These are representative sample records from Science.gov related to your search topic.
For comprehensive and current results, perform a real-time search at Science.gov.
1

Unattended radar station design for dewline application  

Microsoft Academic Search

This report examines the feasibility of implementing and maintaining a string of Unattended Radar Stations in the Arctic. The study is conceptual relative to design, installation, operation, maintenance, and support of Unattended Stations and attendant problems such as security, reliability, maintainability, availability, and life cycle cost. Cost Drivers are identified and potential solution alternatives with recommendations presented. The conclusion is

W. E. Abriel; S. E. Bell; J. R. Golden; J. T. Gorham; R. M. Johnson; E. J. Gersten

1978-01-01

2

Four Station Interferometric Radar Observations of Mars  

NASA Technical Reports Server (NTRS)

Planetary targets have been observed with radar since the late 1950s when it was first used for ranging experiments with the Moon. As telescope size and power increased, it became possible to observe more distant targets (Venus, Mars, and the outer satellites). Inherent to radar observations is the uncertainty as to the source of the reflection, there being two points where range and Doppler rings intersect on a sphere. The use of interferometric methods, first used on the moon with two stations and later on Venus and Mars, solved this problem. We extend the method through the addition of a fourth receiving telescope (thus doubling the number of projected baselines) and integration of the newly available Mars Orbiter Laser Altimeter (MOLA) topographic datasets.

Larsen, K. W.; Jurgens, R. F.; Arvidson, R. E.; Slade, M. A.; Haldemann, A. F.

2002-01-01

3

Unattended radar station design for DEWLine application, volume 2  

Microsoft Academic Search

This report examines the feasibility of implementing and maintaining a string of Unattended Radar Stations in the Arctic. The study is conceptual relative to design, installation, operation, maintenance, and support of Unattended Stations and attendant problems such as security, reliability, maintainability, availability, and life cycle cost. Cost Drivers are identified and potential solution alternatives with recommendations presented. The conclusion is

W. E. Abriel; S. E. Bells; E. J. Gersten; R. M. Johnson; D. J. Murrow

1978-01-01

4

Location plan for Signal Corps Radar (S.C.R.) 296 Station 5, ...  

Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

Location plan for Signal Corps Radar (S.C.R.) 296 Station 5, October 8, 1943 - Fort Barry, Signal Corps Radar 296, Station 5, Transmitter Building Foundation, Point Bonita, Marin Headlands, Sausalito, Marin County, CA

5

2-D inner-shelf current observations from a single VHF WEllen RAdar (WERA) station  

USGS Publications Warehouse

The majority of High Frequency (HF) radars used worldwide operate at medium to high frequencies (8 to 30 MHz) providing spatial resolutions ranging from 3 to 1.5 km and ranges from 150 to 50 km. This paper presents results from the deployment of a single Very High Frequency (VHF, 48 MHz) WEllen RAdar (WERA) radar with spatial resolution of 150 m and range 10-15 km, used in the nearshore off Cape Hatteras, NC, USA. It consisted of a linear array of 12 antennas operating in beam forming mode. Radial velocities were estimated from radar backscatter for a variety of wind and nearshore wave conditions. A methodology similar to that used for converting acoustically derived beam velocities to an orthogonal system is presented for obtaining 2-D current fields from a single station. The accuracy of the VHF radar-derived radial velocities is examined using a new statistical technique that evaluates the system over the range of measured velocities. The VHF radar velocities showed a bias of 3 to 7 cm/s over the experimental period explainable by the differences in radar penetration and in-situ measurement height. The 2-D current field shows good agreement with the in-situ measurements. Deviations and inaccuracies are well explained by the geometric dilution analysis. ?? 2011 IEEE.

Voulgaris, G.; Kumar, N.; Gurgel, K.-W.; Warner, J.C.; List, J.H.

2011-01-01

6

View of Signal Corps Radar (S.C.R.) 296 Station 5 Transmitter ...  

Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

View of Signal Corps Radar (S.C.R.) 296 Station 5 Transmitter Building foundation, showing Fire Control Stations (Buildings 621 and 622) and concrete stairway (top left) camera facing southwest - Fort Barry, Signal Corps Radar 296, Station 5, Transmitter Building Foundation, Point Bonita, Marin Headlands, Sausalito, Marin County, CA

7

Topography adjacent to Signal Corps Radar (S.C.R.) 296 Station 5, ...  

Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

Topography adjacent to Signal Corps Radar (S.C.R.) 296 Station 5, showing conditions before construction, May 28, 1943, this drawing shows the Bonita Ridge access road retaining wall and general conditions at Bonita Ridge before the construction of Signal Corps Radar (S.C.R.) 296 Station 5 - Fort Barry, Signal Corps Radar 296, Station 5, Transmitter Building Foundation, Point Bonita, Marin Headlands, Sausalito, Marin County, CA

8

View looking down on Signcal Corps Radar (S.C.R.) 296 Station ...  

Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

View looking down on Signcal Corps Radar (S.C.R.) 296 Station 5 Transmitter Building foundation from ridge, camera facing south - Fort Barry, Signal Corps Radar 296, Station 5, Transmitter Building Foundation, Point Bonita, Marin Headlands, Sausalito, Marin County, CA

9

Unattended radar station design for DEWLine application, volume 1. Executive summary  

Microsoft Academic Search

The Executive Summary is a very short synopsis of the 'Unattended Radar Station Design Application' study to investigate the Feasibility of utilizing a string of Unattended Radars in the Arctic. The study is conceptual relative to design, installation, operation, maintenance and support of Unattended Stations and attendant problems such as security, reliability, maintainability, availability and life cycle cost. Cost drivers

E. J. Gersten; W. E. Abriel; S. E. Bell; J. R. Golden; J. T. Gorham

1978-01-01

10

An LPI radar model for ECCM evaluation  

Microsoft Academic Search

A radar model with designed LPI-ECCM characteristics is considered. It is emphasized that both of these functions have to be examined together to evaluate the value added function of low intercept along with the ECCM features of the system. Beneficial results are indicated in the decision making for radar designers who are confronted with the implementation of structured ECCM in

A. K. Subramanian

1986-01-01

11

Performance evaluations of Frequency Diversity Radar system  

Microsoft Academic Search

Frequency diversity radar combines two or more conventional transceivers through a common antenna, in a multiplex arrangement on the same RF transmission channel. It significantly improves radar detection performance and reduces false alarms under adverse weather conditions, here in case of normal distributed background clutter. Evaluations about advantages between different algorithms are discussed.

Valentina Ravenni

2007-01-01

12

Remote sensing of precipitation by weather radar system at space station  

Microsoft Academic Search

A space station is considered as the ideal vehicle for a spaceborne weather radar, in virtue of its ability to accomodate an exceptionally large aperture X-band antenna and supply the power levels required for adequate operation. The space station envisioned will orbit at an altitude of 500 km, and can be developed in two distinct stages. The first stage will

K. Okamoto

1983-01-01

13

Science program for an imaging radar receiving station in Alaska. Report of the science working group  

NASA Technical Reports Server (NTRS)

It is argued that there would be broad scientific benefit in establishing in Alaska an imaging radar receiving station that would collect data from the European Space Agency's Remote Sensing Satellite, ERS-1. This station would acquire imagery of the ice cover from the American territorial waters of the Beaufort, Chukchi, and Bering Seas. This station, in conjunction with similar stations proposed for Kiruna, Sweden, and Prince Albert, Canada would provide synoptic coverage of nearly the entire Arctic. The value of such coverage to aspects of oceanography, geology, glaciology, and botany is considered.

1983-01-01

14

The determination of time-stationary two-dimensional convection patterns with single-station radars  

NASA Technical Reports Server (NTRS)

A critical examination of the accuracy of ionospheric vector velocity determinations, using realistic modeled flow patterns that are time-stationary but not spatially uniform, is presented. Under certain circumstances the actual and inferred flow fields are found to exhibit considerable discrepancy, sometimes not even agreeing in the sense of flow direction. It is shown that the natural curvature present in ionospheric convection on varying spatial scales can introduce significant error in the velocity estimate, particularly when the radius of curvature of the flow structure is less than or equal to the radar range to the scattering volume. It is argued that the ionospheric convection should be measured by bidirectional or multidirectional observations of a common ionospheric volume and that a synthesis of coherent and incoherent radar observations from different sites is preferable to multidirectional single-station observations using either radar alone.

Freeman, M. P.; Ruohoniemi, J. M.; Greenwald, R. A.

1991-01-01

15

Orbit Accuracy Requirement for ABYSS: The Space Station Radar Altimeter to Map Global Bathymetry  

Microsoft Academic Search

The Altimetric Bathymetry from Surface Slopes (ABYSS), which is the proposed science payload on the International Space Station (ISS), is a Johns Hopkins University Applied Physics Laboratory-developed flight-proved delay-Doppler phase-monopulse radar altimeter capable of measuring ocean surface slope in the 6-200-km half-wavelength frequency band range with an accuracy of 0.5 mu rad , with autonomous gimbal control to compensate for

C. K. Shum; P. A. M. Abusali; Chung-Yen Kuo; Hyongki Lee; James Ogle; R. Keith Raney; John C. Ries; Walter H. F. Smith; Drazen Svehla; Changyin Zhao

2009-01-01

16

Evolution of measurement techniques in the field of antennas for radars and earth stations  

Microsoft Academic Search

The paper examines the development of graphic recorders and of minicomputer-controlled equipment for the measurement of the radiation patterns of microwave antennas. Three examples of applications of these new measurement techniques are given: (1) a phase-array antenna for use in a radar configuration, (2) a Cassegrain antenna for use in an earth station for space communications, and (3) a beam-waveguide

B. Daveau; S. Drabowitch; M. H. Carpentier

1977-01-01

17

Evaluation of Various Radar Data Quality Control Algorithms Based on Accumulated Radar Rainfall Statistics  

NASA Technical Reports Server (NTRS)

The primary function of the TRMM Ground Validation (GV) Program is to create GV rainfall products that provide basic validation of satellite-derived precipitation measurements for select primary sites. A fundamental and extremely important step in creating high-quality GV products is radar data quality control. Quality control (QC) processing of TRMM GV radar data is based on some automated procedures, but the current QC algorithm is not fully operational and requires significant human interaction to assure satisfactory results. Moreover, the TRMM GV QC algorithm, even with continuous manual tuning, still can not completely remove all types of spurious echoes. In an attempt to improve the current operational radar data QC procedures of the TRMM GV effort, an intercomparison of several QC algorithms has been conducted. This presentation will demonstrate how various radar data QC algorithms affect accumulated radar rainfall products. In all, six different QC algorithms will be applied to two months of WSR-88D radar data from Melbourne, Florida. Daily, five-day, and monthly accumulated radar rainfall maps will be produced for each quality-controlled data set. The QC algorithms will be evaluated and compared based on their ability to remove spurious echoes without removing significant precipitation. Strengths and weaknesses of each algorithm will be assessed based on, their abilit to mitigate both erroneous additions and reductions in rainfall accumulation from spurious echo contamination and true precipitation removal, respectively. Contamination from individual spurious echo categories will be quantified to further diagnose the abilities of each radar QC algorithm. Finally, a cost-benefit analysis will be conducted to determine if a more automated QC algorithm is a viable alternative to the current, labor-intensive QC algorithm employed by TRMM GV.

Robinson, Michael; Steiner, Matthias; Wolff, David B.; Ferrier, Brad S.; Kessinger, Cathy; Einaudi, Franco (Technical Monitor)

2000-01-01

18

Shuttle rendezvous radar performance evaluation and simulation  

NASA Technical Reports Server (NTRS)

The US Space Shuttle's Ku-band system was specifically designed for communications and tracking functions which are required during on-orbit operations with other spacecraft. Operating modes permit search and acquisition to be accomplished by computer designation or under manual control by the astronaut. Ku-band system data channels drive on-board dedicated displays and are incorporated into state vector updates by Shuttle guidance and navigation computers. Radar-cross-section estimates were used in computer simulations to predict the range at which radar detection and acquisition can be expected. Validity of the simulationi model and the radar design and performance were verified by flight tests on the White Sands test range. It is concluded that results of the testing established confidence in the capability of the system to provide the relative position and rate information which is needed for Shuttle work involving other spacecraft.

Griffin, John W.; Lindberg, Andrew C.; Ahn, Thomas B.; Harton, Paul L.

1988-01-01

19

Road evaluation with ground penetrating radar  

Microsoft Academic Search

This paper provides a status report of the Ground Penetrating Radar (GPR) highway applications based on studies conducted in both Scandinavia and the USA. After several years of research local transportation agencies are now beginning to implement GPR technology for both network and project level surveys. This paper summarizes the principles of operation of both ground-coupled and air-launched GPR systems

Timo Saarenketo; Tom Scullion

2000-01-01

20

Pavement thickness evaluation using ground penetrating radar  

Microsoft Academic Search

Accurate knowledge of pavement thickness is important information to have both at a network and project level. This information aids in pavement management and design. Much of the time this information is missing, out of date, or unknown for highway sections. Current technologies for determining pavement thickness are core drilling, falling weight deflectometer (FWD), and ground penetrating radar (GPR). Core

Dwayne Arthur Harris

2006-01-01

21

Intermediate-photovoltaic-system application experiment: operational performance report. Volume 2 for Mt. Laguna radar station, Mt. Laguna, CA  

SciTech Connect

For the months of January through July 1981, the following data are listed and graphed for a radar station in California: daily and monthly energy yield; daily and monthly insolation; array efficiency; graphs of energy production vs. power level and vs. voltage; monthly power conditioner input, output, and efficiency; heating and cooling loads and wind and temperature data. (LEW)

Not Available

1981-09-01

22

Fiber-distributed Ultra-wideband noise radar with steerable power spectrum and colorless base station.  

PubMed

A fiber-distributed Ultra-wideband (UWB) noise radar was achieved, which consists of a chaotic UWB noise source based on optoelectronic oscillator (OEO), a fiber-distributed transmission link, a colorless base station (BS), and a cross-correlation processing module. Due to a polarization modulation based microwave photonic filter and an electrical UWB pass-band filter embedded in the feedback loop of the OEO, the power spectrum of chaotic UWB signal could be shaped and notch-filtered to avoid the spectrum-overlay-induced interference to the narrow band signals. Meanwhile, the wavelength-reusing could be implemented in the BS by means of the distributed polarization modulation-to-intensity modulation conversion. The experimental comparison for range finding was carried out as the chaotic UWB signal was notch-filtered at 5.2 GHz and 7.8 GHz or not. Measured results indicate that space resolution with cm-level could be realized after 3-km fiber transmission thanks to the excellent self-correlation property of the UWB noise signal provided by the OEO. The performance deterioration of the radar raised by the energy loss of the notch-filtered noise signal was negligible. PMID:24663829

Zheng, Jianyu; Wang, Hui; Fu, Jianbin; Wei, Li; Pan, Shilong; Wang, Lixian; Liu, Jianguo; Zhu, Ninghua

2014-03-10

23

The Argentine Ionospheric Radar Experiment Station (AIRES): Science, Plans, and Status  

NASA Astrophysics Data System (ADS)

The planned relocation of the northward-looking face of the Resolute Bay Incoherent Scatter Radar (RISR-N) to Chascomus, Argentina, establishing the Argentine Ionospheric Radar Experiment Station (AIRES), is scheduled to begin in the boreal summer of 2014 or 2015, with first light by 2016. Located conjugate to the Arecibo Observatory, AIRES will enable a comprehensive view of mid-latitude aeronomy with its ability to operate continuously and remotely and to steer over a wide field-of-view (+/- 25 degrees from boresight) on a pulse-to-pulse basis. AIRES will address outstanding questions about the fundamental nature of mid-latitude electrodynamics, especially as related to inter-hemispheric conjugacy, the coupling between the mid-latitude E and F regions, the response of the mid-latitude ionosphere to geomagnetic activity, and the nature of ionospheric variability at mid-latitudes. AIRES will have the ability to probe perpendicular to the magnetic field line to test and address fundamental properties of incoherent scattering in a magnetized plasma as well as to investigate naturally occurring mid-latitude instabilities that have never been probed at such scales. We will discuss these exciting scientific topics along with the status of and plans for the proposed move.

Nicolls, M. J.; Janches, D.; Brunini, C.; Gularte, E.; Hysell, D. L.; Martinis, C. R.

2013-05-01

24

MST radar and radiosonde observations of inertia-gravity wave climatology over tropical stations: Source mechanisms  

NASA Astrophysics Data System (ADS)

In this paper, possible source mechanisms for the generation of inertia-gravity wave activity over a tropical station, Gadanki (13.5°N, 79.2°E), are investigated using a long-term data set obtained from Indian mesosphere-stratosphere-troposphere (MST) radar. The gravity wave analysis is carried out in two different height regions, namely, 4-14 and 17-21 km, representing the troposphere and lower stratosphere, respectively. Clear seasonal variation in the wave activity has been noticed in both regions with maximum (minimum) in winter (monsoon) in the troposphere. But it is maximum (minimum) in monsoon (winter) in the lower stratosphere. This kind of winter enhancement in the wave activity is not expected at this tropical site. Interestingly, the contribution of the meridional component to the total kinetic energy (Ek) is found to be dominant rather than zonal in the winter except during 1997-1998. Topography seems to be the likely source for the generation of wave activity during winter in the troposphere. The influence of this topography is also reflected in the nearby radiosonde stations, Chennai (13.0°N, 80.2°E) and Bangalore (12.9°N, 77.6°E), which are located at radial distances of 128 and 190 km from Gadanki, respectively. Although two major sources, that is, strong convection and wind shears, coexist during monsoon season, strong wind shear seems to be the likely source of the wave activity. Large interannual variability in the wave activity is also noticed from 9 years (September 1995 to December 2004) of data. Good consistency is observed between the wave activities observed from nearby (Chennai) radiosonde and Gadanki MST radar data sets. Making use of a network of radiosonde observations operated by India Meteorological Department, we also present the latitudinal variation of wave activity. From the latitudinal variations it is observed that large-scale systems can also influence the generation of the gravity wave activity over larger areas.

Venkat Ratnam, M.; Narendra Babu, A.; Jagannadha Rao, V. V. M.; Vijaya Bhaskar Rao, S.; Narayana Rao, D.

2008-04-01

25

PAVEMENT OVERLAY THICKNESS EVALUATION USING GROUND PENTRATING RADAR (GPR)  

E-print Network

PAVEMENT OVERLAY THICKNESS EVALUATION USING GROUND PENTRATING RADAR (GPR) Dwayne Harris, M.Sc., PG University, West Lafayette, IN 47907 jshan@ecn.purdue.edu ABSTRACT Accurate knowledge of pavement thickness is important information to have both at a network and project level. This information aids in pavement

Shan, Jie

26

Rendezvous radar modification and evaluation. [for space shuttles  

NASA Technical Reports Server (NTRS)

The purpose of this effort was to continue the implementation and evaluation of the changes necessary to add the non-cooperative mode capability with frequency diversity and a doppler filter bank to the Apollo Rendezvous Radar while retaining the cooperative mode capability.

1976-01-01

27

Evaluating and managing Cold War era historic properties : the cultural significance of U.S. Air Force defensive radar systems.  

SciTech Connect

Aircraft and later missile radar early warning stations played an important role in the Cold War. They are associated with important technological, social, political, and military themes of the Cold War and are worthy of preservation. The scope and scale of these systems make physical preservation impractical, but the U.S. Air Force program of historical evaluation and documentation of these systems will provide valuable information to future generations studying this historic period.

Whorton, M.

1999-01-20

28

First observations of ionospheric irregularities and flows over the south geomagnetic pole from the SuperDARN HF radar at McMurdo Station, Antarctica  

NASA Astrophysics Data System (ADS)

In February 2010 a new SuperDARN radar began operation at McMurdo Station, Antarctica. The radar’s orientation places the south geomagnetic pole near the center of the field of view at about 1200 km range. The radar is the highest latitude radar of the SuperDARN network, both geographically and geomagnetically, and the observations have a different character than those of the auroral zone radars. One particular feature of note is the high incidence of observed backscatter. When ionospheric altitudes are above the solar shadow height the incidence of observation is greater than 80% for a large portion of the radar field of view. This is indicative of the near constant presence of field-aligned density irregularities in the polar cap. This paper presents statistics of the observations along with estimates of the convection velocity maps. Prevailing IMF and solar wind velocity were taken from the Omni database and compared to the observed flows.

Bristow, W. A.; Parris, R. T.; Spaleta, J.

2010-12-01

29

Terminal Doppler weather radar operational test and evaluation, Orlando 1990  

NASA Astrophysics Data System (ADS)

Lincoln Laboratory conducted an evaluation of the Federal Aviation Administration (FAA) Terminal Doppler Weather Radar (TDWR) system in Orlando, Florida during the summer of 1990. In previous years, evaluations have been conducted at airports in Kansas City, MO (1989) and Denver, CO (1988). Since the testing at the Kansas City International Airport, the radar was modified to operate in C-band, which is the intended frequency band for the production TDWR systems. The objectives of the 1990 evaluation period were to evaluate TDWR system performance in detecting low-altitude wind shear, specifically microbursts and gust fronts, at the Orlando International Airport and in the surrounding area; to refine the system's wind shear detection capabilities; and to evaluate elements of the system developed by the contractor, which were new for the C-band system and therefore not available for evaluation in previous years. Some performance comparisons are made among results from the vastly different weather environments of Denver, Kansas City, and Orlando. Statistics are presented and discussed for the performance of the system in detecting and predicting microbursts and gust fronts. A significant use of the prediction capability is its potential use for air traffic control (ATC) personnel to plan airport operations when hazardous weather is predicted. Issues such as low velocity ground clutter (from tree leaves, road traffic, and dense urban areas) that affect prediction performance are discussed along with possible software modification to account for them.

Bernella, David M.

1991-04-01

30

Simultaneous PMC and PMSE observations with a ground-basedlidar and SuperDARN HF radar over Syowa Station, Antarctica  

NASA Astrophysics Data System (ADS)

A Rayleigh-Raman lidar system had been installed by the 52nd JapaneseAntarctic Research Expedition on February, 2011 at Syowa Station Antarctica(69.0°S, 39.5°E). Polar Mesospheric Cloud (PMC) was detected by the lidar at22:30UT (+3hr for LT) on Feb 4th, 2011, the first day of a routineoperation. This event is the first time to detect PMC over Syowa Station bya lidar. In the same night, SuperDARN HF radar with oblique incidence beamsalso detected Polar Mesosphere Summer Echoes (PMSEs) during 21:30UT to23:00UT. Although these signals were detected at different times andlocations, PMC motion estimated using horizontal wind velocities obtained bya collocated MF radar strongly suggests that they have a common origin (i.e.ice particle). We consider that this event occurred in the end of PMCactivity period at Syowa Station in the austral summer season (2010-2011),since the lidar did not detected any PMC signals on other days in February,2011. This is consistent with satellite-born PMC observations by AIM/CIPSand atmospheric temperature observations by AURA/MLS instruments.

Suzuki, Hidehiko; Nakamura, Takuji; Tsutsumi, Masaki; Kawahara, Takuya D.; Ogawa, Tadahiko; Tomikawa, Yoshihiro; Ejiri, Mitsumu K.; Sessai Yukimatu, Akira; Abo, Makoto

2012-07-01

31

Intermediate photovoltaic system application experiment operational performance report. Volume 4 for Mt. Laguna Radar Station, Mt. Laguna, CA  

SciTech Connect

Performance data are given for a radar station in California for the months of September and October, 1981. Monthly and daily energy production, monthly and daily incident radiation totals, and monthly and daily array field efficiencies are presented. Energy production is graphed as a function of power level, voltage, cell temperature, and hour of the day for each month. Power conditioner input, output, and efficiency are given for each month. The capacity factor is given. The daily availability is graphed for each month. Monthly insolation data, heating and cooling load, ambient temperature average for the month, wind speed and direction data, hourly cell temperature, ambient temperature, and hourly insolation data are presented. (LEW)

Not Available

1981-12-01

32

Evaluation of TRMM Ground-Validation Radar-Rain Errors Using Rain Gauge Measurements  

NASA Technical Reports Server (NTRS)

Ground-validation (GV) radar-rain products are often utilized for validation of the Tropical Rainfall Measuring Mission (TRMM) spaced-based rain estimates, and hence, quantitative evaluation of the GV radar-rain product error characteristics is vital. This study uses quality-controlled gauge data to compare with TRMM GV radar rain rates in an effort to provide such error characteristics. The results show that significant differences of concurrent radar-gauge rain rates exist at various time scales ranging from 5 min to 1 day, despite lower overall long-term bias. However, the differences between the radar area-averaged rain rates and gauge point rain rates cannot be explained as due to radar error only. The error variance separation method is adapted to partition the variance of radar-gauge differences into the gauge area-point error variance and radar rain estimation error variance. The results provide relatively reliable quantitative uncertainty evaluation of TRMM GV radar rain estimates at various times scales, and are helpful to better understand the differences between measured radar and gauge rain rates. It is envisaged that this study will contribute to better utilization of GV radar rain products to validate versatile spaced-based rain estimates from TRMM, as well as the proposed Global Precipitation Measurement, and other satellites.

Wang, Jianxin; Wolff, David B.

2009-01-01

33

Multi-Watershed Evaluation of WSR-88D (NEXRAD) Radar-Precipitation Products  

Microsoft Academic Search

The National Weather Service (NWS) operates a network of Doppler-radar stations (NEXRAD, WSR- 88D) that produce hourly-rainfall estimates, at approximately 4-km2 resolution, with nominal coverage of 96% of the conterminous US. Utilization of these data by the NWS is primarily for the detection and modeling of extreme-weather events. Radar- precipitation estimates were compared with gauge estimates at six ARS watershed-research

Stuart Hardegree; Steven Van Vactor; Kathleen Healy; Carlos Alonso; James Bonta; David Bosch; Dwight Fisher; Daren Harmel; Jean Steiner; Michael Van Liew

34

Fabrication of Radar Absorbing Structure and Evaluation of Radar Cross Section: Case Study of Hybrid Shells  

Microsoft Academic Search

Fiber-reinforced composite materials have outstanding mechanical and electrical properties; their applications have been expanded to commercial products as well as military components. Using composite materials, researchers have studied the radar absorbing, or `stealth' technology. In this research, to develop the radar absorbing structure (RAS), hybrid composite materials are fabricated into three-dimensional `C' and `U' shape shells. A series of experiments

Woo-Kyun Jung; Sung-Hoon Ahn; Bierng-Chearl Ahn; Seoung-Bae Park; Myung-Shik Won

2007-01-01

35

Determination of U, V, and W from single station Doppler radar radial velocities  

NASA Technical Reports Server (NTRS)

The ST/MST (stratosphere troposphere/mesosphere stratosphere troposphere) clear air Doppler radar, or wind profiler, is an important tool in observational meteorology because of its capability to remote observe dynamic parameters of the atmosphere. There are difficulties in transforming the observed radial velocities into meteorological wind components. How this problem has been treated in the past is reviewed, and some of the analysis is recast to a form more suited to the high diagnostic abilities of a number of fixed beam configurations with reference to a linear wind field. The results, in conjunction with other works which treats problems such as the effects of finite sample volumes in the presence of nonhomogeneous atmospheric reflectivity, have implications important to the design of both individual MST/ST radars and MST/ST radar networks. The key parameters to uncoupling terms in the scaling equations are w sub x and w sub y. Whenever the stratiform condition, which states that these two parameters are negligible, is satisfied, a five beam ST radar may determine unbiased values of u, v, and w for sample volumes directly above the radar. The divergence and partial deformation of the flow may also be determined. Three beam systems can determine w and w sub z, but are unable to obtain u and v wind components uncontaminated by vertical sheer terms, even when the stratiform condition is satisfied.

Clark, W. L.; Green, J. L.; Warnock, J. M.

1986-01-01

36

Simultaneous PMC and PMSE observations with a ground-based lidar and SuperDARN HF radar at Syowa Station, Antarctica  

NASA Astrophysics Data System (ADS)

A Rayleigh-Raman lidar system was installed in January 2011 at Syowa Station, Antarctica (69.0° S, 39.6° E). Polar mesospheric clouds (PMCs) were detected by lidar at around 22:30 UTC (LT -3 h) on 4 February 2011, which was the first day of observation. This was the first detection of PMCs over Syowa Station by lidar. On the same day, a Super Dual Auroral Radar Network (SuperDARN) HF radar with oblique-incidence beams detected polar mesospheric summer echoes (PMSE) between 21:30 and 23:00 UTC. This event is regarded as the last PMC activity around Syowa Station during the austral summer season (2010-2011), since no other PMC signals were detected by lidar in February 2011. This is consistent with results of PMC and mesopause temperature observations by satellite-born instruments of AIM (Aeronomy of Ice in the Mesosphere)/CIPS (Cloud Imaging and Particle Size) and AURA/MLS (Microwave Limb Sounder) and horizontal wind measurements taken by a separate MF radar. Doppler velocity of PMSE observed by the HF radar showed motion toward Syowa Station (westward). This westward motion is consistent with the wind velocities obtained by the MF radar. However, the PMSE region showed horizontal motion from a north-to-south direction during the PMC event. This event indicates that the apparent horizontal motion of the PMSE region can deviate from neutral wind directions and observed Doppler velocities.

Suzuki, H.; Nakamura, T.; Ejiri, M. K.; Ogawa, T.; Tsutsumi, M.; Abo, M.; Kawahara, T. D.; Tomikawa, Y.; Yukimatu, A. S.; Sato, N.

2013-10-01

37

Developing tools for digital radar image data evaluation  

NASA Technical Reports Server (NTRS)

The refinement of radar image analysis methods has led to a need for a systems approach to radar image processing software. Developments stimulated through satellite radar are combined with standard image processing techniques to create a user environment to manipulate and analyze airborne and satellite radar images. One aim is to create radar products for the user from the original data to enhance the ease of understanding the contents. The results are called secondary image products and derive from the original digital images. Another aim is to support interactive SAR image analysis. Software methods permit use of a digital height model to create ortho images, synthetic images, stereo-ortho images, radar maps or color combinations of different component products. Efforts are ongoing to integrate individual tools into a combined hardware/software environment for interactive radar image analysis.

Domik, G.; Leberl, F.; Raggam, J.

1986-01-01

38

Technology evaluation for space station atmospheric leakage  

SciTech Connect

A concern in operation of a space station is leakage of atmosphere through seal points and through the walls as a result of damage from particle (space debris and micrometeoroid) impacts. This report describes a concept for a monitoring system to detect atmosphere leakage and locate the leak point. The concept is based on analysis and testing of two basic methods selected from an initial technology survey of potential approaches. 18 refs., 58 figs., 5 tabs.

Lemon, D.K.; Friesel, M.A.; Griffin, J.W.; Skorpik, J.R.; Shepard, C.L.; Antoniak, Z.I.; Kurtz, R.J.

1990-02-01

39

Evaluation of Transmit Diversity in MIMO-Radar Direction Finding  

Microsoft Academic Search

It has been recently shown that multiple-input multiple-output (MIMO) antenna systems have the potential to dramatically improve the performance of communication systems over single antenna systems. Unlike beamforming, which presumes a high correlation between signals either transmitted or received by an array, the MIMO concept exploits the independence between signals at the array elements. In conventional radar, the target's radar

Nikolaus H. Lehmann; Eran Fishler; Alexander M. Haimovich; Rick S. Blum; Dmitry Chizhik; Reinaldo A. Valenzuela

2007-01-01

40

Intermediate photovoltaic system application experiment operational performance report. Volume 3 for Mt. Laguna Radar Station, Mt. Laguna, California  

SciTech Connect

Performance data are given for a photovoltaic power supply at a California radar station for the month of August, 1981. The daily and monthly electric energy production, insolation, and efficiency are given. Energy production is graphed as a function of power level, array field voltage, cell temperature, and hour of the day. The input, output and efficiency of the power conditioner are given. The daily system availability is graphed. Heating and cooling loads, average ambient temperature, and average wind speed are given for the month, and cell temperature, ambient temperature, wind speed and insolation are graphed as a function of the hour of the day. Also the number of occurrences of winds at different azimuth angles is graphed. (LEW)

Not Available

1981-10-01

41

Intermediate photovoltaic system application experiment operational performance report. Volume 5 for Mt. Laguna Radar Station, Mt. Laguna, CA  

SciTech Connect

For the month of November, 1981, performance data are given for a photovoltaic power supply at a California radar station. Data given include: daily and monthly electric energy production; daily and monthly solar energy incident; daily and monthly array efficiency; electric energy production vs. power level, voltage, cell temperature, and hour of the day; power conditioning system input, output, and efficiency; daily and monthly electric energy provided by the photovoltaic system to the load; photovoltaic system efficiency; capacity factor; system availability; heating and cooling degree days; daily and hourly insolation, ambient temperature, and wind speed; wind direction distribution; hourly cell temperature; number of freeze-thaw cycles; and system efficiency. Also included is a brief narrative section to provide information not easily included in the computer-generated modules. (LEW)

Not Available

1981-12-01

42

An Aboriginal Perspective on the Remediation of Mid-Canada Radar Line Sites in the Subarctic: A Partnership Evaluation  

Microsoft Academic Search

The Mid-Canada Radar Line (MCRL) was built during the 1950s in response to the perceived threat of a Soviet nuclear attack over the Arctic. The MCRL was an entirely Canadian project, consisting of 98 radar stations that stretched across the 55th parallel from Dawson Creek, British Columbia, to Hopedale, Labrador. Seventeen MCRL sites were located in Ontario, and by 1965,

BRANDY SISTILI; MIKE METATAWABIN; GUY IANNUCCI; LEONARD J. S. TSUJI

2006-01-01

43

Angkor site monitoring and evaluation by radar remote sensing  

NASA Astrophysics Data System (ADS)

Angkor, in the northern province of Siem Reap, Cambodia, is one of the most important world heritage sites of Southeast Asia. Seasonal flood and ground sinking are two representative hazards in Angkor site. Synthetic Aperture Radar (SAR) remote sensing has played an important role for the Angkor site monitoring and management. In this study, 46 scenes of TerraSAR data acquired in the span of February, 2011 to December, 2013 were used for the time series analysis and hazard evaluation; that is, two-fold classification for flood area extracting and Multi-Temporal SAR Interferometry (MT-InSAR) for ground subsidence monitoring. For the flood investigation, the original Single Look Complex (SLC) TerraSAR-X data were transferred into amplitude images. Water features in dry and flood seasons were firstly extracted using a proposed mixed-threshold approach based on the backscattering; and then for the correlation analysis between water features and the precipitation in seasonally and annually. Using the MT-InSAR method, the ground subsidence was derived with values ranging from -50 to +12 mm/yr in the observation period of February, 2011 to June, 2013. It is clear that the displacement on the Angkor site was evident, implying the necessity of continuous monitoring.

Chen, Fulong; Jiang, Aihui; Ishwaran, Natarajan

2014-11-01

44

3. VIEW NORTHWEST, height finder radar towers, and radar tower ...  

Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

3. VIEW NORTHWEST, height finder radar towers, and radar tower (unknown function) - Fort Custer Military Reservation, P-67 Radar Station, .25 mile north of Dickman Road, east of Clark Road, Battle Creek, Calhoun County, MI

45

Simultaneous observations of Vertically Pointing Micro Rain Radar (MRR) and Disdrometer over a tropical station Thumba  

NASA Astrophysics Data System (ADS)

The Micro Rain Radar (MRR) and disdrometer (RD-80 model by Distromet Ltd., Switzer-land) was installed at Thumba (8.50N, 76.90E) under Ka band propagation experiment is used extensively to measure the rain rate along with the Raindrop size distribution (DSD) of trop-ical continental rainfall. In this study, simultaneous observations of Micro Rain Radar and disdrometer data collected for 3 years are analyzed to retrieve DSD parameters using gamma distribution for different precipitating systems. First, using the disdrometer data, the rainfall events were separated into convective, transition and stratiform rainfall by an algorithm based on variation of DSD parameters. At the same time, profiler-derived equivalent reflectivity and Doppler velocity from Doppler spectra were used to classify precipitation. Overall agreement between the two instruments is found to be reasonable. A Comparison of the retrieved gamma parameters with disdrometer measurements shows very good agreement. Correlation coefficient of ?=0.95,0.94 and 0.95 for the rain rate, liquid water content and median volume diameter respectively are observed between profiler and disdrometer for the whole observation period. During stratiform regime vertical variability of gamma parameters shows very little variation where as during transition mixed large and small drop spectra are observed. The significance of the present results demonstrates the capability of Ka band in classifying the precipitating systems and shows the spatial and temporal variability of DSD in transition and stratiform rain type.

Nadimpally, Kirankumar; Pk, Kunhikrishnan

46

Performance evaluation and waveform design for MIMO radar   

E-print Network

Multiple-input multiple-output (MIMO) radar has been receiving increasing attention in recent years due to the dramatic advantages offered by MIMO systems in communications. The amount of energy reflected from a common ...

Du, Chaoran

2010-01-01

47

An evaluation of 915-MHz radar wind profiler/RASS by tower and sodar measurements  

NASA Astrophysics Data System (ADS)

The accuracy and precision of the 915-MHz low-atmosphere wind profiler/RASS have been investigated through comparisons with other better-understood instruments such as rawinsonde (Strauch et al., 1987 and May et al., 1989), sodar (Neff and Wilczak, 1993), and tower instruments (Ye et al., 1993). These studies have provided useful information as well as confidence in the performance of this new technology in boundary-layer research and monitoring. However, because the accuracy of the profiler/RASS measurements depends to a large degree on the strength and homogeneity of small-scale turbulence and the amount of moisture in the atmosphere, the performance of the profiler may change significantly from one environment to another. As the radar wind profiler/RASS technology becomes more widely applied to a variety of research applications and moves toward operational wind, temperature, and eventually flux profiling, it is crucial to quantify its performance under different environmental and meteorological conditions. South-central Washington is a semi-arid shrub-steppe environment with an average annual precipitation of only about 15 cm, which is significantly different from the other locations where comparative studies have been conducted. The performance of the RADIAN 915-MHz wind profiler/RASS in such an environment was evaluated using data from standard instruments mounted on a 120-m meteorological tower and a nearby sodar at the Hanford Meteorological Station. The results of this evaluation are presented in this paper.

Zhong, S.; Shaw, W. J.; Hubbe, J. M.

1994-08-01

48

The RADAR Test Methodology: Evaluating a Multi-Task Machine Learning System with Humans in the Loop  

E-print Network

The RADAR Test Methodology: Evaluating a Multi-Task Machine Learning System with Humans in the Loop-HCII-06-102 Abstract The RADAR project involves a collection of machine learning research thrusts the impact of learning when used by a human user. Three conditions (conventional tools, Radar without

49

Lasercom test and evaluation station (LTES) development: an update  

Microsoft Academic Search

Pre-launch integrated system characterization of a lasercom terminal's (LCT's) communications and acquisition\\/tracking subsystems can provide a quantitative evaluation of the terminal and afford a better rigorous assessment of the benefits of any demonstration. The lasercom test and evaluation station developed at NASA\\/JPL is a high quality optical system that possesses the unique capabilities required to provide laboratory measurements of the

Abhijit Biswas; Keith E. Wilson; Norman A. Page

1998-01-01

50

2. VIEW SOUTHWEST, prime search radar tower, height finder radar ...  

Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

2. VIEW SOUTHWEST, prime search radar tower, height finder radar towards, height finder radar towers, and radar tower (unknown function) - Fort Custer Military Reservation, P-67 Radar Station, .25 mile north of Dickman Road, east of Clark Road, Battle Creek, Calhoun County, MI

51

A Fuzzy Comprehensive Evaluation Method of Maintenance Quality Based on Improved Radar Chart  

Microsoft Academic Search

There are some problems in comprehensive evaluation of maintenance quality. For example, the evaluation is invisible, the importance of each factor is unclear, and especially the appraisal results ordering of several appraisal objects with similar maintenance quality performance is difficult. For this, this paper presents an improved radar chart model and studies the fuzzy comprehensive evaluation of maintenance quality based

Liu Hongliang; Liu Anxin; Zhang Bin; Zhang Tiefu; Zhang Xin

2008-01-01

52

Rough set theory based on genetic algorithm in radar equipment damage evaluation method  

Microsoft Academic Search

Damage evaluation is a very important work to effect-based operation. In the paper, a damage evaluation method for radar equipment by using rough set theory is presented, the principle of rough set theory is introduced, a damage evaluation procedure based on reduction at tributes with discrimination matrix is given, and applying the approach, an example is also given to realize

Pan Wei; Xia Huabing; San Ye

2008-01-01

53

Engineering Evaluation and Calibration of Iowa X-Band Polarimetric Radars  

NASA Astrophysics Data System (ADS)

The detailed knowledge and extensive monitoring of the precipitation structure at smaller temporal and spatial scales are critical to the scientific understanding of the hydrological cycle and associated processes. The hydrometeorological information at smaller scales is usually not available with the current weather radar systems which operate at lower frequencies such as S- and C-bands. This has necessitated the use of higher frequency (X-band) weather radars to obtain rainfall data at improved accuracy and near-ground coverage at shorter ranges. The University of Iowa has acquired four scanning, mobile, X-band polarimetric (XPOL) Doppler weather radars with the objective of accurate quantitative estimation of the rainfall at a high temporal and spatial resolution. These four XPOL radars will be deployed for short-range multiple-view observations of the same weather event thus reducing uncertainties introduced by the signal attenuation and instrument-wide errors. This network of radars is intended to serve multiple areas of hydrological research including uncertainty modelling, urban hydrology, flood and flash-flood prediction, and soil erosion. Compared to the existing networks of X-band weather radars, several features place the XPOL radar systems in a distinctly attractive position for the scientific community. Firstly, the Iowa XPOL radars are mounted on mobile platforms, and consequently, are deployed at any location of interest. Secondly, these systems are capable of acquiring data at a programmable range sampling which can be as low as 30m. Thirdly, the use of dual-polarization provides additional information about the hydrometeors at smaller scales. The radars can operate in staggered PRT and dual-PRF pulsing modes and can process data using either standard pulse-pair or spectral mode techniques. The Iowa XPOL radar systems are currently being evaluated and calibrated to participate in their first field campaigns in the upcoming NASA IFloodS (Iowa Flood Studies) field experiment during Spring-Summer 2013. This paper will present results obtained through extensive system-level tests conducted on the transmitter-receiver unit and carried out largely in conformity with the NASA Global Precipitation Measurement - Ground Validation (GPM-GV) standards. This includes scrutinizing the temporal stability of the some of the performance parameters. The radar systems will also be calibrated against existing standard weather radar systems during the campaign. The experimental observations of the individual XPOL radar units with respect to the reference ground and weather targets will also be analysed. The paper will also present an inter-XPOL comparison of the findings of these experiments.

Vijay Mishra, Kumar; Kruger, Anton; Krajewski, Witold

2013-04-01

54

Shuttle orbiter Ku-band radar/communications system design evaluation. Deliverable test equipment evaluation  

NASA Technical Reports Server (NTRS)

The Ku-band test equipment, known as the Deliverable System Test equipment (DSTE), is reviewed and evaluated. The DSTE is semiautomated and computer programs were generated for 14 communication mode tests and 17 radar mode tests. The 31 test modules provide a good cross section of tests with which to exercise the Ku-band system; however, it is very limited when being used to verify Ku-band system performance. More detailed test descriptions are needed, and a major area of concern is the DSTE sell-off procedure which is inadequate.

Maronde, R. G.

1980-01-01

55

Evaluating Pseudorange Multipath at CGPS Stations Spanning Mexico  

NASA Astrophysics Data System (ADS)

A research study was conducted in order to quantify and analyze the amount of pseudorange multipath at continuous Global Positioning System (CGPS) stations spanning Mexico. These CGPS stations are administered by a variety of organizations, including government agencies and public universities, and thus serve a wide range of positioning needs. Despite the diversity of the networks and their intended audiences, a core function of all of the networks is to provide a stable framework for high-precision positioning in support of diverse commercial and scientific applications. CGPS data from a large number of publicly available networks located in Mexico were studied. These include the RGNA (National Active Geodetic Network) administered by INEGI (National Institute of Statistics and Geography), the PBO network (Plate Boundary Observatory) funded by the National Science Foundation (NSF) and operated by UNAVCO (University NAVstar Consortium), the Southern California Integrated GPS Network (SCIGN), which is a collaboration effort of the United States Geological Survey (USGS), Scripps Institution of Oceanography and the Jet Propulsion Laboratory (JPL), the UNAM network, operated by the National Seismological System (SSN) and the Institute of Geophysics of the National Autonomous University of Mexico (UNAM), the Suominet Geodetic Network (SNG) and the CORS (Continuously Operating Reference Station) network, operated by the Federal Aviation Administration (FAA). A total of 54 CGPS stations were evaluated, where dual-frequency geodetic-grade receivers collected GPS data continuously during the period from 1994 to 2013. It is usually assumed that despite carefully selected locations, all CGPS stations are to some extent, affected by the presence of signal multipath. In addition, the geographic distribution of stations provides a nation-wide access to the International Terrestrial Reference Frame (ITRF). For real-time kinematic (RTK) and rapid static applications that depend on the pseudo-range observable, the accuracy with which a roaming user may locate their assets with respect to the ITRF may be limited by site-specific multipath. The issue is particularly critical for users depending on pseudorange measurements for 'real-time' (or 'near-real-time') kinematic GPS positioning, where ambiguity resolution is a critical step. Therefore, to identify the most and the least affected GPS stations we analyzed the averaged daily root mean square pseudorange multipath variations (MP1-RMS and MP2-RMS) for all feasible satellites tracked by the CGPS networks. We investigated the sources of multipath, including changes associated with hardware replacement (i.e., receiver and antenna type) and receiver firmware upgrades.

Vazquez, G.; Bennett, R. A.; Spinler, J. C.

2013-12-01

56

Study to investigate and evaluate means of optimizing the radar function for the space shuttle. [(pulse radar)  

NASA Technical Reports Server (NTRS)

Results are discussed of a study to define a radar and antenna system which best suits the space shuttle rendezvous requirements. Topics considered include antenna characteristics and antenna size tradeoffs, fundamental sources of measurement errors inherent in the target itself, backscattering crosssection models of the target and three basic candidate radar types. Antennas up to 1.5 meters in diameter are within specified installation constraints, however, a 1 meter diameter paraboloid and a folding, four slot backfeed on a two gimbal mount implemented for a spiral acquisition scan is recommended. The candidate radar types discussed are: (1) noncoherent pulse radar (2) coherent pulse radar and (3) pulse Doppler radar with linear FM ranging. The radar type recommended is a pulse Doppler with linear FM ranging. Block diagrams of each radar system are shown.

1975-01-01

57

Study to investigate and evaluate means of optimizing the radar function. [systems engineering of pulse radar for the space shuttle  

NASA Technical Reports Server (NTRS)

The investigations for a rendezvous radar system design and an integrated radar/communication system design are presented. Based on these investigations, system block diagrams are given and system parameters are optimized for the noncoherent pulse and coherent pulse Doppler radar modulation types. Both cooperative (transponder) and passive radar operation are examined including the optimization of the corresponding transponder design for the cooperative mode of operation.

1975-01-01

58

Natural gas vehicle fueling station dispenser meter evaluations  

SciTech Connect

The Institute of Gas Technology (IGT) has constructed a multi-purpose meter evaluation facility capable of testing metering technologies for high flow rate and high pressure NGV dispenser applications. The objective of IGT`s meter evaluation program, sponsored by IGT`s Sustaining Membership Program and the Gas Research Institute, is to assist the industry in evaluating the performance and accuracy of currently available flowmeters that are being used or could be applied to CNG gas dispensing. These meters are tested at various flow rates and pressures to determine their performance under NGV fueling station operating conditions and to identify the performance characteristics and limitations for each meter. The metering technologies which are being evaluated under this program include Coriolis meter, sonic nozzle meter, and turbine meter designs.

Rowley, P.F.; Kriha, K.; Blazek, C.F. [Inst. of Gas Technology, Chicago, IL (United States)

1995-12-31

59

Antenna evaluation study for the shuttle multispectral radar, phase 1  

NASA Technical Reports Server (NTRS)

Critical parameters of the shuttle multispectral radar antenna (SMRA) which most affect antenna performance were identified. A preliminary methematical model is presented for describing SMRA performance under the influence of various physical and environmental factors which might degrade performance. Because user groups have not agreed on optimum frequencies best suited for the broadest range of application, the study incorporates frequencies ranging from 1.2 to 14.5 GHz, as well as a consideration of incidence angles from near nadir to nearly 50 deg.

Coffey, E. L., III; Carver, K. R.

1976-01-01

60

Estimation of mesospheric vertical winds from a VHF meteor radar at King Sejong Station, Antarctica (62.2S, 58.8W)  

NASA Astrophysics Data System (ADS)

For the first time, vertical winds near the mesopause region were estimated from radial velocities of meteor echoes detected by a VHF meteor radar at King Sejong Station (KSS) in 2011 and 2012. Since the radar usually detects more than a hundred echoes every hour in an altitude bin of 88 - 92 km, much larger than other radars, we were able to fit measured radial velocities of these echoes with a 6 component model that consists of horizontal winds, spatial gradients of horizontal winds and vertical wind. The conventional method of deriving horizontal winds from meteor echoes utilizes a 2 component model, assuming that vertical winds and spatial gradients of horizontal winds are negligible. We analyzed the radar data obtained for 8400 hours in 2012 and 8100 hours in 2011. We found that daily mean values of vertical winds are mostly within +/- 1 m/s, whereas those of zonal winds are a few tens m/s mostly eastward. The daily mean vertical winds sometimes stay positive or negative for more than 20 days, implying that the atmosphere near the mesopause experiences episodically a large scale low and high pressure environments, respectively, like the tropospheric weather system. By conducting Lomb-normalized periodogram analysis, we also found that the vertical winds have diurnal, semidiurnal and terdiurnal tidal components with about equal significance, in contrast to horizontal winds that show a dominant semidiurnal one. We will discuss about uncertainties of the estimated vertical wind and possible reasons of its tidal and daily variations.

Kim, Y.; Lee, C.; Kim, J.; Jee, G.

2013-12-01

61

Summary of monitoring station component evaluation project 2009-2011.  

SciTech Connect

Sandia National Laboratories (SNL) is regarded as a center for unbiased expertise in testing and evaluation of geophysical sensors and instrumentation for ground-based nuclear explosion monitoring (GNEM) systems. This project will sustain and enhance our component evaluation capabilities. In addition, new sensor technologies that could greatly improve national monitoring system performance will be sought and characterized. This work directly impacts the Ground-based Nuclear Explosion Monitoring mission by verifying that the performance of monitoring station sensors and instrumentation is characterized and suitable to the mission. It enables the operational monitoring agency to deploy instruments of known capability and to have confidence in operational success. This effort will ensure that our evaluation capabilities are maintained for future use.

Hart, Darren M.

2012-02-01

62

Telescience Testbed Pilot Project - Evaluation environment for Space Station operations  

NASA Technical Reports Server (NTRS)

The objectives of the Telescience Testbed Pilot Program (TTPP) are discussed. The purpose of the TTPP, which involves 15 universities in cooperation with various NASA centers, is to demonstrate the utility of a user-oriented rapid prototyping testbed approach to developing and refining science requirements and validation concepts and approaches for the information systems of the Space Station era and beyond. It is maintained that the TTPP provides an excellent environment, with low programmatic schedule and budget risk, for testing and evaluating new operations concepts and technologies.

