Science.gov

Sample records for radar project interactive

  1. Equatorial MU Radar project

    NASA Astrophysics Data System (ADS)

    Yamamoto, Mamoru; Hashiguchi, H.; Tsuda, Toshitaka; Yamamoto, Masayuki

    Research Institute for Sustainable Humanosphere, Kyoto University (RISH) has been studying the atmosphere by using radars. The first big facility was the MU (Middle and Upper atmosphere) radar installed in Shiga, Japan in 1984. This is one of the most powerful and multi-functional radar, and is successful of revealing importance of atmospheric waves for the dynamical vertical coupling processes. The next big radar was the Equatorial Atmosphere Radar (EAR) installed at Kototabang, West Sumatra, Indonesia in 2001. The EAR was operated under close collaboration with LAPAN (Indonesia National Institute for Aeronautics and Space), and conducted the long-term continuous observations of the equatorial atmosphere/ionosphere for more than 10 years. The MU radar and the EAR are both utilized for inter-university and international collaborative research program for long time. National Institute for Polar Research (NIPR) joined EISCAT Scientific Association together with Nagoya University, and developed the PANSY radar at Syowa base in Antarctica as a joint project with University of Tokyo. These are the efforts of radar study of the atmosphere/ionosphere in the polar region. Now we can find that Japan holds a global network of big atmospheric/ionospheric radars. The EAR has the limitation of lower sensitivity compared with the other big radars shown above. RISH now proposes a plan of Equatorial MU Radar (EMU) that is to establish the MU-radar class radar next to the EAR. The EMU will have an active phased array antenna with the 163m diameter and 1055 cross-element Yagis. Total output power of the EMU will be more than 500kW. The EMU can detect turbulent echoes from the mesosphere (60-80km). In the ionosphere incoherent-scatter observations of plasma density, drift, and temperature would be possible. Multi-channel receivers will realize radar-imaging observations. The EMU is one of the key facilities in the project "Study of coupling processes in the solar-terrestrial system

  2. Spaceborne Imaging Radar Project

    NASA Technical Reports Server (NTRS)

    Herman, Neil

    1986-01-01

    In June of 1985 the Project Initiation Agreement was signed by the Jet Propulsion Laboratory and the NASA Office of Space Science and Applications for the Spaceborne Imaging Radar Project (SIR). The thrust of the Spaceborne Imaging Radar Project is to continue the evolution of synthetic aperture radar (SAR) science and technology developed during SEASAT, SIR-A and SIR-B missions to meet the needs of the Earth Observing System (EOS) in the mid 1990's. As originally formulated, the Project plans were for a reflight of the SIR-B in 1987, the development of a new SAR, SIR-C, for missions in mid 1989 and early 1990, and the upgrade of SIR-C to EOS configuration with a qualification flight aboard the shuttle in the 1993 time frame (SIR-D). However, the loss of the shuttle Challenger has delayed the first manifest for SIR to early 1990. This delay prompted the decision to drop SIR-B reflight plans and move ahead with SIR-C to more effectively utilize this first mission opportunity. The planning for this project is discussed.

  3. Radar-aeolian roughness project

    NASA Technical Reports Server (NTRS)

    Greeley, Ronald; Dobrovolskis, A.; Gaddis, L.; Iversen, J. D.; Lancaster, N.; Leach, Rodman N.; Rasnussen, K.; Saunders, S.; Vanzyl, J.; Wall, S.

    1991-01-01

    The objective is to establish an empirical relationship between measurements of radar, aeolian, and surface roughness on a variety of natural surfaces and to understand the underlying physical causes. This relationship will form the basis for developing a predictive equation to derive aeolian roughness from radar backscatter. Results are given from investigations carried out in 1989 on the principal elements of the project, with separate sections on field studies, radar data analysis, laboratory simulations, and development of theory for planetary applications.

  4. BMEWS Radar Beam Generation and Projection Clear Air Force ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    BMEWS Radar Beam Generation and Projection - Clear Air Force Station, Ballistic Missile Early Warning System Site II, One mile west of mile marker 293.5 on Parks Highway, 5 miles southwest of Anderson, Anderson, Denali Borough, AK

  5. Project Echo: Satellite-Tracking Radar

    NASA Technical Reports Server (NTRS)

    DeLange, O. E.

    1961-01-01

    The radar employed at the Bell Telephone Laboratories' Holmdel, New Jersey site for tracking the Echo I satellite was originally designed for the sole purpose of antenna pointing. Recently, however, it has also been employed to measure earth-balloon-earth path loss at regular intervals of time in order to ascertain the balloon's condition. The performance of the system and some of the data obtained are discussed.

  6. A radar study of the interaction between lightning and precipitation

    SciTech Connect

    Holden, D.N.; Ulbrich, C.W.

    1988-01-01

    A radar study was made of the interaction between lightning and precipitation with the 430 MHz Doppler radar at the Arecibo Observatory in Puerto Rico. On one occasion, the spectral power at Doppler velocities near that corresponding to the updraft increased substantially within a fraction of a second after a discharge was detected in the beam. Calculations were made to simulate the effect of an electric field change on mean Doppler velocity for a distribution of droplets in a thunderstorm. 13 refs., 4 figs.

  7. Interactive Genetics Tutorial Project.

    ERIC Educational Resources Information Center

    Wisconsin Univ., Madison. Dept. of Curriculum and Instruction.

    The Interactive Genetics Tutorial (IGT) project and the Intelligent Tutoring System for the IGT project named MENDEL supplement genetics instruction in biology courses by providing students with experience in designing, conducting, and evaluating genetics experiments. The MENDEL software is designed to: (1) simulate genetics experiments that…

  8. TOPEX Project Radar Altimeter Development Requirements and Specifications, Version 6.0

    NASA Technical Reports Server (NTRS)

    Rossi, Laurence C.

    2003-01-01

    This document provides the guidelines by which the TOPEX Radar Altimeter hardware development effort for the TOPEX flight project shall be implemented and conducted. The conduct of this activity shall take maximum advantage of the efforts expended during the TOPEX Radar Altimeter Advanced Technology Model development program and other related Radar Altimeter development efforts. This document complies with the TOPEX Project Office document 633-420 (D-2218), entitled, "TOPEX Project Requirements and Constraints for the NASA Radar Altimeter" dated December 1987.

  9. Signal Processing System for the CASA Integrated Project I Radars

    SciTech Connect

    Bharadwaj, Nitin; Chandrasekar, V.; Junyent, Francesc

    2010-09-01

    This paper describes the waveform design space and signal processing system for dual-polarization Doppler weather radar operating at X band. The performance of the waveforms is presented with ground clutter suppression capability and mitigation of range velocity ambiguity. The operational waveform is designed based on operational requirements and system/hardware requirements. A dual Pulse Repetition Frequency (PRF) waveform was developed and implemented for the first generation X-band radars deployed by the Center for Collaborative Adaptive Sensing of the Atmosphere (CASA). This paper presents an evaluation of the performance of the waveforms based on simulations and data collected by the first-generation CASA radars during operations.

  10. Radar imaging mechanism of marine sand waves at very low grazing angle illumination caused by unique hydrodynamic interactions

    NASA Astrophysics Data System (ADS)

    Hennings, Ingo; Herbers, Dagmar

    2006-10-01

    The investigations carried out between 2002 and 2004 during six field experiments within the Operational Radar and Optical Mapping in monitoring hydrodynamic, morphodynamic and environmental parameters for coastal management (OROMA) project aimed to improve the effectiveness of new remote sensing monitoring technologies such as shipborne imaging radars in coastal waters. The coastal monitoring radar of the GKSS Research Center, Geesthacht, Germany, is based on a Kelvin Hughes RSR 1000 X band (9.42 GHz) vertical (VV) polarized river radar and was mounted on board the research vessel Ludwig Prandtl during the experiments in the Lister Tief, a tidal inlet of the German Bight in the North Sea. The important progress realized in this investigation is the availability of calibrated X band radar data. Another central point of the study is to demonstrate the applicability of the quasi-specular scattering theory in combination with the weak hydrodynamic interaction theory for the radar imaging mechanism of the seabed. Radar data have been taken at very low grazing angles ≤2.6° of flood and ebb tide-oriented sand wave signatures at the sea surface during ebb tidal current phases. Current speeds perpendicular to the sand wave crest ≤0.6 m s-1 have been measured at wind speeds ≤4.5 m s-1 and water depths ≤25 m. The difference between the maximum measured and simulated normalized radar cross section (NRCS) modulation of the ebb tide-oriented sand wave is 27%. For the flood tide-oriented sand wave, a difference of 21% has been calculated. The difference between the minimum measured and simulated NRCS modulation of the ebb tide-oriented sand wave is 10%, and for the flood tide-oriented sand wave, a value of 43% has been derived. Phases of measured and simulated NRCS modulations correspond to asymmetric sand wave slopes. The results of the simulated NRCS modulation show the qualitative trend but do not always quantitatively match the measured NRCS modulation profiles

  11. Unique interactive projection display screen

    SciTech Connect

    Veligdan, J.T.

    1997-11-01

    Projection systems continue to be the best method to produce large (1 meter and larger) displays. However, in order to produce a large display, considerable volume is typically required. The Polyplanar Optic Display (POD) is a novel type of projection display screen, which for the first time, makes it possible to produce a large projection system that is self-contained and only inches thick. In addition, this display screen is matte black in appearance allowing it to be used in high ambient light conditions. This screen is also interactive and can be remotely controlled via an infrared optical pointer resulting in mouse-like control of the display. Furthermore, this display need not be flat since it can be made curved to wrap around a viewer as well as being flexible.

  12. Simulations of Aperture Synthesis Imaging Radar for the EISCAT_3D Project

    NASA Astrophysics Data System (ADS)

    La Hoz, C.; Belyey, V.

    2012-12-01

    EISCAT_3D is a project to build the next generation of incoherent scatter radars endowed with multiple 3-dimensional capabilities that will replace the current EISCAT radars in Northern Scandinavia. Aperture Synthesis Imaging Radar (ASIR) is one of the technologies adopted by the EISCAT_3D project to endow it with imaging capabilities in 3-dimensions that includes sub-beam resolution. Complemented by pulse compression, it will provide 3-dimensional images of certain types of incoherent scatter radar targets resolved to about 100 metres at 100 km range, depending on the signal-to-noise ratio. This ability will open new research opportunities to map small structures associated with non-homogeneous, unstable processes such as aurora, summer and winter polar radar echoes (PMSE and PMWE), Natural Enhanced Ion Acoustic Lines (NEIALs), structures excited by HF ionospheric heating, meteors, space debris, and others. To demonstrate the feasibility of the antenna configurations and the imaging inversion algorithms a simulation of synthetic incoherent scattering data has been performed. The simulation algorithm incorporates the ability to control the background plasma parameters with non-homogeneous, non-stationary components over an extended 3-dimensional space. Control over the positions of a number of separated receiving antennas, their signal-to-noise-ratios and arriving phases allows realistic simulation of a multi-baseline interferometric imaging radar system. The resulting simulated data is fed into various inversion algorithms. This simulation package is a powerful tool to evaluate various antenna configurations and inversion algorithms. Results applied to realistic design alternatives of EISCAT_3D will be described.

  13. Final report of LDRD project: Electromagnetic impulse radar for detection of underground structures

    SciTech Connect

    Loubriel, G.; Aurand, J.; Buttram, M.; Zutavern, F.; Brown, D.; Helgeson, W.

    1998-03-01

    This report provides a summary of the LDRD project titled: Electromagnetic impulse radar for the detection of underground structures. The project met all its milestones even with a tight two year schedule and total funding of $400 k. The goal of the LDRD was to develop and demonstrate a ground penetrating radar (GPR) that is based on high peak power, high repetition rate, and low center frequency impulses. The idea of this LDRD is that a high peak power, high average power radar based on the transmission of short impulses can be utilized effect can be utilized for ground penetrating radar. This direct time-domain system the authors are building seeks to increase penetration depth over conventional systems by using: (1) high peak power, high repetition rate operation that gives high average power, (2) low center frequencies that better penetrate the ground, and (3) short duration impulses that allow for the use of downward looking, low flying platforms that increase the power on target relative to a high flying platform. Specifically, chirped pulses that are a microsecond in duration require (because it is difficult to receive during transmit) platforms above 150 m (and typically 1 km) while this system, theoretically could be at 10 m above the ground. The power on target decays with distance squared so the ability to use low flying platforms is crucial to high penetration. Clutter is minimized by time gating the surface clutter return. Short impulses also allow gating (out) the coupling of the transmit and receive antennas.

  14. Interactive and Stereoscopic Hybrid 3D Viewer of Radar Data with Gesture Recognition

    NASA Astrophysics Data System (ADS)

    Goenetxea, Jon; Moreno, Aitor; Unzueta, Luis; Galdós, Andoni; Segura, Álvaro

    This work presents an interactive and stereoscopic 3D viewer of weather information coming from a Doppler radar. The hybrid system shows a GIS model of the regional zone where the radar is located and the corresponding reconstructed 3D volume weather data. To enhance the immersiveness of the navigation, stereoscopic visualization has been added to the viewer, using a polarized glasses based system. The user can interact with the 3D virtual world using a Nintendo Wiimote for navigating through it and a Nintendo Wii Nunchuk for giving commands by means of hand gestures. We also present a dynamic gesture recognition procedure that measures the temporal advance of the performed gesture postures. Experimental results show how dynamic gestures are effectively recognized so that a more natural interaction and immersive navigation in the virtual world is achieved.

  15. Radar Tracking with an Interacting Multiple Model and Probabilistic Data Association Filter for Civil Aviation Applications

    PubMed Central

    Jan, Shau-Shiun; Kao, Yu-Chun

    2013-01-01

    The current trend of the civil aviation technology is to modernize the legacy air traffic control (ATC) system that is mainly supported by many ground based navigation aids to be the new air traffic management (ATM) system that is enabled by global positioning system (GPS) technology. Due to the low receiving power of GPS signal, it is a major concern to aviation authorities that the operation of the ATM system might experience service interruption when the GPS signal is jammed by either intentional or unintentional radio-frequency interference. To maintain the normal operation of the ATM system during the period of GPS outage, the use of the current radar system is proposed in this paper. However, the tracking performance of the current radar system could not meet the required performance of the ATM system, and an enhanced tracking algorithm, the interacting multiple model and probabilistic data association filter (IMMPDAF), is therefore developed to support the navigation and surveillance services of the ATM system. The conventional radar tracking algorithm, the nearest neighbor Kalman filter (NNKF), is used as the baseline to evaluate the proposed radar tracking algorithm, and the real flight data is used to validate the IMMPDAF algorithm. As shown in the results, the proposed IMMPDAF algorithm could enhance the tracking performance of the current aviation radar system and meets the required performance of the new ATM system. Thus, the current radar system with the IMMPDAF algorithm could be used as an alternative system to continue aviation navigation and surveillance services of the ATM system during GPS outage periods. PMID:23686142

  16. MIT's role in project Apollo. Volume 2: Optical, radar, and candidate subsystems

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The development of optical, radar, and candidate subsystems for Project Apollo is discussed. The design and development of the optical subsystems for both the Apollo command and lunar spacecraft are described. Design approaches, problems, and solutions are presented. The evolution of radar interfaces with the GN&C system is discussed; these interfaces involved both hardware and software in a relatively complex interrelationship. The design and development of three candidate subsystems are also described. The systems were considered for use in Apollo, but were not incorporated into the final GN&C system. The three subsystems discussed are the star tracker-horizon photometer, the map and data viewer and the lunar module optical rendezvous system.

  17. Earth observations for the space radar laboratory mission: Report on the student challenge awards project

    NASA Technical Reports Server (NTRS)

    Way, Jobea; Holt, Benjamin; Schier, Marguerite; Connors, Vickie; Godwin, Linda; Jones, Tom; Campbell, Alicyn; Dean, Freedom; Garrett, Timothy; Hartley, Hillary

    1994-01-01

    The Challenge Awards are designed to provide a unique perspective to students gifted in the arts and humanities from which to understand scientific endeavor by giving students an opportunity to participate in an ongoing research project. In the graduate program, seven students who had participated in previous Challenge Awards programs were selected to help develop the tools for Earth observations for the astronauts on the Space Radar Laboratory (SRL) missions. The goal of the Challenge Awards program was to prepare a training manual for the astronauts on the SRL missions. This paper describes the observations to be made by the astronauts on the SRL missions. The emphasis is on the dynamic seasonal features of the Earth's surface and atmosphere which justify the need for more than one flight of the SRL. Complete notebooks of the sites, global seasonal patterns, examples of radar and the Measurement of Air Pollution from Satellites data, and shuttle photographs have been given to each of the SRL crews.

  18. Simultaneous Multi-angle Radar Observations of Langmuir Turbulence Excited by RF Ionospheric Interactions at HAARP

    NASA Astrophysics Data System (ADS)

    Sheerin, J. P.; Watanabe, N.; Rayyan, N.; Spry, D.; Adham, N.; Watkins, B. J.; Bristow, W. A.; Spaleta, J.; Bernhardt, P. A.

    2012-12-01

    The high power HAARP HF transmitter is employed to generate and study strong Langmuir turbulence (SLT) in the interaction region of overdense ionospheric plasma. Diagnostics included the Modular UHF Ionospheric Radar (MUIR) sited at HAARP, the SuperDARN-Kodiak HF radar, and HF receivers to record stimulated electromagnetic emissions (SEE). Dependence of diagnostic signals on HAARP HF parameters, including pulselength, duty-cycle, aspect angle, and frequency were recorded. Short pulse, low duty cycle experiments demonstrate control of artificial field-aligned irregularities (AFAI) and isolation of ponderomotive effects. Among the effects observed and studied are: SLT spectra including cascade, collapse, and co-existence spectra and an outshifted plasma line under certain ionospheric conditions. High time resolution studies of the temporal evolution of the plasma line reveal the appearance of an overshoot effect on ponderomotive timescales. Bursty turbulence is observed in the collapse and cascade lines. For the first time, simultaneous multi-angle radar measurements of plasma line spectra are recorded demonstrating marked dependence on aspect angle with the strongest interaction region observed displaced southward of the HF zenith pointing angle. Numerous measurements of the outshifted plasma line are observed. Experimental results are compared to previous high latitude experiments and predictions from recent modeling efforts.

  19. Simultaneous Multi-angle Radar Observations of Langmuir Turbulence Excited by RF Ionospheric Interactions at HAARP

    NASA Astrophysics Data System (ADS)

    Sheerin, J. P.; Rayyan, N.; Watanabe, N.; Watkins, B. J.; Bristow, W. A.; Bernhardt, P. A.

    2013-10-01

    The high power HAARP HF transmitter is employed to generate and study strong Langmuir turbulence (SLT) in the interaction region of overdense ionospheric plasma. Diagnostics included the Modular UHF Ionospheric Radar (MUIR) sited at HAARP, the SuperDARN-Kodiak HF radar, and HF receivers to record stimulated electromagnetic emissions (SEE). Dependence of diagnostic signals on HAARP HF parameters, including pulselength, duty-cycle, aspect angle, and frequency were recorded. Short pulse, low duty cycle experiments demonstrate control of artificial field-aligned irregularities (AFAI) and isolation of ponderomotive effects. Among the effects observed and studied are: SLT spectra including cascade, collapse, and co-existence spectra and an outshifted plasma line under certain ionospheric conditions. High time resolution studies of the temporal evolution of the plasma line reveal the appearance of an overshoot effect on ponderomotive timescales. Bursty turbulence is observed in the collapse and cascade lines. For the first time, simultaneous multi-angle radar measurements of plasma line spectra are recorded demonstrating marked dependence on aspect angle with the strongest interaction region observed displaced southward of the HF zenith pointing angle. Numerous measurements of the outshifted plasma line are observed. Experimental results are compared to previous high latitude experiments and predictions from recent modeling efforts.

  20. Seasat synthetic aperture radar observations of wave-current and wave-topographic interactions

    NASA Technical Reports Server (NTRS)

    Meadows, G. A.; Tseng, Y. C.; Shuchman, R. A.; Kasischke, E. S.

    1983-01-01

    This study investigated the capability of a spaceborne, imaging radar system to detect subtle changes in the propagation characteristics of ocean wave systems. Specifically, an evolving surface gravity wave system emanating from Hurricane Ella and propagating toward Cape Hatteras, NC, formed the basis of this investigation. This wave system was successfully imaged by the Seasat synthetic aperture radar (SAR) during revolution 974 on September 3, 1978. Estimates of the dominant wavelength and direction of the ocean waves were derived from the SAR data by using optical Fourier transforms. Environmental data of the test area, which included the surface velocity vector within the Gulf Stream, the location of Hurricane Ella, and local bathymetric information, were used in conjunction with the SAR data to form the basis of this comparative study. Favorable agreement was found between wave rays calculated by utilizing theoretical wave-current and wave-topographic interactions and SAR observed dominant wavelength and direction changes across the Gulf Stream and continental shelf.

  1. From Bursts to Back-Projection: Signal Processing Techniques for Earth and Planetary Observing Radars

    NASA Technical Reports Server (NTRS)

    Rosen, Paul A.

    2012-01-01

    Discusses: (1) JPL Radar Overview and Historical Perspective (2) Signal Processing Needs in Earth and Planetary Radars (3) Examples of Current Systems and techniques (4) Future Perspectives in signal processing for radar missions

  2. The PHOCUS Project: Particle Interactions in the Polar Summer Mesosphere

    NASA Astrophysics Data System (ADS)

    Gumbel, J.; Hedin, J.; Khaplanov, M.

    2012-12-01

    On the morning of July 21, 2011, the PHOCUS sounding rocket was launched from Esrange, Sweden, into strong noctilucent clouds (NLC) and polar mesosphere summer echoes (PMSE) observed by the Esrange lidar and the ESRAD MST radar. The aim of the PHOCUS project (Particles, Hydrogen and Oxygen Chemistry in the Upper Summer mesosphere) is to study mesospheric particles (ice and meteoric smoke) and their interaction with their neutral and charged environment. Starting out from first ideas in 2005, PHOCUS has developed into a comprehensive venture that connects to a number of new and renewed scientific questions. Interactions of interest comprise the charging and nucleation of particles, the relationship between meteoric smoke and ice, and the influence of these particles on gas-phase chemistry. This presentation gives an overview of the campaign and scientific results. The backbone of the campaign was a sounding rocket with 18 instruments from 8 scientific groups in Sweden, Norway, Germany, Austria and the USA. Atmospheric composition and ice particle properties were probed by a set of optical instruments from Stockholm University, in collaboration with the University in Trondheim. Exciting new instrument developments concerned microwave radiometers for in situ measurements of water vapour at 183 and 558 GHz by Chalmers University of Technology. Charged particles were probed by impact detectors from the University of Colorado, the University of Tromsø and the Leibniz Institute of Atmospheric Physics (IAP), complemented by direct particle sampling from Stockholm University. The neutral and charged background state of the atmosphere was quantified by the Technical University Graz, IAP, and the Norwegian Defence Research Establishment. Important ground-based instrumentation included the Esrange lidar, the ESRAD MST radar, the SkiYMET meteor radar and EISCAT.

  3. The Telescope Array RADAR (TARA) Project and the Search for the Radar Signature of Cosmic Ray Induced Extensive Air Showers

    NASA Astrophysics Data System (ADS)

    Prohira, Steven; TARA Collaboration; Telescope Array Collaboration

    2016-03-01

    The TARA (Telescope Array Radar) cosmic ray detector has been in operation since May 2013. It is the most ambitious effort to date to test an idea that originated in the 1940's: that ionization produced by cosmic ray extensive air showers should reflect electromagnetic radiation. The observation of this effect would open the possibility that remote-sensing radar technology could be used to detect and reconstruct extensive air showers, thus increasing the aperture available for the study of the highest-energy cosmic rays. TARA employs a bi-static radar configuration, consisting of a 25 kW, 5 MW ERP transmitter at 54.1 MHz broadcasting across the Telescope Array surface detector. 40 km distant, a set of log-periodic receiver antennas are read out by two independent data acquisition systems employing different techniques to select signals of the form expected for radar targets moving at close to the speed of light. In this talk, we describe the TARA detector and present the first quantitative limits on the radar cross-section of extensive air showers.

  4. GEOS-2 C-band radar system project. Spectral analysis as related to C-band radar data analysis

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Work performed on spectral analysis of data from the C-band radars tracking GEOS-2 and on the development of a data compaction method for the GEOS-2 C-band radar data is described. The purposes of the spectral analysis study were to determine the optimum data recording and sampling rates for C-band radar data and to determine the optimum method of filtering and smoothing the data. The optimum data recording and sampling rate is defined as the rate which includes an optimum compromise between serial correlation and the effects of frequency folding. The goal in development of a data compaction method was to reduce to a minimum the amount of data stored, while maintaining all of the statistical information content of the non-compacted data. A digital computer program for computing estimates of the power spectral density function of sampled data was used to perform the spectral analysis study.

  5. Web-based Tools for Educators: Outreach Activities of the Polar Radar for Ice Sheet Measurements (PRISM) Project

    NASA Astrophysics Data System (ADS)

    Braaten, D. A.; Holvoet, J. F.; Gogineni, S.

    2003-12-01

    The Radar Systems and Remote Sensing Laboratory at the University of Kansas (KU) has implemented extensive outreach activities focusing on Polar Regions as part of the Polar Radar for Ice Sheet Measurements (PRISM) project. The PRISM project is developing advanced intelligent remote sensing technology that involves radar systems, an autonomous rover, and communications systems to measure detailed ice sheet characteristics, and to determine bed conditions (frozen or wet) below active ice sheets in both Greenland and Antarctica. These measurements will provide a better understanding of the response of polar ice sheets to global climate change and the resulting impact the ice sheets will have on sea level rise. Many of the research and technological development aspects of the PRISM project, such as robotics, radar systems, climate change and exploration of harsh environments, can kindle an excitement and interest in students about science and technology. These topics form the core of our K-12 education and training outreach initiatives, which are designed to capture the imagination of young students, and prompt them to consider an educational path that will lead them to scientific or engineering careers. The K-12 PRISM outreach initiatives are being developed and implemented in a collaboration with the Advanced Learning Technology Program (ALTec) of the High Plains Regional Technology in Education Consortium (HPR*TEC). ALTec is associated with the KU School of Education, and is a well-established educational research center that develops and hosts web tools to enable teachers nationwide to network, collaborate, and share resources with other teachers. An example of an innovative and successful web interface developed by ALTec is called TrackStar. Teachers can use TrackStar over the Web to develop interactive, resource-based lessons (called tracks) on-line for their students. Once developed, tracks are added to the TrackStar database and can be accessed and modified

  6. Projection and Minimalistic Syntax in Interaction

    ERIC Educational Resources Information Center

    Auer, Peter

    2009-01-01

    Projections of future linguistic events in time are a pervasive task in human interaction. Projection is always based on sequential knowledge (i.e., on how the elements of a superordinated category are serialized in online speech production). This knowledge can relate to the sequencing of actions, as extensively shown in conversation analysis.…

  7. Millimeter-Wave Radar Field Measurements and Inversion of Cloud Parameters for the 1999 Mt. Washington Icing Sensors Project

    NASA Technical Reports Server (NTRS)

    Pazmany, Andrew L.; Reehorst, Andrew (Technical Monitor)

    2001-01-01

    The Mount Washington Icing Sensors Project (MWISP) was a multi-investigator experiment with participants from Quadrant Engineering, NOAA Environmental Technology Laboratory (NOAA/ETL), the Microwave Remote Sensing Laboratory (MIRSL) of the University of Massachusetts (UMass), and others. Radar systems from UMass and NOAA/ETL were used to measure X-, Ka-, and W-band backscatter data from the base of Mt. Washington, while simultaneous in-situ particle measurements were made from aircraft and from the observatory at the summit. This report presents range and time profiles of liquid water content and particle size parameters derived from range profiles of radar reflectivity as measured at X-, Ka-, and W-band (9.3, 33.1, and 94.9 GHz) using an artificial neural network inversion algorithm. In this report, we provide a brief description of the experiment configuration, radar systems, and a review of the artificial neural network used to extract cloud parameters from the radar data. Time histories of liquid water content (LWC), mean volume diameter (MVD) and mean Z diameter (MZD) are plotted at 300 m range intervals for slant ranges between 1.1 and 4 km. Appendix A provides details on the extraction of radar reflectivity from measured radar power, and Appendix B provides summary logs of the weather conditions for each day in which we processed data.

  8. Spaceborne radar

    NASA Technical Reports Server (NTRS)

    Moore, R. K.; Eckerman, J.; Meneghini, R.; Atlas, D.; Boerner, W. M.; Cherry, S.; Clark, J. F.; Doviak, R. J.; Goldhirsh, J.; Lhermitte, R. M.

    1981-01-01

    The spaceborne radar panel considered how radar could be used to measure precipitation from satellites. The emphasis was on how radar could be used with radiometry (at microwave, visible (VIS), and infrared (IR) wavelengths) to reduce the uncertainties of measuring precipitation with radiometry alone. In addition, the fundamental electromagnetic interactions involved in the measurements were discussed to determine the key work areas for research and development to produce effective instruments. Various approaches to implementing radar systems on satellites were considered for both shared and dedicated instruments. Finally, a research and development strategy was proposed for establishing the parametric relations and retrieval algorithms required for extracting precipitation information from the radar and associated radiometric data.

  9. Project Echo: 961-Mc Lower - Sideband Up - Converter for Satellite-Tracking Radar

    NASA Technical Reports Server (NTRS)

    Uenohara, M.; Seidel, H.

    1961-01-01

    A 961-Mc lower-sideband up-converter was specially designed to serve as preamplifier for the satellite-tracking radar used in Project Echo. The amplifier and its power supply are separately boxed and are installed directly behind the tracking antenna. The amplifier has been functioning most satisfactorily and has been used in routine manner to track the Echo satellite from horizon to horizon. This paper describes the design considerations, and details the special steps taken to ensure that the amplifier met the particular system needs of low noise, absolute stability, insensitivity to temperature fluctuations, and high input-power level before the onset of gain compression. The satisfactory operation of this amplifier confirms the great potentiality of parametric amplifiers as stable, low-noise, high-frequency receivers.

  10. Coupling X-band dual-polarized mini-radars and hydro-meteorological forecast models: the HYDRORAD project

    NASA Astrophysics Data System (ADS)

    Picciotti, E.; Marzano, F. S.; Anagnostou, E. N.; Kalogiros, J.; Fessas, Y.; Volpi, A.; Cazac, V.; Pace, R.; Cinque, G.; Bernardini, L.; De Sanctis, K.; Di Fabio, S.; Montopoli, M.; Anagnostou, M. N.; Telleschi, A.; Dimitriou, E.; Stella, J.

    2013-05-01

    Hydro-meteorological hazards like convective outbreaks leading to torrential rain and floods are among the most critical environmental issues world-wide. In that context weather radar observations have proven to be very useful in providing information on the spatial distribution of rainfall that can support early warning of floods. However, quantitative precipitation estimation by radar is subjected to many limitations and uncertainties. The use of dual-polarization at high frequency (i.e. X-band) has proven particularly useful for mitigating some of the limitation of operational systems, by exploiting the benefit of easiness to transport and deploy and the high spatial and temporal resolution achievable at small antenna sizes. New developments on X-band dual-polarization technology in recent years have received the interest of scientific and operational communities in these systems. New enterprises are focusing on the advancement of cost-efficient mini-radar network technology, based on high-frequency (mainly X-band) and low-power weather radar systems for weather monitoring and hydro-meteorological forecasting. Within the above context, the main objective of the HYDRORAD project was the development of an innovative integrated decision support tool for weather monitoring and hydro-meteorological applications. The integrated system tool is based on a polarimetric X-band mini-radar network which is the core of the decision support tool, a novel radar products generator and a hydro-meteorological forecast modelling system that ingests mini-radar rainfall products to forecast precipitation and floods. The radar products generator includes algorithms for attenuation correction, hydrometeor classification, a vertical profile reflectivity correction, a new polarimetric rainfall estimators developed for mini-radar observations, and short-term nowcasting of convective cells. The hydro-meteorological modelling system includes the Mesoscale Model 5 (MM5) and the Army Corps

  11. Ocean-ice interaction in the marginal ice zone using synthetic aperture radar imagery

    NASA Technical Reports Server (NTRS)

    Liu, Antony K.; Peng, Chich Y.; Weingartner, Thomas J.

    1994-01-01

    Ocean-ice interaction processes in the marginal ice zone (MIZ) by wind, waves, and mesoscale features, such as up/downwelling and eddies are studied using Earth Remote-Sensing Satellite (ERS) 1 synthetic aperture radar (SAR) images and an ocean-ice interaction model. A sequence of seven SAR images of the MIZ in the Chukchi Sea with 3 or 6 days interval are investigated for ice edge advance/retreat. Simultaneous current measurements from the northeast Chukchi Sea, as well as the Barrow wind record, are used to interpret the MIZ dynamics. SAR spectra of waves in ice and ocean waves in the Bering and Chukchi Sea are compared for the study of wave propagation and dominant SAR imaging mechanism. By using the SAR-observed ice edge configuration and wind and wave field in the Chukchi Sea as inputs, a numerical simulation has been performed with the ocean-ice interaction model. After 3 days of wind and wave forcing the resulting ice edge configuration, eddy formation, and flow velocity field are shown to be consistent with SAR observations.

  12. Results From the First Decade of Research Conducted by the Research on Adverse Drug events And Reports (RADAR) Project

    PubMed Central

    McKoy, June M.; Fisher, Matthew J.; Courtney, D. Mark; Raisch, Dennis W.; Edwards, Beatrice J.; Scheetz, Marc H.; Belknap, Steven M.; Trifilio, Steven M.; Samaras, Athena T.; Liebling, Dustin B.; Nardone, Beatrice; Tulas, Katrina Marie; West, Dennis P.

    2013-01-01

    Introduction In 1998, a multidisciplinary team of investigators initiated the Research on Adverse Drug events And Reports (RADAR) project, a post-marketing surveillance effort that systematically investigates and disseminates information describing serious and previously unrecognized serious adverse drug and device reactions (sADRs). Objective Herein, we describe the findings, dissemination efforts, and lessons learned from the first decade of the RADAR project. Methods After identifying serious and unexpected clinical events suitable for further investigation, RADAR collaborators derived case information from physician queries, published and unpublished clinical trials, case reports, US FDA databases and manufacturer sales figures. Study Selection All major RADAR publications from 1998 to the present are included in this analysis. Data Extraction For each RADAR publication, data were abstracted on data source, correlative basic science findings, dissemination and resultant safety information. Results RADAR investigators reported 43 serious ADRs. Data sources included case reports (17 sADRs), registries (5 sADRs), referral centers (8 sADRs) and clinical trial reports (13 sADRs). Correlative basic science findings were reported for ten sADRs. Thirty-seven sADRS were described as published case reports (5 sADRs) or published case-series (32 sADRs). Related safety information was disseminated as warnings or boxed warnings in the package insert (17 sADRs) and/or `Dear Healthcare Professional' letters (14 sADRs). Conclusion An independent National Institutes of Health-funded post-marketing surveillance programme can supplement existing regulatory and pharmaceutical manufacturer supported drug safety initiatives. PMID:23553448

  13. Long-wave planetary radar for remote sounding the Phobos ground in the project

    NASA Astrophysics Data System (ADS)

    Armand, N. A.; Smirnov, V. M.; Marchuk, V. N.; Yuschkova, O. V.; Abramov, V. V.; Bajanov, A. S.; Lifanzev, B. S.

    2009-04-01

    The project «Phobos- Grunt», which basic purpose - delivery to the Earth samples of a ground from a Phobos for detailed laboratory researches, is included in the Federal space program of Russia for 2006-2015. Realization of the project of delivery of a ground from a Phobos essentially supplements the international program of research of Mars, connected with delivery to the Earth samples of a martian ground. Research of electrophysical characteristics of the Phobos ground, revealing of deep structure and density determination of breeds composing it, research of a relief and roughness of Martian satellite surface will allow understand better the nature of relic substance from which, probably, the Phobos consists. With a greater share of reliability, it is possible to search for answers on these questions using data of radar-tracking sounding of the Phobos ground. The long-wave pla-netary radar LWPR which is a part of a complex of the scientific equipment of the project «Phobos-Grunt» is intended for remote sounding a surface and subsurface structures of the Phobos ground by a method of pulse radiosounding along a flight line of a spacecraft «Phobos- Grunt». The basic purpose of planning radar experiment is revealing deep structure and an estimation of breed density of the Phobos ground, research of a relief and a roughness of the Phobos surface, an estimation of dielectric properties of a ground on different depths along a flight line of spacecraft. The long-wave planetary radar represents the radar-tracking complex intended for sounding a ground of the Martian satellite on frequencies of 125-175 MHz. The chosen range of frequencies will allow carry out deep sounding of the Phobos ground at the accepted model of structure of a surface and subsurface up to depths from units up to hundreds meters. LWPR differs from the georadars used usually for research of earth's ground a big range of distances and necessity to work both from spacecraft orbit and from the

  14. Project - line interaction implementing projects in JPL's Matrix

    NASA Technical Reports Server (NTRS)

    Baroff, Lynn E.

    2006-01-01

    Can programmatic and line organizations really work interdependently, to accomplish their work as a community? Does the matrix produce a culture in which individuals take personal responsibility for both immediate mission success and long-term growth? What is the secret to making a matrix enterprise actually work? This paper will consider those questions, and propose that developing an effective project-line partnership demands primary attention to personal interactions among people. Many potential problems can be addressed by careful definition of roles, responsibilities, and work processes for both parts of the matrix -- and by deliberate and clear communication between project and line organizations and individuals.

  15. Precipitation and microphysical studies with a low cost high resolution X-band radar: an innovative project prospective

    NASA Astrophysics Data System (ADS)

    van Baelen, J.; Pointin, Y.; Wobrock, W.; Flossmann, A.; Peters, G.; Tridon, F.; Planche, C.

    2009-03-01

    This paper describes an innovative project which has just been launched at the "Laboratoire de Météorologie Physique" (LaMP) in Clermont-Ferrand in collaboration with the "Meteorologische Institut" in Hamburg, where a low cost X-band high resolution precipitation radar is combined with supporting measurements and a bin microphysical cloud resolving model in order to develop adapted Z-R relationships for accurate rain rate estimates over a local area such as a small catchment basin, an urban complex or even an agriculture domain. In particular, the use of K-band micro rain radars which can retrieve vertical profiles of drop size distribution and the associated reflectivity will be used to perform direct comparisons with X-band radar volume samples while a network of rain-gauges provides ground truth to which our rain estimates will be compared. Thus, the experimental suite of instrumentation should provide a detailed characterization of the various rain regimes and their associated Z-R relationship. Furthermore, we will make use of the hilly environment of the radar to test the use of novel attenuation methods in order to estimate rainfall rates. A second important aspect of this work is to use the detailed cloud modeling available at LaMP. Simulations of precipitating clouds in highly resolved 3-D dynamics model allow predicting the spectra of rain drops and precipitating ice particles. Radar reflectivity determined from these model studies will be compared with the observations in order to better understand which raindrop size spectrum shape factor should be applied to the radar algorithms as a function of the type of precipitating cloud. Likewise, these comparisons between the modeled and the observed reflectivity will also give us the opportunity to further improve our model microphysics and the parameterizations for meso-scale models.

  16. Analysis of borehole-radar reflection logs from selected HC boreholes at the Project Shoal area, Churchill County, Nevada

    USGS Publications Warehouse

    Lane, J.W., Jr.; Joesten, P.K.; Pohll, G.M.; Mihevic, Todd

    2001-01-01

    Single-hole borehole-radar reflection logs were collected and interpreted in support of a study to characterize ground-water flow and transport at the Project Shoal Area (PSA) in Churchill County, Nevada. Radar logging was conducted in six boreholes using 60-MHz omni-directional electric-dipole antennas and a 60-MHz magnetic-dipole directional receiving antenna.Radar data from five boreholes were interpreted to identify the location, orientation, estimated length, and spatial continuity of planar reflectors present in the logs. The overall quality of the radar data is marginal and ranges from very poor to good. Twenty-seven reflectors were interpreted from the directional radar reflection logs. Although the range of orientation interpreted for the reflectors is large, a significant number of reflectors strike northeast-southwest and east-west to slightly northwest-southeast. Reflectors are moderate to steeply dipping and reflector length ranged from less than 7 m to more than 133 m.Qualitative scores were assigned to each reflector to provide a sense of the spatial continuity of the reflector and the characteristics of the field data relative to an ideal planar reflector (orientation score). The overall orientation scores are low, which reflects the general data quality, but also indicates that the properties of most reflectors depart from the ideal planar case. The low scores are consistent with reflections from fracture zones that contain numerous, closely spaced, sub-parallel fractures.Interpretation of borehole-radar direct-wave velocity and amplitude logs identified several characteristics of the logged boreholes: (1) low-velocity zones correlate with decreased direct-wave amplitude, indicating the presence of fracture zones; (2) direct-wave amplitude increases with depth in three of the boreholes, suggesting an increase in electrical resistivity with depth resulting from changes in mineral assemblage or from a decrease in the specific conductance of ground

  17. Lunar ground penetrating radar: Minimizing potential data artifacts caused by signal interaction with a rover body

    NASA Astrophysics Data System (ADS)

    Angelopoulos, Michael; Redman, David; Pollard, Wayne H.; Haltigin, Timothy W.; Dietrich, Peter

    2014-11-01

    Ground-penetrating radar (GPR) is the leading geophysical candidate technology for future lunar missions aimed at mapping shallow stratigraphy (<5 m). The instrument's exploration depth and resolution capabilities in lunar materials, as well as its small size and lightweight components, make it a very attractive option from both a scientific and engineering perspective. However, the interaction between a GPR signal and the rover body is poorly understood and must be investigated prior to a space mission. In doing so, engineering and survey design strategies should be developed to enhance GPR performance in the context of the scientific question being asked. This paper explores the effects of a rover (simulated with a vertical metal plate) on GPR results for a range of heights above the surface and antenna configurations at two sites: (i) a standard GPR testing site with targets of known position, size, and material properties, and; (ii) a frozen lake for surface reflectivity experiments. Our results demonstrate that the GPR antenna configuration is a key variable dictating instrument design, with the XX polarization considered optimal for minimizing data artifact generation. These findings could thus be used to help guide design requirements for an eventual flight instrument.

  18. Tropical Rainfall Measuring Mission (TRMM) project. VII - Techniques for radar data processing

    NASA Technical Reports Server (NTRS)

    Meneghini, Robert; Atlas, David; Fujita, Masaharu; Nakamura, Kenji

    1990-01-01

    The paper describes algorithms for rain-rate profiling with an airborne or space-borne radar. Some problems involved in the radar measurements from an airborne or space-borne platform are discussed. An outline of a dual-frequency algorithm is described and its performance is confirmed by a computer simulation and an airborne experiment. A single-frequency algorithm is developed by introducing a path-integrated rain rate estimated from an attenuation of surface echoes or from microwave brightness temperature. The computer simulation shows good performance for an airborne or space-borne radar.

  19. Flash flood warning in mountaineous areas using X-band weather radars and the AIGA method in the framework of the RHYTMME project

    NASA Astrophysics Data System (ADS)

    Javelle, Pierre; Defrance, Dimitri; Ecrepont, Stéphane; Fouchier, Catherine; Mériaux, Patrice; Tolsa, Mathieu; Westrelin, Samuel

    2013-04-01

    The knowledge of precipitations still remains a tricky issue in mountaineous areas: the available rain-gauges are in a limited number and most often located in the valleys, and the radar rainfall estimates have to deal with a lot of problems due to the relief and the difficulty to distinguish the different types of hydrometeors (snow, hail, rain). In this context, the "RHYTMME" project deals with two main issues: - Providing an accurate radar rainfall information in mountainous areas. - Developing a real-time hazards warning system based on this information. To answer to the first issue, a X-band doppler dual polarized radar network is currently implemented in the French South Alps. At the end of the project (2013), three new radars will be installed, completing a pre-existing radar already installed on the Mont Vial top since 2008 (Hydrix® technology developed by the Novimet company, and tested in a previous project). The present communication focuses on the flash flood warning issue. It presents some results obtained by coupling the radar estimates to a simple distributed hydrological model (the AIGA method). Results are compared on damages observed by end-users, which were strongly involved into the project. The RHYTMME project is co-piloted by Meteo-France and the Cemagref and has the financial support of the European Union, the Provence-Alpes-Côte d'Azur Region and the French Ministry in charge of Ecology.

  20. Mission planning for Shuttle Imaging Radar-C (SIR-C) with a real-time interactive planning software

    NASA Astrophysics Data System (ADS)

    Potts, Su K.

    1993-03-01

    The Shuttle Imaging Radar-C (SIR-C) mission will operate from the payload bay of the space shuttle for 8 days, gathering Synthetic Aperture Radar (SAR) data over specific sites on the Earth. The short duration of the mission and the requirement for realtime planning offer challenges in mission planning and in the design of the Planning and Analysis Subsystem (PAS). The PAS generates shuttle ephemerides and mission planning data and provides an interactive real-time tool for quick mission replanning. It offers a multi-user and multiprocessing environment, and it is able to keep multiple versions of the mission timeline data while maintaining data integrity and security. Its flexible design allows one software to provide different menu options based on the user's operational function, and makes it easy to tailor the software for other Earth orbiting missions.

  1. Mission planning for Shuttle Imaging Radar-C (SIR-C) with a real-time interactive planning software

    NASA Technical Reports Server (NTRS)

    Potts, Su K.

    1993-01-01

    The Shuttle Imaging Radar-C (SIR-C) mission will operate from the payload bay of the space shuttle for 8 days, gathering Synthetic Aperture Radar (SAR) data over specific sites on the Earth. The short duration of the mission and the requirement for realtime planning offer challenges in mission planning and in the design of the Planning and Analysis Subsystem (PAS). The PAS generates shuttle ephemerides and mission planning data and provides an interactive real-time tool for quick mission replanning. It offers a multi-user and multiprocessing environment, and it is able to keep multiple versions of the mission timeline data while maintaining data integrity and security. Its flexible design allows one software to provide different menu options based on the user's operational function, and makes it easy to tailor the software for other Earth orbiting missions.

  2. NASA ER-2 Doppler radar reflectivity calibration for the CAMEX project

    NASA Technical Reports Server (NTRS)

    Caylor, I. J.; Heymsfield, G. M.; Bidwell, S. W.; Ameen, S.

    1994-01-01

    The NASA ER-2 Doppler radar (EDOP) was flown aboard the ER-2 high-altitude aircraft in September and October 1993 for the Convection and Moisture Experiment. During these flights, the first reliable reflectivity observations were performed with the EDOP instrument. This report details the procedure used to convert real-time engineering data into calibrated radar reflectivity. Application of the calibration results produces good agreement between the EDOP nadir pointing reflectivity and ground truth provided by a National Weather Service WSR-88D radar. The rms deviation between WSR-88D and EDOP is 6.9 dB, while measurements of the ocean surface backscatter coefficient are less than 3 dB from reported scatterometer coefficients. After an initial 30-minute period required for the instrument to reach thermal equilibrium, the radar is stable to better than 0.25 dB during flight. The range performance of EDOP shows excellent agreement with aircraft altimeter and meteorological sounding data.

  3. Investigations of the lower and middle atmosphere at the Arecibo Observatory and a description of the new VHF radar project

    NASA Technical Reports Server (NTRS)

    Rottger, J.; Ierkic, H. M.; Zimmerman, R. K.; Hagen, J.

    1986-01-01

    The atmospheric science research at the Arecibo Observatory is performed by means of (active) radar methods and (passive) optical methods. The active methods utilize the 430 NHz radar, the S-band radar on 2380 MHz, and a recently constructed Very High Frequency (VHF) radar. The passive methods include measurements of the mesopause temperature by observing the rotational emissions from OH-bands. The VHF radar design is discussed.

  4. Use of 'velocity projection' to estimate the variation of sea-surface height from HF Doppler radar current measurements

    NASA Astrophysics Data System (ADS)

    Marmorino, G. O.; Shen, C. Y.; Evans, T. E.; Lindemann, G. J.; Hallock, Z. R.; Shay, L. K.

    2004-02-01

    The technique of 'velocity projection' (J. Geophys. Res. 106 (2001) 6973) is used to estimate the sea-surface height field and its change over time from measurements of surface velocity made using a shore-based HF Doppler radar over a 30×30-km region of the continental shelf located near the mouth of the Chesapeake Bay (USA). Projected current profiles are compared with measured currents from an array of acoustic Doppler current profilers, and the consistency and sensitivity of the projections to model assumptions are also examined. Using projected values of the local surface slope, a model sea-surface η( x, y) is least-squares fit over the study region at each measurement time. The error associated with these fits provides an internal check on the validity of the projection results. The slope of the model sea-surface shows a set-up toward the mouth of the Chesapeake Bay during downwelling-favorable winds and a counterclockwise rotation over the tidal cycle that is consistent with linear, shallow-water dynamics. A time series of sea-level difference extracted from the η maps shows a dominant M 2 tidal signal that compares well with measurements of bottom pressure made at two moorings. With proper attention to limits of applicability, such projection-based sea-surface slope fields (as well as other projection results) may be useful in diagnostic calculations or as nowcasts for use with prognostic models.

  5. A Common Approach to Atmospheric Radar Data from Eiscat and the US Geospace Observatories within the Coopeus Project

    NASA Astrophysics Data System (ADS)

    Tjulin, A.; Erickson, P. J.; Häggström, I.; Enell, C. F. T.; van Eyken, A. P.; Rideout, B.; Lind, F. D.; McCrea, I.; Heinselman, C. J.; Mann, I.

    2014-12-01

    The high-latitude atmosphere and ionosphere are important for studies of the relationship between Solar and Terrestrial conditions as well as for understanding the coupling of the different altitude regions in the Earth's atmosphere. A large amount of effort has been dedicated to studies in the polar regions, and more generally the full view of the atmospheric and geospace environment is only possible through international collaborations. Incoherent scatter (IS) radar systems are important research tools in the studies of the upper atmosphere and the ionosphere. The standard high-level data from these systems contain electron density, electron and ion temperatures, and line-of-sight plasma flow as functions of time and altitude. There are about a dozen active ISR systems in the world at the present. Three of these systems are operated in Europe by the EISCAT Scientific Association. These are located in the northernmost region of the Scandinavian peninsula and on Svalbard. EISCAT is also currently preparing for construction of the new multi-static phased array radar EISCAT_3D. MIT Haystack Observatory, Cornell University and SRI International operate the major US incoherent scatter radars, several of which are also located at high latitudes. The European and American IS radar communities are already relatively well integrated and carry out coordinated observations, common workshops and meetings. They all use the Madrigal distributed database system for data archiving and distribution. In order to achieve greater interoperability, shared data structures, practices and standards are developed within the COOPEUS project. Three common levels of IS data exist (raw samples, intermediate correlated data, and analysed data) and the intermediate level has been initially selected for further harmonization. Intermediate level data represent a convenient form for exchange and storage, because the data volume has already been decreased to a more manageable level through temporal

  6. Dependence of the microwave radar cross section on ocean surface variables - Comparison of measurements and theory using data from the Frontal Air-Sea Interaction Experiment

    NASA Technical Reports Server (NTRS)

    Weissman, David E.

    1990-01-01

    The purpose of this investigation was to study the ability of theoretical radar cross section (RCS) models to predict the absolute magnitude of the ocean radar cross section under a wide variety of sea and atmospheric conditions. The dependence of the RCS on wind stress (as opposed to wind speed) was also studied. An extensive amount of experimental data was acquired during the Frontal Air-Sea Interaction Experiment. Measurements across an ocean front demonstrated that the vertical polarization and horizontal polarization radar cross section were more strongly dependent on wind stress than on wind magnitude. Current theoretical models for the RCS, based on stress, were tested with this data. In situations where the Bragg scattering theory does not agree with the measured radar cross section (magnitude and angle dependence), revisions are hypothesized and evaluated.

  7. Tropical Rainfall Measuring Mission (TRMM) project. VI - Spacecraft, scientific instruments, and launching rocket. Part 4 - TRMM rain radar

    NASA Technical Reports Server (NTRS)

    Meneghini, Robert; Atlas, David; Awaka, Jun; Okamoto, Ken'ichi; Ihara, Toshio; Nakamura, Kenji; Kozu, Toshiaki; Manabe, Takeshi

    1990-01-01

    The basic system parameters for the Tropical Rainfall Measuring Mission (TRMM) radar system are frequency, beamwidth, scan angle, resolution, number of independent samples, pulse repetition frequency, data rate, and so on. These parameters were chosen to satisfy NASA's mission requirements. Six candidates for the TRMM rain radar were studied. The study considered three major competitive items: (1) a pulse-compression radar vs. a conventional radar; (2) an active-array radar with a solid state power amplifier vs. a passive-array radar with a traveling-wave-tube amplifier; and (3) antenna types (planar-array antenna vs. cylindrical parabolic antenna). Basic system parameters such as radar sensitivities, power consumption, weight, and size of these six types are described. Trade-off studies of these cases show that the non-pulse-compression active-array radar with a planar array is considered to be the most suitable candidate for the TRMM rain radar at 13.8 GHz.

  8. Radar Reflectivity Simulated by a 2-D Spectra Bin Model: Sensitivity of Cloud-aerosol Interaction

    NASA Technical Reports Server (NTRS)

    Li, Kiaowen; Tao, Wei-Kuo; Khain, Alexander; Simpson, Joanne; Johnson, Daniel

    2003-01-01

    The Goddard Cumulus Ensemble (GCE) model with bin spectra microphysics is used to simulate mesoscale convective systems.The model uses explicit bins to represent size spectra of cloud nuclei, water drops, ice crystals, snow and graupel. Each hydrometeorite category is described by 33 mass bins. The simulations provide a unique data set of simulated raindrop size distribution in a realistic dynamic frame. Calculations of radar parameters using simulated drop size distribution serve as an evaluation of numerical model performance. In addition, the GCE bin spectra modes is a very useful tool to study uncertainties related to radar observations; all the environmental parameters are precisely known. In this presentation, we concentrate on the discussion of Z-R (ZDR-R) relation in the simulated systems. Due to computational limitations, the spectra bin model has been run in two dimensions with 31 stretched vertical layers and 1026 horizontal grid points (1 km resolution). Two different cases, one in midlatitude continent, the other in tropical ocean, have been simulated. The continental case is a strong convection which lasted for two hours. The oceanic case is a persistent system with more than 10 hours' life span. It is shown that the simulated Z-R (ZDR-R) relations generally agree with observations using radar and rain gauge data. The spatial and temporal variations of Z-R relation in different locations are also analyzed. Impact of aerosols on cloud formation and raindrop size distribution was studied. Both clean (low CCN) and dirty (high CCN) cases are simulated. The Z-R relation is shown to vary considerable in the initial CCN concentrations.

  9. Nuclear reactor power for a space-based radar. SP-100 project

    NASA Technical Reports Server (NTRS)

    Bloomfield, Harvey; Heller, Jack; Jaffe, Leonard; Beatty, Richard; Bhandari, Pradeep; Chow, Edwin; Deininger, William; Ewell, Richard; Fujita, Toshio; Grossman, Merlin

    1986-01-01

    A space-based radar mission and spacecraft, using a 300 kWe nuclear reactor power system, has been examined, with emphasis on aspects affecting the power system. The radar antenna is a horizontal planar array, 32 X 64 m. The orbit is at 61 deg, 1088 km. The mass of the antenna with support structure is 42,000 kg; of the nuclear reactor power system, 8,300 kg; of the whole spacecraft about 51,000 kg, necessitating multiple launches and orbital assembly. The assembly orbit is at 57 deg, 400 km, high enough to provide the orbital lifetime needed for orbital assembly. The selected scenario uses six Shuttle launches to bring the spacecraft and a Centaur G upper-stage vehicle to assembly orbit. After assembly, the Centaur places the spacecraft in operational orbit, where it is deployed on radio command, the power system started, and the spacecraft becomes operational. Electric propulsion is an alternative and allows deployment in assembly orbit, but introduces a question of nuclear safety.

  10. Ten years of experience from interactive ergonomics projects.

    PubMed

    Eklund, J; Karltun, J

    2012-01-01

    This paper highlights experiences from ergonomics projects, applying an interactive research approach. The aim of this paper is to summarise experiences from seven interactive ergonomics projects with the aim to improve ergonomics and organizational performance jointly. Results from these seven projects were analysed with a model for assessing sustainable change, including the factors active ownership, professional management, competent project leadership, and involved participants. All factors were found giving support to impact and sustainability of the change projects. However, the role of the researcher is difficult and demanding. PMID:22317471

  11. Thermal structure and radar backscatter

    NASA Astrophysics Data System (ADS)

    Topliss, B. J.; Stepanczak, M.; Guymer, Trevor H.; Cotton, David P.

