Science.gov

Sample records for radial moment calculations

  1. Radial Moment Calculations of Coupled Electron-Photon Beams

    SciTech Connect

    FRANKE,BRIAN C.; LARSEN,EDWARD W.

    2000-07-19

    The authors consider the steady-state transport of normally incident pencil beams of radiation in slabs of material. A method has been developed for determining the exact radial moments of 3-D beams of radiation as a function of depth into the slab, by solving systems of 1-D transport equations. They implement these radial moment equations in the ONEBFP discrete ordinates code and simulate energy-dependent, coupled electron-photon beams using CEPXS-generated cross sections. Modified P{sub N} synthetic acceleration is employed to speed up the iterative convergence of the 1-D charged particle calculations. For high-energy photon beams, a hybrid Monte Carlo/discrete ordinates method is examined. They demonstrate the efficiency of the calculations and make comparisons with 3-D Monte Carlo calculations. Thus, by solving 1-D transport equations, they obtain realistic multidimensional information concerning the broadening of electron-photon beams. This information is relevant to fields such as industrial radiography, medical imaging, radiation oncology, particle accelerators, and lasers.

  2. Nuclear Electric Dipole Moment Calculations

    NASA Astrophysics Data System (ADS)

    Haxton, Wick

    2010-11-01

    One of the most important constraints on CP violation in the nucleon and NN interaction is provided by electric dipole moment (EDM) limits for neutral diamagnetic atoms, particularly 199Hg. To extract CP-violating couplings from experiment, one must relate the atomic EDM to the underlying nuclear CP-odd moments, a task complicated by the atomic response, which largely shields the nucleus from the applied external electric field. The residual response -- the Schiff moment -- depends on corrections such as the finite size of the nucleus. Conventional Schiff-moment calculations have largely ignored one consequence of the screening: the cancellation between direct and polarization diagrams, which yields an answer that is suppressed by two powers of RN/RA, where RN and RA are the nuclear and atomic sizes, requires one to identify all other terms that contribute to the same order in the RN/RA power counting. We show that such terms arise from nuclear excitations associated with the dipole charge and transverse electric multipole operators, and discuss the consequences. We also describe higher T-odd moments that contribute up to the same order in the counting, and point out interesting nuclear structure and experimental consequences.

  3. Invariant quaternion radial harmonic Fourier moments for color image retrieval

    NASA Astrophysics Data System (ADS)

    Xiang-yang, Wang; Wei-yi, Li; Hong-ying, Yang; Pan-pan, Niu; Yong-wei, Li

    2015-03-01

    Moments and moment invariants have become a powerful tool in image processing owing to their image description capability and invariance property. But, conventional methods are mainly introduced to deal with the binary or gray-scale images, and the only approaches for color image always have poor color image description capability. Based on radial harmonic Fourier moments (RHFMs) and quaternion, we introduced the quaternion radial harmonic Fourier moments (QRHFMs) for representing color images in this paper, which can be seen as the generalization of RHFMs for gray-level images. It is shown that the QRHFMs can be obtained from the RHFMs of each color channel. We derived and analyzed the rotation, scaling, and translation (RST) invariant property of QRHFMs. We also discussed the problem of color image retrieval using invariant QRHFMs. Experimental results are provided to illustrate the efficiency of the proposed color image representation.

  4. Distribution and moments of radial error. [Rayleigh distribution - random variables

    NASA Technical Reports Server (NTRS)

    White, R. G.

    1975-01-01

    An investigation of the moments and probability distribution of the resultant of two normally distributed random variables is presented. This is the so-called generalized Rayleigh distribution which has many applications in the study of wind shear, random noise, and radar. The most general formula was derived, and two special cases were considered for which tables of the moments and probability distribution functions are included as an appendix. One of the special cases was generalized to n-dimensions.

  5. Total Longitudinal Moment Calculation and Reliability Analysis of Yacht Structures

    NASA Astrophysics Data System (ADS)

    Zhi, Wenzheng; Lin, Shaofen

    In order to check the reliability of the yacht in FRP (Fiber Reinforce Plastic) materials, in this paper, the vertical force and the calculation method of the overall longitudinal bending moment on yacht was analyzed. Specially, this paper focuses on the impact of speed on the still water bending moment on yacht. Then considering the mechanical properties of the cap type stiffeners in composite materials, the ultimate bearing capacity of the yacht has been worked out, finally the reliability of the yacht was calculated with using response surface methodology. The result can be used in yacht design and yacht driving.

  6. Calculated magnetic moments of Nd2Fe14B

    NASA Astrophysics Data System (ADS)

    Nordström, Lars; Johansson, Börje; Brooks, M. S. S.

    1991-04-01

    A self-consistent spin-polarized band-structure calculation has been performed for the technically important permanent magnet compound Nd2Fe14B. In contrast to earlier calculations, the localized 4f states on the Nd sites are treated in a consistent way. They are not allowed to contribute to the bonding, but they produce a local exchange field, felt by the valence electrons, which is calculated from first-principles local density theory. Assuming a Russel-Saunders coupled Nd 4f moment of 3.3μB/atom, the total magnetic moment is calculated to be 38.1μB/formula unit, to be compared with the experimental value 37.1μB/formula unit [Givord, Li, and Perrier de la Bathie, Solid State Commun. 51, 857 (1984)]. The calculated local Fe moments are quite different on the different crystallographic sites, varying from 2.1μB to 2.9μB/atom.

  7. An Exact Formula for Calculating Inverse Radial Lens Distortions.

    PubMed

    Drap, Pierre; Lefèvre, Julien

    2016-01-01

    This article presents a new approach to calculating the inverse of radial distortions. The method presented here provides a model of reverse radial distortion, currently modeled by a polynomial expression, that proposes another polynomial expression where the new coefficients are a function of the original ones. After describing the state of the art, the proposed method is developed. It is based on a formal calculus involving a power series used to deduce a recursive formula for the new coefficients. We present several implementations of this method and describe the experiments conducted to assess the validity of the new approach. Such an approach, non-iterative, using another polynomial expression, able to be deduced from the first one, can actually be interesting in terms of performance, reuse of existing software, or bridging between different existing software tools that do not consider distortion from the same point of view. PMID:27258288

  8. An Exact Formula for Calculating Inverse Radial Lens Distortions

    PubMed Central

    Drap, Pierre; Lefèvre, Julien

    2016-01-01

    This article presents a new approach to calculating the inverse of radial distortions. The method presented here provides a model of reverse radial distortion, currently modeled by a polynomial expression, that proposes another polynomial expression where the new coefficients are a function of the original ones. After describing the state of the art, the proposed method is developed. It is based on a formal calculus involving a power series used to deduce a recursive formula for the new coefficients. We present several implementations of this method and describe the experiments conducted to assess the validity of the new approach. Such an approach, non-iterative, using another polynomial expression, able to be deduced from the first one, can actually be interesting in terms of performance, reuse of existing software, or bridging between different existing software tools that do not consider distortion from the same point of view. PMID:27258288

  9. Molecular electric moments calculated by using natural orbital functional theory.

    PubMed

    Mitxelena, Ion; Piris, Mario

    2016-05-28

    The molecular electric dipole, quadrupole, and octupole moments of a selected set of 21 spin-compensated molecules are determined employing the extended version of the Piris natural orbital functional 6 (PNOF6), using the triple-ζ Gaussian basis set with polarization functions developed by Sadlej, at the experimental geometries. The performance of the PNOF6 is established by carrying out a statistical analysis of the mean absolute errors with respect to the experiment. The calculated PNOF6 electric moments agree satisfactorily with the corresponding experimental data and are in good agreement with the values obtained by accurate ab initio methods, namely, the coupled-cluster single and doubles and multi-reference single and double excitation configuration interaction methods. PMID:27250280

  10. Molecular electric moments calculated by using natural orbital functional theory

    NASA Astrophysics Data System (ADS)

    Mitxelena, Ion; Piris, Mario

    2016-05-01

    The molecular electric dipole, quadrupole, and octupole moments of a selected set of 21 spin-compensated molecules are determined employing the extended version of the Piris natural orbital functional 6 (PNOF6), using the triple-ζ Gaussian basis set with polarization functions developed by Sadlej, at the experimental geometries. The performance of the PNOF6 is established by carrying out a statistical analysis of the mean absolute errors with respect to the experiment. The calculated PNOF6 electric moments agree satisfactorily with the corresponding experimental data and are in good agreement with the values obtained by accurate ab initio methods, namely, the coupled-cluster single and doubles and multi-reference single and double excitation configuration interaction methods.

  11. Moment-equation methods for calculating neoclassical transport coefficients in general toroidal plasmas

    SciTech Connect

    Sugama, H.; Nishimura, S.

    2008-04-15

    A detailed comparison is made between moment-equation methods presented by H. Sugama and S. Nishimura [Phys. Plasmas 9, 4637 (2002)] and by M. Taguchi [Phys. Fluids B 4, 3638 (1992)] for calculating neoclassical transport coefficients in general toroidal plasmas including nonsymmetric systems. It is shown that these methods can be derived from the drift kinetic equation with the same collision model used for correctly taking account of collisional momentum conservation. In both methods, the Laguerre polynomials of the energy variable are employed to expand the guiding-center distribution function and to obtain the moment equations, by which the radial neoclassical transport fluxes and the parallel flows are related to the thermodynamic forces. The methods are given here in the forms applicable for an arbitrary truncation number of the Laguerre-polynomial expansion so that their accuracies can be improved by increasing the truncation number. Differences between results from the two methods appear when the Laguerre-polynomial expansion is truncated up to a finite order because different weight functions are used in them to derive the moment equations. At each order of the truncation, the neoclassical transport coefficients obtained from the Sugama-Nishimura method show the Onsager symmetry and satisfy the ambipolar-diffusion condition intrinsically for symmetric systems. Also, numerical examples are given to show how the transport coefficients converge with the truncation number increased for the two methods.

  12. 46 CFR 174.055 - Calculation of wind heeling moment (Hm).

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 7 2013-10-01 2013-10-01 false Calculation of wind heeling moment (Hm). 174.055 Section... SPECIAL RULES PERTAINING TO SPECIFIC VESSEL TYPES Special Rules Pertaining to Mobile Offshore Drilling Units § 174.055 Calculation of wind heeling moment (Hm). (a) The wind heeling moment (Hm) of a unit in...

  13. 46 CFR 174.055 - Calculation of wind heeling moment (Hm).

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Calculation of wind heeling moment (Hm). 174.055 Section... SPECIAL RULES PERTAINING TO SPECIFIC VESSEL TYPES Special Rules Pertaining to Mobile Offshore Drilling Units § 174.055 Calculation of wind heeling moment (Hm). (a) The wind heeling moment (Hm) of a unit in...

  14. 46 CFR 174.055 - Calculation of wind heeling moment (Hm).

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 7 2014-10-01 2014-10-01 false Calculation of wind heeling moment (Hm). 174.055 Section... SPECIAL RULES PERTAINING TO SPECIFIC VESSEL TYPES Special Rules Pertaining to Mobile Offshore Drilling Units § 174.055 Calculation of wind heeling moment (Hm). (a) The wind heeling moment (Hm) of a unit in...

  15. 46 CFR 174.055 - Calculation of wind heeling moment (Hm).

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Calculation of wind heeling moment (Hm). 174.055 Section... SPECIAL RULES PERTAINING TO SPECIFIC VESSEL TYPES Special Rules Pertaining to Mobile Offshore Drilling Units § 174.055 Calculation of wind heeling moment (Hm). (a) The wind heeling moment (Hm) of a unit in...

  16. Multiconfiguration Dirac-Hartree-Fock calculations of the electric dipole moment of radium induced by the nuclear Schiff moment

    SciTech Connect

    Bieron, Jacek; Gaigalas, Gediminas; Gaidamauskas, Erikas; Fritzsche, Stephan; Indelicato, Paul; Joensson, Per

    2009-07-15

    The multiconfiguration Dirac-Hartree-Fock theory has been employed to calculate the electric dipole moment of the 7s6d {sup 3}D{sub 2} state of radium induced by the nuclear Schiff moment. The results are dominated by valence and core-valence electron correlation effects. We show that the correlation effects can be evaluated in a converged series of multiconfiguration expansions.

  17. A Classical Calculation of the Leptonic Magnetic Moment

    NASA Astrophysics Data System (ADS)

    Fabbri, Luca

    2016-02-01

    In this paper we will show that purely classical concepts based on a few heuristic considerations about extended field configurations are enough to compute the leptonic magnetic moment with corrections in α-power perturbative expansion.

  18. Radial cracks around inclusions: A program to calculate P-T paths with respect to elastic properties of minerals

    NASA Astrophysics Data System (ADS)

    D'Arco, Philippe; Wendt, Anke S.

    1994-11-01

    Radial cracking around inclusions in a matrix originated by their differential elastic behavior allows the development of a new method for reconstructing the evolution of P-T paths during metamorphism. The appearance of radial cracking is a function of the variation of the elastic parameters between the matrix and inclusion, the initial P-T conditions of inclusion entrapment and the component of isothermal decompression characteristic for a retrograde path. The program RADCRA is written in FORTRAN 77 and presents a general form to calculate the different P-T evolutions for a matrix and an inclusion during metamorphism. Necessary input data are the elastic properties of each mineral: bulk moduli, their pressure and temperature derivatives, and some P-T points which describe the metamorphic path. The output is composed by the different P-T evolutions for the matrix and the inclusion. Calculation of prograde paths stops at the moment when the pressure in the matrix is equal to or greater than the inclusion's pressure. Calculation of retrograde paths stops if the radial crack conditions are satisfied or if the calculated P-T paths are explored completely and radial cracks never appear.

  19. Radial Dose Profiles: Calculation Refinements and Sensitivities to Single Event Effects Analysis

    NASA Technical Reports Server (NTRS)

    Patterson, Jeffrey; Swimm, Randall

    2005-01-01

    Comparisons of radial dose calculation are performed, as well as the introduction of important physics to improve the calculation techniques. Also, the consequences to device performance are explored via numerical simulations.

  20. The calculation of the mass moment of inertia of a fluid in a rotating rectangular tank

    NASA Technical Reports Server (NTRS)

    1977-01-01

    This analysis calculated the mass moment of inertia of a nonviscous fluid in a slowly rotating rectangular tank. Given the dimensions of the tank in the x, y, and z coordinates, the axis of rotation, the percentage of the tank occupied by the fluid, and angle of rotation, an algorithm was written that could calculate the mass moment of inertia of the fluid. While not included in this paper, the change in the mass moment of inertia of the fluid could then be used to calculate the force exerted by the fluid on the container wall.

  1. Ab initio calculation of local magnetic moments and the crystal field in scrR2Fe14B (scrR=Gd, Tb, Dy, Ho, and Er)

    NASA Astrophysics Data System (ADS)

    Hummler, K.; Fähnle, M.

    1992-02-01

    The local magnetic moments and the valence contribution to the crystal-field parameter A02 at the rare-earth sites are calculated for scrR2Fe14B with scrR=Gd, Tb, Dy, Ho, and Er within the framework of the linear-muffin-tin-orbital theory and the local-spin-density approximation. Thereby, the 4f moments of scrR are calculated by the Russel-Saunders scheme, but the radial 4f spin density was part of the self-consistent density-functional calculation. The local moments as well as A02 averaged over the two crystallographically inequivalent scrR sites remain remarkably constant across the series.

  2. The calculation of moment uncertainties from velocity distribution functions with random errors

    NASA Astrophysics Data System (ADS)

    Gershman, Daniel J.; Dorelli, John C.; F.-Viñas, Adolfo; Pollock, Craig J.

    2015-08-01

    Instrumentation that detects individual plasma particles is susceptible to random counting errors. These errors propagate into the calculations of moments of measured particle velocity distribution functions. Although rules of thumb exist for the effects of random errors on the calculation of lower order moments (e.g., density, velocity, and temperature) of Maxwell-Boltzmann distributions, they do not generally apply to nonthermal distributions or to higher-order moments. To date, such errors have only been estimated using brute force Monte Carlo techniques, i.e., repeated (~50) samplings of distribution functions. Here we present a mathematical formalism for analytically obtaining uncertainty estimates of plasma moments due to random errors either measured in situ by instruments or synthesized by particle simulations. Our uncertainty estimates precisely match the statistical variation of simulated plasma moments and carry the computational cost equivalent of only ~15 Monte Carlo samplings. In addition, we provide the means to calculate a covariance matrix that can be reported along with typical plasma moments. This matrix enables the propagation of statistical errors into arbitrary coordinate systems or functions of plasma moments without the need to reanalyze full distribution functions. Our methodology, which is applied to electron data from Plasma Electron and Current Experiment on the Cluster spacecraft as an example, is relevant to both existing and future data sets and requires only instrument-measured counts and phase space densities reported for a set of calibrated energy-angle targets.

  3. Vibrationally averaged post Born-Oppenheimer isotopic dipole moment calculations approaching spectroscopic accuracy

    NASA Astrophysics Data System (ADS)

    Arapiraca, A. F. C.; Jonsson, Dan; Mohallem, J. R.

    2011-12-01

    We report an upgrade of the Dalton code to include post Born-Oppenheimer nuclear mass corrections in the calculations of (ro-)vibrational averages of molecular properties. These corrections are necessary to achieve an accuracy of 10-4 debye in the calculations of isotopic dipole moments. Calculations on the self-consistent field level present this accuracy, while numerical instabilities compromise correlated calculations. Applications to HD, ethane, and ethylene isotopologues are implemented, all of them approaching the experimental values.

  4. Vibrationally averaged post Born-Oppenheimer isotopic dipole moment calculations approaching spectroscopic accuracy.

    PubMed

    Arapiraca, A F C; Jonsson, Dan; Mohallem, J R

    2011-12-28

    We report an upgrade of the Dalton code to include post Born-Oppenheimer nuclear mass corrections in the calculations of (ro-)vibrational averages of molecular properties. These corrections are necessary to achieve an accuracy of 10(-4) debye in the calculations of isotopic dipole moments. Calculations on the self-consistent field level present this accuracy, while numerical instabilities compromise correlated calculations. Applications to HD, ethane, and ethylene isotopologues are implemented, all of them approaching the experimental values. PMID:22225162

  5. Insight into nucleon structure from lattice calculations of moments of parton and generalized parton distributions

    SciTech Connect

    J.W. Negele; R.C. Brower; P. Dreher; R. Edwards; G. Fleming; Ph. Hagler; U.M. Heller; Th. Lippert; A.V.Pochinsky; D.B. Renner; D. Richards; K. Schilling; W. Schroers

    2004-04-01

    This talk presents recent calculations in full QCD of the lowest three moments of generalized parton distributions and the insight they provide into the behavior of nucleon electromagnetic form factors, the origin of the nucleon spin, and the transverse structure of the nucleon. In addition, new exploratory calculations in the chiral regime of full QCD are discussed.

  6. 46 CFR 174.055 - Calculation of wind heeling moment (Hm).

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Calculation of wind heeling moment (Hm). 174.055 Section 174.055 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SUBDIVISION AND STABILITY SPECIAL RULES PERTAINING TO SPECIFIC VESSEL TYPES Special Rules Pertaining to Mobile Offshore Drilling Units § 174.055 Calculation of wind...

  7. A comparison of the calculated and experimental off-design performance of a radial flow turbine

    NASA Technical Reports Server (NTRS)

    Tirres, Lizet

    1992-01-01

    Off design aerodynamic performance of the solid version of a cooled radial inflow turbine is analyzed. Rotor surface static pressure data and other performance parameters were obtained experimentally. Overall stage performance and turbine blade surface static to inlet total pressure ratios were calculated by using a quasi-three dimensional inviscid code. The off design prediction capability of this code for radial inflow turbines shows accurate static pressure prediction. Solutions show a difference of 3 to 5 points between the experimentally obtained efficiencies and the calculated values.