Wiskerchen, Michael J.; Leiner, Barry M.

1988-01-01

63

Evaluation of polarimetric through-the-wall radar measurements  

NASA Astrophysics Data System (ADS)

Fully polarimetric through-the-wall radar measurements with high spatial resolution have been attained by using the ISAR (Inverse Synthetic Aperture Radar) technique. Polarimetric methods may reduce the effects of the wall interaction and increase the contrast between humans and the background. The main scene in the measurements was a human sitting in a small wooden cabin. The cabin was placed on a turntable and rotated, to obtain ISAR imaging. By switching the transmitter and receiver antennas between horizontal and vertical polarizations, four polarization combinations were obtained. Phase coherence was maintained through a whole measurement series. This enabled co-processing of the whole collected data set with coherent methods. A statistical description of the measured data was used, with the polarimetric coherency matrix applied to the received signals. ISAR images produced for the TTW scenes show that the human can be discerned from the background. The contrast between the human and the background was found to be greater with vertical polarization at transmit and receive, with less contrast using cross-polarization or horizontal co-polarization, due to the horizontal wall grain orientation. A classification scheme based on the eigenparameters of the coherency matrix (entropy, anisotropy and alpha angle) and the backscatter power has been tested to discriminate between different target objects in the cabin. The method shows some promise, but a reliable classification has not yet been attained.

Johansson, Tommy; Sume, Ain; Rahm, Jonas; Nilsson, Stefan; Örbom, Anders

2012-06-01

64

Research of Equipment Support Ability Evaluation for Meteorological Station Based on BP Neural Network  

Microsoft Academic Search

According to the status quo of integrated support ability evaluation for meteorological equipment, index system of equipment integrated support ability evaluation for meteorological station is established. Using BP neural network method, equipment support ability evaluation model is established. Combined with concrete examples of meteorological station equipment support ability evaluation, a better evaluation result is gotten.

Gaofei Liu; Daquan Gu; Liming Duan; Dongdong Wang

2012-01-01

65

Implementation and evaluation of the new wind algorithm in NASA's 50 MHz doppler radar wind profiler  

NASA Technical Reports Server (NTRS)

The purpose of this report is to document the Applied Meteorology Unit's implementation and evaluation of the wind algorithm developed by Marshall Space Flight Center (MSFC) on the data analysis processor (DAP) of NASA's 50 MHz doppler radar wind profiler (DRWP). The report also includes a summary of the 50 MHz DRWP characteristics and performance and a proposed concept of operations for the DRWP.

Taylor, Gregory E.; Manobianco, John T.; Schumann, Robin S.; Wheeler, Mark M.; Yersavich, Ann M.

1993-01-01

66

A review of selected ground penetrating radar applications to mineral resource evaluations  

NASA Astrophysics Data System (ADS)

Since the commercialisation of ground penetrating radar (GPR) in the 1970s, the technology has been relegated to niche applications in the mining industry. Advances in radar technology, such as flexible collinear antennas and the integration of live differential GPS positioning, have spurred GPR's acceptance in recent years as a standard exploration method for a number of deposit types. Provided herein is an overview of commercialised GPR applications for surface mineral resource evaluations, covering examples of alluvial channels, nickel and bauxitic laterites, iron ore deposits, mineral sands, coal and kimberlites.

Francke, Jan

2012-06-01

67

Lasercom test and evaluation station (LTES) development: an update  

NASA Astrophysics Data System (ADS)

Pre-launch integrated system characterization of a lasercom terminal's (LCT's) communications and acquisition/tracking subsystems can provide a quantitative evaluation of the terminal and afford a better rigorous assessment of the benefits of any demonstration. The lasercom test and evaluation station developed at NASA/JPL is a high quality optical system that possesses the unique capabilities required to provide laboratory measurements of the key characteristics of lasercom terminals operating over the visible and near- infrared spectral region. Over the past year LTES has been used to provide pre-flight testing of the STRV-2 lasercom terminal developed by AstroTerra Corporation of San Diego, CA, and is currently being used for testing of the Optical Communication Demonstrator (OCD) developed by NASA/JPL. Discussions of performance validation tests carried out on LTES and its diverse capabilities are reported in this paper.

Biswas, Abhijit; Wilson, Keith E.; Page, Norman A.

1998-05-01

68

Performance evaluation of a W-band monopulse radar in rotorcraft brownout landing aid application  

NASA Astrophysics Data System (ADS)

BAE Systems recently developed a rotorcraft brownout landing aid system technology (BLAST) to satisfy the urgent need for brownout landing capability. BLAST uses a W-band monopulse (MP) radar in conjunction with radar signal processing and synthetic display techniques to paint a three-dimensional (3-D) perspective of the landing zone (LZ) in real time. Innovative radar signal processing techniques are developed to process the radar data and generate target data vectors for 3-D image synthesis and display. Field tests are conducted to characterize the performance of BLAST with MP and non-MP (only using the sum channel of the MP radar) modes in clear and brownout conditions. Data processing and analysis are performed to evaluate the system's performance in terms of visual effect, signal-to-noise ratio (SNR), target height estimation, ground-mapping effect, and false alarm rate. Both MP and non-MP modes reveal abilities to sufficiently display the 3-D volume of the LZ; the former shows advantage over the latter in providing accurate ground mapping and object height determination.

Liu, Guoqing; Yang, Ken; Sykora, Brian; Salha, Imad

2009-05-01

69

5. VIEW EAST, height finder radar towers, radar tower (unknown ...  

Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

5. VIEW EAST, height finder radar towers, radar tower (unknown function), prime search radar tower, operations building, and central heating plant - Fort Custer Military Reservation, P-67 Radar Station, .25 mile north of Dickman Road, east of Clark Road, Battle Creek, Calhoun County, MI

70

4. VIEW NORTHEAST, radar tower (unknown function), prime search radar ...  

Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

4. VIEW NORTHEAST, radar tower (unknown function), prime search radar tower, emergency power building, and height finder radar tower - Fort Custer Military Reservation, P-67 Radar Station, .25 mile north of Dickman Road, east of Clark Road, Battle Creek, Calhoun County, MI

71

Evaluation of Ice Water Content Retrievals from Cloud Radar Reflectivity and Temperature Using a Large Airborne In Situ Microphysical Database  

E-print Network

Evaluation of Ice Water Content Retrievals from Cloud Radar Reflectivity and Temperature Using the performances of the proposed ice water content (IWC)­radar reflectivity Z and IWC­Z­temperature T relationships larger IWCs) different sets of relationships would have to be used for midlatitude and tropical ice

Protat, Alain

72

Multi-scale evaluation of the IFloodS radar-rainfall products  

NASA Astrophysics Data System (ADS)

Rainfall products estimated using ground-based radars are often used as reference to assess capabilities and limitations of using satellite rainfall estimates in hydrologic modeling and prediction. During the spring of 2013, NASA conducted a hydrology-oriented field campaign called Iowa Flood Studies (IFloodS) in the central and northeastern Iowa in the United States, as a part of the Ground Validation (GV) program for the Global Precipitation Measurement (GPM) mission. The purpose of IFloodS was to enhance the understanding of flood-related rainfall processes and the predictability in flood forecasting. While there are multiple types of rainfall data sets (e.g., satellite, radar, rain gauge, and disdrometer) available as the observational assets of IFloodS, the authors focus on the evaluation of multi-scale rainfall products observed from ground-based radars. The radar-only products used in the evaluation are the NEXRAD single polarization products (i.e., Stage IV, NMQ Q2, and Iowa Flood Center rainfall maps) and products generated using dual-polarization procedures (i.e., the U.S. National Weather Service operational and Colorado State University experimental blended precipitation processing algorithms) with comparable space and time resolution. The NASA NPOL S-band radar products are also evaluated and compared with the aforementioned NEXRAD products. The uncertainty for different temporal and spatial resolution products is characterized using ground reference data of dense rain gauge and disdrometer networks. This multi-scale characterization is required for hydrologic modeling frameworks that assess model predictive abilities as a function of space and time scales.

Seo, Bong-Chul; Krajewski, Witold; Cunha, Luciana; Dolan, Brenda; Smith, James; Rutledge, Steven; Petersen, Walter

2014-05-01

73

Shuttle imaging radar-A (SIR-A) data analysis. [geology of the Ozark Plateau of southern Missouri, land use in western Illinois, and vegetation types at Koonamore Station, Australia  

NASA Technical Reports Server (NTRS)

The utility of shuttle imaging radar (SIR-A) data was evaluated in several geological and environmental contexts. For the Ozark Plateau of southern Missouri, SIR-A data were of little use in mapping structural features, because of generally uniform returns. For western Illinois, little was to be gained in terms of identifying land use categories by examining differences between overlapping passes. For southern Australia (Koonamore Station), information ion vegetation types that was not obtainable from LANDSAT MSS data alone was obtained. Specifically, high SIR-A returns in the Australian site were found to correlate with locations where shrubs increase surface roughness appreciably. The Australian study site results demonstrate the synergy of acquiring spectral reflectance and radar data over the same location and time. Such data are especially important in that region, since grazing animals have substantially altered and are continuing to alter the distribution of shrublands, grasslands, and soil exposures. Periodic, synoptic acquisition of MSS and SAR data would be of use in monitoring the dynamics of land-cover change in this environment.

Arvidson, R. E.

1983-01-01

74

A novel, compact, low-cost, impulse ground-penetrating radar for nondestructive evaluation of pavements  

Microsoft Academic Search

This paper reports on the development of a novel, compact, low-cost, impulse ground-penetrating radar (GPR) and demonstrate its use for nondestructive evaluation of pavement structures. This GPR consists of an ultrashort-monocycle-pulse transmitter (330 ps), an ultrawide-band (UWB) sampling receiver (0-6 GHz), and two UWB antennas (0.2-20 GHz)-completely designed using microwave-integrated circuits with seamless electrical connections between them. An approximate analysis

Jeong Soo Lee; Cam Nguyen; Thomas Scullion

2004-01-01

75

A study of an orbital radar mapping mission to Venus. Volume 2: Configuration comparisons and systems evaluation  

NASA Technical Reports Server (NTRS)

Configuration comparisons and systems evaluation for the orbital radar mapping mission of the planet Venus are discussed. Designs are recommended which best satisfy the science objectives of the Venus radar mapping concept. Attention is given to the interaction and integration of those specific mission-systems recommendations with one another, and the final proposed designs are presented. The feasibility, cost, and scheduling of these configurations are evaluated against assumptions of reasonable state-of-the-art growth and space funding expectations.

1973-01-01

76

Reliability Evaluation of Flood Releasing Structures Power Supply of Hydroelectric Power Station by Fault Tree Analysis  

Microsoft Academic Search

A new approach based on fault tree analysis to evaluate the overall reliability of flood releasing structures power supply system of hydroelectric power station is presented. This paper introduces the fault tree modelling and evaluation methods, and taking one hydroelectric power station in East China for example, a detailed fault tree model for flood releasing structures power supply system is

Zhenjie Li; Yue Yuan; Bowen Wu

2010-01-01

77

Conceptual design and evaluation of selected Space Station concepts, volume 1  

NASA Technical Reports Server (NTRS)

Space Station configuration concepts are defined to meet the NASA Headquarters Concept Development Group (CDG) requirements. Engineering and programmatic data are produced on these concepts suitable for NASA and industry dissemination. A data base is developed for input to the CDG's evaluation of generic Space Station configurations and for use in the critique of the CDG's generic configuration evaluation process.

1983-01-01

78

Electromagnetic compatibility (EMC) evaluation of the SELENE spacecraft for the lunar radar sounder (LRS) observations  

NASA Astrophysics Data System (ADS)

In order to achieve the lunar subsurface sounding and planetary radio wave observations by the Lunar Radar Sounder (LRS) onboard the SELENE spacecraft, strict electromagnetic compatibility (EMC) requirements were applied for all instruments and the whole system of the spacecraft. In order to detect the lunar subsurface echoes from a depth of 5 km, the radiated emission (RE) limit was determined to be -10 dB?V/m and the common-mode (CM) current limit to be 20 dB?A. The EMC performance of the spacecraft was finally evaluated in the system EMC test held from Oct. 20 to Oct. 22, 2005. There is no broadband noise but some narrowband noises at a level above the CM-current limit in a frequency range from 4 to 6 MHz, in which radar soundings are operated. Based on the noise spectrum within 4-6 MHz, the noise level of FMCW radar sounder is estimated to be 14 dB lower than the CM-current limit. In the SELENE EMC test, the following new techniques were introduced: (1) systematic control and evaluation of CM-current noises were first performed to improve the spacecraft EMC performance; (2) onboard battery operation was utilized for reduction of ambient broadband noises during EMC measurements.

Kumamoto, A.; Ono, T.; Kasahara, Y.; Goto, Y.; Iijima, Y.; Nakazawa, S.

2008-04-01

79

In-Service Evaluation of the Turbulence Auto-PIREP System and Enhanced Turbulence Radar Technologies  

NASA Technical Reports Server (NTRS)

From August 2003 to December 2006, In-Service Evaluations (ISE) of the Turbulence Auto-PIREP System (TAPS) and Enhanced Turbulence (E-Turb) Radar, technologies developed in NASA's Turbulence Prediction and Warning System (TPAWS) element of its Aviation Safety and Security Program (AvSSP), were conducted. NASA and AeroTech Research established an industry team comprising AeroTech, Delta Air Lines, Rockwell Collins, and ARINC to conduct the ISEs. The technologies were installed on Delta aircraft and their effectiveness was evaluated in day-to-day operations. This report documents the establishment and conduct of the ISEs and presents results and feedback from various users.

Prince, Jason B.; Buck, Bill K.; Robinson, Paul A.; Ryan, Tim

2007-01-01

80

Evaluation of bait stations for broadacre control of rabbits  

Microsoft Academic Search

The efficacy of bait stations (200-L drum cut in half longitudinally) for the broadacre control of rabbits was compared with that obtained with standard trail-baiting procedures in the southern agricultural region of Western Australia. Bait stations were tested with and without the provision of pre-feed. The bait used was 1.0% 1080 One-shot oats, and corresponding experimental control sites were treated

Laurie E. Twigg; Tim J. Lowe; Gary R. Martin

2002-01-01

81

Evaluation of MELCOR improvements: Peach Bottom station blackout analyses  

SciTech Connect

Long-term station blackout analyses in Peach Bottom were first carried out using MELCOR 1.8BC, and later with 1.8DN, as part of an overall program between the US Nuclear Regulatory Commission (NRC) and Brookhaven National Laboratory (BNL), to provide independent assessment of MELCOR as a severe accident/source term analysis tool. In addition to the reference MELCOR calculation, several sensitivity calculations were also performed to explore the impact of varying user-input modeling and timestep control parameters on the accident progression and radionuclide releases to the environment calculated by MELCOR. An area of concern that emerged from these studies was the impact of the selection of maximum allowable timestep ({Delta}t{sub max}) on the calculational behavior of MELCOR, where the results showed significant differences in timing of key events, and a lack of convergence of the solution with reduction of {Delta}t{sub max}. These findings were reported to the NRC, SNL, and the MELCOR Peer Review Committee. As a consequence, a significant effort was undertaken to eliminate or mitigate these sensitivities. The latest released version of MELCOR, Version 1.8.2, released in April 1993, contains several new or improved models, and has corrections to mitigate numerical sensitivities. This paper presents the results of updating the earlier sensitivity studies on maximum timestep, to more properly represent the abilities of the improved MELCOR version 1.8.2. Results are presenter in terms of timing of key events, thermal-hydraulic response of the system, and environmental release of radionuclides. The impact of some of the newer models, such as falling debris quench model, and ORNL`s new BH model, is also evaluated.

Madni, I.K.

1993-12-31

82

Offshore next generation weather radar (NEXRAD) test and evaluation master plan (TEMP)  

NASA Astrophysics Data System (ADS)

This document provides the test philosophy and approach for the Offshore Next Generation Weather Radar (NEXRAD) Test and Evaluation Master Plan (TEMP). The NEXRAD differs from the typical Federal Aviation Administration (FAA) weather radar acquisition in that it is jointly funded by the Department of Defense (DOD), the Department of Commerce (DOC), and the Department of Transportation (DOT). These three agencies chartered the Joint System Program Office (JSPO) to manage the NEXRAD development and subsequent test programs. JSPO has deployed 70 single-channel radar systems across the continental United States (CONUS). The FAA is deploying NEXRAD systems at non-CONUS (offshore) locations such as Alaska, Hawaii, and the Caribbean. The FAA Offshore NEXRAD will have a redundant configuration and a Remote Monitoring Subsystem (EMS). A total of 14 Offshore NEXRAD's will be procured under this acquisition: 3 in the Caribbean, 4 in Hawaii, and 7 in Alaska. Funding constraints will limit the acquisition to seven NEXRAD's in the 1994-1995 timeframe.

Martinez, Radame; Cranston, Robert; Porcello, John

1995-01-01

83

Launch delays in the evaluation of Space Station supportability  

NASA Astrophysics Data System (ADS)

The National Space Transportation System (NSTS) will be the sole provider of assembly items and support resources to Space Station Freedom. Using an operations simulation tool, the consequences of spares provisioning levels and launch schedule perturbations to onorbit systems' effectiveness are explored. The extent of post-Challenger launch delay experiences and how they are modeled are described. By using simulation modeling, the operational availability of space station hardware and distinctions in support requirements are investigated for the Mission Build flights, MB-1 through MB-7.

Dejulio, Edmund; Strickland, Christopher; McCormick, James

1991-11-01

84

Evaluation of absorption cycle for space station environmental control system application  

NASA Technical Reports Server (NTRS)

The study to evaluate an absorption cycle refrigeration system to provide environmental control for the space stations is reported. A zero-gravity liquid/vapor separator was designed and tested. The results were used to design a light-weight, efficient generator for the absorption refrigeration system. It is concluded that absorption cycle refrigeration is feasible for providing space station environmental control.

Sims, W. H.; Oneill, M. J.; Reid, H. C.; Bisenius, P. M.

1972-01-01

85

Conceptual design and evaluation of selected Space Station concepts: Executive summary  

NASA Technical Reports Server (NTRS)

The results of a space station conceptual design and evaluation study are summarized. The study represented a temporary focusing. Three space station configurations are characterized for user and crew requirements, operation and safety accommodations, engineering considerations including assembly and growth, structural dynamics, communications, thermal control and power systems, as well as system cost.

1983-01-01

86

Ranger Station Solar-Energy System Receives Economic Evaluation  

NASA Technical Reports Server (NTRS)

Economic performance of Glendo Reservoir Ranger Station solar-energy system in Wyoming and extrapolated performance in four other locations around the U.S. is reviewed in report. System is a passive drain-down system using water as heat-transfer medium for space and hot-water heating.

1982-01-01

87

Research on Dynamic Performance Evaluation of Supplier Based on 3PL-HUB Direct Delivery Station  

Microsoft Academic Search

The third-party logistics enterprise direct delivery station is the new model of the collaborative operation in supply chain, the dynamic performance evaluation of supplier is one of the important problems of supplier management. This paper proposed the evaluation system of supplier based on 3PL-HUB direct delivery station, established the supplier expected profit function, and analyzed the strong correlation between purchase

Hou Kaihu; Niu Xiao; Yin Zhuling; Hou Haowen

2009-01-01

88

1. VIEW NORTHWEST, operations building, height finder radar tower, and ...  

Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

1. VIEW NORTHWEST, operations building, height finder radar tower, and radar tower (unknown function) - Fort Custer Military Reservation, P-67 Radar Station, .25 mile north of Dickman Road, east of Clark Road, Battle Creek, Calhoun County, MI

89

FIRE_CI2_ETL_RADAR  

Atmospheric Science Data Center

FIRE_CI2_ETL_RADAR Project Title:  FIRE II CIRRUS Discipline:  ... Platform:  Ground Station Instrument:  Radar Spatial Coverage:  (37.06, -95.34) Spatial ... Order Data Guide Documents:  ETL_RADAR Guide Readme Files:  Readme ETL_RADAR (PS) ...

2014-05-06

90

Performance evaluation of SPE electrolyzer for Space Station life support  

NASA Technical Reports Server (NTRS)

An static water-vapor feed electrolyzer has been developed as a candidate for Space Station life-support oxygen generation. The five-cell electrolysis module has eliminated the need for phase separation devices, pumps, and deionizers by transporting only water vapor to the solid polymer electrolyte cells. The introduction of an innovative electrochemical hydrogen pump allows the use of low-pressure reclaimed water to generate gas pressures of up to 230 psia. The electrolyzer has been tested in a computer-controlled test stand featuring continuous, cyclic, and standby operation (including automatic shutdown with fault detection).

Erickson, A. C.; Puskar, M. C.; Zagaja, J. A.; Miller, P. S.

1987-01-01

91

Study of mean vertical motions over Gadanki (13.5°N, 79.2°E), a tropical station, using Indian MST radar  

NASA Astrophysics Data System (ADS)

Long-term mean vertical velocities observed by the Mesosphere-Stratosphere-Troposphere (MST) radar over a tropical station, Gadanki, India (13.5°N, 79.2°E), are presented for the first time in this paper. Profiles of mean vertical velocities show wave like structure with a vertical wavelength of ˜6 km, and the observed values range from 3 to 20 cm s-1 on average. During monsoon and postmonsoon seasons, larger magnitudes are observed up to 20 cm s-1. From the present study, an interesting feature, reversal in vertical velocities from downward to upward between 5 and 10 km during the monsoon season, is observed. This upward motion in long term averaged vertical velocity is thought to be due to reversal in wind direction around this height range and also due to horizontal velocity convergence, which is frequently observed over this region. One more reversal is observed near the Tropical Easterly Jet (TEJ) (around 16 km), which is from downward to upward and always showing minimum vertical velocities close to zero. This reversal can be attributed to instabilities associated with the jet streams. Large negative values are observed in the lower troposphere below 6 km, which are attributed to large vertical wind variances observed in this region indicating gravity wave activity.

Jagannadha Rao, V. V. M.; Venkat Ratnam, M.; Narayana Rao, D.

2002-12-01

92

International Space Station Bacteria Filter Element Service Life Evaluation  

NASA Technical Reports Server (NTRS)

The International Space Station (ISS) uses high-efficiency particulate air filters to remove particulate matter from the cabin atmosphere. Known as bacteria filter elements (BFEs), there are 13 elements deployed on board the ISS's U.S. segment in the flight 4R assembly level. The preflight service life prediction of 1 yr for the BFEs is based upon engineering analysis of data collected during developmental testing that used a synthetic dust challenge. While this challenge is considered reasonable and conservative from a design perspective, an understanding of the actual filter loading is required to best manage the critical ISS program resources. Testing was conducted on BFEs returned from the ISS to refine the service life prediction. Results from this testing and implications to ISS resource management are provided.

Perry, J. L.

2005-01-01

93

Evaluation of Terrestrial Laser Scanning and Ground Penetrating Radar for Field-Based High-Throughput Phenotyping in Wheat Breeding  

E-print Network

laser scanning (TLS) and ground penetrating radar (GPR) have the potential to fill this gap by non-invasively estimating biomass and mapping three-dimensional above- and below-ground vegetation. The research objective was to evaluate the use of TLS...

Thompson, Sean M

2014-08-05

94

Urbana radar systems: Possibilities and limitations  

NASA Astrophysics Data System (ADS)

The Aeronomy Laboratory Field Station of the University of Illinois at Urbana contains three different radar systems capable of probing various regions of the atmosphere below about 100 km. These are an mesosphere-stratosphere-troposphere (MST) radar, a VHF meteor radar and an MF partial-reflection radar. All three radars can measure winds and waves in the ionospheric D region. The MST radar is, in addition, capable of probing the lower stratosphere and upper troposphere. A sodium (Na) LIDAR is also located at the Field Station and provides an additional way of studing winds and waves in the mesosphere by observing temporal variations in the sodium density profile.

Royrvik, O.

1984-12-01

95

Evaluation of a Spectral-Based Nonlinear Stochastic Nowcasting Model (PhaSt) on Italian radar mosaic  

NASA Astrophysics Data System (ADS)

Evaluation of a Spectral-Based Nonlinear Stochastic Nowcasting Model (PhaSt) on Italian radar mosaic G. Cummings1, N. Rebora2 and F. Silvestro2 1Hydrometeorological Service, Ministry of Agriculture, Georgetown, Guyana 2CIMA research foundation, Savona, Italy The forecasting of precipitation events and flash floods are critical for civil protection. The temporal and spatial resolution of weather radar data as the input for nowcasting models has shown significant promise in improving forecasts in recent years. This work aims to evaluate the performance of a Spectral-Based Nonlinear Stochastic Nowcasting Model (PhaSt) in the Italian radar domain with 76 rainfall events and to assess the hydrological applicability of the forecasts for small to medium size river basins. The results were validated by comparison of the forecasted precipitation fields with the radar observations and by computing simple forecast skill scores. In addition to model evaluation based on seasonal occurrence, the 76 weather events considered were also classified into 2 types: long-lived and spatially distributed (Type I) or brief and localized (Type II). The results showed that PhaSt produced good results for up to 60 minutes for all seasons and event types, and for all the selected model parameter values.

Rhandhir Cummings, Garvin; Rebora, Nicola; Silvestro, Francesco

2014-05-01

96

Ground penetrating radar and direct current resistivity evaluation of the desiccation test cap, Savannah River Site  

SciTech Connect

The Savannah River Site (SRS) has a variety of waste units that may be temporarily or permanently stabilized by closure using an impermeable cover to prevent groundwater infiltration. The placement of an engineered kaolin clay layer over a waste unit is an accepted and economical technique for providing an impermeable cover but the long term stability and integrity of the clay in non-arid conditions is unknown. A simulated kaolin cap has been constructed at the SRA adjacent to the Burial Ground Complex. The cap is designed to evaluate the effects of desiccation on clay integrity, therefore half of the cap is covered with native soil to prevent drying, while the remainder of the cap is exposed. Measurements of the continuing impermeability of a clay cap are difficult because intrusive techniques may locally compromise the structure. Point measurements made to evaluate clay integrity, such as those from grid sampling or coring and made through a soil cover, may miss cracks, joints or fissures, and may not allow for mapping of the lateral extent of elongate features. Because of these problems, a non-invasive technique is needed to map clay integrity, below a soil or vegetation cover, which is capable of moderate to rapid investigation speeds. Two non-intrusive geophysical techniques, direct current resistivity and ground penetrating radar (GPR), have been successful at the SRS in geologically mapping shallow subsurface clay layers. The applicability of each technique in detecting the clay layer in the desiccation test cap and associated anomalies was investigated.

Wyatt, D.E.; Cumbest, R.J.

1996-04-01

97

Evaluation of pan evaporation modeling with two different neural networks and weather station data  

NASA Astrophysics Data System (ADS)

This study evaluates neural networks models for estimating daily pan evaporation for inland and coastal stations in Republic of Korea. A multilayer perceptron neural networks model (MLP-NNM) and a cascade correlation neural networks model (CCNNM) are developed for local implementation. Five-input models (MLP 5 and CCNNM 5) are generally found to be the best for local implementation. The optimal neural networks models, including MLP 4, MLP 5, CCNNM 4, and CCNNM 5, perform well for homogeneous (cross-stations 1 and 2) and nonhomogeneous (cross-stations 3 and 4) weather stations. Statistical results of CCNNM are better than those of MLP-NNM during the test period for homogeneous and nonhomogeneous weather stations except for MLP 4 being better in BUS-DAE and POH-DAE, and MLP 5 being better in POH-DAE. Applying the conventional models for the test period, it is found that neural networks models perform better than the conventional models for local, homogeneous, and nonhomogeneous weather stations.

Kim, Sungwon; Singh, Vijay P.; Seo, Youngmin

2014-07-01

98

Field evaluation of boric acid and fipronil based bait stations against adult mosquitoes  

Technology Transfer Automated Retrieval System (TEKTRAN)

The effectiveness of boric acid (1%) and fipronil (0.1%) bait stations in reducing the number of laboratory-reared female Aedes aegypti and Ochlerotatus taeniorhynchus mosquitoes released in outdoor screened cages was evaluated. Both toxicants reduced landing rates of the two mosquito species on a ...

99

The Formative and Preliminary Summative Evaluation of the Kongo Ranger Station  

Microsoft Academic Search

The Kongo Ranger Station is an interactive interpretive display located in the new Africa Rain Forest exhibit at the Metro Washington Park Zoo. It consists of two major areas: a 20?×30? authentic ranger's office and 30?×35? cargo box area. This display focuses on conservation, natural history and cultural issues in West and Central Africa. A formative evaluation began in September

David L. Mask; Alyson L. Burns

1992-01-01

100

Characterization and evaluation of five jaboticaba accessions at the subtropical horticulture research station in Miami, Florida  

Technology Transfer Automated Retrieval System (TEKTRAN)

Fruit of five Jaboticaba (Myrciaria caulifloria) cultivars ‘MC-05-06’, ‘MC-05-14’, ‘MC-05-12’, ‘MC-06-15,’ and ‘MC-06-14’ were evaluated and characterized at the National Germplasm Repository, Subtropical horticulture Research Station (SHRS) Miami, Florida. Thirty fruits were harvested from clona...

101

Measurement System Testbed for the robotic evaluation and characterization of the Space Station Remote Manipulator System  

Microsoft Academic Search

The rationale and the initial concept for a measurement systems testbed (MST) to support the Robotics Evaluation and Characterization (REACH) Project are outlined. Geometric scale, kinematics, general mass and stiffness distributions of the Space Station Remote Manipulator System (SSRMS), and the orbital illumination are considered important in the design. The MST objectives are to validate: the REACH concept, SSRMS measurement

Marek R. Kujath; William B. Graham

1992-01-01

102

51. View of upper radar scanner switch in radar scanner ...  

Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

51. View of upper radar scanner switch in radar scanner building 105 from upper catwalk level showing emanating waveguides from upper switch (upper one-fourth of photograph) and emanating waveguides from lower radar scanner switch in vertical runs. - Clear Air Force Station, Ballistic Missile Early Warning System Site II, One mile west of mile marker 293.5 on Parks Highway, 5 miles southwest of Anderson, Anderson, Denali Borough, AK

103

Evaluation of X-band polarimetric radar estimation of rainfall and rain drop size distribution parameters in West Africa  

NASA Astrophysics Data System (ADS)

As part of the African Monsoon Multidisciplinary Analysis (AMMA) field campaign an X-band dual-polarization Doppler radar was deployed in Benin, West-Africa, in 2006 and 2007, together with a reinforced rain gauge network and several optical disdrometers. Based on this data set, a comparative study of several rainfall estimators that use X-band polarimetric radar data is presented. In tropical convective systems as encountered in Benin, microwave attenuation by rain is significant and quantitative precipitation estimation (QPE) at X-band is a challenge. Here, several algorithms based on the combined use of reflectivity, differential reflectivity and differential phase shift are evaluated against rain gauges and disdrometers. Four rainfall estimators were tested on twelve rainy events: the use of attenuation corrected reflectivity only (estimator R(ZH)), the use of the specific phase shift only R(KDP), the combination of specific phase shift and differential reflectivity R(KDP,ZDR) and an estimator that uses three radar parameters R(ZH,ZDR,KDP). The coefficients of the power law relationships between rain rate and radar variables were adjusted either based on disdrometer data and simulation, or on radar-gauges observations. The three polarimetric based algorithms with coefficients predetermined on observations outperform the R(ZH) estimator for rain rates above 10 mm/h which explain most of the rainfall in the studied region. For the highest rain rates (above 30 mm/h) R(KDP) shows even better scores, and given its performances and its simplicity of implementation, is recommended. The radar based retrieval of two parameters of the rain drop size distribution, the normalized intercept parameter NW and the volumetric median diameter Dm was evaluated on four rainy days thanks to disdrometers. The frequency distributions of the two parameters retrieved by the radar are very close to those observed with the disdrometer. NW retrieval based on a combination of ZH-KDP-ZDR works well whatever the a priori assumption made on the drop shapes. Dm retrieval based on ZDR alone performs well, but if satisfactory ZDR measurements are not available, the combination ZH-KDP provides satisfactory results for both Dm and NW if an appropriate a priori assumption on drop shape is made.

Koffi, A. K.; Gosset, M.; Zahiri, E.-P.; Ochou, A. D.; Kacou, M.; Cazenave, F.; Assamoi, P.

2014-06-01

104

Characterization of ocean surface current properties from single site HF\\/VHF radar  

Microsoft Academic Search

Surface current mapping from HF\\/VHF coastal radars traditionally requires at least two distant sites. Vector velocities are\\u000a estimated by combining the radial velocity components measured by the radars. In many circumstances (e.g., failures, interferences,\\u000a logistics constraints), such a combination is not possible by lack of data from one station. Two methods are evaluated to\\u000a get information on surface circulation from

Julien Marmain; Philippe Forget; Anne Molcard

105

Neutral buoyancy evaluation of technologies for space station external operations. [EVA weightlessness simulation  

NASA Technical Reports Server (NTRS)

In order to perform a complete systems analysis for almost any large space program, it is vital to have a thorough understanding of human capabilities in extravehicular activity (EVA). The present investigation is concerned with the most significant results from the MIT Space Systems Lab's neutral buoyancy tests. An evaluation of neutral buoyancy is considered along with the tested structures, aspects of learning, productivity, time and motion analysis, and assembly loads. Attention is given to EVA assembly with a manned maneuvering unit, teleoperated structural assembly, an integrated control station, a beam assembly teleoperator, and space station proximity operations.

Akin, D. L.; Bowden, M. L.; Spofford, J. R.

1984-01-01

106

Using COAMPS Microphysics To Model Satellite and Aircraft Radar Data: An Evaluation During Hurricane Dennis  

NASA Astrophysics Data System (ADS)

The field phase of the Tropical Cloud Systems and Processes (TCSP) experiment took place between 1-27 July 2005, based out of San Jose, Costa Rica. Although the focus area for TCSP was planned to be the Eastern Pacific, the unusually early genesis of tropical disturbances in the Eastern Caribbean prompted missions dedicated to the formation and evolution of Hurricane Dennis. The high-altitude (20-km) NASA ER-2 flew 12 missions, including three dates dedicated to Hurricane Dennis. The flights on July 5-6 captured Dennis as it was transitioning from a tropical storm to a hurricane, and July 9 as it was entering a period of rapid intensification. The ER-2 deployed three microwave sensors, the Advanced Microwave Precipitation Radiometer (AMPR), the High Altitude MMIC Sounding Radiometer (HAMSR) and the the ER-2 Doppler Radar (EDOP). The AMPR is the aircraft "simulator" of the TRMM sensor; from 20-km altitude its 85 GHz imagery has an on-Earth resolution of 700-m (2.8-km at 10 GHz) at nadir, nearly 20 times finer than typical TRMM or SSMI satellite imagery. EDOP is an 10 GHz Doppler radar capable of resolving the fine scale vertical reflectivity. Since microwave observations respond to the presence of water vapor, liquid and ice hydrometeors, they are useful for evaluating the capabilities and deficiencies of mesoscale prediction models in representing the spatial evolution of the underlying cloud structure. In this presentation, the microphysical outputs from simulation of Hurricane Dennis using the Coupled Ocean Atmosphere Mesoscale Prediction System (COAMPS) were used to forward model observed TRMM and SSMI satellite data, and the AMPR, HAMSR and EDOP data from the ER-2 aircraft overpasses. This allows model-vs- observation diagnostics to be performed in observational space, avoiding usage of retrieved satellite quantities. Statistical intercomparisons show model overpredictions of the reflectivities at upper levels, and an overprediction of the coldest 85 GHz brightness temperatures reflecting excessive graupel. Although the results are limited to a single case, the methodology is potentially adaptable to routine COAMPS model runs for analyzing modifications to microphysical parameterization schemes.

Chen, S.; Turk, J.

2007-12-01

107

Phase stability comparison of SAW sensor evaluation with various CW type radars  

Microsoft Academic Search

The paper describes the comparison of three different types of continuous wave (CW) radars to interrogate surface acoustic wave (SAW) sensors. The CW types are as follows: a frequency modulated (FMCW), a frequency stepped (FSCW) and a switched frequency stepped (S-FSCW) radar. All types operate in the 2.4 GHz ISM band with a bandwidth of approximately 80 MHz. Whereas the sweep time

Alfred Binder; René Fachberger; Martin Lenzhofer

2010-01-01

108

Radar Scan Strategies for the Patrick Air Force Base Weather Surveillance Radar, Model-74C, Replacement  

NASA Technical Reports Server (NTRS)

The 45th Weather Squadron (45 WS) is replacing the Weather Surveillance Radar, Model 74C (WSR-74C) at Patrick Air Force Base (PAFB), with a Doppler, dual polarization radar, the Radtec 43/250. A new scan strategy is needed for the Radtec 43/250, to provide high vertical resolution data over the Kennedy Space Center (KSC) and Cape Canaveral Air Force Station (CCAFS) launch pads, while taking advantage of the new radar's advanced capabilities for detecting severe weather phenomena associated with convection within the 45 WS area of responsibility. The Applied Meteorology Unit (AMU) developed several scan strategies customized for the operational needs of the 45 WS. The AMU also developed a plan for evaluating the scan strategies in the period prior to operational acceptance, currently scheduled for November 2008.

Short, David

2008-01-01

109

Planetary Radar with the Green Bank Telescope  

NASA Astrophysics Data System (ADS)

The large aperture and sensitive receivers of the National Radio Astronomy Observatory's Robert C. Byrd Green Bank Telescope (GBT) make it an attractive receiving station for bistatic radar experiments. Consequently, it has been used as a receive station for radar observations since its commissioning in 2001. The GBT is equipped with receivers for all common planetary radar transmitters at P, S, and X band, as well as for future radars at up to 86 GHz. We describe the technical capabilities of the GBT and its instrumentation in terms of its tracking and RF performance, the available radar backends, and select science results obtained through the use of the GBT.

Ford, Alyson; Ford, John M.; Watts, Galen

2014-11-01

110

A volatile organic analyzer for Space Station: Description and evaluation of a gas chromatography/ ion mobility  

NASA Technical Reports Server (NTRS)

A Volatile Organic Analyzer (VOA) is being developed as an essential component of the Space Station's Environmental Health System (EHS) air quality monitoring strategy to provide warning to the crew and ground personnel if volatile organic compounds exceed established exposure limits. The short duration of most Shuttle flights and the relative simplicity of the contaminant removal mechanism have lessened the concern about crew exposure to air contaminants on the Shuttle. However, the longer missions associated with the Space Station, the complex air revitalization system and the proposed number of experiments have led to a desire for real-time monitoring of the contaminants in the Space Station atmosphere. Achieving the performance requirements established for the VOA within the Space Station resource (e.g., power, weight) allocations led to a novel approach that joined a gas chromatograph (GC) to an ion mobility spectrometer (IMS). The authors of this paper will discuss the rational for selecting the GC/IMS technology as opposed to the more established gas chromatography/mass spectrometry (GC/MS) for the foundation of the VOA. The data presented from preliminary evaluations will demonstrate the versatile capability of the GC/IMS to analyze the major contaminants expected in the Space Station atmosphere. The favorable GC/IMS characteristics illustrated in this paper included excellent sensitivity, dual-mode operation for selective detection, and mobility drift times to distinguish co-eluting GC peaks. Preliminary studies have shown that the GC/IMS technology can meet surpass the performance requirements of the Space Station VOA.

Limero, Thomas F.; James, John T.

1994-01-01

111

Interception of LPI radar signals  

Microsoft Academic Search

Most current radars are designed to transmit short duration pulses with relatively high peak power. These radars can be detected easily by the use of relatively modest EW intercept receivers. Three radar functions (search, anti-ship missile (ASM) seeker, and navigation) are examined to evaluate the effectiveness of potential low probability of intercept (LPI) techniques, such as waveform coding, antenna profile

Jim P. Lee

1991-01-01

112

Evaluation of wind profiles from the NERC MST radar, Aberystwyth, UK  

NASA Astrophysics Data System (ADS)

This study quantifies the uncertainties in winds measured by the Aberystwyth Mesosphere-Stratosphere-Troposphere (MST) radar (52.4° N, 4.0° W), before and after its renovation in March 2011. A total of 127 radiosondes provide an independent measure of winds. Differences between radiosonde and radar-measured horizontal winds are correlated with long-term averages of vertical velocities, suggesting an influence from local mountain waves. These local influences are an important consideration when using radar winds as a measure of regional conditions, particularly for numerical weather prediction. For those applications, local effects represent a source of sampling error additional to the inherent uncertainties in the measurements themselves. The radar renovation improved the signal-to-noise ratio (SNR) of measurements, with a corresponding improvement in altitude coverage. It also corrected an underestimate of horizontal wind speeds attributed to beam formation problems, due to pre-renovation component failure. The root mean square error (RMSE) in radar-measured horizontal wind components, averaged over half an hour, increases with wind speed and altitude, and is 0.8-2.5 m s-1 (6-12% of wind speed) for post-renovation winds. Pre-renovation values are typically 0.1 m s-1 larger. The RMSE in radial velocities is <0.04 m s-1. Eight weeks of special radar operation are used to investigate the effects of echo power aspect sensitivity. Corrections for echo power aspect sensitivity remove an underestimate of horizontal wind speeds; however aspect sensitivity is azimuthally anisotropic at the scale of routine observations (?1 h). This anisotropy introduces random error into wind profiles. For winds averaged over half an hour, the RMSE is around 3.5% above 8 km, but as large as 4.5% in the mid-troposphere.

Lee, C. F.; Vaughan, G.; Hooper, D. A.

2014-09-01

113

Evaluation of wind profiles from the NERC MST Radar, Aberystwyth, UK  

NASA Astrophysics Data System (ADS)

This study quantifies the uncertainties in winds measured by the Aberystwyth Mesosphere-Stratosphere-Troposphere (MST) radar (52.4° N, 4.0° W), before and after its renovation in March 2011. 127 radiosondes provide an independent measure of winds. Differences between radiosonde and radar-measured horizontal winds are correlated with long-term averages of vertical velocities, suggesting an influence from local mountain waves. These local influences are an important consideration when using radar winds as a measure of regional conditions, particularly for numerical weather prediction. In those applications, local effects represent a source of sampling error additional to the inherent uncertainties in the measurements themselves. The radar renovation improved the SNR of measurements, with correspondingly improved altitude coverage. It also corrected an under-estimate of horizontal wind speeds attributed to beam formation problems, due to component failure pre-renovation. The standard error in radar-measured winds averaged over half-an-hour increases with wind speed and altitude, and is 0.6-2.5 m s-1 (5-20% of wind speed) for post-renovation horizontal winds. Pre-renovation values are typically 0.4 m s-1 (0.03 m s-1) larger. The standard error in radial velocities is < 0.04 m s-1. Eight weeks of special radar operation are used to investigate the effects of echo power aspect sensitivity. Corrections for echo power aspect sensitivity remove an underestimate of horizontal wind speeds, however aspect sensitivity is azimuthally anisotropic at the scale of routine observations (? 1 h). This anisotropy introduces additional random error into wind profiles. For winds averaged over half-an-hour, the random error is around 3.5% above 8 km, but as large as 4.5% in the mid-troposphere.

Lee, C. F.; Vaughan, G.; Hooper, D. A.

2014-05-01

114

47 CFR 87.107 - Station identification.  

Code of Federal Regulations, 2010 CFR

...sign: Airborne weather radar, radio altimeter, air traffic control transponder, distance measuring equipment, collision avoidance equipment, racon, radio relay, radionavigation land test station (MTF), and automatically controlled...

2010-10-01

115

A formative evaluation of the College Station Independent School District's guidance and counseling program  

E-print Network

Conner, B. A. , Univers1ty of M1ssouri Chairman of Advisory Committee: Dr. Larry B. Christensen The College Station Independent School District (CSISD) 1s re- quired by the Texas Education Agency to per1odically evaluate its gui- dance and counse11ng... more to the community. Recommendations are geared toward 1m- prov1ng this action orientation, as well as continuing the comprehen- sive evaluation plan into the coming school semesters. ACKNOWLEDGEMENTS During th1s project, Dr. Larry Christensen, Dr...

Conner, Paul William

1981-01-01

116

North Station North Station  

E-print Network

North Station North Station North Station East Station ... ... North Station Water Tower Elysian, and so on. She then hides the renamed map and the permutation table in a safe. Next, Virgil tosses a coin

Chazelle, Bernard

117

Evaluation of Small-Scale Dual-Polarimetric Measurements of Iowa XPOL Radars During the IFloodS Campaign (Invited)  

NASA Astrophysics Data System (ADS)

The University of Iowa X-band polarimetric (XPOL) radar system consists of four scanning, mobile, dual-polarimetric, Doppler weather radars. These units are equipped with several engineering and operational features particularly suited for studying hydrological processes at smaller scales. During Apr-Jun 2013, Iowa XPOLs participated in their first field campaign - Iowa Flood Studies (IFloodS) - organized in central and north-eastern Iowa in the Midwestern United States by NASA in collaboration with The University of Iowa. As an important component of the Ground Validation (GV) program of the NASA Global Precipitation Measurement (GPM) satellite mission, IFloodS was one of the first field campaigns dedicated to hydrological studies. The XPOL-2 and XPOL-4 units were deployed with overlapping coverage over the Turkey River watershed. XPOL-3 and XPOL-5 were similarly deployed over the Clear Creek watershed. During IFloodS, XPOL-2 and XPOL-4 units collected data for diverse meteorological events (light rain to severe mesoscale storms) with nearly uninterrupted operation for 45 days of the campaign at different spatio-temporal scales. The radars made polarimetric observations at multiple range resolutions (75 m and 30 m) with oversampled range spacings of 75 m, 30 m, 15 m and 7.5 m. This data was collected at the azimuthal sampling of a degree in both PPI and RHI scans. Early analyses of the stand-alone observations by a specific XPOL unit suggest that research-quality data were obtained at smaller scales during IFloodS campaign. The drop in signal quality across different sampling regimes was insignificant. The radars were able to detect maximum unambiguous Doppler velocity up to 18 m/s in dual pulse-pair transmission mode. In this study, we further evaluate the performance of the XPOLs by comparing their multiple-scale observations with the calibrated S-band radars (such as NPOL and WSR-88D) in the mutually overlapping coverage regions. This numerical comparison provides anchor points to validate XPOL observations. An inter-XPOL comparison of the overlapping PPI and RHI data is also carried out to evaluate the consistency of observations across different XPOL units.

Krajewski, W. F.; Mishra, K.; Goska, R.; Ceynar, D.; Seo, B.; Kruger, A.

2013-12-01

118

Shuttle orbiter KU-band radar/communications system design evaluation  

NASA Technical Reports Server (NTRS)

An expanded introduction is presented which addresses the in-depth nature of the tasks and indicates continuity of the reported effort and results with previous work and related contracts, and the two major modes of operation which exist in the Ku-band system, namely, the radar mode and the communication mode, are described. The Ku-band radar system is designed to search for a target in a designated or undesignated mode, then track the detected target, which might be cooperative (active) or passive, providing accurate, estimates of the target range, range rate, angle and angle rate to enable the orbiter to rendezvous with this target. The radar mode is described along with a summary of its predicted performance. The principal sub-unit that implements the radar function is the electronics assembly 2(EA-2). The relationship of EA-2 to the remainder of the Ku-band system is shown. A block diagram of EA-2 is presented including the main command and status signals between EA-2 and the other Ku-band units.

1979-01-01

119

Bridge Deck Evaluation with Ground Penetrating Radar Dryver Huston, Jing Hu, Noel Pelczarski, and Brian Esser  

E-print Network

electromagnetic (EM) waves to identify underlying features in solid structures. The typical technique uses Health Monitoring Stanford University September 1999 ABSTRACT Ground Penetrating Radar (GPR) uses-frequency (0.5 to 6.0 GHz) antenna is used as the source and receiver. A network analyzer powers the antenna

Huston, Dryver R.

120

Evaluation of tag entanglement as a factor in harmonic radar studies of insect dispersal  

Technology Transfer Automated Retrieval System (TEKTRAN)

The observation of insects and other small organisms entangled in the habitat after the addition of vertical or trailing electronic tags to their body has generated concerns on the suitability of harmonic radars to track the dispersal of insects. This study compared the walking behavior of adult Co...

121

Ground Penetrating Radar (GPR): an application for evaluating the state of maintenance of the building coating  

Microsoft Academic Search

Ground Penetrating Radar (GPR) is a non-destructive methodology. For the localisation of buried structures, it uses short time duration electromagnetic (EM) pulses lasting from about 1 ns to about 30 ns. Therefore, GPR is characterised by a wide frequency band ranging from 10 MHz to some GHz, and is useful in the localisation of EM discontinuities in the subsurface with

Giovanni Leucci; Sergio Negri; Maria Teresa Carrozzo

2003-01-01

122

Evaluation of radar stereo viewability by means of a simulation technique  

NASA Technical Reports Server (NTRS)

A system for simulating radar images was developed. Variable parameters are sensor configuration, imaging parameters and backscatter curves to assign gray values to the image coordinates. Same side flight/different look angles; distortions in same side stereo by applied squint angle; and crossing flight path/same look angle were investigated.

Domik, G.

1984-01-01

123

Description and Initial Evaluation of a Computer-Based Individual Trainer for the Radar Intercept Observer.  

ERIC Educational Resources Information Center

An individual trainer for giving students in the radar intercept observer (RIO) schools concentrated practice in procedures for air-to-air intercepts was designed around a programmable graphics terminal with two integral minicomputers and 8k of core memory. The trainer automatically administers practice in computing values of variables in the…

Rigney, Joseph W.; And Others

124

3. EXTERIOR VIEW OF THE NORTHEAST RADAR DOME COMPLEX, STRUCTURE ...  

Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

3. EXTERIOR VIEW OF THE NORTHEAST RADAR DOME COMPLEX, STRUCTURE 411, LOOKING NORTH. - Mill Valley Air Force Station, Radar Domes, East Ridgecrest Boulevard, Mount Tamalpais, Mill Valley, Marin County, CA

125

1. DISTANT VIEW OF RADAR DOMES, STRUCTURE 409 ON THE ...  

Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

1. DISTANT VIEW OF RADAR DOMES, STRUCTURE 409 ON THE RIGHT AND 411 ON THE LEFT, LOOKING NORTHEAST. - Mill Valley Air Force Station, Radar Domes, East Ridgecrest Boulevard, Mount Tamalpais, Mill Valley, Marin County, CA

126

Space Radar Image of Star City, Russia  

NASA Technical Reports Server (NTRS)

This radar image shows the Star City cosmonaut training center, east of Moscow, Russia. Four American astronauts are training here for future long-duration flights aboard the Russian Mir space station. These joint flights are giving NASA and the Russian Space Agency experience necessary for the construction of the international Alpha space station, beginning in late 1997. This image was acquired by the Spaceborne Imaging Radar-C/X-band Synthetic Aperture Radar (SIR-C/X-SAR), on its 62nd orbit on October 3, 1994. This Star City image is centered at 55.55 degrees north latitude and 38.0 degrees east longitude. The area shown is approximately 32 kilometers by 49 kilometers (20 miles by 30 miles). North is to the top in this image. The radar illumination is from the top of the image. The image was produced using three channels of SIR-C radar data: red indicates L-band (23 cm wavelength, horizontally transmitted and received); green indicates L-band (horizontally transmitted and vertically received); blue indicates C-band (6 cm wavelength, horizontally transmitted and vertically received). In general, dark pink areas are agricultural; pink and light blue areas are urban communities; black areas represent lakes and rivers; dark blue areas are cleared forest; and light green areas are forested. The prominent black runways just right of center are Shchelkovo Airfield, about 4 km long. The textured pale blue-green area east and southeast of Shchelkovo Airfield is forest. Just east of the runways is a thin railroad line running southeast; the Star City compound lies just east of the small bend in the rail line. Star City contains the living quarters and training facilities for Russian cosmonauts and their families. Moscow's inner loop road is visible at the lower left edge of the image. The Kremlin is just off the left edge, on the banks of the meandering Moskva River. The Klyazma River snakes to the southeast from the reservoir in the upper left (shown in bright red), passing just east of Star City and flowing off the lower right edge of the image. The dark blue band of the Vorya River runs north-south in the upper right quadrant, east of Star City. SIR-C/X-SAR radar images are being compared with data from the Russian radar satellite Almaz to evaluate the usefulness of a permanent orbital radar platform in monitoring Earth s environment and ecology.