    1994-12-01

    Infrared (IR) remote sensing from satellites is a well-proven technique for measuring sea surface temperature (SST) and for detecting and monitoring oceanographic features which have strong thermal contrast. Unfortunately, cloud cover often limits the continuity of the datasets and therefore their usefulness. There is some evidence that radar backscatter can be modified by sea surface temperature structure which raises the possibility that sensors such as synthetic aperture radar, scatterometers and altimeters could provide an all-weather complement to those operating in the IR. As a background, the results of a project which used coincident airborne radar and IR measurements of an eddy system in the Tyrrhenian Sea during October 1989 are briefly described. During a 5-day period, variations in radar backscatter of several dB occurred in a region where SST varied by 2 - 3 degree(s)C. The correlation between normalized radar cross section, sigma naught ((sigma) 0 or sigma-0) and SST appeared to depend on the ambient wind. Unfortunately, no satellite radar data were available during the experiment, since Geosat had just failed and ERS-1 was not due for launch until 1991. Building on this work, a study has commenced in which preliminary analyses of ERS-1 altimeter data, from tracks which repeat every 3 days, have been conducted for a section of the Gulf Stream after it has separated from the US coast. The along track variation of sigma naught has been compared with contemporaneous NOAA AVHRR-2 imagery and the relationship between SST structure and sigma naught for individual passes is discussed in terms of environmental parameters such as the local wind field and ocean currents. The possibility of the interaction of environmental parameters such as waves and currents are explored and some evidence for both wave enhancement and attenuation at the north wall of the Gulf Stream is illustrated. Tentative explanations for relationships observed by the various analysis

  12. Imaging radar contributions to a major air-sea-ice interaction study in the Greenland Sea

    NASA Technical Reports Server (NTRS)

    Shuchman, Robert A.

    1986-01-01

    By virtue of the Synthetic Aperture Radar (SAR's) imaging capabilities, such as all-weather imaging, relatively high resolution, and large dynamic range of backscatter from SAR ice and open ocean, information on the important marginal ice zone (MIZ) parameters can be derived from the SAR data. Information on ice edge location and location of ice-edge eddies, for example, can be obtained directly from examination of the imagery as can detection of ocean fronts and internal waves. With machine-assisted manual image analysis, estimates of ice concentration, floe size distributions, and ice field motion can also be derived. Full digital analysis, however, is required to obtain gravity wave spectral information and backscatter statistics for ice type discrimination and automated ice concentration algorithms.

  13. Context-sensitive design and human interaction principles for usable, useful, and adoptable radars

    NASA Astrophysics Data System (ADS)

    McNamara, Laura A.; Klein, Laura M.

    2016-05-01

    The evolution of exquisitely sensitive Synthetic Aperture Radar (SAR) systems is positioning this technology for use in time-critical environments, such as search-and-rescue missions and improvised explosive device (IED) detection. SAR systems should be playing a keystone role in the United States' Intelligence, Surveillance, and Reconnaissance activities. Yet many in the SAR community see missed opportunities for incorporating SAR into existing remote sensing data collection and analysis challenges. Drawing on several years' of field research with SAR engineering and operational teams, this paper examines the human and organizational factors that mitigate against the adoption and use of SAR for tactical ISR and operational support. We suggest that SAR has a design problem, and that context-sensitive, human and organizational design frameworks are required if the community is to realize SAR's tactical potential.

  14. Interactive Video: A Cross Curriculum Computer Project.

    ERIC Educational Resources Information Center

    Grimm, Floyd M., III; And Others

    Responding to the rapid development and often prohibitive costs of new classroom instruction technology, a group of interested faculty at Harford Community College (HCC), in Maryland, formed three Interactive Video (IV) Teams to explore the possibilities of using existing computer hardware and software at the college for interactive video…

  15. FIRE_CI2_ETL_RADAR

    Atmospheric Science Data Center

    2015-11-25

    FIRE_CI2_ETL_RADAR Project Title:  FIRE II CIRRUS Discipline:  ... Platform:  Ground Station Instrument:  Radar Spatial Coverage:  (37.06, -95.34) Spatial ... Search Guide Documents:  ETL_RADAR Guide Readme Files:  Readme ETL_RADAR (PS) ...

  16. Environmental projects. Volume 15: Environmental assessment: Proposed 1-megawatt radar transmitter at the Mars site

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The Goldstone Deep Space Communications Complex (GDSCC), located in the Mojave Desert about 64.5 km (40 mi) north of Barstow, California. and about 258 km (160 mi) northeast of Pasadena, California, is part of the National Aeronautics and Space Administration's (NASA's) Deep Space Network (DSN), one of the world's larger and more sensitive scientific telecommunications and radio navigation networks. The Goldstone Complex is managed, technically directed, and operated for NASA by the Jet Propulsion Laboratory (JPL) of the California Institute of Technology in Pasadena, California. Activities at the GDSCC support the operation of six parabolic dish antennas located at five separate sites called Deep Space Stations (DSS's). Four sites, named Echo, Mars, Uranus, and Apollo, are operational for space missions, while the remaining Venus Site is devoted to research and development activities. The Mars Site at the GDSCC contains two antennas: the Uranus antenna (DSS 15, 34 m) and the Mars antenna (DSS 14, 70 m). This present volume deals solely with the DSS-14 Mars antenna. The Mars antenna not only can act as a sensitive receiver to detect signals from spacecraft, but it also can be used in radar astronomy as a powerful transmitter to send out signals to probe the solar system. At present, the Mars antenna operates as a continuous-wave microwave system at a frequency of 8.51 GHz at a power level of 0.5 MW. JPL has plans to upgrade the Mars antenna to a power level of 1 MW. Because of the anticipated increase in the ambient levels of radio frequency radiation (RFR), JPL retained Battelle Pacific Northwest Laboratories (BPNL), Richland, Washington, to conduct an environmental assessment with respect to this increased RFR. This present volume is a JPL-expanded version of the BPNL report titled Environmental Assessment of the Goldstone Solar System Radar, which was submitted to JPL in Nov. 1991. This BPNL report concluded that the operation of the upgraded Mars antenna at the

  17. Environmental projects. Volume 15: Environmental assessment: Proposed 1-megawatt radar transmitter at the Mars site

    NASA Astrophysics Data System (ADS)

    1992-10-01

    The Goldstone Deep Space Communications Complex (GDSCC), located in the Mojave Desert about 64.5 km (40 mi) north of Barstow, California. and about 258 km (160 mi) northeast of Pasadena, California, is part of the National Aeronautics and Space Administration's (NASA's) Deep Space Network (DSN), one of the world's larger and more sensitive scientific telecommunications and radio navigation networks. The Goldstone Complex is managed, technically directed, and operated for NASA by the Jet Propulsion Laboratory (JPL) of the California Institute of Technology in Pasadena, California. Activities at the GDSCC support the operation of six parabolic dish antennas located at five separate sites called Deep Space Stations (DSS's). Four sites, named Echo, Mars, Uranus, and Apollo, are operational for space missions, while the remaining Venus Site is devoted to research and development activities. The Mars Site at the GDSCC contains two antennas: the Uranus antenna (DSS 15, 34 m) and the Mars antenna (DSS 14, 70 m). This present volume deals solely with the DSS-14 Mars antenna. The Mars antenna not only can act as a sensitive receiver to detect signals from spacecraft, but it also can be used in radar astronomy as a powerful transmitter to send out signals to probe the solar system. At present, the Mars antenna operates as a continuous-wave microwave system at a frequency of 8.51 GHz at a power level of 0.5 MW. JPL has plans to upgrade the Mars antenna to a power level of 1 MW. Because of the anticipated increase in the ambient levels of radio frequency radiation (RFR), JPL retained Battelle Pacific Northwest Laboratories (BPNL), Richland, Washington, to conduct an environmental assessment with respect to this increased RFR. This present volume is a JPL-expanded version of the BPNL report titled Environmental Assessment of the Goldstone Solar System Radar, which was submitted to JPL in Nov. 1991. This BPNL report concluded that the operation of the upgraded Mars antenna at the

  18. Student projects involving novel interaction with large displays.

    PubMed

    Dias, Paulo; Sousa, Tiago; Parracho, Joao; Cardoso, Igor; Monteiro, Andre; Sousa Santos, Beatriz

    2014-01-01

    DETI-Interact is an interactive system that offers information relevant to students in the lobby of the University of Aveiro's Department of Electronics, Telecommunications and Informatics (DETI). The project started in 2009 with a master's thesis addressing interaction with public displays through Android smartphones. Since then, it has evolved considerably; it currently allows gesture interaction based on a Kinect sensor. Meanwhile, it has involved third-year students, master's students, and undergraduate students participating in a research initiation program. PMID:24808202

  19. Characterization of Leonid meteor head echo data collected using the VHF-UHF Advanced Research Projects Agency Long-Range Tracking and Instrumentation Radar (ALTAIR)

    NASA Astrophysics Data System (ADS)

    Close, S.; Hunt, S. M.; McKeen, F. M.; Minardi, M. J.

    2002-02-01

    The Leonid meteor shower, which was predicted to hit storm-like activity on 17 November 1998, was observed using radar and optical sensors at the Kwajalein Missile Range in order to study potential threats to orbiting spacecraft. Meteor head echo data were collected during the predicted peak of the ``storm'' primarily using the Advanced Research Projects Agency Long-Range Tracking and Instrumentation Radar (ALTAIR). ALTAIR is a dual-frequency radar at VHF (160 MHz) and UHF (422 MHz) that is uniquely suited for detecting meteor head echoes due to high sensitivity, precise calibration, and the ability to record radar data at a high rate (Gb/min). ALTAIR transmits right-circular (RC) polarized energy and records left-circular (LC) sum, RC sum, LC azimuth angle difference, and LC elevation angle difference channels; these four measurements facilitate the determination of three-dimensional target position and velocity as a function of radar cross section and time. During the predicted peak of the storm, ALTAIR detected 734 VHF head echoes in 29 min of data and 472 UHF head echoes in 17 min of data, as well as numerous specular and nonspecular ionization trails. This paper contains analysis on the head echo data, including dual-frequency statistics and the variability of head echo decelerations. We also include results from the analysis of the radius-density parameter, which shows a strong correlation with deceleration.

  20. Interactive Learning for Global Education: Project ICONS.

    ERIC Educational Resources Information Center

    Starkey, Brigid

    2001-01-01

    Describes the International Communication and Negotiation Simulations (ICONS) Project that teachers college students about cross-cultural communication, including the role of foreign language in diplomacy and the complexities of the international system. Discusses the role playing element, Web-based communication between teams, active student…

  1. C-band measurements of radar backscatter from ice project summary report

    NASA Technical Reports Server (NTRS)

    Onstott, R. G.; Moore, R. K.

    1983-01-01

    The ability to measure the radar scattering coefficient of ice with a helicopter or surface spectrometer was extended into the 4-8 GHz spectral region. The scattering coefficient was measured at Mould Bay, N.W.T., over a frequency range from 4 to 18 GHz for both summer and fall conditions. Scatter from fresh water ice in the St. Lawrence River and from numerous seasonal sea-ice types along the coast of Newfoundland were also measured. The C-band (near 5 GHz) scattering cross section for different types of ice shows poorer contrast than the scattering coefficient at higher frequencies, but better contrast than the negligible value found at L-band (1.5 GHz). At frequencies above 4 GHz the contrast in scattering coefficient between the different ice types is much less in summer than in other seasons; at most times of year the scattering is much stronger from multiyear than from other ice types, but in early summer it is actually slightly weaker than that from first year ice.

  2. The relationship between the microwave radar cross section and both wind speed and stress: Model function studies using Frontal Air-Sea Interaction Experiment data

    NASA Technical Reports Server (NTRS)

    Weissman, David E.; Davidson, Kenneth L.; Brown, Robert A.; Friehe, Carl A.; Li, Fuk

    1994-01-01

    The Frontal Air-Sea Interaction Experiment (FASINEX) provided a unique data set with coincident airborne scatterometer measurements of the ocean surface radar cross section (RCS)(at Ku band) and near-surface wind and wind stress. These data have been analyzed to study new model functions which relate wind speed and surface friction velocity (square root of the kinematic wind stress) to the radar cross section and to better understand the processes in the boundary layer that have a strong influence on the radar backscatter. Studies of data from FASINEX indicate that the RCS has a different relation to the friction velocity than to the wind speed. The difference between the RCS models using these two variables depends on the polarization and the incidence angle. The radar data have been acquired from the Jet Propulsion Laboratory airborne scatterometer. These data span 10 different flight days. Stress measurements were inferred from shipboard instruments and from aircraft flying at low altitudes, closely following the scatterometer. Wide ranges of radar incidence angles and environmental conditions needed to fully develop algorithms are available from this experiment.

  3. A Critical Evaluation of Ground-Penetrating Radar Methodology on the Kalavasos and Maroni Built Environments (KAMBE) Project, Cyprus (Invited)

    NASA Astrophysics Data System (ADS)

    Leon, J.; Urban, T.; Gerard-Little, P.; Kearns, C.; Manning, S. W.; Fisher, K.; Rogers, M.

    2013-12-01

    at these settlements. Having just completed this first phase of the project, we report on the results of large-scale geophysical survey, including the identification of at least two previously unknown building complexes (one at each site). Here we focus particularly on ground-penetrating radar (GPR) data and survey methodology, in an effort to critically examine the range of approaches applied throughout the project (e.g. various antennae frequencies, data-collection densities, soil moisture/seasonality of survey, and post-collection data processing [2]), and to identify the most effective parameters for archaeological geophysical survey in the region. This paper also advocates for the role of geophysical survey within a multi-component archaeological project, not simply as a prospection tool but as an archaeological data collection method in its own right. 1]Fisher, K. D., J. Leon, S. Manning, M. Rogers, and D. Sewell. In Press. 2011-2012. 'The Kalavasos and Maroni Built Environments Project: Introduction and preliminary report on the 2008 and 2010 seasons. Report of the Department of Antiquities, Cyprus. 2] e.g. Rogers, M., J. F. Leon, K. D. Fisher, S. W. Manning and D. Sewell. 2012. 'Comparing similar ground-penetrating radar surveys under different soil moisture conditions at Kalavasos-Ayios Dhimitrios, Cyprus.' Archaeological Prospection 19 (4): 297-305.

  4. Web Search as an Interactive Learning Environment for Graduation Projects

    ERIC Educational Resources Information Center

    Zviel-Girshin, Rina; Rosenberg, Nathan

    2005-01-01

    This paper presents a novel concept--a Web search environment as an interactive learning environment for graduation projects. The paper addresses the question of an appropriate learning environment for writing graduation projects in universities: Can it be defined? What should it be? How should it look? How and when should it be used? The premise…

  5. Project InterActions: A Multigenerational Robotic Learning Environment

    ERIC Educational Resources Information Center

    Bers, Marina U.

    2007-01-01

    This paper presents Project InterActions, a series of 5-week workshops in which very young learners (4- to 7-year-old children) and their parents come together to build and program a personally meaningful robotic project in the context of a multigenerational robotics-based community of practice. The goal of these family workshops is to teach both…

  6. Pro-Forms as Projective Devices in Interaction

    ERIC Educational Resources Information Center

    Keevallik, Leelo

    2011-01-01

    Cataphoric pronouns have been characterized as being co-referential with a word that comes later. Considering that talk is produced in real time, with little benefit of knowing what is yet to come, participants understand cataphoric pro-forms to be projecting more talk. Projection is a crucial interactive resource, as it enables speakers to align…

  7. Monitoring by holographic radar systems

    NASA Astrophysics Data System (ADS)

    Catapano, Ilaria; Crocco, Lorenzo; Affinito, Antonio; Gennarelli, Gianluca; Soldovieri, Francesco

    2013-04-01

    Nowadays, radar technology represents a significant opportunity to collect useful information for the monitoring and conservation of critical infrastructures. Radar systems exploit the non-invasive interaction between the matter and the electromagnetic waves at microwave frequencies. Such an interaction allows obtaining images of the region under test from which one can infer the presence of potential anomalies such as deformations, cracks, water infiltrations, etc. This information turns out to be of primary importance in practical scenarios where the probed structure is in a poor state of preservation and renovation works must be planned. In this framework, the aim of this contribution is to describe the potentialities of the holographic radar Rascan 4/4000, a holographic radar developed by Remote Sensing Laboratory of Bauman Moscow State Technical University, as a non-destructive diagnostic tool capable to provide, in real-time, high resolution subsurface images of the sounded structure [1]. This radar provides holograms of hidden anomalies from the amplitude of the interference signal arising between the backscattered signal and a reference signal. The performance of the holographic radar is appraised by means of several experiments. Preliminary tests concerning the imaging below the floor and inside wood structures are carried out in controlled conditions at the Electromagnetic Diagnostic Laboratory of IREA-CNR. After, with reference to bridge monitoring for security aim, the results of a measurement campaign performed on the Musmeci bridge are presented [2]. Acknowledgments This research has been performed in the framework of the "Active and Passive Microwaves for Security and Subsurface imaging (AMISS)" EU 7th Framework Marie Curie Actions IRSES project (PIRSES-GA-2010-269157). REFERENCES [1] S. Ivashov, V. Razevig, I. Vasilyev, A. Zhuravlev, T. Bechtel, L. Capineri, The holographic principle in subsurface radar technology, International Symposium to

  8. Human-Robot Interaction Directed Research Project

    NASA Technical Reports Server (NTRS)

    Rochlis, Jennifer; Ezer, Neta; Sandor, Aniko

    2011-01-01

    Human-robot interaction (HRI) is about understanding and shaping the interactions between humans and robots (Goodrich & Schultz, 2007). It is important to evaluate how the design of interfaces and command modalities affect the human s ability to perform tasks accurately, efficiently, and effectively (Crandall, Goodrich, Olsen Jr., & Nielsen, 2005) It is also critical to evaluate the effects of human-robot interfaces and command modalities on operator mental workload (Sheridan, 1992) and situation awareness (Endsley, Bolt , & Jones, 2003). By understanding the effects of interface design on human performance, workload, and situation awareness, interfaces can be developed that support the human in performing tasks with minimal errors and with appropriate interaction time and effort. Thus, the results of research on human-robot interfaces have direct implications for design. Because the factors associated with interfaces and command modalities in HRI are too numerous to address in 3 years of research, the proposed research concentrates on three manageable areas applicable to National Aeronautics and Space Administration (NASA) robot systems. These topic areas emerged from the Fiscal Year (FY) 2011 work that included extensive literature reviews and observations of NASA systems. The three topic areas are: 1) video overlays, 2) camera views, and 3) command modalities. Each area is described in detail below, along with relevance to existing NASA human-robot systems. In addition to studies in these three topic areas, a workshop is proposed for FY12. The workshop will bring together experts in human-robot interaction and robotics to discuss the state of the practice as applicable to research in space robotics. Studies proposed in the area of video overlays consider two factors in the implementation of augmented reality (AR) for operator displays during teleoperation. The first of these factors is the type of navigational guidance provided by AR symbology. In the proposed

  9. Human-Robot Interaction Directed Research Project

    NASA Technical Reports Server (NTRS)

    Sandor, Aniko; Cross, Ernest V., II; Chang, Mai Lee

    2014-01-01

    Human-robot interaction (HRI) is a discipline investigating the factors affecting the interactions between humans and robots. It is important to evaluate how the design of interfaces and command modalities affect the human's ability to perform tasks accurately, efficiently, and effectively when working with a robot. By understanding the effects of interface design on human performance, workload, and situation awareness, interfaces can be developed to appropriately support the human in performing tasks with minimal errors and with appropriate interaction time and effort. Thus, the results of research on human-robot interfaces have direct implications for the design of robotic systems. This DRP concentrates on three areas associated with interfaces and command modalities in HRI which are applicable to NASA robot systems: 1) Video Overlays, 2) Camera Views, and 3) Command Modalities. The first study focused on video overlays that investigated how Augmented Reality (AR) symbology can be added to the human-robot interface to improve teleoperation performance. Three types of AR symbology were explored in this study, command guidance (CG), situation guidance (SG), and both (SCG). CG symbology gives operators explicit instructions on what commands to input, whereas SG symbology gives operators implicit cues so that operators can infer the input commands. The combination of CG and SG provided operators with explicit and implicit cues allowing the operator to choose which symbology to utilize. The objective of the study was to understand how AR symbology affects the human operator's ability to align a robot arm to a target using a flight stick and the ability to allocate attention between the symbology and external views of the world. The study evaluated the effects type of symbology (CG and SG) has on operator tasks performance and attention allocation during teleoperation of a robot arm. The second study expanded on the first study by evaluating the effects of the type of

  10. Human-Robot Interaction Directed Research Project

    NASA Technical Reports Server (NTRS)

    Sandor, Aniko; Cross, Ernest V., II; Chang, M. L.

    2014-01-01

    Human-robot interaction (HRI) is a discipline investigating the factors affecting the interactions between humans and robots. It is important to evaluate how the design of interfaces and command modalities affect the human's ability to perform tasks accurately, efficiently, and effectively when working with a robot. By understanding the effects of interface design on human performance, workload, and situation awareness, interfaces can be developed to appropriately support the human in performing tasks with minimal errors and with appropriate interaction time and effort. Thus, the results of research on human-robot interfaces have direct implications for the design of robotic systems. This DRP concentrates on three areas associated with interfaces and command modalities in HRI which are applicable to NASA robot systems: 1) Video Overlays, 2) Camera Views, and 3) Command Modalities. The first study focused on video overlays that investigated how Augmented Reality (AR) symbology can be added to the human-robot interface to improve teleoperation performance. Three types of AR symbology were explored in this study, command guidance (CG), situation guidance (SG), and both (SCG). CG symbology gives operators explicit instructions on what commands to input, whereas SG symbology gives operators implicit cues so that operators can infer the input commands. The combination of CG and SG provided operators with explicit and implicit cues allowing the operator to choose which symbology to utilize. The objective of the study was to understand how AR symbology affects the human operator's ability to align a robot arm to a target using a flight stick and the ability to allocate attention between the symbology and external views of the world. The study evaluated the effects type of symbology (CG and SG) has on operator tasks performance and attention allocation during teleoperation of a robot arm. The second study expanded on the first study by evaluating the effects of the type of

  11. Wave-current interaction study in the Gulf of Alaska for detection of eddies by synthetic aperture radar

    NASA Technical Reports Server (NTRS)

    Liu, Antony K.; Peng, Chich Y.; Schumacher, James D.

    1994-01-01

    High resolution Esa Remote Sensing Satellite-1 (ERS-1) Synthetic Aperture Radar (SAR) images are used to detect a mesoscale eddy. Such features limit dispersal of pollock larvae and therefore likely influence recruitment of fish in the Gulf of Alaska. During high sea states and high winds, the direct surface signature of the eddy was not clearly visible, but the wave refraction in the eddy area was observed. The rays of the wave field are traced out directly from the SAR image. The ray pattern gives information on the refraction pattern and on the relative variation of the wave energy along a ray through wave current interaction. These observations are simulated by a ray-tracing model which incorporates a surface current field associated with the eddy. The numerical results of the model show that the waves are refracted and diverge in the eddy field with energy density decreasing. The model-data comparison for each ray shows the model predictions are in good agreement with the SAR data.

  12. Radar and Lidar Radar DEM

    NASA Technical Reports Server (NTRS)

    Liskovich, Diana; Simard, Marc

    2011-01-01

    Using radar and lidar data, the aim is to improve 3D rendering of terrain, including digital elevation models (DEM) and estimates of vegetation height and biomass in a variety of forest types and terrains. The 3D mapping of vegetation structure and the analysis are useful to determine the role of forest in climate change (carbon cycle), in providing habitat and as a provider of socio-economic services. This in turn will lead to potential for development of more effective land-use management. The first part of the project was to characterize the Shuttle Radar Topography Mission DEM error with respect to ICESat/GLAS point estimates of elevation. We investigated potential trends with latitude, canopy height, signal to noise ratio (SNR), number of LiDAR waveform peaks, and maximum peak width. Scatter plots were produced for each variable and were fitted with 1st and 2nd degree polynomials. Higher order trends were visually inspected through filtering with a mean and median filter. We also assessed trends in the DEM error variance. Finally, a map showing how DEM error was geographically distributed globally was created.

  13. PROJECT INTERACT: A Study of Patterns of Interaction in Abusive, Neglectful and Control Families. Final Report.

    ERIC Educational Resources Information Center

    Burgess, Robert L.

    The project report (Project Interact) describes the outcome of 3 years of research on the nature, causes, and consequences of child abuse and neglect. The family as a locus of violence and the frequency of family violence (including homicide, police calls, physical punishment, and child abuse) are considered. Three models are presented to help…

  14. Broadview Radar Altimetry Toolbox

    NASA Astrophysics Data System (ADS)

    Escolà, Roger; Garcia-Mondejar, Albert; Moyano, Gorka; Roca, Mònica; Terra-Homem, Miguel; Friaças, Ana; Martinho, Fernando; Schrama, Ernst; Naeije, Marc; Ambrozio, Americo; Restano, Marco; Benveniste, Jérôme

    2016-04-01

    The universal altimetry toolbox, BRAT (Broadview Radar Altimetry Toolbox) which can read all previous and current altimetry missions' data, incorporates now the capability to read the upcoming Sentinel-3 L1 and L2 products. ESA endeavoured to develop and supply this capability to support the users of the future Sentinel-3 SAR Altimetry Mission. BRAT is a collection of tools and tutorial documents designed to facilitate the processing of radar altimetry data. This project started in 2005 from the joint efforts of ESA (European Space Agency) and CNES (Centre National d'Etudes Spatiales), and it is freely available at http://earth.esa.int/brat. The tools enable users to interact with the most common altimetry data formats. The BratGUI is the front-end for the powerful command line tools that are part of the BRAT suite. BRAT can also be used in conjunction with MATLAB/IDL (via reading routines) or in C/C++/Fortran via a programming API, allowing the user to obtain desired data, bypassing the data-formatting hassle. BRAT can be used simply to visualise data quickly, or to translate the data into other formats such as NetCDF, ASCII text files, KML (Google Earth) and raster images (JPEG, PNG, etc.). Several kinds of computations can be done within BRAT involving combinations of data fields that the user can save for posterior reuse or using the already embedded formulas that include the standard oceanographic altimetry formulas. The Radar Altimeter Tutorial, that contains a strong introduction to altimetry, shows its applications in different fields such as Oceanography, Cryosphere, Geodesy, Hydrology among others. Included are also "use cases", with step-by-step examples, on how to use the toolbox in the different contexts. The Sentinel-3 SAR Altimetry Toolbox shall benefit from the current BRAT version. While developing the toolbox we will revamp of the Graphical User Interface and provide, among other enhancements, support for reading the upcoming S3 datasets and

  15. Broadview Radar Altimetry Toolbox

    NASA Astrophysics Data System (ADS)

    Mondéjar, Albert; Benveniste, Jérôme; Naeije, Marc; Escolà, Roger; Moyano, Gorka; Roca, Mònica; Terra-Homem, Miguel; Friaças, Ana; Martinho, Fernando; Schrama, Ernst; Ambrózio, Américo; Restano, Marco

    2016-07-01

    The universal altimetry toolbox, BRAT (Broadview Radar Altimetry Toolbox) which can read all previous and current altimetry missions' data, incorporates now the capability to read the upcoming Sentinel-3 L1 and L2 products. ESA endeavoured to develop and supply this capability to support the users of the future Sentinel-3 SAR Altimetry Mission. BRAT is a collection of tools and tutorial documents designed to facilitate the processing of radar altimetry data. This project started in 2005 from the joint efforts of ESA (European Space Agency) and CNES (Centre National d'Études Spatiales), and it is freely available at http://earth.esa.int/brat. The tools enable users to interact with the most common altimetry data formats. The BratGUI is the front-end for the powerful command line tools that are part of the BRAT suite. BRAT can also be used in conjunction with MATLAB/IDL (via reading routines) or in C/C++/Fortran via a programming API, allowing the user to obtain desired data, bypassing the data-formatting hassle. BRAT can be used simply to visualise data quickly, or to translate the data into other formats such as NetCDF, ASCII text files, KML (Google Earth) and raster images (JPEG, PNG, etc.). Several kinds of computations can be done within BRAT involving combinations of data fields that the user can save for posterior reuse or using the already embedded formulas that include the standard oceanographic altimetry formulas. The Radar Altimeter Tutorial, that contains a strong introduction to altimetry, shows its applications in different fields such as Oceanography, Cryosphere, Geodesy, Hydrology among others. Included are also "use cases", with step-by-step examples, on how to use the toolbox in the different contexts. The Sentinel-3 SAR Altimetry Toolbox shall benefit from the current BRAT version. While developing the toolbox we will revamp of the Graphical User Interface and provide, among other enhancements, support for reading the upcoming S3 datasets and

  16. Project KITES: Kids Interacting with Technology and Education Students.

    ERIC Educational Resources Information Center

    Taylor, Harriet G.; Stuhlmann, Janice M.

    Faculty and administrators at the College of Education at Louisiana State University recognized the need to incorporate technology into all of their programs. Project KITES (Kids Interacting with Technology and Education Students) was developed to give students just beginning their professional education component real experiences with children…

  17. Art History Interactive Videodisc Project at the University of Iowa.

    ERIC Educational Resources Information Center

    Sustik, Joan M.

    A project which developed a retrieval system to evaluate the advantages and disadvantages of an interactive computer and video display system over traditional methods for using a slide library is described in this publication. The art school slide library of the University of Iowa stores transparencies which are arranged alphabetically within…

  18. Project ITCH: Interactive Digital Simulation in Electrical Engineering Education.

    ERIC Educational Resources Information Center

    Bailey, F. N.; Kain, R. Y.

    A two-stage project is investigating the educational potential of a low-cost time-sharing system used as a simulation tool in Electrical Engineering (EE) education. Phase I involves a pilot study and Phase II a full integration. The system employs interactive computer simulation to teach engineering concepts which are not well handled by…

  19. The MIntAct Project and Molecular Interaction Databases.

    PubMed

    Licata, Luana; Orchard, Sandra

    2016-01-01

    Molecular interaction databases collect, organize, and enable the analysis of the increasing amounts of molecular interaction data being produced and published as we move towards a more complete understanding of the interactomes of key model organisms. The organization of these data in a structured format supports analyses such as the modeling of pairwise relationships between interactors into interaction networks and is a powerful tool for understanding the complex molecular machinery of the cell. This chapter gives an overview of the principal molecular interaction databases, in particular the IMEx databases, and their curation policies, use of standardized data formats and quality control rules. Special attention is given to the MIntAct project, in which IntAct and MINT joined forces to create a single resource to improve curation and software development efforts. This is exemplified as a model for the future of molecular interaction data collation and dissemination. PMID:27115627

  20. Planetary Radar

    NASA Technical Reports Server (NTRS)

    Neish, Catherine D.; Carter, Lynn M.

    2015-01-01

    This chapter describes the principles of planetary radar, and the primary scientific discoveries that have been made using this technique. The chapter starts by describing the different types of radar systems and how they are used to acquire images and accurate topography of planetary surfaces and probe their subsurface structure. It then explains how these products can be used to understand the properties of the target being investigated. Several examples of discoveries made with planetary radar are then summarized, covering solar system objects from Mercury to Saturn. Finally, opportunities for future discoveries in planetary radar are outlined and discussed.

  1. Laser-capillary interaction for the EXIN project

    NASA Astrophysics Data System (ADS)

    Bisesto, F. G.; Anania, M. P.; Bacci, A. L.; Bellaveglia, M.; Chiadroni, E.; Cianchi, A.; Curcio, A.; Di Giovenale, D.; Di Pirro, G.; Ferrario, M.; Galletti, M.; Gallo, A.; Ghigo, A.; Marocchino, A.; Mostacci, A.; Petrarca, M.; Pompili, R.; Rossi, A. R.; Serafini, L.; Vaccarezza, C.

    2016-09-01

    The EXIN project is under development within the SPARC_LAB facility of the National Laboratory of Frascati (LNF-INFN). This project aims to accelerate pre-existing electron bunches with high brightness by exploiting the wakefield plasma acceleration technique, while preserving the initial brightness. The wakefield is excited inside a dielectric capillary by high intensity laser pulses produced by the FLAME laser interacting with a gas. In this work, we present numerical simulations in order to optimize energy coupling between our laser with super-Gaussian transverse profile and a dielectric capillary. Moreover, an overview of the experimental layout will be given.

  2. Developing Dual Polarization Applications For 45th Weather Squadron's (45 WS) New Weather Radar: A Cooperative Project With The National Space Science and Technology Center (NSSTC)

    NASA Technical Reports Server (NTRS)

    Roeder, W.P.; Peterson, W.A.; Carey, L.D.; Deierling, W.; McNamara, T.M.

    2009-01-01

    A new weather radar is being acquired for use in support of America s space program at Cape Canaveral Air Force Station, NASA Kennedy Space Center, and Patrick AFB on the east coast of central Florida. This new radar includes dual polarization capability, which has not been available to 45 WS previously. The 45 WS has teamed with NSSTC with funding from NASA Marshall Spaceflight Flight Center to improve their use of this new dual polarization capability when it is implemented operationally. The project goals include developing a temperature profile adaptive scan strategy, developing training materials, and developing forecast techniques and tools using dual polarization products. The temperature profile adaptive scan strategy will provide the scan angles that provide the optimal compromise between volume scan rate, vertical resolution, phenomena detection, data quality, and reduced cone-of-silence for the 45 WS mission. The mission requirements include outstanding detection of low level boundaries for thunderstorm prediction, excellent vertical resolution in the atmosphere electrification layer between 0 C and -20 C for lightning forecasting and Lightning Launch Commit Criteria evaluation, good detection of anvil clouds for Lightning Launch Commit Criteria evaluation, reduced cone-of-silence, fast volume scans, and many samples per pulse for good data quality. The training materials will emphasize the appropriate applications most important to the 45 WS mission. These include forecasting the onset and cessation of lightning, forecasting convective winds, and hopefully the inference of electrical fields in clouds. The training materials will focus on annotated radar imagery based on products available to the 45 WS. Other examples will include time sequenced radar products without annotation to simulate radar operations. This will reinforce the forecast concepts and also allow testing of the forecasters. The new dual polarization techniques and tools will focus on

  3. Project InterActions: A Multigenerational Robotic Learning Environment

    NASA Astrophysics Data System (ADS)

    Bers, Marina U.

    2007-12-01

    This paper presents Project InterActions, a series of 5-week workshops in which very young learners (4- to 7-year-old children) and their parents come together to build and program a personally meaningful robotic project in the context of a multigenerational robotics-based community of practice. The goal of these family workshops is to teach both parents and children about the mechanical and programming aspects involved in robotics, as well as to initiate them in a learning trajectory with and about technology. Results from this project address different ways in which parents and children learn together and provide insights into how to develop educational interventions that would educate parents, as well as children, in new domains of knowledge and skills such as robotics and new technologies.

  4. The Newcastle meteor radar

    NASA Technical Reports Server (NTRS)

    Keay, Colin

    1987-01-01

    A brief history and development of the Newcastle Meteor Radar system is given. Also described are its geographical coordinates and its method of operation. The initial objective when the project was commenced was to develop an entirely digital analyzer capable of recognizing meteor echo signals and recording as many of their parameters as possible. This objective was achieved.

  5. About uncertainties in sea ice thickness retrieval from satellite radar altimetry: results from the ESA-CCI Sea Ice ECV Project Round Robin Exercise

    NASA Astrophysics Data System (ADS)

    Kern, S.; Khvorostovsky, K.; Skourup, H.; Rinne, E.; Parsakhoo, Z. S.; Djepa, V.; Wadhams, P.; Sandven, S.

    2014-03-01

    One goal of the European Space Agency Climate Change Initiative sea ice Essential Climate Variable project is to provide a quality controlled 20 year long data set of Arctic Ocean winter-time sea ice thickness distribution. An important step to achieve this goal is to assess the accuracy of sea ice thickness retrieval based on satellite radar altimetry. For this purpose a data base is created comprising sea ice freeboard derived from satellite radar altimetry between 1993 and 2012 and collocated observations of snow and sea ice freeboard from Operation Ice Bridge (OIB) and CryoSat Validation Experiment (CryoVEx) air-borne campaigns, of sea ice draft from moored and submarine Upward Looking Sonar (ULS), and of snow depth from OIB campaigns, Advanced Microwave Scanning Radiometer aboard EOS (AMSR-E) and the Warren Climatology (Warren et al., 1999). An inter-comparison of the snow depth data sets stresses the limited usefulness of Warren climatology snow depth for freeboard-to-thickness conversion under current Arctic Ocean conditions reported in other studies. This is confirmed by a comparison of snow freeboard measured during OIB and CryoVEx and snow freeboard computed from radar altimetry. For first-year ice the agreement between OIB and AMSR-E snow depth within 0.02 m suggests AMSR-E snow depth as an appropriate alternative. Different freeboard-to-thickness and freeboard-to-draft conversion approaches are realized. The mean observed ULS sea ice draft agrees with the mean sea ice draft computed from radar altimetry within the uncertainty bounds of the data sets involved. However, none of the realized approaches is able to reproduce the seasonal cycle in sea ice draft observed by moored ULS satisfactorily. A sensitivity analysis of the freeboard-to-thickness conversion suggests: in order to obtain sea ice thickness as accurate as 0.5 m from radar altimetry, besides a freeboard estimate with centimetre accuracy, an ice-type dependent sea ice density is as mandatory

  6. Flexibility and Project Value: Interactions and Multiple Real Options

    NASA Astrophysics Data System (ADS)

    Čulík, Miroslav

    2010-06-01

    This paper is focused on a project valuation with embedded portfolio of real options including their interactions. Valuation is based on the criterion of Net Present Value on the simulation basis. Portfolio includes selected types of European-type real options: option to expand, contract, abandon and temporarily shut down and restart a project. Due to the fact, that in reality most of the managerial flexibility takes the form of portfolio of real options, selected types of options are valued not only individually, but also in combination. The paper is structured as follows: first, diffusion models for forecasting of output prices and variable costs are derived. Second, project value is estimated on the assumption, that no real options are present. Next, project value is calculated with the presence of selected European-type options; these options and their impact on project value are valued first in isolation and consequently in different combinations. Moreover, intrinsic value evolution of given real options with respect to the time of exercising is analysed. In the end, results are presented graphically; selected statistics and risk measures (Value at Risk, Expected Shortfall) of the NPV's distributions are calculated and commented.

  7. Threat radar system simulations

    NASA Astrophysics Data System (ADS)

    Miller, L.

    The capabilities, requirements, and goals of radar emitter simulators are discussed. Simulators are used to evaluate competing receiver designs, to quantify the performance envelope of a radar system, and to model the characteristics of a transmitted signal waveform. A database of candidate threat systems is developed and, in concert with intelligence data on a given weapons system, permits upgrading simulators to new projected threat capabilities. Four currently available simulation techniques are summarized, noting the usefulness of developing modular software for fast controlled-cost upgrades of simulation capabilities.

  8. Automotive radar

    NASA Astrophysics Data System (ADS)

    Rohling, Hermann

    2004-07-01

    Radar networks for automtovie short-range applications (up to 30m) based on powerful but inexpensive 24GHz high range resolution pulse or FMCW radar systems have been developed at the Technical University of Hamburg-Harburg. The described system has been integrated in to an experimental vehicle and tested in real street environment. This paper considers the general network design, the individual pulse or FMCW radar sensors, the network signal processing scheme, the tracking procedure and possible automotive applications, respectively. Object position estimation is accomplished by the very precise range measurement of each individual sensor and additional trilateration procedures. The paper concludes with some results obtained in realistic traffic conditions with multiple target situations using 24 GHz radar network.

  9. Radar history

    NASA Astrophysics Data System (ADS)

    Putley, Ernest

    2008-07-01

    The invention of radar, as mentioned in Chris Lavers' article on warship stealth technology (March pp21-25), continues to be a subject of discussion. Here in Malvern we have just unveiled a blue plaque to commemorate the physicist Albert Percival Rowe, who arrived in 1942 as the head of the Telecommunications Research Establishment (TRE), which was the Air Ministry research facility responsible for the first British radar systems.

  10. Quality interaction between mission assurance and project team members

    NASA Astrophysics Data System (ADS)

    Kwong-Fu, Helenann; Wilson, Robert K.

    2006-06-01

    Mission Assurance's independent assessments started during the SPITZER development cycle and continued through post-launch operations. During the operations phase, the health and safety of the observatory is of utmost importance. Therefore, Mission Assurance must ensure requirements compliance and focus on the process improvements required across the operational systems, including new/modified products, tools, and procedures. To avoid problem reoccurrences, an interactive model involving three areas was deployed: Team Member Interaction, Root Cause Analysis Practices, and Risk Assessment. In applying this model, a metric-based measurement process was found to have the most significant benefit. Considering a combination of root cause analysis and risk approaches allows project engineers to the ability to prioritize and quantify their corrective actions based on a well-defined set of root cause definitions (i.e., closure criteria for problem reports), success criteria, and risk rating definitions.

  11. German Radar Observation Shuttle Experiment (ROSE)

    NASA Technical Reports Server (NTRS)

    Sleber, A. J.; Hartl, P.; Haydn, R.; Hildebrandt, G.; Konecny, G.; Muehlfeld, R.

    1984-01-01

    The success of radar sensors in several different application areas of interest depends on the knowledge of the backscatter of radar waves from the targets of interest, the variance of these interaction mechanisms with respect to changing measurement parameters, and the determination of the influence of he measuring systems on the results. The incidence-angle dependency of the radar cross section of different natural targets is derived. Problems involved by the combination of data gained with different sensors, e.g., MSS-, TM-, SPOTand SAR-images are analyzed. Radar cross-section values gained with ground-based radar spectrometers and spaceborne radar imaging, and non-imaging scatterometers and spaceborne radar images from the same areal target are correlated. The penetration of L-band radar waves into vegetated and nonvegetated surfaces is analyzed.

  12. Ice-volcano interactions during the 2010 Eyjafjallajökull eruption, as revealed by airborne imaging radar

    NASA Astrophysics Data System (ADS)

    Magnússon, E.; Gudmundsson, M. T.; Roberts, M. J.; Sigurã°Sson, G.; HöSkuldsson, F.; Oddsson, B.

    2012-07-01

    During the eruption of the ice-covered Eyjafjallajökull volcano, a series of images from an airborne Synthetic Aperture Radar (SAR) were obtained by the Icelandic Coast Guard. Cloud obscured the summit from view during the first three days of the eruption, making the weather-independent SAR a valuable monitoring resource. Radar images revealed the development of ice cauldrons in a 200 m thick ice cover within the summit caldera, as well as the formation of cauldrons to the immediate south of the caldera. Additionally, radar images were used to document the subglacial and supraglacial passage of floodwater to the north and south of the eruption site. The eruption breached the ice surface about four hours after its onset at about 01:30 UTC on 14 April 2010. The first SAR images, obtained between 08:55 and 10:42 UTC, show signs of limited supraglacial drainage from the eruption site. Floodwater began to drain from the ice cap almost 5.5 h after the beginning of the eruption, implying storage of meltwater at the eruption site due to initially constricted subglacial drainage from the caldera. Heat transfer rates from magma to ice during early stages of cauldron formation were about 1 MW m-2 in the radial direction and about 4 MW m-2 vertically. Meltwater release was characterized by accumulation and drainage with most of the volcanic material in the ice cauldrons being drained in hyperconcentrated floods. After the third day of the eruption, meltwater generation at the eruption site diminished due to an insulating lag of tephra.

  13. Research relative to weather radar measurement techniques

    NASA Technical Reports Server (NTRS)

    Smith, Paul L.

    1992-01-01

    Research relative to weather radar measurement techniques, which involves some investigations related to measurement techniques applicable to meteorological radar systems in Thailand, is reported. A major part of the activity was devoted to instruction and discussion with Thai radar engineers, technicians, and meteorologists concerning the basic principles of radar meteorology and applications to specific problems, including measurement of rainfall and detection of wind shear/microburst hazards. Weather radar calibration techniques were also considered during this project. Most of the activity took place during two visits to Thailand, in December 1990 and February 1992.

  14. Public Interaction and Educational Outreach on the Yucca Mountain Project

    SciTech Connect

    A. Benson; Y. Riding

    2002-11-14

    In July 2002, the U.S. Congress approved Yucca Mountain in Nevada as the nation's first long-term geologic repository site for spent nuclear fuel and high-level radioactive waste. This major milestone for the country's high-level radioactive waste disposal program comes after more than twenty years of scientific study and intense public interaction and outreach. This paper describes public interaction and outreach challenges faced by the U.S. Department of Energy's (DOE) Yucca Mountain Project in the past and what additional communication strategies may be instituted following the July 2002 approval by the U.S. Congress to develop the site as the nation's first long-term geologic repository for spent nuclear fuel and high-level radioactive waste. The DOE public involvement activities were driven by two federal regulations--the National Environmental Policy Act (NEPA) and the Nuclear Waste Policy Act (NWPA) of 1982, as amended. The NEPA required that DOE hold public hearings at key points in the development of an Environmental Impact Statement (EIS) and the NWPA required the agency to conduct public hearings in the vicinity of the site prior to making a recommendation regarding the site's suitability. The NWPA also provided a roadmap for how DOE would interact with affected units of government, which include the state of Nevada and the counties surrounding the site. Because the Department anticipated and later received much public interest in this high-profile project, the agency decided to go beyond regulatory-required public involvement activities and created a broad-based program that implemented far-reaching public interaction and outreach tactics. Over the last two decades, DOE informed, educated, and engaged a myriad of interested local, national, and international parties using various traditional and innovative approaches. The Yucca Mountain Project's intensive public affairs initiatives were instrumental in involving the public, which in turn resulted in

  15. Short-range ground-based synthetic aperture radar imaging: performance comparison between frequency-wavenumber migration and back-projection algorithms

    NASA Astrophysics Data System (ADS)

    Yigit, Enes; Demirci, Sevket; Özdemir, Caner; Tekbaş, Mustafa

    2013-01-01

    Two popular synthetic aperture radar (SAR) reconstruction algorithms, namely the back-projection (BP) and the frequency wavenumber (ω-k) algorithms, were tested and compared against each other, especially for their use in ground-based (GB) SAR applications directed to foreign object debris removal. For this purpose, an experimental setup in a semi-anechoic chamber room was accomplished to obtain near-field SAR images of objects on the ground. Then, the 90 to 95 GHz scattering data were acquired by using a stepped frequency continuous-wave radar operation. The performances of the setup and the imaging algorithms were then assessed by exploiting various metrics including point spread function, signal-to-clutter ratio, integrated side-lobe ratio, and computational complexity. Results demonstrate that although both algorithms produce almost accurate images of targets, the BP algorithm is shown to be superior to the ω-k algorithm due to its some inherent advantages specifically suited for short-range GB-SAR applications.

  16. Multifrequency space time orthogonal projection (MF-STOP): a radar signal processing algorithm for detecting and discriminating targets in heavy clutter

    NASA Astrophysics Data System (ADS)

    Tamrat, Yalew; Hatleberg, Clancy

    2007-04-01

    In this paper, we present a Multi-Frequency Space-Time Orthogonal (MF-STOP) adaptive filtering approach for detection and discrimination of targets based on a two stage orthogonal projection whereby target parameters can be extracted in the presence of heavy clutter and noise. The proposed technique detects targets within heavy clutter tracked by a radar system. After targets are detected, motion information is extracted that can be used to discriminate threats such as reentry vehicles from other targets. Target detection is generated in stage one by a combination of Windowed Short Time Fast Fourier Transform (WSTFFT) processing and Principal Component Analysis (PCA). Target discrimination is done in a second stage via Partial Least Squares (PLS) using a training filter constructed from the stage one detection. The target is discriminated explicitly by metric criteria such as size or precession. These discriminate features do not have to be known a priori.

  17. Interactive projection for aerial dance using depth sensing camera

    NASA Astrophysics Data System (ADS)

    Dubnov, Tammuz; Seldess, Zachary; Dubnov, Shlomo

    2014-02-01

    This paper describes an interactive performance system for oor and Aerial Dance that controls visual and sonic aspects of the presentation via a depth sensing camera (MS Kinect). In order to detect, measure and track free movement in space, 3 degree of freedom (3-DOF) tracking in space (on the ground and in the air) is performed using IR markers. Gesture tracking and recognition is performed using a simpli ed HMM model that allows robust mapping of the actor's actions to graphics and sound. Additional visual e ects are achieved by segmentation of the actor body based on depth information, allowing projection of separate imagery on the performer and the backdrop. Artistic use of augmented reality performance relative to more traditional concepts of stage design and dramaturgy are discussed.

  18. Planetary radar

    NASA Technical Reports Server (NTRS)

    Taylor, R. M.

    1980-01-01

    The radar astronomy activities supported by the Deep Space Network during June, July, and August 1980 are reported. The planetary bodies observed were Venus, Mercury, and the asteroid Toro. Data were obtained at both S and X band, and the observations were considered successful.

  19. Evaluating Types of Students' Interactions in a Wiki-Based Collaborative Learning Project

    ERIC Educational Resources Information Center

    Prokofieva, Maria

    2013-01-01

    Wiki technology has been promoted as a collaborative software platform. This study investigates interactions that occur in a wiki-based collaborative learning project. The study draws on interaction literature and investigates the types of interactions with which students are engaged in wiki-based group projects, clusters that reflect online…

  20. Interactive Spherical Projection Presentations teach students about the Moon

    NASA Astrophysics Data System (ADS)

    Sherman, S. B.; Pilger, E.; James, B.; Au, C.; Lum, K.; Gillis-Davis, J. J.

    2011-12-01

    Using data from Clementine, Lunar Orbiter, Lunar Prospector, as well as the Lunar Reconnaissance Orbiter (LRO) mission we are creating multimedia applications for the Magic Planet (MP) and Science on a Sphere (SOS), spherical displays for digital media, for the Moon. Presenting the data on this innovative and stimulating medium captures the interest, stimulates curiosity, and inspires scientific learning in children, as well as general audiences. One such presentation is an interactive game where the audience uses "clickers" to vote on the location of their own lunar base determined by available resources, such as proximity to water ice, illumination (source of solar power), TiO,2, (oxygen production) and hydrogen abundances as well as local topography. The interactive nature accommodates a variety of knowledge levels and can be adapted in real-time accordingly. The clickers are used as an assessment tool as well as a means for audience to control the direction of the application. As an assessment tool audience members can make predictions and answer questions using the clicker. In addition, the audience can use the clickers to vote on what they want to do, see, or go next. Having control over the direction of the application increases the audiences' involvement and therefore interest in the activity. Both uses of the clickers engage the audience and they become active participants rather than passive observers. Undergraduates from the University of Hawaii and Leeward Community College, and a high school student from Moanalua High School, are actively involved in the design and execution of these applications. Their input help us to anticipate areas of interest, field test ease of use, and determine areas of potential confusion. In addition, their involvement in this project is intended to increase and foster their interest in planetary science, and/or another STEM related field, while at the same time gain practical experience. The applications are designed to run

  1. TRMM radar

    NASA Technical Reports Server (NTRS)

    Okamoto, Kenichi

    1993-01-01

    The results of a conceptual design study and the performance of key components of the Bread Board Model (BBM) of the Tropical Rainfall Measuring Mission (TRMM) radar are presented. The radar, which operates at 13.8 GHz and is designed to meet TRMM mission objectives, has a minimum measurable rain rate of 0.5 mm/h with a range resolution of 250 m, a horizontal resolution of about 4 km, and a swath width of 220 km. A 128-element active phased array system is adopted to achieve contiguous scanning within the swath. The basic characteristics of BBM were confirmed by experiments. The development of EM started with the cooperation of NASDA and CRL.

  2. The Next Generation Airborne Polarimetric Doppler Radar

    NASA Astrophysics Data System (ADS)

    Vivekanandan, J.; Lee, Wen-Chau; Loew, Eric; Salazar, Jorge; Chandrasekar, V.

    2013-04-01

    NCAR's Electra Doppler radar (ELDORA) with a dual-beam slotted waveguide array using dual-transmitter, dual-beam, rapid scan and step-chirped waveform significantly improved the spatial scale to 300m (Hildebrand et al. 1996). However, ELDORA X-band radar's penetration into precipitation is limited by attenuation and is not designed to collect polarimetric measurements to remotely estimate microphysics. ELDORA has been placed on dormancy because its airborne platform (P3 587) was retired in January 2013. The US research community has strongly voiced the need to continue measurement capability similar to the ELDORA. A critical weather research area is quantitative precipitation estimation/forecasting (QPE/QPF). In recent years, hurricane intensity change involving eye-eyewall interactions has drawn research attention (Montgomery et al., 2006; Bell and Montgomery, 2006). In the case of convective precipitation, two issues, namely, (1) when and where convection will be initiated, and (2) determining the organization and structure of ensuing convection, are key for QPF. Therefore collocated measurements of 3-D winds and precipitation microphysics are required for achieving significant skills in QPF and QPE. Multiple radars in dual-Doppler configuration with polarization capability estimate dynamical and microphysical characteristics of clouds and precipitation are mostly available over land. However, storms over complex terrain, the ocean and in forest regions are not observable by ground-based radars (Bluestein and Wakimoto, 2003). NCAR/EOL is investigating potential configurations for the next generation airborne radar that is capable of retrieving dynamic and microphysical characteristics of clouds and precipitation. ELDORA's slotted waveguide array radar is not compatible for dual-polarization measurements. Therefore, the new design has to address both dual-polarization capability and platform requirements to replace the ELDORA system. NCAR maintains a C-130

  3. On the Developmental Education Radar Screen--2013

    ERIC Educational Resources Information Center

    Paulson, Eric J.

    2013-01-01

    This is the second iteration of the Developmental Education Radar Screen project. As with the first iteration, in 2011, the author uses a "radar screen" metaphor to discuss trends in developmental education based on responses to a series of topics and categories provided by a group of leaders in the educational field. The purpose of this…

  4. Incidence angle normalization of radar backscatter data

    Technology Transfer Automated Retrieval System (TEKTRAN)

    NASA’s Soil Moisture Passive Active (SMAP) satellite (~2014) will include a radar system that will provide L-band multi-polarization backscatter at a constant incidence angle of 40º. During the pre-launch phase of the project there is a need for observations that will support the radar-based soil mo...

  5. Radar measurement of forested areas during OTTER

    NASA Technical Reports Server (NTRS)

    Moghaddam, M.; Durden, S.; Zebker, H.; Klein, J.

    1992-01-01

    To test a forest ecosystem model in the OTTER (Oregon ecosystem research) project, it is desirable to find forest canopy parameters via radar remote sensing measurements. Conventionally, forest biomass, along with quantities such as the leaf area index, drive the model. It is shown that the radar backscatter is not uniquely related to biomass. A sensitivity study is carried out using a forward scattering model to determine the variation of radar cross section as a function of several forest parameters. The results are used to find suitable quantities to recover via radar experiments. A parameter estimation scheme is developed to calculate some preliminary statistical properties of the forest.

  6. Comparison of radar and raingauge measurements during heavy rainfall.

    PubMed

    Einfalt, T; Jessen, M; Mehlig, B

    2005-01-01

    Five heavy small-scale rainfall events in North Rhine-Westphalia (Germany) were investigated with radar and raingauge data. Special attention was paid to quality check and adjustment of radar data. Attenuation effects could be observed on both, C-Band and on X-Band radar. Adjustment of radar data to raingauge values turned out to be very difficult in the vicinity of heavy local rain cells. For the five affected regions the precipitation was quantified in the form of areal time series and cumulated radar images. As further result of this project, the spatial extent of the precipitation fields was identified and compared with radar and raingauge data. PMID:15790244

  7. SMAP RADAR Calibration and Validation

    NASA Astrophysics Data System (ADS)

    West, R. D.; Jaruwatanadilok, S.; Chaubel, M. J.; Spencer, M.; Chan, S. F.; Chen, C. W.; Fore, A.

    2015-12-01

    second half of the L1 cal/val period, the RFI removal algorithm will be tuned for optimal performance, and the Faraday rotation corrections used in radar processing will be further developed and validated. This work is supported by the SMAP project at the Jet Propulsion Laboratory, California Institute of Technology.

  8. Student Group Project Work: A Pioneering Experiment in Interactive Engagement.

    ERIC Educational Resources Information Center

    Mallow, Jeffry V.

    2001-01-01

    Fully half of the curriculum at Roskilde University in Denmark is student-driven group research project work that is often interdisciplinary. Describes the practice of group project work in the sciences at RUC and evaluates implications for educational practice in the United States. (Author/SAH)

  9. Project First Chance: Arizona Behavior Analysis Interactive Outreach Program, July 1, 1981 to June 30, 1982.

    ERIC Educational Resources Information Center

    McCarthy, Jeanne McRae

    The final report describes activities of Project First Chance, Interactive Outreach Project, a program to stimulate the development of improvement of educational services to preschool handicapped children and their families. The project was also designed to provide outreach to culturally diverse populations (primarily Navajos) and to programs in…

  10. Synthetic Aperture Radar Missions Study Report

    NASA Technical Reports Server (NTRS)

    Bard, S.

    2000-01-01

    This report reviews the history of the LightSAR project and summarizes actions the agency can undertake to support industry-led efforts to develop an operational synthetic aperture radar (SAR) capability in the United States.

  11. European near-Earth object radar

    NASA Astrophysics Data System (ADS)

    Zaitsev, Alexander L.

    2002-11-01

    Radar astronomy paradox (RAP): practically everybody agree with essential contributions of active radar observations to Solar System and especially to near-Earth object (NEO) explorations, but despite everything prefer to develop new and new passive telescopes and disposable space missions, only, and nobody want to build at least one dedicated multipurpose radar telescope (neither Arecibo nor Goldstone and Evpatoria radars were created as dedicated radar astronomy instruments). Also, as of June 2002, among of 188 radar detected asteroids and comets there are only 3 NEOs, which were investigated in Europe, with single European radar facility, sited in Evpatoria. The main reason of such deep gap is a low sensitivity of Evpatoria radar, which is in 10 and 300 times less powerful than Goldstone and Arecibo. Therefore, I guess the first dedicated European NEO Radar (ENEOR) is earnestly needful now. From time to time we discuss this problem, but it is not solve for the present moment, perhaps because of above formulated RAP. Origin and concept of the ENEOR, as well as the ENEOR project, based on the being under construction 64-m Sardinia Radio Telescope, will be presented below.