  8. A comparison of the calculated and experimental off-design performance of a radial flow turbine

    NASA Technical Reports Server (NTRS)

    Tirres, Lizet

    1991-01-01

    Off design aerodynamic performance of the solid version of a cooled radial inflow turbine is analyzed. Rotor surface static pressure data and other performance parameters were obtained experimentally. Overall stage performance and turbine blade surface static to inlet total pressure ratios were calculated by using a quasi-three dimensional inviscid code. The off design prediction capability of this code for radial inflow turbines shows accurate static pressure prediction. Solutions show a difference of 3 to 5 points between the experimentally obtained efficiencies and the calculated values.

  9. Finite element basis for the expansion of radial wavefunction in quantum scattering calculations

    NASA Astrophysics Data System (ADS)

    Hwang, Woonglin; Sup Lee, Yoon; Park, Seung C.

    1991-11-01

    Radial wavefunctions in quantum scattering calculations are expanded in terms of two shape functions for each finite element. This approach is the R matrix version of Kohn's variational method and also directly applicable to S matrix in the log-derivative version. The linear algebra involved amounts to solving definite banded systems. In this basis set method, R matrix or log-derivative matrix is greatly simplified and the computational effort is linearly proportional to the number of radial basis functions, promising computational efficiencies for large scale calculations. Convergences for test vases are also reasonably rapid.

  10. Calculated electric dipole moment of NiH X2Delta

    NASA Technical Reports Server (NTRS)

    Walch, S.; Bauschlicher, C. W., Jr.; Langhoff, S. R.

    1985-01-01

    A calculated dipole moment of 2.39 D at R sub e = 2.79 a sub 0 is reported, obtained from complete active space SCF/configuration interaction calculations plus one natural orbital iteration. The calculation is in good agreement with the experimental value of 2.4 + or - 0.1 D measured for the lowest vibrational level. In agreement with Gray et al. (1985), it is found that the dipole moment is strongly correlated with the 3d electron population; the good agreement with experiment thus provides verification of the mixed state model of NiH. It is concluded that the electric dipole moment of NiH is a sensitive test of the quality of the NiH wave function.

  11. Collective vector method for calculation of E1 moments in atomic transition arrays

    SciTech Connect

    Bloom, S.D.; Goldberg, A.

    1985-10-01

    The CV (collective vector) method for calculating E1 moments for a transition array is described and applied in two cases, herein denoted Z26A and Z26B, pertaining to two different configurations of iron VI. The basic idea of the method is to create a CV from each of the parent (''initial state'') state-vectors of the transition array by application of the E1 operator. The moments of each of these CV's, referred to the parent energy, are then the rigorous moments for that parent, requiring no state decomposition of the manifold of daughter state-vectors. Since, in cases of practical interest, the daughter manifold can be orders of magnitude larger in size than the parent manifold, this makes possible the calculation of many moments higher than the second in situations hitherto unattainable via standard methods. The combination of the moments of all the parents, with proper statistical weighting, then yields the transition array moments from which the transition strength distribution can be derived by various procedures. We describe two of these procedures: (1) The well-known GC (Gram-Charlier) expansion in terms of Hermite polynomials, (2) The Lanczos algorithm or Stieltjes imaging method, also called herein the delta expansion. Application is made in the cases of Z26A (50 lines) and Z26B (5523 lines) and the relative merits and shortcomings of the two procedures are discussed. 10 refs., 15 figs., 2 tabs.

  12. GFMC calculations of electromagnetic moments and M1 transitions in A {<=} 9 nuclei

    SciTech Connect

    Pastore, Saori; Pieper, Steven C.; Schiavilla, Rocco; Wiringa, Robert Bruce

    2013-08-01

    We present recent Green’s function Monte Carlo calculations of magnetic moments and M1 transitions in A{<=} 9 nuclei, which include corrections arising from two-body meson-exchange electromagnetic currents. Two-body effects provide significant corrections to the calculated observables, bringing them in excellent agreement with the experimental data. In particular, we find that two body corrections are especially large in the A = 9, T = 3/2 systems, in which they account for up to ~ 20% (~ 40%) of the total predicted value for the {sup 9}Li ({sup 9}C) magnetic moment.

  13. Calculation of the forces and moments on a slender fuselage and vertical fin penetrating lateral gusts

    NASA Technical Reports Server (NTRS)

    Eggleston, John M

    1956-01-01

    A theory is presented for calculating the variation with frequency of the lateral-force and yawing-moment coefficients due to sinusoidal side gusts passing over the profile of a simple fuselage-vertical-fin combination. The analysis is based on slender-body theory. The method considers the penetration effect of both fuselage and vertical tail in calculating side force and yawing moment due to side gusts, as opposed to a simple lag concept which considers the flow angle to be uniform over the configuration.

  14. A calculation for radial expectation values of helium like actinide ions (Z=89-93)

    NASA Astrophysics Data System (ADS)

    Ürer, G.; Arslan, M.; Balkaya, E.; Keçeli, A.

    2016-03-01

    Radial expectation values, , for helium like actinides (ZAc=89, ZTh=90, ZPa=91, ZU=92, and ZNp=93) are reported using the Multiconfiguration Hartree-Fock (MCHF) within the framework Breit-Pauli corrections. Atomic data as energy levels, wavelengths, weighted oscillator strengths, and transition probabilities for allowed and forbidden transitions need these calculations. The obtained results are compared available works.

  15. Calculation of conformationally weighted dipole moments useful in ion-molecule collision rate estimates

    NASA Astrophysics Data System (ADS)

    Garden, Anna L.; Paulot, Fabien; Crounse, John D.; Maxwell-Cameron, Isobel J.; Wennberg, Paul O.; Kjaergaard, Henrik G.

    2009-05-01

    We have calculated relative energies and dipole moments of the stable conformers of nitrous acid, ethanol, ethylene glycol and propanone nitrate using a range of ab initio methods and basis sets. We have used these to calculate conformationally weighted dipole moments that are useful in estimates of collision rates between molecules and ions. We find that the average error in the conformationally weighted dipole moments is less than 5% for CCSD(T) with the aug-cc-pVTZ basis set, less than 10% for B3LYP/6-31G(d) and less than 20% for B3LYP/6-31+G(d) and B3LYP/aug-cc-pVTZ.

  16. The structure and dipole moment of globular proteins in solution and crystalline states: use of NMR and X-ray databases for the numerical calculation of dipole moment.

    PubMed

    Takashima, S

    2001-04-01

    The large dipole moment of globular proteins has been well known because of the detailed studies using dielectric relaxation and electro-optical methods. The search for the origin of these dipolemoments, however, must be based on the detailed knowledge on protein structure with atomic resolutions. At present, we have two sources of information on the structure of protein molecules: (1) x-ray databases obtained in crystalline state; (2) NMR databases obtained in solution state. While x-ray databases consist of only one model, NMR databases, because of the fluctuation of the protein folding in solution, consist of a number of models, thus enabling the computation of dipole moment repeated for all these models. The aim of this work, using these databases, is the detailed investigation on the interdependence between the structure and dipole moment of protein molecules. The dipole moment of protein molecules has roughly two components: one dipole moment is due to surface charges and the other, core dipole moment, is due to polar groups such as N--H and C==O bonds. The computation of surface charge dipole moment consists of two steps: (A) calculation of the pK shifts of charged groups for electrostatic interactions and (B) calculation of the dipole moment using the pK corrected for electrostatic shifts. The dipole moments of several proteins were computed using both NMR and x-ray databases. The dipole moments of these two sets of calculations are, with a few exceptions, in good agreement with one another and also with measured dipole moments. PMID:11180053

  17. A semi-empirical method for calculating the pitching moment of bodies of revolution at low Mach numbers

    NASA Technical Reports Server (NTRS)

    Hopkins, Edward J

    1951-01-01

    A semiempirical method, in which potential theory is arbitrarily combined with an approximate viscous theory, for calculating the aerodynamic pitching moments for bodies of revolution is presented. The method can also be used for calculating the lift and drag forces. The calculated and experimental force and moment characteristics of 15 bodies of revolution are compared.

  18. WHAT IS A MOMENT ARM? CALCULATING MUSCLE EFFECTIVENESS IN BIOMECHANICAL MODELS USING GENERALIZED COORDINATES

    PubMed Central

    Seth, Ajay; Delp, Scott L.

    2015-01-01

    Biomechanics researchers often use multibody models to represent biological systems. However, the mapping from biology to mechanics and back can be problematic. OpenSim is a popular open source tool used for this purpose, mapping between biological specifications and an underlying generalized coordinate multibody system called Simbody. One quantity of interest to biomechanical researchers and clinicians is “muscle moment arm,” a measure of the effectiveness of a muscle at contributing to a particular motion over a range of configurations. OpenSim can automatically calculate these quantities for any muscle once a model has been built. For simple cases, this calculation is the same as the conventional moment arm calculation in mechanical engineering. But a muscle may span several joints (e.g., wrist, neck, back) and may follow a convoluted path over various curved surfaces. A biological joint may require several bodies or even a mechanism to accurately represent in the multibody model (e.g., knee, shoulder). In these situations we need a careful definition of muscle moment arm that is analogous to the mechanical engineering concept, yet generalized to be of use to biomedical researchers. Here we present some biomechanical modeling challenges and how they are resolved in OpenSim and Simbody to yield biologically meaningful muscle moment arms. PMID:25905111

  19. Density functional theory calculations of nuclear quadrupole coupling constants with calibrated 14N quadrupole moments

    NASA Astrophysics Data System (ADS)

    Sicilia, E.; de Luca, G.; Chiodo, S.; Russo, N.; Calaminici, P.; Koster, A. M.; Jug, K.

    Density functional calculations of the electric field gradient tensor at the nitrogen nucleus in 13 test molecules, containing 14 nitrogen sites, have been performed using the linear combination of Gaussian-type orbital Kohn-Sham density functional theory (LCGTO-KSDFT) approach. Local and gradient corrected functionals were used for all-electron calculations. All the molecular structures were optimized at their respective levels of theory with extended basis sets. Calibrated 14N nuclear quadrupole moments were obtained through a fitting procedure between calculated electric field gradients and experimental nuclear quadrupole coupling constants of the test set of molecules for each basis set and functional considered. With these calibrated 14N nuclear quadrupole moments, the nuclear quadrupole coupling constants of the following selected systems were determined: fluoromethylisonitrile, pyridine, pyrrole, imadazole, pyrazole, 1,8-bis(dimethyl-amino)naphthalene, cyclotetramethylenetetranitramine, cocaine and heroin.

  20. The calculation of radial dose from heavy ions: predictions of biological action cross sections

    NASA Technical Reports Server (NTRS)

    Katz, R.; Cucinotta, F. A.; Zhang, C. X.; Wilson, J. W. (Principal Investigator)

    1996-01-01

    The track structure model of heavy ion cross sections was developed by Katz and co-workers in the 1960s. In this model the action cross section is evaluated by mapping the dose-response of a detector to gamma rays (modeled from biological target theory) onto the radial dose distribution from delta rays about the path of the ion. This is taken to yield the radial distribution of probability for a "hit" (an interaction leading to an observable end-point). Radial integration of the probability yields the cross section. When different response from ions of different Z having the same stopping power is observed this model may be indicated. Since the 1960s there have been several developments in the computation of the radial dose distribution, in the measurement of these distributions, and in new radiobiological data against which to test the model. The earliest model, by Butts and Katz made use of simplified delta ray distribution functions, of simplified electron range-energy relations, and neglected angular distributions. Nevertheless it made possible the calculation of cross sections for the inactivation of enzymes and viruses, and allowed extension to tracks in nuclear emulsions and other detectors and to biological cells. It set the pattern for models of observable effects in the matter through which the ion passed. Here we outline subsequent calculations of radial dose which make use of improved knowledge of the electron emission spectrum, the electron range-energy relation, the angular distribution, and some considerations of molecular excitation, of particular interest both close to the path of the ion and the outer limits of electron penetration. These are applied to the modeling of action cross sections for the inactivation of several strains of E-coli and B. subtilis spores where extensive measurements in the "thin-down" region have been made with heavy ion beams. Such calculations serve to test the radial dose calculations at the outer limit of electron

  1. Heavy ion track-structure calculations for radial dose in arbitrary materials

    NASA Technical Reports Server (NTRS)

    Cucinotta, Francis A.; Katz, Robert; Wilson, John W.; Dubey, Rajendra R.

    1995-01-01

    The delta-ray theory of track structure is compared with experimental data for the radial dose from heavy ion irradiation. The effects of electron transmission and the angular dependence of secondary electron ejection are included in the calculations. Several empirical formulas for electron range and energy are compared in a wide variety of materials in order to extend the application of the track-structure theory. The model of Rudd for the secondary electron-spectrum in proton collisions, which is based on a modified classical kinematics binary encounter model at high energies and a molecular promotion model at low energies, is employed. For heavier projectiles, the secondary electron spectrum is found by scaling the effective charge. Radial dose calculations for carbon, water, silicon, and gold are discussed. The theoretical data agreed well with the experimental data.

  2. Comparison of the flows and radial electric field in the HSX stellarator to neoclassical calculations

    NASA Astrophysics Data System (ADS)

    Briesemeister, A.; Zhai, K.; Anderson, D. T.; Anderson, F. S. B.; Talmadge, J. N.

    2013-01-01

    Intrinsic flow velocities of up to ˜20 km s-1 have been measured using charge exchange recombination spectroscopy (CHERS) in the quasi-helically symmetric HSX stellarator and are compared with the neoclassical values calculated using an updated version (Lore 2010 Measurement and Transport Modeling with Momentum Conservation of an Electron Internal Transport Barrier in HSX (Madison, WI: University of Wisconsin); Lore et al 2010 Phys. Plasmas 17 056101) of the PENTA code (Spong 2005 Phys. Plasmas. 12 056114). PENTA uses the monoenergetic transport coefficients calculated by the drift kinetic equation solver code (Hirshman et al 1986 Phys. Fluids 29 2951; van Rij and Hirshman 1989 Phys. Fluids B 1 563), but corrects for momentum conservation. In the outer half of the plasma good agreement is seen between the measured parallel flow profile and the calculated neoclassical values when momentum correction is included. The flow velocity in HSX is underpredicted by an order of magnitude when this momentum correction is not applied. The parallel flow is calculated to be approximately equal for the majority hydrogen ions and the C6+ ions used for the CHERS measurements. The pressure gradient of the protons is the primary drive of the calculated parallel flow for a significant portion of the outer half of the plasma. The values of the radial electric field calculated with and without momentum correction were similar, but both were smaller than the measured values in the outer half of the plasma. Differences between the measured and predicted radial electric field are possibly a result of uncertainty in the composition of the ion population and sensitivity of the ion flux calculation to resonances in the radial electric field.

  3. Aerodynamic Lift and Moment Calculations Using a Closed-Form Solution of the Possio Equation

    NASA Technical Reports Server (NTRS)

    Lin, Jensen; Iliff, Kenneth W.

    2000-01-01

    In this paper, we present closed-form formulas for the lift and moment coefficients of a lifting surface in two dimensional, unsteady, compressible, subsonic flow utilizing a newly developed explicit analytical solution of the Possio equation. Numerical calculations are consistent with previous numerical tables based on series expansions or ad hoc numerical schemes. More importantly, these formulas lend themselves readily to flutter analysis, compared with the tedious table-look-up schemes currently in use.

  4. Pion-proton bremsstrahlung calculation and the ``experimental'' magnetic moment of Δ++(1232)

    NASA Astrophysics Data System (ADS)

    Lin, Dahang; Liou, M. K.; Ding, Z. M.

    1991-11-01

    A bremsstrahlung amplitude in the special two-energy-two-angle (TETAS) approximation, which is relativistic, gauge invariant, and consistent with the soft-photon theorem, is derived for the pion-proton bremsstrahlung (π+pγ) process near the Δ++(1232) resonance. In order to take into account bremsstrahlung emission from an internal Δ++ line with both charge and the anomalous magnetic moment λΔ, we have applied a radiation decomposition identity to modify Low's standard prescription for constructing a soft-photon amplitude. This modified procedure is very general; it can be used to derive the TETAS amplitude for any bremsstrahlung process with resonance. The derived TETAS amplitude is applied to calculate all π+pγ cross sections which can be compared with the experimental data. Treating λΔ as a free parameter in these calculations, we extract the ``experimental'' magnetic moment of the Δ++, μΔ, from recent data. The extracted values of μΔ are (3.7-4.2)e/(2mp) from the University of California, Los Angeles data and (4.6-4.9)e/(2mp) from the Paul Scherrer Institute data. Here, mp is the proton mass. These values are smaller than the value 5.58e/(2mp), the ``bare'' magnetic moment predicted by the SU(6) model or the quark model, but they are close to the value 4.25e/(2mp) predicted by the modified SU(6) model of Beg and Pais and to the value (4.41-4.89)e/(2mp) predicted by the corrected bag-model of Brown, Rho, and Vento. Using the extracted μΔ as an input for calculating π+pγ cross sections, we show that the overall agreement between the theoretical predictions calculated with the extracted μΔ and the experimental measurements is excellent. This agreement demonstrates that the TETAS amplitude can be used to describe almost all the available π+pγ data. Finally, we also treat λΔ as a complex quantity, λΔ=λR+iλI, in order to estimate the contribution from the imaginary part λI. The best fit to the data gives λI~=0, independent of the choice

  5. Computer program for the calculation of grain size statistics by the method of moments

    USGS Publications Warehouse

    Sawyer, Michael B.

    1977-01-01

    A computer program is presented for a Hewlett-Packard Model 9830A desk-top calculator (1) which calculates statistics using weight or point count data from a grain-size analysis. The program uses the method of moments in contrast to the more commonly used but less inclusive graphic method of Folk and Ward (1957). The merits of the program are: (1) it is rapid; (2) it can accept data in either grouped or ungrouped format; (3) it allows direct comparison with grain-size data in the literature that have been calculated by the method of moments; (4) it utilizes all of the original data rather than percentiles from the cumulative curve as in the approximation technique used by the graphic method; (5) it is written in the computer language BASIC, which is easily modified and adapted to a wide variety of computers; and (6) when used in the HP-9830A, it does not require punching of data cards. The method of moments should be used only if the entire sample has been measured and the worker defines the measured grain-size range. (1) Use of brand names in this paper does not imply endorsement of these products by the U.S. Geological Survey.

  6. Lattice calculation of hadronic light-by-light contribution to the muon anomalous magnetic moment

    NASA Astrophysics Data System (ADS)

    Blum, Thomas; Christ, Norman; Hayakawa, Masashi; Izubuchi, Taku; Jin, Luchang; Lehner, Christoph

    2016-01-01

    The quark-connected part of the hadronic light-by-light scattering contribution to the muon's anomalous magnetic moment is computed using lattice QCD with chiral fermions. We report several significant algorithmic improvements and demonstrate their effectiveness through specific calculations which show a reduction in statistical errors by more than an order of magnitude. The most realistic of these calculations is performed with a near-physical 171 MeV pion mass on a (4.6 fm )3 spatial volume using the 323×64 Iwasaki +DSDR gauge ensemble of the RBC/UKQCD Collaboration.

  7. Lattice calculation of hadronic light-by-light contribution to the muon anomalous magnetic moment

    DOE PAGESBeta

    Blum, Thomas; Christ, Norman; Hayakawa, Masashi; Izubuchi, Taku; Jin, Luchang; Lehner, Christoph

    2016-01-12

    The quark-connected part of the hadronic light-by-light scattering contribution to the muon’s anomalous magnetic moment is computed using lattice QCD with chiral fermions. Here we report several significant algorithmic improvements and demonstrate their effectiveness through specific calculations which show a reduction in statistical errors by more than an order of magnitude. The most realistic of these calculations is performed with a near-physical 171 MeV pion mass on a (4.6 fm)3 spatial volume using the 323×64 Iwasaki+DSDR gauge ensemble of the RBC/UKQCD Collaboration.