1994-01-01

127

Improving and Evaluating Ice-Phase Precipitation Models for GPM Radar-Radiometer Algorithm Applications  

NASA Astrophysics Data System (ADS)

In the Global Precipitation Measurement (GPM) mission, the Dual-Frequency Precipitation Radar - GPM Microwave Imager (DPR-GMI) combined radar-radiometer precipitation algorithm will provide, in principle, the most accurate and highest resolution estimates of surface rainfall rate and precipitation vertical structure from a spaceborne observing platform. In addition to direct applications of these precipitation estimates, they will serve as a crucial reference for cross-calibrating passive microwave precipitation profile estimates from the GPM radiometer constellation. And through the microwave radiometer estimates, the combined algorithm calibration will ultimately be propagated to GPM infrared-microwave multi-satellite estimates of surface rainfall. However, in order to obtain accurate estimates of precipitation profiles from the DPR-GMI algorithm, the underlying physical parameterizations incorporated in the algorithm must be realistic and representative. One potential contributor to algorithm parameterization error is the description of the single-scattering properties of ice-phase precipitation. Studies performed by the co-authors, and those of other scientists in the remote sensing community, indicate that ice-phase precipitation particles are more accurately modeled using explicit, non-spherical particle geometries. The co-authors recently developed computationally feasible methods for simulating large and diverse sets of non-spherical, aggregate ice particles and their single-scattering properties. The bulk single-scattering properties of these particles have been incorporated into a prototype of the DPR-GMI algorithm, and applications of this prototype to airborne radar-radiometer observations from the Midlatitude Continental Convective Clouds Experiment (MC3E) demonstrate greater consistency with simultaneous Ku-Ka band (13 and 35 GHz) radar and higher-frequency microwave (89-183 GHz) radiometer observations, relative to applications employing simpler particle models. Comparisons of different ice particle simulations to radar-radiometer data, and to simultaneous in situ microphysics probe data, will be presented at the meeting.lt;img border=0 src="images/H23H-03_B.jpg">

Olson, W. S.; Kuo, K.; Johnson, B. T.; Grecu, M.; Tian, L.; Heymsfield, A.; Munchak, S. J.

2012-12-01

128

Efficiency evaluation of ground-penetrating radar by the results of measurement of dielectric properties of soils  

SciTech Connect

The work considers the depth evaluation of ground penetrating radar (GPR) surveys using the attenuation factor of electromagnetic radiation in a medium. A method of determining the attenuation factor of low-conductive non-magnetic soils is developed based on the results of direct measurements of permittivity and conductivity of soils in the range of typical frequencies of GPR. The method relies on measuring the shift and width of the resonance line after a soil sample is being placed into a tunable cavity resonator. The advantage of this method is the preservation of soil structure during the measurement.

Khakiev, Zelimkhan; Kislitsa, Konstantin; Yavna, Victor [Rostov State Transport University, Rostov-on-Don (Russian Federation)

2012-12-15

129

Performance evaluation of the retrieval of a two hours rainfall event through microwave tomography applied to a network of radio-base stations  

NASA Astrophysics Data System (ADS)

Critical precipitation events occurred over the Italian territory have been often characterized by high intensity and very fast development, frequently over small catchment areas. The detection of this kind of phenomena is a major issue that poses remarkable problems that cannot be tackled completely only with 'standard' instrumentation (even when available), such as a weather radars or raingauges. Indeed, the rainfall sampling modalities of these instruments may jeopardize the attempts to provide a sufficiently fast risk alert: - the point-like, time-integrated way of sampling of raingauges can completely/partially miss local rainfall cores of high intensity developing in the neighborhoods. Moreover, raingauges provide cumulated rainfall measurements intrinsically affected by a time delay. - In the case of weather radars, several factors may limit the advantages brought by range resolution and instantaneous sampling: precipitation might be sampled at an excessive height due to the distance of the radar site and/or the orography surrounding the valleys/catchments where the aforementioned kind of events is more likely to form up; distance may limit the resolution in the cross-range direction; beam screening due to orography causes a loss of power that is interpreted in the farther range bins as a reduced precipitation intensity. In this context, a positive role for flagging the criticality of a precipitation event can be played by signal attenuation measurements made along microwave links, as available through the infrastructure of a mobile communications network. Three are the interesting features of such networks: 1) the communications among radio-base stations occur where point-to-point electromagnetic visibility is guaranteed, namely along valleys or between tops/flanks of hills or mountains; 2) the extension of these links (few kilometres) is perfectly compatible with the detection of severe but localized precipitation events; 3) measurements can be made on a practically continuous-time basis. In the past years, we showed that new scenarios for tomographic rainfall monitoring have been disclosed by the availability of widespread networks of radio-base stations for mobile communications (i.e., GSM, GPRS, UMTS). Such networks could be employed as the backbone of a low cost system able to provide 2D estimates of rainfall in real time. Monitoring capabilities increase in more populated sites, as urban areas, where such radio links form up a dense network that can be exploited to get detailed information also about structure and evolution of rainfall phenomena. In 2010, we presented a novel tomographic processing method for rainfall rate estimation, specifically adaptable to the dense and asymmetric topologies of urban networks of radio-base stations. In this paper, we show its application to a simulated time sequence of specific attenuation (K) maps, derived from true weather radar data gathered during a rainfall event specifically selected to evaluate the performance of the tomographic retrieval in critical conditions. The event was in fact very localized and intense and lasted two hours. 12 GHz is assumed for the carrier frequency of the radio-base network. We show the reconstruction performance of the 2D K fields achieved resorting first to a symmetric, regular network and then to a couple of totally asymmetric ones.

Facheris, L.; Cuccoli, F.; Baldini, L.

2012-04-01

130

Detail view of southeast corner of Signal Corps Radar (S.C.R.) ...  

Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

Detail view of southeast corner of Signal Corps Radar (S.C.R.) 296 Station 5 Transmitter Building foundation, showing Signal Corps Radar (S.C.R.) 296 Station 5 Tower concrete pier in background, camera facing north - Fort Barry, Signal Corps Radar 296, Station 5, Transmitter Building Foundation, Point Bonita, Marin Headlands, Sausalito, Marin County, CA

131

Lava flows in Mare Imbrium - An evaluation of anomalously low earth-based radar reflectivity  

NASA Technical Reports Server (NTRS)

The surface of Mare Imbrium contains some of the most distinct red-blue colorimetric boundaries and depolarized 70-cm wavelength-reflectivity variations on the near side of the moon. The weakest levels of both 3.8-cm and 70-cm reflectivity within Imbrium are confined to spectrally blue regional mare surfaces that can be recognized as stratigraphically unique flow surfaces. Frequency distributions of the 70-cm polarized and depolarized radar-return power for five mare surfaces within the basin indicate that signal absorption, and probably ilmenite content, increases generally from the beginning of the Imbrium Period to the end of the Eratosthenian Period with slight reversal between the end of the Imbrium and beginning of the Eratosthenian. TiO2 calibrated radar-reflectivity curves can be utilized for lunar-maria geochemical mapping in the same manner as the TiO2 calibrated spectral-reflectivity curves of Charette et al. (1974).

Schaber, G. D.; Thompson, T. W.; Zisk, S. H.

1975-01-01

132

Optimal power allocation in distributed multiple-radar configurations  

Microsoft Academic Search

A performance driven power allocation scheme is proposed for target localization in widely distributed multiple-radar architectures. For a total transmitted power goal, power may be uniformly allocated among all transmit stations. This will result with a specific target location estimation mean-square error (MSE) that may be evaluated using the Cramer-Rao bound (CRB). However, in the case of target tracking, where

Hana Godrich; Athina Petropulu; H. Vincent Poor

2011-01-01

133

Wideband On-ground Monostatic Radar Antenna for Water Content Soil Evaluation: Modeling, Design and Testing  

NASA Astrophysics Data System (ADS)

The knowledge of soil's hydraulic properties spatial distribution is important in agricultural practice optimization and hydrological studies. Non-invasive methods of measurement of the dielectric permittivity such as time domain reflectometry (TDR) and ground penetrating radar (GPR) are increasingly used in order to asses soil water content at the field scale. In order to acquire radar data over a wide frequency range, we designed a simple on-ground radar antenna operating on the frequency range 350 MHz - 2GHz. The antenna was designed using a powerful commercial three dimensional finite-difference time-domain (FDTD) electromagnetic field solver. A prototype of the frequency type radar transmission link was constructed and laboratory measurements were first performed with calibration purpose (the antenna was placed on a 13 cm-thick sand layer of known dielectric permittivity). The antenna is used in monostatic configuration and associated with a vector network analyzer to perform measurements of the antenna-soil reflection coefficients (S11) in the frequency domain. Those measurements are compared to FDTD simulations using the root mean square criterion in order to assess the sand dielectric properties. The use of full-wave FDTD software allows simulation of the whole antenna components, thus all potential influence on the reflection coefficient are recorded. The estimated permittivity with this procedure was close to the real one. In order to test the prototype in real field conditions measurements were performed on a single profile characterized by several agricultural practices (wheat crop, vegetative buffer strip and corn crop). Reflection coefficient (S11) measurements acquired with the prototype are compared to TDR measurements and DC electrical soundings in order to validate the soil apparent dielectric permittivity as well as its apparent electrical conductivity.

Vitale, Q.; Rejiba, F.; Guérin, R.

2012-12-01

134

Evaluation of Van Khan Tooril's castle, an archaeological site in Mongolia, by Ground Penetrating Radar  

Microsoft Academic Search

We report an implementation of the Ground Penetrating Radar (GPR) survey at a site that corresponds to a ruined castle. The objective of the survey was to characterise buried archaeological structures such as walls and tiles in Van Khan Tooril's Ruin, Mongolia, by 2D and 3D GPR techniques. GPR datasets were acquired in an area 10m by 9m, with 10cm

Tseedulam Khuut; Motoyuki Sato

2009-01-01

135

Evaluation of tag entanglement as a factor in harmonic radar studies of insect dispersal.  

PubMed

The observation of insects and other small organisms entangled in the habitat after the addition of vertical or trailing electronic tags to their body has generated concerns on the suitability of harmonic radars to track the dispersal of insects. This study compared the walking behavior of adult Colorado potato beetle (Leptinotarsa decemlineata (Say) Chrysomelidae), plum curculio (Conotrachelus nenuphar (Herbst) Curculionidae), and western corn rootworm (Diabrotica virgifera virgifera (LeConte) Chrysomelidae) with and without vertical and or trailing tags in field plots or arenas. The frequency of the larger Colorado potato beetles crossing bare ground or grassy plots was unaffected by the presence of an 8 cm trailing harmonic radar tag. However, plum curculios and western corn rootworms, were either unable to walk with a 4 cm trailing tag (plum curculio) or displayed a reduced ability to successfully cross a bare ground arena. Our results revealed the significant impact of vegetation on successful insect dispersal, whether tagged or not. The vertical movement of these insects on stems, stalks, and tubes was also unaffected by the presence of vertical tags. Trailing tags had a significant negative effect on the vertical movement of the western corn rootworm. Results show that harmonic radar technology is a suitable method for studying the walking paths of the three insects with appropriate tag type and size. The nuisance factor generated by appropriately sized tags was small relative to that of vegetation. PMID:22182617

Boiteau, G; Vincent, C; Meloche, F; Leskey, T C; Colpitts, B G

2011-02-01

136

Systematic evaluation of NASA precipitation radar estimates using NOAA/NSSL National Mosaic QPE products  

NASA Astrophysics Data System (ADS)

Proper characterization of the error structure of TRMM Precipitation Radar (PR) quantitative precipitation estimation (QPE) is needed for their use in TRMM combined products, water budget studies and hydrological modeling applications. Due to the variety of sources of error in spaceborne radar QPE (attenuation of the radar signal, influence of land surface, impact of off-nadir viewing angle, etc.) and the impact of correction algorithms, the problem is addressed by comparison of PR QPEs with reference values derived from ground-based measurements (GV) using NOAA/NSSL's National Mosaic QPE (NMQ) system. An investigation of this subject has been carried out at the PR estimation scale (instantaneous and 5 km) on the basis of a 3-month-long data sample. A significant effort has been carried out to derive a bias-corrected, robust reference rainfall source from NMQ. The GV processing details will be presented along with preliminary results of PR's error characteristics using contingency table statistics, probability distribution comparisons, scatter plots, semi-variograms, and systematic biases and random errors.

Kirstetter, P.; Hong, Y.; Gourley, J. J.; Chen, S.; Flamig, Z.; Zhang, J.; Howard, K.; Petersen, W. A.

2011-12-01

137

Radar Entomology  

NSDL National Science Digital Library

Radar tracking used to profile insect migration, mating and flight patterns. Many links to various pages include current workers in radar entomology, historical uses of the technology, and many images.

0000-00-00

138

Radar principles  

NASA Technical Reports Server (NTRS)

Discussed here is a kind of radar called atmospheric radar, which has as its target clear air echoes from the earth's atmosphere produced by fluctuations of the atmospheric index of refraction. Topics reviewed include the vertical structure of the atmosphere, the radio refractive index and its fluctuations, the radar equation (a relation between transmitted and received power), radar equations for distributed targets and spectral echoes, near field correction, pulsed waveforms, the Doppler principle, and velocity field measurements.

Sato, Toru

1989-01-01

139

14 CFR Appendix G to Part 121 - Doppler Radar and Inertial Navigation System (INS): Request for Evaluation; Equipment and...  

Code of Federal Regulations, 2012 CFR

...2012-01-01 2012-01-01 false Doppler Radar and Inertial Navigation System (INS...G Appendix G to Part 121—Doppler Radar and Inertial Navigation System (INS...applicant for authority to use a Doppler Radar or Inertial Navigation System must...

2012-01-01

140

14 CFR Appendix G to Part 121 - Doppler Radar and Inertial Navigation System (INS): Request for Evaluation; Equipment and...  

Code of Federal Regulations, 2010 CFR

...2010-01-01 2010-01-01 false Doppler Radar and Inertial Navigation System (INS...G Appendix G to Part 121—Doppler Radar and Inertial Navigation System (INS...applicant for authority to use a Doppler Radar or Inertial Navigation System must...

2010-01-01

141

14 CFR Appendix G to Part 121 - Doppler Radar and Inertial Navigation System (INS): Request for Evaluation; Equipment and...  

Code of Federal Regulations, 2013 CFR

...2013-01-01 2013-01-01 false Doppler Radar and Inertial Navigation System (INS...G Appendix G to Part 121—Doppler Radar and Inertial Navigation System (INS...applicant for authority to use a Doppler Radar or Inertial Navigation System must...

2013-01-01

142

14 CFR Appendix G to Part 121 - Doppler Radar and Inertial Navigation System (INS): Request for Evaluation; Equipment and...  

Code of Federal Regulations, 2014 CFR

...2014-01-01 2014-01-01 false Doppler Radar and Inertial Navigation System (INS...G Appendix G to Part 121—Doppler Radar and Inertial Navigation System (INS...applicant for authority to use a Doppler Radar or Inertial Navigation System must...

2014-01-01

143

14 CFR Appendix G to Part 121 - Doppler Radar and Inertial Navigation System (INS): Request for Evaluation; Equipment and...  

Code of Federal Regulations, 2011 CFR

...2011-01-01 2011-01-01 false Doppler Radar and Inertial Navigation System (INS...G Appendix G to Part 121—Doppler Radar and Inertial Navigation System (INS...applicant for authority to use a Doppler Radar or Inertial Navigation System must...

2011-01-01

144

The Evaluation of Methicillin Resistance in Staphylococcus aboard the International Space Station  

NASA Technical Reports Server (NTRS)

The International Space Station (ISS) represents a semi-closed environment with a high level of crewmember interaction. As community-acquired methicillin-resistant Staphylococcus aureus (MRSA) has emerged as a health concern in environments with susceptible hosts in close proximity, an evaluation of isolates of clinical and environmental Staphylococcus aureus and coagulase negative Staphylococcus was performed to determine if this trend was also present in astronauts aboard ISS or the space station itself. Rep-PCR fingerprinting analysis of archived ISS isolates confirmed our earlier studies indicating a transfer of S. aureus between crewmembers. In addition, this fingerprinting also indicated a transfer between crewmembers and their environment. While a variety of S. aureus were identified from both the crewmembers and the environment, phenotypic evaluations indicated minimal methicillin resistance. However, positive results for the Penicillin Binding Protein, indicative of the presence of the mecA gene, were detected in multiple isolates of archived Staphylococcus epidermidis and Staphylococcus haemolyticus. Phenotypic analysis of these isolates confirmed their resistance to methicillin. While MRSA has not been isolated aboard ISS, the potential exists for the transfer of the gene, mecA, from coagulase negative environmental Staphylococcus to S. aureus creating MRSA strains. This study suggests the need to expand environmental monitoring aboard long duration exploration spacecraft to include antibiotic resistance profiling.

Ott, C. M.; Bassinger, V. J.; Fontenot, S. L.; Castro, V. A.; Pierson, D. L.

2005-01-01

145

The Solid Rocket Motor Slag Population: Results of a Radar-Based Regressive Statistical Evaluation  

NASA Technical Reports Server (NTRS)

Solid rocket motor (SRM) slag has been identified as a potential source of man-made orbital debris. The possibility that SRMs (in addition to generating dust particles in the sub-millimeter range) may generate particles up to centimeters in size has caused concern regarding their contribution to the debris environment. Returned surfaces from space do not have sufficient area or exposure time to provide a clear picture of the SRM millimeter and centimeter debris population. Currently, radar observation is probably the only way to collect data showing the debris contribution from SRMs. Such observation is used to sample the debris environment, but it is difficult to obtain accurate orbital elements for the detected debris objects. NASA has developed several models to describe the different orbital debris populations, based on assumed debris production mechanisms to create clouds of debris objects that can be propagated in time. The NASA model, LEGEND (LEO-to-GEO Environment Debris), functions as a time-tested debris model for most debris sources. However, the current LEGEND model does not include contributions from the SRM population. An SRM model has recently been developed by NASA, based on purely theoretical details of SRM production and known SRM launches, but verification with hard data is needed. Because the detections of individual SRM objects cannot be deterministically separated from the total debris observed by radar, the validation of the SRM model can only be done by combining it with the LEGEND breakup model and comparing it with data. By applying observational constraints, the degree of SRM slag contribution to the environment may be estimated. This serves as an observationally sound method from which to calibrate a purely theoretical model into something more realistic. For this study, we use the populations observed by the Haystack radar from 1996 to present. For the SRM debris, we use a historical database of SRM launches, propellant masses, and estimated locations and times of tailoff to produce and propagate the SRM debris clouds. Comparisons with radar data from the ensuing years were made, and the SRM model was altered with respect to size and mass production of slag particles to reflect the populations estimated from the data. The result is a model SRM population that fits within the bounds of the observed environment and estimates of the production and contribution of SRM debris to the environment.

Horstman, Matthew F.; Xu, Yu-Lin

2008-01-01

146

Geomorphic Evaluation of Radar Imagery of Southeastern Panama and Northwestern Colombia  

E-print Network

• • • • • • • • • • • • • • • • • • • Radar imagery and aerial photograph of shell reefs (1) I mangrove (2), and non-vegetated areas associated with semi-dry man9rove coasts (3) Page 55 58 63 66 66 71 73 80 81 83 83 east of Garachine in San Miguel Bay . • . . . . .• 85 viii... B Figure 2. 13 Effect of Terrain Slopes (c0 on Incident Angle (d». a. c assuming a constant position in range and therefore a constant depres­ sion angle (f3), a decrease in incident angle with increasing terrain slope is evident in Figure 2...

Lewis, Anthony J.

1971-02-01

147

Evaluation of ionospheric densities using coincident OII 83.4 nm airglow and the Millstone Hill Radar  

NASA Astrophysics Data System (ADS)

We test the utility of the OII 83.4 nm emission feature as a measure of ionospheric parameters. Observed with the Remote Atmospheric and Ionospheric Detection System (RAIDS) Extreme Ultraviolet Spectrograph on the International Space Station (ISS), limb profiles of 83.4 nm emissions are compared to predicted dayglow emission profiles from a theoretical model incorporating ground-based electron density profiles measured by the Millstone Hill radar and parameterized by a best-fit Chapman-? function. Observations and models are compared for periods of conjunction between Millstone Hill and the RAIDS fields-of-view. These RAIDS observations show distinct differences in topside morphology between two days, 15 January and 10 March 2010, closely matching the forward model morphology and demonstrating that 83.4 nm emission is sensitive to changes in the ionospheric density profile from the 340 km altitude of the ISS during solar minimum. We find no significant difference between 83.4 nm emission profiles modeled assuming a constant scale height Chapman-? best-fit to the ISR measurements and those assuming varying scale height.

Douglas, E. S.; Smith, S. M.; Stephan, A. W.; Cashman, L.; Bishop, R. L.; Budzien, S. A.; Christensen, A. B.; Hecht, J. H.; Chakrabarti, S.

2012-05-01

148

Evaluation of chromic acid anodized aluminum foil coated composite tubes for the Space Station truss structure  

NASA Technical Reports Server (NTRS)

This paper describes the development and evaluation of chromic acid anodized (CAA) Al foil as a protective and thermal control coating for graphite/epoxy tubes designed for the Space Station truss structure. Special consideration is given to the development of solar-absorptance and thermal-emittance properties required of Al foil, the development of CAA parameters necessary to achieve these optical properties, and the atomic oxygen and UV testing of CAA Al foil. Results showed that 0.003-in CAA Al foil cocured or secondary bonded to graphite/epoxy tubes with thin epoxy film adhesive retains excellent bond strength and provides a superior protective and thermal control coating to the LEO environment. Processes were developed for CAA Al foils long enough to continuously wrap the 23-ft-long diagonal struts of the Space Station truss structure. Specifications are presented for the processes of chromic acid anodizing of Al foil and for the bonding of anodized Al foil to graphite/epoxy tubes.

Dursch, Harry W.; Slemp, Wayne S.

1988-01-01

149

Evaluation of available analytical techniques for monitoring the quality of space station potable water  

NASA Technical Reports Server (NTRS)

To assure the quality of potable water (PW) on the Space Station (SS) a number of chemical and physical tests must be conducted routinely. After reviewing the requirements for potable water, both direct and indirect analytical methods are evaluated that could make the required tests and improvements compatible with the Space Station operation. A variety of suggestions are made to improve the analytical techniques for SS operation. The most important recommendations are: (1) the silver/silver chloride electrode (SB) method of removing I sub 2/I (-) biocide from the water, since it may interfere with analytical procedures for PW and also its end uses; (2) the orbital reactor (OR) method of carrying out chemistry and electrochemistry in microgravity by using a disk shaped reactor on an orbital table to impart artificial G force to the contents, allowing solution mixing and separation of gases and liquids; and (3) a simple ultra low volume highly sensitive electrochemical/conductivity detector for use with a capillary zone electrophoresis apparatus. It is also recommended, since several different conductivity and resistance measurements are made during the analysis of PW, that the bipolar pulse measuring circuit be used in all these applications for maximum compatibility and redundancy of equipment.

Geer, Richard D.

1989-01-01

150

Evaluation of Cloud-Phase Retrieval Methods for SEVIRI on Meteosat-8 Using Ground-Based Lidar and Cloud Radar Data  

E-print Network

- erties such as cloud particle size, cloud temperature, cloud phase, water vapor and aerosol abundanceEvaluation of Cloud-Phase Retrieval Methods for SEVIRI on Meteosat-8 Using Ground-Based Lidar-phase retrievals obtained from cloud radar and lidar observations at Cabauw, Netherlands. Three aspects

Stoffelen, Ad

151

47 CFR 80.389 - Frequencies for maritime support stations.  

Code of Federal Regulations, 2013 CFR

...channels assigned to the associated public coast station. (b) Shore radar and radiolocation tests. The following frequency bands are available for assignment to demonstrate radar and radiolocation equipment. The use of frequencies within...

2013-10-01

152

Evaluation of speech recognizers for use in advanced combat helicopter crew station research and development  

NASA Technical Reports Server (NTRS)

The U.S. Army Crew Station Research and Development Facility uses vintage 1984 speech recognizers. An evaluation was performed of newer off-the-shelf speech recognition devices to determine whether newer technology performance and capabilities are substantially better than that of the Army's current speech recognizers. The Phonetic Discrimination (PD-100) Test was used to compare recognizer performance in two ambient noise conditions: quiet office and helicopter noise. Test tokens were spoken by males and females and in isolated-word and connected-work mode. Better overall recognition accuracy was obtained from the newer recognizers. Recognizer capabilities needed to support the development of human factors design requirements for speech command systems in advanced combat helicopters are listed.

Simpson, Carol A.

1990-01-01

153

Design and evaluation of FDDI fiber optics networkfor Ethernets, VAX's and Ingraph work stations  

NASA Technical Reports Server (NTRS)

The purpose of this project is to design and evaluate the FDDI Fiber Optics Network for Ethernets, VAX's, and Ingraph work stations. From the KSC Headquarters communication requirement, it would be necessary to develop the FDDI network based on IEEE Standards outlined in the ANSI X3T9.5, Standard 802.3 and 802.5 topology - direct link via intermediate concentrator and bridge/router access. This analysis should examine the major factors that influence the operating conditions of the Headquarters Fiber plant. These factors would include, but are not limited to the interconnecting devices such as repeaters, bridges, routers and many other relevant or significant FDDI characteristics. This analysis is needed to gain a better understanding of overall FDDI performance.

Wernicki, M. Chris

1992-01-01

154

Evaluation of a voice recognition system for the MOTAS pseudo pilot station function  

NASA Technical Reports Server (NTRS)

The Langley Research Center has undertaken a technology development activity to provide a capability, the mission oriented terminal area simulation (MOTAS), wherein terminal area and aircraft systems studies can be performed. An experiment was conducted to evaluate state-of-the-art voice recognition technology and specifically, the Threshold 600 voice recognition system to serve as an aircraft control input device for the MOTAS pseudo pilot station function. The results of the experiment using ten subjects showed a recognition error of 3.67 percent for a 48-word vocabulary tested against a programmed vocabulary of 103 words. After the ten subjects retrained the Threshold 600 system for the words which were misrecognized or rejected, the recognition error decreased to 1.96 percent. The rejection rates for both cases were less than 0.70 percent. Based on the results of the experiment, voice recognition technology and specifically the Threshold 600 voice recognition system were chosen to fulfill this MOTAS function.

Houck, J. A.

1982-01-01

155

Evaluation of terrain models for the geocoding and terrain correction of synthetic aperture radar (SAR) images  

NASA Astrophysics Data System (ADS)

Synthetic aperture radars (SAR's) are well suited for the measurement of geophysical parameters but the application of SAR imagery is limited by geometric and radiometric effects caused by variable terrain. Terrain models may be used for the rectification of SAR images, but model quality limits the extent of error correction. Various terrain models (USGS, SPOT, and 1 deg models) were used to rectify a Seasat SAR image in order to quantify terrain model differences and their effects on SAR image terrain correction. The accuracy of geocoded and terrain-corrected images was assessed, terrain models were compared, and the effects of terrain model differences on corrected SAR images were analyzed. Results indicate that elevation errors in terrain models are amplified into location errors in the terrain-corrected images. USGS and SPOT terrain-corrected images are superior to the image corrected by the 1 deg terrain model or geocoding using a constant elevation.

Wivell, Charles E.; Steinwand, Daniel R.; Kelly, Glenn G.; Meyer, David J.

1992-11-01

156

Preliminary geologic evaluation of L-band radar imagery: Arkansas test site  

NASA Technical Reports Server (NTRS)

The relatively small angles of incidence (steep depression angles) of the L-band system provide minimal shadowing on terrain back-slopes and considerable foreshortening on terrain fore-slopes which sacrifice much of the topographic enhancement afforded by a more oblique angle of illumination. In addition, the dynamic range of the return from vegetated surfaces is substantially less for the L-band system, and many surface features defined primarily by subtle changes in vegetation are lost. In areas having terrain conditions similar to those of northern Arkansas, and where LANDSAT and shorter wavelength aircraft radar data are available, the value of the JPL L-band imagery as either a complimentary or supplementary geologic data source is not obvious.

Macdonald, H.; Waite, W. P.

1977-01-01

157

Radar-based hail detection  

NASA Astrophysics Data System (ADS)

Damaging hailstorms are rare but are significant meteorological phenomena from the point of view of economic losses in central Europe. Because of the high spatial and temporal variability of hail, the proper detection of hail occurrences is almost impossible using ground station reports alone. An alternate approach uses information from weather radars. Several algorithms that use single-polarisation radar data have been developed for hail detection. In the present study, seven algorithms were tested on well documented recent hail events from Czechia and southwest Germany from 2002 to 2011. The study aimed to find the optimal threshold values for the applications of these techniques over the Czech territory and for evaluating the climatology of hail events. The results showed that the Waldvogel technique and the NEXRAD severe hail algorithm were the most accurate methods for hail detection over the area of interest. A combined criterion was proposed based on a combination of previously tested techniques. The precision of this “combi-criterion” was demonstrated for a severe hail event. The abilities of the tested criteria to provide information about a hail-fall area distribution and hail damage risk over the Czech territory were shown and discussed.

Skripniková, Kate?ina; ?ezá?ová, Daniela

2014-07-01

158

An intercomparison of radar-based liquid cloud microphysics retrievals and implications for model evaluation studies  

NASA Astrophysics Data System (ADS)

This paper presents a statistical comparison of three cloud retrieval products of the Atmospheric Radiation Measurement (ARM) program at the Southern Great Plains (SGP) site from 1998 to 2006: MICROBASE, University of Utah (UU), and University of North Dakota (UND) products. The probability density functions of the various cloud liquid water content (LWC) retrievals appear to be consistent with each other. While the mean MICROBASE and UU cloud LWC retrievals agree well in the middle of cloud, the discrepancy increases to about 0.03 gm-3 at cloud top and cloud base. Alarmingly large differences are found in the droplet effective radius (re) retrievals. The mean MICROBASE re is more than 6 ?m lower than the UU re, whereas the discrepancy is reduced to within 1 ?m if columns containing raining and/or mixed-phase layers are excluded from the comparison. A suite of stratified comparisons and retrieval experiments reveal that the LWC difference stems primarily from rain contamination, partitioning of total liquid later path (LWP) into warm and supercooled liquid, and the input cloud mask and LWP. The large discrepancy among the re retrievals is mainly due to rain contamination and the presence of mixed-phase layers. Since rain or ice particles are likely to dominate radar backscattering over cloud droplets, the large discrepancy found in this paper can be thought of as a physical limitation of single-frequency radar approaches. It is therefore suggested that data users should use the retrievals with caution when rain and/or mixed-phase layers are present in the column.

Huang, D.; Zhao, C.; Dunn, M.; Dong, X.; Mace, G. G.; Jensen, M. P.; Xie, S.; Liu, Y.

2012-06-01

159

Possibility of investigating star systems by radar  

Microsoft Academic Search

There is no fundamental reason why radar cannot be used in investigations of star systems. In order to detect star systems by radar it is necessary to construct an antenna with a diameter of several tens of kilometers and a transmitter whose power is commensurable with the power of all electric power stations on the Earth. Such an antenna should

O. N. Rzhiga

1986-01-01

160

HF radar role in an integrated ocean observing system  

Microsoft Academic Search

The Australian Coastal Ocean radar Network (ACORN) is a monitoring network of HF radars which are being installed around Australia under a National Collaborative Research Infrastructure Strategy (NCRIS). It is a five-year project, at the end of which there will be five pairs of radar stations and one triplet installed and operating, enabled by the central pool of funding for

M. L. Heron; A. Prytz

2009-01-01

161

MER vistas: ground-truth for Earth-based radar  

NASA Technical Reports Server (NTRS)

Earth-based delay-Doppler radar observations of Mars with four receiving stations were carried out during the Mars oppositions of 2001 and 2003 in support of Mars Exploration Rover landing site selection. This interferometric planetary radar technique has demonstrated radar mapping of Mars with a 5 km spatial resolution.

Haldemann, Albert F.; Larsen, Kristopher W.; Jurgens, Raymond F.; Golombek, Matthew P.; Slade, Martin A.

2004-01-01

162

Ground penetrating radar and microwave tomography 3D applications for the deck evaluation of the Musmeci bridge in Potenza, Italy  

NASA Astrophysics Data System (ADS)

An extensive experimental and numerical investigation has been carried out to assess the status of the 'Ponte sul Basento' (1967-1976), in the town of Potenza (Basilicata region, southern Italy), better known as the Musmeci bridge. Architecturally, the bridge is a considerable reinforced 20th century concrete structure that was designed and built by the Italian architect Sergio Musmeci (1926-1981). Moreover, the bridge represents an important element of the infrastructural network, linking the city centre to the Potenza-Sicignano highway, crossing the Basento river and the railway close to the main train station of the city. Recently, due to ageing and continuous and significant traffic, the bridge started to be affected by several problems such as water infiltration. Within the presented study, a widespread ground penetrating radar (GPR) survey has been designed to investigate the geometrical characteristics of the bridge deck (Gerber saddles, internal stiffening walls, pillar supports) and detect the presence of defects or damage due to water infiltration and traffic fatigue. Concerning this, a 900 MHz 3D GPR survey has been performed along a zone of one of the lanes on the road surface. Moreover, a second 1500 MHz 3D survey has been carried out at the bottom of the bridge deck in order to gain detailed information about an important structural element of the bridge, the Gerber saddle. Both results have been processed following two approaches: the first a classical time-domain processing session based on commercial software and the use of migration; the second in microwave tomography, an advanced frequency domain automatic PC-based inversion algorithm. In this paper, we present a comparative interpretation of both kinds of processed results, and provide considerations about the investigated structures.

Bavusi, Massimo; Soldovieri, Francesco; Di Napoli, Rosario; Loperte, Antonio; Di Cesare, Antonio; Carlo Ponzo, Felice; Lapenna, Vincenzo

2011-09-01

163

Evaluating space station applications of automation and robotics technologies from a human productivity point of view  

NASA Technical Reports Server (NTRS)

The role that automation, robotics, and artificial intelligence will play in Space Station operations is now beginning to take shape. Although there is only limited data on the precise nature of the payoffs that these technologies are likely to afford there is a general consensus that, at a minimum, the following benefits will be realized: increased responsiveness to innovation, lower operating costs, and reduction of exposure to hazards. Nevertheless, the question arises as to how much automation can be justified with the technical and economic constraints of the program? The purpose of this paper is to present a methodology which can be used to evaluate and rank different approaches to automating the functions and tasks planned for the Space Station. Special attention is given to the impact of advanced automation on human productivity. The methodology employed is based on the Analytic Hierarchy Process. This permits the introduction of individual judgements to resolve the confict that normally arises when incomparable criteria underly the selection process. Because of the large number of factors involved in the model, the overall problem is decomposed into four subproblems individually focusing on human productivity, economics, design, and operations, respectively. The results from each are then combined to yield the final rankings. To demonstrate the methodology, an example is developed based on the selection of an on-orbit assembly system. Five alternatives for performing this task are identified, ranging from an astronaut working in space, to a dexterous manipulator with sensory feedback. Computational results are presented along with their implications. A final parametric analysis shows that the outcome is locally insensitive to all but complete reversals in preference.

Bard, J. F.

1986-01-01

164

Performance Evaluation of the Operational Air Quality Monitor for Water Testing Aboard the International Space Station  

NASA Technical Reports Server (NTRS)

In the history of manned spaceflight, environmental monitoring has relied heavily on archival sampling. For short missions, this type of sample collection was sufficient; returned samples provided a snapshot of the presence of chemical and biological contaminants in the spacecraft air and water. However, with the construction of the International Space Station (ISS) and the subsequent extension of mission durations, soon to be up to one year, the need for enhanced, real-time environmental monitoring became more pressing. The past several years have seen the implementation of several real-time monitors aboard the ISS, complemented with reduced archival sampling. The station air is currently monitored for volatile organic compounds (VOCs) using gas chromatography-differential mobility spectrometry (Air Quality Monitor [AQM]). The water on ISS is analyzed to measure total organic carbon and biocide concentrations using the Total Organic Carbon Analyzer (TOCA) and the Colorimetric Water Quality Monitoring Kit (CWQMK), respectively. The current air and water monitors provide important data, but the number and size of the different instruments makes them impractical for future exploration missions. It is apparent that there is still a need for improvements in environmental monitoring capabilities. One such improvement could be realized by modifying a single instrument to analyze both air and water. As the AQM currently provides quantitative, compound-specific information for target compounds present in air samples, and many of the compounds are also targets for water quality monitoring, this instrument provides a logical starting point to evaluate the feasibility of this approach. In this presentation, we will discuss our recent studies aimed at determining an appropriate method for introducing VOCs from water samples into the gas phase and our current work, in which an electro-thermal vaporization unit has been interfaced with the AQM to analyze target analytes at the relevant concentrations at which they are routinely detected in archival water samples from the ISS.

Wallace, William T.; Limero, Thomas F.; Gazda, Daniel B.; Macatangay, Ariel V.; Dwivedi, Prabha; Fernandez, Facundo M.

2014-01-01

165

Atomic oxygen durability evaluation of the flexible batten for the photovoltaic array mast on Space Station  

NASA Technical Reports Server (NTRS)

A test program was conducted at the National Aeronautics and Space Administration's Lewis Research Center (LeRC) to evaluate the long term low Earth orbital (LEO) atomic oxygen (AO) durability of a flexible (fiberglass-epoxy composite) batten. The flexible batten is a component used to provide structural rigidity in the photovoltaic array mast on Space Station. The mast is used to support and articulate the photovoltaic array, therefore, the flexible batten must be preloaded for the 15 year lifetime of an array blanket. Development hardware and composite materials were evaluated in ground testing facilities for AO durability and dynamic retraction-deployment cyclic loading representative of expected full life in-space application. The CV1144 silicone (AO protective) coating was determined to provide adequate protection against AO degradation of the composite material and provided fiber containment, thus the structural integrity of the flexible batten was maintained. Both silicone coated and uncoated flexible battens maintained load carrying capabilities. Results of the testing did indicate that the CV1144 silicone protective coating was oxidized by AO reactions to form a brittle glassy (SiO2) skin that formed cracking patterns on all sides of the coated samples. The cracking was observed in samples that were mechanically stressed as well as samples in non-stressed conditions. The oxidized silicon was observed to randomly spall in small localized areas, on the flexible battens that underwent retraction-deployment cycling. Some darkening of the silicon, attributed to vacuum ultraviolet (VUV) radiation, was observed.

Stidham, Curtis R.; Rutledge, Sharon K.; Sechkar, Edward A.; Flaherty, David S.; Roig, David M.; Edwards, Jonathan L.

1994-01-01

166

Evaluation of station keeping systems for deepwater drilling semi-submersibles  

NASA Astrophysics Data System (ADS)

This paper addresses the need for systematic evaluation of the station keeping systems of deepwater drilling semi-submersibles. Based on the selected drilling semi-submersible configuration, the mooring systems were analyzed and designed for a range of water depths using different mooring line materials. These were steel wire rope, polyester rope and HMPE (high modulus poly ethylene). The mooring analysis was carried out using the advanced fully coupled time domain analysis method in the computer software package HARP. Diffraction analysis was first applied to solve the hydrodynamic properties of the vessel and then the motion equations of the complete dynamic system including the drilling rig, the mooring lines and risers were developed and solved in the time domain. Applying the advanced analysis method, a matrix of mooring systems was developed for operating in water depths of 1 000 m, 1 500 m, and 2 000 m using various mooring materials. The development of mooring systems was conducted in accordance with the commonly adopted mooring design code, API RP 2SK and API RP 2SM. Fresh attempts were then made to comparatively evaluate the mooring system’s characteristics and global performance. Useful results have been obtained in terms of mooring materials, water depths, and key parameters of mooring configurations. The results provide in-depth insight for the design and operation of deepwater mooring systems in the South China Sea environment.

Song, An-Ke; Sun, Li-Ping; Luo, Yong; Wang, Qiang

2010-09-01

167

Evaluation of the soil moisture prediction accuracy of a space radar using simulation techniques. [Kansas  

NASA Technical Reports Server (NTRS)

Image simulation techniques were employed to generate synthetic aperture radar images of a 17.7 km x 19.3 km test site located east of Lawrence, Kansas. The simulations were performed for a space SAR at an orbital altitude of 600 km, with the following sensor parameters: frequency = 4.75 GHz, polarization = HH, and angle of incidence range = 7 deg to 22 deg from nadir. Three sets of images were produced corresponding to three different spatial resolutions; 20 m x 20 m with 12 looks, 100 m x 100 m with 23 looks, and 1 km x 1 km with 1000 looks. Each set consisted of images for four different soil moisture distributions across the test site. Results indicate that, for the agricultural portion of the test site, the soil moisture in about 90% of the pixels can be predicted with an accuracy of = + or - 20% of field capacity. Among the three spatial resolutions, the 1 km x 1 km resolution gave the best results for most cases, however, for very dry soil conditions, the 100 m x 100 m resolution was slightly superior.

Ulaby, F. T. (principal investigator); Dobson, M. C.; Stiles, J. A.; Moore, R. K.; Holtzman, J. C.

1981-01-01

168

Health-hazard evaluation report HETA 89-262-1994, Chapman Corporation, Albright Power Station, Albright, West Virginia  

Microsoft Academic Search

In response to a request from the International Brotherhood of Electrical Workers, Local 425, an evaluation was made of possible asbestos exposures to electrical workers employed by Chapman Corporation engaged in electrical rewiring tasks on a boiler at the Albright Power Station, Albright, West Virginia. At the time the survey was undertaken, a complete refurbishing of boiler number 3 was

1989-01-01

169

Radar astronomy  

Microsoft Academic Search

Radar Astronomy is a new and growing branch of Astronomy. Although it seems that radio echo studies must be confined to the solar system, they can play an important part in developing our understanding of the Sun and the planets. At the present time these objects are barely detectable by radar techniques and much of the work has been concerned

J. V. Evans

1960-01-01

170

Radar investigation of the Hockley salt dome  

E-print Network

: Geophysics RADAR INVESTIGATION OF THE HOCKLEY SALT DOME A Thesis by UAMES ANDREW HLUCHANEK A'pproved as to style and content by: (Head of Departme t ? Member) May 1. 973 ABSTRACT Radar investigation of the Hockley Salt Dome. . (Nay, 1973) James... Andrew Hluchanek, B. S. , Texas A&M University Directed by: Dr. Robert R. Unterberger Radar probing through salt was accomplished at 17 radar stations established in the United Salt Company mine at Hockley, Texas. The top of the salt dom is mapped...

Hluchanek, James Andrew

2012-06-07

171

Agricultural and hydrological applications of radar  

Microsoft Academic Search

Program objectives, covering a wide range of disciplines and activities in radar remote sensing, include radar systems development and analysis, data processing and display, and data interpretation in geology, geography and oceanography. Research was focused on the evaluation of radar remote sensing applications in hydrology and agriculture based on data acquired with the Microwave Active Spectrometer (MAS) system. The title,

F. T. Ulaby

1976-01-01

172

Evaluation of shoulder integrity in space: first report of musculoskeletal US on the International Space Station  

NASA Technical Reports Server (NTRS)

Investigative procedures were approved by Henry Ford Human Investigation Committee and NASA Johnson Space Center Committee for Protection of Human Subjects. Informed consent was obtained. Authors evaluated ability of nonphysician crewmember to obtain diagnostic-quality musculoskeletal ultrasonographic (US) data of the shoulder by following a just-in-time training algorithm and using real-time remote guidance aboard the International Space Station (ISS). ISS Expedition-9 crewmembers attended a 2.5-hour didactic and hands-on US training session 4 months before launch. Aboard the ISS, they completed a 1-hour computer-based Onboard Proficiency Enhancement program 7 days before examination. Crewmembers did not receive specific training in shoulder anatomy or shoulder US techniques. Evaluation of astronaut shoulder integrity was done by using a Human Research Facility US system. Crew used special positioning techniques for subject and operator to facilitate US in microgravity environment. Common anatomic reference points aided initial probe placement. Real-time US video of shoulder was transmitted to remote experienced sonologists in Telescience Center at Johnson Space Center. Probe manipulation and equipment adjustments were guided with verbal commands from remote sonologists to astronaut operators to complete rotator cuff evaluation. Comprehensive US of crewmember's shoulder included transverse and longitudinal images of biceps and supraspinatus tendons and articular cartilage surface. Total examination time required to guide astronaut operator to acquire necessary images was approximately 15 minutes. Multiple arm and probe positions were used to acquire dynamic video images that were of excellent quality to allow evaluation of shoulder integrity. Postsession download and analysis of high-fidelity US images collected onboard demonstrated additional anatomic detail that could be used to exclude subtle injury. Musculoskeletal US can be performed in space by minimally trained operators by using remote guidance. This technique can be used to evaluate shoulder integrity in symptomatic crewmembers after strenuous extravehicular activities or to monitor microgravity-associated changes in musculoskeletal anatomy. Just-in-time training, combined with remote experienced physician guidance, may provide a useful approach to complex medical tasks performed by nonexperienced personnel in a variety of remote settings, including current and future space programs. (c) RSNA, 2004.

Fincke, E. Michael; Padalka, Gennady; Lee, Doohi; van Holsbeeck, Marnix; Sargsyan, Ashot E.; Hamilton, Douglas R.; Martin, David; Melton, Shannon L.; McFarlin, Kellie; Dulchavsky, Scott A.

2005-01-01

173

Evaluation of shoulder integrity in space: first report of musculoskeletal US on the International Space Station.  

PubMed

Investigative procedures were approved by Henry Ford Human Investigation Committee and NASA Johnson Space Center Committee for Protection of Human Subjects. Informed consent was obtained. Authors evaluated ability of nonphysician crewmember to obtain diagnostic-quality musculoskeletal ultrasonographic (US) data of the shoulder by following a just-in-time training algorithm and using real-time remote guidance aboard the International Space Station (ISS). ISS Expedition-9 crewmembers attended a 2.5-hour didactic and hands-on US training session 4 months before launch. Aboard the ISS, they completed a 1-hour computer-based Onboard Proficiency Enhancement program 7 days before examination. Crewmembers did not receive specific training in shoulder anatomy or shoulder US techniques. Evaluation of astronaut shoulder integrity was done by using a Human Research Facility US system. Crew used special positioning techniques for subject and operator to facilitate US in microgravity environment. Common anatomic reference points aided initial probe placement. Real-time US video of shoulder was transmitted to remote experienced sonologists in Telescience Center at Johnson Space Center. Probe manipulation and equipment adjustments were guided with verbal commands from remote sonologists to astronaut operators to complete rotator cuff evaluation. Comprehensive US of crewmember's shoulder included transverse and longitudinal images of biceps and supraspinatus tendons and articular cartilage surface. Total examination time required to guide astronaut operator to acquire necessary images was approximately 15 minutes. Multiple arm and probe positions were used to acquire dynamic video images that were of excellent quality to allow evaluation of shoulder integrity. Postsession download and analysis of high-fidelity US images collected onboard demonstrated additional anatomic detail that could be used to exclude subtle injury. Musculoskeletal US can be performed in space by minimally trained operators by using remote guidance. This technique can be used to evaluate shoulder integrity in symptomatic crewmembers after strenuous extravehicular activities or to monitor microgravity-associated changes in musculoskeletal anatomy. Just-in-time training, combined with remote experienced physician guidance, may provide a useful approach to complex medical tasks performed by nonexperienced personnel in a variety of remote settings, including current and future space programs. PMID:15533948

Fincke, E Michael; Padalka, Gennady; Lee, Doohi; van Holsbeeck, Marnix; Sargsyan, Ashot E; Hamilton, Douglas R; Martin, David; Melton, Shannon L; McFarlin, Kellie; Dulchavsky, Scott A

2005-02-01

174

Evaluating PRISM precipitation grid data as possible surrogates for station data at four sites in Oklahoma  

Technology Transfer Automated Retrieval System (TEKTRAN)

The development of climate-sensitive decision support for agriculture or water resource management requires long time series of monthly precipitation for specific locations. Archived station data for many locations is available, but time continuity, quality, and spatial coverage of station data rem...

175

An Evaluation of Technology to Remove Problematic Organic Compounds from the International Space Station Potable Water  

NASA Technical Reports Server (NTRS)

Since activation of the Water Processor Assembly (WPA) on the International Space Station (ISS) in November of 2008, there have been three events in which the TOC (Total Organic Carbon) in the product water has increased to approximately 3 mg/L and has subsequently recovered. Analysis of the product water in 2010 identified the primary component of the TOC as dimethylsilanediol (DMSD). An investigation into the fate of DMSD in the WPA ultimately determined that replacement of both Multifiltration (MF) Beds is the solution to recovering product water quality. The MF Beds were designed to ensure that ionic breakthrough occurs before organic breakthrough. However, DMSD saturated both MF Beds in the series, requiring removal and replacement of both MF Beds with significant life remaining. Analysis of the MF Beds determined that the adsorbent was not effectively removing DMSD, trimethylsilanol, various polydimethylsiloxanes, or dimethylsulfone. Coupled with the fact that the current adsorbent is now obsolete, the authors evaluated various media to identify a replacement adsorbent as well as media with greater capacity for these problematic organic contaminants. This paper provides the results and recommendations of this collaborative study.