  12. Under the radar: how unexamined biases in decision-making processes in clinical interactions can contribute to health care disparities.

    PubMed

    Dovidio, John F; Fiske, Susan T

    2012-05-01

    Several aspects of social psychological science shed light on how unexamined racial/ethnic biases contribute to health care disparities. Biases are complex but systematic, differing by racial/ethnic group and not limited to love-hate polarities. Group images on the universal social cognitive dimensions of competence and warmth determine the content of each group's overall stereotype, distinct emotional prejudices (pity, envy, disgust, pride), and discriminatory tendencies. These biases are often unconscious and occur despite the best intentions. Such ambivalent and automatic biases can influence medical decisions and interactions, systematically producing discrimination in health care and ultimately disparities in health. Understanding how these processes may contribute to bias in health care can help guide interventions to address racial and ethnic disparities in health. PMID:22420809

  13. Under the Radar: How Unexamined Biases in Decision-Making Processes in Clinical Interactions Can Contribute to Health Care Disparities

    PubMed Central

    Fiske, Susan T.

    2012-01-01

    Several aspects of social psychological science shed light on how unexamined racial/ethnic biases contribute to health care disparities. Biases are complex but systematic, differing by racial/ethnic group and not limited to love–hate polarities. Group images on the universal social cognitive dimensions of competence and warmth determine the content of each group's overall stereotype, distinct emotional prejudices (pity, envy, disgust, pride), and discriminatory tendencies. These biases are often unconscious and occur despite the best intentions. Such ambivalent and automatic biases can influence medical decisions and interactions, systematically producing discrimination in health care and ultimately disparities in health. Understanding how these processes may contribute to bias in health care can help guide interventions to address racial and ethnic disparities in health. PMID:22420809

  14. A Multi-Frequency Wide-Swath Spaceborne Cloud and Precipitation Imaging Radar

    NASA Technical Reports Server (NTRS)

    Li, Lihua; Racette, Paul; Heymsfield, Gary; McLinden, Matthew; Venkatesh, Vijay; Coon, Michael; Perrine, Martin; Park, Richard; Cooley, Michael; Stenger, Pete; Spence, Thomas; Retelny, Tom

    2016-01-01

    Microwave and millimeter-wave radars have proven their effectiveness in cloud and precipitation observations. The NASA Earth Science Decadal Survey (DS) Aerosol, Cloud and Ecosystems (ACE) mission calls for a dual-frequency cloud radar (W band 94 GHz and Ka-band 35 GHz) for global measurements of cloud microphysical properties. Recently, there have been discussions of utilizing a tri-frequency (KuKaW-band) radar for a combined ACE and Global Precipitation Measurement (GPM) follow-on mission that has evolved into the Cloud and Precipitation Process Mission (CaPPM) concept. In this presentation we will give an overview of the technology development efforts at the NASA Goddard Space Flight Center (GSFC) and at Northrop Grumman Electronic Systems (NGES) through projects funded by the NASA Earth Science Technology Office (ESTO) Instrument Incubator Program (IIP). Our primary objective of this research is to advance the key enabling technologies for a tri-frequency (KuKaW-band) shared-aperture spaceborne imaging radar to provide unprecedented, simultaneous multi-frequency measurements that will enhance understanding of the effects of clouds and precipitation and their interaction on Earth climate change. Research effort has been focused on concept design and trade studies of the tri-frequency radar; investigating architectures that provide tri-band shared-aperture capability; advancing the development of the Ka band active electronically scanned array (AESA) transmitreceive (TR) module, and development of the advanced radar backend electronics.

  15. The Interactions among Information Technology Organizational Learning, Project Learning, and Project Success

    ERIC Educational Resources Information Center

    McKay, Donald S., II

    2012-01-01

    Knowledge gained from completed information technology (IT) projects was not often shared with emerging project teams. Learning lessons from other project teams was not pursued because people lack time, do not see value in learning, fear a potentially painful process, and had concerns that sharing knowledge will hurt their career. Leaders could…

  16. Compact Disc Interactive (CD-i) multimedia project.

    PubMed

    Pomeroy, E; Detweiler, M

    1995-01-01

    In 1993, the National Library of Medicine (NLM), in collaboration with the National Cancer Institute (NCI), developed a Compact Disc Interactive (CD-i) program: "Cervical Cancer: Screening For Life." This was NLM's first experience in developing for an all-digital interactive medium, containing motion video, graphic images, and text. In 1994, the original CD-i was expanded to include a telecommunications capability that allowed the user to obtain the NCI's most recent screening and treatment information related to cervical cancer. PMID:7635865

  17. The Radar Software Toolkit: Anaylsis software for the ITM community

    NASA Astrophysics Data System (ADS)

    Barnes, R. J.; Greenwald, R.

    2005-05-01

    The Radar Software Toolkit is a collection of data analysis, modelling and visualization tools originally developed for the SuperDARN project. It has evolved over the years into a robust, multi-platform software toolkit for working with a variety of ITM data sets including data from the Polar, TIMED and ACE spacecraft, ground based magnetometers, Incoherrent Scatter Radars, and SuperDARN. The toolkit includes implementations of the Altitude Adjusted Coordinate System (AACGM), the International Geomagnetic Reference Field (IGRF), SGP4 and a set of coordinate transform functions. It also includes a sophisticated XML based data visualization system. The toolkit is written using a combination of ANSI C, Java and the Interactive Data Language (IDL) and has been tested on a variety of platforms.

  18. Enhancing Europa surface characterization with ice penetrating radar: A Comparative study in Antarctica

    NASA Astrophysics Data System (ADS)

    Curra, C.; Arnold, E.; Karwoski, B.; Grima, C.; Schroeder, D. M.; Young, D. A.; Blankenship, D. D.

    2013-12-01

    The shape and composition of the surface of Europa result from multiple processes, most of them involving direct and indirect interactions between the liquid and solid phases of its outer water layer. The surface ice composition is likely to reflect the material exchanged with the sub-glacial ocean and potentially holds signatures of organic compounds that could demonstrate the ability of the icy moon to sustain life. Therefore, the most likely targets for in-situ landing missions are primarily located in complex terrains disrupted by exchange mechanisms with the ocean/lenses of sub-glacial liquid water. Any landing site selection process to ensure a safe delivery of a future lander, will then have to confidently characterize its surface roughness. We evaluate the capability of an ice-penetrating radar to characterize the roughness using a statistical method applied to the surface echoes. Our approach is to compare radar-derived data with nadir-imagery and laser altimetry simultaneously acquired on an airborne platform over Marie Byrd Land, West Antarctica, during the 2012-13 GIMBLE survey. The radar is the High-Capability Radar Sounder 2 (HiCARS 2, 60 MHz) system operated by the University of Texas Institute for Geophysics (UTIG), with specifications similar to the Ice Penetrating Radar (IPR) of the Europa Clipper project. Surface textures as seen by simultaneously collected nadir imagery are manually classified, allowing individual contrast stretching for better identification. We identified crevasse fields, blue ice patches, and families of wind-blown patterns. Homogeneity/heterogeneity of the textures has also been an important classification criterion. The various textures are geolocated and compared to the evolution and amplitude of laser-derived and radar-derived roughness. Similarities and discrepancies between these three datasets are illustrated and analyzed to qualitatively constrain radar sensitivity to the surface textures. The result allows for a

  19. Review of Interactive Video--Romanian Project Proposal

    ERIC Educational Resources Information Center

    Onita, Mihai; Petan, Sorin; Vasiu, Radu

    2016-01-01

    In the recent years, the globalization and massification of video education offer involved more and more eLearning scenarios within universities. This article refers to interactive video and proposes an overview of it. We analyze the background information, regarding the eLearning campus used in virtual universities around the world, the MOOC…

  20. The Vesalius Project: Interactive Computers in Anatomical Instruction.

    ERIC Educational Resources Information Center

    McCracken, Thomas O.; Spurgeon, Thomas L.

    1991-01-01

    Described is a high-resolution, interactive 3-D atlas of human/animal anatomy that students will use to learn the structure of the body and to understand their own bodies in health and disease. This system can be used to reinforce cadaver study or to serve as a substitute for institutions where it is not practical to use cadavers. (KR)

  1. Developing tools for digital radar image data evaluation

    NASA Technical Reports Server (NTRS)

    Domik, G.; Leberl, F.; Raggam, J.

    1986-01-01

    The refinement of radar image analysis methods has led to a need for a systems approach to radar image processing software. Developments stimulated through satellite radar are combined with standard image processing techniques to create a user environment to manipulate and analyze airborne and satellite radar images. One aim is to create radar products for the user from the original data to enhance the ease of understanding the contents. The results are called secondary image products and derive from the original digital images. Another aim is to support interactive SAR image analysis. Software methods permit use of a digital height model to create ortho images, synthetic images, stereo-ortho images, radar maps or color combinations of different component products. Efforts are ongoing to integrate individual tools into a combined hardware/software environment for interactive radar image analysis.

  2. Quality Interaction Between Mission Assurance and Project Team Members

    NASA Technical Reports Server (NTRS)

    Kwong-Fu, Helenann H.; Wilson, Robert K.

    2006-01-01

    Mission Assurance independent assessments started during the development cycle and continued through post launch operations. In operations, Health and Safety of the Observatory is of utmost importance. Therefore, Mission Assurance must ensure requirements compliance and focus on process improvements required across the operational systems including new/modified products, tools, and procedures. The deployment of the interactive model involves three objectives: Team member Interaction, Good Root Cause Analysis Practices, and Risk Assessment to avoid reoccurrences. In applying this model, we use a metric based measurement process and was found to have the most significant effect, which points to the importance of focuses on a combination of root cause analysis and risk approaches allowing the engineers the ability to prioritize and quantify their corrective actions based on a well-defined set of root cause definitions (i.e. closure criteria for problem reports), success criteria and risk rating definitions.

  3. Signal to Noise Analysis of iRadar sensors

    SciTech Connect

    Fritzke, A; Top, P

    2009-09-10

    This document follows my process of testing; comparing; and contrasting several iRadars signal to noise ratios for both HH and VV polarization. A brief introduction is given explaining the basics of iRadar technology and what data I was collecting. The process section explains the steps I took to collect my data along with any procedures I followed. The analysis section compares and contrasts five different radars and the two different polarizations. The analysis also details the radars viewing limitations and area. Finally, the report delves into the effects of two radars interfering with each other. A conclusion goes over the success and findings of the project.

  4. Factors Mediating the Interactions between Adviser and Advisee during the Master's Thesis Project: A Quantitative Approach

    ERIC Educational Resources Information Center

    Rodrigues Jr., Jose Florencio; Lehmann, Angela Valeria Levay; Fleith, Denise De Souza

    2005-01-01

    Building on previous studies centred on the interaction between adviser and advisee in masters thesis projects, in which a qualitative approach was used, the present study uses factor analysis to identify the factors that determine either a successful or unsuccessful outcome for the masters thesis project. There were five factors relating to the…

  5. Probing Projections: Interaction Techniques for Interpreting Arrangements and Errors of Dimensionality Reductions.

    PubMed

    Stahnke, Julian; Dörk, Marian; Müller, Boris; Thom, Andreas

    2016-01-01

    We introduce a set of integrated interaction techniques to interpret and interrogate dimensionality-reduced data. Projection techniques generally aim to make a high-dimensional information space visible in form of a planar layout. However, the meaning of the resulting data projections can be hard to grasp. It is seldom clear why elements are placed far apart or close together and the inevitable approximation errors of any projection technique are not exposed to the viewer. Previous research on dimensionality reduction focuses on the efficient generation of data projections, interactive customisation of the model, and comparison of different projection techniques. There has been only little research on how the visualization resulting from data projection is interacted with. We contribute the concept of probing as an integrated approach to interpreting the meaning and quality of visualizations and propose a set of interactive methods to examine dimensionality-reduced data as well as the projection itself. The methods let viewers see approximation errors, question the positioning of elements, compare them to each other, and visualize the influence of data dimensions on the projection space. We created a web-based system implementing these methods, and report on findings from an evaluation with data analysts using the prototype to examine multidimensional datasets. PMID:26390487

  6. Open Educational Resources for Call Teacher Education: The iTILT Interactive Whiteboard Project

    ERIC Educational Resources Information Center

    Whyte, Shona; Schmid, Euline Cutrim; van Hazebrouck Thompson, Sanderin; Oberhofer, Margret

    2014-01-01

    This paper discusses challenges and opportunities arising during the development of open educational resources (OERs) to support communicative language teaching (CLT) with interactive whiteboards (IWBs). iTILT (interactive Technologies in Language Teaching), a European Lifelong Learning Project, has two main aims: (a) to promote "best…

  7. SMAP RADAR Processing and Calibration

    NASA Astrophysics Data System (ADS)

    West, R. D.; Jaruwatanadilok, S.; Kwoun, O.; Chaubell, M. J.

    2013-12-01

    The Soil Moisture Active Passive (SMAP) mission uses L-band radar and radiometer measurements to estimate soil moisture with 4% volumetric accuracy at a resolution of 10 km, and freeze-thaw state at a resolution of 1-3 km. Model sensitivities translate the soil moisture accuracy to a radar backscatter accuracy of 1 dB at 3 km resolution and a brightness temperature accuracy of 1.3 K at 40 km resolution. This presentation will describe the level 1 radar processing and calibration challenges and the choices made so far for the algorithms and software implementation. To obtain the desired high spatial resolution the level 1 radar ground processor employs synthetic aperture radar (SAR) imaging techniques. Part of the challenge of the SMAP data processing comes from doing SAR imaging on a conically scanned system with rapidly varying squint angles. The radar echo energy will be divided into range/Doppler bins using time domain processing algorithms that can easily follow the varying squint angle. For SMAP, projected range resolution is about 250 meters, while azimuth resolution varies from 400 meters to 1.2 km. Radiometric calibration of the SMAP radar means measuring, characterizing, and where necessary correcting the gain and noise contributions from every part of the system from the antenna radiation pattern all the way to the ground processing algorithms. The SMAP antenna pattern will be computed using an accurate antenna model, and then validated post-launch using homogeneous external targets such as the Amazon rain forest to look for uncorrected gain variation. Noise subtraction is applied after image processing using measurements from a noise only channel. Variations of the internal electronics are tracked by a loopback measurement which will capture most of the time and temperature variations of the transmit power and receiver gain. Long-term variations of system performance due to component aging will be tracked and corrected using stable external reference

  8. The MST Radar Technique

    NASA Technical Reports Server (NTRS)

    Roettger, J.

    1984-01-01

    The coherent radar technique is reviewed with special emphasis to mesosphere-stratosphere-troposphere (MST) radars operating in the VHF band. Some basic introduction to Doppler radar measurements and the radar equation is followed by an outline of the characteristics of atmospheric turbulence, viewed from the scattering and reflection processes of radar signals. Radar signal acquisition and preprocessing, namely coherent detection, digital sampling, pre-integration and coding, is briefly discussed. The data analysis is represented in terms of the correlation and spectrum analysis, yielding the essential parameters: power, signal-to-noise ratio, average and fluctuating velocity and persistency. The techniques to measure wind velocities, viz. the different modes of the Doppler method as well as the space antenna method are surveyed and the feasibilities of the MST radar interferometer technique are elucidated. A general view on the criteria to design phased array antennas is given. An outline of the hardware of a typical MST radar system is presented.

  9. Application of radar for automotive collision avoidance. Volume 2: Development plan and progress reports

    NASA Technical Reports Server (NTRS)

    Lichtenberg, Christopher L. (Editor)

    1987-01-01

    The purpose of this project was research and development of an automobile collision avoidance radar system. Items within the scope of the one-year effort were to: (1) review previous authors' work in this field; (2) select a suitable radar approach; (3) develop a system design; (4) perform basic analyses and observations pertinent to radar design, performance, and effects; (5) fabricate and collect radar data from a data collection radar; (6) analyze and derive conclusions from the radar data; and (7) make recommendations about the likelihood of success of the investigated radar techniques. The final technical report presenting all conclusions is contained in Volume 1.

  10. Space Radar Image of Baikal Lake, Russia

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This is an X-band black-and-white image of the forests east of the Baikal Forest in the Jablonowy Mountains of Russia. The image is centered at 52.5 degrees north latitude and 116 degrees east longitude near the mining town of Bukatschatscha. This image was acquired by the Spaceborne Imaging Radar-C/X-band Synthetic Aperture Radar aboard the space shuttle Endeavour on October 4, 1994, during the second flight of the spaceborne radar. This area is part of an international research project known as the Taiga Aerospace Investigation using Geographic Information System Applications.

  11. Doppler radar results

    NASA Technical Reports Server (NTRS)

    Bracalente, Emedio M.

    1992-01-01

    The topics are covered in viewgraph form and include the following: (1) a summary of radar flight data collected; (2) a video of combined aft cockpit, nose camera, and radar hazard displays; (3) a comparison of airborne radar F-factor measurements with in situ and Terminal Doppler Weather Radar (TDWR) F-factors for some sample events; and (4) a summary of wind shear detection performance.

  12. Examination on accuracy of the radar rainfall estimated by using Korean dual-pol radar rainfall estimation algorithm

    NASA Astrophysics Data System (ADS)

    Yoon, Jungsoo; Choi, Dayoung; Suk, Mi-Kyung; Nam, Kyung-Yeub; Lee, Sangmi; Ko, Jeong-Seok

    2016-04-01

    Weather Radar Center (WRC) in Korea Meteorological Administration (KMA) have tried to improve the accuracy of the radar rainfall. WRC introduced Radar-AWS Rainrate (RAR) algorithm in 2001 to quantitatively improve the accuracy of the radar rainfall. Whereafter, RAR algorithm have been advanced and still used to estimate the radar rainfall. WRC has developed Korean dual-pol radar rainfall estimation algorithm from 2014 when the project of constructing the dual-pol radar network was initiated. WRC therefore suggested first Korean dual-pol radar rainfall estimation equations (R(Z), R(Z, ZDR), R(ZDR, KDP), and R(KDP)) in 2014 and developed the equations in 2015. Since WRC just suggested each equation, it needs to algorithmize the equations. This study suggested Korean dual-pol radar rainfall estimation algorithm and examined on the accuracy of the radar rainfall estimated by the algorithm. The radar measurements obtained by dual-pol radars (BRI, BSL, and SBS) which were introduced in 2015 were used.

  13. Lunar radar backscatter studies

    NASA Technical Reports Server (NTRS)

    Thompson, T. W.

    1979-01-01

    The lunar surface material in the Plato area is characterized using Earth based visual, infrared, and radar signatures. Radar scattering in the lunar regolith with an existing optical scattering computer program is modeled. Mapping with 1 to 2 km resolution of the Moon using a 70 cm Arecibo radar is presented.

  14. Radar: Human Safety Net

    ERIC Educational Resources Information Center

    Ritz, John M.

    2016-01-01

    Radar is a technology that can be used to detect distant objects not visible to the human eye. A predecessor of radar, called the telemobiloscope, was first used to detect ships in the fog in 1904 off the German coast. Many scientists have worked on the development and refinement of radar (Hertz with electromagnetic waves; Popov with determining…

  15. VHF radar measurements during MAP/WINE

    NASA Technical Reports Server (NTRS)

    Czechowsky, P.; Klostermeyer, J.; Ruster, R.; Schmidt, G.; Rottger, J.

    1983-01-01

    Sensitive Doppler radars which operate in the very high frequency (VHF) band, usually near 50 MHz can measure profiles of background winds, tides, atmospheric gravity waves and turbulence at tropospheric, stratospheric and mesospheric heights. Their ability to observe simultaneously large and small-scale processes makes them unique instruments for studying not only each process separately but also their nonlinear interactions. The mobile VHF radar to be used during the MAP/WINE campaign on Andoya is a modified version of the SOUSY VHF radar being in operation for six years in the Harz Mountains.

  16. Shuttle Imaging Radar-C (SIR-C): Executive summary

    NASA Technical Reports Server (NTRS)

    1983-01-01

    The scientific and technological objectives of the Shuttle Imaging Radar-C (SIR-C) Project are reviewed. Information regarding the implementation philosophy and approach, and the relationship of the project to the overall SIR program is also provided.

  17. The design and evaluation of a 5.8 ghz laptop-based radar system

    NASA Astrophysics Data System (ADS)

    Teng, Kevin Chi-Ming

    This project involves design and analysis of a 5.8 GHz laptop-based radar system. The radar system measures Doppler, ranging and forming Synthetic Aperture Radar (SAR) images utilizing Matlab software provided from MIT Open Courseware and performs data acquisition and signal processing. The main purpose of this work is to bring new perspective to the existing radar project by increasing the ISM band frequency from 2.4 GHz to 5.8 GHz and to carry out a series of experiments on the implementation of the radar kit. Demonstrating the radar at higher operating frequency is capable of providing accurate data results in Doppler, ranging and SAR images.

  18. Addendum to proceedings of the 1978 Synthetic Aperture Radar Technology Conference

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Various research projects on synthetic aperture radar are reported, including SAR calibration techniques. Slot arrays, sidelobe suppression, and wide swaths on satellite-borne radar were examined. The SAR applied to remote sensing was also considered.

  19. Cloud and Precipitation Radar

    NASA Astrophysics Data System (ADS)

    Hagen, Martin; Höller, Hartmut; Schmidt, Kersten

    Precipitation or weather radar is an essential tool for research, diagnosis, and nowcasting of precipitation events like fronts or thunderstorms. Only with weather radar is it possible to gain insights into the three-dimensional structure of thunderstorms and to investigate processes like hail formation or tornado genesis. A number of different radar products are available to analyze the structure, dynamics and microphysics of precipitation systems. Cloud radars use short wavelengths to enable detection of small ice particles or cloud droplets. Their applications differ from weather radar as they are mostly orientated vertically, where different retrieval techniques can be applied.

  20. Shuttle Radar Topography Mission (SRTM)

    USGS Publications Warehouse

    U.S. Geological Survey

    2009-01-01

    Under an agreement with the National Aeronautics and Space Administration (NASA) and the Department of Defense's National Geospatial-Intelligence Agency (NGA), the U.S. Geological Survey (USGS) is distributing elevation data from the Shuttle Radar Topography Mission (SRTM). The SRTM is a joint project of NASA and NGA to map the Earth's land surface in three dimensions at an unprecedented level of detail. As part of space shuttle Endeavour's flight during February 11-22, 2000, the SRTM successfully collected data over 80 percent of the Earth's land surface for most of the area between latitudes 60 degrees north and 56 degrees south. The SRTM hardware included the Spaceborne Imaging Radar-C (SIR-C) and X-band Synthetic Aperture Radar (X-SAR) systems that had flown twice previously on other space shuttle missions. The SRTM data were collected with a technique known as interferometry that allows image data from dual radar antennas to be processed for the extraction of ground heights.

  1. Shuttle Radar Topography Mission (SRTM)

    USGS Publications Warehouse

    U.S. Geological Survey

    2003-01-01

    Under an agreement with the National Aeronautics and Space Administration (NASA) and the Department of Defense's National Imagery and Mapping Agency (NIMA), the U.S. Geological Survey (USGS) is now distributing elevation data from the Shuttle Radar Topography Mission (SRTM). The SRTM is a joint project between NASA and NIMA to map the Earth's land surface in three dimensions at a level of detail unprecedented for such a large area. Flown aboard the NASA Space Shuttle Endeavour February 11-22, 2000, the SRTM successfully collected data over 80 percent of the Earth's land surface, for most of the area between 60? N. and 56? S. latitude. The SRTM hardware included the Spaceborne Imaging Radar-C (SIR-C) and X-band Synthetic Aperture Radar (X-SAR) systems that had flown twice previously on other space shuttle missions. The SRTM data were collected specifically with a technique known as interferometry that allows image data from dual radar antennas to be processed for the extraction of ground heights.

  2. Ground and Space Radar Volume Matching and Comparison Software

    NASA Technical Reports Server (NTRS)

    Morris, Kenneth; Schwaller, Mathew

    2010-01-01

    This software enables easy comparison of ground- and space-based radar observations. The software was initially designed to compare ground radar reflectivity from operational, ground based Sand C-band meteorological radars with comparable measurements from the Tropical Rainfall Measuring Mission (TRMM) satellite s Precipitation Radar (PR) instrument. The software is also applicable to other ground-based and space-based radars. The ground and space radar volume matching and comparison software was developed in response to requirements defined by the Ground Validation System (GVS) of Goddard s Global Precipitation Mission (GPM) project. This software innovation is specifically concerned with simplifying the comparison of ground- and spacebased radar measurements for the purpose of GPM algorithm and data product validation. This software is unique in that it provides an operational environment to routinely create comparison products, and uses a direct geometric approach to derive common volumes of space- and ground-based radar data. In this approach, spatially coincident volumes are defined by the intersection of individual space-based Precipitation Radar rays with the each of the conical elevation sweeps of the ground radar. Thus, the resampled volume elements of the space and ground radar reflectivity can be directly compared to one another.

  3. Real-time interactive projection system based on infrared structured-light method

    NASA Astrophysics Data System (ADS)

    Qiao, Xiaorui; Zhou, Qian; Ni, Kai; He, Liang; Wu, Guanhao; Mao, Leshan; Cheng, Xuemin; Ma, Jianshe

    2012-11-01

    Interactive technologies have been greatly developed in recent years, especially in projection field. However, at present, most interactive projection systems are based on special designed interactive pens or whiteboards, which is inconvenient and limits the improvement of user experience. In this paper, we introduced our recent progress on theoretically modeling a real-time interactive projection system. The system permits the user to easily operate or draw on the projection screen directly by fingers without any other auxiliary equipment. The projector projects infrared striping patterns onto the screen and the CCD captures the deformational image. We resolve the finger's position and track its movement by processing the deformational image in real-time. A new way to determine whether the finger touches the screen is proposed. The first deformational fringe on the fingertip and the first fringe at the finger shadow are the same one. The correspondence is obtained, so the location parameters can be decided by triangulation. The simulation results are given, and errors are analyzed.

  4. Ulysses - an application for the projection of molecular interactions across species.

    PubMed

    Kemmer, Danielle; Huang, Yong; Shah, Sohrab P; Lim, Jonathan; Brumm, Jochen; Yuen, Macaire M S; Ling, John; Xu, Tao; Wasserman, Wyeth W; Ouellette, B F Francis

    2005-01-01

    We developed Ulysses as a user-oriented system that uses a process called Interolog Analysis for the parallel analysis and display of protein interactions detected in various species. Ulysses was designed to perform such Interolog Analysis by the projection of model organism interaction data onto homologous human proteins, and thus serves as an accelerator for the analysis of uncharacterized human proteins. The relevance of projections was assessed and validated against published reference collections. All source code is freely available, and the Ulysses system can be accessed via a web interface http://www.cisreg.ca/ulysses. PMID:16356269

  5. 2. VIEW SOUTHWEST, prime search radar tower, height finder radar ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. VIEW SOUTHWEST, prime search radar tower, height finder radar towards, height finder radar towers, and radar tower (unknown function) - Fort Custer Military Reservation, P-67 Radar Station, .25 mile north of Dickman Road, east of Clark Road, Battle Creek, Calhoun County, MI

  6. Design, Utility, and History of the Colorado Adoption Project: Examples Involving Adjustment Interactions1

    PubMed Central

    Rhea, Sally Ann; Bricker, Josh B.; Corley, Robin P.; DeFries, John C.; Wadsworth, Sally J.

    2013-01-01

    This paper describes the Colorado Adoption Project (CAP), a longitudinal study in behavioral development, and discusses how adoption studies may be used to assess genetic and environmental etiologies of individual differences for important developmental outcomes. Previous CAP research on adjustment outcomes in childhood and adolescence which found significant interactions, including gene-environment interactions, is reviewed. New research suggests mediating effects of menarche and religiosity on age at first sex in this predominantly middle-class, Caucasian sample. PMID:23833552

  7. The Shuttle Radar Topography Mission

    NASA Astrophysics Data System (ADS)

    Farr, T. G.; Kobrick, M.

    2001-05-01

    The Shuttle Radar Topography Mission (SRTM), which flew successfully aboard Endeavour in February 2000, is a cooperative project between NASA and the National Imagery and Mapping Agency (NIMA). The mission was designed to use a single-pass radar interferometer to produce a digital elevation model of the Earth's land surface between about 60 degrees north and 56 degrees south latitude. The DEM will have 30 m horizontal resolution and about 15 m vertical errors. Two ortho-rectified C-band image mosaics are also planned. SRTM used a modification of the radar instrument that comprised the Spaceborne Radar Laboratory that flew twice on the Shuttle Endeavour in 1994. To collect the interferometric data, a 60 m mast, additional C-band antenna, and improved tracking and navigation devices were added. A second X-band antenna was also added by the German Space Agency, and produced higher resolution topographic measurements in strips nested within the full, C-band coverage. First results indicate that the radars and ancillary instruments worked very well. Data played back to the ground during the flight were processed to DEMs and products released hours after acquisition. An extensive program for calibration and verification of the SRTM data is now underway. When complete later this year, systematic processing of the data will begin, with final products emerging a continent at a time. Data processing will be completed by the end of 2002. Products will be transferred to the US Geological Survey's EROS Data Center for civilian archive and distribution. NIMA will handle Department of Defense distribution. * Work performed under contract to NASA.

  8. The Shuttle Radar Topography Mission

    NASA Astrophysics Data System (ADS)

    Farr, T. G.; Kobrick, M.

    2001-12-01

    The Shuttle Radar Topography Mission (SRTM), which flew successfully aboard Endeavour in February 2000, is a cooperative project between NASA, the National Imagery and Mapping Agency, and the German and Italian Space Agencies. The mission was designed to use a single-pass radar interferometer to produce a digital elevation model of the Earth's land surface between about 60 degrees north and 56 degrees south latitude. The DEM will have 30 m horizontal resolution and better than 15 m vertical errors. Two ortho-rectified C-band image mosaics are also planned. Data processing will be completed by the end of 2002. SRTM used a modification of the radar instrument that comprised the Spaceborne Radar Laboratory that flew twice on the Shuttle Endeavour in 1994. To collect the interferometric data, a 60 m mast, additional C-band antenna, and improved tracking and navigation devices were added. A second X-band antenna was also added by the German Space Agency, and produced higher resolution topographic measurements in strips nested within the full, C-band coverage. First results indicate that the radars and ancillary instruments worked very well. Data played back to the ground during the flight were processed to DEMs and products released hours after acquisition. An extensive program for calibration and verification of the SRTM data is now underway. When complete later this year, systematic processing of the data will begin, with final products emerging a continent at a time. Products will be transferred to the US Geological Survey's EROS Data Center for civilian archive and distribution. NIMA will handle Department of Defense distribution. * Work performed under contract to NASA.

  9. Radar image of Rio Sao Francisco, Brazil

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This radar image acquired by SRTM shows an area south of the Sao Francisco River in Brazil. The area is predominantly scrub forest. Areas such as these are difficult to map by traditional methods because of frequent cloud cover and local inaccessibility. Image brightness differences in this image are caused by differences in vegetation type and density. Tributaries of the Sao Francisco are visible in the upper right. The Sao Francisco River is a major source of water for irrigation and hydroelectric power. Mapping such regions will allow scientists to better understand the relationships between flooding cycles, forestation and human influences on ecosystems.

    This radar image was obtained by the Shuttle Radar Topography Mission as part of its mission to map the Earth's topography. The image was acquired by just one of SRTM's two antennas, and consequently does not show topographic data but only the strength of the radar signal reflected from the ground. This signal, known as radar backscatter, provides insight into the nature of the surface, including its roughness, vegetation cover, and urbanization.

    The Shuttle Radar Topography Mission (SRTM), launched on February 11, 2000, uses the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. The mission is designed to collect three-dimensional measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter-long (200-foot) mast, an additional C-band imaging antenna and improved tracking and navigation devices. The mission is a cooperative project between the National Aeronautics and Space Administration (NASA), the National Imagery and Mapping Agency (NIMA) and the German and Italian space agencies. It is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Earth Science Enterprise, Washington, DC.

  10. Radar Imaging of Asteroids

    NASA Astrophysics Data System (ADS)

    Ostro, S. J.

    1996-09-01

    Measurements of the distribution of echo power in time delay (range) and Doppler frequency (line-of-sight velocity) can synthesize images of near-Earth and main-belt asteroids (NEAs and MBAs) that traverse the detectability windows of groundbased radar telescopes. Under ideal circumstances, current radar waveforms can achieve decameter surface resolution. The number of useful pixels obtainable in an imaging data set is of the same order as the signal-to-noise ratio, SNR, of an optimally filtered, weighted sum of all the data. (SNR increases as the square root of the integration time.) The upgraded Arecibo telescope which is about to become operational, should be able to achieve single-date SNRs {\\underline>} (20,100) for an average of (35,5) MBAs per year and single-date SNRs {\\underline>} (20,100,1000) for an average of (10,6,2) of the currently catalogued NEAs per year; optical surveying of the NEA population could increase the frequency of opportunities by an order of magnitude. The strongest imaging opportunities predicted for Arecibo between now and the end of 1997 include (the peak SNR/date is in parentheses): 9 Metis (110), 27 Euterpe (170), 80 Sappho (100), 139 Juewa (140), 144 Vibilia (140), 253 Mathilde (100), 2102 Tantalus (570), 3671 Dionysus (170), 3908 1980PA (4400), 4179 Toutatis (16000), 4197 1982TA (1200), 1991VK (700), and 1994PC1 (7400). A delay-Doppler image projects the echo power distribution onto the target's apparent equatorial plane. One cannot know a priori whether one or two (or more) points on the asteroid contributed power to a given pixel, so accurate interpretation of delay-Doppler images requires modeling (Hudson, 1993, Remote Sensing Rev. 8, 195-203). Inversion of an imaging sequence with enough orientational coverage can remove "north/south" ambiguities and can provide estimates of the target's three-dimensional shape, spin state, radar scattering properties, and delay-Doppler trajectory (e.g., Ostro et al. 1995, Science 270, 80

  11. Radar Location Equipment Development Program: Phase I

    SciTech Connect

    Sandness, G.A.; Davis, K.C.

    1985-06-01

    The work described in this report represents the first phase of a planned three-phase project designed to develop a radar system for monitoring waste canisters stored in a thick layer of bedded salt at the Waste Isolation Pilot Plant near Carlsbad, New Mexico. The canisters will be contained in holes drilled into the floor of the underground waste storage facility. It is hoped that these measurements can be made to accuracies of +-5 cm and +-2/sup 0/, respectively. The initial phase of this project was primarily a feasibility study. Its principal objective was to evaluate the potential effectiveness of the radar method in the planned canister monitoring application. Its scope included an investigation of the characteristics of radar signals backscattered from waste canisters, a test of preliminary data analysis methods, an assessment of the effects of salt and bentonite (a proposed backfill material) on the propagation of the radar signals, and a review of current ground-penetrating radar technology. A laboratory experiment was performed in which radar signals were backscattered from simulated waste canisters. The radar data were recorded by a digital data acquisition system and were subsequently analyzed by three different computer-based methods to extract estimates of canister location and tilt. Each of these methods yielded results that were accurate within a few centimeters in canister location and within 1/sup 0/ in canister tilt. Measurements were also made to determine the signal propagation velocities in salt and bentonite (actually a bentonite/sand mixture) and to estimate the signal attenuation rate in the bentonite. Finally, a product survey and a literature search were made to identify available ground-penetrating radar systems and alternative antenna designs that may be particularly suitable for this unique application. 10 refs., 21 figs., 4 tabs.

  12. Laser radar in robotics

    SciTech Connect

    Carmer, D.C.; Peterson, L.M.

    1996-02-01

    In this paper the authors describe the basic operating principles of laser radar sensors and the typical algorithms used to process laser radar imagery for robotic applications. The authors review 12 laser radar sensors to illustrate the variety of systems that have been applied to robotic applications wherein information extracted from the laser radar data is used to automatically control a mechanism or process. Next, they describe selected robotic applications in seven areas: autonomous vehicle navigation, walking machine foot placement, automated service vehicles, manufacturing and inspection, automotive, military, and agriculture. They conclude with a discussion of the status of laser radar technology and suggest trends seen in the application of laser radar sensors to robotics. Many new applications are expected as the maturity level progresses and system costs are reduced.

  13. Planetary radar studies

    NASA Technical Reports Server (NTRS)

    Thompson, T. W.; Cutts, J. A.

    1981-01-01

    A catalog of lunar and radar anomalies was generated to provide a base for comparison with Venusian radar signatures. The relationships between lunar radar anomalies and regolith processes were investigated, and a consortium was formed to compare lunar and Venusian radar images of craters. Time was scheduled at the Arecibo Observatory to use the 430 MHz radar to obtain high resolution radar maps of six areas of the lunar suface. Data from 1978 observations of Mare Serenitas and Plato are being analyzed on a PDP 11/70 computer to construct the computer program library necessary for the eventual reduction of the May 1981 and subsequent data acquisitions. Papers accepted for publication are presented.

  14. 3. VIEW NORTHWEST, height finder radar towers, and radar tower ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. VIEW NORTHWEST, height finder radar towers, and radar tower (unknown function) - Fort Custer Military Reservation, P-67 Radar Station, .25 mile north of Dickman Road, east of Clark Road, Battle Creek, Calhoun County, MI

  15. 30. Perimeter acquisition radar building room #318, showing radar control. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    30. Perimeter acquisition radar building room #318, showing radar control. Console and line printers - Stanley R. Mickelsen Safeguard Complex, Perimeter Acquisition Radar Building, Limited Access Area, between Limited Access Patrol Road & Service Road A, Nekoma, Cavalier County, ND

  16. MCHP/VIP: Mother-Child Home Program of the Verbal Interaction Project.

    ERIC Educational Resources Information Center

    Verbal Interaction Project, Freeport, NY.

    This report to the Joint Dissemination Review Panel of the Office of Education and the National Institute of Education provides an overview of the Mother-Child Home Program of the Verbal Interaction Project: a voluntary, home-based early education program for low-income pre- preschoolers (2- and 3-year-old children), their mothers and other adults…

  17. Time Past: Impacts of ICT on the Pedagogic Discourse in the Interactive Project

    ERIC Educational Resources Information Center

    Ingram, Neil R.

    2016-01-01

    The "pedagogic discourse" can describe the power relations and fields of influence within schools. This article extends the approach to include ICT-mediated learning in schools by considering evidence from the InterActive project, undertaken by the University of Bristol, England, in 2000-04. The article also considers how the pedagogic…

  18. Applying of interactive methods for astronomy education in a school project "International space colony TANHGRA"

    NASA Astrophysics Data System (ADS)

    Radeva, Veselka S.

    Several interactive methods, applied in the astronomy education during creation of the project about a colony in the Space, are presented. The methods Pyramid, Brainstorm, Snow-slip (Snowball) and Aquarium give the opportunity for schooler to understand and learn well a large packet of astronomical knowledge.

  19. Kids Interactive Telecommunications Project by Satellite (KITES): A Telecommunications Partnership To Empower Middle School Students.

    ERIC Educational Resources Information Center

    LeBaron, John

    Kids Interactive Telecommunications Project by Satellite (KITES) is a cooperative international telecommunications partnership involving the University of Lowell, Digital's corporate video network, Videostar Connections Inc. (a satellite networking broker), PanAmSat (a satellite operator), and several other public education institutions in…

  20. 1999 IEEE radar conference

    SciTech Connect

    1999-07-01

    This conference addresses the stringent radar technology demands facing the next century: target detection, tracking and identification; changing target environment; increased clutter mitigation techniques; air traffic control; transportation; drug smuggling; remote sensing, and other consumer oriented applications. A timely discussion covers how to minimize costs for these emerging areas. Advanced radar technology theory and applications are also presented. Topics covered include: signal processing; space time adaptive processing/antennas; surveillance technology; radar systems; dual use; and phenomenology.

  1. Planetary radar astronomy

    NASA Astrophysics Data System (ADS)

    Ostro, S. J.

    1983-03-01

    The present investigation is concerned with planetary radar research reported during the time from 1979 to 1982. A brief synopsis of radar definitions and technical terminology is also provided. In connection with the proximity of the moon to earth, lunar radar studies have been performed over a wider range of wavelengths than radar investigations of other planetary targets. The most recent study of lunar quasispecular scattering is due to Simpson and Tyler (1982). The latest efforts to interpret the lunar radar maps focus on maria-highlands regolith differences and models of crater ejecta evolution. The highly successful Pioneer Venus Radar Mapper experiment has provided a first look at Venus' global distributions of topography, lambda 17-cm radar reflectivity, and rms surface slopes. Attention is given to recent comparisons of Viking Orbiter images of Mars to groundbased radar altimetry of the planet, the icy Galilean satellites, radar observations of asteroids and comets, and lambda 4-cm and lambda 13-cm observations of Saturn's rings.

  2. 16. Perimeter acquisition radar building room #102, electrical equipment room; ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    16. Perimeter acquisition radar building room #102, electrical equipment room; the prime power distribution system. Excellent example of endulum-types shock isolation. The grey cabinet and barrel assemble is part of the polychlorinated biphenyl (PCB) retrofill project - Stanley R. Mickelsen Safeguard Complex, Perimeter Acquisition Radar Building, Limited Access Area, between Limited Access Patrol Road & Service Road A, Nekoma, Cavalier County, ND

  3. Past-time Radar Rainfall Estimates using Radar AWS Rainrate system with Local Gauge Correction method

    NASA Astrophysics Data System (ADS)

    Choi, D.; Lee, M. H.; Suk, M. K.; Nam, K. Y.; Hwang, J.; Ko, J. S.

    2015-12-01

    The Weather Radar Center at Korea Meteorological Administration (KMA) has radar network for warnings for heavy rainfall and severe storms. We have been operating an operational real-time adjusted the Radar-Automatic Weather Station (AWS) Rainrate (RAR) system developed by KMA in 2006 for providing radar-based quantitative precipitation estimation (QPE) to meteorologists. This system has several uncertainty in estimating precipitation by radar reflectivity (Z) and rainfall intensity (R) relationship. To overcome uncertainty of the RAR system and improve the accuracy of QPE, we are applied the Local Gauge Correction (LGC) method which uses geo-statistical effective radius of errors of the QPE to RAR system in 2012. According to the results of previous study in 2014 (Lee et al., 2014), the accuracy of the RAR system with LGC method improved about 7.69% than before in the summer season of 2012 (from June to August). It has also improved the accuracy of hydrograph when we examined the accuracy of flood simulation using hydrologic model and data derived by the RAR system with LGC method. We confirmed to have its effectiveness through these results after the application of LGC method. It is required for high quality data of long term to utilize in hydrology field. To provide QPE data more precisely and collect past-time data, we produce that calculated by the RAR system with LGC method in the summer season from 2006 to 2009 and investigate whether the accuracy of past-time radar rainfall estimation enhance or not. Keywords : Radar-AWS Rainrate system, Local gauge correction, past-time Radar rainfall estimation Acknowledgements : This research is supported by "Development and application of Cross governmental dual-pol radar harmonization (WRC-2013-A-1)" project of the Weather Radar Center, Korea Meteorological Administration in 2015.

  4. Distributed optimization of resource allocation for search and track assignment with multifunction radars

    NASA Astrophysics Data System (ADS)

    Severson, Tracie Andrusiak

    The long-term goal of this research is to contribute to the design of a conceptual architecture and framework for the distributed coordination of multifunction radar systems. The specific research objective of this dissertation is to apply results from graph theory, probabilistic optimization, and consensus control to the problem of distributed optimization of resource allocation for multifunction radars coordinating on their search and track assignments. For multiple radars communicating on a radar network, cooperation and agreement on a network resource management strategy increases the group's collective search and track capability as compared to non-cooperative radars. Existing resource management approaches for a single multifunction radar optimize the radar's configuration by modifying the radar waveform and beam-pattern. Also, multi-radar approaches implement a top-down, centralized sensor management framework that relies on fused sensor data, which may be impractical due to bandwidth constraints. This dissertation presents a distributed radar resource optimization approach for a network of multifunction radars. Linear and nonlinear models estimate the resource allocation for multifunction radar search and track functions. Interactions between radars occur over time-invariant balanced graphs that may be directed or undirected. The collective search area and target-assignment solution for coordinated radars is optimized by balancing resource usage across the radar network and minimizing total resource usage. Agreement on the global optimal target-assignment solution is ensured using a distributed binary consensus algorithm. Monte Carlo simulations validate the coordinated approach over uncoordinated alternatives.

  5. The CHUVA Project Contributions to the Understanding of Anthropogenic Interactions Affecting the Atmospheric Physics over Amazonas.

    NASA Astrophysics Data System (ADS)

    Machado, L.; Cecchini, M. A.; Gonçalves, W.

    2014-12-01

    CHUVA, meaning "rain" in Portuguese, is the acronym for the Cloud processes of tHe main precipitation systems in Brazil: A contribUtion to cloud resolVing modeling and to the GPM (GlobAl Precipitation Measurement). The CHUVA project has conducted six field campaigns; the last campaign was held in Manaus in 2014 jointly with GoAmazon and ACRIDICON. CHUVA's main scientific motivation is to contribute to the understanding of cloud processes, which represent one of the least understood components of the weather and climate system. This study will briefly describe the CHUVA project and the main scientific results obtained in the Amazon region. Specifically, we will describe the results of one year radar observation of Manaus rainfall and the relationship with black carbon. The results indicate that the aerosol influence on precipitating systems is modulated by the atmospheric instability degree. For stable atmospheres, the higher the aerosol concentration, the lower the precipitation over the region. On the other hand, for unstable cases, higher concentrations of particulate material are associated with more precipitation, elevated presence of ice and larger rain cells, which suggests an association with long lived systems. Also we will describe some preliminary results obtained during GoAmazon describing the cloud and rainfall size distribution (DSD). The DSD was adjusted to the gamma function using the momentum method and disposed in the three-dimensional space of the gamma parameters: the intercept, the shape and the width. Each point in this three-dimensional space corresponds to a specific DSD and the ensemble of points describes all regimes of precipitation in Amazon. Based in this Gamma space we will discuss the characteristics of the rainfall regime and anthropogenic features.

  6. The Campi Flegrei Deep Drilling Project `CFDDP': Understanding the Magma-Aquifers Interaction at Large Calderas

    NASA Astrophysics Data System (ADS)

    de Natale, G.; Troise, C.; Sacchi, M.

    2007-05-01

    Campi Flegrei caldera is a good example of the most explosive volcanism on the Earth, a potential source of global catastrophes. Alike several similar volcanic areas (Yellowstone and Long Valley, USA; Santorini, Greece; Iwo Jima, Japan, etc.) its volcanic activity, i.e. eruptions and unrests, is dominated by physical mechanisms involving the strict interaction between shallow magma sources and geothermal systems. Furthermore, just like similar areas, it should be characterised by very large shallow magma chambers, filled by residual magma left after the ignimbritic caldera forming eruptions. However, neither the physical mechanisms of magma-water interaction, nor the evidence for such large magma chamber, have been ever clear enough to be used for detailed volcanological interpretation and eruption forecast. The CFDDP project aims to understand, for the first time, the location and rehology of large residual magma chambers and the mechanisms of interaction between magma and aquifer systems to generate eruptions and unrests. CFDDP is then structured as a large multidisciplinary project, with a main volcanological aim and with a further goal to launch a geothermal energy exploitation project in the area. A larger goal of the CFDDP project is to establish at Campi Flegrei, a densely urbanised area in a developed western country, a natural laboratory to study volcanic risk, environmental issues, monitoring technologies, geothermal energy exploitation.

  7. Antarctica X-band MiniSAR crevasse detection radar : final report.

    SciTech Connect

    Sander, Grant J.; Bickel, Douglas Lloyd

    2007-09-01

    This document is the final report for the Antarctica Synthetic Aperture Radar (SAR) Project. The project involved the modification of a Sandia National Laboratories MiniSAR system to operate at X-band in order to assess the feasibility of an airborne radar to detect crevasses in Antarctica. This radar successfully detected known crevasses at various geometries. The best results were obtained for synthetic aperture radar resolutions of at most one foot and finer. In addition to the main goal of detecting crevasses, the radar was used to assess conops for a future operational radar. The radar scanned large areas to identify potential safe landing zones. In addition, the radar was used to investigate looking at objects on the surface and below the surface of the ice. This document includes discussion of the hardware development, system capabilities, and results from data collections in Antarctica.

  8. Microcellular ceramic foams for radar absorbing structures

    SciTech Connect

    Huling, J.; Phillips, D.

    1996-09-01

    This is the final report of a one-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The goal of this project is to develop a lightweight, semi-structural, radar-absorbing ceramic foam that can be incorporated into aircraft exhaust systems to replace many of the currently used dense ceramic parts and thereby improve the radar cross section. Although the conventional processes for producing ceramic foams have not been able to provide materials that meet the design specifications for high strength at low density, we have developed and demonstrated a novel sol-gel emulsion process for preparing microcellular ceramic foams in which compositional and microstructural control is expected to provide the requisite high-temperature radar-absorption, strength-to-weight ratio, and thermal insulative properties.

  9. A penalty-projection algorithm for a monolithic fluid-structure interaction solver

    NASA Astrophysics Data System (ADS)

    Cerroni, D.; Manservisi, S.

    2016-05-01

    In this paper we propose a new iterative penalty-projection algorithm for a monolithic fluid-structure interaction solver. Projection methods, that split the computation of the velocity from the pressure, are very popular in fluid dynamics since the boundary errors generated by the projection method are localized mainly near the boundary layers where the incorrect pressure boundary conditions are imposed. However, when solid regions are taken into account, the pressure projected field cannot satisfy fully coupled boundary constraints imposed on external solid surfaces such as stress-free conditions, and, due to the rigidity of the medium, the boundary errors propagate deeply in the interior. In order to reduce the projection errors we propose a one-step penalty-projection method in the fluid domain and an iterative penalty-projection method in the solid region. This technique decouples the pressure-velocity degrees of freedom and, as a consequence, the computational cost. In order to verify the accuracy and robustness of the proposed method we compare the results between this splitting velocity-pressure algorithm and the coupled one. These numerical results show stability and robustness of the proposed algorithm with a strong reduction of the computational effort.

  10. The PROUST radar

    NASA Technical Reports Server (NTRS)

    Bertin, F.; Glass, M.; Ney, R.; Petitdidier, M.

    1986-01-01

    The Stratosphere-Troposphere (ST) radar called PROUST works at 935 MHz using the same klystron and antenna as the coherent-scatter radar. The use of this equipment for ST work has required some important modifications of the transmitting system and the development of receiving, data processing and acquisition (1984,1985) equipment. The modifications are discussed.

  11. Determination of radar MTF

    SciTech Connect

    Chambers, D.

    1994-11-15

    The ultimate goal of the Current Meter Array (CMA) is to be able to compare the current patterns detected with the array with radar images of the water surface. The internal wave current patterns modulate the waves on the water surface giving a detectable modulation of the radar cross-section (RCS). The function relating the RCS modulations to the current patterns is the Modulation Transfer Function (MTF). By comparing radar images directly with co-located CMA measurements the MTF can be determined. In this talk radar images and CMA measurements from a recent experiment at Loch Linnhe, Scotland, will be used to make the first direct determination of MTF for an X and S band radar at low grazing angles. The technical problems associated with comparing radar images to CMA data will be explained and the solution method discussed. The results suggest the both current and strain rate contribute equally to the radar modulation for X band. For S band, the strain rate contributes more than the current. The magnitude of the MTF and the RCS modulations are consistent with previous estimates when the wind is blowing perpendicular to the radar look direction.

  12. Java Radar Analysis Tool

    NASA Technical Reports Server (NTRS)

    Zaczek, Mariusz P.

    2005-01-01

    Java Radar Analysis Tool (JRAT) is a computer program for analyzing two-dimensional (2D) scatter plots derived from radar returns showing pieces of the disintegrating Space Shuttle Columbia. JRAT can also be applied to similar plots representing radar returns showing aviation accidents, and to scatter plots in general. The 2D scatter plots include overhead map views and side altitude views. The superposition of points in these views makes searching difficult. JRAT enables three-dimensional (3D) viewing: by use of a mouse and keyboard, the user can rotate to any desired viewing angle. The 3D view can include overlaid trajectories and search footprints to enhance situational awareness in searching for pieces. JRAT also enables playback: time-tagged radar-return data can be displayed in time order and an animated 3D model can be moved through the scene to show the locations of the Columbia (or other vehicle) at the times of the corresponding radar events. The combination of overlays and playback enables the user to correlate a radar return with a position of the vehicle to determine whether the return is valid. JRAT can optionally filter single radar returns, enabling the user to selectively hide or highlight a desired radar return.

  13. Decoders for MST radars

    NASA Technical Reports Server (NTRS)

    Woodman, R. F.

    1983-01-01

    Decoding techniques and equipment used by MST radars are described and some recommendations for new systems are presented. Decoding can be done either by software in special-purpose (array processors, etc.) or general-purpose computers or in specially designed digital decoders. Both software and hardware decoders are discussed and the special case of decoding for bistatic radars is examined.

  14. Radar illusion via metamaterials.

    PubMed

    Jiang, Wei Xiang; Cui, Tie Jun

    2011-02-01

    An optical illusion is an image of a real target perceived by the eye that is deceptive or misleading due to a physiological illusion or a specific visual trick. The recently developed metamaterials provide efficient approaches to generate a perfect optical illusion. However, all existing research on metamaterial illusions has been limited to theory and numerical simulations. Here, we propose the concept of a radar illusion, which can make the electromagnetic (EM) image of a target gathered by radar look like a different target, and we realize a radar illusion device experimentally to change the radar image of a metallic target into a dielectric target with predesigned size and material parameters. It is well known that the radar signatures of metallic and dielectric objects are significantly different. However, when a metallic target is enclosed by the proposed illusion device, its EM scattering characteristics will be identical to that of a predesigned dielectric object under the illumination of radar waves. Such an illusion device will confuse the radar, and hence the real EM properties of the metallic target cannot be perceived. We designed and fabricated the radar illusion device using artificial metamaterials in the microwave frequency, and good illusion performances are observed in the experimental results. PMID:21405918

  15. Alpine radar conversion for LAWR

    NASA Astrophysics Data System (ADS)

    Savina, M.; Burlando, P.

    2012-04-01

    The Local Area Weather Radar (LAWR) is a ship-born weather radar system operating in X-band developed by the DHI Group to detect precipitation in urban areas. To date more than thirty units are installed in different settings around the world. A LAWR was also deployed in the Alps, at 3883 m a.s.l. on the Kl. Matterhorn (Valais, Switzerland). This was the highest LAWR of the world and it led to the development of an Alpine LAWR system that, besides featuring important technological improvements needed to withstand the severe Alpine conditions, required the development of a new Alpine Radar COnversion Model (ARCOM), which is the main focus of this contribution. The LAWR system is equipped with the original FURUNO fan-beam slotted antenna and the original logarithmic receiver, which limits the radar observations to the video signal (L) withour providing the reflectivity (Z). The beam is 0.95 deg wide and 20 deg high. It can detect precipitation to a max range of 60 km. In order to account for the limited availability of raw signal and information and the specific mountain set-up, the conversion model had to be developed differently from the state-of-the-art radar conversion technique used for this class of radars. In particular, the ARCOM is based on a model used to simulate a spatial dependent factor, hereafter called ACF, which is in turn function of parameters that take in account climatological conditions, also used in other conversion methods, but additionally accounting for local radar beam features and for orographic forcings such as the effective sampling power (sP), which is modelled by means of antenna pattern, geometric ground clutter and their interaction. The result is a conversion factor formulated to account for a range correction that is based on the increase of the sampling volume, partial beam blocking and local climatological conditions. The importance of the latter in this study is double with respect to the standard conversion technique for this

  16. Laser radar improvements

    NASA Astrophysics Data System (ADS)

    Jelalian, A. V.

    1981-11-01

    A short history of the uses of various laser radars is presented, and appropriate applications of laser and microwave radars are discussed. CO2 laser radar, operating at 10.6 microns, is considered for use in aircraft navigation systems, fire-control systems for armored vehicle and aircraft, missile guidance, severe storm research, line-of-sight command of missiles, wind turbine site surveys, clear-air turbulence monitors for aircraft, and satellite tracking. Microwave radar is all-weather, but is subject to multipath inaccuracies, countermeasures, and angular resolution limitations, so hybrid laser microwave systems look promising for microwave target acquisition and laser tracking. Advantages and disadvantages of the use of ruby, YAG, and CO2 lasers in varying atmospheric conditions are discussed. Development of a laser radar pod for obstacle detection, Doppler navigation, automatic terrain following, hover control, weapon delivery, and precision searching is noted.

  17. Intelligent radar data processing

    NASA Astrophysics Data System (ADS)

    Holzbaur, Ulrich D.

    The application of artificial intelligence principles to the processing of radar signals is considered theoretically. The main capabilities required are learning and adaptation in a changing environment, processing and modeling information (especially dynamics and uncertainty), and decision-making based on all available information (taking its reliability into account). For the application to combat-aircraft radar systems, the tasks include the combination of data from different types of sensors, reacting to electronic counter-countermeasures, evaluation of how much data should be acquired (energy and radiation management), control of the radar, tracking, and identification. Also discussed are related uses such as monitoring the avionics systems, supporting pilot decisions with respect to the radar system, and general applications in radar-system R&D.

