Science.gov

Sample records for radar emitter signals

  1. A novel and efficient approach for automatic classification of radar emitter signals

    NASA Astrophysics Data System (ADS)

    Aziz, A. M.

    Radar emitter signal identification is a special issue of data clustering for classifying unknown radar emitters. In this paper, an efficient approach for automatic classification of radar emitter signals in multisensor systems is proposed. The proposed approach exploits measured features extracted from multiple sensors as well as the sensor accuracies for classification of unknown multiple radar targets. The proposed approach can easily be applied to any number of sensors with different accuracies, any number of emitters, and any number of measured features without exponential growing of the required computations. The performance of the proposed classification approach is evaluated in terms of percentage of correct classification and compared to other classification approaches. The results show the feasibility and the effectiveness of the proposed classification approach.

  2. Robust Radar Emitter Recognition Based on the Three-Dimensional Distribution Feature and Transfer Learning

    PubMed Central

    Yang, Zhutian; Qiu, Wei; Sun, Hongjian; Nallanathan, Arumugam

    2016-01-01

    Due to the increasing complexity of electromagnetic signals, there exists a significant challenge for radar emitter signal recognition. To address this challenge, multi-component radar emitter recognition under a complicated noise environment is studied in this paper. A novel radar emitter recognition approach based on the three-dimensional distribution feature and transfer learning is proposed. The cubic feature for the time-frequency-energy distribution is proposed to describe the intra-pulse modulation information of radar emitters. Furthermore, the feature is reconstructed by using transfer learning in order to obtain the robust feature against signal noise rate (SNR) variation. Last, but not the least, the relevance vector machine is used to classify radar emitter signals. Simulations demonstrate that the approach proposed in this paper has better performances in accuracy and robustness than existing approaches. PMID:26927111

  3. Robust Radar Emitter Recognition Based on the Three-Dimensional Distribution Feature and Transfer Learning.

    PubMed

    Yang, Zhutian; Qiu, Wei; Sun, Hongjian; Nallanathan, Arumugam

    2016-01-01

    Due to the increasing complexity of electromagnetic signals, there exists a significant challenge for radar emitter signal recognition. To address this challenge, multi-component radar emitter recognition under a complicated noise environment is studied in this paper. A novel radar emitter recognition approach based on the three-dimensional distribution feature and transfer learning is proposed. The cubic feature for the time-frequency-energy distribution is proposed to describe the intra-pulse modulation information of radar emitters. Furthermore, the feature is reconstructed by using transfer learning in order to obtain the robust feature against signal noise rate (SNR) variation. Last, but not the least, the relevance vector machine is used to classify radar emitter signals. Simulations demonstrate that the approach proposed in this paper has better performances in accuracy and robustness than existing approaches. PMID:26927111

  4. Hybrid Radar Emitter Recognition Based on Rough k-Means Classifier and Relevance Vector Machine

    PubMed Central

    Yang, Zhutian; Wu, Zhilu; Yin, Zhendong; Quan, Taifan; Sun, Hongjian

    2013-01-01

    Due to the increasing complexity of electromagnetic signals, there exists a significant challenge for recognizing radar emitter signals. In this paper, a hybrid recognition approach is presented that classifies radar emitter signals by exploiting the different separability of samples. The proposed approach comprises two steps, namely the primary signal recognition and the advanced signal recognition. In the former step, a novel rough k-means classifier, which comprises three regions, i.e., certain area, rough area and uncertain area, is proposed to cluster the samples of radar emitter signals. In the latter step, the samples within the rough boundary are used to train the relevance vector machine (RVM). Then RVM is used to recognize the samples in the uncertain area; therefore, the classification accuracy is improved. Simulation results show that, for recognizing radar emitter signals, the proposed hybrid recognition approach is more accurate, and presents lower computational complexity than traditional approaches. PMID:23344380

  5. Software Radar signal processing

    NASA Astrophysics Data System (ADS)

    Grydeland, T.; Lind, F. D.; Erickson, P. J.; Holt, J. M.

    2005-01-01

    Software infrastructure is a growing part of modern radio science systems. As part of developing a generic infrastructure for implementing Software Radar systems, we have developed a set of reusable signal processing components. These components are generic software-based implementations for use on general purpose computing systems. The components allow for the implementation of signal processing chains for radio frequency signal reception, correlation-based data processing, and cross-correlation-based interferometry. The components have been used to implement the signal processing necessary for incoherent scatter radar signal reception and processing as part of the latest version of the Millstone Hill Data Acquisition System (MIDAS-W). Several hardware realizations with varying capabilities have been created, and these have been used successfully with different radars. We discuss the signal processing components in detail, describe the software patterns in which they are used, and show example data from the Millstone Hill, EISCAT Svalbard, and SOUSY Svalbard radars.

  6. Ghost signals in Allison emittance scanners

    SciTech Connect

    Stockli, Martin P.; Leitner, M.; Moehs, D.P.; Keller, R.; Welton, R.F.; /SNS Project, Oak Ridge /Tennessee U.

    2004-12-01

    For over 20 years, Allison scanners have been used to measure emittances of low-energy ion beams. We show that scanning large trajectory angles produces ghost signals caused by the sampled beamlet impacting on an electric deflection plate. The ghost signal strength is proportional to the amount of beam entering the scanner. Depending on the ions, and their velocity, the ghost signals can have the opposite or the same polarity as the main beam signals. The ghost signals cause significant errors in the emittance estimates because they appear at large trajectory angles. These ghost signals often go undetected because they partly overlap with the real signals, are mostly below the 1% level, and often hide in the noise. A simple deflection plate modification is shown to reduce the ghost signal strength by over 99%.

  7. Ghost Signals In Allison Emittance Scanners

    SciTech Connect

    Stockli, Martin P.; Leitner, M.; Keller, R.; Moehs, D.P.; Welton, R. F.

    2005-03-15

    For over 20 years, Allison scanners have been used to measure emittances of low-energy ion beams. We show that scanning large trajectory angles produces ghost signals caused by the sampled beamlet impacting on an electric deflection plate. The ghost signal strength is proportional to the amount of beam entering the scanner. Depending on the ions, and their velocity, the ghost signals can have the opposite or the same polarity as the main beam signals. The ghost signals cause significant errors in the emittance estimates because they appear at large trajectory angles. These ghost signals often go undetected because they partly overlap with the real signals, are mostly below the 1% level, and often hide in the noise. A simple deflection plate modification is shown to reduce the ghost signal strength by over 99%.

  8. Radar signal categorization using a neural network

    NASA Technical Reports Server (NTRS)

    Anderson, James A.; Gately, Michael T.; Penz, P. Andrew; Collins, Dean R.

    1991-01-01

    Neural networks were used to analyze a complex simulated radar environment which contains noisy radar pulses generated by many different emitters. The neural network used is an energy minimizing network (the BSB model) which forms energy minima - attractors in the network dynamical system - based on learned input data. The system first determines how many emitters are present (the deinterleaving problem). Pulses from individual simulated emitters give rise to separate stable attractors in the network. Once individual emitters are characterized, it is possible to make tentative identifications of them based on their observed parameters. As a test of this idea, a neural network was used to form a small data base that potentially could make emitter identifications.

  9. Optical signal processing of phased array radar

    NASA Astrophysics Data System (ADS)

    Weverka, Robert T.

    This thesis develops optical processors that scale to very high processing speed. Optical signal processing is often promoted on the basis of smaller size, lower weight and lower power consumption as well as higher signal processing speed. While each of these requirements has applications, it is the ones that require processing speed beyond that available in electronics that are most compelling. Thirty years ago, optical processing was the only method fast enough to process Synthetic Aperture Radar (SAR), one of the more demanding signal processing tasks at this time. Since that time electronic processing speed has improved sufficiently to tackle that problem. We have sought out the problems that require significantly higher processing speed and developed optical processors that tackle these more difficult problems. The components that contribute to high signal processing speed are high input signal bandwidth, a large number of parallel input channels each with this high bandwidth, and a large number of parallel operations required on each input channel. Adaptive signal processing for phased array radar has all of these factors. The processors developed for this task scale well in three dimensions, which allows them to maximize parallelism for high speed. This thesis explores an example of a negative feedback adaptive phased array processor and an example of a positive feedback phased array processor. The negative feedback processor uses and array of inputs in up to two dimensions together with the time history of the signal in the third dimension to adapt the array pattern to null out incoming jammer signals. The positive feedback processor uses the incoming signals and assumptions about the radar scene to correct for position errors in a phased array. Discovery and analysis of these new processors are facilitated by an original volume holographic analysis technique developed in the thesis. The thesis includes a new acoustooptic Bragg cell geometry developed with this analysis technique. This Bragg cell provides a low insertion delay making it suitable for the feedback phased array radar systems. This thesis develops a new algorithm for phased array radar processing. This adaptation of the Widrow algorithm requires fewer delay lines allowing us to implement a system that can scale to dense two-dimensional phased array radar. The thesis explores this processor in depth, developing the description of the system evolution, the nonlinear dynamics governing the system and the dynamic range: that can be achieved. The system behavior and dynamics are confirmed experimentally. Finally this thesis explores positive feed back architectures for the phased radar problem posed by Steinberg in which the array itself is poorly surveyed. To our knowledge, optical signal processing solutions to this problem have not been developed prior to this work.

  10. Packet radar spectrum recovery for physiological signals.

    PubMed

    Yavari, Ehsan; Padasdao, Bryson; Lubecke, Victor; Boric-Lubecke, Olga

    2013-01-01

    Packet Doppler radar is investigated for extracting physiological signals. System on Chip is employed as a signal source in packet mode, and it transmits signals intermittently at 2.405 GHz to save power. Reflected signals are demodulated directly by spectral analysis of received pulses in the baseband. Spectral subtraction, using data from an empty room, is applied to extract the periodic movement. It was experimentally demonstrated that frequency of the periodic motion can be accurately extracted using this technique. Proposed approach reduces the computation complexity of the signal processing part effectively. PMID:24110048

  11. Stepped-frequency radar signal processing

    NASA Astrophysics Data System (ADS)

    Seyfried, Daniel; Schoebel, Joerg

    2015-01-01

    Stepped-frequency radar is a prominent example of the class of continuous-wave radar systems. Since raw data are recorded in frequency-domain direct investigations referring to the frequency content can be done on the raw data. However, a transformation of these data is required in order to obtain a time-domain representation of the targets illuminated by the radar. In this paper we present different ways of arranging the raw data which then are processed by means of the inverse fast Fourier transform. On the basis of the time-domain result we discuss strengths and weaknesses of each of these data structures. Furthermore, we investigate the influence of phase noise on the time-domain signal by means of an appropriate model implemented in our simulation tool. We also demonstrate the effects of commonly known techniques of digital signal processing, such as windowing and zero-padding of frequency-domain data. Finally we present less commonly known methods, such as the processing gain of the (inverse) fast Fourier transform by means of which the signal to noise ratio of the time-domain signal can be increased.

  12. Meteor radar signal processing and error analysis

    NASA Astrophysics Data System (ADS)

    Kang, Chunmei

    Meteor wind radar systems are a powerful tool for study of the horizontal wind field in the mesosphere and lower thermosphere (MLT). While such systems have been operated for many years, virtually no literature has focused on radar system error analysis. The instrumental error may prevent scientists from getting correct conclusions on geophysical variability. The radar system instrumental error comes from different sources, including hardware, software, algorithms and etc. Radar signal processing plays an important role in radar system and advanced signal processing algorithms may dramatically reduce the radar system errors. In this dissertation, radar system error propagation is analyzed and several advanced signal processing algorithms are proposed to optimize the performance of radar system without increasing the instrument costs. The first part of this dissertation is the development of a time-frequency waveform detector, which is invariant to noise level and stable to a wide range of decay rates. This detector is proposed to discriminate the underdense meteor echoes from the background white Gaussian noise. The performance of this detector is examined using Monte Carlo simulations. The resulting probability of detection is shown to outperform the often used power and energy detectors for the same probability of false alarm. Secondly, estimators to determine the Doppler shift, the decay rate and direction of arrival (DOA) of meteors are proposed and evaluated. The performance of these estimators is compared with the analytically derived Cramer-Rao bound (CRB). The results show that the fast maximum likelihood (FML) estimator for determination of the Doppler shift and decay rate and the spatial spectral method for determination of the DOAs perform best among the estimators commonly used on other radar systems. For most cases, the mean square error (MSE) of the estimator meets the CRB above a 10dB SNR. Thus meteor echoes with an estimated SNR below 10dB are discarded due to the potential of producing a biased estimate. The precision of the estimated parameters can then be computed using their CRB values as a proxy for the estimated variance. These errors propagate to form the instrumental errors on the height and horizontal wind measurements. Thirdly, the interferometer configuration of interferometric meteor radar system is studied. The interferometer uses the phase differences measured at different sensor pairs to determine the DOA of the meteor trail. Typically Jones cross is used in most of current meteor radar systems, such as MEDAC and SKYiMet. We have evaluated this configuration with other array geometries,such as 'T', 'L' and circular array to examine their performance on the precision of the DOA estimates. The results show that 'T' array has an overall better CRB than other geometries, while with the yagi antenna pattern as a course determination of the DOA range, the circular array performs the best with the lowest sidelobes on the spatial spectral. A Matlab based planar array design package designed for determination and visualization of the DOA estimation performance for a user designed antenna array was developed. Fourthly, based on the special configuration of the South Pole COBRA system, a low cost computational phase calibration method is proposed. Accurate knowledge of the receiver phase ofsets is another factor that can affect system performance. Lastly, the postprocessing results of the meteor echoes collected during 2005 from the South Pole COBRA system are presented. This radar system is shown to have a precision of 2m/s in the horizontal winds, an azimuth precision of 1o, and an elevation precision of 3o. Preliminary scientific results are presented to verify the effectiveness of our processing scheme, and include the seasonal variation of meteor rates as a function of height, and the vertical structure of large semidiurnal tide observed over the South Pole austral summer. The processing schemes and error analysis methods presented in this dissertation can be easily extended to other meteor radar systems with minor modifications of the associated radar parameters. The analysis results presented herein represent the first detailed study of the errors and biases associated with VHF meteor radar system. With better understanding of radar signal processing and system error propagation, scientists will be able to separate instrumental error from geophysical variability resulting in an improved understanding of short timescale atmospheric variations.

  13. Radar transponder apparatus and signal processing technique

    DOEpatents

    Axline, R.M. Jr.; Sloan, G.R.; Spalding, R.E.

    1996-01-23

    An active, phase-coded, time-grating transponder and a synthetic-aperture radar (SAR) and signal processor means, in combination, allow the recognition and location of the transponder (tag) in the SAR image and allow communication of information messages from the transponder to the SAR. The SAR is an illuminating radar having special processing modifications in an image-formation processor to receive an echo from a remote transponder, after the transponder receives and retransmits the SAR illuminations, and to enhance the transponder`s echo relative to surrounding ground clutter by recognizing special transponder modulations from phase-shifted from the transponder retransmissions. The remote radio-frequency tag also transmits information to the SAR through a single antenna that also serves to receive the SAR illuminations. Unique tag-modulation and SAR signal processing techniques, in combination, allow the detection and precise geographical location of the tag through the reduction of interfering signals from ground clutter, and allow communication of environmental and status information from said tag to be communicated to said SAR. 4 figs.

  14. Radar transponder apparatus and signal processing technique

    DOEpatents

    Axline, Jr., Robert M.; Sloan, George R.; Spalding, Richard E.

    1996-01-01

    An active, phase-coded, time-grating transponder and a synthetic-aperture radar (SAR) and signal processor means, in combination, allow the recognition and location of the transponder (tag) in the SAR image and allow communication of information messages from the transponder to the SAR. The SAR is an illuminating radar having special processing modifications in an image-formation processor to receive an echo from a remote transponder, after the transponder receives and retransmits the SAR illuminations, and to enhance the transponder's echo relative to surrounding ground clutter by recognizing special transponder modulations from phase-shifted from the transponder retransmissions. The remote radio-frequency tag also transmits information to the SAR through a single antenna that also serves to receive the SAR illuminations. Unique tag-modulation and SAR signal processing techniques, in combination, allow the detection and precise geographical location of the tag through the reduction of interfering signals from ground clutter, and allow communication of environmental and status information from said tag to be communicated to said SAR.

  15. Radar transponder apparatus and signal processing technique

    SciTech Connect

    Axline, R.M. Jr.; Sloan, G.R.; Spalding, R.E.

    1994-12-31

    An active, phase-coded, time-grating transponder and a synthetic-aperture radar (SAR) and signal processor means, in combination, allow the recognition and location of the transponder (tag) in the SAR image and allow communication of information messages from the transponder to the SAR. The SAR is an illuminating radar having special processing modifications in an image-formation processor to receive an echo from a remote transponder, after the transponder receives and retransmits the SAR illuminations, and to enhance tile transponder`s echo relative to surrounding ground clutter by recognizing special transponder modulations from phase-shifted from the transponder retransmissions. The remote radio-frequency tag also transmits information to the SAR through a single antenna that also serves to receive the SAR illuminations. Unique tag-modulation and SAR signal processing techniques, in combination, allow the detection and precise geographical location of the tag, through the reduction of interfering signals from ground clutter, and allow communication of environmental and status information from said tag to be communicated to said SAR.

  16. Signal to Noise Analysis of iRadar sensors

    SciTech Connect

    Fritzke, A; Top, P

    2009-09-10

    This document follows my process of testing; comparing; and contrasting several iRadars signal to noise ratios for both HH and VV polarization. A brief introduction is given explaining the basics of iRadar technology and what data I was collecting. The process section explains the steps I took to collect my data along with any procedures I followed. The analysis section compares and contrasts five different radars and the two different polarizations. The analysis also details the radars viewing limitations and area. Finally, the report delves into the effects of two radars interfering with each other. A conclusion goes over the success and findings of the project.

  17. From Bursts to Back-Projection: Signal Processing Techniques for Earth and Planetary Observing Radars

    NASA Technical Reports Server (NTRS)

    Rosen, Paul A.

    2012-01-01

    Discusses: (1) JPL Radar Overview and Historical Perspective (2) Signal Processing Needs in Earth and Planetary Radars (3) Examples of Current Systems and techniques (4) Future Perspectives in signal processing for radar missions

  18. Time-frequency analysis of synthetic aperture radar signals

    SciTech Connect

    Johnston, B.

    1996-08-01

    Synthetic aperture radar (SAR) has become an important tool for remote sensing of the environment. SAR is a set of digital signal processing algorithms that are used to focus the signal returned to the radar because radar systems in themselves cannot produce the high resolution images required in remote sensing applications. To reconstruct an image, several parameters must be estimated and the quality of output image depends on the degree of accuracy of these parameters. In this thesis, we derive the fundamental SAR algorithms and concentrate on the estimation of one of its critical parameters. We show that the common technique for estimating this particular parameter can sometimes lead to erroneous results and reduced quality images. We also employ time-frequency analysis techniques to examine variations in the radar signals caused by platform motion and show how these results can be used to improve output image quality.

  19. Doppler radar with multiphase modulation of transmitted and reflected signal

    NASA Technical Reports Server (NTRS)

    Shores, Paul W. (Inventor); Griffin, John W. (Inventor); Kobayashi, Herbert S. (Inventor)

    1989-01-01

    A microwave radar signal is generated and split by a circulator. A phase shifter introduces a series of phase shifts into a first part of the split signal which is then transmitted by antenna. A like number of phase shifts is introduced by the phase shifter into the return signal from the target. The circulator delivers the phase shifted return signal and the leakage signal from the circulator to a mixer which generates an IF signal output at the Doppler frequency. The IF signal is amplified, filtered, counted per unit of time, and the result displayed to provide indications of target sense and range rate. An oscillator controls rate of phase shift in the transmitted and received radar signals and provides a time base for the counter. The phase shift magnitude increases may be continuous and linear or discrete functions of time.

  20. Signal processing techniques for surveillance radar - An overview

    NASA Astrophysics Data System (ADS)

    Farina, A.; Galati, G.

    1985-06-01

    The present paper is concerned with a survey of the signal processing techniques presently employed in modern air defense and surveillance radars and those techniques likely to be applied in the future. Attention is given to the requirements for enhancing performance in surveillance radar, current processing techniques, advanced techniques, low probability of intercept (LPI) and anti-ARM (anti-radiation missile), anti-stealth, digital beamforming (DBF), adaptivity, high directivity and high resolution, multidimensional processing, target classification, and fieldability. Stealth is the term given to means of reducing the radar cross section of a target and the reduction of infrared emissions from the engine exhaust.

  1. Signal Processing System for the CASA Integrated Project I Radars

    SciTech Connect

    Bharadwaj, Nitin; Chandrasekar, V.; Junyent, Francesc

    2010-09-01

    This paper describes the waveform design space and signal processing system for dual-polarization Doppler weather radar operating at X band. The performance of the waveforms is presented with ground clutter suppression capability and mitigation of range velocity ambiguity. The operational waveform is designed based on operational requirements and system/hardware requirements. A dual Pulse Repetition Frequency (PRF) waveform was developed and implemented for the first generation X-band radars deployed by the Center for Collaborative Adaptive Sensing of the Atmosphere (CASA). This paper presents an evaluation of the performance of the waveforms based on simulations and data collected by the first-generation CASA radars during operations.

  2. Automatic signal processing of front monitor radar for tunneling machines

    SciTech Connect

    Sato, Toru; Takeda, Kenya; Nagamatsu, Takashi; Wakayama, Toshio; Kimura, Iwane; Shinbo, Tetsuya

    1997-03-01

    It is planned to install a front monitoring impulse radar on the surface of the rotating drill of tunneling machines in order to detect obstacles such as casing pipes of vertical borings. The conventional aperture synthesis technique can no more be applied to such cases because the radar image of a pipe dies not constituent a hyperbola as is the case for linear scanning radars. The authors have developed a special purpose signal processing algorithm with the aid of the discrete model fitting method, which can be used for any pattern of scanning. The details of the algorithm are presented together with the results of numerical simulations and test site experiments.

  3. Predictability of GNSS signal observations in support of Space Situational Awareness using passive radar

    NASA Astrophysics Data System (ADS)

    Mahmud, M. S.; Lambert, A.; Benson, C.

    2015-07-01

    GNSS signals have been proposed as emitters of opportunity to enhance Space Situational Awareness (SSA) by tracking small items of space debris using bistatic radar. Although the scattered GNSS signal levels from small items of space debris are incredibly low, the dynamic disturbances of the observed object are very small, and the phase of the scattered signals is well behaved. It is therefore plausible that coherent integration periods on the order of many minutes could be achieved. However, even with long integration periods, very large receiver arrays with extensive, but probably viable, processing are required to recover the scattered signal. Such large arrays will be expensive, and smaller more affordable arrays will collect insufficient signal power to detect the small objects (relative to wavelength) that are necessary to maintain the necessary phase coherency. The investments necessary to build a large receiver array are unlikely without substantial risk reduction. Pini and Akos have previously reported on use of very large radio telescopes to analyse the short-term modulation performance of GNSS satellite signals. In this work we report on tracking of GPS satellites with a radio-astronomy VLBI antenna system to assess the stability of the observed GPS signal over a time period indicative of that proposed for passive radar. We also confirm some of the processing techniques that may be used in both demonstrations and the final system. We conclude from the limited data set that the signal stability when observed by a high-gain tracking antenna and compared against a high quality, low phase-noise clock is excellent, as expected. We conclude by framing further works to reduce risk for a passive radar SSA capability using GNSS signals. http://www.ignss.org/Conferences/PastConferencePapers/2015ConferencePastPapers/2015PeerReviewedPapers/tabid/147/Default.aspx

  4. Integration of radio-frequency transmission and radar in general software for multimodal battlefield signal modeling

    NASA Astrophysics Data System (ADS)

    Yamamoto, Kenneth K.; Reznicek, Nathan J.; Wilson, D. Keith

    2013-05-01

    The Environmental Awareness for Sensor and Emitter Employment (EASEE) software, being developed by the U. S. Army Engineer Research and Development Center (ERDC), provides a general platform for predicting sensor performance and optimizing sensor selection and placement in complex terrain and weather conditions. It incorporates an extensive library of target signatures, signal propagation models, and sensor systems. A flexible object-oriented design supports efficient integration and simulation of diverse signal modalities. This paper describes the integration of modeling capabilities for radio-frequency (RF) transmission and radar systems from the U. S. Navy Electromagnetic Propagation Integrated Resource Environment (EMPIRE), which contains nearly twenty different realistic RF propagation models. The integration utilizes an XML-based interface between EASEE and EMPIRE to set inputs for and run propagation models. To accommodate radars, fundamental improvements to the EASEE software architecture were made to support active-sensing scenarios with forward and backward propagation of the RF signals between the radar and target. Models for reflecting targets were defined to apply a target-specific, directionally dependent reflection coefficient (i.e., scattering cross section) to the incident wavefields.

  5. Windshear detection radar signal processing studies

    NASA Technical Reports Server (NTRS)

    Baxa, Ernest G., Jr.

    1993-01-01

    This final report briefly summarizes research work at Clemson in the Radar Systems Laboratory under the NASA Langley Research Grant NAG-1-928 in support of the Antenna and Microwave Branch, Guidance and Control Division, program to develop airborne sensor technology for the detection of low altitude windshear. A bibliography of all publications generated by Clemson personnel is included. An appendix provides abstracts of all publications.

  6. Location plan for Signal Corps Radar (S.C.R.) 296 Station 5, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Location plan for Signal Corps Radar (S.C.R.) 296 Station 5, October 8, 1943 - Fort Barry, Signal Corps Radar 296, Station 5, Transmitter Building Foundation, Point Bonita, Marin Headlands, Sausalito, Marin County, CA

  7. Signal processing at the Poker Flat MST radar

    NASA Technical Reports Server (NTRS)

    Carter, D. A.

    1983-01-01

    Signal processing for Mesosphere-Stratosphere-Troposphere (MST) radar is carried out by a combination of hardware in high-speed, special-purpose devices and software in a general-purpose, minicomputer/array processor. A block diagram of the signal processing system is presented, and the steps in the processing pathway are described. The current processing capabilities are given, and a system offering greater coherent integration speed is advanced which hinges upon a high speed preprocessor.

  8. Radar antenna pointing for optimized signal to noise ratio.

    SciTech Connect

    Doerry, Armin Walter; Marquette, Brandeis

    2013-01-01

    The Signal-to-Noise Ratio (SNR) of a radar echo signal will vary across a range swath, due to spherical wavefront spreading, atmospheric attenuation, and antenna beam illumination. The antenna beam illumination will depend on antenna pointing. Calculations of geometry are complicated by the curved earth, and atmospheric refraction. This report investigates optimizing antenna pointing to maximize the minimum SNR across the range swath.

  9. Radar signal propagation through the ionosphere of Europa

    NASA Astrophysics Data System (ADS)

    Grima, Cyril; Blankenship, Donald D.; Schroeder, Dustin M.

    2015-11-01

    We review the current state of knowledge of the Europan plasma environment, its effects on radio wave propagation, and its impact on the performance and design of future radar sounders for the exploration of Europa's ice crust. The Europan ionosphere is produced in two independently-rotating hemispheres by photo-ionization of the neutral exosphere and interaction with the Io plasma torus, respectively. This combination is responsible for temporal and longitudinal ionospheric heterogeneities not well constrained by observations. When Europa's ionosphere is active, the maximum cut-off frequency is 1 MHz at the surface. The main impacts on radar signal propagation are dispersive phase shift and Faraday rotation, both a function of the total electron content (up to 4×1015 m-2) and the Jovian magnetic field strength at Europa (~420 nT). The severity of these impacts decrease with increasing center frequency and increase with altitude, latitude, and bandwidth. The 9 MHz channels on the Radar for Icy Moons Exploration (RIME) and proposed Radar for Europa Assessment and Sounding: Ocean to Near-surface (REASON) will be sensitive to the Europan ionosphere. For these or similar radar sounders, the ionospheric signal distortion from dispersive phase shift can be corrected with existing techniques, which would also enable the estimation of the total electron content below the spacecraft. At 9 MHz, the Faraday fading is not expected to exceed 6 dB under the worst conditions. At lower frequencies, any active or passive radio probing of the ice shell exploration would be limited to frequencies above 1-8 MHz (depending on survey configuration) below which Faraday rotation angle would lead to signal fading and detection ambiguity. Radar instruments could be sensitive to neutrals and electrons added in the exosphere from any plume activity if present.

  10. Detail view of southeast corner of Signal Corps Radar (S.C.R.) ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Detail view of southeast corner of Signal Corps Radar (S.C.R.) 296 Station 5 Transmitter Building foundation, showing Signal Corps Radar (S.C.R.) 296 Station 5 Tower concrete pier in background, camera facing north - Fort Barry, Signal Corps Radar 296, Station 5, Transmitter Building Foundation, Point Bonita, Marin Headlands, Sausalito, Marin County, CA

  11. Optimizing chaos-based signals for complex radar targets.

    PubMed

    Carroll, T L

    2007-09-01

    There has been interest in the use of chaotic signals for radar, but most researchers consider only a few chaotic systems and how these signals perform for the detection of point targets. The range of possible chaotic signals is far greater than what most of these researchers consider, so to demonstrate this, I use a chaotic map whose parameters may be adjusted by a numerical optimization routine, producing different chaotic signals that are modulated onto a carrier and optimized for different situations. It is also suggested that any advantage for these chaos-based signals may come in the detection of complex targets, not point targets, and I compare the performance of chaos-based signals to a standard radar signal, the linear frequency modulated chirp. I find that I can optimize a chaos-based signal to increase the cross-correlation with the reflection from one complex target compared to the cross-correlation with the reflection from a different target, thus allowing the identification of a complex target. I am also able to increase the cross-correlation of the reflection from a complex target compared with the cross-correlation with the reflection from spatially extended clutter. I show that a larger output signal-to-noise ratio is possible if I cross-correlate with a reference signal that is different from the transmitted signal, and I justify my results by showing how the ambiguity diagram for a chaos-based signal can be different than the ambiguity diagram for a noise signal. PMID:17902985

  12. A test vector generator for a radar signal processor

    NASA Astrophysics Data System (ADS)

    Robins, C. B.

    1991-02-01

    This report documents the test vector generator (TVG) system developed for the purpose of testing a radar signal processor. This system simulates an eight channel radar receiver by providing input data for testing the signal processor test bed. The TVG system outputs 128-bit wide data samples at variable rates up to and including 10 million samples per second. The VTG memory array is one million samples deep. Variably sized output vectors can be addressed within the memory array and the vectors can be concatenated, repeated, and reshuffled in real time under the control of a single board computer. The TVG is seen having applications on a variety of programs. Discussions of adapting and scaling the system to these other applications are presented.

  13. Radar range data signal enhancement tracker

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The design, fabrication, and performance characteristics are described of two digital data signal enhancement filters which are capable of being inserted between the Space Shuttle Navigation Sensor outputs and the guidance computer. Commonality of interfaces has been stressed so that the filters may be evaluated through operation with simulated sensors or with actual prototype sensor hardware. The filters will provide both a smoothed range and range rate output. Different conceptual approaches are utilized for each filter. The first filter is based on a combination low pass nonrecursive filter and a cascaded simple average smoother for range and range rate, respectively. Filter number two is a tracking filter which is capable of following transient data of the type encountered during burn periods. A test simulator was also designed which generates typical shuttle navigation sensor data.

  14. Digital Radar-Signal Processors Implemented in FPGAs

    NASA Technical Reports Server (NTRS)

    Berkun, Andrew; Andraka, Ray

    2004-01-01

    High-performance digital electronic circuits for onboard processing of return signals in an airborne precipitation- measuring radar system have been implemented in commercially available field-programmable gate arrays (FPGAs). Previously, it was standard practice to downlink the radar-return data to a ground station for postprocessing a costly practice that prevents the nearly-real-time use of the data for automated targeting. In principle, the onboard processing could be performed by a system of about 20 personal- computer-type microprocessors; relative to such a system, the present FPGA-based processor is much smaller and consumes much less power. Alternatively, the onboard processing could be performed by an application-specific integrated circuit (ASIC), but in comparison with an ASIC implementation, the present FPGA implementation offers the advantages of (1) greater flexibility for research applications like the present one and (2) lower cost in the small production volumes typical of research applications. The generation and processing of signals in the airborne precipitation measuring radar system in question involves the following especially notable steps: The system utilizes a total of four channels two carrier frequencies and two polarizations at each frequency. The system uses pulse compression: that is, the transmitted pulse is spread out in time and the received echo of the pulse is processed with a matched filter to despread it. The return signal is band-limited and digitally demodulated to a complex baseband signal that, for each pulse, comprises a large number of samples. Each complex pair of samples (denoted a range gate in radar terminology) is associated with a numerical index that corresponds to a specific time offset from the beginning of the radar pulse, so that each such pair represents the energy reflected from a specific range. This energy and the average echo power are computed. The phase of each range bin is compared to the previous echo by complex conjugate multiplication to obtain the mean Doppler shift (and hence the mean and variance of the velocity of precipitation) of the echo at that range.

  15. Signal based motion compensation for synthetic aperture radar

    SciTech Connect

    John Kirk

    1999-06-07

    The purpose of the Signal Based Motion Compensation (SBMC) for Synthetic Aperture Radar (SAR) effort is to develop a method to measure and compensate for both down range and cross range motion of the radar in order to provide high quality focused SAR imagery in the absence of precision measurements of the platform motion. Currently SAR systems require very precise navigation sensors for motion compensation. These sensors are very expensive and are often supplied in pairs for reliability. In the case of GPS they can be jammed, further degrading performance. This makes for a potentially very expensive and possibly vulnerable SAR system. SBMC can eliminate or reduce the need for these expensive navigation sensors thus reducing the cost of budget minded SAR systems. The results on this program demonstrated the capability of the SBMC approach.

  16. Multiplexed Signal Distribution Using Fiber Network For Radar Applications

    NASA Astrophysics Data System (ADS)

    Meena, D.; Prakasam, L. G. M.; Pandey, D. C.; Shivaleela, E. S.; Srinivas, T.

    2011-10-01

    Most of the modern Active phased Array Radars consist of multiple receive modules in an Antenna array. This demands the distribution of various Local Oscillator Signals (LOs) for the down conversion of received signals to the Intermediate Frequency (IF) band signals. This is normally achieved through Radio Frequency (RF) cables with Complex distribution networks which adds additional weight to the Arrays. Similarly these kinds of receivers require Control/Clock signals which are digital in nature, for the synchronization of all receive modules of the radar system which are also distributed through electrical cables. In addition some of the control messages (Digital in nature) are distributed through Optical interfaces. During Transmit operation, the RF transmit Signal is also distributed through the same receiver modules which will in turn distribute to all the elements of the Array which require RF cables which are bulky in nature. So it is very essential to have a multiplexed Signal distribution scheme through the existing Optical Interface for distribution of these signals which are RF and Digital in nature. This paper discusses about various distribution schemes for the realization in detail. We propose a distribution network architecture where existing fibers can be further extended for the distribution of other types of signals also. In addition, it also briefs about a comparative analysis done on these schemes by considering the complexity and space constraint factors. Thus we bring out an optimum scheme which will lead to the reduction in both hardware complexity and weight of the array systems. In addition, being an Optical network it is free from Electromagnetic interference which is a crucial requirement in an array environment.

  17. Measurement of human heartbeat and respiration signals using phase detection radar

    NASA Astrophysics Data System (ADS)

    Kim, Hyoung Jong; Kim, Ki Ho; Hong, Yun Seok; Choi, Jin Joo

    2007-10-01

    This article introduces a low-cost phase detection radar aimed at measuring the human heartbeat and respiration signals without any physical connections to the human body. A continuous-wave radar targeting the chest will detect the phase difference, resulted by the time-varying target position of the heartbeat, between the transmitted signal and the reflected signal. We have tested the developed radar to measure the heartbeat and respiration signals at a distance of about 40cm from the chest.

  18. Stable optical-signal emitter based on a semiconductor photonic dot

    NASA Astrophysics Data System (ADS)

    Zhang, Yongyou; Zou, Bingsuo; Jin, Guojun

    2011-03-01

    We propose a polariton hyperparametric oscillator (PHO) based on a semiconductor photonic dot at the micro/nano scale. By theoretical derivations and numerical calculations, we find that the PHO not only amplify weak signals like general large-planar polariton amplifiers, but also depress strong signals unusually. The coexistence of such signal amplification and depression can cause a stable signal emission being almost independent of the excitation instabilities in the strong-excitation regime. It has been verified that the instability of the signal emission, increasing with the increase of the excitation instabilities, is only about one to two percent deviation from its average intensity even under strong instable excitations. Hence, the PHO can serve as a stable optical-signal emitter in micro/nano optical systems.

  19. Detection and Classification of Low Probability of Intercept Radar Signals Using Parallel Filter Arrays and Higher Order Statistics

    NASA Astrophysics Data System (ADS)

    Taboada, Fernando L.

    2002-09-01

    Low probability of intercept (LPI) is that property of an emitter that because of its low power, wide bandwidth, frequency variability, or other design attributes, makes it difficult to be detected or identified by means of passive intercept devices such as radar warning, electronic support and electronic intelligence receivers. In order to detect LPI radar waveforms new signal processing techniques are required. This thesis first develops a MATLAB toolbox to generate important types of LPI waveforms based on frequency and phase modulation. The power spectral density and the periodic ambiguity function are examined for each waveforms. These signals are then used to test a novel signal processing technique that detects the waveforms parameters and classifies the intercepted signal in various degrees of noise. The technique is based on the use of parallel filter (sub-band) arrays and higher order statistics (third-order cumulant estimator). Each sub-band signal is treated individually and is followed by the third-order estimator in order to suppress any symmetrical noise that might be present. The significance of this technique is that it separates the LPI waveforms in small frequency bands, providing a detailed time-frequency description of the unknown signal. Finally, the resulting output matrix is processed by a feature extraction routine to detect the waveforms parameters. Identification of the signal is based on the modulation parameters detected.

  20. Advanced Signal Analysis for Forensic Applications of Ground Penetrating Radar

    SciTech Connect

    Steven Koppenjan; Matthew Streeton; Hua Lee; Michael Lee; Sashi Ono

    2004-06-01

    Ground penetrating radar (GPR) systems have traditionally been used to image subsurface objects. The main focus of this paper is to evaluate an advanced signal analysis technique. Instead of compiling spatial data for the analysis, this technique conducts object recognition procedures based on spectral statistics. The identification feature of an object type is formed from the training vectors by a singular-value decomposition procedure. To illustrate its capability, this procedure is applied to experimental data and compared to the performance of the neural-network approach.

  1. Topography adjacent to Signal Corps Radar (S.C.R.) 296 Station 5, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Topography adjacent to Signal Corps Radar (S.C.R.) 296 Station 5, showing conditions before construction, May 28, 1943, this drawing shows the Bonita Ridge access road retaining wall and general conditions at Bonita Ridge before the construction of Signal Corps Radar (S.C.R.) 296 Station 5 - Fort Barry, Signal Corps Radar 296, Station 5, Transmitter Building Foundation, Point Bonita, Marin Headlands, Sausalito, Marin County, CA

  2. Synthetic aperture radar signal processing on the MPP

    NASA Technical Reports Server (NTRS)

    Ramapriyan, H. K.; Seiler, E. J.

    1987-01-01

    Satellite-borne Synthetic Aperture Radars (SAR) sense areas of several thousand square kilometers in seconds and transmit phase history signal data several tens of megabits per second. The Shuttle Imaging Radar-B (SIR-B) has a variable swath of 20 to 50 km and acquired data over 100 kms along track in about 13 seconds. With the simplification of separability of the reference function, the processing still requires considerable resources; high speed I/O, large memory and fast computation. Processing systems with regular hardware take hours to process one Seasat image and about one hour for a SIR-B image. Bringing this processing time closer to acquisition times requires an end-to-end system solution. For the purpose of demonstration, software was implemented on the present Massively Parallel Processor (MPP) configuration for processing Seasat and SIR-B data. The software takes advantage of the high processing speed offered by the MPP, the large Staging Buffer, and the high speed I/O between the MPP array unit and the Staging Buffer. It was found that with unoptimized Parallel Pascal code, the processing time on the MPP for a 4096 x 4096 sample subset of signal data ranges between 18 and 30.2 seconds depending on options.

  3. Graphical derivations of radar, sonar, and communication signals

    NASA Technical Reports Server (NTRS)

    Altes, R. A.; Titlebaum, E. L.

    1975-01-01

    The designer of a communication system often has knowledge concerning the changes in distance between transmitter and receiver as a function of time. This information can be exploited to reduce multipath interference via proper signal design. A radar or sonar may also have good a priori information about possible target trajectories. Such knowledge can again be used to reduce the receiver's response to clutter (MTI), to enhance signal-to-noise ratio, or to simplify receiver design. There are also situations in which prior knowledge about trajectories is lacking. The system should then utilize a single-filter pair which is insensitive to the effects induced by relative motion between transmitter, receiver, and reflectors. For waveforms with large time-bandwidth products, such as long pulse trains, it is possible to graphically derive signal formats for both situations (trajectory known and unknown). Although the exact form of the signal is sometimes not specified by the graphical procedure, the problem in such cases is reduced to one which has already been solved, i.e., the generation of an impulse equivalent code.

  4. Determining human target facing orientation using bistatic radar micro-Doppler signals

    NASA Astrophysics Data System (ADS)

    Fairchild, Dustin P.; Narayanan, Ram M.

    2014-06-01

    Micro-Doppler radar signals can be used to separate moving human targets from stationary clutter and also to identify and classify human movements. Traditional micro-Doppler radar systems which use a single sensor, monostatic system, suffer from the drawback that only the radial component of the micro-Doppler signal will be observed by the radar operator. This reduces the sensitivity of human activity recognition if the movements are not directly towards or away with respect to the line-of-sight to the radar antenna. In this paper, we propose the use of two bistatic micro-Doppler sensors to overcome this limitation. By using multiple sensors, the orientation of oscillating targets with respect to the radar line-of-sight can be inferred, thereby providing additional information to the radar operator. This approach can be used to infer the facing direction of the human with respect to the radar beam.

  5. View of Signal Corps Radar (S.C.R.) 296 Station 5 Transmitter ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View of Signal Corps Radar (S.C.R.) 296 Station 5 Transmitter Building foundation, showing Fire Control Stations (Buildings 621 and 622) and concrete stairway (top left) camera facing southwest - Fort Barry, Signal Corps Radar 296, Station 5, Transmitter Building Foundation, Point Bonita, Marin Headlands, Sausalito, Marin County, CA

  6. Detail view of northwest side of Signal Corps Radar (S.C.R.) ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Detail view of northwest side of Signal Corps Radar (S.C.R.) 296 Station 5 Transmitter Building foundation, showing portion of concrete gutter drainage system and asphalt floor tiles, camera facing north - Fort Barry, Signal Corps Radar 296, Station 5, Transmitter Building Foundation, Point Bonita, Marin Headlands, Sausalito, Marin County, CA

  7. Bistatic coherent laser radar signal-to-noise ratio.

    PubMed

    Magee, Eric P; Kane, Timothy J

    2002-03-20

    We investigate the signal-to-noise ratio (SNR) for a bistatic coherent laser radar (CLR) system. With a bistatic configuration, the spatial resolution is determined by the overlap of the transmit beam and the virtual backpropagated local oscillator beam. This eliminates the trade-off between range resolution and the bandwidth of the transmitted pulse inherent in monostatic systems. The presented analysis is completely general in that the expressions can be applied to both monostatic and bistatic CLR systems. The heterodyne SNR is computed under the assumption of untruncated Gaussian optics and untruncated Gaussian beam profiles. The analysis also includes the effects of refractive turbulence. The results show that, for maximum SNR, small transmit and local oscillator beam profiles (e-1 intensity radius) are desired. PMID:11921808

  8. Discrimination against interfering signals at the Poker Flat MST radar

    NASA Technical Reports Server (NTRS)

    Carter, D. A.

    1983-01-01

    Several on line and off line data processing techniques are used to remove interfering signals due to ground clutter, aircraft, instrumental effects, and external transmissions from the desired atmospheric echoes of Mesosphere Stratosphere, Troposphere (MST) radar. The on line, real time techniques are necessarily simple in order to minimize processing delays. This algorithm examines the individual Doppler spectra which are computed every two to four seconds (for oblique antenna beams). The total spectral power in each individual spectrum is computed by summing all the spectral points. If this integrated power increases from one spectrum to the next by a factor greater than a preselected threshold, then that spectrum is not added to the spectral sum. Succeeding spectra are compared to the last acceptable spectrum. Only a certain maximum number of spectra are allowed to be rejected in succession.

  9. Toward the integration of tracking and signal processing for phased-array radar

    NASA Astrophysics Data System (ADS)

    Blair, W. Dale

    1994-07-01

    Classically, sensor signal processing and data processing (i.e., tracking) have been performed separately with very little interaction between the two functions. Furthermore, the signal processing and tracking algorithms are often designed separately. This paper discusses some concepts for integrating the signal processing and tracking functions for a phase array radar. Since phased array radars provide a rapid beam steering capability, proper control of the radar beam has the potential for significantly improving the tracking of multiple maneuvering targets. However, when the signal processing is accomplished separately from the tracking, optimizing the detection thresholds for targets with fluctuating radar cross sections, resolving multiple targets, and reducing the errors due to multipath and glint must be accomplished over a single radar dwell period. Integrating the signal processing with the tracking will allow many of these issues to be addressed over multiple radar dwells. The issues associated with integrating the signal processing and tracking functions are discussed with respect to tracking and data association, revisit time and waveform energy calculations, and waveform selection. The waveform selection is discussed relative to four specific examples that include a fluctuating radar cross section from an extended target, two closely spaced targets, a splitting target, and a target in the presence of radar multipath.

  10. System for Automatic Detection and Analysis of Targets in FMICW Radar Signal

    NASA Astrophysics Data System (ADS)

    Rejfek, Luboš; Mošna, Zbyšek; Urbář, Jaroslav; Koucká Knížová, Petra

    2016-01-01

    This paper presents the automatic system for the processing of the signals from the frequency modulated interrupted continuous wave (FMICW) radar and describes methods for the primary signal processing. Further, we present methods for the detection of the targets in strong noise. These methods are tested both on the real and simulated signals. The real signals were measured using the developed at the IAP CAS experimental prototype of FMICW radar with operational frequency 35.4 GHz. The measurement campaign took place at the TU Delft, the Netherlands. The obtained results were used for development of the system for the automatic detection and analysis of the targets measured by the FMICW radar.

  11. A compressive radar system with chaotic-based FM signals using the Bernoulli map

    NASA Astrophysics Data System (ADS)

    Ochoa, Hector A.; Teja Enugula, Charan

    2013-05-01

    Matched filters are used in radar systems to identify echo signals embedded in noise. They allow us to extract range and Doppler information about the target from the reflected signal. In high frequency radars, matched filters make the system expensive and complex. For that reason, the radar research community is looking at techniques like compressive sensing or compressive sampling to eliminate the use of matched filters and high frequency analog-to-digital converters. In this work, compressive sensing is proposed as a method to increase the resolution and eliminate the use of matched filters in chaotic radars. Two basic scenarios are considered, one for stationary targets and one for non-stationary targets. For the stationary targets, the radar scene was a one dimensional vector, in which each element from the vector represents a target position. For the non-stationary targets, the radar scene was a two dimensional matrix, in which one direction of the matrix represents the target's range, and the other direction represents the target's velocity. Using optimization techniques, it was possible to recover both radar scenes from an under sampled echo signal. The reconstructed scenes were compared against a traditional matched filter system. In both cases, the matched filter was capable of recovering the radar scene. However, there was a considerable amount of artifacts introduced by the matched filter that made target identification a daunting task. On the other hand, using compressive sensing it was possible to recover both radar scenes perfectly, even when the echo signal was under sampled.

  12. Rapid and stable measurement of respiratory rate from Doppler radar signals using time domain autocorrelation model.

    PubMed

    Sun, Guanghao; Matsui, Takemi

    2015-08-01

    Noncontact measurement of respiratory rate using Doppler radar will play a vital role in future clinical practice. Doppler radar remotely monitors the tiny chest wall movements induced by respiration activity. The most competitive advantage of this technique is to allow users fully unconstrained with no biological electrode attachments. However, the Doppler radar, unlike other contact-type sensors, is easily affected by the random body movements. In this paper, we proposed a time domain autocorrelation model to process the radar signals for rapid and stable estimation of the respiratory rate. We tested the autocorrelation model on 8 subjects in laboratory, and compared the respiratory rates detected by noncontact radar with reference contact-type respiratory effort belt. Autocorrelation model showed the effects of reducing the random body movement noise added to Doppler radar's respiration signals. Moreover, the respiratory rate can be rapidly calculated from the first main peak in the autocorrelation waveform within 10 s. PMID:26737655

  13. Non-contact physiological signal detection using continuous wave Doppler radar.

    PubMed

    Qiao, Dengyu; He, Tan; Hu, Boping; Li, Ye

    2014-01-01

    The aim of this work is to show non-contact physiological signal monitoring system based on continuous-wave (CW) Doppler radar, which is becoming highly attractive in the field of health care monitoring of elderly people. Two radar signal processing methods were introduced in this paper: one to extract respiration and heart rates of a single person and the other to separate mixed respiration signals. To verify the validity of the methods, physiological signal is obtained from stationary human subjects using a CW Doppler radar unit. The sensor operating at 24 GHz is located 0.5 meter away from the subject. The simulation results show that the respiration and heart rates are clearly extracted, and the mixed respiration signals are successfully separated. Finally, reference respiration and heart rate signals are measured by an ECG monitor and compared with the results tracked by the CW Doppler radar monitoring system. PMID:24211989

  14. Optical processing of pulsed Doppler and FM stepped radar signals.

    PubMed

    Casasent, D; Casasayas, F

    1975-06-01

    A real-time radar processor with an electron beam addressed KD(2)PO(4) light valve as the input electrical-to-optical transducer is described. The input format, output plane pattern, and the required optical processing of pulsed Doppler and FM stepped radar data on this system are discussed. Experimental output plane patterns with actual radar data are presented. Although these data are processed off-line, the processing is performed at real-time data rates. PMID:20154832

  15. Resolution function of nonsinusoidal radar signals. I - Range-velocity resolution with rectangular pulses

    NASA Astrophysics Data System (ADS)

    Mohamed, Nasser J.

    1990-05-01

    A generalization of a previously published ambiguity function that applies to radar known as large-relative-bandwidth radar, carrier-free radar, impulse radar, or nonsinusoidal radar is discussed. This radar has recently attracted attention because of its ability to penetrate absorbing materials used in the stealth technology. Another good application is the detection of moving targets with a small radar cross section by a look-down radar, which calls for a thumbtack ambiguity function. Since a small radar cross section in this application is typically due to the small size of the target that is coated with absorbing material, the antistealth feature of the nonsinusoidal radar is implicitly being used. The principle is presented of a resolution function (tentatively called the range-velocity or the range-Doppler resolution function) based on processing a nonsinusoidal signal consisting of N characters with a time separation TD and each character consisting of a sequence of L binary pulses of duration T. It is shown that range-velocity resolution functions approaching the ideal thumbtack function are easy to obtain. The blind speeds of the pulse-Doppler radar with sinusoidal carrier do not inherently occur, and all velocities are observed as true velocities rather than as velocities modulo the first blind speed (velocity ambiguity).

  16. The use of digital RF memories in radar signal processing

    NASA Astrophysics Data System (ADS)

    Clark, D. G. D.; Ingram, P. M.

    This paper describes the use that may be made of Digital RF Memories in developing and evaluating new radar systems. It outlines the basic DRFM technology showing how a DRFM works and the sort of performance that may be expected. The application of this technology to radar is then discussed showing the advantages that may be obtained through the use of coherent digital IF processing. Finally some experimental DRFM based radar configurations are described illustrating the results that have been achieved and the implications that these might have on future radar systems.

  17. Optimal Signal Processing of Frequency-Stepped CW Radar Data

    NASA Technical Reports Server (NTRS)

    Ybarra, Gary A.; Wu, Shawkang M.; Bilbro, Griff L.; Ardalan, Sasan H.; Hearn, Chase P.; Neece, Robert T.

    1995-01-01

    An optimal signal processing algorithm is derived for estimating the time delay and amplitude of each scatterer reflection using a frequency-stepped CW system. The channel is assumed to be composed of abrupt changes in the reflection coefficient profile. The optimization technique is intended to maximize the target range resolution achievable from any set of frequency-stepped CW radar measurements made in such an environment. The algorithm is composed of an iterative two-step procedure. First, the amplitudes of the echoes are optimized by solving an overdetermined least squares set of equations. Then, a nonlinear objective function is scanned in an organized fashion to find its global minimum. The result is a set of echo strengths and time delay estimates. Although this paper addresses the specific problem of resolving the time delay between the two echoes, the derivation is general in the number of echoes. Performance of the optimization approach is illustrated using measured data obtained from an HP-851O network analyzer. It is demonstrated that the optimization approach offers a significant resolution enhancement over the standard processing approach that employs an IFFT. Degradation in the performance of the algorithm due to suboptimal model order selection and the effects of additive white Gaussion noise are addressed.

  18. Optimal Signal Processing of Frequency-Stepped CW Radar Data

    NASA Technical Reports Server (NTRS)

    Ybarra, Gary A.; Wu, Shawkang M.; Bilbro, Griff L.; Ardalan, Sasan H.; Hearn, Chase P.; Neece, Robert T.

    1995-01-01

    An optimal signal processing algorithm is derived for estimating the time delay and amplitude of each scatterer reflection using a frequency-stepped CW system. The channel is assumed to be composed of abrupt changes in the reflection coefficient profile. The optimization technique is intended to maximize the target range resolution achievable from any set of frequency-stepped CW radar measurements made in such an environment. The algorithm is composed of an iterative two-step procedure. First, the amplitudes of the echoes are optimized by solving an overdetermined least squares set of equations. Then, a nonlinear objective function is scanned in an organized fashion to find its global minimum. The result is a set of echo strengths and time delay estimates. Although this paper addresses the specific problem of resolving the time delay between the first two echoes, the derivation is general in the number of echoes. Performance of the optimization approach is illustrated using measured data obtained from an HP-X510 network analyzer. It is demonstrated that the optimization approach offers a significant resolution enhancement over the standard processing approach that employs an IFFT. Degradation in the performance of the algorithm due to suboptimal model order selection and the effects of additive white Gaussion noise are addressed.

  19. On the Doppler Frequency Shifts of Radar Signals Backscattered from the Sea Surface

    NASA Astrophysics Data System (ADS)

    Ermakov, S. A.; Kapustin, I. A.; Kudryavtsev, V. N.; Sergievskaya, I. A.; Shomina, O. V.; Chapron, B.; Yurovskiy, Yu. Yu.

    2014-09-01

    We study the frequency spectra of the radar signals scattered from the wind waves on the sea surface in the full-scale experiment. Two types of the radar Doppler shifts of the spectrum maximum, namely, the averaged shift of the instantaneous spectrum of the scattered signal and the shift of the maximum of the signal time-averaged spectrum as functions of the incidence angle and the wind velocity and direction are analyzed for different sounding-wave polarizations. Significant difference between the average shift of the instantaneous spectrum and the shift of the average-spectrum maximum is demonstrated. This difference is attributed to the radar-signal modulation effect in the field of long surface waves. The obtained results are very important for correct retrieval of the velocities of the surface currents using the data of the satellite-borne measurements of the radar Doppler shifts.

  20. Signal processing for airborne doppler radar detection of hazardous wind shear as applied to NASA 1991 radar flight experiment data

    NASA Technical Reports Server (NTRS)

    Baxa, Ernest G., Jr.

    1992-01-01

    Radar data collected during the 1991 NASA flight tests have been selectively analyzed to support research directed at developing both improved as well as new algorithms for detecting hazardous low-altitude windshear. Analysis of aircraft attitude data from several flights indicated that platform stability bandwidths were small compared to the data rate bandwidths which should support an assumption that radar returns can be treated as short time stationary. Various approaches at detection of weather returns in the presence of ground clutter are being investigated. Non-coventional clutter rejection through spectrum mode tracking and classification algorithms is a subject of continuing research. Based upon autoregressive modeling of the radar return time sequence, this approach may offer an alternative to overcome errors in conventional pulse-pair estimates. Adaptive filtering is being evaluated as a means of rejecting clutter with emphasis on low signal-to-clutter ratio situations, particularly in the presence of discrete clutter interference. An analysis of out-of-range clutter returns is included to illustrate effects of ground clutter interference due to range aliasing for aircraft on final approach. Data are presented to indicate how aircraft groundspeed might be corrected from the radar data as well as point to an observed problem of groundspeed estimate bias variation with radar antenna scan angle. A description of how recorded clutter return data are mixed with simulated weather returns is included. This enables the researcher to run controlled experiments to test signal processing algorithms. In the summary research efforts involving improved modelling of radar ground clutter returns and a Bayesian approach at hazard factor estimation are mentioned.

  1. Earth curvature and atmospheric refraction effects on radar signal propagation.

    SciTech Connect

    Doerry, Armin Walter

    2013-01-01

    The earth isn't flat, and radar beams don't travel straight. This becomes more noticeable as range increases, particularly at shallow depression/grazing angles. This report explores models for characterizing this behavior.

  2. Theoretical and experimental study of EKB radar ground-scatter signals at nearby frequencies

    NASA Astrophysics Data System (ADS)

    Kutelev, Konstantin; Berngardt, Oleg; Grkovich, Konstantin; Mikhailov, Nikita

    SuperDARN radars have wide possibilities for diagnostics of different motions in the ionosphere. The radars allow studying small-, medium- and large-scale irregularities. The radars have good time resolution (about 1 minute for full scan) and wide territory coverage (azimuthal coverage - 50 degrees, maximal range 3000 km). EKB radar is the first russian radar of SuperDARN kind, installed by ISTP SB RAS near Ekaterinburg. The radar started its operation in December 2012. Mostly SuperDARN radars are used to investigate irregular structure of the ionosphere. In the work we present original approach that allows diagnose regular ionosphere. The approach is based on sounding at three close frequencies and on analysis of ground-scattered signal properties. As theoretical analysis shows the use of three-frequency sounding technique allows one to estimate following characteristics of the model quasiparabolic F-layer in a middle point of path: its critical frequency, the height of its maximum and layer thickness. For this purpose we use known dependence of a minimal group path of signal on radar frequency. The key problem for the described technique is optimizing the frequency step between sounding signals. From the one side, the frequency step should be large enough. This is necessary for the difference in group delays be larger than radar range resolution (15-60km). From the other side, significant variation of frequency leads to a significant movement of path midpoint. This leads to signifficant errors in estimating ionospheric paramters due to theirs horizontal gradients. To solve this problem we perform a simulation of ground-scattered signal at EKB radar in different geophysical conditions. We use IRI-2007 as a model of the ionosphere. We simulate experiment at different levels of solar activity, in different seasons and daytime. By using geometrooptical ray tracing method we calculate a signal minimal group paths for a set of frequencies. According to these data we determine the minimal frequency step that provides difference between group pathes bigger than radar range resolution. Our study shows that for EKB radar the optimal frequency step is about 300kHz. The simulation results was used for scheduling EKB radar for several monthes at one of the channels. The results of processing this data are also presented in the work. Work was done under financial support of II.12.2.3. FSI program.

  3. Radar signal pre-processing to suppress surface bounce and multipath

    DOEpatents

    Paglieroni, David W; Mast, Jeffrey E; Beer, N. Reginald

    2013-12-31

    A method and system for detecting the presence of subsurface objects within a medium is provided. In some embodiments, the imaging and detection system operates in a multistatic mode to collect radar return signals generated by an array of transceiver antenna pairs that is positioned across the surface and that travels down the surface. The imaging and detection system pre-processes that return signal to suppress certain undesirable effects. The imaging and detection system then generates synthetic aperture radar images from real aperture radar images generated from the pre-processed return signal. The imaging and detection system then post-processes the synthetic aperture radar images to improve detection of subsurface objects. The imaging and detection system identifies peaks in the energy levels of the post-processed image frame, which indicates the presence of a subsurface object.