Rector, Tony; Metselaar, Carol; Peyton, Barbara; Steele, John; Michalek, William; Bowman, Elizabeth; Wilson, Mark; Gazda, Daniel; Carter, Layne

2014-01-01

176

Evaluation of force-torque displays for use with space station telerobotic activities  

NASA Technical Reports Server (NTRS)

Recent experiments which addressed Space Station remote manipulation tasks found that tactile force feedback (reflecting forces and torques encountered at the end-effector through the manipulator hand controller) does not improve performance significantly. Subjective response from astronaut and non-astronaut test subjects indicated that force information, provided visually, could be useful. No research exists which specifically investigates methods of presenting force-torque information visually. This experiment was designed to evaluate seven different visual force-torque displays which were found in an informal telephone survey. The displays were prototyped in the HyperCard programming environment. In a within-subjects experiment, 14 subjects nullified forces and torques presented statically, using response buttons located at the bottom of the screen. Dependent measures included questionnaire data, errors, and response time. Subjective data generally demonstrate that subjects rated variations of pseudo-perspective displays consistently better than bar graph and digital displays. Subjects commented that the bar graph and digital displays could be used, but were not compatible with using hand controllers. Quantitative data show similar trends to the subjective data, except that the bar graph and digital displays both provided good performance, perhaps do to the mapping of response buttons to display elements. Results indicate that for this set of displays, the pseudo-perspective displays generally represent a more intuitive format for presenting force-torque information.

Hendrich, Robert C.; Bierschwale, John M.; Manahan, Meera K.; Stuart, Mark A.; Legendre, A. Jay

1992-01-01

177

Evaluation of solid state nuclear track detector stacks exposed on the international space station.  

PubMed

The aim of the study was to investigate the contribution of secondary neutrons to the total dose inside the International Space Station (ISS). For this purpose solid-state nuclear track detector (SSNTD) stacks were used. Each stack consisted of three CR-39 sheets. The first and second sheets were separated by a Ti plate, and the second and third sheets sandwiched a Lexan polycarbonate foil. The neutron and proton responses of each sheet were studied through MC calculations and experimentally, utilising monoenergetic protons. Seven stacks were exposed in 2001 for 249 days at different locations of the Russian segment 'Zvezda'. The total storage time before and after the exposure onboard was estimated to be seven months. Another eight stacks were exposed at the CERF high-energy neutron field for calibration purposes. The CR-39 detectors were evaluated in four steps: after 2, 6, 12 and 20 h etching in 6 N NaOH at 70 degrees C (VB = 1.34 microm h(-1)). All the individual tracks were investigated and recorded using an image analyser. The stacks provided the averaged neutron ambient dose equivalent (H*) between 200 keV and 20 MeV, and the values varied from 39 to 73 microSv d(-1), depending on the location. The Lexan detectors were used to detect the dose originating from high-charge and high-energy (HZE) particles. These results will be published elsewhere. PMID:15353680

Pálfalvi, J K; Akatov, Yu; Szabó, J; Sajó-Bohus, L; Eördögh, I

2004-01-01

178

Long life monopropellant hydrazine thruster evaluation for Space Station Freedom application - Test results  

NASA Technical Reports Server (NTRS)

In support of propulsion system thruster development activity for Space Station Freedom (SSF), NASA Johnson Space Center (JSC) conducted a hydrazine thruster technology demonstration program. The goal of this program was to identify impulse life capability of state-of-the-art long life hydrazine thrusters nominally rated for 50 pounds thrust at 300 psia supply pressure. The SSF propulsion system requirement for impulse life of this thruster class is 1.5 million pounds-seconds, corresponding to a throughput of approximately 6400 pounds of propellant. Long life thrusters were procured from The Marquardt Company, Hamilton Standard, and Rocket Research Company, Testing at JSC was completed on the thruster designs to quantify life while simulating expected thruster firing duty cycles and durations for SSF. This paper presents a review of the SSF propulsion system hydrazine thruster requirements, summaries of the three long life thruster designs procured by JSC and acceptance test results for each thruster, the JSC thruster life evaluation test program, and the results of the JSC test program.

Popp, Christopher G.; Cook, Joseph C.; Ragland, Brenda L.; Pate, Leah R.

1992-01-01

179

Structural evaluation of concepts for a solar energy concentrator for Space Station advanced development program  

NASA Technical Reports Server (NTRS)

Solar dynamic power systems have a higher thermodynamic efficiency than conventional photovoltaic systems; therefore they are attractive for long-term space missions with high electrical power demands. In an investigation conducted in support of a preliminary concept for Space Station Freedom, an approach for a solar dynamic power system was developed and a number of the components for the solar concentrator were fabricated for experimental evaluation. The concentrator consists of hexagonal panels comprised of triangular reflective facets which are supported by a truss. Structural analyses of the solar concentrator and the support truss were conducted using finite-element models. A number of potential component failure scenarios were postulated and the resulting structural performance was assessed. The solar concentrator and support truss were found to be adequate to meet a 1.0-Hz structural dynamics design requirement in pristine condition. However, for some of the simulated component failure conditions, the fundamental frequency dropped below the 1.0-Hz design requirement. As a result, two alternative concepts were developed and assessed. One concept incorporated a tetrahedral ring truss support for the hexagonal panels: the second incorporated a full tetrahedral truss support for the panels. The results indicate that significant improvements in stiffness can be obtained by attaching the panels to a tetrahedral truss, and that this concentrator and support truss will meet the 1.0-Hz design requirement with any of the simulated failure conditions.

Kenner, Winfred S.; Rhodes, Marvin D.

1994-01-01

180

Evaluation of the present theoretical basis for determination of planetary surface properties by earth-based radar  

NASA Technical Reports Server (NTRS)

Spaceflight programs such as the planned Viking landing on Mars require the determination of planetary surface slopes and surface dielectric constants by earth-based methods. Heavy reliance is often placed on radar backscattering data for estimation of these surface properties. An assessment is presented of the basic theory by which the raw radar data are interpreted, and it is shown that serious difficulties and internal inconsistencies are present in the available theoretical formulas. The discussion brings into question the reliability of the presently available results for these surface properties as obtained by earth-based radar methods.

Staton, L. D.

1975-01-01

181

Assessment of FRP-confined concrete : understanding behavior and issues in nondestructive evaluation using radar  

E-print Network

Increase in the use of fiber-reinforced polymer (FRP) composite materials for strengthening and retrofitting of concrete columns and bridge piers has urged the development of' an effective non-destructive evaluation (NDE) ...

Ortega, Jose Alberto, 1978-

2006-01-01

182

Use of radars to monitor stream discharge by noncontact methods  

Microsoft Academic Search

Conventional measurements of river flows are costly, time-consuming, and frequently dangerous. This report evaluates the use of a continuous wave microwave radar, a monostatic UHF Doppler radar, a pulsed Doppler microwave radar, and a ground-penetrating radar to measure river flows continuously over long periods and without touching the water with any instruments. The experiments duplicate the flow records from conventional

J. E. Costa; R. T. Cheng; F. P. Haeni; N. Melcher; K. R. Spicer; E. Hayes; W. Plant; K. Hayes; C. Teague; D. Barrick

2006-01-01

183

Evaluation of a redesigned self-checkout station for wheelchair users.  

PubMed

Self-checkout is the emergent/emerging retail technology wherein users (shoppers) check out their own items using an interactive kiosk. A dramatic growth is anticipated in the prevalence of self-checkout systems in retail environments. A study was conducted to develop and evaluate a redesign of a self-checkout system with a focus on issues related to physical accessibility for wheelchair users. Two checkout station prototypes were built: a full-scale model of an existing system and a full-scale model of a system with design modifications (e.g., inclusion of appropriate wheelchair clearance under the workstation, reduced vertical position of the credit card reader, etc.). Five wheelchair users and 10 non-wheelchair users performed simulated self-checkout activities using both workstations. The principal independent variable was workstation type (standard design vs. modified design). The dependent measures were productivity (time to complete a transaction), shoulder flexion angle, torso flexion angle, and the user's subjective assessment of the experience. The results of this study indicate that workstation type did not influence productivity levels in either participant group (wheelchair users or non-wheelchair users). Posture, on the other hand, was significantly improved: the peak shoulder angle was reduced by 64% in wheelchair users and by 69% in the non-wheelchair user group. Peak flexion angle of the torso was also reduced by 67% for wheelchair users. Subjective feedback from the wheelchair user group supported the postural data by showing an overall preference for the redesigned workstation, whereas the non-wheelchair group showed no preference between the two. These results indicate that design for populations with specific limitations does not need to come at a cost of reduced accessibility for persons without these limitations; universal design is achievable. PMID:16796238

Bajaj, Komal; Mirka, Gary A; Sommerich, Carolyn M; Khachatoorian, Haig

2006-01-01

184

Using Radar Charts with Qualitative Evaluation: Techniques to Assess Change in Blended Learning  

ERIC Educational Resources Information Center

When university academics implement changes in learning, such as introducing blended learning, it is conventional practice to examine and evaluate the impact of the resulting curriculum reform. Judging the worth and impact of an educational development is a complex task involving subtle differences in learning. Qualitative methods to explore these…

Kaczynski, Dan; Wood, Leigh; Harding, Ansie

2008-01-01

185

Polarization radar processing technology  

NASA Astrophysics Data System (ADS)

A comprehensive effort involving measurements and performance evaluation for the detection of scatterers immersed in a background of natural and man-made clutter using polarization diverse waveforms is presented. The effort spans evaluation from the initial stages of theoretical formation to processor performance evaluation using real-world data. The theoretical approach consists of determining polarimetric statistical properties of the backscatter waveform and these properties to derive the optimum dual-polarized S-band radar system with selectable polarization on both transmit and receive. Several processors utilizing optimum and suboptimum algorithms were evaluated using simulated and live radar data, and performance results are compared. The processor types include fully adaptive algorithms designed to operate on polarimetric spectral spread waveforms, and several combinations of single channel and polarization diverse receivers with both single and dual transmit polarization. Results are plotted and evaluated by displaying probability of detection as a function of signal-to-noise ratio with processor type as a parameter.

Wicks, Michael C.; Vannicola, Vincent C.; Stiefvater, Kenneth C.; Brown, Russell D.

186

Terrestrial ecosystem recovery following removal of a PCB point source at a former pole vault line radar station in Northern Labrador.  

PubMed

Saglek Bay (LAB-2), located on the northeast coast of Labrador is a former Polevault station that was operated by the U.S. Air Force from 1953 to 1971 when it was abandoned. An environmental assessment carried out in 1996 determined that the site was contaminated with polychlorinated biphenyls (PCBs) with concentrations in soils far exceeding the Canadian Environmental Protection Agency (CEPA) regulation of 50 ?g/g in three areas of the site (Beach, Site Summit, Antenna Hill). This led to remediation work carried out between 1999 and 2004 to remove and/or isolate all PCB-contaminated soil exceeding 50 ?g/g and to further remediate parts of the site to <5 ?g/g PCBs. In this study, spatial and temporal trends of PCB concentrations in soil, vegetation (Betula glandulosa and Salix spp.), and deer mice (Peromyscus maniculatus) were investigated over a period of fourteen (1997-2011) years in an effort to track ecosystem recovery following the removal of the PCB point sources. The data collected shows that PCB levels in vegetation samples are approximately four times lower in 2011 than pre-remediation in 1997. Similarly, PCB concentrations in deer mice in 2011 are approximately three times lower than those measured in 1997/98. Spatial trends in vegetation and deer mice continue to demonstrate that areas close to the former point sources of PCBs have higher PCB concentrations than those further away (and higher than background levels) and these residual PCB levels are not likely to decrease in the foreseeable future given the persistent nature of PCBs in general in the environment, and in particular in cold climates. PMID:23712118

Ficko, Sarah A; Luttmer, Carol; Zeeb, Barbara A; Reimer, Kenneth

2013-09-01

187

Evaluation of the neutron radiation environment inside the International Space Station based on the Bonner Ball Neutron Detector experiment  

Microsoft Academic Search

The Bonner Ball Neutron Detector (BBND) experiment was conducted onboard the US Laboratory Module of the International Space Station (ISS) as part of the Human Research Facility project of NASA in order to evaluate the neutron radiation environment in the energy range from thermal up to 15MeV inside the ISS. The BBND experiment was carried out over an eight-month period

H. Koshiishi; H. Matsumoto; A. Chishiki; T. Goka; T. Omodaka

2007-01-01

188

Evaluating a Radar-Based, Non Contact Streamflow Measurement System in the San Joaquin River at Vernalis, California  

USGS Publications Warehouse

Accurate measurement of flow in the San Joaquin River at Vernalis, California, is vital to a wide range of Federal and State agencies, environmental interests, and water contractors. The U.S. Geological Survey uses a conventional stage-discharge rating technique to determine flows at Vernalis. Since the flood of January 1997, the channel has scoured and filled as much as 20 feet in some sections near the measurement site resulting in an unstable stage-discharge rating. In response to recent advances in measurement techniques and the need for more accurate measurement methods, the Geological Survey has undertaken a technology demonstration project to develop and deploy a radar-based streamflow measuring system on the bank of the San Joaquin River at Vernalis, California. The proposed flow-measurement system consists of a ground-penetrating radar system for mapping channel geometries, a microwave radar system for measuring surface velocities, and other necessary infrastructure. Cross-section information derived from ground penetrating radar provided depths similar to those measured by other instruments during the study. Likewise, surface-velocity patterns and magnitudes measured by the pulsed Doppler radar system are consistent with near surface current measurements derived from acoustic velocity instruments. Since the ratio of surface velocity to mean velocity falls to within a small range of theoretical value, using surface velocity as an index velocity to compute river discharge is feasable. Ultimately, the non-contact radar system may be used to make continuous, near-real-time flow measurements during high and medium flows. This report documents the data collected between April 14, 2002 and May 17, 2002 for the purposes of testing this radar based system. Further analyses of the data collected during this field effort will lead to further development and improvement of the system.

Cheng, Ralph T.; Gartner, Jeffrey W.; Mason, Robert R.; Costa, John E.; Plant, William J.; Spicer, Kurt R.; Haeni, F. Peter; Melcher, Nick B.; Keller, William C.; Hayes, Ken

2004-01-01

189

Bistatic and Multistatic Radar: Surveillance, Countermeasures, and Radar Cross Sections. (Latest Citations from the Aerospace Database)  

NASA Technical Reports Server (NTRS)

The bibliography contains citations concerning the design, development, testing, and evaluation of bistatic and multistatic radar used in surveillance and countermeasure technology. Citations discuss radar cross sections, target recognition and characteristics, ghost recognition, motion image compensation, and wavelet analysis. Stealth aircraft design, stealth target tracking, synthetic aperture radar, and space applications are examined.

1997-01-01

190

Bistatic and Multistatic Radar: Surveillance, Countermeasures, and Radar Cross Sections. (Latest citations from the Aerospace Database)  

NASA Technical Reports Server (NTRS)

The bibliography contains citations concerning the design, development, testing, and evaluation of bistatic and multistatic radar used in surveillance and countermeasure technology. Citations discuss radar cross sections, target recognition and characteristics, ghost recognition, motion image compensation, and wavelet analysis. Stealth aircraft design, stealth target tracking, synthetic aperture radar, and space applications are examined.

1998-01-01

191

Time synchronization via lunar radar.  

NASA Technical Reports Server (NTRS)

The advent of round-trip radar measurements has permitted the determination of the ranges to the nearby planets with greater precision than was previously possible. When the distances to the planets are known with high precision, the propagation delay for electromagnetic waves reflected by the planets may be calculated and used to synchronize remotely located clocks. Details basic to the operation of a lunar radar indicate a capability for clock synchronization to plus or minus 20 microsec. One of the design goals for this system was to achieve a simple semiautomatic receiver for remotely located tracking stations. The lunar radar system is in operational use for deep space tracking at Jet Propulsion Laboratory and synchronizes five world-wide tracking stations with a master clock at Goldstone, Calif. Computers are programmed to correct the Goldstone transmissions for transit time delay and Doppler shifts so as to be received on time at the tracking stations; this dictates that only one station can be synchronized at a given time period and that the moon must be simultaneously visible to both the transmitter and receiver for a minimum time of 10 min.-

Higa, W. H.

1972-01-01

192

Radar Performance Improvement. Angle Tracking Modification to Fire Control Radar System for Space Shuttle Rendezvous  

NASA Technical Reports Server (NTRS)

The AN/APQ-153 fire control radar modified to provide angle tracking was evaluated for improved performance. The frequency agile modifications are discussed along with the range-rate improvement modifications, and the radar to computer interface. A parametric design and comparison of noncoherent and coherent radar systems are presented. It is shown that the shuttle rendezvous range and range-rate requirements can be made by a Ku-Band noncoherent pulse radar.

Little, G. R.

1976-01-01

193

Using radar and lidar instrument simulators to evaluate moist processes in the Community Atmosphere Model  

NASA Astrophysics Data System (ADS)

Global vertically-profiling active satellite observations and instrument simulator packages enable new exposure of moist processes in global climate models. We evaluate the representation of cloud and precipitation processes within two versions of NCAR’s Community Atmosphere Model (CAM) that will be used for IPCC integrations (CAM3.5, CAM4). The two CAM model versions have large differences in cloud water content, cloud particle size, tropospheric humidity, and precipitation frequency and intensity. CloudSat and CALIOP observations and the COSP simulator package are used to produce “apple-to-apple” comparisons between observed and modeled cloud and precipitation properties. We then assess the fidelity of CAM3.5 and CAM4 cloud and precipitation fields to the CloudSat and CALIOP observations in three areas of climatological interest: the Pacific stratocumulus regions, the Tropical Pacific warm pool, and the North Pacific mid-latitude storm track. In addition to observational comparison, the climate implications of the revealed inter-model and observational differences will be discussed.

Kay, J. E.; Gettelman, A.; Zhang, Y.; Stephens, G. L.

2009-12-01

194

Application of Fuzzy comprehensive evaluation in regional agricultural machinery advice station  

Microsoft Academic Search

Local administrative departments in charge of agricultural machinery should focus more capital investment on constructing the regional advice station for agricultural machinery, which could help improve the agricultural mechanization level, increase the income and reduce the labor intensity of farmers. However, there existed problems like embezzlement and poor construction effect during the project implementation at present. Therefore, performance appraisal of

Enli Lu; Zhou Yang; Huazhong Lu; Xiaoteng Han; Dongxia Zhang

2011-01-01

195

Venus - First Radar Test  

NASA Technical Reports Server (NTRS)

After traveling more than 1.5 billion kilometers (948 million miles), the Magellan spacecraft was inserted into orbit around Venus on Aug. 10, 1990. This mosaic consists of adjacent pieces of two Magellan image strips obtained on Aug. 16 in the first radar test. The radar test was part of a planned In Orbit Checkout sequence designed to prepare the Magellan spacecraft and radar to begin mapping after Aug. 31. The strip on the left was returned to the Goldstone Deep Space Network station in California; the strip to the right was received at the DSN in Canberra, Australia. A third station that will be receiving Magellan data is located near Madrid, Spain. Each image strip is 20 km (12 miles) wide and 16,000 km (10,000 miles) long. This mosaic is a small portion 80 km (50 miles) long. This image is centered at 21 degrees north latitude and 286.8 degrees east longitude, southeast of a volcanic highland region called Beta Regio. The resolution of the image is about 120 meters (400 feet), 10 times better than previous images of the same area of Venus, revealing many new geologic features. The bright line trending northwest southeast across the center of the image is a fracture or fault zone cutting the volcanic plains. In the upper left corner of the image, a multiple ring circular feature of probable volcanic origin can be seen, approximately 4.27 km (2.65 miles) across. The bright and dark variations seen in the plains surrounding these features correspond to volcanic lava flows of varying ages. The volcanic lava flows in the southern half of the image have been cut by north south trending faults. This area is similar geologically to volcanic deposits seen on Earth at Hawaii and the Snake River Plains in Idaho.

1990-01-01

196

Simulation of a weather radar display for over-water airborne radar approaches  

NASA Technical Reports Server (NTRS)

Airborne radar approach (ARA) concepts are being investigated as a part of NASA's Rotorcraft All-Weather Operations Research Program on advanced guidance and navigation methods. This research is being conducted using both piloted simulations and flight test evaluations. For the piloted simulations, a mathematical model of the airborne radar was developed for over-water ARAs to offshore platforms. This simulated flight scenario requires radar simulation of point targets, such as oil rigs and ships, distributed sea clutter, and transponder beacon replies. Radar theory, weather radar characteristics, and empirical data derived from in-flight radar photographs are combined to model a civil weather/mapping radar typical of those used in offshore rotorcraft operations. The resulting radar simulation is realistic and provides the needed simulation capability for ongoing ARA research.

Clary, G. R.

1983-01-01

197

Solar Radar  

NASA Astrophysics Data System (ADS)

Radar echoes from the Sun were first detected in 1959 at 25 MHz and an extensive set of measurements was made at 38 MHz between 1960 and 1969. The results were unexpected and could not be explained at the time. Interest in the technique waned and radar astronomy evolved to the use of higher frequencies so it became impossible to repeat the measurements. The early observations can be explained in the light of our present understanding of the corona. New radar observations, with correlative optical, UV, and soft X-ray observations, would be very useful in probing the corona near the origin of the solar wind. Radar measures the range to the reflection point and the plasma velocity at the reflection point. Reflection occurs where the dielectric constant goes to zero, which is polarization dependent. Thus dual polarization observations provide estimates of the electron density, magnetic field, and velocity at the reflection point. Solar echoes can be observed at frequencies between 18 MHz and 100 MHz, corresponding to reflection heights between (roughly) 1.8 Rs and 1.15 Rs. It may be possible to operate up to 200 MHz and probe to the edge of the transition region. Here we will review the early observations; explain their basic features; outline existing and potential opportunities for new observations; and speculate on the future development of the technique.

Coles, W. A.

2002-12-01

198

Evaluating the potential use of a high-resolution X-band polarimetric radar observations in Urban Hydrology  

NASA Astrophysics Data System (ADS)

The Mediterranean area concentrates the major natural risks related to the water cycle, including heavy precipitation and flash-flooding during the fall season. Every year in central and south Europe we witness several fatal and economical disasters from severe storm rainfall triggering Flash Floods, and its impacts are increasing worldwide, but remain very difficult to manage. The spatial scale of flash flood occurrence is such that its vulnerability is often focused on dispersed urbanization, transportation and tourism infrastructures (De Marchi and Scolobig 2012). Urbanized and industrialized areas shows peculiar hydrodynamic and meteo-oceanographic features and they concentrate the highest rates of flash floods and fatal disasters. The main causes of disturbance being littoral urban development and harbor activities, the building of littoral rail- and highways, and the presence of several polluted discharges. All the above mentioned characteristics limit our ability to issue timely flood warnings. Precipitation estimates based on raingauge networks are usually associated with low coverage density, particularly at high altitudes. On the other hand, operational weather radar networks may provide valuable information of precipitation at these regimes but reliability of their estimates is often limited due to retrieval (e.g. variability in the reflectivity-to-rainfall relationship) and spatial extent constrains (e.g. blockage issues, overshooting effects). As a result, we currently lack accurate precipitation estimates over urban complex terrain areas, which essentially means that we lack accurate knowledge of the triggering factor for a number of hazards like flash floods and debris flows/landslides occurring in those areas. A potential solution to overcome sampling as well as retrieval uncertainty limitations of current observational networks might be the use of network of low-power dual-polarization X-band radars as complement to raingauges and gap-filling to operational, low-frequency (C-band or S-ban) and high-power weather radars. The above hypothesis is examined using data collected during the HyMEX 2012 Special Observation Period (Nov-Feb) the urban and sub-urban complex terrain area in the Central Italy (CI). The area is densely populated and it includes the high-density populated urban and industrial area of Rome. The orography of CI is quite complex, going from sea level to nearly 3000 m in less than 150 km. The CI area involves many rivers, including two major basins: the Aniene-Tiber basin (1000 km long) and the Aterno-Pescara basin (300 km long), respectively on the west and on the east side of the Apennines ridge. Data include observations from i) the National Observatory of Athens' X-band polarimetric weather radar (XPOL), ii) two X-band miniradars (WR25X located in CNR, WR10X located in Rome Sapienza), iii) a dense network of raingauges and disdrometers (i.e. Parsivel type and 2D-video type). In addition, the experimental area is also covered from the nearby the National Research Council (CNR)'s C-band dual-polarization weather radar (Polar55C), which were involved also in the analysis. A number of storm events are selected and compared with the nearby C-band radar to investigate the potential of using high-resolution and microphysically-derived rainfall based on X-band polarimetric radar observations. Events have been discriminated on the basis of rainfall intensity and hydrological response. Results reveal that in contrast with the other two rainfall sources (in situ and C-band radar), X-band radar rainfall estimates offer an improved representation of the local precipitation variability, which turns to have a significant impact in simulating the peak flows associated with these events.

Anagnostou, Marios N.; Kalogiros, John; Marzano, Frank S.; Anagnostou, Emmanouil N.; Baldini, Luca; Nikolopoulos, EfThymios; Montopoli, Mario; Picciotti, Errico

2014-05-01

199

50. View of waveguides beginning to move toward two radar ...  

Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

50. View of waveguides beginning to move toward two radar scanner switches (two per radar scanner building) by vertical bends; also tuning devices are located here. - Clear Air Force Station, Ballistic Missile Early Warning System Site II, One mile west of mile marker 293.5 on Parks Highway, 5 miles southwest of Anderson, Anderson, Denali Borough, AK

200

Estimating Watershed Accumulated Precipitation From Radar and Gage Data  

Microsoft Academic Search

Radar-derived precipitation estimates are potentially valuable for studies whereground weather station rainfall data is not available at sufficient spatial density to account for precipitation variation over a study area. Stage IV precipitation analyses are one of the national products produced by the National Centers for Environmental Prediction (NCEP). This product combines data from Doppler weather radar precipitation estimates and surface

M. A. Murphy; C. J. Post

2005-01-01

201

Evaluation of Preproduction Hardware Components for IMS Station Upgrades to Reduce Manufacturers Development Time  

NASA Astrophysics Data System (ADS)

Since the Comprehensive Nuclear-Test-Ban Treaty was opened for signature in 1996, nearly 80% of the network has been certified as operational, and those stations are sending data to the International Data Centre (IDC) in Vienna. Several International Monitoring System (IMS) monitoring facilities have been in operation for close to 15 years, and several certified stations are facing equipment obsolescence issues. The search for engineering solutions to replace obsolete hardware components is guided by two primary goals: 1) be compliant with IMS minimum technical requirements and 2) be able to be integrated with the existing system. To reduce the development and verification time necessary to address obsolescence in equipment, the PTS has requested the preproduction testing of the recently revised Guralp CMG-DM24AM digitizer. Performing preproduction testing has helped in identifying issues, which Guralp Systems has resolved. In our poster, we will review the reasons for the digitizer updates, present results of the preproduction testing of the Guralp digitizer, and comment on the value this process has provided to the IMS operation.

Hart, Darren; Pearce, Nathan; Starovoit, Yuri; Guralp, Cansun

2014-05-01

202

Agricultural and hydrological applications of radar  

NASA Technical Reports Server (NTRS)

Program objectives, covering a wide range of disciplines and activities in radar remote sensing, include radar systems development and analysis, data processing and display, and data interpretation in geology, geography and oceanography. Research was focused on the evaluation of radar remote sensing applications in hydrology and agriculture based on data acquired with the Microwave Active Spectrometer (MAS) system. The title, author(s) and abstract of each of the 62 technical reports generated under this contract are appended.

Ulaby, F. T.

1976-01-01

203

An application of multiattribute decision analysis to the Space Station Freedom program. Case study: Automation and robotics technology evaluation  

NASA Technical Reports Server (NTRS)

The results are described of an application of multiattribute analysis to the evaluation of high leverage prototyping technologies in the automation and robotics (A and R) areas that might contribute to the Space Station (SS) Freedom baseline design. An implication is that high leverage prototyping is beneficial to the SS Freedom Program as a means for transferring technology from the advanced development program to the baseline program. The process also highlights the tradeoffs to be made between subsidizing high value, low risk technology development versus high value, high risk technology developments. Twenty one A and R Technology tasks spanning a diverse array of technical concepts were evaluated using multiattribute decision analysis. Because of large uncertainties associated with characterizing the technologies, the methodology was modified to incorporate uncertainty. Eight attributes affected the rankings: initial cost, operation cost, crew productivity, safety, resource requirements, growth potential, and spinoff potential. The four attributes of initial cost, operations cost, crew productivity, and safety affected the rankings the most.

Smith, Jeffrey H.; Levin, Richard R.; Carpenter, Elisabeth J.

1990-01-01

204

Weather Radar Fundamentals  

NSDL National Science Digital Library

This 2-hour module presents the fundamental principles of Doppler weather radar operation and how to interpret common weather phenomena using radar imagery. This is accomplished via conceptual animations and many interactive radar examples in which the user can practice interpreting both radar reflectivity and radar velocity imagery. Although intended as an accelerated introduction to understanding and using basic Doppler weather radar products, the module can also serve as an excellent refresher for more experienced users.

COMET

2012-03-21

205

Evaluation of atmospheric turbulence, energy exchanges and structure of convective cores during the occurrence of mesoscale convective systems using MST radar facility at Gadanki  

NASA Astrophysics Data System (ADS)

Mesoscale convective systems (MCSs) wreak lots of havoc and severe damage to life and property due to associated strong gusty winds, rainfall and hailstorms even though they last for an hour or so. Planetary boundary layer (PBL) plays an important role in the transportation of energy such as momentum, heat and moisture through turbulence into the upper layers of the atmosphere and acts as a feedback mechanism in the generation and sustenance of MCS. In the present study, three severe thunderstorms that occurred over mesosphere-stratosphere-troposphere (MST) radar facility at National Atmospheric Research Laboratory (NARL), Gadanki, India, have been considered to understand turbulence, energy exchanges and wind structure during the different epochs such as pre-, during and after the occurrence of these convective episodes. Significant changes in the turbulence structure are noticed in the upper layers of the atmosphere during the thunderstorm activity. Identified strong convective cores with varying magnitudes of intensity in terms of vertical velocity at different heights in the atmosphere discern the presence of shallow as well as deep convection during initial, mature and dissipative stages of the thunderstorm. Qualitative assessments of these convective cores are verified using available Doppler Weather Radar imageries in terms of reflectivity. The MST radar derived horizontal wind profiles are in good comparison with observed radiosonde winds. Significant variations in the surface meteorological parameters, sensible heat flux and turbulent kinetic energy as well as horizontal wind profiles are noticed during the different epochs of the convective activity. This work is useful in evaluating the performance of PBL schemes of mesoscale models in simulating MCS.

Satyanarayana, A. N. V.; Sultana, Sabiha; Narayana Rao, T.; Satheesh Kumar, S.

2014-06-01

206

Evaluation of RF electromagnetic field exposure levels from cellular base stations in Korea.  

PubMed

This article presents the measurement results of human exposure to CDMA800 and CDMA1800 signals at locations in Korea where the general public has expressed concern. Measurements were performed at 50 locations across the country to compare the electromagnetic field levels with the general public exposure compliance limits. At each site, the distances between the nearest single or co-located base station and measurement positions were within a range of approximately 32-422 m. The measured exposure levels were very low compared with the international standard and the Korean human protection notice. The highest field level was 1.5 V/m, which corresponds to 0.15% of the International Commission on Non-Ionizing Radiation Protection (ICNIRP) guidelines for human exposure. PMID:20564176

Kim, Byung Chan; Park, Seong-Ook

2010-09-01

207

An OSSE Framework Based on the Ensemble Square Root Kalman Filter for Evaluating the Impact of Data from Radar Networks on Thunderstorm Analysis and Forecasting  

Microsoft Academic Search

A framework for Observing System Simulation Experiments (OSSEs) based on the ensemble square root Kalman filter (EnSRF) technique for assimilating data from more than one radar network is described. The system is tested by assimilating simulated radial velocity and reflectivity data from a Weather Surveillance Radar-1988 Doppler (WSR-88D) radar and a network of four low-cost radars planned for the Oklahoma

Ming Xue; Mingjing Tong; Kelvin K. Droegemeier

2006-01-01

208

Analysis of Borehole-Radar Reflection Data from Machiasport, Maine, December 2003  

USGS Publications Warehouse

In December 2003, the U.S. Geological Survey, in cooperation with the U.S. Army Corps of Engineers, collected borehole-radar reflection logs in two boreholes in Machiasport, Maine. These bedrock boreholes were drilled as part of a hydrogeologic investigation of the area surrounding the former Air Force Radar Tracking Station site on Howard Mountain near Bucks Harbor. The boreholes, MW09 and MW10, are located approximately 50 meters (m) from, and at the site of, respectively, the locations of former buildings where trichloroethylene was used as part of defense-site operations. These areas are thought to be potential source areas for contamination that has been detected in downgradient bedrock wells. This investigation focused on testing borehole-radar methods at this site. Single-hole radar-reflection surveys were used to identify the depth, orientation, and spatial continuity of reflectors that intersect and surround the boreholes. In addition, the methods were used to (1) identify the radial depth of penetration of the radar waves in the electrically resistive bimodal volcanic formation at the site, (2) provide information for locating additional boreholes at the site, and (3) test the potential applications of borehole-radar methods for further aquifer characterization and (or) evaluation of source-area remediation efforts. Borehole-radar reflection logging uses a pair of downhole transmitting and receiving antennas to record the reflected wave amplitude and transit time of high-frequency electromagnetic waves. For this investigation, 60- and 100-megahertz antennas were used. The electromagnetic waves emitted by the transmitter penetrate into the formation surrounding the borehole and are reflected off of a material with different electromagnetic properties, such as a fracture or change in rock type. Single-hole directional radar surveys indicate the bedrock surrounding these boreholes is highly fractured, because several reflectors were identified in the radar-reflection data. There are several steeply dipping reflectors with orientations similar to the fracture patterns observed with borehole imaging techniques and in outcrops. The radar-reflection data showed that the vitrophyre in borehole MW09 was more highly fractured than the underlying gabbroic unit. The velocities of radar waves in the bedrock surrounding the boreholes were determined using single-hole vertical radar profiling. Velocities of 114 and 125 meters per microsecond were used to determine the distance to reflectors, the radial depth of penetration, and the dip of reflectors. The bimodal volcanic units appear to be ideal for radar-wave propagation. For the radar surveys collected at this site, radar reflections were detected up to 40 m into the rock from the borehole. These results indicate that boreholes could conservatively be spaced about 15-20 m apart for hole-to-hole radar methods to be effective for imaging between the boreholes and monitoring remediation. Integrated analysis of drilling and borehole-geophysical logs indicates the vitrophyric formation is more fractured than the more mafic gabbroic units in these boreholes. There does not, however, appear to be a quantifiable difference in the radar-wave penetration in these two rock units.

Johnson, Carole D.; Joesten, Peter K.

2005-01-01

209

Detail view of northwest side of Signal Corps Radar (S.C.R.) ...  

Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

Detail view of northwest side of Signal Corps Radar (S.C.R.) 296 Station 5 Transmitter Building foundation, showing portion of concrete gutter drainage system and asphalt floor tiles, camera facing north - Fort Barry, Signal Corps Radar 296, Station 5, Transmitter Building Foundation, Point Bonita, Marin Headlands, Sausalito, Marin County, CA

210

[Study on pollution evaluation of heavy metal in surface soil of the original site of Qingdao North Station].  

PubMed

The determination of pollution extent and health risk assessment are the premise of heavy metal contaminated site remediation. The content of Cu, Cr, Pb, Cd, Zn, Ni in Qingdao North Station was detected, and the correlation of the 6 kinds of heavy metal content was analyzed. The pollution extent in excess of background values was characterized by anthropogenic influence multiple, and the pollution of heavy metal in soil was evaluated using geoaccumulation index and a new method which connects geoaccumulation index with Nemero index. Finally, human health risk assessment was carried out with health risk assessment model for heavy metal content. The results showed that Qingdao North Station soil were polluted by heavy metals. Six heavy metal pollution levels were: Cd > Cu > Ni > Pb > Cr > Zn, and Cd had reached the severity pollution level, Cu and Ni followed by, Cr, Pb and Zn were in minor pollution level. The order of coefficient variation in all heavy metals was: Cd > Ni > Cr > Zn > Pb > Cu. Within the study area soil heavy metal distribution was different, but overall discrepancy was small. The order of non-cancer hazards of heavy metals in soil was Cr > Pb > Cu > Ni > Cd > Zn, and the order of carcinogen risks of heavy metals was Ni > Cd. The non-cancer hazard and carcinogen risks values of metals were both lower than that their threshold values. They were not the direct threats to human health. PMID:24289020

Zhu, Lei; Jia, Yong-gang; Pan, Yu-ying

2013-09-01

211

Satellite Radar Observations of the DeepWater Horizon Oil Spill in the Gulf of Mexico  

Microsoft Academic Search

The University of Miami's satellite ground station located at the Center for Southeastern Tropical Advanced Remote Sensing (CSTARS) collected daily synthetic aperture radar (SAR) images from an extensive set of radar satellites including TerraSAR-X, RadarSat-1 and RadarSat-2, Cosmo-SkyMed constellation, ENVISAT ASAR, ERS-2 and PALSAR. During the 118 days CSTARS collected over 650 SAR image in long strips covering the entire

H. C. Graber; R. E. Turner; M. J. Caruso; P. A. Mallas; K. Polk; R. J. Ramos; G. Samuels

2010-01-01

212

ANALYZING SPATIAL DIVERSITY IN DISTRIBUTED RADAR NETWORKS  

Microsoft Academic Search

Abstract We introduce the notion of diversity order as a performance measure for distributed radar systems. We deflne the diversity order of a radar network as the slope of the probability of detection (PD) versus signal-to-noise ratio (SNR) curve evaluated at PD = 0:5. We prove that the diversity order of both joint detection and optimal binary detection grows as

Rani Daher

213

Evaluation of Low Earth Orbit Environmental Effects on International Space Station Thermal Control Materials  

NASA Technical Reports Server (NTRS)

Samples of International Space Station (ISS) thermal control coatings were exposed to simulated low Earth orbit (LEO) environmental conditions to determine effects on optical properties. In one test, samples of the white paint coating Z-93P were coated with outgassed products from Tefzel(R) (ethylene tetrafluoroethylene copolymer) power cable insulation as-may occur on ISS. These samples were then exposed, along with an uncontaminated Z-93P witness sample, to vacuum ultraviolet (VUV) radiation to determine solar absorptance degradation. The Z-93P samples coated with Tefzel(R) outgassing products experienced greater increases in solar absorptance than witness samples not coated with Tefzel(R) outgassing products. In another test, samples of second surface silvered Teflon(R) FEP (fluorinated ethylene propylene), SiO. (where x=2)-coated silvered Teflon(R) FEP, and Z-93P witness samples were exposed to the combined environments of atomic oxygen and VLTV radiation to determine optical properties changes due to these simulated ISS environmental effects. This test verified the durability of these materials in the absence of contaminants.

Dever, Joyce A.; Rutledge, Sharon K.; Hasegawa, Mark M.; Reed, Charles K.

1998-01-01

214

Evaluation of Electrochemically Generated Potable Water Disinfectants for Use on the International Space Station  

NASA Technical Reports Server (NTRS)

Microbial contamination and subsequent growth in spacecraft water systems are constant concerns for missions involving human crews. The current potable water disinfectant for the International Space Station (ISS) is iodine; however, with the end of the Space Shuttle Program, there is a need to develop redundant biocide systems that do not require regular up-mass dependencies. Throughout the course of a year, four different electrochemical systems were investigated as a possible biocide for potable water on the ISS. Research has indicated that a wide variability exists with regards to efficacy in both concentration and exposure time of these disinfectants; therefore, baseline efficacy values were established. This paper describes a series of tests performed to establish optimal concentrations and exposure times for four disinfectants against single and mixed species planktonic and biofilm bacteria. Results of the testing determined whether these electrochemical disinfection systems are able to produce a sufficient amount of chemical in both concentration and volume to act as a biocide for potable water on the ISS.

Rodriquez, Branelle; Anderson, Molly; Adams, Niklas; Vega, Leticia; Botkin, Douglas

2013-01-01

215

Evaluation of Electrochemically Generated Potable Water Disinfectants for Use on the International Space Station  

NASA Technical Reports Server (NTRS)

Microbial contamination and subsequent growth in spacecraft water systems are constant concerns for missions involving human crews. The current potable water disinfectant is iodine; however, with the end of the Space Shuttle program, there is a need to develop redundant biocide systems which are less dependent on hardware that would need to be launched on a regular basis. Three systems for electrochemical production of potable water disinfectants are being assessed for use on the International Space Station (ISS). Since there is a wide variability in the literature with regards to efficacy in both concentration and exposure time of these disinfectants, there is a need to establish baseline efficacy values. This paper describes a series of tests performed in order to establish optimal concentrations and exposure times for four disinfectants against single and mixed species planktonic and biofilm bacteria and to determine whether these electrochemical disinfection devices are able to produce a sufficient amount of chemical in both concentration and volume to act as a biocide for potable water on ISS.

Vega, Leticia; Aber, Gregory; Adam, Niklas; Clements, Anna; Modica, Catherine; Younker, Diane

2011-01-01

216

Evaluation of Electrochemically Generated Potable Water Disinfectants for Use on the International Space Station  

NASA Technical Reports Server (NTRS)

Microbial contamination and subsequent growth in spacecraft water systems are constant concerns for missions involving human crews. The current potable water disinfectant for the International Space Station (ISS) is iodine; however, with the end of the Space Shuttle program, there is a need to develop redundant biocide systems that do not require regular up ]mass dependencies. Throughout the course of a year, four different electrochemical systems were investigated as a possible biocide for potable water on the ISS. Research has indicated that there is a wide variability with regards to efficacy in both concentration and exposure time of these disinfectants, therefore baseline efficacy values were established. This paper describes a series of tests performed in order to establish optimal concentrations and exposure times for four disinfectants against single and mixed species planktonic and biofilm bacteria. Results of the testing determined whether these electrochemical disinfection systems are able to produce a sufficient amount of chemical in both concentration and volume to act as a biocide for potable water on ISS.

Rodriquez, Branelle; Anderson, Molly; Anderson, Molly; Adam, Niklas; Vega, Leticia; Modica, Catherine; Bodkin, Douglas

2012-01-01

217

Microstructural Evaluation and Comparison of Solder Samples Processed Aboard the International Space Station  

NASA Technical Reports Server (NTRS)

Samples from the In-Space Soldering Investigation (ISSI), conducted aboard the International Space Station (ISS), are being examined for post-solidification microstructural development and porosity distribution. In this preliminary study, the internal structures of two ISSI processed samples are compared. In one case 10cm of rosin-core solder was wrapped around a coupon wire and melted by conduction, whereas, in the other a comparable length of solder was melted directly onto the hot wire; in both cases the molten solder formed ellipsoidal blobs, a shape that was maintained during subsequent solidification. In the former case, there is clear evidence of porosity throughout the sample, and an accumulation of larger pores near the hot end that implies thermocapillary induced migration and eventual coalescence of the flux vapor bubbles. In the second context, when solder was fed onto the wire. a part of the flux constituting the solder core is introduced into and remains within the liquid solder ball, becoming entombed upon solidification. In both cases the consequential porosity, particularly at a solder/contact interface, is very undesirable. In addition to compromising the desired electrical and thermal conductivity, it promotes mechanical failure.

Grugel, R. N.; Hua, F.; Anilkumar, A. V.

2008-01-01

218

Long life monopropellant hydrazine thruster evaluation for Space Station Freedom application  

NASA Technical Reports Server (NTRS)

In support of propulsion system thruster development activity for Space Station Freedom (SSF), NASA Johnson Space Center (JSC) is conducting a hydrazine thruster technology demonstration program. The goal of this program is to identify impulse life capability of state-of-the-art long life hydrazine thrusters nominally rated for 50 pounds thrust at 300 psia supply pressure. The SSF propulsion system requirement for impulse life of this thruster class is 1.5 million pound-seconds, corresponding to a throughput of approximately 6400 pounds of propellant, with a high performance (234 pound-seconds per propellant pound). Long life thrusters were procured from Hamilton Standard, The Marquardt Company, and Rocket Research Company. Testing has initiated on the thruster designs to identify life while simulating expected thruster firing duty cycles and durations for SSF using monopropellant grade hydrazine. This paper presents a review of the SSF propulsion system and requirements as applicable to hydrazine thrusters, the three long life thruster designs procured by JSC and the resultant acceptance test data for each thruster, and the JSC test plan and facility.

Popp, Christopher G.; Henderson, John B.

1991-01-01

219

Electrochemical Disinfection Feasibility Assessment Materials Evaluation for the International Space Station  

NASA Technical Reports Server (NTRS)

The International Space Station (ISS) Program recognizes the risk of microbial contamination in their potable and non-potable water sources. The end of the Space Shuttle Program limited the ability to send up shock kits of biocides in the event of an outbreak. Currently, the United States Orbital Segment water system relies primarily on iodine to mitigate contamination concerns, which has been successful in remediating the small cases of contamination documented. However, a secondary method of disinfection is a necessary investment for future space flight. Over the past year, NASA Johnson Space Center has investigated the development of electrochemically generated systems for use on the ISS. These systems include: hydrogen peroxide, ozone, sodium hypochlorite, and peracetic acid. To use these biocides on deployed water systems, NASA must understand of the effect these biocides have on current ISS materials prior to proceeding forward with possible on-orbit applications. This paper will discuss the material testing that was conducted to assess the effects of the biocides on current ISS materials.

Rodriquez, Branelle; Shindo, David; Montgomery, Eliza

2013-01-01

220

Evaluation of the prompt alerting systems at four nuclear power stations  

SciTech Connect

This report presents evaluations of the prompt notification siren systems at the following four US nuclear power facilities: Trojan, Three Mile Island, Indian Point, and Zion. The objective of these evaluations was to provide examples of an analytical procedure for predicting siren-system effectiveness under specific conditions in the 10-mile emergency planning zone (EPZ) surrounding nuclear power plants. This analytical procedure is discussed in report No. PNL-4227.

Towers, D.A.; Anderson, G.S.; Keast, D.N.; Kenoyer, J.L.; Desrosiers, A.E.

1982-09-01

221

Remote sensing of sea state by radar  

Microsoft Academic Search

In recent years several radar techniques have evolved which allow the remote measurement of certain parameters important in the description of sea state. At MF and HF, monostatic and bistatic configurations employing satellites, ships, islands, and\\/or land based stations can measure the ocean waveheight spectrum with several frequencies via first-order Bragg scatter. At high HF and VHF, the ocean waveheight

D. Barrick

1972-01-01

222

Selected tendencies of modern radars and radar systems development  

Microsoft Academic Search

This paper presents modern radars and radar systems problems caused by troubles and dangers connected with actual battlefield conditions. The usefulness of the phased array radar (PAR), low probability of intercept (LPI) radar and the multi-junction radar (MFR) has been described from the point of view of the single radar using. Moreover chosen aspects of the modem radar systems development,

J. F. Pietrasinski; T. W. Brenner; C. J. Lesnik

1998-01-01

223

Shuttle orbiter Ku-band radar/communications system design evaluation: High gain antenna/widebeam horn  

NASA Technical Reports Server (NTRS)

The physical characteristics of the high gain antenna reflector and feed elements are described. Deficiencies in the sum feed are discussed, and lack of atmospheric venting is posed as a potential problem area. The measured RF performance of the high gain antenna is examined and the high sidelobe levels measured are related to the physical characteristics of the antenna. An examination of the attributes of the feed which might be influenced by temperature extremes shows that the antenna should be insensitive to temperature variations. Because the feed support bipod structure is considered a significant contributor to the high sidelobe levels measured in the azimuth plane, pod relocation, material changes, and shaping are suggested as improvements. Alternate feed designs are presented to further improve system performance. The widebeam horn and potential temperature effects due to the polarizer are discussed as well as in the effects of linear polarization on TDRS acquisition, and the effects of circular polarization on radar sidelobe avoidance. The radar detection probability is analyzed as a function of scan overlap and target range.

Iwasaki, R.; Dodds, J. G.; Broad, P.

1979-01-01

224

On the probability distribution function for airborne radar clutter  

Microsoft Academic Search

Modern airborne radars have stringent clutter-limited performance requirements and have become increasingly more complex and less tractable for mathematical analysis. Moreover, the performance evaluation associated with many detector structures is often intractable by analytical means. So computer simulation is an obvious choice for obtaining quantitative results if the radar is set to operate in hostile scenarios. Radar returns must be

A. Parthiban; J. Madhavan; P. Radhakrishna; D. Savitha; L. S. Kumar

2005-01-01

225

A numerical coefficient for evaluation of the environmental impact of electromagnetic fields radiated by base stations for mobile communications.  

PubMed

The aim of this study is the development of an Electromagnetic Environmental Impact Factor (EEIF). This is a global parameter that represents the level of electromagnetic impact on a specific area due to the presence of radiating systems, such as base station (BS) antennas for mobile communications. The numerical value of the EEIF depends only on the electromagnetic field intensity, a well-defined physical quantity that can easily be measured or computed. The paper describes the significant parameters of the field distribution adopted to evaluate the EEIF, and the assumptions used to develop a proper scale of values. Finally, some examples of application of the EEIF method are analyzed for real situations in a typical urban area. PMID:20690166

Russo, P; Cerri, G; Vespasiani, V

2010-12-01

226

Evaluation of a Treadmill with Vibration Isolation and Stabilization (TVIS) for use on the International Space Station.  

PubMed

A treadmill with vibration isolation and stabilization designed for the International Space Station (ISS) was evaluated during Shuttle mission STS-81. Three crew members ran and walked on the device, which floats freely in zero gravity. For the majority of the more than 2 hours of locomotion studied, the treadmill showed peak to peak linear and angular displacements of less than 2.5 cm and 2.5 degrees, respectively. Vibration transmitted to the vehicle was within the microgravity allocation limits that are defined for the ISS. Refinements to the treadmill and harness system are discussed. This approach to treadmill design offers the possibility of generating 1G-like loads on the lower extremities while preserving the microgravity environment of the ISS for structural safety and vibration free experimental conditions. PMID:11541844

McCrory, J L; Lemmon, D R; Sommer, H J; Prout, B; Smith, D; Korth, D W; Lucero, J; Greenisen, M; Moore, J; Kozlovskaya, I; Pestov, I; Stepansov, V; Miyakinchenko, Y; Cavanagh, P R

1999-08-01

227

Real-Time Risk and Fault Management in the Mission Evaluation Room for the International Space Station  

SciTech Connect

Effective anomaly resolution in the Mission Evaluation Room (MER) of the International Space Station (ISS) requires consideration of risk in the process of identifying faults and developing corrective actions. Risk models such as fault trees from the ISS Probabilistic Risk Assessment (PRA) can be used to support anomaly resolution, but the functionality required goes significantly beyond what the PRA could provide. Methods and tools are needed that can systematically guide the identification of root causes for on-orbit anomalies, and to develop effective corrective actions that address the event and its consequences without undue risk to the crew or the mission. In addition, an overall information management framework is needed so that risk can be systematically incorporated in the process, and effectively communicated across all the disciplines and levels of management within the space station program. The commercial nuclear power industry developed such a decision making framework, known as the critical safety function approach, to guide emergency response following the accident at Three Mile Island in 1979. This report identifies new methods, tools, and decision processes that can be used to enhance anomaly resolution in the ISS Mission Evaluation Room. Current anomaly resolution processes were reviewed to identify requirements for effective real-time risk and fault management. Experience gained in other domains, especially the commercial nuclear power industry, was reviewed to identify applicable methods and tools. Recommendations were developed for next-generation tools to support MER anomaly resolution, and a plan for implementing the recommendations was formulated. The foundation of the proposed tool set will be a ''Mission Success Framework'' designed to integrate and guide the anomaly resolution process, and to facilitate consistent communication across disciplines while focusing on the overriding importance of mission success.