  18. Micropower impulse radar imaging

    SciTech Connect

    Hall, M.S.

    1995-11-01

    From designs developed at the Lawrence Livermore National Laboratory (LLNL) in radar and imaging technologies, there exists the potential for a variety of applications in both public and private sectors. Presently tests are being conducted for the detection of buried mines and the analysis of civil structures. These new systems use a patented ultra-wide band (impulse) radar technology known as Micropower Impulse Radar (GPR) imaging systems. LLNL has also developed signal processing software capable of producing 2-D and 3-D images of objects embedded in materials such as soil, wood and concrete. My assignment while at LLNL has focused on the testing of different radar configurations and applications, as well as assisting in the creation of computer algorithms which enable the radar to scan target areas of different geometeries.

  19. Spaceborne weather radar

    NASA Technical Reports Server (NTRS)

    Meneghini, Robert; Kozu, Toshiaki

    1990-01-01

    The present work on the development status of spaceborne weather radar systems and services discusses radar instrument complementarities, the current forms of equations for the characterization of such aspects of weather radar performance as surface and mirror-image returns, polarimetry, and Doppler considerations, and such essential factors in spaceborne weather radar design as frequency selection, scanning modes, and the application of SAR to rain detection. Attention is then given to radar signal absorption by the various atmospheric gases, rain drop size distribution and wind velocity determinations, and the characteristics of clouds, as well as the range of available estimation methods for backscattering, single- and dual-wavelength attenuation, and polarimetric and climatological characteristics.

  20. Ultrawideband radar clutter measurements of forested terrain, 1991--1992

    SciTech Connect

    Sheen, D.M.; Severtsen, R.H.; Prince, J.M.; Davis, K.C.; Collins, H.D.

    1993-06-01

    The ultrawideband (UWB) radar clutter measurements project was conducted to provide radar clutter data for new ultrawideband radar systems which are currently under development. A particular goal of this project is to determine if conventional narrow band clutter data may be extrapolated to the UWB case. This report documents measurements conducted in 1991 and additional measurements conducted in 1992. The original project consisted of clutter measurements of forested terrain in the Olympic National Forest near Sequim, WA. The impulse radar system used a 30 kW peak impulse source with a 2 Gigasample/second digitizer to form a UHF (300--1000 MHz) ultrawideband impulse radar system. Additional measurements were conducted in parallel using a Systems Planning Corporation (SPC) step-chirp radar system. This system utilized pulse widths of 1330 nanoseconds over a bandwidth of 300--1000 MHz to obtain similar resolution to the impulse system. Due to the slow digitizer data throughput in the impulse radar system, data collection rates were significantly higher using the step-chirp system. Additional forest clutter measurements were undertaken in 1992 to increase the amount of data available, and especially to increase the amount of data from the impulse radar system.

  1. Bias Correction of Polarimetric Variables and Uncertainty Quantification of Dual-Polarization Radar Rainfall Estimation

    NASA Astrophysics Data System (ADS)

    Yoon, J.; Suk, M. K.; Nam, K. Y.; Ko, J. S.; Kim, H. L.

    2015-12-01

    Radar rainfall is generally less than gauge rainfall and it deteriorates in the case of high rainfall. Introduction of dual-polarization radar, however, has shed some light on the problem to underestimate radar rainfall in single-polarization radar. Dual-polarization radar provides various variables such like the differential reflectivity, differential phase, specific differential phase, and correlation coefficient, etc. as well as the reflectivity. Due to the advantage of dual-polarization radar providing various information available on the precipitation, the quality of the radar rainfall becomes much higher. Total five dual-polarization radars (Baengnyeongdo, Yongin-Testbed, Bislsan, Sobaeksan and Mohusan Radar) were introduced in Korea until now and the project, "Development and application of Cross governmental dual-pol radar harmonization", is on the way. Weather Radar Center (WRC), Korea Meteorological Adminstration (KMA) has played a leading role in the dual-polarization radar technology in Korea. WRC has been researching the quality control (QC) for the polarimetric variables, the classification of the precipitation, the radar rainfall estimation algorithm, and the composite dual-polarimetric varaiables field, etc. WRC (2014) suggested Korean polarimetric radar variables relation (Z-ZDR relation and Z-KDP relation) and Korean radar rainfall estimation algorithm (R(Z, ZDR) WRC algorithm). This study examined on the six radar rainfall estimation algorithms including R(Z, ZDR) WRC algorithm and corrected the bias of polarimetric variables using Korean polarimetric variables relation. Plus, this study quantified the uncertainty of the radar rainfall estimated from six algorithms before and after the correction. As a result, the quality of the radar rainfall after the correction improved and Korean radar rainfall estimation algorithm had the best quality among the algorithms using the Z and ZDR,

  2. space Radar Image of Long Valley, California

    NASA Technical Reports Server (NTRS)

    1994-01-01

    An area near Long Valley, California, was mapped by the Spaceborne Imaging Radar-C and X-band Synthetic Aperture Radar aboard the space shuttle Endeavor on April 13, 1994, during the first flight of the radar instrument, and on October 4, 1994, during the second flight of the radar instrument. The orbital configurations of the two data sets were ideal for interferometric combination -- that is overlaying the data from one image onto a second image of the same area to create an elevation map and obtain estimates of topography. Once the topography is known, any radar-induced distortions can be removed and the radar data can be geometrically projected directly onto a standard map grid for use in a geographical information system. The 50 kilometer by 50 kilometer (31 miles by 31 miles) map shown here is entirely derived from SIR-C L-band radar (horizontally transmitted and received) results. The color shown in this image is produced from the interferometrically determined elevations, while the brightness is determined by the radar backscatter. The map is in Universal Transverse Mercator (UTM) coordinates. Elevation contour lines are shown every 50 meters (164 feet). Crowley Lake is the dark feature near the south edge of the map. The Adobe Valley in the north and the Long Valley in the south are separated by the Glass Mountain Ridge, which runs through the center of the image. The height accuracy of the interferometrically derived digital elevation model is estimated to be 20 meters (66 feet) in this image. Spaceborne Imaging Radar-C and X-band Synthetic Aperture Radar (SIR-C/X-SAR) is part of NASA's Mission to Planet Earth. The radars illuminate Earth with microwaves, allowing detailed observations at any time, regardless of weather or sunlight conditions. SIR-C/X-SAR uses three microwave wavelengths: L-band (24 cm), C-band (6 cm) and X-band (3 cm). The multi-frequency data will be used by the international scientific community to better understand the global

  3. A number-projected model with generalized pairing interaction in application to rotating nuclei

    SciTech Connect

    Satula, W. |||; Wyss, R.

    1996-12-31

    A cranked mean-field model that takes into account both T=1 and T=0 pairing interactions is presented. The like-particle pairing interaction is described by means of a standard seniority force. The neutron-proton channel includes simultaneously correlations among particles moving in time reversed orbits (T=1) and identical orbits (T=0). The coupling between different pairing channels and nuclear rotation is taken into account selfconsistently. Approximate number-projection is included by means of the Lipkin-Nogami method. The transitions between different pairing phases are discussed as a function of neutron/proton excess, T{sub z}, and rotational frequency, {Dirac_h}{omega}.

  4. Computer Interactives for the Mars Atmospheric and Volatile Evolution (MAVEN) Mission through NASA's "Project Spectra!"

    NASA Astrophysics Data System (ADS)

    Wood, E. L.

    2014-12-01

    "Project Spectra!" is a standards-based E-M spectrum and engineering program that includes paper and pencil activities as well as Flash-based computer games that help students solidify understanding of high-level planetary and solar physics. Using computer interactive games, students experience and manipulate information making abstract concepts accessible, solidifying understanding and enhancing retention of knowledge. Since students can choose what to watch and explore, the interactives accommodate a broad range of learning styles. Students can go back and forth through the interactives if they've missed a concept or wish to view something again. In the end, students are asked critical thinking questions and conduct web-based research. As part of the Mars Atmospheric and Volatile EvolutioN (MAVEN) mission education programming, we've developed two new interactives. The MAVEN mission will study volatiles in the upper atmosphere to help piece together Mars' climate history. In the first interactive, students explore black body radiation, albedo, and a simplified greenhouse effect to establish what factors contribute to overall planetary temperature. Students design a planet that is able to maintain liquid water on the surface. In the second interactive, students are asked to consider conditions needed for Mars to support water on the surface, keeping some variables fixed. Ideally, students will walk away with the very basic and critical elements required for climate studies, which has far-reaching implications beyond the study of Mars. These interactives were pilot tested at Arvada High School in Colorado.

  5. 5. VIEW EAST, height finder radar towers, radar tower (unknown ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. VIEW EAST, height finder radar towers, radar tower (unknown function), prime search radar tower, operations building, and central heating plant - Fort Custer Military Reservation, P-67 Radar Station, .25 mile north of Dickman Road, east of Clark Road, Battle Creek, Calhoun County, MI

  6. 4. VIEW NORTHEAST, radar tower (unknown function), prime search radar ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. VIEW NORTHEAST, radar tower (unknown function), prime search radar tower, emergency power building, and height finder radar tower - Fort Custer Military Reservation, P-67 Radar Station, .25 mile north of Dickman Road, east of Clark Road, Battle Creek, Calhoun County, MI

  7. Analysis of Aircraft, Radiosonde and Radar Observations in Cirrus Clouds Observed During FIRE II: The Interactions Between Environmental Structure, Turbulence and Cloud Microphysical Properties

    NASA Technical Reports Server (NTRS)

    Smith, Samantha A.; DelGenio, Anthony D.

    1999-01-01

    Ways to determine the turbulence intensity and the horizontal variability in cirrus clouds have been investigated using FIRE-II aircraft, radiosonde and radar data. Higher turbulence intensities were found within some, but not all, of the neutrally stratified layers. It was also demonstrated that the stability of cirrus layers with high extinction values decrease in time, possibly as a result of radiative destabilization. However, these features could not be directly related to each other in any simple manner. A simple linear relationship was observed between the amount of horizontal variability in the ice water content and its average value. This was also true for the extinction and ice crystal number concentrations. A relationship was also suggested between the variability in cloud depth and the environmental stability across the depth of the cloud layer, which requires further investigation.

  8. Acoustic Monitoring of Beluga Whale Interactions with Cook Inlet Tidal Energy Project

    SciTech Connect

    Worthington, Monty

    2014-02-05

    Cook Inlet, Alaska is home to some of the greatest tidal energy resources in the U.S., as well as an endangered population of beluga whales (Delphinapterus leucas). Successfully permitting and operating a tidal power project in Cook Inlet requires a biological assessment of the potential and realized effects of the physical presence and sound footprint of tidal turbines on the distribution, relative abundance, and behavior of Cook Inlet beluga whales. ORPC Alaska, working with the Project Team—LGL Alaska Research Associates, University of Alaska Anchorage, TerraSond, and Greeneridge Science—undertook the following U.S. Department of Energy (DOE) study to characterize beluga whales in Cook Inlet – Acoustic Monitoring of Beluga Whale Interactions with the Cook Inlet Tidal Energy Project (Project). ORPC Alaska, LLC, is a wholly-owned subsidiary of Ocean Renewable Power Company, LLC, (collectively, ORPC). ORPC is a global leader in the development of hydrokinetic power systems and eco-conscious projects that harness the power of ocean and river currents to create clean, predictable renewable energy. ORPC is developing a tidal energy demonstration project in Cook Inlet at East Foreland where ORPC has a Federal Energy Regulatory Commission (FERC) preliminary permit (P-13821). The Project collected baseline data to characterize pre-deployment patterns of marine mammal distribution, relative abundance, and behavior in ORPC’s proposed deployment area at East Foreland. ORPC also completed work near Fire Island where ORPC held a FERC preliminary permit (P-12679) until March 6, 2013. Passive hydroacoustic devices (previously utilized with bowhead whales in the Beaufort Sea) were adapted for study of beluga whales to determine the relative abundance of beluga whale vocalizations within the proposed deployment areas. Hydroacoustic data collected during the Project were used to characterize the ambient acoustic environment of the project site pre-deployment to inform the

  9. Phased array radars - Present and future

    NASA Astrophysics Data System (ADS)

    Pell, Christopher

    1989-12-01

    The characteristics of tactical defense phased-array radars mainly employing two-dimensional electronic beam alignment are reviewed. Technology issues connected with the phased-array architecture and array control are examined. Technical summaries are then given for a representative selection of projected future operational systems, i.e, EMPAR, Multifire, and MESAR.

  10. Implementing Interactive Telecommunications Services. Final Report on Problems Which Arise During Implementation of Field Trials and Demonstration Projects.

    ERIC Educational Resources Information Center

    Elton, Martin C. J.; Carey, John

    Intended primarily for use by individuals about to assume responsibility for the implementation of field trials and demonstration projects built around interactive telecommunication systems, this report provides brief descriptions of 20 telemedicine projects, 12 teleconferencing projects, and seven involving two-way applications of cable…

  11. Radar Observations Of Lake Breeze Induced Summer Convective Storms

    NASA Astrophysics Data System (ADS)

    Donaldson, N.; Firanski, B.; Hudak, D.; Sills, D.; Taylor, P.

    Observations of convective precipitation made with a portable X-band radar are com- pared to images retrieved from the Exeter C-band operational radar situated in south- ern Ontario during Elbow 2001: The Effect of Lake Breezes On Weather. Attempts were made to locate and identify convective precursors of summer severe weather due to lake breeze boundary interactions with the X-band radar. As a diagnostic and prog- nostic observation and analysis tool, the X-band was able to make contributions to the research from the perspective of scanning flexibility. In comparison, the more sensitive C-band operational radar performed far better as a means of detecting boundary in- teractions well in advance of severe weather, making it a more effective research tool. The boundary interactions on June 19, July 19, and July 23 of 2001, are presented as case studies to illustrate the performance strengths of each radar.

  12. The Use of Radar to Improve Rainfall Estimation over the Tennessee and San Joaquin River Valleys

    NASA Technical Reports Server (NTRS)

    Petersen, Walter A.; Gatlin, Patrick N.; Felix, Mariana; Carey, Lawrence D.

    2010-01-01

    This slide presentation provides an overview of the collaborative radar rainfall project between the Tennessee Valley Authority (TVA), the Von Braun Center for Science & Innovation (VCSI), NASA MSFC and UAHuntsville. Two systems were used in this project, Advanced Radar for Meteorological & Operational Research (ARMOR) Rainfall Estimation Processing System (AREPS), a demonstration project of real-time radar rainfall using a research radar and NEXRAD Rainfall Estimation Processing System (NREPS). The objectives, methodology, some results and validation, operational experience and lessons learned are reviewed. The presentation. Another project that is using radar to improve rainfall estimations is in California, specifically the San Joaquin River Valley. This is part of a overall project to develop a integrated tool to assist water management within the San Joaquin River Valley. This involves integrating several components: (1) Radar precipitation estimates, (2) Distributed hydro model, (3) Snowfall measurements and Surface temperature / moisture measurements. NREPS was selected to provide precipitation component.

  13. Planetary Radar Astronomy

    NASA Technical Reports Server (NTRS)

    Ostro, Steven J.

    1993-01-01

    Radar is a powerful technique that has furnished otherwise unavailable information about solar system bodies for three decades. The advantages of radar in planetary astronomy result from: (1) the observer's control of all the attributes of the coherent signal used to illuminate the target, especially the wave form's time/frequency modulation and polarization; (2) the ability of radar to resolve objects spatially via measurements of the distribution of echo power in time delay and Doppler frequency; (3) the pronounced degree to which delay-Doppler measurements constrain orbits and spin vectors; and (4) centimeter-to-meter wavelengths, which easily penetrate optically opaque planetary clouds and cometary comae, permit investigation of near-surface macrostructure and bulk density, and are sensitive to high concentrations of metal or, in certain situations, ice. Planetary radar astronomy has primarily involved observations with Earth-based radar telescopes, but also includes some experiments with a spaceborne transmitter or receiver. In addition to providing a wealth of information about the geological and dynamical properties of asteroids, comets, the inner planets, and natural satellites, radar experiments have established the scale of the solar system, have contributed significantly to the accuracy of planetary ephemerides, and have helped to constrain theories of gravitation. This review outlines radar astronomical techniques and describes principal observational results.

  14. Ground-penetrating radar methods

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ground-penetrating radar geophysical methods are finding greater and greater use in agriculture. With the ground-penetrating radar (GPR) method, an electromagnetic radio energy (radar) pulse is directed into the subsurface, followed by measurement of the elapsed time taken by the radar signal as it ...

  15. Radar remote sensing in biology

    USGS Publications Warehouse

    Moore, Richard K.; Simonett, David S.

    1967-01-01

    The present status of research on discrimination of natural and cultivated vegetation using radar imaging systems is sketched. The value of multiple polarization radar in improved discrimination of vegetation types over monoscopic radars is also documented. Possible future use of multi-frequency, multi-polarization radar systems for all weather agricultural survey is noted.

  16. Radar applications overview

    NASA Astrophysics Data System (ADS)

    Greenspan, Marshall

    1996-06-01

    During the fifty years since its initial development as a means of providing early warning of airborne attacks against allied countries during World War II, radar systems have developed to the point of being highly mobile and versatile systems capable of supporting a wide variety of remote sensing applications. Instead of being tied to stationary land-based sites, radar systems have found their way into highly mobile land vehicles as well as into aircraft, missiles, and ships of all sizes. Of all these applications, however, the most exciting revolution has occurred in the airborne platform arena where advanced technology radars can be found in all shapes and sizes...ranging from the large AWACS and Joint STARS long range surveillance and targeting systems to small millimeter wave multi-spectral sensors on smart weapons that can detect and identify their targets through the use of highly sophisticated digital signal processing hardware and software. This paper presents an overview of these radar applications with the emphasis on modern airborne sensors that span the RF spectrum. It will identify and describe the factors that influence the parameters of low frequency and ultra wide band radars designed to penetrate ground and dense foliage environments and locate within them buried mines, enemy armor, and other concealed or camouflaged weapons of war. It will similarly examine the factors that lead to the development of airborne radar systems that support long range extended endurance airborne surveillance platforms designed to detect and precision-located both small high speed airborne threats as well as highly mobile time critical moving and stationary surface vehicles. The mission needs and associated radar design impacts will be contrasted with those of radar systems designed for high maneuverability rapid acquisition tactical strike warfare platforms, and shorter range cued air-to-surface weapons with integral smart radar sensors.

  17. Radar frequency radiation

    NASA Astrophysics Data System (ADS)

    Malowicki, E.

    1981-11-01

    A method is presented for the determination of radar frequency radiation power densities that the PAVE PAWS radar system could produce in its air and ground environment. The effort was prompted by the concern of the people in the vicinity of OTIS AFB MA and BEALE AFB CA about the possible radar frequency radiation hazard of the PAVE PAWS radar. The method is based on the following main assumptions that: (a) the total field can be computed as the vector summation of the individual fields due to each antenna element; (b) the individual field can be calculated using distances for which the field point is in the far field of the antenna element. An RFR computer program was coded for the RADC HE 6180 digital computer and exercised to calculate the radiation levels in the air and ground space for the present baseline and the possible Six DB and 10 DB growth systems of the PAVE PAWS radar system at OTIS AFB MA. The average radiation levels due to the surveillance fence were computed for three regions: in the air space in front of the radar, at the radar hazard fence at OTIS AFB MA and at representative ground points in the OTIS AFB vicinity. It was concluded that the radar frequency radiation of PAVE PAWS does not present a hazard to personnel provided there is no entry to the air hazard zone or to the area within the hazard fence. The method developed offers a cost effective way to determine radiation levels from a phased array radar especially in the near field and transition regions.

  18. Interactive brain atlas with the Visible Human Project data: development methods and techniques.

    PubMed

    Toh, M Y; Falk, R B; Main, J S

    1996-09-01

    A prototype of an interactive digital brain atlas was developed by using the Visible Human Project data set of the National Library of Medicine. This data set provides corresponding axial magnetic resonance images, computed tomographic images, and cryosections of the brain. The prototype was developed to demonstrate the techniques and methods that will be used throughout the development process of the atlas. The atlas has a graphical user interface, supports user interaction with various representations of the brain (i.e., two-dimensional and three-dimensional [3D]), and displays multiple images simultaneously. Motion sequences of the 3D brain were incorporated in the atlas to provide an important link between two-dimensional brain slices and volume-rendered 3D anatomic structures. Volume visualization tools were used to interactively render, rotate, and reslice the volumetric brain data. The brain was segmented with manual tracing, thresholding, and morphologic algorithms and then rendered with volume-rendering tools. PMID:8888399

  19. Next generation paradigm for urban pluvial flood modelling, prediction, management and vulnerability reduction - Interaction between RainGain and Blue Green Dream projects

    NASA Astrophysics Data System (ADS)

    Maksimovic, C.

    2012-04-01

    The effects of climate change and increasing urbanisation call for a new paradigm for efficient planning, management and retrofitting of urban developments to increase resilience to climate change and to maximize ecosystem services. Improved management of urban floods from all sources in required. Time scale for well documented fluvial and coastal floods allows for timely response but surface (pluvial) flooding caused by intense local storms had not been given appropriate attention, Pitt Review (UK). Urban surface floods predictions require fine scale data and model resolutions. They have to be tackled locally by combining central inputs (meteorological services) with the efforts of the local entities. Although significant breakthrough in modelling of pluvial flooding was made there is a need to further enhance short term prediction of both rainfall and surface flooding. These issues are dealt with in the EU Iterreg project Rain Gain (RG). Breakthrough in urban flood mitigation can only be achieved by combined effects of advanced planning design, construction and management of urban water (blue) assets in interaction with urban vegetated areas' (green) assets. Changes in design and operation of blue and green assets, currently operating as two separate systems, is urgently required. Gaps in knowledge and technology will be introduced by EIT's Climate-KIC Blue Green Dream (BGD) project. The RG and BGD projects provide synergy of the "decoupled" blue and green systems to enhance multiple benefits to: urban amenity, flood management, heat island, biodiversity, resilience to drought thus energy requirements, thus increased quality of urban life at lower costs. Urban pluvial flood management will address two priority areas: Short Term rainfall Forecast and Short term flood surface forecast. Spatial resolution of short term rainfall forecast below 0.5 km2 and lead time of a few hours are needed. Improvements are achievable by combining data sources of raingauge networks

  20. Asteroid radar astrometry

    NASA Technical Reports Server (NTRS)

    Ostro, S. J.; Jurgens, R. F.; Rosema, K. D.; Winkler, R.; Yeomans, D. K.; Campbell, D. B.; Chandler, J. F.; Shapiro, I. I.; Hine, A. A.; Velez, R.

    1991-01-01

    Measurements of time delay and Doppler frequency are reported for asteroid-radar echoes obtained at Arecibo and Goldstone during 1980-1990. Radar astrometry is presented for 23 near-earth asteroids and three mainbelt asteroids. These measurements, which are orthogonal to optical, angular-position measurements, and typically have a fractional precision between 10 to the -5th and 10 to the -8th, permit significant improvement in estimates of orbits and hence in the accuracy of prediction ephemerides. Estimates are also reported of radar cross-section and circular polarization ratio for all asteroids observed astrometrically during 1980-1990.

  1. EISCAT Svalbard radar

    NASA Astrophysics Data System (ADS)

    Lehtinen, Markku; Kangas, Jorma

    1992-02-01

    The main fields of interest of the Finnish scientists in EISCAT research are listed. Finnish interests in the Polar Cap Radar (PMR) and areas where the Finnish contribution could be important are addressed: radar techniques; sporadic E layers in the polar cap; atmospheric models; auroral studies in the polar cap; nonthermal plasmas in the F region; coordinated measurements with the Cluster satellites; studies of the ionospheric traveling; convection vortices; polar cap absorption; studies of lower atmosphere; educational program. A report on the design specification of an ionospheric and atmospheric radar facility based on the archipelago of Svalbard (Norway) is summarized.

  2. A microprogrammable radar controller

    NASA Technical Reports Server (NTRS)

    Law, D. C.

    1986-01-01

    The Wave Propagation Lab. has completed the design and construction of a microprogrammable radar controller for atmospheric wind profiling. Unlike some radar controllers using state machines or hardwired logic for radar timing, this design is a high speed programmable sequencer with signal processing resources. A block diagram of the device is shown. The device is a single 8 1/2 inch by 10 1/2 inch printed circuit board and consists of three main subsections: (1) the host computer interface; (2) the microprogram sequencer; and (3) the signal processing circuitry. Each of these subsections are described in detail.

  3. Polarimetric Doppler Weather Radar

    NASA Astrophysics Data System (ADS)

    Bringi, V. N.; Chandrasekar, V.

    2001-10-01

    This work provides a detailed introduction to the principles of Doppler and polarimetric radar, focusing in particular on their use in the analysis of weather systems. The authors first discuss underlying topics such as electromagnetic scattering, polarization, and wave propagation. They then detail the engineering aspects of pulsed Doppler polarimetric radar, before examining key applications in meteorology and remote sensing. The book is aimed at graduate students of electrical engineering and atmospheric science as well as practitioners involved in the applications of polarimetric radar.

  4. A location system based on two-dimensional position sensitive detector used in interactive projection systems

    NASA Astrophysics Data System (ADS)

    Ni, Kai; Zhou, Qian; Chen, Liangjun; Sun, Peng; Xu, Honglei; Gao, Yuan; Ma, Jianshe; Li, Yi; Liu, Minxia

    2010-11-01

    The interactive projection systems have been widely used in people's life. Currently the major type is based on interactive whiteboard (IWB). In recent years, a new type based on CCD/CMOS sensor is greatly developed. Compared to IWB, CCD/CMOS implements non-contact sensing, which can use any surface as the projection screen. This makes them more flexible in many applications. However, the main defect is that the location accuracy and tracing speed are limited by the resolution and frame rate of the CCD/CMOS. In this paper, we introduced our recent progress on constructing a new type of non-contact interactive projection system by using a two-dimensional position sensitive detector (PSD). The PSD is an analog optoelectronic position sensor utilizing photodiode surface resistance, which provides continuous position measuring and features high position resolution (better than 1.5μm) and high speed response (less than 1μs). By using the PSD, both high positioning resolution and high tracing speed can be easily achieved. A specially designed pen equipped with infrared LEDs is used as a cooperative target. A high precision signal processing system is designed and optimized. The nonlinearity of the PSD as well as the aberration of the camera lens is carefully measured and calibrated. Several anti-interference methods and algorithms are studied. Experimental results show that the positioning error is about 2mm over a 1200mm×1000mm projection screen, and the sampling rate is at least 100Hz.

  5. Managing uncertainty in collaborative robotics engineering projects: The influence of task structure and peer interaction

    NASA Astrophysics Data System (ADS)

    Jordan, Michelle

    Uncertainty is ubiquitous in life, and learning is an activity particularly likely to be fraught with uncertainty. Previous research suggests that students and teachers struggle in their attempts to manage the psychological experience of uncertainty and that students often fail to experience uncertainty when uncertainty may be warranted. Yet, few educational researchers have explicitly and systematically observed what students do, their behaviors and strategies, as they attempt to manage the uncertainty they experience during academic tasks. In this study I investigated how students in one fifth grade class managed uncertainty they experienced while engaged in collaborative robotics engineering projects, focusing particularly on how uncertainty management was influenced by task structure and students' interactions with their peer collaborators. The study was initiated at the beginning of instruction related to robotics engineering and preceded through the completion of several long-term collaborative robotics projects, one of which was a design project. I relied primarily on naturalistic observation of group sessions, semi-structured interviews, and collection of artifacts. My data analysis was inductive and interpretive, using qualitative discourse analysis techniques and methods of grounded theory. Three theoretical frameworks influenced the conception and design of this study: community of practice, distributed cognition, and complex adaptive systems theory. Uncertainty was a pervasive experience for the students collaborating in this instructional context. Students experienced uncertainty related to the project activity and uncertainty related to the social system as they collaborated to fulfill the requirements of their robotics engineering projects. They managed their uncertainty through a diverse set of tactics for reducing, ignoring, maintaining, and increasing uncertainty. Students experienced uncertainty from more different sources and used more and

  6. RADAR performance experiments

    NASA Technical Reports Server (NTRS)

    Leroux, C.; Bertin, F.; Mounir, H.

    1991-01-01

    Theoretical studies and experimental results obtained at Coulommiers airport showed the capability of Proust radar to detect wind shears, in clear air condition as well as in presence of clouds or rain. Several examples are presented: in a blocking highs situation an atmospheric wave system at the Brunt-Vaisala frequency can be clearly distinguished; in a situation of clouds without rain the limit between clear air and clouds can be easily seen; and a windshear associated with a gust front in rainy conditions is shown. A comparison of 30 cm clear air radar Proust and 5 cm weather Doppler radar Ronsard will allow to select the best candidate for wind shear detection, taking into account the low sensibility to ground clutter of Ronsard radar.

  7. Laser Radar Animation

    NASA Video Gallery

    Laser and radar instruments aboard NASA aircraft provide measurements of the snow and ice surface and down to the bedrock under the ice. Lasers, with a shorter wavelength, measure the surface eleva...

  8. Seamless 3D interaction for virtual tables, projection planes, and CAVEs

    NASA Astrophysics Data System (ADS)

    Encarnacao, L. M.; Bimber, Oliver; Schmalstieg, Dieter; Barton, Robert J., III

    2000-08-01

    The Virtual Table presents stereoscopic graphics to a user in a workbench-like setting. This device shares with other large- screen display technologies (such as data walls and surround- screen projection systems) the lack of human-centered unencumbered user interfaces and 3D interaction technologies. Such shortcomings present severe limitations to the application of virtual reality (VR) technology to time- critical applications as well as employment scenarios that involve heterogeneous groups of end-users without high levels of computer familiarity and expertise. Traditionally such employment scenarios are common in planning-related application areas such as mission rehearsal and command and control. For these applications, a high grade of flexibility with respect to the system requirements (display and I/O devices) as well as to the ability to seamlessly and intuitively switch between different interaction modalities and interaction are sought. Conventional VR techniques may be insufficient to meet this challenge. This paper presents novel approaches for human-centered interfaces to Virtual Environments focusing on the Virtual Table visual input device. It introduces new paradigms for 3D interaction in virtual environments (VE) for a variety of application areas based on pen-and-clipboard, mirror-in-hand, and magic-lens metaphors, and introduces new concepts for combining VR and augmented reality (AR) techniques. It finally describes approaches toward hybrid and distributed multi-user interaction environments and concludes by hypothesizing on possible use cases for defense applications.

  9. Automotive radar - investigation of mutual interference mechanisms

    NASA Astrophysics Data System (ADS)

    Goppelt, M.; Blöcher, H.-L.; Menzel, W.

    2010-09-01

    In the past mutual interference between automotive radar sensors has not been regarded as a major problem. With an increasing number of such systems, however, this topic is receiving more and more attention. The investigation of mutual interference and countermeasures is therefore one topic of the joint project "Radar on Chip for Cars" (RoCC) funded by the German Federal Ministry of Education and Research (BMBF). RoCC's goal is to pave the way for the development of high-performance, low-cost 79 GHz radar sensors based on Silicon-Germanium (SiGe) Monolithic Microwave Integrated Circuits (MMICs). This paper will present some generic interference scenarios and report on the current status of the analysis of interference mechanisms.

  10. Verbal and social interaction patterns among elementary students during self-guided "I Wonder Projects"

    NASA Astrophysics Data System (ADS)

    Huziak, Tracy Lynn

    National standards for science teaching stress the use of inquiry teaching methods. One example of inquiry teaching is the I Wonder Project, which has been used in the Madison, WI Metropolitan School District for over ten years. The purpose of the I Wonder Project is to promote scientific discourse among elementary students through the publication of their research in a journal, similar in some ways to the scientific discourse within a community of scientists. This research study utilizes the I Wonder Project method to encourage student communication and self-guided project work. Approximately fifteen students ages 6--12 participated in a six-week self-guided inquiry project called I Wonder. Students worked as a cohort to learn science process skills and to build a scientific community. During this time, each student designed and carried out a self-guided inquiry project and wrote an article about their findings, which was presented on the last day of summer camp. A mixed method approach was used conduct this study. Participants were given a pretest and a posttest to determine the changes in scientific process skills as a result of participation in the project. The students were interviewed to determine their ideas about science and how those ideas changed over the time of participation in summer camp. Also the students were observed by the researchers, as well as audio- and video-taped to capture the verbal conversations and debates that take place as a result of discussion of ideas during the program. Students participated in this study as individuals and group members. Teacher and student interactions were noted to follow three main interaction styles: structured, guided and open-ended. These interactions work much like the inquiry levels described in the literature. Students also interacted with each other in three different ways: independently, dependently, and multifunctioning. Some students wished to work alone, while others preferred others to contribute to

  11. Distributed array radar

    NASA Astrophysics Data System (ADS)

    Heimiller, R. C.; Belyea, J. E.; Tomlinson, P. G.

    1983-11-01

    Distributed array radar (DAR) is a concept for efficiently accomplishing surveillance and tracking using coherently internetted mini-radars. They form a long baseline, very thinned array and are capable of very accurate location of targets. This paper describes the DAR concept. Factors involving two-way effective gain patterns for deterministic and random DAR arrays are analyzed and discussed. An analysis of factors affecting signal-to-noise ratio is presented and key technical and performance issues are briefly summarized.

  12. Downhole pulse radar

    DOEpatents

    Chang, Hsi-Tien

    1989-01-01

    A borehole logging tool generates a fast rise-time, short duration, high peak-power radar pulse having broad energy distribution between 30 MHz and 300 MHz through a directional transmitting and receiving antennas having barium titanate in the electromagnetically active region to reduce the wavelength to within an order of magnitude of the diameter of the antenna. Radar returns from geological discontinuities are sampled for transmission uphole.

  13. Downhole pulse radar

    DOEpatents

    Chang, Hsi-Tien

    1987-09-28

    A borehole logging tool generates a fast rise-time, short duration, high peak-power radar pulse having broad energy distribution between 30 MHz and 300 MHz through a directional transmitting and receiving antennas having barium titanate in the electromagnetically active region to reduce the wavelength to within an order of magnitude of the diameter of the antenna. Radar returns from geological discontinuities are sampled for transmission uphole. 7 figs.

  14. Public Engagement for the U.S. Rosetta Project using Interactive Multimedia

    NASA Astrophysics Data System (ADS)

    Smith, H.; Graham, S.; Alexander, C. J.

    2009-12-01

    The U.S. Rosetta Project is NASA contribution to the International Rosetta Mission. The mission is a long-duration mission to explore a comet and escort the nucleus from deep space around the Sun and for a portion of its outbound trajectory. The Rosetta stone, the symbol of the mission, is the inspiration for the mission’s name. As stated on by the European Space Agency, Rosetta is expected to provide the keys to the primordial solar system the way the original Rosetta Stone provided a key to ancient language. Four interactives serve as key components of the website portion of the project's public engagement efforts. This first is a presentation of the mission timeline using an interactive that resembles an iTunes front page. The second is a presentation of the space between Earth (Jupiter) and the next star (Proxima Centauri), in which the comet home of the Kuiper Belt with several of the planet-sized object embedded there, the Heliosphere, the comet home of the Oort Cloud, and other interstellar clouds are presented. The third is a presentation of ancient languages (still under development) - space terminology translated into Native American languages as part of the project's outreach to the Native American community. In the fourth interactive we have taken the relatively sophisticated scientific comet environment model, one that was produced on a super computer, and worked the output into 'representations' of how a comet changes as it moves around the Sun, with definitions of the scientific regions that evolve. Still under development, this interactive is expected to be a key component of explaining to the public what the instruments expect to measure and encounter as the target changes in time. A fifth animated component is addressed to informal education with younger audience members in the form of cartoon characters and their adventures on a comet. In this talk we will showcase these pieces and discuss how these interactives are intended for teaching and

  15. Observation and theory of the radar aurora

    SciTech Connect

    Sahr, J.D.

    1990-01-01

    Plasma density irregularities occurring near the Aurora Borealis cause scattering of HF, VHF, and UHF radio waves. Analysis of the resulting radar signal provides great detail about the spatial and temporal characteristics of these auroral E region irregularities. Observations are presented of the radar aurora from recent campaigns in northern Sweden. After reviewing the basic theory and observations of auroral electrojet irregularities, a simple nonlinear fluid theory of electrojet ion-acoustic waves is introduced, and reduced to a form of the three-wave interaction equations. This theory provides a simple mechanism for excitation of linearly stable waves at large aspect and flow angles, as well as a prediction of the power spectra that a coherent scatter radar should observe. In addition, this theory may be able to account for type 3 waves without resorting to ion gyro modes, such as the electrostatic ion-cyclotron wave. During the course of the research a simple new radar transmitting mode and signal processing algorithm was generated which very simply solves a frequency aliasing problem that often occurs in CUPRI auroral radar studies. Several new radar data analysis routines were developed, including the principally cross-beam image and scatter plots of the second versus first moments of the power spectrum of the irregularities. Analysis of vertical interferometer data shows that type 3 waves originate at ordinary electrojet altitudes, not in the upper E region, from which it is concluded that the electrostatic ion-cyclotron mode does not generate type 3 waves. The measured height of type 3 waves and other spectral analyses provide support for the pure ion-acoustic theory of type 3 waves. Suggestions are offered for hardware improvements to the CUPRI radar, new experiments to test new and existing theories.

  16. On wave radar measurement

    NASA Astrophysics Data System (ADS)

    Ewans, Kevin; Feld, Graham; Jonathan, Philip

    2014-09-01

    The SAAB REX WaveRadar sensor is widely used for platform-based wave measurement systems by the offshore oil and gas industry. It offers in situ surface elevation wave measurements at relatively low operational costs. Furthermore, there is adequate flexibility in sampling rates, allowing in principle sampling frequencies from 1 to 10 Hz, but with an angular microwave beam width of 10° and an implied ocean surface footprint in the order of metres, significant limitations on the spatial and temporal resolution might be expected. Indeed there are reports that the accuracy of the measurements from wave radars may not be as good as expected. We review the functionality of a WaveRadar using numerical simulations to better understand how WaveRadar estimates compare with known surface elevations. In addition, we review recent field measurements made with a WaveRadar set at the maximum sampling frequency, in the light of the expected functionality and the numerical simulations, and we include inter-comparisons between SAAB radars and buoy measurements for locations in the North Sea.

  17. SeReNA Project: studying aerosol interactions with cloud microphysics in the Amazon Basin

    NASA Astrophysics Data System (ADS)

    Correia, A. L.; Catandi, P. B.; Frigeri, F. F.; Ferreira, W. C.; Martins, J.; Artaxo, P.

    2012-12-01

    Cloud microphysics and its interaction with aerosols is a key atmospheric process for weather and climate. Interactions between clouds and aerosols can impact Earth's radiative balance, its hydrological and energetic cycles, and are responsible for a large fraction of the uncertainty in climatic models. On a planetary scale, the Amazon Basin is one of the most significant land sources of moisture and latent heat energy. Moreover, every year this region undergoes mearked seasonal shifts in its atmospheric state, transitioning from clean to heavily polluted conditions due to the occurrence of seasonal biomass burning fires, that emit large amounts of smoke to the atmosphere. These conditions make the Amazon Basin a special place to study aerosol-cloud interactions. The SeReNA Project ("Remote sensing of clouds and their interaction with aerosols", from the acronym in Portuguese, @SerenaProject on Twitter) is an ongoing effort to experimentally investigate the impact of aerosols upon cloud microphysics in Amazonia. Vertical profiles of droplet effective radius of water and ice particles, in single convective clouds, can be derived from measurements of the emerging radiation on cloud sides. Aerosol optical depth, cloud top properties, and meteorological parameters retrieved from satellites will be correlated with microphysical properties derived for single clouds. Maps of cloud brightness temperature will allow building temperature vs. effective radius profiles for hydrometeors in single clouds. Figure 1 shows an example extracted from Martins et al. (2011), illustrating a proof-of-concept for the kind of result expected within the framework for the SeReNA Project. The results to be obtained will help foster the quantitative knowledge about interactions between aerosols and clouds in a microphysical level. These interactions are a fundamental process in the context of global climatic changes, they are key to understanding basic processes within clouds and how aerosols

  18. Radar Mosaic of Africa

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This is an image of equatorial Africa, centered on the equator at longitude 15degrees east. This image is a mosaic of almost 4,000 separate images obtained in 1996 by the L-band imaging radar onboard the Japanese Earth Resources Satellite. Using radar to penetrate the persistent clouds prevalent in tropical forests, the Japanese Earth Resources Satellite was able for the first time to image at high resolution this continental scale region during single flooding seasons. The area shown covers about 7.4 million square kilometers (2.8 million square miles) of land surface, spans more than 5,000 kilometers(3,100 miles) east and west and some 2,000 kilometers (1,240 miles) north and south. North is up in this image. At the full resolution of the mosaic (100 meters or 330 feet), this image is more than 500 megabytes in size, and was processed from imagery totaling more than 60 gigabytes.

    Central Africa was imaged twice in 1996, once between January and March, which is the major low-flood season in the Congo Basin, and once between October and November, which is the major high-flood season in the Congo Basin. The red color corresponds to the data from the low-flood season, the green to the high-flood season, and the blue to the 'texture' of the low-flood data. The forests appear green as a result, the flooded and palm forests, as well as urban areas, appear yellow, the ocean and lakes appear black, and savanna areas appear blue, black or green, depending on the savanna type, surface topography and other factors. The areas of the image that are black and white were mapped only between January and March 1996. In these areas, the black areas are savanna or open water, the gray are forests, and the white areas are flooded forests or urban areas. The Congo River dominates the middle of the image, where the nearby forests that are periodically flooded by the Congo and its tributaries stand out as yellow. The Nile River flows north from Lake Victoria in the middle right of

  19. Entanglement in bipartite pure states of an interacting boson gas obtained by local projective measurements

    SciTech Connect

    Paraan, Francis N. C.; Korepin, Vladimir E.; Molina-Vilaplana, Javier; Bose, Sougato

    2011-09-15

    We quantify the extractable entanglement of excited states of a Lieb-Liniger gas that are obtained from coarse-grained measurements on the ground state in which the boson number in one of two complementary contiguous partitions of the gas is determined. Numerically exact results obtained from the coordinate Bethe ansatz show that the von Neumann entropy of the resulting bipartite pure state increases monotonically with the strength of repulsive interactions and saturates to the impenetrable-boson limiting value. We also present evidence indicating that the largest amount of entanglement can be extracted from the most probable projected state having half the number of bosons in a given partition. Our study points to a fundamental difference between the nature of the entanglement in free-bosonic and free-fermionic systems, with the entanglement in the former being zero after projection, while that in the latter (corresponding to the impenetrable-boson limit) being nonzero.

  20. Knowledge based and interactive control for the Superfluid Helium On-orbit Transfer Project

    NASA Technical Reports Server (NTRS)

    Castellano, Timothy P.; Raymond, Eric A.; Shapiro, Jeff C.; Robinson, Frank A.; Rosenthal, Donald A.

    1989-01-01

    NASA's Superfluid Helium On-Orbit Transfer (SHOOT) project is a Shuttle-based experiment designed to acquire data on the properties of superfluid helium in micro-gravity. Aft Flight Deck Computer Software for the SHOOT experiment is comprised of several monitoring programs which give the astronaut crew visibility into SHOOT systems and a rule based system which will provide process control, diagnosis and error recovery for a helium transfer without ground intervention. Given present Shuttle manifests, this software will become the first expert system to be used in space. The SHOOT Command and Monitoring System (CMS) software will provide a near real time highly interactive interface for the SHOOT principal investigator to control the experiment and to analyze and display its telemetry. The CMS software is targeted for all phases of the SHOOT project: hardware development, pre-flight pad servicing, in-flight operations, and post-flight data analysis.

  1. Using spectroscopy and interactive games to teach Solar System science: A decade of NASA's Project SPECTRA!

    NASA Astrophysics Data System (ADS)

    Wood, E. L.

    2015-12-01

    NASA's Project SPECTRA! has been in existance for nearly a decade. It highlights mission data and uses interactive games to engage students in middle and high school grades. Students learn about the electromagnetic spectrum and how we use this information to glean information about Solar System objects, and their atmospheres and climates. The program uses data from Cassini, Mars orbiters and rovers (most recently MAVEN), Venus Express, and several Earth orbiters to bring concepts of planetary comparison into focus. Using both traditional paper and pencil lessons and Flash and app based games, students are asked to conduct open ended research, make sense of the data they are presented with, and make scientific observations and hypothesis based upon their explorations. This talk will demonstrate how games are used to engage students in this process. Project SPECTRA! is a NASA product available through NASAWavelength.org, and is aligned to the Next Generation Science Standards (NGSS).

  2. Design of a new human-computer interactive device for projection display

    NASA Astrophysics Data System (ADS)

    Xu, Wei; Liu, Xiangdong; Meng, Xiao

    2005-02-01

    Projection displays are widely applied as tools for multimedia in conference room presentation, education center, R&D center and more places. To provide a more interactive environment, a new kind of human-computer interactive device is designed and presented. A two-dimensional CCD is the sensor of the unit. Through optical filter, CCD exports full video signal including a series of isolated positive pulse caused by the specific light-spot target generated from a specific light-pen. Through a video sync separator, combinational logic and sequential logic process of the full video signal, the target image's two-dimensional position on the light sensitive layer of CCD can be gained. The specific light-pen also sends the function logic message to the controller part through wireless communication. A microcontroller will combine the position information and function message, and then send it to computer through RS-232 of USB interface. The software in computer will process these messages. The specific light-spot's relative coordinates in the projection screen is gained. With the coordinate and the function message, the software will drive the computer to implement certain functions. With the specific light-pen, one can control the computer, take notes and shape his desire in the screen. Now the device is applied in LCD projection displays and it also can be applied in any large screen display. With the improvement of the system and the software, the function will be more powerful and provide a more interactive human computer interface (HCI).

  3. Radar Ionospheric Impact Mitigation

    NASA Astrophysics Data System (ADS)

    Bishop, G.; Decker, D.; Baker, C.

    2006-12-01

    New ionospheric modeling technology is being developed to improve correction of ionospheric impacts on the performance of ground-based space-surveillance radars (SSRs) in near-real-time. These radars, which detect and track space objects, can experience significant target location errors due to ionospheric delay and refraction of the radar signals. Since these radars must detect and track targets essentially to the radar horizon, it is necessary to accurately model the ionosphere as the radar would observe it, down to the local horizon. To correct for spatial and temporal changes in the ionosphere the model must be able to update in near-real-time using ionospheric sensor data. Since many radars are in isolated locations, or may have requirements to operate autonomously, an additional required capability is to provide accurate ionospheric mitigation by exploiting only sensor data from the radar site. However, the model must also be able to update using additional data from other types of sensors that may be available. The original radar ionospheric mitigation approach employed the Bent climatological model. This 35-year-old technology is still the means employed in the many DoD SSRs today. One more recent approach used capabilities from the PRISM model. PRISM technology has today been surpassed by `assimilative models' which employ better physics and Kalman filtering techniques. These models are not necessarily tailored for SSR application which needs to optimize modeling of very small regions using only data from a single sensor, or very few. The goal is to develop and validate the performance of innovative and efficient ionospheric modeling approaches that are optimized for the small regions applicable to ground-based radar coverage (radius of ~2000 km at ionospheric altitudes) and somewhat beyond. These approaches must adapt a continuous modeling scheme in near-real-time to be consistent with all observational data that may become available, and degrade

  4. Stability of the patient-by-treatment interaction in the Menninger Psychotherapy Research Project.

    PubMed

    Blatt, Sidney J; Shahar, Golan

    2004-01-01

    Consistent with the call to consider person-by-treatment interactions in intervention research, Blatt (1992) found that anaclitic and introjective patients responded differently to psychoanalysis and supportive-expressive therapy (SEP) in the Menninger Psychotherapy Research Project (MPRP). Psychoanalysis was significantly more effective than SEP in reducing malevolent, destructive imagery on the Rorschach among introjective patients, those patients who are primarily preoccupied with control and self-definition. Conversely, SEP was significantly more effective than psychoanalysis in reducing these malevolent, destructive images among anaclitic patients, those patients who are primarily preoccupied with interpersonal relatedness. The present analyses of data from the MPRP demonstrate the stability of this statistically significant patient-by-treatment interaction even in the subsample of patients for whom the anaclitic-introjective distinction was ambiguous, reaffirming the validity of both the anaclitic-introjective distinction and the importance of considering patient characteristics in psychotherapy research and practice. PMID:15113032

  5. A scalable distributed paradigm for multi-user interaction with tiled rear projection display walls.

    PubMed

    Roman, Pablo; Lazarov, Maxim; Majumder, Aditi

    2010-01-01

    We present the first distributed paradigm for multiple users to interact simultaneously with large tiled rear projection display walls. Unlike earlier works, our paradigm allows easy scalability across different applications, interaction modalities, displays and users. The novelty of the design lies in its distributed nature allowing well-compartmented, application independent, and application specific modules. This enables adapting to different 2D applications and interaction modalities easily by changing a few application specific modules. We demonstrate four challenging 2D applications on a nine projector display to demonstrate the application scalability of our method: map visualization, virtual graffiti, virtual bulletin board and an emergency management system. We demonstrate the scalability of our method to multiple interaction modalities by showing both gesture-based and laser-based user interfaces. Finally, we improve earlier distributed methods to register multiple projectors. Previous works need multiple patterns to identify the neighbors, the configuration of the display and the registration across multiple projectors in logarithmic time with respect to the number of projectors in the display. We propose a new approach that achieves this using a single pattern based on specially augmented QR codes in constant time. Further, previous distributed registration algorithms are prone to large misregistrations. We propose a novel radially cascading geometric registration technique that yields significantly better accuracy. Thus, our improvements allow a significantly more efficient and accurate technique for distributed self-registration of multi-projector display walls. PMID:20975205

  6. Modeling multiple communities of interest for interactive simulation and gaming: the dynamic adversarial gaming algorithm project

    NASA Astrophysics Data System (ADS)

    Santos, Eugene, Jr.; Zhao, Qunhua; Pratto, Felicia; Pearson, Adam R.; McQueary, Bruce; Breeden, Andy; Krause, Lee

    2007-04-01

    Nowadays, there is an increasing demand for the military to conduct operations that are beyond traditional warfare. In these operations, analyzing and understanding those who are involved in the situation, how they are going to behave, and why they behave in certain ways is critical for success. The challenge lies in that behavior does not simply follow universal/fixed doctrines; it is significantly influenced by soft factors (i.e. cultural factors, societal norms, etc.). In addition, there is rarely just one isolated enemy; the behaviors and responses of all groups in the region, and the dynamics of the interaction among them composes an important part of the whole picture. The Dynamic Adversarial Gaming Algorithm (DAGA) project aims to provide a wargaming environment for automation of simulating dynamics of geopolitical crisis and eventually be applied to military simulation and training domain, and/or commercial gaming arena. The focus of DAGA is on modeling communities of interest (COIs), where various individuals, groups, and organizations as well as their interactions are captured. The framework should provide a context for COIs to interact with each other and influence others' behaviors. These behaviors must incorporate soft factors by modeling cultural knowledge. We do so by representing cultural variables and their influence on behavior using probabilistic networks. In this paper, we describe our COI modeling, the development of cultural networks, the interaction architecture, and a prototype of DAGA.

  7. Evaluation of Various Radar Data Quality Control Algorithms Based on Accumulated Radar Rainfall Statistics

    NASA Technical Reports Server (NTRS)

    Robinson, Michael; Steiner, Matthias; Wolff, David B.; Ferrier, Brad S.; Kessinger, Cathy; Einaudi, Franco (Technical Monitor)

    2000-01-01

    The primary function of the TRMM Ground Validation (GV) Program is to create GV rainfall products that provide basic validation of satellite-derived precipitation measurements for select primary sites. A fundamental and extremely important step in creating high-quality GV products is radar data quality control. Quality control (QC) processing of TRMM GV radar data is based on some automated procedures, but the current QC algorithm is not fully operational and requires significant human interaction to assure satisfactory results. Moreover, the TRMM GV QC algorithm, even with continuous manual tuning, still can not completely remove all types of spurious echoes. In an attempt to improve the current operational radar data QC procedures of the TRMM GV effort, an intercomparison of several QC algorithms has been conducted. This presentation will demonstrate how various radar data QC algorithms affect accumulated radar rainfall products. In all, six different QC algorithms will be applied to two months of WSR-88D radar data from Melbourne, Florida. Daily, five-day, and monthly accumulated radar rainfall maps will be produced for each quality-controlled data set. The QC algorithms will be evaluated and compared based on their ability to remove spurious echoes without removing significant precipitation. Strengths and weaknesses of each algorithm will be assessed based on, their abilit to mitigate both erroneous additions and reductions in rainfall accumulation from spurious echo contamination and true precipitation removal, respectively. Contamination from individual spurious echo categories will be quantified to further diagnose the abilities of each radar QC algorithm. Finally, a cost-benefit analysis will be conducted to determine if a more automated QC algorithm is a viable alternative to the current, labor-intensive QC algorithm employed by TRMM GV.

  8. Development and characterization analysis of a radar polarimeter

    NASA Technical Reports Server (NTRS)

    Bong, S.; Blanchard, A. J.

    1983-01-01

    The interaction of electromagnetic waves with natural earth surface was of interest for many years. A particular area of interest in controlled remote sensing experiments is the phenomena of depolarization. The development stages of the radar system are documented. Also included are the laboratory procedures which provides some information about the specifications of the system. The radar system developed is termed the Radar Polarimeter System. A better insight of the operation of the RPS in terms of the newly developed technique--synthetic aperture radar system is provided. System performance in tems of radar cross section, in terms of power, and in terms of signal to noise ratio are also provided. In summary, an overview of the RPS in terms of its operation and design as well as how it will perform in the field is provided.

  9. Three-dimensional mosaicking of the South Korean radar network

    NASA Astrophysics Data System (ADS)

    Berenguer, Marc; Sempere-Torres, Daniel; Lee, GyuWon

    2016-04-01

    Dense radar networks offer the possibility of improved Quantitative Precipitation Estimation thanks to the additional information collected in the overlapping areas, which allows mitigating errors associated with the Vertical Profile of Reflectivity or path attenuation by intense rain. With this aim, Roca-Sancho et al. (2014) proposed a technique to generate 3-D reflectivity mosaics from the multiple radars of a network. The technique is based on an inverse method that simulates the radar sampling of the atmosphere considering the characteristics (location, frequency and scanning protocol) of each individual radar. This technique has been applied to mosaic the observations of the radar network of South Korea (composed of 14 S-band radars), and integrate the observations of the small X-band network which to be installed near Seoul in the framework of a project funded by the Korea Agency for Infrastructure Technology Advancement (KAIA). The evaluation of the generated 3-D mosaics has been done by comparison with point measurements (i.e. rain gauges and disdrometers) and with the observations of independent radars. Reference: Roca-Sancho, J., M. Berenguer, and D. Sempere-Torres (2014), An inverse method to retrieve 3D radar reflectivity composites, Journal of Hydrology, 519, 947-965, doi: 10.1016/j.jhydrol.2014.07.039.

  10. A comparative study of RADAR Ka-band backscatter

    NASA Astrophysics Data System (ADS)

    Mapelli, D.; Pierdicca, N.; Guerriero, L.; Ferrazzoli, Paolo; Calleja, Eduardo; Rommen, B.; Giudici, D.; Monti Guarnieri, A.

    2014-10-01

    Ka-band RADAR frequency range has not yet been used for Synthetic Aperture Radar (SAR) from space so far, although this technology may lead to important applications for the next generation of SAR space sensors. Therefore, feasibility studies regarding a Ka-band SAR instrument have been started [1][2], for the next generation of SAR space sensors. In spite of this, the lack of trusted references on backscatter at Ka-band revealed to be the main limitation for the investigation of the potentialities of this technology. In the framework of the ESA project "Ka-band SAR backscatter analysis in support of future applications", this paper is aimed at the study of wave interaction at Ka-band for a wide range of targets in order to define a set of well calibrated and reliable Ka-band backscatter coefficients for different kinds of targets. We propose several examples of backscatter data resulting from a critical survey of available datasets at Ka-band, focusing on the most interesting cases and addressing both correspondences and differences. The reliability of the results will be assessed via a preliminary comparison with ElectroMagnetic (EM) theoretical models. Furthermore, in support of future technological applications, we have designed a prototypal software acting as a "library" of earth surface radar response. In our intention, the output of the study shall contribute to answer to the need of a trustworthy Ka-Band backscatter reference. It will be of great value for future technological applications, such as support to instrument analysis, design and requirements' definition (e.g.: Signal to Noise Ratio, Noise Equivalent Sigma Zero).

  11. A barrier radar concept

    NASA Astrophysics Data System (ADS)

    Marshall, J.; Ball, C.; Weissman, I.

    A description is given of a low power, light-weight radar that can be quickly set up and operated on batteries for extended periods of time to detect airborne intruders. With low equipment and operating costs, it becomes practical to employ a multiplicity of such radars to provide an unbroken intrusion fence over the desired perimeter. Each radar establishes a single transmitted fan beam extending vertically from horizon to horizon. The beam is generated by a two-face array antenna built in an A-frame configuration and is shaped, through phasing of the array elements, to concentrate the transmitter power in a manner consistent with the expected operating altitude ceiling of the targets of interest. The angular width of this beam in the dimension transverse to the fan depends on the radar transmission frequency and the antenna aperture dimension, but is typically wide enough so that a target at the maximum altitude or range will require tens of seconds to pass through the beam. A large number of independent samples of radar data will thus be available to provide many opportunities for target detection.

