort is of little consequence and poses not threat. 280 refs., 31 figs., 12 tabs.

  5. On-line Measurement of Chaos Laser Radar using FPGA

    NASA Astrophysics Data System (ADS)

    Nakagawa, Tatsuya; Tsuda, Norio; Yamada, Jun

    Today, laser radar is widely studied as in-car radar. The laser radar has a characteristic that the received signal becomes to be buried in noise with increasing distance. When the long distance is measured, it needs a high power laser, or the repetitive process that uses multiplication and integration. Therefore, a new type of the chaos laser radar has been studied. This laser radar is relatively resistant to noise and can simply process because of using only additional process. But, the chaos laser radar has been off-line processing thus far. Then using FPGA in the signal processing, the on-line measurement system is developed. As a result, the distance up to 95m can be measured on-line.

  6. Doppler radar results

    NASA Technical Reports Server (NTRS)

    Bracalente, Emedio M.

    1992-01-01

    The topics are covered in viewgraph form and include the following: (1) a summary of radar flight data collected; (2) a video of combined aft cockpit, nose camera, and radar hazard displays; (3) a comparison of airborne radar F-factor measurements with in situ and Terminal Doppler Weather Radar (TDWR) F-factors for some sample events; and (4) a summary of wind shear detection performance.

  7. 1991 IEEE National Radar Conference, Los Angeles, CA, Mar. 12, 13, 1991, Proceedings

    NASA Astrophysics Data System (ADS)

    Various papers on the impact of microelectronics on radar systems are presented. Individual topics addressed include: a Ka-band instrumentation radar with one foot range resolution, location accuracy in X-band multifunction radar, ambiguity function analysis of wideband radars, microelectronics applications for GBR-X testability, multiple phase center DPCA for airborne radars, microwave time delay beamforming using optics, Flaps: conformal phased reflecting surfaces, T/R modules for phased array antennas, generalized polar processing algorithm for large area SAR images. Also discussed are: neural networks for sequential discrimination of radar targets, programmable radar signal processor architecture, high-temperature superconductors for radar applications, radar loss of target track (LOTT) expert system, application of the Fast Fourier Number Theoretic Transform to radar, FMCW linearizer bandwidth requirements, RCS probability distribution function modeling of a fluctuating target.

  8. Lunar radar backscatter studies

    NASA Technical Reports Server (NTRS)

    Thompson, T. W.

    1979-01-01

    The lunar surface material in the Plato area is characterized using Earth based visual, infrared, and radar signatures. Radar scattering in the lunar regolith with an existing optical scattering computer program is modeled. Mapping with 1 to 2 km resolution of the Moon using a 70 cm Arecibo radar is presented.

  9. Rapid decrease of radar cross section of meteor head echo observed by the MU radar

    NASA Astrophysics Data System (ADS)

    Nakamura, T.; Nishio, M.; Sato, T.; Tsutsumi, S.; Tsuda, T.; Fushimi, K.

    The meteor head echo observation using the MU (Middle and Upper atmosphere) radar (46.5M Hz, 1MW), Shigaraki, Japan, was carried out simultaneously with a high sensitive ICCD (Image-intensified CCD) camera observation in November 2001. The time records were synchronized using GPS satellite signals, in order to compare instantaneous radar and optical meteor magnitudes. 26 faint meteors were successfully observed simultaneously by both equipments. Detailed comparison of the time variation of radar echo intensity and absolute optical magnitude showed that the radar scattering cross section is likely to decrease rapidly by 5 - 20 dB without no corresponding magnitude variation in the optical data. From a simple modeling, we concluded that such decrease of RCS (radar cross section ) is probably due to the transition from overdense head echo to underd ense head echo.

  10. Transponder-aided joint calibration and synchronization compensation for distributed radar systems.

    PubMed

    Wang, Wen-Qin

    2015-01-01

    High-precision radiometric calibration and synchronization compensation must be provided for distributed radar system due to separate transmitters and receivers. This paper proposes a transponder-aided joint radiometric calibration, motion compensation and synchronization for distributed radar remote sensing. As the transponder signal can be separated from the normal radar returns, it is used to calibrate the distributed radar for radiometry. Meanwhile, the distributed radar motion compensation and synchronization compensation algorithms are presented by utilizing the transponder signals. This method requires no hardware modifications to both the normal radar transmitter and receiver and no change to the operating pulse repetition frequency (PRF). The distributed radar radiometric calibration and synchronization compensation require only one transponder, but the motion compensation requires six transponders because there are six independent variables in the distributed radar geometry. Furthermore, a maximum likelihood method is used to estimate the transponder signal parameters. The proposed methods are verified by simulation results. PMID:25794158

  11. Transponder-Aided Joint Calibration and Synchronization Compensation for Distributed Radar Systems

    PubMed Central

    Wang, Wen-Qin

    2015-01-01

    High-precision radiometric calibration and synchronization compensation must be provided for distributed radar system due to separate transmitters and receivers. This paper proposes a transponder-aided joint radiometric calibration, motion compensation and synchronization for distributed radar remote sensing. As the transponder signal can be separated from the normal radar returns, it is used to calibrate the distributed radar for radiometry. Meanwhile, the distributed radar motion compensation and synchronization compensation algorithms are presented by utilizing the transponder signals. This method requires no hardware modifications to both the normal radar transmitter and receiver and no change to the operating pulse repetition frequency (PRF). The distributed radar radiometric calibration and synchronization compensation require only one transponder, but the motion compensation requires six transponders because there are six independent variables in the distributed radar geometry. Furthermore, a maximum likelihood method is used to estimate the transponder signal parameters. The proposed methods are verified by simulation results. PMID:25794158

  12. ELRA - Experimental phased array radar

    NASA Astrophysics Data System (ADS)

    Sander, W.; Wirth, W. D.

    An experimental electronic steerable array radar system (ELRA) is developed as a research tool for investigations related partly to multifunction operation and adaptive signal processing. To obtain a great flexibility, separate active phased arrays have been chosen for transmitting and receiving. In connection with the large quantity of components employed, the use of efficient monitoring and diagnostic equipment is mandatory. One basic property of ELRA is related to the automatic correction of phase differences between the modules. By properly matching the bandwidth, the phase shifter control and the sample rate, the receive array generates up to six independent simultaneous beams. Variable beam forming is possible by weighting the subarray signals.

  13. Applications of high-frequency radar

    NASA Astrophysics Data System (ADS)

    Headrick, J. M.; Thomason, J. F.

    1998-07-01

    Efforts to extend radar range by an order of magnitude with use of the ionosphere as a virtual mirror started after the end of World War II. A number of HF radar programs were pursued, with long-range nuclear burst and missile launch detection demonstrated by 1956. Successful east coast radar aircraft detect and track tests extending across the Atlantic were conducted by 1961. The major obstacles to success, the large target-to-clutter ratio and low signal-to-noise ratio, were overcome with matched filter Doppler processing. To search the areas that a 2000 nautical mile (3700 km) radar can reach, very complex and high dynamic range processing is required. The spectacular advances in digital processing technology have made truly wide-area surveillance possible. Use of the surface attached wave over the oceans can enable HF radar to obtain modest extension of range beyond the horizon. The decameter wavelengths used by both skywave and surface wave radars require large physical antenna apertures, but they have unique capabilities for air and surface targets, many of which are of resonant scattering dimensions. Resonant scattering from the ocean permits sea state and direction estimation. Military and commercial applications of HF radar are in their infancy.

  14. Emittance Growth in the NLCTA First Chicane

    SciTech Connect

    Sun, Yipeng; Adolphsen, Chris; /SLAC

    2011-08-19

    In this paper, the emittance growth in the NLCTA (Next Linear Collider Test Accelerator) first chicane region is evaluated by simulation studies. It is demonstrated that the higher order fields of the chicane dipole magnet and the dipole corrector magnet (which is attached on the quadrupoles) are the main contributions for the emittance growth, especially for the case with a large initial emittance ({gamma}{epsilon}{sub 0} = 5 {micro}m for instance). These simulation results agree with the experimental observations.

  15. Hail detection using S-band dual polarization radar

    NASA Astrophysics Data System (ADS)

    Heo, S.; Kang, M.; Nam, K.; Jung, H.

    2013-12-01

    The Korea Meteorological Administration(KMA) plans to replace current radars with the S-band dual polarization radars until 2016. So we need to develop an application technology of the S-band dual polarization radar of KMA. The dual polarization radar is capable of measuring the reflectivity ZH, differential reflectivity ZDR, specific differential phase KDP and cross-correlation coefficient ?HV. Using multi-parameter radar information helps to significantly improve the quality of the radar data, distinguish rain echos from the radar signals caused by other scatters (snow, ground clutter, chaff etc.). Additionally, Hydrometeor classification (rain, snow, hail, etc.) is one of the primary benefits of dual-polarization radar. However, current research on the S-band dual polarization hydrometeor classification is not in significant progress in Korea. So the purposes of this research are to perform application tests of hydrometeor classification algorithm and make operational system of S-band dual polarization radar of KMA. For this research, we used BSL S-band dual polarization radar data and NIMR-X hydrometeor classification algorithm of the National Institute of Meteorological Research(NIMR). This radar has been operated by the Ministry of Land, Transport, and Maritime affairs(MLTM) and NIMR-X hydrometeor classification algorithm was developed through joint research with the National Center for Atmospheric Research(NCAR).

  16. Minimum emittance in TBA and MBA lattices

    NASA Astrophysics Data System (ADS)

    Xu, Gang; Peng, Yue-Mei

    2015-03-01

    For reaching a small emittance in a modern light source, triple bend achromats (TBA), theoretical minimum emittance (TME) and even multiple bend achromats (MBA) have been considered. This paper derived the necessary condition for achieving minimum emittance in TBA and MBA theoretically, where the bending angle of inner dipoles has a factor of 31/3 bigger than that of the outer dipoles. Here, we also calculated the conditions attaining the minimum emittance of TBA related to phase advance in some special cases with a pure mathematics method. These results may give some directions on lattice design.

  17. Directional emittance corrections for thermal infrared imaging

    NASA Technical Reports Server (NTRS)

    Daryabeigi, Kamran; Wright, Robert E., Jr.; Puram, Chith K.; Alderfer, David W.

    1992-01-01

    A simple measurement technique for measuring the variation of directional emittance of surfaces at various temperatures using commercially available radiometric IR imaging systems was developed and tested. This technique provided the integrated value of directional emittance over the spectral bandwidth of the IR imaging system. The directional emittance of flat black lacquer and red stycast, an epoxy resin, measured using this technique were in good agreement with the predictions of the electromagnetic theory. The data were also in good agreement with directional emittance data inferred from directional reflectance measurements made on a spectrophotometer.

  18. PROTON BEAM EMITTANCE GROWTH AT RHIC

    SciTech Connect

    ZHANG,S.; PTITSYN, V.

    2007-06-25

    With significant beam intensity improvement in RHIC polarized proton runs in 2005 and 2006, the emittance growth becomes a luminosity limiting factor. The beam emittance growth has a dependence on the dynamic pressure rise, which in RHIC proton runs is mainly caused by the electron cloud. The beam instability is usually absent, and the emittance growth rate is much slower than the ones caused by the head-tail instability. It is suspected that the emittance growth is caused by the electron cloud below the instability threshold.

  19. Solid-state Ku-band radar

    NASA Astrophysics Data System (ADS)

    Sechi, F. N.; Johnson, H. C.; Brown, J. E.; Marx, R. E.; Rauchwerk, M. D.

    1981-12-01

    The development of RF and IF components for a Ku-band pulsed radar as well as the construction and tests of this radar, are described. The developed components include an FET oscillator, FET power amplifiers, a biphase modulator, a low-noise amplifier, and charge-coupled (CCD) correlators. The radar transmits a 32-bit biphase coded pulse at a power of 350 mW. The receiver uses a 3-stage, 27-dB-gain amplifier chain with a 6.9-dB overall noise figure. The compact binary-analog signal correlators use 64-stage charge-coupled devices to process receiver I and Q channels. The radar gave excellent performance during ranging tests using a Doppler simulator and digital FFT processor.

  20. Planetary Radar Astronomy

    NASA Astrophysics Data System (ADS)

    Black, Gregory J.

    2002-12-01

    Radar is a powerful tool for studying the Solar System, with its reach limited in theory only by the transmitter power available. It has been used to observe targets ranging in size from the rings of Saturn down to house-sized asteroids. An observer has control of the illumination source, so a radar experiment provides information not available from passive observing methods. On centimeter to meter scales it is a sensitive probe of surface characteristics such as dielectric constant and roughness, and on larger scales can map topography and determine shapes of irregular objects at resolutions finer than other ground-based methods. This lecture will cover the basic techniques of planetary radar astronomy, give an overview of the scientific questions that can be addressed, and survey some recent results. Key points of the lecture will be: what can be learned from radar experiments; types of radar experiments; observable quantities; the radar equation; and an outline of current radar systems.

  1. Planetary radar astronomy

    NASA Technical Reports Server (NTRS)

    Ostro, Steven J.

    1987-01-01

    The scientific aims, theoretical principles, techniques and instrumentation, and future potential of radar observations of solar-system objects are discussed in a general overview. Topics examined include the history of radar technology, echo detectability, the Arecibo and Goldstone radar observatories, echo time delay and Doppler shift, radar waveforms, albedo and polarization ratio, measurement of dynamical properties, and the dispersion of echo power. Consideration is given to angular scattering laws; the radar signatures of the moon and inner planets, Mars, and asteroids; topographic relief; delay-Doppler radar maps and their physical interpretation; and radar observations of the icy Galilean satellites of Jupiter, comets, and the rings of Saturn. Diagrams, drawings, photographs, and sample maps and images are provided.

  2. Planetary radar astronomy

    NASA Astrophysics Data System (ADS)

    Ostro, Steven J.

    The scientific aims, theoretical principles, techniques and instrumentation, and future potential of radar observations of solar-system objects are discussed in a general overview. Topics examined include the history of radar technology, echo detectability, the Arecibo and Goldstone radar observatories, echo time delay and Doppler shift, radar waveforms, albedo and polarization ratio, measurement of dynamical properties, and the dispersion of echo power. Consideration is given to angular scattering laws; the radar signatures of the moon and inner planets, Mars, and asteroids; topographic relief; delay-Doppler radar maps and their physical interpretation; and radar observations of the icy Galilean satellites of Jupiter, comets, and the rings of Saturn. Diagrams, drawings, photographs, and sample maps and images are provided.

  3. A FMCW Radar Ranging Device for the Teleoperator Maneuvering System

    NASA Technical Reports Server (NTRS)

    Mcdonald, M. W.

    1983-01-01

    A frequency-modulated continuous wave radar system is under development in the Communications Systems Branch of the Information and Electronic Systems Laboratory at Marshall Space Flight Center. The radar unit is being designed for use on the teleoperator maneuvering system. Its function is to provide millimeter-level accuracy in range and range rate measurements out to a range of thirty meters. This will facilitate soft docking with accuracy. This report is an updating of previous developments reported on this system. An innovation in the system is the utilization of a standard reference signal generated by shunting a portion of the radar energy into a shorted coaxial delay line. The regular radar target return signal is constantly compared with the reference signal to provide internal error compensation. Within a five meter range, a limit imposed by present laboratory dimensions, the radar system exhibits reliable accuracy with range error less than 0.2%.

  4. Stepped frequency ground penetrating radar

    DOEpatents

    Vadnais, Kenneth G.; Bashforth, Michael B.; Lewallen, Tricia S.; Nammath, Sharyn R.

    1994-01-01

    A stepped frequency ground penetrating radar system is described comprising an RF signal generating section capable of producing stepped frequency signals in spaced and equal increments of time and frequency over a preselected bandwidth which serves as a common RF signal source for both a transmit portion and a receive portion of the system. In the transmit portion of the system the signal is processed into in-phase and quadrature signals which are then amplified and then transmitted toward a target. The reflected signals from the target are then received by a receive antenna and mixed with a reference signal from the common RF signal source in a mixer whose output is then fed through a low pass filter. The DC output, after amplification and demodulation, is digitized and converted into a frequency domain signal by a Fast Fourier Transform. A plot of the frequency domain signals from all of the stepped frequencies broadcast toward and received from the target yields information concerning the range (distance) and cross section (size) of the target.

  5. Possibility of investigating star systems by radar

    NASA Astrophysics Data System (ADS)

    Rzhiga, O. N.

    1986-01-01

    There is no fundamental reason why radar cannot be used in investigations of star systems. In order to detect star systems by radar it is necessary to construct an antenna with a diameter of several tens of kilometers and a transmitter whose power is commensurable with the power of all electric power stations on the Earth. Such an antenna should be in outer space in order to avoid the influence of radio ray refraction in the Earth's troposphere and to to give rise to radio noise. At present the construction of such a radar apparatus may seem incredible, but there are no fundamentally insoluble problems. The closest stars are 10,000 times more distant from the Sun than Pluto. In order to make successful radar observations of star systems there would have to be the same jump in energy potential as with the transition from radar observations of the Moon to radar observations of Pluto. If the rates of increase in energy potential persist, radar observations of star systems will become realistic by the middle of the 21st century. A system for interstellar communication having a receiving antenna with an effective area of 2 x 10 to the 9th power square meters operating at a wavelength of 3 cm with a receiver noise temperature of 10 K can ensure transmission of a television signal from a distance of 4.34 light years with use at the transmitting end of an antenna with a diameter of 10 m and a transmitter with a power of 1 million W. Radar observations of star systems will open the way to interstellar ships in the same way that radar observations of planets in the solar system opened the way for the interplanetary stations.

  6. Radar Imaging of Asteroids

    NASA Astrophysics Data System (ADS)

    Ostro, S. J.

    1996-09-01

    Measurements of the distribution of echo power in time delay (range) and Doppler frequency (line-of-sight velocity) can synthesize images of near-Earth and main-belt asteroids (NEAs and MBAs) that traverse the detectability windows of groundbased radar telescopes. Under ideal circumstances, current radar waveforms can achieve decameter surface resolution. The number of useful pixels obtainable in an imaging data set is of the same order as the signal-to-noise ratio, SNR, of an optimally filtered, weighted sum of all the data. (SNR increases as the square root of the integration time.) The upgraded Arecibo telescope which is about to become operational, should be able to achieve single-date SNRs {\\underline>} (20,100) for an average of (35,5) MBAs per year and single-date SNRs {\\underline>} (20,100,1000) for an average of (10,6,2) of the currently catalogued NEAs per year; optical surveying of the NEA population could increase the frequency of opportunities by an order of magnitude. The strongest imaging opportunities predicted for Arecibo between now and the end of 1997 include (the peak SNR/date is in parentheses): 9 Metis (110), 27 Euterpe (170), 80 Sappho (100), 139 Juewa (140), 144 Vibilia (140), 253 Mathilde (100), 2102 Tantalus (570), 3671 Dionysus (170), 3908 1980PA (4400), 4179 Toutatis (16000), 4197 1982TA (1200), 1991VK (700), and 1994PC1 (7400). A delay-Doppler image projects the echo power distribution onto the target's apparent equatorial plane. One cannot know a priori whether one or two (or more) points on the asteroid contributed power to a given pixel, so accurate interpretation of delay-Doppler images requires modeling (Hudson, 1993, Remote Sensing Rev. 8, 195-203). Inversion of an imaging sequence with enough orientational coverage can remove "north/south" ambiguities and can provide estimates of the target's three-dimensional shape, spin state, radar scattering properties, and delay-Doppler trajectory (e.g., Ostro et al. 1995, Science 270, 80-83; Hudson and Ostro 1995, Science 270, 84-86).

  7. A lightweight ground penetrating radar

    SciTech Connect

    Koppenjan, S.K.; Allen, C.M.; Gardner, D.; Wong, H.R.

    1998-12-31

    The detection of buried objects, particularly unexploded ordnance (UXO), has gained significant interest in the US in the late 1990s. The desire to remediate the thousands of sites worldwide has become an increasing humanitarian concern. The application of radar to this problem has received renewed attention. Bechtel Nevada, Special Technologies Laboratory (STL) has developed several frequency modulated, continuous wave (FM-CW) ground penetrating radar (GPR) units for the US Department of Energy since 1984. To meet these new technical requirements for high resolution data and UXO detection, STL is moving forward with advances to GPR technology, signal processing, and imaging with the development of an innovative system. The goal is to design and fabricate a lightweight, battery operated unit that does not require surface contact and can be operated by a novice user.

  8. Two terminal micropower radar sensor

    DOEpatents

    McEwan, Thomas E.

    1995-01-01

    A simple, low power ultra-wideband radar motion sensor/switch configuration connects a power source and load to ground. The switch is connected to and controlled by the signal output of a radar motion sensor. The power input of the motion sensor is connected to the load through a diode which conducts power to the motion sensor when the switch is open. A storage capacitor or rechargeable battery is connected to the power input of the motion sensor. The storage capacitor or battery is charged when the switch is open and powers the motion sensor when the switch is closed. The motion sensor and switch are connected between the same two terminals between the source/load and ground.

  9. Two terminal micropower radar sensor

    DOEpatents

    McEwan, T.E.

    1995-11-07

    A simple, low power ultra-wideband radar motion sensor/switch configuration connects a power source and load to ground. The switch is connected to and controlled by the signal output of a radar motion sensor. The power input of the motion sensor is connected to the load through a diode which conducts power to the motion sensor when the switch is open. A storage capacitor or rechargeable battery is connected to the power input of the motion sensor. The storage capacitor or battery is charged when the switch is open and powers the motion sensor when the switch is closed. The motion sensor and switch are connected between the same two terminals between the source/load and ground. 3 figs.

  10. 2. VIEW SOUTHWEST, prime search radar tower, height finder radar ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. VIEW SOUTHWEST, prime search radar tower, height finder radar towards, height finder radar towers, and radar tower (unknown function) - Fort Custer Military Reservation, P-67 Radar Station, .25 mile north of Dickman Road, east of Clark Road, Battle Creek, Calhoun County, MI

  11. Thermophotovoltaic Generators Using Selective Metallic Emitters

    NASA Technical Reports Server (NTRS)

    Fraas, Lewis M.; Samaras, John E.; Avery, James E.; Ewell, Richard

    1995-01-01

    In the literature to date on thermophotovoltaic (TPV) generators, two types of infrared emitter's have been emphasized : gray body emitters and rare earth oxide selective emitters. The gray body emitter is defined as an emitter with a spectral emissivity independent of wavelength whereas the rare earth oxide selective emitter is idealized as a delta function emitter with a high emissivity at a select wavelength and a near zero emissivity at all other wavelengths. Silicon carbide is an example of a gray body emitter and ER-YAG is an example of a selective emitter. The Welsbach mantle in a common lantern is another example of an oxide selective emitter. Herein, we describe an alternative type of selective emitter, a selective metallic emitter. These metallic emitters are characterized by a spectral emissivity curve wherein the emissivity monotonically increases with shorter infrared wavelengths as is shown. The metal of curve "A", tungsten, typifies this class of selective metallic emitter's. In a thermophotovoltaic generator, a photovoltaic cell typically converts infrared radiation to electricity out to some cut-off wavelength. For example, Gallium Antimonide (GaSb) TPV cells respond out to 1.7 microns. The problem with gray body emitters is that they emit at all wavelengths. Therefore, a large fraction of the energy emitted will be outside of the response band of the TPV cell. The argument for the selective emitter is that, ideally, all the emitted energy can be in the cells response band. Unfortunately, rare earth oxide emitters are not ideal. In order to suppress the emissivity toward zero away from the select wavelength, the use of thin fiber's is necessary. This leads to a fragile emitter typical of a lantern mantle. Even given a thin ER-YAG emitter, the measured emissivity at the select wavelength of 1.5 microns has been reported to be 0.6 while the off wavelength background emissivity falls to only 0.2 at 5 microns. This gives a selectivity ratio of only 3. Another problem with a delta function selective emitter is its low power density at practical temperatures because of its narrow emission bandwidth. The concept of selectivity can be generalized by noting that we simply wish to maximize the ratio of in-cell-band power to out-of-cell-band power. Using this generalized selectivity concept and assuming a GaSb cell covered by a simple dielectric filter, we note that the emissivity selectivity ratio for tungsten is 0.3 (at 1.5 microns) / 0.07 (at 5 microns) = 4.3. In the folloy4ng sections, we note that the selective metallic emitters can be valuable in both radioisotope TPV generators in space and in hydrocarbon fired TPV generators here on earth.

  12. Multi-frequency fine resolution imaging radar instrumentation and data acquisition. [side-looking radar for airborne imagery

    NASA Technical Reports Server (NTRS)

    Rendleman, R. A.; Champagne, E. B.; Ferris, J. E.; Liskow, C. L.; Marks, J. M.; Salmer, R. J.