Nelson, W.R.; Novack, S.D.

2003-05-30

228

Real-Time Risk and Fault Management in the Mission Evaluation Room of the International Space Station  

SciTech Connect

Effective anomaly resolution in the Mission Evaluation Room (MER) of the International Space Station (ISS) requires consideration of risk in the process of identifying faults and developing corrective actions. Risk models such as fault trees from the ISS Probablistic Risk Assessment (PRA) can be used to support anomaly resolution, but the functionality required goes significantly beyond what the PRA could provide. Methods and tools are needed that can systematically guide the identification of root causes for on-orbit anomalies, and to develop effective corrective actions that address the event and its consequences without undue risk to the crew or the mission. In addition, an overall information management framework is needed so that risk can be systematically incorporated in the process, and effectively communicated across all the disciplines and levels of management within the space station program. The commercial nuclear power industry developed such a decision making framework, known as the critical safety function approach, to guide emergency response following the accident at Three Mile Island in 1979. This report identifies new methods, tools, and decision processes that can be used to enhance anomaly resolution in the ISS Mission Evaluation Room. Current anomaly resolution processes were reviewed to identify requirements for effective real-time risk and fault management. Experience gained in other domains, especially the commercial nuclear power industry, was reviewed to identify applicable methods and tools. Recommendations were developed for next-generation tools to support MER anomaly resolution, and a plan for implementing the recommendations was formulated. The foundation of the proposed toolset will be a "Mission Success Framework" designed to integrate and guide the anomaly resolution process, and to facilitate consistent communication across disciplines while focusing on the overriding importance of mission success.

William R. Nelson; Steven D. Novack

2003-05-01

229

Evaluating the Medical Kit System for the International Space Station(ISS) - A Paradigm Revisited  

NASA Technical Reports Server (NTRS)

Medical capabilities aboard the International Space Station (ISS) have been packaged to help astronaut crew medical officers (CMO) mitigate both urgent and non-urgent medical issues during their 6-month expeditions. Two ISS crewmembers are designated as CMOs for each 3-crewmember mission and are typically not physicians. In addition, the ISS may have communication gaps of up to 45 minutes during each orbit, necessitating medical equipment that can be reliably operated autonomously during flight. The retirement of the space shuttle combined with ten years of manned ISS expeditions led the Space Medicine Division at the NASA Johnson Space Center to reassess the current ISS Medical Kit System. This reassessment led to the system being streamlined to meet future logistical considerations with current Russian space vehicles and future NASA/commercial space vehicle systems. Methods The JSC Space Medicine Division coordinated the development of requirements, fabrication of prototypes, and conducted usability testing for the new ISS Medical Kit System in concert with implementing updated versions of the ISS Medical Check List and associated in-flight software applications. The teams constructed a medical kit system with the flexibility for use on the ISS, and resupply on the Russian Progress space vehicle and future NASA/commercial space vehicles. Results Prototype systems were developed, reviewed, and tested for implementation. Completion of Preliminary and Critical Design Reviews resulted in a streamlined ISS Medical Kit System that is being used for training by ISS crews starting with Expedition 27 (June 2011). Conclusions The team will present the process for designing, developing, , implementing, and training with this new ISS Medical Kit System.

Hailey, Melinda J.; Urbina, Michelle C.; Hughlett, Jessica L.; Gilmore, Stevan; Locke, James; Reyna, Baraquiel; Smith, Gwyn E.

2010-01-01

230

Modeling and dosimetric performance evaluation of the RayStation treatment planning system.  

PubMed

The physics modeling, dose calculation accuracy and plan quality assessment of the RayStation (v3.5) treatment planning system (TPS) is presented in this study, with appropriate comparisons to the more established Pinnacle (v9.2) TPS. Modeling and validation for the Elekta MLCi and Agility beam models resulted in a good match to treatment machine-measured data based on tolerances of 3% for in-field and out-of-field regions, 10% for buildup and penumbral regions, and a gamma 2%/2mm dose/distance acceptance criteria. TPS commissioning using a wide range of appropriately selected dosimetry equipment, and following published guidelines, established the MLC modeling and dose calculation accuracy to be within standard tolerances for all tests performed. In both homogeneous and heterogeneous mediums, central axis calculations agreed with measurements within 2% for open fields and 3% for wedged fields, and within 4% off-axis. Treatment plan comparisons for identical clinical goals were made to Pinnacle for the following complex clinical cases: hypofractionated non-small cell lung carcinoma, head and neck, stereotactic spine, as well as for several standard clinical cases comprising of prostate, brain, and breast plans. DVHs, target, and critical organ doses, as well as measured point doses and gamma indices, applying both local and global (Van Dyk) normalization at 2%/2 mm and 3%/3 mm (10% lower threshold) acceptance criteria for these composite plans were assessed. In addition 3DVH was used to compare the perturbed dose distributions to the TPS 3D dose distributions. For all 32 cases, the patients QA checks showed > 95% of pixels passing 3% global/3mm gamma. PMID:25207563

Mzenda, Bongile; Mugabe, Koki V; Sims, Rick; Godwin, Guy; Loria, Dayan

2014-01-01

231

Netted radar sensing  

Microsoft Academic Search

Future radar applications are beginning to stretch monostatic radar systems beyond their fundamental sensitivity and information limits. Networks of smaller radar systems can offer a route to overcome these limitations; for example, networks of radar sensors can counter stealth technology whilst simultaneously providing additional information for improved target classification. More generally, multiple independent sensors can provide an energetically more efficient

C. J. Baker; A. L. Hume

2003-01-01

232

Wind shear radar simulation  

NASA Technical Reports Server (NTRS)

Viewgraphs used in a presentation on wind shear radar simulation are given. Information on a microburst model of radar reflectivity and wind velocity, radar pulse output, the calculation of radar return, microburst power spectrum, and simulation plans are given. A question and answer session is transcribed.

Britt, Charles L.

1988-01-01

233

An Evaluation of a Welding Fumes Exhaust System. Agricultural Experiment Station Research Report 284.  

ERIC Educational Resources Information Center

A study evaluated the feasibility of introducing unheated outside air into the airstream of a cross-flow welding exhaust system to reduce heating energy costs of a school welding laboratory. The physical facility used was the agricultural mechanics laboratory at the University of Arizona, which is similar to facilities in which instruction in…

Jacobs, C. O.

234

Using Radar Interferometry (DinSAR) to Evaluate Land Subsidence Caused by Excessive Groundwater Withdrawal in Morocco  

NASA Astrophysics Data System (ADS)

The combination of natural, anthropogenic, and climate change impacts on the water resources of the Middle East and North Africa (MENA) region has devastated its water resources well beyond its current and projected populations. The increased exploitation of groundwater resources in the past half-century coupled with successive droughts has resulted in the acceleration of subsidence rates in the Souss and Massa basins in Morocco. We have completed a preliminary investigation of these impacts on the Souss and Massa basins (~27,000 km2) in the southwestern part of Morocco. This area is characterized by a semi-arid climate (annual precipitation 70-250 mm/year) with agriculture, tourism, and commercial fishing as the primary economic activities, all of which require availability of adequate freshwater resources. Additionally the primary groundwater aquifer (Plio-Quaternary Plain Aquifer), an unconfined aquifer formed mostly of sand and gravel, is being harvested by >20,000 wells at a rate of 650 MCM/yr., exceeding the rate of recharge by 260 MCM/year. Intense development over the past 50 years has exposed the aquifer to a serious risk of groundwater table drawdown (0.5m-2.5m/yr.), land subsidence, loss of artesian pressure, salinization, salt water intrusions along the coast, and deterioration of water quality across the watershed. Differential Interferometry Synthetique Aperture Radar (DInSAR) was utilized to measure ground subsidence induced by groundwater withdrawal. Land subsidence caused by excessive groundwater extraction was determined using a threefold methodology: (1) extraction of subsidence and land deformation patterns using radar interferometry, (2) correlation of the high subsidence areas within the basins to possible natural and anthropogenic factors (e.g. sea level rise, unconsolidated lithological formations distribution, urbanization, excessive groundwater extraction), and (3) forecasting the future of the Souss and Massa basins over the next century if both subsidence and groundwater extraction continue at present rates. Interferometric processing (persistent scatter and small baseline subset) was conducted using ENVI's SARscape program with 168 archived ENVISAT SLC images and 350 ERS1/2 SLC images acquired through the European Space Agency. Radar interferometry results are spatially and temporally consistent with groundwater extraction rates. This analysis has provided insight into the impacts that land subsidence will have on the infrastructure, the population, and the economy of the Souss and Massa basins. Our results could be used to develop management plans for modulating these adverse effects and could be vital to the Moroccan economy and the livelihood of the citizens that inhabit the basins. More broadly, this approach could be applied to other areas within the MENA region facing similar impacts.

Durham, M. C.; Milewski, A.; El Kadiri, R.

2013-12-01

235

Radar Ionospheric Impact Mitigation  

Microsoft Academic Search

New ionospheric modeling technology is being developed to improve correction of ionospheric impacts on the performance of ground-based space-surveillance radars (SSRs) in near-real-time. These radars, which detect and track space objects, can experience significant target location errors due to ionospheric delay and refraction of the radar signals. Since these radars must detect and track targets essentially to the radar horizon,

G. Bishop; D. Decker; C. Baker

2006-01-01

236

Performance evaluation of lunar penetrating radar onboard the rover of CE-3 probe based on results from ground experiments  

NASA Astrophysics Data System (ADS)

Lunar Penetrating Radar (LPR) onboard the rover that is part of the Chang'e-3 (CE-3) mission was firstly utilized to obtain in situ measurements about geological structure on the lunar surface and the thickness of the lunar regolith, which are key elements for studying the evolutional history of lunar crust. Because penetration depth and resolution of LPR are related to the scientific objectives of this mission, a series of ground-based experiments using LPR was carried out, and results of the experimental data were obtained in a glacial area located in the northwest region of China. The results show that the penetration depth of the first channel antenna used for LPR is over 79 m with a resolution of 2.8 m, and that for the second channel antenna is over 50.8 m with a resolution of 17.1 cm.

Zhang, Hong-Bo; Zheng, Lei; Su, Yan; Fang, Guang-You; Zhou, Bin; Feng, Jian-Qing; Xing, Shu-Guo; Dai, Shun; Li, Jun-Duo; Ji, Yi-Cai; Gao, Yun-Ze; Xiao, Yuan; Li, Chun-Lai

2014-12-01

237

Evaluation of 3% hydrogen peroxide for use as an environmental disenfectant aboard the Space Station Freedom  

NASA Technical Reports Server (NTRS)

We evaluate the ability of a 3% (8800 micromolar) solution of hydogen peroxide to kill 12 strains of bacteria and 12 strains of fungi. A 1:4 dilution of 3% H2O2 equivalent to 1100 micromolar, was lethal to all the tested strains. If the situation calls for a nonagressive disinfectant without residue or toxic aftereffects, 3% H2O2 seems an ideal choice.

Lucia, Helen L.; Mishra, S. K.; Gunter, Emelie G.; Pierson, Duane L.

1993-01-01

238

Evaluation of a Gas Chromatograph-Differential Mobility Spectrometer for Potential Water Monitoring on the International Space Station  

NASA Technical Reports Server (NTRS)

Environmental monitoring for manned spaceflight has long depended on archival sampling, which was sufficient for short missions. However, the longer mission durations aboard the International Space Station (ISS) have shown that enhanced, real-time monitoring capabilities are necessary in order to protect both the crewmembers and the spacecraft systems. Over the past several years, a number of real-time environmental monitors have been deployed on the ISS. Currently, volatile organic compounds (VOCs) in the station air are monitored by the Air Quality Monitor (AQM), a small, lightweight gas chromatograph-differential mobility spectrometer. For water monitoring, real-time monitors are used for total organic carbon (TOC) and biocide analysis. No information on the actual makeup of the TOC is provided presently, however. An improvement to the current state of environmental monitoring could be realized by modifying a single instrument to analyze both air and water. As the AQM currently provides quantitative, compound-specific information for VOCs in air samples, this instrument provides a logical starting point to evaluate the feasibility of this approach. The major hurdle for this effort lies in the liberation of the target analytes from the water matrix. In this presentation, we will discuss our recent studies, in which an electro-thermal vaporization unit has been interfaced with the AQM to analyze target VOCs at the concentrations at which they are routinely detected in archival water samples from the ISS. We will compare the results of these studies with those obtained from the instrumentation routinely used to analyze archival water samples.

Wallace, William T.; Limero, Thomas F.; Gazda, Daniel B.; Macatangay, Ariel V.; Dwivedi, Prabha; Fernandez, Facundo M.

2015-01-01

239

Study to investigate and evaluate means of optimizing the Ku-band combined radar/communication functions for the space shuttle  

NASA Technical Reports Server (NTRS)

The performance of the space shuttle orbiter's Ku-Band integrated radar and communications equipment is analyzed for the radar mode of operation. The block diagram of the rendezvous radar subsystem is described. Power budgets for passive target detection are calculated, based on the estimated values of system losses. Requirements for processing of radar signals in the search and track modes are examined. Time multiplexed, single-channel, angle tracking of passive scintillating targets is analyzed. Radar performance in the presence of main lobe ground clutter is considered and candidate techniques for clutter suppression are discussed. Principal system parameter drivers are examined for the case of stationkeeping at ranges comparable to target dimension. Candidate ranging waveforms for short range operation are analyzed and compared. The logarithmic error discriminant utilized for range, range rate and angle tracking is formulated and applied to the quantitative analysis of radar subsystem tracking loops.

Weber, C. L.; Udalov, S.; Alem, W.

1977-01-01

240

An analysis of the cost-effectiveness of air defense surveillance radars  

NASA Astrophysics Data System (ADS)

The quantitative evaluation on the cost-effectiveness of air-defense surveillance radars is presented. The composition of the life-cycle cost of the radar is analyzed, and the radar performance and effectiveness formulas are derived. By calculating the values of the cost, performance, and effectiveness of different radar systems, tendency curves are plotted to compare the systems.

Li, Nengjing

1991-02-01

241

Structural review of the San Onofre Nuclear Generation Station Unit 1 containment structure under combined loads. Systematic Evaluation Program  

SciTech Connect

This report is a structural assessment of the containment structure of the San Onofre Nuclear Generation Station Unit 1, performed for the Nuclear Regulatory Commission as part of the Systematic Evaluation Program (SEP). The San Onofre assessment focused on the overall structural integrity of the containment structure under a safe shutdown earthquake an a postulated design basis accident. The safe shutdown earthquake was represented by the Housner Spectra, scaled to 0.67 g peak ground acceleration. The postulated design basis accident was either a loss of coolant accident or a main steam line break. Several combined stresses were evaluated for their adherence to the 1980 edition of the American Society of Mechanical Engineers Boiler and Pressure Vessel Code allowables. All the calculated stress intensities were found to be acceptable according to this code except the general primary membrane stress due to combined dead and pressure loads under level A service limits. Because the containment structure was previously tested under combined dead and pressure loads for a higher peak pressure than the one used here, this study concluded that it was acceptable.

Lo, T.Y.

1982-05-01

242

Radar Detection in Weibull Clutter  

Microsoft Academic Search

Radar detection in Weibull clutter is examined from a statistical detection viewpoint. Weibull clutter parameters are determined and related to measured values of land and sea clutter. Optimum performance in Weibull clutter is determined, and practical receivers that approach this performance are identified. Receiver performance in Rayleigh, log-normal, and Weibull clutter is evaluated and compared.

D. C. Schleher

1976-01-01

243

The large-scale spatio-temporal variability of precipitation over Sweden observed from the weather radar network  

NASA Astrophysics Data System (ADS)

Using measurements from the national network of 12 weather radar stations for the last decade (2000-2010), we investigate the large-scale spatio-temporal variability of precipitation over Sweden. These statistics provide useful information to evaluate regional climate models as well as for hydrology and energy applications. A strict quality control is applied to filter out noise and artifacts from the radar data. We focus on investigating four distinct aspects namely, the diurnal cycle of precipitation and its seasonality, the dominant time scale (diurnal vs. seasonal) of variability, precipitation response to different wind directions, and the correlation of precipitation events with the North Atlantic Oscillation (NAO) and the Arctic Oscillation (AO). When classified based on their intensity, moderate to high intensity events (precipitation > 0.34 mm (3 h)-1) peak distinctly during late afternoon over the majority of radar stations in summer and during late night or early morning in winter. Precipitation variability is highest over the southwestern parts of Sweden. It is shown that the high intensity events (precipitation > 1.7mm (3 h)-1) are positively correlated with NAO and AO (esp. over northern Sweden), while the low intensity events are negatively correlated (esp. over southeastern parts). It is further observed that southeasterly winds often lead to intense precipitation events over central and northern Sweden, while southwesterly winds contribute most to the total accumulated precipitation for all radar stations. Apart from its operational applications, the present study demonstrates the potential of the weather radar data set for studying climatic features of precipitation over Sweden.

Devasthale, A.; Norin, L.

2013-12-01

244

The large-scale spatio-temporal variability of precipitation over Sweden observed from the weather radar network  

NASA Astrophysics Data System (ADS)

Using measurements from the national network of 12 weather radar stations for the 11-year period 2000-2010, we investigate the large-scale spatio-temporal variability of precipitation over Sweden. These statistics provide useful information to evaluate regional climate models as well as for hydrology and energy applications. A strict quality control is applied to filter out noise and artifacts from the radar data. We focus on investigating four distinct aspects: the diurnal cycle of precipitation and its seasonality, the dominant timescale (diurnal versus seasonal) of variability, precipitation response to different wind directions, and the correlation of precipitation events with the North Atlantic Oscillation (NAO) and the Arctic Oscillation (AO). When classified based on their intensity, moderate- to high-intensity events (precipitation > 0.34 mm/3 h) peak distinctly during late afternoon over the majority of radar stations in summer and during late night or early morning in winter. Precipitation variability is highest over the southwestern parts of Sweden. It is shown that the high-intensity events (precipitation > 1.7 mm/3 h) are positively correlated with NAO and AO (esp. over northern Sweden), while the low intensity events are negatively correlated (esp. over southeastern parts). It is further observed that southeasterly winds often lead to intense precipitation events over central and northern Sweden, while southwesterly winds contribute most to the total accumulated precipitation for all radar stations. Apart from its operational applications, the present study demonstrates the potential of the weather radar data set for studying climatic features of precipitation over Sweden.

Devasthale, A.; Norin, L.

2014-06-01

245

Report on the Radar/PIREP Cloud Top Discrepancy Study  

NASA Technical Reports Server (NTRS)

This report documents the results of the Applied Meteorology Unit's (AMU) investigation of inconsistencies between pilot reported cloud top heights and weather radar indicated echo top heights (assumed to be cloud tops) as identified by the 45 Weather Squadron (45WS). The objective for this study is to document and understand the differences in echo top characteristics as displayed on both the WSR-88D and WSR-74C radars and cloud top heights reported by the contract weather aircraft in support of space launch operations at Cape Canaveral Air Station (CCAS), Florida. These inconsistencies are of operational concern since various Launch Commit Criteria (LCC) and Flight Rules (FR) in part describe safe and unsafe conditions as a function of cloud thickness. Some background radar information was presented. Scan strategies for the WSR-74C and WSR-88D were reviewed along with a description of normal radar beam propagation influenced by the Effective Earth Radius Model. Atmospheric conditions prior to and leading up to both launch operations were detailed. Through the analysis of rawinsonde and radar data, atmospheric refraction or bending of the radar beam was identified as the cause of the discrepancies between reported cloud top heights by the contract weather aircraft and those as identified by both radars. The atmospheric refraction caused the radar beam to be further bent toward the Earth than normal. This radar beam bending causes the radar target to be displayed erroneously, with higher cloud top heights and a very blocky or skewed appearance.

Wheeler, Mark M.

1997-01-01

246

Preliminary Results of the Third Test Series of Nonmetal Material Flammability Evaluation In SKOROST Apparatus on the Space Station Mir  

NASA Technical Reports Server (NTRS)

The work has been done according to the US/Russian Joint Project "Experimental Evaluation of the Material Flammability in Microgravity" a continued combustion study in the SKOROST test apparatus on the OS Mir. The objective of the project was to evaluate the flammability and flame-spread rate for the selected polymer materials in low velocity flow in microgravity. Lately, the issue of nonmetal material combustion in microgravity has become of great importance, based on the necessity to develop the fire safety system for the new International Space Station (ISS). Lack of buoyant flow in microgravity reduces oxygen transfer into the combustion zone, which leads to flame extinction when the flow velocity is less than the limiting flow velocity V(sub lim) for the material. The ISS FGB fire-safety system was developed based on this phenomenon. The existence of minimum flow velocity V(sub lim) to sustain fire for the selected materials was determined both theoretically and experimentally. In the latter, it is shown that, even for thermally thin nonmetal materials with a very low oxygen index C(sub lim) of 12.5% (paper sheets with the thickness of 0.1 mm), a limiting flow velocity V(sub lim) exists at oxygen concentration Co(sub OX) = 17-21%, and is about 1.0 - 0.1 cm/sec. This might be explained by the relative increase in thermal losses due to radiation from the surface and from the gaseous phase. In the second series of experiments in Skorost apparatus on Orbital Station Mir the existence of the limiting flow velocity V(sub lim) for combustion was confirmed for PMMA and glass-epoxy composite strip samples 2 mm thick at oxygen concentration C(sub OX) = 21.5%. It was concluded that V(sub lim) depends on C(sub OX) for the PMMA sample with a low oxygen index of 15.5%, the limiting flow velocity V(sub lim) was less than 0.5 cm/sec, and for the glass-epoxy composite sample with a high oxygen index of 19%, the limiting flow velocity V(sub lim) was higher than 15 cm/sec. As of now only those materials that maintain their integrity during combustion were investigated. The materials that disintegrate when burning present more danger for fire safety because the flame can spread farther with the parts of the structure, ejected melt drops, et cetera. Materials such as polyethylene are of great interest since they form a lengthy melt zone during the combustion in normal gravity. This melt zone generates drops of liquids that promote faster flame spread compared to usual combustion. The preliminary results of polyethylene insulation flammability evaluation in microgravity are shown in the NASA Wire Insulation Flammability (WIF) experiment during Space Shuttle flight STS-50. A lot of interesting data was collected during the WIF test program. However, one of the most important results was that, in microgravity, the extinction of the polyethylene occurred almost immediately when the flow of relatively low oxygen concentration (C(sub OX)=21%) was stopped. The purpose of the work reported here is to expand the existing data base on material flammability in microgravity and to conduct the third series of the space experiment using Skorost apparatus on Orbiatl Station Mir with melting polymers, which might increase the probability of fire and its propagation in ventilated microgravity environment of orbiting spacecraft.

Ivanov, A. V.; Alymov, V. F.; Smirnov, A. B.; Shalayev, S. P.; Ye.Belov, D.; Balashov, Ye.V.; Andreeva, T. V.; Semenov, A. V.; Melikhov, A. S.; Bolodyan, I. A.; Potyakin, V. I.

1999-01-01

247

Performance evaluation of a pilot-scale permeable reactive barrier at former Naval Air Station Moffett Field, Mountain View, California: Volume 1. Final report, April 1996November 1998  

Microsoft Academic Search

A pilot scale permeable reactive barrier (PRB) or treatment wall demonstration project was initiated by the US Navy EFA West at the former Naval Air Station Moffett Field site in Mountain View, California about 3 years ago. Performance evaluations and cost-benefit analyses were performed by the US Naval Facilities Engineering Service Center (NFESC) and were sponsored by the Department of

C. Reeter; A. Gavaskar; B. Sass; N. Gupta; J. Hicks

1998-01-01

248

Airborne derivation of microburst alerts from ground-based Terminal Doppler Weather Radar information: A flight evaluation  

NASA Technical Reports Server (NTRS)

An element of the NASA/FAA windshear program is the integration of ground-based microburst information on the flight deck, to support airborne windshear alerting and microburst avoidance. NASA conducted a windshear flight test program in the summer of 1991 during which airborne processing of Terminal Doppler Weather Radar (TDWR) data was used to derive microburst alerts. Microburst information was extracted from TDWR, transmitted to a NASA Boeing 737 in flight via data link, and processed to estimate the windshear hazard level (F-factor) that would be experienced by the aircraft in each microburst. The microburst location and F-factor were used to derive a situation display and alerts. The situation display was successfully used to maneuver the aircraft for microburst penetrations, during which atmospheric 'truth' measurements were made. A total of 19 penetrations were made of TDWR-reported microburst locations, resulting in 18 airborne microburst alerts from the TDWR data and two microburst alerts from the airborne reactive windshear detection system. The primary factors affecting alerting performance were spatial offset of the flight path from the region of strongest shear, differences in TDWR measurement altitude and airplane penetration altitude, and variations in microburst outflow profiles. Predicted and measured F-factors agreed well in penetrations near microburst cores. Although improvements in airborne and ground processing of the TDWR measurements would be required to support an airborne executive-level alerting protocol, the practicality of airborne utilization of TDWR data link data has been demonstrated.

Hinton, David A.

1993-01-01

249

Imaging radar observations of Askja Caldera, Iceland  

NASA Technical Reports Server (NTRS)

A 'blind' test involving interpretation of computer-enhanced like- and cross-polarized radar images is used to evaluate the surface roughness of Askja Caldera, a large volcanic complex in central Iceland. The 'blind' test differs from earlier analyses of radar observations in that computer-processes images and both qualitative and quantitative analyses are used. Attention is given to photogeologic examination and subsequent survey-type field observations, along with aerial photography during the field trip. The results indicate that the 'blind' test of radar interpretation of the Askja volcanic area can be considered suitable within the framework of limitations of radar data considered explicitly from the onset. The limitations of the radar techniques can be eliminated by using oblique-viewing conditions to remove geometric distortions and slope effects.

Malin, M. C.; Evans, D.; Elachi, C.

1978-01-01

250

Radar tomography  

NASA Astrophysics Data System (ADS)

Results of experimental researches on radar sounding of non-uniform mediums and objects with use as multi frequency scanning in a UWB strip (from 0.5 up to 17 GHz), and sub nanosecond impulses are considered. It is shown, that addition of measurements by angular and spatial scanning with SAR technologies to realize 3-D tomography inhomogeneous with the spatial resolutions about 1 cm at the physical models of interaction of electromagnetic radiation with substance in which dominating mechanisms are allocated lay. It allows to simplify essentially the decision of inverse problems and to use fast algorithms of their realization. Focusing of radiation is carried out with use of mirrors, lenses, and also methods of 3-D coordinated filtrations with regularization. The examples confirming working capacity of a method for without contact tomography of structure of a forest, detection and visualization landmines hidden under a rough surface of sand are resulted. The description of the developed experimental installations is given. It is shown, that using of UWB radiation allows raising considerably accuracy of measurements at preservation of a real time scale of data processing.

Yakubov, V. P.; Telpuchovski, E. D.; Zepelev, G. M.; Klokov, A. V.; Moiseenko, N. A.; Novik, S. N.; Suhanov, D. Ya.; Yakubova, O. V.

2006-11-01

251

Station-keeping guidance  

NASA Technical Reports Server (NTRS)

The station-keeping guidance system is described, which is designed to automatically keep one orbiting vehicle within a prescribed zone fixed with respect to another orbiting vehicle. The active vehicle, i.e. the one performing the station-keeping maneuvers, is referred to as the shuttle. The other passive orbiting vehicle is denoted as the workshop. The passive vehicle is assumed to be in a low-eccentricity near-earth orbit. The primary navigation sensor considered is a gimballed tracking radar located on board the shuttle. It provides data on relative range and range rate between the two vehicles. Also measured are the shaft and trunnion axes gimbal angles. An inertial measurement unit (IMU) is provided on board the orbiter. The IMU is used at all times to provide an attitude reference for the vehicle. The IMU accelerometers are used periodically to monitor the velocity-correction burns applied to the shuttle during the station-keeping mode. The guidance system is capable of station-keeping the shuttle in any arbitrary position with respect to the workshop by periodically applying velocity-correction pulses to the shuttle.

Gustafson, D. E.; Kriegsman, B. A.

1972-01-01

252

Simulation and Evaluation for the Design of Passengers Guidance Departure from Railway Station Based on 3DS MAX  

Microsoft Academic Search

From the prospective of real visual experience of passengers, this paper gave out how to set the relevant parameters in the production of 3D images, and put forward the methods for determining the parameters of the experimental environment. Then a simulation scene on the design for passengers guidance departure from Railway Station of Hankou Railway Station was made through 3DS

Lin Jun; Xu Liang-jie; Zhang Huan-yu; Fang Juan

2009-01-01

253

Evaluation of the Moderate Resolution Imaging Spectroradiometer aerosol products at two Aerosol Robotic Network stations in China  

E-print Network

Robotic Network stations in China Wen Mi,1 Zhanqing Li,1,2,3 Xiangao Xia,3 Brent Holben,4 Robert Levy,1 of the Moderate Resolution Imaging Spectroradiometer aerosol products at two Aerosol Robotic Network stations measurements, especially those from the inter- national Aerosol Robotic Network (AERONET) [Holben et al., 1998

Li, Zhanqing

254

Side-looking radar mosaicking experiment  

NASA Technical Reports Server (NTRS)

A block of 24 overlapping synthetic aperture side-looking radar images flown over a well mapped area of about 90,000 sq km provided an opportunity to evaluate the mapping accuracy achieved in current radar mosaicking projects. The maps of scale 1:24,000 that are available in the imaged area permitted the study of the geometric errors of the radar mosaics and of individual radar strips. An estimate was obtained for the effect of the distribution and density of ground control points and for the accuracy of different mosaicking methods that are currently employed with synthetic aperture radar images. It is shown that a successful radar mosaicking process requires the elimination of image errors of up to several kilometers. These errors are introduced as a result of the limited precision of the inertial aircraft navigation. An example of a radar mapping effort in which the navigation errors could be eliminated is presented. The resulting radar mosaics have residual RMS mapping errors of planimetry of about plus or minus 150 m.

Leberl, F.; Jensen, H.; Kaplan, J.

1976-01-01

255

Characterizing Radar Raingauge Errors for NWP Assimilation  

NASA Astrophysics Data System (ADS)

The statistical characterisation of errors in quantitative precipitation estimates (QPE) is needed when generating QPE ensembles, combining multiple radars into a single mosaic, and when assimilating QPE into numerical weather prediction (NWP) models. The first step in the analysis was to characterise the errors at pixel resolution (1 km) as a function of radar specification, geographical location under the radar, and meteorology using data from 18 radars and 1500 rain gauges over a two-year period. The probability distribution of the radar - rain gauge residuals was evaluated and, as expected, the log-Normal distribution was found to fit the data better than the Normal distribution. Therefore the subsequent analysis was performed on the residuals expressed as decibels. The impact of beam width on the estimation errors was evaluated by comparing the errors from a one-degree S band radar (S1) with a two-degree S band radar (S2) for the same location (Brisbane) and time period. The standard deviation of the errors was found to increase by 0.2 dB per km for the S2 radar while the standard deviation for the S1 radar was constant out to the maximum range of 150 km. When data from all the S1 radars over the two years were pooled and compared with the S2 radars the standard deviation of the errors for the S1 radars increased by 0.1 dB per km compared with 0.25 dB per km for the S2 radars. The mean of the errors was found to vary significantly with range for all radars with underestimation at close range (< 30 km) and at far range (> 100 km). We think that this points to artefacts in the data due to clutter suppression at close range and over shooting the echo tops at the far range. The spatial distribution of the errors as a function of the altitude and roughness of the topography was investigated using the data from the S1 and S2 radars in Brisbane, but no relationship was found although there is clearly structure in the field. We also attempted to quantify the difference between summer and winter by comparing all the radar data from January 2011 with that from July 2011, but could not find a significant difference in the variance as a function of range, which we were expecting. One of the reasons for this is the range in the climatology over the radar network which ranges from the sub-tropics to the mid-latitudes, which would mask the increase that we expect for the mid-latitudes. Assimilating QPE into NWP models requires knowledge of the distribution of the error at scales that are larger than a single pixel. It is evident from our investigations that substantial data sets (many thousands of radar and gauge pairs) are required when evaluating the statistical structure of radar estimation errors and this limits our ability to characterise the errors beyond simple statements of the mean error variance and possibly the linear increase of variance with range. This also implies that the analysis of the scaling behaviour of the errors will not be dependent on location (except perhaps for range from radar) or meteorological situation, but this will be sufficient for assimilation purposes. Variograms of the spatial and temporal errors in the 30-minute accumulations were estimated and used to estimate the errors at scales that are greater than the original resolution.

Dance, S.; Seed, A.

2012-04-01

256

The MST Radar Technique  

NASA Technical Reports Server (NTRS)

The coherent radar technique is reviewed with special emphasis to mesosphere-stratosphere-troposphere (MST) radars operating in the VHF band. Some basic introduction to Doppler radar measurements and the radar equation is followed by an outline of the characteristics of atmospheric turbulence, viewed from the scattering and reflection processes of radar signals. Radar signal acquisition and preprocessing, namely coherent detection, digital sampling, pre-integration and coding, is briefly discussed. The data analysis is represented in terms of the correlation and spectrum analysis, yielding the essential parameters: power, signal-to-noise ratio, average and fluctuating velocity and persistency. The techniques to measure wind velocities, viz. the different modes of the Doppler method as well as the space antenna method are surveyed and the feasibilities of the MST radar interferometer technique are elucidated. A general view on the criteria to design phased array antennas is given. An outline of the hardware of a typical MST radar system is presented.

Roettger, J.

1984-01-01

257

Performance and evaluation of gas engine driven rooftop air conditioning equipment at the Willow Grove (PA) Naval Air Station  

SciTech Connect

In a field evaluation conducted for the US Department of Energy (DOE) Office of Federal Energy Management Program (FEMP), the Pacific Northwest Laboratory (PNL) examined the performance of a new US energy-related technology under the FEMP Test Bed Demonstration Program. The technology was a 15-ton natural gas engine driven roof top air conditioning unit. Two such units were installed on a naval retail building to provide space conditioning to the building. Under the Test Bed Demonstration Program, private and public sector interests are focused to support the installation and evaluation of new US technologies in the federal sector. Participating in this effort under a Cooperative Research and Development Agreement (CRADA) with DOE were the American Gas Cooling Center, Philadelphia Electric Company, Thermo King Corporation, and the US Naval Air Station at Willow Grove, Pennsylvania. Equipment operating and service data as well as building interior and exterior conditions were secured for the 1992 cooling season. Based on a computer assessment of the building using standard weather data, a comparison was made with the energy and operating costs associated with the previous space conditioning system. Based on performance during the 1992 cooling season and adjusted to a normal weather year, the technology will save the site $6,000/yr in purchased energy costs. An additional $9,000 in savings due to electricity demand ratchet charge reductions will also be realized. Detailed information on the technology, the installation, and the results of the technology test are provided to illustrate the advantages to the federal sector of using this technology. A history of the CRADA development process is also reported.

Armstrong, P.R.; Conover, D.R.

1993-05-01

258

A Critical Evaluation of Ground-Penetrating Radar Methodology on the Kalavasos and Maroni Built Environments (KAMBE) Project, Cyprus (Invited)  

NASA Astrophysics Data System (ADS)

The Kalavasos and Maroni Built Environments (KAMBE) Project is a multi-year investigation of the urban fabric and architectural organization of two Late Bronze Age (c. 1650-1100 BCE) polities on Cyprus. The Late Bronze Age (known also as the Late Cypriot period on Cyprus) is characterized by the emergence of a number of large, urban settlements on the island. The amalgamation of large populations at centralized sites coincides with contemporary social, economic and political changes, including a growing disparity in funerary goods, an increased emphasis on metallurgy (specifically copper mining and smelting for the production of bronze), and the construction of monumental buildings. The initial phase of the project centered on geophysical survey at two archaeological sites in adjacent river valleys in south-central Cyprus: Kalavasos-Ayios Dhimitrios and the Maroni settlement cluster [1]. These sites are thought to be two of the earliest 'urban' settlements on the island and provide a unique opportunity to explore how urban space was instrumental in the development of social and political complexity during this transformative period. The formation of these Late Bronze Age urban landscapes is, we argue, not simply the result of this emerging social complexity, but is instead an key tool in the creation and maintenance of societal boundaries. Indeed, the process of 'place-making'--the dynamic creation of socially meaningful spaces, likely by elites--may well have been one of the most effective arenas that elites used to re-enforce the growing socio-political disparity. The KAMBE Project investigates the layout and organization of these new 'urban' spaces to better understand how built-space impacted social developments. Geophysical survey methods are ideal for large-scale data collection both to identify potential areas for targeted archaeological excavation, and to provide proxy data for architectural plans that allow us to comment on the nature of the urban fabric at these settlements. Having just completed this first phase of the project, we report on the results of large-scale geophysical survey, including the identification of at least two previously unknown building complexes (one at each site). Here we focus particularly on ground-penetrating radar (GPR) data and survey methodology, in an effort to critically examine the range of approaches applied throughout the project (e.g. various antennae frequencies, data-collection densities, soil moisture/seasonality of survey, and post-collection data processing [2]), and to identify the most effective parameters for archaeological geophysical survey in the region. This paper also advocates for the role of geophysical survey within a multi-component archaeological project, not simply as a prospection tool but as an archaeological data collection method in its own right. 1]Fisher, K. D., J. Leon, S. Manning, M. Rogers, and D. Sewell. In Press. 2011-2012. 'The Kalavasos and Maroni Built Environments Project: Introduction and preliminary report on the 2008 and 2010 seasons. Report of the Department of Antiquities, Cyprus. 2] e.g. Rogers, M., J. F. Leon, K. D. Fisher, S. W. Manning and D. Sewell. 2012. 'Comparing similar ground-penetrating radar surveys under different soil moisture conditions at Kalavasos-Ayios Dhimitrios, Cyprus.' Archaeological Prospection 19 (4): 297-305.

Leon, J.; Urban, T.; Gerard-Little, P.; Kearns, C.; Manning, S. W.; Fisher, K.; Rogers, M.

2013-12-01

259

Holographic neural networks versus conventional neural networks: a comparative evaluation for the classification of landmine targets in ground-penetrating radar images  

NASA Astrophysics Data System (ADS)

This paper evaluates the performance of a holographic neural network in comparison with a conventional feedforward backpropagation neural network for the classification of landmine targets in ground penetrating radar images. The data used in the study was acquired from four different test sites using the landmine detection system developed by General Dynamics Canada Ltd., in collaboration with the Defense Research and Development Canada, Suffield. A set of seven features extracted for each detected alarm is used as stimulus inputs for the networks. The recall responses of the networks are then evaluated against the ground truth to declare true or false detections. The area computed under the receiver operating characteristic curve is used for comparative purposes. With a large dataset comprising of data from multiple sites, both the holographic and conventional networks showed comparable trends in recall accuracies with area values of 0.88 and 0.87, respectively. By using independent validation datasets, the holographic network"s generalization performance was observed to be better (mean area = 0.86) as compared to the conventional network (mean area = 0.82). Despite the widely publicized theoretical advantages of the holographic technology, use of more than the required number of cortical memory elements resulted in an over-fitting phenomenon of the holographic network.

Mudigonda, Naga R.; Kacelenga, Ray; Edwards, Mark

2004-09-01

260

Station Models  

NSDL National Science Digital Library

This project will allow users to become acquainted with station models that are found on weather maps. Students will study the various atmospheric variables that are depicted on a station model and then practice on an interactive station model program. Part 1 - Being able to read and interpret weather maps is a very important skill in meteorology. One of the most basic skills of predicting the weather is being able to interpret a station model of a given location. A station model is a bundle of information that ...

Ertl, Mr.

2007-11-03

261

The Southern Argentine Agile Meteor Radar (SAAMER)  

NASA Astrophysics Data System (ADS)

The Southern Argentina Agile Meteor Radar (SAAMER) is a new generation system deployed in Rio Grande, Tierra del Fuego, Argentina (53 S) in May 2008. SAAMER transmits 10 times more power than regular meteor radars, and uses a newly developed transmitting array, which focuses power upward instead of the traditional single-antenna-all-sky configuration. The system is configured such that the transmitter array can also be utilized as a receiver. The new design greatly increases the sensitivity of the radar enabling the detection of large number of particles at low zenith angles. The more concentrated transmitted power enables additional meteor studies besides those typical of these systems based on the detection of specular reflections, such as routine detections of head echoes and non-specular trails, previously only possible with High Power and Large Aperture radars. In August 2010, SAAMER was upgraded to a system capable to determine meteoroid orbital parameters. This was achieved by adding two remote receiving stations approximately 10 km away from the main site in near perpendicular directions. The upgrade significantly expands the science that is achieved with this new radar enabling us to study the orbital properties of the interplanetary dust environment. Because of the unique geographical location, SAAMER allows for additional inter-hemispheric comparison with measurements from Canadian Meteor Orbit Radar, which is geographically conjugate. Initial surveys show, for example, that SAAMER observes a very strong contribution of the South Toroidal Sporadic meteor source, of which limited observational data is available. In addition, SAAMER offers similar unique capabilities for meteor showers and streams studies given the range of ecliptic latitudes that the system enables detailed study of showers at high southern latitudes (e.g July Phoenicids or Puppids complex). Finally, SAAMER is ideal for the deployment of complementary instrumentation in both, permanent and campaign, operational mode. Results from various radar meteor investigations as well as radar/optical observation campaign will be presented in this paper.

Janches, Diego

2014-11-01

262

Remorque RADAR Description technique  

E-print Network

ANNEXE: Remorque RADAR Description technique Le but de la remorque est de transporter un RADAR et pour héberger l'électronique radar et son opérateur. Caractéristiques générales de la remorque : · PTC'un côté, une baie de l'autre. Un hublot sur le toit et une baie donnant sur la partie RADAR. Un plafonnier

Heurteaux, Yanick

263

The MU radar  

NASA Astrophysics Data System (ADS)

The middle atmosphere (stratosphere, mesosphere, and lower thermosphere) is now being studied intensively. Mesosphere-stratosphere-troposphere (MST) radars are playing a vital role in observing middle atmospheric motions. These radars receive very weak echoes caused by scattering from atmospheric density fluctuations that are produced by clear air turbulence. These irregularities move with the local wind so that the Doppler shift of the radar echo power spectrum gives the component of the local wind along the line of sight of the radar beam.

Kato, S.

264

Lunar radar backscatter studies  

NASA Technical Reports Server (NTRS)

The lunar surface material in the Plato area is characterized using Earth based visual, infrared, and radar signatures. Radar scattering in the lunar regolith with an existing optical scattering computer program is modeled. Mapping with 1 to 2 km resolution of the Moon using a 70 cm Arecibo radar is presented.

Thompson, T. W.

1979-01-01

265

Synthetic aperture radar interferometry  

Microsoft Academic Search

Synthetic aperture radar interferometry is an imaging technique for measuring the topography of a surface, its changes over time, and other changes in the detailed characteristic of the surface. By exploiting the phase of the coherent radar signal, interferometry has transformed radar remote sensing from a largely interpretive science to a quantitative tool, with applications in cartography, geodesy, land cover

PAUL A. ROSEN; SCOTT HENSLEY; IAN R. JOUGHIN; FUK K. LI; SØREN N. MADSEN; ERNESTO RODRÍGUEZ; RICHARD M. GOLDSTEIN

2000-01-01

266

Radar hydrology: rainfall estimation  

Microsoft Academic Search

Radar observations of rainfall and their use in hydrologic research provide the focus for the paper. Radar-rainfall products are crucial for input to runoff and flood prediction models, validation of satellite remote sensing algorithms, and for statistical characterization of extreme rainfall frequency. In this context we discuss the issues of radar-rainfall product development, and the theoretical and practical requirements of

W. F. Krajewski; J. A. Smith

2002-01-01

267

Netted radar sensing  

Microsoft Academic Search

In this paper we consider a number of aspects illustrating how networks of radar sensor systems (rather than a single monostatic radar) can offer a counter to stealth technology whilst simultaneously providing more detailed information for improved target detection, classification and location. The netted radar equation is developed, coverage, detection and location performance are quantified, and the potential utility of

A. L. Hume; C. J. Baker

2001-01-01

268

The evaluation of 3cm-wavelength radar for mapping surface deposits in the Bristol Lake/Granite Mountain area, Mojave Desert, California  

NASA Technical Reports Server (NTRS)

Surface deposits in the Bristol Lake/Granite Mountains area, Mojave Desert, California were mapped using high resolution 3 cm wavelength radar images. The surface deposits range from silt to boulders in size and were separated into six radar-rock units on the basis of radar return signatures (brightness and texture) and geomorphic expression. Field reconnaissance of the six units showed that the brightness of the radar signatures on the images correlates with the surface roughness of each unit. Two major radar signatures anomalies were noted during the study. A dark radar signature for the large sand ridges in the Kelso Dunes area and a distinct northwest trending contrast boundary between bright and dark radar signatures in the Bristol Dry Lake area. Field reconnaissance of the two areas indicated that near surface moisture may be the cause of dark signatures. Dune areas with little to no vegetation produce a dark signature, whereas areas with sparse to moderate vegetation produce an intermediate to dark signature.

Sugiura, R.; Sabins, F. F., Jr.

1980-01-01

269

52. View from ground level showing lower radar scanner switch ...  

Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

52. View from ground level showing lower radar scanner switch with open port door in radar scanner building 105 showing emanating waveguides from lower switch in vertical run; photograph also shows catwalk to upper scanner switch in upper left side of photograph and structural supports. - Clear Air Force Station, Ballistic Missile Early Warning System Site II, One mile west of mile marker 293.5 on Parks Highway, 5 miles southwest of Anderson, Anderson, Denali Borough, AK

270

Performance Evaluation of UHF RFID Technologies for Real-Time Bus Recognition in the Taipei Bus Station  

PubMed Central

Transport stations such as airports, ports, and railways have adopted blocked-type pathway management to process and control travel systems in a one-directional manner. However, this excludes highway transportation where large buses have great variability and mobility; thus, an instant influx of numerous buses increases risks and complicates station management. Focusing on Taipei Bus Station, this study employed RFID technology to develop a system platform integrated with modern information technology that has numerous characteristics. This modern information technology comprised the following systems: ultra-high frequency (UHF) radio-frequency identification (RFID), ultrasound and license number identification, and backstage graphic controls. In conclusion, the system enabled management, bus companies, and passengers to experience the national bus station's new generation technology, which provides diverse information and synchronization functions. Furthermore, this technology reached a new milestone in the energy-saving and efficiency-increasing performance of Taiwan's buses. PMID:23778192

Own, Chung-Ming; Lee, Da-Sheng; Wang, Ti-Ho; Wang, De-Jun; Ting, Yu-Lun

2013-01-01

271

Satellite radar for monitoring forest resources  

NASA Technical Reports Server (NTRS)

An evaluation is made of the computer analysis results of a study which used Seasat satellite radar data obtained in 1978 and Shuttle Imaging Radar-B data obtained in 1984. The change-detection procedures employed demonstrate that deforestation and reforestation activities can be effectively monitored on the basis of radar data gathered at satellite altitudes. The computer-processing techniques applied to the data encompassed (1) overlay display, (2) ratios, (3) differences, (4) principal-component analysis, and (5) classification; of these, overlay display is noted to quickly and easily yield a qualitative display of the multidate data.

Hoffer, Roger M.; Lee, Kyu-Sung

1990-01-01

272

Radar Meteorology Tutorial  

NSDL National Science Digital Library

Brian McNoldy at Multi-community Environmental Storm Observatory (MESO) educates the public about the use of radar in meteorology in this pdf document. After reading about the history of radar, visitors can find out how radar can detect storms by transmitting a high-power beam of radiation. Students can learn how scatter, absorption, frequencies, scan angles, and moments impact the radar display. With the help of many example images, the author also discusses how to interpret the images collected. At the end of the online document, visitors can learn about the characteristics and capabilities of NEXRAD WSR-88D, the radar used throughout the United States.

McNoldy, Brian

273

Space station  

NASA Technical Reports Server (NTRS)

The history of American space flight indicates that a space station is the next logical step in the scientific pursuit of greater knowledge of the universe. The Space Station and its complement of space vehicles, developed by NASA, will add new dimensions to an already extensive space program in the United States. The Space Station offers extraordinary benefits for a comparatively modest investment (currently estimated at one-ninth the cost of the Apollo Program). The station will provide a permanent multipurpose facility in orbit necessary for the expansion of space science and technology. It will enable significant advancements in life sciences research, satellite communications, astronomy, and materials processing. Eventually, the station will function in support of the commercialization and industrialization of space. Also, as a prerequisite to manned interplanetary exploration, the long-duration space flights typical of Space Station missions will provide the essential life sciences research to allow progressively longer human staytime in space.

Stewart, Donald F.; Hayes, Judith

1989-01-01

274

EMP (electro-magnetic pulse) hardening of a relocatable radar  

NASA Astrophysics Data System (ADS)

The problem of ensuring radar survivability in a HEMP (high-altitude electromagnetic pulse) environment is examined with particular reference to experimental results obtained for the relocatable TRS 22XX radar. The approach used here is global hardening, whereby the whole system except the antenna is enclosed in a Faraday cage. Every penetration of the radar station is protected, the energy input is correctly filtered, and the signal input/output is implemented with optical fibers. Specific technological solutions for HEMP hardening are discussed.

Deville, G. J.

275

Evaluation of zeolite mixtures for decontaminating high-activity-level water at the Three Mile Island Unit 2 Nuclear Power Station  

Microsoft Academic Search

Mixtures of Linde Ionsiv IE-96 and Ionsiv A-51 were evaluated for use in the Submerged Demineralizer System (SDS) that was installed at the Three Mile Island Unit 2 Nuclear Power Station to decontaminate approx. 2780 m³ of high-activity-level water. The original SDS flowsheet was conservatively designed for removal of cesium and strontium and would have required the use of approx.

E. D. Collins; D. O. Campbell; L. J. King; J. B. Knauer; R. M. Wallace

1984-01-01

276

An evaluation of water-quality data obtained at four streamflow daily-record stations in Idaho  

USGS Publications Warehouse

Chemical data for four stream-gaging stations in Idaho, each having 6 to 22 years of available records, were analyzed to determine functional relations between concentrations of the major inorganic constituents, specific conductance, and stream discharge. Three of the four stations had sufficient available record for assessing changes in constituent relations with time. The records for each long-term station were subdivided into segments of approximately 5 years each. Plots and regression equations were derived for each record segment to show the relations of each major constituent value to levels of specific conductance and stream discharge. At only one stations, Boise River at Notus, was there was an apparent significant change in chemical characteristics with time. Between 1940 and 1951, the percentages of chloride and sulfate in solution at this station declined appreciably and were largely replaced by bicarbonate. In general, there were highly significant correlations between the major inorganic ions and specific conductance, although those observed at Bear River at Border were distinctly poorer than those observed for the other stations. Corresponding correlations between the major ions and discharge were almost always less significant than those observed between the same ions and specific conductance. The common ion-discharge relations observed on the Snake River near Heise were more highly correlated before 1957 than thereafter--probably because of changes induced by the construction of Palisades Dam. A similar decline in correlation of common ion-discharge relations was observed at the Snake River at King Hill station after 1957, and this also might be attributable to changes in water regulation at various upstream impoundments.