  12. "Show Me Where You Study!"--An Interactive Project between German Language Students in Nottingham and St Andrews

    ERIC Educational Resources Information Center

    Hartung, Insa; Reisenleutner, Sandra

    2016-01-01

    Interactive projects among students of a Common European Framework of Reference for languages (CEFR) A1+/A2 level seem difficult to set up due to the limited language repertoire of the students. Thus, our aim was to take up the challenge and start a project with the objective of applying their language skills. We chose a collaborative approach to…

  13. SRTM Radar - Landsat Image Comparison, Patagonia, Argentina

    NASA Technical Reports Server (NTRS)

    2000-01-01

    various differences among all of these images illustrate the importance of illumination wavelength in image interpretation.

    The Landsat 7 Thematic Mapper images used here were provided to the SRTM project by the United States Geological Survey, Earth Resources Observation Systems (EROS) Data Center, Sioux Falls, South Dakota.

    The radar images shown here were acquired by the Shuttle Radar Topography Mission (SRTM) aboard the Space Shuttle Endeavour, launched on February 11,2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. SRTM was designed to collect three-dimensional measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter-long (200-foot) mast, installed additional C-band and X-band antennas, and improved tracking and navigation devices. The mission is a cooperative project between the National Aeronautics and Space Administration (NASA), the National Imagery and Mapping Agency (NIMA) of the U.S. Department of Defense (DoD), and the German and Italian space agencies. It is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Earth Science Enterprise,Washington, DC.

    Size (top set): 21.3 kilometers (13.2 miles) x 25.0 kilometers (15.5 miles) Size (bottom set): 44.1 kilometers (27.3 miles) x 56.0 kilometers (34.7 miles) Location: 41.5 deg. South lat., 69 deg. West lon. Orientation: North toward upper left (top set), North toward upper right (bottom set) Image Data: Landsat bands 1,2,3 (left); SRTM Radar (middle); Landsat band 7 (right) Date Acquired: February 19, 2000 (SRTM), January 22, 2000 (Landsat)

  14. 33. Perimeter acquisition radar building room #320, perimeter acquisition radar ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    33. Perimeter acquisition radar building room #320, perimeter acquisition radar operations center (PAROC), contains the tactical command and control group equipment required to control the par site. Showing spacetrack monitor console - Stanley R. Mickelsen Safeguard Complex, Perimeter Acquisition Radar Building, Limited Access Area, between Limited Access Patrol Road & Service Road A, Nekoma, Cavalier County, ND

  15. Composite pattern structured light projection for human computer interaction in space

    NASA Astrophysics Data System (ADS)

    Guan, Chun; Hassebrook, Laurence G.; Lau, Daniel L.; Yalla, Veera Ganesh

    2005-05-01

    Interacting with computer technology while wearing a space suit is difficult at best. We present a sensor that can interpret body gestures in 3-Dimensions. Having the depth dimension allows simple thresholding to isolate the hands as well as use their positioning and orientation as input controls to digital devices such as computers and/or robotic devices. Structured light pattern projection is a well known method of accurately extracting 3-Dimensional information of a scene. Traditional structured light methods require several different patterns to recover the depth, without ambiguity and albedo sensitivity, and are corrupted by object motion during the projection/capture process. The authors have developed a methodology for combining multiple patterns into a single composite pattern by using 2-Dimensional spatial modulation techniques. A single composite pattern projection does not require synchronization with the camera so the data acquisition rate is only limited by the video rate. We have incorporated dynamic programming to greatly improve the resolution of the scan. Other applications include machine vision, remote controlled robotic interfacing in space, advanced cockpit controls and computer interfacing for the disabled. We will present performance analysis, experimental results and video examples.

  16. (abstract) Science-Project Interaction in the Low-Cost Mission

    NASA Technical Reports Server (NTRS)

    Wall, Stephen D.

    1994-01-01

    Large, complex, and highly optimized missions have performed most of the preliminary reconnaisance of the solar system. As a result we have now mapped significant fractions of its total surface (or surface-equivalent) area. Now, however, scientific exploration of the solar system is undergoing a major change in scale, and existing missions find it necessary to limit costs while fulfilling existing goals. In the future, NASA's Discovery program will continue the reconnaisance, exploration, and diagnostic phases of planetary research using lower cost missions, which will include lower cost mission operations systems (MOS). Historically, one of the more expensive functions of MOS has been its interaction with the science community. Traditional MOS elements that this interaction have embraced include mission planning, science (and engineering) event conflict resolution, sequence optimization and integration, data production (e.g., assembly, enhancement, quality assurance, documentation, archive), and other science support services. In the past, the payoff from these efforts has been that use of mission resources has been highly optimized, constraining resources have been generally completely consumed, and data products have been accurate and well documented. But because these functions are expensive we are now challenged to reduce their cost while preserving the benefits. In this paper, we will consider ways of revising the traditional MOS approach that might save project resources while retaining a high degree of service to the Projects' customers. Pre-launch, science interaction can be made simplier by limiting numbers of instruments and by providing greater redundancy in mission plans. Post launch, possibilities include prioritizing data collection into a few categories, easing requirements on real-time of quick-look data delivery, and closer integration of scientists into the mission operation.

  17. Phase modulating the Urbana radar

    NASA Technical Reports Server (NTRS)

    Herrington, L. J., Jr.; Bowhill, S. A.

    1983-01-01

    The design and operation of a switched phase modulation system for the Urbana Radar System are discussed. The system is implemented and demonstrated using a simple procedure. The radar system and circuits are described and analyzed.

  18. Mercury radar speckle dynamics

    NASA Astrophysics Data System (ADS)

    Holin, Igor V.

    2010-06-01

    Current data reveal that Mercury is a dynamic system with a core which has not yet solidified completely and is at least partially decoupled from the mantle. Radar speckle displacement experiments have demonstrated that the accuracy in spin-dynamics determination for Earth-like planets can approach 10 -5. The extended analysis of space-time correlation properties of radar echoes shows that the behavior of speckles does not prevent estimation of Mercury's instantaneous spin-vector components to accuracy of a few parts in 10 7. This limit can be reached with more powerful radar facilities and leads to constraining the interior in more detail from effects of spin dynamics, e.g., from observation of the core-mantle interplay through high precision monitoring of the 88-day spin-variation of Mercury's crust.

  19. The MST Radar Technique

    NASA Technical Reports Server (NTRS)

    Balsley, B. B.

    1985-01-01

    The past ten year have witnessed the development of a new radar technique to examine the structure and dynamics of the atmosphere between roughly 1 to 100 km on a continuous basis. The technique is known as the MST (for Mesosphere-Stratosphere-Troposphere) technique and is usable in all weather conditions, being unaffected by precipitation or cloud cover. MST radars make use of scattering from small scale structure in the atmospheric refractive index, with scales of the order of one-half the radar wavelength. Pertinent scale sizes for middle atmospheric studies typically range between a fraction of a meter and a few meters. The structure itself arises primarily from atmospheric turbulence. The technique is briefly described along with the meteorological parameters it measures.

  20. Characteristics of Sunset radar

    NASA Technical Reports Server (NTRS)

    Green, J. L.

    1983-01-01

    Located in a narrow canyon 15 km west of Boulder, Colorado, the Sunset pulsed Doppler radar was the first radar designed and constructed specifically as a VHF ST radar. The antenna system is a phased array of coaxial-colinear dopoles with computer-controlled phase shifters for each line of dipoles. It operates at a frequency of 40.475 MHz and a wavelength of 7.41M. Peak transmitter power is 100 kW. Aperture efficiency is 0.58 and resistive loss is 0.30 for its 3600 sq m area. The practical steering rate is 1 record/minute/position to any arbitrary antenna beam position. The first clear-air turbulence echoes and wind velocity measurements were obtained in 1974. Significant accomplishments are listed.

  1. LANDSAT and radar mapping of intrusive rocks in SE-Brazil

    NASA Technical Reports Server (NTRS)

    Parada, N. D. J. (Principal Investigator); Dossantos, A. R.; Dosanjos, C. E.; Moreira, J. C.; Barbosa, M. P.; Veneziani, P.

    1982-01-01

    The feasibility of intrusive rock mapping was investigated and criteria for regional geological mapping established at the scale of 1:500,00 in polycyclic and polymetamorphic areas using the logic method of photointerpretation of LANDSAT imagery and radar from the RADAMBRASIL project. The spectral behavior of intrusive rocks, was evaluated using the interactive multispectral image analysis system (Image-100). The region of Campos (city) in northern Rio de Janeiro State was selected as the study area and digital imagery processing and pattern recognition techniques were applied. Various maps at the 2:250,000 scale were obtained to evaluate the results of automatic data processing.

  2. Radar data smoothing filter study

    NASA Technical Reports Server (NTRS)

    White, J. V.

    1984-01-01

    The accuracy of the current Wallops Flight Facility (WFF) data smoothing techniques for a variety of radars and payloads is examined. Alternative data reduction techniques are given and recommendations are made for improving radar data processing at WFF. A data adaptive algorithm, based on Kalman filtering and smoothing techniques, is also developed for estimating payload trajectories above the atmosphere from noisy time varying radar data. This algorithm is tested and verified using radar tracking data from WFF.

  3. Foliage penetrating radar imaging system

    NASA Astrophysics Data System (ADS)

    Beaudoin, Christopher J.; Gatesman, Andrew J.; Giles, Robert H.; Waldman, Jerry; Testorf, Markus E.; Fiddy, Michael A.; Nixon, William E.

    2002-12-01

    A far-field radar range has been constructed at the University of Massachusetts Lowell Submillimeter-Wave Technology Laboratory to investigate electromagnetic scattering and imagery of threat military targets located in forested terrain. The radar system, operating at X-band, uses 1/35th scale targets and scenes to acquire VHF/UHF signature data. The trees and ground planes included in the measurement scenes have been dielectrically scaled in order to properly model the target/clutter interaction. The signature libraries acquired by the system could be used to help develop automatic target recognition algorithms. The difficulty in target recognition in forested areas is due to the fact that trees can have a signature larger than that of the target. The rather long wavelengths required to penetrate the foliage canopy also complicate target recognition by limiting image resolution. The measurement system and imaging algorithm will be presented as well as a validation of the measurements obtained by comparing measured signatures with analytical predictions. Preliminary linear co-polarization (HH,VV) and cross-polarization (HV,VH) data will be presented on an M1 tank in both forested and open-field scenarios.

  4. Millimeter wave radar clutter program

    NASA Astrophysics Data System (ADS)

    Ulaby, Fawwaz T.

    1989-10-01

    The overall goal of the program was to conduct experimental measurements and develop theoretical models to improve the understanding of electromagnetic wave interaction with terrain at millimeter wavelengths. The work was divided into five tasks. Tasks 1 involved the construction of calibrated scatterometer systems at 35, 94, and 140 GHz. In designing, constructing, and testing these systems, a great deal was learnt about system-design trade-offs and system stability requirements, and new calibration techniques were developed. The scatterometer systems were then used in support of the remaining tasks. The objective of Task 2 was to evaluate the effects of signal fading on the radar backscatter from terrain. Based on experiments conducted from asphalt and snow-covered surfaces, it was determined that the Rayleigh fading model is applicable at millimeter wavelengths, and a model was developed to show how frequency averaging can be used to reduce signal fading fluctuations. Task 3 involved the development of a model that relates the transmission loss of dry snow to crystal size in the 18 to 90 GHz region. In Task 4, the character of bistatic scattering from surfaces of various surface roughness and from two types of trees was examined. The bistatic data for trees proved instrumental in the development of a radar model for scattering from tree foliage at millimeter wavelengths, which was one component of Task 5. The other component of Task 5 involved the development of a model for snow.

  5. Radar Investigations of Asteroids

    NASA Technical Reports Server (NTRS)

    Ostro, S. J.

    1984-01-01

    Radar investigations of asteroids, including observations during 1984 to 1985 of at least 8 potential targets and continued analyses of radar data obtained during 1980 to 1984 for 30 other asteroids is proposed. The primary scientific objectives include estimation of echo strength, polarization, spectral shape, spectral bandwidth, and Doppler shift. These measurements yield estimates of target size, shape, and spin vector; place constraints on topography, morphology, density, and composition of the planetary surface; yield refined estimates of target orbital parameters; and reveals the presence of asteroidal satellites.

  6. Terminal Doppler weather radar

    NASA Astrophysics Data System (ADS)

    Michelson, M.; Shrader, W. W.; Wieler, J. G.

    1990-02-01

    The terminal Doppler weather radar (TDWR) system, now under development, will provide automatic detection of microbursts and low-level wind shear. This paper discusses the TDWR performance parameters and describes its structural elements, including the antenna subsystem, the transmitter, the receiver/exciter, the digital signal processor, and the radar product generator/remote monitoring subsystem. Attention is also given to the processes of the base data formation, point target removal, signal-to-noise thresholding, and velocity de-aliasing and to the TDWR algorithms and displays. A schematic diagram of the TDWR system is presented.

  7. Microwave radar oceanographic investigations

    NASA Technical Reports Server (NTRS)

    Jackson, F. C.

    1988-01-01

    The Radar Ocean Wave Spectrometer (ROWS) technique was developed and demonstrated for measuring ocean wave directional spectra from air and space platforms. The measurement technique was well demonstrated with data collected in a number of flight experiments involving wave spectral comparisons with wave buoys and the Surface Contour Radar (SCR). Recent missions include the SIR-B underflight experiment (1984), FASINEX (1986), and LEWEX (1987). ROWS related activity is presently concentrating on using the aircraft instrument for wave-processes investigations and obtaining the necessary support (consensus) for a satellite instrument development program. Prospective platforms include EOS and the Canadian RADARSAT.

  8. Spaceborne Imaging Radar Symposium

    NASA Technical Reports Server (NTRS)

    Elachi, C.

    1983-01-01

    An overview of the present state of the art in the different scientific and technological fields related to spaceborne imaging radars was presented. The data acquired with the SEASAT SAR (1978) and Shuttle Imaging Radar, SIR-A (1981) clearly demonstrated the important emphasis in the 80's is going to be on in-depth research investigations conducted with the more flexible and sophisticated SIR series instruments and on long term monitoring of geophysical phenomena conducted from free-flying platforms such as ERS-1 and RADARSAT.

  9. Investigation of Advanced Radar Techniques for Atmospheric Hazard Detection with Airborne Weather Radar

    NASA Technical Reports Server (NTRS)

    Pazmany, Andrew L.

    2014-01-01

    In 2013 ProSensing Inc. conducted a study to investigate the hazard detection potential of aircraft weather radars with new measurement capabilities, such as multi-frequency, polarimetric and radiometric modes. Various radar designs and features were evaluated for sensitivity, measurement range and for detecting and quantifying atmospheric hazards in wide range of weather conditions. Projected size, weight, power consumption and cost of the various designs were also considered. Various cloud and precipitation conditions were modeled and used to conduct an analytic evaluation of the design options. This report provides an overview of the study and summarizes the conclusions and recommendations.

  10. Systems and Methods for Radar Data Communication

    NASA Technical Reports Server (NTRS)

    Bunch, Brian (Inventor); Szeto, Roland (Inventor); Miller, Brad (Inventor)

    2013-01-01

    A radar information processing system is operable to process high bandwidth radar information received from a radar system into low bandwidth radar information that may be communicated to a low bandwidth connection coupled to an electronic flight bag (EFB). An exemplary embodiment receives radar information from a radar system, the radar information communicated from the radar system at a first bandwidth; processes the received radar information into processed radar information, the processed radar information configured for communication over a connection operable at a second bandwidth, the second bandwidth lower than the first bandwidth; and communicates the radar information from a radar system, the radar information communicated from the radar system at a first bandwidth.

  11. Stereoscopic Height Estimation from Multiple Aspect Synthetic Aperture Radar Images

    SciTech Connect

    DELAURENTIS,JOHN M.; DOERRY,ARMIN W.

    2001-08-01

    A Synthetic Aperture Radar (SAR) image is a two-dimensional projection of the radar reflectivity from a 3-dimensional object or scene. Stereoscopic SAR employs two SAR images from distinct flight paths that can be processed together to extract information of the third collapsed dimension (typically height) with some degree of accuracy. However, more than two SAR images of the same scene can similarly be processed to further improve height accuracy, and hence 3-dimensional position accuracy. This report shows how.

  12. Software For Clear-Air Doppler-Radar Display

    NASA Technical Reports Server (NTRS)

    Johnston, Bruce W.

    1990-01-01

    System of software developed to present plan-position-indicator scans of clear-air Doppler radar station on color graphical cathode-ray-tube display. Designed to incorporate latest accepted standards for equipment, computer programs, and meteorological data bases. Includes use of Ada programming language, of "Graphical-Kernel-System-like" graphics interface, and of Common Doppler Radar Exchange Format. Features include portability and maintainability. Use of Ada software packages produced number of software modules reused on other related projects.

  13. SEASAT Synthetic Aperture Radar Data

    NASA Technical Reports Server (NTRS)

    Henderson, F. M.

    1981-01-01

    The potential of radar imagery from space altitudes is discussed and the advantages of radar over passive sensor systems are outlined. Specific reference is made to the SEASAT synthetic aperture radar. Possible applications include oil spill monitoring, snow and ice reconnaissance, mineral exploration, and monitoring phenomena in the urban environment.

  14. System aspects of the Indian MST radar facility

    NASA Technical Reports Server (NTRS)

    Viswanathan, G.

    1986-01-01

    One of the major objectives of the Indian Middle Atmosphere Program is to investigate the motions of the middle atmosphere on temporal and spatial scales and the interaction between the three height regions of the middle atmosphere. Realizing the fact that radar technique has proven to be a very powerful tool for the study of Earth atmosphere, the Indian Middle Atmosphere Program has recommended establishing a mesosphere-stratosphere-troposphere (MST) radar as a national facility for atmospheric research. The major landmarks in this attempt to setup the MST radar as a national facility are described.

  15. Nonlinear synthetic aperture radar imaging using a harmonic radar

    NASA Astrophysics Data System (ADS)

    Gallagher, Kyle A.; Mazzaro, Gregory J.; Ranney, Kenneth I.; Nguyen, Lam H.; Martone, Anthony F.; Sherbondy, Kelly D.; Narayanan, Ram M.

    2015-05-01

    This paper presents synthetic aperture radar (SAR) images of linear and nonlinear targets. Data are collected using a linear/nonlinear step frequency radar. We show that it is indeed possible to produce SAR images using a nonlinear radar. Furthermore, it is shown that the nonlinear radar is able to reduce linear clutter by at least 80 dB compared to a linear radar. The nonlinear SAR images also show the system's ability to detect small electronic devices in the presence of large linear clutter. The system presented here has the ability to completely ignore a 20-inch trihedral corner reflector while detecting a RF mixer with a dipole antenna attached.

  16. The nuclear weapons inheritance project: student-to-student dialogues and interactive peer education in disarmament activism.

    PubMed

    Buhmann, Caecilie Böck

    2007-01-01

    The Nuclear Weapons Inheritance Project is a student run and student initiated project founded in 2001 with the purpose of increasing awareness of health effects of nuclear policies and empowering university students to take action in a local and international context. The project uses dialogues to discuss nuclear disarmament with university students and a method of interactive peer education to train new trainers. The project has met more than 1500 students in nuclear weapon states in dialogue and trained about 400 students from all over the world. This article describes the methods and results of the project and discuss how the experience of the project can be used in other projects seeking to increase awareness of a topic and to initiate action on social injustice. PMID:17542184

  17. Science Roles and Interactions in Adaptive Management of Large River Restoration Projects, Midwest United States

    NASA Astrophysics Data System (ADS)

    Jacobson, R. B.; Galat, D. L.; Smith, C. B.

    2010-12-01

    Most large-river restoration projects include formal or informal implementations of adaptive management strategies which acknowledge uncertainty and use scientific inquiry to learn and refine management options. Although the central role of science in reducing uncertainty is acknowledged in such projects, specific roles and interactions can vary widely, including how science relates to decision-making within the governance of these projects. Our objective is to present some structured generalizations about science roles and interactions as developed from the authors’ experiences in adaptive management of large river restoration in the Midwest United States. Scientific information may be introduced into decision making by scientists acting in any of the three roles common to adaptive management -- action agency representative, stakeholder, or science provider. We have observed that confusion and gridlock can arise when it is unclear if a scientist is acting as an advocate for a stakeholder or management position, or instead as an independent, “honest broker” of science. Although both advocacy and independence are proper and expected in public decision making, it is useful when scientists unambiguously identify their role. While complete scientific independence may be illusory, transparency and peer review can promote the ideal. Transparency comes from setting clear directions and objectives at the decision-making level and defining at the outset how learning will help assess progress and inform decisions. Independent peer reviews of proposals, study plans, and publications serve as a powerful tool to advance scientific independence, even if funding sources present a potential conflict of interest. Selection of experts for scientific advice and review often requires consideration of the balance between benefits of the “outside” expert (independent, knowledgeable but with little specific understanding of the river system), compared to those provided by the

  18. Venus Radar Mapper (VRM): Multimode radar system design

    NASA Technical Reports Server (NTRS)

    Johnson, William T. K.; Edgerton, Alvin T.

    1986-01-01

    The surface of Venus has remained a relative mystery because of the very dense atmosphere that is opaque to visible radiation and, thus, normal photographic techniques used to explore the other terrestrial objects in the solar system are useless. The atmosphere is, however, almost transparent to radar waves and images of the surface have been produced via Earth-based and orbital radars. The technique of obtaining radar images of a surface is variously called side looking radar, imaging radar, or synthetic aperture radar (SAR). The radar requires a moving platform in which the antenna is side looking. High resolution is obtained in the cross-track or range direction by conventional radar pulse encoding. In the along-track or azimuth direction, the resolution would normally be the antenna beam width, but for the SAR case, a much longer antenna (or much sharper beam) is obtained by moving past a surface target as shown, and then combining the echoes from many pulses, by using the Doppler data, to obtain the images. The radar design of the Venus Radar Mapper (VRM) is discussed. It will acquire global radar imagery and altimetry data of the surface of Venus.

  19. Mississippi Delta, Radar Image with Colored Height

    NASA Technical Reports Server (NTRS)

    2005-01-01

    , engineers added a 60-meter (approximately 200-foot) mast, installed additional C-band and X-band antennas, and improved tracking and navigation devices. The mission is a cooperative project between NASA, the National Geospatial-Intelligence Agency of the U.S. Department of Defense and the German and Italian space agencies. It is managed by NASA's Jet Propulsion Laboratory, Pasadena, Calif., for NASA's Science Mission Directorate, Washington, D.C.

    Location: 30 degrees North latitude, 90 degrees East longitude Orientation: North toward the top, Mercator projection Size: 222.6 by 192.8 kilometers (138.3 by 119.8 miles) Image Data: Radar image and colored Shuttle Radar Topography Mission elevation model Date Acquired: February 2000

  20. The "Binarity and Magnetic Interactions in various classes of stars" (BinaMIcS) project

    NASA Astrophysics Data System (ADS)

    Neiner, C.; Morin, J.; Alecian, E.

    2015-12-01

    The "Binarity and Magnetic Interactions in various classes of stars" (BinaMIcS) project is based on two large programs of spectropolarimetric observations with ESPaDOnS at CFHT and Narval at TBL. Three samples of spectroscopic binaries with two spectra (SB2) are observed: known cool magnetic binaries, the few known hot magnetic binaries, and a survey sample of hot binaries to search for additional hot magnetic binaries. The goal of BinaMIcS is to understand the complex interplay between stellar magnetism and binarity. To this aim, we will characterise and model the magnetic fields, magnetospheric structure and coupling of both components of hot and cool close binary systems over a significant range of evolutionary stages, to confront current theories and trigger new ones. First results already provided interesting clues, e.g. about the origin of magnetism in hot stars.

  1. Development and Testing of the VAHIRR Radar Product

    NASA Technical Reports Server (NTRS)

    Barrett, Joe III; Miller, Juli; Charnasky, Debbie; Gillen, Robert; Lafosse, Richard; Hoeth, Brian; Hood, Doris; McNamara, Todd

    2008-01-01

    Lightning Launch Commit Criteria (LLCC) and Flight Rules (FR) are used for launches and landings at government and commercial spaceports. They are designed to avoid natural and triggered lightning strikes to space vehicles, which can endanger the vehicle, payload, and general public. The previous LLCC and FR were shown to be overly restrictive, potentially leading to costly launch delays and scrubs. A radar algorithm called Volume Averaged Height Integrated Radar Reflectivity (VAHIRR), along with new LLCC and FR for anvil clouds, were developed using data collected by the Airborne Field Mill II research program. VAHIRR is calculated at every horizontal position in the coverage area of the radar and can be displayed similar to a two-dimensional derived reflectivity product, such as composite reflectivity or echo tops. It is the arithmetic product of two quantities not currently generated by the Weather Surveillance Radar 1988 Doppler (WSR-88D): a volume average of the reflectivity measured in dBZ and the average cloud thickness based on the average echo top height and base height. This presentation will describe the VAHIRR algorithm, and then explain how the VAHIRR radar product was implemented and tested on a clone of the National Weather Service's (NWS) Open Radar Product Generator (ORPG-clone). The VAHIRR radar product was then incorporated into the Advanced Weather Interactive Processing System (AWIPS), to make it more convenient for weather forecasters to utilize. Finally, the reliability of the VAHIRR radar product was tested with real-time level II radar data from the WSR-88D NWS Melbourne radar.

  2. Space Radar Image of North Atlantic Ocean

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This is a radar image showing surface features on the open ocean in the northeast Atlantic Ocean. There is no land mass in this image. The purple line in the lower left of the image is the stern wake of a ship. The ship creating the wake is the bright white spot on the middle, left side of the image. The ship's wake is about 28 kilometers (17 miles) long in this image and investigators believe that is because the ship may be discharging oil. The oil makes the wake last longer and causes it to stand out in this radar image. A fairly sharp boundary or front extends from the lower left to the upper right corner of the image and separates two distinct water masses that have different temperatures. The different water temperature affects the wind patterns on the ocean. In this image, the light green area depicts rougher water with more wind, while the purple area is calmer water with less wind. The dark patches are smooth areas of low wind, probably related to clouds along the front, and the bright green patches are likely due to ice crystals in the clouds that scatter the radar waves. The overall 'fuzzy' look of this image is caused by long ocean waves, also called swells. Ocean radar imagery allows the fine detail of ocean features and interactions to be seen, such as the wake, swell, ocean front and cloud effects, which can then be used to enhance the understanding of ocean dynamics on smaller and smaller scales. The image is centered at 42.8 degrees north latitude, 26.2 degrees west longitude and shows an area approximately 35 kilometers by 65 kilometers (22 by 40 miles). The colors in the image are assigned to different frequencies and polarizations of the radar as follows: red is L-band horizontally transmitted, horizontally received; green is C-band horizontally transmitted, horizontally received; blue is L-band vertically transmitted, vertically received. This image was acquired by the Spaceborne Imaging Radar-C/X-band Synthetic Aperture Radar (SIR

  3. Impulse radar studfinder

    DOEpatents

    McEwan, T.E.

    1995-10-10

    An impulse radar studfinder propagates electromagnetic pulses and detects reflected pulses from a fixed range. Unmodulated pulses, about 200 ps wide, are emitted. A large number of reflected pulses are sampled and averaged. Background reflections are subtracted. Reflections from wall studs or other hidden objects are detected and displayed using light emitting diodes. 9 figs.

  4. Synthetic Aperture Radar Interferometry

    NASA Technical Reports Server (NTRS)

    Rosen, P. A.; Hensley, S.; Joughin, I. R.; Li, F.; Madsen, S. N.; Rodriguez, E.; Goldstein, R. M.

    1998-01-01

    Synthetic aperture radar interferometry is an imaging technique for measuring the topography of a surface, its changes over time, and other changes in the detailed characteristics of the surface. This paper reviews the techniques of interferometry, systems and limitations, and applications in a rapidly growing area of science and engineering.

  5. Impulse radar studfinder

    DOEpatents

    McEwan, Thomas E.

    1995-01-01

    An impulse radar studfinder propagates electromagnetic pulses and detects reflected pulses from a fixed range. Unmodulated pulses, about 200 ps wide, are emitted. A large number of reflected pulses are sampled and averaged. Background reflections are subtracted. Reflections from wall studs or other hidden objects are detected and displayed using light emitting diodes.

  6. Rain radar instrument definition

    NASA Astrophysics Data System (ADS)

    Vincent, Nicolas; Chenebault, J.; Suinot, Noel; Mancini, Paolo L.

    1996-12-01

    As a result of a pre-phase a study, founded by ESA, this paper presents the definition of a spaceborne Rain Radar, candidate instrument for earth explorer precipitation mission. Based upon the description of user requirements for such a dedicated mission, a mission analysis defines the most suitable space segment. At system level, a parametric analysis compares pros and cons of instrument concepts associated with rain rate retrieval algorithms in order to select the most performing one. Several trade-off analysis at subsystem level leads then to the definition of the proposed design. In particular, as pulse compression is implemented in order to increase the radar sensitivity, the selected method to achieve a pulse response with a side-lobe level below--60 dB is presented. Antenna is another critical rain radar subsystem and several designs are com pared: direct radiating array, single or dual reflector illuminated by single or dual feed arrays. At least, feasibility of centralized amplification using TWTA is compared with criticality of Tx/Rx modules for distributed amplification. Mass and power budgets of the designed instrument are summarized as well as standard deviations and bias of simulated rain rate retrieval profiles. The feasibility of a compliant rain radar instrument is therefore demonstrated.

  7. Passive bistatic radar analysis

    NASA Astrophysics Data System (ADS)

    O'Hagan, Daniel W.; Kuschel, H.; Schiller, Joachim

    2009-06-01

    Passive Bistatic Radar (PBR) research is at its zenith with several notable PBR systems currently operational, or available for deployment. Such PBRs include the Manastash Ridge Radar (MRR) developed for and by academia; Silent Sentry developed as a commercial concern by Lockheed Martin; and Homeland Alerter (HA100) also a commercial system developed by Thales. However at present, despite the existence of numerous PBR prototypes, take up of commercial passive radar technology remains slow. This is due in part to technology immaturity, in part to politics, and particularly due to the fact that monostatic radars perform so well. If PBRs are to enjoy longevity as a viable technology then it is imperative that they address certain niche application areas, with the aforementioned MRR being one prime example of this. The focus of this paper will be an analysis of a PBR system that utilised FM radio signals of opportunity to detect aircraft targets with an RCS generally not lower than 20 m2. The paper will demonstrate the theoretical detection coverage of an FM based PBR operating in a severe interference environment.

  8. Sea ice monitoring in the northern sea route by satellite radar data

    SciTech Connect

    Johannessen, O.M.; Sandven, S.; Pettersson, L.H.

    1997-06-01

    A project to implement satellite monitoring of ice in the Northern Sea Route between the Barents Sea and the Bering Strait is described. The project objectives are to support ice navigation, offshore oil exploration and production, and global climate change studies. Satellite monitoring will include synthetic-aperture radar, sidelooking radar, and other remote sensing data. The joint project between the Russian Space Agency and the European Space Agency is outlined, and major project elements are described.

  9. Surface Contour Radar (SCR) contributions to FASINEX

    NASA Technical Reports Server (NTRS)

    Walsh, E. J.

    1988-01-01

    The SCR was asked to participate in the Frontal Air-Sea Interaction Experiment (FASINEX) to provide directional wave spectra. The NASA P-3 carrying the SCR, the Radar Ocean Wave Spectrometer, and the Airborne Oceanographic Lidar was one of five aircrafts and two ocean research ships participating in this coordinated study of the air sea interaction in the vicinity of a sea surface temperature front near 28 deg N, 70 deg W. Analysis of data from the February 1986 experiment is still ongoing, but results already submitted for publication strengthen the hypothesis that off-nadir radar backscatter is closely correlated to wind stress. The SCR provided valuable information on the directional wave spectrum and its spatial variation.

  10. Shuttle imaging radar-C science plan

    NASA Technical Reports Server (NTRS)

    1986-01-01

    The Shuttle Imaging Radar-C (SIR-C) mission will yield new and advanced scientific studies of the Earth. SIR-C will be the first instrument to simultaneously acquire images at L-band and C-band with HH, VV, HV, or VH polarizations, as well as images of the phase difference between HH and VV polarizations. These data will be digitally encoded and recorded using onboard high-density digital tape recorders and will later be digitally processed into images using the JPL Advanced Digital SAR Processor. SIR-C geologic studies include cold-region geomorphology, fluvial geomorphology, rock weathering and erosional processes, tectonics and geologic boundaries, geobotany, and radar stereogrammetry. Hydrology investigations cover arid, humid, wetland, snow-covered, and high-latitude regions. Additionally, SIR-C will provide the data to identify and map vegetation types, interpret landscape patterns and processes, assess the biophysical properties of plant canopies, and determine the degree of radar penetration of plant canopies. In oceanography, SIR-C will provide the information necessary to: forecast ocean directional wave spectra; better understand internal wave-current interactions; study the relationship of ocean-bottom features to surface expressions and the correlation of wind signatures to radar backscatter; and detect current-system boundaries, oceanic fronts, and mesoscale eddies. And, as the first spaceborne SAR with multi-frequency, multipolarization imaging capabilities, whole new areas of glaciology will be opened for study when SIR-C is flown in a polar orbit.

  11. The DACCIWA Project: Dynamics-Aerosol-Chemistry-Cloud interactions in West Africa

    NASA Astrophysics Data System (ADS)

    Knippertz, Peter

    2014-05-01

    Massive economic and population growth and urbanisation are expected to lead to a tripling of anthropogenic emissions from southern West Africa (SWA) between 2000 and 2030, the impacts of which on human health, ecosystems, food security and the regional climate are largely unknown. An assessment of these impacts is complicated by (a) a superposition with effects of global climate change, (b) the strong dependence of SWA on the sensitive West African monsoon, (c) incomplete scientific understanding of interactions between emissions, clouds, radiation, precipitation and regional circulations and (d) by a lack of observations to advance our understanding and improve predictions. The purpose of this contribution is to introduce the research consortium DACCIWA (Dynamics-Aerosol-Chemistry-Cloud interactions in West Africa), which comprises 16 partners in six European and West African countries. The interdisciplinary DACCIWA team will build on the scientific and logistical foundations established by the African Monsoon Multidisciplinary Analysis (AMMA) project and collaborate closely with operational centres. DACCIWA will receive funding of about M8.75€ from the European Commission as part of Framework Programme 7 from 2015 until 2018. The DACCIWA project will conduct extensive fieldwork in SWA to collect high-quality observations, spanning the entire process chain from surface-based natural and anthropogenic emissions to impacts on health, ecosystems and climate. This will include a major field campaign in summer 2015 with three research aircrafts and two ground-based supersites. Combining the resulting benchmark dataset with a wide range of modelling activities will allow us: (a) to assess all relevant physical and chemical processes, (b) to improve the monitoring of climate and compositional parameters from space, (c) to determine health impacts from air pollution, and (d) to develop the next generation of weather and climate models capable of representing coupled

  12. Power centroid radar and its rise from the universal cybernetics duality

    NASA Astrophysics Data System (ADS)

    Feria, Erlan H.

    2014-05-01

    Power centroid radar (PC-Radar) is a fast and powerful adaptive radar scheme that naturally surfaced from the recent discovery of the time-dual for information theory which has been named "latency theory." Latency theory itself was born from the universal cybernetics duality (UC-Duality), first identified in the late 1970s, that has also delivered a time dual for thermodynamics that has been named "lingerdynamics" and anchors an emerging lifespan theory for biological systems. In this paper the rise of PC-Radar from the UC-Duality is described. The development of PC-Radar, US patented, started with Defense Advanced Research Projects Agency (DARPA) funded research on knowledge-aided (KA) adaptive radar of the last decade. The outstanding signal to interference plus noise ratio (SINR) performance of PC-Radar under severely taxing environmental disturbances will be established. More specifically, it will be seen that the SINR performance of PC-Radar, either KA or knowledgeunaided (KU), approximates that of an optimum KA radar scheme. The explanation for this remarkable result is that PC-Radar inherently arises from the UC-Duality, which advances a "first principles" duality guidance theory for the derivation of synergistic storage-space/computational-time compression solutions. Real-world synthetic aperture radar (SAR) images will be used as prior-knowledge to illustrate these results.

  13. ANDRILL educational activities in Italy: progettosmilla.it, a case-study of an interactive project

    NASA Astrophysics Data System (ADS)

    Cattadori, M.

    2008-12-01

    In January 2006, the Italian ANDRILL (Antartic Geological Drilling) team selected the project progettosmilla.it and its instructor Matteo Cattadori, a high school teacher and collaborator of Museo Tridentino di Scienze Naturali (TN - Italy) to represent Italy in the ANDRILL-ARISE team. The ARISE (Andrill Research Immersion for Science Educators) comprised a group of teachers from 4 nations (US, New Zealand, Germany and Italy) and is part of the initiative Public and Educational Outreach component of the ANDRILL project. The selected teachers are sent to Antarctica and are actively involved in all stages of the scientific investigation, with the main aim of establishing a bridge between research and the schools in the participating countries. Progettosmilla.it was selected to take part in the first edition of ANDRILL-ARISE held at the American Antarctic base of Mc Murdo during the 2006-2007 austral summer.The project makes use of different tools, techniques and forms of communication-education to stimulate the interest and motivation of students, teachers and organizers/trainers in ANDRILL research and polar sciences in general. Activities are organized and scheduled according to a fixed timetable that cover 2/3 of an academic year and are centered on the site www.progettosmilla.it. This site feature daily reports, as well as online activities and various services for users in Italian schools. Among the online materials, more conventional ones are: - summaries of the ANDRILL research and the Antarctic environment; including multimedia (1200 photos, 10 video and audio); resource folders for teachers on 10 different subjects of study; course work for the participating school students. - ITC-oriented materials such as: videoconferencing and chat sessions with Antarctica or between classes, blogs, web-quest, animations and interactive teaching. -Many services are implemented in collaboration with other teachers and allow the ARISE team to perform distant collaborative

  14. The science case for the EISCAT_3D radar

    NASA Astrophysics Data System (ADS)

    McCrea, Ian; Aikio, Anita; Alfonsi, Lucilla; Belova, Evgenia; Buchert, Stephan; Clilverd, Mark; Engler, Norbert; Gustavsson, Björn; Heinselman, Craig; Kero, Johan; Kosch, Mike; Lamy, Hervé; Leyser, Thomas; Ogawa, Yasunobu; Oksavik, Kjellmar; Pellinen-Wannberg, Asta; Pitout, Frederic; Rapp, Markus; Stanislawska, Iwona; Vierinen, Juha

    2015-12-01

    The EISCAT (European Incoherent SCATer) Scientific Association has provided versatile incoherent scatter (IS) radar facilities on the mainland of northern Scandinavia (the EISCAT UHF and VHF radar systems) and on Svalbard (the electronically scanning radar ESR (EISCAT Svalbard Radar) for studies of the high-latitude ionised upper atmosphere (the ionosphere). The mainland radars were constructed about 30 years ago, based on technological solutions of that time. The science drivers of today, however, require a more flexible instrument, which allows measurements to be made from the troposphere to the topside ionosphere and gives the measured parameters in three dimensions, not just along a single radar beam. The possibility for continuous operation is also an essential feature. To facilitatefuture science work with a world-leading IS radar facility, planning of a new radar system started first with an EU-funded Design Study (2005-2009) and has continued with a follow-up EU FP7 EISCAT_3D Preparatory Phase project (2010-2014). The radar facility will be realised by using phased arrays, and a key aspect is the use of advanced software and data processing techniques. This type of software radar will act as a pathfinder for other facilities worldwide. The new radar facility will enable the EISCAT_3D science community to address new, significant science questions as well as to serve society, which is increasingly dependent on space-based technology and issues related to space weather. The location of the radar within the auroral oval and at the edge of the stratospheric polar vortex is also ideal for studies of the long-term variability in the atmosphere and global change. This paper is a summary of the EISCAT_3D science case, which was prepared as part of the EU-funded Preparatory Phase project for the new facility. Three science working groups, drawn from the EISCAT user community, participated in preparing this document. In addition to these working group members, who

  15. Distribution and size of elements of Saturn's rings as inferred from 12-cm radar observations

    NASA Technical Reports Server (NTRS)

    Morris, G. A., Jr.

    1974-01-01

    A 64m radar antenna was used to observe Saturn's rings at 12.6 cm wavelength, with reduced Doppler spread. The results show a positive radar return corresponding to about a 60 percent return from an isotropic scatterer with the projected area of the rings, allowing for the Cassini division. A radar spectrogram of the rings is shown with power density plotted against Doppler frequency shift.

  16. An MSK Radar Waveform

    NASA Technical Reports Server (NTRS)

    Quirk, Kevin J.; Srinivasan, Meera

    2012-01-01

    The minimum-shift-keying (MSK) radar waveform is formed by periodically extending a waveform that separately modulates the in-phase and quadrature- phase components of the carrier with offset pulse-shaped pseudo noise (PN) sequences. To generate this waveform, a pair of periodic PN sequences is each passed through a pulse-shaping filter with a half sinusoid impulse response. These shaped PN waveforms are then offset by half a chip time and are separately modulated on the in-phase and quadrature phase components of an RF carrier. This new radar waveform allows an increase in radar resolution without the need for additional spectrum. In addition, it provides self-interference suppression and configurable peak sidelobes. Compared strictly on the basis of the expressions for delay resolution, main-lobe bandwidth, effective Doppler bandwidth, and peak ambiguity sidelobe, it appears that bi-phase coded (BPC) outperforms the new MSK waveform. However, a radar waveform must meet certain constraints imposed by the transmission and reception of the modulation, as well as criteria dictated by the observation. In particular, the phase discontinuity of the BPC waveform presents a significant impediment to the achievement of finer resolutions in radar measurements a limitation that is overcome by using the continuous phase MSK waveform. The phase continuity, and the lower fractional out-of-band power of MSK, increases the allowable bandwidth compared with BPC, resulting in a factor of two increase in the range resolution of the radar. The MSK waveform also has been demonstrated to have an ambiguity sidelobe structure very similar to BPC, where the sidelobe levels can be decreased by increasing the length of the m-sequence used in its generation. This ability to set the peak sidelobe level is advantageous as it allows the system to be configured to a variety of targets, including those with a larger dynamic range. Other conventionally used waveforms that possess an even greater

  17. Bistatic radar detection of UHECRs at Telescope Array

    NASA Astrophysics Data System (ADS)

    Hanlon, William

    2013-04-01

    The Telescope Array radar (TARA) project will utilize a bistatic radar technique to detect radar echos from the ionization trails of ultra-high energy cosmic rays as they pass through the Earth's atmosphere. It is colocated with the Telescope Array, the largest cosmic ray observatory in the northern hemisphere, which will provide additional confirmation of the detection and properties of UHECRs via time coincidence. This method of observing cosmic rays has been unproven and is the largest and most ambitious attempt yet at UHECR detection utilizing an array of high gain yagi antennas broadcasting 8 MW of effective radiated power over the TA surface detector array. Recently TARA has been field testing a low power version of the experiment to gain expertise and study techniques to better utilize the radar method on a much larger scale. Soon TARA will begin high power operations and will be the first experiment to utilize this technique at such high power in conjunction with such a large cosmic ray detector. I will discuss the physics of UHECR detection via bistatic radar and the design and goals of the TARA project. I will also discuss recent tests of radar echo detection utilizing TA's electron light source which provides in situ small air showers used for TA calibration.

  18. Fundamental radar properties. II. Coherent phenomena in space-time.

    PubMed

    Gabriel, Andrew K

    2008-01-01

    A previous publication [J. Opt. Soc. Am. A19, 946-956 (2002)] presented a general formulation of radiative systems based on special relativity, and properties of imaging radar were derived as examples. Complex and diverse properties of radar images were shown to have a simple and unified origin when viewed as lower-dimensional (temporal) projections of the space-time structure of a radar observation. A diagram was developed that could be manipulated for a simple, intuitive view of the underlying structure of radar observations and phenomena. That treatment is here extended to include coherent phenomena as they appear in the lower time dimensions of the image. Various known coherent properties of imaging radar and interferometry are derived. The formulation is shown to be a generalization of a conventional echo correlation and is extended to a second spatial dimension. From this perspective, coherent properties also have a surprisingly simple and unified structure; their observed complexity is somewhat illusory, also a consequence of projection onto the lower temporal dimension of the receiver. While this formulation and the rules governing it are quite different from the standard treatments, they have the considerable advantage of providing a much simpler, intuitive, and unified description of radiative (radar and optical) systems that is rooted in fundamental physics. PMID:18157218

  19. Rain volume estimation over areas using satellite and radar data

    NASA Technical Reports Server (NTRS)

    Doneaud, A. A.; Vonderhaar, T. H.

    1985-01-01

    The feasibility of rain volume estimation over fixed and floating areas was investigated using rapid scan satellite data following a technique recently developed with radar data, called the Area Time Integral (ATI) technique. The radar and rapid scan GOES satellite data were collected during the Cooperative Convective Precipitation Experiment (CCOPE) and North Dakota Cloud Modification Project (NDCMP). Six multicell clusters and cells were analyzed to the present time. A two-cycle oscillation emphasizing the multicell character of the clusters is demonstrated. Three clusters were selected on each day, 12 June and 2 July. The 12 June clusters occurred during the daytime, while the 2 July clusters during the nighttime. A total of 86 time steps of radar and 79 time steps of satellite images were analyzed. There were approximately 12-min time intervals between radar scans on the average.

  20. Ground Penetrating Radar Technologies in Ukraine

    NASA Astrophysics Data System (ADS)

    Pochanin, Gennadiy P.; Masalov, Sergey A.

    2014-05-01

    projects on the delineation of a diamond deposit in Karelia, on the localisation of unauthorized penetrations in product pipelines, and others. Since 2007, in close cooperation with researchers from V. N. Karazin Kharkiv National University (www.univer.kharkov.ua/en) and Kharkiv National Automobile and Highway University (www.khadi.kharkov.ua), we have been developing a GPR to monitor road conditions. The main objective is the creation of an equipment suitable to determine the strength characteristics of pavements. A GPR allowing to measure thicknesses of asphalt pavement layers with an accuracy better than 3 mm has already been created; it was transferred to services responsible for maintaining roads in good condition. Specific standards and guidelines for the use of GPR has not been adopted in Ukraine, yet. GPRs are rarely used by public services. Nevertheless, recently the Ukrainian government has funded several projects on GPR technologies. Ukrainians seek to maintain old and to establish new relationships with colleagues around the world. We were partners of the Ultrawideband Radar Working Group, which developed the standard "IEEE P1672 TM Ultrawideband Radar Definitions." LLC "Transient Technologies" has cooperation agreements with more than a dozen of GPR companies all over the world. A group of scientists from IRE is working in cooperation with researchers from Italy, Holland, Turkey, Brazil, Russia and Ukraine on the project of FP-7-PEOPLE-2010-IRSES no 269157 "Active and Passive Microwaves for Security and Subsurface Imaging" (for more details, please visit www.irea.cnr.it/en/index.php?option=com_k2&view=item&id=342:progetto-amiss&Itemid=165). In recent years, many representative companies have appeared, offering GPRs of foreign production on the market of Ukraine. The authors acknowledge COST for funding Action TU1208 "Civil Engineering Applications of Ground Penetrating Radar," supporting this work.

  1. Floor-plan radar

    NASA Astrophysics Data System (ADS)

    Falconer, David G.; Ueberschaer, Ronald M.

    2000-07-01

    Urban-warfare specialists, law-enforcement officers, counter-drug agents, and counter-terrorism experts encounter operational situations where they must assault a target building and capture or rescue its occupants. To minimize potential casualties, the assault team needs a picture of the building's interior and a copy of its floor plan. With this need in mind, we constructed a scale model of a single- story house and imaged its interior using synthetic-aperture techniques. The interior and exterior walls nearest the radar set were imaged with good fidelity, but the distal ones appear poorly defined and surrounded by ghosts and artifacts. The latter defects are traceable to beam attenuation, wavefront distortion, multiple scattering, traveling waves, resonance phenomena, and other effects not accounted for in the traditional (noninteracting, isotropic point scatterer) model for radar imaging.

  2. New weather radar coming

    NASA Astrophysics Data System (ADS)

    Maggs, William Ward

    What would you call the next generation of radar for severe weather prediction? NEXRAD, of course. A prototype for the new system was recently completed in Norman, Okla., and by the early 1990s up to 195 stations around the United States will be tracking dangerous weather and sending faster, more accurate, and more detailed warnings to the public.NEXRAD is being built for the Departments of Commerce, Transportation, and Defense by the Unisys Corporation under a $450 million contract signed in December 1987. Th e system will be used by the National Weather Service, the Federal Aviation Administration (FAA), and the U.S. Air Force and Navy. The NEXRAD radar tower in Norman is expected to be operational in October.

  3. RADAR Reveals Titan Topography

    NASA Technical Reports Server (NTRS)

    Kirk, R. L.; Callahan, P.; Seu, R.; Lorenz, R. D.; Paganelli, F.; Lopes, R.; Elachi, C.

    2005-01-01

    The Cassini Titan RADAR Mapper is a K(sub u)-band (13.78 GHz, lambda = 2.17 cm) linear polarized RADAR instrument capable of operating in synthetic aperture (SAR), scatterometer, altimeter and radiometer modes. During the first targeted flyby of Titan on 26 October, 2004 (referred to as Ta) observations were made in all modes. Evidence for topographic relief based on the Ta altimetry and SAR data are presented here. Additional SAR and altimetry observations are planned for the T3 encounter on 15 February, 2005, but have not been carried out at this writing. Results from the T3 encounter relevant to topography will be included in our presentation. Data obtained in the Ta encounter include a SAR image swath

  4. Kuiper Belt Mapping Radar

    NASA Technical Reports Server (NTRS)

    Freeman, A.; Nilsen, E.

    2001-01-01

    Since their initial discovery in 1992, to date only a relatively small number of Kuiper Belt Objects (KBO's) have been discovered. Current detection techniques rely on frame-to-frame comparisons of images collected by optical telescopes such as Hubble, to detect KBO's as they move against the background stellar field. Another technique involving studies of KBO's through occultation of known stars has been proposed. Such techniques are serendipitous, not systematic, and may lead to an inadequate understanding of the size, range, and distribution of KBO's. In this paper, a future Kuiper Belt Mapping Radar is proposed as a solution to the problem of mapping the size distribution, extent, and range of KBO's. This approach can also be used to recover radar albedo and object rotation rates. Additional information is contained in the original extended abstract.

  5. SMAP RADAR Calibration and Validation

    NASA Astrophysics Data System (ADS)

    West, R. D.; Jaruwatanadilok, S.; Chaubel, J.

    2014-12-01

    The Soil Moisture Active Passive (SMAP) mission is planned to launch on Jan 8, 2015. The mission employs L-band radar and radiometer measurements to estimate soil moisture with 4% volumetric accuracy at a resolution of 10 km, and freeze-thaw state at a resolution of 1-3 km. Immediately following launch, there will be a 3 month instrument checkout period, followed by 6 months of level 1 (L1) calibration and validation. In this presentation, we will discuss the plans and preparations for the calibration and validation of L1 radar data from SMAP. At the start of the L1 cal/val period, we will validate the operation of the instrument and of the ground processing using tools that look at readily identifiable surface features such as coast lines and corner reflectors. Geometric biases will be fit and removed. Radiometric cross-calibration with PALSAR and Aquarius will also be performed using target regions in the Amazon rain forest selected for their stability and uniformity. As the L1 cal/val period progresses, the performance of the automated short and long term calibration modules in ground processing will be tracked and verified using data from stable reference targets such as the wind corrected ocean and selected areas of rain forest that have shown good temporal stability. The performance of the radio frequency interference (RFI) removal algorithm will be validated by processing data with the algorithm turned on and off, and using different parameter settings. Additional information on the extent of RFI will be obtained from a special RFI survey conducted early in the L1 cal/val period. Radar transmissions are turned off during the RFI survey, and receive only data are collected over a variety of operating frequencies. The model based Faraday rotation corrections will also be checked during the L1 cal/val by comparing the model Faraday rotation with the measured Faraday rotation obtained by the SMAP Radiometer. This work is supported by the SMAP project at the Jet

  6. Radar cross-sectional study using noise radar

    NASA Astrophysics Data System (ADS)

    Freundorfer, A. P.; Siddiqui, J. Y.; Antar, Y. M. M.

    2015-05-01

    A noise radar system is proposed with capabilities to measure and acquire the radar cross-section (RCS) of targets. The proposed system can cover a noise bandwidth of near DC to 50 GHz. The noise radar RCS measurements were conducted for selective targets like spheres and carpenter squares with and without dielectric bodies for a noise band of 400MHz-5000MHz. The bandwidth of operation was limited by the multiplier and the antennae used.

  7. 41. Perimeter acquisition radar building radar element and coaxial display, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    41. Perimeter acquisition radar building radar element and coaxial display, with drawing of typical antenna section. Drawing, from left to right, shows element, aluminum ground plane, cable connectors and hardware, cable, and back-up ring. Grey area is the concrete wall - Stanley R. Mickelsen Safeguard Complex, Perimeter Acquisition Radar Building, Limited Access Area, between Limited Access Patrol Road & Service Road A, Nekoma, Cavalier County, ND

  8. 51. View of upper radar scanner switch in radar scanner ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    51. View of upper radar scanner switch in radar scanner building 105 from upper catwalk level showing emanating waveguides from upper switch (upper one-fourth of photograph) and emanating waveguides from lower radar scanner switch in vertical runs. - Clear Air Force Station, Ballistic Missile Early Warning System Site II, One mile west of mile marker 293.5 on Parks Highway, 5 miles southwest of Anderson, Anderson, Denali Borough, AK

  9. Goldstone solar system radar

    NASA Technical Reports Server (NTRS)

    Jurgens, Raymond F.

    1991-01-01

    Caltech/Jet Propulsion Laboratory (JPL) radar astronomers made use of the Very Large Array (VLA) at Socorro, NM, during February 1990, to receive radio echoes from the planet Venus. The transmitter was the 70 meter antenna at the Goldstone complex northwest of Barstow, CA. These observations contain new information about the roughness of Venus at cm to decimeter scales and are complementary to information being obtained by the Magellan spacecraft. Asteroid observations are also discussed.

  10. Imaging synthetic aperture radar

    DOEpatents

    Burns, Bryan L.; Cordaro, J. Thomas

    1997-01-01

    A linear-FM SAR imaging radar method and apparatus to produce a real-time image by first arranging the returned signals into a plurality of subaperture arrays, the columns of each subaperture array having samples of dechirped baseband pulses, and further including a processing of each subaperture array to obtain coarse-resolution in azimuth, then fine-resolution in range, and lastly, to combine the processed subapertures to obtain the final fine-resolution in azimuth. Greater efficiency is achieved because both the transmitted signal and a local oscillator signal mixed with the returned signal can be varied on a pulse-to-pulse basis as a function of radar motion. Moreover, a novel circuit can adjust the sampling location and the A/D sample rate of the combined dechirped baseband signal which greatly reduces processing time and hardware. The processing steps include implementing a window function, stabilizing either a central reference point and/or all other points of a subaperture with respect to doppler frequency and/or range as a function of radar motion, sorting and compressing the signals using a standard fourier transforms. The stabilization of each processing part is accomplished with vector multiplication using waveforms generated as a function of radar motion wherein these waveforms may be synthesized in integrated circuits. Stabilization of range migration as a function of doppler frequency by simple vector multiplication is a particularly useful feature of the invention; as is stabilization of azimuth migration by correcting for spatially varying phase errors prior to the application of an autofocus process.

  11. A family of radars for advanced systems

    NASA Astrophysics Data System (ADS)

    Giaccari, Ennio; Penazzi, Carlo Alberto

    1989-04-01

    The military and air traffic control radars developed by Selenia are reviewed. The design, production, and testing aspects of the radar development process are discussed, focusing on shipborne, ground based, and air traffic control radars. An overview of radar subsystems is given, including the antenna, transmitter, receiver-exciter, signal processor, data processor, and radar controller subsystems.

  12. Radar gun hazards

    SciTech Connect

    Not Available

    1991-12-20

    Radar guns - hand-held units used by the law to nail speeders - have been in use since the early '60s. Now they've been accused of causing cancer. Police officers in several states have so far filed eight suits against the manufacturer, claiming that they have contracted rare forms of cancer, such as of the eyelid and the testicle, from frequent proximity to the devices. Spurred by concerns expressed by police groups, researchers at the Rochester Institute of Technology are conducting what they believe to be the first research of its kind in the nation. Last month psychologist John Violanti, an expert in policy psychology and health, sent out a one-page survey to 6,000 active and retired police officers in New York State, asking them about their health and their use of radar guns. Violanti says melanoma, leukemia, and lymph node cancer may be linked to these as well as other electromagnetic devices. The Food and Drug Administration earlier this year issued a warning about radar guns, telling users not to operate them closer than 6 inches from the body. But this may not be a sufficient safeguard since the instruments can give off crisscrossing wave emissions within a police vehicle. The survey will be used to help determine if it would be safer to mount the guns, which are currently either hand-held or mounted on dashboards, outside troopers' cars.