  8. Calculation of the Hadronic Vacuum Polarization Disconnected Contribution to the Muon Anomalous Magnetic Moment

    NASA Astrophysics Data System (ADS)

    Blum, T.; Boyle, P. A.; Izubuchi, T.; Jin, L.; Jüttner, A.; Lehner, C.; Maltman, K.; Marinkovic, M.; Portelli, A.; Spraggs, M.; Rbc; Ukqcd Collaborations

    2016-06-01

    We report the first lattice QCD calculation of the hadronic vacuum polarization (HVP) disconnected contribution to the muon anomalous magnetic moment at physical pion mass. The calculation uses a refined noise-reduction technique that enables the control of statistical uncertainties at the desired level with modest computational effort. Measurements were performed on the 483×96 physical-pion-mass lattice generated by the RBC and UKQCD Collaborations. We find the leading-order hadronic vacuum polarization aμHVP (LO )disc=-9.6 (3.3 )(2.3 )×10-10 , where the first error is statistical and the second systematic.

  9. Calculation of the Hadronic Vacuum Polarization Disconnected Contribution to the Muon Anomalous Magnetic Moment.

    PubMed

    Blum, T; Boyle, P A; Izubuchi, T; Jin, L; Jüttner, A; Lehner, C; Maltman, K; Marinkovic, M; Portelli, A; Spraggs, M

    2016-06-10

    We report the first lattice QCD calculation of the hadronic vacuum polarization (HVP) disconnected contribution to the muon anomalous magnetic moment at physical pion mass. The calculation uses a refined noise-reduction technique that enables the control of statistical uncertainties at the desired level with modest computational effort. Measurements were performed on the 48^{3}×96 physical-pion-mass lattice generated by the RBC and UKQCD Collaborations. We find the leading-order hadronic vacuum polarization a_{μ}^{HVP(LO)disc}=-9.6(3.3)(2.3)×10^{-10}, where the first error is statistical and the second systematic. PMID:27341226

  10. GenLocDip: A Generalized Program to Calculate and Visualize Local Electric Dipole Moments.

    PubMed

    Groß, Lynn; Herrmann, Carmen

    2016-09-30

    Local dipole moments (i.e., dipole moments of atomic or molecular subsystems) are essential for understanding various phenomena in nanoscience, such as solvent effects on the conductance of single molecules in break junctions or the interaction between the tip and the adsorbate in atomic force microscopy. We introduce GenLocDip, a program for calculating and visualizing local dipole moments of molecular subsystems. GenLocDip currently uses the Atoms-In-Molecules (AIM) partitioning scheme and is interfaced to various AIM programs. This enables postprocessing of a variety of electronic structure output formats including cube and wavefunction files, and, in general, output from any other code capable of writing the electron density on a three-dimensional grid. It uses a modified version of Bader's and Laidig's approach for achieving origin-independence of local dipoles by referring to internal reference points which can (but do not need to be) bond critical points (BCPs). Furthermore, the code allows the export of critical points and local dipole moments into a POVray readable input format. It is particularly designed for fragments of large systems, for which no BCPs have been calculated for computational efficiency reasons, because large interfragment distances prevent their identification, or because a local partitioning scheme different from AIM was used. The program requires only minimal user input and is written in the Fortran90 programming language. To demonstrate the capabilities of the program, examples are given for covalently and non-covalently bound systems, in particular molecular adsorbates. © 2016 Wiley Periodicals, Inc. PMID:27416879

  11. Calculation of the neutron electric dipole moment with two dynamical flavors of domain wall fermions

    SciTech Connect

    F. Berruto; T. Blum; K. Orginos; A. Soni

    2005-12-08

    We present a study of the neutron electric dipole moment ({rvec d}{sub N}) within the framework of lattice QCD with two flavors of dynamical light quarks. The dipole moment is sensitive to the topological structure of the gauge fields, and accuracy can only be achieved by using dynamical, or sea quark, calculations. However, the topological charge evolves slowly in these calculations, leading to a relatively large uncertainty in {rvec d}{sub N}. It is shown, using quenched configurations, that a better sampling of the charge distribution reduces this problem, but because the CP even part of the fermion determinant is absent, both the topological charge distribution and {rvec d}{sub N} are pathological in the chiral limit. We discuss the statistical and systematic uncertainties arising from the topological charge distribution and unphysical size of the quark mass in our calculations and prospects for eliminating them. Our calculations employ the RBC collaboration two flavor domain wall fermion and DBW2 gauge action lattices with inverse lattice spacing a{sup -1} {approx} 1.7 GeV, physical volume V {approx} (2 fm){sup 3}, and light quark mass roughly equal to the strange quark mass (m{sub sea} = 0.03 and 0.04). We determine a value of the electric dipole moment that is zero within (statistical) errors, |{rvec d}{sub N}| = -0.04(20) e-{theta}-fm at the smaller sea quark mass. Satisfactory results for the magnetic and electric form factors of the proton and neutron are also obtained and presented.

  12. Computer calculation of the Van Vleck second moment for materials with internal rotation of spin groups

    NASA Astrophysics Data System (ADS)

    Goc, Roman

    2004-09-01

    This paper describes m2rc3, a program that calculates Van Vleck second moments for solids with internal rotation of molecules, ions or their structural parts. Only rotations about C 3 axes of symmetry are allowed, but up to 15 axes of rotation per crystallographic unit cell are permitted. The program is very useful in interpreting NMR measurements in solids. Program summaryTitle of the program: m2rc3 Catalogue number: ADUC Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADUC Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland License provisions: none Computers: Cray SV1, Cray T3E-900, PCs Installation: Poznań Supercomputing and Networking Center ( http://www.man.poznan.pl/pcss/public/main/index.html) and Faculty of Physics, A. Mickiewicz University, Poznań, Poland ( http://www.amu.edu.pl/welcome.html.en) Operating system under which program has been tested: UNICOS ver. 10.0.0.6 on Cray SV1; UNICOS/mk on Cray T3E-900; Windows98 and Windows XP on PCs. Programming language: FORTRAN 90 No. of lines in distributed program, including test data, etc.: 757 No. of bytes in distributed program, including test data, etc.: 9730 Distribution format: tar.gz Nature of physical problem: The NMR second moment reflects the strength of the nuclear magnetic dipole-dipole interaction in solids. This value can be extracted from the appropriate experiment and can be calculated on the basis of Van Vleck formula. The internal rotation of molecules or their parts averages this interaction decreasing the measured value of the NMR second moment. The analysis of the internal dynamics based on the NMR second moment measurements is as follows. The second moment is measured at different temperatures. On the other hand it is also calculated for different models and frequencies of this motion. Comparison of experimental and calculated values permits the building of the most probable model of internal dynamics in the studied material. The program described

  13. A modified coupled pair functional approach. [for dipole moment calculation of metal hydride ground states

    NASA Technical Reports Server (NTRS)

    Chong, D. P.; Langhoff, S. R.

    1986-01-01

    A modified coupled pair functional (CPF) method is presented for the configuration interaction problem that dramatically improves properties for cases where the Hartree-Fock reference configuration is not a good zeroth-order wave function description. It is shown that the tendency for CPF to overestimate the effect of higher excitations arises from the choice of the geometric mean for the partial normalization denominator. The modified method is demonstrated for ground state dipole moment calculations of the NiH, CuH, and ZnH transition metal hydrides, and compared to singles-plus-doubles configuration interaction and the Ahlrichs et al. (1984) CPF method.

  14. Code System for Calculating the Radial and Axial Neutron Diffusion Coefficients in One-Group and Multigroup Theory.

    Energy Science and Technology Software Center (ESTSC)

    1985-10-10

    MARCOPOLO calculates the radial and axial diffusion coefficients in one-group and multi-group theory for a cylinderized cell (Wigner-Seitz theory) with several concentric zones according to the isotropic shock or linear anisotropic shock hypotheses.

  15. Design and flow field calculations for transonic and supersonic radial inflow turbine guide vanes

    SciTech Connect

    Reichert, A.W.; Simon, H.

    1997-01-01

    The design of radial inflow turbine guide vanes depends very much on the discharge conditions desired, especially if the choking mass flow is reached. Because of the choking mass flow condition and supersonic discharge Mach numbers, an inverse design procedure based on the method of characteristics is presented. Various designs corresponding to different discharge Mach numbers are shown. Viscous and inviscid flow field calculations for varying discharge conditions show the properties of the guide vanes at design and off-design conditions. In a previous paper (Reichert and Simon, 1994), an optimized design for transonic discharge conditions has been published. In the present paper, additional results concerning the optimum design are presented. For this optimum design an advantageous adjusting mechanism for a variable geometry guide vane has been developed. The effect of guide vane adjustment on the discharge conditions has been investigated using viscous flow field calculations.

  16. Pion-proton bremsstrahlung calculation and the experimental'' magnetic moment of. Delta. sup ++ (1232)

    SciTech Connect

    Lin, D.; Liou, M.K. ); Ding, Z.M. Department of Physics, Normandale Community College, Bloomington, Minnesota )

    1991-11-01

    A bremsstrahlung amplitude in the special two-energy-two-angle (TETAS) approximation, which is relativistic, gauge invariant, and consistent with the soft-photon theorem, is derived for the pion-proton bremsstrahlung ({pi}{sup +}{ital p}{gamma}) process near the {Delta}{sup ++}(1232) resonance. In order to take into account bremsstrahlung emission from an internal {Delta}{sup ++} line with both charge and the anomalous magnetic moment {lambda}{sub {Delta}}, we have applied a radiation decomposition identity to modify Low's standard prescription for constructing a soft-photon amplitude. This modified procedure is very general; it can be used to derive the TETAS amplitude for any bremsstrahlung process with resonance. The derived TETAS amplitude is applied to calculate all {pi}{sup +}{ital p}{gamma} cross sections which can be compared with the experimental data. Treating {lambda}{sub {Delta}} as a free parameter in these calculations, we extract the experimental'' magnetic moment of the {Delta}{sup ++}, {mu}{sub {Delta}}, from recent data. The extracted values of {mu}{sub {Delta}} are (3.7--4.2){ital e}/(2{ital m}{sub {ital p}}) from the University of California, Los Angeles data and (4.6--4.9){ital e}/(2{ital m}{sub {ital p}}) from the Paul Scherrer Institute data. Here, {ital m}{sub {ital p}} is the proton mass.

  17. Long-range force and moment calculations in multiresolution simulations of molecular systems

    SciTech Connect

    Poursina, Mohammad; Anderson, Kurt S.

    2012-08-30

    Multiresolution simulations of molecular systems such as DNAs, RNAs, and proteins are implemented using models with different resolutions ranging from a fully atomistic model to coarse-grained molecules, or even to continuum level system descriptions. For such simulations, pairwise force calculation is a serious bottleneck which can impose a prohibitive amount of computational load on the simulation if not performed wisely. Herein, we approximate the resultant force due to long-range particle-body and body-body interactions applicable to multiresolution simulations. Since the resultant force does not necessarily act through the center of mass of the body, it creates a moment about the mass center. Although this potentially important torque is neglected in many coarse-grained models which only use particle dynamics to formulate the dynamics of the system, it should be calculated and used when coarse-grained simulations are performed in a multibody scheme. Herein, the approximation for this moment due to far-field particle-body and body-body interactions is also provided.

  18. Determination of nuclear quadrupole moments – An example of the synergy of ab initio calculations and microwave spectroscopy

    SciTech Connect

    Kellö, Vladimir

    2015-01-22

    Highly correlated scalar relativistic calculations of electric field gradients at nuclei in diatomic molecules in combination with accurate nuclear quadrupole coupling constants obtained from microwave spectroscopy are used for determination of nuclear quadrupole moments.

  19. Calculated dipole moment and energy in collision of a hydrogen molecule and a hydrogen atom

    NASA Technical Reports Server (NTRS)

    Patch, R. W.

    1973-01-01

    Calculations were carried out using three Slater-type 1s orbitals in the orthogonalized valencebond theory of McWeeny. Each orbital exponent was optimized, the H2 internuclear distance was varied from 7.416 x 10 to the -11th power to 7.673 x 10 to the -11th power m (1.401 to 1.450 bohrs). The intermolecular distance was varied from 1 to 4 bohrs (0.5292 to 2.117 x 10 to the 10th power). Linear, scalene, and isosceles configurations were used. A weighted average of the interaction energies was taken for each intermolecular distance. Although energies are tabulated, the principal purpose was to calculate the electric dipole moment and its derivative with respect to H2 internuclear distance.

  20. Program NetMoment; Simultaneous Calculation of Moment, Source Corner Frequency, and Site Specific t* from Network Recordings

    SciTech Connect

    Hutchings, L

    2001-12-12

    The purpose of computer program NetMoment (Appendix I) is to utilize fundamental knowledge of earthquake sources, propagation attenuation, and site response in a simultaneous inversion of network data to determine the moment and source corner frequency of earthquakes, and site specific t*. The source parameters are especially difficult to determine for small earthquakes. A fundamental problem in determining the source corner frequencies of small earthquakes is that site response can result in spectral corner frequencies in the range that may be expected from the earthquakes themselves. Several authors have identified this as fmax (Hanks, 1982), a constant corner frequency for small events so that below threshold moment (about 1.0 x 10{sup 21} dyne-cm) the corner frequency remains constant the size of events diminishes. Hutchings and Wu (1990) found that for the southern California region, events with moment less than about 1.5 x 10{sup 21} dyne-cm (about magnitude 3.4) show no source effect in their spectra. Hanks (1982) found the threshold to be about 1.0 x l0{sup 21} dyne-cm for other southern California sites. Baise et al. (2002) found borehole recordings on Yerba Buena Island, in San Francisco Bay, to have corner frequencies limited to about 3-5 Hz for M < 4.0 earthquakes in the region. Some authors have attributed this to a minimum source dimension for earthquakes, which results in a decrease in stress drop for smaller events (Archuleta et al., 1982; Papageorgiou and Aki, 1983). alternative explanation is that the constant corner frequencies result from whole path or near site attenuation and/or amplifications due to soil response. This is supported by a wide body of literature (Anderson and Hough, 1984, Hutchings and Wu, 1990, Blakeslee and Malin, 1991; Aster and Shearer, 1991; Abercrombie, 1995). Abercrombie, for example, estimated source corner frequencies from events recorded in granite at a depth of 2.5 Km in the Cajon Pass scientific drill hole and

  1. Calculation of Heavy Ion Inactivation and Mutation Rates in Radial Dose Model of Track Structure

    NASA Technical Reports Server (NTRS)

    Cucinotta, Francis A.; Wilson, John W.; Shavers, Mark R.; Katz, Robert

    1997-01-01

    In the track structure model, the inactivation cross section is found by summing an inactivation probability over all impact parameters from the ion to the sensitive sites within the cell nucleus. The inactivation probability is evaluated by using the dose response of the system to gamma rays and the radial dose of the ions and may be equal to unity at small impact parameters. We apply the track structure model to recent data with heavy ion beams irradiating biological samples of E. Coli, B. Subtilis spores, and Chinese hamster (V79) cells. Heavy ions have observed cross sections for inactivation that approach and sometimes exceed the geometric size of the cell nucleus. We show how the effects of inactivation may be taken into account in the evaluation of the mutation cross sections in the track structure model through correlation of sites for gene mutation and cell inactivation. The model is fit to available data for HPRT (hypoxanthine guanine phosphoribosyl transferase) mutations in V79 cells, and good agreement is found. Calculations show the high probability for mutation by relativistic ions due to the radial extension of ions track from delta rays. The effects of inactivation on mutation rates make it very unlikely that a single parameter such as LET (linear energy transfer) can be used to specify radiation quality for heavy ion bombardment.

  2. Numerical procedures for the calculation of the stresses in monocoques III : calculation of the bending moments in fuselage frames

    NASA Technical Reports Server (NTRS)

    Hoff, N J; Libby, Paul A; Klein, Bertran

    1946-01-01

    This report deals with the calculation of the bending moments in and the distortions of fuselage rings upon which known concentrated and distributed loads are acting. In the procedure suggested, the ring is divided into a number of beams each having a constant radius of curvature. The forces and moments caused in the end sections of the beams by individual unit displacements of the end sections are listed in a table designated as the operations table in conformity with Southwell's nomenclature. The operations table and the external loads are equivalent to a set of linear equations. For their solution the following three procedures are presented: 1) Southwell's method of systematic relaxations. This is a step-by-step approximation procedure guided by the physical interpretation of the changes in the values of the unknown. 2) The growing unit procedure in which the individual beams are combined successively into beams of increasing length until finally the entire ring becomes a single beam. In each step of the procedure a set of not more than three simultaneous linear equations is solved. 3) Solution of the entire set of simultaneous equations by the methods of the matrix calculus. In order to demonstrate the manner in which the calculations may be carried out, the following numerical examples are worked out: 1) Curved beam with both its end sections rigidly fixed. The load is a concentrated force. 2) Egg-shape ring with symmetric concentrated loads. 3) Circular ring with antisymmetric concentrated loads and shear flow (torsion of the fuselage). 4) Same with V-braces incorporated in the ring. 5) Egg-shape ring with antisymmetric concentrated loads and shear flow (torsion of the fuselage). 6) Same with V-braces incorporated in the ring. The results of these calculations are checked, whenever possible, by calculations carried out according to known methods of analysis. The agreement is found to be good. The amount of work necessary for the solution of ring problems by

  3. An ab initioCalculation of the Dipole Moment Surfaces and the Vibrational Transition Moments of the H 2Te Molecule

    NASA Astrophysics Data System (ADS)

    Kozin, Igor N.; Jensen, Per; Li, Yan; Buenker, Robert J.; Hirsch, Gerhard; Klee, Stefan

    1997-01-01

    The present work reports an ab initioMRD-CI calculation of the dipole moment surfaces for the electronic ground state of the H 2Te molecule. Using the ab initioresults, we calculate the vibrational transition moments, and we simulate the far-infrared spectrum of H 2Te by means of the MORBID program system. We obtain the equilibrium value of the dipole moment from the ab initiocalculation as 0.377 Debye based on our initial theoretical treatment which was employed over a wide range of molecular geometries. However, the use of an improved AO basis at the equilibrium geometry of H 2Te lowers this result to 0.298 Debye. The comparison of our simulated far-infrared spectrum with the experimental spectrum suggests that this value is too large, and that the correct value is certainly larger than 0.19 Debye and very probably smaller than 0.26 Debye. From the ab initiodata, we predict many vibrational transition moments for H 2Te, D 2Te, and HDTe. We hope that these results will be of assistance in the interpretation of the rotation-vibration spectrum of these molecules.

  4. Fast Calculations of Electrostatic Solvation Free Energy from Reconstructed Solvent Density using proximal Radial Distribution Functions

    PubMed Central

    Lin, Bin; Wong, Ka-Yiu; Hu, Char; Kokubo, Hironori; Pettitt, B. Montgomery

    2011-01-01

    Although detailed atomic models may be applied for a full description of solvation, simpler phenomenological models are particularly useful to interpret the results for scanning many, large, complex systems where a full atomic model is too computationally expensive to use. Among the most costly are solvation free energy evaluations by simulation. Here we develop a fast way to calculate electrostatic solvation free energy while retaining much of the accuracy of explicit solvent free energy simulation. The basis of our method is to treat the solvent not as a structureless dielectric continuum, but as a structured medium by making use of universal proximal radial distribution functions. Using a deca-alanine peptide as a test case, we compare the use of our theory with free energy simulations and traditional continuum estimates of the electrostatic solvation free energy. PMID:21765968

  5. Fast Calculations of Electrostatic Solvation Free Energy from Reconstructed Solvent Density Using Proximal Radial Distribution Functions

    SciTech Connect

    Lin, Bin; Wong, Ka-Yiu; Hu, Char Y.; Kokubo, Hironori; Pettitt, Bernard M.