Dyer, Kenneth L.

1973-01-01

277

Computer generation of correlated non-Gaussian radar clutter  

Microsoft Academic Search

We develop computer simulation procedures which enable us to generate any correlated non-Gaussian radar clutter that can be modeled as a spherically invariant random process (SIRP). In most cases, when the clutter is a correlated non-Gaussian random process, performance of the optimal radar signal processor cannot be evaluated analytically. Therefore, in order to evaluate such processors, there is a need

Muralidhar Rangaswamy; Donald Weiner; Aydin Ozturk

1995-01-01

278

Recent ARL borehole radar experiments  

NASA Astrophysics Data System (ADS)

The Microwave Sensors Branch of the Army Research Laboratory (ARL) recently evaluated the potential of a commercially available borehole radar system for an underground target detection application. We used this ground-penetrating system, which is capable of operation at either 100 or 250 MHz, to conduct experiments at a locally constructed test site. Since the site's soil characteristics would severely impact conclusions drawn from the collected data, we also obtained and analyzed soil samples in order to determine the electrical properties of the earth in the vicinity of the boreholes. In addition, we modeled and then built a canonical target, using this canonical target as an input to electromagnetic simulations. The outputs from these simulations guided us in the analysis and interpretation of the collected radar data. In this paper, we present a description of both the data collection itself and the results of a posteriori analysis of the collected data. We begin by describing the test site along with the procedures that we followed when conducting the experiments. Next, we present a soil analysis and the expected target radar cross section (RCS) obtained from the electromagnetic modeling simulations. We then discuss the implications of these results for system performance. Finally, we present an analysis of real data from the collection and compare it to what we expect based on the soil analysis and the output of the electromagnetic models. Collectively, these analyses provide an indication of the borehole radar's true potential for detecting underground targets.

Ranney, Kenneth; Stanton, Brian; Sullivan, Anders; Dogaru, Traian; Smith, Gregory; Ressler, Marc; Wong, David; Nguyen, Lam; Kappra, Karl; Tran, Chi; Kirose, Getachew; Costanza, John; Sichina, Jeff

2006-05-01

279

Evaluation of local versus remote areas of CH4 sources at IC3 stations using a combined analysis of 222Rn tracer and Atmospheric Particles Transport Model (APTM) results. Application at the Gredos and Iruelas station (GIC3), Spain.  

NASA Astrophysics Data System (ADS)

The Gredos and Iruelas station (GIC3) is part of the IC3 (Institut Català de Ciències del Clima) atmospheric monitoring network. This station is located in the Gredos Natural Park (40.22º N; -5.14º E) in the Spanish central plateau. The IC3 network consists of 8 stations distributed across Spain. It has been developed with the aim of studying climatic processes and the responses of impacted systems at different temporal and spatial scales. Since 2012, CO2, CH4, 222Rn (a natural radioactive gas) and meteorological variables are continuously measured at GIC3 at 20 m a.g.l. (1100 m a.s.l.). Furthermore, 4-days backward simulations are run daily for each IC3 station using the FLEXPART model. Simulations use ECMWF meteorological data as input and a horizontal spatial resolution of 0.2 degrees. The Laboratory of the Atmosphere and the Oceans (LAO) of the IC3 has elaborated a new approach to evaluate the local or remote greenhouse gases emissions using the radon gas as tracer and the atmospheric particles transport model FLEXPART under nocturnal and winter conditions. The ratios between the normalized and rescaled measured concentrations of CH4 and 222Rn during nocturnal hours (21h, 00h, 03h and 06h) and in the winter season, in order to reduce local radon flux and methane source due to seasonal livestock migration and to get stable atmospheric conditions, have been analyzed in relation to the influence of the local area (set to an initial dimension of 20x20 km2). The influence area (IA) has been defined as the percentage of the ratio between the residence time of the fictitious particles released in FLEXPART simulations over the area of interest (TLocal Area) and the residence time of these fictitious particles over the total area included in the simulation (TTotal Area ), i.e. IA = (TLocal Area/TTotal Area * 100). First results considering an area of interest of 20x20 km2 show a linear increase of the radon concentration with IA until reaching a maximum when IA is about 50%. This can be explained taking into consideration that GIC3 station area has high radon exhalation rates according to the literature and the radon uptake from air masses can reach a plateau. On the other hand, CH4 concentrations do not seem to be significantly influenced by IA. The log-log plot between the ratio of normalized and rescaled gases concentrations (CH4/222Rn) and the percentage of the influence of the local area shows a negative linear relation under nocturnal and winter conditions which could depend on the increase of the radon not compensated by the methane increase. Indeed, when the influence of the local area of Gredos and Iruelas station is under the 20% the major methane contribution seems to come from outside the 20x20 km2 IA. Results considering a larger area of interest (up to 80x80 km2) may indicate possible methane sources detected at the GIC3 station.

Grossi, Claudia; Morguí, Josep Anton; Curcoll, Roger; Àgueda, Alba; Arnold, Delia; Batet, Oscar; Cañas, Lidia; Nofuentes, Manel; Occhipinti, Paola; Vogel, Felix; Vargas, Arturo; Rodó, Xavier

2014-05-01

280

17. CAPE COD AIR STATION PAVE PAWS FACILITY AERIAL VIEW ...  

Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

17. CAPE COD AIR STATION PAVE PAWS FACILITY AERIAL VIEW WITH PROJECT NEARING COMPLETION. VIEW SHOWS "A" FACE (LEFT) AND "B" FACE OF RADAR ARRAY SYSTEM. NOTE THAT NORTH IS GENERALLY TO RIGHT OF VIEW. - Cape Cod Air Station, Massachusetts Military Reservation, Sandwich, Barnstable County, MA

281

Performance characteristics of wind profiling radars  

NASA Technical Reports Server (NTRS)

Doppler radars used to measure winds in the troposphere and lower stratosphere for weather analysis and forecasting are lower-sensitivity versions of mesosphere-stratosphere-troposphere radars widely used for research. The term wind profiler is used to denote these radars because measurements of vertical profiles of horizontal and vertical wind are their primary function. It is clear that wind profilers will be in widespread use within five years: procurement of a network of 30 wind profilers is underway. The Wave Propagation Laboratory (WPL) has operated a small research network of radar wind profilers in Colorado for about two and one-half years. The transmitted power and antenna aperture for these radars is given. Data archiving procedures have been in place for about one year, and this data base is used to evaluate the performance of the radars. One of the prime concerns of potential wind profilers users is how often and how long wind measurements are lacking at a given height. Since these outages constitute an important part of the performance of the wind profilers, they are calculated at three radar frequencies, 50-, 405-, and 915-MHz, (wavelengths of 6-, 0.74-, and 0.33-m) at monthly intervals to determine both the number of outages at each frequency and annual variations in outages.

Strauch, R. G.; Frisch, A. S.; Weber, B. L.

1986-01-01

282

Rendezvous radar for the orbital maneuvering vehicle  

NASA Technical Reports Server (NTRS)

This paper describes the development of the Rendezvous Radar Set (RRS) for the Orbital Maneuvering Vehicle (OMV) for the National Aeronautics and Space Administration (NASA). The RRS was to be used to locate, and then provide vectoring information to, target satellites (or Shuttle or Space Station) to aid the OMV in making a minimum-fuel-consumption approach and rendezvous. The RRS design is that of an X-Band, all solid-state, monopulse tracking, frequency hopping, pulse-Doppler radar system. The development of the radar was terminated when the OMV prime contract to TRW was terminated by NASA. At the time of the termination, the development was in the circuit design stage. The system design was virtually completed, the PDR had been held. The RRS design was based on Motorola's experiences, both in the design and production of radar systems for the US Army and in the design and production of hi-rel communications systems for NASA space programs. Experience in these fields was combined with the latest digital signal processor and micro-processor technology to design a light-weight, low-power, spaceborne radar. The antenna and antenna positioner (gimbals) technology developed for the RRS is now being used in the satellite-to-satellite communication link design for Motorola's Iridium telecommunications system.

Locke, John W.; Olds, Keith; Parks, Howard

1991-01-01

283

Using radar image simulation to assess relative geometric distortions inherent in radar imagery  

NASA Technical Reports Server (NTRS)

A unique method for observing the relative contributions of backscatter and propagation effects is afforded by radar image simulation. Digital terrain data are used in modeling radar image formation. Backscatter and propagation effects are modeled separately. These are incorporated serially and the image expression of each is noted. Sequences of images are presented illustrating these effects over a range of slopes and angles of incidence. The conclusions reached are that at angles of incidence that are smaller than the average slope of the terrain in a region, propagation phenomena predominate. As the angle of incidence increases beyond this, the radar image portrays an increasingly faithful representation of the backscatter from the ground. It is also demonstrated that digital simulation affords an important tool for evaluating complex interactions between the ground and radar, for training users in radar image interpretation, and for selecting optimum sensor parameters for particular applications.

Kaupp, V. H.; Macdonald, H. C.; Waite, W. P.

1981-01-01

284

Accessibility and Utilization of WSR-88D Radar Precipitation Data for Natural Resource Modeling Applications  

Microsoft Academic Search

The National Weather Service (NWS) operates approximately 160 WSR-88D radar-precipitation stations as part of a Next Generation Radar (NEXRAD) program that began implementation in 1992. Among other products, these radar sites provide spatial rainfall estimates, at approximately 4 km2 resolution (Stage 1, Level 3 data), with nominal coverage of 96% of the coterminous United States. Effective coverage is much less

S. P. Hardegree

2001-01-01

285

Radar Imaging Systems Joseph Charpentier  

E-print Network

Radar Imaging Systems Joseph Charpentier Department of Computing Sciences Villanova University types of radar imaging systems; synthetic aperture radar (SAR), through-the-wall radar, and digital holographic near field radar. Each system surveyed experiments that improved the quality of the resulting

286

LPI radar: fact or fiction  

Microsoft Academic Search

LPI radar is a system that consists of a radar and ES system. Its performance depends on both components. An LPI performance factor is derived and applied to several examples. Operational LPI radars are described. A digital LPI radar detector is described and test results presented. A recent book on LPI radar received a number of somewhat critical reviews that

D. C. Schleher

2006-01-01

287

Borehole radar for geothermal applications  

SciTech Connect

An initial evaluation of a continuous wave borehole radar system with steerable antennas has been completed. Candidate antennas have been identified which meet the size requirements for borehole applications. The patterns of these antennas are not dependent on the properties of the surrounding media when the antenna dimensions are less than one-tenth wavelength. The beam patterns can be steered adequately to allow the volume of earth within several meters of a borehole to be investigated. 7 refs., 5 figs.

Scott, M.W.; Caffey, T.W.H.

1991-01-01

288

A realistic radar data simulator for the Super Dual Auroral Radar Network  

NASA Astrophysics Data System (ADS)

The Super Dual Auroral Radar Network (SuperDARN) is a chain of HF radars for monitoring plasma flows in the high and middle latitude E and F regions of the ionosphere. The targets of SuperDARN radars are plasma irregularities which can flow up to several kilometers per second and can be detected out to ranges of several thousand kilometers. We have developed a simulator which is able to model SuperDARN data realistically. The simulation system comprises four separate parts: model scatterers, model collective properties, a model radar, and post-processing. Importantly, the simulator is designed using the collective scatter approach which accurately captures the expected statistical fluctuations of the radar echoes. The output of the program can represent either receiver voltages or autocorrelation functions (ACFs) in standard SuperDARN file formats. The simulator is useful for testing and implementation of SuperDARN data processing software and for investigation of how radar data and performance change when the nature of the irregularities or radar operation varies. The companion paper demonstrates the application of simulated data to evaluate the performance of different ACF fitting algorithms. The data simulator is applicable to other ionospheric radar systems.

Ribeiro, A. J.; Ponomarenko, P. V.; Ruohoniemi, J. M.; Baker, J. B. H.; Clausen, L. B. N.; Greenwald, R. A.; Larquier, S.

2013-05-01

289

Region-enhanced passive radar imaging M. C etin and A.D. Lanterman  

E-print Network

signals transmitted by commercial radio and television stations that are reflected from the objects to the problem of passive radar imaging. One goal in passive radar imaging is to form images of aircraft using by measuring and analysing the reflected signals. (Ground- based systems looking at airborne targets

Yanikoglu, Berrin

290

30. Perimeter acquisition radar building room #318, showing radar control. ...  

Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

30. Perimeter acquisition radar building room #318, showing radar control. Console and line printers - Stanley R. Mickelsen Safeguard Complex, Perimeter Acquisition Radar Building, Limited Access Area, between Limited Access Patrol Road & Service Road A, Nekoma, Cavalier County, ND

291

Planetary radar studies  

NASA Technical Reports Server (NTRS)

A catalog of lunar and radar anomalies was generated to provide a base for comparison with Venusian radar signatures. The relationships between lunar radar anomalies and regolith processes were investigated, and a consortium was formed to compare lunar and Venusian radar images of craters. Time was scheduled at the Arecibo Observatory to use the 430 MHz radar to obtain high resolution radar maps of six areas of the lunar suface. Data from 1978 observations of Mare Serenitas and Plato are being analyzed on a PDP 11/70 computer to construct the computer program library necessary for the eventual reduction of the May 1981 and subsequent data acquisitions. Papers accepted for publication are presented.

Thompson, T. W.; Cutts, J. A.

1981-01-01

292

Laser radar in robotics  

SciTech Connect

In this paper the authors describe the basic operating principles of laser radar sensors and the typical algorithms used to process laser radar imagery for robotic applications. The authors review 12 laser radar sensors to illustrate the variety of systems that have been applied to robotic applications wherein information extracted from the laser radar data is used to automatically control a mechanism or process. Next, they describe selected robotic applications in seven areas: autonomous vehicle navigation, walking machine foot placement, automated service vehicles, manufacturing and inspection, automotive, military, and agriculture. They conclude with a discussion of the status of laser radar technology and suggest trends seen in the application of laser radar sensors to robotics. Many new applications are expected as the maturity level progresses and system costs are reduced.

Carmer, D.C.; Peterson, L.M. [Environmental Research Inst. of Michigan, Ann Arbor, MI (United States)

1996-02-01

293

Radar in transition  

NASA Astrophysics Data System (ADS)

It is pointed out that radar engineers, at the end of 1984, find their field in transition between the conventional designs of the post War II era and the digitally controlled, solid-state systems which will be in place for the year 2000. The U.S. Navy has two major phased array radar systems in operation, including the rotating three-dimensional (3D) AN/SPS-48, and the phased-scanned AN/SPY-1 (Aegis) radars. The Aegis represents a major step beyond the conventional 3D and mechanical fire-control radars. However, it requires a special ship, dedicated to its use. Attention is given to questions regarding an extension of the application of Aegis technology to other U.S. Navy applications and to other navies, an ambitious solid-state radar program in the UK, and Army radars.

Barton, D. K.

1984-12-01

294

MIMO radar, SIMO radar, and IFIR radar: a P. P. Vaidyanathan and Piya Pal  

E-print Network

MIMO radar, SIMO radar, and IFIR radar: a comparison P. P. Vaidyanathan and Piya Pal Dept and SIMO radar systems for the case where the transmitter and receiver are collocated. The simplicity of the application allows one to see clearly where the advantages of MIMO radar come from, and what the tradeoffs are

Vaidyanathan, P. P.

295

Monitoring by holographic radar systems  

NASA Astrophysics Data System (ADS)

Nowadays, radar technology represents a significant opportunity to collect useful information for the monitoring and conservation of critical infrastructures. Radar systems exploit the non-invasive interaction between the matter and the electromagnetic waves at microwave frequencies. Such an interaction allows obtaining images of the region under test from which one can infer the presence of potential anomalies such as deformations, cracks, water infiltrations, etc. This information turns out to be of primary importance in practical scenarios where the probed structure is in a poor state of preservation and renovation works must be planned. In this framework, the aim of this contribution is to describe the potentialities of the holographic radar Rascan 4/4000, a holographic radar developed by Remote Sensing Laboratory of Bauman Moscow State Technical University, as a non-destructive diagnostic tool capable to provide, in real-time, high resolution subsurface images of the sounded structure [1]. This radar provides holograms of hidden anomalies from the amplitude of the interference signal arising between the backscattered signal and a reference signal. The performance of the holographic radar is appraised by means of several experiments. Preliminary tests concerning the imaging below the floor and inside wood structures are carried out in controlled conditions at the Electromagnetic Diagnostic Laboratory of IREA-CNR. After, with reference to bridge monitoring for security aim, the results of a measurement campaign performed on the Musmeci bridge are presented [2]. Acknowledgments This research has been performed in the framework of the "Active and Passive Microwaves for Security and Subsurface imaging (AMISS)" EU 7th Framework Marie Curie Actions IRSES project (PIRSES-GA-2010-269157). REFERENCES [1] S. Ivashov, V. Razevig, I. Vasilyev, A. Zhuravlev, T. Bechtel, L. Capineri, The holographic principle in subsurface radar technology, International Symposium to Commemorate the 60th Anniversary of the Invention of Holography, Springfield, Massachusetts USA, October 27-29, pp. 183-197, 2008. [2] I. Catapano, L. Crocco, A. F. Morabito, F. Soldovieri, "Tomographic imaging of holographic GPR data for non-invasive structural assessment: the Musmeci bridge investigation", Nondestructive testing and evaluation, vol. 27, pp. 229-237, 2012.

Catapano, Ilaria; Crocco, Lorenzo; Affinito, Antonio; Gennarelli, Gianluca; Soldovieri, Francesco

2013-04-01

296

1999 IEEE radar conference  

SciTech Connect

This conference addresses the stringent radar technology demands facing the next century: target detection, tracking and identification; changing target environment; increased clutter mitigation techniques; air traffic control; transportation; drug smuggling; remote sensing, and other consumer oriented applications. A timely discussion covers how to minimize costs for these emerging areas. Advanced radar technology theory and applications are also presented. Topics covered include: signal processing; space time adaptive processing/antennas; surveillance technology; radar systems; dual use; and phenomenology.

NONE

1999-07-01

297

Caribbean Radar Cases  

NSDL National Science Digital Library

This module presents radar case studies taken from events in the Caribbean that highlight radar signatures of severe weather. These cases include examples of deep convection, squall lines, bow echoes, tornadoes, and heavy rain resulting in flooding. Each case study includes a discussion of the conceptual models of each type of event as a review before showing the radar signatures and allowing the learner to analyze each one.

COMET

2013-12-31

298

Silence tracking radar  

Microsoft Academic Search

A high performance linear FMCW radar sensor and its implementation as tracking radar are presented. The radar has been built with an all-solid state transmitter with 200 mw output power and two channel receivers with 9 dB noise figure. Tracking range of more than 10 km, angle error of better than 0.5 mrad and range error of better than 5

Zhang Guanjie; Guo Min; Bao Yongjie

2001-01-01

299

Aircraft radar echoes characterization  

NASA Astrophysics Data System (ADS)

Electromagnetic wave diffraction and reflection theories enable prediction of most of the effects generated by radar echoes on aircraft. However, it is difficult to modelize some complex effects originating in canopies, radomes and cavities. In order to supplement the present theoretical knowledge by experimental results obtained on actual targets, ONERA has developed a novel analysis method allowing the generation of radar images. This method provides an efficient working tool to assist in defining radar wise discrete aerial targets.

Pouit, C.

1980-04-01

300

Evaluation of ground-penetrating radar to detect free-phase hydrocarbons in fractured rocks - Results of numerical modeling and physical experiments  

USGS Publications Warehouse

The suitability of common-offset ground-penetrating radar (GPR) to detect free-phase hydrocarbons in bedrock fractures was evaluated using numerical modeling and physical experiments. The results of one- and two-dimensional numerical modeling at 100 megahertz indicate that GPR reflection amplitudes are relatively insensitive to fracture apertures ranging from 1 to 4 mm. The numerical modeling and physical experiments indicate that differences in the fluids that fill fractures significantly affect the amplitude and the polarity of electromagnetic waves reflected by subhorizontal fractures. Air-filled and hydrocarbon-filled fractures generate low-amplitude reflections that are in-phase with the transmitted pulse. Water-filled fractures create reflections with greater amplitude and opposite polarity than those reflections created by air-filled or hydrocarbon-filled fractures. The results from the numerical modeling and physical experiments demonstrate it is possible to distinguish water-filled fracture reflections from air- or hydrocarbon-filled fracture reflections, nevertheless subsurface heterogeneity, antenna coupling changes, and other sources of noise will likely make it difficult to observe these changes in GPR field data. This indicates that the routine application of common-offset GPR reflection methods for detection of hydrocarbon-filled fractures will be problematic. Ideal cases will require appropriately processed, high-quality GPR data, ground-truth information, and detailed knowledge of subsurface physical properties. Conversely, the sensitivity of GPR methods to changes in subsurface physical properties as demonstrated by the numerical and experimental results suggests the potential of using GPR methods as a monitoring tool. GPR methods may be suited for monitoring pumping and tracer tests, changes in site hydrologic conditions, and remediation activities.The suitability of common-offset ground-penetrating radar (GPR) to detect free-phase hydrocarbons in bedrock fractures was evaluated using numerical modeling and physical experiments. The results of one- and two-dimensional numerical modeling at 100 megahertz indicate that GPR reflection amplitudes are relatively insensitive to fracture apertures ranging from 1 to 4 mm. The numerical modeling and physical experiments indicate that differences in the fluids that fill fractures significantly affect the amplitude and the polarity of electromagnetic waves reflected by subhorizontal fractures. Air-filled and hydrocarbon-filled fractures generate low-amplitude reflections that are in-phase with the transmitted pulse. Water-filled fractures create reflections with greater amplitude and opposite polarity than those reflections created by air-filled or hydrocarbon-filled fractures. The results from the numerical modeling and physical experiments demonstrate it is possible to distinguish water-filled fracture reflections from air- or hydrocarbon-filled fracture reflections, nevertheless subsurface heterogeneity, antenna coupling changes, and other sources of noise will likely make it difficult to observe these changes in GPR field data. This indicates that the routine application of common-offset GPR reflection methods for detection of hydrocarbon-filled fractures will be problematic. Ideal cases will require appropriately processed, high-quality GPR data, ground-truth information, and detailed knowledge of subsurface physical properties. Conversely, the sensitivity of GPR methods to changes in subsurface physical properties as demonstrated by the numerical and experimental results suggests the potential of using GPR methods as a monitoring tool. GPR methods may be suited for monitoring pumping and tracer tests, changes in site hydrologic conditions, and remediation activities.

Lane, J.W., Jr.; Buursink, M.L.; Haeni, F.P.; Versteeg, R.J.

2000-01-01

301

The Invisible Radar Triangle  

NSDL National Science Digital Library

Students learn about radar imaging and its various military and civilian applications that include recognition and detection of human-made targets, and the monitoring of space, deforestation and oil spills. They learn how the concepts of similarity and scaling are used in radar imaging to create three-dimensional models of various targets. Students apply the critical attributes of similar figures to create scale models of a radar imaging scenario using infrared range sensors (to emulate radar functions) and toy airplanes (to emulate targets). They use technology tools to measure angles and distances, and relate the concept of similar figures to real-world applications.

RET-ENET Program, Electrical Engineering Department,

302

Generalized radar/radiometry imaging problems  

E-print Network

Paper Generalized radar/radiometry imaging problems Ivan Prudyus, Sviatoslav Voloshynovskiy, Andriy- ing simulation based on radar, synthetic aperture radar (SAR) and radiometry systems are presented systems, synthetic aperture radar, spatio-temporal imaging. 1. Introduction Resolution of radar

Genève, Université de

303

Health hazard evaluation report HETA 93-1062-2558, Texas Utilities Electric Company, Martin Lake Steam Electric Station, Tatum, Texas  

SciTech Connect

In response to a request from workers at the Texas Utilities Electric Company (SIC-4911), Martin Lake Steam Electric Station in Tatum, Texas, the incidence of neurologic symptoms and exposure to electromagnetic fields and organophosphates were investigated. Workers reported neurological symptoms, including memory loss, dizziness and fatigue. A site visit to the station revealed electromagnetic field levels below the current occupational standard of 10 gauss. The use of an organophosphate containing fire resistant hydraulic fluid, Fyrquel-EH (1330785), was reported by employees. A significant correlation was identified between memory of past symptoms indicative of acute organophosphate exposure after working with Fyrquel-EH and current symptoms; however, blood cholinesterase levels were all within the normal range and no relevant neurologic abnormalities were noted on neurological examinations. The authors conclude that a hazard existed from the use of Fyrquel-EH. The authors recommend measures for the safe handling of organophosphate compounds.

Malkin, R.; Moss, C.E.; Reh, C.M.; Ragab, M.

1996-01-01

304

Meteorological and dynamical requirements for MST radar networks: Waves  

NASA Technical Reports Server (NTRS)

Studies of wave motions using the MST radar have concentrated on single station time series analyses of gravity waves and tides. Since these radars collect high time resolution data they have the potential to become a significant tool for mesoscale research. In addition, radars are operated almost continuously unattended and, consequently, data sets are available for analyzing longer period wave motions such as tides and planetary scale waves. Although there is much to learn from single station data, the possibilities of new knowledge from a network of radars is exciting. The scales of wave motions in the atmosphere cover a broad range. Consequently the choice of a radar network depends to a large extent on the types of wave motions that are studied. There are many outstanding research problems that would benefit from observations from a MST radar network. In particular, there is a strong need for measurements of gravity wave parameters and equatorial wave motions. Some of the current problems in wave dynamics are discussed.

Avery, S. K.

1983-01-01

305

Decoders for MST radars  

NASA Technical Reports Server (NTRS)

Decoding techniques and equipment used by MST radars are described and some recommendations for new systems are presented. Decoding can be done either by software in special-purpose (array processors, etc.) or general-purpose computers or in specially designed digital decoders. Both software and hardware decoders are discussed and the special case of decoding for bistatic radars is examined.

Woodman, R. F.

1983-01-01

306

The Cloud Radar System  

NASA Technical Reports Server (NTRS)

Improvement in our understanding of the radiative impact of clouds on the climate system requires a comprehensive view of clouds including their physical dimensions, dynamical generation processes, and detailed microphysical properties. To this end, millimeter vave radar is a powerful tool by which clouds can be remotely sensed. The NASA Goddard Space Flight Center has developed the Cloud Radar System (CRS). CRS is a highly sensitive 94 GHz (W-band) pulsed-Doppler polarimetric radar that is designed to fly on board the NASA high-altitude ER-2 aircraft. The instrument is currently the only millimeter wave radar capable of cloud and precipitation measurements from above most all clouds. Because it operates from high-altitude, the CRS provides a unique measurement perspective for cirrus cloud studies. The CRS emulates a satellite view of clouds and precipitation systems thus providing valuable measurements for the implementation and algorithm validation for the upcoming NASA CloudSat mission that is designed to measure ice cloud distributions on the global scale using a spaceborne 94 GHz radar. This paper describes the CRS instrument and preliminary data from the recent Cirrus Regional Study of Tropical Anvils and Cirrus Layers - Florida Area Cirrus Experiment (CRYSTAL-FACE). The radar design is discussed. Characteristics of the radar are given. A block diagram illustrating functional components of the radar is shown. The performance of the CRS during the CRYSTAL-FACE campaign is discussed.

Racette, Paul; Heymsfield, Gerald; Li, Lihua; Tian, Lin; Zenker, Ed

2003-01-01

307

Radars for the eighties  

Microsoft Academic Search

The Modular Survivable Radar (MSR), proposed by the General Electric Company as the solution to the USAF's airborne attack radar requirements, is a flexible system with ECCM and low probability of intercept (LPI) protection capabilities. The system is built with standard modular line replaceable units (LRU) and is adaptable to a wide range of performance requirements. The structure of the

M. Shohat

1979-01-01

308

Netted radar sensing  

Microsoft Academic Search

We consider how networks of radar sensors can offer a counter to stealth technology whilst simultaneously providing more detailed information for improved target classification. Specifically, it is shown how multiple independent sensors can provide an energetically more efficient collector of radar scatter. Further, the relative merits of non-coherent and coherent dependent networks are discussed particularly emphasising the balance between increased

A. L. Hume; C. J. Baker

2001-01-01

309

Aircraft radar antennas  

Microsoft Academic Search

Many changes have taken place in airborne radar antennas since their beginnings over forty years ago. A brief historical review of the advances in technology is presented, from mechanically scanned reflectors to modern multiple function phased arrays. However, emphasis is not on history but on the state-of-the-art technology and trends for future airborne radar systems. The status of rotating surveillance

Helmut E. Schrank

1987-01-01

310

Java Radar Analysis Tool  

NASA Technical Reports Server (NTRS)

Java Radar Analysis Tool (JRAT) is a computer program for analyzing two-dimensional (2D) scatter plots derived from radar returns showing pieces of the disintegrating Space Shuttle Columbia. JRAT can also be applied to similar plots representing radar returns showing aviation accidents, and to scatter plots in general. The 2D scatter plots include overhead map views and side altitude views. The superposition of points in these views makes searching difficult. JRAT enables three-dimensional (3D) viewing: by use of a mouse and keyboard, the user can rotate to any desired viewing angle. The 3D view can include overlaid trajectories and search footprints to enhance situational awareness in searching for pieces. JRAT also enables playback: time-tagged radar-return data can be displayed in time order and an animated 3D model can be moved through the scene to show the locations of the Columbia (or other vehicle) at the times of the corresponding radar events. The combination of overlays and playback enables the user to correlate a radar return with a position of the vehicle to determine whether the return is valid. JRAT can optionally filter single radar returns, enabling the user to selectively hide or highlight a desired radar return.

Zaczek, Mariusz P.

2005-01-01

311

Radar illusion via metamaterials  

NASA Astrophysics Data System (ADS)

An optical illusion is an image of a real target perceived by the eye that is deceptive or misleading due to a physiological illusion or a specific visual trick. The recently developed metamaterials provide efficient approaches to generate a perfect optical illusion. However, all existing research on metamaterial illusions has been limited to theory and numerical simulations. Here, we propose the concept of a radar illusion, which can make the electromagnetic (EM) image of a target gathered by radar look like a different target, and we realize a radar illusion device experimentally to change the radar image of a metallic target into a dielectric target with predesigned size and material parameters. It is well known that the radar signatures of metallic and dielectric objects are significantly different. However, when a metallic target is enclosed by the proposed illusion device, its EM scattering characteristics will be identical to that of a predesigned dielectric object under the illumination of radar waves. Such an illusion device will confuse the radar, and hence the real EM properties of the metallic target cannot be perceived. We designed and fabricated the radar illusion device using artificial metamaterials in the microwave frequency, and good illusion performances are observed in the experimental results.

Jiang, Wei Xiang; Cui, Tie Jun

2011-02-01

312

Looking at Radar Images  

NSDL National Science Digital Library

These activities pertain to the value of the different types of images, including a false color mosaic, a Compressed Stokes image, a vegetation map and key, and various ground photographs. Students are given specific directions on how to decide what features of a radar image indicate such structures as upland forest, clear-cut areas, and roads. In a second activity, students look at the radar images to see if they can produce a vegetation map similar to the one they have been given. The third activity introduces 15 Decade Volcanoes that pose a particular threat to humans. Using the Decade Volcanoes as examples, students view radar images of volcanoes that occur around the world. The final exercise is aimed at helping students distinguish the differences between radar image data and visible photographs. Students will look at radar data and photographs of three sites taken by the astronauts.

313

Radar Location Equipment Development Program: Phase I  

SciTech Connect

The work described in this report represents the first phase of a planned three-phase project designed to develop a radar system for monitoring waste canisters stored in a thick layer of bedded salt at the Waste Isolation Pilot Plant near Carlsbad, New Mexico. The canisters will be contained in holes drilled into the floor of the underground waste storage facility. It is hoped that these measurements can be made to accuracies of +-5 cm and +-2/sup 0/, respectively. The initial phase of this project was primarily a feasibility study. Its principal objective was to evaluate the potential effectiveness of the radar method in the planned canister monitoring application. Its scope included an investigation of the characteristics of radar signals backscattered from waste canisters, a test of preliminary data analysis methods, an assessment of the effects of salt and bentonite (a proposed backfill material) on the propagation of the radar signals, and a review of current ground-penetrating radar technology. A laboratory experiment was performed in which radar signals were backscattered from simulated waste canisters. The radar data were recorded by a digital data acquisition system and were subsequently analyzed by three different computer-based methods to extract estimates of canister location and tilt. Each of these methods yielded results that were accurate within a few centimeters in canister location and within 1/sup 0/ in canister tilt. Measurements were also made to determine the signal propagation velocities in salt and bentonite (actually a bentonite/sand mixture) and to estimate the signal attenuation rate in the bentonite. Finally, a product survey and a literature search were made to identify available ground-penetrating radar systems and alternative antenna designs that may be particularly suitable for this unique application. 10 refs., 21 figs., 4 tabs.

Sandness, G.A.; Davis, K.C.

1985-06-01

314

Gongguan Metro Station NTU Hospital Metro Station  

E-print Network

Gongguan Metro Station NTU Hospital Metro Station 3 2 1 2 3 4 SE61 SE1 S71 SE63 SE74 SE73 SE72 SE Railway Station Taipei Railway Station To Shandao Temple Metro Station To Daan Park Sec. 3, Jianguo S. Rd. To Jianguo Expressway Sec. 2, Fuxing S. Rd. To Technology Building Metro Station

Hung, Shih-Hao

315

Diversity Order of Joint Detection in Distributed Radar Networks  

E-print Network

Diversity Order of Joint Detection in Distributed Radar Networks Rani Daher, Raviraj Adve introduced the notion of diversity in distributed radar systems and we evaluated the diversity order of fully the diversity of joint detection for symmetric noise-limited systems. The Neyman-Pearson (NP) statistic

Adve, Raviraj

316

Browse > Conferences> Radar Conference, 2008. RADAR ... INDEX TERMS  

E-print Network

Browse > Conferences> Radar Conference, 2008. RADAR ... INDEX TERMS REFERENCES CITING DOCUMENTS Force, MorphoAnalysis in Signal Process. Lab., Salon-de-Provence This paper appears in: Radar Conference, 2008. RADAR '08. IEEE Issue Date: 26-30 May 2008 On page(s): 1 - 5 Location: Rome ISSN: 1097-5659 Print

Préaux, Jean-Philippe

317

37. View of detection radar environmental display (DRED) console for ...  

Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

37. View of detection radar environmental display (DRED) console for middle DR 2 (structure no. 736) antenna, located in MWOC facility. - Clear Air Force Station, Ballistic Missile Early Warning System Site II, One mile west of mile marker 293.5 on Parks Highway, 5 miles southwest of Anderson, Anderson, Denali Borough, AK

318

Facilitating cloud radar and lidar algorithms: the Cloudnet Instrument Synergy/Target Categorization product  

E-print Network

Facilitating cloud radar and lidar algorithms: the Cloudnet Instrument Synergy recognition of the usefulness of cloud radar for evaluating numerous aspects of the representation of clouds.j.hogan@reading.ac.uk. 1http://www.met.rdg.ac.uk/radar/cloudnet/ 2http://www.arm.gov/ are regular 6-hourly radiosonde

Hogan, Robin

319

Facilitating cloud radar and lidar algorithms: the Cloudnet Instrument Synergy/Target Categorization product  

E-print Network

Facilitating cloud radar and lidar algorithms: the Cloudnet Instrument Synergy recognition of the usefulness of cloud radar for evaluating numerous aspects of the representation of clouds, UK. E­mail: r.j.hogan@reading.ac.uk. 1 http://www.met.rdg.ac.uk/radar/cloudnet/ 2 http

Hogan, Robin

320

Numerical simulations of radar rainfall error propagation Hatim O. Sharif1  

E-print Network

Numerical simulations of radar rainfall error propagation Hatim O. Sharif1 and Fred L. Ogden model of convective rainfall with an active microwave radiative transfer model to simulate radar of that storm and used them to evaluate the propagation of radar rainfall errors through distributed hydrologic

Xue, Ming

321

Use and Interpretation of Radar  

NSDL National Science Digital Library

This undergraduate meteorology tutorial from Texas A&M University discusses the basic principles of operation of weather radars, describes how to interpret radar mosaics, and discusses the use of radar in weather forecasting. Students learn the relationship between range and elevation and how to use radar images and mosaics in short-range forecasting.

John Nielsen-Gammon

1996-01-01

322

Low probability of intercept radar  

Microsoft Academic Search

The objective of LPI radars is defined and performance characteristics are examined. A performance criterion relating the range at which the LPI radar can detect a target to the range at which an intercept receiver aboard the target can detect the LPI radar is defined. The response of various operational and advanced intercept receivers to wideband LPI radar waveforms is

D. C. Schleher

1985-01-01

323

Ground-penetrating radar methods  

Technology Transfer Automated Retrieval System (TEKTRAN)

Ground-penetrating radar geophysical methods are finding greater and greater use in agriculture. With the ground-penetrating radar (GPR) method, an electromagnetic radio energy (radar) pulse is directed into the subsurface, followed by measurement of the elapsed time taken by the radar signal as it ...

324

Radar sensing of the ocean  

Microsoft Academic Search

Radar remote sensing of the ocean has been the subject of research for about 20 years. Spaceborne radar altimetry and scatterometry are approaching maturity, and synthetic-aperture radars (SAR) show great promise. The principles of radar scattering from the sea are outlined here, along with some recently discovered questions. For wind-vector scatterometry, the principle is presented, and remaining uncertainties are outlined.

RICHARD K. MOORE

1985-01-01

325

Goldstone solar system radar  

NASA Technical Reports Server (NTRS)

Planning, direction, experimental design, and coordination of data-acquisition and engineering activities in support of all Goldstone planetary radar astronomy were performed. This work demands familiarity with the various components of a planetary radar telescope (transmitter, receiver, antenna, computer hardware and software) as well as knowledge of how the entire system must function as a cohesive unit to meet the particular scientific objectives at hand in a given observation. Support radar data-processing facilities, currently being used for virtually all Goldstone data reduction includes: a VAX 11/780 computer system, an FPS 5210 array processor, terminals, tape drives, and image-display devices, as well as a large body of data-reduction software to accommodate the variety of data-acquisition formats and strategems. Successful 113-cm radar observation of Callisto and the near-Earth asteroid 1981 Midas and Goldstone/VLA radar observations of Saturn's rings were obtained. Quick-look verification programs from data taken with phase-coded cw (i.e., ranging) waveforms, applicable to Venus, the Moon, and small bodies were completed. Definition of scientific and engineering requirements on instrument performance, radar system configuration, and personnel, for all 1988 Goldstone radar investigations was accomplished.

Jurgens, Raymond F.

1988-01-01

326

Earth resources shuttle imaging radar. [systems analysis and design analysis of pulse radar for earth resources information system  

NASA Technical Reports Server (NTRS)

A report is presented on a preliminary design of a Synthetic Array Radar (SAR) intended for experimental use with the space shuttle program. The radar is called Earth Resources Shuttle Imaging Radar (ERSIR). Its primary purpose is to determine the usefulness of SAR in monitoring and managing earth resources. The design of the ERSIR, along with tradeoffs made during its evolution is discussed. The ERSIR consists of a flight sensor for collecting the raw radar data and a ground sensor used both for reducing these radar data to images and for extracting earth resources information from the data. The flight sensor consists of two high powered coherent, pulse radars, one that operates at L and the other at X-band. Radar data, recorded on tape can be either transmitted via a digital data link to a ground terminal or the tape can be delivered to the ground station after the shuttle lands. A description of data processing equipment and display devices is given.

1975-01-01

327

Observation Station  

ERIC Educational Resources Information Center

This article describes how a teacher integrates science observations into the writing center. At the observation station, students explore new items with a science theme and use their notes and questions for class writings every day. Students are exposed to a variety of different topics and motivated to write in different styles all while…

Rutherford, Heather

2011-01-01

328

Radar Remote Sensing  

NASA Technical Reports Server (NTRS)

This lecture was just a taste of radar remote sensing techniques and applications. Other important areas include Stereo radar grammetry. PolInSAR for volumetric structure mapping. Agricultural monitoring, soil moisture, ice-mapping, etc. The broad range of sensor types, frequencies of observation and availability of sensors have enabled radar sensors to make significant contributions in a wide area of earth and planetary remote sensing sciences. The range of applications, both qualitative and quantitative, continue to expand with each new generation of sensors.

Rosen, Paul A.

2012-01-01

329

Radar investigation of asteroids  

NASA Technical Reports Server (NTRS)

The initial radar observations of the mainbelt asteroids 9 Metis, 27 Euterpe, and 60 Echo are examined. For each target, data are taken simultaneously in the same sense of circular polarization as transmitted as well as in the opposite (OC) sense. Estimates of the radar cross sections provide estimates of the circular polarization ratio, and the normalized OC radar cross section. The circular polarization ratio, is comparable to values measured for other large S type asteroids and for a few much smaller, Earth approaching objects, most of the echo is due to single reflection backscattering from smooth surface elements.

Ostro, S. J.

1984-01-01

330

Passive Radar Imaging of Moving Targets in Multiple-Scattering Environments Using Sparse  

E-print Network

to measurements at other receivers. We address the passive imaging problem as a generalized likelihood ratio test discriminant functional by maximizing the signal-to-noise ratio of the test-statistic and use the resulting, such as broadcasting and television stations, cell phone stations, has motivated interest in passive radar imaging

Yazici, Birsen

331

Stage measurement at gaging stations  

USGS Publications Warehouse

Stream and reservoir stage are critical parameters in the computation of stream discharge and reservoir volume, respectively. In addition, a record of stream stage is useful in the design of structures that may be affected by stream elevation, as well as for the planning for various uses of flood plains. This report describes equipment and methodology for the observation, sensing, and recording of stage in streams and reservoirs. Although the U.S. Geological Survey (USGS) still uses the traditional, basic stilling-well float system as a predominant gaging station, modern electronic stage sensors and water-level recorders are now commonly used. Bubble gages coupled with nonsubmersible pressure transducers eliminate the need for stilling wells. Submersible pressure transducers have become common in use for the measurement of stage in both rivers and lakes. Furthermore, noncontact methods, such as radar, acoustic, and laser methods of sensing water levels, are being developed and tested, and in the case of radar, are commonly used for the measurement of stage. This report describes commonly used gaging-station structures, as well as the design and operation of gaging stations. Almost all of the equipment and instruments described in this report will meet the accuracy standard set by the USGS Office of Surface Water (OSW) for the measurement of stage for most applications, which is ?0.01 foot (ft) or 0.2 percent of the effective stage. Several telemetry systems are used to transmit stage data from the gaging station to the office, although satellite telemetry has become the standard. These telemetry systems provide near real-time stage data, as well as other information that alerts the hydrographer to extreme or abnormal events, and instrument malfunctions.

Sauer, Vernon B.; Turnipseed, D. Phil

2010-01-01

332

MENTOR: Adding an outlying receiver to an ST radar for meteor-wind measurement  

NASA Astrophysics Data System (ADS)

Radar scattering from ionized meteor trails has been used for many years as a way to determine mesopause-level winds. Scattering occurs perpendicular to the trails, and since the ionizing efficiency of the incoming meteoroids depends on the cosine of the zenith angle of the radiant, echoes directly overhead are rare. Stratosphere-troposphere (ST) radars normally sample within 15 deg of the vertical, and thus receive few meteor echoes. Even the higher powdered mesosphere-stratosphere-troposphere (MST) radars are not good meteor radars, although they were used to successfully retrieved meteor winds from the Poker Flat, Alaska MST radar by averaging long data intervals. It has been suggested that a receiving station some distance from an ST radar could receive pulses being scattered from meteor trails, determine the particular ST beam in which the scattering occurred, measure the radial Doppler velocity, and thus determine the wind field. This concept has been named MENTOR (Meteor Echoes; No Transmitter, Only Receivers).

Roper, R. G.

1984-12-01

333

Test and evaluation of load converter topologies used in the Space Station Freedom Power Management and distribution DC test bed  

NASA Technical Reports Server (NTRS)

Power components hardware in support of the Space Station Freedom dc Electrical Power System were tested. One type of breadboard hardware tested is the dc Load Converter Unit, which constitutes the power interface between the electric power system and the actual load. These units are dc to dc converters that provide the final system regulation before power is delivered to the load. Three load converters were tested: a series resonant converter, a series inductor switchmode converter, and a switching full-bridge forward converter. The topology, operation principles, and tests results are described, in general. A comparative analysis of the three units is given with respect to efficiency, regulation, short circuit behavior (protection), and transient characteristics.

Lebron, Ramon C.; Oliver, Angela C.; Bodi, Robert F.

1991-01-01

334

Reduction of Averaging Time for Evaluation of Human Exposure to Radiofrequency Electromagnetic Fields from Cellular Base Stations  

NASA Astrophysics Data System (ADS)

In order to determine exposure compliance with the electromagnetic fields from a base station's antenna in the far-field region, we should calculate the spatially averaged field value in a defined space. This value is calculated based on the measured value obtained at several points within the restricted space. According to the ICNIRP guidelines, at each point in the space, the reference levels are averaged over any 6min (from 100kHz to 10GHz) for the general public. Therefore, the more points we use, the longer the measurement time becomes. For practical application, it is very advantageous to spend less time for measurement. In this paper, we analyzed the difference of average values between 6min and lesser periods and compared it with the standard uncertainty for measurement drift. Based on the standard deviation from the 6min averaging value, the proposed minimum averaging time is 1min.

Kim, Byung Chan; Park, Seong-Ook

335

Test and evaluation of load converter topologies used in the Space Station Freedom power management and distribution dc test bed  

NASA Technical Reports Server (NTRS)

Power components hardware in support of the Space Station freedom dc Electric Power System were tested. One type of breadboard hardware tested is the dc Load Converter Unit, which constitutes the power interface between the electric power system and the actual load. These units are dc to dc converters that provide the final system regulation before power is delivered to the load. Three load converters were tested: a series resonant converter, a series inductor switch-mode converter, and a switching full-bridge forward converter. The topology, operation principles, and test results are described, in general. A comparative analysis of the three units is given with respect to efficiency, regulation, short circuit behavior (protection), and transient characteristics.

Lebron, Ramon C.; Oliver, Angela C.; Bodi, Robert F.

1991-01-01

336

Portable radar simulator  

NASA Astrophysics Data System (ADS)

A portable radar simulator, when connected to a transmitting means such as a waveguide horn antenna, provides a radar signal to test a radar receiver. The portable radar simulator comprises a tunable oscillator which generates a continuous wave signal in the microwave frequency range with the desired frequency of the signal being selected by an operator. The signal generated by the tunable oscillator is supplied to a microwave switch. The microwave switch receives a control signal provided by a pulse repetition frequency generating circuit and in response to the control signal turns the switch on or off controlling the transmission of the oscillator generated signal to the wave guide horn antenna. The pulse repetition frequency generating circuit which comprises an integrated circuit timer and a monostable multivibrator provides a variable frequency and variable pulse width control signal. The frequency and pulse width of the control signal are, in turn, set by the operator.

Aw, Kenneth

1992-09-01

337

Caribbean Radar Products  

NSDL National Science Digital Library

This module provides examples of radar imagery from various locations in the Caribbean to demonstrate the different types of images available. Also, examples of different meteorological and non meteorological features are presented to show features seen in island locations.

2014-09-14

338

GMTI MIMO radar  

E-print Network

Multiple-input multiple-output (MIMO) extensions to radar systems enable a number of advantages compared to traditional approaches. These advantages include improved angle estimation and target detection. In this paper, ...

Bliss, Daniel W., Jr.

339

Imaging with Radar  

NSDL National Science Digital Library

This interactive activity from NOVA features synthetic aperture radar (SAR), which uses radio waves to create high-quality images. Examine SAR images of Washington, D.C., and learn about this technology's unique advantages.

2004-01-29

340

Aircraft radar antennas  

NASA Astrophysics Data System (ADS)

Many changes have taken place in airborne radar antennas since their beginnings over forty years ago. A brief historical review of the advances in technology is presented, from mechanically scanned reflectors to modern multiple function phased arrays. However, emphasis is not on history but on the state-of-the-art technology and trends for future airborne radar systems. The status of rotating surveillance antennas is illustrated by the AN/APY-1 Airborne Warning and Control System (AWACS) slotted waveguide array, which achieved a significant breakthrough in sidelobe suppression. Gimballed flat plate arrays in nose radomes are typified by the AN/APG-66 (F-16) antenna. Multifunction phased arrays are presented by the Electronically Agile Radar (EAR) antenna, which has achieved significant advances in performance versatility and reliability. Trends toward active aperture, adaptive, and digital beamforming arrays are briefly discussed. Antennas for future aircraft radar systems must provide multiple functions in less aperture space, and must perform more reliably.

Schrank, Helmut E.

1987-04-01

341

Multifractal Precipitation Extreme-Event Behavior Evaluated From the Radar-Pixel Scale up: Is the Scaling Consistent With the Smallest Resolvable Scales?  

NASA Astrophysics Data System (ADS)

Intensity-duration-area-frequency (IDAF) functions for precipitation (combining classical IDF curves and area reduction factors) are a concise way to represent the hydro-meteorologically most useful information contained in the joined probability distribution functions of the rainfall process. Several studies have determined the expressions of IDAF functions for multifractal fields, and a parameterization thereof has been performed for the smallest resolvable scales of rainfall (drop-by-drop count). The importance of performing the same parameterization exercise from the radar-pixel scale up, resides in several expected results: (a) The identification of whether radar-pixel scaling is part of the same underlying multiplicative cascade found at the smallest resolvable scales (no scaling break within this domain of scales); (b) The deduction of a theoretically-based scaling expression, covering rainfall scales that are relevant for hydrologic model inputs: and (c) Determining the existence of a unique spectral shift exponent between rain gauge and radar measurements, corresponding to a fractional integration of the rainfall field, performed at the smallest scales, which would constitute an indication in favor of a unique underlying multifractal cascade at all considered scales.

Carsteanu, A. A.; Ba, K. M.; Castro, J. J.; Diaz-Delgado, C.

2008-12-01

342

Evaluation of Cloud Microphysics in JMA-NHM Simulations Using Bin or Bulk Microphysical Schemes through Comparison with Cloud Radar Observations  

NASA Technical Reports Server (NTRS)

Numerical weather prediction (NWP) simulations using the Japan Meteorological Agency NonhydrostaticModel (JMA-NHM) are conducted for three precipitation events observed by shipborne or spaceborneW-band cloud radars. Spectral bin and single-moment bulk cloud microphysics schemes are employed separatelyfor an intercomparative study. A radar product simulator that is compatible with both microphysicsschemes is developed to enable a direct comparison between simulation and observation with respect to theequivalent radar reflectivity factor Ze, Doppler velocity (DV), and path-integrated attenuation (PIA). Ingeneral, the bin model simulation shows better agreement with the observed data than the bulk modelsimulation. The correction of the terminal fall velocities of snowflakes using those of hail further improves theresult of the bin model simulation. The results indicate that there are substantial uncertainties in the masssizeand sizeterminal fall velocity relations of snowflakes or in the calculation of terminal fall velocity of snowaloft. For the bulk microphysics, the overestimation of Ze is observed as a result of a significant predominanceof snow over cloud ice due to substantial deposition growth directly to snow. The DV comparison shows thata correction for the fall velocity of hydrometeors considering a change of particle size should be introducedeven in single-moment bulk cloud microphysics.