  13. The SEASAT-A synthetic aperture radar design and implementation

    NASA Technical Reports Server (NTRS)

    Jordan, R. L.

    1978-01-01

    The SEASAT-A synthetic aperture imaging radar system is the first imaging radar system intended to be used as a scientific instrument designed for orbital use. The requirement of the radar system is to generate continuous radar imagery with a 100 kilometer swath with 25 meter resolution from an orbital altitude of 800 kilometers. These requirements impose unique system design problems and a description of the implementation is given. The end-to-end system is described, including interactions of the spacecraft, antenna, sensor, telemetry link, recording subsystem, and data processor. Some of the factors leading to the selection of critical system parameters are listed. The expected error sources leading to degradation of image quality are reported as well as estimate given of the expected performance from data obtained during a ground testing of the completed subsystems.

  14. Neuronal projections and putative interaction of multimodal inputs in the subesophageal ganglion in the blowfly, Phormia regina.

    PubMed

    Maeda, Toru; Tamotsu, Satoshi; Iwasaki, Masayuki; Nisimura, Tomoyosi; Shimohigashi, Miki; Hojo, Masaru K; Ozaki, Mamiko

    2014-06-01

    In flies, the maxillary palp possesses olfactory sensilla housing olfactory receptor neurons (ORNs), which project to the primary olfactory center, the antennal lobes (ALs). The labellum possesses gustatory sensilla housing gustatory receptor neurons (GRNs), which project to the primary gustatory center, the subesophageal ganglion (SOG). Using an anterograde staining method, we investigated the axonal projections of sensory receptor neurons from the maxillary palp and labellum to the SOG or other parts of brain in the blowfly, Phormia regina. We show that maxillary mechanoreceptor neurons and some maxillary ORNs project to the SOG where they establish synapses, whereas other maxillary ORNs terminate in the ipsi- and contralateral ALs. The labellar GRNs project to the SOG, and some of these neural projections partially overlap with ORN terminals from the maxillary palp. Based on these anterograde staining data and 3D models of the observed axonal projections, we suggest that interactions occur between GRNs from the labellum and ORNs from the maxillary palp. These observations strongly suggest that olfactory information from the maxillary palp directly interacts with the processing of gustatory information within the SOG of flies. PMID:24718417

  15. Cognitive processing for nonlinear radar

    NASA Astrophysics Data System (ADS)

    Martone, Anthony; Ranney, Kenneth; Hedden, Abigail; Mazzaro, Gregory; McNamara, David

    2013-05-01

    An increasingly cluttered electromagnetic environment (EME) is a growing problem for radar systems. This problem is becoming critical as the available frequency spectrum shrinks due to growing wireless communication device usage and changing regulations. A possible solution to these problems is cognitive radar, where the cognitive radar learns from the environment and intelligently modifies the transmit waveform. In this paper, a cognitive nonlinear radar processing framework is introduced where the main components of this framework consist of spectrum sensing processing, target detection and classification, and decision making. The emphasis of this paper is to introduce a spectrum sensing processing technique that identifies a transmit-receive frequency pair for nonlinear radar. It will be shown that the proposed technique successfully identifies a transmit-receive frequency pair for nonlinear radar from data collected from the EME.

  16. Development of a Drillrod/Telemetry Radar

    SciTech Connect

    Raton Technology Research, Inc.

    1999-11-12

    Efficient extraction of deeply buried natural resources is dependent upon accurate geologic models. The model becomes the basis for developing plans for extraction of the resource. Geoscientists working in geothermal and hydrocarbon recovery have a great deal in common with fellow geoscientists working in the mining industry. They appreciate the intractable problem of increasing the depth of investigation to tens of meters from the wellbore. The goal of this project was to develop a borehole radar tool to acquire data within tens of meters from the wellbore. For geothermal and hydrocarbon applications, the tool was to acquire data for mapping fractures surrounding the wellbore. In mining of coal, the radar acquires data for determining coal seam thickness and detecting geologic anomalies ahead of mining.

  17. An Incoherent Scatter Radar Facility in Antarctica

    NASA Astrophysics Data System (ADS)

    Kelly, J. D.; Stromme, A.; Nicolls, M. J.; van Eyken, A. P.

    2014-12-01

    A high latitude Antarctic Incoherent Scatter Radar (ISR) facility will help to achieve the better distributed network of sophisticated observational platforms needed in order to gain transformational new knowledge of the short and long term global variability of Earth's upper atmosphere and its connection to the solar wind and space. It will facilitate moving toward a fully system level approach to upper atmosphere and space research. We have over the last few years performed a feasibility study including a site survey in McMurdo identifying a location and the needed logistics to carry this project out. This talk will provide and overview of the science rational and benefits of an Antarctic ISR facility, in addition to outline the current plans and next steps in establishing, for the first time, an Incohernet Scatter radar facility at a high southern latitude.

  18. Managing E-mail Interactions with Patients: A Discussion with Clinicians in Evaluating the Personal Health Link Project

    PubMed Central

    Serrato, Carl A; Retecki, Sally

    2004-01-01

    One software feature in the Personal Health Link (PHL) Project allows members of Kaiser Permanente to send secure e-mail messages to clinicians and staff. As an early step in the PHL evaluation process, a group of primary care physicians met to discuss their opinions and experiences with e-mail interactions with patients and to suggest strategies for effectively managing these e-mail interactions. Most clinicians spoke from their experience with e-mail interactions with patients in a conventional e-mail environment; only one clinician in the group was using PHL. PMID:26705166

  19. Integrating Radar Image Data with Google Maps

    NASA Technical Reports Server (NTRS)

    Chapman, Bruce D.; Gibas, Sarah

    2010-01-01

    A public Web site has been developed as a method for displaying the multitude of radar imagery collected by NASA s Airborne Synthetic Aperture Radar (AIRSAR) instrument during its 16-year mission. Utilizing NASA s internal AIRSAR site, the new Web site features more sophisticated visualization tools that enable the general public to have access to these images. The site was originally maintained at NASA on six computers: one that held the Oracle database, two that took care of the software for the interactive map, and three that were for the Web site itself. Several tasks were involved in moving this complicated setup to just one computer. First, the AIRSAR database was migrated from Oracle to MySQL. Then the back-end of the AIRSAR Web site was updated in order to access the MySQL database. To do this, a few of the scripts needed to be modified; specifically three Perl scripts that query that database. The database connections were then updated from Oracle to MySQL, numerous syntax errors were corrected, and a query was implemented that replaced one of the stored Oracle procedures. Lastly, the interactive map was designed, implemented, and tested so that users could easily browse and access the radar imagery through the Google Maps interface.

  20. Lunar-Mars Life Support Test Project. Phase 2; Human Factors and Crew Interactions

    NASA Technical Reports Server (NTRS)

    Ming, D. W.; Hurlbert, K. M.; Kirby, G.; Lewis, J. F.; ORear, P.

    1997-01-01

    Phase 2 of the Lunar-Mars Life Support Test Project was conducted in June and July of 1996 at the NASA Johnson Space Center. The primary objective of Phase 2 was to demonstrate and evaluate an integrated physicochemical air revitalization and regenerative water recovery system capable of sustaining a human crew of four for 30 days inside a closed chamber. The crew (3 males and 1 female) was continuously present inside a chamber throughout the 30-day test. The objective of this paper was to describe crew interactions and human factors for the test. Crew preparations for the test included training and familiarization of chamber systems and accommodations, and medical and psychological evaluations. During the test, crew members provided metabolic loads for the life support systems, performed maintenance on chamber systems, and evaluated human factors inside the chamber. Overall, the four crew members found the chamber to be comfortable for the 30-day test. The crew performed well together and this was attributed in part to team dynamics, skill mix (one commander, two system experts, and one logistics lead), and a complementary mix of personalities. Communication with and support by family, friends, and colleagues were identified as important contributors to the high morale of the crew during the test. Lessons learned and recommendations for future testing are presented by the crew in this paper.

  1. Application of in situ observations, high frequency radars, and ocean color, to study suspended matter, particulate carbon, and dissolved organic carbon fluxes in coastal waters of the Barents Sea - the NORDFLUX project

    NASA Astrophysics Data System (ADS)

    Stramska, Malgorzata; Yngve Børsheim, Knut; Białogrodzka, Jagoda; Cieszyńska, Agata; Ficek, Dariusz; Wereszka, Marzena

    2016-04-01

    There is still a limited knowledge about suspended and dissolved matter fluxes transported from coastal regions into the open sea regions in the Arctic. The land/sea interface is environmentally important and sensitive to climate change. Important biogeochemical material entering the oceans (including carbon) passes through this interface, but too little is known about the efficiency of this transport. Our goal in the NORDFLUX program is to improve quantitative understanding of the environmental feedbacks involved in these processes through an interdisciplinary study with innovative in situ observations. Completed work includes two in situ experiments in the Norwegian fiord (Porsangerfjorden) in the summers of 2014 and 2015. Experiments used research boat for collection of water samples and in situ bio-optical data, an autonomous glider, mooring with T S sensors, and a high frequency radar system. We have used these data to derive spatial maps of water temperature, salinity, surface currents, chlorophyll fluorescence, dissolved organic matter (DOM) fluorescence, and inherent optical properties (IOPs) of the water. The interpretation of these data in terms of suspended matter concentration and composition is possible by in situ 'calibrations' using water samples from discrete hydrographic stations. Total suspended matter (TSM), particulate carbon (POC and PIC), and dissolved organic carbon (DOC) concentrations together with measured water currents will allow us to estimate reservoirs and fluxes. Concentrations and fluxes will be related to physical conditions and meteorological data. An important aspect of this project is the work on regional ocean color algorithms. Global ocean color (OC) algorithms currently used by NASA do not perform sufficiently well in coastal Case 2 waters. Our data sets will allow us to derive such local algorithms. We will then use these algorithms for interpretation of OC data in terms of TSM concentrations and composition and DOC. After

  2. Radar image San Francisco Bay Area, California

    NASA Technical Reports Server (NTRS)

    2000-01-01

    preliminary nature of this image product. These artifacts will be removed after further data processing.

    This image was acquired by the Shuttle Radar Topography Mission (SRTM) aboard the Space Shuttle Endeavour, launched on February 11,2000. SRTM uses the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. The mission is designed to collect three-dimensional measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter-long (200-foot) mast, installed additional C-band and X-band antennas, and improved tracking and navigation devices. The mission is a cooperative project between the National Aeronautics and Space Administration (NASA), the National Imagery and Mapping Agency (NIMA) of the U.S. Department of Defense (DoD), and the German and Italian Space agencies. It is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Earth Science Enterprise, Washington, DC.

    Size: 38 km (24 miles) by 71 km (44 miles) Location: 37.7 deg. North lat., 122.2 deg. West lon. Orientation: North to the upper right Original Data Resolution: 30 meters (99 feet) Date Acquired: February 16, 2000

  3. Radar studies of bird migration

    NASA Technical Reports Server (NTRS)

    Williams, T. C.; Williams, J. M.

    1974-01-01

    Observations of bird migration with NASA radars were made at Wallops Island, Va. Simultaneous observations were made at a number of radar sites in the North Atlantic Ocean in an effort to discover what happened to those birds that were observed leaving the coast of North America headed toward Bermuda, the Caribbean and South America. Transatlantic migration, utilizing observations from a large number of radars is discussed. Detailed studies of bird movements at Wallops Island are presented.

  4. Classroom Interactions in Four Follow Through Sites. Volume III, Progress Report, Cognitively Oriented Curriculum, Project Follow Through.

    ERIC Educational Resources Information Center

    Morris, Mary E.; Love, John M.

    Volume III presents the results of High/Scope Foundation's Analysis of Classroom Interaction, a classroom observation instrument field tested at four projects. The purpose of this study was to assess the consistency of implementation of the Cognitively Oriented Curriculum in the four widely separated communities in which the High/Scope Foundation…

  5. The Use of Tablet PC and Interactive Board from the Perspectives of Teachers and Students: Evaluation of the FATIH Project

    ERIC Educational Resources Information Center

    Pamuk, Sonmez; Cakir, Recep; Ergun, Mustafa; Yilmaz, H. Bayram; Ayas, Cemalettin

    2013-01-01

    The main purpose of this study was to evaluate the early implementation results of the "Movement of Enhancing Opportunities and Improving Technology", abbreviated as FATIH project from the perspectives of participating teachers and students. Specifically, to investigate (a) whether or not Interactive Boards (IB) and Tablet Computers…

  6. Day Care and the Family: A Study of Interactions and Congruency. Final Research Report of the Parent-Caregiver Project.

    ERIC Educational Resources Information Center

    Powell, Douglas R.

    This report describes a two-year research project dealing with the relationship between parents and caregivers in group child care settings. The purposes of the research were to describe the nature of the interpersonal relationships, to identify variables predictive of interactions, and to examine the degree of congruence in child-rearing beliefs.…

  7. Radar data processing and analysis

    NASA Technical Reports Server (NTRS)

    Ausherman, D.; Larson, R.; Liskow, C.

    1976-01-01

    Digitized four-channel radar images corresponding to particular areas from the Phoenix and Huntington test sites were generated in conjunction with prior experiments performed to collect X- and L-band synthetic aperture radar imagery of these two areas. The methods for generating this imagery are documented. A secondary objective was the investigation of digital processing techniques for extraction of information from the multiband radar image data. Following the digitization, the remaining resources permitted a preliminary machine analysis to be performed on portions of the radar image data. The results, although necessarily limited, are reported.

  8. Mars: Seasonally variable radar reflectivity

    NASA Technical Reports Server (NTRS)

    Roth, L. E.; Downs, G. S.; Saunders, R. S.; Schubert, G.

    1985-01-01

    The 1971/1973 Mars data set acquired by the Goldstone Solar System Radar was analyzed. It was established that the seasonal variations in radar reflectivity thought to occur in only one locality on the planet (the Solis Lacus radar anomaly) occur, in fact, over the entire subequatorial belt observed by the Goldstone radar. Since liquid water appears to be the most likely cause of the reflectivity excursions, a permanent, year-round presence of subsurface water (frozen or thawed) in the Martian tropics can be inferred.

  9. Reconfigurable L-Band Radar

    NASA Technical Reports Server (NTRS)

    Rincon, Rafael F.

    2008-01-01

    The reconfigurable L-Band radar is an ongoing development at NASA/GSFC that exploits the capability inherently in phased array radar systems with a state-of-the-art data acquisition and real-time processor in order to enable multi-mode measurement techniques in a single radar architecture. The development leverages on the L-Band Imaging Scatterometer, a radar system designed for the development and testing of new radar techniques; and the custom-built DBSAR processor, a highly reconfigurable, high speed data acquisition and processing system. The radar modes currently implemented include scatterometer, synthetic aperture radar, and altimetry; and plans to add new modes such as radiometry and bi-static GNSS signals are being formulated. This development is aimed at enhancing the radar remote sensing capabilities for airborne and spaceborne applications in support of Earth Science and planetary exploration This paper describes the design of the radar and processor systems, explains the operational modes, and discusses preliminary measurements and future plans.

  10. Python-ARM Radar Toolkit

    SciTech Connect

    Jonathan Helmus, Scott Collis

    2013-03-17

    The Python-ARM Radar Toolkit (Py-ART) is a collection of radar quality control and retrieval codes which all work on two unifying Python objects: the PyRadar and PyGrid objects. By building ingests to several popular radar formats and then abstracting the interface Py-ART greatly simplifies data processing over several other available utilities. In addition Py-ART makes use of Numpy arrays as its primary storage mechanism enabling use of existing and extensive community software tools.

  11. Mode S baseline radar tracking

    NASA Astrophysics Data System (ADS)

    Mancus, E. F.; Baker, L. H.

    1982-11-01

    The baseline performance characteristics of the moving target detector (MTD) and radar data acquisition system (RDAS) as an integral part of the Mode S sensor, were determined. The MTD and RDAS were separately evaluated to determine their capability to provide radar data suitable for utilization by the Mode S sensor and automated radar terminal system (ARTS). The design modifications made to the Mode S sensor to provide the capability of interfacing to either an MTD or RDAS were evaluated to determine if they were in compliance with the Federal Aviation Administration engineering requirement, FAA-ER-240-26. Radar baseline technical performance data was provided to characterize the MTD, RDAS, Mode S, and ARTS. The minimum radar tracking requirements are studied to determine if they are adequate to provide reliable radar track data to an air traffic control facility. It was concluded that the Mode S sensor, when integrated with an MTD-2 radar digitizer, can provide reliable primary radar track data to the ARTS III system for automated radar track acquisition.

  12. Radar altimetry and global climatic change

    SciTech Connect

    Dobson, E.B.; Monaldo, F.M.; Porter, D.L.; Robinson, A.R.; Kilgus, C.C.; Goldhirsh, J.; Glenn, S.M. Harvard Univ., Cambridge, MA Rutgers Univ., New Brunswick, NJ )

    1992-09-01

    The use of satellite radar altimetry for monitoring global climatic variables is examined in the context of the altimeter for the Geosat Follow-On program. The requirements of studying climate and ocean circulation are described for the particular case of the North Atlantic, and the use of spaceborne altimetry is discussed for three measurement types. Altimeters measure sea-surface height and the ice edge to give data on mesoscale variability and circulation, interannual variability, and air-sea interactions. The altimeters for the Geosat program are expected to include orbit-determination systems for removal of the orbital signature and a radiometer for measuring water vapor. The altimeters are expected to be useful in studying ocean circulation and climate, and existing data support in situ measurements. Spaceborne radar altimetry can provide important data for understanding CO[sub 2] uptake, biogeochemical fluxes, and the thermocline conveyor belt. 30 refs.

  13. The Merapi Interactive Project: Offering a Fancy Cross-Disciplinary Scientific Understanding of Merapi Volcano to a Wide Audience.

    NASA Astrophysics Data System (ADS)

    Morin, J.; Kerlow, I.

    2015-12-01

    The Merapi volcano is of great interest to a wide audience as it is one of the most dangerous volcanoes worldwide and a beautiful touristic spot. The scientific literature available on that volcano both in Earth and Social sciences is rich but mostly inaccessible to the public because of the scientific jargon and the restricted database access. Merapi Interactive aims at developing clear information and attractive content about Merapi for a wide audience. The project is being produced by the Art and Media Group at the Earth Observatory of Singapore, and it takes the shape of an e-book. It offers a consistent, comprehensive, and jargon-filtered synthesis of the main volcanic-risk related topics about Merapi: volcanic mechanisms, eruptive history, associated hazards and risks, the way inhabitants and scientists deal with it, and what daily life at Merapi looks like. The project provides a background to better understand volcanoes, and it points out some interactions between scientists and society. We propose two levels of interpretation: one that is understandable by 10-year old kids and above and an expert level with deeper presentations of specific topics. Thus, the Merapi Interactive project intends to provide an engaging and comprehensive interactive book that should interest kids, adults, as well as Earth Sciences undergraduates and academics. Merapi Interactive is scheduled for delivery in mid-2016.

  14. Radar system development for the next two decades, as seen by an European

    NASA Astrophysics Data System (ADS)

    Carpentier, M. H.

    1983-10-01

    Current trends in radar developmet are projected over a 20-yr period in a general review. Topics examined include complex antenna patterns, electronic scanning (for both ground-based and airborne radars), flexibility in transmission modes (varying pulse length, repetition frequency, and phase or frequency modulation), signal processing (sidelobe cancellation, clutter protection, target recognition, and rapid A/D conversion and computation), programmed radar management, and the use of mm or micron wavelengths. Consideration is given to the organization of air-defense radars, where the need for more closely linked and coordinated networks is stressed.

  15. Exploring the Use of Radar for Physically-Based Nowcasting of Lightning Cessation

    NASA Technical Reports Server (NTRS)

    Schultz, Elise V.; Petersen, Walter A.; Carey, Lawrence D.

    2011-01-01

    NASA's Marshall Space Flight Center and the University of Alabama in Huntsville (UAHuntsville) are collaborating with the 45th Weather Squadron (45WS) at Cape Canaveral Air Force Station (CCAFS) to enable improved nowcasting of lightning cessation. This project centers on use of dual-polarimetric radar capabilities, and in particular, the new C-band dual polarimetric weather radar acquired by the 45WS. Special emphasis is placed on the development of a physically-based operational algorithm to predict lightning cessation. While previous studies have developed statistically based lightning cessation algorithms driven primarily by trending in the actual total lightning flash rate, we believe that dual polarimetric radar variables offer the possibility to improve existing algorithms through the inclusion of physically meaningful trends reflecting interactions between in-cloud electric fields and ice-microphysics. Specifically, decades of polarimetric radar research using propagation differential phase has demonstrated the presence of distinct phase and ice crystal alignment signatures in the presence of strong electric fields associated with lightning. One question yet to be addressed is: To what extent can propagation phase-based ice-crystal alignment signatures be used to nowcast the cessation of lightning activity in a given storm? Accordingly, data from the UAHuntsville Advanced Radar for Meteorological and Operational Research (ARMOR) along with the NASA-MSFC North Alabama Lightning Mapping Array are used in this study to investigate the radar signatures present before and after lightning cessation. Thus far our case study results suggest that the negative differential phase shift signature weakens and disappears after the analyzed storms ceased lightning production (i.e., after the last lightning flash occurred). This is a key observation because it suggests that while strong electric fields may still have been present, the lightning cessation signature was

  16. Exploring the Use of Radar for a Physically Based Lightning Cessation Nowcasting Tool

    NASA Technical Reports Server (NTRS)

    Schultz, Elise V.; Petersen, Walter A.; Carey, Lawrence D.

    2011-01-01

    NASA s Marshall Space Flight Center (MSFC) and the University of Alabama in Huntsville (UAHuntsville) are collaborating with the 45th Weather Squadron (45WS) at Cape Canaveral Air Force Station (CCAFS) to enable improved nowcasting of lightning cessation. This project centers on use of dual-polarimetric radar capabilities, and in particular, the new C-band dual-polarimetric weather radar acquired by the 45WS. Special emphasis is placed on the development of a physically based operational algorithm to predict lightning cessation. While previous studies have developed statistically based lightning cessation algorithms, we believe that dual-polarimetric radar variables offer the possibility to improve existing algorithms through the inclusion of physically meaningful trends reflecting interactions between in-cloud electric fields and hydrometeors. Specifically, decades of polarimetric radar research using propagation differential phase has demonstrated the presence of distinct phase and ice crystal alignment signatures in the presence of strong electric fields associated with lightning. One question yet to be addressed is: To what extent can these ice-crystal alignment signatures be used to nowcast the cessation of lightning activity in a given storm? Accordingly, data from the UAHuntsville Advanced Radar for Meteorological and Operational Research (ARMOR) along with the NASA-MSFC North Alabama Lightning Mapping Array are used in this study to investigate the radar signatures present before and after lightning cessation. Thus far, our case study results suggest that the negative differential phase shift signature weakens and disappears after the analyzed storms ceased lightning production (i.e., after the last lightning flash occurred). This is a key observation because it suggests that while strong electric fields may still have been present, the lightning cessation signature encompassed the period of the polarimetric negative phase shift signature. To the extent

  17. Application of radar for automotive collision avoidance. Volume 1: Technical report

    NASA Technical Reports Server (NTRS)

    Lichtenberg, C. L. (Editor)

    1987-01-01

    The purpose of this project was research and development of an automobile collision avoidance radar system. The major finding was that the application of radar to the automobile collision avoidance problem deserves continued research even though the specific approach investigated in this effort did not perform adequately in its angle measurement capability. Additional findings were that: (1) preliminary performance requirements of a candidate radar system are not unreasonable; (2) the number and severity of traffic accidents could be reduced by using a collision avoidance radar system which observes a fairly wide (at least + or - 10 deg) field of view ahead of the vehicle; (3) the health radiation hazards of a probable radar design are not significant even when a large number of radar-equipped vehicles are considered; (4) effects of inclement weather on radar operation can be accommodated in most cases; (5) the phase monopulse radar technique as implemented demonstrated inferior angle measurement performance which warrants the recommendation of investigating alternative radar techniques; and (6) extended target and multipath effects, which presumably distort the amplitude and phase distribution across the antenna aperture, are responsible for the observed inadequate phase monopulse radar performance.

  18. A review of ground penetrating radar research and practice in the United Kingdom

    NASA Astrophysics Data System (ADS)

    Giannopoulos, Antonios; Alani, Amir

    2014-05-01

    Ground penetrating radar has been playing an important role for many years in assisting in the non-destructive evaluation of UK's built environment as well as being employed in more general shallow depth geophysical investigations. Ground penetrating radar, in the United Kingdom, has a long history of original work both in developing original research ideas on fundamental aspects of the technique, both in hardware and in software, and in exploring innovative ideas relating to the practical implementation of ground penetrating radar in a number of interesting projects. For example, the base of one of the biggest organisations that connects ground penetrating radar practitioners is in the United Kingdom. This paper will endeavour to review the current status of ground penetrating radar research - primarily carried out in UK Universities - and present some key areas and work that is carried out at a practical level - primarily by private enterprises. Although, the main effort is to concentrate on ground penetrating radar applications relating to civil engineering problems other related areas of ground penetrating radar application will also be reviewed. The aim is to create a current picture of ground penetrating radar use with a view to inform and potentially enhance the possibility of new developments and collaborations that could lead to the advancement of ground penetrating radar as a geophysical investigative method. This work is a contribution to COST Action TU1208 "Civil Engineering Applications of Ground Penetrating Radar.

  19. Removing interfering clutter associated with radar pulses that an airborne radar receives from a radar transponder

    DOEpatents

    Ormesher, Richard C.; Axline, Robert M.

    2008-12-02

    Interfering clutter in radar pulses received by an airborne radar system from a radar transponder can be suppressed by developing a representation of the incoming echo-voltage time-series that permits the clutter associated with predetermined parts of the time-series to be estimated. These estimates can be used to estimate and suppress the clutter associated with other parts of the time-series.

  20. Sample interchange of MST radar data from the Urbana radar

    NASA Technical Reports Server (NTRS)

    Bowhill, S. A.; Rennier, A.

    1984-01-01

    As a first step in interchange of data from the Urbana mesosphere-stratosphere-troposphere (MST) radar, a sample tape has been prepared in 9-track 1600-bpi IBM format. It includes all Urbana data for April 1978 (the first month of operation of the radar). The 300-ft tape contains 260 h of typical mesospheric power and line-of-sight velocity data.

  1. Millimeter Wave Cloud Radar (MMCR) Handbook

    SciTech Connect

    KB Widener; K Johnson

    2005-01-30

    The millimeter cloud radar (MMCR) systems probe the extent and composition of clouds at millimeter wavelengths. The MMCR is a zenith-pointing radar that operates at a frequency of 35 GHz. The main purpose of this radar is to determine cloud boundaries (e.g., cloud bottoms and tops). This radar will also report radar reflectivity (dBZ) of the atmosphere up to 20 km. The radar possesses a doppler capability that will allow the measurement of cloud constituent vertical velocities.

  2. X-SAR: The X-band synthetic aperture radar on board the Space Shuttle

    NASA Technical Reports Server (NTRS)

    Werner, Marian U.

    1993-01-01

    The X-band synthetic aperture radar (X-SAR) is the German/Italian contribution to the NASA/JPL Shuttle Radar Lab missions as part of the preparation for the Earth Observation System (EOS) program. The Shuttle Radar Lab is a combination of several radars: an L-band (1.2 GHz) and a C-band (5.3 GHz) multipolarization SAR known as SIR-C (Shuttle Imaging Radar); and an X-band (9.6 GHz) vertically polarized SAR which will be operated synchronously over the same target areas to deliver calibrated multifrequency and multipolarization SAR data at multiple incidence angles from space. A joint German/Italian project office at DARA (German Space Agency) is responsible for the management of the X-SAR project. The space hardware has been developed and manufactured under industrial contract by Dornier and Alenia Spazio. Besides supporting all the technical and scientific tasks, DLR, in cooperation with ASI (Agencia Spaziale Italiano) is responsible for mission operation, calibration, and high precision SAR processing. In addition, DLR developed an airborne X-band SAR to support the experimenters with campaigns to prepare for the missions. The main advantage of adding a shorter wavelength (3 cm) radar to the SIR-C radars is the X-band radar's weaker penetration into vegetation and soil and its high sensitivity to surface roughness and associated phenomena. The performance of each of the three radars is comparable with respect to radiometric and geometric resolution.

  3. X-SAR: The X-band synthetic aperture radar on board the Space Shuttle

    NASA Astrophysics Data System (ADS)

    Werner, Marian U.

    1993-05-01

    The X-band synthetic aperture radar (X-SAR) is the German/Italian contribution to the NASA/JPL Shuttle Radar Lab missions as part of the preparation for the Earth Observation System (EOS) program. The Shuttle Radar Lab is a combination of several radars: an L-band (1.2 GHz) and a C-band (5.3 GHz) multipolarization SAR known as SIR-C (Shuttle Imaging Radar); and an X-band (9.6 GHz) vertically polarized SAR which will be operated synchronously over the same target areas to deliver calibrated multifrequency and multipolarization SAR data at multiple incidence angles from space. A joint German/Italian project office at DARA (German Space Agency) is responsible for the management of the X-SAR project. The space hardware has been developed and manufactured under industrial contract by Dornier and Alenia Spazio. Besides supporting all the technical and scientific tasks, DLR, in cooperation with ASI (Agencia Spaziale Italiano) is responsible for mission operation, calibration, and high precision SAR processing. In addition, DLR developed an airborne X-band SAR to support the experimenters with campaigns to prepare for the missions. The main advantage of adding a shorter wavelength (3 cm) radar to the SIR-C radars is the X-band radar's weaker penetration into vegetation and soil and its high sensitivity to surface roughness and associated phenomena. The performance of each of the three radars is comparable with respect to radiometric and geometric resolution.

  4. Planetary radar studies. [radar mapping of the Moon and radar signatures of lunar and Venus craters

    NASA Technical Reports Server (NTRS)

    Thompson, T. W.; Cutts, J. A.

    1981-01-01

    Progress made in studying the evolution of Venusian craters and the evolution of infrared and radar signatures of lunar crater interiors is reported. Comparison of radar images of craters on Venus and the Moon present evidence for a steady state Venus crater population. Successful observations at the Arecibo Observatory yielded good data on five nights when data for a mix of inner and limb areas were acquired. Lunar craters with radar bright ejects are discussed. An overview of infrared radar crater catalogs in the data base is included.

  5. Interferometric radar measurements

    NASA Astrophysics Data System (ADS)

    Smith, Ronald A.; Shipman, Mark; Holder, E. J.; Williams, James K.

    2002-08-01

    The United States Army Space and Missile Defense Command (USASMDC) has interest in a technology demonstration that capitalizes on investment in fire control and smart interceptor technologies that have matured beyond basic research. The concept SWORD (Short range missile defense With Optimized Radar Distribution) consists of a novel approach utilizing a missile interceptor and interferometric fire control radar. A hit-to-kill, closed-loop, command guidance scheme is planned that takes advantage of extremely accurate target and interceptor state vectors derived via the fire control radar. The fire control system has the capability to detect, track, and classify multiple threats in a tactical regime as well as simultaneously provide command guidance updates to multiple missile interceptors. The missile interceptor offers a cost reduction potential as well as an enhancement to the kinematics range and lethality over existing SHORAD systems. Additionally, the Radio Frequency (RF) guidance scheme offers increased battlefield weather performance. The Air Defense (AD) community, responding to current threat capabilities and trends, has identified an urgent need to have a capability to counter proliferated, low cost threats with a low cost-per-kill weapon system. The SWORD system will offer a solution that meets this need. The SWORD critical technologies will be identified including a detailed description of each. Validated test results and basic principles of operation will be presented to prove the merit of past investments. The Deputy Assistant Secretary of the Army for Research and Technology (DAS(R&T) has a three- year Science and Technology Program to evaluate the errors and proposed mitigation techniques associated with target spectral dispersion and range gate straddle. Preliminary bench-top experiment results will be presented in this paper.

  6. Fundamental radar properties: hidden variables in space-time.

    PubMed

    Gabriel, Andrew K

    2002-05-01

    A derivation of the properties of pulsed radiative imaging systems is presented with examples drawn from conventional, synthetic aperture, and interferometric radar. A geometric construction of the space and time components of a radar observation yields a simple underlying structural equivalence among many of the properties of radar, including resolution, range ambiguity, azimuth aliasing, signal strength, speckle, layover, Doppler shifts, obliquity and slant range resolution, finite antenna size, atmospheric delays, and beam- and pulse-limited configurations. The same simple structure is shown to account for many interferometric properties of radar: height resolution, image decorrelation, surface velocity detection, and surface deformation measurement. What emerges is a simple, unified description of the complex phenomena of radar observations. The formulation comes from fundamental physical concepts in relativistic field theory, of which the essential elements are presented. In the terminology of physics, radar properties are projections of hidden variables--curved worldlines from a broken symmetry in Minkowski space-time--onto a time-serial receiver. PMID:11999969

  7. CO2 laser radar

    NASA Astrophysics Data System (ADS)

    Brown, D.; Callan, R.; Constant, G.; Davies, P. H.; Foord, R.

    CO2 laser-based radars operating at 10 microns are both highly energy-efficient and eye-safe, as well as compact and rugged; they also furnish covertness-enhancing fine pointing accuracy, and are difficult to jam or otherwise confuse. Two modes of operation are generally employed: incoherent, in which the laser is simply used as a high power illumination source, and in the presently elaborated coherent or heterodyne mode. Applications encompass terrain-following and obstacle avoidance, Doppler discrimination of missile and aircraft targets, pollutant gas detection, wind measurement for weapons-aiming, and global wind field monitoring.

  8. Doppler radar flowmeter

    DOEpatents

    Petlevich, Walter J.; Sverdrup, Edward F.

    1978-01-01

    A Doppler radar flowmeter comprises a transceiver which produces an audio frequency output related to the Doppler shift in frequency between radio waves backscattered from particulate matter carried in a fluid and the radiated radio waves. A variable gain amplifier and low pass filter are provided for amplifying and filtering the transceiver output. A frequency counter having a variable triggering level is also provided to determine the magnitude of the Doppler shift. A calibration method is disclosed wherein the amplifier gain and frequency counter trigger level are adjusted to achieve plateaus in the output of the frequency counter and thereby allow calibration without the necessity of being able to visually observe the flow.

  9. Venus radar images

    NASA Technical Reports Server (NTRS)

    Goldstein, R. M.; Green, R. R.; Rumsey, H. C.

    1976-01-01

    The paper presents a set of seven radar brightness images and the corresponding altitude contours of small portions (circular regions of 1500-km diameter) of the Venus surface located at the center of the disk taken in the winter of 1973-1974. The regions imaged are arranged in an equatorial belt on the one face of Venus which is always seen on the occasions of closest approach to earth. A real resolution for the images is, typically, 100 x 10 km, while altitude resolution is 500 m.

  10. No-core configuration-interaction model for the isospin- and angular-momentum-projected states

    NASA Astrophysics Data System (ADS)

    Satuła, W.; Båczyk, P.; Dobaczewski, J.; Konieczka, M.

    2016-08-01

    Background: Single-reference density functional theory is very successful in reproducing bulk nuclear properties like binding energies, radii, or quadrupole moments throughout the entire periodic table. Its extension to the multireference level allows for restoring symmetries and, in turn, for calculating transition rates. Purpose: We propose a new variant of the no-core-configuration-interaction (NCCI) model treating properly isospin and rotational symmetries. The model is applicable to any nucleus irrespective of its mass and neutron- and proton-number parity. It properly includes polarization effects caused by an interplay between the long- and short-range forces acting in the atomic nucleus. Methods: The method is based on solving the Hill-Wheeler-Griffin equation within a model space built of linearly dependent states having good angular momentum and properly treated isobaric spin. The states are generated by means of the isospin and angular-momentum projection applied to a set of low-lying (multi)particle-(multi)hole deformed Slater determinants calculated using the self-consistent Skyrme-Hartree-Fock approach. Results: The theory is applied to calculate energy spectra in N ≈Z nuclei that are relevant from the point of view of a study of superallowed Fermi β decays. In particular, a new set of the isospin-symmetry-breaking corrections to these decays is given. Conclusions: It is demonstrated that the NCCI model is capable of capturing main features of low-lying energy spectra in light and medium-mass nuclei using relatively small model space and without any local readjustment of its low-energy coupling constants. Its flexibility and a range of applicability makes it an interesting alternative to the conventional nuclear shell model.

  11. Optimized Radar Remote Sensing for Levee Health Monitoring

    NASA Technical Reports Server (NTRS)

    Jones, Cathleen E.

    2013-01-01

    Radar remote sensing offers great potential for high resolution monitoring of ground surface changes over large areas at one time to detect movement on and near levees and for location of seepage through levees. Our NASA-funded projects to monitor levees in the Sacramento Delta and the Mississippi River have developed and demonstrated methods to use radar remote sensing to measure quantities relevant to levee health and of great value to emergency response. The DHS-funded project will enable us is to define how to optimally monitor levees in this new way and set the stage for transition to using satellite SAR (synthetic aperture radar) imaging for better temporal and spatial coverage at lower cost to the end users.

  12. GeoSAR: A Radar Terrain Mapping System for the New Millennium

    NASA Technical Reports Server (NTRS)

    Thompson, Thomas; vanZyl, Jakob; Hensley, Scott; Reis, James; Munjy, Riadh; Burton, John; Yoha, Robert

    2000-01-01

    GeoSAR Geographic Synthetic Aperture Radar) is a new 3 year effort to build a unique, dual-frequency, airborne Interferometric SAR for mapping of terrain. This is being pursued via a Consortium of the Jet Propulsion Laboratory (JPL), Calgis, Inc., and the California Department of Conservation. The airborne portion of this system will operate on a Calgis Gulfstream-II aircraft outfitted with P- and X-band Interferometric SARs. The ground portions of this system will be a suite of Flight Planning Software, an IFSAR Processor and a Radar-GIS Workstation. The airborne P-band and X-band radars will be constructed by JPL with the goal of obtaining foliage penetration at the longer P-band wavelengths. The P-band and X-band radar will operate at frequencies of 350 Mhz and 9.71 Ghz with bandwidths of either 80 or 160 Mhz. The airborne radars will be complemented with airborne laser system for measuring antenna positions. Aircraft flight lines and radar operating instructions will be computed with the Flight Planning Software The ground processing will be a two-step step process. First, the raw radar data will be processed into radar images and interferometer derived Digital Elevation Models (DEMs). Second, these radar images and DEMs will be processed with a Radar GIS Workstation which performs processes such as Projection Transformations, Registration, Geometric Adjustment, Mosaicking, Merging and Database Management. JPL will construct the IFSAR Processor and Calgis, Inc. will construct the Radar GIS Workstation. The GeoSAR Project was underway in November 1996 with a goal of having the radars and laser systems fully integrated onto the Calgis Gulfstream-II aircraft in early 1999. Then, Engineering Checkout and Calibration-Characterization Flights will be conducted through November 1999. The system will be completed at the end of 1999 and ready for routine operations in the year 2000.

  13. SIRE: a MIMO radar for landmine/IED detection

    NASA Astrophysics Data System (ADS)

    Ojowu, Ode; Wu, Yue; Li, Jian; Nguyen, Lam

    2013-05-01

    Multiple-input multiple-output (MIMO) radar systems have been shown to have significant performance improvements over their single-input multiple-output (SIMO) counterparts. For transmit and receive elements that are collocated, the waveform diversity afforded by this radar is exploited for performance improvements. These improvements include but are not limited to improved target detection, improved parameter identifiability and better resolvability. In this paper, we present the Synchronous Impulse Reconstruction Radar (SIRE) Ultra-wideband (UWB) radar designed by the Army Research Lab (ARL) for landmine and improvised explosive device (IED) detection as a 2 by 16 MIMO radar (with collocated antennas). Its improvement over its SIMO counterpart in terms of beampattern/cross range resolution are discussed and demonstrated using simulated data herein. The limitations of this radar for Radio Frequency Interference (RFI) suppression are also discussed in this paper. A relaxation method (RELAX) combined with averaging of multiple realizations of the measured data is presented for RFI suppression; results show no noticeable target signature distortion after suppression. In this paper, the back-projection (delay and sum) data independent method is used for generating SAR images. A side-lobe minimization technique called recursive side-lobe minimization (RSM) is also discussed for reducing side-lobes in this data independent approach. We introduce a data-dependent sparsity based spectral estimation technique called Sparse Learning via Iterative Minimization (SLIM) as well as a data-dependent CLEAN approach for generating SAR images for the SIRE radar. These data-adaptive techniques show improvement in side-lobe reduction and resolution for simulated data for the SIRE radar.

  14. Radar characterization of asteroids and comets

    NASA Astrophysics Data System (ADS)

    Howell, E.; Taylor, P.; Nolan, M.; Springmann, A.; Benner, L.; Brozovic, M.; Giorgini, J.; Busch, M.; Margot, J.; Naidu, S.; Magri, C.; Shepard, M.

    2014-07-01

    Radar observations are one of the few ground-based techniques that reveal shapes and surface details of asteroids and comets. Since 1998, over 400 asteroids and 15 comets have been detected by radar at either the Arecibo Observatory, the Goldstone Solar System Radar, or both. With resolution as fine as 7.5 m at Arecibo and 3.75 m at Goldstone for the highest signal-to-noise (SNR) observations, the images show a variety of shapes. Nearly 60 percent of near-Earth asteroids (NEAs) detected are of high-enough SNR or have enough time coverage to at least categorize the shape. At least 35 percent of the NEAs are spheroidal, including the 15 percent that are binary or multiple systems. These NEAs, with diameters less than a few kilometers, must have little or no internal strength, in order to have a spheroidal shape. Contact binary, or two-lobed objects, where the lobes are nearly the same size, may also be strengthless. NEA contact binaries may have formed by being spun up, but then failing to form a stable binary system. Few cometary nuclei have been imaged using radar, but several of those also seem to have a contact binary, or two-lobed structure. 103P/Hartley~2, and 8P/Tuttle both have nearly equal lobes joined by a narrow waist [1,2]. The very slow rotation rates of comet nuclei compared to most asteroids suggests that they may not share a common formation mechanism. Radar measurements also give an instantaneous measure of the line-of-sight velocity of the asteroid limb, which is proportional to the rotation rate for an equatorial view. NEAs with H>21 (diameter smaller than 150--300 m) frequently have rotation rates well beyond the spin limit for a strengthless body. However, not all small asteroids are rotating at very rapid rates. Lightcurve measurements become difficult for very small asteroids, which are not observable for long periods of time and have rapidly changing viewing geometries. Radar measurements of the rotation rates, while affected by projection

  15. SMAP's Radar OBP Algorithm Development

    NASA Technical Reports Server (NTRS)

    Le, Charles; Spencer, Michael W.; Veilleux, Louise; Chan, Samuel; He, Yutao; Zheng, Jason; Nguyen, Kayla

    2009-01-01

    An approach for algorithm specifications and development is described for SMAP's radar onboard processor with multi-stage demodulation and decimation bandpass digital filter. Point target simulation is used to verify and validate the filter design with the usual radar performance parameters. Preliminary FPGA implementation is also discussed.

  16. Equatorial MST radars: Further consideration

    NASA Technical Reports Server (NTRS)

    Lagos, P.

    1983-01-01

    The results presented give additional support to the need of equatorial MST radars in order to obtain more information on the nature of equatorial waves in the MST region. Radar deduced winds such as obtained at Jicamarca for periods of months indicate that with these data the full range of equatorial waves, with time scales of seconds to years, can be studied.

  17. High-resolution mapping of soil moisture at the field scale using ground-penetrating radar for improving remote sensing data products

    NASA Astrophysics Data System (ADS)

    Lambot, Sébastien; Mahmoudzadeh, Mohammad Reza; Phuong Tran, Anh; Nottebaere, Martijn; Leonard, Aline; Defourny, Pierre; Neyt, Xavier

    2014-05-01

    Characterizing the spatiotemporal distribution of soil moisture at various scales is essential in agricultural, hydrological, meteorological, and climatological research and applications. Soil moisture determines the boundary condition between the soil and the atmosphere and governs key processes of the hydrological cycle such as infiltration, runoff, root water uptake, evaporation, as well as energy exchanges between the Earth's surface and the atmosphere. In that respect, ground-penetrating radar (GPR) is of particular interest for field-scale soil moisture mapping as soil moisture is highly correlated to its permittivity, which controls radar wave propagation in the soil. Yet, accurate determination of the electrical properties of a medium using GPR requires full-wave inverse modeling, which has remained a major challenge in applied geophysics for many years. We present a new near-field radar modeling approach for wave propagation in layered media. Radar antennas are modeled using an equivalent set of infinitesimal electric dipoles and characteristic, frequency-dependent, global reflection and transmission coefficients. These coefficients determine wave propagation between the radar reference plane, point sources, and field points. The interactions between the antenna and the soil are inherently accounted for. The fields are calculated using three-dimensional Green's functions. We validated the model using both time and frequency domain radars. The radars were mounted on a quad and controlled by a computer for real-time radar and dGPS data acquisition. Several fields were investigated and time-lapse measurements were performed on some of them to analyze temporal stability in soil moisture patterns and the repeatability of the measurements. The results were compared to ground-truths. The proposed technique is presently being applied to improve space-borne remote sensing data products for soil moisture by providing high-resolution observational information that

  18. Prediction and archival tools for asteroid radar observations

    NASA Astrophysics Data System (ADS)

    Margot, J.

    2014-07-01

    The Earth-based radar facilities at Arecibo and Goldstone have provided very powerful tools for characterizing the trajectories and physical properties of asteroids. This is especially important for near-Earth asteroids (NEAs) which are key in the contexts of hazard mitigation, spacecraft exploration, and resource utilization. Over 10,000 NEAs have been identified and over 430 have been detected with radar (http://radarastronomy.org). Both of these numbers are growing rapidly, necessitating efficient tools for data archival and observation planning. The asteroid radar database hosted at radarastronomy.org keeps track of all radar detections, documents NEA physical properties, and provides NEA observability conditions. With the help of UCLA students, we are integrating a number of tools with the database to facilitate recordkeeping and observation planning. For instance, a geometry-finder tool allows us to identify the optimal times to observe specific NEAs and to compute rise-transit-set windows. Signal-to-noise (SNR) tools allow us to compute SNR values for both Arecibo and Goldstone observations. Python-based graphical tools help visualize the history of asteroid detections and plan future observations. A collaborative research environment (wiki) facilitates interactions among radar observers. These tools and others in preparation enable a more coordinated and efficient process for asteroid radar observations.

  19. Radar Monitoring of Wetlands for Malaria Control

    NASA Technical Reports Server (NTRS)

    Pope, Kevin O.

    1997-01-01

    Malaria is the most important vector-borne tropical disease (Collins and Paskewitz, 1995) and there is no simple and universally applicable form of vector control. While new methods such as malaria vaccine or genetic manipulation of mosquitoes are being explored in the laboratories, the need for more field research on malaria transmission remains very strong. For the foreseeable future many malaria programs must focus on controlling the vector, the anopheline mosquito, often under the specter of shrinking budgets. Therefore information on which human populations are at the greatest risk is especially valuable when allocating scarce resources. The goal of the Radar Monitoring of Wetlands for Malaria Control Project is to demonstrate the feasibility of using Radarsat or other comparable satellite radar imaging systems to determine where and when human populations are at greatest risk for contracting malaria. The study area is northern Belize, a region with abundant wetlands and a potentially serious malaria problem. A key aspect of this study is the analysis of multi-temporal satellite imagery to track seasonal flooding of anopheline mosquito breeding sites. Radarsat images of the test site in Belize have been acquired one to three times a month over the last year, however,, to date only one processed image has been received from the Alaska SAR Facility for analysis. Therefore analysis at this stage is focussed on determining the radar backscatter characteristics of known anopheline breeding sites, with future work to be dedicated toward seasonal changes.

  20. Low-brightness quantum radar

    NASA Astrophysics Data System (ADS)

    Lanzagorta, Marco

    2015-05-01

    One of the major scientific thrusts from recent years has been to try to harness quantum phenomena to dramatically increase the performance of a wide variety of classical information processing devices. These advances in quantum information science have had a considerable impact on the development of standoff sensors such as quantum radar. In this paper we analyze the theoretical performance of low-brightness quantum radar that uses entangled photon states. We use the detection error probability as a measure of sensing performance and the interception error probability as a measure of stealthiness. We compare the performance of quantum radar against a coherent light sensor (such as lidar) and classical radar. In particular, we restrict our analysis to the performance of low-brightness standoff sensors operating in a noisy environment. We show that, compared to the two classical standoff sensing devices, quantum radar is stealthier, more resilient to jamming, and more accurate for the detection of low reflectivity targets.

  1. Atmospheric radar sounding

    NASA Technical Reports Server (NTRS)

    Crane, R. K.

    1972-01-01

    Monostatic and bistatic radar techniques for the measurement of the structure of volume targets in the troposphere and lower stratosphere are reviewed. The targets considered are thin turbulent layers in the lower stratosphere and rain in the troposphere. The measurements of scattering from thin turbulent layers show that layers are generally detected at or near the tropopause, and in 31 out of 34 sets of measurements, layers were detected above the tropopause in the lower 10 km of the stratosphere. The threshold for turbulent layer detection corresponds to an equivalent thickness product of ten to the minus 13th power times the cube root of m at a range of 100 km and for layers with less than 1000 m thickness. The measurement of scattering by rain shows that in the New England area both convective and widespread rain consists of a number of small cells. On average, the cells appear to have a half-intensity width of 3 to 4 km as measured with a radar system with a 1.8 km resolution cell size for cells at 100 km range.

  2. Large uncertainties in projected European summer warming and drying due to ocean-atmosphere and land-atmosphere interactions

    NASA Astrophysics Data System (ADS)

    Selten, Frank M.; Bintanja, Richard; Vautard, Robert; van den Hurk, Bart; Haarsma, Rein

    2016-04-01

    Europe is among the regions with the highest summer warming rates and largest spread in the projected warming in the latest CMIP5 climate model projections. The end-of-this-century summer warming under the RCP8.5 scenario ranges from about 3 to 9 degrees. Why do models disagree so much on the response of the summer climate in Europe to an increase in greenhouse gas concentrations? The origin of these uncertainties is traced through a combination of statistical analyses, theoretical arguments and additional model simulations to both the uncertain response of the ocean circulation to the warming and land-atmosphere interactions in continental Europe.

  3. Use of radar to assess aeolian processes

    NASA Technical Reports Server (NTRS)

    Greeley, Ronald; Lancaster, N.; Gaddis, L.; Blumberg, D.; Debrovolskis, A.; Saunders, R. S.; Wall, S.; Iversen, J. D.; White, B.; Rasmussen, K. R.

    1991-01-01

    The interaction between wind and desert surfaces has important implications for sediment transport on Earth, Mars, and Venus, and for understanding the relationship between radar backscatter and aerodynamic roughness. Here, researchers report results from measurements of atmospheric boundary layer profiles, assessment of radar backscatter at P, L, and C wavelengths, and surface roughness in Death Valley, the Mojave Desert, and Lunar Lake, NV, and discuss the implications for aeolian process. The sites include playas, gravel and sand regs, alluvial fans, and lava flows. Boundary layer wind profiles were measured using anemometers at heights of 0.75, 1.25, 2.07, 3.44, 5.72, and 9.5 m; temperature sensors at heights of 1.3 and 9.6 m; and wind vanes at 9.7 and 1.5 m. Microtopographic measurements were made using a template and a laser-photo device to obtain RMS height. This study demonstrates that radar backscatter coefficients obtained from airborne and perhaps orbiting instruments could permit the derivation of aerodynamic roughness values for large areas. Such values, when combined with wind frequency data, could enable assessment of aeolian processes on a regional scale.

  4. SMAP Radar Processing and Expected Performance

    NASA Astrophysics Data System (ADS)

    West, R. D.; Jaruwatanadilok, S.

    2011-12-01

    This presentation will describe the processing algorithms being developed for the Soil Moisture Active Passive (SMAP) radar data and the expected characteristics of the measured backscattering cross sections. The SMAP radar combines some unique features such as a conically scanned antenna with SAR processing of the data. The rapidly varying squint angle gives the measurements variable resolution and noise characteristics and poses a challenge to the processor to maintain accuracy around the wide (1000 km) swath. Rapid variation of Doppler around the scan leads to a time domain azimuth correlation algorithm, and variation of the Doppler geometry will likely require varying the processing bandwidth to manage ambiguity contamination errors. The basic accuracy requirement is 1-dB (one-sigma) in the backscatter measurements at a resolution of 3 km. The main error contributions come from speckle noise, calibration uncertainty, and radio frequency interference (RFI). Speckle noise is determined by system design parameters and details of the processing algorithms. The calibration of the backscatter measurements will be based on pre-launch characterization of the radar components which allow corrections for short term (~1 month) variations in performance. Longer term variations and biases will be removed using measurements of stable reference targets such as parts of the Amazon rain forest, and possibly the oceans and ice sheets. RFI survey measurements will be included to measure the extent of RFI around the world. The SMAP radar is designed to be able to hop the operating frequency within the 80 MHz allocated band to avoid the worst RFI emitters. Data processing will detect and discard further RFI contaminated measurements. This work is supported by the SMAP project at JPL - CalTech. The SMAP mission has not been formally approved by NASA. The decision to proceed with the mission will not occur until the completion of the National Environmental Policy Act (NEPA) process

  5. Space Radar Image of Harvard Forest

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This is a radar image of the area surrounding the Harvard Forest in north-central Massachusetts that has been operated as a ecological research facility by Harvard University since 1907. At the center of the image is the Quabbin Reservoir, and the Connecticut River is at the lower left of the image. The Harvard Forest itself is just above the reservoir. Researchers are comparing the naturally occurring physical disturbances in the forest and the recent and projected chemical disturbances and their effects on the forest ecosystem. Agricultural land appears dark blue/purple, along with low shrub vegetation and some wetlands. Urban development is bright pink; the yellow to green tints are conifer-dominated vegetation with the pitch pine sand plain at the middle left edge of the image appearing very distinctive. The green tint may indicate pure pine plantation stands, and deciduous broadleaf trees appear gray/pink with perhaps wetter sites being pinker. This image was acquired by the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) aboard the space shuttle Endeavour. SIR-C/X-SAR, a joint mission of the German, Italian and the United States space agencies, is part of NASA's Mission to Planet Earth. The image is centered at 42.50 degrees North latitude and 72.33 degrees West longitude and covers an area of 53 kilometers 63 by kilometers (33 miles by 39 miles). The colors in the image are assigned to different frequencies and polarizations of the radar as follows: red is L-band horizontally transmitted and horizontally received; green is L-band horizontally transmitted and vertically received; and blue is C-band horizontally transmitted and horizontally received.

  6. Searching for facies indicators in ground penetrating radar data

    NASA Astrophysics Data System (ADS)

    Moysey, S.; Knight, R.; Brunner, D.; Endres, T.

    2004-05-01

    Developing an accurate conceptual model of subsurface spatial heterogeneity is a critical step in producing reliable predictions of hydrogeologic processes. One approach to this problem is to divide the subsurface into distinct geologic units or facies. Obtaining a realistic facies model in complex geologic environments, however, can be impossible using well-based data alone. Therefore, alternative data that have the potential to sample large volumes of the subsurface, such as ground penetrating radar (GPR) reflection images, can be valuable tools to aid in facies characterization. GPR images provide a record of the interactions between an electromagnetic wave and subsurface heterogeneity. Due to the complexity of the processes encoded in this image, it cannot be considered a direct `image' of the subsurface. As a result, building a facies model from GPR data typically requires expert interpretation. Manual interpretations have the disadvantages of being highly labor intensive, subjective, and qualitative. Unsupervised classification techniques, such as clustering algorithms and neural networks, have the potential to overcome these disadvantages. It is currently unclear, however, whether these automated approaches can be used to obtain facies classifications that are consistent with expert interpretations or geologic reality. In particular, it is uncertain whether there are key elements, or attributes, of a radar image that can be used as primary indicators for different facies. To address these questions, we compare the facies classifications obtained by expert interpretation to those obtained using K-means clustering for GPR data obtained from the Whiteman's Creek watershed in southern Ontario, Canada. The automated classification was performed once using instantaneous attributes, such as envelope, phase, and frequency, and again using structural attributes, which are related to the geometric arrangement of reflectors in the subsurface. In this example, the

  7. Collaborative project. Ocean-atmosphere interaction from meso- to planetary-scale. Mechanics, parameterization, and variability

    SciTech Connect

    Saravanan, Ramalingam; Small, Justin

    2015-12-01

    Most climate models are currently run with grid spacings of around 100km, which, with today’s computing power, allows for long (up to 1000 year) simulations, or ensembles of simulations to explore climate change and variability. However this grid spacing does not resolve important components of the weather/climate system such as atmospheric fronts and mesoscale systems, and ocean boundary currents and eddies. The overall aim of this project has been to look at the effect of these small-scale features on the weather/climate system using a suite of high and low resolution climate models, idealized models and observations. High-resolution global coupled integrations using CAM/CESM were carried out at NCAR by the lead PI. At TAMU, we have complemented the work at NCAR by analyzing datasets from the high-resolution (28km) CESM integrations (Small et al., 2014) as well as very high resolution (9km, 3km) runs using a coupled regional climate (CRCM) carried out locally. The main tasks carried out were: 1. Analysis of surface wind in observations and high-resolution CAM/CCSM simulations 2. Development of a feature-tracking algorithm for studying midlatitude air-sea interaction by following oceanic mesoscale eddies and creating composites of the atmospheric response overlying the eddies. 3. Applying the Lagrangian analysis technique in the Gulf Stream region to compare data from observational reanalyses, global CESM coupled simulations, 9km regional coupled simulations and 3km convection-resolving regional coupled simulations. Our main findings are that oceanic mesoscale eddies influence not just the atmospheric boundary layer above them, but also the lower portions of the free troposphere above the boundary layer. Such a vertical response could have implications for a remote influence of Gulf Stream oceanic eddies on North Atlantic weather patterns through modulation of the storm track, similar to what has been noted in the North Pacific. The coarse resolution

  8. The Interactive Science and Technology Project: The Nuffield Foundation's Launchpad for a European Collaborative.

    ERIC Educational Resources Information Center

    Quin, Melanie

    1991-01-01

    Describes the Nuffield project that served as a resource for science centers across England and as a vehicle for the European Collaborative for Science, Industry, and Technology Exhibitions. Discusses the network of contacts extending from the BBC and British Association to science centers worldwide following the inception of the project by the…

  9. Campus Eco Tours: An Integrative & Interactive Field Project for Undergraduate Biology Students

    ERIC Educational Resources Information Center

    Boes, Katie E.