    1974-01-01

    Development of a dual polarized L-band radar imaging system to be used in conjunction with the present dual polarized X-band radar is described. The technique used called for heterodyning the transmitted frequency from X-band to L-band and again heterodyning the received L-band signals back to X-band for amplification, detection, and recording.

  13. Comments on radar interference sources and mitigation techniques

    NASA Astrophysics Data System (ADS)

    Doerry, A. W.

    2015-05-01

    Radar Intelligence, Surveillance, and Reconnaissance (ISR) does not always involve cooperative or even friendly environments or targets. The environment in general, and an adversary in particular, may offer numerous characteristics and impeding techniques to diminish the effectiveness of a radar ISR sensor. These generally fall under the banner of jamming, spoofing, or otherwise interfering with the Electromagnetic (EM) signals required by the radar sensor. Consequently mitigation techniques are often prudent to retain efficacy of the radar sensor. We discuss in general terms a number of mitigation techniques.

  14. Propagation and scattering in MF/HF groundwave radar

    NASA Astrophysics Data System (ADS)

    Shearman, E. D. R.

    1983-12-01

    The propagation, noise, and scattering mechanisms involved in sea-state and ship-tracking radar are discussed using experimental results obtained with groundwave radar. Groundwave propagation is discussed in terms of transmission loss between two vertical short dipoles over ground, propagation between whip antennas, radar backscatter from a target, the backscattering coefficient of the sea, the influence of attenuation and earth curvature, and the signal/noise performance of groundwave radar. Sea-state sensing is considered in terms of the applications of first-order Bragg scattering, the mechanism and applications of second-order scattering, and propagation and antenna considerations. Propagation limitations in ship tracking are discussed.

  15. Selective Emitter Pumped Rare Earth Laser

    NASA Technical Reports Server (NTRS)

    Chubb, Donald L. (Inventor); Patton, Martin O. (Inventor)

    2001-01-01

    A selective emitter pumped rare earth laser provides an additional type of laser for use in many laser applications. Rare earth doped lasers exist which are pumped with flashtubes or laser diodes. The invention uses a rare earth emitter to transform thermal energy input to a spectral band matching the absorption band of a rare earth in the laser in order to produce lasing.

  16. Determining Directional Emittance With An Infrared Imager

    NASA Technical Reports Server (NTRS)

    Daryabeigi, Kamran; Alderfer, David W.; Wright, Robert E., Jr.; Puram, Chith K.

    1994-01-01

    Directional emittances of flat specimen of smooth-surfaced, electrically nonconductive material at various temperatures computed from measurements taken by infrared radiometric imager operating in conjunction with simple ancillary equipment. Directional emittances useful in extracting detailed variations of surface temperatures from infrared images of curved, complexly shaped other specimens of same material. Advantages: simplification of measurement procedure and reduction of cost.

  17. An electron gun with a plasma emitter

    SciTech Connect

    Gruzdev, V.A.; Kreindel', Y.E.; Rempe, N.G.; Troyan, O.E.

    1985-01-01

    This paper describes a continuous-running electron gun which has a plasma emitter that is based on a reflective arc discharge in a cold hollow cathode, which provides an electron beam carrying a current of 1 A. The beam current can be regulated smoothly from 1 mA to 1 A by varying the potential of the emitter cathode.

  18. Comparison between UWB and CW radar sensors for breath activity monitoring

    NASA Astrophysics Data System (ADS)

    Pisa, Stefano; Bernardi, Paolo; Cicchetti, Renato; Giusto, Roberto; Pittella, Erika; Piuzzi, Emanuele; Testa, Orlandino

    2014-05-01

    In this paper the ability of four radar sensors in detecting breath activity has been tested. In particular, range gating UWB, CMOS UWB, CW phase detecting, and FMCW radars have taken into account. Considering a realistic scenario, the radar antenna has been pointed towards the thorax of a breathing subject and the recorded signals have been compared with those of a piezoelectric belt placed around the thorax. Then the ability of the radars in detecting small movements has been tested by means of an oscillating copper plate placed at various distances from the radar antenna. All the considered radars were able to detect the plate movements with a distance-dependent resolution.

  19. 47 CFR 15.515 - Technical requirements for vehicular radar systems.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 1 2011-10-01 2011-10-01 false Technical requirements for vehicular radar... DEVICES Ultra-Wideband Operation § 15.515 Technical requirements for vehicular radar systems. (a..., changing gears, or engaging a turn signal. (b) The UWB bandwidth of a vehicular radar system...

  20. 47 CFR 15.515 - Technical requirements for vehicular radar systems.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 1 2010-10-01 2010-10-01 false Technical requirements for vehicular radar... DEVICES Ultra-Wideband Operation § 15.515 Technical requirements for vehicular radar systems. (a..., changing gears, or engaging a turn signal. (b) The UWB bandwidth of a vehicular radar system...

  1. 47 CFR 15.515 - Technical requirements for vehicular radar systems.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 1 2012-10-01 2012-10-01 false Technical requirements for vehicular radar... DEVICES Ultra-Wideband Operation § 15.515 Technical requirements for vehicular radar systems. (a..., changing gears, or engaging a turn signal. (b) The UWB bandwidth of a vehicular radar system...

  2. 47 CFR 15.515 - Technical requirements for vehicular radar systems.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 1 2013-10-01 2013-10-01 false Technical requirements for vehicular radar... DEVICES Ultra-Wideband Operation § 15.515 Technical requirements for vehicular radar systems. (a..., changing gears, or engaging a turn signal. (b) The UWB bandwidth of a vehicular radar system...

  3. 47 CFR 15.515 - Technical requirements for vehicular radar systems.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 1 2014-10-01 2014-10-01 false Technical requirements for vehicular radar... DEVICES Ultra-Wideband Operation § 15.515 Technical requirements for vehicular radar systems. (a..., changing gears, or engaging a turn signal. (b) The UWB bandwidth of a vehicular radar system...

  4. A ka-band low power Doppler radar system for remote detection of cardiopulmonary motion.

    PubMed

    Xiao, Yanming; Lin, Jenshan; Boric-Lubecke, Olga; Lubecke, Victor

    2005-01-01

    A low power Ka-band Doppler radar that can detect human heartbeat and respiration signals is demonstrated. This radar system achieves better than 80% detection accuracy at the distance of 2-m with 16-μW transmitted power. Indirect-conversion receiver architecture is chosen to reduce the DC offset and 1/f noise that can degrade signal-to-noise ratio and detection accuracy. In addition, the radar has also demonstrated the capability of detecting acoustic signals. PMID:17281925

  5. Alpine radar conversion for LAWR

    NASA Astrophysics Data System (ADS)

    Savina, M.; Burlando, P.

    2012-04-01

    The Local Area Weather Radar (LAWR) is a ship-born weather radar system operating in X-band developed by the DHI Group to detect precipitation in urban areas. To date more than thirty units are installed in different settings around the world. A LAWR was also deployed in the Alps, at 3883 m a.s.l. on the Kl. Matterhorn (Valais, Switzerland). This was the highest LAWR of the world and it led to the development of an Alpine LAWR system that, besides featuring important technological improvements needed to withstand the severe Alpine conditions, required the development of a new Alpine Radar COnversion Model (ARCOM), which is the main focus of this contribution. The LAWR system is equipped with the original FURUNO fan-beam slotted antenna and the original logarithmic receiver, which limits the radar observations to the video signal (L) withour providing the reflectivity (Z). The beam is 0.95 deg wide and 20 deg high. It can detect precipitation to a max range of 60 km. In order to account for the limited availability of raw signal and information and the specific mountain set-up, the conversion model had to be developed differently from the state-of-the-art radar conversion technique used for this class of radars. In particular, the ARCOM is based on a model used to simulate a spatial dependent factor, hereafter called ACF, which is in turn function of parameters that take in account climatological conditions, also used in other conversion methods, but additionally accounting for local radar beam features and for orographic forcings such as the effective sampling power (sP), which is modelled by means of antenna pattern, geometric ground clutter and their interaction. The result is a conversion factor formulated to account for a range correction that is based on the increase of the sampling volume, partial beam blocking and local climatological conditions. The importance of the latter in this study is double with respect to the standard conversion technique for this class of radars, because it accounts for the large variability of hydrometeors reflectivity and vertical hydrometeors positioning (echo-top), which is strongly influenced by the high location of the radar. The ARCOM procedure is in addition embedded in a multistep quality control framework, which also includes the calibration on raingauge observations, and can be summarized as follow: 1) correction of both LAWR and raingauge observations for known errors (e.g. magnetron decay and heated-related water loss) 2) evaluation of the local Pearson's correlation coefficient (PCC) as estimator of the linear correlation between raingauge and LAWR observations (logarithmic receiver); 3) computation of the local ACF in the form of the local linear regression coefficient between raingauge and LAWR observations; 4) calibration of the ARCOM, i.e. definition of the parametrization able to reproduce the spatial variability of ACF as function of the local sP, being the PCCs used as weight in the calibration procedure. The resulting calibrated ARCOM finally allows, in any ungauged mountain spot, to convert LAWR observations into precipitation rate. The temporal and the spatial transferability of the ARCOM are evaluated via split-sample and a take-one-out cross validation. The results revealed good spatial transferability and a seasonal bias within 7%, thus opening new opportunities for local range distributed measurements of precipitation in mountain regions.

  6. Reproducibility in fabrication and analytical performance of polyaniline-coated nanoelectrospray emitters.

    PubMed

    White, Thomas P; Wood, Troy D

    2003-07-15

    Nanoelectrospray ionization mass spectrometry is an ideal technique for analysis of biomolecules when sample quantities are limited. With the use of this technique, 1-2 microL of sample can be electrosprayed for long time periods (hours) because of the low flow rate (nanoliters per minute) attainable. However, the long-term durability of such emitters has been an impediment to the routine use of nanoelectrospray. The development of longer-lasting nanoelectrospray emitters has often resulted in increasingly complex and tedious fabrication processes. Furthermore, an easily produced, reproducible, and durable nanoelectrospray emitter is the ultimately desired goal. Here, the reproducibility of the inner diameters and geometry for nanoelectrospray emitter glass substrates is assessed using scanning electron microscopy (SEM). The results indicate that provided that glass pulling parameters remain constant, reproducible inner diameters can be produced from glass capillary tubing within the same batch; however, there are interbatch differences. In addition, SEM revealed reproducible taper geometry could also be obtained. Borosilicate and fused-silica nanoelectrospray emitters produced by these protocols were then coated with polyaniline, and their analytical figures of merit were determined using a triple quadrupole mass analyzer. Over a 1-h run, polyaniline-coated emitters showed fairly stable signal with coefficients of variation ranging from 8.92 to 27.6%. Single-scan detection limits below 1 amol were achieved for polyaniline-coated fused-silica emitters for flow rates averaging <10 nL/min. Linear mass spectrometric response with solution concentration was observed for the polyaniline-coated emitters over the range 10 nM-10 microM, with coefficients of variation ranging from 1.44 to 7.26%. This indicates that when nanelectrospray emitter inner diameters are made reproducibly, it is possible to achieve linear quantitative response for nanoelectrospray. PMID:14570224

  7. Emittance measurements of the CLIO electron beam

    NASA Astrophysics Data System (ADS)

    Chaput, R.; Devanz, G.; Joly, P.; Kergosien, B.; Lesrel, J.

    1997-02-01

    We have designed a setup to measure the transverse emittance at the CLIO accelerator exit, based on the "3 gradients" method. The beam transverse size is measured simply by scanning it with a steering coil across a fixed jaw and recording the transmitted current, at various quadrupole strengths. A code then performs a complete calculation of the emittance using the transfer matrix of the quadrupole instead of the usual classical lens approximation. We have studied the influence of various parameters on the emittance: Magnetic field on the e-gun and the peak current. We have also improved a little the emittance by replacing a mismatched pipe between the buncher and accelerating section to avoid wake-field effects; The resulting improvements of the emittance have led to an increase in the FEL emitted power.

  8. Directional emittance surface measurement system and process

    NASA Technical Reports Server (NTRS)

    Puram, Chith K. (Inventor); Daryabeigi, Kamran (Inventor); Wright, Robert (Inventor); Alderfer, David W. (Inventor)

    1994-01-01

    Apparatus and process for measuring the variation of directional emittance of surfaces at various temperatures using a radiometric infrared imaging system. A surface test sample is coated onto a copper target plate provided with selective heating within the desired incremental temperature range to be tested and positioned onto a precision rotator to present selected inclination angles of the sample relative to the fixed positioned and optically aligned infrared imager. A thermal insulator holder maintains the target plate on the precision rotator. A screen display of the temperature obtained by the infrared imager, and inclination readings are provided with computer calculations of directional emittance being performed automatically according to equations provided to convert selected incremental target temperatures and inclination angles to relative target directional emittance values. The directional emittance of flat black lacquer and an epoxy resin measurements obtained are in agreement with the predictions of the electromagnetic theory and with directional emittance data inferred from directional reflectance measurements made on a spectrophotometer.

  9. Positron emitter labeled enzyme inhibitors

    DOEpatents

    Fowler, Joanna S.; MacGregor, Robert R.; Wolf, Alfred P.; Langstrom, Bengt

    1990-01-01

    This invention involves a new strategy for imaging and mapping enzyme activity in the living human and animal body using positron emitter-labeled suicide enzyme inactivators or inhibitors which become covalently bound to the enzyme as a result of enzymatic catalysis. Two such suicide inactivators for monoamine oxidase have been labeled with carbon-11 and used to map the enzyme subtypes in the living human and animal body using PET. By using positron emission tomography to image the distribution of radioactivity produced by the body penetrating radiation emitted by carbon-11, a map of functionally active monoamine oxidase activity is obtained. Clorgyline and L-deprenyl are suicide enzyme inhibitors and irreversibly inhibit monoamine oxidase. When these inhibitors are labeled with carbon-11 they provide selective probes for monoamine oxidase localization and reactivity in vivo using positron emission tomography.

  10. Positron emitter labeled enzyme inhibitors

    DOEpatents

    Fowler, J.S.; MacGregor, R.R.; Wolf, A.P.

    1987-05-22

    This invention involved a new strategy for imaging and mapping enzyme activity in the living human and animal body using positron emitter-labeled suicide enzyme inactivators or inhibitors which become covalently bound to the enzyme as a result of enzymatic catalysis. Two such suicide in activators for monoamine oxidase have been labeled with carbon-11 and used to map the enzyme subtypes in the living human and animal body using PET. By using positron emission tomography to image the distribution of radioactivity produced by the body penetrating radiation emitted by carbon-11, a map of functionally active monoamine oxidase activity is obtained. Clorgyline and L-deprenyl are suicide enzyme inhibitors and irreversibly inhibit monoamine oxidase. When these inhibitors are labeled with carbon-11 they provide selective probes for monoamine oxidase localization and reactivity in vivo using positron emission tomography. 2 figs.

  11. Positron emitter labeled enzyme inhibitors

    SciTech Connect

    Fowler, J.S.; MacGregor, R.R.; Wolf, A.P.; Langstrom, B.

    1990-04-03

    This invention involves a new strategy for imaging and mapping enzyme activity in the living human and animal body using positron emitter-labeled suicide enzyme inactivators or inhibitors which become covalently bound to the enzyme as a result of enzymatic catalysis. Two such suicide inactivators for monoamine oxidase have been labeled with carbon-11 and used to map the enzyme subtypes in the living human and animal body using PET. By using positron emission tomography to image the distribution of radioactivity produced by the body penetrating radiation emitted by carbon-11, a map of functionally active monoamine oxidase activity is obtained. Clorgyline and L-deprenyl are suicide enzyme inhibitors and irreversibly inhibit monoamine oxidase. When these inhibitors are labeled with carbon-11 they provide selective probes for monoamine oxidase localization and reactivity in vivo using positron emission tomography.

  12. Microlensless interdigitated photoconductive terahertz emitters.

    PubMed

    Singh, Abhishek; Prabhu, S S

    2015-01-26

    We report here fabrication of interdigitated photoconductive antenna (iPCA) terahertz (THz) emitters based on plasmonic electrode design. Novel design of this iPCA enables it to work without microlens array focusing, which is otherwise required for photo excitation of selective photoconductive regions to avoid the destructive interference of emitted THz radiation from oppositely biased regions. Benefit of iPCA over single active region PCA is, photo excitation can be done at larger area hence avoiding the saturation effect at higher optical excitation density. The emitted THz radiation power from plasmonic-iPCAs is ~2 times more than the single active region plasmonic PCA at 200 mW optical excitation, which will further increase at higher optical powers. This design is expected to reduce fabrication cost of photoconductive THz sources and detectors. PMID:25835910

  13. Low Emittance Electron Beam Studies

    SciTech Connect

    Tikhoplav, Rodion

    2006-04-01

    We have studied the properties of a low emittance electron beam produced by laser pulses incident onto an rf gun photocathode. The experiments were carried out at the A0 photoinjector at Fermilab. Such beam studies are necessary for fixing the design of new Linear Colliders as well as for the development of Free Electron Lasers. An overview of the A0 photoinjector is given in Chapter 1. In Chapter 2 we describe the A0 photoinjector laser system. A stable laser system is imperative for reliable photoinjector operation. After the recent upgrade, we have been able to reach a new level of stability in the pulse-to-pulse fluctuations of the pulse amplitude, and of the temporal and transverse profiles. In Chapter 3 we present a study of transverse emittance versus the shape of the photo-cathode drive-laser pulse. For that purpose a special temporal profile laser shaping device called a pulse-stacker was developed. In Chapter 4 we discuss longitudinal beam dynamics studies using a two macro-particle bunch; this technique is helpful in analyzing pulse compression in the magnetic chicane, as well as velocity bunching effects in the rf-gun and the 9-cell accelerating cavity. In Chapter 5 we introduce a proposal for laser acceleration of electrons. We have developed a laser functioning on the TEM*{sub 01} mode, a mode with a longitudinal electric field component which is suitable for such a process. Using this technique at energies above 40 MeV, one would be able to observe laser-based acceleration.

  14. Modern Radar Techniques for Geophysical Applications: Two Examples

    NASA Technical Reports Server (NTRS)

    Arokiasamy, B. J.; Bianchi, C.; Sciacca, U.; Tutone, G.; Zirizzotti, A.; Zuccheretti, E.

    2005-01-01

    The last decade of the evolution of radar was heavily influenced by the rapid increase in the information processing capabilities. Advances in solid state radio HF devices, digital technology, computing architectures and software offered the designers to develop very efficient radars. In designing modern radars the emphasis goes towards the simplification of the system hardware, reduction of overall power, which is compensated by coding and real time signal processing techniques. Radars are commonly employed in geophysical radio soundings like probing the ionosphere; stratosphere-mesosphere measurement, weather forecast, GPR and radio-glaciology etc. In the laboratorio di Geofisica Ambientale of the Istituto Nazionale di Geofisica e Vulcanologia (INGV), Rome, Italy, we developed two pulse compression radars. The first is a HF radar called AIS-INGV; Advanced Ionospheric Sounder designed both for the purpose of research and for routine service of the HF radio wave propagation forecast. The second is a VHF radar called GLACIORADAR, which will be substituting the high power envelope radar used by the Italian Glaciological group. This will be employed in studying the sub glacial structures of Antarctica, giving information about layering, the bed rock and sub glacial lakes if present. These are low power radars, which heavily rely on advanced hardware and powerful real time signal processing. Additional information is included in the original extended abstract.

  15. Surface penetrating radar for industrial and security applications

    NASA Astrophysics Data System (ADS)

    Daniels, David J.

    1994-12-01

    Surface penetrating radar is playing an ever increasing role in enabling the nondestructive investigation of the ground, and within buildings, bridges and other vertical structures. Further technical developments are improving the clarity of the radar image and providing the operator with a clear, uncluttered radar image of wanted targets. While surface penetrating radar techniques have not received the much larger development investments that conventional military radars have achieved, the technology is playing a vital role in broadening the commercial market for radar methods. A number of applications are explored, including those concerned with buried bodies, antitank and antipersonnel mines, and detection of voids around sewers. Various system components and techniques are discussed, including frequency filtering, clutter reduction, waveform processing, signal processing, transmitters, receivers, and antenna arrays.

  16. Radar systems for a polar mission, volume 1

    NASA Technical Reports Server (NTRS)

    Moore, R. K.; Claassen, J. P.; Erickson, R. L.; Fong, R. K. T.; Komen, M. J.; Mccauley, J.; Mcmillan, S. B.; Parashar, S. K.

    1977-01-01

    The application of synthetic aperture radar (SAR) in monitoring and managing earth resources is examined. Synthetic aperture radars form a class of side-looking airborne radar, often referred to as coherent SLAR, which permits fine-resolution radar imagery to be generated at long operating ranges by the use of signal processing techniques. By orienting the antenna beam orthogonal to the motion of the spacecraft carrying the radar, a one-dimensional imagery ray system is converted into a two-dimensional or terrain imaging system. The radar's ability to distinguish - or resolve - closely spaced transverse objects is determined by the length of the pulse. The transmitter components receivers, and the mixer are described in details.

  17. Probabilistic Quantitative Precipitation Estimates with Ground-based Radar Networks

    NASA Astrophysics Data System (ADS)

    Kirstetter, Pierre-Emmanuel; Gourley, Jonathan; Hong, Yang; Zhang, Jian; Moazamigoodarzi, Saber; Langston, Carrie; Arthur, Ami

    2015-04-01

    The uncertainty structure of radar quantitative precipitation estimation (QPE) is largely unknown at fine spatiotemporal scales near the radar measurement scale (1-km/5-min). By using the WSR-88D radar network and rain gauge datasets across the conterminous US, an investigation of this subject has been carried out within the framework of the NOAA/NSSL ground radar-based Multi-Radar Multi-Sensor. Probability distributions of precipitation rates are computed instead of deterministic values using a model quantifying the relation between radar reflectivity and the corresponding "true" precipitation. The probabilistic model considers multiple sources of error in radar QPE as well as the impacts of correction algorithms on the radar signal. Ensembles of reflectivity-to-rain rate relationships accounting explicitly for rain typology were derived at a 5-min/1-km scale. This approach preserves the fine space/time sampling properties of the radar and conditions probabilistic QPE on the rain rate and precipitation type when computing probabilistic quantitative precipitation estimates (PQPE). The model components were estimated on the basis of a 1-year-long data sample. This PQPE model provides the basis for precipitation probability maps and the generation of radar precipitation ensembles. Maps of the precipitation exceedance probability for specific thresholds (e.g. precipitation return periods) are demonstrated. Precipitation probability maps are accumulated to the hourly time scale and compare positively to the deterministic QPE. This approach to PQPE can readily apply to other systems including space-based passive and active sensor algorithms.

  18. 3. VIEW NORTHWEST, height finder radar towers, and radar tower ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. VIEW NORTHWEST, height finder radar towers, and radar tower (unknown function) - Fort Custer Military Reservation, P-67 Radar Station, .25 mile north of Dickman Road, east of Clark Road, Battle Creek, Calhoun County, MI

  19. 30. Perimeter acquisition radar building room #318, showing radar control. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    30. Perimeter acquisition radar building room #318, showing radar control. Console and line printers - Stanley R. Mickelsen Safeguard Complex, Perimeter Acquisition Radar Building, Limited Access Area, between Limited Access Patrol Road & Service Road A, Nekoma, Cavalier County, ND

  20. Planetary radar studies

    NASA Technical Reports Server (NTRS)

    Thompson, T. W.; Cutts, J. A.

    1981-01-01

    A catalog of lunar and radar anomalies was generated to provide a base for comparison with Venusian radar signatures. The relationships between lunar radar anomalies and regolith processes were investigated, and a consortium was formed to compare lunar and Venusian radar images of craters. Time was scheduled at the Arecibo Observatory to use the 430 MHz radar to obtain high resolution radar maps of six areas of the lunar suface. Data from 1978 observations of Mare Serenitas and Plato are being analyzed on a PDP 11/70 computer to construct the computer program library necessary for the eventual reduction of the May 1981 and subsequent data acquisitions. Papers accepted for publication are presented.

  1. Laser radar in robotics

    SciTech Connect

    Carmer, D.C.; Peterson, L.M.

    1996-02-01

    In this paper the authors describe the basic operating principles of laser radar sensors and the typical algorithms used to process laser radar imagery for robotic applications. The authors review 12 laser radar sensors to illustrate the variety of systems that have been applied to robotic applications wherein information extracted from the laser radar data is used to automatically control a mechanism or process. Next, they describe selected robotic applications in seven areas: autonomous vehicle navigation, walking machine foot placement, automated service vehicles, manufacturing and inspection, automotive, military, and agriculture. They conclude with a discussion of the status of laser radar technology and suggest trends seen in the application of laser radar sensors to robotics. Many new applications are expected as the maturity level progresses and system costs are reduced.

  2. Passive VHF radar for ionospheric physics

    NASA Astrophysics Data System (ADS)

    Sahr, J. D.; Gidner, D. M.; Zhou, C.; Lind, F. D.