Iguchi, Takamichi; Nakajima, Teruyuki; Khain, Alexander P.; Saito, Kazuo; Takemura, Toshihiko; Okamoto, Hajime; Nishizawa, Tomoaki; Tao, Wei-Kuo

2012-01-01

343

Intercontinental Bistatic Radar Test Observation of Asteroid 1998 WT24  

NASA Technical Reports Server (NTRS)

We describe the first intercontinental planetary radar test performed in Italy observing the near Earth asteroid (NEA) 33342 (1998 WT24) in December 2001 by means of the bistatic configurations Goldstone (California, USA)-Medicina (Italy) and Evpatoria (Ukraine)-Medicina. The experiment goal was to characterize the system for realtime radar follow-up observations of NEAs and artificial orbiting debris, in the framework of a feasibility study which aims at using the Sardinia Radio Telescope, at present under construction, also as a planetary radar facility. We report the preliminary results of the radar observations carried out by the IRA-CNR (Instituto di Radioastronomia - Consiglio Nazionale delle Ricerche) and the OATo (Osservatorio Astronomico di Torino) groups, aimed at exploring the scientific potentials of a new space radar program, using the existing facilities in Italy. The planetary radar technique is uniquely capable of investigating geometry and surface properties of various solar system objects, demonstrating advantages over the optical methods in its high spatial resolution and ability to obtain three-dimensional images. A single radar detection allows to obtain extremely accurate orbital elements, improving the instantaneous positional uncertainties by orders of magnitude with respect to an optically determined orbit. Radar is a powerful means to spatially resolve NEAs by measuring the distribution of the echo power in time delay (range) and Doppler frequency (line-of-sight velocity) with extreme precision in each coordinate, as it provides detailed information about the target physical properties like size, shape, rotation, near-surface bulk density and roughness and internal density distribution. The Medicina 32m antenna had been successfully used for the first time as the receiving part of a bistatic configuration during a test experiment (September 2001) held to check the capabilities of the entire data acquisition system. This test was possible thanks to the collaboration undertaken with the Evpatoria radar station, and consisted in the observation of the ETALON-1 low orbit satellite

Righini, S.; Poppi, S.; Montebugnoli, S.; DiMartino, M.; Saba, L.; Delbo, M.; Ostro, S.; Monari, J.; Poloni, M.; Orlati, A.

2002-01-01

344

Downhole pulse radar  

DOEpatents

A borehole logging tool generates a fast rise-time, short duration, high peak-power radar pulse having broad energy distribution between 30 MHz and 300 MHz through a directional transmitting and receiving antennas having barium titanate in the electromagnetically active region to reduce the wavelength to within an order of magnitude of the diameter of the antenna. Radar returns from geological discontinuities are sampled for transmission uphole. 7 figs.

Chang, Hsi-Tien

1987-09-28

345

Doppler Radar Technology  

NSDL National Science Digital Library

This resource provides an introduction to the function and uses of the The National Weather Service's (NWS) Weather Surveillance Doppler Radar (WSR-88D). Topics include the components of the system, an overview of the products and overlays the system creates, and some example images with captions explaining what is being shown. There are also links to radar meteorology tutorials and to information on training to use the system and interpret its imagery.

346

Downhole pulse radar  

DOEpatents

A borehole logging tool generates a fast rise-time, short duration, high peak-power radar pulse having broad energy distribution between 30 MHz and 300 MHz through a directional transmitting and receiving antennas having barium titanate in the electromagnetically active region to reduce the wavelength to within an order of magnitude of the diameter of the antenna. Radar returns from geological discontinuities are sampled for transmission uphole.

Chang, Hsi-Tien (Albuquerque, NM)

1989-01-01

347

Adaptive MIMO radar waveforms  

Microsoft Academic Search

Multiple-Input, Multiple-Output (MIMO) radars enhance performance by transmitting and receiving coded waveforms from multiple locations. To date, the theoretical literature on MIMO radar has focused largely on the use of ldquoorthogonal waveforms.rdquo Practical approaches to approximate orthogonality (e.g., via waveforms characterized by low cross-correlation and low autocorrelation sidelobe levels) have also started to emerge. We show, however, that such waveforms

Daniel J. Rabideau; Lexington MA

2008-01-01

348

The Implementation and Evaluation of the Emergency Response Dose Assessment System (ERDAS) at Cape Canaveral Air Station/Kennedy Space Center  

NASA Technical Reports Server (NTRS)

The Emergency Response Dose Assessment System (ERDAS) is a system which combines the mesoscale meteorological prediction model RAMS with the diffusion models REEDM and HYPACT. Operators use a graphical user interface to run the models for emergency response and toxic hazard planning at CCAS/KCS. The Applied Meteorology Unit has been evaluating the ERDAS meteorological and diffusion models and obtained the following results: (1) RAMS adequately predicts the occurrence of the daily sea breeze during non-cloudy conditions for several cases. (2) RAMS shows a tendency to predict the sea breeze to occur slightly earlier and to move it further inland than observed. The sea breeze predictions could most likely be improved by better parameterizing the soil moisture and/or sea surface temperatures. (3) The HYPACT/REEDM/RAMS models accurately predict launch plume locations when RAMS winds are accurate and when the correct plume layer is modeled. (4) HYPACT does not adequately handle plume buoyancy for heated plumes since all plumes are presently treated as passive tracers. Enhancements should be incorporated into the ERDAS as it moves toward being a fully operational system and as computer workstations continue to increase in power and decrease in cost. These enhancements include the following: activate RAMS moisture physics; use finer RAMS grid resolution; add RAMS input parameters (e.g. soil moisture, radar, and/or satellite data); automate data quality control; implement four-dimensional data assimilation; modify HYPACT plume rise and deposition physics; and add cumulative dosage calculations in HYPACT.

Evans, Randolph J.; Tremback, Craig J.; Lyons, Walter A.

1996-01-01

349

The Capabilities of Space Stations  

NASA Technical Reports Server (NTRS)

Over the past two years the U.S. space station program has evolved to a three-phased international program, with the first phase consisting of the use of the U.S. Space Shuttle and the upgrading and use of the Russian Mir Space Station, and the second and third phases consisting of the assembly and use of the new International Space Station. Projected capabilities for research, and plans for utilization, have also evolved and it has been difficult for those not directly involved in the design and engineering of these space stations to learn and understand their technical details. The Committee on the Space Station of the National Research Council, with the concurrence of NASA, undertook to write this short report in order to provide concise and objective information on space stations and platforms -- with emphasis on the Mir Space Station and International Space Station -- and to supply a summary of the capabilities of previous, existing, and planned space stations. In keeping with the committee charter and with the task statement for this report, the committee has summarized the research capabilities of five major space platforms: the International Space Station, the Mir Space Station, the Space Shuttle (with a Spacelab or Spacehab module in its cargo bay), the Space Station Freedom (which was redesigned to become the International Space Station in 1993 and 1994), and Skylab. By providing the summary, together with brief descriptions of the platforms, the committee hopes to assist interested readers, including scientists and engineers, government officials, and the general public, in evaluating the utility of each system to meet perceived user needs.

1995-01-01

350

Inversion of swell frequency from a 1-year HF radar dataset collected in Brittany (France)  

NASA Astrophysics Data System (ADS)

This article presents long period ocean wave (swell) frequencies inverted from a 13-month dataset of high-frequency (HF) phased array radars and an assessment of these estimates by comparison with WAVEWATCH III model data. The method of swell frequency inversion from high-frequency radar sea echo Doppler spectra is described. Radar data were collected from a two-site HF Wellen Radar (WERA) radar system on the west coast of Brittany (France) operating at 12 MHz. A standard beam-forming processing technique has been used to obtain Doppler spectra of processed radar cells. Swell frequencies are obtained from the frequencies of particular spectral peaks of the second-order continuum in hourly averaged Doppler spectra. The data coverage of effective Doppler spectra considered for swell frequency estimates shows the influence of islands and shallow water effects. Swell estimates from both radar stations are in good agreement. The comparison of radar-derived results to WAVEWATCH III (WW3) estimates shows that radar measurements agree quite well with model results. The bias and standard deviation between two estimates are very small for swells with frequency less than 0.09 Hz (period >11 s), whereas radar estimates are generally lower than model estimates for shorter swells, along with higher standard deviation. Statistical analysis suggests that radar measurement uncertainty explains most of the difference between radar and model estimates. For each swell event, time series of frequency exhibits a quasi-linear frequency increase which is associated with the dispersive property of wave phase velocity. The use of swell frequency estimates from both radars on common radar cells only slightly increases the accuracy of swell frequency measurement.

Wang, Weili; Forget, Philippe; Guan, Changlong

2014-10-01

351

Sea and ground radar clutter modeling  

Microsoft Academic Search

The modeling of the clutter echoes is a central issue for the design and performance evaluation of radar systems. The aim of this paper is to describe the state-of-the-art approaches to the modeling and understanding of land and sea clutter echoes and their implications on performance prediction and signal processors design. The tutorial is mainly divided in 5 parts: (i)

M. W. Long; M. S. Greco

2008-01-01

352

Developing Lightning Prediction Tools for the CCAFS Dual-Polarimetric Radar  

NASA Technical Reports Server (NTRS)

NASA Marshall Space Flight Center and the University of Alabama Huntsville are collaborating with the 45th Weather Squadron (45WS) to develop improved lightning prediction capabilities for the new C-band dual-polarimetric weather radar being acquired for use by 45WS and launch weather forecasters at Cape Canaveral Air Force Station (CCAFS). In particular, these algorithms will focus on lightning onset, cessation and combined lightning-radar applications for convective winds assessment. Research using radar reflectivity (Z) data for prediction of lightning onset has been extensively discussed in the literature and subsequently applied by launch weather forecasters as it pertains to lightning nowcasting. Currently the forecasters apply a relatively straight forward but effective temperature-Z threshold algorithm for assessing the likelihood of lightning onset in a given storm. In addition, a layered VIL above the freezing level product is used as automated guidance for the onset of lightning. Only limited research and field work has been conducted on lightning cessation using Z and vertically-integrated Z for determining cessation. Though not used operationally vertically-integrated Z (basis for VIL) has recently shown promise as a tool for use in nowcasting lightning cessation. The work discussed herein leverages and expands upon these and similar reflectivity-threshold approaches via the application/addition of over two decades of polarimetric radar research focused on distinct multi-parameter radar signatures of ice/mixed-phase initiation and ice-crystal orientation in highly electrified convective clouds. Specifically, our approach is based on numerous previous studies that have observed repeatable patterns in the behavior of the vertical hydrometeor column as it relates to the temporal evolution of differential reflectivity and depolarization (manifested in either LDR or p(sub hv)), development of in-situ mixed and ice phase microphysics, electric fields, and ensuing lightning in the sub-tropical/tropical convection typical of the southeastern U.S., Maritime Continent, and southwestern Amazon. The polarimetric signatures detected in this setting provide a basis for automated 3-D detection of hydrometeor types in fuzzy logic hydrometeor identification algorithms (HID). Our working hypothesis is that improvement in lightning onset warning lead time and specificity for a given storm, relative to application of a Z-threshold algorithm, should arise as a consequence of the ability of dual-polarimetric radar to unambiguously detect and identify (through HID algorithms) the updraft elevation of rain-water cores above the freezing level and subsequent onset of drop freezing, riming, and robust mixed phase processes leading to significant charge separation and lightning. This type of algorithm, though dependent on the quality of the polarimetric data should be less susceptible to variable Z-calibration that can impact a given Z-threshold approach. To facilitate development of the algorithm while the 45WS dual-pol radar is in its current test stages and to evaluate the impact of polarimetric data quality (e.g., modified scan parameters and sampling) on the ensuing algorithms, we are using the ARMOR C-band dual-pol radar in Huntsville combined with N. Alabama LMA data and ARMOR HID algorithms [NCAR algorithm modified for application at C-band] in a testbed fashion. For lightning cessation we are revisiting the application of differential propagation phase variables for the monitoring of ice crystal alignment driven by in-cloud electric fields combined with metrics of ice water path (i.e., vertically integrated reflectivity). Importantly it should be noted that this approach is still very much a research topic and as such, we will explore operational applications that involve radar frequencies other than C-Band by using the UAH MAX X-band dual-pol radar in slow staring modes.

Petersen, W. A.; Carey, L. D.; Deierling, W.; Johnson, E.; Bateman, M.

2009-01-01

353

Broad perspectives in radar for ocean measurements  

NASA Technical Reports Server (NTRS)

The various active radar implementation options available for the measurement functions of interest for the SEASAT follow-on missions were evaluated. These functions include surface feature imaging, surface pressure and vertical profile, atmospheric sounding, surface backscatter and wind speed determination, surface current location, wavelength spectra, sea surface topography, and ice/snow thickness. Some concepts for the Synthetic Aperture Imaging Radar were examined that may be useful in the design and selection of the implementation options for these missions. The applicability of these instruments for the VOIR mission was also kept under consideration.

Jain, A.

1978-01-01

354

Program of the Antarctic Syowa MST/IS radar (PANSY)  

NASA Astrophysics Data System (ADS)

We have been promoting a project to introduce the first MST Mesosphere-Stratosphere-Troposphere IS Incoherent Scatter radar which is a VHF pulse Doppler radar in the Antarctic to Syowa Station 39E 69S Program of the Antarctic Syowa MST IS Radar PANSY as an important station observing the earth s environment with the aim to catch the climate change signals that the Antarctic atmosphere shows This radar consists of about 1000 crossed Yagi antennas having a peak power of 500kW which allows us to observe the Antarctic atmosphere with fine resolution and good accuracy in a wide height range of 1-500 km The interaction of the neutral atmosphere with the ionosphere and magnetosphere as well as the global-scale atmospheric circulation including the low and middle latitude regions are also targets of PANSY The observation data with high resolution and good accuracy obtained by the PANSY radar are also valuable from the viewpoint of certification of the reality of phenomena simulated by high-resolution numerical models The scientific importance of PANSY is discussed and resolved by international research organizations of IUGG URSI SCAR SCOSTEP and SPARC and documented in a report by Council of Science and Technology Policy in Japan One major issue for the operation of the MST IS radar at an isolated place such as Syowa Station is the reduction of power consumption We have developed a new power-efficient transmitter class-E amplifier and successfully reduced the needed power consumption to an acceptable

Sato, K.; Tsutsumi, M.; Sato, T.; Saito, A.; Tomikawa, Y.; Aso, T.; Yamanouchi, T.; Ejiri, M.

355

Evaluation of Multi-Year Continuous Measurements of Ultrafine Particles at Two Near-Road Stations in Toronto, Canada  

NASA Astrophysics Data System (ADS)

Particles with an aerodynamic diameter less than 100 nanometre (nm) are referred to as ultrafine particles (UFPs). Relative to fine and course particles, UFPs have greater potential to be suspended in air for a longer time and absorb toxic chemicals due to their larger surface areas per unit mass. UFPs could penetrate deep into the respiratory or cardiovascular systems and pose adverse health effects. In urban environments, primary sources of UFPs are from road traffic emissions and account for most of the total particle numbers. Controls on UPFs rely on better understanding of their emission sources and environmental behaviour. Ontario Ministry of the Environment have monitored UFPs since 2010 at two near-road stations in Toronto by using TSI 3031 UFP monitors. The two monitoring stations are approximately 20-30 meters adjacent to major arterial roads with over 20,000 vehicles per day. UFPs concentrations were monitored using six size channels: 20-30nm, 30-50nm, 50-70nm, 70-100nm, 100-200nm, and 200-450nm. Data are collected at time intervals of 11 or 15 minutes and averaged hourly. Concurrent measurements include wind speeds, wind directions, and concentrations of other air pollutants such as nitrogen oxides and black carbon. Data influenced by road-side traffic emissions were filtered by wind direction within 45° of normal to the road and wind speed greater than 1 m/s. Number concentrations were found higher for particles with sizes of 20-30nm and 30-50nm than for other sizes of UFPs. The observed particle number distributions are generally consistent with the theoretical understanding of particle nuclei mode and accumulation mode. During the day, for UFPs with sizes of 20-30nm and 30-50nm, elevated number concentrations were observed in morning traffic hours and to a less extent in the late afternoon. The elevated UFPs number concentrations coincided with nitrogen oxides and black carbon. Moreover, higher number concentrations were found on weekdays than weekends. The observations suggest that UFPs are mostly from traffic emissions. This presentation will provide an overview of the 3-year continuous near-road UPFs monitoring in Toronto and discuss how different factors influence number concentrations and environmental behaviour of UFPs.

Su, Y.; Sofowote, U.; Debosz, J.; Munoz, T.; Whitelaw, C.

2013-12-01

356

Radar Ionospheric Impact Mitigation  

NASA Astrophysics Data System (ADS)

New ionospheric modeling technology is being developed to improve correction of ionospheric impacts on the performance of ground-based space-surveillance radars (SSRs) in near-real-time. These radars, which detect and track space objects, can experience significant target location errors due to ionospheric delay and refraction of the radar signals. Since these radars must detect and track targets essentially to the radar horizon, it is necessary to accurately model the ionosphere as the radar would observe it, down to the local horizon. To correct for spatial and temporal changes in the ionosphere the model must be able to update in near-real-time using ionospheric sensor data. Since many radars are in isolated locations, or may have requirements to operate autonomously, an additional required capability is to provide accurate ionospheric mitigation by exploiting only sensor data from the radar site. However, the model must also be able to update using additional data from other types of sensors that may be available. The original radar ionospheric mitigation approach employed the Bent climatological model. This 35-year-old technology is still the means employed in the many DoD SSRs today. One more recent approach used capabilities from the PRISM model. PRISM technology has today been surpassed by `assimilative models' which employ better physics and Kalman filtering techniques. These models are not necessarily tailored for SSR application which needs to optimize modeling of very small regions using only data from a single sensor, or very few. The goal is to develop and validate the performance of innovative and efficient ionospheric modeling approaches that are optimized for the small regions applicable to ground-based radar coverage (radius of ~2000 km at ionospheric altitudes) and somewhat beyond. These approaches must adapt a continuous modeling scheme in near-real-time to be consistent with all observational data that may become available, and degrade gracefully toward a climatological representation in the absence of data. In this presentation we will discuss the issues for improving correction of ionospheric impacts on SSRs, some of the capabilities and limitations of current models, and the requirements and goals for new modeling technologies.

Bishop, G.; Decker, D.; Baker, C.

2006-12-01

357

Bats Avoid Radar Installations: Could Electromagnetic Fields Deter Bats from Colliding with Wind Turbines?  

PubMed Central

Large numbers of bats are killed by collisions with wind turbines, and there is at present no direct method of reducing or preventing this mortality. We therefore determine whether the electromagnetic radiation associated with radar installations can elicit an aversive behavioural response in foraging bats. Four civil air traffic control (ATC) radar stations, three military ATC radars and three weather radars were selected, each surrounded by heterogeneous habitat. Three sampling points matched for habitat type and structure, dominant vegetation species, altitude and surrounding land class were located at increasing distances from each station. A portable electromagnetic field meter measured the field strength of the radar at three distances from the source: in close proximity (<200 m) with a high electromagnetic field (EMF) strength >2 volts/metre, an intermediate point within line of sight of the radar (200–400 m) and with an EMF strength <2 v/m, and a control site out of sight of the radar (>400 m) and registering an EMF of zero v/m. At each radar station bat activity was recorded three times with three independent sampling points monitored on each occasion, resulting in a total of 90 samples, 30 of which were obtained within each field strength category. At these sampling points, bat activity was recorded using an automatic bat recording station, operated from sunset to sunrise. Bat activity was significantly reduced in habitats exposed to an EMF strength of greater than 2 v/m when compared to matched sites registering EMF levels of zero. The reduction in bat activity was not significantly different at lower levels of EMF strength within 400 m of the radar. We predict that the reduction in bat activity within habitats exposed to electromagnetic radiation may be a result of thermal induction and an increased risk of hyperthermia. PMID:17372629

Nicholls, Barry; Racey, Paul A.

2007-01-01

358

Radar MeteorologyRadar Meteorology Feb 20, 1941 10 cm (S-band) radar used to track rain showers (Ligda)  

E-print Network

Radar MeteorologyRadar Meteorology Feb 20, 1941 10 cm (S-band) radar used to track rain showers similar observations in the early 1940's (U.S. Air Corps meteorologists receiving "radar" training at MIT in 1943 First operational weather radar, Panama, 1943 Science of radar meteorology born from WWII research

Rutledge, Steven

359

1. View of three detection radar (DR) antennas. DR 1 ...  

Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

1. View of three detection radar (DR) antennas. DR 1 (structure no. 735) on left, DR 2 (structure no. 736) in center, and DR 3 (structure no. 737) looking north 30 degrees west, with tracking radar (large radome) and satcom (satellite communication) system in small radome in view between DR 2 and DR 3 antennae. - Clear Air Force Station, Ballistic Missile Early Warning System Site II, One mile west of mile marker 293.5 on Parks Highway, 5 miles southwest of Anderson, Anderson, Denali Borough, AK

360

Mapping diverse forest cover with multipolarization airborne radar  

NASA Technical Reports Server (NTRS)

Imaging radar backscatter in continuously forested areas contains information about the forest canopy; it also contains data about topography, landforms, and terrain texture. For purposes of radar image interpretation and geologic mapping researchers were interested in identifying and separating forest canopy effects from geologic or geomorphic effects on radar images. The objectives of this investigation was to evaluate forest canopy variables in multipolarization radar images under conditions where geologic and topographic variables are at a minimum. A subsidiary objective was to compare the discriminatory capabilities of the radar images with corresponding optical images of similar spatial resolution. It appears that the multipolarization images discriminate variation in tree density, but no evidence was found for discrimination between evergreen and deciduous forest types.

Ford, J. P.; Wickland, D. E.; Sharitz, R. R.

1985-01-01

361

66. VIEW SHOWING HOLD FOR RADAR CABLES AT RADAR SITE, ...  

Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

66. VIEW SHOWING HOLD FOR RADAR CABLES AT RADAR SITE, LOOKING NORTH Everett Weinreb, photographer, March 1988 - Mount Gleason Nike Missile Site, Angeles National Forest, South of Soledad Canyon, Sylmar, Los Angeles County, CA

362

Evaluation of zeolite mixtures for decontaminating high-activity-level water at the Three Mile Island Unit 2 Nuclear Power Station  

SciTech Connect

Mixtures of Linde Ionsiv IE-96 and Ionsiv A-51 were evaluated for use in the Submerged Demineralizer System (SDS) that was installed at the Three Mile Island Unit 2 Nuclear Power Station to decontaminate approx. 2780 m/sup 3/ of high-activity-level water. The original SDS flowsheet was conservatively designed for removal of cesium and strontium and would have required the use of approx. 60 SDS columns. Mixed zeolite tests were made on a 10/sup -5/ scale and indicated that the appropriate ratio of IE-96/A-51 was 3/2. A mathematical model was used to predict the performance of the mixed zeolite columns in the SDS configuration and with the intended method of operation. Actual loading results were similar to those predicted for strontium and better than those predicted for cesium. The number of SDS columns needed to process the HALW was reduced to approx. 10. 6 references, 4 figures, 2 tables.

Collins, E.D.; Campbell, D.O.; King, L.J.; Knauer, J.B.; Wallace, R.M.

1984-05-01

363

Evaluation of pore-water samplers at a drainage ditch, Installation Restoration Site 4, Naval Air Station Corpus Christi, Corpus Christi, Texas, 2005–06  

USGS Publications Warehouse

The U.S. Geological Survey, in cooperation with the Naval Facilities Engineering Command Southeast, used innovative sampling methods to investigate ground-water contamination by chlorobenzenes beneath a drainage ditch on the southwestern side of Installation Restoration Site 4, Naval Air Station Corpus Christi, Corpus Christi, Texas, during 2005-06. The drainage ditch, which is a potential receptor for ground-water contaminants from Installation Restoration Site 4, intermittently discharges water to Corpus Christi Bay. This report evaluates a new type of pore-water sampler developed for this investigation to examine the subsurface contamination beneath the drainage ditch. The new type of pore-water sampler appears to be an effective approach for long-term monitoring of ground water in the sand and organic-rich mud beneath the drainage ditch.

Vroblesky, Don A.; Casey, Clifton C.

2007-01-01

364

Investigation of Advanced Radar Techniques for Atmospheric Hazard Detection with Airborne Weather Radar  

NASA Technical Reports Server (NTRS)

In 2013 ProSensing Inc. conducted a study to investigate the hazard detection potential of aircraft weather radars with new measurement capabilities, such as multi-frequency, polarimetric and radiometric modes. Various radar designs and features were evaluated for sensitivity, measurement range and for detecting and quantifying atmospheric hazards in wide range of weather conditions. Projected size, weight, power consumption and cost of the various designs were also considered. Various cloud and precipitation conditions were modeled and used to conduct an analytic evaluation of the design options. This report provides an overview of the study and summarizes the conclusions and recommendations.

Pazmany, Andrew L.

2014-01-01

365

Utilite des images de radar aeroporte en bande C pour l'evaluation du stade de croissance de la canne a sucre et des cultures maraicheres en milieu tropical, dans une optique de conservation des sols  

NASA Astrophysics Data System (ADS)

This study aims at determining how images from an airborne Synthetic Aperture Radar System, in C-band and with two polarisation configurations, can help evaluate the degree of protection offered to soils by vegetation against erosion in tropical areas. With the objective of supplying information to improve the planning of images from the RADARSAT satellite for soil conservation projects, the study aims at establishing which incident angles and which climatic conditions improve contrasts between bare and protected soils. The study encompasses three sites in Costa Rica. Two of them are located in the central cordillera, in mountainous terrain: the Tierra Blanca site where root crops dominate, and the Juan Vinas site where sugar cane is cultivated. The images have been prepared to allow the quantitative analysis of radar backscattering. The first stage of the analysis compares the discriminating capacities of images acquired on each site with different incident angles and polarisations. In general, the backscattering coefficient of crops has shown a lower tendency to diminish in function of local incident angle than that of bare soil. Results suggest that for sugar cane in relatively dry conditions, it is possible to distinguish plots of bare soil from vegetated ones on the basis of their average backscattering coefficient, except for very high incident angles (higher than 73°). The second part of the analysis treats of the complementarity of the HH and VV polarisations and of images acquired with different incident angles. From the results of this study, we can draw recommendations for the acquisition of RADARSAT images even if the images studied here present a higher spatial resolution and higher incident angles, in many cases. Higher incident angles are recommended because they enhance contrasts between bare soil plots and vegetated ones. The very high incident angles at which we observed the opposite effect are not attainable with satellite radars. Relief causes important radiometric variations that must be corrected in order to appreciate the variations caused by changes in land cover. The correction method developed here can also be applied to satellite radar images. Its approach is to calculate the backscattering coefficient for a reference terrain that is flat, perfectly rough (producing isotropic backscattering) with the elevation considered for calibration, supposing that the studied terrain is also perfectly rough. (Abstract shortened by UMI.)

Beaulieu, Nathalie Lucie

1998-12-01

366

Performance evaluation of PBL and cumulus parameterization schemes of WRF ARW model in simulating severe thunderstorm events over Gadanki MST radar facility — Case study  

NASA Astrophysics Data System (ADS)

In the present study, an attempt has been made to simulate three severe thunderstorm events that occurred over Gadanki (13.5° N, 79.2° E) region of the Mesosphere-Stratosphere-Troposphere (MST) Radar facility using Weather Research Forecasting (WRF ARW version 3.2) model. We examined the performance of five planetary boundary layer (PBL) parameterization schemes namely, the Yonsei University (YSU), Mellor-Yamada-Janjic (MYJ), Mellor-Yamada Nakanishi and Niino Level 2.5 PBL (MYNN2), and Medium-Range Forecast (MRF) and Asymmetric Convective Model version 2 (ACM2) and three cumulus parameterization schemes Kain-Fritisch (KF), Betts-Miller-Janjic (BMJ) and Grell-Devenyi ensemble scheme (GD) in simulating boundary layer parameters, thermodynamic structure and vertical velocity profiles on the days of the thunderstorm events. Triple nested domain having the inner-most domain of 3 km grid resolution over the study area is considered. The model simulated parameters are validated with the available in situ meteorological observations obtained from micro-meteorological tower, radiosonde, MST radar wind profiler and observed rainfall along with the surface fluxes at Gadanki. After validating the model simulations with the available PBL observations and the statistical assessment reveal that the MYJ scheme could be able to capture the characteristic variations of surface meteorological variables such as air temperature, relative humidity, wind component, vertical profiles of wind, relative humidity and equivalent potential temperature and surface layer fluxes during the study period. Cores of strong convective updrafts with a time lag and lead of one and half hour are better represented by the model with MYJ scheme with GD as seen in the vertical velocity profiles obtained from MST radar observations. The present study advocates that the MYJ-GD combination is suitable for the simulation of thunderstorm events over the study region.

Madala, Srikanth; Satyanarayana, A. N. V.; Rao, T. Narayana

2014-03-01

367

Evaluation of geophysical logs, Phase II, at Willow Grove Naval Air Station Joint Reserve Base, Montgomery County, Pennsylvania  

USGS Publications Warehouse

Between March and April 1998, the U.S. Navy contracted Tetra Tech NUS Inc., to drill two monitor wells in the Stockton Formation at the Willow Grove Naval Air Station Joint Reserve Base, Horsham Township, Montgomery County, Pa. The wells MG-1634 and MG-1635 were installed to monitor water levels and sample contaminants in the shallow, intermediate, and deep water-producing zones of the fractured bedrock. Chemical analyses of the samples will help determine the horizontal and vertical distribution of any contaminated ground water migrating from known contaminant sources. Wells were drilled near the Fire Training Area (Site 5). Depths of all boreholes range from 69 to 149 feet below land surface. The U.S. Geological Survey conducted borehole geophysical logging and video surveys to identify water-producing zones in newly drilled monitor wells MG-1634 and MG-1635 and in wells MG-1675 and MG-1676. The logging was conducted from March 5, 1998, to April 16, 1998. This work is a continuation of the Phase I work. Caliper logs and video surveys were used to locate fractures; inflections on fluid-temperature and fluid-resistivity logs were used to locate possible water-producing fractures. Heatpulse-flowmeter measurements were used to verify the locations of water-producing or water-receiving zones and to measure rates of flow between water-bearing fractures. Single-point-resistance and natural-gamma logs provided information on stratigraphy. After interpretation of geophysical logs, video surveys, and driller's notes, wells MG-1634 and MG-1635 were screened such that water-levels fluctuations could be monitored and discrete water samples collected from one or more water-producing zones in each borehole.

Conger, Randall W.

1999-01-01

368

Weather Radar and Instrumentation: Laboratory Modules  

NSDL National Science Digital Library

These 16 radar education modules, developed for the Weather Radar and Instrumentation Curriculum at the University of Oklahoma, provide hands-on instruction for beginning, intermediate, or advanced students to learn about radar systems, especially weather radar. Topics include hardware, weather radar, adaptive systems, advanced hydrometeors, applications of weather radar, and atmospheric interpretations. The modules may be downloaded.

369

Sky Station  

NSDL National Science Digital Library

While satellites are the current backbone of telecommunications and wireless infrastructure, the company that maintains this Web site envisions a completely new technology. The Stratospheric Telecommunications Service (STS) relies on "lighter-than-air platforms which are held in a geo-stationary position in the stratosphere (approximately 21Km) over a major metropolitan area." The Sky Station company documents much of the STS theory online, as well as maintaining news and information articles about the progress of the system's development. US and international organizations have already reserved some of the radio frequency spectrum for stratospheric platforms, and it seems to have considerable support from important agencies.

1997-01-01

370

An Independent Human Factors Analysis and Evaluation of the Emergency Medical Protocol Checklist for the International Space Station  

NASA Technical Reports Server (NTRS)

Emergency medical capabilities aboard the ISS include a Crew Medical Officer (CMO) (not necessarily a physician), and back-up, resuscitation equipment, and a medical checklist. It is essential that CMOs have reliable, usable and informative medical protocols that can be carried out independently in flight. The study evaluates the existing ISS Medical Checklist layout against a checklist updated to reflect a human factors approach to structure and organization. Method: The ISS Medical checklist was divided into non-emergency and emergency sections, and re-organized based on alphabetical and a body systems approach. A desk-top evaluation examined the ability of subjects to navigate to specific medical problems identified as representative of likely non-emergency events. A second evaluation aims to focus on the emergency section of the Medical Checklist, based on the preliminary findings of the first. The final evaluation will use Astronaut CMOs as subjects comparing the original checklist against the updated layout in the task of caring for a "downed crewmember" using a Human Patient Simulator [Medical Education Technologies, Inc.]. Results: Initial results have demonstrated a clear improvement of the re-organized sections to determine the solution to the medical problems. There was no distinct advantage for either alternative, although subjects stated having a preference for the body systems approach. In the second evaluation, subjects will be asked to identify emergency medical conditions, with measures including correct diagnosis, time to completion and solution strategy. The third evaluation will compare the original and fully updated checklists in clinical situations. Conclusions: Initial findings indicate that the ISS Medical Checklist will benefit from a reorganization. The present structure of the checklist has evolved over recent years without systematic testing of crewmember ability to diagnose medical problems. The improvements are expected to enable ISS Crewmembers to more speedily and accurately respond to medical situations on the ISS.

Marshburn, Thomas; Whitmore, Mihriban; Ortiz, Rosie; Segal, Michele; Smart, Kieran; Hughes, Catherine

2003-01-01

371

Mapping wintering waterfowl distributions using weather surveillance radar  

USGS Publications Warehouse

The current network of weather surveillance radars within the United States readily detects flying birds and has proven to be a useful remote-sensing tool for ornithological study. Radar reflectivity measures serve as an index to bird density and have been used to quantitatively map landbird distributions during migratory stopover by sampling birds aloft at the onset of nocturnal migratory flights. Our objective was to further develop and validate a similar approach for mapping wintering waterfowl distributions using weather surveillance radar observations at the onset of evening flights. We evaluated data from the Sacramento, CA radar (KDAX) during winters 1998–1999 and 1999–2000. We determined an optimal sampling time by evaluating the accuracy and precision of radar observations at different times during the onset of evening flight relative to observed diurnal distributions of radio-marked birds on the ground. The mean time of evening flight initiation occurred 23 min after sunset with the strongest correlations between reflectivity and waterfowl density on the ground occurring almost immediately after flight initiation. Radar measures became more spatially homogeneous as evening flight progressed because birds dispersed from their departure locations. Radars effectively detected birds to a mean maximum range of 83 km during the first 20 min of evening flight. Using a sun elevation angle of -5° (28 min after sunset) as our optimal sampling time, we validated our approach using KDAX data and additional data from the Beale Air Force Base, CA (KBBX) radar during winter 1998–1999. Bias-adjusted radar reflectivity of waterfowl aloft was positively related to the observed diurnal density of radio-marked waterfowl locations on the ground. Thus, weather radars provide accurate measures of relative wintering waterfowl density that can be used to comprehensively map their distributions over large spatial extents.

Buler, Jeffrey J.; Randall, Lori A.; Fleskes, Joseph P.; Barrow, Wylie C.; Bogart, Tianna; Kluver, Daria

2012-01-01

372

Radar-cross-section reduction of wind turbines. part 1.  

SciTech Connect

In recent years, increasing deployment of large wind-turbine farms has become an issue of growing concern for the radar community. The large radar cross section (RCS) presented by wind turbines interferes with radar operation, and the Doppler shift caused by blade rotation causes problems identifying and tracking moving targets. Each new wind-turbine farm installation must be carefully evaluated for potential disruption of radar operation for air defense, air traffic control, weather sensing, and other applications. Several approaches currently exist to minimize conflict between wind-turbine farms and radar installations, including procedural adjustments, radar upgrades, and proper choice of low-impact wind-farm sites, but each has problems with limited effectiveness or prohibitive cost. An alternative approach, heretofore not technically feasible, is to reduce the RCS of wind turbines to the extent that they can be installed near existing radar installations. This report summarizes efforts to reduce wind-turbine RCS, with a particular emphasis on the blades. The report begins with a survey of the wind-turbine RCS-reduction literature to establish a baseline for comparison. The following topics are then addressed: electromagnetic model development and validation, novel material development, integration into wind-turbine fabrication processes, integrated-absorber design, and wind-turbine RCS modeling. Related topics of interest, including alternative mitigation techniques (procedural, at-the-radar, etc.), an introduction to RCS and electromagnetic scattering, and RCS-reduction modeling techniques, can be found in a previous report.

Brock, Billy C.; Loui, Hung; McDonald, Jacob J.; Paquette, Joshua A.; Calkins, David A.; Miller, William K.; Allen, Steven E.; Clem, Paul Gilbert; Patitz, Ward E.

2012-03-05

373

33. Perimeter acquisition radar building room #320, perimeter acquisition radar ...  

Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

33. Perimeter acquisition radar building room #320, perimeter acquisition radar operations center (PAROC), contains the tactical command and control group equipment required to control the par site. Showing spacetrack monitor console - Stanley R. Mickelsen Safeguard Complex, Perimeter Acquisition Radar Building, Limited Access Area, between Limited Access Patrol Road & Service Road A, Nekoma, Cavalier County, ND

374

The Ponape ST radar  

NASA Astrophysics Data System (ADS)

In May, 1984, a 50-MHz ST radar was installed on the island of Ponape in the western equatorial Pacific (7 deg N, 158 deg E) by the Aeronomy Laboratory of NOAA. The radar consists of a 100 m x 100 m array with a single, vertically directed, beam and is initially transmitting micro sec. (2.25 km) pulses. The radar is operating continuously, with Doppler spectra being recorded at approximately 1 1/2 minute intervals and sent to Boulder for later analysis. One of the principal goals of the radar is to measure vertical motions in the troposphere and lower stratosphere at a location which is within the intertropical convergence zone during part of the year. First results, during generally fair weather conditions, show detectable echoes up to about 21 km with the tropopause at 17-18 km. Once daily balloon soundings are available locally from a NOAA Weather Service Office on the island, it is planned that this radar will be joined in the coming year by two others with oblique as well as vertical beams on two yet-to-be-selected equatorial islands as part of the TOGA (Tropical Oceans Global Atmosphere) program.

Carter, D. A.; Ecklund, W. L.; Balsley, B. B.

1984-12-01

375

Mars 96 subsurface radar  

NASA Astrophysics Data System (ADS)

The Mars 96 International Scientific Mission to launch an aerostat that will drift in the Martian atmosphere for ten days is described. The stabilizing element of the aerostat (guiderope) will be dragged on the Martian surface every night. A ground penetrating radar will be installed within the guiderope. Its external surface will act as a transmit and receive antenna. A full scale model was built and tested on different soils and glaciers. Further experiments will be performed to test the full specifications. Radar potential and data processing could yield a penetrating depth down to 2.5 km with 30 m resolution on Mars. The main technical features of the radar are described. Its implementation into the guiderope is discussed. Some experimental results are presented.

Barbin, Y.; Kofman, W.; Elkine, M.; Finkelstein, M.; Glotov, V.; Zolotarev, V.

1991-12-01

376

Radar sector blanker  

NASA Astrophysics Data System (ADS)

A radar sector blanker comprises in analog-to-digital converter and a sector controller unit. The analog-to-digital converter receives the analog synchro voltages describing the positioning of a radar antenna and changes these voltages into binary-coded decimal (BCD) information. The sector controller unit comprises a portable housing, a controller system, and a power supply. The controller system includes an OFF comparator circuit, an ON comparator circuit, an S-R latch, and a solid-state switch. Each comparator circuit comprises three cascaded transistor-transistor logic (TTL) integrated chips. The power supply gives a direct-current voltage to the solid-state switch and the TTL chips. The sector blanker blocks transmission for a predetermined rotational region or sector of a radar system.

Hall, Roger B.

1994-03-01

377

The MST Radar Technique  

NASA Technical Reports Server (NTRS)

The past ten year have witnessed the development of a new radar technique to examine the structure and dynamics of the atmosphere between roughly 1 to 100 km on a continuous basis. The technique is known as the MST (for Mesosphere-Stratosphere-Troposphere) technique and is usable in all weather conditions, being unaffected by precipitation or cloud cover. MST radars make use of scattering from small scale structure in the atmospheric refractive index, with scales of the order of one-half the radar wavelength. Pertinent scale sizes for middle atmospheric studies typically range between a fraction of a meter and a few meters. The structure itself arises primarily from atmospheric turbulence. The technique is briefly described along with the meteorological parameters it measures.

Balsley, B. B.

1985-01-01

378

The MST radar technique  

NASA Astrophysics Data System (ADS)

The past ten year have witnessed the development of a new radar technique to examine the structure and dynamics of the atmosphere between roughly 1 to 100 km on a continuous basis. The technique is known as the MST (for Mesosphere-Stratosphere-Troposphere) technique and is usable in all weather conditions, being unaffected by precipitation or cloud cover. MST radars make use of scattering from small scale structure in the atmospheric refractive index, with scales of the order of one-half the radar wavelength. Pertinent scale sizes for middle atmospheric studies typically range between a fraction of a meter and a few meters. The structure itself arises primarily from atmospheric turbulence. The technique is briefly described along with the meteorological parameters it measures.

Balsley, B. B.

1985-07-01

379

Side looking radar calibration study  

NASA Technical Reports Server (NTRS)

Calibration of an airborne sidelooking radar is accomplished by the use of a model that relates the radar parameters to the physical mapping situation. Topics discussed include: characteristics of the transmitters; the antennas; target absorption and reradiation; the receiver and map making or radar data processing; and the calibration process.

Edwards, W. D.

1975-01-01

380

The Shuttle Radar Topography Mission  

Microsoft Academic Search

The Shuttle Radar Topography Mission produced the most complete, highest-resolution digital elevation model of the Earth. The project was a joint endeavor of NASA, the National Geospatial-Intelligence Agency, and the German and Italian Space Agencies and flew in February 2000. It used dual radar antennas to acquire interferometric radar data, processed to digital topographic data at 1 arc sec resolution.

Tom G. Farr; Paul A. Rosen; Edward Caro; Robert Crippen; Riley Duren; Scott Hensley; Michael Kobrick; Mimi Paller; Ernesto Rodriguez; Ladislav Roth; David Seal; Scott Shaffer; Joanne Shimada; Jeffrey Umland; Marian Werner; Michael Oskin; Douglas Burbank; Douglas Alsdorf

2007-01-01

381

Development of random signal radars  

Microsoft Academic Search

Development of random signal radar (RSR) over the past 30 years is described. Conventional methods of implementing RSR are summarized such as correlation, spectrum analysis, and anticorrelation. Some typical RSR systems are introduced, for example, noise frequency modulation CW radar, random binary phase-coded CW radar, etc., and their merits and demerits are also pointed out. Finally, RSR development trends are

Guosui Liu; Hong Gu; Weimin Su

1999-01-01

382

Kiowa Creek Switching Station  

SciTech Connect

The Western Area Power Administration (Western) proposes to construct, operate, and maintain a new Kiowa Creek Switching Station near Orchard in Morgan County, Colorado. Kiowa Creek Switching Station would consist of a fenced area of approximately 300 by 300 feet and contain various electrical equipment typical for a switching station. As part of this new construction, approximately one mile of an existing 115-kilovolt (kV) transmission line will be removed and replaced with a double circuit overhead line. The project will also include a short (one-third mile) realignment of an existing line to permit connection with the new switching station. In accordance with the Council on Environmental Quality (CEQ) regulations for implementing the procedural provisions of the National Environmental Policy Act of 1969 (NEPA), 40 CFR Parts 1500--1508, the Department of Energy (DOE) has determined that an environmental impact statement (EIS) is not required for the proposed project. This determination is based on the information contained in this environmental assessment (EA) prepared by Western. The EA identifies and evaluates the environmental and socioeconomic effects of the proposed action, and concludes that the advance impacts on the human environment resulting from the proposed project would not be significant. 8 refs., 3 figs., 1 tab.

Not Available

1990-03-01

383

Comet Radar Explorer  

NASA Astrophysics Data System (ADS)

Comet Radar Explorer (CORE) is a low cost mission that uses sounding radar to image the 3D internal structure of the nucleus of Jupiter-family comet (JFC) Tempel 2. Believed to originate in the Kuiper Belt, JFCs are among the most primitive bodies in the inner solar system. CORE operates a 5 and 15 MHz Radar Reflection Imager from close orbit about the nucleus of Tempel 2, obtaining a dense network of echoes that are used to map its interior dielectric contrasts to high resolution (? m) and resolve the dielectric constants to ? m throughout the 16x8x9 km nucleus. The resulting clear images of internal structure and composition reveal how the nucleus was formed and how it has evolved. Radiometric tracking of the spacecraft orbit results in an interior mass distribution that constrains the radar-based models of interior composition. High-resolution visible and infrared color images provide the surface and exterior boundary conditions for interior models and hypotheses. They present the geology and morphology of the nucleus surface at meter-scales, and also the time-evolving activity, structure and composition of the inner coma. By making deep connections from interior to exterior, the data CORE provides will answer fundamental questions about the earliest stages of planetesimal evolution and planet formation, and lay the foundation for a comet nucleus sample return mission. CORE is led by Prof. Erik Asphaug of the University of California, Santa Cruz and is managed by JPL. It benefits from key scientific and payload contributions by ASI and CNES. The international science team has been assembled on the basis of their key involvement in past and ongoing missions to comets, and in Mars radar missions, and for their expertise in radar data analysis.

Asphaug, Erik; CORE Science Team

2010-10-01

384

Radar Investigations of Asteroids  

NASA Technical Reports Server (NTRS)

Radar investigations of asteroids, including observations during 1984 to 1985 of at least 8 potential targets and continued analyses of radar data obtained during 1980 to 1984 for 30 other asteroids is proposed. The primary scientific objectives include estimation of echo strength, polarization, spectral shape, spectral bandwidth, and Doppler shift. These measurements yield estimates of target size, shape, and spin vector; place constraints on topography, morphology, density, and composition of the planetary surface; yield refined estimates of target orbital parameters; and reveals the presence of asteroidal satellites.

Ostro, S. J.

1984-01-01

385

Spaceborne Imaging Radar Symposium  

NASA Technical Reports Server (NTRS)

An overview of the present state of the art in the different scientific and technological fields related to spaceborne imaging radars was presented. The data acquired with the SEASAT SAR (1978) and Shuttle Imaging Radar, SIR-A (1981) clearly demonstrated the important emphasis in the 80's is going to be on in-depth research investigations conducted with the more flexible and sophisticated SIR series instruments and on long term monitoring of geophysical phenomena conducted from free-flying platforms such as ERS-1 and RADARSAT.

Elachi, C.

1983-01-01

386

Venus Radar Mapper (VRM): Multimode radar system design  

NASA Technical Reports Server (NTRS)

The surface of Venus has remained a relative mystery because of the very dense atmosphere that is opaque to visible radiation and, thus, normal photographic techniques used to explore the other terrestrial objects in the solar system are useless. The atmosphere is, however, almost transparent to radar waves and images of the surface have been produced via Earth-based and orbital radars. The technique of obtaining radar images of a surface is variously called side looking radar, imaging radar, or synthetic aperture radar (SAR). The radar requires a moving platform in which the antenna is side looking. High resolution is obtained in the cross-track or range direction by conventional radar pulse encoding. In the along-track or azimuth direction, the resolution would normally be the antenna beam width, but for the SAR case, a much longer antenna (or much sharper beam) is obtained by moving past a surface target as shown, and then combining the echoes from many pulses, by using the Doppler data, to obtain the images. The radar design of the Venus Radar Mapper (VRM) is discussed. It will acquire global radar imagery and altimetry data of the surface of Venus.

Johnson, William T. K.; Edgerton, Alvin T.

1986-01-01

387

Region-enhanced imaging for sparse-aperture passive radar  

NASA Astrophysics Data System (ADS)

We present the application of a recently-developed region-enhanced synthetic aperture radar (SAR) image reconstruction technique to the problem of passive radar imaging. One goal in passive radar imaging is to form images of aircraft using signals transmitted by commercial radio and television stations, which then get reflected from the objects of interest. This involves reconstructing an image from sparse samples of its Fourier transform. Due to the sparse nature of the aperture, a conventional image formation approach based on direct Fourier transformation results in quite dramatic artifacts in the image, as compared to the case of active SAR imaging. The region-enhanced image formation method we consider appears to significantly reduce such artifacts, and preserve the features of the imaged object. Furthermore, this approach exhibits robustness to measurement noise. We demonstrate our results using data based on electromagnetic simulations.

Cetin, Mujdat; Lanterman, Aaron D.

2004-09-01

388

RADAR: An In-Building RF-based User Location and Tracking System  

Microsoft Academic Search

The proliferation of mobile computing devices and local-area wireless networks has fostered a growing interest in location-aware systems and services. In this paper we present RADAR, a radio-frequency (RF) based system for locating and tracking users inside buildings. RADAR operates by recording and processing signal strength information at multiple base stations positioned to provide overlapping coverage in the area of

Paramvir Bahl; Venkata N. Padmanabhan

2000-01-01

389

Current Structure Variations Detected by High-Frequency Radar and Vector-Measuring Current Meters  

Microsoft Academic Search

Ocean surface current measurements from high-frequency (HF) radar are assessed by comparing these data to near-surface current observations from 1 to 30 October 1994 at two moored subsurface current meter arrays (20 and 25 m) instrumented with vector-measuring current meters (VMCMs) and Seacat sensors during the Duck94 experiment. A dual-station ocean surface current radar (OSCR) mapped the current fields at

Lynn K. Shay; Steven J. Lentz; Hans C. Graber; Brian K. Haus

1998-01-01

390

Signal Processing System for the CASA Integrated Project I Radars  

SciTech Connect

This paper describes the waveform design space and signal processing system for dual-polarization Doppler weather radar operating at X band. The performance of the waveforms is presented with ground clutter suppression capability and mitigation of range velocity ambiguity. The operational waveform is designed based on operational requirements and system/hardware requirements. A dual Pulse Repetition Frequency (PRF) waveform was developed and implemented for the first generation X-band radars deployed by the Center for Collaborative Adaptive Sensing of the Atmosphere (CASA). This paper presents an evaluation of the performance of the waveforms based on simulations and data collected by the first-generation CASA radars during operations.

Bharadwaj, Nitin; Chandrasekar, V.; Junyent, Francesc

2010-09-01

391

Space station tracking requirements feasibility study, volume 1  

NASA Technical Reports Server (NTRS)

The objective of this feasibility study is to determine analytically the accuracies of various sensors being considered as candidates for Space Station use. Specifically, the studies were performed whether or not the candidate sensors are capable of providing the required accuracy, or if alternate sensor approaches be investigated. Other topics related to operation in the Space Station environment were considered as directed by NASA-JCS. The following topics are addressed: (1) Space Station GPS; (2) Space Station Radar; (3) Docking Sensors; (4) Space Station Link Analysis; (5) Antenna Switching, Power Control, and AGC Functions for Multiple Access; (6) Multichannel Modems; (7) FTS/EVA Emergency Shutdown; (8) Space Station Information Systems Coding; (9) Wanderer Study; and (10) Optical Communications System Analysis. Brief overviews of the abovementioned topics are given. Wherever applicable, the appropriate appendices provide detailed technical analysis. The report is presented in two volumes. This is Volume 1, containing the main body and Appendices A through J.