    2013-01-01

    Outdoor areas within or near college campuses offer an opportunity for biology students to observe the natural world and apply concepts from class. Here, I describe an engaging and integrative project where undergraduate non-major biology students work in teams to develop and present professional "eco tours." This project takes place over multiple…

  10. NASA Computational Case Study SAR Data Processing: Ground-Range Projection

    NASA Technical Reports Server (NTRS)

    Memarsadeghi, Nargess; Rincon, Rafael

    2013-01-01

    Radar technology is used extensively by NASA for remote sensing of the Earth and other Planetary bodies. In this case study, we learn about different computational concepts for processing radar data. In particular, we learn how to correct a slanted radar image by projecting it on the surface that was sensed by a radar instrument.

  11. Large phased-array radars

    SciTech Connect

    Brookner, D.E.

    1988-12-15

    Large phased-array radars can play a very important part in arms control. They can be used to determine the number of RVs being deployed, the type of targeting of the RVs (the same or different targets), the shape of the deployed objects, and possibly the weight and yields of the deployed RVs. They can provide this information at night as well as during the day and during rain and cloud covered conditions. The radar can be on the ground, on a ship, in an airplane, or space-borne. Airborne and space-borne radars can provide high resolution map images of the ground for reconnaissance, of anti-ballistic missile (ABM) ground radar installations, missile launch sites, and tactical targets such as trucks and tanks. The large ground based radars can have microwave carrier frequencies or be at HF (high frequency). For a ground-based HF radar the signal is reflected off the ionosphere so as to provide over-the-horizon (OTH) viewing of targets. OTH radars can potentially be used to monitor stealth targets and missile traffic.

  12. Radar, Insect Population Ecology, and Pest Management

    NASA Technical Reports Server (NTRS)

    Vaughn, C. R. (Editor); Wolf, W. (Editor); Klassen, W. (Editor)

    1979-01-01

    Discussions included: (1) the potential role of radar in insect ecology studies and pest management; (2) the potential role of radar in correlating atmospheric phenomena with insect movement; (3) the present and future radar systems; (4) program objectives required to adapt radar to insect ecology studies and pest management; and (5) the specific action items to achieve the objectives.

  13. Evaluation of meteorological airborne Doppler radar

    NASA Technical Reports Server (NTRS)

    Hildebrand, P. H.; Mueller, C. K.

    1984-01-01

    This paper will discuss the capabilities of airborne Doppler radar for atmospheric sciences research. The evaluation is based on airborne and ground based Doppler radar observations of convective storms. The capability of airborne Doppler radar to measure horizontal and vertical air motions is evaluated. Airborne Doppler radar is shown to be a viable tool for atmospheric sciences research.

  14. 47 CFR 80.273 - Radar standards.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 5 2014-10-01 2014-10-01 false Radar standards. 80.273 Section 80.273... MARITIME SERVICES Equipment Authorization for Compulsory Ships § 80.273 Radar standards. (a) Radar... with radar must comply with the following standards (all incorporated by reference, see § 80.7):...

  15. 47 CFR 80.273 - Radar standards.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 5 2013-10-01 2013-10-01 false Radar standards. 80.273 Section 80.273... MARITIME SERVICES Equipment Authorization for Compulsory Ships § 80.273 Radar standards. (a) Radar... with radar must comply with the following standards (all incorporated by reference, see § 80.7):...

  16. 46 CFR 121.404 - Radars.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Radars. 121.404 Section 121.404 Shipping COAST GUARD... Navigation Equipment § 121.404 Radars. (a) Except as allowed by paragraph (b) of this section, all self... radar system for surface navigation with a radar screen mounted at the primary operating station....

  17. 46 CFR 121.404 - Radars.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Radars. 121.404 Section 121.404 Shipping COAST GUARD... Navigation Equipment § 121.404 Radars. (a) Except as allowed by paragraph (b) of this section, all self... radar system for surface navigation with a radar screen mounted at the primary operating station....

  18. 46 CFR 121.404 - Radars.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Radars. 121.404 Section 121.404 Shipping COAST GUARD... Navigation Equipment § 121.404 Radars. (a) Except as allowed by paragraph (b) of this section, all self... radar system for surface navigation with a radar screen mounted at the primary operating station....

  19. 46 CFR 121.404 - Radars.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Radars. 121.404 Section 121.404 Shipping COAST GUARD... Navigation Equipment § 121.404 Radars. (a) Except as allowed by paragraph (b) of this section, all self... radar system for surface navigation with a radar screen mounted at the primary operating station....

  20. 47 CFR 80.273 - Radar standards.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 5 2012-10-01 2012-10-01 false Radar standards. 80.273 Section 80.273... MARITIME SERVICES Equipment Authorization for Compulsory Ships § 80.273 Radar standards. (a) Radar... with radar must comply with the following standards (all incorporated by reference, see § 80.7):...

  1. 46 CFR 121.404 - Radars.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Radars. 121.404 Section 121.404 Shipping COAST GUARD... Navigation Equipment § 121.404 Radars. (a) Except as allowed by paragraph (b) of this section, all self... radar system for surface navigation with a radar screen mounted at the primary operating station....

  2. Digital exploitation of synthetic aperture radar

    NASA Technical Reports Server (NTRS)

    Wagner, H. L.; Shuchman, R. A.

    1977-01-01

    A digital processing and analysis scheme for use with digitized synthetic aperture radar data was developed. Using data from a four channel system, the imagery is preprocessed using specially designed software and then analyzed using preexisting facilities originally intended for use with MSS type data. Geometric and radiometric correction may be performed if desired, as well as classification analysis, Fast Fourier transform, filtering and level slice and display functions. The system provides low cost output in real time, permitting interactive imagery analysis. System information flow diagrams as well as sample output products are shown.

  3. Radar backscatter modelling

    NASA Technical Reports Server (NTRS)

    Schaber, G. G.; Kozak, R. C.; Gurule, R. L.

    1984-01-01

    The terrain analysis software package was restructured and documentation was added. A program was written to test Johnson Space Center's four band scatterometer data for spurious signals data. A catalog of terrain roughness statistics and calibrated four frequency multipolarization scatterometer data is being published to support the maintenance of Death Valley as a radar backscatter calibration test site for all future airborne and spacecraft missions. Test pits were dug through sand covered terrains in the Eastern Sahara to define the depth and character of subsurface interfaces responsible for either backscatter or specular response in SIR-A imagery. Blocky sandstone bedrock surfaces at about 1 m depth were responsible for the brightest SIR-A returns. Irregular very dense CaCO3 cemented sand interfaces were responsible for intermediate grey tones. Ancient river valleys had the weakest response. Reexamination of SEASAT l-band imagery of U.S. deserts continues.

  4. Radar investigation of asteroids

    NASA Technical Reports Server (NTRS)

    Ostro, S. J.

    1982-01-01

    The dual polarization CW radar system which permits simultaneous reception in the same rotational sense of circular polarization as transmitted (i.e., the "SC" sense) and in the opposite ("OC") sense, was used to observe five previously unobserved asteroids: 2 Pallas, 8 Flora, 22 Kalliope, 132 Aethra, and 471 Papagena. Echoes from Pallas and Flora were easily detected in the OC sense on each of several nights. Weighted mean echo power spectra also show marginally significant responses in the SC sense. An approximately 4.5 standard deviation signal was obtained for Aethra. The Doppler shift of the peak is about 10 Hz higher than that predicted from the a priori trial ephemeris. Calculations are performed to determine whether this frequency offset can be reconciled dynamically with optical positions reported for Aethra.

  5. Unification of radar phenomena as spacetime curvature: prediction and observation of an affine-phase effect.

    PubMed

    Gabriel, Andrew K

    2004-07-01

    The many properties of radar echoes and other radiative systems were recently described by Gabriel [J. Opt. Soc. Am. A 19, 946 (2002)] as lower-dimensional projections of simple forms in special relativity. A broader treatment including coherent phenomena is summarized, in which the phase properties of radar images and interferograms are also shown to have a simple unified structure. Their apparent complexity is a result of projection onto the lower dimension(s) of the observation. A predicted new property, locally scalable (affine) phase, is observed in a radar interferogram. PMID:15259737

  6. The Clementine Bistatic Radar Experiment

    NASA Technical Reports Server (NTRS)

    Nozette, S.; Lichtenberg, C. L.; Spudis, P.; Bonner, R.; Ort, W.; Malaret, E.; Robinson, M.; Shoemaker, E. M.

    1996-01-01

    During the Clementine 1 mission, a bistatic radar experiment measured the magnitude and polarization of the radar echo versus bistatic angle, beta, for selected lunar areas. Observations of the lunar south pole yield a same-sense polarization enhancement around beta = 0. Analysis shows that the observed enhancement is localized to the permanently shadowed regions of the lunar south pole. Radar observations of periodically solar-illuminated lunar surfaces, including the north pole, yielded no such enhancement. A probable explanation for these differences is the presence of low-loss volume scatterers, such as water ice, in the permanently shadowed region at the south pole.

  7. Gyroklystron-Powered WARLOC Radar

    NASA Astrophysics Data System (ADS)

    Danly, B. G.; Cheung, W. J.; Gregers-Hansen, V.; Linde, G.; Ngo, M.

    2003-12-01

    A high-power, coherent, W-band (94 GHz) millimeter-wave radar has been developed at the Naval Research Laboratory. This radar, named WARLOC, employs a 100 kW peak power, 10 kW average power gyro-klystron as the final power amplifier, an overmoded transmission line system, and a quasi-optical duplexer, together with a high gain antenna, four-channel receiver, and state-of-the-art signal processing. The gyro-amplifiers and the implementation in the WARLOC radar will be described.

  8. The Clementine bistatic radar experiment

    USGS Publications Warehouse

    Nozette, S.; Lichtenberg, C.L.; Spudis, P.; Bonner, R.; Ort, W.; Malaret, E.; Robinson, M.; Shoemaker, E.M.

    1996-01-01

    During the Clementine 1 mission, a bistatic radar experiment measured the magnitude and polarization of the radar echo versus bistatic angle, ??, for selected lunar areas. Observations of the lunar south pole yield a same- sense polarization enhancement around ?? = 0. Analysis shows that the observed enhancement is localized to the permanently shadowed regions of the lunar south pole. Radar observations of periodically solar-illuminated lunar surfaces, including the north pole, yielded no such enhancement. A probable explanation for these differences is the presence of low-loss volume scatterers, such as water ice, in the permanently shadowed region at the south pole.

  9. Teacher/Student Classroom Interaction in Vocational Education. A Sex Bias/Sex Stereotyping Project.

    ERIC Educational Resources Information Center

    Omvig, Clayton P.

    A study examined teacher-student interaction in Kentucky's secondary and postsecondary vocational education classrooms. It investigated whether sex bias or inequities were present and what might explain such differences. A literature review focused on studies conducted at different grade levels with relation to sex bias and classroom interactions.…

  10. Capabilities and limitations of the Jicamarca radar as an MST radar

    NASA Technical Reports Server (NTRS)

    Woodman, R. F.; Farley, D. T.

    1983-01-01

    The Jicamarca radar (Long. 76.52W, Lat. 11.56S), located at 20 km from Lima at approximately 500 meters over sea level, is surrounded by mountains which provide a good shield from man-made interference. The radio horizon goes from a few hundred meters, across the dry valley where it is located, to 15 km, along the valley in the direction of the continental divide. This limits the clutter to 15 km, except for one high peak at 21 km. It is the most equatorial of all existing MST radars. Its proximity to the Andes, makes its location unique for the study of lee waves and orographic-induced turbulence. Vertical as well as horizontal projections of MST velocities are obtained by simultaneously pointing with different sections of the antenna into three or four different directions. The transmitters, receivers, and systems for data acquisition, processing, and control are included.

  11. Flight evaluation of a radar cursor technique

    NASA Astrophysics Data System (ADS)

    Perez, J.

    1980-03-01

    Preliminary results are presented of a flight test evaluation of a radar cursor technique to be used as an aid in acquiring and tracking the desired ground track during airborne radar approaches. The test was performed using a Sikorsky CH-53A helicopter. The airborne radar system used was a BENDIX RDR-1400A modified to electronically produce a radar cursor display of course error. Airborne radar approaches were made to an offshore and an airport test environment. The specific purpose of the test was to evaluate the practical utility of the radar cursor as an aid to performing airborne radar approaches. The preliminary conclusion of this test is that the use of the radar cursor improved course acquisition and ground tracking significantly with pilotage errors and total system cross-track errors reduced by one-half or better. The radar cursor technique shows potential in reducing airspace requirements for airborne radar approaches.

  12. UAVSAR: Airborne L-band Radar for Repeat Pass Interferometry

    NASA Technical Reports Server (NTRS)

    Moes, Timothy R.

    2009-01-01

    The primary objectives of the UAVSAR Project were to: a) develop a miniaturized polarimetric L-band synthetic aperture radar (SAR) for use on an unmanned aerial vehicle (UAV) or piloted vehicle. b) develop the associated processing algorithms for repeat-pass differential interferometric measurements using a single antenna. c) conduct measurements of geophysical interest, particularly changes of rapidly deforming surfaces such as volcanoes or earthquakes. Two complete systems were developed. Operational Science Missions began on February 18, 2009 ... concurrent development and testing of the radar system continues.

  13. The Basic Radar Altimetry Toolbox for Sentinel 3 Users

    NASA Astrophysics Data System (ADS)

    Lucas, Bruno; Rosmorduc, Vinca; Niemeijer, Sander; Bronner, Emilie; Dinardo, Salvatore; Benveniste, Jérôme

    2013-04-01

    The Basic Radar Altimetry Toolbox (BRAT) is a collection of tools and tutorial documents designed to facilitate the processing of radar altimetry data. This project started in 2006 from the joint efforts of ESA (European Space Agency) and CNES (Centre National d'Etudes Spatiales). The latest version of the software, 3.1, was released on March 2012. The tools enable users to interact with the most common altimetry data formats, being the most used way, the Graphical User Interface (BratGui). This GUI is a front-end for the powerful command line tools that are part of the BRAT suite. BRAT can also be used in conjunction with Matlab/IDL (via reading routines) or in C/C++/Fortran via a programming API, allowing the user to obtain desired data, bypassing the data-formatting hassle. The BratDisplay (graphic visualizer) can be launched from BratGui, or used as a stand-alone tool to visualize netCDF files - it is distributed with another ESA toolbox (GUT) as the visualizer. The most frequent uses of BRAT are teaching remote sensing, altimetry data reading (all missions from ERS-1 to Saral and soon Sentinel-3), quick data visualization/export and simple computation on the data fields. BRAT can be used for importing data and having a quick look at his contents, with several different types of plotting available. One can also use it to translate the data into other formats such as netCDF, ASCII text files, KML (Google Earth) and raster images (JPEG, PNG, etc.). Several kinds of computations can be done within BratGui involving combinations of data fields that the user can save for posterior reuse or using the already embedded formulas that include the standard oceanographic altimetry formulas (MSS, -SSH, MSLA, editing of spurious data, etc.). The documentation collection includes the standard user manual explaining all the ways to interact with the set of software tools but the most important item is the Radar Altimeter Tutorial, that contains a strong introduction to

  14. Experimental and theoretical determination of sea-state bias in radar altimetry

    NASA Technical Reports Server (NTRS)

    Stewart, Robert H.

    1991-01-01

    The major unknown error in radar altimetry is due to waves on the sea surface which cause the mean radar-reflecting surface to be displaced from mean sea level. This is the electromagnetic bias. The primary motivation for the project was to understand the causes of the bias so that the error it produces in radar altimetry could be calculated and removed from altimeter measurements made from space by the Topex/Poseidon altimetric satellite. The goals of the project were: (1) observe radar scatter at vertical incidence using a simple radar on a platform for a wide variety of environmental conditions at the same time wind and wave conditions were measured; (2) calculate electromagnetic bias from the radar observations; (3) investigate the limitations of the present theory describing radar scatter at vertical incidence; (4) compare measured electromagnetic bias with bias calculated from theory using measurements of wind and waves made at the time of the radar measurements; and (5) if possible, extend the theory so bias can be calculated for a wider range of environmental conditions.

  15. Radar cross section visualization using sample buffer progressive refinement volume rendering

    NASA Astrophysics Data System (ADS)

    Jones, Alain L.

    1993-12-01

    This thesis explores how to interactively examine the radar cross section characteristics of an object. As such, this research encompasses two rapidly burgeoning fields: scientific visualization and low-observables technology.

  16. Fly eye radar or micro-radar sensor technology

    NASA Astrophysics Data System (ADS)

    Molchanov, Pavlo; Asmolova, Olga

    2014-05-01

    To compensate for its eye's inability to point its eye at a target, the fly's eye consists of multiple angularly spaced sensors giving the fly the wide-area visual coverage it needs to detect and avoid the threats around him. Based on a similar concept a revolutionary new micro-radar sensor technology is proposed for detecting and tracking ground and/or airborne low profile low altitude targets in harsh urban environments. Distributed along a border or around a protected object (military facility and buildings, camp, stadium) small size, low power unattended radar sensors can be used for target detection and tracking, threat warning, pre-shot sniper protection and provides effective support for homeland security. In addition it can provide 3D recognition and targets classification due to its use of five orders more pulses than any scanning radar to each space point, by using few points of view, diversity signals and intelligent processing. The application of an array of directional antennas eliminates the need for a mechanical scanning antenna or phase processor. It radically decreases radar size and increases bearing accuracy several folds. The proposed micro-radar sensors can be easy connected to one or several operators by point-to-point invisible protected communication. The directional antennas have higher gain, can be multi-frequency and connected to a multi-functional network. Fly eye micro-radars are inexpensive, can be expendable and will reduce cost of defense.

  17. Historical aspects of radar atmospheric dynamics

    NASA Technical Reports Server (NTRS)

    Kato, Susumu

    1989-01-01

    A review of the history of radar techniques which have been applied to atmospheric observation is given. The author starts with ionosphere observation with the ionosonde, symbolizing as it does the earliest history of radar observation, and proceeds to later developments in radar observation such as the use of partial reflection, meteor, and incoherent scatter radars. Mesosphere stratosphere troposphere (MST) radars are discussed in terms of lower atmosphere observation.

  18. ASSIMILATION OF DOPPLER RADAR DATA INTO NUMERICAL WEATHER MODELS

    SciTech Connect

    Chiswell, S.; Buckley, R.

    2009-01-15

    During the year 2008, the United States National Weather Service (NWS) completed an eight fold increase in sampling capability for weather radars to 250 m resolution. This increase is expected to improve warning lead times by detecting small scale features sooner with increased reliability; however, current NWS operational model domains utilize grid spacing an order of magnitude larger than the radar data resolution, and therefore the added resolution of radar data is not fully exploited. The assimilation of radar reflectivity and velocity data into high resolution numerical weather model forecasts where grid spacing is comparable to the radar data resolution was investigated under a Laboratory Directed Research and Development (LDRD) 'quick hit' grant to determine the impact of improved data resolution on model predictions with specific initial proof of concept application to daily Savannah River Site operations and emergency response. Development of software to process NWS radar reflectivity and radial velocity data was undertaken for assimilation of observations into numerical models. Data values within the radar data volume undergo automated quality control (QC) analysis routines developed in support of this project to eliminate empty/missing data points, decrease anomalous propagation values, and determine error thresholds by utilizing the calculated variances among data values. The Weather Research and Forecasting model (WRF) three dimensional variational data assimilation package (WRF-3DVAR) was used to incorporate the QC'ed radar data into input and boundary conditions. The lack of observational data in the vicinity of SRS available to NWS operational models signifies an important data void where radar observations can provide significant input. These observations greatly enhance the knowledge of storm structures and the environmental conditions which influence their development. As the increase in computational power and availability has made higher

  19. Chemical projectile-target interaction during hypervelocity cratering experiments (MEMIN project).

    NASA Astrophysics Data System (ADS)

    Ebert, M.; Hecht, L.; Deutsch, A.; Kenkmann, T.

    2012-04-01

    The detection and identification of meteoritic components in impact-derived rocks are of great value for confirming an impact origin and reconstructing the type of extraterrestrial material that repeatedly stroke the Earth during geologic evolution [1]. However, little is known about processes that control the projectile distribution into the various impactites that originate during the cratering and excavation process, and inter-element fractionation between siderophile elements during impact cratering. In the context of the MEMIN project, cratering experiments have been performed using spheres of Cr-V-Co-Mo-W-rich steel and of the iron meteorite Campo del Cielo (IAB) as projectiles accelerated to about 5 km/s, and blocks of Seeberger sandstone as target. The experiments were carried out at the two-stage acceleration facilities of the Fraunhofer Ernst-Mach-Institute (Freiburg). Our results are based on geochemical analyses of highly shocked ejecta material. The ejecta show various shock features including multiple sets of planar deformations features (PDF) in quartz, diaplectic quartz, and partial melting of the sandstone. Melting is concentrated in the phyllosilicate-bearing sandstone matrix but involves quartz, too. Droplets of molten projectile have entered the low-viscosity sandstone melt but not quartz glass. Silica-rich sandstone melts are enriched in the elements that are used to trace the projectile, like Fe, Ni, Cr, Co, and V (but no or little W and Mo). Inter-element ratios of these "projectile" tracer elements within the contaminated sandstone melt may be strongly modified from the original ratios in the projectiles. This fractionation most likely result from variation in the lithophile or siderophile character and/or from differences in reactivity of these tracer elements with oxygen [2] during interaction of metal melt with silicate melt. The shocked quartz with PDF is also enriched in Fe and Ni (experiment with a meteorite iron projectile) and in Fe

  20. NASA Radar Images Asteroid Toutatis

    NASA Video Gallery

    This 64-frame movie of asteroid Toutatis was generated from data by Goldstone's Solar System Radar on Dec. 12 and 13, 2012. In the movie clips, the rotation of the asteroid appears faster than it o...

  1. Ground Penetrating Radar, Barrow, Alaska

    SciTech Connect

    John Peterson

    2015-03-06

    This is 500 MHz Ground Penetrating Radar collected along the AB Line in Intensive Site 1 beginning in October 2012 and collected along L2 in Intensive Site 0 beginning in September 2011. Both continue to the present.

  2. Solar Radar Astronomy with LOFAR

    NASA Astrophysics Data System (ADS)

    Rodriguez, P.

    2003-04-01

    A new approach to the study of the Sun's corona and its dynamical processes is possible with radar investigations in the frequency range of about 10-50 MHz. The range of electron densities of the solar corona is such that radio waves at these frequencies can provide diagnostic radar echoes of large scale phenomena such as coronal mass ejections (CMEs). We expect that the frequency shift imposed on the echo signal by an earthward-moving CME will provide a direct measurement of the velocity, thereby providing a good estimate of the arrival time at Earth. It is known that CMEs are responsible for the largest geomagnetic storms at Earth, which are capable of causing power grid blackouts, satellite electronic upsets, and degradation of radio communications circuits. Thus, having accurate forecasts of potential CME-initiated geomagnetic storms is of practical space weather interest. New high power transmitting arrays are becoming available, along with proposed modifications to existing research facilities, that will allow the use of radio waves to study the solar corona by the radar echo technique. Of particular interest for such solar radar investigations is the bistatic configuration with the Low Frequency Array (LOFAR). The LOFAR facility will have an effective receiving area of about 1 square km at solar radar frequencies. Such large effective area will provide the receiving antenna gain needed for detailed investigations of solar coronal dynamics. Conservative estimates of the signal-to-noise ratio for solar radar echoes as a function of the integration time required to achieve a specified detection level (e.g., ~ 5 dB) indicate that time resolutions of 10s of seconds can be achieved. Thus, we are able to resolve variations in the solar radar cross section on time scales which will provide new information on the plasma dynamical processes associated with the solar corona, such as CMEs. It is the combination of high transmitted power and large effective receiving

  3. Advanced Borehole Radar for Hydrogeology

    NASA Astrophysics Data System (ADS)

    Sato, M.

    2014-12-01

    Ground Penetrating Radar is a useful tool for monitoring the hydrogeological environment. We have developed GPR systems which can be applied to these purposes, and we will demonstrate examples borehole radar measurements. In order to have longer radar detection range, frequency lower than100MHz has been normally adopted in borehole radar. Typical subsurface fractures of our interests have a few mm aperture and radar resolution is much poorer than a few cm in this frequency range. We are proposing and demonstrating to use radar polarimetry to solve this problem. We have demonstrated that a full-polarimetry borehole radar can be used for characterization of subsurface fractures. Together with signal processing for antenna characteristic compensation to equalize the signal by a dipole antenna and slot antennas, we could demonstrate that polarimetric borehole radar can estimate the surface roughness of subsurface fractures, We believe the surface roughness is closely related to water permeability through the fractures. We then developed a directional borehole radar, which uses optical field sensor. A dipole antenna in a borehole has omni-directional radiation pattern, and we cannot get azimuthal information about the scatterers. We use multiple dipole antennas set around the borehole axis, and from the phase differences, we can estimate the 3-diemnational orientation of subsurface structures. We are using optical electric field sensor for receiver of borehole radar. This is a passive sensor and connected only with optical fibers and does not require any electric power supply to operate the receiver. It has two major advantages; the first one is that the receiver can be electrically isolated from other parts, and wave coupling to a logging cable is avoided. Then, secondary, it can operate for a long time, because it does not require battery installed inside the system. It makes it possible to set sensors in fixed positions to monitor the change of environmental

  4. Wideband Waveform Design principles for Solid-state Weather Radars

    SciTech Connect

    Bharadwaj, Nitin; Chandrasekar, V.

    2012-01-01

    The use of solid-state transmitter is becoming a key part of the strategy to realize a network of low cost electronically steered radars. However, solid-state transmitters have low peak powers and this necessitates the use of pulse compression waveforms. In this paper a frequency diversity wideband waveforms design is proposed to mitigate low sensitivity of solid-state transmitters. In addition, the waveforms mitigate the range eclipsing problem associated with long pulse compression. An analysis of the performance of pulse compression using mismatched compression filters designed to minimize side lobe levels is presented. The impact of range side lobe level on the retrieval of Doppler moments are presented. Realistic simulations are performed based on CSU-CHILL radar data and Center for Collaborative Adaptive Sensing of the Atmosphere (CASA) Integrated Project I (IP1) radar data.

  5. Superresolution and Synthetic Aperture Radar

    SciTech Connect

    DICKEY,FRED M.; ROMERO,LOUIS; DOERRY,ARMIN W.

    2001-05-01

    Superresolution concepts offer the potential of resolution beyond the classical limit. This great promise has not generally been realized. In this study we investigate the potential application of superresolution concepts to synthetic aperture radar. The analytical basis for superresolution theory is discussed. The application of the concept to synthetic aperture radar is investigated as an operator inversion problem. Generally, the operator inversion problem is ill posed. A criterion for judging superresolution processing of an image is presented.

  6. The NASA Polarimetric Radar (NPOL)

    NASA Technical Reports Server (NTRS)

    Petersen, Walter A.; Wolff, David B.

    2013-01-01

    Characteristics of the NASA NPOL S-band dual-polarimetric radar are presented including its operating characteristics, field configuration, scanning capabilities and calibration approaches. Examples of precipitation science data collections conducted using various scan types, and associated products, are presented for different convective system types and previous field campaign deployments. Finally, the NASA NPOL radar location is depicted in its home base configuration within the greater Wallops Flight Facility precipitation research array supporting NASA Global Precipitation Measurement Mission ground validation.

  7. A fully photonics-based coherent radar system

    NASA Astrophysics Data System (ADS)

    Ghelfi, Paolo; Laghezza, Francesco; Scotti, Filippo; Serafino, Giovanni; Capria, Amerigo; Pinna, Sergio; Onori, Daniel; Porzi, Claudio; Scaffardi, Mirco; Malacarne, Antonio; Vercesi, Valeria; Lazzeri, Emma; Berizzi, Fabrizio; Bogoni, Antonella

    2014-03-01

    The next generation of radar (radio detection and ranging) systems needs to be based on software-defined radio to adapt to variable environments, with higher carrier frequencies for smaller antennas and broadened bandwidth for increased resolution. Today's digital microwave components (synthesizers and analogue-to-digital converters) suffer from limited bandwidth with high noise at increasing frequencies, so that fully digital radar systems can work up to only a few gigahertz, and noisy analogue up- and downconversions are necessary for higher frequencies. In contrast, photonics provide high precision and ultrawide bandwidth, allowing both the flexible generation of extremely stable radio-frequency signals with arbitrary waveforms up to millimetre waves, and the detection of such signals and their precise direct digitization without downconversion. Until now, the photonics-based generation and detection of radio-frequency signals have been studied separately and have not been tested in a radar system. Here we present the development and the field trial results of a fully photonics-based coherent radar demonstrator carried out within the project PHODIR. The proposed architecture exploits a single pulsed laser for generating tunable radar signals and receiving their echoes, avoiding radio-frequency up- and downconversion and guaranteeing both the software-defined approach and high resolution. Its performance exceeds state-of-the-art electronics at carrier frequencies above two gigahertz, and the detection of non-cooperating aeroplanes confirms the effectiveness and expected precision of the system.

  8. A fully photonics-based coherent radar system.

    PubMed

    Ghelfi, Paolo; Laghezza, Francesco; Scotti, Filippo; Serafino, Giovanni; Capria, Amerigo; Pinna, Sergio; Onori, Daniel; Porzi, Claudio; Scaffardi, Mirco; Malacarne, Antonio; Vercesi, Valeria; Lazzeri, Emma; Berizzi, Fabrizio; Bogoni, Antonella

    2014-03-20

    The next generation of radar (radio detection and ranging) systems needs to be based on software-defined radio to adapt to variable environments, with higher carrier frequencies for smaller antennas and broadened bandwidth for increased resolution. Today's digital microwave components (synthesizers and analogue-to-digital converters) suffer from limited bandwidth with high noise at increasing frequencies, so that fully digital radar systems can work up to only a few gigahertz, and noisy analogue up- and downconversions are necessary for higher frequencies. In contrast, photonics provide high precision and ultrawide bandwidth, allowing both the flexible generation of extremely stable radio-frequency signals with arbitrary waveforms up to millimetre waves, and the detection of such signals and their precise direct digitization without downconversion. Until now, the photonics-based generation and detection of radio-frequency signals have been studied separately and have not been tested in a radar system. Here we present the development and the field trial results of a fully photonics-based coherent radar demonstrator carried out within the project PHODIR. The proposed architecture exploits a single pulsed laser for generating tunable radar signals and receiving their echoes, avoiding radio-frequency up- and downconversion and guaranteeing both the software-defined approach and high resolution. Its performance exceeds state-of-the-art electronics at carrier frequencies above two gigahertz, and the detection of non-cooperating aeroplanes confirms the effectiveness and expected precision of the system. PMID:24646997

  9. Hydrologic applications of weather radar

    NASA Astrophysics Data System (ADS)

    Seo, Dong-Jun; Habib, Emad; Andrieu, Hervé; Morin, Efrat

    2015-12-01

    By providing high-resolution quantitative precipitation information (QPI), weather radars have revolutionized hydrology in the last two decades. With the aid of GIS technology, radar-based quantitative precipitation estimates (QPE) have enabled routine high-resolution hydrologic modeling in many parts of the world. Given the ever-increasing need for higher-resolution hydrologic and water resources information for a wide range of applications, one may expect that the use of weather radar will only grow. Despite the tremendous progress, a number of significant scientific, technological and engineering challenges remain to realize its potential. New challenges are also emerging as new areas of applications are discovered, explored and pursued. The purpose of this special issue is to provide the readership with some of the latest advances, lessons learned, experiences gained, and science issues and challenges related to hydrologic applications of weather radar. The special issue features 20 contributions on various topics which reflect the increasing diversity as well as the areas of focus in radar hydrology today. The contributions may be grouped as follows: Radar QPE (Kwon et al.; Hall et al.; Chen and Chandrasekar; Seo and Krajewski; Sandford).

  10. Coded continuous wave meteor radar

    NASA Astrophysics Data System (ADS)

    Vierinen, Juha; Chau, Jorge L.; Pfeffer, Nico; Clahsen, Matthias; Stober, Gunter

    2016-03-01

    The concept of a coded continuous wave specular meteor radar (SMR) is described. The radar uses a continuously transmitted pseudorandom phase-modulated waveform, which has several advantages compared to conventional pulsed SMRs. The coding avoids range and Doppler aliasing, which are in some cases problematic with pulsed radars. Continuous transmissions maximize pulse compression gain, allowing operation at lower peak power than a pulsed system. With continuous coding, the temporal and spectral resolution are not dependent on the transmit waveform and they can be fairly flexibly changed after performing a measurement. The low signal-to-noise ratio before pulse compression, combined with independent pseudorandom transmit waveforms, allows multiple geographically separated transmitters to be used in the same frequency band simultaneously without significantly interfering with each other. Because the same frequency band can be used by multiple transmitters, the same interferometric receiver antennas can be used to receive multiple transmitters at the same time. The principles of the signal processing are discussed, in addition to discussion of several practical ways to increase computation speed, and how to optimally detect meteor echoes. Measurements from a campaign performed with a coded continuous wave SMR are shown and compared with two standard pulsed SMR measurements. The type of meteor radar described in this paper would be suited for use in a large-scale multi-static network of meteor radar transmitters and receivers. Such a system would be useful for increasing the number of meteor detections to obtain improved meteor radar data products.

  11. Full-color interactive holographic projection system for large 3D scene reconstruction

    NASA Astrophysics Data System (ADS)

    Leister, Norbert; Schwerdtner, Armin; Fütterer, Gerald; Buschbeck, Steffen; Olaya, Jean-Christophe; Flon, Stanislas

    2008-02-01

    Dependence on sub-micron pixel pitch and super-computing have prohibited practical solutions for large size holographic displays until recently. SeeReal Technologies has developed a new approach to holographic displays significantly reducing these requirements. This concept is applicable to large "direct view" holographic displays as well as to projection designs. Principles, advantages and selected solutions for holographic projection systems will be explained. Based on results from practical prototypes, advantageous new features, as large size full-color real-time holographic 3D scenes generated at high frame rates on micro displays with state of the art resolution will be presented.

  12. OECD MCCI project long-term 2-D molten core concrete interaction test design report, Rev. 0. September 30, 2002.

    SciTech Connect

    Farmer, M. T.; Kilsdonk, D. J.; Lomperski, S.; Aeschliman, R. W.; Basu, S.

    2011-05-23

    The Melt Attack and Coolability Experiments (MACE) program at Argonne National Laboratory addressed the issue of the ability of water to cool and thermally stabilize a molten core-concrete interaction when the reactants are flooded from above. These tests provided data regarding the nature of corium interactions with concrete, the heat transfer rates from the melt to the overlying water pool, and the role of noncondensable gases in the mixing processes that contribute to melt quenching. As a follow-on program to MACE, The Melt Coolability and Concrete Interaction Experiments (MCCI) project is conducting reactor material experiments and associated analysis to achieve the following two technical objectives: (1) resolve the ex-vessel debris coolability issue through a program that focuses on providing both confirmatory evidence and test data for the coolability mechanisms identified in MACE integral effects tests, and (2) address remaining uncertainties related to long-term two-dimensional molten core-concrete interactions under both wet and dry cavity conditions. Achievement of these two objectives will demonstrate the efficacy of severe accident management guidelines for existing plants, and provide the technical basis for better containment designs for future plants. In terms of the first program objective, the Small-Scale Water Ingression and Crust Strength (SSWICS) test series has been initiated to provide fundamental information on the ability of water to ingress into cracks and fissures that form in the debris during quench, thereby augmenting the otherwise conduction-limited heat transfer process. A test plan for Melt Eruption Separate Effects Tests (MESET) has also been developed to provide information on the extent of crust growth and melt eruptions as a function of gas sparging rate under well-controlled experiment conditions. In terms of the second program objective, the project Management Board (MB) has approved startup activities required to carry out

  13. Wearable system-on-a-chip UWB radar for contact-less cardiopulmonary monitoring: present status.

    PubMed

    Zito, D; Pepe, D; Mincica, M; Zito, F; De Rossi, D; Lanata, A; Scilingo, E P; Tognetti, A

    2008-01-01

    The present status of the project aimed at the realization of an innovative wearable system-on-chip UWB radar for the cardiopulmonary monitoring is presented. The overall system consists of a wearable wireless interface including a fully integrated UWB radar for the detection of the heart beat and breath rates, and a IEEE 802.15.4 ZigBee low-power radio interface. The principle of operation of the UWB radar for the monitoring of the heart wall is summarized. With respect to the prior art, this paper reports the results of the experimental characterization of the intra-body channel loss, which has been carried out successfully in order to validate the theoretical model employed for the radar system analysis. Moreover, the main building blocks of the radar have been manufactured in 90 nm CMOS technology by ST-Microelectronics and the relevant performance are resulted in excellent agreement with those expected by post-layout simulations. PMID:19163907

  14. Making projects, making friends: online community as catalyst for interactive media creation.

    PubMed

    Brennan, Karen; Monroy-Hernández, Andrés; Resnick, Mitchel

    2010-01-01

    To become full and active participants in today's technologically saturated society, young people need to become creators (and not just consumers) of interactive media. Developing the requisite abilities and capacities is not a wholly individual process; it is important for young people to have access to communities where they can collaborate and share ideas. This article uses the Scratch online community for exploring how different forms of participation and collaboration can support and shape the ways in which young people develop as creators of interactive media. We describe participation in this community in terms of a spectrum ranging from socializing to creating and present examples of three forms of collaboration within the community. We argue that the most exciting interactive media creation and valuable learning experiences are taking place in the middle space, where participants draw on the best of socializing and creating practices. PMID:21240955

  15. Multiparameter radar analysis using wavelets

    NASA Astrophysics Data System (ADS)

    Tawfik, Ben Bella Sayed

    Multiparameter radars have been used in the interpretation of many meteorological phenomena. Rainfall estimates can be obtained from multiparameter radar measurements. Studying and analyzing spatial variability of different rainfall algorithms, namely R(ZH), the algorithm based on reflectivity, R(ZH, ZDR), the algorithm based on reflectivity and differential reflectivity, R(KDP), the algorithm based on specific differential phase, and R(KDP, Z DR), the algorithm based on specific differential phase and differential reflectivity, are important for radar applications. The data used in this research were collected using CSU-CHILL, CP-2, and S-POL radars. In this research multiple objectives are addressed using wavelet analysis namely, (1)space time variability of various rainfall algorithms, (2)separation of convective and stratiform storms based on reflectivity measurements, (3)and detection of features such as bright bands. The bright band is a multiscale edge detection problem. In this research, the technique of multiscale edge detection is applied on the radar data collected using CP-2 radar on August 23, 1991 to detect the melting layer. In the analysis of space/time variability of rainfall algorithms, wavelet variance introduces an idea about the statistics of the radar field. In addition, multiresolution analysis of different rainfall estimates based on four algorithms, namely R(ZH), R( ZH, ZDR), R(K DP), and R(KDP, Z DR), are analyzed. The flood data of July 29, 1997 collected by CSU-CHILL radar were used for this analysis. Another set of S-POL radar data collected on May 2, 1997 at Wichita, Kansas were used as well. At each level of approximation, the detail and the approximation components are analyzed. Based on this analysis, the rainfall algorithms can be judged. From this analysis, an important result was obtained. The Z-R algorithms that are widely used do not show the full spatial variability of rainfall. In addition another intuitively obvious result

  16. Generalizing in Interaction: Middle School Mathematics Students Making Mathematical Generalizations in a Population-Modeling Project

    ERIC Educational Resources Information Center

    Jurow, A. Susan

    2004-01-01

    Generalizing or making claims that extend beyond particular situations is a central mathematical practice and a focus of classroom mathematics instruction. This study examines how aspects of generality are produced through the situated activities of a group of middle school mathematics students working on an 8-week population-modeling project. The…

  17. Self-Esteem and Successful Interaction as Part of the Forest School Project

    ERIC Educational Resources Information Center

    Swarbrick, Nick; Eastwood, Glynnis; Tutton, Kris

    2004-01-01

    In this article Nick Swarbrick, Glynnis Eastwood and Kris Tutton highlight the importance of the outdoor environment as an educational resource, and explore the relationship between self-esteem and successful learning through the forest school project being run in Oxfordshire. It looks at the history and practice of forest school in England, and…

  18. A Study of Project Management Techniques for Developing Interactive Multimedia Programs: A Practitioner's Perspective.

    ERIC Educational Resources Information Center

    McDaniel, Kathleen; Liu, Min

    1996-01-01

    The need for effective information processing in business and education has created a big market for multimedia technology. This article discusses a study of the project management techniques of successful multimedia developers (proposal writing, instructional design team assembly, marketing). The interview questions are appended. (LRW)

  19. Studies I: Characteristics of Successful Student/Teacher Interaction in Marine Science Projects.

    ERIC Educational Resources Information Center

    Wheatley, Jack; And Others

    1985-01-01

    Describes initial steps to determine characteristics of students and teachers with award-winning marine science projects selected by the National Marine Education Association. Thirteen student/sponsor pairs (1 zoo employee, 1 marine research employee, 11 high school teachers) completed instruments assessing learning/teaching styles, attitudes, and…

  20. The Interactive Potential of Multiple Media: A New Look at Inquiry Projects

    ERIC Educational Resources Information Center

    Ranker, Jason

    2010-01-01

    This article presents the inquiry and literacy processes of two fifth-grade students as they created a digital video about African American history for a school project. During this process, the students gained experience in researching (both on the Web and in books) and writing, with the overall goal of creating a digital documentary video about…

  1. Undergraduate Projects Linking Science, Technology and Society. Interdisciplinary Programs and Activities, 1986-87. Interactions:8.

    ERIC Educational Resources Information Center

    Schachterle, Lance E., Ed.; Shanahan, Joan M., Ed.

    In 1970, Worcester Polytechnic Institute (WPI) radically revised its curriculum by replacing specific course distributions with a new program, emphasizing projects at various levels. In instituting this change, faculty were especially concerned to encourage engineering, science, and management students to recognize how their professional work…

  2. ICN Interact Outreach Project. Final Report, July 1, 1983-August 30, 1984.

    ERIC Educational Resources Information Center

    Children's Hospital Medical Center of Northern California, Oakland.

    The report presents accomplishments of a program to stimulate new and improved services to high risk/handicapped infants (0-3), with specific emphasis on new intervention and followup services to chronically hospitalized premature babies in intensive care nurseries (ICNs). Following a summary of project accomplishments (including the provision of…

  3. MST radar data management

    NASA Technical Reports Server (NTRS)

    Nastrom, G. D.

    1984-01-01

    One atmospheric variable which can be deduced from stratosphere-troposphere (ST) radar data other than wind speed and direction is C sub n sup 2, related to the eddy dissipation rate. The computation of C sub n sup 2 makes use of the transmitted power (average, or peak plus duty cycle), the range of the echoes, and the returned power. The returned power can be calibrated only if a noise source of known strength is imposed; e.g., in the absence of absolute calibration, one can compare the diurnal noise signal with the galactic sky temperature. Thus to compute C sub n sup 2 one needs the transmitter power, the returned signal as a function of height, and the returned noise at an altitude so high that it is not contaminated by any signal. Now C sub n sup 2 relates with the amount of energy within the inertial subrange, and for many research studies it may be desirable to relate this with background flow as well as shears or irregularities on the size of the sample volume. The latter are quantified by the spectral width.

  4. The ``Adopt A Microbe'' project: Web-based interactive education connected with scientific ocean drilling

    NASA Astrophysics Data System (ADS)

    Orcutt, B. N.; Bowman, D.; Turner, A.; Inderbitzen, K. E.; Fisher, A. T.; Peart, L. W.; Iodp Expedition 327 Shipboard Party

    2010-12-01

    We launched the "Adopt a Microbe" project as part of Integrated Ocean Drilling Program (IODP) Expedition 327 in Summer 2010. This eight-week-long education and outreach effort was run by shipboard scientists and educators from the research vessel JOIDES Resolution, using a web site (https://sites.google.com/site/adoptamicrobe) to engage students of all ages in an exploration of the deep biosphere inhabiting the upper ocean crust. Participants were initially introduced to a cast of microbes (residing within an ‘Adoption Center’ on the project website) that live in the dark ocean and asked to select and virtually ‘adopt’ a microbe. A new educational activity was offered each week to encourage learning about microbiology, using the adopted microbe as a focal point. Activities included reading information and asking questions about the adopted microbes (with subsequent responses from shipboard scientists), writing haiku about the adopted microbes, making balloon and fabric models of the adopted microbes, answering math questions related to the study of microbes in the ocean, growing cultures of microbes, and examining the gases produced by microbes. In addition, the website featured regular text, photo and video updates about the science of the expedition using a toy microbe as narrator, as well as stories written by shipboard scientists from the perspective of deep ocean microbes accompanied by watercolor illustrations prepared by a shipboard artist. Assessment methods for evaluating the effectiveness of the Adopt a Microbe project included participant feedback via email and online surveys, website traffic monitoring, and online video viewing rates. Quantitative metrics suggest that the “Adope A Microbe” project was successful in reaching target audiences and helping to encourage and maintain interest in topics related to IODP Expedition 327. The “Adopt A Microbe” project mdel can be adapted for future oceanographic expeditions to help connect the

  5. Ocean circulation modeling by use of radar altimeter data

    NASA Technical Reports Server (NTRS)

    Olbers, Dirk; Alpers, W.; Hasselmann, K.; Maier-Reimer, E.; Kase, R.; Krauss, W.; Siedler, G.; Willebrand, J.; Zahel, W.

    1991-01-01

    The project will investigate the use of radar altimetry (RA) data in the determination of the ocean circulation models. RA data will be used to verify prognostic experiments of the steady state and seasonal cycle of large-scale circulation models and the statistical steady state of eddy-resolving models. The data will serve as initial and update conditions in data assimilation experiments and as constraints in inverse calculations. The aim of the project is a better understanding of ocean physics, the determination and mapping of ocean currents, and a contribution to the establishment of ocean circulation models for climate studies. The goal of the project is to use satellite radar altimetry data for improving our knowledge of ocean circulation both in a descriptive sense and through the physics that govern the circulation state. The basic tool is a series of ocean circulation models. Depending on the model, different techniques will be applied to incorporate the RA data.

  6. Space Radar Image of Long Island Optical/Radar

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This pair of images of the Long Island, New York region is a comparison of an optical photograph (top) and a radar image (bottom), both taken in darkness in April 1994. The photograph at the top was taken by the Endeavour astronauts at about 3 a.m. Eastern time on April 20, 1994. The image at the bottom was acquired at about the same time four days earlier on April 16,1994 by the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) system aboard the space shuttle Endeavour. Both images show an area approximately 100 kilometers by 40 kilometers (62 miles by 25 miles) that is centered at 40.7 degrees North latitude and 73.5 degrees West longitude. North is toward the upper right. The optical image is dominated by city lights, which are particularly bright in the densely developed urban areas of New York City located on the left half of the photo. The brightest white zones appear on the island of Manhattan in the left center, and Central Park can be seen as a darker area in the middle of Manhattan. To the northeast (right) of the city, suburban Long Island appears as a less densely illuminated area, with the brightest zones occurring along major transportation and development corridors. Since radar is an active sensing system that provides its own illumination, the radar image shows a great amount of surface detail, despite the night-time acquisition. The colors in the radar image were obtained using the following radar channels: red represents the L-band (horizontally transmitted and received); green represents the L-band (horizontally transmitted and vertically received); blue represents the C-band (horizontally transmitted and vertically received). In this image, the water surface - the Atlantic Ocean along the bottom edge and Long Island Sound shown at the top edge - appears red because small waves at the surface strongly reflect the horizontally transmitted and received L-band radar signal. Networks of highways and railroad lines are clearly

  7. Spin-flip configuration interaction singles with exact spin-projection: Theory and applications to strongly correlated systems

    NASA Astrophysics Data System (ADS)

    Tsuchimochi, Takashi

    2015-10-01

    Spin-flip approaches capture static correlation with the same computational scaling as the ordinary single reference methods. Here, we extend spin-flip configuration interaction singles (SFCIS) by projecting out intrinsic spin-contamination to make it spin-complete, rather than by explicitly complementing it with spin-coupled configurations. We give a general formalism of spin-projection for SFCIS, applicable to any spin states. The proposed method is viewed as a natural unification of SFCIS and spin-projected CIS to achieve a better qualitative accuracy at a low computational cost. While our wave function ansatz is more compact than previously proposed spin-complete SF approaches, it successfully offers more general static correlation beyond biradicals without sacrificing good quantum numbers. It is also shown that our method is invariant with respect to open-shell orbital rotations, due to the uniqueness of spin-projection. We will report benchmark calculations to demonstrate its qualitative performance on strongly correlated systems, including conical intersections that appear both in ground-excited and excited-excited degeneracies.

  8. Spin-flip configuration interaction singles with exact spin-projection: Theory and applications to strongly correlated systems

    SciTech Connect

    Tsuchimochi, Takashi

    2015-10-14

    Spin-flip approaches capture static correlation with the same computational scaling as the ordinary single reference methods. Here, we extend spin-flip configuration interaction singles (SFCIS) by projecting out intrinsic spin-contamination to make it spin-complete, rather than by explicitly complementing it with spin-coupled configurations. We give a general formalism of spin-projection for SFCIS, applicable to any spin states. The proposed method is viewed as a natural unification of SFCIS and spin-projected CIS to achieve a better qualitative accuracy at a low computational cost. While our wave function ansatz is more compact than previously proposed spin-complete SF approaches, it successfully offers more general static correlation beyond biradicals without sacrificing good quantum numbers. It is also shown that our method is invariant with respect to open-shell orbital rotations, due to the uniqueness of spin-projection. We will report benchmark calculations to demonstrate its qualitative performance on strongly correlated systems, including conical intersections that appear both in ground-excited and excited-excited degeneracies.

  9. An interactive computer approach to performing resource analysis for a multi-resource/multi-project problem. [Spacelab inventory procurement planning

    NASA Technical Reports Server (NTRS)

    Schlagheck, R. A.

    1977-01-01

    New planning techniques and supporting computer tools are needed for the optimization of resources and costs for space transportation and payload systems. Heavy emphasis on cost effective utilization of resources has caused NASA program planners to look at the impact of various independent variables that affect procurement buying. A description is presented of a category of resource planning which deals with Spacelab inventory procurement analysis. Spacelab is a joint payload project between NASA and the European Space Agency and will be flown aboard the Space Shuttle starting in 1980. In order to respond rapidly to the various procurement planning exercises, a system was built that could perform resource analysis in a quick and efficient manner. This system is known as the Interactive Resource Utilization Program (IRUP). Attention is given to aspects of problem definition, an IRUP system description, questions of data base entry, the approach used for project scheduling, and problems of resource allocation.

  10. Role of surface-water and groundwater interactions on projected summertime streamflow in snow dominated regions: An integrated modeling approach

    NASA Astrophysics Data System (ADS)

    Huntington, Justin L.; Niswonger, Richard G.

    2012-11-01

    Previous studies indicate predominantly increasing trends in precipitation across the Western United States, while at the same time, historical streamflow records indicate decreasing summertime streamflow and 25th percentile annual flows. These opposing trends could be viewed as paradoxical, given that several studies suggest that increased annual precipitation will equate to increased annual groundwater recharge, and therefore increased summertime flow. To gain insight on mechanisms behind these potential changes, we rely on a calibrated, integrated surface and groundwater model to simulate climate impacts on surface water/groundwater interactions using 12 general circulation model projections of temperature and precipitation from 2010 to 2100, and evaluate the interplay between snowmelt timing and other hydrologic variables, including streamflow, groundwater recharge, storage, groundwater discharge, and evapotranspiration. Hydrologic simulations show that the timing of peak groundwater discharge to the stream is inversely correlated to snowmelt runoff and groundwater recharge due to the bank storage effect and reversal of hydraulic gradients between the stream and underlying groundwater. That is, groundwater flow to streams peaks following the decrease in stream depth caused by snowmelt recession, and the shift in snowmelt causes a corresponding shift in groundwater discharge to streams. Our results show that groundwater discharge to streams is depleted during the summer due to earlier drainage of shallow aquifers adjacent to streams even if projected annual precipitation and groundwater recharge increases. These projected changes in surface water/groundwater interactions result in more than a 30% decrease in the projected ensemble summertime streamflow. Our findings clarify causality of observed decreasing summertime flow, highlight important aspects of potential climate change impacts on groundwater resources, and underscore the need for integrated hydrologic

  11. Collaborative Interactivity and Integrated Thinking in Brazilian Business Schools Using Cognitive Flexibility Hypertexts: The Panteon Project

    ERIC Educational Resources Information Center

    Lima, Marcos; Koehler, Matthew J.; Spiro, Rand J.

    2004-01-01

    In this article, we discuss how the Harvard Method of case study, Interactive Communication Technologies, and Cognitive Flexibility Theory may contribute to case-based learning about business decision-making. In particular, we are interested in designing learning environments that foster critical thinking, creativity, and reasoning that entertains…

  12. Interactive Training for Information Access: The InfoMagic Multimedia Project at Chapman University.

    ERIC Educational Resources Information Center

    Kenny, Dallas

    This paper proposes a new model for developing information access skills in an academic environment. In order to meet the increasing demand for "research competence" among students and faculty, it is necessary to move beyond traditional lecture formats and develop interactive multimedia instructional units which exploit ongoing advances in digital…

  13. The Effects on Teachers of Participation in an Interactive Research and Development Project.

    ERIC Educational Resources Information Center

    Huling, Leslie L.

    A professional development program was designed and implemented to help teachers gain new research knowledge and skills. An interactive research strategy was used to bring teachers, researchers, and staff development personnel together as a team to examine classroom problems and to plan a means to disseminate research findings. This process…

  14. Michigan-Ohio Regional Educational Laboratory's Computerization of Interaction Analysis Project.

    ERIC Educational Resources Information Center

    Smidchens, Uldis; Roth, Rod

    A computerized system is described which assists in collecting and processing interaction analysis data. This type of data can be a valuable source of feedback in such situations as a teachers' inservice training program. In this approach, observed behaviors are classified into one or more of 10 different categories, and a digit is assigned to…

  15. Health Education through Interactive Radio: A Child-to-Child Project in Bolivia.

    ERIC Educational Resources Information Center

    Fryer, Michelle L.

    1991-01-01

    Because older children in developing countries often assume responsibility for the care of their younger siblings, health education programs are aimed to these older children. An interactive radio health curriculum was developed in Bolivia that includes lessons on personal hygiene, rehydration, home sanitation, and nutrition. (JOW)

  16. Making Projects, Making Friends: Online Community as Catalyst for Interactive Media Creation

    ERIC Educational Resources Information Center

    Brennan, Karen; Monroy-Hernandez, Andres; Resnick, Mitchel

    2010-01-01

    To become full and active participants in today's technologically saturated society, young people need to become creators (and not just consumers) of interactive media. Developing the requisite abilities and capacities is not a wholly individual process; it is important for young people to have access to communities where they can collaborate and…

  17. Parent education project II. Increasing stimulating interactions of developmentally handicapped mothers.

    PubMed Central

    Feldman, M A; Towns, F; Betel, J; Case, L; Rincover, A; Rubino, C A

    1986-01-01

    Two studies are reported on the assessment and training of parent-child interactional skills in developmentally handicapped mothers. Study 1 compared the interactions of eight developmentally handicapped versus eight nonhandicapped mothers during play with their young (6-25 months) children. Results showed that the former group generally interacted much less with their children and that they were less likely to praise appropriate child behavior and imitate child vocalizations. Study 2 attempted to remediate these deficits, using a training package consisting of discussion, modeling, feedback, social reinforcement, and self-recording. Results showed, first, that the training did increase the targeted skills to well within the range found for the nonhandicapped mothers. Second, training effects generalized from the group instructional setting to the mothers' own homes. Third, newly acquired skills were generally maintained at or above levels found for the nonhandicapped mothers over a 5- to 10-month follow-up period. Finally, all seven children showed increases in vocalizations concomitant with parent training. The results suggest that developmentally handicapped mothers can be taught to provide more effective and stimulating interactions to their young children. PMID:3710945

  18. Efficacy of Interactive Whiteboard on Psychomotor Skills Achievement of Students in Isometric and Orthographic Projection

    ERIC Educational Resources Information Center

    Gambari, Isiaka A.; Balogun, Sherifat A.; Alfa, Ahmadu S.