    2001-01-01

    Recent technological advances enable a new class of passive radar instruments. These radars have no dedicated transmitter, observing serendipitous scatter of existing sources. Such radars may have very high performance and cost far less than conventional radars. The resulting equipment is essentially reduced to simple antennas, desktop computers, and Global Positioning System equipment. The safety hazards, interference problems, licensing issues, and financial costs associated with high-power transmitters are conspicuously absent. We will offer general design considerations and describe our own instrument, which observes the scatter of commercial FM broadcasts. Our system provides far better range and Doppler resolution than any conventional radar used in ionospheric coherent scatter studies, and is completely free of any range or Doppler aliasing problems. There are two principal drawbacks to passive radars: the ``front end'' signal processing cost is very large, and there is a significant data transport problem. However, spectacular advances in low-cost computing and internet bandwidth have rendered these problems quite easy to solve.

  3. Development of a Low-Cost UAV Doppler Radar Data System

    NASA Technical Reports Server (NTRS)

    Knuble, Joseph; Li, Lihua; Heymsfield, Gerry

    2005-01-01

    A viewgraph presentation on the design of a low cost unmanned aerial vehicle (UAV) doppler radar data system is presented. The topics include: 1) Science and Mission Background; 2) Radar Requirements and Specs; 3) Radar Realization: RF System; 4) Processing of RF Signal; 5) Data System Design Process; 6) Can We Remove the DSP? 7) Determining Approximate Speed Requirements; 8) Radar Realization: Data System; 9) Data System Operation; and 10) Results.

  4. Planetary radar astronomy

    NASA Astrophysics Data System (ADS)

    Ostro, S. J.

    1983-03-01

    The present investigation is concerned with planetary radar research reported during the time from 1979 to 1982. A brief synopsis of radar definitions and technical terminology is also provided. In connection with the proximity of the moon to earth, lunar radar studies have been performed over a wider range of wavelengths than radar investigations of other planetary targets. The most recent study of lunar quasispecular scattering is due to Simpson and Tyler (1982). The latest efforts to interpret the lunar radar maps focus on maria-highlands regolith differences and models of crater ejecta evolution. The highly successful Pioneer Venus Radar Mapper experiment has provided a first look at Venus' global distributions of topography, lambda 17-cm radar reflectivity, and rms surface slopes. Attention is given to recent comparisons of Viking Orbiter images of Mars to groundbased radar altimetry of the planet, the icy Galilean satellites, radar observations of asteroids and comets, and lambda 4-cm and lambda 13-cm observations of Saturn's rings.

  5. Equatorial radar system

    NASA Technical Reports Server (NTRS)

    Rukao, S.; Tsuda, T.; Sato, T.; Kato, S.

    1989-01-01

    A large clear air radar with the sensitivity of an incoherent scatter radar for observing the whole equatorial atmosphere up to 1000 km altitude is now being designed in Japan. The radar, called the Equatorial Radar, will be built in Pontianak, Kalimantan Island, Indonesia (0.03 N, 109.3 E). The system is a 47 MHz monostatic Doppler radar with an active phased array configuration similar to that of the MU radar in Japan, which has been in successful operation since 1983. It will have a PA product of more than 5 x 10(9) sq. Wm (P = average transmitter power, A = effective antenna aperture) with sensitivity more than 10 times that of the MU radar. This system configuration enables pulse-to-pulse beam steering within 25 deg from the zenith. As is the case of the MU radar, a variety of sophisticated operations will be made feasible under the supervision of the radar controller. A brief description of the system configuration is presented.

  6. Laser-radar signature-processing system

    NASA Astrophysics Data System (ADS)

    Bundell, G. A.

    1981-08-01

    The analysis and presentation of ruby-laser-radar signatures in a particular application is examined. A complete system has been developed for this purpose, from acquisition of the return signal to contour presentation of target structures. In this case the target considered is an industrial plume emanating from a coal-fired power station.

  7. Phase information in radar and optical imaging

    SciTech Connect

    Fitch, J.P.

    1991-12-01

    The importance of phase as an information carrier is examined for two applications. The first application is atmospheric compensation of optical signals collected with ground-based telescopes and the second is synthetic aperture radar image formation and data analysis. The basic theory and algorithms for both applications are presented. 15 refs.

  8. Generating nonlinear FM chirp waveforms for radar.

    SciTech Connect

    Doerry, Armin Walter

    2006-09-01

    Nonlinear FM waveforms offer a radar matched filter output with inherently low range sidelobes. This yields a 1-2 dB advantage in Signal-to-Noise Ratio over the output of a Linear FM waveform with equivalent sidelobe filtering. This report presents design and implementation techniques for Nonlinear FM waveforms.

  9. Observation and theory of the radar aurora

    SciTech Connect

    Sahr, J.D.

    1990-01-01

    Plasma density irregularities occurring near the Aurora Borealis cause scattering of HF, VHF, and UHF radio waves. Analysis of the resulting radar signal provides great detail about the spatial and temporal characteristics of these auroral E region irregularities. Observations are presented of the radar aurora from recent campaigns in northern Sweden. After reviewing the basic theory and observations of auroral electrojet irregularities, a simple nonlinear fluid theory of electrojet ion-acoustic waves is introduced, and reduced to a form of the three-wave interaction equations. This theory provides a simple mechanism for excitation of linearly stable waves at large aspect and flow angles, as well as a prediction of the power spectra that a coherent scatter radar should observe. In addition, this theory may be able to account for type 3 waves without resorting to ion gyro modes, such as the electrostatic ion-cyclotron wave. During the course of the research a simple new radar transmitting mode and signal processing algorithm was generated which very simply solves a frequency aliasing problem that often occurs in CUPRI auroral radar studies. Several new radar data analysis routines were developed, including the principally cross-beam image and scatter plots of the second versus first moments of the power spectrum of the irregularities. Analysis of vertical interferometer data shows that type 3 waves originate at ordinary electrojet altitudes, not in the upper E region, from which it is concluded that the electrostatic ion-cyclotron mode does not generate type 3 waves. The measured height of type 3 waves and other spectral analyses provide support for the pure ion-acoustic theory of type 3 waves. Suggestions are offered for hardware improvements to the CUPRI radar, new experiments to test new and existing theories.

  10. Beijing MST radar: Overview and preliminary results

    NASA Astrophysics Data System (ADS)

    Lu, Daren; Chen, Zeyu; Wang, Yong; Zhang, Wenxing; Duan, Shu

    2012-07-01

    As one of the main facilities of so-called China Meridian Project which is focusing on the monitoring solar-terrestrial link and space weather, as well as sun-earth climate connection study, Beijing MST radar has been completed in the middle of 2011 and started its quasi-continuous operational observation since the end of 2011. Beijing MST radar is located in IAP's field observatory (39.4 N,117.0 E) which is a large scale full coherent VHF Doppler radar, with antenna area 9,110 m^2, power-aperture product 3.1108 W.m^2. It's antenna array is consisted of 2424 three element YAGI antenna with square digital active phased array, with beam width equal to or less than 4.5 degree and active five antenna beam azimuth directions and zenith angle ranging from zenith to 20 degree with 1 degree steps. Also the radar uses direct digital receivers and high speed signal processing system. The expected observation altitude is 3-25 km and 60-90 km, for which low, middle and high observation modes can be selected with different vertical resolutions. Same as other MST radars worldwide, Beijing MST radar may observe the 3D wind, backscattering power, and signal noise ratio, for different altitude ranges. Based on preliminary observation in certain time periods, results have been shown that both wind profiling from 3-25 km and 60-90 km are observed. Preliminary results show that the present radar can observe the altitude of lower thermosphere, at least in 90-100 km, even to 110 km. Further results will be given.

  11. A highly efficient CMOS nanoplasmonic crystal enhanced slow-wave thermal emitter improves infrared gas-sensing devices

    PubMed Central

    Pusch, Andreas; De Luca, Andrea; Oh, Sang S.; Wuestner, Sebastian; Roschuk, Tyler; Chen, Yiguo; Boual, Sophie; Ali, Zeeshan; Phillips, Chris C.; Hong, Minghui; Maier, Stefan A.; Udrea, Florin; Hopper, Richard H.; Hess, Ortwin

    2015-01-01

    The application of plasmonics to thermal emitters is generally assisted by absorptive losses in the metal because Kirchhoff’s law prescribes that only good absorbers make good thermal emitters. Based on a designed plasmonic crystal and exploiting a slow-wave lattice resonance and spontaneous thermal plasmon emission, we engineer a tungsten-based thermal emitter, fabricated in an industrial CMOS process, and demonstrate its markedly improved practical use in a prototype non-dispersive infrared (NDIR) gas-sensing device. We show that the emission intensity of the thermal emitter at the CO2 absorption wavelength is enhanced almost 4-fold compared to a standard non-plasmonic emitter, which enables a proportionate increase in the signal-to-noise ratio of the CO2 gas sensor. PMID:26639902

  12. A highly efficient CMOS nanoplasmonic crystal enhanced slow-wave thermal emitter improves infrared gas-sensing devices

    NASA Astrophysics Data System (ADS)

    Pusch, Andreas; de Luca, Andrea; Oh, Sang S.; Wuestner, Sebastian; Roschuk, Tyler; Chen, Yiguo; Boual, Sophie; Ali, Zeeshan; Phillips, Chris C.; Hong, Minghui; Maier, Stefan A.; Udrea, Florin; Hopper, Richard H.; Hess, Ortwin

    2015-12-01

    The application of plasmonics to thermal emitters is generally assisted by absorptive losses in the metal because Kirchhoff’s law prescribes that only good absorbers make good thermal emitters. Based on a designed plasmonic crystal and exploiting a slow-wave lattice resonance and spontaneous thermal plasmon emission, we engineer a tungsten-based thermal emitter, fabricated in an industrial CMOS process, and demonstrate its markedly improved practical use in a prototype non-dispersive infrared (NDIR) gas-sensing device. We show that the emission intensity of the thermal emitter at the CO2 absorption wavelength is enhanced almost 4-fold compared to a standard non-plasmonic emitter, which enables a proportionate increase in the signal-to-noise ratio of the CO2 gas sensor.

  13. A highly efficient CMOS nanoplasmonic crystal enhanced slow-wave thermal emitter improves infrared gas-sensing devices.

    PubMed

    Pusch, Andreas; De Luca, Andrea; Oh, Sang S; Wuestner, Sebastian; Roschuk, Tyler; Chen, Yiguo; Boual, Sophie; Ali, Zeeshan; Phillips, Chris C; Hong, Minghui; Maier, Stefan A; Udrea, Florin; Hopper, Richard H; Hess, Ortwin

    2015-01-01

    The application of plasmonics to thermal emitters is generally assisted by absorptive losses in the metal because Kirchhoff's law prescribes that only good absorbers make good thermal emitters. Based on a designed plasmonic crystal and exploiting a slow-wave lattice resonance and spontaneous thermal plasmon emission, we engineer a tungsten-based thermal emitter, fabricated in an industrial CMOS process, and demonstrate its markedly improved practical use in a prototype non-dispersive infrared (NDIR) gas-sensing device. We show that the emission intensity of the thermal emitter at the CO2 absorption wavelength is enhanced almost 4-fold compared to a standard non-plasmonic emitter, which enables a proportionate increase in the signal-to-noise ratio of the CO2 gas sensor. PMID:26639902

  14. Design and performance of an active radar calibration target for ultrawideband radar cross section measurements

    NASA Astrophysics Data System (ADS)

    Narayanan, Ram M.; Dawood, Muhammad; Falkinburg, Matthew A.

    1998-10-01

    The University of Nebraska has developed an ultra-wideband coherent random noise radar that accomplishes phase-coherent processing of the received data. The system operates over the 1 - 2 GHz frequency range. In order to make calibrated radar cross section measurements of targets and terrain, a radar calibration target was fabricated and tested. The unique requirements for the ultra-wideband calibration target include (1) high radar cross section value to minimize effects of background reflections, (2) constant radar cross section over the frequency range to ensure calibration accuracy, and (3) wide beamwidth to minimize effects of antenna pointing errors. The design consisted of a receive and a re-transmit antenna between which a high-pass filter and a microwave amplifier were inserted. Log-periodic antennas were used as calibration target antennas owing to their broadband and wide beamwidth characteristics. The high-pass filter possessed a 12 dB per octave roll off to appropriately reduce the signal level at lower frequencies to compensate for the correspondingly lower propagation loss as predicted by Friss transmission formula. The high-gain broadband amplifier was used to provide a high- retransmitted power level back to the radar. The design and performance characteristics of the active ultra-wideband radar calibration target are discussed in this paper.

  15. Multinozzle Emitter Arrays for Nanoelectrospray Mass Spectrometry

    SciTech Connect

    Mao, Pan; Wang, Hung-Ta; Yang, Peidong; Wang, Daojing

    2011-06-16

    Mass spectrometry (MS) is the enabling technology for proteomics and metabolomics. However, dramatic improvements in both sensitivity and throughput are still required to achieve routine MS-based single cell proteomics and metabolomics. Here, we report the silicon-based monolithic multinozzle emitter array (MEA), and demonstrate its proof-of-principle applications in high-sensitivity and high-throughput nanoelectrospray mass spectrometry. Our MEA consists of 96 identical 10-nozzle emitters in a circular array on a 3-inch silicon chip. The geometry and configuration of the emitters, the dimension and number of the nozzles, and the micropillar arrays embedded in the main channel, can be systematically and precisely controlled during the microfabrication process. Combining electrostatic simulation and experimental testing, we demonstrated that sharpened-end geometry at the stem of the individual multinozzle emitter significantly enhanced the electric fields at its protruding nozzle tips, enabling sequential nanoelectrospray for the high-density emitter array. We showed that electrospray current of the multinozzle emitter at a given total flow rate was approximately proportional to the square root of the number of its spraying-nozzles, suggesting the capability of high MS sensitivity for multinozzle emitters. Using a conventional Z-spray mass spectrometer, we demonstrated reproducible MS detection of peptides and proteins for serial MEA emitters, achieving sensitivity and stability comparable to the commercial capillary emitters. Our robust silicon-based MEA chip opens up the possibility of a fully-integrated microfluidic system for ultrahigh-sensitivity and ultrahigh-throughput proteomics and metabolomics.

  16. UAS-Based Radar Sounding of Ice

    NASA Astrophysics Data System (ADS)

    Hale, R. D.; Keshmiri, S.; Leuschen, C.; Ewing, M.; Yan, J. B.; Rodriguez-Morales, F.; Gogineni, S.

    2014-12-01

    The University of Kansas Center for Remote Sensing of Ice Sheets developed two Unmanned Aerial Systems (UASs) to support polar research. We developed a mid-range UAS, called the Meridian, for operating a radar depth sounder/imager at 195 MHz with an eight-element antenna array. The Meridian weighs 1,100 lbs, has a 26-foot wingspan, and a range of 950 nm at its full payload capacity of 120 lbs. Ice-penetrating radar performance drove the configuration design, though additional payloads and sensors were considered to ensure adaptation to multi-mission science payloads. We also developed a short range UAS called the G1X for operating a low-frequency radar sounder that operates at 14 and 35 MHz. The G1X weighs 85 lbs, has a 17-foot wingspan, and a range of about 60 nm per gallon of fuel. The dual-frequency HF/VHF radar depth sounder transmits at 100 W peak power at a pulse repetition frequency of 10 KHz and weighs approximately 4.5 lbs. We conducted flight tests of the G1X integrated with the radar at the Sub-glacial Lake Whillans ice stream and the WISSARD drill site. The tests included pilot-controlled and fully autonomous flights to collect data over closely-spaced lines to synthesize a 2-D aperture. We obtained clear bed echoes with a signal-to-noise (S/N) ratio of more than 50 dB at this location. These are the first-ever successful soundings of glacial ice with a UAS-based radar. Although ice attenuation losses in this location are low in comparison to more challenging targets, in-field performance improvements to the UAS and HF/VHF radar system enabled significant gains in the signal-to-noise ratio, such that the system can now be demonstrated on more challenging outlet glaciers. We are upgrading the G1X UAS and radar system for further tests and data collection in Greenland. We are reducing the weight and volume of the radar, which, when coupled with further reductions in airframe and avionics weight and a larger fuel bladder, will offer extended range. Finally, we are increasing the radar transmit peak power to about 250-500 W using high-efficiency power amplifiers and hardening the aircraft actuators for potential electromagnetic interference. The main focus of the Spring 2015 deployment is to collect fine-resolution data near the outlet and grounding lines of Kangiata Nunaata Sermia (KNS) glacier in Greenland.

  17. Multi-platform RF emitter localization using extremum seeking control

    NASA Astrophysics Data System (ADS)

    Al Issa, Huthaifa; Ordez, Ral

    2013-05-01

    In recent years there has been growing interest in Ad-hoc and Wireless Sensor Networks (WSNs) for a variety of indoor applications. Thus, recent developments in communications and RF technology have enabled system concept formulations and designs for low-cost radar systems using state-of-the-art software radio modules. Position-Adaptive radar concepts have been formulated and investigated at the Air Force Research Laboratory (AFRL) within the past few years. Adopting a position-adaptive approach to the design of distributed radar systems shows potential for the development of future radar systems that function under new and challenging environments that contain large clutter discretes and require co-functionality within multi-signal RF environments. In this paper, we present the simulation performance analysis on the application aspect. We apply Extremum Seeking Control (ESC) schemes by using the swarm seeking problem, where the goal is to design a control law for each individual sensor that can minimize the error metric by adapting the sensor positions in real-time based on cross-path loss exponents estimates between sensors, thereby minimizing the unknown estimation error. As a result we achieved source seeking and collision avoidance of the entire group of the sensor positions.

  18. Emittance growth due to Tevatron flying wires

    SciTech Connect

    Syphers, M; Eddy, Nathan

    2004-06-01

    During Tevatron injection, Flying Wires have been used to measure the transverse beam size after each transfer from the Main Injector in order to deduce the transverse emittances of the proton and antiproton beams. This amounts to 36 + 9 = 45 flies of each of 3 wire systems, with an individual wire passing through each beam bunch twice during a single ''fly''. below they estimate the emittance growth induced by the interaction of the wires with the particles during these measurements. Changes of emittance from Flying Wire measurements conducted during three recent stores are compared with the estimations.

  19. Linear emittance damper with megagauss fields

    SciTech Connect

    Barletta, W.A.

    1987-07-03

    The emittance of the beams in both high energy, electron-positron colliders and synchrotron light sources is limited by collective beam interactions with the structure of the damping (or storage) rings. A novel linear damper offers the possibility of reducing the emittance by another factor of a few. The underlying physical principle is that high energy, high current, low emittance beams can emit copious hard gammas as synchrotron radiation and cool in the presence of megagauss magnetic fields. These fields can be provided by the beam itself in the presence of a low density gas.

  20. Thermophotovoltaic emitter material selection and design

    SciTech Connect

    Saxton, P.C.; Moran, A.L.; Harper, M.J.; Lindler, K.W.

    1997-07-01

    Thermophotovoltaics (TPV) is a potentially attractive direct energy conversion technology. It reduces the need for complex machinery with moving parts and maintenance. TPV generators can be run from a variety of heat sources including waste heat for smaller scale operations. The US Naval Academy`s goal was to build a small experimental thermophotovoltaic generator powered by combustion gases from a General Electric T-58 helicopter gas turbine. The design of the generator imposes material limitations that directly affect emitter and structural materials selection. This paper details emitter material goals and requirements, and the methods used to select suitable candidate emitter materials for further testing.

  1. Narrowband terahertz emitters using metamaterial films.

    PubMed

    Alves, Fabio; Kearney, Brian; Grbovic, Dragoslav; Karunasiri, Gamani

    2012-09-10

    In this article we report on metamaterial-based narrowband thermal terahertz (THz) emitters with a bandwidth of about 1 THz. Single band emitters designed to radiate in the 4 to 8 THz range were found to emit as high as 36 W/m(2) when operated at 400 °C. Emission into two well-separated THz bands was also demonstrated by using metamaterial structures featuring more complex unit cells. Imaging of heated emitters using a microbolometer camera fitted with THz optics clearly showed the expected higher emissivity from the metamaterial structure compared to low-emissivity of the surrounding aluminum. PMID:23037226

  2. PROTOTYPE LASER EMITTANCE SCANNER FOR SNS ACCELERATOR

    SciTech Connect

    Pogge, James R; Jeon, Dong-O; Menshov, Alexander A; Nesterenko, Igor N

    2009-01-01

    Taking Advantage of recent successes with the Laser Profile monitor, a new prototype is being built to use the laser wire as both a profile monitor and a slit for an emittance measuring device. This improved system takes advantage of the steering dipole magnet prior to ring injection of SNS such that only the recently stripped H0 protons continue forward to the emittance device. In this way we hope to make an emittance device that is both parasitic to neutron production, and capable of accurate measurements during full power applications.

  3. Phase noise effects on turbulent weather radar spectrum parameter estimation

    NASA Technical Reports Server (NTRS)

    Lee, Jonggil; Baxa, Ernest G., Jr.

    1990-01-01

    Accurate weather spectrum moment estimation is important in the use of weather radar for hazardous windshear detection. The effect of the stable local oscillator (STALO) instability (jitter) on the spectrum moment estimation algorithm is investigated. Uncertainty in the stable local oscillator will affect both the transmitted signal and the received signal since the STALO provides transmitted and reference carriers. The proposed approach models STALO phase jitter as it affects the complex autocorrelation of the radar return. The results can therefore by interpreted in terms of any source of system phase jitter for which the model is appropriate and, in particular, may be considered as a cumulative effect of all radar system sources.

  4. Compliance with High-Intensity Radiated Fields Regulations - Emitter's Perspective

    NASA Technical Reports Server (NTRS)

    Statman, Joseph; Jamnejad, Vahraz; Nguyen, Lee

    2012-01-01

    NASA's Deep Space Network (DSN) uses high-power transmitters on its large antennas to communicate with spacecraft of NASA and its partner agencies. The prime reflectors of the DSN antennas are parabolic, at 34m and 70m in diameter. The DSN transmitters radiate Continuous Wave (CW) signals at 20 kW - 500 kW at X-band and S-band frequencies. The combination of antenna reflector size and high frequency results in a very narrow beam with extensive oscillating near-field pattern. Another unique feature of the DSN antennas is that they (and the radiated beam) move mostly at very slow sidereal rate, essentially identical in magnitude and at the opposite direction of Earth rotation.The DSN is in the process of revamping its documentation to provide analysis of the High Intensity Radiation Fields (HIRF) environment resulting from radio frequency radiation from DSN antennas for comparison to FAA regulations regarding certification of HIRF protection as outlined in the FAA regulations on HIRF protection for aircraft electrical and electronic systems (Title 14, Code of Federal Regulations (14 CFR) [section sign][section sign] 23.1308, 25.1317, 27.1317, and 29.1317).This paper presents work done at JPL, in consultation with the FAA. The work includes analysis of the radiated field structure created by the unique DSN emitters (combination of transmitters and antennas) and comparing it to the fields defined in the environments in the FAA regulations. The paper identifies areas that required special attention, including the implications of the very narrow beam of the DSN emitters and the sidereal rate motion. The paper derives the maximum emitter power allowed without mitigation and the mitigation zones, where required.Finally, the paper presents summary of the results of the analyses of the DSN emitters and the resulting DSN process documentation.

  5. Extracting radar micro-Doppler signatures of helicopter rotating rotor blades using K-band radars

    NASA Astrophysics Data System (ADS)

    Chen, Rachel; Liu, Baokun

    2014-06-01

    Helicopter identification has been an attractive topic. In this paper, we applied radar micro-Doppler signatures to identify helicopter. For identifying the type of a helicopter, besides its shape and size, the number of blades, the length of the blade, and the rotation rate of the rotor are important features, which can be estimated from radar micro-Doppler signatures of the helicopter's rotating rotor blades. In our study, K-band CW/FMCW radars are used for collecting returned signals from helicopters. By analyzing radar micro-Doppler signatures, we can estimate the number of blades, the length of the blade, the angular rotation rate of the rotating blade, and other necessary parameters for identifying the type of a helicopter.

  6. Radar illusion via metamaterials

    NASA Astrophysics Data System (ADS)

    Jiang, Wei Xiang; Cui, Tie Jun

    2011-02-01

    An optical illusion is an image of a real target perceived by the eye that is deceptive or misleading due to a physiological illusion or a specific visual trick. The recently developed metamaterials provide efficient approaches to generate a perfect optical illusion. However, all existing research on metamaterial illusions has been limited to theory and numerical simulations. Here, we propose the concept of a radar illusion, which can make the electromagnetic (EM) image of a target gathered by radar look like a different target, and we realize a radar illusion device experimentally to change the radar image of a metallic target into a dielectric target with predesigned size and material parameters. It is well known that the radar signatures of metallic and dielectric objects are significantly different. However, when a metallic target is enclosed by the proposed illusion device, its EM scattering characteristics will be identical to that of a predesigned dielectric object under the illumination of radar waves. Such an illusion device will confuse the radar, and hence the real EM properties of the metallic target cannot be perceived. We designed and fabricated the radar illusion device using artificial metamaterials in the microwave frequency, and good illusion performances are observed in the experimental results.