    2011-07-07

    Although detailed atomic models may be applied for a full description of solvation, simpler phenomenologicalmodels are particularly useful to interpret the results for scanning many large, complex systems, where a full atomic model is too computationally expensive to use. Among the most costly are solvation free-energy evaluations by simulation. Here we develop a fast way to calculate electrostatic solvation free energy while retaining much of the accuracy of explicit solvent free-energy simulation. The basis of our method is to treat the solvent not as a structureless dielectric continuum but as a structured medium by making use of universal proximal radial distribution functions. Using a deca-alanine peptide as a test case, we compare the use of our theory with free-energy simulations and traditional continuum estimates of the electrostatic solvation free energy.

  6. Full QCD calculation of neutron electric dipole moment with the external electric field method

    SciTech Connect

    Shintani, E.; Aoki, S.; Kuramashi, Y.

    2008-07-01

    We have calculated the neutron electric dipole moment (EDM) in the presence of the CP violating {theta} term in lattice QCD with two-flavor dynamical clover quarks, using the external electric field method. Accumulating a large number of statistics by the averages over 16 different source points and over forward and backward nucleon propagators, we have obtained nonzero signals of neutron and proton EDM beyond 1 standard deviation at each quark mass in full QCD. We have investigated the quark mass dependence of nucleon EDM in full QCD, and have found that nucleon EDM in full QCD does not decrease toward the chiral limit, as opposed to the theoretical expectation. We briefly discuss possible reasons for this behavior.

  7. Theoretical study of the electronic structure with dipole moment calculations of barium monofluoride

    NASA Astrophysics Data System (ADS)

    Tohme, Samir N.; Korek, Mahmoud

    2015-12-01

    The potential energy curves have been investigated for the 41 lowest doublet and quartet electronic states in the 2s+1Λ± representation below 55,000 cm-1 of the molecule BaF via CASSCF and MRCI (single and double excitations with Davidson correction) calculations. Twenty-five electronic states have been studied here theoretically for the first time. The crossing and avoided crossing of 20 doublet electronic states have been studied in the region 30,000-50,000 cm-1. The harmonic frequency ωe, the internuclear distance Re, the rotational constant Be, the electronic energy with respect to the ground state Te, and the permanent and transition dipole moments have been calculated in addition to static dipole polarizability of the ground state. By using the canonical functions approach, the eigenvalue Ev, the rotational constant Bv, and the abscissas of the turning points Rmin and Rmax have been calculated for the electronic states up to the vibrational level v=98. The comparison of these values with the theoretical results available in the literature shows a very good agreement.

  8. The electric dipole moment of DNA-binding HU protein calculated by the use of an NMR database.

    PubMed

    Takashima, S; Yamaoka, K

    1999-08-30

    Electric birefringence measurements indicated the presence of a large permanent dipole moment in HU protein-DNA complex. In order to substantiate this observation, numerical computation of the dipole moment of HU protein homodimer was carried out by using NMR protein databases. The dipole moments of globular proteins have hitherto been calculated with X-ray databases and NMR data have never been used before. The advantages of NMR databases are: (a) NMR data are obtained, unlike X-ray databases, using protein solutions. Accordingly, this method eliminates the bothersome question as to the possible alteration of the protein structure due to the transition from the crystalline state to the solution state. This question is particularly important for proteins such as HU protein which has some degree of internal flexibility; (b) the three-dimensional coordinates of hydrogen atoms in protein molecules can be determined with a sufficient resolution and this enables the N-H as well as C = O bond moments to be calculated. Since the NMR database of HU protein from Bacillus stearothermophilus consists of 25 models, the surface charge as well as the core dipole moments were computed for each of these structures. The results of these calculations show that the net permanent dipole moments of HU protein homodimer is approximately 500-530 D (1 D = 3.33 x 10(-30) Cm) at pH 7.5 and 600-630 D at the isoelectric point (pH 10.5). These permanent dipole moments are unusually large for a small protein of the size of 19.5 kDa. Nevertheless, the result of numerical calculations is compatible with the electro-optical observation, confirming a very large dipole moment in this protein. PMID:10483709

  9. Calculation of joint reaction force and joint moments using by wearable walking analysis system.

    PubMed

    Adachi, Wataru; Tsujiuchi, Nobutaka; Koizumi, Takayuki; Shiojima, Kouzou; Tsuchiya, Youtaro; Inoue, Yoshio

    2012-01-01

    In gait analysis, which is one useful method for efficient physical rehabilitation, the ground reaction force, the center of pressure, and the body orientation data are measured during walking. In the past, these data were measured by a 3D motion analysis system consisting of high-speed cameras and force plates, which must be installed in the floor. However, a conventional 3D motion analysis system can measure the ground reaction force and the center of pressure just on force plates during a few steps. In addition, the subjects' stride lengths are limited because they have to walk on the center of the force plate. These problems can be resolved by converting conventional devices into wearable devices. We used a measuring device consisting of portable force plates and motion sensors. We developed a walking analysis system that calculates the ground reaction force, the center of pressure, and the body orientations and measured a walking subject to estimate this system. We simultaneously used a conventional 3D motion analysis system to compare with our development system and showed its validity for measurements of ground reaction force and the center of pressure. Moreover we calculated joint reactions and joint moment of each joint. PMID:23365940

  10. SCF and CI calculations of the dipole moment function of ozone. [Self-Consistent Field and Configuration-Interaction

    NASA Technical Reports Server (NTRS)

    Curtiss, L. A.; Langhoff, S. R.; Carney, G. D.

    1979-01-01

    The constant and linear terms in a Taylor series expansion of the dipole moment function of the ground state of ozone are calculated with Cartesian Gaussian basis sets ranging in quality from minimal to double zeta plus polarization. Results are presented at both the self-consistent field and configuration-interaction levels. Although the algebraic signs of the linear dipole moment derivatives are all established to be positive, the absolute magnitudes of these quantities, as well as the infrared intensities calculated from them, vary considerably with the level of theory.

  11. Calculation of joint moments following foot contact across two force plates.

    PubMed

    Wong, Andrew Y C; Sangeux, Morgan; Baker, Richard

    2010-02-01

    This study aimed to quantify the effect of combining the measurements from force plates when a subject's foot comes in contact with more than one force plate. A 3-Dimensional Gait Analysis (3DGA) was performed on a subject walking barefoot. Ten gait trials (good both) were captured where both subject's feet hit a single force plate. Then 20 gait trials (two force plates) were captured where either the right or left subject's foot was in contact with two force plates at a time. Kinematics were computed with VICON Plugin Gait and kinetics with a BodyLanguage (VICON, Oxford, UK) model that allowed the combination of force plate measurements. The kinetics traces from both sets of data were compared using variance component analysis. Results suggest that effects of how the moments were calculated were at most a third of those arising from stride to stride variability. This suggests that development of automated systems for determining foot contact coupled with arrays of more and smaller force plates than are commonly used might be useful to ensure the capture of good quality kinetic data in a wide range of patients. PMID:20005718

  12. Field-theory calculation of the electric dipole moment of the neutron and paramagnetic atoms

    NASA Astrophysics Data System (ADS)

    Blundell, S. A.; Griffith, J.; Sapirstein, J.

    2012-07-01

    Electric dipole moments (edms) of bound states that arise from the constituents having edms are studied with field-theoretic techniques. The systems treated are the neutron and a set of paramagnetic atoms. In the latter case it is well known that the atomic edm differs greatly from the electron edm when the internal electric fields of the atom are taken into account. In the nonrelativistic limit these fields lead to a complete suppression, but for heavy atoms large enhancement factors are present. A general bound-state field theory approach applicable to both the neutron and paramagnetic atoms is set up. It is applied first to the neutron, treating the quarks as moving freely in a confining spherical well. It is shown that the effect of internal electric fields is small in this case. The atomic problem is then revisited using field-theory techniques in place of the usual Hamiltonian methods, and the atomic enhancement factor is shown to be consistent with previous calculations. Possible application of bound-state techniques to other sources of the neutron edm is discussed.

  13. Laser-induced ultrafast demagnetization time and spin moment in ferromagnets: First-principles calculation

    SciTech Connect

    Zhang, G. P.; Si, M. S.; George, Thomas F.

    2015-05-07

    When a laser pulse excites a ferromagnet, its spin undergoes a dramatic change. The initial demagnetization process is very fast. Experimentally, it is found that the demagnetization time is related to the spin moment in the sample. In this study, we employ the first-principles method to directly simulate such a process. We use the fixed spin moment method to change the spin moment in ferromagnetic nickel, and then we employ the Liouville equation to couple the laser pulse to the system. We find that in general the dependence of demagnetization time on the spin moment is nonlinear: It decreases with the spin moment up to a point, after which an increase with the spin moment is observed, followed by a second decrease. To understand this, we employ an extended Heisenberg model, which includes both the exchange interaction and spin-orbit coupling. The model directly links the demagnetization rate to the spin moment itself and demonstrates analytically that the spin relaxes more slowly with a small spin moment. A future experimental test of our predictions is needed.

  14. Calculations of economy of 18-cylinder radial aircraft engine with exhaust-gas turbine geared to the crankshaft

    NASA Technical Reports Server (NTRS)

    Hannum, Richard W; Zimmerman, Richard H

    1945-01-01

    Calculations based on dynamometer test-stand data obtained on an 18-cylinder radial engine were made to determine the improvement in fuel consumption that can be obtained at various altitudes by gearing an exhaust-gas turbine to the engine crankshaft in order to increase the engine-shaft work.

  15. Analysis of optical properties of planar metamaterials by calculating multipole moments of their constituent meta-atoms

    SciTech Connect

    Pavlov, A A; Klimov, Vasilii V; Vladimorova, Yu V; Zadkov, Viktor N

    2013-05-31

    On the basis of calculations of multipole moments of meta-atoms forming a planar metamaterial, a new method is proposed for the quantitative determination of its optical and polarisation properties. The efficiency of the method is demonstrated by the example of a planar metamaterial consisting of H-shaped nanoparticles. (metamaterials)

  16. POLYANA-A tool for the calculation of molecular radial distribution functions based on Molecular Dynamics trajectories

    NASA Astrophysics Data System (ADS)

    Dimitroulis, Christos; Raptis, Theophanes; Raptis, Vasilios

    2015-12-01

    We present an application for the calculation of radial distribution functions for molecular centres of mass, based on trajectories generated by molecular simulation methods (Molecular Dynamics, Monte Carlo). When designing this application, the emphasis was placed on ease of use as well as ease of further development. In its current version, the program can read trajectories generated by the well-known DL_POLY package, but it can be easily extended to handle other formats. It is also very easy to 'hack' the program so it can compute intermolecular radial distribution functions for groups of interaction sites rather than whole molecules.

  17. First principles density functional calculation of magnetic moment and hyperfine fields of dilute transition metal impurities in Gd host

    NASA Astrophysics Data System (ADS)

    Mohanta, S. K.; Mishra, S. N.; Srivastava, S. K.

    2014-04-01

    We present first principles calculations of electronic structure and magnetic properties of dilute transition metal (3d, 4d and 5d) impurities in a Gd host. The calculations have been performed within the density functional theory using the full potential linearized augmented plane wave technique and the GGA+U method. The spin and orbital contributions to the magnetic moment and the hyperfine fields have been computed. We find large magnetic moments for 3d (Ti-Co), 4d (Nb-Ru) and 5d (Ta-Os) impurities with magnitudes significantly different from the values estimated from earlier mean field calculation [J. Magn. Magn. Mater. 320 (2008) e446-e449]. The exchange interaction between the impurity and host Gd moments is found to be positive for early 3d elements (Sc-V) while in all other cases an anti-ferromagnetic coupling is observed. The trends for the magnetic moment and hyperfine field of d-impurities in Gd show qualitative difference with respect to their behavior in Fe, Co and Ni. The calculated total hyperfine field, in most cases, shows excellent agreement with the experimental results. A detailed analysis of the Fermi contact hyperfine field has been made, revealing striking differences for impurities having less or more than half filled d-shell. The impurity induced perturbations in host moments and the change in the global magnetization of the unit cell have also been computed. The variation within each of the d-series is found to correlate with the d-d hybridization strength between the impurity and host atoms.

  18. Lattice calculation of the magnetic moments of {delta} and {omega}{sup -} baryons with dynamical clover fermions

    SciTech Connect

    Aubin, C.; Orginos, K.; Pascalutsa, V.; Vanderhaeghen, M.

    2009-03-01

    We calculate the magnetic dipole moment of the {delta}(1232) and {omega}{sup -} baryons with 2+1 flavors of clover fermions on anisotropic lattices using a background magnetic field. This is the first dynamical calculation of these magnetic moments using a background field technique. The calculation for {omega}{sup -} is done at the physical strange quark mass, with the result in units of the physical nuclear magneton {mu}{sub {omega}{sup -}}=-1.93{+-}0.08{+-}0.12 (where the first error is statistical and the second is systematic) compared to the experimental number: -2.02{+-}0.05. The {delta} has been studied at three unphysical quark masses, corresponding to pion mass m{sub {pi}}=366, 438, and 548 MeV. The pion mass dependence is compared with the behavior obtained from chiral effective field theory.

  19. Calculation of two-dimensional plasma sheath with application to radial dust oscillations

    SciTech Connect

    Sheridan, T.E.

    2005-07-15

    Dust particles are often confined radially in a plasma potential well above a cylindrical depression in an otherwise flat electrode. The structure of the two-dimensional, time-independent sheath is computed for this geometry using cold, collisionless ions and Boltzmann electrons. A depression with a radius of 16 Debye lengths and a depth of 2 Debye lengths is modeled for negative electrode biases from 6 to 32 times the electron temperature. The normalized radial oscillation frequency for a dust particle in the well is computed from the sheath potential structure. The model results agree qualitatively with the experimental measurements.

  20. Application of AWE for RCS Frequency Response Calculations Using Method of Moments

    NASA Technical Reports Server (NTRS)

    Reddy, C. J.; Deshpande, M. D.

    1996-01-01

    An implementation of the Asymptotic Waveform Evaluation (AWE) technique is presented for obtaining the frequency response of the Radar Cross Section (RCS) of arbitrarily shaped, three-dimensional perfect electric conductor (PEC) bodies. An Electric Field Integral Equation (EFIE) is solved using the Method of Moments (MoM) to compute the RCS. The electric current, thus obtained, is expanded in a Taylor series around the frequency of interest. The coefficients of the Taylor series (called 'moments') are obtained using the frequency derivatives of the EFIE. Using the moments, the electric current on the PEC body is obtained over a frequency band. Using the electric current at different frequencies, RCS of the PEC body is obtained over a wide frequency band. Numerical results for a square plate, a cube, and a sphere are presented over a bandwidth. A good agreement between AWE and the exact solution over the bandwidth is observed.

  1. QPNM calculation for the ground state magnetic moments of odd-mass deformed nuclei: 157-167Er isotopes

    NASA Astrophysics Data System (ADS)

    Yakut, H.; Guliyev, E.; Guner, M.; Tabar, E.; Zenginerler, Z.

    2012-08-01

    A new microscopic method has been developed in the framework of the Quasiparticle-Phonon Nuclear Model (QPNM) in order to investigate spin polarization effects on the magnetic properties such as magnetic moment, intrinsic magnetic moment and effective gs factor of the ground state of odd-mass 157-167Er isotopes. The calculations were performed using both Tamm-Dancoff Approximation (TDA) and Quasiparticle Random-Phase Approximation (QRPA). Reasonably good agreement has been obtained between the QRPA results and the relevant experimental data. Furthermore the variation of the intrinsic magnetic moment gK values with the mass number A exhibits similar behavior for both theoretical and experimental results. From the compression of the calculated intrinsic magnetic moment values with the experimental data the spin-spin interaction parameter has been found as χ=(30/A) MeV for odd-mass 157-167Er isotopes. Our results clarify the possibility of using this new method to describe the magnetic properties of odd-mass deformed nuclei.

  2. Sensitivity of temporal moments calculated by the adjoint-state method and joint inversing of head and tracer data

    NASA Astrophysics Data System (ADS)

    Cirpka, Olaf A.; Kitanidis, Peter K.

    Including tracer data into geostatistically based methods of inverse modeling is computationally very costly when all concentration measurements are used and the sensitivities of many observations are calculated by the direct differentiation approach. Harvey and Gorelick (Water Resour Res 1995;31(7):1615-26) have suggested the use of the first temporal moment instead of the complete concentration record at a point. We derive a computationally efficient adjoint-state method for the sensitivities of the temporal moments that require the solution of the steady-state flow equation and two steady-state transport equations for the forward problem and the same number of equations for each first-moment measurement. The efficiency of the method makes it feasible to evaluate the sensitivity matrix many times in large domains. We incorporate our approach for the calculation of sensitivities in the quasi-linear geostatistical method of inversing ("iterative cokriging"). The application to an artificial example of a tracer introduced into an injection well shows good convergence behavior when both head and first-moment data are used for inversing, whereas inversing of arrival times alone is less stable.

  3. Calculation of Moments from Measurements by the Los Alamos Magnetospheric Plasma Analyzer

    SciTech Connect

    M. F. Thomsen; E. Noveroske; J. E. Borovsky; D. J. McComas

    1999-05-01

    The various steps involved in computing the moments (density, velocity, and temperature) of the ion and electron distributions measured with the Los Alamos Magnetospheric Plasma Analyzer (MPA) are described. The assumptions, constants, and algorithms contained in the FORTRAN code are presented, as well as the output parameters produced by the code.

  4. Calculation of dynamic electric dipole polarizability, nuclear electric shieldings, and their Cauchy moments in benzene

    NASA Astrophysics Data System (ADS)

    Lazzeretti, P.; Malagoli, M.; Turci, L.; Zanasi, R.

    1993-10-01

    Theoretical methods based on the random-phase approximation have been applied to evaluate near Hartree-Fock dynamic electric polarizability and shielding tensors of carbon and hydrogen nuclei in the benzene molecule. Cauchy moments of the various properties have been determined. The results obtained in different gauges (dipole length, velocity, and acceleration) are reported.

  5. Calculation of the first four moments of electronic energy loss of protons in insulators

    NASA Astrophysics Data System (ADS)

    Biersack, J. P.

    2000-05-01

    A novel scheme is presented for obtaining energy loss distributions for protons slowing-down in metals and bandgap materials. This scheme is here applied mainly to compare electronic energy loss distributions at low velocities, where the bandgap is most effective (projectile velocity less than Fermi velocity, vmoments Mn, n=1,…,4, change proportionally to the nth power of projectile velocity, Wn=dMn/dx=Cn∗vn, in metals (no band gap), and they are due to the energy transfers to conduction electrons only. In bandgap materials, the smallest energy transfers cannot occur, and all energy loss moments Wn are thus reduced. Only at velocities near the Fermi velocity, the valence electrons reach nearly the same level as the conduction electrons in a metal, and at this velocity also the inner shell electrons begin to contribute, so that the stopping power (the first moment of energy loss) reaches its maximum above vF. At higher velocities, we find that the moments Mn increase proportionally to the (n-2)th power of projectile energy, Wn=dMn/dx=Cn∗En-2,n>1. The stopping power (n=1, first moment of energy loss) comes very close to the predictions of Bethe or Bloch. At low velocities, all energy transfers are reduced considerably by the presence of a bandgap, and differ greatly from metals. Despite of using some simplifications, the results obtained for lithium metal and for the bandgap material diamond agree quite well with recent experimental findings.