  4. A flexible implementation for Doppler radar to verify various base-band array signal processing algorithms

    NASA Astrophysics Data System (ADS)

    Yang, Eunjung; Lee, Jonghyun; Jung, Byungwook; Chun, Joohwan

    2005-09-01

    We describe a flexible hardware system of the Doppler radar which is designed to verify various baseband array signal processing algorithms. In this work we design the Doppler radar system simulator for baseband signal processing in laboratory level. Based on this baseband signal processor, a PN-code pulse doppler radar simulator is developed. More specifically, this simulator consists of an echo signal generation part and a signal processing part. For the echo signal generation part, we use active array structure with 4 elements, and adopt baker coded PCM signal in transmission and reception for digital pulse compression. In the signal processing part, we first transform RF radar pulse to the baseband signal because we use the basebands algorithms using IF sampling. Various digital beamforming algorithms can be adopted as a baseband algorithm in our simulator. We mainly use Multiple Sidelobe Canceller (MSC) with main array antenna elements and auxiliary antenna elements as beamforming and sidelobe canceller algorithm. For Doppler filtering algorithms, we use the FFT. A control set is necessary to control overall system and to manage the timing schedule for the operation.

  5. Generating nonlinear FM chirp radar signals by multiple integrations

    DOEpatents

    Doerry, Armin W.

    2011-02-01

    A phase component of a nonlinear frequency modulated (NLFM) chirp radar pulse can be produced by performing digital integration operations over a time interval defined by the pulse width. Each digital integration operation includes applying to a respectively corresponding input parameter value a respectively corresponding number of instances of digital integration.

  6. Design of an FMCW radar baseband signal processing system for automotive application.

    PubMed

    Lin, Jau-Jr; Li, Yuan-Ping; Hsu, Wei-Chiang; Lee, Ta-Sung

    2016-01-01

    For a typical FMCW automotive radar system, a new design of baseband signal processing architecture and algorithms is proposed to overcome the ghost targets and overlapping problems in the multi-target detection scenario. To satisfy the short measurement time constraint without increasing the RF front-end loading, a three-segment waveform with different slopes is utilized. By introducing a new pairing mechanism and a spatial filter design algorithm, the proposed detection architecture not only provides high accuracy and reliability, but also requires low pairing time and computational loading. This proposed baseband signal processing architecture and algorithms balance the performance and complexity, and are suitable to be implemented in a real automotive radar system. Field measurement results demonstrate that the proposed automotive radar signal processing system can perform well in a realistic application scenario. PMID:26811804

  7. Improved Reconstruction of Radio Holographic Signal for Forward Scatter Radar Imaging

    PubMed Central

    Hu, Cheng; Liu, Changjiang; Wang, Rui; Zeng, Tao

    2016-01-01

    Forward scatter radar (FSR), as a specially configured bistatic radar, is provided with the capabilities of target recognition and classification by the Shadow Inverse Synthetic Aperture Radar (SISAR) imaging technology. This paper mainly discusses the reconstruction of radio holographic signal (RHS), which is an important procedure in the signal processing of FSR SISAR imaging. Based on the analysis of signal characteristics, the method for RHS reconstruction is improved in two parts: the segmental Hilbert transformation and the reconstruction of mainlobe RHS. In addition, a quantitative analysis of the method’s applicability is presented by distinguishing between the near field and far field in forward scattering. Simulation results validated the method’s advantages in improving the accuracy of RHS reconstruction and imaging. PMID:27164114

  8. Improved Reconstruction of Radio Holographic Signal for Forward Scatter Radar Imaging.

    PubMed

    Hu, Cheng; Liu, Changjiang; Wang, Rui; Zeng, Tao

    2016-01-01

    Forward scatter radar (FSR), as a specially configured bistatic radar, is provided with the capabilities of target recognition and classification by the Shadow Inverse Synthetic Aperture Radar (SISAR) imaging technology. This paper mainly discusses the reconstruction of radio holographic signal (RHS), which is an important procedure in the signal processing of FSR SISAR imaging. Based on the analysis of signal characteristics, the method for RHS reconstruction is improved in two parts: the segmental Hilbert transformation and the reconstruction of mainlobe RHS. In addition, a quantitative analysis of the method's applicability is presented by distinguishing between the near field and far field in forward scattering. Simulation results validated the method's advantages in improving the accuracy of RHS reconstruction and imaging. PMID:27164114

  9. Quantitative estimation of Tropical Rainfall Mapping Mission precipitation radar signals from ground-based polarimetric radar observations

    NASA Astrophysics Data System (ADS)

    Bolen, Steven M.; Chandrasekar, V.

    2003-06-01

    The Tropical Rainfall Mapping Mission (TRMM) is the first mission dedicated to measuring rainfall from space using radar. The precipitation radar (PR) is one of several instruments aboard the TRMM satellite that is operating in a nearly circular orbit with nominal altitude of 350 km, inclination of 35°, and period of 91.5 min. The PR is a single-frequency Ku-band instrument that is designed to yield information about the vertical storm structure so as to gain insight into the intensity and distribution of rainfall. Attenuation effects on PR measurements, however, can be significant and as high as 10-15 dB. This can seriously impair the accuracy of rain rate retrieval algorithms derived from PR signal returns. Quantitative estimation of PR attenuation is made along the PR beam via ground-based polarimetric observations to validate attenuation correction procedures used by the PR. The reflectivity (Zh) at horizontal polarization and specific differential phase (Kdp) are found along the beam from S-band ground radar measurements, and theoretical modeling is used to determine the expected specific attenuation (k) along the space-Earth path at Ku-band frequency from these measurements. A theoretical k-Kdp relationship is determined for rain when Kdp ≥ 0.5°/km, and a power law relationship, k = a Zhb, is determined for light rain and other types of hydrometers encountered along the path. After alignment and resolution volume matching is made between ground and PR measurements, the two-way path-integrated attenuation (PIA) is calculated along the PR propagation path by integrating the specific attenuation along the path. The PR reflectivity derived after removing the PIA is also compared against ground radar observations.

  10. SHUTTLE IMAGING RADAR: PHYSICAL CONTROLS ON SIGNAL PENETRATION AND SUBSURFACE SCATTERING IN THE EASTERN SAHARA.

    USGS Publications Warehouse

    Schaber, Gerald G.; McCauley, John F.; Breed, Carol S.; Olhoeft, Gary R.

    1986-01-01

    It is found that the Shuttle Imaging Radar A (SIR-A) signal penetration and subsurface backscatter within the upper meter or so of the sediment blanket in the Eastern Sahara of southern Egypt and northern Sudan are enhanced both by radar sensor parameters and by the physical and chemical characteristics of eolian and alluvial materials. The near-surface stratigraphy, the electrical properties of materials, and the types of radar interfaces found to be responsible for different classes of SIR-A tonal response are summarized. The dominant factors related to efficient microwave signal penetration into the sediment blanket include 1) favorable distribution of particle sizes, 2) extremely low moisture content and 3) reduced geometric scattering at the SIR-A frequency (1. 3 GHz). The depth of signal penetration that results in a recorded backscatter, called radar imaging depth, was documented in the field to be a maximum of 1. 5 m, or 0. 25 times the calculated skin depth, for the sediment blanket. The radar imaging depth is estimated to be between 2 and 3 m for active sand dune materials.

  11. Squeezing the local oscillator does not improve signal-to-noise ratio in heterodyne laser radar.

    PubMed

    Rubin, Mark A; Kaushik, Sumanth

    2007-06-01

    The signal-to-noise ratio for heterodyne laser radar with a coherent target-return beam and a squeezed local-oscillator beam is lower than that obtained using a coherent local oscillator, regardless of the method employed to combine the beams at the detector. PMID:17546124

  12. Optimization of the interperiod processing of signals with clutter rejection in an incoherent radar system

    NASA Astrophysics Data System (ADS)

    Kiselev, A. Z.

    1981-12-01

    An energy criterion was used to optimize an algorithm for clutter rejection in an incoherent radar system. Explicit formulas are obtained for the weight vector and the efficiency of the algorithm, and attention is given to the conditions under which these formulas can be applied to signal processing in the postdetector channel.

  13. Wideband signal design for over-the-horizon radar in cochannel interference

    NASA Astrophysics Data System (ADS)

    Luo, Zhongtao; Lu, Kun; Chen, Xuyuan; He, Zishu

    2014-12-01

    Ship detection in heavy sea clutter is a big challenge for over-the-horizon (OTH) radar. Wideband signal is helpful for improving range resolution and the signal-to-clutter ratio. In this paper, to support OTH radar employing wideband in cochannel interference, we propose environmental sensing-based waveform (ESBW) strategy, by considering transmit waveform design as an active approach and cognitive loop for the time-varying environment. In ESBW strategy, OTH radar monitors the environment in real time, estimates interference characteristics, designs transmit waveform adaptively, and employs traditional signal processing structure to detect targets in the presence of interference. ESBW optimization problem employs the criteria of maximizing the output signal-to-interference-plus-noise ratio (SINR) of matched filter and similarity constraint for reasonable range resolution and sidelobe levels. The analytic solution to this constrained problem is developed, so that ESBW design algorithm's efficiency is guaranteed, with adjustable SINR and autocorrelation function. A simulated scenario with strong interference and colored noise has been introduced. Simulation results demonstrate that OTH radar with ESBW strategy detects the target successfully in the background of cochannel interference.

  14. Measured signal amplitude distributions for a coherent FM-cw CO2 laser radar.

    PubMed

    Letalick, D; Renhorn, I; Steinvall, O

    1986-11-01

    Measurements of signal amplitude distributions with a FM-cw CO2 laser radar have been made against various targets in both imaging and staring modes. Data show good agreement with theoretical distributions. From the measurements conclusions are drawn about the atmospheric- as well as target-induced effects. Beam wandering effects are shown to be of importance in the staring mode. PMID:18235723

  15. Analysis of wavelet-based denoising techniques as applied to a radar signal pulse

    NASA Astrophysics Data System (ADS)

    Steinbrunner, Lori A.; Scarpino, Frank F.

    1999-09-01

    The purpose of the research is to study the effects of three wavelet-based denoising techniques on the structure of a radar signal pulse. The radar signal pulse is 50 microsecond(s) ec in duration with 2.0 MHz of Linear Frequency Modulation on Pulse. The Signal-to-Noise Ratio of the signal is fixed at 0.7. The comparison is accomplished in the time-domain and the FFT domain. In addition, the output from a FM Demodulator is examined. The comparisons are performed based upon MSE calculations and a visual inspection of the resulting signals. A comparison between the results outlined above and an ideal bandpass filter is also performed. A final comparison is discussed which compares the wavelet- based results outlined above and the results obtained from a bandpass filter that are offset in center frequency. The wavelet-based techniques can be shown to provide an advantage in visually detecting the radar signal pulse in low SNR environments over the results obtained from a bandpass filter approach in which the ideal filter characteristics are not known. All work is accomplished in MATLABTM.

  16. Photonic generation and independent steering of multiple RF signals for software defined radars.

    PubMed

    Ghelfi, Paolo; Laghezza, Francesco; Scotti, Filippo; Serafino, Giovanni; Pinna, Sergio; Bogoni, Antonella

    2013-09-23

    As the improvement of radar systems claims for digital approaches, photonics is becoming a solution for software defined high frequency and high stability signal generation. We report on our recent activities on the photonic generation of flexible wideband RF signals, extending the proposed architecture to the independent optical beamforming of multiple signals. The scheme has been tested generating two wideband signals at 10 GHz and 40 GHz, and controlling their independent delays at two antenna elements. Thanks to the multiple functionalities, the proposed scheme allows to improve the effectiveness of the photonic approach, reducing its cost and allowing flexibility, extremely wide bandwidth, and high stability. PMID:24104176

  17. An overview of data acquisition, signal coding and data analysis techniques for MST radars

    NASA Technical Reports Server (NTRS)

    Rastogi, P. K.

    1986-01-01

    An overview is given of the data acquisition, signal processing, and data analysis techniques that are currently in use with high power MST/ST (mesosphere stratosphere troposphere/stratosphere troposphere) radars. This review supplements the works of Rastogi (1983) and Farley (1984) presented at previous MAP workshops. A general description is given of data acquisition and signal processing operations and they are characterized on the basis of their disparate time scales. Then signal coding, a brief description of frequently used codes, and their limitations are discussed, and finally, several aspects of statistical data processing such as signal statistics, power spectrum and autocovariance analysis, outlier removal techniques are discussed.

  18. Development of a real time bistatic radar receiver using signals of opportunity

    NASA Astrophysics Data System (ADS)

    Rainville, Nicholas

    Passive bistatic radar remote sensing offers a novel method of monitoring the Earth's surface by observing reflected signals of opportunity. The Global Positioning System (GPS) has been used as a source of signals for these observations and the scattering properties of GPS signals from rough surfaces are well understood. Recent work has extended GPS signal reflection observations and scattering models to include communications signals such as XM radio signals. However the communication signal reflectometry experiments to date have relied on collecting raw, high data-rate signals which are then post-processed after the end of the experiment. This thesis describes the development of a communication signal bistatic radar receiver which computes a real time correlation waveform, which can be used to retrieve measurements of the Earth's surface. The real time bistatic receiver greatly reduces the quantity of data that must be stored to perform the remote sensing measurements, as well as offering immediate feedback. This expands the applications for the receiver to include space and bandwidth limited platforms such as aircraft and satellites. It also makes possible the adjustment of flight plans to the observed conditions. This real time receiver required the development of an FGPA based signal processor, along with the integration of commercial Satellite Digital Audio Radio System (SDARS) components. The resulting device was tested both in a lab environment as well on NOAA WP-3D and NASA WB-57 aircraft.

  19. Fall detection and classifications based on time-scale radar signal characteristics

    NASA Astrophysics Data System (ADS)

    Gadde, Ajay; Amin, Moeness G.; Zhang, Yimin D.; Ahmad, Fauzia

    2014-05-01

    Unattended catastrophic falls result in risk to the lives of elderly. There are growing efforts and rising interest in detecting falls of the aging population, especially those living alone. Radar serves as an effective non-intrusive sensor for detecting human activities. For radar to be effective, it is important to achieve low false alarms, i.e., the system can reliably differentiate between a fall and other human activities. In this paper, we discuss the time-scale based signal analysis of the radar returns from a human target. Reliable features are extracted from the scalogram and are used for fall classifications. The classification results and the advantages of using a wavelet transform are discussed.

  20. Emitter frequency refinement based on maximum likelihood

    NASA Astrophysics Data System (ADS)

    Xu, Xin; Wang, Huijuan

    2015-07-01

    Frequency estimation via signal sorting is widely recognized as one of the most practical technologies in signal processing. However, the estimated frequencies via signal sorting may be inaccurate and biased due to signal fluctuation under different emitter working modes, problems of transmitter circuit, environmental noises or certain unknown interference sources. Therefore, it has become an important issue to further analyze and refine signal frequencies after signal sorting. To address the above problem, we have brought forward an iterative frequency refinement method based on maximum likelihood. Iteratively, the initial estimated signal frequency values are refined. Experimental results indicate that the refined signal frequencies are more informative than the initial ones. As another advantage of our method, noises and interference sources could be filtered out simultaneously. The efficiency and flexibility enables our method to apply in a wide application area, i.e., communication, electronic reconnaissance and radar intelligence analysis.

  1. Applications of acousto-optical correlation devices in radar signal processing

    NASA Astrophysics Data System (ADS)

    Xu, Jieping; Yu, Kuanxin

    1989-09-01

    The actual efficiency of acousto-optical correlation devices in radar signal processing was investigated experimentally. As far as centimeter wave band (3GHz) single carrier frequency square pulse radar signals and unmodulated random wave interference is concerned, it measured different pulse widths, different signal-to-noise ratios and, for these periods of time, the height of correlation peaks as well as the size of the correlation gain when there were different pulse widths. When the pulse width was 2.5 micro s, the correlation gain was 30dB. When the pulse width was 0.5 micro s, the correlation gain was 23dB. As far as the correlation peaks of acousto-optical correlation device outputs are concerned, they were all several score mV or higher. It was not necessary to go through any amplification. Rather, it was possible to make use of an oscillascope to directly carry out observations and measurements.

  2. Synthetic aperture radar signal data compression using block adaptive quantization

    NASA Technical Reports Server (NTRS)

    Kuduvalli, Gopinath; Dutkiewicz, Melanie; Cumming, Ian

    1994-01-01

    This paper describes the design and testing of an on-board SAR signal data compression algorithm for ESA's ENVISAT satellite. The Block Adaptive Quantization (BAQ) algorithm was selected, and optimized for the various operational modes of the ASAR instrument. A flexible BAQ scheme was developed which allows a selection of compression ratio/image quality trade-offs. Test results show the high quality of the SAR images processed from the reconstructed signal data, and the feasibility of on-board implementation using a single ASIC.

  3. Model-Based Information Extraction From Synthetic Aperture Radar Signals

    NASA Astrophysics Data System (ADS)

    Matzner, Shari A.

    2011-07-01

    Synthetic aperture radar (SAR) is a remote sensing technology for imaging areas of the earth's surface. SAR has been successfully used for monitoring characteristics of the natural environment such as land cover type and tree density. With the advent of higher resolution sensors, it is now theoretically possible to extract information about individual structures such as buildings from SAR imagery. This information could be used for disaster response and security-related intelligence. SAR has an advantage over other remote sensing technologies for these applications because SAR data can be collected during the night and in rainy or cloudy conditions. This research presents a model-based method for extracting information about a building -- its height and roof slope -- from a single SAR image. Other methods require multiple images or ancillary data from specialized sensors, making them less practical. The model-based method uses simulation to match a hypothesized building to an observed SAR image. The degree to which a simulation matches the observed data is measured by mutual information. The success of this method depends on the accuracy of the simulation and on the reliability of the mutual information similarity measure. Electromagnetic theory was applied to relate a building's physical characteristics to the features present in a SAR image. This understanding was used to quantify the precision of building information contained in SAR data, and to identify the inputs needed for accurate simulation. A new SAR simulation technique was developed to meet the accuracy and efficiency requirements of model-based information extraction. Mutual information, a concept from information theory, has become a standard for measuring the similarity between medical images. Its performance in the context of matching a simulation image to a SAR image was evaluated in this research, and it was found to perform well under certain conditions. The factors that affect its performance, and the model-based method overall, were found to include the size of the building and its orientation. Further refinements that expand the range of operational conditions for the method would lead to a practical tool for collecting information about buildings using SAR technology. This research was performed using SAR data from MIT-Lincoln Laboratory.

  4. A digital signal processing system for coherent laser radar

    NASA Technical Reports Server (NTRS)

    Hampton, Diana M.; Jones, William D.; Rothermel, Jeffry

    1991-01-01

    A data processing system for use with continuous-wave lidar is described in terms of its configuration and performance during the second survey mission of NASA'a Global Backscatter Experiment. The system is designed to estimate a complete lidar spectrum in real time, record the data from two lidars, and monitor variables related to the lidar operating environment. The PC-based system includes a transient capture board, a digital-signal processing (DSP) board, and a low-speed data-acquisition board. Both unprocessed and processed lidar spectrum data are monitored in real time, and the results are compared to those of a previous non-DSP-based system. Because the DSP-based system is digital it is slower than the surface-acoustic-wave signal processor and collects 2500 spectra/s. However, the DSP-based system provides complete data sets at two wavelengths from the continuous-wave lidars.

  5. Shuttle Imaging Radar - Physical controls on signal penetration and subsurface scattering in the Eastern Sahara

    NASA Technical Reports Server (NTRS)

    Schaber, G. G.; Mccauley, J. F.; Breed, C. S.; Olhoeft, G. R.

    1986-01-01

    Interpretation of Shuttle Imaging Radar-A (SIR-A) images by McCauley et al. (1982) dramatically changed previous concepts of the role that fluvial processes have played over the past 10,000 to 30 million years in shaping this now extremely flat, featureless, and hyperarid landscape. In the present paper, the near-surface stratigraphy, the electrical properties of materials, and the types of radar interfaces found to be responsible for different classes of SIR-A tonal response are summarized. The dominant factors related to efficient microwave signal penetration into the sediment blanket include (1) favorable distribution of particle sizes, (2) extremely low moisture content and (3) reduced geometric scattering at the SIR-A frequency (1.3 GHz). The depth of signal penetration that results in a recorded backscatter, here called 'radar imaging depth', was documented in the field to be a maximum of 1.5 m, or 0.25 of the calculated 'skin depth', for the sediment blanket. Radar imaging depth is estimated to be between 2 and 3 m for active sand dune materials. Diverse permittivity interfaces and volume scatterers within the shallow subsurface are responsible for most of the observed backscatter not directly attributable to grazing outcrops. Calcium carbonate nodules and rhizoliths concentrated in sandy alluvium of Pleistocene age south of Safsaf oasis in south Egypt provide effective contrast in premittivity and thus act as volume scatterers that enhance SIR-A portrayal of younger inset stream channels.

  6. Cramer-Rao Bound for Gaussian Random Processes and Applications to Radar Processing of Atmospheric Signals

    NASA Technical Reports Server (NTRS)

    Frehlich, Rod

    1993-01-01

    Calculations of the exact Cramer-Rao Bound (CRB) for unbiased estimates of the mean frequency, signal power, and spectral width of Doppler radar/lidar signals (a Gaussian random process) are presented. Approximate CRB's are derived using the Discrete Fourier Transform (DFT). These approximate results are equal to the exact CRB when the DFT coefficients are mutually uncorrelated. Previous high SNR limits for CRB's are shown to be inaccurate because the discrete summations cannot be approximated with integration. The performance of an approximate maximum likelihood estimator for mean frequency approaches the exact CRB for moderate signal to noise ratio and moderate spectral width.

  7. Time-Frequency Distribution Analyses of Ku-Band Radar Doppler Echo Signals

    NASA Astrophysics Data System (ADS)

    Bujaković, Dimitrije; Andrić, Milenko; Bondžulić, Boban; Mitrović, Srđan; Simić, Slobodan

    2015-03-01

    Real radar echo signals of a pedestrian, vehicle and group of helicopters are analyzed in order to maximize signal energy around central Doppler frequency in time-frequency plane. An optimization, preserving this concentration, is suggested based on three well-known concentration measures. Various window functions and time-frequency distributions were optimization inputs. Conducted experiments on an analytic and three real signals have shown that energy concentration significantly depends on used time-frequency distribution and window function, for all three used criteria.

  8. Linear photonic technique for fixed and time varying RF phase shifts of radar signals.

    PubMed

    Attygalle, Manik; Stepanov, Dmitrii

    2012-07-30

    A simple linear photonic technique is proposed to achieve fixed or time varying radio-frequency (RF) phase shifts which can be used in applications such as radar signal manipulation. The technique is based on fixing or tuning the wavelength of an RF modulated optical signal within the reflection band of a fiber Bragg grating (FBG) filter with a step group delay profile. The scheme is verified in a realistic simulation to achieve a Doppler shift in a pulsed CW signal return. PMID:23038350

  9. Adaptive Radar Detection of a Subspace Signal Embedded in Subspace Structured Plus Gaussian Interference Via Invariance

    NASA Astrophysics Data System (ADS)

    De Maio, Antonio; Orlando, Danilo

    2016-04-01

    This paper deals with adaptive radar detection of a subspace signal competing with two sources of interference. The former is Gaussian with unknown covariance matrix and accounts for the joint presence of clutter plus thermal noise. The latter is structured as a subspace signal and models coherent pulsed jammers impinging on the radar antenna. The problem is solved via the Principle of Invariance which is based on the identification of a suitable group of transformations leaving the considered hypothesis testing problem invariant. A maximal invariant statistic, which completely characterizes the class of invariant decision rules and significantly compresses the original data domain, as well as its statistical characterization are determined. Thus, the existence of the optimum invariant detector is addressed together with the design of practically implementable invariant decision rules. At the analysis stage, the performance of some receivers belonging to the new invariant class is established through the use of analytic expressions.

  10. Work flow of signal processing data of ground penetrating radar case of rigid pavement measurements

    SciTech Connect

    Handayani, Gunawan

    2015-04-16

    The signal processing of Ground Penetrating Radar (GPR) requires a certain work flow to obtain good results. Even though the Ground Penetrating Radar data looks similar with seismic reflection data, but the GPR data has particular signatures that the seismic reflection data does not have. This is something to do with coupling between antennae and the ground surface. Because of this, the GPR data should be treated differently from the seismic signal data processing work flow. Even though most of the processing steps still follow the same work flow of seismic reflection data such as: filtering, predictive deconvolution etc. This paper presents the work flow of GPR processing data on rigid pavement measurements. The processing steps start from raw data, de-Wow process, remove DC and continue with the standard process to get rid of noises i.e. filtering process. Some radargram particular features of rigid pavement along with pile foundations are presented.

  11. Work flow of signal processing data of ground penetrating radar case of rigid pavement measurements

    NASA Astrophysics Data System (ADS)

    Handayani, Gunawan

    2015-04-01

    The signal processing of Ground Penetrating Radar (GPR) requires a certain work flow to obtain good results. Even though the Ground Penetrating Radar data looks similar with seismic reflection data, but the GPR data has particular signatures that the seismic reflection data does not have. This is something to do with coupling between antennae and the ground surface. Because of this, the GPR data should be treated differently from the seismic signal data processing work flow. Even though most of the processing steps still follow the same work flow of seismic reflection data such as: filtering, predictive deconvolution etc. This paper presents the work flow of GPR processing data on rigid pavement measurements. The processing steps start from raw data, de-Wow process, remove DC and continue with the standard process to get rid of noises i.e. filtering process. Some radargram particular features of rigid pavement along with pile foundations are presented.

  12. Radar signal analysis of ballistic missile with micro-motion based on time-frequency distribution

    NASA Astrophysics Data System (ADS)

    Wang, Jianming; Liu, Lihua; Yu, Hua

    2015-12-01

    The micro-motion of ballistic missile targets induces micro-Doppler modulation on the radar return signal, which is a unique feature for the warhead discrimination during flight. In order to extract the micro-Doppler feature of ballistic missile targets, time-frequency analysis is employed to process the micro-Doppler modulated time-varying radar signal. The images of time-frequency distribution (TFD) reveal the micro-Doppler modulation characteristic very well. However, there are many existing time-frequency analysis methods to generate the time-frequency distribution images, including the short-time Fourier transform (STFT), Wigner distribution (WD) and Cohen class distribution, etc. Under the background of ballistic missile defence, the paper aims at working out an effective time-frequency analysis method for ballistic missile warhead discrimination from the decoys.

  13. Simulation and signal processing of through wall UWB radar for human being's periodic motions detection

    NASA Astrophysics Data System (ADS)

    Li, Jing; Liu, Fengshan; Xu, Penglong; Zeng, Zhaofa

    2013-05-01

    The human's Micro-Doppler signatures resulting from breathing, arm, foot and other periodic motion can provide valuable information about the structure of the moving parts and may be used for identification and classification purposes. In this paper, we carry out simulate with FDTD method and through wall experiment with UWB radar for human being's periodic motion detection. In addition, Advancements signal processing methods are presented to classify and to extract the human's periodic motion characteristic information, such as Micro-Doppler shift and motion frequency. Firstly, we apply the Principal Component Analysis (PCA) with singular value decomposition (SVD) to denoise and extract the human motion signal. Then, we present the results base on the Hilbert-Huang transform (HHT) and the S transform to classify and to identify the human's micro-Doppler shift characteristics. The results demonstrate that the combination of UWB radar and various processing methods has potential to detect human's Doppler signatures effectively.

  14. Comparative of signal processing techniques for micro-Doppler signature extraction with automotive radar systems

    NASA Astrophysics Data System (ADS)

    Rodriguez-Hervas, Berta; Maile, Michael; Flores, Benjamin C.

    2014-05-01

    In recent years, the automotive industry has experienced an evolution toward more powerful driver assistance systems that provide enhanced vehicle safety. These systems typically operate in the optical and microwave regions of the electromagnetic spectrum and have demonstrated high efficiency in collision and risk avoidance. Microwave radar systems are particularly relevant due to their operational robustness under adverse weather or illumination conditions. Our objective is to study different signal processing techniques suitable for extraction of accurate micro-Doppler signatures of slow moving objects in dense urban environments. Selection of the appropriate signal processing technique is crucial for the extraction of accurate micro-Doppler signatures that will lead to better results in a radar classifier system. For this purpose, we perform simulations of typical radar detection responses in common driving situations and conduct the analysis with several signal processing algorithms, including short time Fourier Transform, continuous wavelet or Kernel based analysis methods. We take into account factors such as the relative movement between the host vehicle and the target, and the non-stationary nature of the target's movement. A comparison of results reveals that short time Fourier Transform would be the best approach for detection and tracking purposes, while the continuous wavelet would be the best suited for classification purposes.

  15. Testbed for development of a DSP-based signal processing subsystem for an Earth-orbiting radar scatterometer

    NASA Technical Reports Server (NTRS)

    Clark, Douglas J.; Lux, James P.; Shirbacheh, Mike

    2002-01-01

    A testbed for evaluation of general-purpose digital signal processors in earth-orbiting radar scatterometers is discussed. Because general purpose DSP represents a departure from previous radar signal processing techniques used on scatterometers, there was a need to demonstrate key elements of the system to verify feasibility for potential future scatterometer instruments. Construction of the testbed also facilitated identification of an appropriate software development environment and the skills mix necessary to perform the work.

  16. Synthetic-aperture imaging laser radar: laboratory demonstration and signal processing.

    PubMed

    Beck, Steven M; Buck, Joseph R; Buell, Walter F; Dickinson, Richard P; Kozlowski, David A; Marechal, Nicholas J; Wright, Timothy J

    2005-12-10

    The spatial resolution of a conventional imaging laser radar system is constrained by the diffraction limit of the telescope's aperture. We investigate a technique known as synthetic-aperture imaging laser radar (SAIL), which employs aperture synthesis with coherent laser radar to overcome the diffraction limit and achieve fine-resolution, long-range, two-dimensional imaging with modest aperture diameters. We detail our laboratory-scale SAIL testbed, digital signal-processing techniques, and image results. In particular, we report what we believe to be the first optical synthetic-aperture image of a fixed, diffusely scattering target with a moving aperture. A number of fine-resolution, well-focused SAIL images are shown, including both retroreflecting and diffuse scattering targets, with a comparison of resolution between real-aperture imaging and synthetic-aperture imaging. A general digital signal-processing solution to the laser waveform instability problem is described and demonstrated, involving both new algorithms and hardware elements. These algorithms are primarily data driven, without a priori knowledge of waveform and sensor position, representing a crucial step in developing a robust imaging system. PMID:16363787

  17. Quantifying the accuracy of snow water equivalent estimates using broadband radar signal phase

    NASA Astrophysics Data System (ADS)

    Deeb, E. J.; Marshall, H. P.; Lamie, N. J.; Arcone, S. A.

    2014-12-01

    Radar wave velocity in dry snow depends solely on density. Consequently, ground-based pulsed systems can be used to accurately measure snow depth and snow water equivalent (SWE) using signal travel-time, along with manual depth-probing for signal velocity calibration. Travel-time measurements require a large bandwidth pulse not possible in airborne/space-borne platforms. In addition, radar backscatter from snow cover is sensitive to grain size and to a lesser extent roughness of layers at current/proposed satellite-based frequencies (~ 8 - 18 GHz), complicating inversion for SWE. Therefore, accurate retrievals of SWE still require local calibration due to this sensitivity to microstructure and layering. Conversely, satellite radar interferometry, which senses the difference in signal phase between acquisitions, has shown a potential relationship with SWE at lower frequencies (~ 1 - 5 GHz) because the phase of the snow-refracted signal is sensitive to depth and dielectric properties of the snowpack, as opposed to its microstructure and stratigraphy. We have constructed a lab-based, experimental test bed to quantify the change in radar phase over a wide range of frequencies for varying depths of dry quartz sand, a material dielectrically similar to dry snow. We use a laboratory grade Vector Network Analyzer (0.01 - 25.6 GHz) and a pair of antennae mounted on a trolley over the test bed to measure amplitude and phase repeatedly/accurately at many frequencies. Using ground-based LiDAR instrumentation, we collect a coordinated high-resolution digital surface model (DSM) of the test bed and subsequent depth surfaces with which to compare the radar record of changes in phase. Our plans to transition this methodology to a field deployment during winter 2014-2015 using precision pan/tilt instrumentation will also be presented, as well as applications to airborne and space-borne platforms toward the estimation of SWE at high spatial resolution (on the order of meters) over large regions (> 100 square kilometers).

  18. A new technique for reducing radar response to signals entering antenna sidelobes

    NASA Astrophysics Data System (ADS)

    Lewis, B. L.; Evins, J. B.

    1983-11-01

    A new technique for suppressing undesired echoes that enter the sidelobes of a radar antenna on receive is described and evaluated. The technique involves moving the phase center of a phase array antenna in the plane of the aperture to Doppler shift signals radiated and received on the antenna sidelobes out of the passband of the radar receiver. The phase center motion is achieved by illuminating only part of an available phased array aperture and moving the illuminated part across the aperture while the antenna is transmitting. The technique can be implemented by switches in the feed lines of the antenna elements. The far field response of the antenna in phase and amplitude is calculated using a computer simulation.

  19. Digital signal processing and numerical analysis for radar in geophysical applications

    NASA Astrophysics Data System (ADS)

    Molina, María G.; Cabrera, M. A.; Ezquer, R. G.; Fernandez, P. M.; Zuccheretti, E.

    2013-05-01

    Numerical solutions for signal processing are described in this work as a contribution to study of echo detection methods for ionospheric sounder design. The ionospheric sounder is a high frequency radar for geophysical applications. The main detection approach has been done by implementing the spread-spectrum techniques using coding methods to improve the radar's range resolution by transmitting low power. Digital signal processing has been performed and the numerical methods were checked. An algorithm was proposed and its computational complexity was calculated.The proposed detection process combines two channels correlations with the local code and calculates threshold (Vt) by statistical evaluation of the background noise to design a detection algorithm. The noisy signals treatment was performed depending on the threshold and echo amplitude. In each case, the detection was improved by using coherent integration. Synthetic signals, close loop and actual echoes, obtained from the Advanced Ionospheric Sounder (AIS-INGV) at Rome Ionospheric Observatory, were used to verify the process.The results showed that, even in highly noisy environments, the echo detection is possible.Given that these are preliminary results, further studies considering data sets corresponding to other geophysical conditions are needed.

  20. The application of digital signal processing techniques to a teleoperator radar system

    NASA Technical Reports Server (NTRS)

    Pujol, A.

    1982-01-01

    A digital signal processing system was studied for the determination of the spectral frequency distribution of echo signals from a teleoperator radar system. The system consisted of a sample and hold circuit, an analog to digital converter, a digital filter, and a Fast Fourier Transform. The system is interfaced to a 16 bit microprocessor. The microprocessor is programmed to control the complete digital signal processing. The digital filtering and Fast Fourier Transform functions are implemented by a S2815 digital filter/utility peripheral chip and a S2814A Fast Fourier Transform chip. The S2815 initially simulates a low-pass Butterworth filter with later expansion to complete filter circuit (bandpass and highpass) synthesizing.

  1. Signal-to-noise-ratio equations for a heterodyne laser radar.

    PubMed

    Dimarzio, C A; Lindberg, S C

    1992-07-20

    We analyze the signal-to-noise-ratio equations for a heterodyne laser radar with identical transmit and receive optics. We defines the beam-profile efficiency, a quantity that must be maximized to optimize a system design. This calculation can be used to evaluate a system in both near and far fields for focused and nonfocused systems. The beam-profile efficiency can be evaluated in many ways, and we describe one possible solution. Using this solution, we present the results of an actual system evaluation. PMID:20725408

  2. Signal-to-noise ratio in squeezed-light laser radar.

    PubMed

    Rubin, Mark A; Kaushik, Sumanth

    2009-08-10

    The formalism for computing the signal-to-noise ratio (SNR) for laser radar is reviewed and applied to the tasks of target detection, direction finding, and phase-change estimation with squeezed light. The SNR for heterodyne detection of coherent light using a squeezed local oscillator is lower than that obtained using a coherent local oscillator. This is true for target detection, for phase estimation, and for direction finding with a split detector. Squeezing the local oscillator also lowers SNR in balanced homodyne and heterodyne detection of coherent light. Loss places an upper bound on the improvement that squeezing can bring to direct-detection SNR. PMID:19668274

  3. Cross-correlation of the cosmic 21-cm signal and Lyman alpha emitters during reionization

    NASA Astrophysics Data System (ADS)

    Sobacchi, Emanuele; Mesinger, Andrei; Greig, Bradley

    2016-04-01

    Interferometry of the cosmic 21-cm signal is set to revolutionize our understanding of the Epoch of Reionization (EoR), eventually providing 3D maps of the early Universe. Initial detections however will be low signal-to-noise, limited by systematics. To confirm a putative 21-cm detection, and check the accuracy of 21-cm data analysis pipelines, it would be very useful to cross-correlate against a genuine cosmological signal. The most promising cosmological signals are wide-field maps of Lyman alpha emitting galaxies (LAEs), expected from the Subaru Hyper-Suprime Cam (HSC) Ultra-Deep field. Here we present estimates of the correlation between LAE maps at z ˜ 7 and the 21-cm signal observed by both the Low Frequency Array (LOFAR) and the planned Square Kilometer Array Phase 1 (SKA1). We adopt a systematic approach, varying both: (i) the prescription of assigning LAEs to host halos; and (ii) the large-scale structure of neutral and ionized regions (i.e. EoR morphology). We find that the LAE-21cm cross-correlation is insensitive to (i), thus making it a robust probe of the EoR. A 1000 h observation with LOFAR would be sufficient to discriminate at ≳ 1 σ a fully ionized Universe from one with a mean neutral fraction of bar{x}_HI≈ 0.50, using the LAE-21cm cross-correlation function on scales of R ≈3-10 Mpc. Unlike LOFAR, whose detection of the LAE-21cm cross-correlation is limited by noise, SKA1 is mostly limited by ignorance of the EoR morphology. However, the planned 100 h wide-field SKA1-Low survey will be sufficient to discriminate an ionized Universe from one with bar{x}_HI=0.25, even with maximally pessimistic assumptions.

  4. Prediction of attenuation of the 28 GHz COMSTAR beacon signal using radar and measured rain drop spectra

    NASA Technical Reports Server (NTRS)

    Goldhirsh, J.

    1977-01-01

    Disdrometer measurements and radar reflectivity measurements were injected into a computer program to estimate the path attenuation of the signal. Predicted attenuations when compared with the directly measured ones showed generally good correlation on a case by case basis and very good agreement statistically. The utility of using radar in conjunction with disdrometer measurements for predicting fade events and long term fade distributions associated with earth-satellite telecommunications is demonstrated.

  5. Impact of signal model on data compression for TDOA/FDOA emitter location

    NASA Astrophysics Data System (ADS)

    Fowler, Mark L.; Hu, Xi

    2008-08-01

    Early work in source location using time-difference-of-arrival/frequency-difference-of-arrival (TDOA/FDOA) focused on locating acoustic sources while later work focused on locating electromagnetic sources. The key difference is the signal model assumptions: WSS Gaussian process is widely used in the acoustic case but is not appropriate in the electromagnetic case. The Fisher information (FI) is fundamentally different for the two scenarios and leads to different distortion metrics for data compression algorithms that seek to maximize the FI for a given data rate. We discuss the philosophical impacts of this relevant to the following question: having collected a single set of data and wanting to do the best "job" for that data, should it matter if the data is viewed as coming from a WSS random process? This work shows that one must be careful when using a random signal model. If one takes the operational rate-distortion view, the goal of compression is to adapt the algorithm to the specific data observed. This is a modern view that contrasts with classical rate-distortion where the distortion measure includes an averaging over the ensemble. We assert that for the operational rate-distortion approach with FI as distortion measure, one should not use a random signal model.

  6. On-Board Fiber-Optic Network Architectures for Radar and Avionics Signal Distribution

    NASA Technical Reports Server (NTRS)

    Alam, Mohammad F.; Atiquzzaman, Mohammed; Duncan, Bradley B.; Nguyen, Hung; Kunath, Richard

    2000-01-01

    Continued progress in both civil and military avionics applications is overstressing the capabilities of existing radio-frequency (RF) communication networks based on coaxial cables on board modem aircrafts. Future avionics systems will require high-bandwidth on- board communication links that are lightweight, immune to electromagnetic interference, and highly reliable. Fiber optic communication technology can meet all these challenges in a cost-effective manner. Recently, digital fiber-optic communication systems, where a fiber-optic network acts like a local area network (LAN) for digital data communications, have become a topic of extensive research and development. Although a fiber-optic system can be designed to transport radio-frequency (RF) signals, the digital fiber-optic systems under development today are not capable of transporting microwave and millimeter-wave RF signals used in radar and avionics systems on board an aircraft. Recent advances in fiber optic technology, especially wavelength division multiplexing (WDM), has opened a number of possibilities for designing on-board fiber optic networks, including all-optical networks for radar and avionics RF signal distribution. In this paper, we investigate a number of different novel approaches for fiber-optic transmission of on-board VHF and UHF RF signals using commercial off-the-shelf (COTS) components. The relative merits and demerits of each architecture are discussed, and the suitability of each architecture for particular applications is pointed out. All-optical approaches show better performance than other traditional approaches in terms of signal-to-noise ratio, power consumption, and weight requirements.

  7. Radar beam effects for a flight simulator using signal processor based hardware

    NASA Astrophysics Data System (ADS)

    Nemer, E. J.; Bridegeman, R. C.; Malowany, A. S.

    The design of a signal processor based system to simulate the beam-forming effects of airborne radars is presented. The problem is first formulated as a digital filtering operation with the filter response derived from the power distribution function of the radiating antenna. To lighten the computational load required for real-time simulation, an efficient finite impulse response (FIR) filter implementation proposed by Chu and Burrus (1984) is used. The algorithm, a unique implementation of FIR filters, is based on a polynomial approximation of the filter's response and results in significant reduction in the number of operations. In spite of this optimization, very high arithmetic throughput is still needed for real-time simulation. To design a system with the required capability, a high performance signal processor, the TMS320C30, was selected. The system also includes a data channel controller, an arbitration logic, fast memory elements, and a parallel interface to the host computer. The architecture is made modular, allowing many similar units to be teamed up and provide virtually unlimited computing power. The system is programmable and can simulate a variety of radar systems of different characteristics.

  8. Polarimetric Radar Observations of Arctic Clouds: Signal Processing and First Results from the may 2013 Iop

    NASA Astrophysics Data System (ADS)

    Galletti, M.; Oue, M.; Verlinde, J.

    2013-12-01

    The ARM Climate Research Facility site at the North Slope of Alaska in Barrow provides polarimetric radar observations of Arctic clouds at X, Ka and W bands. During the May 2013 Scanning radar Intensive Observation Period, raw I and Q data were acquired with the X-SAPR and the Ka-W SACR for the purpose of validating existing, and testing new signal processing procedures specifically tailored for Arctic observations. The raw I and Q datasets were collected on May 3rd 2013 for the case of low-level boundary layer mixed-phase arctic clouds and on May 6th 2013 for the case of a synoptic low moving in from the west. http://www.arm.gov/campaigns/nsa2013nsasr The present paper describes the impact of signal processing procedures on the data, and establishes dual-polarization radar as a valuable tool for the microphysical characterization of ice clouds. In particular, the X-SAPR operates at STSR mode, making available differential reflectivity ZDR, copolar correlation coefficient ρhv, specific differential phase KDP and Degree of Polarization at Simultaneous Transmit DOPS. Low-level boundary layer mixed-phase Arctic clouds are characterized by layers of supercooled liquid water aloft, which present a stark polarimetric contrast with respect to the associated ice precipitation fallout. The ice particles falling from boundary layer Arctic clouds on May 2nd, 3rd and 4th 2013 (winds were very weak or absent) showed the remarkable property of being composed exclusively by large dendrites - fern-like, stellars, twelve-branched - indicating deposition as the main accretion mechanism. http://www.flickr.com/photos/michele_galletti/sets/72157633422079814/ Boundary Layer mixed-phase Arctic clouds provide an exceptional natural laboratory for the exploration of polarimetric signatures in presence of dendritic ice particles. The first-ever X-band analysis of differential reflectivity ZDR of mixed-phase Arctic clouds is presented in [1]. For the May 6th case, ice particle populations associated with frontal systems underwent more significant vertical mixing, and therefore more significant break-up and aggregation, with the overall result that ice particles possessed less geometrical symmetry, and consequently less prominent polarimetric contrast was detected by the radars. [1] Oue, Galletti, Verlinde "Observations of X-band differential reflectivity in Arctic mixed-phase clouds", submitted.

  9. The detection of weak signal patterns in radar ocean intensity images

    SciTech Connect

    Manasse, R.

    1996-06-15

    Detection of weak patterns in radar ocean RCS images is complicated by the fact that signals and noise are interactive rather than additive and the ambient noise background is non Gaussian or even strongly non Gaussian at low grazing angles. This paper addresses this difficult problem with the aid of two simplifying assumptions: (1) the signal modulation is weak, and (2) departure from Gaussianity is small. In situations where this departure is large, an approach is suggested for reducing this non Gaussianity. The relevant weak signal detection theory, based on the Likelihood ratio, is reviewed and adapted for use in the analysis. The approach to this problem, similar to that previously used for complex images, is facilitated by approximating the multivariate probability distributions as a composite integral involving underlying processes which are assumed to be Gaussian. This formulation, subject to the approximations in the analysis, permits derivation of an ideal detection statistic (which determines the form of optimum receiver) and a signal/noise ratio which characterizes detection performance in the weak signal limit. Implications for image processing are discussed and directions for future analysis are suggested.

  10. Evaluation of environmental radioxenon isotopical signals from a singular large source emitter

    NASA Astrophysics Data System (ADS)

    Saey, P. R. J.; Bowyer, T. W.; Aldener, M.; Becker, A.; Cooper, M. W.; Elmgren, K.; Faanhof, A.; Hayes, J. C.; Hosticka, B.; Lidey, L. S.

    2009-04-01

    In the framework of the verification of the Comprehensive Nuclear-Test-Ban Treaty (CTBT) the atmospheric background of environmental radioxenon is been studied near areas that could be affected by man-made sources. It was recently shown that radiopharmaceutical facilities (RPF) make a major contribution to the general background of 133Xe and other xenon isotopes both in the northern and southern hemisphere. The daily IMS noble gas measurements around the globe are influenced from such anthropogenic sources that could mask radioxenon signals from a nuclear explosion. To distinguish a nuclear explosion signal from releases from civil nuclear facilities, not only the activity concentration but also the ratio of different radioxenon isotopes (131mXe, 133mXe, 133Xe and 135Xe) plays a crucial role, since the ratios can be used to discriminate source types. Theoretical release and ratio studies were recently published, but no measurements close to radiopharmaceutical facilities have ever been performed. The world's fourth largest radiopharmaceutical facility, NTP Radioisotopes Ltd, is located in Pelindaba, South Africa. Other than a small nuclear power plant, located 1300 km southwest, near Cape Town and a small research reactor in the DR of Congo, located 2700 km northwest, this is the only facility that is known to emit any radioxenon on the African continent south of the Equator. This source is likely very dominant with respect to xenon emission. This makes it a point source, which is a unique situation, as all other worldwide large radiopharmaceutical facilities are situated in regions surrounded by many other nuclear facilities. Between 10 November and 22 December 2008, radioxenon was measured continuously with a radioactive xenon measurement system, at the North-West University, Mafikeng, South Africa, which is situated 250 km northwest of Pelindaba. Fifty-six 12-hour samples were measured with a beta-gamma coincidence detector, of which 55 contained 133Xe with values between 0.11 and 27.1 mBq/m3. Eleven samples contained 135Xe and three samples 133mXe. It is furthermore worth mentioning that none of the samples contained 131mXe. In parallel, stack samples were taken at the NTP facility on an almost daily basis and measured with a high purity germanium gamma detector nearby at a local laboratory of NECSA. These stack measurements correspond to a daily release of around 1-10 TBq. This is consistent with typical release rates published for this type of facility and well below exposure guidelines thus not dangerous to the public. On the other hand it is expected to be high enough to increase the radioxenon background in wide regions around such facilities and has a potential impact on the monitoring capability of the highly sensitive CTBT xenon monitoring systems. This paper will report on the activities measured at the facility stack and in Mafikeng, which allows for analysis and comparison with activity predictions based on atmospheric transport modelling. Finally the activity ratios measured shall be discussed in view of their implication for the xenon monitoring capability of the CTBT verification regime. Disclaimer The views expressed in this publication are those of the authors and do not necessarily reflect the views of the CTBTO Preparatory Commission or any of the institutions mentioned herein. . Acknowledgement This project is performed in the framework of European Council Joint Action no. 2007/468/CFSP on support for activities of the Preparatory Commission of the Comprehensive Nuclear-Test-Ban Treaty Organisation (CTBTO) monitoring and verification capabilities in the framework of the implementation of the European Union Strategy against Proliferation of Weapons of Mass Destruction.

  11. Radar comparison of 2.66-MHz and 40.92-MHz signals scattered from the mesosphere

    NASA Technical Reports Server (NTRS)

    Royrvik, O.

    1985-01-01

    Comparisons have been made between 2.66-MHz and 40.92-MHz radar signals simultaneously scattered from the mesosphere. Echoes were generally received from the same height ranges, indicating that the same scattering mechanism operates at both radar frequencies. A comparison of the observed radar cross sections was made for data obtained during the spring of 1984. Indications are that these echoes are due to scattering from turbulent irregularities in the refractive index. It has been possible to estimate the inner scale of turbulence from these data. The inner scale was found to be close to that estimated from turbulence theory. A comparison of the reflection coefficients indicates that a specular reflection process cannot account for the relative signal strength observed in these data.

  12. Radar signal return from near-shore surface and shallow subsurface features, Darien Province, Panama

    NASA Technical Reports Server (NTRS)

    Hanson, B. C.; Dellwig, L. F.

    1973-01-01

    The AN/APQ-97 radar imagery over eastern Panama is analyzed. The imagery was directed toward extraction of geologic and engineering data and the establishment of operational parameters. Subsequent investigations emphasized landform identification and vegetation distribution. The parameters affecting the observed return signal strength from such features are considered. Near-shore ocean phenomena were analyzed. Tidal zone features such as mud flats and reefs were identified in the near range, but were not detectable in the far range. Surface roughness dictated the nature of reflected energy (specular or diffuse). In surf zones, changes in wave train orientation relative to look direction, the slope of the surface, and the physical character of the wave must be considered. It is concluded that the establishment of the areal extent of the tidal flats, distributary channels, and reefs is practical only in the near to intermediate range under minimal low tide conditions.

  13. Radiometric analysis and simulation of signal power function in a short-range laser radar.

    PubMed

    Wang, J; Kostamovaara, J

    1994-06-20

    A key issue in designing laser radar devices for short-range applications is the ability to estimate accurately the power seen by the receiver as a function of the measurement distance. To obtain a reasonable approximation of this power, the irradiance distribution over the sensor as well as the target surface, which is highly dependent on the type of the detector used, must be analyzed in detail. The calculation of signal power function by means of radiometry is discussed. A software package developed for simulating power transfer as a function of various optical parameters is presented. It can be applied to various types of laser sources, including high-power laser diodes (wide-stripe or stacked) and pigtailed laser diodes. PMID:20935753

  14. Detection capability of a pulsed Ground Penetrating Radar utilizing an oscilloscope and Radargram Fusion Approach for optimal signal quality

    NASA Astrophysics Data System (ADS)

    Seyfried, Daniel; Schoebel, Joerg

    2015-07-01

    In scientific research pulsed radars often employ a digital oscilloscope as sampling unit. The sensitivity of an oscilloscope is determined in general by means of the number of digits of its analog-to-digital converter and the selected full scale vertical setting, i.e., the maximal voltage range displayed. Furthermore oversampling or averaging of the input signal may increase the effective number of digits, hence the sensitivity. Especially for Ground Penetrating Radar applications high sensitivity of the radar system is demanded since reflection amplitudes of buried objects are strongly attenuated in ground. Hence, in order to achieve high detection capability this parameter is one of the most crucial ones. In this paper we analyze the detection capability of our pulsed radar system utilizing a Rohde & Schwarz RTO 1024 oscilloscope as sampling unit for Ground Penetrating Radar applications, such as detection of pipes and cables in the ground. Also effects of averaging and low-noise amplification of the received signal prior to sampling are investigated by means of an appropriate laboratory setup. To underline our findings we then present real-world radar measurements performed on our GPR test site, where we have buried pipes and cables of different types and materials in different depths. The results illustrate the requirement for proper choice of the settings of the oscilloscope for optimal data recording. However, as we show, displaying both strong signal contributions due to e.g., antenna cross-talk and direct ground bounce reflection as well as weak reflections from objects buried deeper in ground requires opposing trends for the oscilloscope's settings. We therefore present our Radargram Fusion Approach. By means of this approach multiple radargrams recorded in parallel, each with an individual optimized setting for a certain type of contribution, can be fused in an appropriate way in order to finally achieve a single radargram which displays all contributions occurring originally at different strengths in an equalized and normalized way by means of appropriate digital signal post-processing.

  15. On the extraction of directional sea-wave spectra from synthetic- aperture radar-signal arrays without matched filtering.

    USGS Publications Warehouse

    Wildey, R.L.

    1980-01-01

    An economical method of digitally extracting sea-wave spectra from synthetic-aperture radar-signal records, which can be performed routinely in real or near-real time with the reception of telemetry from Seasat satellites, would be of value to a variety of scientific disciplines. This paper explores techniques for such data extraction and concludes that the mere fact that the desired result is devoid of phase information does not, of itself, lead to a simplification in data processing because of the nature of the modulation performed on the radar pulse by the backscattering surface. -from Author

  16. Performance evaluation of analog signal transmission in an integrated optical vortex emitter to 3.6-km few-mode fiber system.

    PubMed

    Liu, Jun; Li, Shimao; Du, Jing; Klitis, Charalambos; Du, Cheng; Mo, Qi; Sorel, Marc; Yu, Siyuan; Cai, Xinlun; Wang, Jian

    2016-05-01

    We experimentally demonstrate and evaluate the performance of an analog signal transmission system with photonic integrated optical vortex emitter and 3.6-km few-mode fiber (FMF) link using orbital angular momentum (OAM) modes. The fabricated photonic integrated device is capable of emitting vector optical vortices carrying well-defined and quantized OAM modes with topological charge l=-2 and 2. After propagating through 3.6-km FMF, we measure and assess the spurious free dynamic range of the second-order harmonic distortion. Moreover, we study the impact of nonlinearity-induced resonance wavelength shift of the optical vortex emitter on the analog link performance as increasing the input optical power. PMID:27128051

  17. Data processing of ground-penetrating radar signals for the detection of discontinuities using polarization diversity

    NASA Astrophysics Data System (ADS)

    Tebchrany, Elias; Sagnard, Florence; Baltazart, Vincent; Tarel, Jean-Phillippe

    2014-05-01

    In civil engineering, ground penetrating radar (GPR) is used to survey pavement thickness at traffic speed, detect and localize buried objects (pipes, cables, voids, cavities), zones of cracks and discontinuities in concrete or soils. In this work, a ground-coupled radar made of a pair of transmitting and receiving bowtie-slot antennas is moved linearly on the soil surface to detect the reflected waves induced by discontinuities in the subsurface. The GPR system operates in the frequency domain using a step-frequency continuous wave (SFCW) using a Vector Network Analyzer (VNA) in an ultra-wide band [0.3 ; 4] GHz. The detection of targets is usually focused on time imaging. Thus, the targets (limited in size) are usually shown by diffraction hyperbolas on a Bscan image that is an unfocused depiction of the scatterers. The contrast in permittivity and the ratio between the size of the object and the wavelength are important parameters in the detection process. Thus, we have made a first study on the use of polarization diversity to obtain additional information relative to the contrast between the soil and the target and the dielectric characteristics of a target. The two main polarizations configurations of the radar have been considered in the presence of objects having a pipe geometry: the TM (Transverse Magnetic) and TE (Transverse Electric. To interpret the diffraction hyperbolas on a Bscan image, we have used pre-processing techniques are necessary to reduce the clutter signal which can overlap and obscure the target responses, particularly shallow objects. The clutter, which can be composed of the direct coupling between the antennas and the reflected wave from the soil surface, the scattering on the heterogeneities due to the granular nature of the subsurface material, and some additive noise, varies with soil dielectric characteristics and/or surface roughness and leads to uncertainty in the measurements (additive noise). Because of the statistical nature of the clutter, we have considered and quantified the performance of the Principal Component Analysis (PCA) and the Independent Component Analysis (ICA) in remove or minimizing the clutter using the receiver operating characteristics (ROC) graph. The study has been focused in the preferred polarization on simulated and experimental scenarios of soil structures with a few parameters such as the presence of a different target depths which are capable to perturb the first arrival times made of clutter components, and different dielectric characteristics (conductive or dielectric) of a given target (pipe).

  18. The design and development of signal-processing algorithms for an airborne x-band Doppler weather radar

    NASA Technical Reports Server (NTRS)

    Nicholson, Shaun R.

    1994-01-01

    Improved measurements of precipitation will aid our understanding of the role of latent heating on global circulations. Spaceborne meteorological sensors such as the planned precipitation radar and microwave radiometers on the Tropical Rainfall Measurement Mission (TRMM) provide for the first time a comprehensive means of making these global measurements. Pre-TRMM activities include development of precipitation algorithms using existing satellite data, computer simulations, and measurements from limited aircraft campaigns. Since the TRMM radar will be the first spaceborne precipitation radar, there is limited experience with such measurements, and only recently have airborne radars become available that can attempt to address the issue of the limitations of a spaceborne radar. There are many questions regarding how much attenuation occurs in various cloud types and the effect of cloud vertical motions on the estimation of precipitation rates. The EDOP program being developed by NASA GSFC will provide data useful for testing both rain-retrieval algorithms and the importance of vertical motions on the rain measurements. The purpose of this report is to describe the design and development of real-time embedded parallel algorithms used by EDOP to extract reflectivity and Doppler products (velocity, spectrum width, and signal-to-noise ratio) as the first step in the aforementioned goals.

  19. Analysis and improved design considerations for airborne pulse Doppler radar signal processing in the detection of hazardous windshear

    NASA Technical Reports Server (NTRS)

    Lee, Jonggil

    1990-01-01

    High resolution windspeed profile measurements are needed to provide reliable detection of hazardous low altitude windshear with an airborne pulse Doppler radar. The system phase noise in a Doppler weather radar may degrade the spectrum moment estimation quality and the clutter cancellation capability which are important in windshear detection. Also the bias due to weather return Doppler spectrum skewness may cause large errors in pulse pair spectral parameter estimates. These effects are analyzed for the improvement of an airborne Doppler weather radar signal processing design. A method is presented for the direct measurement of windspeed gradient using low pulse repetition frequency (PRF) radar. This spatial gradient is essential in obtaining the windshear hazard index. As an alternative, the modified Prony method is suggested as a spectrum mode estimator for both the clutter and weather signal. Estimation of Doppler spectrum modes may provide the desired windshear hazard information without the need of any preliminary processing requirement such as clutter filtering. The results obtained by processing a NASA simulation model output support consideration of mode identification as one component of a windshear detection algorithm.

  20. System design, signal-processing procedures, and preliminary results for the Canadian (London, Ontario) VHF atmospheric radar

    NASA Astrophysics Data System (ADS)

    Hocking, W. K.

    1997-03-01

    Hardware, software, and design features of a new VHF atmospheric radar situated in Canada are described, with particular emphasis being placed on the flexibility which has been implemented at quite low cost. Called CLOVAR (Canadian (London, Ontario) VHF atmospheric radar), the instrument has now been operational since November 1993. It is located at 43°04.44'N, 81°20.20'W, operates at a frequency of 40.68 MHz, and is owned and operated by the nearby University of Western Ontario in London, Ontario, Canada. There are some unique features about this system, including its low-cost design, flexible beam-steering, and on-line software analysis procedures. In this paper we elaborate on these new developments and especially demonstrate the new signal processing algorithms currently in use. These new algorithms include procedures for rejection of signals due to aircraft, removal of instrumental drift, and full on-line spectral fitting of Gaussian functions. Typical data from the system are presented, including experimental data acquired with multibeam experiments, monthly mean vertical velocities, and some interesting results obtained during a solar eclipse. The radar can also function as an efficient meteor radar for determination of high-level winds, and this capability will also be briefly described. A special program of comparisons with colocated radiosonde flights is also discussed.