  7. Noncooperative rendezvous radar system

    NASA Technical Reports Server (NTRS)

    1974-01-01

    A fire control radar system was developed, assembled, and modified. The baseline system and modified angle tracking system are described along with the performance characteristics of the baseline and modified systems. Proposed changes to provide additional techniques for radar evaluation are presented along with flight test data.

  8. Java Radar Analysis Tool

    NASA Technical Reports Server (NTRS)

    Zaczek, Mariusz P.

    2005-01-01

    Java Radar Analysis Tool (JRAT) is a computer program for analyzing two-dimensional (2D) scatter plots derived from radar returns showing pieces of the disintegrating Space Shuttle Columbia. JRAT can also be applied to similar plots representing radar returns showing aviation accidents, and to scatter plots in general. The 2D scatter plots include overhead map views and side altitude views. The superposition of points in these views makes searching difficult. JRAT enables three-dimensional (3D) viewing: by use of a mouse and keyboard, the user can rotate to any desired viewing angle. The 3D view can include overlaid trajectories and search footprints to enhance situational awareness in searching for pieces. JRAT also enables playback: time-tagged radar-return data can be displayed in time order and an animated 3D model can be moved through the scene to show the locations of the Columbia (or other vehicle) at the times of the corresponding radar events. The combination of overlays and playback enables the user to correlate a radar return with a position of the vehicle to determine whether the return is valid. JRAT can optionally filter single radar returns, enabling the user to selectively hide or highlight a desired radar return.

  9. The Cloud Radar System

    NASA Technical Reports Server (NTRS)

    Racette, Paul; Heymsfield, Gerald; Li, Lihua; Tian, Lin; Zenker, Ed

    2003-01-01

    Improvement in our understanding of the radiative impact of clouds on the climate system requires a comprehensive view of clouds including their physical dimensions, dynamical generation processes, and detailed microphysical properties. To this end, millimeter vave radar is a powerful tool by which clouds can be remotely sensed. The NASA Goddard Space Flight Center has developed the Cloud Radar System (CRS). CRS is a highly sensitive 94 GHz (W-band) pulsed-Doppler polarimetric radar that is designed to fly on board the NASA high-altitude ER-2 aircraft. The instrument is currently the only millimeter wave radar capable of cloud and precipitation measurements from above most all clouds. Because it operates from high-altitude, the CRS provides a unique measurement perspective for cirrus cloud studies. The CRS emulates a satellite view of clouds and precipitation systems thus providing valuable measurements for the implementation and algorithm validation for the upcoming NASA CloudSat mission that is designed to measure ice cloud distributions on the global scale using a spaceborne 94 GHz radar. This paper describes the CRS instrument and preliminary data from the recent Cirrus Regional Study of Tropical Anvils and Cirrus Layers - Florida Area Cirrus Experiment (CRYSTAL-FACE). The radar design is discussed. Characteristics of the radar are given. A block diagram illustrating functional components of the radar is shown. The performance of the CRS during the CRYSTAL-FACE campaign is discussed.

  10. Equatorial MU Radar project

    NASA Astrophysics Data System (ADS)

    Yamamoto, Mamoru; Hashiguchi, H.; Tsuda, Toshitaka; Yamamoto, Masayuki

    Research Institute for Sustainable Humanosphere, Kyoto University (RISH) has been studying the atmosphere by using radars. The first big facility was the MU (Middle and Upper atmosphere) radar installed in Shiga, Japan in 1984. This is one of the most powerful and multi-functional radar, and is successful of revealing importance of atmospheric waves for the dynamical vertical coupling processes. The next big radar was the Equatorial Atmosphere Radar (EAR) installed at Kototabang, West Sumatra, Indonesia in 2001. The EAR was operated under close collaboration with LAPAN (Indonesia National Institute for Aeronautics and Space), and conducted the long-term continuous observations of the equatorial atmosphere/ionosphere for more than 10 years. The MU radar and the EAR are both utilized for inter-university and international collaborative research program for long time. National Institute for Polar Research (NIPR) joined EISCAT Scientific Association together with Nagoya University, and developed the PANSY radar at Syowa base in Antarctica as a joint project with University of Tokyo. These are the efforts of radar study of the atmosphere/ionosphere in the polar region. Now we can find that Japan holds a global network of big atmospheric/ionospheric radars. The EAR has the limitation of lower sensitivity compared with the other big radars shown above. RISH now proposes a plan of Equatorial MU Radar (EMU) that is to establish the MU-radar class radar next to the EAR. The EMU will have an active phased array antenna with the 163m diameter and 1055 cross-element Yagis. Total output power of the EMU will be more than 500kW. The EMU can detect turbulent echoes from the mesosphere (60-80km). In the ionosphere incoherent-scatter observations of plasma density, drift, and temperature would be possible. Multi-channel receivers will realize radar-imaging observations. The EMU is one of the key facilities in the project "Study of coupling processes in the solar-terrestrial system" for Master Plan 2014 of the Science Council of Japan (SCJ). We show the EMU project and its science in the presentation.

  11. Cassini Titan Radar Mapper

    NASA Technical Reports Server (NTRS)

    Elachi, Charles; Im, Eastwood; Roth, Ladislav E.; Werner, Charles L.

    1991-01-01

    The Cassini Titan Radar Mapper is a multimode radar instrument designed to probe the optically inaccessible surface of Titan, Saturn's largest moon. The instrument is to be included in the payload of the Cassini Saturn Mission, scheduled for launch in 1995. The individual modes of Cassini Radar Mapper will allow topographic mapping and surface imaging at few hundred meters resolution. The requirements that lay behind the design are briefly discussed, and the configuration and capability of the instrument are described. The present limited knowledge of Titan's surface and the measurement requirements imposed on the radar instrument are addressed. Also discussed are the Cassini mission and the projected orbits, which imposed another set of design constraints that led to the multitude of modes and to an unconventional antenna configuration. The antenna configuration and the different radar modes are described.

  12. Meteorological radar calibration

    NASA Technical Reports Server (NTRS)

    Hodge, D. B.

    1978-01-01

    A meteorological radar calibration technique is developed. It is found that the integrated, range corrected, received power saturates under intense rain conditions in a manner analogous to that encountered for the radiometric path temperature. Furthermore, it is found that this saturation condition establishes a bound which may be used to determine an absolution radar calibration for the case of radars operating at attenuating wavelengths. In the case of less intense rainfall or for radars at nonattenuating wavelengths, the relationship for direct calibration in terms of an independent measurement of radiometric path temperature is developed. This approach offers the advantage that the calibration is in terms of an independent measurement of the rainfall through the same elevated region as that viewed by the radar.

  13. Emitters of N-photon bundles

    PubMed Central

    Muñoz, C. Sánchez; del Valle, E.; Tudela, A. González; Müller, K.; Lichtmannecker, S.; Kaniber, M.; Tejedor, C.; Finley, J.J.; Laussy, F.P.

    2014-01-01

    Controlling the ouput of a light emitter is one of the basic tasks of photonics, with landmarks such as the laser and single-photon sources. The development of quantum applications makes it increasingly important to diversify the available quantum sources. Here, we propose a cavity QED scheme to realize emitters that release their energy in groups, or “bundles” of N photons, for integer N. Close to 100% of two-photon emission and 90% of three-photon emission is shown to be within reach of state of the art samples. The emission can be tuned with system parameters so that the device behaves as a laser or as a N-photon gun. The theoretical formalism to characterize such emitters is developed, with the bundle statistics arising as an extension of the fundamental correlation functions of quantum optics. These emitters will be useful for quantum information processing and for medical applications. PMID:25013456

  14. Emitters of N-photon bundles.

    PubMed

    Muoz, C Snchez; Del Valle, E; Tudela, A Gonzlez; Mller, K; Lichtmannecker, S; Kaniber, M; Tejedor, C; Finley, J J; Laussy, F P

    2014-07-01

    Controlling the ouput of a light emitter is one of the basic tasks of photonics, with landmarks such as the laser and single-photon sources. The development of quantum applications makes it increasingly important to diversify the available quantum sources. Here, we propose a cavity QED scheme to realize emitters that release their energy in groups, or "bundles" of N photons, for integer N. Close to 100% of two-photon emission and 90% of three-photon emission is shown to be within reach of state of the art samples. The emission can be tuned with system parameters so that the device behaves as a laser or as a N-photon gun. The theoretical formalism to characterize such emitters is developed, with the bundle statistics arising as an extension of the fundamental correlation functions of quantum optics. These emitters will be useful for quantum information processing and for medical applications. PMID:25013456

  15. Arc-textured high emittance radiator surfaces

    NASA Technical Reports Server (NTRS)

    Banks, Bruce A. (Inventor)

    1991-01-01

    High emittance radiator surfaces are produced by arc-texturing. This process produces such a surface on a metal by scanning it with a low voltage electric arc from a carbon electrode in an inert environment.

  16. Goldstone Solar System Radar Waveform Generator

    NASA Technical Reports Server (NTRS)

    Quirk, Kevin J.; Patawaran, Ferze D.; Nguyen, Danh H.; Nguyen, Huy

    2012-01-01

    Due to distances and relative motions among the transmitter, target object, and receiver, the time-base between any transmitted and received signal will undergo distortion. Pre-distortion of the transmitted signal to compensate for this time-base distortion allows reception of an undistorted signal. In most radar applications, an arbitrary waveform generator (AWG) would be used to store the pre-calculated waveform and then play back this waveform during transmission. The Goldstone Solar System Radar (GSSR), however, has transmission durations that exceed the available memory storage of such a device. A waveform generator capable of real-time pre-distortion of a radar waveform to a given time-base distortion function is needed. To pre-distort the transmitted signal, both the baseband radar waveform and the RF carrier must be modified. In the GSSR, this occurs at the up-conversion mixing stage to an intermediate frequency (IF). A programmable oscillator (PO) is used to generate the IF along with a time-varying phase component that matches the time-base distortion of the RF carrier. This serves as the IF input to the waveform generator where it is mixed with a baseband radar waveform whose time-base has been distorted to match the given time-base distortion function producing the modulated IF output. An error control feedback loop is used to precisely control the time-base distortion of the baseband waveform, allowing its real-time generation. The waveform generator produces IF modulated radar waveforms whose time-base has been pre-distorted to match a given arbitrary function. The following waveforms are supported: continuous wave (CW), frequency hopped (FH), binary phase code (BPC), and linear frequency modulation (LFM). The waveform generator takes as input an IF with a time varying phase component that matches the time-base distortion of the carrier. The waveform generator supports interconnection with deep-space network (DSN) timing and frequency standards, and is controlled through a 1 Gb/s Ethernet UDP/IP interface. This real-time generation of a timebase distorted radar waveform for continuous transmission in a planetary radar is a unique capability.

  17. On radar time and the twin ``paradox''

    NASA Astrophysics Data System (ADS)

    Dolby, Carl E.; Gull, Stephen F.

    2001-12-01

    In this paper we apply the concept of radar time (popularized by Bondi in his work on k calculus) to the well-known relativistic twin "paradox." Radar time is used to define hypersurfaces of simultaneity for a class of traveling twins, from the "immediate turn-around" case, through the "gradual turn-around" case, to the "uniformly accelerating" case. We show that this definition of simultaneity is independent of choice of coordinates, and assigns a unique time to any event (with which the traveling twin can send and receive signals), resolving some common misconceptions.

  18. Alpha-emitters for medical therapy workshop

    SciTech Connect

    Feinendegen, L.E.; McClure, J.J.

    1996-12-31

    A workshop on ``Alpha-Emitters for Medical Therapy`` was held May 30-31, 1996 in Denver Colorado to identify research goals and potential clinical needs for applying alpha-particle emitters and to provide DOE with sufficient information for future planning. The workshop was attended by 36 participants representing radiooncology, nuclear medicine, immunotherapy, radiobiology, molecular biology, biochemistry, radiopharmaceutical chemistry, dosimetry, and physics. This report provides a summary of the key points and recommendations arrived at during the conference.

  19. Charge neutrality in heavily doped emitters

    NASA Astrophysics Data System (ADS)

    del Alamo, J. A.

    1981-09-01

    The applicability of the quasi-neutrality approximation to modern emitters of solar cells is analytically reviewed. It is shown that this approximation is fulfilled in more than 80 percent of the depth of a typical solar-cell emitter, being particularly excellent in the heavily doped regions beneath the surface where most of the heavy doping effects arise. The conclusions presented are in conflict with Redfield's recent (1979, 1980) affirmations.

  20. Emitter Wrap-Through solar cell

    SciTech Connect

    Gee, J.M.; Schubert, W.K.; Basore, P.A.

    1992-01-01

    The authors present a new cell concept (Emitter Wrap-Through or EWT) for a back-contact cell. The cell has laser-drilled vias to wrap the emitter on the front surface to contacts on the back surface and uses a potentially low-cost process sequence. Modeling calculations show that efficiencies of 18 and 21% are possible with large-area solar-grade multi- and monocrystalline silicon EWT cells, respectively.

  1. Emitter Wrap-Through solar cell

    NASA Astrophysics Data System (ADS)

    Gee, J. M.; Schubert, W. K.; Basore, P. A.

    The authors present a new cell concept (Emitter Wrap-Through or EWT) for a back-contact cell. The cell has laser-drilled vias to wrap the emitter on the front surface to contacts on the back surface and uses a potentially low-cost process sequence. Modeling calculations show that efficiencies of 18 and 21% are possible with large-area solar-grade multi- and monocrystalline silicon EWT cells, respectively.

  2. Coaxial inverted geometry transistor having buried emitter

    NASA Technical Reports Server (NTRS)

    Hruby, R. J.; Cress, S. B.; Dunn, W. R. (inventors)

    1973-01-01

    The invention relates to an inverted geometry transistor wherein the emitter is buried within the substrate. The transistor can be fabricated as a part of a monolithic integrated circuit and is particularly suited for use in applications where it is desired to employ low actuating voltages. The transistor may employ the same doping levels in the collector and emitter, so these connections can be reversed.

  3. Using Beam Echo to Recover Transverse Emittance

    SciTech Connect

    Stupakov, Gennady V.

    2003-04-24

    If the beam is injected into the ring with an offset a, it undergoes betatron oscillation. After the oscillation decoheres, the beam transverse emittance increases by {Delta}{var_epsilon}. To avoid this emittance increase one typically uses a feedback (or damper) that takes out the oscillation before it damps down. We show that using echo one can recover a fraction of {Delta}{var_epsilon} long after the beam oscillation decoheres.

  4. Emittance measurement in a magnetic field

    SciTech Connect

    Boyd, J.K.

    1991-04-15

    Emittance can be measured by intercepting an electron beam on a range thick plate and then observing the expansion of beamlets transmitted through small holes. The hole size is selected to minimize space charge effects. In the presence of a magnetic field the beamlets have a spiral trajectory and the usual field free formulation must be modified. To interpret emittance in the presence of a magnetic field an envelope equation is derived in the appropriate rotating frame. 1 ref.

  5. 4. VIEW NORTHEAST, radar tower (unknown function), prime search radar ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. VIEW NORTHEAST, radar tower (unknown function), prime search radar tower, emergency power building, and height finder radar tower - Fort Custer Military Reservation, P-67 Radar Station, .25 mile north of Dickman Road, east of Clark Road, Battle Creek, Calhoun County, MI

  6. 5. VIEW EAST, height finder radar towers, radar tower (unknown ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. VIEW EAST, height finder radar towers, radar tower (unknown function), prime search radar tower, operations building, and central heating plant - Fort Custer Military Reservation, P-67 Radar Station, .25 mile north of Dickman Road, east of Clark Road, Battle Creek, Calhoun County, MI

  7. High-resolution three-dimensional imaging radar

    NASA Technical Reports Server (NTRS)

    Cooper, Ken B. (Inventor); Chattopadhyay, Goutam (Inventor); Siegel, Peter H. (Inventor); Dengler, Robert J. (Inventor); Schlecht, Erich T. (Inventor); Mehdi, Imran (Inventor); Skalare, Anders J. (Inventor)

    2010-01-01

    A three-dimensional imaging radar operating at high frequency e.g., 670 GHz, is disclosed. The active target illumination inherent in radar solves the problem of low signal power and narrow-band detection by using submillimeter heterodyne mixer receivers. A submillimeter imaging radar may use low phase-noise synthesizers and a fast chirper to generate a frequency-modulated continuous-wave (FMCW) waveform. Three-dimensional images are generated through range information derived for each pixel scanned over a target. A peak finding algorithm may be used in processing for each pixel to differentiate material layers of the target. Improved focusing is achieved through a compensation signal sampled from a point source calibration target and applied to received signals from active targets prior to FFT-based range compression to extract and display high-resolution target images. Such an imaging radar has particular application in detecting concealed weapons or contraband.

  8. Monitoring variations of biological impedances using microwave Doppler radar.

    PubMed

    Thansandote, A; Stuchly, S S; Smith, A M

    1983-08-01

    A microwave Doppler radar for continuously monitoring time-varying biological impedances is described. The radar compares the phase of the signal scattered from a region of biological tissue with that of the transmitted signal. The phase changes of the scattered signal are an indication of the net impedance changes within the test region due to various physiological processes, for example, the displacements of blood vessels during the cardiac cycle. A Doppler radar, equipped with a matched antenna, was tested with a simulation model and its detection characteristic was found to be a sinusoidal function of the antenna-object spacing. Tests with healthy human subjects were also performed at 3 GHz and 10.5 GHz. It was found that the 3 GHz Doppler radar has significantly greater penetration in tissues but is less sensitive to changes of the biological impedance than the 10.5 GHz system. PMID:6622532

  9. Goldstone solar system radar

    NASA Technical Reports Server (NTRS)

    Jurgens, Raymond F.

    1988-01-01

    Planning, direction, experimental design, and coordination of data-acquisition and engineering activities in support of all Goldstone planetary radar astronomy were performed. This work demands familiarity with the various components of a planetary radar telescope (transmitter, receiver, antenna, computer hardware and software) as well as knowledge of how the entire system must function as a cohesive unit to meet the particular scientific objectives at hand in a given observation. Support radar data-processing facilities, currently being used for virtually all Goldstone data reduction includes: a VAX 11/780 computer system, an FPS 5210 array processor, terminals, tape drives, and image-display devices, as well as a large body of data-reduction software to accommodate the variety of data-acquisition formats and strategems. Successful 113-cm radar observation of Callisto and the near-Earth asteroid 1981 Midas and Goldstone/VLA radar observations of Saturn's rings were obtained. Quick-look verification programs from data taken with phase-coded cw (i.e., ranging) waveforms, applicable to Venus, the Moon, and small bodies were completed. Definition of scientific and engineering requirements on instrument performance, radar system configuration, and personnel, for all 1988 Goldstone radar investigations was accomplished.

  10. Delineate subsurface structures with ground penetrating radar

    NASA Astrophysics Data System (ADS)

    Wyatt, D. E.; Hu, L. Z.; Ramaswamy, M.; Sexton, B. G.

    High resolution ground penetrating radar (GPR) surveys were conducted at the Savannah River Site in South Carolina in late 1991 to demonstrate the radar techniques in imaging shallow utility and soil structures. Targets of interest at two selected sites, designated as H- and D-areas, were a buried backfilled trench, buried drums, geologic stratas, and water table. Multiple offset 2-D and single offset 3-D survey methods were used to acquire high resolution radar data. This digital data was processed using standard seismic processing software to enhance signal quality and improve resolution. Finally, using a graphics workstation, the 3D data was interpreted. In addition, a small 3D survey was acquired in The Woodlands, Texas, with very dense spatial sampling. This data set adequately demonstrated the potential of this technology in imaging subsurface features.

  11. Delineate subsurface structures with ground penetrating radar

    SciTech Connect

    Wyatt, D.E. ); Hu, L.Z. ); Ramaswamy, M. ); Sexton, B.G. )

    1992-01-01

    High resolution ground penetrating radar (GPR) surveys were conducted at the Savannah River Site in South Carolina in late 1991 to demonstrate the radar techniques in imaging shallow utility and soil structures. Targets of interest at two selected sites, designated as H- and D-areas, were a buried backfilled trench, buried drums, geologic stratas, and water table. Multiple offset 2-D and single offset 3-D survey methods were used to acquire high resolution radar data. This digital data was processed using standard seismic processing software to enhance signal quality and improve resolution. Finally, using a graphics workstation, the 3D data was interpreted. In addition, a small 3D survey was acquired in The Woodlands, Texas, with very dense spatial sampling. This data set adequately demonstrated the potential of this technology in imaging subsurface features.

  12. Delineate subsurface structures with ground penetrating radar

    SciTech Connect

    Wyatt, D.E.; Hu, L.Z.; Ramaswamy, M.; Sexton, B.G.

    1992-10-01

    High resolution ground penetrating radar (GPR) surveys were conducted at the Savannah River Site in South Carolina in late 1991 to demonstrate the radar techniques in imaging shallow utility and soil structures. Targets of interest at two selected sites, designated as H- and D-areas, were a buried backfilled trench, buried drums, geologic stratas, and water table. Multiple offset 2-D and single offset 3-D survey methods were used to acquire high resolution radar data. This digital data was processed using standard seismic processing software to enhance signal quality and improve resolution. Finally, using a graphics workstation, the 3D data was interpreted. In addition, a small 3D survey was acquired in The Woodlands, Texas, with very dense spatial sampling. This data set adequately demonstrated the potential of this technology in imaging subsurface features.

  13. A FMCW CO2 laser radar

    NASA Astrophysics Data System (ADS)

    Alexander, W.; Comerford, T. G.; Stewart, C. A.

    A CO2 laser radar employing frequency modulated continuous wave techniques is described. The system has a field of view of 25 mrad which is scanned at 12 frames per second to produce range and velocity images of a scene. Both the optical and signal processing subsystems are described; these include a CO2 laser, cadmium mercury telluride detector, acoustooptic modulator, image space scanner, real time surface acoustic wave spectrum analyzer, and a microprocessor based system management unit. A coherent laser radar is in many respects like its microwave counterpart but the shorter wavelength of the transmitted radiation results in the beam divergence for a given aperture being less and the Doppler shift from moving targets greater in the laser system. The system implications of these attributes are discussed specifically with respect to areas of application for laser radar.

  14. Radar Imaging of Mercury

    NASA Astrophysics Data System (ADS)

    Rice, M.; Harmon, J.

    2004-11-01

    Radar images of the entire Mercurian surface have been created using the Arecibo S-band radar (wavelength 12.6cm) and the long code delay-Doppler method. We have mapped the locations of midlatitude radar-bright craters across all longitudes, and in the Mariner-10 imaged hemisphere we find several disagreements between the features that appear freshest in the unpolarized radar images and those that have been classified as most recent in the USGS geologic maps. All USGS c5 craters correspond to bright features in our same-circular polarized radar images; however, several c1 and c2 craters have radar-bright deposits as well. In our radar maps of the Skinakas Basin region of the Mariner-10 unimaged hemisphere, we find little agreement between the proposed basin rim locations and the radar features. We have mapped the south polar region using new data from April 2004 with a sub-Earth latitude of 4.5S, this being our first chance to view the south pole since the Arecibo telescope upgrade. We confirm the locations of features seen in the pre-upgrade maps and we identify 15 new "ice" features extending to latitudes as low as 73S. All south polar features have circular polarization inversions (average SC/OC=1.38) that are consistent with volume scattering off cold-trapped volatiles. We also present a preliminary analysis of our August 2004 observations, including new radar images of "Feature C" (the strongest echo feature in the Mariner-10 unimaged hemisphere) and of the north polar region. This research was funded by the NSF as part of the Research Experiences for Undergraduates program.

  15. Description and availability of airborne Doppler radar data

    NASA Technical Reports Server (NTRS)

    Harrah, S. D.; Bracalente, E. M.; Schaffner, P. R.; Baxa, E. G.