  6. Special methods for aerodynamic-moment calculations from parachute FSI modeling

    NASA Astrophysics Data System (ADS)

    Takizawa, Kenji; Tezduyar, Tayfun E.; Boswell, Cody; Tsutsui, Yuki; Montel, Kenneth

    2015-06-01

    The space-time fluid-structure interaction (STFSI) methods for 3D parachute modeling are now at a level where they can bring reliable, practical analysis to some of the most complex parachute systems, such as spacecraft parachutes. The methods include the Deforming-Spatial-Domain/Stabilized ST method as the core computational technology, and a good number of special FSI methods targeting parachutes. Evaluating the stability characteristics of a parachute based on how the aerodynamic moment varies as a function of the angle of attack is one of the practical analyses that reliable parachute FSI modeling can deliver. We describe the special FSI methods we developed for this specific purpose and present the aerodynamic-moment data obtained from FSI modeling of NASA Orion spacecraft parachutes and Japan Aerospace Exploration Agency (JAXA) subscale parachutes.

  7. Ab initio calculation of accurate dissociation energy, potential energy curve and dipole moment function for the A1Σ+ state 7LiH molecule

    NASA Astrophysics Data System (ADS)

    Shi, De-Heng; Liu, Yu-Fang; Sun, Jin-Feng; Yang, Xiang-Dong; Zhu, Zun-Lue

    2006-05-01

    The reasonable dissociation limit of the A1Σ+ state 7LiH molecule is obtained. The accurate dissociation energy and the equilibrium geometry of this state are calculated using a symmetry-adapted-cluster configuration-interaction method in complete active space for the first time. The whole potential energy curve and the dipole moment function for the A1Σ+ state are calculated over a wide internuclear separation range from about 0.1 to 1.4 nm. The calculated equilibrium geometry and dissociation energy of this potential energy curve are of Re=0.2487 nm and De=1.064 eV, respectively. The unusual negative values of the anharmonicity constant and the vibration-rotational coupling constant are of ωeχe=-4.7158cm-1 and αe=-0.08649cm-1, respectively. The vertical excitation energy from the ground to the A1Σ+ state is calculated and the value is of 3.613 eV at 0.15875 nm (the equilibrium position of the ground state). The highly anomalous shape of this potential energy curve, which is exceptionally flat over a wide radial range around the equilibrium position, is discussed in detail. The harmonic frequency value of 502.47cm-1 about this state is approximately estimated. Careful comparison of the theoretical determinations with those obtained by previous theories about the A1Σ+ state dissociation energy clearly shows that the present calculations are much closer to the experiments than previous theories, thus represents an improvement.

  8. Quantum Monte Carlo calculations of magnetic moments and M1 transitions in A{<=}7 nuclei including meson-exchange currents

    SciTech Connect

    Marcucci, L. E.; Pervin, Muslema; Pieper, Steven C.; Wiringa, R. B.; Schiavilla, R.

    2008-12-15

    Green's function Monte Carlo calculations of magnetic moments and M1 transitions including two-body meson-exchange current (MEC) contributions are reported for A{<=}7 nuclei. The realistic Argonne v{sub 18} two-nucleon and Illinois-2 three-nucleon potentials are used to generate the nuclear wave functions. The two-body meson-exchange operators are constructed to satisfy the continuity equation with the Argonne v{sub 18} potential. The MEC contributions increase the A=3,7 isovector magnetic moments by 16% and the A=6,7 M1 transition rates by 17-34%, bringing them into very good agreement with the experimental data.

  9. Evaluation of Several Approximate Methods for Calculating the Symmetrical Bending-Moment Response of Flexible Airplanes to Isotropic Atmospheric Turbulence

    NASA Technical Reports Server (NTRS)

    Bennett, Floyd V.; Yntema, Robert T.

    1959-01-01

    Several approximate procedures for calculating the bending-moment response of flexible airplanes to continuous isotropic turbulence are presented and evaluated. The modal methods (the mode-displacement and force-summation methods) and a matrix method (segmented-wing method) are considered. These approximate procedures are applied to a simplified airplane for which an exact solution to the equation of motion can be obtained. The simplified airplane consists of a uniform beam with a concentrated fuselage mass at the center. Airplane motions are limited to vertical rigid-body translation and symmetrical wing bending deflections. Output power spectra of wing bending moments based on the exact transfer-function solutions are used as a basis for the evaluation of the approximate methods. It is shown that the force-summation and the matrix methods give satisfactory accuracy and that the mode-displacement method gives unsatisfactory accuracy.

  10. First- and second-order elliptic conditional moment closure calculations of piloted methane diffusion flames

    SciTech Connect

    Fairweather, M.; Woolley, R.M.

    2007-07-15

    Presented are results obtained from the application of a first- and higher-order conditional moment closure (CMC) approach to the modeling of three methane diffusion flames at differing levels of local extinction. In addition to the analysis of higher-order chemistry applications, the results obtained from an elliptic formulation of the CMC equation are considered next to parabolic results presented in previous work. All predictions are based upon second-moment turbulence and scalar-flux closures, and the chemistry applied to represent mean production rates of species is a 16-step reduced mechanism. A second-order chemistry is implemented on the basis of a two-step kinetic representation of methane combustion, used to correct first-order rates. In general, predictions obtained using the second-order model improve significantly upon first-order results for both major and minor species under fuel-rich conditions. The simplified chemistry employed does not however fully capture the effects of local extinction, and suggestions are made regarding the further developments required to permit the accurate prediction of highly strained flames using CMC methods. (author)

  11. Application of Model Based Parameter Estimation for RCS Frequency Response Calculations Using Method of Moments

    NASA Technical Reports Server (NTRS)

    Reddy, C. J.

    1998-01-01

    An implementation of the Model Based Parameter Estimation (MBPE) technique is presented for obtaining the frequency response of the Radar Cross Section (RCS) of arbitrarily shaped, three-dimensional perfect electric conductor (PEC) bodies. An Electric Field Integral Equation (EFTE) is solved using the Method of Moments (MoM) to compute the RCS. The electric current is expanded in a rational function and the coefficients of the rational function are obtained using the frequency derivatives of the EFIE. Using the rational function, the electric current on the PEC body is obtained over a frequency band. Using the electric current at different frequencies, RCS of the PEC body is obtained over a wide frequency band. Numerical results for a square plate, a cube, and a sphere are presented over a bandwidth. Good agreement between MBPE and the exact solution over the bandwidth is observed.

  12. Wettability of bare and fluorinated silanes: a combined approach based on surface free energy evaluations and dipole moment calculations.

    PubMed

    Cappelletti, G; Ardizzone, S; Meroni, D; Soliveri, G; Ceotto, M; Biaggi, C; Benaglia, M; Raimondi, L

    2013-01-01

    The assessment of the surface free energy (SFE) of a material permits to control and predict a large number of physicochemical properties of a solid surface and its reactivity. Here, the surface energies of a series of bare and fluorinated silanes are determined by means of different semi-empirical models on the grounds of contact angle determinations for different solvents. Literature data are also considered in order to produce a series of films with increasing SFE. Wetting envelopes (WE) are obtained for the various surfaces in order to predict the wettability of the films by numerous commonly employed solvents. The polar and disperse components of the surface energies are obtained by the Owens-Wendt-Rabel-Kaelbe (OWRK) method; the values of the polar components are compared with gas-phase dipole moments obtained by theoretical calculations employing semi-empirical Hamiltonians. The sequences of the polar components of the SFE and of the calculated dipole moments for the different molecules are strictly the same. The interplay between theoretical and experimental approaches proves efficient in predicting the behavior of different systems and it could be employed in tuning the SFE of a solid surface with respect to its final applications. PMID:23041024

  13. Calculation and fitting of boundaries between elliptic and hyperbolic singularities of pyramid-type control moment gyros

    NASA Astrophysics Data System (ADS)

    Kojima, Hirohisa

    2014-11-01

    There exists a singularity problem in control moment gyros (CMGs). CMG singularities are classified into two types: hyperbolic and elliptic. Several gimbal steering control methods have been presented to avoid CMG singularities. Hyperbolic singularities can be avoided by null motion, but elliptic singularities cannot. The existing steering control methods are rarely designed by explicitly taking the singularity type into account. In order to effectively avoid elliptic singularities by perturbing gimbal angles, it is desirable to calculate and record the boundaries between elliptic and hyperbolic singularities in advance so that the determined boundaries can be utilized for developing model predictive steering control. To this end, the boundaries between elliptic and hyperbolic singularities of CMGs are calculated and represented in the form of fitted curves. Several numerical examples are presented to determine the perturbation gimbal angles for avoiding elliptic singularities without using singular value decomposition.

  14. Quantum calculations of the IR spectrum of liquid water using ab initio and model potential and dipole moment surfaces and comparison with experiment

    SciTech Connect

    Liu, Hanchao; Wang, Yimin; Bowman, Joel M.

    2015-05-21

    The calculation and characterization of the IR spectrum of liquid water have remained a challenge for theory. In this paper, we address this challenge using a combination of ab initio approaches, namely, a quantum treatment of IR spectrum using the ab initio WHBB water potential energy surface and a refined ab initio dipole moment surface. The quantum treatment is based on the embedded local monomer method, in which the three intramolecular modes of each embedded H{sub 2}O monomer are fully coupled and also coupled singly to each of six intermolecular modes. The new dipole moment surface consists of a previous spectroscopically accurate 1-body dipole moment surface and a newly fitted ab initio intrinsic 2-body dipole moment. A detailed analysis of the new dipole moment surface in terms of the coordinate dependence of the effective atomic charges is done along with tests of it for the water dimer and prism hexamer double-harmonic spectra against direct ab initio calculations. The liquid configurations are taken from previous molecular dynamics calculations of Skinner and co-workers, using the TIP4P plus E3B rigid monomer water potential. The IR spectrum of water at 300 K in the range of 0–4000 cm{sup −1} is calculated and compared with experiment, using the ab initio WHBB potential and new ab initio dipole moment, the q-TIP4P/F potential, which has a fixed-charged description of the dipole moment, and the TTM3-F potential and dipole moment surfaces. The newly calculated ab initio spectrum is in very good agreement with experiment throughout the above spectral range, both in band positions and intensities. This contrasts to results with the other potentials and dipole moments, especially the fixed-charge q-TIP4P/F model, which gives unrealistic intensities. The calculated ab initio spectrum is analyzed by examining the contribution of various transitions to each band.

  15. Quantum calculations of the IR spectrum of liquid water using ab initio and model potential and dipole moment surfaces and comparison with experiment

    NASA Astrophysics Data System (ADS)

    Liu, Hanchao; Wang, Yimin; Bowman, Joel M.

    2015-05-01

    The calculation and characterization of the IR spectrum of liquid water have remained a challenge for theory. In this paper, we address this challenge using a combination of ab initio approaches, namely, a quantum treatment of IR spectrum using the ab initio WHBB water potential energy surface and a refined ab initio dipole moment surface. The quantum treatment is based on the embedded local monomer method, in which the three intramolecular modes of each embedded H2O monomer are fully coupled and also coupled singly to each of six intermolecular modes. The new dipole moment surface consists of a previous spectroscopically accurate 1-body dipole moment surface and a newly fitted ab initio intrinsic 2-body dipole moment. A detailed analysis of the new dipole moment surface in terms of the coordinate dependence of the effective atomic charges is done along with tests of it for the water dimer and prism hexamer double-harmonic spectra against direct ab initio calculations. The liquid configurations are taken from previous molecular dynamics calculations of Skinner and co-workers, using the TIP4P plus E3B rigid monomer water potential. The IR spectrum of water at 300 K in the range of 0-4000 cm-1 is calculated and compared with experiment, using the ab initio WHBB potential and new ab initio dipole moment, the q-TIP4P/F potential, which has a fixed-charged description of the dipole moment, and the TTM3-F potential and dipole moment surfaces. The newly calculated ab initio spectrum is in very good agreement with experiment throughout the above spectral range, both in band positions and intensities. This contrasts to results with the other potentials and dipole moments, especially the fixed-charge q-TIP4P/F model, which gives unrealistic intensities. The calculated ab initio spectrum is analyzed by examining the contribution of various transitions to each band.

  16. First-principle electronic structure calculations for magnetic moment in iron-based superconductors: An LSDA + negative U study

    NASA Astrophysics Data System (ADS)

    Nakamura, H.; Hayashi, N.; Nakai, N.; Okumura, M.; Machida, M.

    2009-10-01

    In order to resolve a discrepancy of the magnetic moment on Fe between the experimental and calculation results, we perform first-principle electronic structure calculations for iron-based superconductors LaFeAsO1-x and LiFeAs also show similar SDW. So far, the first-principle calculations on LaFeAsO actually predicted the SDW state as a ground state. However, the predicted magnetic moment (∼2 μB) per an Fe atom is much larger than the observed one (∼0.35 μB) in experiments [2,4]. The authors suggested that the discrepancy can be resolved by expanding U into a negative U range within LSDA + U framework. In this paper, we revisit the discrepancy and clarify why the negative correction is essential in these compounds. See Ref. [5] for the details of calculation data by LSDA + negative U. In the first-principle calculation on compounds including transition metals, the total energy is frequently corrected by “LSDA + U” approach. The parameter U is theoretically re-expressed as U(≡U-J), where U is the on-site Coulomb repulsion (Hubbard U) and J is the atomic-orbital intra-exchange energy (Hund’s coupling parameter) [6]. The parameter U employed in the electronic structure calculations is usually positive. The positivity promotes the localized character of d-electrons and enhances the magnetic moment in the cases of magnetically ordered compounds. Normally, this positive correction successfully works. In choosing the parameter, one can principally extend the parameter U range to a negative region. The negative case [7] is not popular, but it can occur in the following two cases [8]: (i) the Hubbard U becomes negative and (ii) the intra-exchange J is effectively larger than the Hubbard U. The case (i) has been suggested by many authors based on various theoretical considerations. Here, we note that U should be estimated once screening effects on the long-range Coulomb interaction are taken into account. In fact, small U has been reported [9]. Thus, when the

  17. Experimental measurement and calculation of losses in planar radial magnetic bearings

    NASA Technical Reports Server (NTRS)

    Kasarda, M. E. F.; Allaire, P. E.; Hope, R. W.; Humphris, R. R.

    1994-01-01

    The loss mechanisms associated with magnetic bearings have yet to be adequately characterized or modeled analytically and thus pose a problem for the designer of magnetic bearings. This problem is particularly important for aerospace applications where low power consumption of components is critical. Also, losses are expected to be large for high speed operation. The iron losses in magnetic bearings can be divided into eddy current losses and hysteresis losses. While theoretical models for these losses exist for transformer and electric motor applications, they have not been verified for magnetic bearings. This paper presents the results from a low speed experimental test rig and compares them to calculated values from existing theory. Experimental data was taken over a range of 90 to 2,800 rpm for several bias currents and two different pole configurations. With certain assumptions agreement between measured and calculated power losses was within 16 percent for a number of test configurations.

  18. Calculation of electric multipole transition radial matrix elements, oscillator strengths and Einstein coefficients over nonrelativistic radial wave function using Slater type orbitals

    NASA Astrophysics Data System (ADS)

    Guseinov, I. I.; Mamedov, B. A.

    2011-04-01

    In this study, a new method is proposed for evaluating electric multipole transition (radial) matrix elements of the generalized type Hnl,n'l'k in hydrogenic atom and ions using the Slater type orbitals (STOs). The formula obtained allows the determination of all multipole transition matrix elements between two different nonrelativistic radial wave functions Rnl and R. A comparative study carried out between the results of analytical computations and other numerical simulations shows that the methods agree well and emphasizing thus the effectiveness and accuracy of the proposed analytical expressions. The simple equation thus obtained has been found to be remarkable accurate and has shown a wide range of applicability.

  19. Use of radial symmetry for the calculation of cylindrical absorption coefficients and optimal capillary loadings

    SciTech Connect

    Khalifah, Peter

    2015-02-01

    The problem of numerically evaluating absorption correction factors for cylindrical samples has been revisited using a treatment that fully takes advantage of the sample symmetry. It is shown that the path lengths for all points within the sample at all possible diffraction angles can be trivially determined once the angle-dependent distance distribution for a single line of points is calculated. This provides advantages in both computational efficiency and in gaining an intuitive understanding of the effects of absorption on diffraction data. A matrix of absorption coefficients calculated for µR products between 0 and 20 for diffraction angles θD of 0° to 90° were used to examine the influence of (1) capillary diameter and of (2) sample density on the overall scattered intensity as a function of diffraction angle, where µ is the linear absorption coefficient for the sample and R is the capillary radius. Based on this analysis, the optimal sample loading for a capillary experiment to maximize diffraction at angles of 0 – 50° is in general expected to be achieved when the maximum radius capillary compatible with the beam is used, and when the sample density is adjusted to be 3/(4µR) of its original density.

  20. Use of radial symmetry for the calculation of cylindrical absorption coefficients and optimal capillary loadings

    DOE PAGESBeta

    Khalifah, Peter

    2015-02-01

    The problem of numerically evaluating absorption correction factors for cylindrical samples has been revisited using a treatment that fully takes advantage of the sample symmetry. It is shown that the path lengths for all points within the sample at all possible diffraction angles can be trivially determined once the angle-dependent distance distribution for a single line of points is calculated. This provides advantages in both computational efficiency and in gaining an intuitive understanding of the effects of absorption on diffraction data. A matrix of absorption coefficients calculated for µR products between 0 and 20 for diffraction angles θD of 0°more » to 90° were used to examine the influence of (1) capillary diameter and of (2) sample density on the overall scattered intensity as a function of diffraction angle, where µ is the linear absorption coefficient for the sample and R is the capillary radius. Based on this analysis, the optimal sample loading for a capillary experiment to maximize diffraction at angles of 0 – 50° is in general expected to be achieved when the maximum radius capillary compatible with the beam is used, and when the sample density is adjusted to be 3/(4µR) of its original density.« less

  1. Supersonic and Moment-of-Area Rules Combined for Rapid Zero-Lift Wave-Drag Calculations

    NASA Technical Reports Server (NTRS)

    Levy, Lionel L., Jr.

    1959-01-01

    The concepts of the supersonic area rule and the moment-of-area rule are combined to develop a new method for calculating zero-lift wave drag which is amenable to the use of ordinary desk calculators. The total zero-lift wave drag of a configuration is calculated by the new method as the sum of the wave drag of each component alone plus the interference between components. In calculating the separate contributions each component or pair of components is analyzed over the smallest allowable length in order to improve the convergence of the series expression for the wave drag. The accuracy of the present method is evaluated by comparing the total zero-lift wave-drag solutions for several simplified configurations obtained by the present method with solutions given by slender-body and linearized theory. The accuracy and computational time required by the present method are also evaluated relative to the supersonic area rule and the moment-of-area rule. The results of the evaluation indicate that total zero-lift wave-drag solutions for simplified configurations can be obtained by the present method which differ from solutions given by slender-body and linearized theory by less than 6 percent. This accuracy for simplified configurations was obtained from only nine terms of the series expression for the wave drag as a result of calculating the total zero-lift wave drag by parts. For the same number of terms these results represent an accuracy greater than that for solutions obtained by either of the two methods upon which the present method is based, except in a few isolated cases. For the excepted cases, solutions by the present method and the supersonic area rule are identical. Solutions by the present method are obtained in one fifth the computing time required by the supersonic area rule. This difference in computing time of course would be substantially reduced if the complete procedures for both methods were programmed on electronic computing machines.

  2. Modeling of nanosecond-laser ablation: calculations based on a nonstationary averaging technique (spatial moments)

    NASA Astrophysics Data System (ADS)

    Arnold, N. D.; Luk'yanchuk, Boris S.; Bityurin, Nikita M.; Baeuerle, D.