  1. Estimation of the penetration effects of the Ka-band radar signal into the Arctic sea ice snowpack.

    NASA Astrophysics Data System (ADS)

    Guerreiro, Kévin; Fleury, Sara; Kouraev, Alexei; Rémy, Frédérique; Zakharova, Elena; Blumstein, Denis

    2015-04-01

    In the context of quantifying Arctic sea ice volume at global scale, altimetry provides a unique tool to estimate sea ice thickness through the freeboard method that mainly consists in evaluating the thickness of emerged sea ice. Most of the altimeters employed to retrieve sea ice thickness operate at Ku-band frequency (13.6 Ghz). Over Arctic sea ice and at this frequency, the radar signal is only slightly affected by scattering and absorbtion due to the presence of snow over the ice. Therefore, it is commonly admitted that most of the return echo comes from the ice surface. Launched in February 2013, the Saral-AltiKa mission carries a Ka-band (36.5 Ghz) altimeter that is a great opportunity to expand the study of sea ice thickness. However, unlike the Ku-band operating systems, most of the Ka-band signal does not reach the sea ice surface and is scattered by overlying snow layers. For this reason and in order to obtain the best estimate of sea ice thickness with Ka-band radar, it is crucial to evaluate the bias due to penetration of the radar signal into the snowpack at this frequency. We combine both Ku and Ka band radar observations to study the influence of radar penetration into the snow and estimate the extinction coefficient over Arctic sea ice. Our results are of the same order of magnitude of what is found in Antarctica. This research has been done in the framework of CNES TOSCA SICKays and IDEX Transversalité InHERA projects.

  2. Real-time MST radar signal processing using a microcomputer running under FORTH

    NASA Technical Reports Server (NTRS)

    Bowhill, S. A.

    1983-01-01

    Data on power, correlation time, and velocity were obtained at the Urbana radar using microcomputer and a single floppy disk drive. This system includes the following features: (1) measurement of the real and imaginary components of the received signal at 20 altitudes spaced by 1.5 km; (2) coherent integration of these components over a 1/8-s time period; (3) continuous real time display of the height profiles of the two coherently integrated components; (4) real time calculation of the 1 minute averages of the power and autocovariance function up to 6 lags; (5) output of these data to floppy disk once every 2 minutes; (6) display of the 1 minute power profiles while the data are stored to the disk; (7) visual prompting for the operator to change disks when required at the end of each hour of data; and (8) continuous audible indication of the status of the interrupt service routine. Accomplishments were enabled by two developments: the use of a new correlation algorithm and the use of the FORTH language to manage the various low level and high level procedures involved.

  3. Spectral analysis of ground penetrating radar signals in concrete, metallic and plastic targets

    NASA Astrophysics Data System (ADS)

    Santos, Vinicius Rafael N. dos; Al-Nuaimy, Waleed; Porsani, Jorge Luís; Hirata, Nina S. Tomita; Alzubi, Hamzah S.

    2014-01-01

    The accuracy of detecting buried targets using ground penetrating radar (GPR) depends mainly on features that are extracted from the data. The objective of this study is to test three spectral features and evaluate the quality to provide a good discrimination among three types of materials (concrete, metallic and plastic) using the 200 MHz GPR system. The spectral features which were selected to check the interaction of the electromagnetic wave with the type of material are: the power spectral density (PSD), short-time Fourier transform (STFT) and the Wigner-Ville distribution (WVD). The analyses were performed with simulated data varying the sizes of the targets and the electrical properties (relative dielectric permittivity and electrical conductivity) of the soil. To check if the simulated data are in accordance with the real data, the same approach was applied on the data obtained in the IAG/USP test site. A noticeable difference was found in the amplitude of the studies' features in the frequency domain and these results show the strength of the signal processing to try to differentiate buried materials using GPR, and so can be used in urban planning and geotechnical studies.

  4. Development of two-dimensional parametric radar signal modeling and estimation techniques with application to target identification

    NASA Astrophysics Data System (ADS)

    Sacchini, Joseph J.

    1992-09-01

    One and two dimensional signal processing models and algorithms which are utilized in the Radar Target Identification Problem are developed. A basic assumption of this work is that the high-frequency scattering from a radar target, such as an aircraft, land-based vehicle, or ship, is comprised of the sum of the scattering from a finite number of canonical scattering centers, each with a specific location and identity. By high-frequency it is meant that the overall size of the target is at least one wavelength. The scattering center assumption is more valid as the individual scattering centers become more electrically isolated. If two individual scattering centers are electrically close, then their combined response is, in general, not the sum of their individual responses. First, this dissertation investigates the electromagnetic scattering characteristics of canonical scattering centers. Canonical scattering centers are scattering centers on a target which account for the vast majority of the scattering from that target in the high-frequency case. Some of the targets of interest in this work are aircraft, tanks, trucks, automobiles, and ships. Predominant scattering centers on these targets include corners, edges, plates, dihedrals, trihedrals, and cylinders. The scattering centers are described by their scattering characteristics as functions of angle, frequency, and polarization. Second, this dissertation develops a two-dimensional (2-D) signal processing technique for locating and characterizing scattering centers from radar data. The radar gathers scattering data of a target at both multiple frequencies and multiple angles. This type of data is gathered (in raw form) by both Synthetic Aperture Radars and Inverse Synthetic Aperture Radars. The 2-D signal processing technique developed here is based on a 2-D extension of a total least squares (TLS) solution to a Prony Model and is called the 2-D TLS-Prony Technique. This technique can use single or multiple-polarization data. With full-polarization data, polarimetric characteristics of the scattering centers are found using the transient polarization response concept. This concept uses an ellipse to characterize the polarimetric characteristics of each scattering center. The abilities of the 2-D TLS-Prony Technique are demonstrated utilizing simulated 2-D radar data.

  5. Development of a ground signal processor for digital synthetic array radar data

    NASA Technical Reports Server (NTRS)

    Griffin, C. R.; Estes, J. M.

    1981-01-01

    A modified APQ-102 sidelooking array radar (SLAR) in a B-57 aircraft test bed is used, with other optical and infrared sensors, in remote sensing of Earth surface features for various users at NASA Johnson Space Center. The video from the radar is normally recorded on photographic film and subsequently processed photographically into high resolution radar images. Using a high speed sampling (digitizing) system, the two receiver channels of cross-and co-polarized video are recorded on wideband magnetic tape along with radar and platform parameters. These data are subsequently reformatted and processed into digital synthetic aperture radar images with the image data available on magnetic tape for subsequent analysis by investigators. The system design and results obtained are described.

  6. Estimation of High-Frequency Earth-Space Radio Wave Signals via Ground-Based Polarimetric Radar Observations

    NASA Technical Reports Server (NTRS)

    Bolen, Steve; Chandrasekar, V.

    2002-01-01

    Expanding human presence in space, and enabling the commercialization of this frontier, is part of the strategic goals for NASA's Human Exploration and Development of Space (HEDS) enterprise. Future near-Earth and planetary missions will support the use of high-frequency Earth-space communication systems. Additionally, increased commercial demand on low-frequency Earth-space links in the S- and C-band spectra have led to increased interest in the use of higher frequencies in regions like Ku and Ka-band. Attenuation of high-frequency signals, due to a precipitating medium, can be quite severe and can cause considerable disruptions in a communications link that traverses such a medium. Previously, ground radar measurements were made along the Earth-space path and compared to satellite beacon data that was transmitted to a ground station. In this paper, quantitative estimation of the attenuation along the propagation path is made via inter-comparisons of radar data taken from the Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar (PR) and ground-based polarimetric radar observations. Theoretical relationships between the expected specific attenuation (k) of spaceborne measurements with ground-based measurements of reflectivity (Zh) and differential propagation phase shift (Kdp) are developed for various hydrometeors that could be present along the propagation path, which are used to estimate the two-way path-integrated attenuation (PIA) on the PR return echo. Resolution volume matching and alignment of the radar systems is performed, and a direct comparison of PR return echo with ground radar attenuation estimates is made directly on a beam-by-beam basis. The technique is validated using data collected from the TExas and Florida UNderflights (TEFLUN-B) experiment and the TRMM large Biosphere-Atmosphere experiment in Amazonia (LBA) campaign. Attenuation estimation derived from this method can be used for strategiC planning of communication systems for future HEDS missions.

  7. Robust multiplatform RF emitter localization

    NASA Astrophysics Data System (ADS)

    Al Issa, Huthaifa; Ordóñez, Raúl

    2012-06-01

    In recent years, position based services has increase. Thus, recent developments in communications and RF technology have enabled system concept formulations and designs for low-cost radar systems using state-of-the-art software radio modules. This research is done to investigate a novel multi-platform RF emitter localization technique denoted as Position-Adaptive RF Direction Finding (PADF). The formulation is based on the investigation of iterative path-loss (i.e., Path Loss Exponent, or PLE) metrics estimates that are measured across multiple platforms in order to autonomously adapt (i.e. self-adjust) of the location of each distributed/cooperative platform. Experiments conducted at the Air-Force Research laboratory (AFRL) indicate that this position-adaptive approach exhibits potential for accurate emitter localization in challenging embedded multipath environments such as in urban environments. The focus of this paper is on the robustness of the distributed approach to RF-based location tracking. In order to localize the transmitter, we use the Received Signal Strength Indicator (RSSI) data to approximate distance from the transmitter to the revolving receivers. We provide an algorithm for on-line estimation of the Path Loss Exponent (PLE) that is used in modeling the distance based on Received Signal Strength (RSS) measurements. The emitter position estimation is calculated based on surrounding sensors RSS values using Least-Square Estimation (LSE). The PADF has been tested on a number of different configurations in the laboratory via the design and implementation of four IRIS wireless sensor nodes as receivers and one hidden sensor as a transmitter during the localization phase. The robustness of detecting the transmitters position is initiated by getting the RSSI data through experiments and then data manipulation in MATLAB will determine the robustness of each node and ultimately that of each configuration. The parameters that are used in the functions are the median values of RSSI and rms values. From the result it is determined which configurations possess high robustness. High values obtained from the robustness function indicate high robustness, while low values indicate lower robustness.

  8. Hail statistic in Western Europe based on a hyrid cell-tracking algorithm combining radar signals with hailstone observations

    NASA Astrophysics Data System (ADS)

    Fluck, Elody

    2015-04-01

    Hail statistic in Western Europe based on a hybrid cell-tracking algorithm combining radar signals with hailstone observations Elody Fluck¹, Michael Kunz¹ , Peter Geissbühler², Stefan P. Ritz² With hail damage estimated over Billions of Euros for a single event (e.g., hailstorm Andreas on 27/28 July 2013), hail constitute one of the major atmospheric risks in various parts of Europe. The project HAMLET (Hail Model for Europe) in cooperation with the insurance company Tokio Millennium Re aims at estimating hail probability, hail hazard and, combined with vulnerability, hail risk for several European countries (Germany, Switzerland, France, Netherlands, Austria, Belgium and Luxembourg). Hail signals are obtained from radar reflectivity since this proxy is available with a high temporal and spatial resolution using several hail proxies, especially radar data. The focus in the first step is on Germany and France for the periods 2005- 2013 and 1999 - 2013, respectively. In the next step, the methods will be transferred and extended to other regions. A cell-tracking algorithm TRACE2D was adjusted and applied to two dimensional radar reflectivity data from different radars operated by European weather services such as German weather service (DWD) and French weather service (Météo-France). Strong convective cells are detected by considering 3 connected pixels over 45 dBZ (Reflectivity Cores RCs) in a radar scan. Afterwards, the algorithm tries to find the same RCs in the next 5 minute radar scan and, thus, track the RCs centers over time and space. Additional information about hailstone diameters provided by ESWD (European Severe Weather Database) is used to determine hail intensity of the detected hail swaths. Maximum hailstone diameters are interpolated along and close to the individual hail tracks giving an estimation of mean diameters for the detected hail swaths. Furthermore, a stochastic event set is created by randomizing the parameters obtained from the tracking approach of the historical event catalogue (length, width, orientation, diameter). This stochastic event set will be used to quantify hail risk and to estimate probable maximum loss (e.g., PML200) for a given industry motor or property (building) portfolio.

  9. Selective Emitters

    NASA Technical Reports Server (NTRS)

    Chubb, Donald L. (Inventor)

    1992-01-01

    This invention relates to a small particle selective emitter for converting thermal energy into narrow band radiation with high efficiency. The small particle selective emitter is used in combination with a photovoltaic array to provide a thermal to electrical energy conversion device. An energy conversion apparatus of this type is called a thermo-photovoltaic device. In the first embodiment, small diameter particles of a rare earth oxide are suspended in an inert gas enclosed between concentric cylinders. The rare earth oxides are used because they have the desired property of large emittance in a narrow wavelength band and small emittance outside the band. However, it should be emphasized that it is the smallness of the particles that enhances the radiation property. The small particle selective emitter is surrounded by a photovoltaic array. In an alternate embodiment, the small particle gas mixture is circulated through a thermal energy source. This thermal energy source can be a nuclear reactor, solar receiver, or combustor of a fossil fuel.

  10. Multipolarisation FM-CW Doppler radar signal processing for nondistributed targets

    NASA Astrophysics Data System (ADS)

    Niemeijer, R. J.; van Sinttruyen, J. S.; Ligthart, L. P.

    1991-06-01

    The Delft FM-CW radar is used to characterize radar targets based on their polarization parameters and Doppler velocity. Dedicated polarizers allow the radar system to have one receiver only. The domain of the polarization information interferes with the domain of the Doppler-velocity information. To split these domains and to retrieve the target parameters, a specific processing approach has been developed. The method has been implemented to run on one or more array processors, which are used as preprocessing units on a host computer. Besides the mathematical outlines of the method, the structure and organization of the processing units are discussed in the paper. Finally, some preliminary results of real-time performance measurements are shown.

  11. A study of radar altimetry signal penetration over percolation facies of the Greenland Ice Sheet as part of the 2011 CryoSat-2 Validation Experiment

    NASA Astrophysics Data System (ADS)

    de la Pena, S.; Nienow, P.; Wingham, D.

    2011-12-01

    The percolation zone of the Greenland Ice Sheet (GrIS) has a highly variable snowpack structure characterized by the presence of ice lenses, pipes and layers in the volume below the surface. The stratified snowpack and the abrupt densification of near-surface snow, caused by seasonal melt in this region, affect the penetration depth of radar signals and is a potential source of errors for elevation change estimates performed by satellite radar altimetry. As the percolation zone extends further up the ice sheet, it is important to investigate trends and short term variations in radar volume backscatter over large length scales. Continuous monitoring of accumulation and densification processes in this region will lead to improvements in elevation estimates made with radar altimetry, and ultimately to more accurate mass balance estimations. We present results from the 2011 CryoSat-2 Validation Experiment over Greenland, with the aim of comparing for the first time observations from SIRAL, the radar altimeter onboard CryoSat-2, with near-simultaneous field and airborne measurements. The main objective of this comparison is to characterize near-surface snow structure and Ku-Band radar signatures along the western slope of the GrIS (~2000-2600m) to improve our understanding of the SIRAL radar signal interaction with different snow facies. The area of study covers the transition from the percolation zone into the dry snow zone, at elevations between 2000m and 2600m. The observations reveal the effects that the summer melt intensity's elevation gradient has on near surface snowpack. Widespread ice layers were found buried under winter accumulation in areas believed until recently to have little or no seasonal melt. In-situ snow density and structure observations were made along with airborne radar altimetry and Very High Bandwidth (VHB) ground radar measurements to analyse volume backscatter with a spatial resolution not obtainable by satellite, and to assess the relationship between radar penetration depth and snow density.

  12. Using the inverse Chirp-Z transform for time-domain analysis of simulated radar signals

    SciTech Connect

    Frickey, D.A.

    1995-01-01

    There exists a need to develop a method to locate underground voids, or caches. In the past, ground penetrating radar (GPR) operating in the time domain mode has been used. In this paper, we turn our attention to stepped frequency radar, capable of making frequency domain reflection coefficient measurements. We then apply the inverse Chirp-Z transform (ICZT) to this data, generating a time domain response. The scenario under consideration is that of an airborne radar passing over the surface of the earth. The radar is directed toward the surface and is capable of measuring the reflection coefficient, seen looking toward the earth, as a function of frequency. The frequency domain -data in this work is simulated and is generated from a transmission line model of the problem. Using the ICZT we convert this frequency domain data to the time domain. Once in the time domain, reflections due to discontinuities appear at times indicating their relative distance from the source. The discontinuities occurring beyond the surface of the earth could be indicative of underground structures. The ICZT allows a person to zoom in on the time span of interest by specifying the starting time, the time resolution, and the number of time steps.

  13. The MST Radar Technique

    NASA Technical Reports Server (NTRS)

    Roettger, J.

    1984-01-01

    The coherent radar technique is reviewed with special emphasis to mesosphere-stratosphere-troposphere (MST) radars operating in the VHF band. Some basic introduction to Doppler radar measurements and the radar equation is followed by an outline of the characteristics of atmospheric turbulence, viewed from the scattering and reflection processes of radar signals. Radar signal acquisition and preprocessing, namely coherent detection, digital sampling, pre-integration and coding, is briefly discussed. The data analysis is represented in terms of the correlation and spectrum analysis, yielding the essential parameters: power, signal-to-noise ratio, average and fluctuating velocity and persistency. The techniques to measure wind velocities, viz. the different modes of the Doppler method as well as the space antenna method are surveyed and the feasibilities of the MST radar interferometer technique are elucidated. A general view on the criteria to design phased array antennas is given. An outline of the hardware of a typical MST radar system is presented.

  14. Radarclinometry: Bootstrapping the radar reflectance function from the image pixel-signal frequency distribution and an altimetry profile

    USGS Publications Warehouse

    Wildey, R.L.

    1988-01-01

    A method is derived for determining the dependence of radar backscatter on incidence angle that is applicable to the region corresponding to a particular radar image. The method is based on enforcing mathematical consistency between the frequency distribution of the image's pixel signals (histogram of DN values with suitable normalizations) and a one-dimensional frequency distribution of slope component, as might be obtained from a radar or laser altimetry profile in or near the area imaged. In order to achieve a unique solution, the auxiliary assumption is made that the two-dimensional frequency distribution of slope is isotropic. The backscatter is not derived in absolute units. The method is developed in such a way as to separate the reflectance function from the pixel-signal transfer characteristic. However, these two sources of variation are distinguishable only on the basis of a weak dependence on the azimuthal component of slope; therefore such an approach can be expected to be ill-conditioned unless the revision of the transfer characteristic is limited to the determination of an additive instrumental background level. The altimetry profile does not have to be registered in the image, and the statistical nature of the approach minimizes pixel noise effects and the effects of a disparity between the resolutions of the image and the altimetry profile, except in the wings of the distribution where low-number statistics preclude accuracy anyway. The problem of dealing with unknown slope components perpendicular to the profiling traverse, which besets the one-to-one comparison between individual slope components and pixel-signal values, disappears in the present approach. In order to test the resulting algorithm, an artificial radar image was generated from the digitized topographic map of the Lake Champlain West quadrangle in the Adirondack Mountains, U.S.A., using an arbitrarily selected reflectance function. From the same map, a one-dimensional frequency distribution of slope component was extracted. The algorithm recaptured the original reflectance function to the degree that, for the central 90% of the data, the discrepancy translates to a RMS slope error of 0.1 ???. For the central 99% of the data, the maximum error translates to 1 ???; at the absolute extremes of the data the error grows to 6 ???. ?? 1988 Kluwer Academic Publishers.

  15. Absorption of MARSIS radar signals: Solar energetic particles and the daytime ionosphere

    NASA Astrophysics Data System (ADS)

    Espley, Jared R.; Farrell, William M.; Brain, David A.; Morgan, David D.; Cantor, Bruce; Plaut, Jeffrey J.; Acuña, Mario H.; Picardi, Giovanni

    2007-05-01

    We present observations from the subsurface sounding mode of the MARSIS instrument onboard Mars Express that imply radar wave absorption because of increased amounts of ionization in the upper Martian atmosphere during the fall of 2005. On at least two occasions these radar disruptions lasted for several days and we find that these periods are correlated with periods when other instruments indicate elevated levels of solar energetic particles. Another disruption lasted for over a month and we find that it was likely caused by a combination of solar activity and observing through the daytime ionosphere. There is no evidence in the present results for the constant ionospheric layer predicted to be created by the normal infall of cosmic dust, although the effects of enhanced infall during meteor showers remains uncertain. The effects of dust activity also remain uncertain but will be tested during the 2007 dust season.

  16. Simulations of radar signals on the basis of cloud model results - deep convection conditions

    NASA Astrophysics Data System (ADS)

    Kardas, A. E.; McFarlane, S. A.; Morrison, H.; Comstock, J. M.; Grabowski, W. W.; Malinowski, S. P.

    2009-12-01

    Simulation of observed radar returns is one of the tools for validating a new cloud microphysics code by H. Morrison and W.W. Grabowski. The code includes a two-moment bulk warm rain scheme and two-moment ice microphysics scheme with prognostic rime mass fraction. Both the simulator and the cloud model share the following set of assumptions. Three general types of particles are taken into account: cloud droplets, drizzle drops and ice crystals; particles are characterised by modified gamma size distribution (in case of rain drops it becomes exponential); and particles are described in terms of mass and area to dimension relationships. Liquid particles are assumed to be spherical and ice crystals are treated as spheres, dense non-spherical particles, graupel or aggregates, depending on their size and rimed mass fraction. Simulator input consists of particle number concentrations, mixing ratios (for ice crystals separate mixing ratios for mass grown by riming and water vapour deposition are employed), temperature and relative humidity profiles. Pre-calculated look up tables containing particle scattering properties (radar reflectivity and attenuation) as functions of input parameters are used in order to speed up the code. The simulator is applied to deep convection conditions observed during the Tropical Warm Pool International Cloud Experiment, Darwin, Australia, January - February 2006. The simulation results are compared to data collected by the millimeter wavelength cloud radar (MMCR) situated in Darwin, Australia - one of the measurement sites of the Atmospheric Radiation Measurement program.

  17. A novel signal processing approach for LEO space debris based on a fence-type space surveillance radar system

    NASA Astrophysics Data System (ADS)

    Huang, Jian; Hu, Weidong; Ghogho, Mounir; Xin, Qin; Du, Xiaoyong; Guo, Weiwei

    2012-12-01

    The increase in space debris can seriously threaten regular activities in the Low Earth Orbit (LEO) environment. Therefore, it is necessary to develop robust, efficient and reliable techniques to understand the potential motions of the LEO debris. In this paper, we propose a novel signal processing approach to detect and estimate the motions of LEO space debris that is based on a fence-type space surveillance radar system. Because of the sparse distribution of the orbiting debris through the fence in our observations, we formulate the signal detection and the motion parameter estimation as a sparse signal reconstruction problem with respect to an over-complete dictionary. Moreover, we propose a new scheme to reduce the size of the original over-complete dictionary without the loss of the important information. This new scheme is based on a careful analysis of the relations between the acceleration and the directions of arrival for the corresponding LEO space debris. Our simulation results show that the proposed approach can achieve extremely good performance in terms of the accuracy for detection and estimation. Furthermore, our simulation results demonstrate the robustness of the approach in scenarios with a low Signal-to-Noise Ratio (SNR) and the super-resolution properties. We hope our signal processing approach can stimulate further work on monitoring LEO space debris.

  18. A UWB Radar Signal Processing Platform for Real-Time Human Respiratory Feature Extraction Based on Four-Segment Linear Waveform Model.

    PubMed

    Hsieh, Chi-Hsuan; Chiu, Yu-Fang; Shen, Yi-Hsiang; Chu, Ta-Shun; Huang, Yuan-Hao

    2016-02-01

    This paper presents an ultra-wideband (UWB) impulse-radio radar signal processing platform used to analyze human respiratory features. Conventional radar systems used in human detection only analyze human respiration rates or the response of a target. However, additional respiratory signal information is available that has not been explored using radar detection. The authors previously proposed a modified raised cosine waveform (MRCW) respiration model and an iterative correlation search algorithm that could acquire additional respiratory features such as the inspiration and expiration speeds, respiration intensity, and respiration holding ratio. To realize real-time respiratory feature extraction by using the proposed UWB signal processing platform, this paper proposes a new four-segment linear waveform (FSLW) respiration model. This model offers a superior fit to the measured respiration signal compared with the MRCW model and decreases the computational complexity of feature extraction. In addition, an early-terminated iterative correlation search algorithm is presented, substantially decreasing the computational complexity and yielding negligible performance degradation. These extracted features can be considered the compressed signals used to decrease the amount of data storage required for use in long-term medical monitoring systems and can also be used in clinical diagnosis. The proposed respiratory feature extraction algorithm was designed and implemented using the proposed UWB radar signal processing platform including a radar front-end chip and an FPGA chip. The proposed radar system can detect human respiration rates at 0.1 to 1 Hz and facilitates the real-time analysis of the respiratory features of each respiration period. PMID:25667357

  19. Signal analysis by means of time-frequency (Wigner-type) distributions -- Applications to sonar and radar echoes

    SciTech Connect

    Gaunaurd, G.; Strifors, H.C.

    1996-09-01

    Time series data have been traditionally analyzed in either the time or the frequency domains. For signals with a time-varying frequency content, the combined time-frequency (TF) representations, based on the Cohen class of (generalized) Wigner distributions (WD`s) offer a powerful analysis tool. Using them, it is possible to: (1) trace the time-evolution of the resonance features usually present in a standard sonar cross section (SCS), or in a radar cross section (RCS) and (2) extract target information that may be difficult to even notice in an ordinary SCS or RCS. After a brief review of the fundamental properties of the WD, the authors discuss ways to reduce or suppress the cross term interference that appears in the WD of multicomponent systems. These points are illustrated with a variety of three-dimensional (3-D) plots of Wigner and pseudo-Wigner distributions (PWD), in which the strength of the distribution is depicted as the height of a Wigner surface with height scales measured by various color shades or pseudocolors. The authors also review studies they have made of the echoes returned by conducting or dielectric targets in the atmosphere, when they are illuminated by broadband radar pings. A TF domain analysis of these impulse radar returns demonstrates their superior informative content. These plots allow the identification of targets in an easier and clearer fashion than by the conventional RCS of narrowband systems. The authors show computed and measured plots of WD and PWD of various types of aircraft to illustrate the classification advantages of the approach at any aspect angle. They also show analogous results for metallic objects buried underground, in dielectric media, at various depths.

  20. Sub-nanosecond ranging possibilities of optical radar at various signal levels and transmitted pulse widths

    NASA Technical Reports Server (NTRS)

    Poultney, S. K.

    1971-01-01

    The behavior of the photomultiplier is considered, as well as the method of derivation of the photomultiplier output pulse and its relation to the reflected light pulse width and amplitude, and the calibration of range precision and accuracy. Pulsed laser radars with light pulse widths of 30, 3, and 0.1 nanosec a considered, with the 0.1 nanosec system capable of highest precision in several modes of operation, including a high repetition rate, single photoelectron reception mode. An alternate calibration scheme using a fast, triggerable light pulser is described in detail.

  1. Ground-penetrating radar signal processing for the detection of buried objects

    NASA Astrophysics Data System (ADS)

    Walters, Mitchell; Garcia, Ephrahim

    2011-06-01

    In this work the singular value decomposition (SVD) is used to analyze matrices of ground penetrating radar (GPR) data. The targets to be detected are Russian PMN antipersonnel landmines and improvised explosive devices constructed from 155mm artillery shells. Target responses are simulated with GPRmax 2D, a simulation package based on the Finite- Difference-Time-Domain method. First, the utility of the SVD for image enhancement and reconstruction is demonstrated. Then the singular values and singular vectors of the decomposed matrices are analyzed with the goal of finding properties that will aid in the development of automated underground detection algorithms.

  2. In vessel detection of delayed neutron emitters from clad failure in sodium cooled nuclear reactors: An estimation of the signal

    NASA Astrophysics Data System (ADS)

    Filliatre, P.; Jammes, C.; Chapoutier, N.; Jeannot, J.-P.; Jadot, F.; Batail, R.; Verrier, D.

    2014-04-01

    The detection of clad failures is mandatory in sodium-cooled fast neutron reactors in compliance with the "clean sodium" concept. An in-vessel detection system, sensitive to delayed neutrons from fission products released into the primary coolant by failures, partially tested in SUPERPHENIX, is foreseen in current SFR projects in order to reduce significantly the delay before an alarm is issued. In this paper, an estimation of the signal received by such a system in case of a failure is derived, taking the French project ASTRID as a working example. This failure induced signal is compared to that of the contribution of the neutrons from the core itself. The sensitivity of the system is defined in terms of minimal detectable surface of clad failure. Possible solutions to improve this sensitivity are discussed, involving either the sensor itself, or the hydraulic design of the vessel in the early stage of the reactor conception.

  3. Beam emittance measurements in RHIC

    SciTech Connect

    Zelenski,A.; Bazilevsky, A.; Bunce, G.; Gill, R.; Huang, H.; Makdisi, Y.; Morozov, B.; Nemesure, S.; Russo, t.; Steski, D.; Sivertz, M.

    2009-05-04

    The RHIC proton polarimeters can operate in scanning mode, giving polarization profiles and transverse beam intensity profile (beam emittance) measurements. The polarimeters function as wire scanners, providing a very good signal/noise ratio and high counting rate. This allows accurate bunch-by-bunch emittance measurements during fast target sweeps (<1 s) through the beam. Very thin carbon strip targets make these measurements practically non-destructive. Bunch by bunch emittance measurements are a powerful tool for machine set-up; in RHIC, individual proton beam transverse emittances can only be measured by CNI polarimeter scans. We discuss the consistency of these measurements with Ionization Profile Monitors (IPMs) and vernier scan luminosity measurements. Absolute accuracy limitations and cross-calibration of different techniques are also discussed.

  4. Research on a kind of high precision and fast signal processing algorithm for FM/CW laser radar

    NASA Astrophysics Data System (ADS)

    Xu, Xinke; Liu, Guodong; Chen, Fengdong; Liu, Bingguo; Zhuang, Zhitao; Lu, Cheng; Gan, Yu

    2014-12-01

    Range accuracy and efficiency are two important indicators for Frequency modulated continuous wave (FM/CW) laser radar, improving the accuracy and efficiency of extracting beat frequency are key factors for them. Multiple Modulation Zoom Spectrum Analysis (ZFFT) and the Chirp-Z Transform (CZT) are two widely used methods for improving frequency estimation. The paper through analyze advantages and disadvantages of these methods, proposes a high accuracy and fast signal processing method which is ZFFT-CZT, it combines advantages that ZFFT can reduce data size, and CZT can zoom in frequency of any interested band. The processing of ZFFT-CZT is following: firstly ZFFT is conducted by conducting Fourier transform on short time signal to calculate amount of frequency shift, and transforming high-frequency signal into low-frequency signal of long time sampling, then CZT is conducted by choosing any interested band to continue subdividing the spectral peaks, which can reduce picket fence effect. By simulate experiment based on ZFFT-CZT method, two closed targets at distance of 50m and 50.001m are measured, and the measurement errors are 40μm and 34μm respectively. It proved that ZFFT-CZT has a small amount of calculation, which can meet the requirement of high precision frequency extraction.

  5. Capillary-Based Multi-Nanoelectrospray Emitters

    PubMed Central

    Kelly, Ryan T.; Page, Jason S.; Zhao, Rui; Qian, Wei-Jun; Mottaz, Heather M.; Tang, Keqi; Smith, Richard D.

    2008-01-01

    We describe the coupling of liquid chromatography (LC) separations with mass spectrometry (MS) using nanoelectrospray ionization (nanoESI) multi-emitters. The array of 19 emitters reduced the flow rate delivered to each emitter, allowing the enhanced sensitivity that is characteristic of nanoESI to be extended to higher flow rate separations. The signal for peptides from spiked proteins in a human plasma tryptic digest increased 11-fold on average when the multi-emitters were employed, due to increased ionization efficiency and improved ion transfer efficiency through a newly designed heated multi-capillary MS inlet. Additionally, the LC peak signal-to-noise ratio increased ∼7-fold when the multi-emitter configuration was used. The low dead volume of the emitter arrays preserved peak shape and resolution for robust capillary LC separations using total flow rates of 2-μL/min. PMID:18044958

  6. Ground-penetrating radar methods

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ground-penetrating radar geophysical methods are finding greater and greater use in agriculture. With the ground-penetrating radar (GPR) method, an electromagnetic radio energy (radar) pulse is directed into the subsurface, followed by measurement of the elapsed time taken by the radar signal as it ...

  7. Emittance exchange results

    SciTech Connect

    Fliller, R.P., III; Koeth, T.; /Rutgers U., Piscataway

    2009-09-01

    The promise of next-generation light sources depends on the availability of ultra-low emittance electron sources. One method of producing low transverse emittance beams is to generate a low longitudinal emittance beam and exchange it with a large transverse emittance. Experiments are underway at Fermilab's A0 Photoinjector and ANL's Argonne Wakefield Accelerator using the exchange scheme of Kim and Sessler. The experiment at the A0 Photoinjector exchanges a large longitudinal emittance with a small transverse emittance. AWA expects to exchange a large transverse emittance with a small longitudinal emittance. In this paper we discuss recent results at A0 and AWA and future plans for these experiments.

  8. Emittance Exchange Results

    SciTech Connect

    Fliller III,R.; Koeth, T.

    2009-05-04

    The promise of next-generation light sources depends on the availability of ultra-low emittance electron sources. One method of producing low transverse emittance beams is to generate a low longitudinal emittance beam and exchange it with a large transverse emittance. Experiments are underway at Fermilab's A0 Photoinjector and ANL's Argonne Wakefield Accelerator using the exchange scheme of Kim and Sessler. The experiment at the A0 Photoinjector exchanges a large longitudinal emittance with a small transverse emittance. AWA expects to exchange a large transverse emittance with a small longitudinal emittance. In this paper we discuss recent results at A0 and AWA and future plans for these experiments.

  9. Scalable Microstructured Photoconductive Terahertz Emitters

    NASA Astrophysics Data System (ADS)

    Winnerl, Stephan

    2012-04-01

    The development of scalable emitters for pulsed broadband terahertz (THz) radiation is reviewed. Their large active area in the 1 - 100 mm2 range allows for using the full power of state-of-the-art femtosecond lasers for excitation of charge carriers. Large fields for acceleration of the photogenerated carriers are achieved at moderate voltages by interdigitated electrodes. This results in efficient emission of single-cycle THz waves. THz field amplitudes in the range of 300 V/cm and 17 kV/cm are reached for excitation with 10 nJ pulses from Ti:sapphire oscillators and for excitation with 5 ?J pulses from amplified lasers, respectively. The corresponding efficiencies for conversion of near-infrared to THz radiation are 2.5 10-4 (oscillator excitation) and 2 10-3 (amplifier excitation). In this article the principle of operation of scalable emitters is explained and different technical realizations are described. We demonstrate that the scalable concept provides freedom for designing optimized antenna patterns for different polarization modes. In particular emitters for linearly, radially and azimuthally polarized radiation are discussed. The success story of photoconductive THz emitters is closely linked to the development of mode-locked Ti:sapphire lasers. GaAs is an ideal photoconductive material for THz emitters excited with Ti:sapphire lasers, which are widely used in research laboratories. For many applications, especially in industrial environments, however, fiber-based lasers are strongly preferred due to their lower cost, compactness and extremely stable operation. Designing photoconductive emitters on InGaAs materials, which have a low enough energy gap for excitation with fiber lasers, is challenging due to the electrical properties of the materials. We discuss why the challenges are even larger for microstructured THz emitters as compared to conventional photoconductive antennas and present first results of emitters suitable for excitation with ytterbium-based fiber lasers. Furthermore an alternative concept, namely the lateral photo-Dember emitter, is presented. Due to the strong THz output scalable emitters are well suited for THz systems with fast data acquisition. Here the application of scalable emitters in THz spectrometers without mechanical delay stages, providing THz spectra with 1 GHz spectral resolution and a signal-to-noise ratio of 37 dB within 1 s, is presented. Finally a few highlight experiments with radiation from scalable THz emitters are reviewed. This includes a brief discussion of near-field microscopy experiments as well as an overview over gain studies of quantum-cascade lasers.

  10. Nonintercepting emittance monitor

    SciTech Connect

    Miller, R.H.; Clendenin, J.E.; James, M.B.; Sheppard, J.C.

    1983-08-01

    A nonintercepting emittance monitor is a helpful device for measuring and improving particle beams in accelerators and storage rings as it allows continuous monitoring of the beam's distribution in phase space, and perhaps closed loop computer control of the distributions. Stripline position monitors are being investigated for use as nonintercepting emittance monitors for a beam focused by a FODO array in the first 100 meters of our linear accelerator. The technique described here uses the signal from the four stripline probes of a single position monitor to measure the quadrupole mode of the wall current in the beam pipe. This current is a function of the quadrupole moment of the beam, sigma/sup 2//sub x/ - sigma/sup 2//sub y/. In general, six independent measurements of the quadrupole moment are necessary to determine the beam emittance. This technique is dependent on the characteristically large variations of sigma/sup 2//sub x/ - sigma/sup 2//sub y/ in a FODO array. It will not work in a focusing system where the beam is round at each focusing element.

  11. Statistical processing of ground-penetrating radar signals for mine detection

    NASA Astrophysics Data System (ADS)

    Duston, Brian M.; Lang, David A.

    2001-10-01

    The Mine Hunter/Killer Close-In Detector (MH/K CID) uses Ground Penetrating Radar (GPR) as it's primary sensor. The GPR processor requires a sensitive detection algorithm to detect anomalies that may indicate the presence of a buried land mine. A general formula for a statistical detector is presented, consisting of a median filter to eliminate outliers, a local mean estimator using a Blackman window and a local covariance estimator. Advanced methods for robust estimation of the covariance matrix are presented and evaluated using data collected by the CID over buried land mines. This GPR detector is used as a preprocessor for image processing and mine classification algorithms that are used by a sensor fusion processor to determine when to activate the 'Killer' mechanism to neutralize the buried mine.

  12. Asymmetrical field emitter

    DOEpatents

    Fleming, J.G.; Smith, B.K.

    1995-10-10

    A method is disclosed for providing a field emitter with an asymmetrical emitter structure having a very sharp tip in close proximity to its gate. One preferred embodiment of the present invention includes an asymmetrical emitter and a gate. The emitter having a tip and a side is coupled to a substrate. The gate is connected to a step in the substrate. The step has a top surface and a side wall that is substantially parallel to the side of the emitter. The tip of the emitter is in close proximity to the gate. The emitter is at an emitter potential, and the gate is at a gate potential such that with the two potentials at appropriate values, electrons are emitted from the emitter. In one embodiment, the gate is separated from the emitter by an oxide layer, and the emitter is etched anisotropically to form its tip and its asymmetrical structure. 17 figs.

  13. Asymmetrical field emitter

    DOEpatents

    Fleming, James G.; Smith, Bradley K.

    1995-01-01

    Providing a field emitter with an asymmetrical emitter structure having a very sharp tip in close proximity to its gate. One preferred embodiment of the present invention includes an asymmetrical emitter and a gate. The emitter having a tip and a side is coupled to a substrate. The gate is connected to a step in the substrate. The step has a top surface and a side wall that is substantially parallel to the side of the emitter. The tip of the emitter is in close proximity to the gate. The emitter is at an emitter potential, and the gate is at a gate potential such that with the two potentials at appropriate values, electrons are emitted from the emitter. In one embodiment, the gate is separated from the emitter by an oxide layer, and the emitter is etched anisotropically to form its tip and its asymmetrical structure.

  14. V/UHF space radars: Spatial phase decorrelation of transionospheric signals in the equatorial region

    NASA Astrophysics Data System (ADS)

    van de Kamp, Max M. J. L.; Cannon, Paul S.; Watson, Robert J.

    2010-08-01

    The spatial decorrelation of V/UHF signals by equatorial ionospheric turbulence is studied using 150 and 400 MHz signals transmitted from low-earth-orbiting beacon satellites. The signals are monitored on a linear array of spaced antennas located on Ascension Island, and processed coherently to determine the cross-correlations of the phases of the received signals. Analyzing signals from the low-inclination satellite C/NOFS has provided an opportunity to investigate the correlation variations in and out of scintillating structures. As a necessary step, the geometrical component of the phase difference between antennas has been accurately removed by adjusting the satellite orbital information using the measured phases. In order to unambiguously measure the spatial phase correlation without any temporal effects, the phase cross-correlation was calculated as the cross-correlation function of time-synchronized signals. As expected, the VHF signals were more affected by scintillation than the UHF signals. When the signal propagated through patches of strong scintillation, the VHF signal became completely uncorrelated over an ionospheric distance of 130 m, while over the same distance the UHF phase correlation decreased to 0.55. The time-synchronized technique limited the spatial variations assessed to east-west distances of ˜300 m. To extend this range, a novel `phase reconstruction' technique was developed to link arrays of samples together. In the absence of scintillation the measured decorrelation distance is ˜10 km at both frequencies, but with increasing scintillation, the decorrelation distance falls to ˜100 m at VHF and 300 m at UHF. A clear relation between the decorrelation distance of the measured phase and S4 is observed and a simple empirical model has been derived.

  15. Multidimensional radar picture

    NASA Astrophysics Data System (ADS)

    Waz, Mariusz

    2010-05-01

    In marine navigation systems, the three-dimensional (3D) visualization is often and often used. Echosonders and sonars working in hydroacustic systems can present pictures in three dimensions. Currently, vector maps also offer 3D presentation. This presentation is used in aviation and underwater navigation. In the nearest future three-dimensional presentation may be obligatory presentation in displays of navigation systems. A part of these systems work with radar and communicates with it transmitting data in a digital form. 3D presentation of radar picture require a new technology to develop. In the first step it is necessary to compile digital form of radar signal. The modern navigation radar do not present data in three-dimensional form. Progress in technology of digital signal processing make it possible to create multidimensional radar pictures. For instance, the RSC (Radar Scan Converter) - digital radar picture recording and transforming tool can be used to create new picture online. Using RSC and techniques of modern computer graphics multidimensional radar pictures can be generated. The radar pictures mentioned should be readable for ECDIS. The paper presents a method for generating multidimensional radar picture from original signal coming from radar receiver.

  16. Planetary radars have announced our presence - Thoughts on short duration signals, verification and responses

    NASA Technical Reports Server (NTRS)

    Boyce, Peter B.

    1991-01-01

    The idea is set forth that criteria are developed to assess whether a particular limited-duration signal is evidence of extraterrestrial intelligence (ETI). The nature of short-duration signals is discussed to set the stage for a description of the NASA Microwave Observing Program. Criteria for evaluating the possibility of ETI origin for a signal include length, strength, band width, and accompaniment by a pseudorandom repetition. SETI is described as an educational document that can be employed to illustrate the real difficulties of interstellar communication. It is concluded that to avoid the negative aspects of SETI activities such as the notion of fashioning a return signal the intergenerational nature of interstellar communication be emphasized for the public.

  17. Removal of systematic seasonal atmospheric signal from interferometric synthetic aperture radar ground deformation time series

    NASA Astrophysics Data System (ADS)

    Samsonov, Sergey V.; Trishchenko, Alexander P.; Tiampo, Kristy; González, Pablo J.; Zhang, Yu; Fernández, José

    2014-09-01

    Applying the Multidimensional Small Baseline Subset interferometric synthetic aperture radar algorithm to about 1500 Envisat and RADARSAT-2 interferograms spanning 2003-2013, we computed time series of ground deformation over Naples Bay Area in Italy. Two active volcanoes, Vesuvius and Campi Flegrei, are located in this area in close proximity to the densely populated city of Naples. For the first time, and with remarkable clarity, we observed decade-long elevation-dependent seasonal oscillations of the vertical displacement component with a peak-to-peak amplitude of up to 3.0 cm, substantially larger than the long-term deformation rate (<0.6 cm/yr). Analysis, utilizing surface weather and radiosonde data, linked observed oscillations with seasonal fluctuations of water vapor, air pressure, and temperature in the lower troposphere. The modeled correction is in a good agreement with observed results. The mean, absolute, and RMS differences are 0.014 cm, 0.073 cm, and 0.087 cm, respectively. Atmospherically corrected time series confirmed continuing subsidence at Vesuvius previously observed by geodetic techniques.

  18. Doppler frequency in interplanetary radar and general relativity

    NASA Technical Reports Server (NTRS)

    Mcvittie, G. C.

    1972-01-01

    The change of frequency of an interplanetary radar signal sent from the earth to another planet or to a space probe is worked out according to general relativity. The Schwarzschild spacetime is employed and its null geodesics control the motion of the signals. Exact Doppler frequency formulas are derived for one-way and two-way radar in terms of an arbitrary Schwarzschild radial coordinate. A reduction to the special relativity case is used to interpret the formulas in terms of the relative radial velocity of emitter and target. The general relativity corrections are worked out approximately for each of three possible Schwarzschild radial coordinates, and a numerical example is given. The amount of the correction is different according as one or the other of the Schwarzschild coordinates is identified with the radius vector deduced from classical celestial mechanics. The identification problem is discussed.

  19. Modelisation du Signal Radar EN Milieu Stratifie et Evaluation de Techniques de Mesure de L'humidite du Sol

    NASA Astrophysics Data System (ADS)

    Boisvert, Johanne

    La presente etude se penche sur des problemes relies a l'echantillonnage de l'humidite de sol et a l'estimation du signal radar sur sols nus. Le travail se divise en deux volets. Le volet 1 evalue trois techniques de mesure de l'humidite du sol (gravimetrie, reflectometrie temporelle et sonde dielectrique) et deux protocoles d'echantillonnage. Dans le volet 2, un modele de simulation du signal en milieu stratifie est developpe, et les estimes de signal obtenus sont compares aux estimes bases uniquement sur une valeur moyenne d'humidite du sol prise sur une profondeur fixe d'echantillonnage. Les differences entre les deux estimes dependent de la frequence et du choix judicieux de la profondeur d'echantillonnage; elles sont plus importantes aux faibles angles et en polarisation HV, puis VV. Le modele de simulation a aussi ete utilise pour etudier la profondeur de penetration du signal et en deduire la profondeur optimale d'echantillonnage en tenant compte des caracteristiques du signal. Une variation de 25 ^circ de l'angle d'incidence a peu d'effet sur la profondeur de penetration en bande Ku; l'ecart reste inferieur ou egal a 0,5 cm en bande C mais peut atteindre 1,3 cm en bande L. L'impact de la polarisation est nul en bande Ku mais croi t avec l'angle d'incidence en bande C et L. A 50^circ, il est, en moyenne de 1 cm en bande C et de 2 cm en bande L. En polarisation VV, la profondeur croi t avec une augmentation de l'angle alors que l'effet est inverse en polarisation HH. Deux methodes pour estimer la profondeur d'echantillonnage en conditions operationnelles sont presentees. Lorsqu'on inverse un modele pour estimer l'humidite du sol a partir du signal, ces methodes permettent aussi d'estimer l'epaisseur de sol representee par l'humidite ainsi estimee.

  20. Emittance Theory for Thin Film Selective Emitter

    NASA Technical Reports Server (NTRS)

    Chubb, Donald L.; Lowe, Roland A.; Good, Brian S.

    1994-01-01

    Thin films of high temperature garnet materials such as yttrium aluminum garnet (YAG) doped with rare earths are currently being investigated as selective emitters. This paper presents a radiative transfer analysis of the thin film emitter. From this analysis the emitter efficiency and power density are calculated. Results based on measured extinction coefficients for erbium-YAG and holmium-YAG are presented. These results indicated that emitter efficiencies of 50 percent and power densities of several watts/sq cm are attainable at moderate temperatures (less than 1750 K).

  1. Bistatic-radar investigation

    NASA Technical Reports Server (NTRS)

    Howard, H. T.; Tyler, G. L.

    1972-01-01

    A bistatic-radar study during the Apollo 15 flight is reviewed, with the orbiting command module as one terminal. Bistatic-radar slopes are compared to geological maps of Copernicus and Riphaeus mountain regions and Kepler region. Basic theory is discussed, including the radar echoes composed of the sum of the reflections from the moon area that is mutually visible from the spacecraft and earth. A signal receiving system and data processing system are outlined schematically.

  2. Historical sketch: Radar geology

    NASA Technical Reports Server (NTRS)

    Macdonald, H.

    1980-01-01

    A chronological assessment is given of the broad spectra of technology associated with radar geology. Particular attention is given to the most recent developments made in the areas of microwave Earth resources applications and geologic remote sensing from aircraft and satellite. The significance of space derived radar in geologic investigations is discussed and the scientific basis for exploiting the sensitivity of radar signals to various aspects of geologic terrain is given.

  3. Apodized RFI filtering of synthetic aperture radar images

    SciTech Connect

    Doerry, Armin Walter

    2014-02-01

    Fine resolution Synthetic Aperture Radar (SAR) systems necessarily require wide bandwidths that often overlap spectrum utilized by other wireless services. These other emitters pose a source of Radio Frequency Interference (RFI) to the SAR echo signals that degrades SAR image quality. Filtering, or excising, the offending spectral contaminants will mitigate the interference, but at a cost of often degrading the SAR image in other ways, notably by raising offensive sidelobe levels. This report proposes borrowing an idea from nonlinear sidelobe apodization techniques to suppress interference without the attendant increase in sidelobe levels. The simple post-processing technique is termed Apodized RFI Filtering (ARF).

  4. Emittance Theory for Cylindrical Fiber Selective Emitter

    NASA Technical Reports Server (NTRS)

    Chubb, Donald L.

    1998-01-01

    A fibrous rare earth selective emitter is approximated as an infinitely long, cylinder. The spectral emittance, e(sub x), is obtained L- by solving the radiative transfer equations with appropriate boundary conditions and uniform temperature. For optical depth, K(sub R), where alpha(sub lambda), is the extinction coefficient and R is the cylinder radius, greater than 1 the spectral emittance depths, K(sub R) alpha(sub lambda)R, is nearly at its maximum value. There is an optimum cylinder radius, R(sub opt) for maximum emitter efficiency, n(sub E). Values for R(sub opt) are strongly dependent on the number of emission bands of the material. The optimum radius decreases slowly with increasing emitter temperature, while the maximum efficiency and useful radiated power increase rapidly with increasing, temperature.

  5. Emittance Theory for Cylindrical Fiber Selective Emitter

    NASA Technical Reports Server (NTRS)

    Chubb, Donald L.

    1998-01-01

    A fibrous rare earth selective emitter is approximated as an infinitely long cylinder. The spectral emittance, epsilon(lambda), is obtained by solving the radiative transfer equations with appropriate boundary conditions and uniform temperature. For optical depths, Kappa(R) = alpha(lambda)R, where alpha(lambda) is the extinction coefficient and R is the cylinder radius, greater than 1 the spectral emittance is nearly at its maximum value. There is an optimum cylinder radius, R(opt), for maximum emitter efficiency, eta(E). Values for R(opt) are strongly dependent on the number of emission bands of the material. The optimum radius decreases slowly with increasing emitter temperature, while the maximum efficiency and useful radiated power increase rapidly with increasing temperature.

  6. Signal processing and image formation using low-frequency ultra-wideband radar data

    NASA Astrophysics Data System (ADS)

    Nguyen, Lam H.; Ressler, Marc; Soumekh, Mehrdad

    2004-09-01

    In support of the U.S. Army Night Vision And Electronic Sensors Directorate (NVESD), the U.S. Army Research Laboratory (ARL) has developed infrastructures, tools, and algorithms to evaluate the data set. This paper focuses on the signal processing and image formation using data from a low-frequency ultra-wideband sensor. We examine various issues that are associated with this class of SAR databases such as radio frequency interference (RFI), the effects of spectral notches, and errors in motion measurement to image quality. We show the pre-processing steps such as frequency and phase calibration, radio frequency interference extraction. We also show the application of digital spotlight technique to correct motion errors introduced by the measurement system. Finally, we show the resulting SAR imagery of various minefields.

  7. Support vector data description for detecting the air-ground interface in ground penetrating radar signals

    NASA Astrophysics Data System (ADS)

    Wood, Joshua; Wilson, Joseph

    2011-06-01

    In using GPR images for landmine detection it is often useful to identify the air-ground interface in the GRP signal for alignment purposes. A common simple technique for doing this is to assume that the highest return in an A-scan is from the reflection due to the ground and to use that as the location of the interface. However there are many situations, such as the presence of nose clutter or shallow sub-surface objects, that can cause the global maximum estimate to be incorrect. A Support Vector Data Description (SVDD) is a one-class classifier related to the SVM which encloses the class in a hyper-sphere as opposed to using a hyper-plane as a decision boundary. We apply SVDD to the problem of detection of the air-ground interface by treating each sample in an A-scan, with some number of leading and trailing samples, as a feature vector. Training is done using a set of feature vectors based on known interfaces and detection is done by creating feature vectors from each of the samples in an A-scan, applying the trained SVDD to them and selecting the one with the least distance from the center of the hyper-sphere. We compare this approach with the global maximum approach, examining both the performance on human truthed data and how each method affects false alarm and true positive rates when used as the alignment method in mine detection algorithms.

  8. Comparison of algorithms for finding the air-ground interface in ground penetrating radar signals

    NASA Astrophysics Data System (ADS)

    Wood, Joshua; Bolton, Jeremy; Casella, George; Collins, Leslie; Gader, Paul; Glenn, Taylor; Ho, Jeffery; Lee, Wen; Mueller, Richard; Smock, Brandon; Torrione, Peter; Watford, Ken; Wilson, Joseph

    2011-06-01

    In using GPR images for landmine detection it is often useful to identify the air-ground interface in the GPR signal for alignment purposes. A number of algorithms have been proposed to solve the air-ground interface detection problem, including some which use only A-scan data, and others which track the ground in B-scans or C-scans. Here we develop a framework for comparing these algorithms relative to one another and we examine the results. The evaluations are performed on data that have been categorized in terms of features that make the air-ground interface difficult to find or track. The data also have associated human selected ground locations, from multiple evaluators, that can be used for determining correctness. A distribution is placed over each of the human selected ground locations, with the sum of these distributions at the algorithm selected location used as a measure of its correctness. Algorithms are also evaluated in terms of how they affect the false alarm and true positive rates of mine detection algorithms that use ground aligned data.

  9. Floating emitter solar cell

    NASA Technical Reports Server (NTRS)

    Chih, Sah (Inventor); Cheng, Li-Jen (Inventor)

    1987-01-01

    A front surface contact floating emitter solar cell transistor is provided in a semiconductor body (n-type), in which floating emitter sections (p-type) are diffused or implanted in the front surface. Between the emitter sections, a further section is diffused or implanted in the front surface, but isolated from the floating emitter sections, for use either as a base contact to the n-type semiconductor body, in which case the section is doped n+, or as a collector for the adjacent emitter sections.

  10. Using antennas separated in flight direction to avoid effect of emitter clock drift in geolocation

    DOEpatents

    Ormesher, Richard C.; Bickel, Douglas L

    2012-10-23

    The location of a land-based radio frequency (RF) emitter is determined from an airborne platform. RF signaling is received from the RF emitter via first and second antennas. In response to the received RF signaling, signal samples for both antennas are produced and processed to determine the location of the RF emitter.

  11. Photonically engineered incandescent emitter

    DOEpatents

    Gee, James M.; Lin, Shawn-Yu; Fleming, James G.; Moreno, James B.

    2003-08-26

    A photonically engineered incandescence is disclosed. The emitter materials and photonic crystal structure can be chosen to modify or suppress thermal radiation above a cutoff wavelength, causing the emitter to selectively emit in the visible and near-infrared portions of the spectrum. An efficient incandescent lamp is enabled thereby. A method for fabricating a three-dimensional photonic crystal of a structural material, suitable for the incandescent emitter, is also disclosed.

  12. Photonically Engineered Incandescent Emitter

    DOEpatents

    Gee, James M.; Lin, Shawn-Yu; Fleming, James G.; Moreno, James B.

    2005-03-22

    A photonically engineered incandescence is disclosed. The emitter materials and photonic crystal structure can be chosen to modify or suppress thermal radiation above a cutoff wavelength, causing the emitter to selectively emit in the visible and near-infrared portions of the spectrum. An efficient incandescent lamp is enabled thereby. A method for fabricating a three-dimensional photonic crystal of a structural material, suitable for the incandescent emitter, is also disclosed.

  13. Radar Imaging of Non-Uniformly Rotating Targets via a Novel Approach for Multi-Component AM-FM Signal Parameter Estimation

    PubMed Central

    Wang, Yong

    2015-01-01

    A novel radar imaging approach for non-uniformly rotating targets is proposed in this study. It is assumed that the maneuverability of the non-cooperative target is severe, and the received signal in a range cell can be modeled as multi-component amplitude-modulated and frequency-modulated (AM-FM) signals after motion compensation. Then, the modified version of Chirplet decomposition (MCD) based on the integrated high order ambiguity function (IHAF) is presented for the parameter estimation of AM-FM signals, and the corresponding high quality instantaneous ISAR images can be obtained from the estimated parameters. Compared with the MCD algorithm based on the generalized cubic phase function (GCPF) in the authors’ previous paper, the novel algorithm presented in this paper is more accurate and efficient, and the results with simulated and real data demonstrate the superiority of the proposed method. PMID:25806870

  14. Diamond fiber field emitters

    DOEpatents

    Blanchet-Fincher, Graciela B.; Coates, Don M.; Devlin, David J.; Eaton, David F.; Silzars, Aris K.; Valone, Steven M.

    1996-01-01

    A field emission electron emitter comprising an electrode formed of at least one diamond, diamond-like carbon or glassy carbon composite fiber, said composite fiber having a non-diamond core and a diamond, diamond-like carbon or glassy carbon coating on said non-diamond core, and electronic devices employing such a field emission electron emitter.

  15. Pulsed hybrid field emitter

    DOEpatents

    Sampayan, S.E.

    1998-03-03

    A hybrid emitter exploits the electric field created by a rapidly depoled ferroelectric material. Combining the emission properties of a planar thin film diamond emitter with a ferroelectric alleviates the present technological problems associated with both types of emitters and provides a robust, extremely long life, high current density cathode of the type required by emerging microwave power generation, accelerator technology and display applications. This new hybrid emitter is easy to fabricate and not susceptible to the same failures which plague microstructure field emitter technology. Local electrode geometries and electric field are determined independently from those for optimum transport and brightness preservation. Due to the large amount of surface charge created on the ferroelectric, the emitted electrons have significant energy, thus eliminating the requirement for specialized phosphors in emissive flat-panel displays. 11 figs.

  16. Pulsed hybrid field emitter

    DOEpatents

    Sampayan, Stephen E.

    1998-01-01

    A hybrid emitter exploits the electric field created by a rapidly depoled ferroelectric material. Combining the emission properties of a planar thin film diamond emitter with a ferroelectric alleviates the present technological problems associated with both types of emitters and provides a robust, extremely long life, high current density cathode of the type required by emerging microwave power generation, accelerator technology and display applications. This new hybrid emitter is easy to fabricate and not susceptible to the same failures which plague microstructure field emitter technology. Local electrode geometries and electric field are determined independently from those for optimum transport and brightness preservation. Due to the large amount of surface charge created on the ferroelectric, the emitted electrons have significant energy, thus eliminating the requirement for specialized phosphors in emissive flat-panel displays.

  17. Micropower impulse radar imaging

    SciTech Connect

    Hall, M.S.

    1995-11-01

    From designs developed at the Lawrence Livermore National Laboratory (LLNL) in radar and imaging technologies, there exists the potential for a variety of applications in both public and private sectors. Presently tests are being conducted for the detection of buried mines and the analysis of civil structures. These new systems use a patented ultra-wide band (impulse) radar technology known as Micropower Impulse Radar (GPR) imaging systems. LLNL has also developed signal processing software capable of producing 2-D and 3-D images of objects embedded in materials such as soil, wood and concrete. My assignment while at LLNL has focused on the testing of different radar configurations and applications, as well as assisting in the creation of computer algorithms which enable the radar to scan target areas of different geometeries.

  18. Intelligent radar data processing

    NASA Astrophysics Data System (ADS)

    Holzbaur, Ulrich D.