    1993-01-01

    An airborne, forward-looking, pulse, Doppler radar has been developed in conjunction with the joint FAA/NASA Wind Shear Program. This radar represents a first in an emerging technology. The radar was developed to assess the applicability of an airborne radar to detect low altitude hazardous wind shears for civil aviation applications. Such a radar must be capable of looking down into the ground clutter environment and extracting wind estimates from relatively low reflectivity weather targets. These weather targets often have reflectivities several orders of magnitude lower than the surrounding ground clutter. The NASA radar design incorporates numerous technological and engineering achievements in order to accomplish this task. The basic R/T unit evolved from a standard Collins 708 weather radar, which supports specific pulse widths of 1-7 microns and Pulse Repetition Frequencies (PRF) of less than 1-10 kHz. It was modified to allow for the output of the first IF signal, which fed a NASA developed receiver/detector subsystem. The NASA receiver incorporated a distributed, high-speed digital attenuator, producing a range bin to range bin automatic gain control system with 65 dB of dynamic range. Using group speed information supplied by the aircraft's navigation system, the radar signal is frequency demodulated back to base band (zero Doppler relative to stationary ground). The In-phase & Quadrature-phase (I/Q) components of the measured voltage signal are then digitized by a 12-bit A-D converter (producing an additional 36 dB of dynamic range). The raw I/Q signal for each range bin is then recorded (along with the current radar & aircraft state parameters) by a high-speed Kodak tape recorder.

  16. Optically isolated signal coupler with linear response

    DOEpatents

    Kronberg, James W. (Aiken, SC)

    1994-01-01

    An optocoupler for isolating electrical signals that translates an electrical input signal linearly to an electrical output signal. The optocoupler comprises a light emitter, a light receiver, and a light transmitting medium. The light emitter, preferably a blue, silicon carbide LED, is of the type that provides linear, electro-optical conversion of electrical signals within a narrow wavelength range. Correspondingly, the light receiver, which converts light signals to electrical signals and is preferably a cadmium sulfide photoconductor, is linearly responsive to light signals within substantially the same wavelength range as the blue LED.

  17. Synthetic range profiling in ground penetrating radar

    NASA Astrophysics Data System (ADS)

    Kaczmarek, Pawel; Lapi?ski, Marian; Silko, Dariusz

    2009-06-01

    The paper describes stepped frequency continuous wave (SFCW) ground penetrating radar (GPR), where signal's frequency is discretely increased in N linear steps, each separated by a fixed ?f increment from the previous one. SFCW radar determines distance from phase shift in a reflected signal, by constructing synthetic range profile in spatial time domain using the IFFT. Each quadrature sample is termed a range bin, as it represents the signal from a range window of length c?/2, where ? is duration of single frequency segment. IFFT of those data samples resolves the range bin in into fine range bins of c/2N?f width, thus creating the synthetic range profile in a GPR - a time domain approximation of the frequency response of a combination of the medium through which electromagnetic waves propagates (soil) and any targets or dielectric interfaces (water, air, other types of soil) present in the beam width of the radar. In the paper, certain practical measurements done by a monostatic SFCW GPR were presented. Due to complex nature of signal source, E5062A VNA made by Agilent was used as a signal generator, allowing number of frequency steps N to go as high as 1601, with generated frequency ranging from 300kHz to 3 GHz.

  18. The Cassini Radar Investigation

    NASA Technical Reports Server (NTRS)

    Wall, Stephen D.

    2008-01-01

    The Cassini/Huygens Mission is a nineteen-year multinational project to design, construct and execute an investigation of the Saturn system, with emphasis on its largest moon, Titan. Titan's atmosphere is nearly opaque at optical wavelengths, so a Ku-band radar imaging system was required to map its surface. In this paper we describe the radar instrument, discuss some of the challenges to its design, and review its operating modes. We briefly summarize the surprises that the radar instrument has revealed while investigating Titan.

  19. Micropower impulse radar

    SciTech Connect

    Azevedo, S.; McEwan, T.E.

    1996-01-01

    Invented and developed at Lawrence Livermore National Laboratory is an inexpensive and highly sensitive, low-power radar system that produces and samples extremely short pulses of energy at the rate of 2 million per second. Called micropower impulse radar (MIR), it can detect objects at a greater variety of distances with greater sensitivity than conventional radar. Its origins in the Laboratory`s Laser Directorate stem from Nova`s transient digitizer. The MIR`s extraordinary range of applications include security, search and rescue, life support, nondestructive evaluation, and transportation.

  20. Asteroid radar astrometry

    NASA Technical Reports Server (NTRS)

    Ostro, S. J.; Jurgens, R. F.; Rosema, K. D.; Winkler, R.; Yeomans, D. K.; Campbell, D. B.; Chandler, J. F.; Shapiro, I. I.; Hine, A. A.; Velez, R.

    1991-01-01

    Measurements of time delay and Doppler frequency are reported for asteroid-radar echoes obtained at Arecibo and Goldstone during 1980-1990. Radar astrometry is presented for 23 near-earth asteroids and three mainbelt asteroids. These measurements, which are orthogonal to optical, angular-position measurements, and typically have a fractional precision between 10 to the -5th and 10 to the -8th, permit significant improvement in estimates of orbits and hence in the accuracy of prediction ephemerides. Estimates are also reported of radar cross-section and circular polarization ratio for all asteroids observed astrometrically during 1980-1990.

  1. Radar investigation of asteroids

    NASA Astrophysics Data System (ADS)

    Ostro, S. J.

    1981-05-01

    Efforts were focused on: (1) acquisition of radar data at Arecibo; (2) examination of raw data; (3) reduction of the unmodulated data to background-free, calibrated spectra; (4) integration and coherent analyses of the phase-coded data; and (5) calculation of Doppler shifts and preliminary values for echo limb-to-limb bandwidths, radar cross sections, and circular polarization ratios. Asteroids observed to data have radar properties distinct from those of the rocky terrestrial planets and those of the icy Galilean satellites.

  2. Radar Remote Sensing

    NASA Technical Reports Server (NTRS)

    Rosen, Paul A.

    2012-01-01

    This lecture was just a taste of radar remote sensing techniques and applications. Other important areas include Stereo radar grammetry. PolInSAR for volumetric structure mapping. Agricultural monitoring, soil moisture, ice-mapping, etc. The broad range of sensor types, frequencies of observation and availability of sensors have enabled radar sensors to make significant contributions in a wide area of earth and planetary remote sensing sciences. The range of applications, both qualitative and quantitative, continue to expand with each new generation of sensors.

  3. Radar investigation of asteroids

    NASA Astrophysics Data System (ADS)

    Ostro, S. J.

    1984-07-01

    The initial radar observations of the mainbelt asteroids 9 Metis, 27 Euterpe, and 60 Echo are examined. For each target, data are taken simultaneously in the same sense of circular polarization as transmitted as well as in the opposite (OC) sense. Estimates of the radar cross sections provide estimates of the circular polarization ratio, and the normalized OC radar cross section. The circular polarization ratio, is comparable to values measured for other large S type asteroids and for a few much smaller, Earth approaching objects, most of the echo is due to single reflection backscattering from smooth surface elements.

  4. Radar investigation of asteroids

    NASA Technical Reports Server (NTRS)

    Ostro, S. J.

    1984-01-01

    The initial radar observations of the mainbelt asteroids 9 Metis, 27 Euterpe, and 60 Echo are examined. For each target, data are taken simultaneously in the same sense of circular polarization as transmitted as well as in the opposite (OC) sense. Estimates of the radar cross sections provide estimates of the circular polarization ratio, and the normalized OC radar cross section. The circular polarization ratio, is comparable to values measured for other large S type asteroids and for a few much smaller, Earth approaching objects, most of the echo is due to single reflection backscattering from smooth surface elements.

  5. Spaceborne laser radar.

    PubMed

    Flom, T

    1972-02-01

    Laser radar systems are being developed to acquire and track targets in applications such as the rendezvous and docking of two spacecraft. To search effectively for and locate a target using a narrow laser beam, a scanning system is needed. This paper describes a scan technique whereby a narrow laser beam is synchronously scanned with an equally narrow receiver field-of-view without the aid of mechanical gimbals. Equations are developed in order to examine the maximum acquisition and tracking rates, and the maximum target range for a scanning laser radar system. A recently built prototype of a small, lightweight, low-power-consuming scanning laser radar is described. PMID:20111497

  6. Rendezvous radar for the orbital maneuvering vehicle

    NASA Technical Reports Server (NTRS)

    Locke, John W.; Olds, Keith; Parks, Howard

    1991-01-01

    This paper describes the development of the Rendezvous Radar Set (RRS) for the Orbital Maneuvering Vehicle (OMV) for the National Aeronautics and Space Administration (NASA). The RRS was to be used to locate, and then provide vectoring information to, target satellites (or Shuttle or Space Station) to aid the OMV in making a minimum-fuel-consumption approach and rendezvous. The RRS design is that of an X-Band, all solid-state, monopulse tracking, frequency hopping, pulse-Doppler radar system. The development of the radar was terminated when the OMV prime contract to TRW was terminated by NASA. At the time of the termination, the development was in the circuit design stage. The system design was virtually completed, the PDR had been held. The RRS design was based on Motorola's experiences, both in the design and production of radar systems for the US Army and in the design and production of hi-rel communications systems for NASA space programs. Experience in these fields was combined with the latest digital signal processor and micro-processor technology to design a light-weight, low-power, spaceborne radar. The antenna and antenna positioner (gimbals) technology developed for the RRS is now being used in the satellite-to-satellite communication link design for Motorola's Iridium telecommunications system.

  7. Ground penetrating radar for asparagus detection

    NASA Astrophysics Data System (ADS)

    Seyfried, Daniel; Schoebel, Joerg

    2016-03-01

    Ground penetrating radar is a promising technique for detection of buried objects. Recently, radar has more and more been identified to provide benefits for a plurality of applications, where it can increase efficiency of operation. One of these fields is the industrial automatic harvesting process of asparagus, which is performed so far by cutting the soil ridge at a certain height including all the asparagus spears and subsequently sieving the latter out of the soil. However, the height where the soil is cut is a critical parameter, since a wrong value leads to either damage of the roots of the asparagus plants or to a reduced crop yield as a consequence of too much biomass remaining in the soil. In this paper we present a new approach which utilizes ground penetrating radar for non-invasive sensing in order to obtain information on the optimal height for cutting the soil. Hence, asparagus spears of maximal length can be obtained, while keeping the roots at the same time undamaged. We describe our radar system as well as the subsequent digital signal processing steps utilized for extracting the information required from the recorded radar data, which then can be fed into some harvesting unit for setting up the optimal cutting height.

  8. Precipitation measurement using VHF wind-profiler radars: A multifaceted approach to calibrate radar antenna and receiver chain

    NASA Astrophysics Data System (ADS)

    Campos, Edwin F.; Hocking, Wayne; Fabry, FrDRic

    2007-08-01

    Many quantitative analyses of radar signal require a radar calibration. Established calibration methods for VHF radar provide only partial information about antenna or receiver parameters. We propose that a more complete approach to calibrate VHF radar can be obtained by combining multiple calibration methods. To test this, we developed a calibration technique by combining a first calibration method that compares the recorded VHF signal to power coming from a noise generator and a second calibration method that compares recorded VHF signal to cosmic radiation. We derive four equations that allow us to retrieve antenna and receiver-chain parameters (such as noises, efficiency, and gain), and four other equations for the corresponding errors. In addition, we develop an equation for calibrating Doppler spectra. To test our calibration technique, we collected an extensive data set from the McGill VHF radar. For validation, we performed a third calibration using measurements of voltage and impedance to compute power losses in the antenna transmission lines. On the basis of our equations, we have found the values for the antenna and receiver-chain parameters in the McGill VHF radar, and their corresponding uncertainties, and we have compared these to the energy losses obtained by the third calibration method. The antenna efficiencies derived by our technique and by the third calibration method agreed within 0.5 dB. Furthermore, analyses of our calibrated Doppler spectra in rain demonstrate the potential of this calibration technique for absolute measurement of precipitation by wind-profiler radar.

  9. Rainfall Measurement with a Ground Based Dual Frequency Radar

    NASA Technical Reports Server (NTRS)

    Takahashi, Nobuhiro; Horie, Hiroaki; Meneghini, Robert

    1997-01-01

    Dual frequency methods are one of the most useful ways to estimate precise rainfall rates. However, there are some difficulties in applying this method to ground based radars because of the existence of a blind zone and possible error in the radar calibration. Because of these problems, supplemental observations such as rain gauges or satellite link estimates of path integrated attenuation (PIA) are needed. This study shows how to estimate rainfall rate with a ground based dual frequency radar with rain gauge and satellite link data. Applications of this method to stratiform rainfall is also shown. This method is compared with single wavelength method. Data were obtained from a dual frequency (10 GHz and 35 GHz) multiparameter radar radiometer built by the Communications Research Laboratory (CRL), Japan, and located at NASA/GSFC during the spring of 1997. Optical rain gauge (ORG) data and broadcasting satellite signal data near the radar t location were also utilized for the calculation.

  10. KU-Band rendezvous radar performance computer simulation model

    NASA Technical Reports Server (NTRS)

    Griffin, J. W.

    1980-01-01

    The preparation of a real time computer simulation model of the KU band rendezvous radar to be integrated into the shuttle mission simulator (SMS), the shuttle engineering simulator (SES), and the shuttle avionics integration laboratory (SAIL) simulator is described. To meet crew training requirements a radar tracking performance model, and a target modeling method were developed. The parent simulation/radar simulation interface requirements, and the method selected to model target scattering properties, including an application of this method to the SPAS spacecraft are described. The radar search and acquisition mode performance model and the radar track mode signal processor model are examined and analyzed. The angle, angle rate, range, and range rate tracking loops are also discussed.

  11. Development and characterization analysis of a radar polarimeter

    NASA Technical Reports Server (NTRS)

    Bong, S.; Blanchard, A. J.

    1983-01-01

    The interaction of electromagnetic waves with natural earth surface was of interest for many years. A particular area of interest in controlled remote sensing experiments is the phenomena of depolarization. The development stages of the radar system are documented. Also included are the laboratory procedures which provides some information about the specifications of the system. The radar system developed is termed the Radar Polarimeter System. A better insight of the operation of the RPS in terms of the newly developed technique--synthetic aperture radar system is provided. System performance in tems of radar cross section, in terms of power, and in terms of signal to noise ratio are also provided. In summary, an overview of the RPS in terms of its operation and design as well as how it will perform in the field is provided.

  12. Ultra-wideband short-pulse radar with range accuracy for short range detection

    SciTech Connect

    Rodenbeck, Christopher T; Pankonin, Jeffrey; Heintzleman, Richard E; Kinzie, Nicola Jean; Popovic, Zorana P

    2014-10-07

    An ultra-wideband (UWB) radar transmitter apparatus comprises a pulse generator configured to produce from a sinusoidal input signal a pulsed output signal having a series of baseband pulses with a first pulse repetition frequency (PRF). The pulse generator includes a plurality of components that each have a nonlinear electrical reactance. A signal converter is coupled to the pulse generator and configured to convert the pulsed output signal into a pulsed radar transmit signal having a series of radar transmit pulses with a second PRF that is less than the first PRF.

  13. Staggered Costas signals

    NASA Astrophysics Data System (ADS)

    Freedman, Avraham; Levanon, Nadav

    1986-11-01

    A radar signal, based on coherent processing of a train of staggered Costas (1984) bursts is based on a minimum number of collocation of their individual ambiguity function sidelobe peaks. The resulting ambiguity function combines qualities of both 'thumbtack' and 'bed of nails' signals. Comparison with linear-FM, V-FM, and complementary phase coded signals is given, as well as comparison with hybrid signals consisting of both phase and frequency coding.

  14. Modelling high redshift Lyman ? emitters

    NASA Astrophysics Data System (ADS)

    Garel, T.; Blaizot, J.; Guiderdoni, B.; Schaerer, D.; Verhamme, A.; Hayes, M.

    2012-05-01

    We present a new model for high redshift Lyman ? emitters (LAEs) in the cosmological context which takes into account the resonant scattering of Ly? photons through expanding gas. The GALICS semi-analytic model provides us with the physical properties of a large sample of high redshift galaxies. We implement, in post-processing, a gas outflow model for each galaxy based on simple scaling arguments. The coupling with a library of numerical experiments of Ly? transfer through expanding (or static) dusty shells of gas allows us to derive the Ly? escape fraction and profile of each galaxy. Results obtained with this new approach are compared with simpler models often used in the literature. The predicted distribution of Ly? photons escape fraction shows that galaxies with a low star formation rate (SFR) have a fesc of the order of unity, suggesting that, for those objects, Ly? may be used to trace the SFR assuming a given conversion law. In galaxies forming stars intensely, the escape fraction spans the whole range from 0 to 1. The model is able to get a good match to the ultraviolet (UV) and Ly? luminosity function data at 3 < z < 5. We find that we are in good agreement with both the bright Ly? data and the faint LAE population observed by Rauch et al. at z= 3 whereas a simpler constant Ly?escape fraction model fails to do so. Most of the Ly? profiles of our LAEs are redshifted by the diffusion in the expanding gas which suppresses intergalactic medium absorption and scattering. The bulk of the observed Ly? equivalent width (EW) distribution is recovered by our model, but we fail to obtain the very large values sometimes detected. Our predictions for stellar masses and UV luminosity functions of LAEs show a satisfactory agreement with observational estimates. The UV-brightest galaxies are found to show only low Ly? EWs in our model, as it is reported by many observations of high redshift LAEs. We interpret this effect as the joint consequence of old stellar populations hosted by UV-bright galaxies, and high H I column densities that we predict for these objects, which quench preferentially resonant Ly? photons via dust extinction.

  15. Advanced signal processing

    NASA Astrophysics Data System (ADS)

    Creasey, D. J.

    1985-12-01

    A collection of papers on advanced signal processing in radar, sonar, and communications is presented. The topics addressed include: transmitter aerials, high-power amplifier design for active sonar, radar transmitters, receiver array technology for sonar, new underwater acoustic detectors, diversity techniques in communications receivers, GaAs IC amplifiers for radar and communication receivers, integrated optical techniques for acoustooptic receivers, logarithmic receivers, CCD processors for sonar, acoustooptic correlators, designing in silicon, very high performance integrated circuits, and digital filters. Also discussed are: display types, scan converters in sonar, display ergonomics, simulators, high throughput sonar processors, optical fiber systems for signal processing, satellite communications, VLSI array processor for image and signal processing, ADA, future of cryogenic devices for signal processing applications, advanced image understanding, and VLSI architectures for real-time image processing.

  16. Application of adaptive optics to scintillation correction in phased array high-frequency radar

    NASA Astrophysics Data System (ADS)

    Theurer, Timothy E.; Bristow, William A.

    2015-06-01

    At high frequency, diffraction during ionospheric propagation can yield wavefronts whose amplitude and phase fluctuate over the physical dimensions of phased array radars such as those of the Super Dual Auroral Radar Network (SuperDARN). Distortion in the wavefront introduces amplitude and phase scintillation into the geometric beamformed signal while reducing radar performance in terms of angular resolution and achieved array gain. A scintillation correction algorithm based on adaptive optics techniques is presented. An experiment conducted using two SuperDARN radars is presented that quantifies the effect of wavefront distortion and demonstrates a reduction in observed scintillation and improvement in radar performance post scintillation correction.

  17. Progress reports for October 1994 -- Joint UK/US Radar Program

    SciTech Connect

    Twogood, R.E.; Brase, J.M.; Mantrom, D.D.; Chambers, D.H.; Robey, H.F.

    1994-11-18

    This report gives the principle investigator, objectives, recent accomplishments, milestones for reporting period, expected milestones for ensuing period, other issues and planned expenditures for each of the following programs: airborne RAR/SAR; radar data processor; ground-based SAR signal processing workstation; static airborne radar; multi-aperture space-time array radar; radar field experiments; data analysis and detection theory; management; E-2C radar data analysis; modeling and analysis; current meter array; UCSB wave tank; stratified flow facility; and IR sensor system. Finally the budget status is given.

  18. Progress reports for period November 1--30, 1994 -- Joint UK/US Radar Program

    SciTech Connect

    Twogood, R.E.; Brase, J.M.; Mantrom, D.D.; Chambers, D.H.; Robey, H.F.

    1994-12-19

    This report gives the principle investigator, objectives, recent accomplishments, milestones for reporting period, expected milestones for ensuing period, other issues and planned expenditures for the following programs: airborne RAR/SAR; radar data processor; ground-based SAR signal processing workstation; static airborne radar; multi-aperture space-time array radar; radar field experiments; data analysis and detection theory; management; E-2C radar data analysis;modeling and analysis; current meter array; UCSB wave tank; stratified flow facility; and IR sensor system. Budget status is also given.

  19. Estimation of Self-Clutter of the Multiple-pulse Technique for HF Radars

    NASA Astrophysics Data System (ADS)

    Reimer, A. S.; Hussey, G. C.

    2014-12-01

    High-frequency (HF) radars take advantage of long-distance multiple-hop propagation that is possible in the HF band. At large distances, ionospheric targets become overspread or susceptible to range-Doppler ambiguities (long range: > 1000 km and high velocity: ~1 km/s). Ionospheric radars, such as the Super Dual Auroral Radar Network (SuperDARN) radars employ the multiple-pulse technique to overcome these ambiguities at the expense of introducing self-clutter. The present study utilizes measurements of echo power to estimate self-clutter, which can be used to provide signal-derived estimates of the mean square error in radar observations.

  20. Aircraft radar antennas

    NASA Astrophysics Data System (ADS)

    Schrank, Helmut E.

    1987-04-01

    Many changes have taken place in airborne radar antennas since their beginnings over forty years ago. A brief historical review of the advances in technology is presented, from mechanically scanned reflectors to modern multiple function phased arrays. However, emphasis is not on history but on the state-of-the-art technology and trends for future airborne radar systems. The status of rotating surveillance antennas is illustrated by the AN/APY-1 Airborne Warning and Control System (AWACS) slotted waveguide array, which achieved a significant breakthrough in sidelobe suppression. Gimballed flat plate arrays in nose radomes are typified by the AN/APG-66 (F-16) antenna. Multifunction phased arrays are presented by the Electronically Agile Radar (EAR) antenna, which has achieved significant advances in performance versatility and reliability. Trends toward active aperture, adaptive, and digital beamforming arrays are briefly discussed. Antennas for future aircraft radar systems must provide multiple functions in less aperture space, and must perform more reliably.

  1. RADAR performance experiments

    NASA Technical Reports Server (NTRS)

    Leroux, C.; Bertin, F.; Mounir, H.

    1991-01-01

    Theoretical studies and experimental results obtained at Coulommiers airport showed the capability of Proust radar to detect wind shears, in clear air condition as well as in presence of clouds or rain. Several examples are presented: in a blocking highs situation an atmospheric wave system at the Brunt-Vaisala frequency can be clearly distinguished; in a situation of clouds without rain the limit between clear air and clouds can be easily seen; and a windshear associated with a gust front in rainy conditions is shown. A comparison of 30 cm clear air radar Proust and 5 cm weather Doppler radar Ronsard will allow to select the best candidate for wind shear detection, taking into account the low sensibility to ground clutter of Ronsard radar.

  2. Radar - The Future

    NASA Astrophysics Data System (ADS)

    Warwick, G.

    1985-02-01

    Progress in civil and military radar units since the invention of radar in 1935 is summarized, noting the trend to multipurpose units. The earliest systems functioned at 10 cm, then 3 cm after development of a cavity magnetron to provide power for shorter wavelengths. Military needs are driving improvements in three-dimensional scanning capabilities, Primarily to locate aircraft in the presence of ground clutter and sea surface scattering. Autonomous, separate transmitter and receiver units are being tested. Lengthening ground-based radar wavelengths to tens of meters will permit over-the-horizon sensing with backscattering, ionospheric bounce, or induction of a potential in the sea surface as the possible techniques. Mode S monopulse radars will permit transponder queries between small and large aircraft. Finally, pulse Doppler SAR systems may afford terrain recognition with no corroborating data except an expert systems data base.

  3. Radar investigation of asteroids

    NASA Astrophysics Data System (ADS)

    Ostro, S. J.

    For 80 Sappho, 356 Liguria, 694 Ekard, and 2340 Hathor, data were taken simultaneously in the same sense of circular polarization as transmitted (SC) as well as in the opposite (OC) sense. Graphs show the average OC and SC radar echo power spectra soothed to a resolution of EFB Hz and plotted against Doppler frequency. Radar observations of the peculiar object 2201 Oljato reveal an unusual set of echo power spectra. The albedo and polarization ratio remain fairly constant but the bandwidths range from approximately 0.8 Hz to 1.4 Hz and the spectral shapes vary dramatically. Echo characteristics within any one date's approximately 2.5-hr observation period do not fluctuate very much. Laboratory measurements of the radar frequency electrical properties of particulate metal-plus-silicate mixtures can be combined with radar albedo estimates to constrain the bulk density and metal weight, fraction in a hypothetical asteroid regolith having the same particle size distribution as lab samples.

  4. Radar investigation of asteroids

    NASA Technical Reports Server (NTRS)

    Ostro, S. J.