Udalov, Sergei; Dodds, James

1988-01-01

392

Software defined noise radar with low sampling rate  

NASA Astrophysics Data System (ADS)

Preliminary results of our investigations of Software Defined Noise Radar are presented; namely, results on the design and implementation of FPGA-based Noise Radar with digital generation of random signal and coherent reception of radar returns. Parallelization of computations in FPGA enabled realization of algorithm in time domain for evaluation of the cross-correlations, comparable with the frequency-domain algorithm in efficiency. Moreover, implementation of relay-type correlator algorithm enabled realizing of the cross-correlation algorithm which might operate much faster. We present comparison of performance and limitations of different considered designs. Digital correlator has been implemented in the Altera/Stratix evaluation board having 1 million gates and up to 300 MHz clock frequency. We also realized a software defined CW noise radar on the basis of RVI Development Board from ICTP M-LAB.

Lukin, K.; Vyplavin, P.; Savkovich, Elena; Lukin, S.

2011-10-01

393

Radar detection in clutter  

Microsoft Academic Search

Clutter is defined as any unwanted radar return. The presence of clutter in a range\\/Doppler cell complicates the detection of a target return signal in that cell. In order to quantify the effect of clutter on the probability of detection, we must first specify sets of models suitable for representing the clutter and target. The simplest and most common model

D. A. Shnidman

2005-01-01

394

Radar reflectivity in snowfall  

Microsoft Academic Search

Backscattering properties of dry snowflakes at different microwave frequencies are examined. It is shown that the Rayleigh approximation does not often provide the necessary accuracy for snowflake reflectivity calculations for radar wavelengths used in meteorology; however, another simple approximation, the Rayleigh-Gans approximation, can be safely used for such calculations. Reflectivity-snowfall rate relationships are derived for different snow densities and different

S. Y. Matrosov

1992-01-01

395

Impulse radar studfinder  

DOEpatents

An impulse radar studfinder propagates electromagnetic pulses and detects reflected pulses from a fixed range. Unmodulated pulses, about 200 ps wide, are emitted. A large number of reflected pulses are sampled and averaged. Background reflections are subtracted. Reflections from wall studs or other hidden objects are detected and displayed using light emitting diodes. 9 figs.

McEwan, T.E.

1995-10-10

396

Impulse radar studfinder  

DOEpatents

An impulse radar studfinder propagates electromagnetic pulses and detects reflected pulses from a fixed range. Unmodulated pulses, about 200 ps wide, are emitted. A large number of reflected pulses are sampled and averaged. Background reflections are subtracted. Reflections from wall studs or other hidden objects are detected and displayed using light emitting diodes.

McEwan, Thomas E. (Livermore, CA)

1995-01-01

397

Rain radar instrument definition  

NASA Astrophysics Data System (ADS)

As a result of a pre-phase a study, founded by ESA, this paper presents the definition of a spaceborne Rain Radar, candidate instrument for earth explorer precipitation mission. Based upon the description of user requirements for such a dedicated mission, a mission analysis defines the most suitable space segment. At system level, a parametric analysis compares pros and cons of instrument concepts associated with rain rate retrieval algorithms in order to select the most performing one. Several trade-off analysis at subsystem level leads then to the definition of the proposed design. In particular, as pulse compression is implemented in order to increase the radar sensitivity, the selected method to achieve a pulse response with a side-lobe level below--60 dB is presented. Antenna is another critical rain radar subsystem and several designs are com pared: direct radiating array, single or dual reflector illuminated by single or dual feed arrays. At least, feasibility of centralized amplification using TWTA is compared with criticality of Tx/Rx modules for distributed amplification. Mass and power budgets of the designed instrument are summarized as well as standard deviations and bias of simulated rain rate retrieval profiles. The feasibility of a compliant rain radar instrument is therefore demonstrated.

Vincent, Nicolas; Chenebault, J.; Suinot, Noel; Mancini, Paolo L.

1996-12-01

398

Rain radar instrument definition  

Microsoft Academic Search

As a result of a pre-phase a study, founded by ESA, this paper presents the definition of a spaceborne Rain Radar, candidate instrument for earth explorer precipitation mission. Based upon the description of user requirements for such a dedicated mission, a mission analysis defines the most suitable space segment. At system level, a parametric analysis compares pros and cons of

N. Vincent; J. Chenebault; Noel Suinot; P. L. Mancini

1996-01-01

399

Frequency diverse array radars  

Microsoft Academic Search

This paper presents a generalized structure for a frequency diverse array radar. In its simplest form, the frequency diverse array applies a linear phase progression across the aperture. This linear phase progression induces an electronic beam scan, as in a conventional phased array. When an additional linear frequency shift is applied across the elements, a new term is generated which

Paul Antonik; Michael C. Wicks; Hugh D. Griffiths; Christopher J. Baker

2006-01-01

400

Aircraft radar echoes characterization  

Microsoft Academic Search

Electromagnetic wave diffraction and reflection theories enable prediction of most of the effects generated by radar echoes on aircraft. However, it is difficult to modelize some complex effects originating in canopies, radomes and cavities. In order to supplement the present theoretical knowledge by experimental results obtained on actual targets, ONERA has developed a novel analysis method allowing the generation of

C. Pouit

1980-01-01

401

Radar investigation of asteroids  

NASA Technical Reports Server (NTRS)

The number of radar detected asteroids has climbed from 6 to 40 (27 mainbelt plus 13 near-Earth). The dual-circular-polarization radar sample now comprises more than 1% of the numbered asteroids. Radar results for mainbelt asteroids furnish the first available information on the nature of these objects at macroscopic scales. At least one object (2 Pallas) and probably many others are extraordinarily smooth at centimeter-to-meter scales but are extremely rough at some scale between several meters and many kilometers. Pallas has essentially no small-scale structure within the uppermost several meters of the regolith, but the rms slope of this regolith exceeds 20 deg., much larger than typical lunar values (approx. 7 deg.). The origin of these slopes could be the hypervelocity impact cratering process, whose manifestations are likely to be different on low-gravity, low-radius-of-curvature objects from those on the terrestrial planets. The range of mainbelt asteroid radar albedoes is very broad and implies big variations in regolith porosity or metal concentration, or both. The highest albedo estimate, for 16 Psyche, is consistent with a surface having porosities typical of lunar soil and a composition nearly completely metallic. Therefore, Psyche might be the collisionally stripped core of a differentiated small plant, and might resemble mineralogically the parent bodies of iron meteorites.

Ostro, S. J.

1986-01-01

402

Evaluation of the use of zeolite mixtures in the submerged demineralizer system (SDS) flowsheet for decontamination of high-activity-level water at the Three Mile Island Nuclear Power Station, Unit 2  

Microsoft Academic Search

Mixtures of Linde Ionsiv IE-96 and Linde Ionsiv A-51 were evaluated for use in the Submerged Demineralizer System (SDS) that was installed at the Three Mile Island Nuclear Power Station, Unit 2 (TMI-2) for decontaminating approx. 2650 m³ of high-activity-level water (HALW) in the Containment Building (CB) sump.

L. J. King; D. O. Campbell; E. D. Collins; J. B. Knauer; R. M. Wallace

1983-01-01

403

Evaluation of the use of zeolite mixtures in the submerged demineralizer system (SDS) flowsheet for decontamination of high-activity-level water at the Three Mile Island Nuclear Power Station, Unit 2  

SciTech Connect

Mixtures of Linde Ionsiv IE-96 and Linde Ionsiv A-51 were evaluated for use in the Submerged Demineralizer System (SDS) that was installed at the Three Mile Island Nuclear Power Station, Unit 2 (TMI-2) for decontaminating approx. 2650 m/sup 3/ of high-activity-level water (HALW) in the Containment Building (CB) sump.

King, L.J.; Campbell, D.O.; Collins, E.D.; Knauer, J.B.; Wallace, R.M.

1983-01-01

404

Vision requirements for Space Station applications  

NASA Technical Reports Server (NTRS)

Problems which will be encountered by computer vision systems in Space Station operations are discussed, along with solutions be examined at Johnson Space Station. Lighting cannot be controlled in space, nor can the random presence of reflective surfaces. Task-oriented capabilities are to include docking to moving objects, identification of unexpected objects during autonomous flights to different orbits, and diagnoses of damage and repair requirements for autonomous Space Station inspection robots. The approaches being examined to provide these and other capabilities are television IR sensors, advanced pattern recognition programs feeding on data from laser probes, laser radar for robot eyesight and arrays of SMART sensors for automated location and tracking of target objects. Attention is also being given to liquid crystal light valves for optical processing of images for comparisons with on-board electronic libraries of images.

Crouse, K. R.

1985-01-01

405

Amplitude calibration of spaceborne synthetic aperture radars. [Synthetic Aperture Radar  

NASA Technical Reports Server (NTRS)

Problems encountered during attempts to calibrate SAR imagery, recent successful experiments conducted with SEASAT SAR data, and a proposed program for the calibration and validation of the radar imagery from the forthcoming SIR-B SAR are discussed. The SEASAT SAR data for 10 passes over Death Valley, California, were processed with a modified digital correlator. The procedure included a preliminary screening of the data to check for raw data saturation, compensation of waveforms and estimation of the amplitude of the pilot tone. All data was normalized to this pilot tone signal to reduce the effects of variable gains in the data links and ground receivers. The digital correlation algorithm generated image data. Evaluation of 6 passes results in a maximum pass to pass gain variation of only 1.1 dB and a standard deviation amongst the passes of 0.35 dB. previously announced in STAR as N83-26215

Held, D. N.

1983-01-01

406

Aerospace crew station design  

NASA Technical Reports Server (NTRS)

Consideration is given to spacecraft cockpits and work stations, commercial aircraft cockpits and crew stations, high performance aircraft cockpits and crew stations, and space stations and habitat crew stations. Particular attention is given to an historical review of NASA manned spacecraft crew stations, ESA spacelab crew stations, the evolution of commercial aircraft flight station design, Boeing 757/767 flight deck, a historical review of Concorde flight deck design, trends in the cockpit design of new European fighters, and state-of-the-art applications for Space Station crew interface design.

Carr, Gerald P. (editor); Montemerlo, Melvin D. (editor)

1984-01-01

407

M Station, Austin  

E-print Network

Station 9081 108 ID LL SS WE EA MR EQ AE LEED Platinum (Standard) LEED Platinum (M Station) M Station 9081 10849 $0.00/sf Planning ID LL SS WE EA MR EQ AE LEED Platinum (Standard) LEED Platinum (M Station) M Station 9081 10849 $0.00/sf... Planning Location ID LL SS WE EA MR EQ AE LEED Platinum (Standard) LEED Platinum (M Station) M Station 9081 10849 $0.00/sf Planning Location Transportation ID LL SS WE EA MR EQ AE LEED Platinum (Standard) LEED Platinum (M Station) M Station...

Mathon, S.

2011-01-01

408

Using of standard marine radar for determination of a water surface and an atmosphere near-surface layer parameters  

NASA Astrophysics Data System (ADS)

At present time radar methods of the seas and oceans diagnostics are actively developing. Using of the radar stations based on satellites and planes allows to receive information on a sea surface and a atmosphere near-surface layer with coverage of big water surface areas independently of day time. The developed methods of satellite radio images processing can be applied to marine radar stations. In Institute of Applied Physics RAS works on sea surface diagnostics systems development on the basis of standard marine radar are actively conducted. Despite smaller coverage of the territory in comparison with satellite data, marine radar have possibility to record spatially temporary radar images and to receive information on a surrounding situation quickly. This work deals with results of the researches which were conducted within the international expedition in the Atlantic Ocean in the autumn of 2012 on a route Rotterdam (Netherlands) - Ushuaya (Argentina) - Antarctica — Ushuaya. During this expedition a complex measurements of a sea surface, a atmosphere near-surface layer parameters and subsurface currents in the wide range of hydroweather conditions, including the storm were carried out. The system developed in IAP RAS on the basis of a marine radar ICOM MR-1200RII and the ADC (Analog Digital Converter) block for data recording on the personal computer was used. Display of a non-uniform near-surface current on sea surface radar images in storm conditions is shown. By means of the high-speed anemometer and meteorological station the measurements of the atmosphere parameters were carried out. Comparison of the anemometer data with calculated from radar images is carried out. Dependence of radar cross section from wind speed in the wide range of wind speeds, including storm conditions is investigated. Possibility of marine radar using for surface waves intensity and ice situation estimates also as icebergs detection is shown.

Bogatov, Nikolay A.; Bakhanov, Victor V.; Ermoshkin, Aleksei V.; Kazakov, Vasily I.; Kemarskaya, Olga N.; Titov, Victor I.; Troitskaya, Yulia I.

2014-10-01

409

Mathematical analysis study for radar data processing and enhancement. Part 1: Radar data analysis  

NASA Technical Reports Server (NTRS)

A study is performed under NASA contract to evaluate data from an AN/FPS-16 radar installed for support of flight programs at Dryden Flight Research Facility of NASA Ames Research Center. The purpose of this study is to provide information necessary for improving post-flight data reduction and knowledge of accuracy of derived radar quantities. Tracking data from six flights are analyzed. Noise and bias errors in raw tracking data are determined for each of the flights. A discussion of an altiude bias error during all of the tracking missions is included. This bias error is defined by utilizing pressure altitude measurements made during survey flights. Four separate filtering methods, representative of the most widely used optimal estimation techniques for enhancement of radar tracking data, are analyzed for suitability in processing both real-time and post-mission data. Additional information regarding the radar and its measurements, including typical noise and bias errors in the range and angle measurements, is also presented. This is in two parts. This is part 1, an analysis of radar data.

James, R.; Brownlow, J. D.

1985-01-01

410

Space station group activities habitability module study  

NASA Technical Reports Server (NTRS)

This study explores and analyzes architectural design approaches for the interior of the Space Station Habitability Module (originally defined as Habitability Module 1 in Space Station Reference Configuration Decription, JSC-19989, August 1984). In the Research Phase, architectural program and habitability design guidelines are specified. In the Schematic Design Phase, a range of alternative concepts is described and illustrated with drawings, scale-model photographs and design analysis evaluations. Recommendations are presented on the internal architectural, configuration of the Space Station Habitability Module for such functions as the wardroom, galley, exercise facility, library and station control work station. The models show full design configurations for on-orbit performance.

Nixon, David

1986-01-01

411

An inverse method to retrieve 3D radar reflectivity composites  

NASA Astrophysics Data System (ADS)

Dense radar networks offer the possibility of getting better Quantitative Precipitation Estimates (QPE) than those obtained with individual radars, as they allow increasing the coverage and improving quality of rainfall estimates in overlapping areas. Well-known sources of error such as attenuation by intense rainfall or errors associated with range can be mitigated through radar composites. Many compositing techniques are devoted to operational uses and do not exploit all the information that the network is providing. In this work an inverse method to obtain high-resolution radar reflectivity composites is presented. The method uses a model of radar sampling of the atmosphere that accounts for path attenuation and radar measurement geometry. Two significantly different rainfall situations are used to show detailed results of the proposed inverse method in comparison to other existing methodologies. A quantitative evaluation is carried out in a 12 h-event using two independent sources of information: a radar not involved in the composition process and a raingauge network. The proposed inverse method shows better performance in retrieving high reflectivity values and reproducing variability at convective scales than existing methods.

Roca-Sancho, Jordi; Berenguer, Marc; Sempere-Torres, Daniel

2014-11-01

412

Evaluation of trends in some temperature series at some Italian stations and their modelling by means of spectral methods: first results in the Latium coastal area  

NASA Astrophysics Data System (ADS)

The investigation of the presence of signals indicating possible climatic changes in progress during the second half of the last century in the coastal area of the central Tyrrhenian sea has been carried out within the context of a research programme promoted by the Italian Science Academy (alias "the Academy of the XL") and financed by the Presidential Bureau. Our goal has been a better understanding of the behaviour of the minimum and maximum temperature variations in the period 1951-1999 and the modelling of their stochastic residuals through spectral analysis and the optimized construction of suitable autoregressive one-parameter processes. The meteorological data source for this research was the Italian "Agrometeorological National DataBase" (BDAN) of the Agrometeorological Informatics National System (SIAN). The spectral and stochastic analysis of meteorological data usually require full data sets without gaps, but, in BDAN, numerous data sets taken at stations located in the investigated area were incomplete. Thus, after the selection of an adequate number of stations, both representative of the region under study and characterized by a low number of data gaps, the first step was to fill all the gaps in the daily series using specific statistical techniques. After this preliminary treatment, we were left with seven temperature series that showed enough good characteristics in order to carry out an efficient modelling. Spectral analysis of minimum and maximum temperature series permitted to identify an auto-regressive one-parameter model well representing the stochastic residual of each series. With the aid of the complete model, consisting of a deterministic component (a linear trend plus two seasonal oscillations) and a stochastic residual, one can satisfactorily reconstruct the data in the past (climatic historical analysis) and to try a prediction of future values (forecasting). Thus the proposed model appears to represent a valid method to evaluate the whole variability of each climatic series in a multi-decadal time scale. As for the deterministic component, the Fourier analysis of minimum and maximum temperatures series showed for each station the existence, beside the secular linear trend, of a first oscillation (annual), and a secondary oscillation (half-yearly), each characterized by an amplitude and a phase. On the other hand, the stochastic residual can always be regarded as the superposition of an AR(1) process and a residual white noise. The lower half-yearly seasonal component, although small, can produce an amplitude attenuation or enhancement, and a phase advance or delay, among the climatic expected values and the standard meteorological sequences. The results of the stochastic analysis showed the presence during the period 1951-1999 of a discrete variability in the minimum and maximum temperature series along the Tyrrhenian coastal area, more intense for minimum temperatures. This behaviour can have direct and indirect consequences on natural vegetation and on the planning of agricultural activity, in particular for what concerns the evaluation of the quantity of the "available energy" for plant development and the assessment of "production sustainability" for the agricultural crops in terms of quantity, cost and quality of the agro products.

Beltrano, M. C.; Testa, O.; Malvestuto, V.; Esposito, S.

2010-09-01

413

UAV-based Radar Sounding of Antarctic Ice  

NASA Astrophysics Data System (ADS)

We developed a compact radar for use on a small UAV to conduct measurements over the ice sheets in Greenland and Antarctica. It operates at center frequencies of 14 and 35 MHz with bandwidths of 1 MHz and 4 MHz, respectively. The radar weighs about 2 kgs and is housed in a box with dimensions of 20.3 cm x 15.2 cm x 13.2 cm. It transmits a signal power of 100 W at a pulse repletion frequency of 10 kHz and requires average power of about 20 W. The antennas for operating the radar are integrated into the wings and airframe of a small UAV with a wingspan of 5.3 m. We selected the frequencies of 14 and 35 MHz based on previous successful soundings of temperate ice in Alaska with a 12.5 MHz impulse radar [Arcone, 2002] and temperate glaciers in Patagonia with a 30 MHz monocycle radar [Blindow et al., 2012]. We developed the radar-equipped UAV to perform surveys over a 2-D grid, which allows us to synthesize a large two-dimensional aperture and obtain fine resolution in both the along- and cross-track directions. Low-frequency, high-sensitivity radars with 2-D aperture synthesis capability are needed to overcome the surface and volume scatter that masks weak echoes from the ice-bed interface of fast-flowing glaciers. We collected data with the radar-equipped UAV on sub-glacial ice near Lake Whillans at both 14 and 35 MHz. We acquired data to evaluate the concept of 2-D aperture synthesis and successfully demonstrated the first successful sounding of ice with a radar on an UAV. We are planning to build multiple radar-equipped UAVs for collecting fine-resolution data near the grounding lines of fast-flowing glaciers. In this presentation we will provide a brief overview of the radar and UAV, as well as present results obtained at both 14 and 35 MHz. Arcone, S. 2002. Airborne-radar stratigraphy and electrical structure of temperate firn: Bagley Ice Field, Alaska, U.S.A. Journal of Glaciology, 48, 317-334. Blindow, N., C. Salat, and G. Casassa. 2012. Airborne GPR sounding of deep temperate glaciers—examples from the Northern Patagonian Icefield, 14th International Conference on Ground Penetrating Radar (GPR) June 4-8, 2012, Shanghai, China, ISBN 978-1-4673-2663-6.

Leuschen, Carl; Yan, Jie-Bang; Mahmood, Ali; Rodriguez-Morales, Fernando; Hale, Rick; Camps-Raga, Bruno; Metz, Lynsey; Wang, Zongbo; Paden, John; Bowman, Alec; Keshmiri, Shahriar; Gogineni, Sivaprasad

2014-05-01

414

METR 4624--Radar Meteorology SPRING 2014  

E-print Network

METR 4624--Radar Meteorology SPRING 2014 Dr. Michael I. Biggerstaff; drdoppler@ou.edu (best method Principles of weather radar and storm observations including: radar system design, em wave propagation, radar&Q, moments of the power spectrum, ground clutter, attenuation, rainfall measurements using radar reflectivity

Droegemeier, Kelvin K.

415

MIMO Radar with Widely Separated Antennas  

Microsoft Academic Search

MIMO (multiple-input multiple-output) radar refers to an architecture that employs multiple, spatially distributed transmitters and receivers. While, in a general sense, MIMO radar can be viewed as a type of multistatic radar, the separate nomenclature suggests unique features that set MIMO radar apart from the multistatic radar literature and that have a close relation to MIMO communications. This article reviews

Alexander Haimovich; Rick Blum; Leonard Cimini

2008-01-01

416

METR 4624--Radar Meteorology SPRING 2012  

E-print Network

METR 4624--Radar Meteorology SPRING 2012 Dr. Michael I. Biggerstaff; drdoppler@ou.edu (best method Principles of weather radar and storm observations including: radar system design, em wave propagation, radar&Q, moments of the power spectrum, ground clutter, attenuation, rainfall measurements using radar reflectivity

Droegemeier, Kelvin K.

417

An MSK Radar Waveform  

NASA Technical Reports Server (NTRS)

The minimum-shift-keying (MSK) radar waveform is formed by periodically extending a waveform that separately modulates the in-phase and quadrature- phase components of the carrier with offset pulse-shaped pseudo noise (PN) sequences. To generate this waveform, a pair of periodic PN sequences is each passed through a pulse-shaping filter with a half sinusoid impulse response. These shaped PN waveforms are then offset by half a chip time and are separately modulated on the in-phase and quadrature phase components of an RF carrier. This new radar waveform allows an increase in radar resolution without the need for additional spectrum. In addition, it provides self-interference suppression and configurable peak sidelobes. Compared strictly on the basis of the expressions for delay resolution, main-lobe bandwidth, effective Doppler bandwidth, and peak ambiguity sidelobe, it appears that bi-phase coded (BPC) outperforms the new MSK waveform. However, a radar waveform must meet certain constraints imposed by the transmission and reception of the modulation, as well as criteria dictated by the observation. In particular, the phase discontinuity of the BPC waveform presents a significant impediment to the achievement of finer resolutions in radar measurements a limitation that is overcome by using the continuous phase MSK waveform. The phase continuity, and the lower fractional out-of-band power of MSK, increases the allowable bandwidth compared with BPC, resulting in a factor of two increase in the range resolution of the radar. The MSK waveform also has been demonstrated to have an ambiguity sidelobe structure very similar to BPC, where the sidelobe levels can be decreased by increasing the length of the m-sequence used in its generation. This ability to set the peak sidelobe level is advantageous as it allows the system to be configured to a variety of targets, including those with a larger dynamic range. Other conventionally used waveforms that possess an even greater spectral efficiency than the MSK waveform, such as linear frequency modulation (LFM) and Costas frequency hopping, have a fixed peak sidelobe level that is therefore not configurable, and can be exceeded by high contrast targets. Furthermore, in the case of a multistatic experiment observing a target in motion, self-interference from the transmitter to the receiver is mitigated by the MSK waveform. Waveforms that have delay Doppler coupling, such as LFM, provide no such protection.

Quirk, Kevin J.; Srinivasan, Meera

2012-01-01

418

Evaluation test on a landfill gas-fired turbine at the Los Angeles County Sanitation District's Puente Hill Landfill Electric Generation Station. Air pollution test report  

SciTech Connect

A cooperative test program was conducted from February 25 through February 27, 1986 by Air Resources Board (ARB) and South Coast Air Quality Management District (SCAQMD) staff to evaluate the gaseous constituents from untreated landfill gas used to fuel a turbine and the emissions from that turbine located at the Los Angeles County Sanitation District's Puente Hills Electric Generating Station. The turbine was fueled with gases generated by the anaerobic decomposition of buried refuse at the Los Angeles County Sanitation District's Puente Hills Landfill. Emissions of criteria pollutant as determined from ARB test data are reported. Mass flow rates and destruction and removal efficiencies (DRE) of non-criteria pollutant compounds determined at the stack from SCQAMD bag-sample test data and mass-flow rates and DRE's for chlorinated and aromatic compounds determined from data from ARB resin samples are presented. Destruction and removal efficiencies based on mass-flow rates for chlorinated compounds ranged from 17 to 99+ percent and for aromatic compounds ranged from negative to 99+ percent. The possible formation of the compounds - chlorinated dioxins, furans, and polychlorinated biphenyls - was considered and samples were taken for analyses for these compounds. Dioxins, furans, and polychlorinated biphenyls were not detected in the inlet nor the outlet gas stream samples.

Not Available

1986-07-01

419

Intelligent Virtual Station (IVS)  

NASA Technical Reports Server (NTRS)

The Intelligent Virtual Station (IVS) is enabling the integration of design, training, and operations capabilities into an intelligent virtual station for the International Space Station (ISS). A viewgraph of the IVS Remote Server is presented.

2002-01-01

420

P15R.1 THE DETECTABILITY OF TORNADIC SIGNATURES WITH DOPPLER RADAR: A RADAR EMULATOR STUDY  

E-print Network

P15R.1 THE DETECTABILITY OF TORNADIC SIGNATURES WITH DOPPLER RADAR: A RADAR EMULATOR STUDY Ryan M the operation of a radar, using a software radar emulator, one can artificially generate large data sets describes a radar emulator designed to simulate the returns from a scanning Doppler radar on a pulse

Xue, Ming

421

41. Perimeter acquisition radar building radar element and coaxial display, ...  

Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

41. Perimeter acquisition radar building radar element and coaxial display, with drawing of typical antenna section. Drawing, from left to right, shows element, aluminum ground plane, cable connectors and hardware, cable, and back-up ring. Grey area is the concrete wall - Stanley R. Mickelsen Safeguard Complex, Perimeter Acquisition Radar Building, Limited Access Area, between Limited Access Patrol Road & Service Road A, Nekoma, Cavalier County, ND

422

Performance and evaluation of gas engine driven rooftop air conditioning equipment at the Willow Grove (PA) Naval Air Station. Interim report, 1992 cooling season  

SciTech Connect

In a field evaluation conducted for the US Department of Energy (DOE) Office of Federal Energy Management Program (FEMP), the Pacific Northwest Laboratory (PNL) examined the performance of a new US energy-related technology under the FEMP Test Bed Demonstration Program. The technology was a 15-ton natural gas engine driven roof top air conditioning unit. Two such units were installed on a naval retail building to provide space conditioning to the building. Under the Test Bed Demonstration Program, private and public sector interests are focused to support the installation and evaluation of new US technologies in the federal sector. Participating in this effort under a Cooperative Research and Development Agreement (CRADA) with DOE were the American Gas Cooling Center, Philadelphia Electric Company, Thermo King Corporation, and the US Naval Air Station at Willow Grove, Pennsylvania. Equipment operating and service data as well as building interior and exterior conditions were secured for the 1992 cooling season. Based on a computer assessment of the building using standard weather data, a comparison was made with the energy and operating costs associated with the previous space conditioning system. Based on performance during the 1992 cooling season and adjusted to a normal weather year, the technology will save the site $6,000/yr in purchased energy costs. An additional $9,000 in savings due to electricity demand ratchet charge reductions will also be realized. Detailed information on the technology, the installation, and the results of the technology test are provided to illustrate the advantages to the federal sector of using this technology. A history of the CRADA development process is also reported.

Armstrong, P.R.; Conover, D.R.

1993-05-01

423

Simulation of the Attitude Determination System for Space Station berthing dynamics research  

Microsoft Academic Search

Langley has developed a simulator of the Space Station coupled to the Space Shuttle via the Remote Manipulator System for use in evaluating handling during Station assembly. To date, evaluations of this scenario had included the Station Attitude Control System (ACS), assuming that the Station Attitude Determination System (ADS) provides perfect information on the coupled configuration. Herein, the complete Station

Raymond C. Montgomery; Shih-Chin Wu

1993-01-01

424

RADAR Reveals Titan Topography  

NASA Technical Reports Server (NTRS)

The Cassini Titan RADAR Mapper is a K(sub u)-band (13.78 GHz, lambda = 2.17 cm) linear polarized RADAR instrument capable of operating in synthetic aperture (SAR), scatterometer, altimeter and radiometer modes. During the first targeted flyby of Titan on 26 October, 2004 (referred to as Ta) observations were made in all modes. Evidence for topographic relief based on the Ta altimetry and SAR data are presented here. Additional SAR and altimetry observations are planned for the T3 encounter on 15 February, 2005, but have not been carried out at this writing. Results from the T3 encounter relevant to topography will be included in our presentation. Data obtained in the Ta encounter include a SAR image swath

Kirk, R. L.; Callahan, P.; Seu, R.; Lorenz, R. D.; Paganelli, F.; Lopes, R.; Elachi, C.

2005-01-01

425

Imaging synthetic aperture radar  

DOEpatents

A linear-FM SAR imaging radar method and apparatus to produce a real-time image by first arranging the returned signals into a plurality of subaperture arrays, the columns of each subaperture array having samples of dechirped baseband pulses, and further including a processing of each subaperture array to obtain coarse-resolution in azimuth, then fine-resolution in range, and lastly, to combine the processed subapertures to obtain the final fine-resolution in azimuth. Greater efficiency is achieved because both the transmitted signal and a local oscillator signal mixed with the returned signal can be varied on a pulse-to-pulse basis as a function of radar motion. Moreover, a novel circuit can adjust the sampling location and the A/D sample rate of the combined dechirped baseband signal which greatly reduces processing time and hardware. The processing steps include implementing a window function, stabilizing either a central reference point and/or all other points of a subaperture with respect to doppler frequency and/or range as a function of radar motion, sorting and compressing the signals using a standard fourier transforms. The stabilization of each processing part is accomplished with vector multiplication using waveforms generated as a function of radar motion wherein these waveforms may be synthesized in integrated circuits. Stabilization of range migration as a function of doppler frequency by simple vector multiplication is a particularly useful feature of the invention; as is stabilization of azimuth migration by correcting for spatially varying phase errors prior to the application of an autofocus process.

Burns, Bryan L. (Tijeras, NM); Cordaro, J. Thomas (Albuquerque, NM)

1997-01-01

426

Shuttle imaging radar experiment  

USGS Publications Warehouse

The shuttle imaging radar (SIR-A) acquired images of a variety of the earth's geologic areas covering about 10 million square kilometers. Structural and geomorphic features such as faults, folds, outcrops, and dunes are clearly visible in both tropical and arid regions. The combination of SIR-A and Seasat images provides additional information about the surface physical properties: topography and roughness. Ocean features were also observed, including large internal waves in the Andaman Sea. Copyright ?? 1982 AAAS.

Elachi, C.; Brown, W.E.; Cimino, J.B.; Dixon, T.; Evans, D.L.; Ford, J.P.; Saunders, R.S.; Breed, C.; Masursky, H.; McCauley, J.F.; Schaber, G.; Dellwig, L.; England, A.; MacDonald, H.; Martin-Kaye, P.; Sabins, F.

1982-01-01

427

Polarization diversity in radars  

Microsoft Academic Search

Many polarization techniques, which have been proposed and analyzed to enhance radar performance, are reviewed in this paper in order to assess the possible improvement they can provide in the signal-to-disturbance ratio, target detectability, target discrimination and resolution, and target classification and identification. Some recent experimentally-based results relating to these applications are also presented. Those techniques are emphasized for which

D. Giuli

1986-01-01

428

Assessment of the impact of HF radar current measurements on hydrodynamical model forecasts in the German Bight  

NASA Astrophysics Data System (ADS)

The impact of high frequency (HF) radar measurements in the German Bight is investigated using a statistical assessment approach as well as an assimilation method. Within the project COSYNA (Coastal Observation SYstem for Northern and Arctic seas) three HF radar stations located in Wangerooge, Büsum, and Sylt will provide continuous surface current measurements. The presented study is about first steps towards the use of these data in an assimilation system to improve forecasts with a three dimensional hydrodynamical model. To get a first idea about the impact of radar measurements, an optimal linear estimator is used to re-construct the complete surface current field from HF radar observations taking into account both the prior current distribution and radar measurement errors. The prior current distribution is estimated using a three dimensional hydrodynamical primitive equation model with 1 km resolution. The performance of the HF radar observations is quantified in terms of the re-construction quality. Different combinations of radar stations are investigated using synthetic observations. In particular the impact of the additional two-dimensional information obtained with two stations instead of one station is illustrated. The direct use of radial current components for the re-construction is compared to the use of surface current vectors derived from the combination of two or three radar stations. Apart from the capability of the HF radar observations to provide estimates of the current field at the time of the observations, the potential of the measurements to provide forecasts is investigated with the linear re-construction approach as well. Furthermore the linear approach is used to re-construct the surface elevation rate of change making use of the continuity equation. An assimilation method based on the ensemble Kalman filter is used for a first impact assessment of HF radar measurements within a forecast system. Synthetic measurements with different characteristics, e.g., different combinations of radar stations, different measurement errors, are investigated. Twin runs are performed to compare forecasts with different configurations of the assimilation system, e.g., different assimilation intervals or different numbers of ensemble members. First available measurements of the radial surface current component obtained by the Wangerooge station are analyzed. Both the horizontal current field structure and the temporal evolution of the current field are compared to the numerical model with a focus on the M2 tidal signal. The analysis will also provide a statistics on the frequency of missing values, which is important for the assimilation of the data.

Schulz-Stellenfleth, Johannes; Stanev, Emil; Ziemer, Friedwart; Gurgel, Klaus-Werner

2010-05-01

429

Space Radar Image of Manaus, Brazil  

NASA Technical Reports Server (NTRS)

These two images were created using data from the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR). On the left is a false-color image of Manaus, Brazil acquired April 12, 1994, onboard space shuttle Endeavour. In the center of this image is the Solimoes River just west of Manaus before it combines with the Rio Negro to form the Amazon River. The scene is around 8 by 8 kilometers (5 by 5 miles) with north toward the top. The radar image was produced in L-band where red areas correspond to high backscatter at HH polarization, while green areas exhibit high backscatter at HV polarization. Blue areas show low backscatter at VV polarization. The image on the right is a classification map showing the extent of flooding beneath the forest canopy. The classification map was developed by SIR-C/X-SAR science team members at the University of California,Santa Barbara. The map uses the L-HH, L-HV, and L-VV images to classify the radar image into six categories: Red flooded forest Green unflooded tropical rain forest Blue open water, Amazon river Yellow unflooded fields, some floating grasses Gray flooded shrubs Black floating and flooded grasses Data like these help scientists evaluate flood damage on a global scale. Floods are highly episodic and much of the area inundated is often tree-covered. Spaceborne Imaging Radar-C and X-Synthetic Aperture Radar (SIR-C/X-SAR) is part of NASA's Mission to Planet Earth. The radars illuminate Earth with microwaves allowing detailed observations at any time, regardless of weather or sunlight conditions. SIR-C/X-SAR uses three microwave wavelengths: L-band (24 cm), C-band (6 cm) and X-band (3 cm). The multi-frequency data will be used by the international scientific community to better understand the global environment and how it is changing. The SIR-C/X-SAR data, complemented by aircraft and ground studies, will give scientists clearer insights into those environmental changes which are caused by nature and those changes which are induced by human activity. SIR-C was developed by NASA's Jet Propulsion Laboratory. X-SAR was developed by the Dornier and Alenia Spazio companies for the German space agency, Deutsche Agentur fuer Raumfahrtangelegenheiten (DARA), and the Italian space agency, Agenzia Spaziale Italiana (ASI), with the Deutsche Forschungsanstalt fuer Luft und Raumfahrt e.v. (DLR), the major partner in science, operations and data processing of X-SAR.

1999-01-01

430

Radar Imagery of Mercury  

NASA Astrophysics Data System (ADS)

Radar observations of Mercury have yielded important results including the discovery of the 3:2 spin:orbit resonance [1] discovery of distinct large surface roughness features [2] measurement of the perihelion advance (as a test of general relativity) [3] ephemeris improvements [4] information on shape [5] topography [6] and more recent constraints on the spin and orbit state [7]. But perhaps the most stunning discoveries have come from mapping experiments made possible by the Goldstone/VLA radarand improvements in the Random Long Code techniques in monostatic experiments [8]. These experiments provide maps of radar reflectivity across most of the visible disk of the planet and have been used to infer the presence of polar ices and large fresh impact craters among other features [9]. We will present a summary of the knowledge gained from these radar mapping observations recent results and plans for future experiments. [1] Dyce et al. 1967. [2] Zohar & Goldstein 1974. [3] Anderson et al. 1991. [4] Jurgens et al. 1998. [5] Anderson et al. 1996. [6] Harmon et al. 1986; Slade et al. 1997. [7] Margot et al. 2002. [8] Muhleman et al. 1995; Harmon 2002. [9] Butler et al. 1993; Harmon et al. 2001; Harmon 1997.

Butler, Bryan J.; Harmon, John K.; Slade, Martin A.

431

Comet radar explorer  

NASA Astrophysics Data System (ADS)

The Comet Radar Explorer (CORE) is designed to perform a comprehensive and detailed exploration of the interior, surface, and inner coma structures of a scientifically impor-tant Jupiter family comet. These structures will be used to investigate the origins of cometary nuclei, their physical and geological evolution, and the mechanisms driving their spectacular activity. CORE is a high heritage spacecraft, injected by solar electric propulsion into orbit around a comet. It is capable of coherent deep radar imaging at decameter wavelengths, high resolution stereo color imaging, and near-IR imaging spectroscopy. Its primary objective is to obtain a high-resolution map of the interior structure of a comet nucleus at a resolution of ¿100 elements across the diameter. This structure shall be related to the surface geology and morphology, and to the structural details of the coma proximal to the nucleus. This is an ideal complement to the science from recent comet missions, providing insight into how comets work. Knowing the structure of the interior of a comet-what's inside-and how cometary activity works, is required before we can understand the requirements for a cryogenic sample return mission. But more than that, CORE is fundamental to understanding the origin of comets and their evolution in time. The mission is made feasible at low cost by the use of now-standard MARSIS-SHARAD reflec-tion radar imaging hardware and data processing, together with proven flight heritage of solar electric propulsion. Radar flight heritage has been demonstrated by the MARSIS radar on Mars Express (Picardi et al., Science 2005; Plaut et al., Science 2007), the SHARAD radar onboard the Mars Reconnaissance Orbiter (Seu et al., JGR 2007), and the LRS radar onboard Kaguya (Ono et al, EPS 2007). These instruments have discovered detailed subsurface structure to depths of several kilometers in a variety of terrains on Mars and the Moon. A reflection radar deployed in orbit about a comet will enjoy significant simplifying benefits compared to using the same instrument for Mars or lunar radar science: (1) The proximity of operations leads to a much higher signal to noise, as much as +30 dB. (2) The lack of an ionosphere simplifies data modeling and analysis. (3) The body is globally illuminated during every data acquisition, minimizing ambiguity or 'clutter' and allowing for tomographic reconstruction. What is novel is the data processing, where instead of a planar radargram approach we coherently process the data into an image of the deep interior. CORE thus uses a MARSIS-SHARAD heritage radar to make coherent reflection sounding measurements, a 'CAT SCAN' of a comet nucleus. What is unique about this mission compared to the Mars radars mentioned above, is that the target is a finite mass of dirty ice in free space, rather than a sheet of dirty ice draped on a planet surface. The depth of penetration (kilometers), attainable resolution (decameters), and the target materials, are more or less the same. This means that the science story is robust, and the radar implementation is robust. The target is comet 10P/Tempel 2, discovered by Wilhelm Tempel in 1873 and observed on most apparitions since. It has been extensively studied, in part because of interest as a CRAF target in the mid-1980s, and much is known about it. Tempel 2 is one of the largest known comet nuclei, 16×8×8 km (about the same size as Halley) [1] and has rotation period 8.9 hours [3,5,6,7,9]. The spin state is evolving with time, spinning up by ˜10 sec per perihelion pass [5,7]. The comet is active, but not exceedingly so, especially given its size. The water production is measured at ˜ 4 × 1028 mol/sec at its peak [2], a factor of 25 lower than comet Halley, and it is active over only ˜2% of its surface. The dust environment is well known, producing a factor of ˜100 less dust than Halley. Comet References: [1] A'Hearn et al., ApJ 347, 1155, 1989 [2] Feldman and Festou, ACM 1991, p. 171, 1992 [3] Jewitt and Luu, AJ 97, 1766, 1989 [4] Lamy et al., Comets II p 223. 2009 [5] Muel

Farnham, Tony; Asphaug, Erik; Barucci, Antonella; Belton, Mike; Bockelee-Morvan, Dominique; Brownlee, Donald; Capria, Maria Teresa; Carter, Lynn; Chesley, Steve; Farnham, Tony; Gaskell, Robert; Gim, Young; Heggy, Essam; Herique, Alain; Klaasen, Ken; Kofman, Wlodek; Kreslavsky, Misha; Lisse, Casey; Orosei, Roberto; Plaut, Jeff; Scheeres, Dan

432

Intrapulse Radar-Embedded Communications  

Microsoft Academic Search

The embedding of a covert communication signal amongst the ambient scattering from an incident radar pulse has previously been achieved by modulating a Doppler-like phase shift sequence over numerous pulses (i.e., on an inter-pulse basis). In contrast, this paper considers radar-embedded communications on an intrapulse basis whereby an incident radar waveform is converted into one of $K$ communication waveforms, each

Shannon D. Blunt; Padmaja Yatham; James Stiles

2010-01-01

433

RF MEMS on the radar  

Microsoft Academic Search

This article gives an overview of applications of radio frequency (RF) microelectromechanical system (MEMS) technology in radio detection and ranging (radar). RF MEMS components for radar include attenuators, limiters, (true-time-delay) phase shifters, transmit\\/receive (T\\/R) switches and tunable matching networks. Radar subsystems that benefit from RF MEMS technology include active electronically scanned arrays (T\\/R modules), passive electronically scanned arrays (lenses, reflect

Koen Van Caekenberghe

2009-01-01

434

Radar-aeolian roughness project  

NASA Technical Reports Server (NTRS)

The objective is to establish an empirical relationship between measurements of radar, aeolian, and surface roughness on a variety of natural surfaces and to understand the underlying physical causes. This relationship will form the basis for developing a predictive equation to derive aeolian roughness from radar backscatter. Results are given from investigations carried out in 1989 on the principal elements of the project, with separate sections on field studies, radar data analysis, laboratory simulations, and development of theory for planetary applications.

Greeley, Ronald; Dobrovolskis, A.; Gaddis, L.; Iversen, J. D.; Lancaster, N.; Leach, Rodman N.; Rasnussen, K.; Saunders, S.; Vanzyl, J.; Wall, S.

1991-01-01

435

Radar studies of bird migration  

NASA Technical Reports Server (NTRS)

Observations of bird migration with NASA radars were made at Wallops Island, Va. Simultaneous observations were made at a number of radar sites in the North Atlantic Ocean in an effort to discover what happened to those birds that were observed leaving the coast of North America headed toward Bermuda, the Caribbean and South America. Transatlantic migration, utilizing observations from a large number of radars is discussed. Detailed studies of bird movements at Wallops Island are presented.

Williams, T. C.; Williams, J. M.

1974-01-01

436

Continuous-wave radar sensor based on Doppler phase modulation effect for medical applications and mechanical vibration monitoring.  

E-print Network

??This dissertation presents the theoretical analysis, system design, and experimental evaluation of continuous-wave (CW) radar systems for noncontact measurement of respiration and mechanical vibrations using… (more)

Gu, Changzhan

2013-01-01

437

47 CFR 80.273 - Radar standards.  

Code of Federal Regulations, 2013 CFR

...Telecommunication 5 2013-10-01 2013-10-01 false Radar standards. 80.273 Section 80.273 Telecommunication...Authorization for Compulsory Ships § 80.273 Radar standards. (a) Radar installations on board ships that are...

2013-10-01

438

47 CFR 80.273 - Radar standards.  

Code of Federal Regulations, 2012 CFR

...Telecommunication 5 2012-10-01 2012-10-01 false Radar standards. 80.273 Section 80.273 Telecommunication...Authorization for Compulsory Ships § 80.273 Radar standards. (a) Radar installations on board ships that are...

2012-10-01

439

Overview of Radar Data Compression Valliappa Lakshmanan  

E-print Network

Overview of Radar Data Compression Valliappa Lakshmanan Cooperative Institute of Mesoscale Meteorological Studies University of Oklahoma & National Severe Storms Laboratory Abstract Radar data is routinely transmitted in real-time from the coterminous United States (CONUS) radar sites and placed

Lakshmanan, Valliappa

440

REVIEW ARTICLE Interferometric Synthetic Aperture Radar  

E-print Network

REVIEW ARTICLE Interferometric Synthetic Aperture Radar Christopher T. Allen Department of Electrical Engineering and Computer Science and Radar Systems and Remote Sensing Laboratory University of Kansas Abstract. This paper provides a brief review of interferometric synthetic aperture radar (In

Kansas, University of

441

Reconfigurable L-Band Radar  

NASA Technical Reports Server (NTRS)

The reconfigurable L-Band radar is an ongoing development at NASA/GSFC that exploits the capability inherently in phased array radar systems with a state-of-the-art data acquisition and real-time processor in order to enable multi-mode measurement techniques in a single radar architecture. The development leverages on the L-Band Imaging Scatterometer, a radar system designed for the development and testing of new radar techniques; and the custom-built DBSAR processor, a highly reconfigurable, high speed data acquisition and processing system. The radar modes currently implemented include scatterometer, synthetic aperture radar, and altimetry; and plans to add new modes such as radiometry and bi-static GNSS signals are being formulated. This development is aimed at enhancing the radar remote sensing capabilities for airborne and spaceborne applications in support of Earth Science and planetary exploration This paper describes the design of the radar and processor systems, explains the operational modes, and discusses preliminary measurements and future plans.

Rincon, Rafael F.

2008-01-01

442

Monitoring internal organ motion with continuous wave radar in CT  

SciTech Connect

Purpose: To avoid motion artifacts in medical imaging or to minimize the exposure of healthy tissues in radiation therapy, medical devices are often synchronized with the patient's respiratory motion. Today's respiratory motion monitors require additional effort to prepare the patients, e.g., mounting a motion belt or placing an optical reflector on the patient's breast. Furthermore, they are not able to measure internal organ motion without implanting markers. An interesting alternative to assess the patient's organ motion is continuous wave radar. The aim of this work is to design, implement, and evaluate such a radar system focusing on application in CT.Methods: The authors designed a radar system operating in the 860 MHz band to monitor the patient motion. In the intended application of the radar system, the antennas are located close to the patient's body inside the table of a CT system. One receive and four transmitting antennas are used to avoid the requirement of exact patient positioning. The radar waves propagate into the patient's body and are reflected at tissue boundaries, for example at the borderline between muscle and adipose tissue, or at the boundaries of organs. At present, the authors focus on the detection of respiratory motion. The radar system consists of the hardware mentioned above as well as of dedicated signal processing software to extract the desired information from the radar signal. The system was evaluated using simulations and measurements. To simulate the radar system, a simulation model based on radar and wave field equations was designed and 4D respiratory-gated CT data sets were used as input. The simulated radar signals and the measured data were processed in the same way. The radar system hardware and the signal processing algorithms were tested with data from ten volunteers. As a reference, the respiratory motion signal was recorded using a breast belt simultaneously with the radar measurements.Results: Concerning the measurements of the test persons, there is a very good correlation (?= 0.917) between the respiratory motion phases received by the radar system and the external motion monitor. Our concept of using an array of transmitting antennas turned out to be widely insensitive to the positioning of the test persons. A time shift between the respiratory motion curves recorded with the radar system and the motion curves from the external respiratory monitor was observed which indicates a slight difference between internal organ motion and motion detected by the external respiratory monitor. The simulations were in good accordance with the measurements.Conclusions: A continuous wave radar operating in the near field of the antennas can be used to determine the respiratory motion of humans accurately. In contrast to trigger systems used today, the radar system is able to measure motion inside the body. If such a monitor was routinely available in clinical CT, it would be possible optimizing the scan start with respect to the respiratory state of the patient. Breathing commands would potentially widely be avoided, and as far as uncooperative patients or children are concerned, less sedation might be necessary. Further applications of the radar system could be in radiation therapy or interventional imaging for instance.

Pfanner, Florian [Institute of Medical Physics, University of Erlangen–Nürnberg, 91052 Erlangen, Germany and Siemens AG, Healthcare Sector, Siemensstr. 1, 91301 Forchheim (Germany)] [Institute of Medical Physics, University of Erlangen–Nürnberg, 91052 Erlangen, Germany and Siemens AG, Healthcare Sector, Siemensstr. 1, 91301 Forchheim (Germany); Maier, Joscha [Medical Physics in Radiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg (Germany)] [Medical Physics in Radiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg (Germany); Allmendinger, Thomas; Flohr, Thomas [Siemens AG, Healthcare Sector, Siemensstr. 1, 91301 Forchheim (Germany)] [Siemens AG, Healthcare Sector, Siemensstr. 1, 91301 Forchheim (Germany); Kachelrieß, Marc [Institute of Medical Physics, University of Erlangen–Nürnberg, 91052 Erlangen, Germany and Medical Physics in Radiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg (Germany)] [Institute of Medical Physics, University of Erlangen–Nürnberg, 91052 Erlangen, Germany and Medical Physics in Radiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg (Germany)

2013-09-15

443

Space Radar Image of Glascow, Missouri  

NASA Technical Reports Server (NTRS)

This is a false-color L-band image of an area near Glasgow, Missouri, centered at about 39.2 degrees north latitude and 92.8 degrees west longitude. The image was acquired using the L-band radar channel (horizontally transmitted and received and horizontally transmitted/vertically received) polarizations combined. The data were acquired by the Spaceborne Imaging Radar-C and X-band Synthetic Aperture Radar (SIR-C/X-SAR) aboard the space shuttle Endeavour on orbit 50 on October 3,1994. The area shown is approximately 37 kilometers by 25 kilometers (23 miles by 16 miles). The radar data, coupled with pre-flood aerial photography and satellite data and post-flood topographic and field data, are being used to evaluate changes associated with levee breaks in landforms, where deposits formed during the widespread flooding in 1993 along the Missouri and Mississippi Rivers.