    The application of artificial intelligence principles to the processing of radar signals is considered theoretically. The main capabilities required are learning and adaptation in a changing environment, processing and modeling information (especially dynamics and uncertainty), and decision-making based on all available information (taking its reliability into account). For the application to combat-aircraft radar systems, the tasks include the combination of data from different types of sensors, reacting to electronic counter-countermeasures, evaluation of how much data should be acquired (energy and radiation management), control of the radar, tracking, and identification. Also discussed are related uses such as monitoring the avionics systems, supporting pilot decisions with respect to the radar system, and general applications in radar-system R&D.

  19. Spaceborne weather radar

    NASA Technical Reports Server (NTRS)

    Meneghini, Robert; Kozu, Toshiaki

    1990-01-01

    The present work on the development status of spaceborne weather radar systems and services discusses radar instrument complementarities, the current forms of equations for the characterization of such aspects of weather radar performance as surface and mirror-image returns, polarimetry, and Doppler considerations, and such essential factors in spaceborne weather radar design as frequency selection, scanning modes, and the application of SAR to rain detection. Attention is then given to radar signal absorption by the various atmospheric gases, rain drop size distribution and wind velocity determinations, and the characteristics of clouds, as well as the range of available estimation methods for backscattering, single- and dual-wavelength attenuation, and polarimetric and climatological characteristics.

  20. Simulating the Phoenix Landing Radar System

    NASA Technical Reports Server (NTRS)

    Chen, Curtis W.

    2008-01-01

    A computer program called phxlrsim simulates the behavior of the radar system used as an altimeter and velocimeter during the entry, descent, and landing phases of the Phoenix lander spacecraft. The simulation includes modeling of internal functions of the radar system, the spacecraft trajectory, and the terrain. The computational models incorporate representations of nonideal hardware effects in the radar system and effects of radar speckle (coherent scatter of radar signals from terrain).

  1. Enhanced Mars Radar Observations with the Goldstone Solar System Radar

    NASA Astrophysics Data System (ADS)

    Haldemann, A. F. C.; Jurgens, R. F.; Anderson, F. S.; Slade, M. A.

    2000-10-01

    The Goldstone Solar System Radar (GSSR) has successfully collected radar echo data from Mars over the past 30 years. GSSR radar data were critical in assessing the Viking Lander 1 as well as the Mars Pathfinder landing sites. A reprocessing to common format of the last ten years worth of GSSR Mars delay-Doppler sub-Earth radar track profiles was recently completed in aid of landing site characterization. The radar data obtained since 1988 by the GSSR comprise some 73 delay-Doppler radar tracks. Sixteen of those tracks also have interferometric radar data, which has never been processed, because the signal to noise is insufficient to constrain both the phases and the radar scattering parameters. The new topographic data from the Mars Orbiter Laser Altimeter on the Mars Global Surveyor spacecraft offer the best means to finally make radar maps that extend the radar properties coverage some 3 to 4 degrees beyond the sub-Earth radar track. This would be a significant expansion of the dataset, and is all the more warranted as the radar spatial resolution improves away from the sub-Earth track. At the outer edges the radar resolution cell is of the same order of size as the landing site ellipses for future mission (approximately 20 km diameter). Initial results of processing the interferometric data will be presented at the meeting. The 2001 Mars opposition offers an opportunity to fill in some areas where radar data are lacking in the current dataset. We are planning 18 radar experiments from May through July of 2001. The goal of the observations will be to provide new, interferometric, improved-spatial-resolution radar data over the equatorial regions (latitudes -2 to +7) of Mars, in particular over the so-called Hematite Site in Sinus Meridiani. This work was carried out at the Jet Propulsion Laboratory, a division of the California Institute of Technology, with funding from the Mars Data Analysis Program of NASA OSS.

  2. Attenuation of Weather Radar Signals Due to Wetting of the Radome by Rainwater or Incomplete Filling of the Beam Volume

    NASA Technical Reports Server (NTRS)

    Merceret, Francis J.; Ward, Jennifer G.

    2000-01-01

    A search of scientific literature, both printed and electronic, was undertaken to provide quantitative estimates of attenuation effects of rainfall on weather radar radomes. The emphasis was on C-band (5 cm) and S-Band (10 cm) wavelengths. An empirical model was developed to estimate two-way wet radome losses as a function of frequency and rainfall rate for both standard and hydrophobic radomes. The model fits most of the published data within +/- 1 dB at both target wavelengths for rain rates from less than ten to more than 200 mm/hr. Rainfall attenuation effects remain under 1 dB at both frequencies regardless of radome type for rainfall rates up to 10 mm/hr. S-Band losses with a hydrophobic radome such as that on the WSR-88D remain under 1 dB up to 100 mm/hr. C-Band losses on standard radomes such as that on the Patrick AFB (Air Force Base) WSR-74C can reach as much as 5 dB at 50 mm/hr. In addition, calculations were performed to determine the reduction in effective reflectivity, Z, when a radar target is smaller than the sampling volume of the radar. Results are presented for both the Patrick Air Force Base WSR-74C and the WSR-88D as a function of target size and range.

  3. Active radar jamming

    NASA Astrophysics Data System (ADS)

    Jernemalm, Veine

    1988-09-01

    Active radar jammers are described. In confusion jammers the perturbing action is produced by thermal noise which is intensified, or by a carrier wave modulated by a noise signal, or by a carrier wave which is frequency modulated with a lot of sine waves of different frequencies. There are jammers to be used once, which are fired to the spot or hang from a parachute. Deception jammers (misleading jammers) emit false radar echoes, one or several produced by a repetition system, requiring a certain form of memory. It is shown how to emit varying false distance or velocities, and how to disturb angles in a radar used to guide artillery fire.

  4. Obstacle penetrating dynamic radar imaging system

    DOEpatents

    Romero, Carlos E.; Zumstein, James E.; Chang, John T.; Leach, Jr.. Richard R.

    2006-12-12

    An obstacle penetrating dynamic radar imaging system for the detection, tracking, and imaging of an individual, animal, or object comprising a multiplicity of low power ultra wideband radar units that produce a set of return radar signals from the individual, animal, or object, and a processing system for said set of return radar signals for detection, tracking, and imaging of the individual, animal, or object. The system provides a radar video system for detecting and tracking an individual, animal, or object by producing a set of return radar signals from the individual, animal, or object with a multiplicity of low power ultra wideband radar units, and processing said set of return radar signals for detecting and tracking of the individual, animal, or object.

  5. Analysis, comparison, and modeling of radar interferometry, date of surface deformation signals associated with underground explosions, mine collapses and earthquakes. Phase I: underground explosions, Nevada Test Site

    SciTech Connect

    Foxall, W; Vincent, P; Walter, W

    1999-07-23

    We have previously presented simple elastic deformation modeling results for three classes of seismic events of concern in monitoring the CTBT--underground explosions, mine collapses and earthquakes. Those results explored the theoretical detectability of each event type using synthetic aperture radar interferometry (InSAR) based on commercially available satellite data. In those studies we identified and compared the characteristics of synthetic interferograms that distinguish each event type, as well the ability of the interferograms to constrain source parameters. These idealized modeling results, together with preliminary analysis of InSAR data for the 1995 mb 5.2 Solvay mine collapse in southwestern Wyoming, suggested that InSAR data used in conjunction with regional seismic monitoring holds great potential for CTBT discrimination and seismic source analysis, as well as providing accurate ground truth parameters for regional calibration events. In this paper we further examine the detectability and ''discriminating'' power of InSAR by presenting results from InSAR data processing, analysis and modeling of the surface deformation signals associated with underground explosions. Specifically, we present results of a detailed study of coseismic and postseismic surface deformation signals associated with underground nuclear and chemical explosion tests at the Nevada Test Site (NTS). Several interferograms were formed from raw ERS-1/2 radar data covering different time spans and epochs beginning just prior to the last U.S. nuclear tests in 1992 and ending in 1996. These interferograms have yielded information about the nature and duration of the source processes that produced the surface deformations associated with these events. A critical result of this study is that significant post-event surface deformation associated with underground nuclear explosions detonated at depths in excess of 600 meters can be detected using differential radar interferometry. An immediate implication of this finding is that underground nuclear explosions may not need to be captured coseismically by radar images acquired before and after an event in order to be detectable. This has obvious advantages in CTBT monitoring since suspect seismic events--which usually can be located within a 100 km by 100 km area of an ERS-1/2 satellite frame by established seismic methods-can be imaged after the event has been identified and located by existing regional seismic networks. Key Words: InSAR, SLC images, interferogram, synthetic interferogram, ERS-1/2 frame, phase unwrapping, DEM, coseismic, postseismic, source parameters.

  6. DIAMOND SECONDARY EMITTER

    SciTech Connect

    BEN-ZVI, I.; RAO, T.; BURRILL, A.; CHANG, X.; GRIMES, J.; RANK, J.; SEGALOV, Z.; SMEDLEY, J.

    2005-10-09

    We present the design and experimental progress on the diamond secondary emitter as an electron source for high average power injectors. The design criteria for average currents up to 1 A and charge up to 20 nC are established. Secondary Electron Yield (SEY) exceeding 200 in transmission mode and 50 in emission mode have been measured. Preliminary results on the design and fabrication of the self contained capsule with primary electron source and secondary electron emitter will also be presented.

  7. A controlled experiment to investigate the correlation between early-time signal attributes of ground-coupled radar and soil dielectric properties

    NASA Astrophysics Data System (ADS)

    Pettinelli, Elena; Di Matteo, Andrea; Beaubien, Stanley Eugene; Mattei, Elisabetta; Lauro, Sebastian Emanuel; Galli, Alessandro; Vannaroni, Giuliano

    2014-02-01

    Ground-coupled radar has been used in the literature to estimate shallow subsoil permittivity using ground-wave velocity measurements. It has also been shown that the electromagnetic (EM) properties of the soil significantly affect antenna performance, modifying in particular the amplitude, shape, and duration of the 'early-time' Ground Penetrating Radar (GPR) signals. To quantitatively evaluate these effects we built a test site consisting of a 4 × 7 × 1.2 m volume filled primarily with sand; this volume is hydraulically isolated from the surroundings and contains buried pipes in which water can be introduced or removed to control the level of the water table. On a regular grid of 28 points we measured the soil dielectric properties at depth intervals of 0-10 and 0-20 cm using Time Domain Reflectometry (TDR) probes, and collected GPR data using both 250 and 500 MHz bistatic antennas. The measurements were performed with the water table at different depths to systematically change the shallow-soil dielectric properties. Relative permittivity and conductivity values were calculated from the TDR data, and the average envelopes of the first half cycle of the early-time GPR signals were computed. Data analysis shows a high degree of linear correlation (r ≥ 0.8) between the early-time signal attributes for both antenna frequencies and the EM properties obtained using both TDR probe lengths. The highest correlation (r = 0.9) was found between the 500 MHz data and the permittivity measured along the 0-20 cm depth interval; this relationship is explained in terms of ground wave penetration. The results of our investigation confirm previous field observations and are in full agreement with theoretical predictions and related numerical simulations, highlighting the potential for alternative convenient approaches to predict EM properties of the shallow subsoil.

  8. Radar and Lidar Radar DEM

    NASA Technical Reports Server (NTRS)

    Liskovich, Diana; Simard, Marc

    2011-01-01

    Using radar and lidar data, the aim is to improve 3D rendering of terrain, including digital elevation models (DEM) and estimates of vegetation height and biomass in a variety of forest types and terrains. The 3D mapping of vegetation structure and the analysis are useful to determine the role of forest in climate change (carbon cycle), in providing habitat and as a provider of socio-economic services. This in turn will lead to potential for development of more effective land-use management. The first part of the project was to characterize the Shuttle Radar Topography Mission DEM error with respect to ICESat/GLAS point estimates of elevation. We investigated potential trends with latitude, canopy height, signal to noise ratio (SNR), number of LiDAR waveform peaks, and maximum peak width. Scatter plots were produced for each variable and were fitted with 1st and 2nd degree polynomials. Higher order trends were visually inspected through filtering with a mean and median filter. We also assessed trends in the DEM error variance. Finally, a map showing how DEM error was geographically distributed globally was created.

  9. Radar principles

    NASA Technical Reports Server (NTRS)

    Sato, Toru

    1989-01-01

    Discussed here is a kind of radar called atmospheric radar, which has as its target clear air echoes from the earth's atmosphere produced by fluctuations of the atmospheric index of refraction. Topics reviewed include the vertical structure of the atmosphere, the radio refractive index and its fluctuations, the radar equation (a relation between transmitted and received power), radar equations for distributed targets and spectral echoes, near field correction, pulsed waveforms, the Doppler principle, and velocity field measurements.

  10. Inverse synthetic aperture radar imaging of targets with complex motions based on modified chirp rate-quadratic chirp rate distribution for cubic phase signal

    NASA Astrophysics Data System (ADS)

    Yanyan, Li; Tao, Su; Jibin, Zheng

    2015-01-01

    For targets with complex motions, the time-varying Doppler frequency deteriorates inverse synthetic aperture radar (ISAR) images. After range alignment and phase adjustment, azimuth echoes in a range cell can be modeled as multicomponent cubic phase signals (CPSs). The chirp rate and the quadratic chirp rate of the CPS are identified as the causes of the time-varying Doppler frequency; thus, it is necessary to estimate these two parameters correctly to obtain a well-focused ISAR image. The parameter-estimation algorithm based on the modified chirp rate-quadratic chirp rate distribution (M-CRQCRD) is proposed for the CPS and applied to the ISAR imaging of targets with complex motions. The computational cost of M-CRQCRD is low, because it can be implemented by the fast Fourier transform (FFT) and the nonuniform FFT easily. Compared to two representative parameter-estimation algorithms, the M-CRQCRD can acquire a higher antinoise performance due to the introduction of an optimal lag-time. Through simulations and analyses for the synthetic radar data, the effectiveness of the M-CRQCRD and the imaging algorithm based on the M-CRQCRD are verified.

  11. Terminal Doppler weather radar

    NASA Astrophysics Data System (ADS)

    Michelson, M.; Shrader, W. W.; Wieler, J. G.

    1990-02-01

    The terminal Doppler weather radar (TDWR) system, now under development, will provide automatic detection of microbursts and low-level wind shear. This paper discusses the TDWR performance parameters and describes its structural elements, including the antenna subsystem, the transmitter, the receiver/exciter, the digital signal processor, and the radar product generator/remote monitoring subsystem. Attention is also given to the processes of the base data formation, point target removal, signal-to-noise thresholding, and velocity de-aliasing and to the TDWR algorithms and displays. A schematic diagram of the TDWR system is presented.

  12. Radar applications overview

    NASA Astrophysics Data System (ADS)

    Greenspan, Marshall

    1996-06-01

    During the fifty years since its initial development as a means of providing early warning of airborne attacks against allied countries during World War II, radar systems have developed to the point of being highly mobile and versatile systems capable of supporting a wide variety of remote sensing applications. Instead of being tied to stationary land-based sites, radar systems have found their way into highly mobile land vehicles as well as into aircraft, missiles, and ships of all sizes. Of all these applications, however, the most exciting revolution has occurred in the airborne platform arena where advanced technology radars can be found in all shapes and sizes...ranging from the large AWACS and Joint STARS long range surveillance and targeting systems to small millimeter wave multi-spectral sensors on smart weapons that can detect and identify their targets through the use of highly sophisticated digital signal processing hardware and software. This paper presents an overview of these radar applications with the emphasis on modern airborne sensors that span the RF spectrum. It will identify and describe the factors that influence the parameters of low frequency and ultra wide band radars designed to penetrate ground and dense foliage environments and locate within them buried mines, enemy armor, and other concealed or camouflaged weapons of war. It will similarly examine the factors that lead to the development of airborne radar systems that support long range extended endurance airborne surveillance platforms designed to detect and precision-located both small high speed airborne threats as well as highly mobile time critical moving and stationary surface vehicles. The mission needs and associated radar design impacts will be contrasted with those of radar systems designed for high maneuverability rapid acquisition tactical strike warfare platforms, and shorter range cued air-to-surface weapons with integral smart radar sensors.

  13. Real-time parallel implementation of Pulse-Doppler radar signal processing chain on a massively parallel machine based on multi-core DSP and Serial RapidIO interconnect

    NASA Astrophysics Data System (ADS)

    Klilou, Abdessamad; Belkouch, Said; Elleaume, Philippe; Le Gall, Philippe; Bourzeix, François; Hassani, Moha M'Rabet

    2014-12-01

    Pulse-Doppler radars require high-computing power. A massively parallel machine has been developed in this paper to implement a Pulse-Doppler radar signal processing chain in real-time fashion. The proposed machine consists of two C6678 digital signal processors (DSPs), each with eight DSP cores, interconnected with Serial RapidIO (SRIO) bus. In this study, each individual core is considered as the basic processing element; hence, the proposed parallel machine contains 16 processing elements. A straightforward model has been adopted to distribute the Pulse-Doppler radar signal processing chain. This model provides low latency, but communication inefficiency limits system performance. This paper proposes several optimizations that greatly reduce the inter-processor communication in a straightforward model and improves the parallel efficiency of the system. A use case of the Pulse-Doppler radar signal processing chain has been used to illustrate and validate the concept of the proposed mapping model. Experimental results show that the parallel efficiency of the proposed parallel machine is about 90%.

  14. Cancer from internal emitters

    SciTech Connect

    Boecker, B.B.; Griffith, W.C. Jr.

    1995-10-01

    Irradiation from internal emitters, or internally deposited radionuclides, is an important component of radiation exposures encountered in the workplace, home, or general environment. Long-term studies of human populations exposed to various internal emitters by different routes of exposure are producing critical information for the protection of workers and members of the general public. The purpose of this report is to examine recent developments and discuss their potential importance for understanding lifetime cancer risks from internal emitters. The major populations of persons being studied for lifetime health effects from internally deposited radionuclides are well known: Lung cancer in underground miners who inhaled Rn progeny, liver cancer from persons injected with the Th-containing radiographic contrast medium Thorotrast, bone cancer from occupational or medical intakes of {sup 226}Ra or medical injections of {sup 224}Ra, and thyroid cancer from exposures to iodine radionuclides in the environment or for medical purposes.

  15. Neural-network laser radar.

    PubMed

    Lizuka, K; Fujii, S

    1994-05-01

    A laser radar whose resolution is greater than 1 µm is reported. We present the radar results when they are used for such purposes as determining the size of a void inside a silicon wafer, profiling a cross-sectional pattern of an optical fiber, studying the birefringence of a lithium-niobate crystal, or finding a fault in an optical guide in an optical integrated-circuit wafer. Neural-network theory was used in processing the radar signal. Radar processing based on neural-network theory gave significantly superior resolution compared with Fourier-transform-based processing. PMID:20885600

  16. Microwave Doppler radar in unobtrusive health monitoring

    NASA Astrophysics Data System (ADS)

    Silva Girão, P.; Postolache, O.; Postolache, G.; Ramos, P. M.; Dias Pereira, J. M.

    2015-02-01

    This article frames the use of microwave Doppler radar in the context of ubiquitous, non-obstructive health monitoring. The use of a 24GHz CW (continuous wave) Doppler radar based on a commercial off-the-shelf transceiver for remote sensing of heart rate and respiration rate based on the acquisition and processing of the signals delivered by the radar is briefly presented.

  17. Electrochemical formation of field emitters

    DOEpatents

    Bernhardt, Anthony F.

    1999-01-01

    Electrochemical formation of field emitters, particularly useful in the fabrication of flat panel displays. The fabrication involves field emitting points in a gated field emitter structure. Metal field emitters are formed by electroplating and the shape of the formed emitter is controlled by the potential imposed on the gate as well as on a separate counter electrode. This allows sharp emitters to be formed in a more inexpensive and manufacturable process than vacuum deposition processes used at present. The fabrication process involves etching of the gate metal and the dielectric layer down to the resistor layer, and then electroplating the etched area and forming an electroplated emitter point in the etched area.

  18. Shuttle orbiter radar cross-sectional analysis

    NASA Technical Reports Server (NTRS)

    Cooper, D. W.; James, R.

    1979-01-01

    Theoretical and model simulation studies on signal to noise levels and shuttle radar cross section are described. Pre-mission system calibrations, system configuration, and postmission system calibration of the tracking radars are described. Conversion of target range, azimuth, and elevation into radar centered east north vertical position coordinates are evaluated. The location of the impinging rf energy with respect to the target vehicles body axis triad is calculated. Cross section correlation between the two radars is presented.

  19. Radar operation in a hostile electromagnetic environment

    SciTech Connect

    Doerry, Armin Walter

    2014-03-01

    Radar ISR does not always involve cooperative or even friendly targets. An adversary has numerous techniques available to him to counter the effectiveness of a radar ISR sensor. These generally fall under the banner of jamming, spoofing, or otherwise interfering with the EM signals required by the radar sensor. Consequently mitigation techniques are prudent to retain efficacy of the radar sensor. We discuss in general terms a number of mitigation techniques.

  20. FACET Emittance Growth

    SciTech Connect

    Frederico, J; Hogan, M.J.; Nosochkov, Y.; Litos, M.D.; Raubenheimer, T.; /SLAC

    2011-04-05

    FACET, the Facility for Advanced Accelerator and Experimental Tests, is a new facility being constructed in sector 20 of the SLAC linac primarily to study beam driven plasma wakefield acceleration. The FACET beamline consists of a chicane and final focus system to compress the 23 GeV, 3.2 nC electron bunches to {approx}20 {micro}m long and {approx}10 {micro}m wide. Simulations of the FACET beamline indicate the short-duration and large, 1.5% rms energy spread beams may suffer a factor of four emittance growth from a combination of chromaticity, incoherent synchrotron radiation (ISR), and coherent synchrotron radiation (CSR). Emittance growth is directly correlated to head erosion in plasma wakefield acceleration and is a limiting factor in single stage performance. Studies of the geometric, CSR, and ISR components are presented. Numerical calculation of the rms emittance can be overwhelmed by long tails in the simulated phase space distributions; more useful definitions of emittance are given. A complete simulation of the beamline is presented as well, which agrees with design specifications.

  1. The Newcastle meteor radar

    NASA Technical Reports Server (NTRS)

    Keay, Colin

    1987-01-01

    A brief history and development of the Newcastle Meteor Radar system is given. Also described are its geographical coordinates and its method of operation. The initial objective when the project was commenced was to develop an entirely digital analyzer capable of recognizing meteor echo signals and recording as many of their parameters as possible. This objective was achieved.

  2. Effect of Temperature Gradient on Thick Film Selective Emitter Emittance

    NASA Technical Reports Server (NTRS)

    Chubb, Donald L.; Good, Brian S.; Clark, Eric B.; Chen, Zheng

    1997-01-01

    A temperature gradient across a thick (greater than or equal to .1 mm) film selective emitter will produce a significant reduction in the spectral emittance from the no temperature gradient case. Thick film selective emitters of rare earth doped host materials such as yttrium-aluminum-garnet (YAG) are examples where temperature gradient effects are important. In this paper a model is developed for the spectral emittance assuming a linear temperature gradient across the film. Results of the model indicate that temperature gradients will result in reductions the order of 20% or more in the spectral emittance.

  3. Vacuum Rabi spectra of a single quantum emitter.

    PubMed

    Ota, Yasutomo; Ohta, Ryuichi; Kumagai, Naoto; Iwamoto, Satoshi; Arakawa, Yasuhiko

    2015-04-10

    We report the observation of the vacuum Rabi splitting of a single quantum emitter by measuring its direct spontaneous emission into free space. We use a semiconductor quantum dot inside a photonic crystal nanocavity, in conjunction with an appropriate cavity design and filtering with a polarizer and an aperture, enabling the extraction of the inherently weak emitter's signal. The emitter's vacuum Rabi spectra exhibit clear differences from those measured by detecting the cavity photon leakage. Moreover, we observe an asymmetric vacuum Rabi spectrum induced by interference between the emitter and cavity detection channels. Our observations lay the groundwork for accessing various cavity quantum electrodynamics phenomena that manifest themselves only in the emitter's direct spontaneous emission. PMID:25910123

  4. Spaceborne radar

    NASA Technical Reports Server (NTRS)

    Moore, R. K.; Eckerman, J.; Meneghini, R.; Atlas, D.; Boerner, W. M.; Cherry, S.; Clark, J. F.; Doviak, R. J.; Goldhirsh, J.; Lhermitte, R. M.

    1981-01-01

    The spaceborne radar panel considered how radar could be used to measure precipitation from satellites. The emphasis was on how radar could be used with radiometry (at microwave, visible (VIS), and infrared (IR) wavelengths) to reduce the uncertainties of measuring precipitation with radiometry alone. In addition, the fundamental electromagnetic interactions involved in the measurements were discussed to determine the key work areas for research and development to produce effective instruments. Various approaches to implementing radar systems on satellites were considered for both shared and dedicated instruments. Finally, a research and development strategy was proposed for establishing the parametric relations and retrieval algorithms required for extracting precipitation information from the radar and associated radiometric data.

  5. Electromagnetic interference impact of the proposed emitters for the High Frequency Active Auroral Research Program (HAARP)

    NASA Astrophysics Data System (ADS)

    Robertshaw, G. A.; Snyder, A. L.; Weiner, M. M.

    1993-05-01

    The proposed HAARP emitters at the Gakona (Alaska) preferred site and at the Clear AFS (Alaska) alternative site are the Ionospheric Research Instrument (IRI), the Incoherent Scatter Radar (ISR), and the Vertical Incidence Sounder (VIS). The electromagnetic interference (EMI) impact of those emitters on receiving systems in the vicinity of the sites is estimated in this study. The results are intended for use as an input to the Air Force Environmental Impact Statement as part of the Environmental Impact Analysis Process.

  6. Robust Sparse Sensing Using Weather Radar

    NASA Astrophysics Data System (ADS)

    Mishra, K. V.; Kruger, A.; Krajewski, W. F.; Xu, W.

    2014-12-01

    The ability of a weather radar to detect weak echoes is limited by the presence of noise or unwanted echoes. Some of these unwanted signals originate externally to the radar system, such as cosmic noise, radome reflections, interference from co-located radars, and power transmission lines. The internal source of noise in microwave radar receiver is mainly thermal. The thermal noise from various microwave devices in the radar receiver tends to lower the signal-to-noise ratio, thereby masking the weaker signals. Recently, the compressed sensing (CS) technique has emerged as a novel signal sampling paradigm that allows perfect reconstruction of signals sampled at frequencies lower than the Nyquist rate. Many radar and remote sensing applications require efficient and rapid data acquisition. The application of CS to weather radars may allow for faster target update rates without compromising the accuracy of target information. In our previous work, we demonstrated recovery of an entire precipitation scene from its compressed-sensed version by using the matrix completion approach. In this study, we characterize the performance of such a CS-based weather radar in the presence of additive noise. We use a signal model where the precipitation signals form a low-rank matrix that is corrupted with (bounded) noise. Using recent advances in algorithms for matrix completion from few noisy observations, we reconstruct the precipitation scene with reasonable accuracy. We test and demonstrate our approach using the data collected by Iowa X-band Polarimetric (XPOL) weather radars.

  7. Reconfigurable L-Band Radar

    NASA Technical Reports Server (NTRS)

    Rincon, Rafael F.

    2008-01-01

    The reconfigurable L-Band radar is an ongoing development at NASA/GSFC that exploits the capability inherently in phased array radar systems with a state-of-the-art data acquisition and real-time processor in order to enable multi-mode measurement techniques in a single radar architecture. The development leverages on the L-Band Imaging Scatterometer, a radar system designed for the development and testing of new radar techniques; and the custom-built DBSAR processor, a highly reconfigurable, high speed data acquisition and processing system. The radar modes currently implemented include scatterometer, synthetic aperture radar, and altimetry; and plans to add new modes such as radiometry and bi-static GNSS signals are being formulated. This development is aimed at enhancing the radar remote sensing capabilities for airborne and spaceborne applications in support of Earth Science and planetary exploration This paper describes the design of the radar and processor systems, explains the operational modes, and discusses preliminary measurements and future plans.

  8. Rare Earth Garnet Selective Emitter

    NASA Technical Reports Server (NTRS)

    Lowe, Roland A.; Chubb, Donald L.; Farmer, Serene C.; Good, Brian S.

    1994-01-01

    Thin film Ho-YAG and Er-YAG emitters with a platinum substrate exhibit high spectral emittance in the emission band (epsilon(sub lambda) approx. = 0.75, sup 4)|(sub 15/2) - (sup 4)|(sub 13/2),for Er-YAG and epsilon(sub lambda) approx. = 0.65, (sup 5)|(sub 7) - (sup 5)|(sub 8) for Ho-YAG) at 1500 K. In addition, low out-of-band spectral emittance, epsilon(sub lambda) less than 0.2, suggest these materials would be excellent candidates for high efficiency selective emitters in thermophotovoltaic (TPV) systems operating at moderate temperatures (1200-1500 K). Spectral emittance measurements of the thin films were made (1.2 less than lambda less than 3.0 microns) and compared to the theoretical emittances calculated using measured values of the spectral extinction coefficient. In this paper we present the results for a new class of rare earth ion selective emitters. These emitters are thin sections (less than 1 mm) of yttrium aluminum garnet (YAG) single crystal with a rare earth substitutional impurity. Selective emitters in the near IR are of special interest for thermophotovoltaic (TPV) energy conversion. The most promising solid selective emitters for use in a TPV system are rare earth oxides. Early spectral emittance work on rare earth oxides showed strong emission bands in the infrared (0.9 - 3 microns). However, the emittance outside the emission band was also significant and the efficiency of these emitters was low. Recent improvements in efficiency have been made with emitters fabricated from fine (5 - 10 microns) rare earth oxide fibers similar to the Welsbach mantle used in gas lanterns. However, the rare earth garnet emitters are more rugged than the mantle type emitters. A thin film selective emitter on a low emissivity substrate such as gold, platinum etc., is rugged and easily adapted to a wide variety of thermal sources. The garnet structure and its many subgroups have been successfully used as hosts for rare earth ions, introduced as substitutional impurities, in the development of solid state laser crystals. Doping, dependent on the particular ion and crystal structure, may be as high as 100 at. % (complete substitution of yttrium ion with the rare earth ion). These materials have high melting points, 1940 C for YAG (Yttrium Aluminum Garnet), and low emissivity in the near infrared making them excellent candidates for a thin film selective emitter. As previously stated, the spectral emittance of a rare earth emitter is characterized by one or more well defined emission bands. Outside the emission band the emittance(absorptance) is much lower. Therefore, it is expected that emission outside the band for a thin film selective emitter will be dominated by the emitter substrate. For an efficient emitter (power in the emission band/total emitted power) the substrate must have low emittance, epsilon(sub S). This paper presents normal spectral emittance, epsilon(sub lambda), measurements of holmium(Ho) and erbium (Er) doped YAG thin film selective emitters at (1500 K), and compares those results with the theoretical spectral emittance.

  9. Low emittance muon colliders

    SciTech Connect

    Rolland P. Johnson; Yaroslav Derbenev

    2007-08-01

    Advances in ionization cooling, phase space manipulations, and technologies to achieve high brightness muon beams are stimulating designs of high-luminosity energy-frontier muon colliders. Simulations of Helical Cooling Channels (HCC) show impressive emittance reductions, new ideas on reverse emittance exchange and muon bunch coalescing are being developed, and high-field superconductors show great promise to improve the effectiveness of ionization cooling. Experiments to study RF cavities pressurized with hydrogen gas in strong magnetic fields have had encouraging results. A 6-dimensional HCC demonstration experiment is being designed and a 1.5 TeV muon collider is being studied at Fermilab. Two new synergies are that very cool muon beams can be accelerated in ILC RF structures and that this capability can be used both for muon colliders and for neutrino factories. These advances are discussed in the context of muon colliders with small transverse emittances and with fewer muons to ease requirements on site boundary radiation, detector backgrounds, and muon production.

  10. A Bistatic Parasitical Radar (BIPAR)

    NASA Astrophysics Data System (ADS)

    Hartl, Philipp; Braun, Hans Martin

    1989-01-01

    After decades of remote sensing from aircraft and satellites with cameras and other optical sensors, earth observation by imaging radars becomes more and more suitable because of their night and day and all weather operations capability and their information content being complementary to those of optical sensors. The major problem with microwave sensors (radars) is that there are not enough of them presently in operation and therefore not enough data available for effective radar signature research for civil applications. It is shown that airborne bistatic real aperture radar receivers can be operated with spaceborne transmitters of opportunity. Famous candidates for those systems are high power communications or direct TV satellites illuminating the earth surface with a power denisty of more than 10(-12) Watt/sq meter. The high sophisticated status of signal processing technology today allows the realization of receivers correlating the received direct path signal from a communications satellite with its avoidable reflection on the ground. Coherent integration can improve the signal to noise ratio up to values where the radiometric resolution can satisfy users needs. The development of such parasitic radar receivers could even provide a cost effective way to open up new frequency bands for radar signature research. Advantages of these quiet systems for the purpose of classical radar reconnaissance are evident.

  11. Cytostatic response of NB69 cells to weak pulse-modulated 2.2 GHz radar-like signals.

    PubMed

    Trillo, María A; Cid, María Antonia; Martínez, Maria Antonia; Page, Juan E; Esteban, Jaime; Úbeda, Alejandro

    2011-07-01

    The present study investigates the response of two human cancer cell lines to a 24-h treatment with a 2.2-GHz, pulse-modulated (5 µs pulse duration, 100 Hz repetition rate) radar-like signal at an average SAR = 0.023 W/kg, using a newly designed setup for in vitro exposure to radiofrequency (RF) fields. A complete discretized model of the setup was created for numerical dosimetry using finite-difference time-domain (FDTD) software, SEMCAD X. The average dose of RF radiation absorbed by the cultures was calculated to be subthermal (ΔT < 0.1 °C). The RF exposure induced a consistent, statistically significant reduction in the cell number (13.5% below controls, P < 0.001) in the neuroblastoma NB69 line. This effect was accompanied with slight but statistically significant increases in the proportions of cells in phases G0/G1 and G2/M of the cell cycle (6% and 9%, respectively; P < 0.05 over controls). By contrast, the hepatocarcinoma cell line HepG2 did not respond to the same RF treatment. These results indicate that a pulse-modulated RF radiation with high instantaneous amplitude and low average power can induce cytostatic responses on specific, sensitive cancer cell lines. The effect would be mediated, at least in part, by alterations in the kinetics of the cell cycle. PMID:21280059

  12. Imaging synthetic aperture radar

    DOEpatents

    Burns, Bryan L.; Cordaro, J. Thomas

    1997-01-01

    A linear-FM SAR imaging radar method and apparatus to produce a real-time image by first arranging the returned signals into a plurality of subaperture arrays, the columns of each subaperture array having samples of dechirped baseband pulses, and further including a processing of each subaperture array to obtain coarse-resolution in azimuth, then fine-resolution in range, and lastly, to combine the processed subapertures to obtain the final fine-resolution in azimuth. Greater efficiency is achieved because both the transmitted signal and a local oscillator signal mixed with the returned signal can be varied on a pulse-to-pulse basis as a function of radar motion. Moreover, a novel circuit can adjust the sampling location and the A/D sample rate of the combined dechirped baseband signal which greatly reduces processing time and hardware. The processing steps include implementing a window function, stabilizing either a central reference point and/or all other points of a subaperture with respect to doppler frequency and/or range as a function of radar motion, sorting and compressing the signals using a standard fourier transforms. The stabilization of each processing part is accomplished with vector multiplication using waveforms generated as a function of radar motion wherein these waveforms may be synthesized in integrated circuits. Stabilization of range migration as a function of doppler frequency by simple vector multiplication is a particularly useful feature of the invention; as is stabilization of azimuth migration by correcting for spatially varying phase errors prior to the application of an autofocus process.

  13. Rare earth garnet selective emitter

    NASA Technical Reports Server (NTRS)

    Lowe, Roland A.; Chubb, Donald L.; Farmer, Serene C.; Good, Brian S.

    1994-01-01

    Thin film Ho-YAG and Er-YAG emitters with a platinum substrate exhibit high spectral emittance in the emission band (epsilon(sub lambda) approximately equal to 0.74, ((4)l(sub 15/2)) - ( (4)l(sub13/2)), for Er-YAG and epsilon(sub lambda) approximately equal to 0.65, ((5)l(sub 7))-((5)l(sub 8)) for Ho-YAG) at excellent candidates for high efficiency selective emitters in the thermophotovoltaics (TPV) systems operating at moderate temperatures (1200-1500K). Spectral emittance measurements of the thin films were made (1.2 less than lambda less than 3.0 microns) and compared to the theoretical emittances calculated using measured values of the spectral extinction coefficient. In this paper we present the results for a new class of rare earth ion selective emitters. These emitters are thin sections (less than 1 mm) of yttrium aluminum garnet (YAG) single crystal with a rare earth substitutional impurity. This paper presents normal spectral emittance, epsilon(sub lambda), measurements of holmium (Ho), and erbium (Er) doped YAG thin film selective emitters at 1500 K, and compares those results with the theoretical spectral emittance.

  14. Middle Atmosphere Program. Handbook for MAP. Volume 30: International School on Atmospheric Radar

    NASA Technical Reports Server (NTRS)

    Fukao, Shoichiro (Editor)

    1989-01-01

    Broad, tutorial coverage is given to the technical and scientific aspects of mesosphere stratosphere troposphere (MST) meteorological radar systems. Control issues, signal processing, atmospheric waves, the historical aspects of radar atmospheric dynamics, incoherent scatter radars, radar echoes, radar targets, and gravity waves are among the topics covered.

  15. Monolithic multinozzle emitters for nanoelectrospray mass spectrometry

    DOEpatents

    Wang, Daojing; Yang, Peidong; Kim, Woong; Fan, Rong

    2011-09-20

    Novel and significantly simplified procedures for fabrication of fully integrated nanoelectrospray emitters have been described. For nanofabricated monolithic multinozzle emitters (NM.sup.2 emitters), a bottom up approach using silicon nanowires on a silicon sliver is used. For microfabricated monolithic multinozzle emitters (M.sup.3 emitters), a top down approach using MEMS techniques on silicon wafers is used. The emitters have performance comparable to that of commercially-available silica capillary emitters for nanoelectrospray mass spectrometry.

  16. Electrochemical formation of field emitters

    DOEpatents

    Bernhardt, A.F.

    1999-03-16

    Electrochemical formation of field emitters, particularly useful in the fabrication of flat panel displays is disclosed. The fabrication involves field emitting points in a gated field emitter structure. Metal field emitters are formed by electroplating and the shape of the formed emitter is controlled by the potential imposed on the gate as well as on a separate counter electrode. This allows sharp emitters to be formed in a more inexpensive and manufacturable process than vacuum deposition processes used at present. The fabrication process involves etching of the gate metal and the dielectric layer down to the resistor layer, and then electroplating the etched area and forming an electroplated emitter point in the etched area. 12 figs.

  17. Amorphous-diamond electron emitter

    DOEpatents

    Falabella, Steven

    2001-01-01

    An electron emitter comprising a textured silicon wafer overcoated with a thin (200 .ANG.) layer of nitrogen-doped, amorphous-diamond (a:D-N), which lowers the field below 20 volts/micrometer have been demonstrated using this emitter compared to uncoated or diamond coated emitters wherein the emission is at fields of nearly 60 volts/micrometer. The silicon/nitrogen-doped, amorphous-diamond (Si/a:D-N) emitter may be produced by overcoating a textured silicon wafer with amorphous-diamond (a:D) in a nitrogen atmosphere using a filtered cathodic-arc system. The enhanced performance of the Si/a:D-N emitter lowers the voltages required to the point where field-emission displays are practical. Thus, this emitter can be used, for example, in flat-panel emission displays (FEDs), and cold-cathode vacuum electronics.

  18. Millimeter radar improves target identification

    NASA Astrophysics Data System (ADS)

    McAulay, Alastair D.

    2011-06-01

    Recently developed millimeter wave radar has advantages for target identification over conventional microwave radar which typically use lower frequencies. We describe the pertinent features involved in the construction of the new millimeter wave radar, the pseudo-optical cavity source and the quasi-optical duplexer. The long wavelength relative to light allows the radar beam to penetrate through most weather because the wavelength is larger than the particle size for dust, drizzle rain, fog. Further the mm wave beam passes through an atmospheric transmission window that provides a dip in attenuation. The higher frequency than conventional radar provides higher Doppler frequencies, for example, than X-band radar. We show by simulation that small characteristic vibrations and slow turns of an aircraft become visible so that the Doppler signature improves identification. The higher frequency also reduces beam width, which increases transmit and receive antenna gains. For the same power the transmit beam extends to farther range and the increase in receive antenna gain increases signal to noise ratio for improved detection and identification. The narrower beam can also reduce clutter and reject other noise more readily. We show by simulation that the radar can be used at lower elevations over the sea than conventional radar.

  19. All-digital radar architecture

    NASA Astrophysics Data System (ADS)

    Molchanov, Pavlo A.

    2014-10-01

    All digital radar architecture requires exclude mechanical scan system. The phase antenna array is necessarily large because the array elements must be co-located with very precise dimensions and will need high accuracy phase processing system for aggregate and distribute T/R modules data to/from antenna elements. Even phase array cannot provide wide field of view. New nature inspired all digital radar architecture proposed. The fly's eye consists of multiple angularly spaced sensors giving the fly simultaneously thee wide-area visual coverage it needs to detect and avoid the threats around him. Fly eye radar antenna array consist multiple directional antennas loose distributed along perimeter of ground vehicle or aircraft and coupled with receiving/transmitting front end modules connected by digital interface to central processor. Non-steering antenna array allows creating all-digital radar with extreme flexible architecture. Fly eye radar architecture provides wide possibility of digital modulation and different waveform generation. Simultaneous correlation and integration of thousands signals per second from each point of surveillance area allows not only detecting of low level signals ((low profile targets), but help to recognize and classify signals (targets) by using diversity signals, polarization modulation and intelligent processing. Proposed all digital radar architecture with distributed directional antenna array can provide a 3D space vector to the jammer by verification direction of arrival for signals sources and as result jam/spoof protection not only for radar systems, but for communication systems and any navigation constellation system, for both encrypted or unencrypted signals, for not limited number or close positioned jammers.

  20. Algorithmic analysis of quantum radar cross sections

    NASA Astrophysics Data System (ADS)

    Lanzagorta, Marco; Venegas-Andraca, Salvador

    2015-05-01

    Sidelobe structures on classical radar cross section graphs are a consequence of discontinuities in the surface currents. In contrast, quantum radar theory states that sidelobe structures on quantum radar cross section graphs are due to quantum interference. Moreover, it is conjectured that quantum sidelobe structures may be used to detect targets oriented off the specular direction. Because of the high data bandwidth expected from quantum radar, it may be necessary to use sophisticated quantum signal analysis algorithms to determine the presence of stealth targets through the sidelobe structures. In this paper we introduce three potential quantum algorithmic techniques to compute classical and quantum radar cross sections. It is our purpose to develop a computer science-oriented tool for further physical analysis of quantum radar models as well as applications of quantum radar technology in various fields.

  1. Radar transponder operation with compensation for distortion due to amplitude modulation

    SciTech Connect

    Ormesher, Richard C.; Tise, Bertice L.; Axline, Jr., Robert M.

    2011-01-04

    In radar transponder operation, a variably delayed gating signal is used to gate a received radar pulse and thereby produce a corresponding gated radar pulse for transmission back to the source of the received radar pulse. This compensates for signal distortion due to amplitude modulation on the retransmitted pulse.

  2. EMITTANCE COMPENSATION FOR MAGNETIZED BEAMS

    SciTech Connect

    KEWISCH,J.; CHANG, X.

    2007-06-25

    Emittance compensation is a well established technique for minimizing the emittance of an electron beam from a RF photo-cathode gun. Longitudinal slices of a bunch have a small emittance, but due to the longitudinal charge distribution of the bunch and time dependent RF fields they are not focused in the same way, so that the direction of their phase ellipses diverges in phase space and the projected emittance is much larger. Emittance compensation reverses the divergence. At the location where the slopes of the phase ellipses coincide the beam is accelerated, so that the space charge forces are reduced. A recipe for emittance compensation is given in. For magnetized beams (where the angular momentum is non-zero) such emittance compensation is not sufficient because variations in the slice radius lead to variations in the angular speed and therefore to an increase of emittance in the rotating game. We describe a method and tools for a compensation that includes the beam magnetization.

  3. Emittance growth in intense beams

    SciTech Connect

    Wangler, T.P.; Mills, R.S.; Crandall, K.R.

    1987-03-01

    Recent progress in the study of high-current, low-emittance, charged-particle beams may have a significant influence in the design of future linear accelerators and beam-transport systems for higher brightness applications. Three space-charge-induced rms-emittance-growth mechanisms are now well established: (1) charge-density redistribution, (2) kinetic-energy exchange toward equipartitioning, and (3) coherent instabilities driven by periodic focusing systems. We report the results from a numerical simulation study of emittance in a high-current radio-frequency quadrupole (RFQ) linear accelerator, and present a new semiempirical equation for the observed emittance growth, which agrees well with the emittance growth predicted from numerical simulation codes.

  4. Highly directional thermal emitter

    SciTech Connect

    Ribaudo, Troy; Shaner, Eric A; Davids, Paul; Peters, David W

    2015-03-24

    A highly directional thermal emitter device comprises a two-dimensional periodic array of heavily doped semiconductor structures on a surface of a substrate. The array provides a highly directional thermal emission at a peak wavelength between 3 and 15 microns when the array is heated. For example, highly doped silicon (HDSi) with a plasma frequency in the mid-wave infrared was used to fabricate nearly perfect absorbing two-dimensional gratings structures that function as highly directional thermal radiators. The absorption and emission characteristics of the HDSi devices possessed a high degree of angular dependence for infrared absorption in the 10-12 micron range, while maintaining high reflectivity of solar radiation (.about.64%) at large incidence angles.

  5. Differential emitter geolocation

    DOEpatents

    Mason, John J.; Romero, Louis A.

    2015-08-18

    An unknown location of a transmitter of interest is determined based on wireless signals transmitted by both the transmitter of interest and a reference transmitter positioned at a known location. The transmitted signals are received at a plurality of non-earthbound platforms each moving in a known manner, and phase measurements for each received signal are used to determine the unknown location.

  6. Range measurement in airborne pulse Doppler radars

    NASA Astrophysics Data System (ADS)

    Rohling, H.; Borchert, W.

    Range measurement and frequency agility are discussed in connection with medium and high pulse-repetition frequency (PRF) airborne radars. A modification to the algorithm for resolving ambiguities in medium and multiple PRF radars described by Hovanessian (1976, 1982) is discussed. For a frequency-agile radar, where the transmitted frequency is changed from coherent processing interval to coherent processing interval, a further waveform design and its associated signal processing are discussed.

  7. Radar range measurements in the atmosphere.

    SciTech Connect

    Doerry, Armin Walter

    2013-02-01

    The earth's atmosphere affects the velocity of propagation of microwave signals. This imparts a range error to radar range measurements that assume the typical simplistic model for propagation velocity. This range error is a function of atmospheric constituents, such as water vapor, as well as the geometry of the radar data collection, notably altitude and range. Models are presented for calculating atmospheric effects on radar range measurements, and compared against more elaborate atmospheric models.

  8. Large phased-array radars

    SciTech Connect

    Brookner, D.E.

    1988-12-15

    Large phased-array radars can play a very important part in arms control. They can be used to determine the number of RVs being deployed, the type of targeting of the RVs (the same or different targets), the shape of the deployed objects, and possibly the weight and yields of the deployed RVs. They can provide this information at night as well as during the day and during rain and cloud covered conditions. The radar can be on the ground, on a ship, in an airplane, or space-borne. Airborne and space-borne radars can provide high resolution map images of the ground for reconnaissance, of anti-ballistic missile (ABM) ground radar installations, missile launch sites, and tactical targets such as trucks and tanks. The large ground based radars can have microwave carrier frequencies or be at HF (high frequency). For a ground-based HF radar the signal is reflected off the ionosphere so as to provide over-the-horizon (OTH) viewing of targets. OTH radars can potentially be used to monitor stealth targets and missile traffic.

  9. Coded continuous wave meteor radar

    NASA Astrophysics Data System (ADS)

    Vierinen, Juha; Chau, Jorge L.; Pfeffer, Nico; Clahsen, Matthias; Stober, Gunter

    2016-03-01

    The concept of a coded continuous wave specular meteor radar (SMR) is described. The radar uses a continuously transmitted pseudorandom phase-modulated waveform, which has several advantages compared to conventional pulsed SMRs. The coding avoids range and Doppler aliasing, which are in some cases problematic with pulsed radars. Continuous transmissions maximize pulse compression gain, allowing operation at lower peak power than a pulsed system. With continuous coding, the temporal and spectral resolution are not dependent on the transmit waveform and they can be fairly flexibly changed after performing a measurement. The low signal-to-noise ratio before pulse compression, combined with independent pseudorandom transmit waveforms, allows multiple geographically separated transmitters to be used in the same frequency band simultaneously without significantly interfering with each other. Because the same frequency band can be used by multiple transmitters, the same interferometric receiver antennas can be used to receive multiple transmitters at the same time. The principles of the signal processing are discussed, in addition to discussion of several practical ways to increase computation speed, and how to optimally detect meteor echoes. Measurements from a campaign performed with a coded continuous wave SMR are shown and compared with two standard pulsed SMR measurements. The type of meteor radar described in this paper would be suited for use in a large-scale multi-static network of meteor radar transmitters and receivers. Such a system would be useful for increasing the number of meteor detections to obtain improved meteor radar data products.

  10. Array radars - An update. II

    NASA Astrophysics Data System (ADS)

    Brookner, Eli

    1987-03-01

    Research aimed at improving array radars is reviewed. Advances in MMICs, the use of HEMT low noise amplifiers for analog and digital circuitry, the application of VHSIC chips to the programmable signal processor of the F-16 airborne fire control radar, Si compiler language, memory chips, and GHz and GaAs logic are discussed. Consideration is given to CMOS gate arrays, floating point chips, a single-chip digital signal processor, systolic array architectures, radiation hardened chips, digital beamforming, distributed beamsteering computers, fiber optics, flat low voltage displays, and adaptive-adaptive array processing.

  11. Emittance and Phase Space Exchange

    SciTech Connect

    Xiang, Dao; Chao, Alex; /SLAC

    2011-08-19

    Alternative chicane-type beam lines are proposed for exact emittance exchange between horizontal phase space (x; x{prime}) and longitudinal phase space (z; {delta}). Methods to achieve exact phase space exchanges, i.e. mapping x to z, x{prime} to {delta}, z to x and {delta} to x{prime} are suggested. Methods to mitigate the thick-lens effect of the transverse cavity on emittance exchange are discussed. Some applications of the phase space exchanger and the feasibility of an emittance exchange experiment with the proposed chicane-type beam line at SLAC are discussed.

  12. Electromagnetic interference impact of the proposed emitters for the High Frequency Active Auroral Research Program (HAARP). Interim report

    SciTech Connect

    Robertshaw, G.A.; Snyder, A.L.; Weiner, M.M.

    1993-05-14

    The proposed HAARP emitters at the Gakona (Alaska) preferred site and at the Clear AFS (Alaska) alternative site are the Ionospheric Research Instrument (IRI), the Incoherent Scatter Radar (ISR), and the Vertical Incidence Sounder(VIS). The electromagnetic interference (EMI) impact of those emitters on receiving systems in the vicinity of the sites is estimated in this study. The results are intended for use as an input to the Air Force Environmental Impact Statement as part of the Environmental Impact Analysis Process.

  13. Pulsed Phase Shifter Improves Doppler Radar

    NASA Technical Reports Server (NTRS)

    Kobayashi, H. S.; Shores, P. W.; Rozas, P.

    1982-01-01

    Ability of microwave Doppler radar to measure velocity of slow moving nearby target is enhanced by pulsed 90 degrees phase shifter in radar transmission line between circulator and antenna. Because of phase shifting, Doppler frequency is detected as modulation on carrier instead of baseband signal. Carrier is amplified and filtered before demodulation, resulting in strong, clean demodulated Doppler for measurement and display.

  14. The Patriot radar in tactical air defense

    NASA Astrophysics Data System (ADS)

    Carey, David R.; Evans, William

    1988-05-01

    The Patriot radar is a C-band, phased-array, multifunction radar that, under the control of the weapon control computer in the engagement control station, performs target search and track; missile search, track, and communications during midcourse guidance; and target-via-missile terminal guidance. This paper describes the functions the radar performs and provides descriptions of the subsystems. The use of a multichannel, multifunction receiver and digital signal processor is emphasized to demonstrate the control and processing for multiple radar actions required to support the tactical air defense mission. A summary of results of an extensive test program at the White Sands Missile Range is presented.

  15. Lightweight SAR GMTI radar technology development

    NASA Astrophysics Data System (ADS)

    Kirk, John C.; Lin, Kai; Gray, Andrew; Hseih, Chung; Darden, Scott; Kwong, Winston; Majumder, Uttam; Scarborough, Steven

    2013-05-01

    A small and lightweight dual-channel radar has been developed for SAR data collections. Using standard Displaced Phase Center Antenna (DPCA) radar digital signal processing, SAR GMTI images have been obtained. The prototype radar weighs 5-lbs and has demonstrated the extraction of ground moving targets (GMTs) embedded in high-resolution SAR imagery data. Heretofore this type of capability has been reserved for much larger systems such as the JSTARS. Previously, small lightweight SARs featured only a single channel and only displayed SAR imagery. Now, with the advent of this new capability, SAR GMTI performance is now possible for small UAV class radars.

  16. 33 CFR 118.120 - Radar reflectors and racons.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Radar reflectors and racons. 118... BRIDGES BRIDGE LIGHTING AND OTHER SIGNALS § 118.120 Radar reflectors and racons. The District Commander may require or authorize the installation of radar reflectors and racons on bridge structures,...

  17. 33 CFR 118.120 - Radar reflectors and racons.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Radar reflectors and racons. 118... BRIDGES BRIDGE LIGHTING AND OTHER SIGNALS § 118.120 Radar reflectors and racons. The District Commander may require or authorize the installation of radar reflectors and racons on bridge structures,...

  18. 33 CFR 118.120 - Radar reflectors and racons.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Radar reflectors and racons. 118... BRIDGES BRIDGE LIGHTING AND OTHER SIGNALS § 118.120 Radar reflectors and racons. The District Commander may require or authorize the installation of radar reflectors and racons on bridge structures,...

  19. 33 CFR 118.120 - Radar reflectors and racons.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Radar reflectors and racons. 118... BRIDGES BRIDGE LIGHTING AND OTHER SIGNALS § 118.120 Radar reflectors and racons. The District Commander may require or authorize the installation of radar reflectors and racons on bridge structures,...

  20. 33 CFR 118.120 - Radar reflectors and racons.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Radar reflectors and racons. 118... BRIDGES BRIDGE LIGHTING AND OTHER SIGNALS § 118.120 Radar reflectors and racons. The District Commander may require or authorize the installation of radar reflectors and racons on bridge structures,...

  1. Radar detection of Iapetus

    NASA Astrophysics Data System (ADS)

    Black, G. J.; Campbell, D. B.; Carter, L. M.; Ostro, S. J.

    2002-09-01

    We have obtained echoes from the bright, trailing hemisphere of Iapetus using the Arecibo Observatory's 13-cm radar system on three dates in January 2002. A circularly polarized signal was transmitted and an echo in the opposite circular (OC) sense to that transmitted was clearly received along with a much weaker detection of echo power in the same circular (SC) sense. Prior to this experiment, one expectation may have been that the radar scattering properties of Iapetus may behave like the similar atmosphere-less, icy surfaces of the Galilean satellites which, due to an efficient multiple scattering mechanism, are strong backscatterers with SC reflections stronger than their OC reflections. Instead we find that Iapetus' radar cross section and polarization properties are very different from those of the icy Galilean satellites, and more reminiscent of less efficient and less exotic scattering mechanisms such as dominate the echoes from inner Solar System targets. Thus these observations indicate that there is a significant difference between the surface properties of Iapetus and the icy Galileans despite their overall classification as low temperature, water ice surfaces. A plausible explanation for Iapetus' inefficient scattering is that contaminants in the water ice increase the absorption of the signal and suppress any multiple scattering. Likely contaminants on Iapetus are ammonia and the dark material from Cassini Regio embedded below the surface. Proposed observations will seek to measure Iapetus' radar scattering law and to detect the dark, leading side which was not targeted during this observing session. The Arecibo Observatory is part of the National Astronomy and Ionosphere Center, which is operated by Cornell University under a cooperative agreement with the National Science Foundation.

  2. Advanced Borehole Radar for Hydrogeology

    NASA Astrophysics Data System (ADS)

    Sato, M.

    2014-12-01

    Ground Penetrating Radar is a useful tool for monitoring the hydrogeological environment. We have developed GPR systems which can be applied to these purposes, and we will demonstrate examples borehole radar measurements. In order to have longer radar detection range, frequency lower than100MHz has been normally adopted in borehole radar. Typical subsurface fractures of our interests have a few mm aperture and radar resolution is much poorer than a few cm in this frequency range. We are proposing and demonstrating to use radar polarimetry to solve this problem. We have demonstrated that a full-polarimetry borehole radar can be used for characterization of subsurface fractures. Together with signal processing for antenna characteristic compensation to equalize the signal by a dipole antenna and slot antennas, we could demonstrate that polarimetric borehole radar can estimate the surface roughness of subsurface fractures, We believe the surface roughness is closely related to water permeability through the fractures. We then developed a directional borehole radar, which uses optical field sensor. A dipole antenna in a borehole has omni-directional radiation pattern, and we cannot get azimuthal information about the scatterers. We use multiple dipole antennas set around the borehole axis, and from the phase differences, we can estimate the 3-diemnational orientation of subsurface structures. We are using optical electric field sensor for receiver of borehole radar. This is a passive sensor and connected only with optical fibers and does not require any electric power supply to operate the receiver. It has two major advantages; the first one is that the receiver can be electrically isolated from other parts, and wave coupling to a logging cable is avoided. Then, secondary, it can operate for a long time, because it does not require battery installed inside the system. It makes it possible to set sensors in fixed positions to monitor the change of environmental conditions for a long period. We demonstrated this idea using cross- hole borehole radar measurement. We think this method is useful for detecting any changes in hydrogeological situations, which will be useful for subsurface storage such as LNG and nuclear waste.

  3. Nanodiamond Emitters of Single Photons

    NASA Astrophysics Data System (ADS)

    Vlasov, I. I.; Lukishova, S. G.; Konov, V. I.

    2015-09-01

    Luminescence properties of single color centers were studied in nanodiamonds of different origin. It was found that single photon emitters could be realized even in molecularsized diamond (less than 2 nm) capable of housing stable luminescent center "silicon-vacancy." First results on incorporation of single-photon emitters based on luminescent nanodiamonds in plasmonic nanoantennas to enhance the photon count rate and directionality, diminish the fluorescence decay time, and provide polarization selectivity are presented.

  4. Diamondoid monolayers as electron emitters

    DOEpatents

    Yang, Wanli; Fabbri, Jason D.; Melosh, Nicholas A.; Hussain, Zahid; Shen, Zhi-Xun

    2013-10-29

    Provided are electron emitters based upon diamondoid monolayers, preferably self-assembled higher diamondoid monolayers. High intensity electron emission has been demonstrated employing such diamondoid monolayers, particularly when the monolayers are comprised of higher diamondoids. The application of such diamondoid monolayers can alter the band structure of substrates, as well as emit monochromatic electrons, and the high intensity electron emissions can also greatly improve the efficiency of field-effect electron emitters as applied to industrial and commercial applications.

  5. Diamondoid monolayers as electron emitters

    DOEpatents

    Yang, Wanli; Fabbri, Jason D.; Melosh, Nicholas A.; Hussain, Zahid; Shen, Zhi-Xun

    2012-04-10

    Provided are electron emitters based upon diamondoid monolayers, preferably self-assembled higher diamondoid monolayers. High intensity electron emission has been demonstrated employing such diamondoid monolayers, particularly when the monolayers are comprised of higher diamondoids. The application of such diamondoid monolayers can alter the band structure of substrates, as well as emit monochromatic electrons, and the high intensity electron emissions can also greatly improve the efficiency of field-effect electron emitters as applied to industrial and commercial applications.