    1983-01-01

    For 80 Sappho, 356 Liguria, 694 Ekard, and 2340 Hathor, data were taken simultaneously in the same sense of circular polarization as transmitted (SC) as well as in the opposite (OC) sense. Graphs show the average OC and SC radar echo power spectra soothed to a resolution of EFB Hz and plotted against Doppler frequency. Radar observations of the peculiar object 2201 Oljato reveal an unusual set of echo power spectra. The albedo and polarization ratio remain fairly constant but the bandwidths range from approximately 0.8 Hz to 1.4 Hz and the spectral shapes vary dramatically. Echo characteristics within any one date's approximately 2.5-hr observation period do not fluctuate very much. Laboratory measurements of the radar frequency electrical properties of particulate metal-plus-silicate mixtures can be combined with radar albedo estimates to constrain the bulk density and metal weight, fraction in a hypothetical asteroid regolith having the same particle size distribution as lab samples.

  5. Software Radar Data Architectures for Optimal Science Yields

    NASA Astrophysics Data System (ADS)

    Erickson, P. J.; Grydeland, T.; Lind, F. D.; Holt, J. M.; Rideout, W.

    2002-12-01

    Recent advances in computing power and data acquisition fidelity, combined with the availability of low-latency multicast data transports, have made the Software Radar concept practical as a robust data taking and control system for incoherent scatter observations of the upper atmosphere. Careful design of the data flows and signal processing architecture of such a system can pay off in enabling parallel data processing, optimal spatial and temporal resolution, and full utilization of a radar's power-aperture product. In the design process, several well-defined software patterns emerge as unifying concepts not only applicable to incoherent scatter but also to radar processing tasks in general. The work is being done in close conjunction with the Open Radar Initiative, an open source project dedicated to making this technology widely available. We present specific details of our recent work with Software Radar as a production system at the Millstone Hill US mid-latitude facility, focusing on signal processing and data management. In particular, our flexible signal chain architecture combined with multiple-listener data flows allows production systems and experimental analysis paths to coexist, and allows processing to be tailored to specific scientific observation goals. The ability to automatically manage processing elements and data transports, using data encapsulated in rigorously defined objects, facilitates remote operations and system redundancy, while laying the foundations for true distributed instrument networks. We present signal processing configurations for the production Software Radar, and illustrate the system's flexibility with examples of multi-resolution observations.

  6. Downhole pulse radar

    DOEpatents

    Chang, Hsi-Tien

    1987-09-28

    A borehole logging tool generates a fast rise-time, short duration, high peak-power radar pulse having broad energy distribution between 30 MHz and 300 MHz through a directional transmitting and receiving antennas having barium titanate in the electromagnetically active region to reduce the wavelength to within an order of magnitude of the diameter of the antenna. Radar returns from geological discontinuities are sampled for transmission uphole. 7 figs.

  7. Downhole pulse radar

    DOEpatents

    Chang, Hsi-Tien

    1989-01-01

    A borehole logging tool generates a fast rise-time, short duration, high peak-power radar pulse having broad energy distribution between 30 MHz and 300 MHz through a directional transmitting and receiving antennas having barium titanate in the electromagnetically active region to reduce the wavelength to within an order of magnitude of the diameter of the antenna. Radar returns from geological discontinuities are sampled for transmission uphole.

  8. Variable emittance behavior of smart radiative coating

    NASA Astrophysics Data System (ADS)

    Guo, Li; Fan, Desong; Li, Qiang

    2016-02-01

    Smart radiative coating on yttria stabilized zirconia (YSZ) substrate was prepared by the sol-gel La{}1-xSr x MnO3 (x = 0.125, 0.175 and 0.2) nanoparticles and the binder composed of terpineol and ethyl cellulose. The crystallized structure, grain size, chemical compositions, magnetization and the surface morphology were characterized. The thermal radiative properties of coating in the infrared range was evaluated from infrared reflectance spectra at various temperatures. A single perovskite structure is detected in sol-gel nanoparticles with size 200 nm. Magnetization measurement reveals that room temperature phase transition samples can be obtained by appropriate Sr substitution. The influence of surface conditions and sintering temperature on the emittance of coating was observed. For rough coatings with root-mean-square roughness 640 nm (x = 0.125) and 800 nm (x = 0.175) , its emittance increment is 0.24 and 0.26 in in the temperature range of 173–373 K. Increasing sintering temperature to 1673 K, coating emittance variation improves to 0.3 and 0.302 respectively. After mechanical polishing treatment, the emittance increment of coatings are enhanced to 0.31 and 0.3, respectively. The results suggested that the emittance variation can be enhanced by reducing surface roughness and increasing sintering temperature of coating.

  9. Space Charge Suppression for Uneven Emittances

    SciTech Connect

    Burov, A.; Derbenev, Ya.; /Fermilab /JLAB Newport News

    2009-01-01

    The intensity of low and intermediate energy accelerators and storage rings is limited by space charge effects. An increase of the space charge tune shift may lead to lifetime degradation and coherent instability. A method to suppress the space charge effect is suggested for a beam with two uneven emittances. It has been shown that for a beam with uneven emittances, use of the circular optics makes the space charge tune shift equal to its planar value in the large-emittance direction. This removes a limit on the smaller emittance from the space charge side. Thus, since flat beams can be extremely bright, they could find their use in various applications: ion-electron colliders, nuclear fusion, medicine, and others. One additional possibility for the use of these beams relates to the fact that in a matched solenoid the CAM-dominated beam is transformed into a parallel beam. This transformation is essential for relativistic electron cooling of antiprotons at Fermilab. The two transverse emittances can be made significantly different either by means of a special injection procedure (painting), or by cooling, or by extraction of the beam from a magnetized gun. In any case, use of the circular optics appears to open a special possibility for extremely bright beams.

  10. Novel deep-blue emitting phosphorescent emitter

    NASA Astrophysics Data System (ADS)

    Schildknecht, C.; Ginev, G.; Kammoun, A.; Riedl, T.; Kowalsky, W.; Johannes, H.-H.; Lennartz, C.; Kahle, K.; Egen, M.; Gener, T.; Bold, M.; Nord, S.; Erk, P.

    2005-10-01

    Currently, one of the most challenging applications for OLEDs is the full color display. The most energy-efficient way to realize light generation in OLEDs is by using phosphorescent emitters. Green and red emitters have already been demonstrated, but the search for blue emitting organic phosphorescent emitters with good color purity is still ongoing with arduous effort. Here we present our work with a new material developed at BASF which allows phosphorescent emission in the deep-blue spectral range. The emitter has an emission maximum at 400 nm, which gives CIE color coordinates of x = 0.16 and y = 0.06. An OLED device made with this new material shows a maximum external quantum efficiency of 1.5 %. The OLED was built in a three layer structure, with the emitting zone being a hybrid guest-host system. As host material we used the optically and electronically inert polymer poly-methyl-methacrylate (PMMA). Because of its lack of charge transport abilities we doped the host material with a high concentration of the triplet emitting material, i.e. the emitter itself is also used as charge transport material.

  11. Longitudinal emittance measurements at REX-ISOLDE

    NASA Astrophysics Data System (ADS)

    Fraser, M. A.; Zocca, F.; Jones, R. M.; Pasini, M.; Posocco, P. A.; Voulot, D.; Wenander, F.

    2012-01-01

    We report on measurements of the longitudinal emittance at the Radioactive ion beam EXperiment (REX) at ISOLDE, CERN. The rms longitudinal emittance was measured as 0.340.08 ? ns keV/u at the output of the RFQ and as 0.360.04 ? ns keV/ u in front of the third 7-gap split-ring resonator (7G3) using the three-gradient technique; systematic errors are not included but are estimated at approximately 10%. The 86% emittance was measured a factor of approximately 4.4 times larger than the rms emittance at 1.480.2 and 1.550.12 ? ns keV/ u at the RFQ and 7G3, respectively. The REX switchyard magnet was used as a spectrometer to analyse the energy spread of the beam as it was manipulated by varying the voltage of the rebuncher (ReB) and 7G3 cavities operating at non-accelerating phases. The transfer matrix for a multi-gap bunching cavity is derived and suitably truncated to allow for the accurate reconstruction of the beam parameters from measurement. The technique for measuring the energy spread was rigorously simulated and validated. A silicon detector, in its development phase, was also exploited to measure the longitudinal beam properties. The measured longitudinal emittance is compatible with the acceptance of the HIE-ISOLDE superconducting linac upgrade.

  12. Diamond-based single-photon emitters

    NASA Astrophysics Data System (ADS)

    Aharonovich, I.; Castelletto, S.; Simpson, D. A.; Su, C.-H.; Greentree, A. D.; Prawer, S.

    2011-07-01

    The exploitation of emerging quantum technologies requires efficient fabrication of key building blocks. Sources of single photons are extremely important across many applications as they can serve as vectors for quantum informationthereby allowing long-range (perhaps even global-scale) quantum states to be made and manipulated for tasks such as quantum communication or distributed quantum computation. At the single-emitter level, quantum sources also afford new possibilities in terms of nanoscopy and bio-marking. Color centers in diamond are prominent candidates to generate and manipulate quantum states of light, as they are a photostable solid-state source of single photons at room temperature. In this review, we discuss the state of the art of diamond-based single-photon emitters and highlight their fabrication methodologies. We present the experimental techniques used to characterize the quantum emitters and discuss their photophysical properties. We outline a number of applications including quantum key distribution, bio-marking and sub-diffraction imaging, where diamond-based single emitters are playing a crucial role. We conclude with a discussion of the main challenges and perspectives for employing diamond emitters in quantum information processing.

  13. Coherent radar imaging based on compressed sensing

    NASA Astrophysics Data System (ADS)

    Zhu, Qian; Volz, Ryan; Mathews, John D.

    2015-12-01

    High-resolution radar images in the horizontal spatial domain generally require a large number of different baselines that usually come with considerable cost. In this paper, aspects of compressed sensing (CS) are introduced to coherent radar imaging. We propose a single CS-based formalism that enables the full three-dimensional (3-D)—range, Doppler frequency, and horizontal spatial (represented by the direction cosines) domain—imaging. This new method can not only reduce the system costs and decrease the needed number of baselines by enabling spatial sparse sampling but also achieve high resolution in the range, Doppler frequency, and horizontal space dimensions. Using an assumption of point targets, a 3-D radar signal model for imaging has been derived. By comparing numerical simulations with the fast Fourier transform and maximum entropy methods at different signal-to-noise ratios, we demonstrate that the CS method can provide better performance in resolution and detectability given comparatively few available measurements relative to the number required by Nyquist-Shannon sampling criterion. These techniques are being applied to radar meteor observations.

  14. Doppler micro sense and avoid radar

    NASA Astrophysics Data System (ADS)

    Gorwara, Ashok; Molchanov, Pavlo; Asmolova, Olga

    2015-10-01

    There is a need for small Sense and Avoid (SAA) systems for small and micro Unmanned Aerial Systems (UAS) to avoid collisions with obstacles and other aircraft. The proposed SAA systems will give drones the ability to "see" close up and give them the agility to maneuver through tight areas. Doppler radar is proposed for use in this sense and avoid system because in contrast to optical or infrared (IR) systems Doppler can work in more harsh conditions such as at dusk, and in rain and snow. And in contrast to ultrasound based systems, Doppler can better sense small sized obstacles such as wires and it can provide a sensing range from a few inches to several miles. An SAA systems comprised of Doppler radar modules and an array of directional antennas that are distributed around the perimeter of the drone can cover the entire sky. These modules are designed so that they can provide the direction to the obstacle and simultaneously generate an alarm signal if the obstacle enters within the SAA system's adjustable "Protection Border". The alarm signal alerts the drone's autopilot to automatically initiate an avoidance maneuver. A series of Doppler radar modules with different ranges, angles of view and transmitting power have been designed for drones of different sizes and applications. The proposed Doppler radar micro SAA system has simple circuitry, works from a 5 volt source and has low power consumption. It is light weight, inexpensive and it can be used for a variety of small unmanned aircraft.

  15. Real-time synthetic aperture radar processing

    NASA Technical Reports Server (NTRS)

    Psaltis, D.; Haney, M.; Wagner, K.

    1984-01-01

    Real-time acousto-optic SAR processors are described and experimentally demonstrated. SAR imaging is performed in one of the architectures by applying the signal to an acousto-optic device and correlating it with chirp signals recorded on an optical transparency by time integration on a CCD detector. In a different implementation, the imaging is preformed by interfering the light beams diffracted from two separate acousto-optic devices, one modulated the radar signal and the second by the reference chirp waveform.

  16. Arecibo Radar Observations Of Enceladus, Tethys, Dione, And Rhea

    NASA Astrophysics Data System (ADS)

    Black, Gregory J.; Campbell, D. B.

    2006-09-01

    We have measured the bulk radar reflectance properties of Enceladus, Tethys, Dione, and Rhea with the Arecibo Observatory's 13 cm wavelength radar system during the 2004, 2005, and 2006 oppositions of the Saturn system. The transmitted signal was circularly polarized and echoes were received in both the opposite circular (OC) sense to that transmitted and the same circular (SC) sense. Comparing to the icy Galilean satellites, the total radar albedos (OC+SC) of the Saturnian satellites are systematically lower for a given optical albedo. The radar albedos of Rhea and Tethys are most similar to Ganymede while Dione is most similar to Callisto. Enceladus's albedo falls between those of Ganymede and Europa. The circular polarization ratios (SC/OC) of the Saturnian satellites range from 0.7 to 1.2, and are on average lower than those of the icy Galilean satellites at this wavelength. For each satellite the 13 cm wavelength radar albedo and polarization ratio are lower than similar measurements made recently by the Cassini RADAR experiment at 2.2 cm wavelength (Ostro et al. 2006, Icarus, v183, 490). Overall, these satellites' bulk radar properties suggest subsurface multiple scattering to be the dominant reflection mechanism although operating less efficiently than on the large icy moons of Jupiter. Furthermore, these high radar albedos with, for ice, only moderate polarization ratios may present a problem for current models of such scattering mechanisms. If regolith development on these Saturnian moons is similar to that on the Jovian moons then the difference in radar properties must be attributed to a compositional difference such that the Saturnian satellite surfaces contain an additional radar absorbing component. The degree of variation in radar properties with wavelength on each satellite may constrain the thickness and efficiency of the scattering layer. We acknowledge support by NASA's Planetary Astronomy and PG&G programs.

  17. Radar observations of individual rain drops in the free atmosphere

    PubMed Central

    Schmidt, Jerome M.; Flatau, Piotr J.; Harasti, Paul R.; Yates, Robert D.; Littleton, Ricky; Pritchard, Michael S.; Fischer, Jody M.; Fischer, Erin J.; Kohri, William J.; Vetter, Jerome R.; Richman, Scott; Baranowski, Dariusz B.; Anderson, Mark J.; Fletcher, Ed; Lando, David W.

    2012-01-01

    Atmospheric remote sensing has played a pivotal role in the increasingly sophisticated representation of clouds in the numerical models used to assess global and regional climate change. This has been accomplished because the underlying bulk cloud properties can be derived from a statistical analysis of the returned microwave signals scattered by a diverse ensemble comprised of numerous cloud hydrometeors. A new Doppler radar, previously used to track small debris particles shed from the NASA space shuttle during launch, is shown to also have the capacity to detect individual cloud hydrometeors in the free atmosphere. Similar to the traces left behind on film by subatomic particles, larger cloud particles were observed to leave a well-defined radar signature (or streak), which could be analyzed to infer the underlying particle properties. We examine the unique radar and environmental conditions leading to the formation of the radar streaks and develop a theoretical framework which reveals the regulating role of the background radar reflectivity on their observed characteristics. This main expectation from theory is examined through an analysis of the drop properties inferred from radar and in situ aircraft measurements obtained in two contrasting regions of an observed multicellular storm system. The observations are placed in context of the parent storm circulation through the use of the radars unique high-resolution waveforms, which allow the bulk and individual hydrometeor properties to be inferred at the same time. PMID:22652569

  18. Noise properties of HF radar measurement of ocean surface currents

    NASA Astrophysics Data System (ADS)

    Forget, Philippe

    2015-08-01

    High-frequency (HF) radars are commonly used for coastal circulation monitoring. The objective of the study is to assess what is the minimum timescale of variability of the geophysical surface currents that are accessible to the radar measurement given the intrinsic noise of this measurement. Noise properties are derived from the power density spectra (PDSs) of radial current records, which are compared to a model of the PDS of idealized currents contaminated by an additive white noise. The data were collected by two radar systems operating in the Northwestern Mediterranean. Periods of 3 weeks to 7 months are considered. Most of measured currents are affected by a white noise effect. Noise properties vary in time and space and are not specific to a particular radar station or to the radar signal processing method used (beam forming or direction finding). An increase of the noise level reduces the effective temporal resolution of radar-derived currents and then increases the minimum observable timescale of variability of geophysical currents. Our results are consistent with results of comparison found in literature between in situ sensors and radar measurements as well as between two radars operating along a same base line. The study suggests a self-sufficient method, requiring no external data, to estimate the minimum sampling period to consider for getting data sets having a minimized contamination by instrumental noise. This period can also be taken for smoothing or filtering measured currents.

  19. Feasibility of radar detection of extensive air showers

    NASA Astrophysics Data System (ADS)

    Stasielak, J.; Engel, R.; Baur, S.; Neunteufel, P.; Šmída, R.; Werner, F.; Wilczyński, H.

    2016-01-01

    Reflection of radio waves off the short-lived plasma produced by the high-energy shower particles in the air is simulated, considering various radar setups and shower geometries. We show that the plasma produced by air showers has to be treated always as underdense. Therefore, we use the Thomson cross-section for scattering of radio waves corrected for molecular quenching and we sum coherently contributions of the reflected radio wave over the volume of the plasma disk to obtain the time evolution of the signal arriving at the receiver antenna. The received power and the spectral power density of the radar echo are analyzed. Based on the obtained results, we discuss possible modes of radar detection of extensive air showers. We conclude that the scattered signal is too weak for the radar method to provide an efficient and inexpensive method of air shower detection.

  20. Head erosion with emittance growth in PWFA

    SciTech Connect

    Li, S. Z.; Adli, E.; England, R. J.; Frederico, J.; Gessner, S. J.; Hogan, M. J.; Litos, M. D.; Walz, D. R.; Muggli, P.; An, W.; Clayton, C. E.; Joshi, C.; Lu, W.; Marsh, K. A.; Mori, W.; Vafaei, N.

    2012-12-21

    Head erosion is one of the limiting factors in plasma wakefield acceleration (PWFA). We present a study of head erosion with emittance growth in field-ionized plasma from the PWFA experiments performed at the FACET user facility at SLAC. At FACET, a 20.3 GeV bunch with 1.8 Multiplication-Sign 10{sup 10} electrons is optimized in beam transverse size and combined with a high density lithium plasma for beam-driven plasma wakefield acceleration experiments. A target foil is inserted upstream of the plasma source to increase the bunch emittance through multiple scattering. Its effect on beamplasma interaction is observed with an energy spectrometer after a vertical bend magnet. Results from the first experiments show that increasing the emittance has suppressed vapor field-ionization and plasma wakefields excitation. Plans for the future are presented.

  1. BEAM EMITTANCE MEASUREMENT TOOL FOR CEBAF OPERATIONS

    SciTech Connect

    Chevtsov, Pavel; Tiefenback, Michael

    2008-10-01

    A new software tool was created at Jefferson Lab to measure the emittance of the CEBAF electron beams. The tool consists of device control and data analysis applications. The device control application handles the work of wire scanners and writes their measurement results as well as the information about accelerator settings during these measurements into wire scanner data files. The data analysis application reads these files and calculates the beam emittance on the basis of a wire scanner data processing model. Both applications are computer platform independent but are mostly used on LINUX PCs recently installed in the accelerator control room. The new tool significantly simplifies beam emittance measurement procedures for accelerator operations and contributes to a very high availability of the CEBAF machine for the nuclear physics program at Jefferson Lab.

  2. Hughes integrated synthetic aperture radar: High performance at low cost

    SciTech Connect

    Bayma, R.W.

    1996-11-01

    This paper describes the background and development of the low cost high-performance Hughes Integrated Synthetic Aperture Radar (HISAR{trademark}) which has a full range of capabilities for real-time reconnaissance, surveillance and earth resource mapping. HISAR uses advanced Synthetic Aperture Radar (SAR) technology to make operationally effective images of near photo quality, day or night and in all weather conditions. This is achieved at low cost by maximizing the use of commercially available radar and signal-processing equipment in the fabrication. Furthermore, HISAR is designed to fit into an executive-class aircraft making it available for a wide range of users. 4 refs., 8 figs.

  3. Experimental phased array radar ELRA with extended flexibility

    NASA Astrophysics Data System (ADS)

    Groeger, I.; Sander, W.; Wirth, W.-D.

    1990-11-01

    An update of a phased array radar research project with the experimental system ELRA (electronic steerable radar) is given with respect to the extended and improved possibilities for performing measurements and evaluations for different types of radar operation. The variability of waveforms for solid-state transmitters is described. Flexible control of multifunction operation with various search and localization tasks is achieved with a network of microcomputers. Different means of signal processing are used for target detection and estimation. The active receiving array is divided into subarrays, and offers digital beamforming for pattern shaping and adaptive jammer suppression. Experimental results are presented.

  4. Wide band stepped frequency ground penetrating radar

    DOEpatents

    Bashforth, M.B.; Gardner, D.; Patrick, D.; Lewallen, T.A.; Nammath, S.R.; Painter, K.D.; Vadnais, K.G.

    1996-03-12

    A wide band ground penetrating radar system is described embodying a method wherein a series of radio frequency signals is produced by a single radio frequency source and provided to a transmit antenna for transmission to a target and reflection therefrom to a receive antenna. A phase modulator modulates those portions of the radio frequency signals to be transmitted and the reflected modulated signal is combined in a mixer with the original radio frequency signal to produce a resultant signal which is demodulated to produce a series of direct current voltage signals, the envelope of which forms a cosine wave shaped plot which is processed by a Fast Fourier Transform Unit 44 into frequency domain data wherein the position of a preponderant frequency is indicative of distance to the target and magnitude is indicative of the signature of the target. 6 figs.

  5. Wide band stepped frequency ground penetrating radar

    DOEpatents

    Bashforth, Michael B.; Gardner, Duane; Patrick, Douglas; Lewallen, Tricia A.; Nammath, Sharyn R.; Painter, Kelly D.; Vadnais, Kenneth G.

    1996-01-01

    A wide band ground penetrating radar system (10) embodying a method wherein a series of radio frequency signals (60) is produced by a single radio frequency source (16) and provided to a transmit antenna (26) for transmission to a target (54) and reflection therefrom to a receive antenna (28). A phase modulator (18) modulates those portion of the radio frequency signals (62) to be transmitted and the reflected modulated signal (62) is combined in a mixer (34) with the original radio frequency signal (60) to produce a resultant signal (53) which is demodulated to produce a series of direct current voltage signals (66) the envelope of which forms a cosine wave shaped plot (68) which is processed by a Fast Fourier Transform unit 44 into frequency domain data (70) wherein the position of a preponderant frequency is indicative of distance to the target (54) and magnitude is indicative of the signature of the target (54).

  6. Automated emittance measurements in the SLC

    SciTech Connect

    Ross, M.C.; Phinney, N.; Quickfall, G.; Shoaee, H.; Sheppard, J.C.

    1987-03-01

    The emittance of the SLC beam is determined from measurements of the beam width on a profile monitor as a quadrupole field is varied. An automated system has been developed to allow this to be done rapidly and accurately. The image on a fluorescent screen profile monitor (resolution about 20 ..mu..m) is read out through an electronic interface and digitized by a transient recorder. A high level software package has been developed to set up the hardware for the measurements, acquire data, fit the beam width, and calculate the emittance.

  7. Heterojunction solar cell with passivated emitter surface

    DOEpatents

    Olson, J.M.; Kurtz, S.R.

    1994-05-31

    A high-efficiency heterojunction solar cell is described wherein a thin emitter layer (preferably Ga[sub 0.52]In[sub 0.48]P) forms a heterojunction with a GaAs absorber layer. A passivating window layer of defined composition is disposed over the emitter layer. The conversion efficiency of the solar cell is at least 25.7%. The solar cell preferably includes a passivating layer between the substrate and the absorber layer. An anti-reflection coating is preferably disposed over the window layer. 1 fig.

  8. Heterojunction solar cell with passivated emitter surface

    DOEpatents

    Olson, Jerry M. (Lakewood, CO); Kurtz, Sarah R. (Golden, CO)

    1994-01-01

    A high-efficiency heterojunction solar cell wherein a thin emitter layer (preferably Ga.sub.0.52 In.sub.0.48 P) forms a heterojunction with a GaAs absorber layer. A passivating window layer of defined composition is disposed over the emitter layer. The conversion efficiency of the solar cell is at least 25.7%. The solar cell preferably includes a passivating layer between the substrate and the absorber layer. An anti-reflection coating is preferably disposed over the window layer.

  9. Studies of emittance growth in the ATF

    SciTech Connect

    Zimmermann, F.