    2014-01-01

    This paper discusses importance of technology education and evidences of declining performance of junior secondary school students in basic technology subject. Potentials on interactive whiteboard (IWB) as one of the new technologies to meet the challenges of the 21st century are also discussed. The efficacy of IWB for teaching Isometric and…

  19. A Project-Based Learning Setting to Human-Computer Interaction for Teenagers

    ERIC Educational Resources Information Center

    Geyer, Cornelia; Geisler, Stefan

    2012-01-01

    Knowledge of fundamentals of human-computer interaction resp. usability engineering is getting more and more important in technical domains. However this interdisciplinary field of work and corresponding degree programs are not broadly known. Therefore at the Hochschule Ruhr West, University of Applied Sciences, a program was developed to give…

  20. All-digital radar architecture

    NASA Astrophysics Data System (ADS)

    Molchanov, Pavlo A.

    2014-10-01

    All digital radar architecture requires exclude mechanical scan system. The phase antenna array is necessarily large because the array elements must be co-located with very precise dimensions and will need high accuracy phase processing system for aggregate and distribute T/R modules data to/from antenna elements. Even phase array cannot provide wide field of view. New nature inspired all digital radar architecture proposed. The fly's eye consists of multiple angularly spaced sensors giving the fly simultaneously thee wide-area visual coverage it needs to detect and avoid the threats around him. Fly eye radar antenna array consist multiple directional antennas loose distributed along perimeter of ground vehicle or aircraft and coupled with receiving/transmitting front end modules connected by digital interface to central processor. Non-steering antenna array allows creating all-digital radar with extreme flexible architecture. Fly eye radar architecture provides wide possibility of digital modulation and different waveform generation. Simultaneous correlation and integration of thousands signals per second from each point of surveillance area allows not only detecting of low level signals ((low profile targets), but help to recognize and classify signals (targets) by using diversity signals, polarization modulation and intelligent processing. Proposed all digital radar architecture with distributed directional antenna array can provide a 3D space vector to the jammer by verification direction of arrival for signals sources and as result jam/spoof protection not only for radar systems, but for communication systems and any navigation constellation system, for both encrypted or unencrypted signals, for not limited number or close positioned jammers.

  1. Calibration Plans for the SMAP Radar

    NASA Astrophysics Data System (ADS)

    West, R. D.; Jaruwatanadilok, S.; Kwoun, O.

    2012-12-01

    This presentation will describe the calibration and validation plans for the Soil Moisture Active Passive (SMAP) radar. The SMAP radar will supply high resolution backscatter measurements using synthetic aperture (SAR) processing that will aid higher resolution soil moisture retrievals in combination with coincident passive radiometry measurements. Science requirements lead to a backscatter accuracy requirement of 1-dB (one-sigma) at a resolution of 3 km. The errors in backscatter come from speckle noise which can be averaged down in time and/or space, and from calibration errors. Calibration errors are expected due to uncertainties in measuring and modeling of internal performance parameters and external effects. Internal performance parameters include the antenna gain pattern, pointing knowledge, receiver gain, and transmit power. Variations in these are expected due to temperature variation and component aging. External effects include Faraday rotation, and radio frequency interference (RFI). Short term variations in instrument parameters will be tracked by internal calibration measurements that are expected to be stable on a time scale up to one month. Long term variations and biases will be removed using measurements of stable reference targets such as parts of the Amazon rain forest, the oceans and possibly the ice sheets. Faraday rotation effects will be modeled using GPS based total electron content measurements and a forward model of the SMAP radar. These data will be compared with Faraday rotation estimates obtained directly from the SMAP radiometer using the third stokes parameter. RFI will be detected with a threshold technique applied right before range compression. RFI contaminated data are removed and replaced by neighboring uncontaminated data. Discarding contaminated data degrades resolution and increases speckle noise, but avoids the larger errors associated with RFI. In this presentation, we will discuss the expected performance of these

  2. Synthetic aperture radar and interferometry development at Sandia National Laboratories

    SciTech Connect

    1993-04-01

    Environmental monitoring, earth-resource mapping, and military systems require broad-area imaging at high resolutions. Many times the imagery must be acquired in inclement weather or during night as well as day. Synthetic aperture radar (SAR) provides such a capability. SAR systems take advantage of the long-range propagation characteristics of radar signals and the complex information processing capability of modern digital electronics to provide high resolution imagery. SAR complements photographic and other optical imaging capabilities because of the minimum constrains on time-of-day and atmospheric conditions and because of the unique responses of terrain and cultural targets to radar frequencies. Interferometry is a method for generating a three-dimensional image of terrain. The height projection is obtained by acquiring two SAR images from two slightly differing locations. It is different from the common method of stereoscopic imaging for topography. The latter relies on differing geometric projections for triangulation to define the surface geometry whereas interferometry relies on differences in radar propagation times between the two SAR locations. This paper presents the capabilities of SAR, explains how SAR works, describes a few SAR applications, provides an overview of SAR development at Sandia, and briefly describes the motion compensation subsystem.

  3. Projection on a Sphere for a More Interactive Approach for Education and Outreach in Earth Sciences

    NASA Astrophysics Data System (ADS)

    Hardy, A.; King, S. D.

    2011-12-01

    Anna Hardy, Scott D. King, Department of Geosciences, Virginia Tech, Blacksburg, VA 24061 Systems that project images onto a spherical surface are relatively new, moderately priced technology that could change the way students and the general public learn about Earth Sciences. For classroom and small museum spaces, such as the Geoscience Museum at Virginia Tech, a globe of about one-meter diameter can be used. Such a system has been recently installed in our 2500 square foot museum space. With this system we are able to display many types of Earth Science data including: global sea rise, weather and climate data, plate reconstructions, and projections of planets in the solar system. Animations show phenomenon over time including motions of plates over millions of years or evolution of global weather patterns over periods of days to weeks. We are importing other deep Earth data sets including global tomographic models to the system. As an outreach tool, one advantage of this technology is that it allows visitors to view global data in its natural spherical geometry and does not require them to visualize global spherical data or models from two-dimensional maps or displays. We will report on the effectiveness of this tool at communicating concepts with both college general education students and museum guests (pre-school through adult) via general surveying. Our initial comparison will be comprehension from classes with and without access to the spherical projection system.

  4. Urban ninth-grade girls interactions with and outcomes from a design-oriented physics project

    NASA Astrophysics Data System (ADS)

    Higginbotham, Thomas Eric Miksad

    Past literature has documented a shrinking but persistent gap in physics and engineering for females, both in school and in the workforce. A commonly recommended strategy to invite girls into science at the school level is to have students work on design-projects in groups, which has been shown to increase all students' learning outcomes and attitudes towards science. Students (n=28) in a ninth-grade inner-city physics class participated in such a project, in which they built remotely operated underwater vehicles (ROV's) over the course of one month. Students (n=23) in a comparison classroom learned the same content using the Active Physics curriculum during the same time frame. Mixed methods were used to study the ROV classroom. Students in both classes were given pre- and post-physics content tests. Qualitative data collected during the project included field notes, video, and teacher interviews. Macro-level data analysis was done, which informed further micro-analysis. Macro-analysis revealed significantly higher learning outcomes for the ROV class than for the non-ROV class. Within the ROV class, girls, and in particular, girls in female-majority groups had increased learning outcomes and high levels of interest and engagement with the project, while girls in mixed-sex and male-majority groups did not. Qualitative macro-analysis revealed that in all of the female-majority groups, females took leadership roles within the groups, while in all of the non female-majority groups, males took leadership roles. The only groups in which girls completely disengaged from the project were mixed-sex or male majority groups. Case studies and cross case analysis suggested that girls foregrounded group process over product, and used the level of group unity as a metric of the groups' success. Groups led by girls were more cooperative and exhibited distributed leadership and participation. These findings were interpreted through lenses of expectation states theory and social

  5. Bistatic synthetic aperture radar

    NASA Astrophysics Data System (ADS)

    Yates, Gillian

    Synthetic aperture radar (SAR) allows all-weather, day and night, surface surveillance and has the ability to detect, classify and geolocate objects at long stand-off ranges. Bistatic SAR, where the transmitter and the receiver are on separate platforms, is seen as a potential means of countering the vulnerability of conventional monostatic SAR to electronic countermeasures, particularly directional jamming, and avoiding physical attack of the imaging platform. As the receiving platform can be totally passive, it does not advertise its position by RF emissions. The transmitter is not susceptible to jamming and can, for example, operate at long stand-off ranges to reduce its vulnerability to physical attack. This thesis examines some of the complications involved in producing high-resolution bistatic SAR imagery. The effect of bistatic operation on resolution is examined from a theoretical viewpoint and analytical expressions for resolution are developed. These expressions are verified by simulation work using a simple 'point by point' processor. This work is extended to look at using modern practical processing engines for bistatic geometries. Adaptations of the polar format algorithm and range migration algorithm are considered. The principal achievement of this work is a fully airborne demonstration of bistatic SAR. The route taken in reaching this is given, along with some results. The bistatic SAR imagery is analysed and compared to the monostatic imagery collected at the same time. Demonstrating high-resolution bistatic SAR imagery using two airborne platforms represents what I believe to be a European first and is likely to be the first time that this has been achieved outside the US (the UK has very little insight into US work on this topic). Bistatic target characteristics are examined through the use of simulations. This also compares bistatic imagery with monostatic and gives further insight into the utility of bistatic SAR.

  6. Coded continuous wave meteor radar

    NASA Astrophysics Data System (ADS)

    Vierinen, J.; Chau, J. L.; Pfeffer, N.; Clahsen, M.; Stober, G.

    2015-07-01

    The concept of coded continuous wave meteor radar is introduced. The radar uses a continuously transmitted pseudo-random waveform, which has several advantages: coding avoids range aliased echoes, which are often seen with commonly used pulsed specular meteor radars (SMRs); continuous transmissions maximize pulse compression gain, allowing operation with significantly lower peak transmit power; the temporal resolution can be changed after performing a measurement, as it does not depend on pulse spacing; and the low signal to noise ratio allows multiple geographically separated transmitters to be used in the same frequency band without significantly interfering with each other. The latter allows the same receiver antennas to be used to receive multiple transmitters. The principles of the signal processing are discussed, in addition to discussion of several practical ways to increase computation speed, and how to optimally detect meteor echoes. Measurements from a campaign performed with a coded continuous wave SMR are shown and compared with two standard pulsed SMR measurements. The type of meteor radar described in this paper would be suited for use in a large scale multi-static network of meteor radar transmitters and receivers. This would, for example, provide higher spatio-temporal resolution for mesospheric wind field measurements.

  7. Kaon-nuclei interaction studies at low energies (the AMADEUS project)

    NASA Astrophysics Data System (ADS)

    Piscicchia, Kristian; Bazzi, M.; Berucci, C.; Bosnar, D.; Bragadireanu, A. M.; Cargnelli, M.; Clozza, A.; Curceanu, C.; D'Uffizi, A.; Ghio, F.; Guaraldo, C.; Kienle, P.; Iliescu, M.; Ishiwatari, T.; Levi Sandri, P.; Marton, J.; Pietreanu, D.; Poli Lener, M.; Rizzo, A.; Romero Vidal, A.; Sbardella, E.; Scordo, A.; Sirghi, D. L.; Sirghi, F.; Tatsuno, H.; Tucakovic, I.; Vazquez Doce, O.; Widmann, E.; Zmeskal, J.

    2012-12-01

    The AMADEUS experiment aims to perform dedicated precision studies in the sector of low-energy kaon-nuclei interaction at the DAΦNE collider at LNF-INFN. In particular, the experiment plans to perform measurements of the debated deeply bound kaonic nuclear states, to deepen our knowledge about the controversial state Λ(1405) and to measure the low energy cross section of K- on light nuclei. AMADEUS will exploit the process of stopped kaons in cryogenic gaseous targets, measuring both charged and neutral particles produced in a 4π geometry, so performing a full study of the various interaction channels. Taking advantage of the fact that the KLOE drift chamber is mainly filled with 4He (90% helium 10% isobutane) according to Monte Carlo simulations about 0.1% of kaons from DAΦNE should stop in the inner volume of the drift chamber; the analysis of the existing KLOE data (run from 2002 to 2005) is presently going on, searching for hadronic interactions of K- in such an active target. The AMADEUS physics program and preliminary results from the analysis of KLOE data will be discussed.

  8. A multidisciplinary project to address the onset of rifting and the interaction between deformation and inherited fabrics

    NASA Astrophysics Data System (ADS)

    Tiberi, Christel; Gautier, Stéphanie; Albaric, Julie; Ebinger, Cindy; Déverchère, Jacques; Wambura, Richard Ferdinand; Muzuka, Alfred

    2016-04-01

    Onset of continental rifting and the role of the different factors involved in the deformation when breakup occurs is still a pending question. We started a new project in 2013 in North Tanzania, near Natron and Manyara areas to tackle these questions. Besides, these two regions present clearly opposite seismological and magmatic behaviours: near Natron the seismicity is well located within the upper crust and linked to present day magmatism (Lengai), whereas Manyara area is characterized by a deep seismicity and no evidence of present magmatic activity at the surface. This project gathers different approaches in geophysics, geochemistry, petrophysics,… to enhance our understanding of an active region where both tectonic and magmatic processes clearly interact. We present here the preliminary results from classic seismology, gravity and magnetotelluric studies we lead from 2013 to 2014 in this region. We take advantage of the distribution of our networks (both in 3D and 2D profiles) to investigate different scales and to better image the crustal and lithospheric structures beneath Natron and Manyara regions. Moreover, the combination of those geophysical technics with geochemistry should contribute to a more constrained understanding of the differences between Natron and Manyara areas. This integrated study will bring new insight on the interactions between magmatic and tectonic processes in this rifting area.

  9. A time splitting projection scheme for compressible two-phase flows. Application to the interaction of bubbles with ultrasound waves

    NASA Astrophysics Data System (ADS)

    Huber, Grégory; Tanguy, Sébastien; Béra, Jean-Christophe; Gilles, Bruno

    2015-12-01

    This paper is focused on the numerical simulation of the interaction of an ultrasound wave with a bubble. Our interest is to develop a fully compressible solver in the two phases and to account for surface tension effects. As the volume oscillation of the bubble occurs in a low Mach number regime, a specific care must be paid to the effectiveness of the numerical method which is chosen to solve the compressible Euler equations. Three different numerical solvers, an explicit HLLC (Harten-Lax-van Leer-Contact) solver [48], a preconditioning explicit HLLC solver [14] and the compressible projection method [21,53,55], are described and assessed with a one dimensional spherical benchmark. From this preliminary test, we can conclude that the compressible projection method outclasses the other two, whether the spatial accuracy or the time step stability are considered. Multidimensional numerical simulations are next performed. As a basic implementation of the surface tension leads to strong spurious currents and numerical instabilities, a specific velocity/pressure time splitting is proposed to overcome this issue. Numerical evidences of the efficiency of this new numerical scheme are provided, since both the accuracy and the stability of the overall algorithm are enhanced if this new time splitting is used. Finally, the numerical simulation of the interaction of a moving and deformable bubble with a plane wave is presented in order to bring out the ability of the new method in a more complex situation.

  10. Examining the Impact of Interaction Project with Students with Special Needs on Development of Positive Attitude and Awareness of General Education Teachers towards Inclusion

    ERIC Educational Resources Information Center

    Melekoglu, Macid Ayhan

    2013-01-01

    The purpose of this study was to introduce a project developed to promote interaction of teacher candidates from different areas with individuals with special needs within the scope of a Special Education course and examine the impact of this project on developing positive attitude and awareness on teacher candidates. In this study, a mixed…

  11. A Follow-Up Study of the Facebook Project for Japanese University Students: Has It Been Enhancing Student Interaction, Learner Autonomy, and English Learning?

    ERIC Educational Resources Information Center

    Hamada, Mayumi

    2014-01-01

    This is a follow-up study of the Facebook (FB) project conducted from October 2011 to January 2013. The purpose of the project was to investigate how FB can help Japanese university students improve their English, and determine whether FB can facilitate student interaction and learner autonomy by integrating FB activities into English lessons. In…

  12. Anik-B Interactive Instructional Television Project, October 1, 1979-May 31, 1980. Report Number Two. The Technical System and Its Operation.

    ERIC Educational Resources Information Center

    Nason, Robert

    The Anik-B Project is part of the two-year communications experiments for which the Anik-B satellite is being used. The project was designed to explore the possibilities of using Interactive Instructional Television (IITV) to provide distance postsecondary education for people living in widely scattered and sometimes inaccessible areas of British…

  13. Fermion sign problem in imaginary-time projection continuum quantum Monte Carlo with local interaction

    NASA Astrophysics Data System (ADS)

    Calcavecchia, Francesco; Holzmann, Markus

    2016-04-01

    We use the shadow wave function formalism as a convenient model to study the fermion sign problem affecting all projector quantum Monte Carlo methods in continuum space. We demonstrate that the efficiency of imaginary-time projection algorithms decays exponentially with increasing number of particles and/or imaginary-time propagation. Moreover, we derive an analytical expression that connects the localization of the system with the magnitude of the sign problem, illustrating this behavior through numerical results. Finally, we discuss the computational complexity of the fermion sign problem and methods for alleviating its severity.

  14. Fermion sign problem in imaginary-time projection continuum quantum Monte Carlo with local interaction.

    PubMed

    Calcavecchia, Francesco; Holzmann, Markus

    2016-04-01

    We use the shadow wave function formalism as a convenient model to study the fermion sign problem affecting all projector quantum Monte Carlo methods in continuum space. We demonstrate that the efficiency of imaginary-time projection algorithms decays exponentially with increasing number of particles and/or imaginary-time propagation. Moreover, we derive an analytical expression that connects the localization of the system with the magnitude of the sign problem, illustrating this behavior through numerical results. Finally, we discuss the computational complexity of the fermion sign problem and methods for alleviating its severity. PMID:27176442

  15. Radar Monitoring of Wetlands for Malaria Control

    NASA Technical Reports Server (NTRS)

    Pope, Kevin O.

    1997-01-01

    Malaria is perhaps the most serious human disease problem. It inflicts millions worldwide and is on the rise in many countries where it was once under control. This rise is in part due to the high costs, both economic and environmental, of current control programs. The search for more cost-effective means to combat malaria has focussed attention on new technologies, one of which is remote sensing. Remote sensing has become an important tool in the effort to control a variety of diseases worldwide and malaria is perhaps one of the most promising. This study is part of the malaria control effort in the Central American country of Belize, which has experienced a resurgence of malaria in the last two decades. The proposed project is a feasibility study of the use of Radarsat (and other similar radar systems) to monitor seasonal changes in the breeding sites of the anopheline mosquito, which is responsible for malaria transmission. We propose that spatial and temporal changes in anopheline mosquito production can be predicted by sensing where and when their breeding sites are flooded. Timely knowledge of anopheline mosquito production is a key factor in control efforts. Such knowledge can be used by local control agencies to direct their limited resources to selected areas and time periods when the human population is at greatest risk. Radar is a key sensor in this application because frequent cloud cover during the peak periods of malaria transmission precludes the use of optical sensors.

  16. Radar Observations of Rip Currents (duck, Nc)

    NASA Astrophysics Data System (ADS)

    Haller, M. C.; Honegger, D. A.; Catalan, P. A.

    2012-12-01

    Rip currents are often highly transient features in space and time. Hydrodynamic observations of rip currents are likewise challenging to obtain. It is especially difficult to capture synoptic observations of the entire rip current circulation. Herein, we present unique observations of a fairly persistent rip outbreak made over the course of two weeks during a field experiment at the USACE Field Research Facility (September, 2010; Duck, NC). The observations are part of a multi-investigator, multi-university project entitled "Remote Sensing and Data-Assimilative Modeling in the Littorals" (DARLA-MURI) funded by ONR. The observations demonstrate the presence of a rip current (sometimes several) regularly imaged in marine radar image sequences over a 10-day period. The large number of events captured over a short time is fairly rare, especially for this site. The presence of the rip current is also confirmed by a cross-shore array of in situ current meters that were (fortuitously) deployed near the rip channel. The rip current strength is shown to be relatively strong (20-40 cm/s), though wave forcing was modest (Hs ~1m). The surface expression of the rip was persistent to distances of several surf zone widths offshore, in contrast to other recent observations based on drifters. Interestingly, the observed rip currents also often leave the surf zone at an oblique angle to shore normal. Our analysis herein will demonstrate the direction of the rip obliquity is governed by the alongshore wind stress with little dependence on the wave conditions. Also, radar imaging of the rip is not very sensitive to the wind conditions (for the conditions observed); rips were regularly observed unless there was a strong offshore component to the wind stress. This has lead us to the hypothesis that the radar imaging mechanism of these rips generated under light to moderate wave conditions is the small scale breaking of short wind waves on the opposing current. Finally, a new filtered

  17. Obstacle penetrating dynamic radar imaging system

    DOEpatents

    Romero, Carlos E.; Zumstein, James E.; Chang, John T.; Leach, Jr.. Richard R.

    2006-12-12

    An obstacle penetrating dynamic radar imaging system for the detection, tracking, and imaging of an individual, animal, or object comprising a multiplicity of low power ultra wideband radar units that produce a set of return radar signals from the individual, animal, or object, and a processing system for said set of return radar signals for detection, tracking, and imaging of the individual, animal, or object. The system provides a radar video system for detecting and tracking an individual, animal, or object by producing a set of return radar signals from the individual, animal, or object with a multiplicity of low power ultra wideband radar units, and processing said set of return radar signals for detecting and tracking of the individual, animal, or object.

  18. Extended Target Recognition in Cognitive Radar Networks

    PubMed Central

    Wei, Yimin; Meng, Huadong; Liu, Yimin; Wang, Xiqin

    2010-01-01

    We address the problem of adaptive waveform design for extended target recognition in cognitive radar networks. A closed-loop active target recognition radar system is extended to the case of a centralized cognitive radar network, in which a generalized likelihood ratio (GLR) based sequential hypothesis testing (SHT) framework is employed. Using Doppler velocities measured by multiple radars, the target aspect angle for each radar is calculated. The joint probability of each target hypothesis is then updated using observations from different radar line of sights (LOS). Based on these probabilities, a minimum correlation algorithm is proposed to adaptively design the transmit waveform for each radar in an amplitude fluctuation situation. Simulation results demonstrate performance improvements due to the cognitive radar network and adaptive waveform design. Our minimum correlation algorithm outperforms the eigen-waveform solution and other non-cognitive waveform design approaches. PMID:22163464

  19. Meteorological radar facility. Part 1: System design

    NASA Technical Reports Server (NTRS)

    Brassaw, L. L., Jr.; Hamren, S. D.; Mullins, W. H.; Schweitzer, B. P.

    1976-01-01

    A compilation of information regarding systems design of space shuttles used in meteorological radar probes is presented. Necessary radar equipment is delineated, while space system elements, calibration techniques, antenna systems and other subsystems are reviewed.

  20. Imaging radar techniques for remote sensing applications.

    NASA Technical Reports Server (NTRS)

    Zelenka, J. S.

    1972-01-01

    The basic concepts of fine-resolution, imaging radar systems are reviewed. Both side-looking and hologram (downward-looking) radars are described and compared. Several examples of microwave imagery obtained with these two types of systems are shown.

  1. Progress in existing and planned MST radars

    NASA Technical Reports Server (NTRS)

    Vanzandt, T. E.

    1986-01-01

    Radar systems are described which use two different wind measuring techniques: the partial-reflection drift technique and the mesosphere-stratosphere-troposphere (MST) or Doppler beam-swing radar technique. The advantages and disadvantages of each technique are discussed.

  2. Meteor detection on ST (MST) radars

    NASA Technical Reports Server (NTRS)

    Avery, S. K.

    1987-01-01

    The ability to detect radar echoes from backscatter due to turbulent irregularities of the radio refractive index in the clear atmosphere has lead to an increasing number of established mesosphere - stratosphere - troposphere (MST or ST) radars. Humidity and temperature variations are responsible for the echo in the troposphere and stratosphere and turbulence acting on electron density gradients provides the echo in the mesosphere. The MST radar and its smaller version, the ST radar, are pulsed Doppler radars operating in the VHF - UHF frequency range. These echoes can be used to determine upper atmosphere winds at little extra cost to the ST radar configuration. In addition, the meteor echoes can supplement mesospheric data from an MST radar. The detection techniques required on the ST radar for delineating meteor echo returns are described.

  3. MST radar data-base management

    NASA Technical Reports Server (NTRS)

    Wickwar, V. B.

    1983-01-01

    Data management for Mesospheric-Stratospheric-Tropospheric, (MST) radars is addressed. An incoherent-scatter radar data base is discussed in terms of purpose, centralization, scope, and nature of the data base management system.

  4. 46 CFR 15.815 - Radar observers.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... onboard radar-equipped vessels of 300 GRT or over must hold an endorsement as radar observer. (c) Each... service as master or mate onboard an uninspected towing vessel of 8 meters (26 feet) or more in...

  5. Eliminating Clutter in Synthetic-Aperture Radar

    NASA Technical Reports Server (NTRS)

    Jain, A.

    1979-01-01

    Diffusion technique reduces clutter noise in coherent SAR (synthetic-aperature radar) image signal without degrading its resolution. Technique makes radar-mapped terrain features more obvious.It also has potential application in holographic microscopy.

  6. Scanning ARM Cloud Radar Handbook

    SciTech Connect

    Widener, K; Bharadwaj, N; Johnson, K

    2012-06-18

    The scanning ARM cloud radar (SACR) is a polarimetric Doppler radar consisting of three different radar designs based on operating frequency. These are designated as follows: (1) X-band SACR (X-SACR); (2) Ka-band SACR (Ka-SACR); and (3) W-band SACR (W-SACR). There are two SACRs on a single pedestal at each site where SACRs are deployed. The selection of the operating frequencies at each deployed site is predominantly determined by atmospheric attenuation at the site. Because RF attenuation increases with atmospheric water vapor content, ARM's Tropical Western Pacific (TWP) sites use the X-/Ka-band frequency pair. The Southern Great Plains (SGP) and North Slope of Alaska (NSA) sites field the Ka-/W-band frequency pair. One ARM Mobile Facility (AMF1) has a Ka/W-SACR and the other (AMF2) has a X/Ka-SACR.

  7. Radar Observation of Insects - Mosquitoes

    NASA Technical Reports Server (NTRS)

    Frost, E.; Downing, J.

    1979-01-01

    Tests were conducted at several sites over the coastal lowlands of New Jersey and over a region of high plains and low mountains in Oklahoma. In one area, a salt marsh in New Jersey, extensive ground tests were combined with laboratory data on expected insect backscatter to arrive at an extremely convincing model of the insect origin of most Dot Angels. A great deal of insight was studied from radar on the buildup and dispersal of insect swarms, since radar can follow where other means of trapping and observation cannot. Data on large-scale behavior as a function of wind and topography are presented. Displayed techniques which show individual or small swarm motion within some larger cloud or mass, or which can show the overall motion over great distances were developed. The influence of wind and terrain on insect motion and dispersal is determined from radar data.

  8. GMTI radar minimum detectable velocity.

    SciTech Connect

    Richards, John Alfred

    2011-04-01

    Minimum detectable velocity (MDV) is a fundamental consideration for the design, implementation, and exploitation of ground moving-target indication (GMTI) radar imaging modes. All single-phase-center air-to-ground radars are characterized by an MDV, or a minimum radial velocity below which motion of a discrete nonstationary target is indistinguishable from the relative motion between the platform and the ground. Targets with radial velocities less than MDV are typically overwhelmed by endoclutter ground returns, and are thus not generally detectable. Targets with radial velocities greater than MDV typically produce distinct returns falling outside of the endoclutter ground returns, and are thus generally discernible using straightforward detection algorithms. This document provides a straightforward derivation of MDV for an air-to-ground single-phase-center GMTI radar operating in an arbitrary geometry.

  9. Airborne Differential Doppler Weather Radar

    NASA Technical Reports Server (NTRS)

    Meneghini, R.; Bidwell, S.; Liao, L.; Rincon, R.; Heymsfield, G.; Hildebrand, Peter H. (Technical Monitor)

    2001-01-01

    The Precipitation Radar aboard the Tropical Rain Measuring Mission (TRMM) Satellite has shown the potential for spaceborne sensing of snow and rain by means of an incoherent pulsed radar operating at 13.8 GHz. The primary advantage of radar relative to passive instruments arises from the fact that the radar can image the 3-dimensional structure of storms. As a consequence, the radar data can be used to determine the vertical rain structure, rain type (convective/stratiform) effective storm height, and location of the melting layer. The radar, moreover, can be used to detect snow and improve the estimation of rain rate over land. To move toward spaceborne weather radars that can be deployed routinely as part of an instrument set consisting of passive and active sensors will require the development of less expensive, lighter-weight radars that consume less power. At the same time, the addition of a second frequency and an upgrade to Doppler capability are features that are needed to retrieve information on the characteristics of the drop size distribution, vertical air motion and storm dynamics. One approach to the problem is to use a single broad-band transmitter-receiver and antenna where two narrow-band frequencies are spaced apart by 5% to 10% of the center frequency. Use of Ka-band frequencies (26.5 GHz - 40 GHz) affords two advantages: adequate spatial resolution can be attained with a relatively small antenna and the differential reflectivity and mean Doppler signals are directly related to the median mass diameter of the snow and raindrop size distributions. The differential mean Doppler signal has the additional property that this quantity depends only on that part of the radial speed of the hydrometeors that is drop-size dependent. In principle, the mean and differential mean Doppler from a near-nadir viewing radar can be used to retrieve vertical air motion as well as the total mean radial velocity. In the paper, we present theoretical calculations for the

  10. The GeoSAR program: Development of a commercially viable 3-D radar terrain mapping system

    SciTech Connect

    Carlisle, R.G.; Davis, M.

    1996-11-01

    GeoSAR is joint development between the Defense Advanced Research Project Agency (DARPA) and the California Department of Conservation (CA DOC) to determine the technical and economic viability of an airborne interferometric and foliage penetration synthetic aperture radar for mapping terrain and man made objects in geographical areas obscured by foliage, urban buildings, and other concealments. The two core technology elements of this program are Interferometric Synthetic Aperture Radar (IFSAR) and Foliage Penetration Radar (FOPEN). These technologies have been developed by NASA and ARPA, principally for defense applications.

  11. Estimating unbiased horizontal velocity components from ST/MST radar measurements: A case study

    NASA Technical Reports Server (NTRS)

    Clark, W. L.; Green, J. L.; Warnock, J. M.

    1983-01-01

    In this paper a self-editing quick look procedure is presented for use at the Sunset radar. It is used for determining relatively unbiased hourly estimates of the u and v components of the wind. The technique presented here should be applicable to all height ranges, though only ST results are presented here. The vertical wind component, w, may be measured directly by pointing the radar beam straight up. The east and west components of the wind, u and v, however, must be estimated by projecting to the horizontal plane the radial velocity, vr, actually observed by pointing the radar suitably off zenith.

  12. A computer graphics pilot project - Spacecraft mission support with an interactive graphics workstation

    NASA Technical Reports Server (NTRS)

    Hagedorn, John; Ehrner, Marie-Jacqueline; Reese, Jodi; Chang, Kan; Tseng, Irene

    1986-01-01

    The NASA Computer Graphics Pilot Project was undertaken to enhance the quality control, productivity and efficiency of mission support operations at the Goddard Operations Support Computing Facility. The Project evolved into a set of demonstration programs for graphics intensive simulated control room operations, particularly in connection with the complex space missions that began in the 1980s. Complex mission mean more data. Graphic displays are a means to reduce the probabilities of operator errors. Workstations were selected with 1024 x 768 pixel color displays controlled by a custom VLSI chip coupled to an MC68010 chip running UNIX within a shell that permits operations through the medium of mouse-accessed pulldown window menus. The distributed workstations run off a host NAS 8040 computer. Applications of the system for tracking spacecraft orbits and monitoring Shuttle payload handling illustrate the system capabilities, noting the built-in capabilities of shifting the point of view and rotating and zooming in on three-dimensional views of spacecraft.

  13. Senior Nursing Students' Participation in a Community Research Project: Effect on Student Self-Efficacy and Knowledge Concerning Drug Interactions Arising from Self-Medication in Older Adults.

    ERIC Educational Resources Information Center

    Neafsey, Patricia J.; Shellman, Juliette

    2002-01-01

    Of 13 nursing students in a community nursing clinical project, 7 worked with older adults who received instruction about drug interaction. Compared to the six whose patients did not receive instruction, these students achieved greater knowledge and self-efficacy scores related to drug interaction. (Contains 16 references.) (SK)

  14. Evaluation of smartphone-based interaction techniques in a CAVE in the context of immersive digital project review

    NASA Astrophysics Data System (ADS)

    George, Paul; Kemeny, Andras; Colombet, Florent; Merienne, Frédéric; Chardonnet, Jean-Rémy; Thouvenin, Indira Mouttapa

    2014-02-01

    Immersive digital project reviews consist in using virtual reality (VR) as a tool for discussion between various stakeholders of a project. In the automotive industry, the digital car prototype model is the common thread that binds them. It is used during immersive digital project reviews between designers, engineers, ergonomists, etc. The digital mockup is also used to assess future car architecture, habitability or perceived quality requirements with the aim to reduce using physical mockups for optimized cost, delay and quality efficiency. Among the difficulties identified by the users, handling the mockup is a major one. Inspired by current uses of nomad devices (multi-touch gestures, IPhone UI look'n'feel and AR applications), we designed a navigation technique taking advantage of these popular input devices: Space scrolling allows moving around the mockup. In this paper, we present the results of a study we conducted on the usability and acceptability of the proposed smartphone-based interaction metaphor compared to traditional technique and we provide indications of the most efficient choices for different use-cases accordingly. It was carried out in a traditional 4-sided CAVE and its purpose is to assess a chosen set of interaction techniques to be implemented in Renault's new 5-sides 4K x 4K wall high performance CAVE. The proposed new metaphor using nomad devices is well accepted by novice VR users and future implementation should allow an efficient industrial use. Their use is an easy and user friendly alternative of the existing traditional control devices such as a joystick.

  15. Quantifying Microbe-Mineral Interactions Leading to Remotely Detectable Induced Polarization Signals (Final Project Report)

    SciTech Connect

    Moysey, Stephen; Dean, Delphine; Dimitrios, Ntarlagiannis

    2013-11-13

    The objective of this project was to investigate controls on induced polarization responses in porous media. The approach taken in the project was to compare electrical measurements made on mineral surfaces with atomic force microscopy (AFM) techniques to observations made at the column-scale using traditional spectral induced polarization measurements. In the project we evaluated a number of techniques for investigating the surface properties of materials, including the development of a new AFM measurement protocol that utilizes an external electric field to induce grain-scale polarizations that can be probed using a charged AFM tip. The experiments we performed focused on idealized systems (i.e., glass beads and silica gel) where we could obtain the high degree of control needed to understand how changes in the pore environment, which are determined by biogeochemical controls in the subsurface, affect mechanisms contributing to complex electrical conductivity, i.e., conduction and polarization, responses. The studies we performed can be classified into those affecting the chemical versus physical properties of the grain surface and pore space. Chemical alterations of the surface focused on evaluating how changes in pore fluid pH and ionic composition control surface conduction. These were performed as column flow through experiments where the pore fluid was exchanged in a column of silica gel. Given that silica gel has a high surface area due to internal grain porosity, high-quality data could be obtained where the chemical influences on the surface are clearly apparent and qualitatively consistent with theories of grain (i.e., Stern layer) polarization controlled by electrostatic surface sorption processes (i.e., triple layer theory). Quantitative fitting of the results by existing process-based polarization models (e.g., Leroy et al., 2008) has been less successful, however, due to what we have attributed to differences between existing models developed for

  16. Space Radar Image of Bebedauro, Brazil, seasonal

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This is an X-band image showing seasonal changes at the hydrological test site of Bebedouro in Brazil. The image is centered at 9 degrees south latitude and 40.2 degrees west longitude. This image was acquired by the Spaceborne Imaging Radar-C and X-band Synthetic Aperture Radar (SIR-C/X-SAR) aboard the space shuttle Endeavour on April 10, 1994, during the first flight of the radar system, and on October 1, 1994, during the second mission. The swath width is approximately 16.5 kilometers (10.5 miles) wide. The image channels have the following color assignments: red represents data acquired on April 10; green represents data acquired on October 1; blue corresponds to the ratio of the two data sets. Agriculture plays an important economic and social role in Brazil. One of the major problems related to Brazilian agriculture is estimating the size of planting areas and their productivity. Due to cloud cover and the rainy season, which occurs from November through April, optical and infrared Earth observations are seldom used to survey the region. An additional goal of monitoring this region is to watch the floodplains of rivers like Rio Sao Francisco in order to determine suitable locations for additional agricultural fields. This area belongs to the semi-arid northeastern region of Brazil, where estimates have suggested that about 10 times more land could be used for agriculture, including some locations which could be used for irrigation projects. Monitoring of soil moisture during the important summer crop season is of high priority for the future development and productivity of this region. In April the area was covered with vegetation because of the moisture of the soil and only small differences could be seen in X-band data. In October the run-off channels of this hilly region stand out quite clearly because the greenish areas indicated much less soil moisture and water content in plants. Spaceborne Imaging Radar-C and X-band Synthetic Aperture Radar (SIR

  17. Shuttle orbiter radar cross-sectional analysis

    NASA Technical Reports Server (NTRS)

    Cooper, D. W.; James, R.

    1979-01-01

    Theoretical and model simulation studies on signal to noise levels and shuttle radar cross section are described. Pre-mission system calibrations, system configuration, and postmission system calibration of the tracking radars are described. Conversion of target range, azimuth, and elevation into radar centered east north vertical position coordinates are evaluated. The location of the impinging rf energy with respect to the target vehicles body axis triad is calculated. Cross section correlation between the two radars is presented.

  18. Goldstone solar system radar signal processing

    NASA Technical Reports Server (NTRS)

    Jurgens, R.; Satorius, E.; Sanchez, O.

    1992-01-01

    A performance analysis of the planetary radar data acquisition system is presented. These results extend previous computer simulation analysis and are facilitated by the development of a simple analytical model that predicts radar system performance over a wide range of operational parameters. The results of this study are useful to both the radar system designer and the science investigator in establishing operational radar data acquisition parameters which result in the best systems performance for a given set of input conditions.

  19. Goldstone solar system radar signal processing

    NASA Technical Reports Server (NTRS)

    Jurgens, R. F.; Satorius, E.; Sanchez, O.

    1992-01-01

    A performance analysis of the planetary radar data acquisition system is presented. These results extend previous computer simulation analysis and are facilitated by the development of a simple analytical model that predicts radar system performance over a wide range of operational parameters. The results of this study are useful to both the radar systems designer and the science investigator in establishing operational radar data acquisition parameters which result in the best systems performance for a given set of input conditions.

  20. An MSK Waveform for Radar Applications

    NASA Technical Reports Server (NTRS)

    Quirk, Kevin J.; Srinivasan, Meera

    2009-01-01

    We introduce a minimum shift keying (MSK) waveform developed for use in radar applications. This waveform is characterized in terms of its spectrum, autocorrelation, and ambiguity function, and is compared with the conventionally used bi-phase coded (BPC) radar signal. It is shown that the MSK waveform has several advantages when compared with the BPC waveform, and is a better candidate for deep-space radar imaging systems such as NASA's Goldstone Solar System Radar.

  1. Radar operation in a hostile electromagnetic environment

    SciTech Connect

    Doerry, Armin Walter

    2014-03-01

    Radar ISR does not always involve cooperative or even friendly targets. An adversary has numerous techniques available to him to counter the effectiveness of a radar ISR sensor. These generally fall under the banner of jamming, spoofing, or otherwise interfering with the EM signals required by the radar sensor. Consequently mitigation techniques are prudent to retain efficacy of the radar sensor. We discuss in general terms a number of mitigation techniques.

  2. Radar principles with applications to tracking systems

    NASA Astrophysics Data System (ADS)

    Bogler, Philip L.

    Theoretical and practical aspects of radar tracking are discussed in an introduction for first-year graduate students and practicing radar engineers. Chapters are devoted to the radar sensor, signal processing, waveform selection, pulse compression, measurement theory, Kalman filtering, adaptive Kalman filtering, coordinate systems, a representative STT system, data correlation logic, a representative TWS system, ESA allocation logic, and a representative ESA radar system. Diagrams, graphs, and a glossary of terms are provided.

  3. Radar signal propagation through the ionosphere of Europa

    NASA Astrophysics Data System (ADS)

    Grima, Cyril; Blankenship, Donald D.; Schroeder, Dustin M.

    2015-11-01

    We review the current state of knowledge of the Europan plasma environment, its effects on radio wave propagation, and its impact on the performance and design of future radar sounders for the exploration of Europa's ice crust. The Europan ionosphere is produced in two independently-rotating hemispheres by photo-ionization of the neutral exosphere and interaction with the Io plasma torus, respectively. This combination is responsible for temporal and longitudinal ionospheric heterogeneities not well constrained by observations. When Europa's ionosphere is active, the maximum cut-off frequency is 1 MHz at the surface. The main impacts on radar signal propagation are dispersive phase shift and Faraday rotation, both a function of the total electron content (up to 4×1015 m-2) and the Jovian magnetic field strength at Europa (~420 nT). The severity of these impacts decrease with increasing center frequency and increase with altitude, latitude, and bandwidth. The 9 MHz channels on the Radar for Icy Moons Exploration (RIME) and proposed Radar for Europa Assessment and Sounding: Ocean to Near-surface (REASON) will be sensitive to the Europan ionosphere. For these or similar radar sounders, the ionospheric signal distortion from dispersive phase shift can be corrected with existing techniques, which would also enable the estimation of the total electron content below the spacecraft. At 9 MHz, the Faraday fading is not expected to exceed 6 dB under the worst conditions. At lower frequencies, any active or passive radio probing of the ice shell exploration would be limited to frequencies above 1-8 MHz (depending on survey configuration) below which Faraday rotation angle would lead to signal fading and detection ambiguity. Radar instruments could be sensitive to neutrals and electrons added in the exosphere from any plume activity if present.

  4. Dunes on Titan observed by Cassini Radar

    USGS Publications Warehouse

    Radebaugh, J.; Lorenz, R.D.; Lunine, J.I.; Wall, S.D.; Boubin, G.; Reffet, E.; Kirk, R.L.; Lopes, R.M.; Stofan, E.R.; Soderblom, L.; Allison, M.; Janssen, M.; Paillou, P.; Callahan, P.; Spencer, C.; The Cassini Radar Team

    2008-01-01

    Thousands of longitudinal dunes have recently been discovered by the Titan Radar Mapper on the surface of Titan. These are found mainly within ??30?? of the equator in optically-, near-infrared-, and radar-dark regions, indicating a strong proportion of organics, and cover well over 5% of Titan's surface. Their longitudinal duneform, interactions with topography, and correlation with other aeolian forms indicate a single, dominant wind direction aligned with the dune axis plus lesser, off-axis or seasonally alternating winds. Global compilations of dune orientations reveal the mean wind direction is dominantly eastwards, with regional and local variations where winds are diverted around topographically high features, such as mountain blocks or broad landforms. Global winds may carry sediments from high latitude regions to equatorial regions, where relatively drier conditions prevail, and the particles are reworked into dunes, perhaps on timescales of thousands to tens of thousands of years. On Titan, adequate sediment supply, sufficient wind, and the absence of sediment carriage and trapping by fluids are the dominant factors in the presence of dunes. ?? 2007 Elsevier Inc. All rights reserved.

  5. Polarimetric radar data decomposition and interpretation

    NASA Technical Reports Server (NTRS)

    Sun, Guoqing; Ranson, K. Jon

    1993-01-01

    Significant efforts have been made to decompose polarimetric radar data into several simple scattering components. The components which are selected because of their physical significance can be used to classify SAR (Synthetic Aperture Radar) image data. If particular components can be related to forest parameters, inversion procedures may be developed to estimate these parameters from the scattering components. Several methods have been used to decompose an averaged Stoke's matrix or covariance matrix into three components representing odd (surface), even (double-bounce) and diffuse (volume) scatterings. With these decomposition techniques, phenomena, such as canopy-ground interactions, randomness of orientation, and size of scatters can be examined from SAR data. In this study we applied the method recently reported by van Zyl (1992) to decompose averaged backscattering covariance matrices extracted from JPL SAR images over forest stands in Maine, USA. These stands are mostly mixed stands of coniferous and deciduous trees. Biomass data have been derived from field measurements of DBH and tree density using allometric equations. The interpretation of the decompositions and relationships with measured stand biomass are presented in this paper.

  6. Portable receiver for radar detection

    DOEpatents

    Lopes, Christopher D.; Kotter, Dale K.

    2008-10-14

    Various embodiments are described relating to a portable antenna-equipped device for multi-band radar detection. The detection device includes a plurality of antennas on a flexible substrate, a detection-and-control circuit, an indicator and a power source. The antenna may include one or more planar lithographic antennas that may be fabricated on a thin-film substrate. Each antenna may be tuned to a different selection frequency or band. The antennas may include a bolometer for radar detection. Each antenna may include a frequency selective surface for tuning to the selection frequency.

  7. Decorrelation in interferometric radar echoes

    NASA Technical Reports Server (NTRS)

    Zebker, Howard A.; Villasensor, John

    1992-01-01

    A radar interferometric technique for topographic mapping of surfaces promises a high resolution, globally consistent approach to generation of digital elevation models. One implementation approach, that of utilizing a single SAR system in a nearly repeating orbit, is attractive not only for cost and complexity reasons but also in that it permits inference of changes in the surface over the orbit repeat cycle from the correlation properties of the radar echoes. The various sources contributing to the echo correlation statistics are characterized, and the term which most closely describes surficial change is isolated. There is decorrelation increasing with time, but digital terrain model generation remains feasible.

  8. Radar imaging of the ocean surface

    NASA Technical Reports Server (NTRS)

    Elachi, C.

    1978-01-01

    Techniques for obtaining radar images of the ocean surface are briefly described, and examples of radar images of a variety of ocean surface wave types obtained by synthetic-aperture radar are presented and discussed. Observations described include deep-ocean waves, discrete wave trains, internal waves as surface manifestations, slicks, and eddies.

  9. NASA/JPL's Imaging Radar Outreach Program

    NASA Technical Reports Server (NTRS)

    Freeman, A.; O'Leary, E.; Chapman, B.; Trimble, J.

    1996-01-01

    In order to build a user community for future NASA imaging radar products and programs, outreach activities have been implemented by JPL. These include: education outreach, public awareness outreach, and outreach to areas of the scientific and applications community who are not traditional imaging radar users. A key component is the NASA/JPL Imaging Radar Home Page on the World Wide Web.

  10. Research relative to weather radar measurement techniques

    NASA Technical Reports Server (NTRS)

    Smith, Paul L.

    1992-01-01

    This grant provides for some investigations related to weather radar measurement techniques applicable to meteorological radar systems in Thailand. Quality data are needed from those systems to support TRMM and other scientific investigations. Activities carried out during a trip to the radar facilities at Phuket are described.

  11. Comparison of radar data versus rainfall data.

    PubMed

    Espinosa, B; Hromadka, T V; Perez, R

    2015-01-01

    Doppler radar data are increasingly used in rainfall-runoff synthesis studies, perhaps due to radar data availability, among other factors. However, the veracity of the radar data are often a topic of concern. In this paper, three Doppler radar outcomes developed by the United States National Weather Service at three radar sites are examined and compared to actual rain gage data for two separate severe storm events in order to assess accuracy in the published radar estimates of rainfall. Because the subject storms were very intense rainfall events lasting approximately one hour in duration, direct comparisons between the three radar gages themselves can be made, as well as a comparison to rain gage data at a rain gage location subjected to the same storm cells. It is shown that topographic interference with the radar outcomes can be a significant factor leading to differences between radar and rain gage readings, and that care is needed in calibrating radar outcomes using available rain gage data in order to interpolate rainfall estimates between rain gages using the spatial variation observed in the radar readings. The paper establishes and describes•the need for "ground-truthing" of radar data, and•possible errors due to topographic interference. PMID:26649276

  12. 46 CFR 169.726 - Radar reflector.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Radar reflector. 169.726 Section 169.726 Shipping COAST... Control, Miscellaneous Systems, and Equipment § 169.726 Radar reflector. Each nonmetallic vessel less than 90 feet in length must exhibit a radar reflector of suitable size and design while underway. Markings...

  13. 46 CFR 130.310 - Radar.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Radar. 130.310 Section 130.310 Shipping COAST GUARD... EQUIPMENT AND SYSTEMS Navigational Equipment § 130.310 Radar. Each vessel of 100 or more gross tons must be fitted with a general marine radar in the pilothouse....

  14. 46 CFR 15.815 - Radar observers.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Radar observers. 15.815 Section 15.815 Shipping COAST... Computations § 15.815 Radar observers. (a) Each person in the required complement of deck officers, including the master, on inspected vessels of 300 gross tons or over which are radar equipped, shall hold...

  15. 46 CFR 130.310 - Radar.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Radar. 130.310 Section 130.310 Shipping COAST GUARD... EQUIPMENT AND SYSTEMS Navigational Equipment § 130.310 Radar. Each vessel of 100 or more gross tons must be fitted with a general marine radar in the pilothouse....

  16. 46 CFR 11.480 - Radar observer.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 1 2013-10-01 2013-10-01 false Radar observer. 11.480 Section 11.480 Shipping COAST... ENDORSEMENTS Professional Requirements for Deck Officers § 11.480 Radar observer. (a) This section contains the requirements that an applicant must meet to qualify as a radar observer. (Part 15 of this chapter specifies...

  17. 46 CFR 15.815 - Radar observers.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 1 2013-10-01 2013-10-01 false Radar observers. 15.815 Section 15.815 Shipping COAST... Computations § 15.815 Radar observers. (a) Each person in the required complement of deck officers, including the master, on inspected vessels of 300 gross tons or over which are radar equipped, shall hold...

  18. 46 CFR 167.40-40 - Radar.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 7 2013-10-01 2013-10-01 false Radar. 167.40-40 Section 167.40-40 Shipping COAST GUARD... Requirements § 167.40-40 Radar. All mechanically propelled vessels of 1,600 gross tons and over in ocean or coastwise service must be fitted with a marine radar system for surface navigation. Facilities for...

  19. 46 CFR 11.480 - Radar observer.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Radar observer. 11.480 Section 11.480 Shipping COAST... ENDORSEMENTS Professional Requirements for Deck Officers § 11.480 Radar observer. (a) This section contains the requirements that an applicant must meet to qualify as a radar observer. (Part 15 of this chapter specifies...

  20. 46 CFR 108.717 - Radar.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Radar. 108.717 Section 108.717 Shipping COAST GUARD... Miscellaneous Equipment § 108.717 Radar. Each self-propelled unit of 1,600 gross tons and over in ocean or coastwise service must have— (a) A marine radar system for surface navigation; and (b) Facilities on...

  1. 46 CFR 169.726 - Radar reflector.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 7 2014-10-01 2014-10-01 false Radar reflector. 169.726 Section 169.726 Shipping COAST... Control, Miscellaneous Systems, and Equipment § 169.726 Radar reflector. Each nonmetallic vessel less than 90 feet in length must exhibit a radar reflector of suitable size and design while underway. Markings...

  2. 46 CFR 11.480 - Radar observer.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 1 2014-10-01 2014-10-01 false Radar observer. 11.480 Section 11.480 Shipping COAST... ENDORSEMENTS Professional Requirements for National Deck Officer Endorsements § 11.480 Radar observer. (a) This section contains the requirements that an applicant must meet to qualify as a radar observer. (b) If...

  3. 46 CFR 108.717 - Radar.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Radar. 108.717 Section 108.717 Shipping COAST GUARD... Miscellaneous Equipment § 108.717 Radar. Each self-propelled unit of 1,600 gross tons and over in ocean or coastwise service must have— (a) A marine radar system for surface navigation; and (b) Facilities on...

  4. 46 CFR 169.726 - Radar reflector.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Radar reflector. 169.726 Section 169.726 Shipping COAST... Control, Miscellaneous Systems, and Equipment § 169.726 Radar reflector. Each nonmetallic vessel less than 90 feet in length must exhibit a radar reflector of suitable size and design while underway. Markings...

  5. 46 CFR 108.717 - Radar.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Radar. 108.717 Section 108.717 Shipping COAST GUARD... Miscellaneous Equipment § 108.717 Radar. Each self-propelled unit of 1,600 gross tons and over in ocean or coastwise service must have— (a) A marine radar system for surface navigation; and (b) Facilities on...

  6. 46 CFR 167.40-40 - Radar.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Radar. 167.40-40 Section 167.40-40 Shipping COAST GUARD... Requirements § 167.40-40 Radar. All mechanically propelled vessels of 1,600 gross tons and over in ocean or coastwise service must be fitted with a marine radar system for surface navigation. Facilities for...

  7. 46 CFR 167.40-40 - Radar.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Radar. 167.40-40 Section 167.40-40 Shipping COAST GUARD... Requirements § 167.40-40 Radar. All mechanically propelled vessels of 1,600 gross tons and over in ocean or coastwise service must be fitted with a marine radar system for surface navigation. Facilities for...

  8. 46 CFR 15.815 - Radar observers.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 1 2011-10-01 2011-10-01 false Radar observers. 15.815 Section 15.815 Shipping COAST... Computations § 15.815 Radar observers. (a) Each person in the required complement of deck officers, including the master, on inspected vessels of 300 gross tons or over which are radar equipped, shall hold...

  9. 46 CFR 108.717 - Radar.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Radar. 108.717 Section 108.717 Shipping COAST GUARD... Miscellaneous Equipment § 108.717 Radar. Each self-propelled unit of 1,600 gross tons and over in ocean or coastwise service must have— (a) A marine radar system for surface navigation; and (b) Facilities on...

  10. 46 CFR 167.40-40 - Radar.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 7 2014-10-01 2014-10-01 false Radar. 167.40-40 Section 167.40-40 Shipping COAST GUARD... Requirements § 167.40-40 Radar. All mechanically propelled vessels of 1,600 gross tons and over in ocean or coastwise service must be fitted with a marine radar system for surface navigation. Facilities for...

  11. 46 CFR 130.310 - Radar.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Radar. 130.310 Section 130.310 Shipping COAST GUARD... EQUIPMENT AND SYSTEMS Navigational Equipment § 130.310 Radar. Each vessel of 100 or more gross tons must be fitted with a general marine radar in the pilothouse....

  12. 46 CFR 130.310 - Radar.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Radar. 130.310 Section 130.310 Shipping COAST GUARD... EQUIPMENT AND SYSTEMS Navigational Equipment § 130.310 Radar. Each vessel of 100 or more gross tons must be fitted with a general marine radar in the pilothouse....

  13. 46 CFR 169.726 - Radar reflector.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 7 2013-10-01 2013-10-01 false Radar reflector. 169.726 Section 169.726 Shipping COAST... Control, Miscellaneous Systems, and Equipment § 169.726 Radar reflector. Each nonmetallic vessel less than 90 feet in length must exhibit a radar reflector of suitable size and design while underway. Markings...

  14. 46 CFR 11.480 - Radar observer.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 1 2011-10-01 2011-10-01 false Radar observer. 11.480 Section 11.480 Shipping COAST... ENDORSEMENTS Professional Requirements for Deck Officers § 11.480 Radar observer. (a) This section contains the requirements that an applicant must meet to qualify as a radar observer. (Part 15 of this chapter specifies...

  15. 46 CFR 169.726 - Radar reflector.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Radar reflector. 169.726 Section 169.726 Shipping COAST... Control, Miscellaneous Systems, and Equipment § 169.726 Radar reflector. Each nonmetallic vessel less than 90 feet in length must exhibit a radar reflector of suitable size and design while underway. Markings...

  16. 46 CFR 167.40-40 - Radar.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Radar. 167.40-40 Section 167.40-40 Shipping COAST GUARD... Requirements § 167.40-40 Radar. All mechanically propelled vessels of 1,600 gross tons and over in ocean or coastwise service must be fitted with a marine radar system for surface navigation. Facilities for...

  17. 46 CFR 130.310 - Radar.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Radar. 130.310 Section 130.310 Shipping COAST GUARD... EQUIPMENT AND SYSTEMS Navigational Equipment § 130.310 Radar. Each vessel of 100 or more gross tons must be fitted with a general marine radar in the pilothouse....

  18. 46 CFR 15.815 - Radar observers.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 1 2012-10-01 2012-10-01 false Radar observers. 15.815 Section 15.815 Shipping COAST... Computations § 15.815 Radar observers. (a) Each person in the required complement of deck officers, including the master, on inspected vessels of 300 gross tons or over which are radar equipped, shall hold...

  19. 46 CFR 108.717 - Radar.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Radar. 108.717 Section 108.717 Shipping COAST GUARD... Miscellaneous Equipment § 108.717 Radar. Each self-propelled unit of 1,600 gross tons and over in ocean or coastwise service must have— (a) A marine radar system for surface navigation; and (b) Facilities on...

  20. 46 CFR 11.480 - Radar observer.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 1 2012-10-01 2012-10-01 false Radar observer. 11.480 Section 11.480 Shipping COAST... ENDORSEMENTS Professional Requirements for Deck Officers § 11.480 Radar observer. (a) This section contains the requirements that an applicant must meet to qualify as a radar observer. (Part 15 of this chapter specifies...