  6. TRMM radar

    NASA Technical Reports Server (NTRS)

    Okamoto, Kenichi

    1993-01-01

    The results of a conceptual design study and the performance of key components of the Bread Board Model (BBM) of the Tropical Rainfall Measuring Mission (TRMM) radar are presented. The radar, which operates at 13.8 GHz and is designed to meet TRMM mission objectives, has a minimum measurable rain rate of 0.5 mm/h with a range resolution of 250 m, a horizontal resolution of about 4 km, and a swath width of 220 km. A 128-element active phased array system is adopted to achieve contiguous scanning within the swath. The basic characteristics of BBM were confirmed by experiments. The development of EM started with the cooperation of NASDA and CRL.

  7. Radars in space

    NASA Technical Reports Server (NTRS)

    Delnore, Victor E.

    1990-01-01

    The capabilities of active microwave devices operating from space (typically, radar, scatterometers, interferometers, and altimeters) are discussed. General radar parameters and basic radar principles are explained. Applications of these parameters and principles are also explained. Trends in space radar technology, and where space radars and active microwave sensors in orbit are going are discussed.

  8. Fly eye radar or micro-radar sensor technology

    NASA Astrophysics Data System (ADS)

    Molchanov, Pavlo; Asmolova, Olga

    2014-05-01

    To compensate for its eye's inability to point its eye at a target, the fly's eye consists of multiple angularly spaced sensors giving the fly the wide-area visual coverage it needs to detect and avoid the threats around him. Based on a similar concept a revolutionary new micro-radar sensor technology is proposed for detecting and tracking ground and/or airborne low profile low altitude targets in harsh urban environments. Distributed along a border or around a protected object (military facility and buildings, camp, stadium) small size, low power unattended radar sensors can be used for target detection and tracking, threat warning, pre-shot sniper protection and provides effective support for homeland security. In addition it can provide 3D recognition and targets classification due to its use of five orders more pulses than any scanning radar to each space point, by using few points of view, diversity signals and intelligent processing. The application of an array of directional antennas eliminates the need for a mechanical scanning antenna or phase processor. It radically decreases radar size and increases bearing accuracy several folds. The proposed micro-radar sensors can be easy connected to one or several operators by point-to-point invisible protected communication. The directional antennas have higher gain, can be multi-frequency and connected to a multi-functional network. Fly eye micro-radars are inexpensive, can be expendable and will reduce cost of defense.

  9. A satellite-based radar wind sensor

    NASA Technical Reports Server (NTRS)

    Xin, Weizhuang

    1991-01-01

    The objective is to investigate the application of Doppler radar systems for global wind measurement. A model of the satellite-based radar wind sounder (RAWS) is discussed, and many critical problems in the designing process, such as the antenna scan pattern, tracking the Doppler shift caused by satellite motion, and backscattering of radar signals from different types of clouds, are discussed along with their computer simulations. In addition, algorithms for measuring mean frequency of radar echoes, such as the Fast Fourier Transform (FFT) estimator, the covariance estimator, and the estimators based on autoregressive models, are discussed. Monte Carlo computer simulations were used to compare the performance of these algorithms. Anti-alias methods are discussed for the FFT and the autoregressive methods. Several algorithms for reducing radar ambiguity were studied, such as random phase coding methods and staggered pulse repitition frequncy (PRF) methods. Computer simulations showed that these methods are not applicable to the RAWS because of the broad spectral widths of the radar echoes from clouds. A waveform modulation method using the concept of spread spectrum and correlation detection was developed to solve the radar ambiguity. Radar ambiguity functions were used to analyze the effective signal-to-noise ratios for the waveform modulation method. The results showed that, with suitable bandwidth product and modulation of the waveform, this method can achieve the desired maximum range and maximum frequency of the radar system.

  10. Eliminating Doppler Effects in Synthetic-Aperture Radar Optical Processors

    NASA Technical Reports Server (NTRS)

    Constantindes, N. J.; Bicknell, T. J.

    1984-01-01

    Pair of photodetectors generates correction signals. Instrument detects Doppler shifts in radar and corrects processing parameters so ambiguities caused by shifts not manifested as double or overlapping images.

  11. Coded continuous wave meteor radar

    NASA Astrophysics Data System (ADS)

    Vierinen, J.; Chau, J. L.; Pfeffer, N.; Clahsen, M.; Stober, G.

    2015-07-01

    The concept of coded continuous wave meteor radar is introduced. The radar uses a continuously transmitted pseudo-random waveform, which has several advantages: coding avoids range aliased echoes, which are often seen with commonly used pulsed specular meteor radars (SMRs); continuous transmissions maximize pulse compression gain, allowing operation with significantly lower peak transmit power; the temporal resolution can be changed after performing a measurement, as it does not depend on pulse spacing; and the low signal to noise ratio allows multiple geographically separated transmitters to be used in the same frequency band without significantly interfering with each other. The latter allows the same receiver antennas to be used to receive multiple transmitters. The principles of the signal processing are discussed, in addition to discussion of several practical ways to increase computation speed, and how to optimally detect meteor echoes. Measurements from a campaign performed with a coded continuous wave SMR are shown and compared with two standard pulsed SMR measurements. The type of meteor radar described in this paper would be suited for use in a large scale multi-static network of meteor radar transmitters and receivers. This would, for example, provide higher spatio-temporal resolution for mesospheric wind field measurements.

  12. Airborne Differential Doppler Weather Radar

    NASA Technical Reports Server (NTRS)

    Meneghini, R.; Bidwell, S.; Liao, L.; Rincon, R.; Heymsfield, G.; Hildebrand, Peter H. (Technical Monitor)

    2001-01-01

    The Precipitation Radar aboard the Tropical Rain Measuring Mission (TRMM) Satellite has shown the potential for spaceborne sensing of snow and rain by means of an incoherent pulsed radar operating at 13.8 GHz. The primary advantage of radar relative to passive instruments arises from the fact that the radar can image the 3-dimensional structure of storms. As a consequence, the radar data can be used to determine the vertical rain structure, rain type (convective/stratiform) effective storm height, and location of the melting layer. The radar, moreover, can be used to detect snow and improve the estimation of rain rate over land. To move toward spaceborne weather radars that can be deployed routinely as part of an instrument set consisting of passive and active sensors will require the development of less expensive, lighter-weight radars that consume less power. At the same time, the addition of a second frequency and an upgrade to Doppler capability are features that are needed to retrieve information on the characteristics of the drop size distribution, vertical air motion and storm dynamics. One approach to the problem is to use a single broad-band transmitter-receiver and antenna where two narrow-band frequencies are spaced apart by 5% to 10% of the center frequency. Use of Ka-band frequencies (26.5 GHz - 40 GHz) affords two advantages: adequate spatial resolution can be attained with a relatively small antenna and the differential reflectivity and mean Doppler signals are directly related to the median mass diameter of the snow and raindrop size distributions. The differential mean Doppler signal has the additional property that this quantity depends only on that part of the radial speed of the hydrometeors that is drop-size dependent. In principle, the mean and differential mean Doppler from a near-nadir viewing radar can be used to retrieve vertical air motion as well as the total mean radial velocity. In the paper, we present theoretical calculations for the differential reflectivity and Doppler as functions of the center frequency, frequency difference, and median mass diameter. For a fixed pair of frequencies, the detectability of the differential signals can be expressed as the number of independent samples required to detect rain or snow with a particular median mass diameter. Because sampling numbers on the order of 1000 are needed to detect the differential signal over a range of size distributions, the instrument must be confined to a near-nadir, narrow swath. Radar measurements from a zenith directed radar operated at 9.1 GHz and 10 GHz are used to investigate the qualitative characteristics of the differential signals. Disdrometer and rain gauge data taken at the surface, just below the radar, are used to test whether the differential signals can be used to estimate characteristics of the raindrop size distribution.

  13. Measuring coal deposits by radar

    NASA Technical Reports Server (NTRS)

    Barr, T. A.

    1980-01-01

    Front-surface, local-oscillator radar directly compares frequency of signals reflected from front and back surfaces of coal deposits. Thickness is measured directly as frequency difference. Transmitter is frequency modulated, so thickness is computed directly from frequency difference. Because front and back reflections are detected in combination rather than separately, masking of comparatively weak back signal is less problem. Also system is not sensitive to extraneous reflections from targets between transmitting antenna and coal surface.

  14. Thermionic converter emitter support arrangement

    DOEpatents

    Allen, Daniel T.

    1990-01-01

    A support is provided for use in a therminonic converter to support an end of an emitter to keep it out of contact with a surrounding collector while allowing the emitter end to move axially as its temperature changes. The emitter end (34) is supported by a spring structure (44) that includes a pair of Belleville springs, and the spring structure is supported by a support structure (42) fixed to the housing that includes the collector. The support structure is in the form of a sandwich with a small metal spring-engaging element (74) at the front end, a larger metal main support (76) at the rear end that is attached to the housing, and with a ceramic layer (80) between them that is bonded by hot isostatic pressing to the metal element and metal main support. The spring structure can include a loose wafer (120) captured between the Belleville springs.

  15. Thermionic converter emitter support arrangement

    DOEpatents

    Allen, Daniel T.

    1990-01-01

    A support is provided for use in a thermionic converter to support an end an emitter to keep it out of contact with a surrounding collector while allowing the emitter end to move axially at its temperatures changes. The emitter end (34) is supported by a spring structure (44) that includes a pair of Belleville springs, and the spring structure is supported by a support structure (42) fixed to the housing that includes the collector. The support structure is in the form of a sandwich with a small metal spring-engaging element (74) at the front end, a larger metal main support (76) at the rear end that is attached to the housng, and with a ceramic layer (80) between them that is bonded by hot isostatic pressing to the metal element and metal main support. The spring structure can include a loose wafer (120) captured between the Belleville springs.

  16. Wavelet based hierarchical coding scheme for radar image compression

    NASA Astrophysics Data System (ADS)

    Sheng, Wen; Jiao, Xiaoli; He, Jifeng

    2007-12-01

    This paper presents a wavelet based hierarchical coding scheme for radar image compression. Radar signal is firstly quantized to digital signal, and reorganized as raster-scanned image according to radar's repeated period frequency. After reorganization, the reformed image is decomposed to image blocks with different frequency band by 2-D wavelet transformation, each block is quantized and coded by the Huffman coding scheme. A demonstrating system is developed, showing that under the requirement of real time processing, the compression ratio can be very high, while with no significant loss of target signal in restored radar image.

  17. DC coupled Doppler radar physiological monitor.

    PubMed

    Zhao, Xi; Song, Chenyan; Lubecke, Victor; Boric-Lubecke, Olga

    2011-01-01

    One of the challenges in Doppler radar systems for physiological monitoring is a large DC offset in baseband outputs. Typically, AC coupling is used to eliminate this DC offset. Since the physiological signals of interest include frequency content near DC, it is not desirable to simply use AC coupling on the radar outputs. While AC coupling effectively removes DC offset, it also introduces a large time delay and distortion. This paper presents the first DC coupled IQ demodulator printed circuit board (PCB) design and measurements. The DC coupling is achieved by using a mixer with high LO to RF port isolation, resulting in a very low radar DC offset on the order of mV. The DC coupled signals from the PCB radar system were successfully detected with significant LNA gain without saturation. Compared to the AC coupled results, the DC coupled results show great advantages of less signal distortion and more accurate rate estimation. PMID:22254704

  18. Combustion powered thermophotovoltaic emitter system

    SciTech Connect

    McHenry, R.S.

    1995-07-01

    The US Naval Academy (USNA) has recently completed an engineering design project for a high temperature thermophotovoltaic (TPV) photon emitter. The final apparatus was to be portable, completely self contained, and was to incorporate cycle efficiency optimization such as exhaust stream recuperation. Through computer modeling and prototype experimentation, a methane fueled emitter system was designed from structural ceramic materials to fulfill the high temperature requirements necessary for high system efficiency. This paper outlines the engineering design process, discusses obstacles and solutions encountered, and presents the final design.

  19. Analysis of a combined FMCW pulse radar system for Side Looking Airborne Radar (SLAR) applications

    NASA Astrophysics Data System (ADS)

    Timmerman, R.

    1985-01-01

    A theoretical and practical feasibility study for the development of an FMCW radar, combining features of FMCW and pulse radars was performed for application as SLAR for Earth observation. Design approaches were compared. Simulations with a network analyzer and an intermediate frequency system are presented. The simulation results are similar to a FMCW processed radar signal. A method to simulate the radar system at microwave frequencies is discussed. A block diagram of the final system is given. Noise behavior and transmitter power are discussed.

  20. Ultra Low Emittance Light Sources

    SciTech Connect

    Bengtsson,J.

    2008-06-23

    This paper outlines the special issues for reaching sub-nm emittance in a storage ring. Effects of damping wigglers, intra-beam scattering and lifetime issues, dynamic aperture optimization, control of optics, and their interrelations are covered in some detail. The unique choices for the NSLS-II are given as one example.

  1. Tangential velocity measurement using interferometric MTI radar

    DOEpatents

    Doerry, Armin W.; Mileshosky, Brian P.; Bickel, Douglas L.

    2006-01-03

    Radar systems use time delay measurements between a transmitted signal and its echo to calculate range to a target. Ranges that change with time cause a Doppler offset in phase and frequency of the echo. Consequently, the closing velocity between target and radar can be measured by measuring the Doppler offset of the echo. The closing velocity is also known as radial velocity, or line-of-sight velocity. Doppler frequency is measured in a pulse-Doppler radar as a linear phase shift over a set of radar pulses during some Coherent Processing Interval (CPI). An Interferometric Moving Target Indicator (MTI) radar can be used to measure the tangential velocity component of a moving target. Multiple baselines, along with the conventional radial velocity measurement, allow estimating the true 3-D velocity of a target.

  2. Shielding in ungated field emitter arrays

    SciTech Connect

    Harris, J. R.; Jensen, K. L.; Shiffler, D. A.; Petillo, J. J.

    2015-05-18

    Cathodes consisting of arrays of high aspect ratio field emitters are of great interest as sources of electron beams for vacuum electronic devices. The desire for high currents and current densities drives the cathode designer towards a denser array, but for ungated emitters, denser arrays also lead to increased shielding, in which the field enhancement factor β of each emitter is reduced due to the presence of the other emitters in the array. To facilitate the study of these arrays, we have developed a method for modeling high aspect ratio emitters using tapered dipole line charges. This method can be used to investigate proximity effects from similar emitters an arbitrary distance away and is much less computationally demanding than competing simulation approaches. Here, we introduce this method and use it to study shielding as a function of array geometry. Emitters with aspect ratios of 10{sup 2}–10{sup 4} are modeled, and the shielding-induced reduction in β is considered as a function of tip-to-tip spacing for emitter pairs and for large arrays with triangular and square unit cells. Shielding is found to be negligible when the emitter spacing is greater than the emitter height for the two-emitter array, or about 2.5 times the emitter height in the large arrays, in agreement with previously published results. Because the onset of shielding occurs at virtually the same emitter spacing in the square and triangular arrays, the triangular array is preferred for its higher emitter density at a given emitter spacing. The primary contribution to shielding in large arrays is found to come from emitters within a distance of three times the unit cell spacing for both square and triangular arrays.

  3. Comet radar explorer

    NASA Astrophysics Data System (ADS)

    Farnham, Tony; Asphaug, Erik; Barucci, Antonella; Belton, Mike; Bockelee-Morvan, Dominique; Brownlee, Donald; Capria, Maria Teresa; Carter, Lynn; Chesley, Steve; Farnham, Tony; Gaskell, Robert; Gim, Young; Heggy, Essam; Herique, Alain; Klaasen, Ken; Kofman, Wlodek; Kreslavsky, Misha; Lisse, Casey; Orosei, Roberto; Plaut, Jeff; Scheeres, Dan

    The Comet Radar Explorer (CORE) is designed to perform a comprehensive and detailed exploration of the interior, surface, and inner coma structures of a scientifically impor-tant Jupiter family comet. These structures will be used to investigate the origins of cometary nuclei, their physical and geological evolution, and the mechanisms driving their spectacular activity. CORE is a high heritage spacecraft, injected by solar electric propulsion into orbit around a comet. It is capable of coherent deep radar imaging at decameter wavelengths, high resolution stereo color imaging, and near-IR imaging spectroscopy. Its primary objective is to obtain a high-resolution map of the interior structure of a comet nucleus at a resolution of ¿100 elements across the diameter. This structure shall be related to the surface geology and morphology, and to the structural details of the coma proximal to the nucleus. This is an ideal complement to the science from recent comet missions, providing insight into how comets work. Knowing the structure of the interior of a comet-what's inside-and how cometary activity works, is required before we can understand the requirements for a cryogenic sample return mission. But more than that, CORE is fundamental to understanding the origin of comets and their evolution in time. The mission is made feasible at low cost by the use of now-standard MARSIS-SHARAD reflec-tion radar imaging hardware and data processing, together with proven flight heritage of solar electric propulsion. Radar flight heritage has been demonstrated by the MARSIS radar on Mars Express (Picardi et al., Science 2005; Plaut et al., Science 2007), the SHARAD radar onboard the Mars Reconnaissance Orbiter (Seu et al., JGR 2007), and the LRS radar onboard Kaguya (Ono et al, EPS 2007). These instruments have discovered detailed subsurface structure to depths of several kilometers in a variety of terrains on Mars and the Moon. A reflection radar deployed in orbit about a comet will enjoy significant simplifying benefits compared to using the same instrument for Mars or lunar radar science: (1) The proximity of operations leads to a much higher signal to noise, as much as +30 dB. (2) The lack of an ionosphere simplifies data modeling and analysis. (3) The body is globally illuminated during every data acquisition, minimizing ambiguity or 'clutter' and allowing for tomographic reconstruction. What is novel is the data processing, where instead of a planar radargram approach we coherently process the data into an image of the deep interior. CORE thus uses a MARSIS-SHARAD heritage radar to make coherent reflection sounding measurements, a 'CAT SCAN' of a comet nucleus. What is unique about this mission compared to the Mars radars mentioned above, is that the target is a finite mass of dirty ice in free space, rather than a sheet of dirty ice draped on a planet surface. The depth of penetration (kilometers), attainable resolution (decameters), and the target materials, are more or less the same. This means that the science story is robust, and the radar implementation is robust. The target is comet 10P/Tempel 2, discovered by Wilhelm Tempel in 1873 and observed on most apparitions since. It has been extensively studied, in part because of interest as a CRAF target in the mid-1980s, and much is known about it. Tempel 2 is one of the largest known comet nuclei, 16×8×8 km (about the same size as Halley) [1] and has rotation period 8.9 hours [3,5,6,7,9]. The spin state is evolving with time, spinning up by ˜10 sec per perihelion pass [5,7]. The comet is active, but not exceedingly so, especially given its size. The water production is measured at ˜ 4 × 1028 mol/sec at its peak [2], a factor of 25 lower than comet Halley, and it is active over only ˜2% of its surface. The dust environment is well known, producing a factor of ˜100 less dust than Halley. Comet References: [1] A'Hearn et al., ApJ 347, 1155, 1989 [2] Feldman and Festou, ACM 1991, p. 171, 1992 [3] Jewitt and Luu, AJ 97, 1766, 1989 [4] Lamy et al., Comets II p 223. 2009 [5] Mueller and Ferrin, Icarus 123, 463, 1996 [6] Sekanina, AJ 102, 350, 1991 [7] Schleicher et al., BAAS 41, 1028, 2009 [8] Sykes et al, Icarus 86, 236, 1990 [9] Wisniewsi, Icarus 86, 52, 1990

  4. Space Radar Image of Long Island Optical/Radar

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This pair of images of the Long Island, New York region is a comparison of an optical photograph (top) and a radar image (bottom), both taken in darkness in April 1994. The photograph at the top was taken by the Endeavour astronauts at about 3 a.m. Eastern time on April 20, 1994. The image at the bottom was acquired at about the same time four days earlier on April 16,1994 by the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) system aboard the space shuttle Endeavour. Both images show an area approximately 100 kilometers by 40 kilometers (62 miles by 25 miles) that is centered at 40.7 degrees North latitude and 73.5 degrees West longitude. North is toward the upper right. The optical image is dominated by city lights, which are particularly bright in the densely developed urban areas of New York City located on the left half of the photo. The brightest white zones appear on the island of Manhattan in the left center, and Central Park can be seen as a darker area in the middle of Manhattan. To the northeast (right) of the city, suburban Long Island appears as a less densely illuminated area, with the brightest zones occurring along major transportation and development corridors. Since radar is an active sensing system that provides its own illumination, the radar image shows a great amount of surface detail, despite the night-time acquisition. The colors in the radar image were obtained using the following radar channels: red represents the L-band (horizontally transmitted and received); green represents the L-band (horizontally transmitted and vertically received); blue represents the C-band (horizontally transmitted and vertically received). In this image, the water surface - the Atlantic Ocean along the bottom edge and Long Island Sound shown at the top edge - appears red because small waves at the surface strongly reflect the horizontally transmitted and received L-band radar signal. Networks of highways and railroad lines are clearly visible in the radar image; many of them can also be seen as bright lines i the optical image. The runways of John F. Kennedy International Airport appear as a dark rectangle in Jamaica Bay on the left side of the image. Developed areas appear generally as bright green and orange, while agricultural, protected and undeveloped areas appear darker blue or purple. This contrast can be seen on the barrier islands along the south coast of Long Island, which are heavily developed in the Rockaway and Long Beach areas south and east of Jamaica Bay, but further to the east, the islands are protected and undeveloped.

  5. Joint UK/US Radar Program progress reports for period December 1--31, 1994

    SciTech Connect

    Twogood, R.E.; Brase, J.M.; Mantrom, D.D.; Rino, C.; Chambers, D.H.; Robey, H.F.; Belyea, J.

    1995-01-23

    Topics discussed in this report are current accomplishments in many functions to include: airborne RAR/SAR, radar data processor, ground based SAR signal processing workstation, static airborne radar, multi-aperture space-time array radar, radar field experiments, data analysis and detection theory, management, radar data analysis, modeling and analysis, current meter array, UCSB wave tank, stratified flow facility, Russian Institute of Applied Physics, and budget status.

  6. Architecture for a 1-GHz Digital RADAR

    NASA Technical Reports Server (NTRS)

    Mallik, Udayan

    2011-01-01

    An architecture for a Direct RF-digitization Type Digital Mode RADAR was developed at GSFC in 2008. Two variations of a basic architecture were developed for use on RADAR imaging missions using aircraft and spacecraft. Both systems can operate with a pulse repetition rate up to 10 MHz with 8 received RF samples per pulse repetition interval, or at up to 19 kHz with 4K received RF samples per pulse repetition interval. The first design describes a computer architecture for a Continuous Mode RADAR transceiver with a real-time signal processing and display architecture. The architecture can operate at a high pulse repetition rate without interruption for an infinite amount of time. The second design describes a smaller and less costly burst mode RADAR that can transceive high pulse repetition rate RF signals without interruption for up to 37 seconds. The burst-mode RADAR was designed to operate on an off-line signal processing paradigm. The temporal distribution of RF samples acquired and reported to the RADAR processor remains uniform and free of distortion in both proposed architectures. The majority of the RADAR's electronics is implemented in digital CMOS (complementary metal oxide semiconductor), and analog circuits are restricted to signal amplification operations and analog to digital conversion. An implementation of the proposed systems will create a 1-GHz, Direct RF-digitization Type, L-Band Digital RADAR--the highest band achievable for Nyquist Rate, Direct RF-digitization Systems that do not implement an electronic IF downsample stage (after the receiver signal amplification stage), using commercially available off-the-shelf integrated circuits.

  7. Radar Location Equipment Development Program: Phase I

    SciTech Connect

    Sandness, G.A.; Davis, K.C.

    1985-06-01

    The work described in this report represents the first phase of a planned three-phase project designed to develop a radar system for monitoring waste canisters stored in a thick layer of bedded salt at the Waste Isolation Pilot Plant near Carlsbad, New Mexico. The canisters will be contained in holes drilled into the floor of the underground waste storage facility. It is hoped that these measurements can be made to accuracies of +-5 cm and +-2/sup 0/, respectively. The initial phase of this project was primarily a feasibility study. Its principal objective was to evaluate the potential effectiveness of the radar method in the planned canister monitoring application. Its scope included an investigation of the characteristics of radar signals backscattered from waste canisters, a test of preliminary data analysis methods, an assessment of the effects of salt and bentonite (a proposed backfill material) on the propagation of the radar signals, and a review of current ground-penetrating radar technology. A laboratory experiment was performed in which radar signals were backscattered from simulated waste canisters. The radar data were recorded by a digital data acquisition system and were subsequently analyzed by three different computer-based methods to extract estimates of canister location and tilt. Each of these methods yielded results that were accurate within a few centimeters in canister location and within 1/sup 0/ in canister tilt. Measurements were also made to determine the signal propagation velocities in salt and bentonite (actually a bentonite/sand mixture) and to estimate the signal attenuation rate in the bentonite. Finally, a product survey and a literature search were made to identify available ground-penetrating radar systems and alternative antenna designs that may be particularly suitable for this unique application. 10 refs., 21 figs., 4 tabs.

  8. FM/CW radar system

    NASA Technical Reports Server (NTRS)

    Brey, H.; Geise, P. E., Jr. (Inventor)

    1978-01-01

    An FM/CW radar system is presented with improved noise discrimination in which the received signal is multiplied by a sample of the transmitted signal, and the product signal is employed to deflect a laser beam as a function of frequency. The position of the beam is thus indicative of a discrete frequency, and it is detected by the frequency encoded positions of an array of photodiodes. The outputs of the photodiodes are scanned, then threshold detected, and used to obtain the range and velocity of a target.

  9. Terahertz Radar for Remote Measurement of Vital Signs

    NASA Astrophysics Data System (ADS)

    Benton, Carla; Bryan, Erik; Petkie, Douglas T.

    2008-10-01

    A radar system operating at 228 GHz was used for measuring the displacement of a subject's chest wall due to respiration and heartbeat. Using various signal processing techniques, the signal was cleaned and the respiration rate and heart rate were extracted from the signal. The radar has been able to produce accurate results at a variety of distances and recent improvements to the system and the signal processing have increased its operating range and accuracy.

  10. Study of the Electric Field Screening Effect on Low Number of Carbon Fiber Field Emitters

    NASA Astrophysics Data System (ADS)

    Tang, Wilkin; Shiffler, Don; Lacour, Matthew; Golby, Ken; Knowles, Tim

    2015-11-01

    Field emitter arrays have the potential to provide high current density, low voltage operation, and high pulse repetition for radar and communication. It is well known that packing density of the field emitter arrays significantly affects the emission current.1 Previously we conducted experiments using two- and four-cathode configurations. Here we extend our previous work and present experimental results for nine cathodes in a square and cylindrical configuration. The experiments used nine cathodes with variable spacing to investigate the effect of electric field screening on current emission. Emission characteristic is compared for the case of two, four and nine field emitters with different spacing. Particle-in-cell simulations are performed to compare with the experiments. Work supported by an LRIR from the Air Force Office of Scientific Research.

  11. Radar simulation program upgrade and algorithm development

    NASA Technical Reports Server (NTRS)

    Britt, Charles L.

    1991-01-01

    The NASA Radar Simulation Program is a comprehensive calculation of the expected output of an airborne coherent pulse Doppler radar system viewing a low level microburst along or near the approach path. Inputs to the program include the radar system parameters and data files that contain the characteristics of the microbursts to be simulated, the ground clutter map, and the discrete target data base which provides a simulation of the moving ground clutter. For each range bin, the simulation calculates the received signal amplitude level by integrating the product of the antenna gain pattern and the scattering source amplitude and phase of a spherical shell volume segment defined by the pulse width, radar range, and ground plane intersection. A series of in-phase and quadrature pulses are generated and stored for further processing if desired. In addition, various signal processing techniques are used to derive the simulated velocity and hazard measurements, and store them for use in plotting and display programs.

  12. Fifty years of radar

    NASA Astrophysics Data System (ADS)

    Skolnik, M. I.

    1985-02-01

    A development history of radar technology is presented, with attention to the driving of radar system design advances by the emergence of such weapon systems as long range aircraft and cruise missiles in World War II and the range of current applications for state-of-the-art radar techniques. The applications noted encompass over-the-horizon backscatter radars for aircraft detection at 500-1800 nmi ranges, ultralow sidelobe antenna military radars, a long range, frequency scanning three-dimensional S-band radar, a shipborne phased array radar for the collection of exoatmospheric and endoatmospheric data on ballistic missile reentry vehicles, multimission/multimode X-band fighter aircraft radars, and phased array air defense radars.

  13. Detecting and mitigating wind turbine clutter for airspace radar systems.

    PubMed

    Wang, Wen-Qin

    2013-01-01

    It is well recognized that a wind turbine has a large radar cross-section (RCS) and, due to the movement of the blades, the wind turbine will generate a Doppler frequency shift. This scattering behavior may cause severe interferences on existing radar systems including static ground-based radars and spaceborne or airborne radars. To resolve this problem, efficient techniques or algorithms should be developed to mitigate the effects of wind farms on radars. Herein, one transponder-based mitigation technique is presented. The transponder is not a new concept, which has been proposed for calibrating high-resolution imaging radars. It modulates the radar signal in a manner that the retransmitted signals can be separated from the scene echoes. As wind farms often occupy only a small area, mitigation processing in the whole radar operation will be redundant and cost inefficient. Hence, this paper uses a transponder to determine whether the radar is impacted by the wind farms. If so, the effects of wind farms are then mitigated with subsequent Kalman filtering or plot target extraction algorithms. Taking airborne synthetic aperture radar (SAR) and pulse Doppler radar as the examples, this paper provides the corresponding system configuration and processing algorithms. The effectiveness of the mitigation technique is validated by numerical simulation results. PMID:24385880

  14. Detecting and Mitigating Wind Turbine Clutter for Airspace Radar Systems

    PubMed Central

    2013-01-01

    It is well recognized that a wind turbine has a large radar cross-section (RCS) and, due to the movement of the blades, the wind turbine will generate a Doppler frequency shift. This scattering behavior may cause severe interferences on existing radar systems including static ground-based radars and spaceborne or airborne radars. To resolve this problem, efficient techniques or algorithms should be developed to mitigate the effects of wind farms on radars. Herein, one transponder-based mitigation technique is presented. The transponder is not a new concept, which has been proposed for calibrating high-resolution imaging radars. It modulates the radar signal in a manner that the retransmitted signals can be separated from the scene echoes. As wind farms often occupy only a small area, mitigation processing in the whole radar operation will be redundant and cost inefficient. Hence, this paper uses a transponder to determine whether the radar is impacted by the wind farms. If so, the effects of wind farms are then mitigated with subsequent Kalman filtering or plot target extraction algorithms. Taking airborne synthetic aperture radar (SAR) and pulse Doppler radar as the examples, this paper provides the corresponding system configuration and processing algorithms. The effectiveness of the mitigation technique is validated by numerical simulation results. PMID:24385880

  15. Advances in airborne radar. The new capabilities

    NASA Astrophysics Data System (ADS)

    Stewart, C. M.

    1983-06-01

    The power and speed of the minicomputer, microprocessor, and other signal processing subsystems have had a very significant effect on the operational capability now available from airborne radar. The mechanization of hitherto unrealizable processing strategies has encouraged the development of more sophisticated pulse compression and pulse Doppler radars and allowed them to achieve their full potential within the size and weight constraints of an aircraft installation. The new capabilities in each of the operational roles in which radar is used outlining the techniques employed are reviewed.

  16. Determination of the Sources of Radar Scattering

    NASA Technical Reports Server (NTRS)

    Moore, R. K.; Zoughi, R.

    1984-01-01

    Fine-resolution radar backscattering measurements were proposed to determine the backscattering sources in various vegetation canopies and surface targets. The results were then used to improve the existing theoretical models of terrain scattering, and also to enhance understanding of the radar signal observed by an imaging radar over a vegetated area. Various experiments were performed on targets such as corn, milo, soybeans, grass, asphalt pavements, soil and concrete walkways. Due to the lack of available references on measurements of this type, the obtained results will be used primarily as a foundation or future experiments. The constituent backscattering characteristics of the vegetation canopies was also examined.

  17. SMAP RADAR Processing and Calibration

    NASA Astrophysics Data System (ADS)

    West, R. D.; Jaruwatanadilok, S.; Kwoun, O.; Chaubell, M. J.

    2013-12-01

    The Soil Moisture Active Passive (SMAP) mission uses L-band radar and radiometer measurements to estimate soil moisture with 4% volumetric accuracy at a resolution of 10 km, and freeze-thaw state at a resolution of 1-3 km. Model sensitivities translate the soil moisture accuracy to a radar backscatter accuracy of 1 dB at 3 km resolution and a brightness temperature accuracy of 1.3 K at 40 km resolution. This presentation will describe the level 1 radar processing and calibration challenges and the choices made so far for the algorithms and software implementation. To obtain the desired high spatial resolution the level 1 radar ground processor employs synthetic aperture radar (SAR) imaging techniques. Part of the challenge of the SMAP data processing comes from doing SAR imaging on a conically scanned system with rapidly varying squint angles. The radar echo energy will be divided into range/Doppler bins using time domain processing algorithms that can easily follow the varying squint angle. For SMAP, projected range resolution is about 250 meters, while azimuth resolution varies from 400 meters to 1.2 km. Radiometric calibration of the SMAP radar means measuring, characterizing, and where necessary correcting the gain and noise contributions from every part of the system from the antenna radiation pattern all the way to the ground processing algorithms. The SMAP antenna pattern will be computed using an accurate antenna model, and then validated post-launch using homogeneous external targets such as the Amazon rain forest to look for uncorrected gain variation. Noise subtraction is applied after image processing using measurements from a noise only channel. Variations of the internal electronics are tracked by a loopback measurement which will capture most of the time and temperature variations of the transmit power and receiver gain. Long-term variations of system performance due to component aging will be tracked and corrected using stable external reference targets. Candidate targets include the Amazon rain forest and a model-corrected global ocean measurement. Radio frequency interference (RFI) signals are expected in the L-band frequency window used by the SMAP radar because many other users also operate in this band. Based on results of prior studies at JPL, SMAP L1 radar processing will use a "Slow-time thresholding" or STT algorithm to handle RFI contamination. The STT technique looks at the slow-time series associated with a given range sample, sets an appropriate threshold, and identifies any samples that rise above this threshold as RFI events. The RFI events are removed and the data are azimuth compressed without those samples. Faraday rotation affects L-band signals by rotating the polarization vector during propagation through the ionosphere. This mixes HH, VV, HV, and VH results with each other introducing another source of error. The SMAP radar is not fully polarimetric so the radar data do not provide a correction by themselves. Instead a correction must be derived from other sources. L1 radar processing will use estimates of Faraday rotation derived from externally supplied GPS-based measurements of the ionosphere total electron content (TEC). This work is supported by the SMAP project at the Jet Propulsion Laboratory, California Institute of Technology.

  18. The design and implementation of a multi-waveform radar echo simulator

    NASA Astrophysics Data System (ADS)

    Quan, Yinghui; Gao, Xiaoxiao; Li, Yachao; Xing, Mengdao

    2015-10-01

    Radar simulator is an effective tool for performance assessment of radar systems by accurately reproducing echo signals from complicated environment. This paper presents a design of fast multi-waveform radar echo generation based on deconvolution method. First, scene information is retrieved from outfield data based on improved conjugate gradient algorithm. Then, the new radar echoes are generated through convolution of new transmitted signal and restored scene information. A fast and area-efficient field programmable gate array realization is provided to meet the real-time requirement of radar echo simulation. Finally, a series of experiments are performed to evaluate the effectiveness of proposed radar simulation instrument.

  19. Monitoring by holographic radar systems

    NASA Astrophysics Data System (ADS)

    Catapano, Ilaria; Crocco, Lorenzo; Affinito, Antonio; Gennarelli, Gianluca; Soldovieri, Francesco

    2013-04-01

    Nowadays, radar technology represents a significant opportunity to collect useful information for the monitoring and conservation of critical infrastructures. Radar systems exploit the non-invasive interaction between the matter and the electromagnetic waves at microwave frequencies. Such an interaction allows obtaining images of the region under test from which one can infer the presence of potential anomalies such as deformations, cracks, water infiltrations, etc. This information turns out to be of primary importance in practical scenarios where the probed structure is in a poor state of preservation and renovation works must be planned. In this framework, the aim of this contribution is to describe the potentialities of the holographic radar Rascan 4/4000, a holographic radar developed by Remote Sensing Laboratory of Bauman Moscow State Technical University, as a non-destructive diagnostic tool capable to provide, in real-time, high resolution subsurface images of the sounded structure [1]. This radar provides holograms of hidden anomalies from the amplitude of the interference signal arising between the backscattered signal and a reference signal. The performance of the holographic radar is appraised by means of several experiments. Preliminary tests concerning the imaging below the floor and inside wood structures are carried out in controlled conditions at the Electromagnetic Diagnostic Laboratory of IREA-CNR. After, with reference to bridge monitoring for security aim, the results of a measurement campaign performed on the Musmeci bridge are presented [2]. Acknowledgments This research has been performed in the framework of the "Active and Passive Microwaves for Security and Subsurface imaging (AMISS)" EU 7th Framework Marie Curie Actions IRSES project (PIRSES-GA-2010-269157). REFERENCES [1] S. Ivashov, V. Razevig, I. Vasilyev, A. Zhuravlev, T. Bechtel, L. Capineri, The holographic principle in subsurface radar technology, International Symposium to Commemorate the 60th Anniversary of the Invention of Holography, Springfield, Massachusetts USA, October 27-29, pp. 183-197, 2008. [2] I. Catapano, L. Crocco, A. F. Morabito, F. Soldovieri, "Tomographic imaging of holographic GPR data for non-invasive structural assessment: the Musmeci bridge investigation", Nondestructive testing and evaluation, vol. 27, pp. 229-237, 2012.

  20. Beam emittance measurements at Fermilab

    SciTech Connect

    Wendt, Manfred; Eddy, Nathan; Hu, Martin; Scarpine, Victor; Syphers, Mike; Tassotto, Gianni; Thurman-Keup, Randy; Yang, Ming-Jen; Zagel, James; /Fermilab

    2008-01-01

    We give short overview of various beam emittance measurement methods, currently applied at different machine locations for the Run II collider physics program at Fermilab. All these methods are based on beam profile measurements, and we give some examples of the related instrumentation techniques. At the end we introduce a multi-megawatt proton source project, currently under investigation at Fermilab, with respect to the beam instrumentation challenges.

  1. Chemically Etched Open Tubular and Monolithic Emitters for Nanoelectrospray Ionization Mass Spectrometry

    SciTech Connect

    Kelly, Ryan T.; Page, Jason S.; Luo, Quanzhou; Moore, Ronald J.; Orton, Daniel J.; Tang, Keqi; Smith, Richard D.

    2006-11-15

    We have developed a new procedure for fabricating fused silica emitters for electrospray ionization-mass spectrometry (ESI-MS) in which the end of a bare fused silica capillary is immersed into aqueous hydrofluoric acid, and water is pumped through the capillary to prevent etching of the interior. Surface tension causes the etchant to climb the capillary exterior, and the etch rate in the resulting meniscus decreases as a function of distance from the bulk solution. Etching continues until the silica touching the hydrofluoric acid reservoir is completely removed, essentially stopping the etch process. The resulting emitters have no internal taper, making them much less prone to clogging compared to e.g. pulled emitters. The high aspect ratios and extremely thin walls at the orifice facilitate very low flow rate operation; stable ESI-MS signals were obtained for model analytes from 5-μm-diameter emitters at a flow rate of 5 nL/min with a high degree of inter-emitter reproducibility. In extensive evaluation, the etched emitters were found to enable approximately four times as many LC-MS analyses of proteomic samples before failing compared with conventional pulled emitters. The fabrication procedure was also employed to taper the ends of polymer monolith-containing silica capillaries for use as ESI emitters. In contrast to previous work, the monolithic material protrudes beyond the fused silica capillaries, improving the monolith-assisted electrospray process.

  2. Radar images analysis for scattering surfaces characterization

    NASA Astrophysics Data System (ADS)

    Piazza, Enrico

    1998-10-01

    According to the different problems and techniques related to the detection and recognition of airplanes and vehicles moving on the Airport surface, the present work mainly deals with the processing of images gathered by a high-resolution radar sensor. The radar images used to test the investigated algorithms are relative to sequence of images obtained in some field experiments carried out by the Electronic Engineering Department of the University of Florence. The radar is the Ka band radar operating in the'Leonardo da Vinci' Airport in Fiumicino (Rome). The images obtained from the radar scan converter are digitized and putted in x, y, (pixel) co- ordinates. For a correct matching of the images, these are corrected in true geometrical co-ordinates (meters) on the basis of fixed points on an airport map. Correlating the airplane 2-D multipoint template with actual radar images, the value of the signal in the points involved in the template can be extracted. Results for a lot of observation show a typical response for the main section of the fuselage and the wings. For the fuselage, the back-scattered echo is low at the prow, became larger near the center on the aircraft and than it decrease again toward the tail. For the wings the signal is growing with a pretty regular slope from the fuselage to the tips, where the signal is the strongest.

  3. Alpha particle emitters in medicine

    SciTech Connect

    Fisher, D.R.

    1989-09-01

    Radiation-induced cancer of bone, liver and lung has been a prominent harmful side-effect of medical applications of alpha emitters. In recent years, however, the potential use of antibodies labeled with alpha emitting radionuclides against cancer has seemed promising because alpha particles are highly effective in cell killing. High dose rates at high LET, effectiveness under hypoxic conditions, and minimal expectancy of repair are additional advantages of alpha emitters over antibodies labeled with beta emitting radionuclides for cancer therapy. Cyclotron-produced astatine-211 ({sup 211}At) and natural bismuth-212 ({sup 212}Bi) have been proposed and are under extensive study in the United States and Europe. Radium-223 ({sup 223}Ra) also has favorable properties as a potential alpha emitting label, including a short-lived daughter chain with four alpha emissions. The radiation dosimetry of internal alpha emitters is complex due to nonuniformly distributed sources, short particle tracks, and high relative specific ionization. The variations in dose at the cellular level may be extreme. Alpha-particle radiation dosimetry, therefore, must involve analysis of statistical energy deposition probabilities for cellular level targets. It must also account fully for nonuniform distributions of sources in tissues, source-target geometries, and particle-track physics. 18 refs., 4 figs.

  4. Emittance compensation of elliptical beams

    NASA Astrophysics Data System (ADS)

    Miginsky, S. V.

    2009-05-01

    The technique known as emittance compensation was always considered in circular-symmetrical systems until now. It was owing to that (i) record brightness injectors were used for linacs only and could be made circular-symmetrical, that is without dipoles and quadrupoles, and (ii) the analysis of an elliptically-symmetrical system is much more complicated as it has two modes of charge oscillations that possess different wave numbers while the phases of both ones are to be appropriate to reach emittance compensation. Therewith, these record brightness injectors are necessary for energy recovery accelerators recently. The injection energy in these machines is not so high and an injection beamline always contains dipoles, so ellipticity should be taken into account while analyzing emittance compensation in these systems. An analytical description for the transverse dynamics of elliptically-symmetrical space-charge dominated beams is provided in the paper. A way to compensate both charge oscillation modes is pointed. A sample beamline containing an achromatic bend was optimized analytically and numerically.

  5. Combustion powered thermophotovoltaic emitter system

    SciTech Connect

    McHenry, R.S.; Harper, M.J.; Lindler, K.W.

    1995-12-31

    The United States Naval Academy, under interagency agreement with the Department of Energy (DOE), has recently completed an engineering design project for a high temperature thermophotovoltaic (TPV) photon emitter. The design was constrained by the physical geometry and photovoltaic cell type of the DOE TPV generator so that a cylindrical emitter at 1,756 K (2,700 F) was dictated. The final apparatus was to be portable, completely self contained, and was to incorporate cycle efficiency optimization such as exhaust stream recuperation. Through computer modeling and prototype experimentation, a methane fueled emitter system was designed from structural ceramic materials to fulfill the DOE requirements. This paper outlines the engineering design process, discusses obstacles and solutions encountered, and presents the final design. The concept of thermophotovoltaic energy conversion dates to the 1960s and has been the subject of broad research effort. This is a direct energy conversion process that converts thermal energy into electricity with only photonic coupling. The process offers high theoretical efficiency, versatile application as a primary or secondary power cycle, and a number of operational advantages resulting from the lack of a working substance or moving parts.

  6. Digital orthogonal receiver for wideband radar based on compressed sensing

    NASA Astrophysics Data System (ADS)

    Hou, Qingkai; Liu, Yang; Chen, Zengping; Su, Shaoying

    2014-10-01

    Digital orthogonal receiver is one of the key techniques in digital receiver of soft radar, and compressed sensing is attracting more and more attention in radar signal processing. In this paper, we propose a CS digital orthogonal receiver for wideband radar which utilizes compressed sampling in the acquisition of radar raw data. In order to reconstruct complex signal from sub-sampled raw data, a novel sparse dictionary is proposed to represent the real-valued radar raw signal sparsely. Using our dictionary and CS algorithm, we can reconstruct the complex-valued radar signal from sub-sampled echoes. Compared with conventional digital orthogonal radar receiver, the architecture of receiver in this paper is more simplified and the sampling frequency of ADC is reduced sharply. At the same time, the range profile can be obtained during the reconstruction, so the matched filtering can be eliminated in the receiver. Some experiments on ISAR imaging based on simulated data prove that the phase information of radar echoes is well reserved in our orthogonal receiver and the whole design is effective for wideband radar.

  7. Radar channel balancing with commutation

    SciTech Connect

    Doerry, Armin Walter

    2014-02-01

    When multiple channels are employed in a pulse-Doppler radar, achieving and maintaining balance between the channels is problematic. In some circumstances the channels may be commutated to achieve adequate balance. Commutation is the switching, trading, toggling, or multiplexing of the channels between signal paths. Commutation allows modulating the imbalance energy away from the balanced energy in Doppler, where it can be mitigated with filtering.

  8. Test beam results of a low-pressure micro-strip gas chamber with a secondary-electron emitter

    SciTech Connect

    Kwan, S.; Anderson, D.F.; Zimmerman, J.; Sbarra, C.; Salomon, M.

    1994-10-01

    We present recent results, from a beam test, on the angular dependence of the efficiency and the distribution of the signals on the anode strips of a low-pressure microstrip gas chamber with a thick CsI layer as a secondary-electron emitter. New results of CVD diamond films as secondary-electron emitters are discussed.

  9. Radar image of Rio Sao Francisco, Brazil

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This radar image acquired by SRTM shows an area south of the Sao Francisco River in Brazil. The area is predominantly scrub forest. Areas such as these are difficult to map by traditional methods because of frequent cloud cover and local inaccessibility. Image brightness differences in this image are caused by differences in vegetation type and density. Tributaries of the Sao Francisco are visible in the upper right. The Sao Francisco River is a major source of water for irrigation and hydroelectric power. Mapping such regions will allow scientists to better understand the relationships between flooding cycles, forestation and human influences on ecosystems.

    This radar image was obtained by the Shuttle Radar Topography Mission as part of its mission to map the Earth's topography. The image was acquired by just one of SRTM's two antennas, and consequently does not show topographic data but only the strength of the radar signal reflected from the ground. This signal, known as radar backscatter, provides insight into the nature of the surface, including its roughness, vegetation cover, and urbanization.

    The Shuttle Radar Topography Mission (SRTM), launched on February 11, 2000, uses the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. The mission is designed to collect three-dimensional measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter-long (200-foot) mast, an additional C-band imaging antenna and improved tracking and navigation devices. The mission is a cooperative project between the National Aeronautics and Space Administration (NASA), the National Imagery and Mapping Agency (NIMA) and the German and Italian space agencies. It is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Earth Science Enterprise, Washington, DC.

  10. Soviet oceanographic synthetic aperture radar (SAR) research

    SciTech Connect

    Held, D.N.; Gasparovic, R.F.; Mansfield, A.W.; Melville, W.K.; Mollo-Christensen, E.L.; Zebker, H.A.

    1991-01-01

    Radar non-acoustic anti-submarine warfare (NAASW) became the subject of considerable scientific investigation and controversy in the West subsequent to the discovery by the Seasat satellite in 1978 that manifestations of underwater topography, thought to be hidden from the radar, were visible in synthetic aperture radar (SAR) images of the ocean. In addition, the Seasat radar produced images of ship wakes where the observed angle between the wake arms was much smaller than expected from classical Kelvin wake theory. These observations cast doubt on the radar oceanography community's ability to adequately explain these phenomena, and by extension on the ability of existing hydrodynamic and radar scattering models to accurately predict the observability of submarine-induced signatures. If one is of the opinion that radar NAASW is indeed a potentially significant tool in detecting submerged operational submarines, then the Soviet capability, as evidenced throughout this report, will be somewhat daunting. It will be shown that the Soviets have extremely fine capabilities in both theoretical and experimental hydrodynamics, that Soviet researchers have been conducting at-sea radar remote sensing experiments on a scale comparable to those of the United States for several years longer than we have, and that they have both an airborne and spaceborne SAR capability. The only discipline that the Soviet Union appears to be lacking is in the area of digital radar signal processing. If one is of the opinion that radar NAASW can have at most a minimal impact on the detection of submerged submarines, then the Soviet effort is of little consequence and poses not threat. 280 refs., 31 figs., 12 tabs.

  11. Nonlocality from N>2 independent single-photon emitters

    SciTech Connect

    Thiel, C.; Wiegner, R.; Zanthier, J. von; Agarwal, G. S.

    2010-09-15

    We demonstrate that intensity correlations of second order in the fluorescence light of N>2 single-photon emitters may violate locality while the visibility of the signal remains below 1/{radical}(2){approx_equal}71%. For this, we derive a homogeneous Bell-Wigner-type inequality, which can be applied to a broad class of experimental setups. We trace the violation of this inequality back to path entanglement created by the process of detection.

  12. Warning signal brightness variation: sexual selection may work under the radar of natural selection in populations of a polytypic poison frog.

    PubMed

    Crothers, Laura R; Cummings, Molly E

    2013-05-01

    Though theory predicts consistency of warning signals in aposematic species to facilitate predator learning, variation in these signals often occurs in nature. The strawberry poison frog Dendrobates pumilio is an exceptionally polytypic (populations are phenotypically distinct) aposematic frog exhibiting variation in warning color and brightness. In the Solarte population, males and females both respond differentially to male brightness variation. Here, we demonstrate through spectrophotometry and visual modeling that aposematic brightness variation within this population is likely visible to two putative predators (crabs, snakes) and conspecifics but not to the presumed major predator (birds). This study thus suggests that signal brightness within D. pumilio populations can be shaped by sexual selection, with limited opportunity for natural selection to influence this trait due to predator sensory constraints. Because signal brightness changes can ultimately lead to changes in hue, our findings at the within-population level can provide insights into understanding this polytypism at across-population scales. PMID:23594556

  13. Laser radar II

    SciTech Connect

    Becherer, R.J.; Harney, R.C.

    1987-01-01

    This book contains papers divided among the following sessions: Strategic Defense Initiative laser radar technology; Advanced laser devices; Systems analysis and computer simulations; and Laser radar applications and system components.

  14. Radar backscatter modelling

    NASA Astrophysics Data System (ADS)

    Schaber, G. G.; Kozak, R. C.; Gurule, R. L.

    1984-04-01

    The terrain analysis software package was restructured and documentation was added. A program was written to test Johnson Space Center's four band scatterometer data for spurious signals data. A catalog of terrain roughness statistics and calibrated four frequency multipolarization scatterometer data is being published to support the maintenance of Death Valley as a radar backscatter calibration test site for all future airborne and spacecraft missions. Test pits were dug through sand covered terrains in the Eastern Sahara to define the depth and character of subsurface interfaces responsible for either backscatter or specular response in SIR-A imagery. Blocky sandstone bedrock surfaces at about 1 m depth were responsible for the brightest SIR-A returns. Irregular very dense CaCO3 cemented sand interfaces were responsible for intermediate grey tones. Ancient river valleys had the weakest response. Reexamination of SEASAT l-band imagery of U.S. deserts continues.

  15. Radar backscatter modelling

    NASA Technical Reports Server (NTRS)

    Schaber, G. G.; Kozak, R. C.; Gurule, R. L.

    1984-01-01

    The terrain analysis software package was restructured and documentation was added. A program was written to test Johnson Space Center's four band scatterometer data for spurious signals data. A catalog of terrain roughness statistics and calibrated four frequency multipolarization scatterometer data is being published to support the maintenance of Death Valley as a radar backscatter calibration test site for all future airborne and spacecraft missions. Test pits were dug through sand covered terrains in the Eastern Sahara to define the depth and character of subsurface interfaces responsible for either backscatter or specular response in SIR-A imagery. Blocky sandstone bedrock surfaces at about 1 m depth were responsible for the brightest SIR-A returns. Irregular very dense CaCO3 cemented sand interfaces were responsible for intermediate grey tones. Ancient river valleys had the weakest response. Reexamination of SEASAT l-band imagery of U.S. deserts continues.

  16. Radar investigation of asteroids

    NASA Technical Reports Server (NTRS)

    Ostro, S. J.

    1982-01-01

    The dual polarization CW radar system which permits simultaneous reception in the same rotational sense of circular polarization as transmitted (i.e., the "SC" sense) and in the opposite ("OC") sense, was used to observe five previously unobserved asteroids: 2 Pallas, 8 Flora, 22 Kalliope, 132 Aethra, and 471 Papagena. Echoes from Pallas and Flora were easily detected in the OC sense on each of several nights. Weighted mean echo power spectra also show marginally significant responses in the SC sense. An approximately 4.5 standard deviation signal was obtained for Aethra. The Doppler shift of the peak is about 10 Hz higher than that predicted from the a priori trial ephemeris. Calculations are performed to determine whether this frequency offset can be reconciled dynamically with optical positions reported for Aethra.

  17. 1991 IEEE National Radar Conference, Los Angeles, CA, Mar. 12, 13, 1991, Proceedings

    NASA Astrophysics Data System (ADS)

    Various papers on the impact of microelectronics on radar systems are presented. Individual topics addressed include: a Ka-band instrumentation radar with one foot range resolution, location accuracy in X-band multifunction radar, ambiguity function analysis of wideband radars, microelectronics applications for GBR-X testability, multiple phase center DPCA for airborne radars, microwave time delay beamforming using optics, Flaps: conformal phased reflecting surfaces, T/R modules for phased array antennas, generalized polar processing algorithm for large area SAR images. Also discussed are: neural networks for sequential discrimination of radar targets, programmable radar signal processor architecture, high-temperature superconductors for radar applications, radar loss of target track (LOTT) expert system, application of the Fast Fourier Number Theoretic Transform to radar, FMCW linearizer bandwidth requirements, RCS probability distribution function modeling of a fluctuating target.

  18. On-line Measurement of Chaos Laser Radar using FPGA

    NASA Astrophysics Data System (ADS)

    Nakagawa, Tatsuya; Tsuda, Norio; Yamada, Jun

    Today, laser radar is widely studied as in-car radar. The laser radar has a characteristic that the received signal becomes to be buried in noise with increasing distance. When the long distance is measured, it needs a high power laser, or the repetitive process that uses multiplication and integration. Therefore, a new type of the chaos laser radar has been studied. This laser radar is relatively resistant to noise and can simply process because of using only additional process. But, the chaos laser radar has been off-line processing thus far. Then using FPGA in the signal processing, the on-line measurement system is developed. As a result, the distance up to 95m can be measured on-line.

  19. Doppler radar results

    NASA Technical Reports Server (NTRS)

    Bracalente, Emedio M.

    1992-01-01

    The topics are covered in viewgraph form and include the following: (1) a summary of radar flight data collected; (2) a video of combined aft cockpit, nose camera, and radar hazard displays; (3) a comparison of airborne radar F-factor measurements with in situ and Terminal Doppler Weather Radar (TDWR) F-factors for some sample events; and (4) a summary of wind shear detection performance.

  20. Lunar radar backscatter studies

    NASA Technical Reports Server (NTRS)

    Thompson, T. W.

    1979-01-01

    The lunar surface material in the Plato area is characterized using Earth based visual, infrared, and radar signatures. Radar scattering in the lunar regolith with an existing optical scattering computer program is modeled. Mapping with 1 to 2 km resolution of the Moon using a 70 cm Arecibo radar is presented.

  1. Rapid decrease of radar cross section of meteor head echo observed by the MU radar

    NASA Astrophysics Data System (ADS)

    Nakamura, T.; Nishio, M.; Sato, T.; Tsutsumi, S.; Tsuda, T.; Fushimi, K.

    The meteor head echo observation using the MU (Middle and Upper atmosphere) radar (46.5M Hz, 1MW), Shigaraki, Japan, was carried out simultaneously with a high sensitive ICCD (Image-intensified CCD) camera observation in November 2001. The time records were synchronized using GPS satellite signals, in order to compare instantaneous radar and optical meteor magnitudes. 26 faint meteors were successfully observed simultaneously by both equipments. Detailed comparison of the time variation of radar echo intensity and absolute optical magnitude showed that the radar scattering cross section is likely to decrease rapidly by 5 - 20 dB without no corresponding magnitude variation in the optical data. From a simple modeling, we concluded that such decrease of RCS (radar cross section ) is probably due to the transition from overdense head echo to underd ense head echo.

  2. Rain radars for earth science geostationary platforms: Some possibilities

    NASA Technical Reports Server (NTRS)

    Gogineni, S. P.; Moore, R. K.

    1989-01-01

    Results of a feasibility study for a geostationary rain radar are presented. A 2-cm wavelength radar with a 15 to 20 mm antenna will be useful for general scale meteorology. The transmitter power of 500 W with a pulse compression ratio of 200 will provide adequate signal-to-noise ratio for a rain rate of 1 mm/hour. Various problems associated with a geostationary radar and solutions are also discussed.

  3. Transponder-aided joint calibration and synchronization compensation for distributed radar systems.

    PubMed

    Wang, Wen-Qin

    2015-01-01

    High-precision radiometric calibration and synchronization compensation must be provided for distributed radar system due to separate transmitters and receivers. This paper proposes a transponder-aided joint radiometric calibration, motion compensation and synchronization for distributed radar remote sensing. As the transponder signal can be separated from the normal radar returns, it is used to calibrate the distributed radar for radiometry. Meanwhile, the distributed radar motion compensation and synchronization compensation algorithms are presented by utilizing the transponder signals. This method requires no hardware modifications to both the normal radar transmitter and receiver and no change to the operating pulse repetition frequency (PRF). The distributed radar radiometric calibration and synchronization compensation require only one transponder, but the motion compensation requires six transponders because there are six independent variables in the distributed radar geometry. Furthermore, a maximum likelihood method is used to estimate the transponder signal parameters. The proposed methods are verified by simulation results. PMID:25794158

  4. Transponder-Aided Joint Calibration and Synchronization Compensation for Distributed Radar Systems

    PubMed Central

    Wang, Wen-Qin

    2015-01-01

    High-precision radiometric calibration and synchronization compensation must be provided for distributed radar system due to separate transmitters and receivers. This paper proposes a transponder-aided joint radiometric calibration, motion compensation and synchronization for distributed radar remote sensing. As the transponder signal can be separated from the normal radar returns, it is used to calibrate the distributed radar for radiometry. Meanwhile, the distributed radar motion compensation and synchronization compensation algorithms are presented by utilizing the transponder signals. This method requires no hardware modifications to both the normal radar transmitter and receiver and no change to the operating pulse repetition frequency (PRF). The distributed radar radiometric calibration and synchronization compensation require only one transponder, but the motion compensation requires six transponders because there are six independent variables in the distributed radar geometry. Furthermore, a maximum likelihood method is used to estimate the transponder signal parameters. The proposed methods are verified by simulation results. PMID:25794158

  5. Spatial-detection effects in laser radar.

    NASA Technical Reports Server (NTRS)

    Sievering, H.; Mittra, R.

    1972-01-01

    Determination of a relation for the detector-aperture size for spatially coherent detection when dependent scattering is present. This relation is applied to several realistic laser-radar situations. It is concluded that no distortion of laser-radar signal signatures due to spatial-detection effects should be expected for present typical operating conditions (i.e., mean wavelength of the source = 0.6943 micrometer, and the diameter of the receiving aperture is about 10 cm). With development of longer-wavelength laser radars, in order to monitor signal returns at pollutant-gas absorption lines concomitantly larger receiver apertures must be used or else widely varying signal signatures will result even though similar conditions prevail.

  6. Applications of high-frequency radar

    NASA Astrophysics Data System (ADS)

    Headrick, J. M.; Thomason, J. F.