    1998-09-01

    dependence in (alpha) g (T). Small vaporization enthalpy results in a sub-linear h((phi) ) dependence, which, nevertheless, remains faster than logarithmic. With weakly absorbing materials ablation may proceed in two significantly different regimes -- without or with ablation of the heated subsurface layer. The latter occurs at higher fluences and reveals significantly higher ablation temperatures, but is weakly reflected on the ablation curves. Calculations are performed in order to study the: (1) Influence of the duration and temporal profile of the laser pulse on the threshold fluence, (phi) th. This is particularly important for strong absorbers were the heat conduction determines the temperature distribution. (2) Influence of the temperature dependences in material parameters on the ablation curves (ablated depth versus laser fluence) for regimes (phi) approximately equals (phi) th and (phi) very much greater than (phi) th. (3) Consequences of shielding of the incoming radiation at high fluences. (4) Differences in ablation curves for materials with big and small ablation enthalpy (e.g., metals and polymers which ablate differences in ablation curves for materials with big and small ablation enthalpy (e.g., metals and polymers which ablate thermally). Nanosecond laser ablation has been studied for a large variety of different materials and laser wavelengths. As an illustrative example, the method is applied to the quantitative anlaysis of the single pulse ablation of polyimide Kapton TM H.

  3. High-Accuracy Calculation of cu Electric-Field Gradients: a Revision of the cu Nuclear Quadrupole Moment Value

    NASA Astrophysics Data System (ADS)

    Cheng, Lan; Matthews, Devin A.; Gauss, Jürgen; Stanton, John F.

    2015-06-01

    A revision of the value for the Cu nuclear quadrupole moment (NQM) is reported based on high-accuracy ab initio calculations on the Cu electric field gradients in the CuF and CuCl molecules. Electron-correlation effects have systematically been taken into account using a hierarchy of coupled-cluster methods including up to quadruple excitations. It is shown that the CCSD(T)_Λ method provides a more reliable treatment of triples corrections for Cu electric-field gradients than the ubiquitously applied CCSD(T) method, which is tentatively attributed to the importance of the wavefunction relaxation in the calculations of a core property. Augmenting large-basis-set CCSD(T)_Λ results with the remaining corrections obtained using additive schemes, including full triples contributions, quadruples contributions, zero-point vibrational corrections, spin-orbit corrections, as well as the correction from the Gaunt term, a new value of 209.7(50) mbarn for the Cu NQM has been obtained. The new value substantially reduces the uncertainty of this parameter in comparison to the standard value of 220(15) mbarn obtained from a previous muonic experiment.

  4. Finite-temperature elastic constants of paramagnetic materials within the disordered local moment picture from ab initio molecular dynamics calculations

    NASA Astrophysics Data System (ADS)

    Mozafari, E.; Shulumba, N.; Steneteg, P.; Alling, B.; Abrikosov, Igor A.

    2016-08-01

    We present a theoretical scheme to calculate the elastic constants of magnetic materials in the high-temperature paramagnetic state. Our approach is based on a combination of disordered local moments picture and ab initio molecular dynamics (DLM-MD). Moreover, we investigate a possibility to enhance the efficiency of the simulations of elastic properties using the recently introduced method: symmetry imposed force constant temperature-dependent effective potential (SIFC-TDEP). We have chosen cubic paramagnetic CrN as a model system. This is done due to its technological importance and its demonstrated strong coupling between magnetic and lattice degrees of freedom. We have studied the temperature-dependent single-crystal and polycrystalline elastic constants of paramagentic CrN up to 1200 K. The obtained results at T = 300 K agree well with the experimental values of polycrystalline elastic constants as well as the Poisson ratio at room temperature. We observe that the Young's modulus is strongly dependent on temperature, decreasing by ˜14 % from T = 300 K to 1200 K. In addition we have studied the elastic anisotropy of CrN as a function of temperature and we observe that CrN becomes substantially more isotropic as the temperature increases. We demonstrate that the use of Birch law may lead to substantial errors for calculations of temperature induced changes of elastic moduli. The proposed methodology can be used for accurate predictions of mechanical properties of magnetic materials at temperatures above their magnetic order-disorder phase transition.

  5. A variational method for the calculation of dynamic polarizabilities and two-photon transition moments - The dressed molecule approach

    NASA Technical Reports Server (NTRS)

    Huo, W. M.

    1984-01-01

    The solution of the time-dependent Schroedinger equation of the molecule + radiation field system is analyzed. A quantized radiation field is used. The relationship between the oscillatory wave function and the dressed state wave function is established, the oscillatory wave function being the solution if the radiation field is turned on at t = 0 and the dressed state being the stationary solution satisfying the boundary condition only if the field is present at t = negative infinity. In general, the oscillatory wave function can be expressed using a complete set of dressed states. However, in the presence of a nonresonant radiation field, the system is well represented by a single dressed state. Molecular properties such as dynamic polarizabilities and two-photon transition moments can be deduced from the dressed state wave function instead of the oscillatory wave function as in previous methods. Because of its stationary character, the dressed state is more amenable to approximate calculations. A CI method is developed for this purpose. The CI matrix is simple in form and can be readily constructed using existing computer codes. The present method can also be adapted to calculate other optical properties.

  6. Calculating the hadronic vacuum polarization and leading hadronic contribution to the muon anomalous magnetic moment with improved staggered quarks

    SciTech Connect

    Aubin, C.; Blum, T.

    2007-06-01

    We present a lattice calculation of the hadronic vacuum polarization and the lowest order hadronic contribution (HLO) to the muon anomalous magnetic moment, a{sub {mu}}=(g-2)/2, using 2+1 flavors of improved staggered fermions. A precise fit to the low-q{sup 2} region of the vacuum polarization is necessary to accurately extract the muon g-2. To obtain this fit, we use staggered chiral perturbation theory, including a model to incorporate the vector particles as resonances, and compare these to polynomial fits to the lattice data. We discuss the fit results and associated systematic uncertainties, paying particular attention to the relative contributions of the pions and vector mesons. Using a single lattice spacing ensemble generated by the MILC Collaboration (a=0.086 fm), light quark masses as small as roughly one-tenth the strange quark mass, and volumes as large as (3.4 fm){sup 3}, we find a{sub {mu}}{sup HLO}=(713{+-}15)x10{sup -10} and (748{+-}21)x10{sup -10} where the error is statistical only and the two values correspond to linear and quadratic extrapolations in the light quark mass, respectively. Considering various systematic uncertainties not eliminated in this study (including a model of vector resonances used to fit the lattice data and the omission of disconnected quark contractions in the vector-vector correlation function), we view this as agreement with the current best calculations using the experimental cross section for e{sup +}e{sup -} annihilation to hadrons (692.4{+-}5.9{+-}2.4)x10{sup -10}, and including the experimental decay rate of the tau lepton to hadrons (711.0{+-}5.0{+-}0.8{+-}2.8)x10{sup -10}. We discuss several ways to improve the current lattice calculation.

  7. An optimized method for tremor detection and temporal tracking through repeated second order moment calculations on the surface EMG signal.

    PubMed

    De Marchis, Cristiano; Schmid, Maurizio; Conforto, Silvia

    2012-11-01

    In this study, the problem of detecting and tracking tremor from the surface myoelectric signal is addressed. A method based on the calculation of a Second Order Moment Function (SOMF) inside a window W sliding over the sEMG signal is here presented. An analytical formulation of the detector allows the extraction of the optimal parameters characterizing the algorithm. Performance of the optimized method is assessed on a set of synthetic tremor sEMG signals in terms of sensitivity, precision and accuracy through the use of a properly defined cost function able to explain the overall detector performance. The obtained results are compared to those emerging from the application of optimized versions of traditional detection techniques. Once tested on a database of synthetic tremor sEMG data, a quantitative assessment of the SOMF algorithm performance is carried out on experimental tremor sEMG signals recorded from two patients affected by Essential Tremor and from two patients affected by Parkinson's Disease. The SOMF algorithm outperforms the traditional techniques both in detecting (sensitivity and positive predictive value >99% for SNR higher than 3dB) and in estimating timings of muscular tremor bursts (bias and standard deviation on the estimation of the onset and offset time instants lower than 8ms). Its independence from the SNR level and its low computational cost make it suitable for real-time implementation and clinical use. PMID:22257701

  8. Method for calculating the rolling and yawing moments due to rolling for unswept wings with or without flaps or ailerons by use of nonlinear section lift data

    NASA Technical Reports Server (NTRS)

    Martina, Albert P

    1954-01-01

    The methods of NACA reports 865 and 1090 have been applied to the calculation of the rolling-moment and yawing-moment coefficients due to rolling for unswept wings with or without flaps or ailerons. The methods are based on lifting-line theory and allow the use of nonlinear section lift data. The method presented in this report permits calculations to be made somewhat beyond maximum lift for wings having no twist or continuous twist and employing airfoil sections which do not display large discontinuities in the lift curves. Calculations can be made up to maximum lift for wings with discontinuous twist such as that produced by partial-span flaps or ailerons, or both. Two calculated examples are presented in simplified computing forms in order to illustrate the procedures involve.

  9. Method for calculating the rolling and yawing moments due to rolling for unswept wings with or without flaps or ailerons by use of nonlinear section lift data

    NASA Technical Reports Server (NTRS)

    Martina, Albert P

    1953-01-01

    The methods of NACA Reports 865 and 1090 have been applied to the calculation of the rolling- and yawing-moment coefficients due to rolling for unswept wings with or without flaps or ailerons. The methods allow the use of nonlinear section lift data together with lifting-line theory. Two calculated examples are presented in simplified computing forms in order to illustrate the procedures involved.

  10. Calculation of the hadron contribution from light-by-light scattering to the anomalous (g-2)μ muon magnetic moment for a nonlocal quark model

    NASA Astrophysics Data System (ADS)

    Zhevlakov, A. S.; Radzhabov, A. E.; Dorokhov, A. E.

    2010-11-01

    The muon contribution to the anomalous magnetic moment from light-by-light scattering diagrams with pion participation is calculated for a nonlocal chiral quark model. For various nonlocal model parameterizations, the contribution makes a μ Had,LbL = 5.1(0.2) 10-10. Later on, we plan to calculate contributions from diagrams with an intermediate scalar meson and quark boxing.

  11. Quantum Monte Carlo calculations of magnetic moments and M1 transitions in $A\\leq7$ nuclei including meson-exchange currents

    SciTech Connect

    Marcucci, Laura; Pervin, Muslema; Pieper, Steven; Schiavilla, Rocco; Wiringa, Robert

    2008-12-01

    Green's function Monte Carlo calculations of magnetic moments and $M1$ transitions including two-body meson-exchange current (MEC) contributions are reported for $A\\leq7$ nuclei. The realistic Argonne $v_{18}$ two-nucleon and Illinois-2 three-nucleon potentials are used to generate the nuclear wave functions. The two-body meson-exchange operators are constructed to satisfy the continuity equation with the Argonne $v_{18}$ potential. The MEC contributions increase the $A$=3,7 isovector magnetic moments by 16\\% and the $A$=6,7 transition rates by 17--34\\%, bringing them into very good agreement with the experimental data.

  12. Quantum Monte Carlo calculations of electromagnetic moments and transitions in A{<=}9 nuclei including meson-exchange currents derived from chiral effective field theory

    SciTech Connect

    Saori Pastore, S.C. Pieper, Rocco Schiavilla, Robert Wiringa

    2013-03-01

    Quantum Monte Carlo calculations of electromagnetic moments and transitions are reported for A{<=}9 nuclei. The realistic Argonne v{sub 18} two-nucleon and Illinois-7 three-nucleon potentials are used to generate the nuclear wave functions. Contributions of two-body meson-exchange current (MEC) operators are included for magnetic moments and M1 transitions. The MEC operators have been derived in both a standard nuclear physics approach and a chiral effective field theory formulation with pions and nucleons including up to one-loop corrections. The two-body MEC contributions provide significant corrections and lead to very good agreement with experiment. Their effect is particularly pronounced in the A=9, T=3/2 systems, in which they provide up to ~20% (~40%) of the total predicted value for the {sup 9}Li ({sup 9}C) magnetic moment.

  13. Solvents level dipole moments.

    PubMed

    Liang, Wenkel; Li, Xiaosong; Dalton, Larry R; Robinson, Bruce H; Eichinger, Bruce E

    2011-11-01

    The dipole moments of highly polar molecules measured in solution are usually smaller than the molecular dipole moments that are calculated with reaction field methods, whereas vacuum values are routinely calculated in good agreement with available vapor phase data. Whether from Onsager's theory (or variations thereof) or from quantum mechanical methods, the calculated molecular dipoles in solution are found to be larger than those measured. The reason, of course, is that experiments measure the net dipole moment of solute together with the polarized (perturbed) solvent "cloud" surrounding it. Here we show that the reaction field charges that are generated in the quantum mechanical self-consistent reaction field (SCRF) method give a good estimate of the net dipole moment of the solute molecule together with the moment arising from the reaction field charges. This net dipole is a better description of experimental data than the vacuum dipole moment and certainly better than the bare dipole moment of the polarized solute molecule. PMID:21923185

  14. Analytical and numerical calculation of the second-order moment of the beam using a capacitive pickup

    NASA Astrophysics Data System (ADS)

    Tsemo Kamga, Joel Alain; Müller, Wolfgang F. O.; Weiland, Thomas

    2016-04-01

    Beam emittance has particular importance in particle physics, because it provides information about the quality of the particle beam. There are many techniques for measuring the beam emittance, such as that proposed by Miller et al. [Report No. SLAC-PUB-3186, (A) (1983)]. This technique is based on determining the emittance by measuring the second-order moment of the beam using quadrupole pickups consisting of four symmetrical electrodes placed around the beam pipe at 90° intervals, respectively. Based on Miller's approach, two signal processing methods are generally used to get the quadrupole moment of the beam, namely the difference over sum and the log ratio [P. Li et al., IEEE Nuclear Science Symposium Conference Record, N24-404, 2007, pp. 1675-1678] methods. However, these traditional methods provide results with a good accuracy only for a well centered beam. The method presented in this paper, which starts with Miller's approach, considerably reduces the impact of the dipole signal on the quadrupole moment measurement for both small and large values of the beam position. Furthermore, a methodology for the numerical determination of the sensitivity of quadrupole pickups will be presented.

  15. Calculations of the IR spectra of bend fundamentals of (H2O)n=3,4,5 using the WHBB_2 potential and dipole moment surfaces.

    PubMed

    Wang, Yimin; Bowman, Joel M

    2016-09-14

    Stimulated by new experiments from the Havenith group, we report IR spectra of the bend fundamentals of (H2O)n=3,4,5, using anharmonic, coupled-mode VSCF/VCI calculations, done in a subspace of modes consisting of all the monomer bends plus the hydrogen-bonded OH stretches. Double-harmonic spectra are also reported. All calculations employ a faster version of the ab initio WHBB potential and also a more accurate representation of the dipole moment surface, reported previously. Comparisons at the harmonic level are made with previous high-level ab initio calculations, notably those of Howard and Tschumper and also with harmonic frequencies from the semi-empirical TTM3-F potential, which have been reported previously by Howard and Tschumper. The calculations provide energies and intensities of the hydrogen-bonded OH stretches and these are also presented and briefly discussed. PMID:27523256

  16. Quantum Monte Carlo calculations of magnetic moments and M1 transitions in A {le} 7 nuclei including meson-exchange currents.

    SciTech Connect

    Marcucci, L. E.; Pervin, M.; Pieper, S. C.; Schiavilla, R.; Wiringa, R. B.; Physics; Univ. of Pisa; Jefferson Lab.; Old Dominion Univ.

    2008-01-01

    Green's function Monte Carlo calculations of magnetic moments and M1 transitions including two-body meson-exchange current (MEC) contributions are reported for A 7 nuclei. The realistic Argonne v{sub 18} two-nucleon and Illinois-2 three-nucleon potentials are used to generate the nuclear wave functions. The two-body meson-exchange operators are constructed to satisfy the continuity equation with the Argonne v{sub 18} potential. The MEC contributions increase the A = 3,7 isovector magnetic moments by 16% and the A = 6,7 M1 transition rates by 17-34%, bringing them into very good agreement with the experimental data.

  17. Correlation of electronic structure and magnetic moment in Ga1-xMnxN : First-principles, mean field and high temperature series expansions calculations

    NASA Astrophysics Data System (ADS)

    Masrour, R.; Hlil, E. K.

    2016-08-01

    Self-consistent ab initio calculations based on density-functional theory and using both full potential linearized augmented plane wave and Korring-Kohn-Rostoker-coherent potential approximation methods, are performed to investigate both electronic and magnetic properties of the Ga1-xMnxN system. Magnetic moments considered to lie along (001) axes are computed. Obtained data from ab initio calculations are used as input for the high temperature series expansions (HTSEs) calculations to compute other magnetic parameters such as the magnetic phase diagram and the critical exponent. The increasing of the dilution x in this system has allowed to verify a series of HTSEs predictions on the possibility of ferromagnetism in dilute magnetic insulators and to demonstrate that the interaction changes from antiferromagnetic to ferromagnetic passing through the spins glace phase.

  18. Ab initio calculations of static dipole polarizabilities and Cauchy moments for the halomethanes, CHmClnF4-m-n

    NASA Astrophysics Data System (ADS)

    Kalugina, Yulia N.; Thakkar, Ajit J.

    2016-01-01

    Coupled-cluster calculations of the static electronic dipole polarizabilities and Cauchy moments are reported for all 15 halomethanes CHmClnF4-m-n. Comparison with available experimental static polarizabilities is made. Excluding three experimental values which seem to be in error, the mean absolute deviation between the CCSD(T) values and experiment is a rather satisfactory 0.5 atomic units for the remaining 11 halomethanes. More experimental work is needed for the polarizabilities of CHCl2F, CCl3F, and CH2Cl2. Additivity approximations work moderately well for α = S(-2) and progressively less well for S(-2k - 2) as k increases.

  19. A new calculation method of the axial and radial velocity and grade—efficiency for high—efficiency cyclones

    NASA Astrophysics Data System (ADS)

    Zhang, Congzhi; Wang, Zijie

    1995-04-01

    At present in China, the cyclones are widely used in the dust removal ventilation system of boilers, industry furnaces or pits etc., because of their simple structure, long life and cost efficiency. In order to improve efficiency of the cyclones, new theoretical calculation method is very important. In this paper, the concept of down-flow quantity is introduced and new formula is deducted based on Kilven law and the work has done by Zhao Weizhong[1]. The formula is not only of advantage theoretically but also fit with experimental results quite well. On the basis, the effect of three-dimensional velocity distribution in the flow field within cyclones and other parameters on the grade-efficiency calculation are analyzed and a new equation for grade-efficiency estimation is introduced. The calculating accuracy of the equation is better than the others theoretically and experimentally.

  20. MULTIMODE quantum calculations of vibrational energies and IR spectrum of the NO{sup +}(H{sub 2}O) cluster using accurate potential energy and dipole moment surfaces

    SciTech Connect

    Homayoon, Zahra

    2014-09-28

    A new, full (nine)-dimensional potential energy surface and dipole moment surface to describe the NO{sup +}(H{sub 2}O) cluster is reported. The PES is based on fitting of roughly 32 000 CCSD(T)-F12/aug-cc-pVTZ electronic energies. The surface is a linear least-squares fit using a permutationally invariant basis with Morse-type variables. The PES is used in a Diffusion Monte Carlo study of the zero-point energy and wavefunction of the NO{sup +}(H{sub 2}O) and NO{sup +}(D{sub 2}O) complexes. Using the calculated ZPE the dissociation energies of the clusters are reported. Vibrational configuration interaction calculations of NO{sup +}(H{sub 2}O) and NO{sup +}(D{sub 2}O) using the MULTIMODE program are performed. The fundamental, a number of overtone, and combination states of the clusters are reported. The IR spectrum of the NO{sup +}(H{sub 2}O) cluster is calculated using 4, 5, 7, and 8 modes VSCF/CI calculations. The anharmonic, coupled vibrational calculations, and IR spectrum show very good agreement with experiment. Mode coupling of the water “antisymmetric” stretching mode with the low-frequency intermolecular modes results in intensity borrowing.