    1997-03-01

    Several different mechanisms of emittance growth in the Accelerator Test Facility (ATF) at KEK are investigated: the author calculates rise times of the fast beam-ion instability for the damping ring (DR), and discusses the emittance growth caused by coherent synchrotron radiation in the beam-transport line (BT), the effect of quadrupole wake fields in the injector linac, and, finally, a single-bunch head-tail ion effect that can occur in both the DR and the BT. A first attempt to measure the quadrupole wake on the real machine is also reported.

  10. Data acquisition system for Doppler radar vital-sign monitor.

    PubMed

    Vergara, Alexander M; Lubecke, Victor M

    2007-01-01

    Automatic gain control (AGC) units increase the dynamic range of a system to compensate for the limited dynamic range of analog to digital converters. This problem is compounded in wireless systems in which large changes in signal strength are effects of a changing environment. These issues are evident in the direct-conversion Doppler radar vital-sign monitor. Utilizing microwave radar signals reflecting off a human subject, a two-channel quadrature receiver can detect periodic movement resulting from cardio-pulmonary activity. The quadrature signal is analyzed using an arctangent demodulation that extracts vital phase information. A data acquisition (DAQ) system is proposed to deal with issues inherent in arctangent demodulation of a quadrature radar signal. PMID:18002443

  11. Acoustic micro-Doppler radar for human gait imaging.

    PubMed

    Zhang, Zhaonian; Pouliquen, Philippe O; Waxman, Allen; Andreou, Andreas G

    2007-03-01

    A portable acoustic micro-Doppler radar system for the acquisition of human gait signatures in indoor and outdoor environments is reported. Signals from an accelerometer attached to the leg support the identification of the components in the measured micro-Doppler signature. The acoustic micro-Doppler system described in this paper is simpler and offers advantages over the widely used electromagnetic wave micro-Doppler radars. PMID:17407918

  12. Instantaneous electron beam emittance measurement system based on the optical transition radiation principle

    NASA Astrophysics Data System (ADS)

    Jiang, Xiao-Guo; Wang, Yuan; Zhang, Kai-Zhi; Yang, Guo-Jun; Shi, Jin-Shui; Deng, Jian-Jun; Li, Jin

    2014-01-01

    One kind of instantaneous electron beam emittance measurement system based on the optical transition radiation principle and double imaging optical method has been set up. It is mainly adopted in the test for the intense electron-beam produced by a linear induction accelerator. The system features two characteristics. The first one concerns the system synchronization signal triggered by the following edge of the main output waveform from a Blumlein switch. The synchronous precision of about 1 ns between the electron beam and the image capture time can be reached in this way so that the electron beam emittance at the desired time point can be obtained. The other advantage of the system is the ability to obtain the beam spot and beam divergence in one measurement so that the calculated result is the true beam emittance at that time, which can explain the electron beam condition. It provides to be a powerful beam diagnostic method for a 2.5 kA, 18.5 MeV, 90 ns (FWHM) electron beam pulse produced by Dragon I. The ability of the instantaneous measurement is about 3 ns and it can measure the beam emittance at any time point during one beam pulse. A series of beam emittances have been obtained for Dragon I. The typical beam spot is 9.0 mm (FWHM) in diameter and the corresponding beam divergence is about 10.5 mrad.

  13. Progress in coherent laser radar

    NASA Technical Reports Server (NTRS)

    Vaughan, J. M.

    1986-01-01

    Considerable progress with coherent laser radar has been made over the last few years, most notably perhaps in the available range of high performance devices and components and the confidence with which systems may now be taken into the field for prolonged periods of operation. Some of this increasing maturity was evident at the 3rd Topical Meeting on Coherent Laser Radar: Technology and Applications. Topics included in discussions were: mesoscale wind fields, nocturnal valley drainage and clear air down bursts; airborne Doppler lidar studies and comparison of ground and airborne wind measurement; wind measurement over the sea for comparison with satellite borne microwave sensors; transport of wake vortices at airfield; coherent DIAL methods; a newly assembled Nd-YAG coherent lidar system; backscatter profiles in the atmosphere and wavelength dependence over the 9 to 11 micrometer region; beam propagation; rock and soil classification with an airborne 4-laser system; technology of a global wind profiling system; target calibration; ranging and imaging with coherent pulsed and CW system; signal fluctuations and speckle. Some of these activities are briefly reviewed.

  14. Prospects for a Solar Radar at Arecibo

    NASA Astrophysics Data System (ADS)

    Coles, W. A.

    2002-05-01

    The idea of probing the solar corona with radar is so obvious that the Sun was the second target (after the moon) attempted in the development of radar astronomy. Echoes were detected by the Stanford group in 1960, and extensive observations were made between 1961 and 1969 by the MIT group. The results were unexpected in every respect: the echo power was weaker than expected and highly variable; the Doppler shift and broadening were greater than expected and were also highly variable; and the delay was more variable than expected. The results were never explained, even qualitatively. It became impossible to repeat them because radar astronomy evolved towards use of higher frequencies which penetrate the corona and are absorbed in the photosphere. In retrospect the early work was "ahead of its time" as solar echoes will be strongly affected by coronal holes and coronal mass ejections, neither of which were known in 1969. The purpose of this paper is to point out an opportunity to create a solar radar at the Arecibo Observatory, in conjunction with a proposed ionospheric heater. The two applications will not interfere and cost-sharing makes both feasible. The new radar will have five major improvements over the original: (1) complementary solar observations; (2) modern signal processing; (3) dual polarization; (4) frequency agility; (5) tracking. These will provide many benefits, but the "killer-app" may be the ability to directly measure the coronal magnetic field. The frequency will be tunable between 18 MHz and 26 MHz, which correspond to reflection heights of 1.85 Rs and 1.65 Rs respectively. Here we will summarize the early results; outline the design of the proposed radar; and present some simulations of its performance.

  15. The ERS-1 radar altimeter: An overview

    NASA Astrophysics Data System (ADS)

    Francis, C. R.

    1984-08-01

    The ERS-1 (ESA) radar altimeter implementation, parameter estimation, autocalibration, data flow, and operating principles are summarized. The microwave subsystem contains an ultrastable oscillator and a chirp generator. A traveling wave tube amplifier and its electronic power conditioner form the high power amplifier (the radar transmitter output). The signal processor subassembly has a spectrum analyzer and a microcomputer. The microcomputer also handles real time parameter estimation, with center of gravity tracking in the ice mode and suboptimal maximum likelihood estimation (SMLE) in the ocean mode. The curve-fitting SMLE is used in calibrating the signal path of the instrument to a precision of 0.7 nsec. Command and housekeeping data use an S band telemetry link, scientific data are delivered via X band, in real time and as a dump.

  16. 66. VIEW SHOWING HOLD FOR RADAR CABLES AT RADAR SITE, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    66. VIEW SHOWING HOLD FOR RADAR CABLES AT RADAR SITE, LOOKING NORTH Everett Weinreb, photographer, March 1988 - Mount Gleason Nike Missile Site, Angeles National Forest, South of Soledad Canyon, Sylmar, Los Angeles County, CA

  17. Determination and error analysis of emittance and spectral emittance measurements by remote sensing

    NASA Technical Reports Server (NTRS)

    Dejesusparada, N. (Principal Investigator); Kumar, R.

    1977-01-01

    The author has identified the following significant results. From the theory of remote sensing of surface temperatures, an equation of the upper bound of absolute error of emittance was determined. It showed that the absolute error decreased with an increase in contact temperature, whereas, it increased with an increase in environmental integrated radiant flux density. Change in emittance had little effect on the absolute error. A plot of the difference between temperature and band radiance temperature vs. emittance was provided for the wavelength intervals: 4.5 to 5.5 microns, 8 to 13.5 microns, and 10.2 to 12.5 microns.

  18. Informational Analysis for Compressive Sampling in Radar Imaging

    PubMed Central

    Zhang, Jingxiong; Yang, Ke

    2015-01-01

    Compressive sampling or compressed sensing (CS) works on the assumption of the sparsity or compressibility of the underlying signal, relies on the trans-informational capability of the measurement matrix employed and the resultant measurements, operates with optimization-based algorithms for signal reconstruction and is thus able to complete data compression, while acquiring data, leading to sub-Nyquist sampling strategies that promote efficiency in data acquisition, while ensuring certain accuracy criteria. Information theory provides a framework complementary to classic CS theory for analyzing information mechanisms and for determining the necessary number of measurements in a CS environment, such as CS-radar, a radar sensor conceptualized or designed with CS principles and techniques. Despite increasing awareness of information-theoretic perspectives on CS-radar, reported research has been rare. This paper seeks to bridge the gap in the interdisciplinary area of CS, radar and information theory by analyzing information flows in CS-radar from sparse scenes to measurements and determining sub-Nyquist sampling rates necessary for scene reconstruction within certain distortion thresholds, given differing scene sparsity and average per-sample signal-to-noise ratios (SNRs). Simulated studies were performed to complement and validate the information-theoretic analysis. The combined strategy proposed in this paper is valuable for information-theoretic orientated CS-radar system analysis and performance evaluation. PMID:25811226

  19. Exploration of Venus by Radar: Precision range and velocity data can be obtained with a supersensitive radar receiving system.

    PubMed

    Victor, W K; Stevens, R

    1961-07-01

    A new tool is available to scientists for exploring the solar system, and modern-day explorers are discovering new worlds by radar. On 10 May 1961 a radar signal was beamed at the planet Venus, and for the first time in history the return echo was detected within a few minutes. A new value for the Astronomical Unit has been determined. The data indicate that Venus rotates slowly and that it is a better radio reflector than the moon. PMID:17834300

  20. Sea Clutter Reduction and Target Enhancement by Neural Networks in a Marine Radar System

    PubMed Central

    Vicen-Bueno, Raúl; Carrasco-Álvarez, Rubén; Rosa-Zurera, Manuel; Nieto-Borge, José Carlos

    2009-01-01

    The presence of sea clutter in marine radar signals is sometimes not desired. So, efficient radar signal processing techniques are needed to reduce it. In this way, nonlinear signal processing techniques based on neural networks (NNs) are used in the proposed clutter reduction system. The developed experiments show promising results characterized by different subjective (visual analysis of the processed radar images) and objective (clutter reduction, target enhancement and signal-to-clutter ratio improvement) criteria. Moreover, a deep study of the NN structure is done, where the low computational cost and the high processing speed of the proposed NN structure are emphasized. PMID:22573993

  1. A barrier radar concept

    NASA Astrophysics Data System (ADS)

    Marshall, J.; Ball, C.; Weissman, I.

    A description is given of a low power, light-weight radar that can be quickly set up and operated on batteries for extended periods of time to detect airborne intruders. With low equipment and operating costs, it becomes practical to employ a multiplicity of such radars to provide an unbroken intrusion fence over the desired perimeter. Each radar establishes a single transmitted fan beam extending vertically from horizon to horizon. The beam is generated by a two-face array antenna built in an A-frame configuration and is shaped, through phasing of the array elements, to concentrate the transmitter power in a manner consistent with the expected operating altitude ceiling of the targets of interest. The angular width of this beam in the dimension transverse to the fan depends on the radar transmission frequency and the antenna aperture dimension, but is typically wide enough so that a target at the maximum altitude or range will require tens of seconds to pass through the beam. A large number of independent samples of radar data will thus be available to provide many opportunities for target detection.

  2. Analytic inversion in synthetic aperture radar.

    PubMed Central

    Rothaus, O S

    1994-01-01

    A method of processing synthetic aperture radar signals that avoids some of the approximations currently in use that appear to be responsible for severe phase distortions is described. As a practical matter, this method requires N3 numerical operations, as opposed to the N2 ln N currently the case, but N3 is now easily managed, for N in the range of interest. PMID:11607485

  3. Radar E-O image fusion

    NASA Technical Reports Server (NTRS)

    Oneil, William F.

    1993-01-01

    The fusion of radar and electro-optic (E-O) sensor images presents unique challenges. The two sensors measure different properties of the real three-dimensional (3-D) world. Forming the sensor outputs into a common format does not mask these differences. In this paper, the conditions under which fusion of the two sensor signals is possible are explored. The program currently planned to investigate this problem is briefly discussed.

  4. Precise Radar Range Measurements with Digisondes

    NASA Astrophysics Data System (ADS)

    Reinisch, Bodo W.; Paznukhov, Vadym V.; Galkin, Ivan A.; Altadill, David; McElroy, Jonathan

    2008-02-01

    A digisonde phase-difference technique measures precise radar ranges of echoes reflected from the ionosphere. The technique, which analyzes the phase differences between signals at slightly different frequencies, allows measuring the reflection range, i.e., the virtual height h'(f) for vertical sounding, with accuracies of better than one kilometer. First results of measurements carried out at Millstone Hill demonstrate the robustness and reliability of the developed technique, and show the potential of the method for routine application.

  5. Molecular hydrogen in Lyman alpha emitters

    NASA Astrophysics Data System (ADS)

    Vallini, Livia; Dayal, Pratika; Ferrara, Andrea

    2012-04-01

    We present a physically motivated model to estimate the molecular hydrogen (H2) content of high-redshift (z? 5.7 and 6.6) Lyman ? emitters (LAEs) extracted from a suite of cosmological simulations. We find that the H2 mass fraction, ?, depends on three main LAE physical properties: (a) star formation rate, (b) dust mass and (c) cold neutral gas mass. At z? 5.7, the value of ? peaks and ranges between 0.5 and 0.9 for intermediate-mass LAEs with stellar mass M*? 109 - 1010 M?, decreasing for both smaller and larger galaxies. However, the largest value of the H2 mass is found in the most luminous LAEs. These trends also hold at z? 6.6, although, due to a lower dust content, ? when averaged over all LAEs; they arise due to the interplay between the H2 formation/shielding controlled by dust and the intensity of the ultraviolet Lyman-Werner photodissociating radiation produced by stars. We then predict the carbon monoxide (CO) luminosities for such LAEs and check that they are consistent with the upper limits found by Wagg et al. for two z > 6 LAEs. At z? 5.7 and 6.6, the lowest CO rotational transition observable for both samples with the actual capabilities of the Atacama Large Millimeter Array (ALMA) is the CO(6-5). We find that at z? 5.7, about 1-2 per cent of LAEs, i.e. those with an observed Lyman ? luminosity larger than 1043.2 erg s-1, would be detectable with an integration time of 5-10 h (a signal-to-noise ratio of 5); at z? 6.6, none of the LAEs would be detectable in CO, even with an ALMA integration time of 10 h. We also build the CO 'flux function', i.e. the number density of LAEs as a function of the line-integrated CO flux, SCO, and show that it peaks at SCO= 0.1 mJy at z= 5.7, progressively shifting to lower values at higher redshifts. We end by discussing the model uncertainties.

  6. Monitoring internal organ motion with continuous wave radar in CT

    SciTech Connect

    Pfanner, Florian; Maier, Joscha; Allmendinger, Thomas; Flohr, Thomas; Kachelrieß, Marc

    2013-09-15

    Purpose: To avoid motion artifacts in medical imaging or to minimize the exposure of healthy tissues in radiation therapy, medical devices are often synchronized with the patient's respiratory motion. Today's respiratory motion monitors require additional effort to prepare the patients, e.g., mounting a motion belt or placing an optical reflector on the patient's breast. Furthermore, they are not able to measure internal organ motion without implanting markers. An interesting alternative to assess the patient's organ motion is continuous wave radar. The aim of this work is to design, implement, and evaluate such a radar system focusing on application in CT.Methods: The authors designed a radar system operating in the 860 MHz band to monitor the patient motion. In the intended application of the radar system, the antennas are located close to the patient's body inside the table of a CT system. One receive and four transmitting antennas are used to avoid the requirement of exact patient positioning. The radar waves propagate into the patient's body and are reflected at tissue boundaries, for example at the borderline between muscle and adipose tissue, or at the boundaries of organs. At present, the authors focus on the detection of respiratory motion. The radar system consists of the hardware mentioned above as well as of dedicated signal processing software to extract the desired information from the radar signal. The system was evaluated using simulations and measurements. To simulate the radar system, a simulation model based on radar and wave field equations was designed and 4D respiratory-gated CT data sets were used as input. The simulated radar signals and the measured data were processed in the same way. The radar system hardware and the signal processing algorithms were tested with data from ten volunteers. As a reference, the respiratory motion signal was recorded using a breast belt simultaneously with the radar measurements.Results: Concerning the measurements of the test persons, there is a very good correlation (ρ= 0.917) between the respiratory motion phases received by the radar system and the external motion monitor. Our concept of using an array of transmitting antennas turned out to be widely insensitive to the positioning of the test persons. A time shift between the respiratory motion curves recorded with the radar system and the motion curves from the external respiratory monitor was observed which indicates a slight difference between internal organ motion and motion detected by the external respiratory monitor. The simulations were in good accordance with the measurements.Conclusions: A continuous wave radar operating in the near field of the antennas can be used to determine the respiratory motion of humans accurately. In contrast to trigger systems used today, the radar system is able to measure motion inside the body. If such a monitor was routinely available in clinical CT, it would be possible optimizing the scan start with respect to the respiratory state of the patient. Breathing commands would potentially widely be avoided, and as far as uncooperative patients or children are concerned, less sedation might be necessary. Further applications of the radar system could be in radiation therapy or interventional imaging for instance.

  7. Optimum backscatter cross section of the ocean as measured by synthetic aperture radars

    NASA Technical Reports Server (NTRS)

    Bahar, E.; Rufenach, C. L.; Barrick, D.; Fitzwater, M. A.

    1984-01-01

    The interaction of the radar signals from Synthetic Aperture Radar (SAR) and Side Looking Airborne Radar (SLAR) is particularly important for the ocean surface where the radar modulation can yield information about the long ocean wave field. Radar modulation measurements from fixed platforms are made in wavetanks and the open oceans. The surfaces are described in terms of two scale models. The radar modulation is considered to be principally due to: (1) geometrical tilt due to the slope of the long ocean waves, and (2) the straining of the short waves (by hydrodynamic interaction). For application to moving platforms, this modulation needs to be described in terms of a general geometry for both like and cross polarization since the long ocean waves, in general, travel in arbitrary directions. The finite resolution of the radar is considered for tilt modulation with hydrodynamic effects neglected.

  8. SNS Emittance Scanner, Increasing Sensitivity and Performance through Noise Mitigation ,Design, Implementation and Results

    SciTech Connect

    Pogge, J.

    2006-11-20

    The Spallation Neutron Source (SNS) accelerator systems will deliver a 1.0 GeV, 1.4 MW proton beam to a liquid mercury target for neutron scattering research. The SNS MEBT Emittance Harp consists of 16 X and 16 Y wires, located in close proximity to the RFQ, Source, and MEBT Choppers. Beam Studies for source and LINAC commissioning required an overall increase in sensitivity for halo monitoring and measurement, and at the same time several severe noise sources had to be effectively removed from the harp signals. This paper is an overview of the design approach and techniques used in increasing gain and sensitivity while maintaining a large signal to noise ratio for the emittance scanner device. A brief discussion of the identification of the noise sources, the mechanism for transmission and pick up, how the signals were improved and a summary of results.

  9. 33. Perimeter acquisition radar building room #320, perimeter acquisition radar ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    33. Perimeter acquisition radar building room #320, perimeter acquisition radar operations center (PAROC), contains the tactical command and control group equipment required to control the par site. Showing spacetrack monitor console - Stanley R. Mickelsen Safeguard Complex, Perimeter Acquisition Radar Building, Limited Access Area, between Limited Access Patrol Road & Service Road A, Nekoma, Cavalier County, ND

  10. Emittance and lifetime measurement with damping wigglers

    NASA Astrophysics Data System (ADS)

    Wang, G. M.; Shaftan, T.; Cheng, W. X.; Guo, W.; Ilinsky, P.; Li, Y.; Podobedov, B.; Willeke, F.

    2016-03-01

    National Synchrotron Light Source II (NSLS-II) is a new third-generation storage ring light source at Brookhaven National Laboratory. The storage ring design calls for small horizontal emittance (<1 nm-rad) and diffraction-limited vertical emittance at 12 keV (8 pm-rad). Achieving low value of the beam size will enable novel user experiments with nm-range spatial and meV-energy resolution. The high-brightness NSLS-II lattice has been realized by implementing 30-cell double bend achromatic cells producing the horizontal emittance of 2 nm rad and then halving it further by using several Damping Wigglers (DWs). This paper is focused on characterization of the DW effects in the storage ring performance, namely, on reduction of the beam emittance, and corresponding changes in the energy spread and beam lifetime. The relevant beam parameters have been measured by the X-ray pinhole camera, beam position monitors, beam filling pattern monitor, and current transformers. In this paper, we compare the measured results of the beam performance with analytic estimates for the complement of the 3 DWs installed at the NSLS-II.

  11. Emittance control in rf cavities and solenoids

    NASA Astrophysics Data System (ADS)

    Eshraqi, Mohammad; Franchetti, Giuliano; Lombardi, Alessandra M.

    2009-02-01

    We study emittance growth for transport of uniform and Gaussian beams of particles in rf cavities and solenoids and show analytically its dependence on initial beam parameters. Analytical results are confirmed with simulation studies over a broad range of different initial beams.

  12. Beam emittance from ARPES for photoinjectors

    NASA Astrophysics Data System (ADS)

    Harkay, Katherine; Spentzouris, Linda; Nemeth, Karoly; Droubay, Timothy; Chambers, Scott; Joly, Alan; Hess, Wayne

    2014-03-01

    A commonly-used beam emittance measurement for photoinjector sources involves accelerating a low-charge beam to a few megavolts in an electron gun, then using a pepper-pot emittance diagnostic to image the transverse charge distribution. The emission distribution at the cathode surface could in principle be deduced through simulations, but cannot be measured directly with this method. In the quest to develop ultra-bright photoinjectors, it would be advantageous to be able to measure the emission distribution directly, and use this as a screening process to characterize different photocathode candidates. Angle-resolved photoemission sepctroscopy (ARPES), used widely in surface science, has been proposed [H. Padmore (private communication)] as a method to measure the photocathode intrinsic emittance. A promising novel photocathode, a thin layer of MgO on Ag was recently fabricated and ARPES measurements were carried out [T.C. Droubay et al., PRL (in press)]. The analysis of these data and resulting emittance will be presented. Implications for its use in simulations and design of future photoinjectors will also be presented. This work was supported by the U.S. DOE Office of Science (DE-AC02-06CH11357) and the National Science Foundation (No. PHY-0969989). The measurements were carried out at the EMSL user facility at PNNL.

  13. Light modulated switches and radio frequency emitters

    DOEpatents

    Wilson, Mahlon T.; Tallerico, Paul J.

    1982-01-01

    The disclosure relates to a light modulated electron beam driven radiofrequency emitter. Pulses of light impinge on a photoemissive device which generates an electron beam having the pulse characteristics of the light. The electron beam is accelerated through a radiofrequency resonator which produces radiofrequency emission in accordance with the electron, hence, the light pulses.

  14. Light modulated electron beam driven radiofrequency emitter

    DOEpatents

    Wilson, M.T.; Tallerico, P.J.

    1979-10-10

    The disclosure relates to a light modulated electron beam-driven radiofrequency emitter. Pulses of light impinge on a photoemissive device which generates an electron beam having the pulse characteristics of the light. The electron beam is accelerated through a radiofrequency resonator which produces radiofrequency emission in accordance with the electron, hence, the light pulses.

  15. Infrared spectral emittance measurements of optical materials.

    PubMed

    Stierwalt, D L

    1966-12-01

    Optical properties of solids are usually determined by measurements of either the transmittance or the reflectance. Each of these methods has advantages and disadvantages, depending upon the spectral region and the nature of the material being studied. A third method, the measurement of emittance, although little used has definite advantages under certain conditions. PMID:20057659

  16. Simple-to-prepare multipoint field emitter

    NASA Astrophysics Data System (ADS)

    Sominskii, G. G.; Taradaev, E. P.; Tumareva, T. A.; Mishin, M. V.; Kornishin, S. Yu.

    2015-07-01

    We investigate multitip field emitters prepared by electroerosion treatment of the surface of molybdenum samples. Their characteristics are determined for operation with a protecting activated fullerene coating. Our experiments indicate that such cathodes are promising for high-voltage electron devices operating in technical vacuum.

  17. Aluminum oxide film thickness and emittance

    SciTech Connect

    Thomas, J.K.; Ondrejcin, R.S.