    1998-07-01

    Efforts to extend radar range by an order of magnitude with use of the ionosphere as a virtual mirror started after the end of World War II. A number of HF radar programs were pursued, with long-range nuclear burst and missile launch detection demonstrated by 1956. Successful east coast radar aircraft detect and track tests extending across the Atlantic were conducted by 1961. The major obstacles to success, the large target-to-clutter ratio and low signal-to-noise ratio, were overcome with matched filter Doppler processing. To search the areas that a 2000 nautical mile (3700 km) radar can reach, very complex and high dynamic range processing is required. The spectacular advances in digital processing technology have made truly wide-area surveillance possible. Use of the surface attached wave over the oceans can enable HF radar to obtain modest extension of range beyond the horizon. The decameter wavelengths used by both skywave and surface wave radars require large physical antenna apertures, but they have unique capabilities for air and surface targets, many of which are of resonant scattering dimensions. Resonant scattering from the ocean permits sea state and direction estimation. Military and commercial applications of HF radar are in their infancy.

  7. Hail detection using S-band dual polarization radar

    NASA Astrophysics Data System (ADS)

    Heo, S.; Kang, M.; Nam, K.; Jung, H.

    2013-12-01

    The Korea Meteorological Administration(KMA) plans to replace current radars with the S-band dual polarization radars until 2016. So we need to develop an application technology of the S-band dual polarization radar of KMA. The dual polarization radar is capable of measuring the reflectivity ZH, differential reflectivity ZDR, specific differential phase KDP and cross-correlation coefficient ?HV. Using multi-parameter radar information helps to significantly improve the quality of the radar data, distinguish rain echos from the radar signals caused by other scatters (snow, ground clutter, chaff etc.). Additionally, Hydrometeor classification (rain, snow, hail, etc.) is one of the primary benefits of dual-polarization radar. However, current research on the S-band dual polarization hydrometeor classification is not in significant progress in Korea. So the purposes of this research are to perform application tests of hydrometeor classification algorithm and make operational system of S-band dual polarization radar of KMA. For this research, we used BSL S-band dual polarization radar data and NIMR-X hydrometeor classification algorithm of the National Institute of Meteorological Research(NIMR). This radar has been operated by the Ministry of Land, Transport, and Maritime affairs(MLTM) and NIMR-X hydrometeor classification algorithm was developed through joint research with the National Center for Atmospheric Research(NCAR).

  8. Cloud and Precipitation Radar

    NASA Astrophysics Data System (ADS)

    Hagen, Martin; Höller, Hartmut; Schmidt, Kersten

    Precipitation or weather radar is an essential tool for research, diagnosis, and nowcasting of precipitation events like fronts or thunderstorms. Only with weather radar is it possible to gain insights into the three-dimensional structure of thunderstorms and to investigate processes like hail formation or tornado genesis. A number of different radar products are available to analyze the structure, dynamics and microphysics of precipitation systems. Cloud radars use short wavelengths to enable detection of small ice particles or cloud droplets. Their applications differ from weather radar as they are mostly orientated vertically, where different retrieval techniques can be applied.

  9. Emittance Growth in the NLCTA First Chicane

    SciTech Connect

    Sun, Yipeng; Adolphsen, Chris; /SLAC

    2011-08-19

    In this paper, the emittance growth in the NLCTA (Next Linear Collider Test Accelerator) first chicane region is evaluated by simulation studies. It is demonstrated that the higher order fields of the chicane dipole magnet and the dipole corrector magnet (which is attached on the quadrupoles) are the main contributions for the emittance growth, especially for the case with a large initial emittance ({gamma}{epsilon}{sub 0} = 5 {micro}m for instance). These simulation results agree with the experimental observations.

  10. Solid-state Ku-band radar

    NASA Astrophysics Data System (ADS)

    Sechi, F. N.; Johnson, H. C.; Brown, J. E.; Marx, R. E.; Rauchwerk, M. D.

    1981-12-01

    The development of RF and IF components for a Ku-band pulsed radar as well as the construction and tests of this radar, are described. The developed components include an FET oscillator, FET power amplifiers, a biphase modulator, a low-noise amplifier, and charge-coupled (CCD) correlators. The radar transmits a 32-bit biphase coded pulse at a power of 350 mW. The receiver uses a 3-stage, 27-dB-gain amplifier chain with a 6.9-dB overall noise figure. The compact binary-analog signal correlators use 64-stage charge-coupled devices to process receiver I and Q channels. The radar gave excellent performance during ranging tests using a Doppler simulator and digital FFT processor.

  11. A FMCW Radar Ranging Device for the Teleoperator Maneuvering System

    NASA Technical Reports Server (NTRS)

    Mcdonald, M. W.

    1983-01-01

    A frequency-modulated continuous wave radar system is under development in the Communications Systems Branch of the Information and Electronic Systems Laboratory at Marshall Space Flight Center. The radar unit is being designed for use on the teleoperator maneuvering system. Its function is to provide millimeter-level accuracy in range and range rate measurements out to a range of thirty meters. This will facilitate soft docking with accuracy. This report is an updating of previous developments reported on this system. An innovation in the system is the utilization of a standard reference signal generated by shunting a portion of the radar energy into a shorted coaxial delay line. The regular radar target return signal is constantly compared with the reference signal to provide internal error compensation. Within a five meter range, a limit imposed by present laboratory dimensions, the radar system exhibits reliable accuracy with range error less than 0.2%.

  12. Planetary radar astronomy

    NASA Astrophysics Data System (ADS)

    Ostro, Steven J.

    The scientific aims, theoretical principles, techniques and instrumentation, and future potential of radar observations of solar-system objects are discussed in a general overview. Topics examined include the history of radar technology, echo detectability, the Arecibo and Goldstone radar observatories, echo time delay and Doppler shift, radar waveforms, albedo and polarization ratio, measurement of dynamical properties, and the dispersion of echo power. Consideration is given to angular scattering laws; the radar signatures of the moon and inner planets, Mars, and asteroids; topographic relief; delay-Doppler radar maps and their physical interpretation; and radar observations of the icy Galilean satellites of Jupiter, comets, and the rings of Saturn. Diagrams, drawings, photographs, and sample maps and images are provided.

  13. Planetary radar astronomy

    NASA Technical Reports Server (NTRS)

    Ostro, Steven J.

    1987-01-01

    The scientific aims, theoretical principles, techniques and instrumentation, and future potential of radar observations of solar-system objects are discussed in a general overview. Topics examined include the history of radar technology, echo detectability, the Arecibo and Goldstone radar observatories, echo time delay and Doppler shift, radar waveforms, albedo and polarization ratio, measurement of dynamical properties, and the dispersion of echo power. Consideration is given to angular scattering laws; the radar signatures of the moon and inner planets, Mars, and asteroids; topographic relief; delay-Doppler radar maps and their physical interpretation; and radar observations of the icy Galilean satellites of Jupiter, comets, and the rings of Saturn. Diagrams, drawings, photographs, and sample maps and images are provided.

  14. Hybrid emitter all back contact solar cell

    DOEpatents

    Loscutoff, Paul; Rim, Seung

    2016-04-12

    An all back contact solar cell has a hybrid emitter design. The solar cell has a thin dielectric layer formed on a backside surface of a single crystalline silicon substrate. One emitter of the solar cell is made of doped polycrystalline silicon that is formed on the thin dielectric layer. The other emitter of the solar cell is formed in the single crystalline silicon substrate and is made of doped single crystalline silicon. The solar cell includes contact holes that allow metal contacts to connect to corresponding emitters.

  15. Minimum emittance in TBA and MBA lattices

    NASA Astrophysics Data System (ADS)

    Xu, Gang; Peng, Yue-Mei

    2015-03-01

    For reaching a small emittance in a modern light source, triple bend achromats (TBA), theoretical minimum emittance (TME) and even multiple bend achromats (MBA) have been considered. This paper derived the necessary condition for achieving minimum emittance in TBA and MBA theoretically, where the bending angle of inner dipoles has a factor of 31/3 bigger than that of the outer dipoles. Here, we also calculated the conditions attaining the minimum emittance of TBA related to phase advance in some special cases with a pure mathematics method. These results may give some directions on lattice design.

  16. Directional emittance corrections for thermal infrared imaging

    NASA Technical Reports Server (NTRS)

    Daryabeigi, Kamran; Wright, Robert E., Jr.; Puram, Chith K.; Alderfer, David W.

    1992-01-01

    A simple measurement technique for measuring the variation of directional emittance of surfaces at various temperatures using commercially available radiometric IR imaging systems was developed and tested. This technique provided the integrated value of directional emittance over the spectral bandwidth of the IR imaging system. The directional emittance of flat black lacquer and red stycast, an epoxy resin, measured using this technique were in good agreement with the predictions of the electromagnetic theory. The data were also in good agreement with directional emittance data inferred from directional reflectance measurements made on a spectrophotometer.

  17. Multiband radar for homeland security

    NASA Astrophysics Data System (ADS)

    Tahim, Raghbir S.; Foshee, James; Chang, Kai

    2004-09-01

    Radar systems, which can operate in a variety of frequency bands, could provide significant flexibility in the operation of future Battle-space Management and Air Defense Systems (BMADS). Phased array antennas, which support high pulse rates and power, are well suited for surveillance, tracking and identifying the targets. These phased array antennas with the multiplicity of elements in phased array could provide accurate beam pointing, very rapid changes in beam location, and multiple beams, including algorithms for null steering for unwanted signals. No single radar band possesses characteristics that provide optimum performance. For example, L and S-bands are typically considered the best frequency ranges for acquisition and X-band is best for tracking. For many of the current phased array antennas the circuit components are narrow-band and therefore are not suitable for multi-band radar design. In addition, the cost, size, power dissipation, the weight, and, in general, the complexity has limited the development of multi-band phased array antenna systems. The system bandwidth of antenna array employing high loss phase shifters for beam steering also becomes limited due to the dispersion loss from the beam steering. As a result phased array radar design can result in a very large, complex, expensive, narrow band and less efficient system. This paper describes an alternative design approach in the design of wide-band phased array radar system based on multi-octave band antenna elements; and wide-band low loss phase shifters, switching circuits and T/R modules.

  18. Frequency agile synthetic aperture radar

    NASA Astrophysics Data System (ADS)

    Wehner, Donald R.

    1989-07-01

    A radar transmission, reception and signal processing system generates high resolution synthetic aperture radar ground maps from air or space platforms using waveforms in which frequency is changed pulse-to-pulse. The transmitted radar signal is comprised of a series N bursts with n pulses per burst wherein each of the pulsed is a fixed frequency step, delta f either above or below one or the other of the n pulses, i.e., the n pulses comprises an ordered set and further, preferably, wherein the set of n pulses is arranged in time as a random permutation of the ordered set. In each of the k sample gates for each burst the n complex samples of reflectivity are inverse Fourier transformed from frequency domain samples of reflectivity to synthetic range domain profiles to result in an array of aligned range profiles in each of k coarse range delay positions. Azimuth or cross-range processing is accomplished by thetic range cell with a suitable azimuth reference to result in a set of complex numbers that represent complex reflectivity maps of the earth's surface in that coarse range bin.

  19. Possibility of investigating star systems by radar

    NASA Astrophysics Data System (ADS)

    Rzhiga, O. N.

    1986-01-01

    There is no fundamental reason why radar cannot be used in investigations of star systems. In order to detect star systems by radar it is necessary to construct an antenna with a diameter of several tens of kilometers and a transmitter whose power is commensurable with the power of all electric power stations on the Earth. Such an antenna should be in outer space in order to avoid the influence of radio ray refraction in the Earth's troposphere and to to give rise to radio noise. At present the construction of such a radar apparatus may seem incredible, but there are no fundamentally insoluble problems. The closest stars are 10,000 times more distant from the Sun than Pluto. In order to make successful radar observations of star systems there would have to be the same jump in energy potential as with the transition from radar observations of the Moon to radar observations of Pluto. If the rates of increase in energy potential persist, radar observations of star systems will become realistic by the middle of the 21st century. A system for interstellar communication having a receiving antenna with an effective area of 2 x 10 to the 9th power square meters operating at a wavelength of 3 cm with a receiver noise temperature of 10 K can ensure transmission of a television signal from a distance of 4.34 light years with use at the transmitting end of an antenna with a diameter of 10 m and a transmitter with a power of 1 million W. Radar observations of star systems will open the way to interstellar ships in the same way that radar observations of planets in the solar system opened the way for the interplanetary stations.

  20. Stepped frequency ground penetrating radar

    DOEpatents

    Vadnais, Kenneth G.; Bashforth, Michael B.; Lewallen, Tricia S.; Nammath, Sharyn R.

    1994-01-01

    A stepped frequency ground penetrating radar system is described comprising an RF signal generating section capable of producing stepped frequency signals in spaced and equal increments of time and frequency over a preselected bandwidth which serves as a common RF signal source for both a transmit portion and a receive portion of the system. In the transmit portion of the system the signal is processed into in-phase and quadrature signals which are then amplified and then transmitted toward a target. The reflected signals from the target are then received by a receive antenna and mixed with a reference signal from the common RF signal source in a mixer whose output is then fed through a low pass filter. The DC output, after amplification and demodulation, is digitized and converted into a frequency domain signal by a Fast Fourier Transform. A plot of the frequency domain signals from all of the stepped frequencies broadcast toward and received from the target yields information concerning the range (distance) and cross section (size) of the target.

  1. Two terminal micropower radar sensor

    DOEpatents

    McEwan, T.E.

    1995-11-07

    A simple, low power ultra-wideband radar motion sensor/switch configuration connects a power source and load to ground. The switch is connected to and controlled by the signal output of a radar motion sensor. The power input of the motion sensor is connected to the load through a diode which conducts power to the motion sensor when the switch is open. A storage capacitor or rechargeable battery is connected to the power input of the motion sensor. The storage capacitor or battery is charged when the switch is open and powers the motion sensor when the switch is closed. The motion sensor and switch are connected between the same two terminals between the source/load and ground. 3 figs.

  2. Two terminal micropower radar sensor

    DOEpatents

    McEwan, Thomas E.

    1995-01-01

    A simple, low power ultra-wideband radar motion sensor/switch configuration connects a power source and load to ground. The switch is connected to and controlled by the signal output of a radar motion sensor. The power input of the motion sensor is connected to the load through a diode which conducts power to the motion sensor when the switch is open. A storage capacitor or rechargeable battery is connected to the power input of the motion sensor. The storage capacitor or battery is charged when the switch is open and powers the motion sensor when the switch is closed. The motion sensor and switch are connected between the same two terminals between the source/load and ground.

  3. A lightweight ground penetrating radar

    SciTech Connect

    Koppenjan, S.K.; Allen, C.M.; Gardner, D.; Wong, H.R.

    1998-12-31

    The detection of buried objects, particularly unexploded ordnance (UXO), has gained significant interest in the US in the late 1990s. The desire to remediate the thousands of sites worldwide has become an increasing humanitarian concern. The application of radar to this problem has received renewed attention. Bechtel Nevada, Special Technologies Laboratory (STL) has developed several frequency modulated, continuous wave (FM-CW) ground penetrating radar (GPR) units for the US Department of Energy since 1984. To meet these new technical requirements for high resolution data and UXO detection, STL is moving forward with advances to GPR technology, signal processing, and imaging with the development of an innovative system. The goal is to design and fabricate a lightweight, battery operated unit that does not require surface contact and can be operated by a novice user.

  4. 2. VIEW SOUTHWEST, prime search radar tower, height finder radar ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. VIEW SOUTHWEST, prime search radar tower, height finder radar towards, height finder radar towers, and radar tower (unknown function) - Fort Custer Military Reservation, P-67 Radar Station, .25 mile north of Dickman Road, east of Clark Road, Battle Creek, Calhoun County, MI

  5. Comments on radar interference sources and mitigation techniques

    NASA Astrophysics Data System (ADS)

    Doerry, A. W.

    2015-05-01

    Radar Intelligence, Surveillance, and Reconnaissance (ISR) does not always involve cooperative or even friendly environments or targets. The environment in general, and an adversary in particular, may offer numerous characteristics and impeding techniques to diminish the effectiveness of a radar ISR sensor. These generally fall under the banner of jamming, spoofing, or otherwise interfering with the Electromagnetic (EM) signals required by the radar sensor. Consequently mitigation techniques are often prudent to retain efficacy of the radar sensor. We discuss in general terms a number of mitigation techniques.

  6. Propagation and scattering in MF/HF groundwave radar

    NASA Astrophysics Data System (ADS)

    Shearman, E. D. R.

    1983-12-01

    The propagation, noise, and scattering mechanisms involved in sea-state and ship-tracking radar are discussed using experimental results obtained with groundwave radar. Groundwave propagation is discussed in terms of transmission loss between two vertical short dipoles over ground, propagation between whip antennas, radar backscatter from a target, the backscattering coefficient of the sea, the influence of attenuation and earth curvature, and the signal/noise performance of groundwave radar. Sea-state sensing is considered in terms of the applications of first-order Bragg scattering, the mechanism and applications of second-order scattering, and propagation and antenna considerations. Propagation limitations in ship tracking are discussed.

  7. Comparison between UWB and CW radar sensors for breath activity monitoring

    NASA Astrophysics Data System (ADS)

    Pisa, Stefano; Bernardi, Paolo; Cicchetti, Renato; Giusto, Roberto; Pittella, Erika; Piuzzi, Emanuele; Testa, Orlandino

    2014-05-01

    In this paper the ability of four radar sensors in detecting breath activity has been tested. In particular, range gating UWB, CMOS UWB, CW phase detecting, and FMCW radars have taken into account. Considering a realistic scenario, the radar antenna has been pointed towards the thorax of a breathing subject and the recorded signals have been compared with those of a piezoelectric belt placed around the thorax. Then the ability of the radars in detecting small movements has been tested by means of an oscillating copper plate placed at various distances from the radar antenna. All the considered radars were able to detect the plate movements with a distance-dependent resolution.

  8. 47 CFR 15.515 - Technical requirements for vehicular radar systems.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 1 2014-10-01 2014-10-01 false Technical requirements for vehicular radar... DEVICES Ultra-Wideband Operation § 15.515 Technical requirements for vehicular radar systems. (a..., changing gears, or engaging a turn signal. (b) The UWB bandwidth of a vehicular radar system...

  9. 47 CFR 15.515 - Technical requirements for vehicular radar systems.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 1 2010-10-01 2010-10-01 false Technical requirements for vehicular radar... DEVICES Ultra-Wideband Operation § 15.515 Technical requirements for vehicular radar systems. (a..., changing gears, or engaging a turn signal. (b) The UWB bandwidth of a vehicular radar system...

  10. 47 CFR 15.515 - Technical requirements for vehicular radar systems.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 1 2011-10-01 2011-10-01 false Technical requirements for vehicular radar... DEVICES Ultra-Wideband Operation § 15.515 Technical requirements for vehicular radar systems. (a..., changing gears, or engaging a turn signal. (b) The UWB bandwidth of a vehicular radar system...

  11. 47 CFR 15.515 - Technical requirements for vehicular radar systems.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 1 2012-10-01 2012-10-01 false Technical requirements for vehicular radar... DEVICES Ultra-Wideband Operation § 15.515 Technical requirements for vehicular radar systems. (a..., changing gears, or engaging a turn signal. (b) The UWB bandwidth of a vehicular radar system...

  12. 47 CFR 15.515 - Technical requirements for vehicular radar systems.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 1 2013-10-01 2013-10-01 false Technical requirements for vehicular radar... DEVICES Ultra-Wideband Operation § 15.515 Technical requirements for vehicular radar systems. (a..., changing gears, or engaging a turn signal. (b) The UWB bandwidth of a vehicular radar system...

  13. A ka-band low power Doppler radar system for remote detection of cardiopulmonary motion.

    PubMed

    Xiao, Yanming; Lin, Jenshan; Boric-Lubecke, Olga; Lubecke, Victor

    2005-01-01

    A low power Ka-band Doppler radar that can detect human heartbeat and respiration signals is demonstrated. This radar system achieves better than 80% detection accuracy at the distance of 2-m with 16-μW transmitted power. Indirect-conversion receiver architecture is chosen to reduce the DC offset and 1/f noise that can degrade signal-to-noise ratio and detection accuracy. In addition, the radar has also demonstrated the capability of detecting acoustic signals. PMID:17281925

  14. Alpine radar conversion for LAWR

    NASA Astrophysics Data System (ADS)

    Savina, M.; Burlando, P.

    2012-04-01

    The Local Area Weather Radar (LAWR) is a ship-born weather radar system operating in X-band developed by the DHI Group to detect precipitation in urban areas. To date more than thirty units are installed in different settings around the world. A LAWR was also deployed in the Alps, at 3883 m a.s.l. on the Kl. Matterhorn (Valais, Switzerland). This was the highest LAWR of the world and it led to the development of an Alpine LAWR system that, besides featuring important technological improvements needed to withstand the severe Alpine conditions, required the development of a new Alpine Radar COnversion Model (ARCOM), which is the main focus of this contribution. The LAWR system is equipped with the original FURUNO fan-beam slotted antenna and the original logarithmic receiver, which limits the radar observations to the video signal (L) withour providing the reflectivity (Z). The beam is 0.95 deg wide and 20 deg high. It can detect precipitation to a max range of 60 km. In order to account for the limited availability of raw signal and information and the specific mountain set-up, the conversion model had to be developed differently from the state-of-the-art radar conversion technique used for this class of radars. In particular, the ARCOM is based on a model used to simulate a spatial dependent factor, hereafter called ACF, which is in turn function of parameters that take in account climatological conditions, also used in other conversion methods, but additionally accounting for local radar beam features and for orographic forcings such as the effective sampling power (sP), which is modelled by means of antenna pattern, geometric ground clutter and their interaction. The result is a conversion factor formulated to account for a range correction that is based on the increase of the sampling volume, partial beam blocking and local climatological conditions. The importance of the latter in this study is double with respect to the standard conversion technique for this class of radars, because it accounts for the large variability of hydrometeors reflectivity and vertical hydrometeors positioning (echo-top), which is strongly influenced by the high location of the radar. The ARCOM procedure is in addition embedded in a multistep quality control framework, which also includes the calibration on raingauge observations, and can be summarized as follow: 1) correction of both LAWR and raingauge observations for known errors (e.g. magnetron decay and heated-related water loss) 2) evaluation of the local Pearson's correlation coefficient (PCC) as estimator of the linear correlation between raingauge and LAWR observations (logarithmic receiver); 3) computation of the local ACF in the form of the local linear regression coefficient between raingauge and LAWR observations; 4) calibration of the ARCOM, i.e. definition of the parametrization able to reproduce the spatial variability of ACF as function of the local sP, being the PCCs used as weight in the calibration procedure. The resulting calibrated ARCOM finally allows, in any ungauged mountain spot, to convert LAWR observations into precipitation rate. The temporal and the spatial transferability of the ARCOM are evaluated via split-sample and a take-one-out cross validation. The results revealed good spatial transferability and a seasonal bias within 7%, thus opening new opportunities for local range distributed measurements of precipitation in mountain regions.

  15. Modern Radar Techniques for Geophysical Applications: Two Examples

    NASA Technical Reports Server (NTRS)

    Arokiasamy, B. J.; Bianchi, C.; Sciacca, U.; Tutone, G.; Zirizzotti, A.; Zuccheretti, E.

    2005-01-01

    The last decade of the evolution of radar was heavily influenced by the rapid increase in the information processing capabilities. Advances in solid state radio HF devices, digital technology, computing architectures and software offered the designers to develop very efficient radars. In designing modern radars the emphasis goes towards the simplification of the system hardware, reduction of overall power, which is compensated by coding and real time signal processing techniques. Radars are commonly employed in geophysical radio soundings like probing the ionosphere; stratosphere-mesosphere measurement, weather forecast, GPR and radio-glaciology etc. In the laboratorio di Geofisica Ambientale of the Istituto Nazionale di Geofisica e Vulcanologia (INGV), Rome, Italy, we developed two pulse compression radars. The first is a HF radar called AIS-INGV; Advanced Ionospheric Sounder designed both for the purpose of research and for routine service of the HF radio wave propagation forecast. The second is a VHF radar called GLACIORADAR, which will be substituting the high power envelope radar used by the Italian Glaciological group. This will be employed in studying the sub glacial structures of Antarctica, giving information about layering, the bed rock and sub glacial lakes if present. These are low power radars, which heavily rely on advanced hardware and powerful real time signal processing. Additional information is included in the original extended abstract.

  16. Selective Emitter Pumped Rare Earth Laser

    NASA Technical Reports Server (NTRS)

    Chubb, Donald L. (Inventor); Patton, Martin O. (Inventor)

    2001-01-01

    A selective emitter pumped rare earth laser provides an additional type of laser for use in many laser applications. Rare earth doped lasers exist which are pumped with flashtubes or laser diodes. The invention uses a rare earth emitter to transform thermal energy input to a spectral band matching the absorption band of a rare earth in the laser in order to produce lasing.

  17. Bright Single Photon Emitter in Silicon Carbide

    NASA Astrophysics Data System (ADS)

    Lienhard, Benjamin; Schroeder, Tim; Mouradian, Sara; Dolde, Florian; Trong Tran, Toan; Aharonovich, Igor; Englund, Dirk

    Efficient, on-demand, and robust single photon emitters are of central importance to many areas of quantum information processing. Over the past 10 years, color centers in solids have emerged as excellent single photon emitters. Color centers in diamond are among the most intensively studied single photon emitters, but recently silicon carbide (SiC) has also been demonstrated to be an excellent host material. In contrast to diamond, SiC is a technologically important material that is widely used in optoelectronics, high power electronics, and microelectromechanical systems. It is commercially available in sizes up to 6 inches and processes for device engineering are well developed. We report on a visible-spectrum single photon emitter in 4H-SiC. The emitter is photostable at both room and low temperatures, and it enables 2 million photons/second from unpatterned bulk SiC. We observe two classes of orthogonally polarized emitters, each of which has parallel absorption and emission dipole orientations. Low temperature measurements reveal a narrow zero phonon line with linewidth < 0.1 nm that accounts for more than 30% of the total photoluminescence spectrum. To our knowledge, this SiC color emitter is the brightest stable room-temperature single photon emitter ever observed.

  18. Radar systems for a polar mission, volume 1

    NASA Technical Reports Server (NTRS)

    Moore, R. K.; Claassen, J. P.; Erickson, R. L.; Fong, R. K. T.; Komen, M. J.; Mccauley, J.; Mcmillan, S. B.; Parashar, S. K.

    1977-01-01

    The application of synthetic aperture radar (SAR) in monitoring and managing earth resources is examined. Synthetic aperture radars form a class of side-looking airborne radar, often referred to as coherent SLAR, which permits fine-resolution radar imagery to be generated at long operating ranges by the use of signal processing techniques. By orienting the antenna beam orthogonal to the motion of the spacecraft carrying the radar, a one-dimensional imagery ray system is converted into a two-dimensional or terrain imaging system. The radar's ability to distinguish - or resolve - closely spaced transverse objects is determined by the length of the pulse. The transmitter components receivers, and the mixer are described in details.

  19. 3. VIEW NORTHWEST, height finder radar towers, and radar tower ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. VIEW NORTHWEST, height finder radar towers, and radar tower (unknown function) - Fort Custer Military Reservation, P-67 Radar Station, .25 mile north of Dickman Road, east of Clark Road, Battle Creek, Calhoun County, MI

  20. 30. Perimeter acquisition radar building room #318, showing radar control. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    30. Perimeter acquisition radar building room #318, showing radar control. Console and line printers - Stanley R. Mickelsen Safeguard Complex, Perimeter Acquisition Radar Building, Limited Access Area, between Limited Access Patrol Road & Service Road A, Nekoma, Cavalier County, ND

  1. New approach to obtain boron selective emitters

    SciTech Connect

    Moehlecke, A.; Luque, A.

    1994-12-31

    Selective emitters, used in high efficiency solar cells, need a series of oxidations and photolithographic steps that render the process more expensive. In this paper, a new way to make selective emitters using boron is presented. The main feature of this approach is to save oxide growths and photolithographic processes and it is based on the property of boron doped silicon surfaces to be resistant to anisotropic etchings like the one performed during the texturization. Using this characteristic of boron emitter surfaces, the authors can obtain a highly doped emitter under metal grid and simultaneously a shield to avoid texture on these surfaces. First cells were processed and short wavelength response of p{sup +}nn{sup +} solar cells was enhanced by using lightly doped boron emitters in the uncovered area.

  2. Emittance measurements of the CLIO electron beam

    NASA Astrophysics Data System (ADS)

    Chaput, R.; Devanz, G.; Joly, P.; Kergosien, B.; Lesrel, J.

    1997-02-01

    We have designed a setup to measure the transverse emittance at the CLIO accelerator exit, based on the "3 gradients" method. The beam transverse size is measured simply by scanning it with a steering coil across a fixed jaw and recording the transmitted current, at various quadrupole strengths. A code then performs a complete calculation of the emittance using the transfer matrix of the quadrupole instead of the usual classical lens approximation. We have studied the influence of various parameters on the emittance: Magnetic field on the e-gun and the peak current. We have also improved a little the emittance by replacing a mismatched pipe between the buncher and accelerating section to avoid wake-field effects; The resulting improvements of the emittance have led to an increase in the FEL emitted power.

  3. Directional emittance surface measurement system and process

    NASA Technical Reports Server (NTRS)

    Puram, Chith K. (Inventor); Daryabeigi, Kamran (Inventor); Wright, Robert (Inventor); Alderfer, David W. (Inventor)

    1994-01-01

    Apparatus and process for measuring the variation of directional emittance of surfaces at various temperatures using a radiometric infrared imaging system. A surface test sample is coated onto a copper target plate provided with selective heating within the desired incremental temperature range to be tested and positioned onto a precision rotator to present selected inclination angles of the sample relative to the fixed positioned and optically aligned infrared imager. A thermal insulator holder maintains the target plate on the precision rotator. A screen display of the temperature obtained by the infrared imager, and inclination readings are provided with computer calculations of directional emittance being performed automatically according to equations provided to convert selected incremental target temperatures and inclination angles to relative target directional emittance values. The directional emittance of flat black lacquer and an epoxy resin measurements obtained are in agreement with the predictions of the electromagnetic theory and with directional emittance data inferred from directional reflectance measurements made on a spectrophotometer.

  4. Microlensless interdigitated photoconductive terahertz emitters.

    PubMed

    Singh, Abhishek; Prabhu, S S

    2015-01-26

    We report here fabrication of interdigitated photoconductive antenna (iPCA) terahertz (THz) emitters based on plasmonic electrode design. Novel design of this iPCA enables it to work without microlens array focusing, which is otherwise required for photo excitation of selective photoconductive regions to avoid the destructive interference of emitted THz radiation from oppositely biased regions. Benefit of iPCA over single active region PCA is, photo excitation can be done at larger area hence avoiding the saturation effect at higher optical excitation density. The emitted THz radiation power from plasmonic-iPCAs is ~2 times more than the single active region plasmonic PCA at 200 mW optical excitation, which will further increase at higher optical powers. This design is expected to reduce fabrication cost of photoconductive THz sources and detectors. PMID:25835910

  5. Positron emitter labeled enzyme inhibitors

    SciTech Connect

    Fowler, J.S.; MacGregor, R.R.; Wolf, A.P.; Langstrom, B.

    1990-04-03

    This invention involves a new strategy for imaging and mapping enzyme activity in the living human and animal body using positron emitter-labeled suicide enzyme inactivators or inhibitors which become covalently bound to the enzyme as a result of enzymatic catalysis. Two such suicide inactivators for monoamine oxidase have been labeled with carbon-11 and used to map the enzyme subtypes in the living human and animal body using PET. By using positron emission tomography to image the distribution of radioactivity produced by the body penetrating radiation emitted by carbon-11, a map of functionally active monoamine oxidase activity is obtained. Clorgyline and L-deprenyl are suicide enzyme inhibitors and irreversibly inhibit monoamine oxidase. When these inhibitors are labeled with carbon-11 they provide selective probes for monoamine oxidase localization and reactivity in vivo using positron emission tomography.

  6. Positron emitter labeled enzyme inhibitors

    DOEpatents

    Fowler, J.S.; MacGregor, R.R.; Wolf, A.P.

    1987-05-22

    This invention involved a new strategy for imaging and mapping enzyme activity in the living human and animal body using positron emitter-labeled suicide enzyme inactivators or inhibitors which become covalently bound to the enzyme as a result of enzymatic catalysis. Two such suicide in activators for monoamine oxidase have been labeled with carbon-11 and used to map the enzyme subtypes in the living human and animal body using PET. By using positron emission tomography to image the distribution of radioactivity produced by the body penetrating radiation emitted by carbon-11, a map of functionally active monoamine oxidase activity is obtained. Clorgyline and L-deprenyl are suicide enzyme inhibitors and irreversibly inhibit monoamine oxidase. When these inhibitors are labeled with carbon-11 they provide selective probes for monoamine oxidase localization and reactivity in vivo using positron emission tomography. 2 figs.

  7. Positron emitter labeled enzyme inhibitors

    DOEpatents

    Fowler, Joanna S.; MacGregor, Robert R.; Wolf, Alfred P.; Langstrom, Bengt

    1990-01-01

    This invention involves a new strategy for imaging and mapping enzyme activity in the living human and animal body using positron emitter-labeled suicide enzyme inactivators or inhibitors which become covalently bound to the enzyme as a result of enzymatic catalysis. Two such suicide inactivators for monoamine oxidase have been labeled with carbon-11 and used to map the enzyme subtypes in the living human and animal body using PET. By using positron emission tomography to image the distribution of radioactivity produced by the body penetrating radiation emitted by carbon-11, a map of functionally active monoamine oxidase activity is obtained. Clorgyline and L-deprenyl are suicide enzyme inhibitors and irreversibly inhibit monoamine oxidase. When these inhibitors are labeled with carbon-11 they provide selective probes for monoamine oxidase localization and reactivity in vivo using positron emission tomography.

  8. Planetary radar studies

    NASA Technical Reports Server (NTRS)

    Thompson, T. W.; Cutts, J. A.

    1981-01-01

    A catalog of lunar and radar anomalies was generated to provide a base for comparison with Venusian radar signatures. The relationships between lunar radar anomalies and regolith processes were investigated, and a consortium was formed to compare lunar and Venusian radar images of craters. Time was scheduled at the Arecibo Observatory to use the 430 MHz radar to obtain high resolution radar maps of six areas of the lunar suface. Data from 1978 observations of Mare Serenitas and Plato are being analyzed on a PDP 11/70 computer to construct the computer program library necessary for the eventual reduction of the May 1981 and subsequent data acquisitions. Papers accepted for publication are presented.

  9. Low Emittance Electron Beam Studies

    SciTech Connect

    Tikhoplav, Rodion

    2006-04-01

    We have studied the properties of a low emittance electron beam produced by laser pulses incident onto an rf gun photocathode. The experiments were carried out at the A0 photoinjector at Fermilab. Such beam studies are necessary for fixing the design of new Linear Colliders as well as for the development of Free Electron Lasers. An overview of the A0 photoinjector is given in Chapter 1. In Chapter 2 we describe the A0 photoinjector laser system. A stable laser system is imperative for reliable photoinjector operation. After the recent upgrade, we have been able to reach a new level of stability in the pulse-to-pulse fluctuations of the pulse amplitude, and of the temporal and transverse profiles. In Chapter 3 we present a study of transverse emittance versus the shape of the photo-cathode drive-laser pulse. For that purpose a special temporal profile laser shaping device called a pulse-stacker was developed. In Chapter 4 we discuss longitudinal beam dynamics studies using a two macro-particle bunch; this technique is helpful in analyzing pulse compression in the magnetic chicane, as well as velocity bunching effects in the rf-gun and the 9-cell accelerating cavity. In Chapter 5 we introduce a proposal for laser acceleration of electrons. We have developed a laser functioning on the TEM*{sub 01} mode, a mode with a longitudinal electric field component which is suitable for such a process. Using this technique at energies above 40 MeV, one would be able to observe laser-based acceleration.

  10. Development of a Low-Cost UAV Doppler Radar Data System

    NASA Technical Reports Server (NTRS)

    Knuble, Joseph; Li, Lihua; Heymsfield, Gerry

    2005-01-01

    A viewgraph presentation on the design of a low cost unmanned aerial vehicle (UAV) doppler radar data system is presented. The topics include: 1) Science and Mission Background; 2) Radar Requirements and Specs; 3) Radar Realization: RF System; 4) Processing of RF Signal; 5) Data System Design Process; 6) Can We Remove the DSP? 7) Determining Approximate Speed Requirements; 8) Radar Realization: Data System; 9) Data System Operation; and 10) Results.

  11. Passive VHF radar for ionospheric physics

    NASA Astrophysics Data System (ADS)

    Sahr, J. D.; Gidner, D. M.; Zhou, C.; Lind, F. D.

    2001-01-01

    Recent technological advances enable a new class of passive radar instruments. These radars have no dedicated transmitter, observing serendipitous scatter of existing sources. Such radars may have very high performance and cost far less than conventional radars. The resulting equipment is essentially reduced to simple antennas, desktop computers, and Global Positioning System equipment. The safety hazards, interference problems, licensing issues, and financial costs associated with high-power transmitters are conspicuously absent. We will offer general design considerations and describe our own instrument, which observes the scatter of commercial FM broadcasts. Our system provides far better range and Doppler resolution than any conventional radar used in ionospheric coherent scatter studies, and is completely free of any range or Doppler aliasing problems. There are two principal drawbacks to passive radars: the ``front end'' signal processing cost is very large, and there is a significant data transport problem. However, spectacular advances in low-cost computing and internet bandwidth have rendered these problems quite easy to solve.

  12. Equatorial radar system

    NASA Technical Reports Server (NTRS)

    Rukao, S.; Tsuda, T.; Sato, T.; Kato, S.

    1989-01-01

    A large clear air radar with the sensitivity of an incoherent scatter radar for observing the whole equatorial atmosphere up to 1000 km altitude is now being designed in Japan. The radar, called the Equatorial Radar, will be built in Pontianak, Kalimantan Island, Indonesia (0.03 N, 109.3 E). The system is a 47 MHz monostatic Doppler radar with an active phased array configuration similar to that of the MU radar in Japan, which has been in successful operation since 1983. It will have a PA product of more than 5 x 10(9) sq. Wm (P = average transmitter power, A = effective antenna aperture) with sensitivity more than 10 times that of the MU radar. This system configuration enables pulse-to-pulse beam steering within 25 deg from the zenith. As is the case of the MU radar, a variety of sophisticated operations will be made feasible under the supervision of the radar controller. A brief description of the system configuration is presented.

  13. Generating nonlinear FM chirp waveforms for radar.

    SciTech Connect

    Doerry, Armin Walter

    2006-09-01

    Nonlinear FM waveforms offer a radar matched filter output with inherently low range sidelobes. This yields a 1-2 dB advantage in Signal-to-Noise Ratio over the output of a Linear FM waveform with equivalent sidelobe filtering. This report presents design and implementation techniques for Nonlinear FM waveforms.

  14. Design and performance of an active radar calibration target for ultrawideband radar cross section measurements

    NASA Astrophysics Data System (ADS)

    Narayanan, Ram M.; Dawood, Muhammad; Falkinburg, Matthew A.

    1998-10-01

    The University of Nebraska has developed an ultra-wideband coherent random noise radar that accomplishes phase-coherent processing of the received data. The system operates over the 1 - 2 GHz frequency range. In order to make calibrated radar cross section measurements of targets and terrain, a radar calibration target was fabricated and tested. The unique requirements for the ultra-wideband calibration target include (1) high radar cross section value to minimize effects of background reflections, (2) constant radar cross section over the frequency range to ensure calibration accuracy, and (3) wide beamwidth to minimize effects of antenna pointing errors. The design consisted of a receive and a re-transmit antenna between which a high-pass filter and a microwave amplifier were inserted. Log-periodic antennas were used as calibration target antennas owing to their broadband and wide beamwidth characteristics. The high-pass filter possessed a 12 dB per octave roll off to appropriately reduce the signal level at lower frequencies to compensate for the correspondingly lower propagation loss as predicted by Friss transmission formula. The high-gain broadband amplifier was used to provide a high- retransmitted power level back to the radar. The design and performance characteristics of the active ultra-wideband radar calibration target are discussed in this paper.

  15. Observation and theory of the radar aurora

    SciTech Connect

    Sahr, J.D.

    1990-01-01

    Plasma density irregularities occurring near the Aurora Borealis cause scattering of HF, VHF, and UHF radio waves. Analysis of the resulting radar signal provides great detail about the spatial and temporal characteristics of these auroral E region irregularities. Observations are presented of the radar aurora from recent campaigns in northern Sweden. After reviewing the basic theory and observations of auroral electrojet irregularities, a simple nonlinear fluid theory of electrojet ion-acoustic waves is introduced, and reduced to a form of the three-wave interaction equations. This theory provides a simple mechanism for excitation of linearly stable waves at large aspect and flow angles, as well as a prediction of the power spectra that a coherent scatter radar should observe. In addition, this theory may be able to account for type 3 waves without resorting to ion gyro modes, such as the electrostatic ion-cyclotron wave. During the course of the research a simple new radar transmitting mode and signal processing algorithm was generated which very simply solves a frequency aliasing problem that often occurs in CUPRI auroral radar studies. Several new radar data analysis routines were developed, including the principally cross-beam image and scatter plots of the second versus first moments of the power spectrum of the irregularities. Analysis of vertical interferometer data shows that type 3 waves originate at ordinary electrojet altitudes, not in the upper E region, from which it is concluded that the electrostatic ion-cyclotron mode does not generate type 3 waves. The measured height of type 3 waves and other spectral analyses provide support for the pure ion-acoustic theory of type 3 waves. Suggestions are offered for hardware improvements to the CUPRI radar, new experiments to test new and existing theories.

  16. Quantification of Reflection Patterns in Ground-Penetrating Radar Data

    NASA Astrophysics Data System (ADS)

    Moysey, S.; Knight, R. J.; Jol, H. M.; Allen-King, R. M.; Gaylord, D. R.

    2005-12-01

    Radar facies analysis provides a way of interpreting the large-scale structure of the subsurface from ground-penetrating radar (GPR) data. Radar facies are often distinguished from each other by the presence of patterns, such as flat-lying, dipping, or chaotic reflections, in different regions of a radar image. When these patterns can be associated with radar facies in a repeated and predictable manner we refer to them as `radar textures'. While it is often possible to qualitatively differentiate between radar textures visually, pattern recognition tools, like neural networks, require a quantitative measure to discriminate between them. We investigate whether currently available tools, such as instantaneous attributes or metrics adapted from standard texture analysis techniques, can be used to improve the classification of radar facies. To this end, we use a neural network to perform cross-validation tests that assess the efficacy of different textural measures for classifying radar facies in GPR data collected from the William River delta, Saskatchewan, Canada. We found that the highest classification accuracies (>93%) were obtained for measures of texture that preserve information about the spatial arrangement of reflections in the radar image, e.g., spatial covariance. Lower accuracy (87%) was obtained for classifications based directly on windows of amplitude data extracted from the radar image. Measures that did not account for the spatial arrangement of reflections in the image, e.g., instantaneous attributes and amplitude variance, yielded classification accuracies of less than 65%. Optimal classifications were obtained for textural measures that extracted sufficient information from the radar data to discriminate between radar facies but were insensitive to other facies specific characteristics. For example, the rotationally invariant Fourier-Mellin transform delivered better classification results than the spatial covariance because dip angle of the reflections, but not dip direction, was an important discriminator between radar facies at the William River delta. To extend the use of radar texture beyond the identification of radar facies to sedimentary facies we are investigating how sedimentary features are encoded in GPR data at Borden, Ontario, Canada. At this site, we have collected extensive sedimentary and hydrologic data over the area imaged by GPR. Analysis of this data coupled with synthetic modeling of the radar signal has allowed us to develop insight into the generation of radar texture in complex geologic environments.

  17. UAS-Based Radar Sounding of Ice

    NASA Astrophysics Data System (ADS)

    Hale, R. D.; Keshmiri, S.; Leuschen, C.; Ewing, M.; Yan, J. B.; Rodriguez-Morales, F.; Gogineni, S.

    2014-12-01

    The University of Kansas Center for Remote Sensing of Ice Sheets developed two Unmanned Aerial Systems (UASs) to support polar research. We developed a mid-range UAS, called the Meridian, for operating a radar depth sounder/imager at 195 MHz with an eight-element antenna array. The Meridian weighs 1,100 lbs, has a 26-foot wingspan, and a range of 950 nm at its full payload capacity of 120 lbs. Ice-penetrating radar performance drove the configuration design, though additional payloads and sensors were considered to ensure adaptation to multi-mission science payloads. We also developed a short range UAS called the G1X for operating a low-frequency radar sounder that operates at 14 and 35 MHz. The G1X weighs 85 lbs, has a 17-foot wingspan, and a range of about 60 nm per gallon of fuel. The dual-frequency HF/VHF radar depth sounder transmits at 100 W peak power at a pulse repetition frequency of 10 KHz and weighs approximately 4.5 lbs. We conducted flight tests of the G1X integrated with the radar at the Sub-glacial Lake Whillans ice stream and the WISSARD drill site. The tests included pilot-controlled and fully autonomous flights to collect data over closely-spaced lines to synthesize a 2-D aperture. We obtained clear bed echoes with a signal-to-noise (S/N) ratio of more than 50 dB at this location. These are the first-ever successful soundings of glacial ice with a UAS-based radar. Although ice attenuation losses in this location are low in comparison to more challenging targets, in-field performance improvements to the UAS and HF/VHF radar system enabled significant gains in the signal-to-noise ratio, such that the system can now be demonstrated on more challenging outlet glaciers. We are upgrading the G1X UAS and radar system for further tests and data collection in Greenland. We are reducing the weight and volume of the radar, which, when coupled with further reductions in airframe and avionics weight and a larger fuel bladder, will offer extended range. Finally, we are increasing the radar transmit peak power to about 250-500 W using high-efficiency power amplifiers and hardening the aircraft actuators for potential electromagnetic interference. The main focus of the Spring 2015 deployment is to collect fine-resolution data near the outlet and grounding lines of Kangiata Nunaata Sermia (KNS) glacier in Greenland.

  18. Electric Field Screening by the Proximity of Two Knife-Edge Field Emitters of Finite Width

    NASA Astrophysics Data System (ADS)

    Wong, P.; Tang, W.; Lau, Y. Y.; Hoff, B.

    2015-11-01

    Field emitter arrays have the potential to provide high current density, low voltage operation, and high pulse repetition for radar and communication. It is well known that packing density of the field emitter arrays significantly affect the emission current. Previously we calculated analytically the electric field profile of two-dimensional knife-edge cathodes with arbitrary separation by using a Schwarz-Christoffel transformation. Here we extend this previous work to include the finite width of two identical emitters. From the electric field profile, the field enhancement factor, thereby the severity of the electric field screening, are determined. It is found that for two identical emitters with finite width, the magnitude of the electric field on the knife-edge cathodes depends strongly on the ratio h / a and h / r , where h is the height of the knife-edge cathode, 2a is the distance between the cathodes, and 2 r represents their width. Particle-in-cell simulations are performed to compare with the analytical results on the emission current distribution. P. Y. Wong was supported by a Directed Energy Summer Scholar internship at Air Force Research Laboratory, Kirtland AFB, and by AFRL Award No. FA9451-14-1-0374.

  19. Phase noise effects on turbulent weather radar spectrum parameter estimation

    NASA Technical Reports Server (NTRS)

    Lee, Jonggil; Baxa, Ernest G., Jr.

    1990-01-01

    Accurate weather spectrum moment estimation is important in the use of weather radar for hazardous windshear detection. The effect of the stable local oscillator (STALO) instability (jitter) on the spectrum moment estimation algorithm is investigated. Uncertainty in the stable local oscillator will affect both the transmitted signal and the received signal since the STALO provides transmitted and reference carriers. The proposed approach models STALO phase jitter as it affects the complex autocorrelation of the radar return. The results can therefore by interpreted in terms of any source of system phase jitter for which the model is appropriate and, in particular, may be considered as a cumulative effect of all radar system sources.

  20. A highly efficient CMOS nanoplasmonic crystal enhanced slow-wave thermal emitter improves infrared gas-sensing devices.

    PubMed

    Pusch, Andreas; De Luca, Andrea; Oh, Sang S; Wuestner, Sebastian; Roschuk, Tyler; Chen, Yiguo; Boual, Sophie; Ali, Zeeshan; Phillips, Chris C; Hong, Minghui; Maier, Stefan A; Udrea, Florin; Hopper, Richard H; Hess, Ortwin

    2015-01-01

    The application of plasmonics to thermal emitters is generally assisted by absorptive losses in the metal because Kirchhoff's law prescribes that only good absorbers make good thermal emitters. Based on a designed plasmonic crystal and exploiting a slow-wave lattice resonance and spontaneous thermal plasmon emission, we engineer a tungsten-based thermal emitter, fabricated in an industrial CMOS process, and demonstrate its markedly improved practical use in a prototype non-dispersive infrared (NDIR) gas-sensing device. We show that the emission intensity of the thermal emitter at the CO(2) absorption wavelength is enhanced almost 4-fold compared to a standard non-plasmonic emitter, which enables a proportionate increase in the signal-to-noise ratio of the CO(2) gas sensor. PMID:26639902

  1. A highly efficient CMOS nanoplasmonic crystal enhanced slow-wave thermal emitter improves infrared gas-sensing devices

    PubMed Central

    Pusch, Andreas; De Luca, Andrea; Oh, Sang S.; Wuestner, Sebastian; Roschuk, Tyler; Chen, Yiguo; Boual, Sophie; Ali, Zeeshan; Phillips, Chris C.; Hong, Minghui; Maier, Stefan A.; Udrea, Florin; Hopper, Richard H.; Hess, Ortwin

    2015-01-01

    The application of plasmonics to thermal emitters is generally assisted by absorptive losses in the metal because Kirchhoff’s law prescribes that only good absorbers make good thermal emitters. Based on a designed plasmonic crystal and exploiting a slow-wave lattice resonance and spontaneous thermal plasmon emission, we engineer a tungsten-based thermal emitter, fabricated in an industrial CMOS process, and demonstrate its markedly improved practical use in a prototype non-dispersive infrared (NDIR) gas-sensing device. We show that the emission intensity of the thermal emitter at the CO2 absorption wavelength is enhanced almost 4-fold compared to a standard non-plasmonic emitter, which enables a proportionate increase in the signal-to-noise ratio of the CO2 gas sensor. PMID:26639902

  2. A highly efficient CMOS nanoplasmonic crystal enhanced slow-wave thermal emitter improves infrared gas-sensing devices

    NASA Astrophysics Data System (ADS)

    Pusch, Andreas; de Luca, Andrea; Oh, Sang S.; Wuestner, Sebastian; Roschuk, Tyler; Chen, Yiguo; Boual, Sophie; Ali, Zeeshan; Phillips, Chris C.; Hong, Minghui; Maier, Stefan A.; Udrea, Florin; Hopper, Richard H.; Hess, Ortwin

    2015-12-01

    The application of plasmonics to thermal emitters is generally assisted by absorptive losses in the metal because Kirchhoff’s law prescribes that only good absorbers make good thermal emitters. Based on a designed plasmonic crystal and exploiting a slow-wave lattice resonance and spontaneous thermal plasmon emission, we engineer a tungsten-based thermal emitter, fabricated in an industrial CMOS process, and demonstrate its markedly improved practical use in a prototype non-dispersive infrared (NDIR) gas-sensing device. We show that the emission intensity of the thermal emitter at the CO2 absorption wavelength is enhanced almost 4-fold compared to a standard non-plasmonic emitter, which enables a proportionate increase in the signal-to-noise ratio of the CO2 gas sensor.

  3. Multinozzle emitter arrays for nanoelectrospray mass spectrometry.

    PubMed

    Mao, Pan; Wang, Hung-Ta; Yang, Peidong; Wang, Daojing

    2011-08-01

    Mass spectrometry (MS) is the enabling technology for proteomics and metabolomics. However, dramatic improvements in both sensitivity and throughput are still required to achieve routine MS-based single cell proteomics and metabolomics. Here, we report the silicon-based monolithic multinozzle emitter array (MEA) and demonstrate its proof-of-principle applications in high-sensitivity and high-throughput nanoelectrospray mass spectrometry. Our MEA consists of 96 identical 10-nozzle emitters in a circular array on a 3 in. silicon chip. The geometry and configuration of the emitters, the dimension and number of the nozzles, and the micropillar arrays embedded in the main channel can be systematically and precisely controlled during the microfabrication process. Combining electrostatic simulation and experimental testing, we demonstrated that sharpened-end geometry at the stem of the individual multinozzle emitter significantly enhanced the electric fields at its protruding nozzle tips, enabling sequential nanoelectrospray for the high-density emitter array. We showed that electrospray current of the multinozzle emitter at a given total flow rate was approximately proportional to the square root of the number of its spraying-nozzles, suggesting the capability of high MS sensitivity for multinozzle emitters. Using a conventional Z-spray mass spectrometer, we demonstrated reproducible MS detection of peptides and proteins for serial MEA emitters, achieving sensitivity and stability comparable to the commercial capillary emitters. Our robust silicon-based MEA chip opens up the possibility of a fully integrated microfluidic system for ultrahigh-sensitivity and ultrahigh-throughput proteomics and metabolomics. PMID:21728281

  4. Multinozzle Emitter Arrays for Nanoelectrospray Mass Spectrometry

    SciTech Connect

    Mao, Pan; Wang, Hung-Ta; Yang, Peidong; Wang, Daojing

    2011-06-16

    Mass spectrometry (MS) is the enabling technology for proteomics and metabolomics. However, dramatic improvements in both sensitivity and throughput are still required to achieve routine MS-based single cell proteomics and metabolomics. Here, we report the silicon-based monolithic multinozzle emitter array (MEA), and demonstrate its proof-of-principle applications in high-sensitivity and high-throughput nanoelectrospray mass spectrometry. Our MEA consists of 96 identical 10-nozzle emitters in a circular array on a 3-inch silicon chip. The geometry and configuration of the emitters, the dimension and number of the nozzles, and the micropillar arrays embedded in the main channel, can be systematically and precisely controlled during the microfabrication process. Combining electrostatic simulation and experimental testing, we demonstrated that sharpened-end geometry at the stem of the individual multinozzle emitter significantly enhanced the electric fields at its protruding nozzle tips, enabling sequential nanoelectrospray for the high-density emitter array. We showed that electrospray current of the multinozzle emitter at a given total flow rate was approximately proportional to the square root of the number of its spraying-nozzles, suggesting the capability of high MS sensitivity for multinozzle emitters. Using a conventional Z-spray mass spectrometer, we demonstrated reproducible MS detection of peptides and proteins for serial MEA emitters, achieving sensitivity and stability comparable to the commercial capillary emitters. Our robust silicon-based MEA chip opens up the possibility of a fully-integrated microfluidic system for ultrahigh-sensitivity and ultrahigh-throughput proteomics and metabolomics.

  5. Extracting radar micro-Doppler signatures of helicopter rotating rotor blades using K-band radars

    NASA Astrophysics Data System (ADS)

    Chen, Rachel; Liu, Baokun

    2014-06-01

    Helicopter identification has been an attractive topic. In this paper, we applied radar micro-Doppler signatures to identify helicopter. For identifying the type of a helicopter, besides its shape and size, the number of blades, the length of the blade, and the rotation rate of the rotor are important features, which can be estimated from radar micro-Doppler signatures of the helicopter's rotating rotor blades. In our study, K-band CW/FMCW radars are used for collecting returned signals from helicopters. By analyzing radar micro-Doppler signatures, we can estimate the number of blades, the length of the blade, the angular rotation rate of the rotating blade, and other necessary parameters for identifying the type of a helicopter.

  6. Narrowband terahertz emitters using metamaterial films.

    PubMed

    Alves, Fabio; Kearney, Brian; Grbovic, Dragoslav; Karunasiri, Gamani

    2012-09-10

    In this article we report on metamaterial-based narrowband thermal terahertz (THz) emitters with a bandwidth of about 1 THz. Single band emitters designed to radiate in the 4 to 8 THz range were found to emit as high as 36 W/m(2) when operated at 400 °C. Emission into two well-separated THz bands was also demonstrated by using metamaterial structures featuring more complex unit cells. Imaging of heated emitters using a microbolometer camera fitted with THz optics clearly showed the expected higher emissivity from the metamaterial structure compared to low-emissivity of the surrounding aluminum. PMID:23037226

  7. Micro-emitter heating by rf current

    NASA Astrophysics Data System (ADS)

    Volkov, V.; Petrov, V. M.

    2016-05-01

    One factor limiting the accelerating gradients in radiofrequency (rf) cavities are field emission currents emitted by micro-emitters. The value of emitter heating power plays a key role in theories of an rf cavity processing allowing to enhance the accelerating gradient. In this paper, the emitter heating by rf current is studied. This heating mechanism associates with a large heating power (by several orders of magnitude higher than the power of field emission current) and demonstrates explicit dependence on the frequency of the electromagnetic rf field (scales with the square of the rf field frequency).

  8. Performance comparisons of low emittance lattices

    SciTech Connect

    Delahaye, J.P.; Zisman, M.S.

    1987-05-01

    In this paper, the results of a performance analysis of several low emittance electron storage ring lattices provided by various members of the Lattice Working Group are presented. Altogether, four lattices were investigated. There are two different functions being considered for the low beam emittance rings discussed here. The first is to serve as a Damping Ring (DR), i.e., to provide the emittance damping required for a high energy linear collider. The second is to provide beams for a short wavelength Free Electron Laser (FEL), which is envisioned to operate in the wavelength region near 40 A.

  9. Thermophotovoltaic emitter material selection and design

    SciTech Connect

    Saxton, P.C.; Moran, A.L.; Harper, M.J.; Lindler, K.W.

    1997-07-01

    Thermophotovoltaics (TPV) is a potentially attractive direct energy conversion technology. It reduces the need for complex machinery with moving parts and maintenance. TPV generators can be run from a variety of heat sources including waste heat for smaller scale operations. The US Naval Academy`s goal was to build a small experimental thermophotovoltaic generator powered by combustion gases from a General Electric T-58 helicopter gas turbine. The design of the generator imposes material limitations that directly affect emitter and structural materials selection. This paper details emitter material goals and requirements, and the methods used to select suitable candidate emitter materials for further testing.

  10. Noncooperative rendezvous radar system

    NASA Technical Reports Server (NTRS)

    1974-01-01

    A fire control radar system was developed, assembled, and modified. The baseline system and modified angle tracking system are described along with the performance characteristics of the baseline and modified systems. Proposed changes to provide additional techniques for radar evaluation are presented along with flight test data.

  11. The PROUST radar

    NASA Technical Reports Server (NTRS)

    Bertin, F.; Glass, M.; Ney, R.; Petitdidier, M.

    1986-01-01

    The Stratosphere-Troposphere (ST) radar called PROUST works at 935 MHz using the same klystron and antenna as the coherent-scatter radar. The use of this equipment for ST work has required some important modifications of the transmitting system and the development of receiving, data processing and acquisition (1984,1985) equipment. The modifications are discussed.

  12. Radar illusion via metamaterials

    NASA Astrophysics Data System (ADS)

    Jiang, Wei Xiang; Cui, Tie Jun

    2011-02-01

    An optical illusion is an image of a real target perceived by the eye that is deceptive or misleading due to a physiological illusion or a specific visual trick. The recently developed metamaterials provide efficient approaches to generate a perfect optical illusion. However, all existing research on metamaterial illusions has been limited to theory and numerical simulations. Here, we propose the concept of a radar illusion, which can make the electromagnetic (EM) image of a target gathered by radar look like a different target, and we realize a radar illusion device experimentally to change the radar image of a metallic target into a dielectric target with predesigned size and material parameters. It is well known that the radar signatures of metallic and dielectric objects are significantly different. However, when a metallic target is enclosed by the proposed illusion device, its EM scattering characteristics will be identical to that of a predesigned dielectric object under the illumination of radar waves. Such an illusion device will confuse the radar, and hence the real EM properties of the metallic target cannot be perceived. We designed and fabricated the radar illusion device using artificial metamaterials in the microwave frequency, and good illusion performances are observed in the experimental results.