  1. Informatics Moments

    ERIC Educational Resources Information Center

    Williams, Kate

    2012-01-01

    The informatics moment is the moment when a person seeks help in using some digital technology that is new to him or her. This article examines the informatics moment in people's everyday lives as they sought help at a branch public library. Four types of literacy were involved: basic literacy (reading and writing), computer literacy (use of a…

  2. Calculation of 3D turbulent jets in crossflow with a multigrid method and a second-moment closure model

    NASA Technical Reports Server (NTRS)

    Demuren, A. O.

    1990-01-01

    A multigrid method is presented for calculating turbulent jets in crossflow. Fairly rapid convergence is obtained with the k-epsilon turbulence model, but computations with a full Reynolds stress turbulence model (RSM) are not yet very efficient. Grid dependency tests show that there are slight differences between results obtained on the two finest grid levels. Computations using the RSM are significantly different from those with k-epsilon model and compare better to experimental data. Some work is still required to improve the efficiency of the computations with the RSM.

  3. Density functional theory calculations on rhodamine B and pinacyanol chloride. Optimized ground state, dipole moment, vertical ionization potential, adiabatic electron affinity and lowest excited triplet state.

    PubMed

    Delgado, Juan C; Selsby, Ronald G

    2013-01-01

    The ground state configuration of the gas phase cationic dyes pinacyanol chloride and rhodamine B are optimized with HF/6-311 + G(2d,2p) method and basis set. B3PW91/6-311 + G(2df,2p) functional and basis set is used to calculate the Mulliken atom charge distribution, total molecular energy, the dipole moment, the vertical ionization potential, the adiabatic electron affinity and the lowest excited triplet state, the last three as an energy difference between separately calculated open shell and ground states. The triplet and extra electron states are optimized to find the relaxation energy. In the ground state optimization of both dyes the chloride anion migrates to a position near the center of the chromophore. For rhodamine B the benzoidal group turns perpendicular to the chromophore plane. For both dyes, the LUMO is mostly of π character associated with the aromatic part of the molecule containing the chromophore. The highest occupied MOs consist of three almost degenerate eigenvectors involving the chloride anion coordinated with σ electrons in the molecular framework. The fourth highest MO is of π character. For both molecules in the gas phase ionization process the chloride anion loses the significant fraction of electric charge. In electron capture, the excess charge goes mainly on the dye cation. PMID:22891949

  4. Nuclear Anapole Moments

    SciTech Connect

    Michael Ramsey-Musolf; Wick Haxton; Ching-Pang Liu

    2002-03-29

    Nuclear anapole moments are parity-odd, time-reversal-even E1 moments of the electromagnetic current operator. Although the existence of this moment was recognized theoretically soon after the discovery of parity nonconservation (PNC), its experimental isolation was achieved only recently, when a new level of precision was reached in a measurement of the hyperfine dependence of atomic PNC in 133Cs. An important anapole moment bound in 205Tl also exists. In this paper, we present the details of the first calculation of these anapole moments in the framework commonly used in other studies of hadronic PNC, a meson exchange potential that includes long-range pion exchange and enough degrees of freedom to describe the five independent S-P amplitudes induced by short-range interactions. The resulting contributions of pi-, rho-, and omega-exchange to the single-nucleon anapole moment, to parity admixtures in the nuclear ground state, and to PNC exchange currents are evaluated, using configuration-mixed shell-model wave functions. The experimental anapole moment constraints on the PNC meson-nucleon coupling constants are derived and compared with those from other tests of the hadronic weak interaction. While the bounds obtained from the anapole moment results are consistent with the broad ''reasonable ranges'' defined by theory, they are not in good agreement with the constraints from the other experiments. We explore possible explanations for the discrepancy and comment on the potential importance of new experiments.

  5. Moment inference from tomograms

    USGS Publications Warehouse

    Day-Lewis, F. D.; Chen, Y.; Singha, K.

    2007-01-01

    Time-lapse geophysical tomography can provide valuable qualitative insights into hydrologic transport phenomena associated with aquifer dynamics, tracer experiments, and engineered remediation. Increasingly, tomograms are used to infer the spatial and/or temporal moments of solute plumes; these moments provide quantitative information about transport processes (e.g., advection, dispersion, and rate-limited mass transfer) and controlling parameters (e.g., permeability, dispersivity, and rate coefficients). The reliability of moments calculated from tomograms is, however, poorly understood because classic approaches to image appraisal (e.g., the model resolution matrix) are not directly applicable to moment inference. Here, we present a semi-analytical approach to construct a moment resolution matrix based on (1) the classic model resolution matrix and (2) image reconstruction from orthogonal moments. Numerical results for radar and electrical-resistivity imaging of solute plumes demonstrate that moment values calculated from tomograms depend strongly on plume location within the tomogram, survey geometry, regularization criteria, and measurement error. Copyright 2007 by the American Geophysical Union.

  6. Radial and azimuthal beam parameters.

    PubMed

    Lumer, Yaakov; Moshe, Inon

    2009-02-01

    Global invariant parameters are introduced to characterize the radial and azimuthal content of totally polarized beams. Such parameters are written in terms of the second moments of the optical beam and are invariant in propagation through symmetric first-order optical systems described by the ABCD matrix. Since it was proven in the past that the usual definition for radial polarization is not invariant, such invariance is novel in characterizing the radial and azimuthal polarizations content of optical beams. The possibility of obtaining a pure mode from a given beam using the proposed parameters is discussed. PMID:19183626

  7. Convergence of normal mode variational calculations of methane spectra: Theoretical linelist in the icosad range computed from potential energy and dipole moment surfaces

    NASA Astrophysics Data System (ADS)

    Rey, Michaël; Nikitin, Andrei V.; Tyuterev, Vladimir G.

    2015-10-01

    Accurate basis set convergence of first-principles predictions of rotationally resolved spectra at high energy range is a common challenging issue for variational methods. In this paper, a detailed convergence study for the methane spectra is presented both for vibrational and rotational degrees of freedom as well as for intensities. For this purpose, we use our previously reported nine-dimensional potential energy and dipole moment surfaces of the methane molecule [Nikitin et al. Chem Phys Lett 2011;501:179-86; 2013;565:5-11]. Vibration-rotation calculations were carried out using variational normal mode approach with a full account of the Td symmetry. The aim was to obtain accurate theoretical methane line lists for the wavenumber range beyond currently available spectra analyses. The focus of this paper is the complicated icosad range (6280-7900 cm-1) containing 20 bands and 134 sub-bands where over 90% of experimental lines still remain unassigned. We provide variational line lists converged to a "spectroscopic precision" for icosad transitions for T=80 K and T=296 K. The first one contains 70 300 lines and the second one 286 170 lines with the intensity cut-off 10-29cm-1 /(moleculecm-2) with Jmax=18. An average error in line positions of theoretical predictions up to J=15 is estimated as 0.2-0.5 cm-1 from the comparisons with currently analyzed bands. Ab initio line strength calculations give the integrated intensity 4.37 ×10-20cm-1 /(moleculecm-2) at T=80 K for the sum of all icosad bands. This is to be compared to the integrated intensity 4.36 ×10-20cm-1 /(moleculecm-2) of the experimental icosad line list recorded in Grenoble University [Campargue et al., J Mol Spectrosc 2013;291:16-22] using very sensitive laser techniques. The shapes of absorption bands are also in a good qualitative agreement with experimental spectra.

  8. Airscrew Gyroscopic Moments

    NASA Technical Reports Server (NTRS)

    Bock, G.

    1946-01-01

    When flying in a turn or pulling out of a dive, the airscrew exerts a gyroscopic moment on the aircraft, In the case of airscrews with three or more blades, arranged symmetrically, the value of the gyroscopic moment is J(sub x) omega(sub x) omega(sub y), where J(sub x) denotes the axial moment of inertia about the axis of rotation of the airscrew, omega(sub x) the angular upeed of the airscrew about its axis, and omega (sub Y) the rotary speed of the whole aircraft about an axis parallel to the plane of the airscrew (e.g., when pulling up, the transverse axis of the aircraft). The gyroscopic moment then tends to rotate the aircraft about an axis perpendicular to those of the two angular speeds and, in the came of airscrews with three or more blades, is constant during a revolution of the airscrew. With two-bladed airscrews, on the contrary, although the calculate gyroscopic moment represents the mean value in time, it fluctuates about this value with a frequency equal to twice the revolutions per minute. In addition, pulsating moments likewise occur about the other two axes. This fact is known from the theory of the asymmetrical gyro; the calculations that have been carried out for the determination of the various gyroscopic moments, however, mostly require an exact knowledge of the gyro theory. The problem will therefore be approached in another manner based on quite elementary considerations. The considerations are of importance, not only in connection with the gyroscopic moments exerted by the two-bladed airscrew on the aircraft, but also with the stressing of the blades of airscrews with an arbitrary number of blades.

  9. Static quadrupole moments and B(E2)'s in N = Z nuclei 88Ru, 92Pd, and 96Cd in shell model calculations

    NASA Astrophysics Data System (ADS)

    Zamick, Larry; Robinson, Shadow; Hoang, T.; Sharon, Yitzhak; Escuderos, Alberto

    2013-10-01

    We calculate B(E2)'s and quadrupole moments Q(J) in the even-even N = Z nuclei (88Ru,92Pd and 96Cd) in the model space p3/2, f5/2, p1/2, and g9/2. We use 2 interactions (jj44b, jun45). For the J = 0+ ground states the occupations of the lowest configuration i.e. the one with least g9/2 occupancy are quite different for the 2 interactions-((1.6,7.4), (9.7,28.8) and (49.6,58.8)). To the extent that one can make a collective associatkon with the shell model it appears that in this model space 88Ru is strongly oblate, 92Pd is vibrational and 96Cd is prolate. The values of B(E2, J --> J-2) (e2 fm4) and Q(J) (e fm2) using jj44b for J = 2,4,6,8,10 are 88Ru B(E2) (578,843,972,1056, 1107) and for Q(J) (28.0,37.1,45.5,49.5,51.1). The positive Q (2+) is indicative of oblateness. 92Pd B(E2) (366, 498, 465, 283, 344) and for Q(J) (4.8,11.1,24.0,33.8,40.0). In the harmonic vibrational limit Q(2+) is zero. Here it is small. 96Cd B(E2) (155, 206, 187, 71, 81 and for Q(J) (- 16.4, - 15.2, - 2.4, +37.6, +24.0). Note the change in sign from J = 6 to J = 8 and 10.

  10. Calculations on the forces and moments for an oscillating wing-aileron combination in two-dimensional potential flow at sonic speed

    NASA Technical Reports Server (NTRS)

    Nelson, Herbert C; Berman, Julian H

    1953-01-01

    The linearized theory for compressible unsteady flow is used, as suggested in recent contributions to the subject, to obtain the velocity potential and the lift and moment for a thin harmonically oscillating, two-dimensional wing-aileron combination moving at sonic speed. The velocity potential is derived by considering the sonic case as the limit of the linearized supersonic theory. From the velocity potential explicit expressions for the lift and moment are developed for vertical translation and pitching of the wing and rotation of the aileron. The sonic results are compared and found to be consistent with previously obtained subsonic and supersonic results. Several figures are presented showing the variation of lift and moment with reduced frequency and Mach number and the influence of Mach number on some cases of bending-torsion flutter.

  11. Theoretical Calculations of the Pressures, Forces, and Moments Due to Various Lateral Motions Acting on Tapered Sweptback Vertical Tails with Supersonic Leading and Trailing Edges

    NASA Technical Reports Server (NTRS)

    Margolis, Kenneth; Elliott, Miriam H.

    1960-01-01

    Based on expressions for the linearized velocity potentials and pressure distributions given in NACA Technical Report 1268, formulas for the span load distribution, forces, and moments are derived for families of thin isolated vertical tails with arbitrary aspect ratio, taper ratio, and sweepback performing the motions constant sideslip, steady rolling, steady yawing, and constant lateral acceleration. The range of Mach number considered corresponds, in general, to the condition that the tail leading and trailing edges are supersonic. To supplement the analytical results, design-type charts are presented which enable rapid estimation of the forces and moments (expressed as stability derivatives) for given combinations of geometry parameters and Mach number.

  12. Object detection and classification using image moment functions in the applied to video and imagery analysis

    NASA Astrophysics Data System (ADS)

    Mise, Olegs; Bento, Stephen

    2013-05-01

    This paper proposes an object detection algorithm and a framework based on a combination of Normalized Central Moment Invariant (NCMI) and Normalized Geometric Radial Moment (NGRM). The developed framework allows detecting objects with offline pre-loaded signatures and/or using the tracker data in order to create an online object signature representation. The framework has been successfully applied to the target detection and has demonstrated its performance on real video and imagery scenes. In order to overcome the implementation constraints of the low-powered hardware, the developed framework uses a combination of image moment functions and utilizes a multi-layer neural network. The developed framework has been shown to be robust to false alarms on non-target objects. In addition, optimization for fast calculation of the image moments descriptors is discussed. This paper presents an overview of the developed framework and demonstrates its performance on real video and imagery scenes.

  13. Rapid calculation of a Centroid Moment Tensor and waveheight predictions around the north Pacific for the 2011 off the Pacific coast of Tohoku Earthquake

    NASA Astrophysics Data System (ADS)

    Polet, Jascha; Thio, Hong Kie

    2011-07-01

    We present the results of a near real-time determination of a Centroid Moment Tensor for the 2011 Tohoku quake and the subsequent rapid prediction of Pacific coast tsunami waveheights based on these CMT parameters. Initial manual CMT results for this event were obtained within 23 minutes of origin time and fully automatic results were distributed by E-mail within 33 minutes. The mechanism, depth and moment magnitude were all well constrained, as was indicated by a bootstrapping analysis. Using an existing library of tsunami Green's functions, we computed predicted waveheights in the north Pacific for several scenarios of the Tohoku earthquake that are consistent with the CMT solution. Overall, these predicted waveheights correspond well with preliminary observations around the Pacific Rim. The predictions for North America were sent out three and a half hours after the origin time of the earthquake, but this system has the potential to provide these predictions within minutes after receiving the CMT solution.

  14. Radial Erosion

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site]

    The ejecta surrounding the crater (off image to the left) in this image has undergone significant erosion by the wind. The wind has stripped the surface features from the ejecta and has started to winnow away the ejecta blanket. Near the margin of the ejecta the wind is eroding along a radial pattern -- taking advantage of radial emplacement. Note the steep margin of the ejecta blanket. Most, if not all, of the fine ejecta material has been removed and the wind in now working on the more massive continuous ejecta blanket.

    Image information: VIS instrument. Latitude 12.5, Longitude 197.4 East (162.6 West). 37 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  15. Radial-radial single rotor turbine

    DOEpatents

    Platts, David A.

    2006-05-16

    A rotor for use in turbine applications has a radial compressor/pump having radially disposed spaced apart fins forming passages and a radial turbine having hollow turbine blades interleaved with the fins and through which fluid from the radial compressor/pump flows. The rotor can, in some applications, be used to produce electrical power.

  16. Accuracy of temperature-derivative of radial distribution function calculated under approximations in Ornstein-Zernike theory for one-component Lennard-Jones fluid

    NASA Astrophysics Data System (ADS)

    Miyata, Tatsuhiko; Miyazaki, Sanae

    2016-08-01

    The accuracy of the temperature derivative of radial distribution function obtained under hypernetted chain (HNC), Kovalenko-Hirata (KH), Percus-Yevick (PY) and Verlet-modified (VM) closure approximations is examined for one-component Lennard-Jones fluid. As relevant thermodynamic quantities, constant-volume heat capacity and thermal pressure coefficient are investigated in terms of their accuracy under the above four approximations. It is found that HNC and KH closures overestimate these quantities, whereas PY closure tends to underestimate them. VM closure predicts rather accurately the quantities. A significant cancellation is observed along the integration for the above quantities under HNC and KH closures, especially at high density state.

  17. {sup 63}Cu and {sup 197}Au nuclear quadrupole moments from four-component relativistic density-functional calculations using correct long-range exchange

    SciTech Connect

    Thierfelder, Christian; Schwerdtfeger, Peter; Saue, Trond

    2007-09-15

    The electric field gradient in late transition metal compounds is incorrectly determined by most density functionals. We show that the coupling of short-range density functional based with long-range wave function based methods using a reparametrization of the Coulomb-attenuated Becke three-parameter Lee-Yang-Parr approximation gives reliable results for the electric field gradients of copper and gold for a series of compounds. This results in nuclear quadrupole moments of -0.208 b for {sup 63}Cu and +0.526 b for {sup 197}Au in good agreement with experimental values of -0.220(15) and +0.547(16)b, respectively.

  18. Radial transport with perturbed magnetic field

    SciTech Connect

    Hazeltine, R. D.

    2015-05-15

    It is pointed out that the viscosity coefficient describing radial transport of toroidal angular momentum is proportional to the second power of the gyro-radius—like the corresponding coefficients for particle and heat transport—regardless of any geometrical symmetry. The observation is widely appreciated, but worth emphasizing because some literature gives the misleading impression that asymmetry can allow radial moment transport in first-order.

  19. Reconstruction of color biomedical images by means of quaternion generic Jacobi-Fourier moments in the framework of polar pixels.

    PubMed

    Camacho-Bello, César; Padilla-Vivanco, Alfonso; Toxqui-Quitl, Carina; Báez-Rojas, José Javier

    2016-01-01

    A detailed analysis of the quaternion generic Jacobi-Fourier moments (QGJFMs) for color image description is presented. In order to reach numerical stability, a recursive approach is used during the computation of the generic Jacobi radial polynomials. Moreover, a search criterion is performed to establish the best values for the parameters [Formula: see text] and [Formula: see text] of the radial Jacobi polynomial families. Additionally, a polar pixel approach is taken into account to increase the numerical accuracy in the calculation of the QGJFMs. To prove the mathematical theory, some color images from optical microscopy and human retina are used. Experiments and results about color image reconstruction are presented. PMID:27014716

  20. Geomagnetic dipole moment collapse by convective mixing in the core

    NASA Astrophysics Data System (ADS)

    Liu, Lijun; Olson, Peter

    2009-05-01

    Convective mixing in the fluid outer core can induce rapid transient decrease of the geomagnetic dipole. Here we determine rates of dipole moment decrease as a function of magnetic Reynolds number following convective instability in a numerical dynamo and in axisymmetric kinematic flows. Our calculations show that mixing flows induce reversed magnetic flux on the core-mantle boundary through expulsion of mostly poloidal magnetic field by convective upwellings. The dipole field collapse is accelerated by enhanced radial diffusion and meridional advection of magnetic flux below the core-mantle boundary. Magnetic energy cascades from the dipole to smaller scales during mixing, producing a filamentary magnetic field structure on the core-mantle boundary. We find that the maximum rate of dipole moment decrease on century time scales is weakly sensitive to the mixing flow pattern but varies with the velocity of the flow approximately as cRm β , with Rm the magnetic Reynolds number and (c, β) ≈ (0.2 ± 0.07, 0.78 ± 0.05). According to our calculations, a mixing flow in the outer core with Rm in the range of 200-300 can account for the historically-measured rate of decrease of the geomagnetic dipole moment, although it is unlikely that a single mixing flow event with this intensity would cause a full dipole collapse or polarity reversal.