    1991-11-01

    Aluminum reactor components which are not actively cooled could be subjected to high temperatures due to gamma heating after the core coolant level dropped during the ECS phase of a hypothetical LOCA event. Radiative heat transfer is the dominant heat transfer process in this scenario and therefore the emittance of these components is of interest. Of particular interest are the safety rod thimbles and Mark 60B blanket assemblies; for the K Reactor, these components have been exposed to low temperature (< 55{degrees}C) moderator for about a year. The average moderator temperature was assumed to be 30{degrees}C. The Al oxide film thickness at this temperature, after one year of exposure, is predicted to be 6.4 {mu}m {plus_minus} 10%; insensitive to exposure time. Dehydration of the film during the gamma heating accident would result in a film thickness of 6.0 {mu}m {plus_minus} 11%. Total hemispherical emittance is predicted to be 0.69 at 96{degrees}C, decreasing to 0.45 at 600{degrees}C. Some phenomena which would tend to yield thicker oxide films in the reactor environment relative to those obtained under experimental conditions were neglected and the predicted film thickness values are therefore conservative. The emittance values predicted for a given film thickness are also conservative. The conservativisms inherent in the predicted emittance are particularly relevant for uncertainty analysis of temperatures generated using these values.

  18. Aluminum oxide film thickness and emittance

    SciTech Connect

    Thomas, J.K.; Ondrejcin, R.S.

    1991-11-01

    Aluminum reactor components which are not actively cooled could be subjected to high temperatures due to gamma heating after the core coolant level dropped during the ECS phase of a hypothetical LOCA event. Radiative heat transfer is the dominant heat transfer process in this scenario and therefore the emittance of these components is of interest. Of particular interest are the safety rod thimbles and Mark 60B blanket assemblies; for the K Reactor, these components have been exposed to low temperature (< 55{degrees}C) moderator for about a year. The average moderator temperature was assumed to be 30{degrees}C. The Al oxide film thickness at this temperature, after one year of exposure, is predicted to be 6.4 {mu}m {plus minus} 10%; insensitive to exposure time. Dehydration of the film during the gamma heating accident would result in a film thickness of 6.0 {mu}m {plus minus} 11%. Total hemispherical emittance is predicted to be 0.69 at 96{degrees}C, decreasing to 0.45 at 600{degrees}C. Some phenomena which would tend to yield thicker oxide films in the reactor environment relative to those obtained under experimental conditions were neglected and the predicted film thickness values are therefore conservative. The emittance values predicted for a given film thickness are also conservative. The conservativisms inherent in the predicted emittance are particularly relevant for uncertainty analysis of temperatures generated using these values.

  19. Emittance growth from electron beam modulation

    SciTech Connect

    Blaskiewicz, M.

    2009-12-01

    In linac ring colliders like MeRHIC and eRHIC a modulation of the electron bunch can lead to a modulation of the beam beam tune shift and steering errors. These modulations can lead to emittance growth. This note presents simple formulas to estimate these effects which generalize some previous results.

  20. Emitters of N-photon bundles

    NASA Astrophysics Data System (ADS)

    Muñoz, C. Sánchez; Del Valle, E.; Tudela, A. González; Müller, K.; Lichtmannecker, S.; Kaniber, M.; Tejedor, C.; Finley, J. J.; Laussy, F. P.

    2014-07-01

    Controlling the output of a light emitter is one of the basic tasks in photonics, with landmarks such as the development of the laser and single-photon sources. The ever growing range of quantum applications is making it increasingly important to diversify the available quantum sources. Here, we propose a cavity quantum electrodynamics scheme to realize emitters that release their energy in groups (or `bundles') of N photons (where N is an integer). Close to 100% of two-photon emission and 90% of three-photon emission is shown to be within reach of state-of-the-art samples. The emission can be tuned with the system parameters so that the device behaves as a laser or as an N-photon gun. Here, we develop the theoretical formalism to characterize such emitters, with the bundle statistics arising as an extension of the fundamental correlation functions of quantum optics. These emitters will be useful for quantum information processing and for medical applications.

  1. Phase modulating the Urbana radar

    NASA Technical Reports Server (NTRS)

    Herrington, L. J., Jr.; Bowhill, S. A.

    1983-01-01

    The design and operation of a switched phase modulation system for the Urbana Radar System are discussed. The system is implemented and demonstrated using a simple procedure. The radar system and circuits are described and analyzed.

  2. On the phase biases of multiple-frequency radar returns of mesosphere-stratosphere-troposphere radar

    NASA Astrophysics Data System (ADS)

    Chen, Jenn-Shyong

    2004-10-01

    The frequency domain interferometry (FDI) technique uses two or more frequencies to measure the positions and thicknesses of the atmospheric thin layers embedded in the radar volume, in which the cross-correlation analyses of the radar echoes for the pairs of carrier frequencies are performed and the resultant amplitudes and phases (FDI phase) are both employed. However, in light of the possibility that the characteristics of radar system, mean refractivity gradient, and other factors that would significantly affect the FDI phase, calibration of the FDI phase is required to improve the measurement. In this study we employed three methods in measuring the phase bias in the FDI observation using the Chung-Li VHF radar; namely, (1) histogram of the FDI phases, (2) relationship between echo power and FDI phase, and (3) the FDI phase of aircraft. Both methods 1 and 2 are based on the range weighting effect on the radar echoes returned from the atmospheric scatterers; however, the first produced smaller FDI phase bias than the second. To examine such discrepancy in the results of methods 1 and 2, method 3 was exploited and provided more consistent values of phase biases with those of method 2. Considering that the radar echoes reflected from aircrafts are not related to uncertain conditions of the atmosphere such as mean reflectivity gradients and statistical characteristics, the results of methods 2 and 3 may be more reliable. Besides, the first two methods demonstrated that the FDI phase bias was quasi-linearly dependent on the separation of frequency pair, which not only consolidates the existence of the FDI phase bias but also indicates that a systematic phase compensation for the FDI analysis is possible. For example, considering 0.1-, 0.4-, and 0.8-?s time delays of signals for the returns of 1-, 2-, and 4-?s pulse lengths, respectively, the FDI phase biases can be removed effectively. Same methods and procedures can be applied to other radar systems.

  3. Airborne Radar Observations of Severe Hailstorms: Implications for Future Spaceborne Radar

    NASA Technical Reports Server (NTRS)

    Heymsfield, Gerald M.; Tian, Lin; Li, Lihua; McLinden, Matthew; Cervantes, Jaime I.

    2013-01-01

    A new dual-frequency (Ku and Ka band) nadir-pointing Doppler radar on the high-altitude NASA ER-2 aircraft, called the High-Altitude Imaging Wind and Rain Airborne Profiler (HIWRAP), has collected data over severe thunderstorms in Oklahoma and Kansas during the Midlatitude Continental Convective Clouds Experiment (MC3E). The overarching motivation for this study is to understand the behavior of the dualwavelength airborne radar measurements in a global variety of thunderstorms and how these may relate to future spaceborne-radar measurements. HIWRAP is operated at frequencies that are similar to those of the precipitation radar on the Tropical Rainfall Measuring Mission (Ku band) and the upcoming Global Precipitation Measurement mission satellite's dual-frequency (Ku and Ka bands) precipitation radar. The aircraft measurements of strong hailstorms have been combined with ground-based polarimetric measurements to obtain a better understanding of the response of the Ku- and Ka-band radar to the vertical distribution of the hydrometeors, including hail. Data from two flight lines on 24 May 2011 are presented. Doppler velocities were approx. 39m/s2at 10.7-km altitude from the first flight line early on 24 May, and the lower value of approx. 25m/s on a second flight line later in the day. Vertical motions estimated using a fall speed estimate for large graupel and hail suggested that the first storm had an updraft that possibly exceeded 60m/s for the more intense part of the storm. This large updraft speed along with reports of 5-cm hail at the surface, reflectivities reaching 70 dBZ at S band in the storm cores, and hail signals from polarimetric data provide a highly challenging situation for spaceborne-radar measurements in intense convective systems. The Ku- and Ka-band reflectivities rarely exceed approx. 47 and approx. 37 dBZ, respectively, in these storms.

  4. Radar Range Sidelobe Reduction Using Adaptive Pulse Compression Technique

    NASA Technical Reports Server (NTRS)

    Li, Lihua; Coon, Michael; McLinden, Matthew

    2013-01-01

    Pulse compression has been widely used in radars so that low-power, long RF pulses can be transmitted, rather than a highpower short pulse. Pulse compression radars offer a number of advantages over high-power short pulsed radars, such as no need of high-power RF circuitry, no need of high-voltage electronics, compact size and light weight, better range resolution, and better reliability. However, range sidelobe associated with pulse compression has prevented the use of this technique on spaceborne radars since surface returns detected by range sidelobes may mask the returns from a nearby weak cloud or precipitation particles. Research on adaptive pulse compression was carried out utilizing a field-programmable gate array (FPGA) waveform generation board and a radar transceiver simulator. The results have shown significant improvements in pulse compression sidelobe performance. Microwave and millimeter-wave radars present many technological challenges for Earth and planetary science applications. The traditional tube-based radars use high-voltage power supply/modulators and high-power RF transmitters; therefore, these radars usually have large size, heavy weight, and reliability issues for space and airborne platforms. Pulse compression technology has provided a path toward meeting many of these radar challenges. Recent advances in digital waveform generation, digital receivers, and solid-state power amplifiers have opened a new era for applying pulse compression to the development of compact and high-performance airborne and spaceborne remote sensing radars. The primary objective of this innovative effort is to develop and test a new pulse compression technique to achieve ultrarange sidelobes so that this technique can be applied to spaceborne, airborne, and ground-based remote sensing radars to meet future science requirements. By using digital waveform generation, digital receiver, and solid-state power amplifier technologies, this improved pulse compression technique could bring significant impact on future radar development. The novel feature of this innovation is the non-linear FM (NLFM) waveform design. The traditional linear FM has the limit (-20 log BT -3 dB) for achieving ultra-low-range sidelobe in pulse compression. For this study, a different combination of 20- or 40-microsecond chirp pulse width and 2- or 4-MHz chirp bandwidth was used. These are typical operational parameters for airborne or spaceborne weather radars. The NLFM waveform design was then implemented on a FPGA board to generate a real chirp signal, which was then sent to the radar transceiver simulator. The final results have shown significant improvement on sidelobe performance compared to that obtained using a traditional linear FM chirp.

  5. Innovative Field Emitters for High-Voltage Electronic Devices

    NASA Astrophysics Data System (ADS)

    Sominski, G. G.; Sezonov, V. E.; Taradaev, E. P.; Tumareva, T. A.; Zadiranov, Yu. M.; Kornishin, S. Yu.; Stepanova, A. N.

    2015-12-01

    We describe multitip field emitters with protective coatings, which were developed in Peter the Great St. Petersburg Polytechnic University. The coatings ensure long-term operation of the emitters under high currents and technical vacuum. Innovative multi-layer emitters composed of contacting nanolayers of materials with different work functions are presented as well. The possibility by using the developed emitters in high-voltage electronic devices is demonstrated.

  6. Space Radar Image of Raco Biomass Map

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This biomass map of the Raco, Michigan, area was produced from data acquired by the Spaceborne Imaging Radar C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) onboard space shuttle Endeavour. Biomass is the amount of plant material on an area of Earth's surface. Radar can directly sense the quantity and organizational structure of the woody biomass in the forest. Science team members at the University of Michigan used the radar data to estimate the standing biomass for this Raco site in the Upper Peninsula of Michigan. Detailed surveys of 70 forest stands will be used to assess the accuracy of these techniques. The seasonal growth of terrestrial plants, and forests in particular, leads to the temporary storage of large amounts of carbon, which could directly affect changes in global climate. In order to accurately predict future global change, scientists need detailed information about current distribution of vegetation types and the amount of biomass present around the globe. Optical techniques to determine net biomass are frustrated by chronic cloud-cover. Imaging radar can penetrate through cloud-cover with negligible signal losses. Spaceborne Imaging Radar-C and X-Synthetic Aperture Radar (SIR-C/X-SAR) is part of NASA's Mission to Planet Earth. The radars illuminate Earth with microwaves allowing detailed observations at any time, regardless of weather or sunlight conditions. SIR-C/X-SAR uses three microwave wavelengths: L-band (24 cm), C-band (6 cm) and X-band (3 cm). The multi-frequency data will be used by the international scientific community to better understand the global environment and how it is changing. The SIR-C/X-SAR data, complemented by aircraft and ground studies, will give scientists clearer insights into those environmental changes which are caused by nature and those changes which are induced by human activity. SIR-C was developed by NASA's Jet Propulsion Laboratory. X-SAR was developed by the Dornier and Alenia Spazio companies for the German space agency, Deutsche Agentur fuer Raumfahrtangelegenheiten (DARA), and the Italian space agency, Agenzia Spaziale Italiana (ASI), with the Deutsche Forschungsanstalt fuer Luft und Raumfahrt e.v. (DLR), the major partner in science, operations and data processing of X-SAR.

  7. Radar data smoothing filter study

    NASA Technical Reports Server (NTRS)

    White, J. V.

    1984-01-01

    The accuracy of the current Wallops Flight Facility (WFF) data smoothing techniques for a variety of radars and payloads is examined. Alternative data reduction techniques are given and recommendations are made for improving radar data processing at WFF. A data adaptive algorithm, based on Kalman filtering and smoothing techniques, is also developed for estimating payload trajectories above the atmosphere from noisy time varying radar data. This algorithm is tested and verified using radar tracking data from WFF.

  8. An active radar calibration target

    NASA Technical Reports Server (NTRS)

    Brunfeldt, D. R.; Ulaby, F. T.

    1982-01-01

    An active radar calibrator (ARC), consisting of a receive antenna and a transmit antenna with an RF amplifier in between, is proposed as a tool for conducting high-precision calibration measurements of radar systems. The ARC can be designed to have a large radar cross-section with a broad pattern. Its major advantages over passive reflectors are its small physical size and its suitability for calibrating radars operating in a cross-polarized antenna configuration.

  9. High brightness fiber laser pump sources based on single emitters and multiple single emitters

    NASA Astrophysics Data System (ADS)

    Scheller, Torsten; Wagner, Lars; Wolf, Jrgen; Bonati, Guido; Drfel, Falk; Gabler, Thomas

    2008-02-01

    Driven by the potential of the fiber laser market, the development of high brightness pump sources has been pushed during the last years. The main approaches to reach the targets of this market had been the direct coupling of single emitters (SE) on the one hand and the beam shaping of bars and stacks on the other hand, which often causes higher cost per watt. Meanwhile the power of single emitters with 100?m emitter size for direct coupling increased dramatically, which also pushed a new generation of wide stripe emitters or multi emitters (ME) of up to 1000?m emitter size respectively "minibars" with apertures of 3 to 5mm. The advantage of this emitter type compared to traditional bars is it's scalability to power levels of 40W to 60W combined with a small aperture which gives advantages when coupling into a fiber. We show concepts using this multiple single emitters for fiber coupled systems of 25W up to 40W out of a 100?m fiber NA 0.22 with a reasonable optical efficiency. Taking into account a further efficiency optimization and an increase in power of these devices in the near future, the EUR/W ratio pushed by the fiber laser manufacturer will further decrease. Results will be shown as well for higher power pump sources. Additional state of the art tapered fiber bundles for photonic crystal fibers are used to combine 7 (19) pump sources to output powers of 100W (370W) out of a 130?m (250?m) fiber NA 0.6 with nominal 20W per port. Improving those TFB's in the near future and utilizing 40W per pump leg, an output power of even 750W out of 250?m fiber NA 0.6 will be possible. Combined Counter- and Co-Propagated pumping of the fiber will then lead to the first 1kW fiber laser oscillator.

  10. Radar detection of phobos.

    PubMed

    Ostro, S J; Jurgens, R F; Yeomans, D K; Standish, E M; Greiner, W

    1989-03-24

    Radar echoes from the martian satellite Phobos provide information about that object's surface properties at scales near the 3.5-cm observing wavelength. Phobos appears less rough than the moon at centimeter-to-decimeter scales. The uppermost few decimeters of the satellite's regolith have a mean bulk density within 20% of 2.0 g cm(-3). The radar signature of Phobos (albedo, polarization ratio, and echo spectral shape) differs from signatures measured for small, Earth-approaching objects, but resembles those of large (>/=100-km), C-class, mainbelt asteroids. PMID:17847261

  11. Radar detection of Phobos

    NASA Technical Reports Server (NTRS)

    Ostro, S. J.; Jurgens, R. F.; Yeomans, D. K.; Standish, E. M.; Greiner, W.

    1989-01-01

    Radar echoes from the martian satellite Phobos provide information about that object's surface properties at scales near the 3.5-cm observing wavelength. Phobos appears less rough than the moon at centimeter-to-decimeter scales. The uppermost few decimeters of the satellite's regolith have a mean bulk density within 20 percent of 2.0 g/cu cm. The radar signature of Phobos (albedo, polarization ratio, and echo spectral shape) differs from signatures measured for small, earth-approaching objects, but resembles those of large (greater than 100-km), C-class, mainbelt asteroids.

  12. Radar Investigations of Asteroids

    NASA Technical Reports Server (NTRS)

    Ostro, S. J.

    1984-01-01

    Radar investigations of asteroids, including observations during 1984 to 1985 of at least 8 potential targets and continued analyses of radar data obtained during 1980 to 1984 for 30 other asteroids is proposed. The primary scientific objectives include estimation of echo strength, polarization, spectral shape, spectral bandwidth, and Doppler shift. These measurements yield estimates of target size, shape, and spin vector; place constraints on topography, morphology, density, and composition of the planetary surface; yield refined estimates of target orbital parameters; and reveals the presence of asteroidal satellites.

  13. Spaceborne Imaging Radar Symposium

    NASA Technical Reports Server (NTRS)

    Elachi, C.

    1983-01-01

    An overview of the present state of the art in the different scientific and technological fields related to spaceborne imaging radars was presented. The data acquired with the SEASAT SAR (1978) and Shuttle Imaging Radar, SIR-A (1981) clearly demonstrated the important emphasis in the 80's is going to be on in-depth research investigations conducted with the more flexible and sophisticated SIR series instruments and on long term monitoring of geophysical phenomena conducted from free-flying platforms such as ERS-1 and RADARSAT.

  14. Spaceborne laser radar.

    NASA Technical Reports Server (NTRS)

    Flom, T.

    1972-01-01

    Development of laser systems to acquire and track targets in applications such as the rendezvous and docking of two spacecraft. A scan technique is described whereby a narrow laser beam is simultaneously scanned with an equally narrow receiver field-of-view without the aid of mechanical gimbals. Equations are developed in order to examine the maximum acquisition and tracking rates, and the maximum target range for a scanning laser radar system. A recently built prototype of a small, lightweight, low-power-consuming scanning laser radar is described.

  15. Systems and Methods for Radar Data Communication

    NASA Technical Reports Server (NTRS)

    Bunch, Brian (Inventor); Szeto, Roland (Inventor); Miller, Brad (Inventor)

    2013-01-01

    A radar information processing system is operable to process high bandwidth radar information received from a radar system into low bandwidth radar information that may be communicated to a low bandwidth connection coupled to an electronic flight bag (EFB). An exemplary embodiment receives radar information from a radar system, the radar information communicated from the radar system at a first bandwidth; processes the received radar information into processed radar information, the processed radar information configured for communication over a connection operable at a second bandwidth, the second bandwidth lower than the first bandwidth; and communicates the radar information from a radar system, the radar information communicated from the radar system at a first bandwidth.

  16. SEASAT Synthetic Aperture Radar Data

    NASA Technical Reports Server (NTRS)

    Henderson, F. M.

    1981-01-01

    The potential of radar imagery from space altitudes is discussed and the advantages of radar over passive sensor systems are outlined. Specific reference is made to the SEASAT synthetic aperture radar. Possible applications include oil spill monitoring, snow and ice reconnaissance, mineral exploration, and monitoring phenomena in the urban environment.

  17. Nonlinear synthetic aperture radar imaging using a harmonic radar

    NASA Astrophysics Data System (ADS)

    Gallagher, Kyle A.; Mazzaro, Gregory J.; Ranney, Kenneth I.; Nguyen, Lam H.; Martone, Anthony F.; Sherbondy, Kelly D.; Narayanan, Ram M.

    2015-05-01

    This paper presents synthetic aperture radar (SAR) images of linear and nonlinear targets. Data are collected using a linear/nonlinear step frequency radar. We show that it is indeed possible to produce SAR images using a nonlinear radar. Furthermore, it is shown that the nonlinear radar is able to reduce linear clutter by at least 80 dB compared to a linear radar. The nonlinear SAR images also show the system's ability to detect small electronic devices in the presence of large linear clutter. The system presented here has the ability to completely ignore a 20-inch trihedral corner reflector while detecting a RF mixer with a dipole antenna attached.

  18. A fully photonics-based coherent radar system

    NASA Astrophysics Data System (ADS)

    Ghelfi, Paolo; Laghezza, Francesco; Scotti, Filippo; Serafino, Giovanni; Capria, Amerigo; Pinna, Sergio; Onori, Daniel; Porzi, Claudio; Scaffardi, Mirco; Malacarne, Antonio; Vercesi, Valeria; Lazzeri, Emma; Berizzi, Fabrizio; Bogoni, Antonella

    2014-03-01

    The next generation of radar (radio detection and ranging) systems needs to be based on software-defined radio to adapt to variable environments, with higher carrier frequencies for smaller antennas and broadened bandwidth for increased resolution. Today's digital microwave components (synthesizers and analogue-to-digital converters) suffer from limited bandwidth with high noise at increasing frequencies, so that fully digital radar systems can work up to only a few gigahertz, and noisy analogue up- and downconversions are necessary for higher frequencies. In contrast, photonics provide high precision and ultrawide bandwidth, allowing both the flexible generation of extremely stable radio-frequency signals with arbitrary waveforms up to millimetre waves, and the detection of such signals and their precise direct digitization without downconversion. Until now, the photonics-based generation and detection of radio-frequency signals have been studied separately and have not been tested in a radar system. Here we present the development and the field trial results of a fully photonics-based coherent radar demonstrator carried out within the project PHODIR. The proposed architecture exploits a single pulsed laser for generating tunable radar signals and receiving their echoes, avoiding radio-frequency up- and downconversion and guaranteeing both the software-defined approach and high resolution. Its performance exceeds state-of-the-art electronics at carrier frequencies above two gigahertz, and the detection of non-cooperating aeroplanes confirms the effectiveness and expected precision of the system.

  19. A fully photonics-based coherent radar system.

    PubMed

    Ghelfi, Paolo; Laghezza, Francesco; Scotti, Filippo; Serafino, Giovanni; Capria, Amerigo; Pinna, Sergio; Onori, Daniel; Porzi, Claudio; Scaffardi, Mirco; Malacarne, Antonio; Vercesi, Valeria; Lazzeri, Emma; Berizzi, Fabrizio; Bogoni, Antonella

    2014-03-20

    The next generation of radar (radio detection and ranging) systems needs to be based on software-defined radio to adapt to variable environments, with higher carrier frequencies for smaller antennas and broadened bandwidth for increased resolution. Today's digital microwave components (synthesizers and analogue-to-digital converters) suffer from limited bandwidth with high noise at increasing frequencies, so that fully digital radar systems can work up to only a few gigahertz, and noisy analogue up- and downconversions are necessary for higher frequencies. In contrast, photonics provide high precision and ultrawide bandwidth, allowing both the flexible generation of extremely stable radio-frequency signals with arbitrary waveforms up to millimetre waves, and the detection of such signals and their precise direct digitization without downconversion. Until now, the photonics-based generation and detection of radio-frequency signals have been studied separately and have not been tested in a radar system. Here we present the development and the field trial results of a fully photonics-based coherent radar demonstrator carried out within the project PHODIR. The proposed architecture exploits a single pulsed laser for generating tunable radar signals and receiving their echoes, avoiding radio-frequency up- and downconversion and guaranteeing both the software-defined approach and high resolution. Its performance exceeds state-of-the-art electronics at carrier frequencies above two gigahertz, and the detection of non-cooperating aeroplanes confirms the effectiveness and expected precision of the system. PMID:24646997

  20. Venus Radar Mapper (VRM): Multimode radar system design

    NASA Technical Reports Server (NTRS)

    Johnson, William T. K.; Edgerton, Alvin T.

    1986-01-01

    The surface of Venus has remained a relative mystery because of the very dense atmosphere that is opaque to visible radiation and, thus, normal photographic techniques used to explore the other terrestrial objects in the solar system are useless. The atmosphere is, however, almost transparent to radar waves and images of the surface have been produced via Earth-based and orbital radars. The technique of obtaining radar images of a surface is variously called side looking radar, imaging radar, or synthetic aperture radar (SAR). The radar requires a moving platform in which the antenna is side looking. High resolution is obtained in the cross-track or range direction by conventional radar pulse encoding. In the along-track or azimuth direction, the resolution would normally be the antenna beam width, but for the SAR case, a much longer antenna (or much sharper beam) is obtained by moving past a surface target as shown, and then combining the echoes from many pulses, by using the Doppler data, to obtain the images. The radar design of the Venus Radar Mapper (VRM) is discussed. It will acquire global radar imagery and altimetry data of the surface of Venus.