  13. Java Radar Analysis Tool

    NASA Technical Reports Server (NTRS)

    Zaczek, Mariusz P.

    2005-01-01

    Java Radar Analysis Tool (JRAT) is a computer program for analyzing two-dimensional (2D) scatter plots derived from radar returns showing pieces of the disintegrating Space Shuttle Columbia. JRAT can also be applied to similar plots representing radar returns showing aviation accidents, and to scatter plots in general. The 2D scatter plots include overhead map views and side altitude views. The superposition of points in these views makes searching difficult. JRAT enables three-dimensional (3D) viewing: by use of a mouse and keyboard, the user can rotate to any desired viewing angle. The 3D view can include overlaid trajectories and search footprints to enhance situational awareness in searching for pieces. JRAT also enables playback: time-tagged radar-return data can be displayed in time order and an animated 3D model can be moved through the scene to show the locations of the Columbia (or other vehicle) at the times of the corresponding radar events. The combination of overlays and playback enables the user to correlate a radar return with a position of the vehicle to determine whether the return is valid. JRAT can optionally filter single radar returns, enabling the user to selectively hide or highlight a desired radar return.

  14. Compliance with High-Intensity Radiated Fields Regulations - Emitter's Perspective

    NASA Technical Reports Server (NTRS)

    Statman, Joseph; Jamnejad, Vahraz; Nguyen, Lee

    2012-01-01

    NASA's Deep Space Network (DSN) uses high-power transmitters on its large antennas to communicate with spacecraft of NASA and its partner agencies. The prime reflectors of the DSN antennas are parabolic, at 34m and 70m in diameter. The DSN transmitters radiate Continuous Wave (CW) signals at 20 kW - 500 kW at X-band and S-band frequencies. The combination of antenna reflector size and high frequency results in a very narrow beam with extensive oscillating near-field pattern. Another unique feature of the DSN antennas is that they (and the radiated beam) move mostly at very slow sidereal rate, essentially identical in magnitude and at the opposite direction of Earth rotation.The DSN is in the process of revamping its documentation to provide analysis of the High Intensity Radiation Fields (HIRF) environment resulting from radio frequency radiation from DSN antennas for comparison to FAA regulations regarding certification of HIRF protection as outlined in the FAA regulations on HIRF protection for aircraft electrical and electronic systems (Title 14, Code of Federal Regulations (14 CFR) [section sign][section sign] 23.1308, 25.1317, 27.1317, and 29.1317).This paper presents work done at JPL, in consultation with the FAA. The work includes analysis of the radiated field structure created by the unique DSN emitters (combination of transmitters and antennas) and comparing it to the fields defined in the environments in the FAA regulations. The paper identifies areas that required special attention, including the implications of the very narrow beam of the DSN emitters and the sidereal rate motion. The paper derives the maximum emitter power allowed without mitigation and the mitigation zones, where required.Finally, the paper presents summary of the results of the analyses of the DSN emitters and the resulting DSN process documentation.

  15. SMAP Radar Processing and Expected Performance

    NASA Astrophysics Data System (ADS)

    West, R. D.; Jaruwatanadilok, S.

    2011-12-01

    This presentation will describe the processing algorithms being developed for the Soil Moisture Active Passive (SMAP) radar data and the expected characteristics of the measured backscattering cross sections. The SMAP radar combines some unique features such as a conically scanned antenna with SAR processing of the data. The rapidly varying squint angle gives the measurements variable resolution and noise characteristics and poses a challenge to the processor to maintain accuracy around the wide (1000 km) swath. Rapid variation of Doppler around the scan leads to a time domain azimuth correlation algorithm, and variation of the Doppler geometry will likely require varying the processing bandwidth to manage ambiguity contamination errors. The basic accuracy requirement is 1-dB (one-sigma) in the backscatter measurements at a resolution of 3 km. The main error contributions come from speckle noise, calibration uncertainty, and radio frequency interference (RFI). Speckle noise is determined by system design parameters and details of the processing algorithms. The calibration of the backscatter measurements will be based on pre-launch characterization of the radar components which allow corrections for short term (~1 month) variations in performance. Longer term variations and biases will be removed using measurements of stable reference targets such as parts of the Amazon rain forest, and possibly the oceans and ice sheets. RFI survey measurements will be included to measure the extent of RFI around the world. The SMAP radar is designed to be able to hop the operating frequency within the 80 MHz allocated band to avoid the worst RFI emitters. Data processing will detect and discard further RFI contaminated measurements. This work is supported by the SMAP project at JPL - CalTech. The SMAP mission has not been formally approved by NASA. The decision to proceed with the mission will not occur until the completion of the National Environmental Policy Act (NEPA) process. Material in this document related to SMAP is for information purposes only.

  16. Equatorial MU Radar project

    NASA Astrophysics Data System (ADS)

    Yamamoto, Mamoru; Hashiguchi, H.; Tsuda, Toshitaka; Yamamoto, Masayuki

    Research Institute for Sustainable Humanosphere, Kyoto University (RISH) has been studying the atmosphere by using radars. The first big facility was the MU (Middle and Upper atmosphere) radar installed in Shiga, Japan in 1984. This is one of the most powerful and multi-functional radar, and is successful of revealing importance of atmospheric waves for the dynamical vertical coupling processes. The next big radar was the Equatorial Atmosphere Radar (EAR) installed at Kototabang, West Sumatra, Indonesia in 2001. The EAR was operated under close collaboration with LAPAN (Indonesia National Institute for Aeronautics and Space), and conducted the long-term continuous observations of the equatorial atmosphere/ionosphere for more than 10 years. The MU radar and the EAR are both utilized for inter-university and international collaborative research program for long time. National Institute for Polar Research (NIPR) joined EISCAT Scientific Association together with Nagoya University, and developed the PANSY radar at Syowa base in Antarctica as a joint project with University of Tokyo. These are the efforts of radar study of the atmosphere/ionosphere in the polar region. Now we can find that Japan holds a global network of big atmospheric/ionospheric radars. The EAR has the limitation of lower sensitivity compared with the other big radars shown above. RISH now proposes a plan of Equatorial MU Radar (EMU) that is to establish the MU-radar class radar next to the EAR. The EMU will have an active phased array antenna with the 163m diameter and 1055 cross-element Yagis. Total output power of the EMU will be more than 500kW. The EMU can detect turbulent echoes from the mesosphere (60-80km). In the ionosphere incoherent-scatter observations of plasma density, drift, and temperature would be possible. Multi-channel receivers will realize radar-imaging observations. The EMU is one of the key facilities in the project "Study of coupling processes in the solar-terrestrial system" for Master Plan 2014 of the Science Council of Japan (SCJ). We show the EMU project and its science in the presentation.

  17. Laser radar improvements

    NASA Astrophysics Data System (ADS)

    Jelalian, A. V.

    1981-11-01

    A short history of the uses of various laser radars is presented, and appropriate applications of laser and microwave radars are discussed. CO2 laser radar, operating at 10.6 microns, is considered for use in aircraft navigation systems, fire-control systems for armored vehicle and aircraft, missile guidance, severe storm research, line-of-sight command of missiles, wind turbine site surveys, clear-air turbulence monitors for aircraft, and satellite tracking. Microwave radar is all-weather, but is subject to multipath inaccuracies, countermeasures, and angular resolution limitations, so hybrid laser microwave systems look promising for microwave target acquisition and laser tracking. Advantages and disadvantages of the use of ruby, YAG, and CO2 lasers in varying atmospheric conditions are discussed. Development of a laser radar pod for obstacle detection, Doppler navigation, automatic terrain following, hover control, weapon delivery, and precision searching is noted.

  18. Meteorological radar calibration

    NASA Technical Reports Server (NTRS)

    Hodge, D. B.

    1978-01-01

    A meteorological radar calibration technique is developed. It is found that the integrated, range corrected, received power saturates under intense rain conditions in a manner analogous to that encountered for the radiometric path temperature. Furthermore, it is found that this saturation condition establishes a bound which may be used to determine an absolution radar calibration for the case of radars operating at attenuating wavelengths. In the case of less intense rainfall or for radars at nonattenuating wavelengths, the relationship for direct calibration in terms of an independent measurement of radiometric path temperature is developed. This approach offers the advantage that the calibration is in terms of an independent measurement of the rainfall through the same elevated region as that viewed by the radar.

  19. On radar time and the twin ``paradox''

    NASA Astrophysics Data System (ADS)

    Dolby, Carl E.; Gull, Stephen F.

    2001-12-01

    In this paper we apply the concept of radar time (popularized by Bondi in his work on k calculus) to the well-known relativistic twin "paradox." Radar time is used to define hypersurfaces of simultaneity for a class of traveling twins, from the "immediate turn-around" case, through the "gradual turn-around" case, to the "uniformly accelerating" case. We show that this definition of simultaneity is independent of choice of coordinates, and assigns a unique time to any event (with which the traveling twin can send and receive signals), resolving some common misconceptions.

  20. Noise sources in laser radar systems.

    PubMed

    Letalick, D; Renhorn, I; Steinvall, O; Shapiro, J H

    1989-07-01

    To understand the fundamental limit of performance with a given laser radar system, the phase noise of a testbed laser radar has been investigated. Apart from the phase noise in the transmitter laser and the local oscillator laser, additional phase noise was introduced by vibrations caused by fans in power supplies and cooling systems. The stability of the mechanical structure of the platform was also found to be of great importance. Furthermore, a model for the signal variations from diffuse targets has been developed. This model takes into account the stray light, the speckle decorrelation, and Doppler shift due to moving targets. PMID:20555575

  1. Goldstone Solar System Radar Waveform Generator

    NASA Technical Reports Server (NTRS)

    Quirk, Kevin J.; Patawaran, Ferze D.; Nguyen, Danh H.; Nguyen, Huy

    2012-01-01

    Due to distances and relative motions among the transmitter, target object, and receiver, the time-base between any transmitted and received signal will undergo distortion. Pre-distortion of the transmitted signal to compensate for this time-base distortion allows reception of an undistorted signal. In most radar applications, an arbitrary waveform generator (AWG) would be used to store the pre-calculated waveform and then play back this waveform during transmission. The Goldstone Solar System Radar (GSSR), however, has transmission durations that exceed the available memory storage of such a device. A waveform generator capable of real-time pre-distortion of a radar waveform to a given time-base distortion function is needed. To pre-distort the transmitted signal, both the baseband radar waveform and the RF carrier must be modified. In the GSSR, this occurs at the up-conversion mixing stage to an intermediate frequency (IF). A programmable oscillator (PO) is used to generate the IF along with a time-varying phase component that matches the time-base distortion of the RF carrier. This serves as the IF input to the waveform generator where it is mixed with a baseband radar waveform whose time-base has been distorted to match the given time-base distortion function producing the modulated IF output. An error control feedback loop is used to precisely control the time-base distortion of the baseband waveform, allowing its real-time generation. The waveform generator produces IF modulated radar waveforms whose time-base has been pre-distorted to match a given arbitrary function. The following waveforms are supported: continuous wave (CW), frequency hopped (FH), binary phase code (BPC), and linear frequency modulation (LFM). The waveform generator takes as input an IF with a time varying phase component that matches the time-base distortion of the carrier. The waveform generator supports interconnection with deep-space network (DSN) timing and frequency standards, and is controlled through a 1 Gb/s Ethernet UDP/IP interface. This real-time generation of a timebase distorted radar waveform for continuous transmission in a planetary radar is a unique capability.

  2. 5. VIEW EAST, height finder radar towers, radar tower (unknown ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. VIEW EAST, height finder radar towers, radar tower (unknown function), prime search radar tower, operations building, and central heating plant - Fort Custer Military Reservation, P-67 Radar Station, .25 mile north of Dickman Road, east of Clark Road, Battle Creek, Calhoun County, MI

  3. 4. VIEW NORTHEAST, radar tower (unknown function), prime search radar ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. VIEW NORTHEAST, radar tower (unknown function), prime search radar tower, emergency power building, and height finder radar tower - Fort Custer Military Reservation, P-67 Radar Station, .25 mile north of Dickman Road, east of Clark Road, Battle Creek, Calhoun County, MI

  4. High-resolution three-dimensional imaging radar

    NASA Technical Reports Server (NTRS)

    Cooper, Ken B. (Inventor); Chattopadhyay, Goutam (Inventor); Siegel, Peter H. (Inventor); Dengler, Robert J. (Inventor); Schlecht, Erich T. (Inventor); Mehdi, Imran (Inventor); Skalare, Anders J. (Inventor)

    2010-01-01

    A three-dimensional imaging radar operating at high frequency e.g., 670 GHz, is disclosed. The active target illumination inherent in radar solves the problem of low signal power and narrow-band detection by using submillimeter heterodyne mixer receivers. A submillimeter imaging radar may use low phase-noise synthesizers and a fast chirper to generate a frequency-modulated continuous-wave (FMCW) waveform. Three-dimensional images are generated through range information derived for each pixel scanned over a target. A peak finding algorithm may be used in processing for each pixel to differentiate material layers of the target. Improved focusing is achieved through a compensation signal sampled from a point source calibration target and applied to received signals from active targets prior to FFT-based range compression to extract and display high-resolution target images. Such an imaging radar has particular application in detecting concealed weapons or contraband.

  5. Monitoring variations of biological impedances using microwave Doppler radar.

    PubMed

    Thansandote, A; Stuchly, S S; Smith, A M

    1983-08-01

    A microwave Doppler radar for continuously monitoring time-varying biological impedances is described. The radar compares the phase of the signal scattered from a region of biological tissue with that of the transmitted signal. The phase changes of the scattered signal are an indication of the net impedance changes within the test region due to various physiological processes, for example, the displacements of blood vessels during the cardiac cycle. A Doppler radar, equipped with a matched antenna, was tested with a simulation model and its detection characteristic was found to be a sinusoidal function of the antenna-object spacing. Tests with healthy human subjects were also performed at 3 GHz and 10.5 GHz. It was found that the 3 GHz Doppler radar has significantly greater penetration in tissues but is less sensitive to changes of the biological impedance than the 10.5 GHz system. PMID:6622532

  6. Intrinsic emittance reduction in transmission mode photocathodes

    NASA Astrophysics Data System (ADS)

    Lee, Hyeri; Cultrera, Luca; Bazarov, Ivan

    2016-03-01

    High quantum efficiency (QE) and low emittance electron beams provided by multi-alkali photocathodes make them of great interest for next generation high brightness photoinjectors. Spicer's three-step model well describes the photoemission process; however, some photocathode characteristics such as their thickness have not yet been completely exploited to further improve the brightness of the generated electron beams. In this work, we report on the emittance and QE of a multi-alkali photocathode grown onto a glass substrate operated in transmission and reflection modes at different photon energies. We observed a 20% reduction in the intrinsic emittance from the reflection to the transmission mode operation. This observation can be explained by inelastic electron-phonon scattering during electrons' transit towards the cathode surface. Due to this effect, we predict that thicker photocathode layers will further reduce the intrinsic emittance of electron beams generated by photocathodes operated in transmission mode.

  7. Emitters of N-photon bundles.

    PubMed

    Muoz, C Snchez; Del Valle, E; Tudela, A Gonzlez; Mller, K; Lichtmannecker, S; Kaniber, M; Tejedor, C; Finley, J J; Laussy, F P

    2014-07-01

    Controlling the ouput of a light emitter is one of the basic tasks of photonics, with landmarks such as the laser and single-photon sources. The development of quantum applications makes it increasingly important to diversify the available quantum sources. Here, we propose a cavity QED scheme to realize emitters that release their energy in groups, or "bundles" of N photons, for integer N. Close to 100% of two-photon emission and 90% of three-photon emission is shown to be within reach of state of the art samples. The emission can be tuned with system parameters so that the device behaves as a laser or as a N-photon gun. The theoretical formalism to characterize such emitters is developed, with the bundle statistics arising as an extension of the fundamental correlation functions of quantum optics. These emitters will be useful for quantum information processing and for medical applications. PMID:25013456

  8. Emitters of N-photon bundles

    PubMed Central

    Muñoz, C. Sánchez; del Valle, E.; Tudela, A. González; Müller, K.; Lichtmannecker, S.; Kaniber, M.; Tejedor, C.; Finley, J.J.; Laussy, F.P.

    2014-01-01

    Controlling the ouput of a light emitter is one of the basic tasks of photonics, with landmarks such as the laser and single-photon sources. The development of quantum applications makes it increasingly important to diversify the available quantum sources. Here, we propose a cavity QED scheme to realize emitters that release their energy in groups, or “bundles” of N photons, for integer N. Close to 100% of two-photon emission and 90% of three-photon emission is shown to be within reach of state of the art samples. The emission can be tuned with system parameters so that the device behaves as a laser or as a N-photon gun. The theoretical formalism to characterize such emitters is developed, with the bundle statistics arising as an extension of the fundamental correlation functions of quantum optics. These emitters will be useful for quantum information processing and for medical applications. PMID:25013456

  9. Arc-textured high emittance radiator surfaces

    NASA Technical Reports Server (NTRS)

    Banks, Bruce A. (Inventor)

    1991-01-01

    High emittance radiator surfaces are produced by arc-texturing. This process produces such a surface on a metal by scanning it with a low voltage electric arc from a carbon electrode in an inert environment.

  10. Emitter Wrap-Through solar cell

    SciTech Connect

    Gee, J.M.; Schubert, W.K.; Basore, P.A.

    1992-01-01

    The authors present a new cell concept (Emitter Wrap-Through or EWT) for a back-contact cell. The cell has laser-drilled vias to wrap the emitter on the front surface to contacts on the back surface and uses a potentially low-cost process sequence. Modeling calculations show that efficiencies of 18 and 21% are possible with large-area solar-grade multi- and monocrystalline silicon EWT cells, respectively.

  11. Emitter Wrap-Through solar cell

    NASA Astrophysics Data System (ADS)

    Gee, J. M.; Schubert, W. K.; Basore, P. A.

    The authors present a new cell concept (Emitter Wrap-Through or EWT) for a back-contact cell. The cell has laser-drilled vias to wrap the emitter on the front surface to contacts on the back surface and uses a potentially low-cost process sequence. Modeling calculations show that efficiencies of 18 and 21% are possible with large-area solar-grade multi- and monocrystalline silicon EWT cells, respectively.

  12. Alpha-emitters for medical therapy workshop

    SciTech Connect

    Feinendegen, L.E.; McClure, J.J.

    1996-12-31

    A workshop on ``Alpha-Emitters for Medical Therapy`` was held May 30-31, 1996 in Denver Colorado to identify research goals and potential clinical needs for applying alpha-particle emitters and to provide DOE with sufficient information for future planning. The workshop was attended by 36 participants representing radiooncology, nuclear medicine, immunotherapy, radiobiology, molecular biology, biochemistry, radiopharmaceutical chemistry, dosimetry, and physics. This report provides a summary of the key points and recommendations arrived at during the conference.

  13. Charge neutrality in heavily doped emitters

    SciTech Connect

    del Alamo, J.A.

    1981-09-01

    The applicability of the quasineutrality approximation to modern emitters of solar cells is analytically reviewed. It is shown that this approximation is fulfilled in more than 80% of the depth of a typical solar-cell emitter, being particularly excellent in the heavily doped regions beneath the surface where most of the heavy doping effects arise. Our conclusions are in conflict with Redfield's recent affirmations.

  14. Coaxial inverted geometry transistor having buried emitter

    NASA Technical Reports Server (NTRS)

    Hruby, R. J.; Cress, S. B.; Dunn, W. R. (Inventor)

    1973-01-01

    The invention relates to an inverted geometry transistor wherein the emitter is buried within the substrate. The transistor can be fabricated as a part of a monolithic integrated circuit and is particularly suited for use in applications where it is desired to employ low actuating voltages. The transistor may employ the same doping levels in the collector and emitter, so these connections can be reversed.

  15. Constraints on drivers for visible light communications emitters based on energy efficiency.

    PubMed

    Del Campo-Jimenez, Guillermo; Perez-Jimenez, Rafael; Lopez-Hernandez, Francisco Jose

    2016-05-01

    In this work we analyze the energy efficiency constraints on drivers for Visible light communication (VLC) emitters. This is the main reason why LED is becoming the main source of illumination. We study the effect of the waveform shape and the modulation techniques on the overall energy efficiency of an LED lamp. For a similar level of illumination, we calculate the emitter energy efficiency ratio η (PLED/PTOTAL) for different signals. We compare switched and sinusoidal signals and analyze the effect of both OOK and OFDM modulation techniques depending on the power supply adjustment, level of illumination and signal amplitude distortion. Switched and OOK signals present higher energy efficiency behaviors (0.86≤η≤0.95) than sinusoidal and OFDM signals (0.53≤η≤0.79). PMID:27137609

  16. A FMCW CO2 laser radar

    NASA Astrophysics Data System (ADS)

    Alexander, W.; Comerford, T. G.; Stewart, C. A.

    A CO2 laser radar employing frequency modulated continuous wave techniques is described. The system has a field of view of 25 mrad which is scanned at 12 frames per second to produce range and velocity images of a scene. Both the optical and signal processing subsystems are described; these include a CO2 laser, cadmium mercury telluride detector, acoustooptic modulator, image space scanner, real time surface acoustic wave spectrum analyzer, and a microprocessor based system management unit. A coherent laser radar is in many respects like its microwave counterpart but the shorter wavelength of the transmitted radiation results in the beam divergence for a given aperture being less and the Doppler shift from moving targets greater in the laser system. The system implications of these attributes are discussed specifically with respect to areas of application for laser radar.

  17. Delineate subsurface structures with ground penetrating radar

    SciTech Connect

    Wyatt, D.E. ); Hu, L.Z. ); Ramaswamy, M. ); Sexton, B.G. )

    1992-01-01

    High resolution ground penetrating radar (GPR) surveys were conducted at the Savannah River Site in South Carolina in late 1991 to demonstrate the radar techniques in imaging shallow utility and soil structures. Targets of interest at two selected sites, designated as H- and D-areas, were a buried backfilled trench, buried drums, geologic stratas, and water table. Multiple offset 2-D and single offset 3-D survey methods were used to acquire high resolution radar data. This digital data was processed using standard seismic processing software to enhance signal quality and improve resolution. Finally, using a graphics workstation, the 3D data was interpreted. In addition, a small 3D survey was acquired in The Woodlands, Texas, with very dense spatial sampling. This data set adequately demonstrated the potential of this technology in imaging subsurface features.

  18. Delineate subsurface structures with ground penetrating radar

    SciTech Connect

    Wyatt, D.E.; Hu, L.Z.; Ramaswamy, M.; Sexton, B.G.

    1992-10-01

    High resolution ground penetrating radar (GPR) surveys were conducted at the Savannah River Site in South Carolina in late 1991 to demonstrate the radar techniques in imaging shallow utility and soil structures. Targets of interest at two selected sites, designated as H- and D-areas, were a buried backfilled trench, buried drums, geologic stratas, and water table. Multiple offset 2-D and single offset 3-D survey methods were used to acquire high resolution radar data. This digital data was processed using standard seismic processing software to enhance signal quality and improve resolution. Finally, using a graphics workstation, the 3D data was interpreted. In addition, a small 3D survey was acquired in The Woodlands, Texas, with very dense spatial sampling. This data set adequately demonstrated the potential of this technology in imaging subsurface features.

  19. Radar remote sensing in biology

    USGS Publications Warehouse

    Moore, Richard K.; Simonett, David S.

    1967-01-01

    The present status of research on discrimination of natural and cultivated vegetation using radar imaging systems is sketched. The value of multiple polarization radar in improved discrimination of vegetation types over monoscopic radars is also documented. Possible future use of multi-frequency, multi-polarization radar systems for all weather agricultural survey is noted.

  20. Goldstone solar system radar

    NASA Technical Reports Server (NTRS)

    Jurgens, Raymond F.

    1988-01-01

    Planning, direction, experimental design, and coordination of data-acquisition and engineering activities in support of all Goldstone planetary radar astronomy were performed. This work demands familiarity with the various components of a planetary radar telescope (transmitter, receiver, antenna, computer hardware and software) as well as knowledge of how the entire system must function as a cohesive unit to meet the particular scientific objectives at hand in a given observation. Support radar data-processing facilities, currently being used for virtually all Goldstone data reduction includes: a VAX 11/780 computer system, an FPS 5210 array processor, terminals, tape drives, and image-display devices, as well as a large body of data-reduction software to accommodate the variety of data-acquisition formats and strategems. Successful 113-cm radar observation of Callisto and the near-Earth asteroid 1981 Midas and Goldstone/VLA radar observations of Saturn's rings were obtained. Quick-look verification programs from data taken with phase-coded cw (i.e., ranging) waveforms, applicable to Venus, the Moon, and small bodies were completed. Definition of scientific and engineering requirements on instrument performance, radar system configuration, and personnel, for all 1988 Goldstone radar investigations was accomplished.

  1. Description and availability of airborne Doppler radar data

    NASA Technical Reports Server (NTRS)

    Harrah, S. D.; Bracalente, E. M.; Schaffner, P. R.; Baxa, E. G.

    1993-01-01

    An airborne, forward-looking, pulse, Doppler radar has been developed in conjunction with the joint FAA/NASA Wind Shear Program. This radar represents a first in an emerging technology. The radar was developed to assess the applicability of an airborne radar to detect low altitude hazardous wind shears for civil aviation applications. Such a radar must be capable of looking down into the ground clutter environment and extracting wind estimates from relatively low reflectivity weather targets. These weather targets often have reflectivities several orders of magnitude lower than the surrounding ground clutter. The NASA radar design incorporates numerous technological and engineering achievements in order to accomplish this task. The basic R/T unit evolved from a standard Collins 708 weather radar, which supports specific pulse widths of 1-7 microns and Pulse Repetition Frequencies (PRF) of less than 1-10 kHz. It was modified to allow for the output of the first IF signal, which fed a NASA developed receiver/detector subsystem. The NASA receiver incorporated a distributed, high-speed digital attenuator, producing a range bin to range bin automatic gain control system with 65 dB of dynamic range. Using group speed information supplied by the aircraft's navigation system, the radar signal is frequency demodulated back to base band (zero Doppler relative to stationary ground). The In-phase & Quadrature-phase (I/Q) components of the measured voltage signal are then digitized by a 12-bit A-D converter (producing an additional 36 dB of dynamic range). The raw I/Q signal for each range bin is then recorded (along with the current radar & aircraft state parameters) by a high-speed Kodak tape recorder.

  2. Radar Imaging of Mercury

    NASA Astrophysics Data System (ADS)

    Rice, M.; Harmon, J.

    2004-11-01

    Radar images of the entire Mercurian surface have been created using the Arecibo S-band radar (wavelength 12.6cm) and the long code delay-Doppler method. We have mapped the locations of midlatitude radar-bright craters across all longitudes, and in the Mariner-10 imaged hemisphere we find several disagreements between the features that appear freshest in the unpolarized radar images and those that have been classified as most recent in the USGS geologic maps. All USGS c5 craters correspond to bright features in our same-circular polarized radar images; however, several c1 and c2 craters have radar-bright deposits as well. In our radar maps of the Skinakas Basin region of the Mariner-10 unimaged hemisphere, we find little agreement between the proposed basin rim locations and the radar features. We have mapped the south polar region using new data from April 2004 with a sub-Earth latitude of 4.5S, this being our first chance to view the south pole since the Arecibo telescope upgrade. We confirm the locations of features seen in the pre-upgrade maps and we identify 15 new "ice" features extending to latitudes as low as 73S. All south polar features have circular polarization inversions (average SC/OC=1.38) that are consistent with volume scattering off cold-trapped volatiles. We also present a preliminary analysis of our August 2004 observations, including new radar images of "Feature C" (the strongest echo feature in the Mariner-10 unimaged hemisphere) and of the north polar region. This research was funded by the NSF as part of the Research Experiences for Undergraduates program.

  3. Synthetic range profiling in ground penetrating radar

    NASA Astrophysics Data System (ADS)

    Kaczmarek, Pawel; Lapiński, Marian; Silko, Dariusz

    2009-06-01

    The paper describes stepped frequency continuous wave (SFCW) ground penetrating radar (GPR), where signal's frequency is discretely increased in N linear steps, each separated by a fixed ▵f increment from the previous one. SFCW radar determines distance from phase shift in a reflected signal, by constructing synthetic range profile in spatial time domain using the IFFT. Each quadrature sample is termed a range bin, as it represents the signal from a range window of length cτ/2, where τ is duration of single frequency segment. IFFT of those data samples resolves the range bin in into fine range bins of c/2N▵f width, thus creating the synthetic range profile in a GPR - a time domain approximation of the frequency response of a combination of the medium through which electromagnetic waves propagates (soil) and any targets or dielectric interfaces (water, air, other types of soil) present in the beam width of the radar. In the paper, certain practical measurements done by a monostatic SFCW GPR were presented. Due to complex nature of signal source, E5062A VNA made by Agilent was used as a signal generator, allowing number of frequency steps N to go as high as 1601, with generated frequency ranging from 300kHz to 3 GHz.

  4. Precipitation measurement using VHF wind-profiler radars: A multifaceted approach to calibrate radar antenna and receiver chain

    NASA Astrophysics Data System (ADS)

    Campos, Edwin F.; Hocking, Wayne; Fabry, FrDRic

    2007-08-01

    Many quantitative analyses of radar signal require a radar calibration. Established calibration methods for VHF radar provide only partial information about antenna or receiver parameters. We propose that a more complete approach to calibrate VHF radar can be obtained by combining multiple calibration methods. To test this, we developed a calibration technique by combining a first calibration method that compares the recorded VHF signal to power coming from a noise generator and a second calibration method that compares recorded VHF signal to cosmic radiation. We derive four equations that allow us to retrieve antenna and receiver-chain parameters (such as noises, efficiency, and gain), and four other equations for the corresponding errors. In addition, we develop an equation for calibrating Doppler spectra. To test our calibration technique, we collected an extensive data set from the McGill VHF radar. For validation, we performed a third calibration using measurements of voltage and impedance to compute power losses in the antenna transmission lines. On the basis of our equations, we have found the values for the antenna and receiver-chain parameters in the McGill VHF radar, and their corresponding uncertainties, and we have compared these to the energy losses obtained by the third calibration method. The antenna efficiencies derived by our technique and by the third calibration method agreed within 0.5 dB. Furthermore, analyses of our calibrated Doppler spectra in rain demonstrate the potential of this calibration technique for absolute measurement of precipitation by wind-profiler radar.

  5. Micropower impulse radar

    SciTech Connect

    Azevedo, S.; McEwan, T.E.

    1996-01-01

    Invented and developed at Lawrence Livermore National Laboratory is an inexpensive and highly sensitive, low-power radar system that produces and samples extremely short pulses of energy at the rate of 2 million per second. Called micropower impulse radar (MIR), it can detect objects at a greater variety of distances with greater sensitivity than conventional radar. Its origins in the Laboratory`s Laser Directorate stem from Nova`s transient digitizer. The MIR`s extraordinary range of applications include security, search and rescue, life support, nondestructive evaluation, and transportation.

  6. Polarimetric Doppler Weather Radar

    NASA Astrophysics Data System (ADS)

    Bringi, V. N.; Chandrasekar, V.

    2001-10-01

    This work provides a detailed introduction to the principles of Doppler and polarimetric radar, focusing in particular on their use in the analysis of weather systems. The authors first discuss underlying topics such as electromagnetic scattering, polarization, and wave propagation. They then detail the engineering aspects of pulsed Doppler polarimetric radar, before examining key applications in meteorology and remote sensing. The book is aimed at graduate students of electrical engineering and atmospheric science as well as practitioners involved in the applications of polarimetric radar.

  7. Asteroid radar astrometry

    NASA Technical Reports Server (NTRS)

    Ostro, S. J.; Jurgens, R. F.; Rosema, K. D.; Winkler, R.; Yeomans, D. K.; Campbell, D. B.; Chandler, J. F.; Shapiro, I. I.; Hine, A. A.; Velez, R.

    1991-01-01

    Measurements of time delay and Doppler frequency are reported for asteroid-radar echoes obtained at Arecibo and Goldstone during 1980-1990. Radar astrometry is presented for 23 near-earth asteroids and three mainbelt asteroids. These measurements, which are orthogonal to optical, angular-position measurements, and typically have a fractional precision between 10 to the -5th and 10 to the -8th, permit significant improvement in estimates of orbits and hence in the accuracy of prediction ephemerides. Estimates are also reported of radar cross-section and circular polarization ratio for all asteroids observed astrometrically during 1980-1990.

  8. Radar investigation of asteroids

    NASA Astrophysics Data System (ADS)

    Ostro, S. J.

    1981-05-01

    Efforts were focused on: (1) acquisition of radar data at Arecibo; (2) examination of raw data; (3) reduction of the unmodulated data to background-free, calibrated spectra; (4) integration and coherent analyses of the phase-coded data; and (5) calculation of Doppler shifts and preliminary values for echo limb-to-limb bandwidths, radar cross sections, and circular polarization ratios. Asteroids observed to data have radar properties distinct from those of the rocky terrestrial planets and those of the icy Galilean satellites.

  9. Radar Remote Sensing

    NASA Technical Reports Server (NTRS)

    Rosen, Paul A.

    2012-01-01

    This lecture was just a taste of radar remote sensing techniques and applications. Other important areas include Stereo radar grammetry. PolInSAR for volumetric structure mapping. Agricultural monitoring, soil moisture, ice-mapping, etc. The broad range of sensor types, frequencies of observation and availability of sensors have enabled radar sensors to make significant contributions in a wide area of earth and planetary remote sensing sciences. The range of applications, both qualitative and quantitative, continue to expand with each new generation of sensors.

  10. Rendezvous radar for the orbital maneuvering vehicle

    NASA Technical Reports Server (NTRS)

    Locke, John W.; Olds, Keith; Parks, Howard

    1991-01-01

    This paper describes the development of the Rendezvous Radar Set (RRS) for the Orbital Maneuvering Vehicle (OMV) for the National Aeronautics and Space Administration (NASA). The RRS was to be used to locate, and then provide vectoring information to, target satellites (or Shuttle or Space Station) to aid the OMV in making a minimum-fuel-consumption approach and rendezvous. The RRS design is that of an X-Band, all solid-state, monopulse tracking, frequency hopping, pulse-Doppler radar system. The development of the radar was terminated when the OMV prime contract to TRW was terminated by NASA. At the time of the termination, the development was in the circuit design stage. The system design was virtually completed, the PDR had been held. The RRS design was based on Motorola's experiences, both in the design and production of radar systems for the US Army and in the design and production of hi-rel communications systems for NASA space programs. Experience in these fields was combined with the latest digital signal processor and micro-processor technology to design a light-weight, low-power, spaceborne radar. The antenna and antenna positioner (gimbals) technology developed for the RRS is now being used in the satellite-to-satellite communication link design for Motorola's Iridium telecommunications system.

  11. Ground penetrating radar for asparagus detection

    NASA Astrophysics Data System (ADS)

    Seyfried, Daniel; Schoebel, Joerg

    2016-03-01

    Ground penetrating radar is a promising technique for detection of buried objects. Recently, radar has more and more been identified to provide benefits for a plurality of applications, where it can increase efficiency of operation. One of these fields is the industrial automatic harvesting process of asparagus, which is performed so far by cutting the soil ridge at a certain height including all the asparagus spears and subsequently sieving the latter out of the soil. However, the height where the soil is cut is a critical parameter, since a wrong value leads to either damage of the roots of the asparagus plants or to a reduced crop yield as a consequence of too much biomass remaining in the soil. In this paper we present a new approach which utilizes ground penetrating radar for non-invasive sensing in order to obtain information on the optimal height for cutting the soil. Hence, asparagus spears of maximal length can be obtained, while keeping the roots at the same time undamaged. We describe our radar system as well as the subsequent digital signal processing steps utilized for extracting the information required from the recorded radar data, which then can be fed into some harvesting unit for setting up the optimal cutting height.

  12. Doppler radar imaging of spherical planetary surfaces

    SciTech Connect

    Hudson, R.S.; Ostro, S.J. )

    1990-07-10

    A new approach to making radar reflectivity images of spherical planetary objects uses echo spectra acquired as a function of rotational phase and at an arbitrary number of subradar latitudes. If only equatorial views are used then the image will have a north-south ambiguity. If non-equatorial views are used than unambiguous images are possible. The technique is tailored for depolarized or diffuse (nonspecular) polarized backscatter and works best when the limb darkening is minimal. In developing the Doppler-radar imaging system, the target's reflectivity distribution is expanded in a truncated spherical harmonic series and the distribution of echo power in rotational phase and Doppler frequency is obtained as a linear, analytic function of the series coefficients. To estimate the coefficients from an observed phase-Doppler distribution, the inversion is cast as a least-squares problem and solved using singular value decomposition. The result is a linear imaging system whose capabilities and sensitivity to such factors as subradar latitude coverage and signal-to-noise ratio are easily explored with simulations. Doppler-radar imaging can be used with existing radar telescopes to map the diffuse component of echoes from the inner planets and to make north-south ambiguous reflectivity maps of the icy Galilean satellites. SNRs needed for Doppler-radar imaging of the largest asteroids, Io, and Titan would be accessible upon implementation of upgrades proposed for the Arecibo telescope.

  13. Ground penetrating radar applications: Department of Energy case studies

    NASA Astrophysics Data System (ADS)

    Koppenjan, Steven; Bashforth, Michael B.

    1993-11-01

    The ability to detect and image buried objects has gained in popularity over the past decade. The use of new subsurface radar techniques and advanced signal processing has increased the probability of success. Paleontology and life science fields have benefitted from advances in ground penetrating radar technology. The United States Department of Energy's Special Technologies Laboratory (STL) staff has been using and developing ground penetrating radar instrumentation and imaging algorithms since 1968. STL has developed a stepped FM-CW Ground Penetrating Radar (GPR) that operates from 196 MHz to 708 MHz. Included is a brief technical description on this fully self-contained unit. Several sample data sets also are described for familiarization with the unique data format of this GPR. This paper describes how ground penetrating radar can be applied to paleontology and tunnel imaging, its limitations and several case study results.

  14. Development and characterization analysis of a radar polarimeter

    NASA Technical Reports Server (NTRS)

    Bong, S.; Blanchard, A. J.

    1983-01-01

    The interaction of electromagnetic waves with natural earth surface was of interest for many years. A particular area of interest in controlled remote sensing experiments is the phenomena of depolarization. The development stages of the radar system are documented. Also included are the laboratory procedures which provides some information about the specifications of the system. The radar system developed is termed the Radar Polarimeter System. A better insight of the operation of the RPS in terms of the newly developed technique--synthetic aperture radar system is provided. System performance in tems of radar cross section, in terms of power, and in terms of signal to noise ratio are also provided. In summary, an overview of the RPS in terms of its operation and design as well as how it will perform in the field is provided.

  15. Rainfall Measurement with a Ground Based Dual Frequency Radar

    NASA Technical Reports Server (NTRS)

    Takahashi, Nobuhiro; Horie, Hiroaki; Meneghini, Robert

    1997-01-01

    Dual frequency methods are one of the most useful ways to estimate precise rainfall rates. However, there are some difficulties in applying this method to ground based radars because of the existence of a blind zone and possible error in the radar calibration. Because of these problems, supplemental observations such as rain gauges or satellite link estimates of path integrated attenuation (PIA) are needed. This study shows how to estimate rainfall rate with a ground based dual frequency radar with rain gauge and satellite link data. Applications of this method to stratiform rainfall is also shown. This method is compared with single wavelength method. Data were obtained from a dual frequency (10 GHz and 35 GHz) multiparameter radar radiometer built by the Communications Research Laboratory (CRL), Japan, and located at NASA/GSFC during the spring of 1997. Optical rain gauge (ORG) data and broadcasting satellite signal data near the radar t location were also utilized for the calculation.

  16. KU-Band rendezvous radar performance computer simulation model

    NASA Technical Reports Server (NTRS)

    Griffin, J. W.

    1980-01-01

    The preparation of a real time computer simulation model of the KU band rendezvous radar to be integrated into the shuttle mission simulator (SMS), the shuttle engineering simulator (SES), and the shuttle avionics integration laboratory (SAIL) simulator is described. To meet crew training requirements a radar tracking performance model, and a target modeling method were developed. The parent simulation/radar simulation interface requirements, and the method selected to model target scattering properties, including an application of this method to the SPAS spacecraft are described. The radar search and acquisition mode performance model and the radar track mode signal processor model are examined and analyzed. The angle, angle rate, range, and range rate tracking loops are also discussed.

  17. Optically isolated signal coupler with linear response

    DOEpatents

    Kronberg, James W.

    1994-01-01

    An optocoupler for isolating electrical signals that translates an electrical input signal linearly to an electrical output signal. The optocoupler comprises a light emitter, a light receiver, and a light transmitting medium. The light emitter, preferably a blue, silicon carbide LED, is of the type that provides linear, electro-optical conversion of electrical signals within a narrow wavelength range. Correspondingly, the light receiver, which converts light signals to electrical signals and is preferably a cadmium sulfide photoconductor, is linearly responsive to light signals within substantially the same wavelength range as the blue LED.

  18. Ultra-wideband short-pulse radar with range accuracy for short range detection

    SciTech Connect

    Rodenbeck, Christopher T; Pankonin, Jeffrey; Heintzleman, Richard E; Kinzie, Nicola Jean; Popovic, Zorana P

    2014-10-07

    An ultra-wideband (UWB) radar transmitter apparatus comprises a pulse generator configured to produce from a sinusoidal input signal a pulsed output signal having a series of baseband pulses with a first pulse repetition frequency (PRF). The pulse generator includes a plurality of components that each have a nonlinear electrical reactance. A signal converter is coupled to the pulse generator and configured to convert the pulsed output signal into a pulsed radar transmit signal having a series of radar transmit pulses with a second PRF that is less than the first PRF.

  19. Progress reports for period November 1--30, 1994 -- Joint UK/US Radar Program

    SciTech Connect

    Twogood, R.E.; Brase, J.M.; Mantrom, D.D.; Chambers, D.H.; Robey, H.F.

    1994-12-19

    This report gives the principle investigator, objectives, recent accomplishments, milestones for reporting period, expected milestones for ensuing period, other issues and planned expenditures for the following programs: airborne RAR/SAR; radar data processor; ground-based SAR signal processing workstation; static airborne radar; multi-aperture space-time array radar; radar field experiments; data analysis and detection theory; management; E-2C radar data analysis;modeling and analysis; current meter array; UCSB wave tank; stratified flow facility; and IR sensor system. Budget status is also given.

  20. Estimation of Self-Clutter of the Multiple-pulse Technique for HF Radars

    NASA Astrophysics Data System (ADS)

    Reimer, A. S.; Hussey, G. C.

    2014-12-01

    High-frequency (HF) radars take advantage of long-distance multiple-hop propagation that is possible in the HF band. At large distances, ionospheric targets become overspread or susceptible to range-Doppler ambiguities (long range: > 1000 km and high velocity: ~1 km/s). Ionospheric radars, such as the Super Dual Auroral Radar Network (SuperDARN) radars employ the multiple-pulse technique to overcome these ambiguities at the expense of introducing self-clutter. The present study utilizes measurements of echo power to estimate self-clutter, which can be used to provide signal-derived estimates of the mean square error in radar observations.

  1. Progress reports for October 1994 -- Joint UK/US Radar Program

    SciTech Connect

    Twogood, R.E.; Brase, J.M.; Mantrom, D.D.; Chambers, D.H.; Robey, H.F.

    1994-11-18

    This report gives the principle investigator, objectives, recent accomplishments, milestones for reporting period, expected milestones for ensuing period, other issues and planned expenditures for each of the following programs: airborne RAR/SAR; radar data processor; ground-based SAR signal processing workstation; static airborne radar; multi-aperture space-time array radar; radar field experiments; data analysis and detection theory; management; E-2C radar data analysis; modeling and analysis; current meter array; UCSB wave tank; stratified flow facility; and IR sensor system. Finally the budget status is given.

  2. Customizable Digital Receivers for Radar

    NASA Technical Reports Server (NTRS)

    Moller, Delwyn; Heavey, Brandon; Sadowy, Gregory

    2008-01-01

    Compact, highly customizable digital receivers are being developed for the system described in 'Radar Interferometer for Topographic Mapping of Glaciers and Ice Sheets' (NPO-43962), NASA Tech Briefs, Vol. 31, No. 7 (August 2007), page 72. The receivers are required to operate in unison, sampling radar returns received by the antenna elements in a digital beam-forming (DBF) mode. The design of these receivers could also be adapted to commercial radar systems. At the time of reporting the information for this article, there were no commercially available digital receivers capable of satisfying all of the operational requirements and compact enough to be mounted directly on the antenna elements. A provided figure depicts the overall system of which the digital receivers are parts. Each digital receiver includes an analog-to-digital converter (ADC), a demultiplexer (DMUX), and a field-programmable gate array (FPGA). The ADC effects 10-bit band-pass sampling of input signals having frequencies up to 3.5 GHz. The input samples are demultiplexed at a user-selectable rate of 1:2 or 1:4, then buffered in part of the FPGA that functions as a first-in/first-out (FIFO) memory. Another part of the FPGA serves as a controller for the ADC, DMUX, and FIFO memory and as an interface between (1) the rest of the receiver and (2) a front-panel data port (FPDP) bus, which is an industry-standard parallel data bus that has a high data-rate capability and multichannel configuration suitable for DBF. Still other parts of the FPGA in each receiver perform signal-processing functions. The digital receivers can be configured to operate in a stand-alone mode, or in a multichannel mode as needed for DBF. The customizability of the receiver makes it applicable to a broad range of system architectures. The capability for operation of receivers in either a stand-alone or a DBF mode enables the use of the receivers in an unprecedentedly wide variety of radar systems.

  3. Advanced signal processing

    NASA Astrophysics Data System (ADS)

    Creasey, D. J.

    1985-12-01

    A collection of papers on advanced signal processing in radar, sonar, and communications is presented. The topics addressed include: transmitter aerials, high-power amplifier design for active sonar, radar transmitters, receiver array technology for sonar, new underwater acoustic detectors, diversity techniques in communications receivers, GaAs IC amplifiers for radar and communication receivers, integrated optical techniques for acoustooptic receivers, logarithmic receivers, CCD processors for sonar, acoustooptic correlators, designing in silicon, very high performance integrated circuits, and digital filters. Also discussed are: display types, scan converters in sonar, display ergonomics, simulators, high throughput sonar processors, optical fiber systems for signal processing, satellite communications, VLSI array processor for image and signal processing, ADA, future of cryogenic devices for signal processing applications, advanced image understanding, and VLSI architectures for real-time image processing.

  4. Staggered Costas signals

    NASA Astrophysics Data System (ADS)

    Freedman, Avraham; Levanon, Nadav

    1986-11-01

    A radar signal, based on coherent processing of a train of staggered Costas (1984) bursts is based on a minimum number of collocation of their individual ambiguity function sidelobe peaks. The resulting ambiguity function combines qualities of both 'thumbtack' and 'bed of nails' signals. Comparison with linear-FM, V-FM, and complementary phase coded signals is given, as well as comparison with hybrid signals consisting of both phase and frequency coding.

  5. Radar investigation of asteroids

    NASA Astrophysics Data System (ADS)

    Ostro, S. J.

    For 80 Sappho, 356 Liguria, 694 Ekard, and 2340 Hathor, data were taken simultaneously in the same sense of circular polarization as transmitted (SC) as well as in the opposite (OC) sense. Graphs show the average OC and SC radar echo power spectra soothed to a resolution of EFB Hz and plotted against Doppler frequency. Radar observations of the peculiar object 2201 Oljato reveal an unusual set of echo power spectra. The albedo and polarization ratio remain fairly constant but the bandwidths range from approximately 0.8 Hz to 1.4 Hz and the spectral shapes vary dramatically. Echo characteristics within any one date's approximately 2.5-hr observation period do not fluctuate very much. Laboratory measurements of the radar frequency electrical properties of particulate metal-plus-silicate mixtures can be combined with radar albedo estimates to constrain the bulk density and metal weight, fraction in a hypothetical asteroid regolith having the same particle size distribution as lab samples.

  6. Radar investigation of asteroids

    NASA Technical Reports Server (NTRS)

    Ostro, S. J.

    1983-01-01

    For 80 Sappho, 356 Liguria, 694 Ekard, and 2340 Hathor, data were taken simultaneously in the same sense of circular polarization as transmitted (SC) as well as in the opposite (OC) sense. Graphs show the average OC and SC radar echo power spectra soothed to a resolution of EFB Hz and plotted against Doppler frequency. Radar observations of the peculiar object 2201 Oljato reveal an unusual set of echo power spectra. The albedo and polarization ratio remain fairly constant but the bandwidths range from approximately 0.8 Hz to 1.4 Hz and the spectral shapes vary dramatically. Echo characteristics within any one date's approximately 2.5-hr observation period do not fluctuate very much. Laboratory measurements of the radar frequency electrical properties of particulate metal-plus-silicate mixtures can be combined with radar albedo estimates to constrain the bulk density and metal weight, fraction in a hypothetical asteroid regolith having the same particle size distribution as lab samples.

  7. Radar - The Future

    NASA Astrophysics Data System (ADS)

    Warwick, G.

    1985-02-01

    Progress in civil and military radar units since the invention of radar in 1935 is summarized, noting the trend to multipurpose units. The earliest systems functioned at 10 cm, then 3 cm after development of a cavity magnetron to provide power for shorter wavelengths. Military needs are driving improvements in three-dimensional scanning capabilities, Primarily to locate aircraft in the presence of ground clutter and sea surface scattering. Autonomous, separate transmitter and receiver units are being tested. Lengthening ground-based radar wavelengths to tens of meters will permit over-the-horizon sensing with backscattering, ionospheric bounce, or induction of a potential in the sea surface as the possible techniques. Mode S monopulse radars will permit transponder queries between small and large aircraft. Finally, pulse Doppler SAR systems may afford terrain recognition with no corroborating data except an expert systems data base.

  8. Radar detection of ultra high energy cosmic rays

    NASA Astrophysics Data System (ADS)

    Myers, Isaac J.

    TARA (Telescope Array Radar) is a cosmic ray radar detection experiment co-located with Telescope Array, the conventional surface scintillation detector (SD) and fluorescence telescope detector (FD) near Delta, UT. The TARA detector combines a 40 kW transmitter and high gain transmitting antenna which broadcasts the radar carrier over the SD array and in the FD field of view to a 250 MS/s DAQ receiver. Data collection began in August, 2013. TARA stands apart from other cosmic ray radar experiments in that radar data is directly compared with conventional cosmic ray detector events. The transmitter is also directly controlled by TARA researchers. Waveforms from the FD-triggered data stream are time-matched with TA events and searched for signal using a novel signal search technique in which the expected (simulated) radar echo of a particular air shower is used as a matched filter template and compared to radio waveforms. This technique is used to calculate the radar cross-section (RCS) upper-limit on all triggers that correspond to well-reconstructed TA FD monocular events. Our lowest cosmic ray RCS upper-limit is 42 cm2 for an 11 EeV event. An introduction to cosmic rays is presented with the evolution of detection and the necessity of new detection techniques, of which radar detection is a candidate. The software simulation of radar scattering from cosmic rays follows. The TARA detector, including transmitter and receiver systems, are discussed in detail. Our search algorithm and methodology for calculating RCS is presented for the purpose of being repeatable. Search results are explained in context of the usefulness and future of cosmic ray radar detection.

  9. Downhole pulse radar

    DOEpatents

    Chang, Hsi-Tien

    1987-09-28

    A borehole logging tool generates a fast rise-time, short duration, high peak-power radar pulse having broad energy distribution between 30 MHz and 300 MHz through a directional transmitting and receiving antennas having barium titanate in the electromagnetically active region to reduce the wavelength to within an order of magnitude of the diameter of the antenna. Radar returns from geological discontinuities are sampled for transmission uphole. 7 figs.

  10. Downhole pulse radar

    DOEpatents

    Chang, Hsi-Tien

    1989-01-01

    A borehole logging tool generates a fast rise-time, short duration, high peak-power radar pulse having broad energy distribution between 30 MHz and 300 MHz through a directional transmitting and receiving antennas having barium titanate in the electromagnetically active region to reduce the wavelength to within an order of magnitude of the diameter of the antenna. Radar returns from geological discontinuities are sampled for transmission uphole.

  11. Arecibo Radar Observations Of Enceladus, Tethys, Dione, And Rhea

    NASA Astrophysics Data System (ADS)

    Black, Gregory J.; Campbell, D. B.

    2006-09-01

    We have measured the bulk radar reflectance properties of Enceladus, Tethys, Dione, and Rhea with the Arecibo Observatory's 13 cm wavelength radar system during the 2004, 2005, and 2006 oppositions of the Saturn system. The transmitted signal was circularly polarized and echoes were received in both the opposite circular (OC) sense to that transmitted and the same circular (SC) sense. Comparing to the icy Galilean satellites, the total radar albedos (OC+SC) of the Saturnian satellites are systematically lower for a given optical albedo. The radar albedos of Rhea and Tethys are most similar to Ganymede while Dione is most similar to Callisto. Enceladus's albedo falls between those of Ganymede and Europa. The circular polarization ratios (SC/OC) of the Saturnian satellites range from 0.7 to 1.2, and are on average lower than those of the icy Galilean satellites at this wavelength. For each satellite the 13 cm wavelength radar albedo and polarization ratio are lower than similar measurements made recently by the Cassini RADAR experiment at 2.2 cm wavelength (Ostro et al. 2006, Icarus, v183, 490). Overall, these satellites' bulk radar properties suggest subsurface multiple scattering to be the dominant reflection mechanism although operating less efficiently than on the large icy moons of Jupiter. Furthermore, these high radar albedos with, for ice, only moderate polarization ratios may present a problem for current models of such scattering mechanisms. If regolith development on these Saturnian moons is similar to that on the Jovian moons then the difference in radar properties must be attributed to a compositional difference such that the Saturnian satellite surfaces contain an additional radar absorbing component. The degree of variation in radar properties with wavelength on each satellite may constrain the thickness and efficiency of the scattering layer. We acknowledge support by NASA's Planetary Astronomy and PG&G programs.

  12. Doppler micro sense and avoid radar

    NASA Astrophysics Data System (ADS)

    Gorwara, Ashok; Molchanov, Pavlo; Asmolova, Olga

    2015-10-01

    There is a need for small Sense and Avoid (SAA) systems for small and micro Unmanned Aerial Systems (UAS) to avoid collisions with obstacles and other aircraft. The proposed SAA systems will give drones the ability to "see" close up and give them the agility to maneuver through tight areas. Doppler radar is proposed for use in this sense and avoid system because in contrast to optical or infrared (IR) systems Doppler can work in more harsh conditions such as at dusk, and in rain and snow. And in contrast to ultrasound based systems, Doppler can better sense small sized obstacles such as wires and it can provide a sensing range from a few inches to several miles. An SAA systems comprised of Doppler radar modules and an array of directional antennas that are distributed around the perimeter of the drone can cover the entire sky. These modules are designed so that they can provide the direction to the obstacle and simultaneously generate an alarm signal if the obstacle enters within the SAA system's adjustable "Protection Border". The alarm signal alerts the drone's autopilot to automatically initiate an avoidance maneuver. A series of Doppler radar modules with different ranges, angles of view and transmitting power have been designed for drones of different sizes and applications. The proposed Doppler radar micro SAA system has simple circuitry, works from a 5 volt source and has low power consumption. It is light weight, inexpensive and it can be used for a variety of small unmanned aircraft.

  13. Coherent radar imaging based on compressed sensing

    NASA Astrophysics Data System (ADS)

    Zhu, Qian; Volz, Ryan; Mathews, John D.

    2015-12-01

    High-resolution radar images in the horizontal spatial domain generally require a large number of different baselines that usually come with considerable cost. In this paper, aspects of compressed sensing (CS) are introduced to coherent radar imaging. We propose a single CS-based formalism that enables the full three-dimensional (3-D)—range, Doppler frequency, and horizontal spatial (represented by the direction cosines) domain—imaging. This new method can not only reduce the system costs and decrease the needed number of baselines by enabling spatial sparse sampling but also achieve high resolution in the range, Doppler frequency, and horizontal space dimensions. Using an assumption of point targets, a 3-D radar signal model for imaging has been derived. By comparing numerical simulations with the fast Fourier transform and maximum entropy methods at different signal-to-noise ratios, we demonstrate that the CS method can provide better performance in resolution and detectability given comparatively few available measurements relative to the number required by Nyquist-Shannon sampling criterion. These techniques are being applied to radar meteor observations.

  14. Slope stability radar for monitoring mine walls

    NASA Astrophysics Data System (ADS)

    Reeves, Bryan; Noon, David A.; Stickley, Glen F.; Longstaff, Dennis

    2001-11-01

    Determining slope stability in a mining operation is an important task. This is especially true when the mine workings are close to a potentially unstable slope. A common technique to determine slope stability is to monitor the small precursory movements, which occur prior to collapse. The slope stability radar has been developed to remotely scan a rock slope to continuously monitor the spatial deformation of the face. Using differential radar interferometry, the system can detect deformation movements of a rough wall with sub-millimeter accuracy, and with high spatial and temporal resolution. The effects of atmospheric variations and spurious signals can be reduced via signal processing means. The advantage of radar over other monitoring techniques is that it provides full area coverage without the need for mounted reflectors or equipment on the wall. In addition, the radar waves adequately penetrate through rain, dust and smoke to give reliable measurements, twenty-four hours a day. The system has been trialed at three open-cut coal mines in Australia, which demonstrated the potential for real-time monitoring of slope stability during active mining operations.

  15. IEEE National Radar Conference, 3rd, University of Michigan, Ann Arbor, MI, Apr. 20, 21, 1988, Proceedings

    NASA Astrophysics Data System (ADS)

    The present conference discusses topics in radar systems and subsystems, radar techniques, radar signal processing, and radar phenomenology. Attention is given to mm-wave radar system tradeoffs, polarimetric X/L/C-band SAR, a VHF radar for tropical jungle terrain elevation modeling, low probability of intercept techniques and implementations, target tracking in maneuver-centered coordinates, advanced techniques for extension of SAR depth-of-focus under arbitrary aircraft maneuvers, and iterative noncoherent angular superresolution. Also discussed are the effect of codebook size on the vector quantization of SAR data, the application of knowledge-based systems to surveillance, digital filters for SAR, novel radar pulse compression waveforms, the theory and application of SAR oceanography, autoregressive modeling of radar data with application to target identification, and a coherent model of radar weather clutter.

  16. Noise properties of HF radar measurement of ocean surface currents

    NASA Astrophysics Data System (ADS)

    Forget, Philippe

    2015-08-01

    High-frequency (HF) radars are commonly used for coastal circulation monitoring. The objective of the study is to assess what is the minimum timescale of variability of the geophysical surface currents that are accessible to the radar measurement given the intrinsic noise of this measurement. Noise properties are derived from the power density spectra (PDSs) of radial current records, which are compared to a model of the PDS of idealized currents contaminated by an additive white noise. The data were collected by two radar systems operating in the Northwestern Mediterranean. Periods of 3 weeks to 7 months are considered. Most of measured currents are affected by a white noise effect. Noise properties vary in time and space and are not specific to a particular radar station or to the radar signal processing method used (beam forming or direction finding). An increase of the noise level reduces the effective temporal resolution of radar-derived currents and then increases the minimum observable timescale of variability of geophysical currents. Our results are consistent with results of comparison found in literature between in situ sensors and radar measurements as well as between two radars operating along a same base line. The study suggests a self-sufficient method, requiring no external data, to estimate the minimum sampling period to consider for getting data sets having a minimized contamination by instrumental noise. This period can also be taken for smoothing or filtering measured currents.

  17. Integrated photonic crystal selective emitter for thermophotovoltaics

    NASA Astrophysics Data System (ADS)

    Zhou, Zhiguang; Yehia, Omar; Bermel, Peter

    2016-01-01

    Converting blackbody thermal radiation to electricity via thermophotovoltaics (TPV) is inherently inefficient. Photon recycling using cold-side filters offers potentially improved performance but requires extremely close spacing between the thermal emitter and the receiver, namely a high view factor. Here, we propose an alternative approach for thermal energy conversion, the use of an integrated photonic crystal selective emitter (IPSE), which combines two-dimensional photonic crystal selective emitters and filters into a single device. Finite difference time domain and current transport simulations show that IPSEs can significantly suppress sub-bandgap photons. This increases heat-to-electricity conversion for photonic crystal based emitters from 35.2 up to 41.8% at 1573 K for a GaSb photovoltaic (PV) diode with matched bandgaps of 0.7 eV. The physical basis of this enhancement is a shift from a perturbative to a nonperturbative regime, which maximized photon recycling. Furthermore, combining IPSEs with nonconductive optical waveguides eliminates a key difficulty associated with TPV: the need for precise alignment between the hot selective emitter and cool PV diode. The physical effects of both the IPSE and waveguide can be quantified in terms of an extension of the concept of an effective view factor.

  18. Space Charge Suppression for Uneven Emittances

    SciTech Connect

    Burov, A.; Derbenev, Ya.; /Fermilab /JLAB Newport News

    2009-01-01

    The intensity of low and intermediate energy accelerators and storage rings is limited by space charge effects. An increase of the space charge tune shift may lead to lifetime degradation and coherent instability. A method to suppress the space charge effect is suggested for a beam with two uneven emittances. It has been shown that for a beam with uneven emittances, use of the circular optics makes the space charge tune shift equal to its planar value in the large-emittance direction. This removes a limit on the smaller emittance from the space charge side. Thus, since flat beams can be extremely bright, they could find their use in various applications: ion-electron colliders, nuclear fusion, medicine, and others. One additional possibility for the use of these beams relates to the fact that in a matched solenoid the CAM-dominated beam is transformed into a parallel beam. This transformation is essential for relativistic electron cooling of antiprotons at Fermilab. The two transverse emittances can be made significantly different either by means of a special injection procedure (painting), or by cooling, or by extraction of the beam from a magnetized gun. In any case, use of the circular optics appears to open a special possibility for extremely bright beams.

  19. Variable emittance behavior of smart radiative coating

    NASA Astrophysics Data System (ADS)

    Guo, Li; Fan, Desong; Li, Qiang

    2016-02-01

    Smart radiative coating on yttria stabilized zirconia (YSZ) substrate was prepared by the sol-gel La{}1-xSr x MnO3 (x = 0.125, 0.175 and 0.2) nanoparticles and the binder composed of terpineol and ethyl cellulose. The crystallized structure, grain size, chemical compositions, magnetization and the surface morphology were characterized. The thermal radiative properties of coating in the infrared range was evaluated from infrared reflectance spectra at various temperatures. A single perovskite structure is detected in sol-gel nanoparticles with size 200 nm. Magnetization measurement reveals that room temperature phase transition samples can be obtained by appropriate Sr substitution. The influence of surface conditions and sintering temperature on the emittance of coating was observed. For rough coatings with root-mean-square roughness 640 nm (x = 0.125) and 800 nm (x = 0.175) , its emittance increment is 0.24 and 0.26 in in the temperature range of 173-373 K. Increasing sintering temperature to 1673 K, coating emittance variation improves to 0.3 and 0.302 respectively. After mechanical polishing treatment, the emittance increment of coatings are enhanced to 0.31 and 0.3, respectively. The results suggested that the emittance variation can be enhanced by reducing surface roughness and increasing sintering temperature of coating.

  20. Longitudinal emittance measurements at REX-ISOLDE

    NASA Astrophysics Data System (ADS)

    Fraser, M. A.; Zocca, F.; Jones, R. M.; Pasini, M.; Posocco, P. A.; Voulot, D.; Wenander, F.

    2012-01-01

    We report on measurements of the longitudinal emittance at the Radioactive ion beam EXperiment (REX) at ISOLDE, CERN. The rms longitudinal emittance was measured as 0.340.08 ? ns keV/u at the output of the RFQ and as 0.360.04 ? ns keV/ u in front of the third 7-gap split-ring resonator (7G3) using the three-gradient technique; systematic errors are not included but are estimated at approximately 10%. The 86% emittance was measured a factor of approximately 4.4 times larger than the rms emittance at 1.480.2 and 1.550.12 ? ns keV/ u at the RFQ and 7G3, respectively. The REX switchyard magnet was used as a spectrometer to analyse the energy spread of the beam as it was manipulated by varying the voltage of the rebuncher (ReB) and 7G3 cavities operating at non-accelerating phases. The transfer matrix for a multi-gap bunching cavity is derived and suitably truncated to allow for the accurate reconstruction of the beam parameters from measurement. The technique for measuring the energy spread was rigorously simulated and validated. A silicon detector, in its development phase, was also exploited to measure the longitudinal beam properties. The measured longitudinal emittance is compatible with the acceptance of the HIE-ISOLDE superconducting linac upgrade.

  1. Enhanced angular current intensity from Schottky emitters.

    PubMed

    Fujita, S; Wells, T R C; Ushio, W; Sato, H; El-Gomati, M M

    2010-09-01

    Even though the Schottky emitter is a high-brightness source of choice for electron beam systems, its angular current intensity is substantially lower than that of thermionic cathodes, rendering the emitter impractical for applications that require high beam current. In this study, two strategies were attempted to enhance its angular intensity, and their experimental results are reported. The first scheme is to employ a higher extraction field for increasing the brightness. However, the tip shape transformation was found to induce undesirably elevated emission from the facet edges at high fields. The second scheme exploits the fact that the angular intensity is proportional to the square of the electron gun focal length [Fujita, S. & Shimoyama, H. (2005) Theory of cathode trajectory characterization by canonical mapping transformation. J. Electron Microsc. 54, 331-343], which can be increased by scaling-up the emitter tip radius. A high angular current intensity (J(Omega) approximately 1.5 mA sr(-1)) was obtained from a scaled-up emitter. Preliminary performance tests were conducted on an electron probe-forming column by substituting the new emitter for the original tungsten filament gun. The beam current up to a few microamperes was achieved with submicron spatial resolution. PMID:20701659

  2. Efficient mode conversion in an optical nanoantenna mediated by quantum emitters

    NASA Astrophysics Data System (ADS)

    Straubel, J.; Filter, R.; Rockstuhl, C.; Słowik, K.

    2016-05-01

    Converting signals between different electromagnetic modes is an asset for future information technologies. In general, slightly asymmetric optical nanoantennas enable the coupling between bright and dark modes sustained by an optical nanoantenna. However, the conversion efficiency might be very low. Here, we show that the additional incorporation of a quantum emitter allows to tremendously enhance this efficiency. The enhanced local density of states cycles the quantum emitter between its upper and lower level at an extremely hight rate; hence converting the energy very efficient. The process is robust with respect to possible experimental tolerances and adds a new ingredient to be exploited while studying and applying coupling phenomena in optical nanosystems.

  3. Feasibility of radar detection of extensive air showers

    NASA Astrophysics Data System (ADS)

    Stasielak, J.; Engel, R.; Baur, S.; Neunteufel, P.; Šmída, R.; Werner, F.; Wilczyński, H.

    2016-01-01

    Reflection of radio waves off the short-lived plasma produced by the high-energy shower particles in the air is simulated, considering various radar setups and shower geometries. We show that the plasma produced by air showers has to be treated always as underdense. Therefore, we use the Thomson cross-section for scattering of radio waves corrected for molecular quenching and we sum coherently contributions of the reflected radio wave over the volume of the plasma disk to obtain the time evolution of the signal arriving at the receiver antenna. The received power and the spectral power density of the radar echo are analyzed. Based on the obtained results, we discuss possible modes of radar detection of extensive air showers. We conclude that the scattered signal is too weak for the radar method to provide an efficient and inexpensive method of air shower detection.

  4. Sniper bullet detection by millimeter-wave radar

    NASA Astrophysics Data System (ADS)

    Bernstein, Uri; Lefevre, Russell J.; Mann, John; Avent, Randy K.; Deo, Naresh

    1999-01-01

    Law enforcement and military operations would clearly benefit from a capability to locate snipers by backtracking the sniper's bullet trajectory. Achieving sufficient backtracking accuracy for bullets is a demanding radar design, requiring good measurement accuracy, high update rate, and detection of very low cross-section objects. In addition, reasonable cost is a driving requirement for law enforcement use. These divergent design requirements are addressed in an experimental millimeter-wave focal plane array radar that uses integrated millimeter-wave receiver technology. The radar is being built for DARPA by Technology Service Corporation, with assistance from M.I.T. Lincoln Laboratory and QuinStar Technology. The key element in the radar is a 35-GHz focal plane array receiver. The receiving antenna lens focuses radar signals from a wide field of view onto an array of receivers, each receiver processing a separate element of the field of view. Receiver detections are then combined in a tracking processor. An FM-CW waveform is used to provide high average power, good range resolution, and stationary clutter rejection. TSC will be testing the sniper detection radar, using radar environment simulator technology developed at Lincoln Laboratory. The simulator will retransmit the received signal with the range delay, Doppler shift, and ERP for various simulated bullet trajectories.

  5. A digital calibration method for synthetic aperture radar systems

    NASA Technical Reports Server (NTRS)

    Larson, Richard W.; Jackson, P. L.; Kasischke, Eric S.

    1988-01-01

    A basic method to calibrate imagery from synthetic aperture radar (SAR) systems is presented. SAR images are calibrated by monitoring all the terms of the radar equation. This procedure includes the use of both external (calibrated reference reflectors) and internal (system-generated calibration signals) sources to monitor the total SAR system transfer function. To illustrate the implementation of the procedure, two calibrated SAR images (X-band, 3.2-cm wavelength) are presented, along with the radar cross-section measurements of specific scenes within each image. The sources of error within the SAR image calibration procedure are identified.

  6. Hughes integrated synthetic aperture radar: High performance at low cost

    SciTech Connect

    Bayma, R.W.

    1996-11-01

    This paper describes the background and development of the low cost high-performance Hughes Integrated Synthetic Aperture Radar (HISAR{trademark}) which has a full range of capabilities for real-time reconnaissance, surveillance and earth resource mapping. HISAR uses advanced Synthetic Aperture Radar (SAR) technology to make operationally effective images of near photo quality, day or night and in all weather conditions. This is achieved at low cost by maximizing the use of commercially available radar and signal-processing equipment in the fabrication. Furthermore, HISAR is designed to fit into an executive-class aircraft making it available for a wide range of users. 4 refs., 8 figs.

  7. Improvement of X-band radar rainfall estimates using a microwave link

    NASA Astrophysics Data System (ADS)

    Krämer, S.; Verworn, H.-R.; Redder, A.

    2005-09-01

    In recent years the significance of highly resolved rainfall information in space and time for hydrological applications increased steadily. Weather radar systems provide this information but the derivation of quantitatively reliable radar rainfall estimates is still known to be problematic. The attenuation of the radar signal by rainfall has been identified as crucial and especially X-band radars are affected by this phenomenon. The current methods of correcting for attenuation face many problems, mainly because the actual amount of attenuation is unknown. In this paper attenuation and rainfall information derived from a microwave link are used as a reference to correct an X-band radar for rainfall. A microwave link receiver is co-located with an X-band weather radar in Essen, Germany. Therefore, the microwave link provides path integrated attenuation and rainfall information parallel to a radar beam over a distance of 30 km. The correction of radar rainfall is done in two steps: first, the radar data are corrected for attenuation and in a second step the microwave link derived rainfall is used together with information obtained from distrometer data to calculate the rainfall from the corrected radar reflectivities. A network of twelve rain gauges located in the vicinity of the link path provide a measure of the 'ground truth' rainfall. It is shown that the microwave link gives valuable information to improve the radar rainfall estimates of the X-band radar.

  8. Quantitative deconvolution of human thermal infrared emittance.

    PubMed

    Arthur, D T J; Khan, M M

    2013-01-01

    The bioheat transfer models conventionally employed in etiology of human thermal infrared (TIR) emittance rely upon two assumptions; universal graybody emissivity and significant transmission of heat from subsurface tissue layers. In this work, a series of clinical and laboratory experiments were designed and carried out to conclusively evaluate the validity of the two assumptions. Results obtained from the objective analyses of TIR images of human facial and tibial regions demonstrated significant variations in spectral thermophysical properties at different anatomic locations on human body. The limited validity of the two assumptions signifies need for quantitative deconvolution of human TIR emittance in clinical, psychophysiological and critical applications. A novel approach to joint inversion of the bioheat transfer model is also introduced, levering the deterministic temperature-dependency of proton resonance frequency in low-lipid human soft tissue for characterizing the relationship between subsurface 3D tissue temperature profiles and corresponding TIR emittance. PMID:23086533

  9. Head erosion with emittance growth in PWFA

    SciTech Connect

    Li, S. Z.; Adli, E.; England, R. J.; Frederico, J.; Gessner, S. J.; Hogan, M. J.; Litos, M. D.; Walz, D. R.; Muggli, P.; An, W.; Clayton, C. E.; Joshi, C.; Lu, W.; Marsh, K. A.; Mori, W.; Vafaei, N.

    2012-12-21

    Head erosion is one of the limiting factors in plasma wakefield acceleration (PWFA). We present a study of head erosion with emittance growth in field-ionized plasma from the PWFA experiments performed at the FACET user facility at SLAC. At FACET, a 20.3 GeV bunch with 1.8 Multiplication-Sign 10{sup 10} electrons is optimized in beam transverse size and combined with a high density lithium plasma for beam-driven plasma wakefield acceleration experiments. A target foil is inserted upstream of the plasma source to increase the bunch emittance through multiple scattering. Its effect on beamplasma interaction is observed with an energy spectrometer after a vertical bend magnet. Results from the first experiments show that increasing the emittance has suppressed vapor field-ionization and plasma wakefields excitation. Plans for the future are presented.

  10. Data acquisition system for Doppler radar vital-sign monitor.

    PubMed

    Vergara, Alexander M; Lubecke, Victor M

    2007-01-01

    Automatic gain control (AGC) units increase the dynamic range of a system to compensate for the limited dynamic range of analog to digital converters. This problem is compounded in wireless systems in which large changes in signal strength are effects of a changing environment. These issues are evident in the direct-conversion Doppler radar vital-sign monitor. Utilizing microwave radar signals reflecting off a human subject, a two-channel quadrature receiver can detect periodic movement resulting from cardio-pulmonary activity. The quadrature signal is analyzed using an arctangent demodulation that extracts vital phase information. A data acquisition (DAQ) system is proposed to deal with issues inherent in arctangent demodulation of a quadrature radar signal. PMID:18002443

  11. Radar image processing module development program, phase 3

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The feasibility of using charge coupled devices in an IPM for processing synthetic aperture radar signals onboard the NASA Convair 990 (CV990) aircraft was demonstrated. Radar data onboard the aircraft was recorded and processed using a CCD sampler and digital tape recorder. A description of equipment and testing was provided. The derivation of the digital presum filter was documented. Photographs of the sampler/tape recorder, real time display and circuit boards in the IPM were also included.

  12. A technique for adaptive polarization filtering in radars

    NASA Astrophysics Data System (ADS)

    Giuli, D.; Fossi, M.; Gherardelli, M.

    In this paper, after discussing some concepts of adaptive cancellation of partially polarized unwanted radar echoes, the operation and performance of a new nonlinear adaptive polarization canceller which can be used to improve the signal-to-disturbance ratio in the presence of barrage jamming or precipitation clutter are discussed. To this end, some results are also presented which pertain to experimental dual-polarization radar data.

  13. Acoustic micro-Doppler radar for human gait imaging.

    PubMed

    Zhang, Zhaonian; Pouliquen, Philippe O; Waxman, Allen; Andreou, Andreas G

    2007-03-01

    A portable acoustic micro-Doppler radar system for the acquisition of human gait signatures in indoor and outdoor environments is reported. Signals from an accelerometer attached to the leg support the identification of the components in the measured micro-Doppler signature. The acoustic micro-Doppler system described in this paper is simpler and offers advantages over the widely used electromagnetic wave micro-Doppler radars. PMID:17407918

  14. Ionospheric Transmission Losses Associated with Mars-orbiting Radars

    NASA Technical Reports Server (NTRS)

    Farrell, W. M.

    2005-01-01

    There are a number of obstacles to radar sounding of the deep Martian subsurface from orbit, including signal losses from the medium conductivity, layer reflective losses, and ground clutter. Another adverse process is signal loss as radio waves propagate through the ionospheric plasma medium. The ionosphere is a plasma consisting of free electrons, ions and neutrals that can effectively damp/attenuate radar signals via electrodneutral collisions. The effect is most severe for transmissions at lower frequencies, which, unfortunately, are also favorable transmissions for deep penetration into the subsurface.

  15. Wide band stepped frequency ground penetrating radar

    DOEpatents

    Bashforth, M.B.; Gardner, D.; Patrick, D.; Lewallen, T.A.; Nammath, S.R.; Painter, K.D.; Vadnais, K.G.

    1996-03-12

    A wide band ground penetrating radar system is described embodying a method wherein a series of radio frequency signals is produced by a single radio frequency source and provided to a transmit antenna for transmission to a target and reflection therefrom to a receive antenna. A phase modulator modulates those portions of the radio frequency signals to be transmitted and the reflected modulated signal is combined in a mixer with the original radio frequency signal to produce a resultant signal which is demodulated to produce a series of direct current voltage signals, the envelope of which forms a cosine wave shaped plot which is processed by a Fast Fourier Transform Unit 44 into frequency domain data wherein the position of a preponderant frequency is indicative of distance to the target and magnitude is indicative of the signature of the target. 6 figs.

  16. Wide band stepped frequency ground penetrating radar

    DOEpatents

    Bashforth, Michael B.; Gardner, Duane; Patrick, Douglas; Lewallen, Tricia A.; Nammath, Sharyn R.; Painter, Kelly D.; Vadnais, Kenneth G.

    1996-01-01

    A wide band ground penetrating radar system (10) embodying a method wherein a series of radio frequency signals (60) is produced by a single radio frequency source (16) and provided to a transmit antenna (26) for transmission to a target (54) and reflection therefrom to a receive antenna (28). A phase modulator (18) modulates those portion of the radio frequency signals (62) to be transmitted and the reflected modulated signal (62) is combined in a mixer (34) with the original radio frequency signal (60) to produce a resultant signal (53) which is demodulated to produce a series of direct current voltage signals (66) the envelope of which forms a cosine wave shaped plot (68) which is processed by a Fast Fourier Transform unit 44 into frequency domain data (70) wherein the position of a preponderant frequency is indicative of distance to the target (54) and magnitude is indicative of the signature of the target (54).

  17. Progress in coherent laser radar

    NASA Technical Reports Server (NTRS)

    Vaughan, J. M.

    1986-01-01

    Considerable progress with coherent laser radar has been made over the last few years, most notably perhaps in the available range of high performance devices and components and the confidence with which systems may now be taken into the field for prolonged periods of operation. Some of this increasing maturity was evident at the 3rd Topical Meeting on Coherent Laser Radar: Technology and Applications. Topics included in discussions were: mesoscale wind fields, nocturnal valley drainage and clear air down bursts; airborne Doppler lidar studies and comparison of ground and airborne wind measurement; wind measurement over the sea for comparison with satellite borne microwave sensors; transport of wake vortices at airfield; coherent DIAL methods; a newly assembled Nd-YAG coherent lidar system; backscatter profiles in the atmosphere and wavelength dependence over the 9 to 11 micrometer region; beam propagation; rock and soil classification with an airborne 4-laser system; technology of a global wind profiling system; target calibration; ranging and imaging with coherent pulsed and CW system; signal fluctuations and speckle. Some of these activities are briefly reviewed.

  18. Studies of emittance growth in the ATF

    SciTech Connect

    Zimmermann, F.

    1997-03-01

    Several different mechanisms of emittance growth in the Accelerator Test Facility (ATF) at KEK are investigated: the author calculates rise times of the fast beam-ion instability for the damping ring (DR), and discusses the emittance growth caused by coherent synchrotron radiation in the beam-transport line (BT), the effect of quadrupole wake fields in the injector linac, and, finally, a single-bunch head-tail ion effect that can occur in both the DR and the BT. A first attempt to measure the quadrupole wake on the real machine is also reported.

  19. Heterojunction solar cell with passivated emitter surface

    DOEpatents

    Olson, J.M.; Kurtz, S.R.

    1994-05-31

    A high-efficiency heterojunction solar cell is described wherein a thin emitter layer (preferably Ga[sub 0.52]In[sub 0.48]P) forms a heterojunction with a GaAs absorber layer. A passivating window layer of defined composition is disposed over the emitter layer. The conversion efficiency of the solar cell is at least 25.7%. The solar cell preferably includes a passivating layer between the substrate and the absorber layer. An anti-reflection coating is preferably disposed over the window layer. 1 fig.

  20. Heterojunction solar cell with passivated emitter surface

    DOEpatents

    Olson, Jerry M.; Kurtz, Sarah R.

    1994-01-01

    A high-efficiency heterojunction solar cell wherein a thin emitter layer (preferably Ga.sub.0.52 In.sub.0.48 P) forms a heterojunction with a GaAs absorber layer. A passivating window layer of defined composition is disposed over the emitter layer. The conversion efficiency of the solar cell is at least 25.7%. The solar cell preferably includes a passivating layer between the substrate and the absorber layer. An anti-reflection coating is preferably disposed over the window layer.

  1. Automated emittance measurements in the SLC

    SciTech Connect

    Ross, M.C.; Phinney, N.; Quickfall, G.; Shoaee, H.; Sheppard, J.C.

    1987-03-01

    The emittance of the SLC beam is determined from measurements of the beam width on a profile monitor as a quadrupole field is varied. An automated system has been developed to allow this to be done rapidly and accurately. The image on a fluorescent screen profile monitor (resolution about 20 ..mu..m) is read out through an electronic interface and digitized by a transient recorder. A high level software package has been developed to set up the hardware for the measurements, acquire data, fit the beam width, and calculate the emittance.

  2. The ERS-1 radar altimeter: An overview

    NASA Astrophysics Data System (ADS)

    Francis, C. R.

    1984-08-01

    The ERS-1 (ESA) radar altimeter implementation, parameter estimation, autocalibration, data flow, and operating principles are summarized. The microwave subsystem contains an ultrastable oscillator and a chirp generator. A traveling wave tube amplifier and its electronic power conditioner form the high power amplifier (the radar transmitter output). The signal processor subassembly has a spectrum analyzer and a microcomputer. The microcomputer also handles real time parameter estimation, with center of gravity tracking in the ice mode and suboptimal maximum likelihood estimation (SMLE) in the ocean mode. The curve-fitting SMLE is used in calibrating the signal path of the instrument to a precision of 0.7 nsec. Command and housekeeping data use an S band telemetry link, scientific data are delivered via X band, in real time and as a dump.

  3. 66. VIEW SHOWING HOLD FOR RADAR CABLES AT RADAR SITE, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    66. VIEW SHOWING HOLD FOR RADAR CABLES AT RADAR SITE, LOOKING NORTH Everett Weinreb, photographer, March 1988 - Mount Gleason Nike Missile Site, Angeles National Forest, South of Soledad Canyon, Sylmar, Los Angeles County, CA

  4. Instantaneous electron beam emittance measurement system based on the optical transition radiation principle

    NASA Astrophysics Data System (ADS)

    Jiang, Xiao-Guo; Wang, Yuan; Zhang, Kai-Zhi; Yang, Guo-Jun; Shi, Jin-Shui; Deng, Jian-Jun; Li, Jin

    2014-01-01

    One kind of instantaneous electron beam emittance measurement system based on the optical transition radiation principle and double imaging optical method has been set up. It is mainly adopted in the test for the intense electron-beam produced by a linear induction accelerator. The system features two characteristics. The first one concerns the system synchronization signal triggered by the following edge of the main output waveform from a Blumlein switch. The synchronous precision of about 1 ns between the electron beam and the image capture time can be reached in this way so that the electron beam emittance at the desired time point can be obtained. The other advantage of the system is the ability to obtain the beam spot and beam divergence in one measurement so that the calculated result is the true beam emittance at that time, which can explain the electron beam condition. It provides to be a powerful beam diagnostic method for a 2.5 kA, 18.5 MeV, 90 ns (FWHM) electron beam pulse produced by Dragon I. The ability of the instantaneous measurement is about 3 ns and it can measure the beam emittance at any time point during one beam pulse. A series of beam emittances have been obtained for Dragon I. The typical beam spot is 9.0 mm (FWHM) in diameter and the corresponding beam divergence is about 10.5 mrad.

  5. Ultrawideband imaging radar based on OFDM: system simulation analysis

    NASA Astrophysics Data System (ADS)

    Garmatyuk, Dmitriy

    2006-05-01

    Orthogonal frequency division-multiplexing (OFDM) is rapidly emerging as a preferred method of UWB signaling in commercial applications aimed mainly at low-power, high data-rate communications. This paper explores the possibility of applying OFDM to use in imaging radar technology. Ultra-wideband nature of the signal provides for high resolution of the radar, whereas usage of multi-sub-carrier method of modulation allows for dynamic spectrum allocation. Robust multi-path performance of OFDM signals and heavy reliance of transceiver design on digital processors easily implemented in modern VLSI technology make a number of possible applications viable, e.g.: portable high-resolution indoor radar/movement monitoring system; through-the-wall/foliage synthetic aperture imaging radar with a capability of image transmission/broadcasting, etc. Our work is aimed to provide a proof-of-concept simulation scenario to explore numerous aspects of UWB-OFDM radar imaging through evaluating range and cross-range imaging performance of such a system with an eventual goal of software-defined radio (SDR) implementation. Stripmap SAR topology was chosen for modeling purposes. Range/cross-range profiles were obtained along with full 2-D images for multi-target in noise scenarios. Model set-up and results of UWB-OFDM radar imaging simulation study using Matlab/Simulink modeling are presented and discussed in this paper.

  6. Informational Analysis for Compressive Sampling in Radar Imaging

    PubMed Central

    Zhang, Jingxiong; Yang, Ke

    2015-01-01

    Compressive sampling or compressed sensing (CS) works on the assumption of the sparsity or compressibility of the underlying signal, relies on the trans-informational capability of the measurement matrix employed and the resultant measurements, operates with optimization-based algorithms for signal reconstruction and is thus able to complete data compression, while acquiring data, leading to sub-Nyquist sampling strategies that promote efficiency in data acquisition, while ensuring certain accuracy criteria. Information theory provides a framework complementary to classic CS theory for analyzing information mechanisms and for determining the necessary number of measurements in a CS environment, such as CS-radar, a radar sensor conceptualized or designed with CS principles and techniques. Despite increasing awareness of information-theoretic perspectives on CS-radar, reported research has been rare. This paper seeks to bridge the gap in the interdisciplinary area of CS, radar and information theory by analyzing information flows in CS-radar from sparse scenes to measurements and determining sub-Nyquist sampling rates necessary for scene reconstruction within certain distortion thresholds, given differing scene sparsity and average per-sample signal-to-noise ratios (SNRs). Simulated studies were performed to complement and validate the information-theoretic analysis. The combined strategy proposed in this paper is valuable for information-theoretic orientated CS-radar system analysis and performance evaluation. PMID:25811226

  7. Sea Clutter Reduction and Target Enhancement by Neural Networks in a Marine Radar System

    PubMed Central

    Vicen-Bueno, Raúl; Carrasco-Álvarez, Rubén; Rosa-Zurera, Manuel; Nieto-Borge, José Carlos

    2009-01-01

    The presence of sea clutter in marine radar signals is sometimes not desired. So, efficient radar signal processing techniques are needed to reduce it. In this way, nonlinear signal processing techniques based on neural networks (NNs) are used in the proposed clutter reduction system. The developed experiments show promising results characterized by different subjective (visual analysis of the processed radar images) and objective (clutter reduction, target enhancement and signal-to-clutter ratio improvement) criteria. Moreover, a deep study of the NN structure is done, where the low computational cost and the high processing speed of the proposed NN structure are emphasized. PMID:22573993

  8. Monitoring internal organ motion with continuous wave radar in CT

    SciTech Connect

    Pfanner, Florian; Maier, Joscha; Allmendinger, Thomas; Flohr, Thomas; Kachelrieß, Marc

    2013-09-15

    Purpose: To avoid motion artifacts in medical imaging or to minimize the exposure of healthy tissues in radiation therapy, medical devices are often synchronized with the patient's respiratory motion. Today's respiratory motion monitors require additional effort to prepare the patients, e.g., mounting a motion belt or placing an optical reflector on the patient's breast. Furthermore, they are not able to measure internal organ motion without implanting markers. An interesting alternative to assess the patient's organ motion is continuous wave radar. The aim of this work is to design, implement, and evaluate such a radar system focusing on application in CT.Methods: The authors designed a radar system operating in the 860 MHz band to monitor the patient motion. In the intended application of the radar system, the antennas are located close to the patient's body inside the table of a CT system. One receive and four transmitting antennas are used to avoid the requirement of exact patient positioning. The radar waves propagate into the patient's body and are reflected at tissue boundaries, for example at the borderline between muscle and adipose tissue, or at the boundaries of organs. At present, the authors focus on the detection of respiratory motion. The radar system consists of the hardware mentioned above as well as of dedicated signal processing software to extract the desired information from the radar signal. The system was evaluated using simulations and measurements. To simulate the radar system, a simulation model based on radar and wave field equations was designed and 4D respiratory-gated CT data sets were used as input. The simulated radar signals and the measured data were processed in the same way. The radar system hardware and the signal processing algorithms were tested with data from ten volunteers. As a reference, the respiratory motion signal was recorded using a breast belt simultaneously with the radar measurements.Results: Concerning the measurements of the test persons, there is a very good correlation (ρ= 0.917) between the respiratory motion phases received by the radar system and the external motion monitor. Our concept of using an array of transmitting antennas turned out to be widely insensitive to the positioning of the test persons. A time shift between the respiratory motion curves recorded with the radar system and the motion curves from the external respiratory monitor was observed which indicates a slight difference between internal organ motion and motion detected by the external respiratory monitor. The simulations were in good accordance with the measurements.Conclusions: A continuous wave radar operating in the near field of the antennas can be used to determine the respiratory motion of humans accurately. In contrast to trigger systems used today, the radar system is able to measure motion inside the body. If such a monitor was routinely available in clinical CT, it would be possible optimizing the scan start with respect to the respiratory state of the patient. Breathing commands would potentially widely be avoided, and as far as uncooperative patients or children are concerned, less sedation might be necessary. Further applications of the radar system could be in radiation therapy or interventional imaging for instance.

  9. Measurement of Distance down to Zero Meters by Standing Wave Radar

    NASA Astrophysics Data System (ADS)

    Uebo, Tetsuji

    Various types of radars have been developed and used until now—such as Pulse, FM-CW, and Spread Spectrum. Additionally, another type of radar has been proposed recently. The radar measures distance by using standing wave and has been named as “Standing Wave Radar." Standing wave radar has a shorter minimum detectable range and higher accuracy compared to other types. However, the radar can not measure distance down to zero meters like other types of radars. Minimum detectable range of the standing wave radar depends on a usable frequency range. A wider frequency range is required if we need to measure shorter distance. We show a new method for measuring distance down to zero meters without expanding the frequency range. Specifically, we derive an analytic signal, which is a complex sinusoidal signal, by processing the signals obtained from multiple detectors, and we calculate and obtain distances by Fourier transform of the analytic signal. We then verify the validity of our method by simulations based on numerical calculation. The results show that it is possible to measure distance down to zero meters. In our method, measurement errors are caused by gain deviation of the detectors. They are several cm if the gain deviations are less than ±1%. Prevalent radars still have a common defect that they can not measure distance from zero to the minimum detectable range. We expect that the defect will be eliminated by putting our method into practical use.

  10. Precise Radar Range Measurements with Digisondes

    NASA Astrophysics Data System (ADS)

    Reinisch, Bodo W.; Paznukhov, Vadym V.; Galkin, Ivan A.; Altadill, David; McElroy, Jonathan

    2008-02-01

    A digisonde phase-difference technique measures precise radar ranges of echoes reflected from the ionosphere. The technique, which analyzes the phase differences between signals at slightly different frequencies, allows measuring the reflection range, i.e., the virtual height h'(f) for vertical sounding, with accuracies of better than one kilometer. First results of measurements carried out at Millstone Hill demonstrate the robustness and reliability of the developed technique, and show the potential of the method for routine application.

  11. A barrier radar concept

    NASA Astrophysics Data System (ADS)

    Marshall, J.; Ball, C.; Weissman, I.

    A description is given of a low power, light-weight radar that can be quickly set up and operated on batteries for extended periods of time to detect airborne intruders. With low equipment and operating costs, it becomes practical to employ a multiplicity of such radars to provide an unbroken intrusion fence over the desired perimeter. Each radar establishes a single transmitted fan beam extending vertically from horizon to horizon. The beam is generated by a two-face array antenna built in an A-frame configuration and is shaped, through phasing of the array elements, to concentrate the transmitter power in a manner consistent with the expected operating altitude ceiling of the targets of interest. The angular width of this beam in the dimension transverse to the fan depends on the radar transmission frequency and the antenna aperture dimension, but is typically wide enough so that a target at the maximum altitude or range will require tens of seconds to pass through the beam. A large number of independent samples of radar data will thus be available to provide many opportunities for target detection.

  12. Determination and error analysis of emittance and spectral emittance measurements by remote sensing

    NASA Technical Reports Server (NTRS)

    Dejesusparada, N. (Principal Investigator); Kumar, R.

    1977-01-01

    The author has identified the following significant results. From the theory of remote sensing of surface temperatures, an equation of the upper bound of absolute error of emittance was determined. It showed that the absolute error decreased with an increase in contact temperature, whereas, it increased with an increase in environmental integrated radiant flux density. Change in emittance had little effect on the absolute error. A plot of the difference between temperature and band radiance temperature vs. emittance was provided for the wavelength intervals: 4.5 to 5.5 microns, 8 to 13.5 microns, and 10.2 to 12.5 microns.

  13. 33. Perimeter acquisition radar building room #320, perimeter acquisition radar ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    33. Perimeter acquisition radar building room #320, perimeter acquisition radar operations center (PAROC), contains the tactical command and control group equipment required to control the par site. Showing spacetrack monitor console - Stanley R. Mickelsen Safeguard Complex, Perimeter Acquisition Radar Building, Limited Access Area, between Limited Access Patrol Road & Service Road A, Nekoma, Cavalier County, ND

  14. Airborne Radar Observations of Severe Hailstorms: Implications for Future Spaceborne Radar

    NASA Technical Reports Server (NTRS)

    Heymsfield, Gerald M.; Tian, Lin; Li, Lihua; McLinden, Matthew; Cervantes, Jaime I.

    2013-01-01

    A new dual-frequency (Ku and Ka band) nadir-pointing Doppler radar on the high-altitude NASA ER-2 aircraft, called the High-Altitude Imaging Wind and Rain Airborne Profiler (HIWRAP), has collected data over severe thunderstorms in Oklahoma and Kansas during the Midlatitude Continental Convective Clouds Experiment (MC3E). The overarching motivation for this study is to understand the behavior of the dualwavelength airborne radar measurements in a global variety of thunderstorms and how these may relate to future spaceborne-radar measurements. HIWRAP is operated at frequencies that are similar to those of the precipitation radar on the Tropical Rainfall Measuring Mission (Ku band) and the upcoming Global Precipitation Measurement mission satellite's dual-frequency (Ku and Ka bands) precipitation radar. The aircraft measurements of strong hailstorms have been combined with ground-based polarimetric measurements to obtain a better understanding of the response of the Ku- and Ka-band radar to the vertical distribution of the hydrometeors, including hail. Data from two flight lines on 24 May 2011 are presented. Doppler velocities were approx. 39m/s2at 10.7-km altitude from the first flight line early on 24 May, and the lower value of approx. 25m/s on a second flight line later in the day. Vertical motions estimated using a fall speed estimate for large graupel and hail suggested that the first storm had an updraft that possibly exceeded 60m/s for the more intense part of the storm. This large updraft speed along with reports of 5-cm hail at the surface, reflectivities reaching 70 dBZ at S band in the storm cores, and hail signals from polarimetric data provide a highly challenging situation for spaceborne-radar measurements in intense convective systems. The Ku- and Ka-band reflectivities rarely exceed approx. 47 and approx. 37 dBZ, respectively, in these storms.

  15. Phase modulating the Urbana radar

    NASA Technical Reports Server (NTRS)

    Herrington, L. J., Jr.; Bowhill, S. A.

    1983-01-01

    The design and operation of a switched phase modulation system for the Urbana Radar System are discussed. The system is implemented and demonstrated using a simple procedure. The radar system and circuits are described and analyzed.

  16. Compressive wideband microwave radar holography

    NASA Astrophysics Data System (ADS)

    Wilson, Scott A.; Narayanan, Ram M.

    2014-05-01

    Compressive sensing has emerged as a topic of great interest for radar applications requiring large amounts of data storage. Typically, full sets of data are collected at the Nyquist rate only to be compressed at some later point, where information-bearing data are retained and inconsequential data are discarded. However, under sparse conditions, it is possible to collect data at random sampling intervals less than the Nyquist rate and still gather enough meaningful data for accurate signal reconstruction. In this paper, we employ sparse sampling techniques in the recording of digital microwave holograms over a two-dimensional scanning aperture. Using a simple and fast non-linear interpolation scheme prior to image reconstruction, we show that the reconstituted image quality is well-retained with limited perceptual loss.

  17. Radar Attitude Sensing System (RASS)

    NASA Technical Reports Server (NTRS)

    1971-01-01

    The initial design and fabrication efforts for a radar attitude sensing system (RASS) are covered. The design and fabrication of the RASS system is being undertaken in two phases, 1B1 and 1B2. The RASS system as configured under phase 1B1 contains the solid state transmitter and local oscillator, the antenna system, the receiving system, and the altitude electronics. RASS employs a pseudo-random coded cw signal and receiver correlation techniques to measure range. The antenna is a planar, phased array, monopulse type, whose beam is electronically steerable using diode phase shifters. The beam steering computer and attitude sensing circuitry are to be included in Phase 1B2 of the program.

  18. An image-based approach for classification of human micro-doppler radar signatures

    NASA Astrophysics Data System (ADS)

    Tivive, Fok Hing Chi; Phung, Son Lam; Bouzerdoum, Abdesselam

    2013-05-01

    With the advances in radar technology, there is an increasing interest in automatic radar-based human gait identification. This is because radar signals can penetrate through most dielectric materials. In this paper, an image-based approach is proposed for classifying human micro-Doppler radar signatures. The time-varying radar signal is first converted into a time-frequency representation, which is then cast as a two-dimensional image. A descriptor is developed to extract micro-Doppler features from local time-frequency patches centered along the torso Doppler frequency. Experimental results based on real data collected from a 24-GHz Doppler radar showed that the proposed approach achieves promising classification performance.

  19. Radar Range Sidelobe Reduction Using Adaptive Pulse Compression Technique

    NASA Technical Reports Server (NTRS)

    Li, Lihua; Coon, Michael; McLinden, Matthew

    2013-01-01

    Pulse compression has been widely used in radars so that low-power, long RF pulses can be transmitted, rather than a highpower short pulse. Pulse compression radars offer a number of advantages over high-power short pulsed radars, such as no need of high-power RF circuitry, no need of high-voltage electronics, compact size and light weight, better range resolution, and better reliability. However, range sidelobe associated with pulse compression has prevented the use of this technique on spaceborne radars since surface returns detected by range sidelobes may mask the returns from a nearby weak cloud or precipitation particles. Research on adaptive pulse compression was carried out utilizing a field-programmable gate array (FPGA) waveform generation board and a radar transceiver simulator. The results have shown significant improvements in pulse compression sidelobe performance. Microwave and millimeter-wave radars present many technological challenges for Earth and planetary science applications. The traditional tube-based radars use high-voltage power supply/modulators and high-power RF transmitters; therefore, these radars usually have large size, heavy weight, and reliability issues for space and airborne platforms. Pulse compression technology has provided a path toward meeting many of these radar challenges. Recent advances in digital waveform generation, digital receivers, and solid-state power amplifiers have opened a new era for applying pulse compression to the development of compact and high-performance airborne and spaceborne remote sensing radars. The primary objective of this innovative effort is to develop and test a new pulse compression technique to achieve ultrarange sidelobes so that this technique can be applied to spaceborne, airborne, and ground-based remote sensing radars to meet future science requirements. By using digital waveform generation, digital receiver, and solid-state power amplifier technologies, this improved pulse compression technique could bring significant impact on future radar development. The novel feature of this innovation is the non-linear FM (NLFM) waveform design. The traditional linear FM has the limit (-20 log BT -3 dB) for achieving ultra-low-range sidelobe in pulse compression. For this study, a different combination of 20- or 40-microsecond chirp pulse width and 2- or 4-MHz chirp bandwidth was used. These are typical operational parameters for airborne or spaceborne weather radars. The NLFM waveform design was then implemented on a FPGA board to generate a real chirp signal, which was then sent to the radar transceiver simulator. The final results have shown significant improvement on sidelobe performance compared to that obtained using a traditional linear FM chirp.

  20. Characteristics of Sunset radar

    NASA Technical Reports Server (NTRS)

    Green, J. L.

    1983-01-01

    Located in a narrow canyon 15 km west of Boulder, Colorado, the Sunset pulsed Doppler radar was the first radar designed and constructed specifically as a VHF ST radar. The antenna system is a phased array of coaxial-colinear dopoles with computer-controlled phase shifters for each line of dipoles. It operates at a frequency of 40.475 MHz and a wavelength of 7.41M. Peak transmitter power is 100 kW. Aperture efficiency is 0.58 and resistive loss is 0.30 for its 3600 sq m area. The practical steering rate is 1 record/minute/position to any arbitrary antenna beam position. The first clear-air turbulence echoes and wind velocity measurements were obtained in 1974. Significant accomplishments are listed.

  1. Mercury radar speckle dynamics

    NASA Astrophysics Data System (ADS)

    Holin, Igor V.

    2010-06-01

    Current data reveal that Mercury is a dynamic system with a core which has not yet solidified completely and is at least partially decoupled from the mantle. Radar speckle displacement experiments have demonstrated that the accuracy in spin-dynamics determination for Earth-like planets can approach 10 -5. The extended analysis of space-time correlation properties of radar echoes shows that the behavior of speckles does not prevent estimation of Mercury's instantaneous spin-vector components to accuracy of a few parts in 10 7. This limit can be reached with more powerful radar facilities and leads to constraining the interior in more detail from effects of spin dynamics, e.g., from observation of the core-mantle interplay through high precision monitoring of the 88-day spin-variation of Mercury's crust.

  2. SNS Emittance Scanner, Increasing Sensitivity and Performance through Noise Mitigation ,Design, Implementation and Results

    SciTech Connect

    Pogge, J.

    2006-11-20

    The Spallation Neutron Source (SNS) accelerator systems will deliver a 1.0 GeV, 1.4 MW proton beam to a liquid mercury target for neutron scattering research. The SNS MEBT Emittance Harp consists of 16 X and 16 Y wires, located in close proximity to the RFQ, Source, and MEBT Choppers. Beam Studies for source and LINAC commissioning required an overall increase in sensitivity for halo monitoring and measurement, and at the same time several severe noise sources had to be effectively removed from the harp signals. This paper is an overview of the design approach and techniques used in increasing gain and sensitivity while maintaining a large signal to noise ratio for the emittance scanner device. A brief discussion of the identification of the noise sources, the mechanism for transmission and pick up, how the signals were improved and a summary of results.

  3. Space Radar Image of Raco Biomass Map

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This biomass map of the Raco, Michigan, area was produced from data acquired by the Spaceborne Imaging Radar C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) onboard space shuttle Endeavour. Biomass is the amount of plant material on an area of Earth's surface. Radar can directly sense the quantity and organizational structure of the woody biomass in the forest. Science team members at the University of Michigan used the radar data to estimate the standing biomass for this Raco site in the Upper Peninsula of Michigan. Detailed surveys of 70 forest stands will be used to assess the accuracy of these techniques. The seasonal growth of terrestrial plants, and forests in particular, leads to the temporary storage of large amounts of carbon, which could directly affect changes in global climate. In order to accurately predict future global change, scientists need detailed information about current distribution of vegetation types and the amount of biomass present around the globe. Optical techniques to determine net biomass are frustrated by chronic cloud-cover. Imaging radar can penetrate through cloud-cover with negligible signal losses. Spaceborne Imaging Radar-C and X-Synthetic Aperture Radar (SIR-C/X-SAR) is part of NASA's Mission to Planet Earth. The radars illuminate Earth with microwaves allowing detailed observations at any time, regardless of weather or sunlight conditions. SIR-C/X-SAR uses three microwave wavelengths: L-band (24 cm), C-band (6 cm) and X-band (3 cm). The multi-frequency data will be used by the international scientific community to better understand the global environment and how it is changing. The SIR-C/X-SAR data, complemented by aircraft and ground studies, will give scientists clearer insights into those environmental changes which are caused by nature and those changes which are induced by human activity. SIR-C was developed by NASA's Jet Propulsion Laboratory. X-SAR was developed by the Dornier and Alenia Spazio companies for the German space agency, Deutsche Agentur fuer Raumfahrtangelegenheiten (DARA), and the Italian space agency, Agenzia Spaziale Italiana (ASI), with the Deutsche Forschungsanstalt fuer Luft und Raumfahrt e.v. (DLR), the major partner in science, operations and data processing of X-SAR.

  4. Emittance control in rf cavities and solenoids

    NASA Astrophysics Data System (ADS)

    Eshraqi, Mohammad; Franchetti, Giuliano; Lombardi, Alessandra M.

    2009-02-01

    We study emittance growth for transport of uniform and Gaussian beams of particles in rf cavities and solenoids and show analytically its dependence on initial beam parameters. Analytical results are confirmed with simulation studies over a broad range of different initial beams.

  5. Aluminum oxide film thickness and emittance

    SciTech Connect

    Thomas, J.K.; Ondrejcin, R.S.

    1991-11-01

    Aluminum reactor components which are not actively cooled could be subjected to high temperatures due to gamma heating after the core coolant level dropped during the ECS phase of a hypothetical LOCA event. Radiative heat transfer is the dominant heat transfer process in this scenario and therefore the emittance of these components is of interest. Of particular interest are the safety rod thimbles and Mark 60B blanket assemblies; for the K Reactor, these components have been exposed to low temperature (< 55{degrees}C) moderator for about a year. The average moderator temperature was assumed to be 30{degrees}C. The Al oxide film thickness at this temperature, after one year of exposure, is predicted to be 6.4 {mu}m {plus_minus} 10%; insensitive to exposure time. Dehydration of the film during the gamma heating accident would result in a film thickness of 6.0 {mu}m {plus_minus} 11%. Total hemispherical emittance is predicted to be 0.69 at 96{degrees}C, decreasing to 0.45 at 600{degrees}C. Some phenomena which would tend to yield thicker oxide films in the reactor environment relative to those obtained under experimental conditions were neglected and the predicted film thickness values are therefore conservative. The emittance values predicted for a given film thickness are also conservative. The conservativisms inherent in the predicted emittance are particularly relevant for uncertainty analysis of temperatures generated using these values.

  6. Aluminum oxide film thickness and emittance

    SciTech Connect

    Thomas, J.K.; Ondrejcin, R.S.

    1991-11-01

    Aluminum reactor components which are not actively cooled could be subjected to high temperatures due to gamma heating after the core coolant level dropped during the ECS phase of a hypothetical LOCA event. Radiative heat transfer is the dominant heat transfer process in this scenario and therefore the emittance of these components is of interest. Of particular interest are the safety rod thimbles and Mark 60B blanket assemblies; for the K Reactor, these components have been exposed to low temperature (< 55{degrees}C) moderator for about a year. The average moderator temperature was assumed to be 30{degrees}C. The Al oxide film thickness at this temperature, after one year of exposure, is predicted to be 6.4 {mu}m {plus minus} 10%; insensitive to exposure time. Dehydration of the film during the gamma heating accident would result in a film thickness of 6.0 {mu}m {plus minus} 11%. Total hemispherical emittance is predicted to be 0.69 at 96{degrees}C, decreasing to 0.45 at 600{degrees}C. Some phenomena which would tend to yield thicker oxide films in the reactor environment relative to those obtained under experimental conditions were neglected and the predicted film thickness values are therefore conservative. The emittance values predicted for a given film thickness are also conservative. The conservativisms inherent in the predicted emittance are particularly relevant for uncertainty analysis of temperatures generated using these values.

  7. Emittance growth from space-charge forces

    SciTech Connect

    Wangler, T.P.

    1991-01-01

    Space-charge-induced emittance growth has become a topic of much recent interest for designing the low-velocity sections of high- intensity, high-brightness accelerators and beam-transport channels. In this paper we review the properties of the space-charge force, and discuss the concepts of matching, space-charge and emittance-dominated beams, and equilibrium beams and their characteristics. This is followed by a survey of some of the work over the past 25 years to identify the mechanisms of this emittance growth in both ion and electron accelerators. We summarize the overall results in terms of four distinct mechanisms whose characteristics we describe. Finally, we show numerical simulation results for the evolution of initial rms-mismatched laminar beams. The examples show that for space-charge dominated beams, the nonlinear space-charge forces produce a highly choatic filamentation pattern, which in projection to the 2-D phase spaces results in a 2-component beam consisting of an inner core and a diffuse outer halo. In the examples we have studied the halo contains only a few percent of the particles, but contributes about half of the emittance growth. 39 refs., 2 figs., 1 tab.

  8. Simple-to-prepare multipoint field emitter

    NASA Astrophysics Data System (ADS)

    Sominskii, G. G.; Taradaev, E. P.; Tumareva, T. A.; Mishin, M. V.; Kornishin, S. Yu.

    2015-07-01

    We investigate multitip field emitters prepared by electroerosion treatment of the surface of molybdenum samples. Their characteristics are determined for operation with a protecting activated fullerene coating. Our experiments indicate that such cathodes are promising for high-voltage electron devices operating in technical vacuum.

  9. Emittance and lifetime measurement with damping wigglers

    NASA Astrophysics Data System (ADS)

    Wang, G. M.; Shaftan, T.; Cheng, W. X.; Guo, W.; Ilinsky, P.; Li, Y.; Podobedov, B.; Willeke, F.

    2016-03-01

    National Synchrotron Light Source II (NSLS-II) is a new third-generation storage ring light source at Brookhaven National Laboratory. The storage ring design calls for small horizontal emittance (<1 nm-rad) and diffraction-limited vertical emittance at 12 keV (8 pm-rad). Achieving low value of the beam size will enable novel user experiments with nm-range spatial and meV-energy resolution. The high-brightness NSLS-II lattice has been realized by implementing 30-cell double bend achromatic cells producing the horizontal emittance of 2 nm rad and then halving it further by using several Damping Wigglers (DWs). This paper is focused on characterization of the DW effects in the storage ring performance, namely, on reduction of the beam emittance, and corresponding changes in the energy spread and beam lifetime. The relevant beam parameters have been measured by the X-ray pinhole camera, beam position monitors, beam filling pattern monitor, and current transformers. In this paper, we compare the measured results of the beam performance with analytic estimates for the complement of the 3 DWs installed at the NSLS-II.

  10. Emitters of N-photon bundles

    NASA Astrophysics Data System (ADS)

    Muñoz, C. Sánchez; Del Valle, E.; Tudela, A. González; Müller, K.; Lichtmannecker, S.; Kaniber, M.; Tejedor, C.; Finley, J. J.; Laussy, F. P.

    2014-07-01

    Controlling the output of a light emitter is one of the basic tasks in photonics, with landmarks such as the development of the laser and single-photon sources. The ever growing range of quantum applications is making it increasingly important to diversify the available quantum sources. Here, we propose a cavity quantum electrodynamics scheme to realize emitters that release their energy in groups (or `bundles') of N photons (where N is an integer). Close to 100% of two-photon emission and 90% of three-photon emission is shown to be within reach of state-of-the-art samples. The emission can be tuned with the system parameters so that the device behaves as a laser or as an N-photon gun. Here, we develop the theoretical formalism to characterize such emitters, with the bundle statistics arising as an extension of the fundamental correlation functions of quantum optics. These emitters will be useful for quantum information processing and for medical applications.

  11. Single Quantum Emitters in Monolayer Tungsten Diselenide

    NASA Astrophysics Data System (ADS)

    Clark, Genevieve; Schaibley, John; Ross, Jason; He, Yu-Ming; He, Yu; Yao, Wang; Lu, Chaoyang; Pan, Jianwei; Xu, Xiaodong

    Single quantum emitters are essential for developing photonic quantum technologies, providing single photon sources as well as stationary quantum bits. While they have been realized in a variety of solid state systems including single quantum dots and color centers in diamond, their three dimensional bulk matrix will be difficult to integrate with emerging nanoscale devices. We present single quantum emitters in a two-dimensional semiconductor, in the form of excitons localized to defects within atomically thin Tungsten Diselenide monolayers. These localized excitons show strong photoluminescence with 130 µeV emission lines from two non-degenerate, cross-polarized transitions. Second-order correlation measurements show strong photon anti-bunching, establishing that these localized excitons are single photon emitters. Magneto-optical measurements reveal an exciton g-factor of 8.7, significantly larger than that of delocalized excitons. In addition to potential advantages such as efficient photon extraction and in-situ control of local environment, the two-dimensional matrix can be incorporated into more complex van-der-Waals heterostructure devices. This enables external control of emitters in the semiconductor, while integrating seamlessly with nanoscale device architectures.

  12. Emittance growth from electron beam modulation

    SciTech Connect

    Blaskiewicz, M.

    2009-12-01

    In linac ring colliders like MeRHIC and eRHIC a modulation of the electron bunch can lead to a modulation of the beam beam tune shift and steering errors. These modulations can lead to emittance growth. This note presents simple formulas to estimate these effects which generalize some previous results.

  13. Light modulated electron beam driven radiofrequency emitter

    DOEpatents

    Wilson, M.T.; Tallerico, P.J.

    1979-10-10

    The disclosure relates to a light modulated electron beam-driven radiofrequency emitter. Pulses of light impinge on a photoemissive device which generates an electron beam having the pulse characteristics of the light. The electron beam is accelerated through a radiofrequency resonator which produces radiofrequency emission in accordance with the electron, hence, the light pulses.

  14. Light modulated switches and radio frequency emitters

    DOEpatents

    Wilson, Mahlon T.; Tallerico, Paul J.

    1982-01-01

    The disclosure relates to a light modulated electron beam driven radiofrequency emitter. Pulses of light impinge on a photoemissive device which generates an electron beam having the pulse characteristics of the light. The electron beam is accelerated through a radiofrequency resonator which produces radiofrequency emission in accordance with the electron, hence, the light pulses.

  15. Radar data smoothing filter study

    NASA Technical Reports Server (NTRS)

    White, J. V.

    1984-01-01

    The accuracy of the current Wallops Flight Facility (WFF) data smoothing techniques for a variety of radars and payloads is examined. Alternative data reduction techniques are given and recommendations are made for improving radar data processing at WFF. A data adaptive algorithm, based on Kalman filtering and smoothing techniques, is also developed for estimating payload trajectories above the atmosphere from noisy time varying radar data. This algorithm is tested and verified using radar tracking data from WFF.

  16. An active radar calibration target

    NASA Technical Reports Server (NTRS)

    Brunfeldt, D. R.; Ulaby, F. T.

    1982-01-01

    An active radar calibrator (ARC), consisting of a receive antenna and a transmit antenna with an RF amplifier in between, is proposed as a tool for conducting high-precision calibration measurements of radar systems. The ARC can be designed to have a large radar cross-section with a broad pattern. Its major advantages over passive reflectors are its small physical size and its suitability for calibrating radars operating in a cross-polarized antenna configuration.

  17. SRTM Radar - Landsat Image Comparison, Patagonia, Argentina

    NASA Technical Reports Server (NTRS)

    2000-01-01

    In addition to an elevation model of most of Earth'slandmass, the Shuttle Radar Topography Mission will produce C-band radar imagery of the same area. This imagery is essentially a 10-day snapshot view of the Earth, as observed with 5.8 centimeter wavelength radar signals that were transmitted from the Shuttle, reflected by the Earth, and then recorded on the Shuttle. This six-image mosaic shows two examples of SRTM radar images (center) with comparisons to images acquired by the Landsat 7 satellite in the visible wavelengths (left) and an infrared wavelength (right). Both sets of images show lava flows in northern Patagonia, Argentina. In each case, the lava flows are relatively young compared to the surrounding rock formations.

    In visible light (left) image brightness corresponds to mineral chemistry and -- as expected -- both lava flows appear dark. Generally, the upper flow sits atop much lighter bedrock, providing good contrast and making the edges of the flow distinct. However, the lower flow borders some rocks that are similarly dark, and the flow boundaries are somewhat obscured. Meanwhile, in the radar images (center), image brightness corresponds to surface roughness (and topographic orientation) and substantial differences between the flows are visible. Much of the top flow appears dark, meaning it is fairly smooth. Consequently, it forms little or no contrast with the smooth and dark surrounding bedrock and thus virtually vanishes from view. However, the lower flow appears rough and bright and mostly forms good contrast with adjacent bedrock such that the flow is locally more distinct here than in the visible Landsat view. For further comparison, infrared Landsat images (right) again show image brightnesses related to mineral chemistry, but the lava flows appear lighter than in the visible wavelengths. Consequently, the lower lava flow becomes fairly obscure among the various surrounding rocks, just as the upper flow did in the radar image. The various differences among all of these images illustrate the importance of illumination wavelength in image interpretation.

    The Landsat 7 Thematic Mapper images used here were provided to the SRTM project by the United States Geological Survey, Earth Resources Observation Systems (EROS) Data Center, Sioux Falls, South Dakota.

    The radar images shown here were acquired by the Shuttle Radar Topography Mission (SRTM) aboard the Space Shuttle Endeavour, launched on February 11,2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. SRTM was designed to collect three-dimensional measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter-long (200-foot) mast, installed additional C-band and X-band antennas, and improved tracking and navigation devices. The mission is a cooperative project between the National Aeronautics and Space Administration (NASA), the National Imagery and Mapping Agency (NIMA) of the U.S. Department of Defense (DoD), and the German and Italian space agencies. It is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Earth Science Enterprise,Washington, DC.

    Size (top set): 21.3 kilometers (13.2 miles) x 25.0 kilometers (15.5 miles) Size (bottom set): 44.1 kilometers (27.3 miles) x 56.0 kilometers (34.7 miles) Location: 41.5 deg. South lat., 69 deg. West lon. Orientation: North toward upper left (top set), North toward upper right (bottom set) Image Data: Landsat bands 1,2,3 (left); SRTM Radar (middle); Landsat band 7 (right) Date Acquired: February 19, 2000 (SRTM), January 22, 2000 (Landsat)

  18. Systems and Methods for Radar Data Communication

    NASA Technical Reports Server (NTRS)

    Bunch, Brian (Inventor); Szeto, Roland (Inventor); Miller, Brad (Inventor)

    2013-01-01

    A radar information processing system is operable to process high bandwidth radar information received from a radar system into low bandwidth radar information that may be communicated to a low bandwidth connection coupled to an electronic flight bag (EFB). An exemplary embodiment receives radar information from a radar system, the radar information communicated from the radar system at a first bandwidth; processes the received radar information into processed radar information, the processed radar information configured for communication over a connection operable at a second bandwidth, the second bandwidth lower than the first bandwidth; and communicates the radar information from a radar system, the radar information communicated from the radar system at a first bandwidth.

  19. Spaceborne laser radar.

    NASA Technical Reports Server (NTRS)

    Flom, T.

    1972-01-01

    Development of laser systems to acquire and track targets in applications such as the rendezvous and docking of two spacecraft. A scan technique is described whereby a narrow laser beam is simultaneously scanned with an equally narrow receiver field-of-view without the aid of mechanical gimbals. Equations are developed in order to examine the maximum acquisition and tracking rates, and the maximum target range for a scanning laser radar system. A recently built prototype of a small, lightweight, low-power-consuming scanning laser radar is described.

  20. Radar Investigations of Asteroids

    NASA Technical Reports Server (NTRS)

    Ostro, S. J.

    1984-01-01

    Radar investigations of asteroids, including observations during 1984 to 1985 of at least 8 potential targets and continued analyses of radar data obtained during 1980 to 1984 for 30 other asteroids is proposed. The primary scientific objectives include estimation of echo strength, polarization, spectral shape, spectral bandwidth, and Doppler shift. These measurements yield estimates of target size, shape, and spin vector; place constraints on topography, morphology, density, and composition of the planetary surface; yield refined estimates of target orbital parameters; and reveals the presence of asteroidal satellites.