  1. Ab initio calculation of the magnetism in GdFe 12

    NASA Astrophysics Data System (ADS)

    Trygg, Joakim; Johansson, Börje; Brooks, M. S. S.

    1992-02-01

    Electronic structure calculations by means of the LMTO-ASA method have been performed for the hypothetical rare earth-transition metal compound GdFe 12 with the ThMn 12 structure. The R-4f magnetic moments were obtained from the standard Russel-Saunders scheme but the radial 4f spin density was otherwise part of the self-consistent band calculation. The influence of localized 4f magnetism upon the conduction band magnetism is found to give noticeable changes in the local moments of the iron. The presence of the 4f spin moment is found to induce a redistribution of the conduction electron spin moment between the rare earth and iron sites while the total conduction moment remains practically constant.

  2. Novel invariant Zernike moments as a shape descriptor for machine vision

    NASA Astrophysics Data System (ADS)

    Cao, Danhua; Jiang, Shixiong; Wu, Yubin; Zhu, Song

    2013-12-01

    We present a way to construct a complete set of scaling rotation and translation invariants extract directly from Zernike moments. Zernike moment can be constructed by Radial moment. In our method in order to construct invariant Zernike moment is to achieve invariant Radial moment which is component of Zernike moment. We use matrix form to denote relationship between Radial and Zernike moment, which makes derivation more comprehensible. The translation invariant Radial moment is first introduced, for it is most complicated part of all the three invariant. Rotation and scaling invariant Radial moment is achieved by normalizing the factor caused by rotation and scaling. The form of invariant radial moment is to combine three parts of invariant. Some experiment has done to test the performance of invariance. In this experiment we take an image library containing 23,329 files which are built by translation rotation and zoom in out of one origin Latin character image. Most of the value of standard deviation ratio by mean of proposed moments is nearly 1%. In addition, retrieval experiment is to test the discrimination ability. MPEG-7 CE shape1 - Part A library is taken in this experiment. The recall rate in part A1 is 96.6% and is 100% in part A2.

  3. Predicting Robust Learning with the Visual Form of the Moment-by-Moment Learning Curve

    ERIC Educational Resources Information Center

    Baker, Ryan S.; Hershkovitz, Arnon; Rossi, Lisa M.; Goldstein, Adam B.; Gowda, Sujith M.

    2013-01-01

    We present a new method for analyzing a student's learning over time for a specific skill: analysis of the graph of the student's moment-by-moment learning over time. Moment-by-moment learning is calculated using a data-mined model that assesses the probability that a student learned a skill or concept at a specific time during learning…

  4. Transition moments, Franck-Condon factors, and lifetimes of forbidden transitions - Calculation of the intensity of the Cameron system of CO.

    NASA Technical Reports Server (NTRS)

    James, T. C.

    1971-01-01

    Discussion of the factors affecting the intensity of forbidden transitions in diatomic molecules. It is shown that using Franck-Condon factors to predict relative band intensities is less reliable for forbidden transitions than it is for allowed transitions. The intensity of the 0,0 and 1,0 bands of the a super 3 pi-super 1 sigma Cameron system of CO are calculated using perturbation theory. The intensity arises from spin-orbit mixing of the A super 1 pi state with the a super 3 pi state. From the known spin-orbit coupling constant of the a super 1 pi state and the known intensity of the fourth positive A super 1 pi-super 1 sigma transition, the oscillator strengths of the 0,0 and 1,0 bands are calculated to be 1.63 x 10 to the minus 7th power and 1.99 x 10 to the minus 7th power. Lifetimes of various rotational levels are shown to range from 2.9 to several hundred milliseconds.-

  5. Relativistic corrections to the nuclear Schiff moment

    SciTech Connect

    Dmitriev, V.F.; Flambaum, V.V.

    2005-06-01

    Parity- and time-invariance-violating (P,T-odd) atomic electric dipole moments (EDM) are induced by the interaction between atomic electrons and nuclear P,T-odd moments, which are themselves produced by P,T-odd nuclear forces. The nuclear EDM is screened by atomic electrons. The EDM of a nonrelativistic atom with closed electron subshells is induced by the nuclear Schiff moment. For heavy relativistic atoms EDM is induced by the nuclear local dipole moments, which differ by 10-50% from the Schiff moments calculated previously. We calculate the local dipole moments for {sup 199}Hg and {sup 205}Tl where the most accurate atomic [Romalis et al., Phys. Rev. Lett. 86, 2505 (2001)] and molecular [Cho et al., Phys. Rev. Lett. 63, 2559 (1989); Phys. Rev. A 44, 2783 (1991)] EDM measurements have been performed.

  6. Moment of Inertia by Differentiation

    ERIC Educational Resources Information Center

    Rizcallah, Joseph A.

    2015-01-01

    The calculation of the moment of inertia of an extended body, as presented in standard introductory-level textbooks, involves the evaluation of a definite integral--an operation often not fully mastered by beginners, let alone the conceptual difficulties it presents, even to the advanced student, in understanding and setting up the integral in the…

  7. Moment-to-Moment Emotions during Reading

    ERIC Educational Resources Information Center

    Graesser, Arthur C.; D'Mello, Sidney

    2012-01-01

    Moment-to-moment emotions are affective states that dynamically change during reading and potentially influence comprehension. Researchers have recently identified these emotions and the emotion trajectories in reading, tutoring, and problem solving. The primary learning-centered emotions are boredom, frustration, confusion, flow (engagement),…

  8. Radial head fracture - aftercare

    MedlinePlus

    Elbow fracture - radial head - aftercare ... the radius bone, just below your elbow. A fracture is a break in your bone. The most common cause of a radial head fracture is falling with an outstretched arm.

  9. Joint moments of proper delay times

    SciTech Connect

    Martínez-Argüello, Angel M.; Martínez-Mares, Moisés; García, Julio C.

    2014-08-15

    We calculate negative moments of the N-dimensional Laguerre distribution for the orthogonal, unitary, and symplectic symmetries. These moments correspond to those of the proper delay times, which are needed to determine the statistical fluctuations of several transport properties through classically chaotic cavities, like quantum dots and microwave cavities with ideal coupling.

  10. L-moments under nuisance regression

    NASA Astrophysics Data System (ADS)

    Picek, Jan; Schindler, Martin

    2016-06-01

    The L-moments are analogues of the conventional moments and have similar interpretations. They are calculated using linear combinations of the expectation of ordered data. In practice, L-moments must usually be estimated from a random sample drawn from an unknown distribution as a linear combination of ordered statistics. Jureckova and Picek (2014) showed that averaged regression quantile is asymptotically equivalent to the location quantile. We therefore propose a generalization of L-moments in the model with nuisance regression using the averaged regression quantiles.

  11. Hydrodynamic effects in a misaligned radial face seal

    NASA Technical Reports Server (NTRS)

    Etsion, I.

    1977-01-01

    Hydrodynamic effects in a flat seal having an angular misalignment are analyzed, taking into account the radial variation in seal clearance. An analytical solution for axial force, restoring moment, and transverse moment is presented that covers the whole range from zero to full angular misalignment. Both low pressure seals with cavitating flow and high pressure seals with full fluid film are considered. Strong coupling is demonstrated between angular misalignment and transverse moment which leads the misalignment vector by 90 degrees. This transverse moment, which is entirely due to hydrodynamic effects, is a significant factor in the seal operating mechanism.

  12. Moment tensors of a dislocation in a porous medium

    NASA Astrophysics Data System (ADS)

    Wang, Zhi; Hu, Hengshan

    2016-06-01

    A dislocation can be represented by a moment tensor for calculating seismic waves. However, the moment tensor expression was derived in an elastic medium and cannot completely describe a dislocation in a porous medium. In this paper, effective moment tensors of a dislocation in a porous medium are derived. It is found that the dislocation is equivalent to two independent moment tensors, i.e., the bulk moment tensor acting on the bulk of the porous medium and the isotropic fluid moment tensor acting on the pore fluid. Both of them are caused by the solid dislocation as well as the fluid-solid relative motion corresponding to fluid injection towards the surrounding rocks (or fluid outflow) through the fault plane. For a shear dislocation, the fluid moment tensor is zero, and the dislocation is equivalent to a double couple acting on the bulk; for an opening dislocation or fluid injection, the two moment tensors are needed to describe the source. The fluid moment tensor only affects the radiated compressional waves. By calculating the ratio of the radiation fields generated by unit fluid moment tensor and bulk moment tensor, it is found that the fast compressional wave radiated by the bulk moment tensor is much stronger than that radiated by the fluid moment tensor, while the slow compressional wave radiated by the fluid moment tensor is several times stronger than that radiated by the bulk moment tensor.

  13. A Lightweight Radial Line Slot Antenna with Honeycomb Structure for Space Use

    NASA Astrophysics Data System (ADS)

    Ueda, Hideki; Hirokawa, Jiro; Ando, Makoto; Amano, Osamu; Kamata, Yukio

    A lightweight and high gain planar antenna for space use is realized with radial waveguide slotted array and honeycomb structure with the weight of 1.16kg and the diameter of 920.5mm. The slot coupling is analyzed by method of moments considering the hybrid mode in the multi-layer waveguide structure. The propagation constant of the honeycomb structure is measured and the low-loss property is obtained at the frequency range of 8GHz. The fabricated RLSA is measured and the reflection is around -10dB in 8GHz band. The measured aperture fields agree with the calculation in the radial direction. In the azimuthal direction, on the other hand, the fields show ripples of 6dB and 60 degree. The gain of 35.9dBi with the efficiency of 58.7% is obtained at 8.6GHz.

  14. Effects of the racket polar moment of inertia on dominant upper limb joint moments during tennis serve.

    PubMed

    Rogowski, Isabelle; Creveaux, Thomas; Chèze, Laurence; Macé, Pierre; Dumas, Raphaël

    2014-01-01

    This study examined the effect of the polar moment of inertia of a tennis racket on upper limb loading in the serve. Eight amateur competition tennis players performed two sets of 10 serves using two rackets identical in mass, position of center of mass and moments of inertia other than the polar moment of inertia (0.00152 vs 0.00197 kg.m2). An eight-camera motion analysis system collected the 3D trajectories of 16 markers, located on the thorax, upper limbs and racket, from which shoulder, elbow and wrist net joint moments and powers were computed using inverse dynamics. During the cocking phase, increased racket polar moment of inertia was associated with significant increases in the peak shoulder extension and abduction moments, as well the peak elbow extension, valgus and supination moments. During the forward swing phase, peak wrist extension and radial deviation moments significantly increased with polar moment of inertia. During the follow-through phase, the peak shoulder adduction, elbow pronation and wrist external rotation moments displayed a significant inverse relationship with polar moment of inertia. During the forward swing, the magnitudes of negative joint power at the elbow and wrist were significantly larger when players served using the racket with a higher polar moment of inertia. Although a larger polar of inertia allows players to better tolerate off-center impacts, it also appears to place additional loads on the upper extremity when serving and may therefore increase injury risk in tennis players. PMID:25117871

  15. Effects of the Racket Polar Moment of Inertia on Dominant Upper Limb Joint Moments during Tennis Serve

    PubMed Central

    Rogowski, Isabelle; Creveaux, Thomas; Chèze, Laurence; Macé, Pierre; Dumas, Raphaël

    2014-01-01

    This study examined the effect of the polar moment of inertia of a tennis racket on upper limb loading in the serve. Eight amateur competition tennis players performed two sets of 10 serves using two rackets identical in mass, position of center of mass and moments of inertia other than the polar moment of inertia (0.00152 vs 0.00197 kg.m2). An eight-camera motion analysis system collected the 3D trajectories of 16 markers, located on the thorax, upper limbs and racket, from which shoulder, elbow and wrist net joint moments and powers were computed using inverse dynamics. During the cocking phase, increased racket polar moment of inertia was associated with significant increases in the peak shoulder extension and abduction moments, as well the peak elbow extension, valgus and supination moments. During the forward swing phase, peak wrist extension and radial deviation moments significantly increased with polar moment of inertia. During the follow-through phase, the peak shoulder adduction, elbow pronation and wrist external rotation moments displayed a significant inverse relationship with polar moment of inertia. During the forward swing, the magnitudes of negative joint power at the elbow and wrist were significantly larger when players served using the racket with a higher polar moment of inertia. Although a larger polar of inertia allows players to better tolerate off-center impacts, it also appears to place additional loads on the upper extremity when serving and may therefore increase injury risk in tennis players. PMID:25117871

  16. Radial arm strike rail

    DOEpatents

    McKeown, Mark H.; Beason, Steven C.

    1991-01-01

    The radial arm strike rail assembly is a system for measurement of bearings, directions, and stereophotography for geologic mapping, particularly where magnetic compasses are not appropriate. The radial arm, pivoting around a shaft axis, provides a reference direction determination for geologic mapping and bearing or direction determination. The centerable and levelable pedestal provide a base for the radial arm strike rail and the telescoping camera pedestal. The telescoping feature of the radial arm strike rail allows positioning the end of the rail for strike direction or bearing measurement with a goniometer.

  17. Radial forces analysis and rotational speed test of radial permanent magnetic bearing for horizontal axis wind turbine applications

    NASA Astrophysics Data System (ADS)

    Kriswanto, Jamari

    2016-04-01

    Permanent magnet bearings (PMB) are contact free bearings which utilize the forces generated by the magnets. PMB in this work is a type of radial PMB, which functions as the radial bearings of the Horizontal Axis Wind Turbine (HAWT) rotor shaft. Radial PMB should have a greater radial force than the radial force HAWT rotor shaft (bearing load). This paper presents a modeling and experiments to calculate the radial force of the radial PMB. This paper also presents rotational speed test of the radial PMB compared to conventional bearings for HAWT applications. Modeling using COMSOL Multiphysics 4.3b with the magnetic fields physics models. Experiments were conducted by measuring the displacement of the rotor to the stator for a given load variation. Results of the two methods showed that the large displacement then the radial force would be greater. Radial forces of radial PMB is greater than radial forces of HAWT rotor shaft. The rotational speed test results of HAWT that used radial PMB produced higher rotary than conventional bearings with an average increase of 87.4%. Increasing rotational speed occured because radial PMB had no friction. HAWT that used radial PMB rotated at very low wind speeds are 1.4 m/s with a torque of 0.043 Nm, while the HAWT which uses conventional bearing started rotating at a wind speed of 4.4 m/s and required higher torque of 0.104 N.

  18. Weak Radial Artery Pulse

    PubMed Central

    Venugopalan, Poothirikovil; Sivakumar, Puthuval; Ardley, Robert G.; Oates, Crispian

    2012-01-01

    We present an 11year-old boy with a weak right radial pulse, and describe the successful application of vascular ultrasound to identify the ulnar artery dominance and a thin right radial artery with below normal Doppler flow velocity that could explain the discrepancy. The implications of identifying this anomaly are discussed. PMID:22375269

  19. [Zaidemberg's vascularized radial graft].

    PubMed

    Saint-Cast, Y

    2010-12-01

    In 1991, Carlos Zaidemberg described a new technique to repair scaphoid non-unions with a vascularized bone graft harvested from the radial styloid process. An anatomic study based on 30 dissections after colorized latex injection established the constancy of the radial styloid process's artery, while showing that its origin, course and length were subject to variations. In a retrospective series of 38 cases over a period of 10 years, the vascularized bone graft was indicated for: (1) scaphoid non-union with the presence of avascular changes of the proximal fragment (23 cases); (2) failed prior reconstruction with bone graft and internal fixation (nine cases); (3) degenerative styloid-scaphoid arthritis (three cases); (4) fracture on Preiser dystrophy (three cases). The five steps of the simplified operative technique without dissection of the vascular pedicle include: (1) longitudinal dorso-radial approach, identification of the periosteal portion of the radial styloid process artery; (2) incision of the first and second compartments, longitudinal arthrotomy under the second compartment; (3) styloidectomy and transversal resection of the scaphoid non-union and sclerotic bone; (4) elevation of the vascularized bone graft; (5) transversal and radial insertion of the vascularized bone graft, osteosynthesis by two or three K-wire touching the scaphoid's radial edge. Scaphoid union was obtained in 33 cases out of 38. The only postoperative complications were two transient radial paresthesia. The standardized surgical procedure using vascularized bone graft harvested from the radial styloid process provides an efficient scaphoid reconstruction. PMID:21087882

  20. Triple acting radial seal

    DOEpatents

    Ebert, Todd A; Carella, John A

    2012-03-13

    A triple acting radial seal used as an interstage seal assembly in a gas turbine engine, where the seal assembly includes an interstage seal support extending from a stationary inner shroud of a vane ring, the interstage seal support includes a larger annular radial inward facing groove in which an outer annular floating seal assembly is secured for radial displacement, and the outer annular floating seal assembly includes a smaller annular radial inward facing groove in which an inner annular floating seal assembly is secured also for radial displacement. A compliant seal is secured to the inner annular floating seal assembly. The outer annular floating seal assembly encapsulates the inner annular floating seal assembly which is made from a very low alpha material in order to reduce thermal stress.

  1. The Decisive Moment Revealed.

    ERIC Educational Resources Information Center

    Zichittella, Jack

    1998-01-01

    Discusses Henri Cartier-Bresson's notion of the "aesthetic of the decisive moment" and its role in photographic composition. Argues that recording spontaneous moments from real life can produce significant and complex photographs. Suggests that instilling this technique in photography students frees them to experiment without fear of failure. (DSK)

  2. The "moment of death".

    PubMed

    Valentine, Christine

    2007-01-01

    The "moment of death," once a dominant concept in preparing for a "good death", has been eclipsed by a focus on the wider concept of the "dying trajectory". However, findings from interviews with 25 bereaved individuals suggest that dying loved ones' final moments may still be experienced as highly significant in their own right. In some accounts the dying individual's final moments did not feature or made little impression, either because the survivor was not present, or there was no obviously definable moment, or because other, usually medical factors, such as whether to resuscitate the person, took precedence. However, in six cases such moments were constructed as profound, special, and memorable occasions. These constructions are explored in relation to achieving a good death, the dying trajectory as a whole, and making sense of the bereavement experience. Their implications for sociological theories of identity and embodiment are also considered. PMID:18214069

  3. Electric dipole transition moments and permanent dipole moments for spin-orbit configuration interaction wave functions

    NASA Astrophysics Data System (ADS)

    Roostaei, B.; Ermler, W. C.

    2012-03-01

    A procedure for calculating electric dipole transition moments and permanent dipole moments from spin-orbit configuration interaction (SOCI) wave functions has been developed in the context of the COLUMBUS ab initio electronic structure programs. The SOCI procedure requires relativistic effective core potentials and their corresponding spin-orbit coupling operators to define the molecular Hamiltonian, electric dipole transition moment and permanent dipole moment matrices. The procedure can be used for any molecular system for which the COLUMBUS SOCI circuits are applicable. Example applications are reported for transition moments and dipole moments for a series of electronic states of LiBe and LiSr defined in diatomic relativistic ωω-coupling.

  4. FAME Radial Velocity Survey

    NASA Astrophysics Data System (ADS)

    Salim, S.; Gould, A.

    2000-12-01

    Full-Sky Astrometric Mapping Explorer (FAME) belongs to a new generation of astrometry satellites and will probe the surrounding space some 20 times deeper than its predecessor Hipparcos. As a result we will acquire precise knowledge of 5 out of 6 components of phase-space for millions of stars. The remaining coordinate, radial velocity, will remain unknown. In this study, we look at how the knowledge of radial velocity affects the determination of the structure of the Galaxy, and its gravitational potential. We therefore propose a radial velocity survey of FAME stars, and discuss its feasibility and technical requirements.

  5. Radial nerve dysfunction

    MedlinePlus

    ... may occur: Abnormal sensations to the hand or forearm ("back" of the hand), "thumb side" (radial surface) ... wrist or fingers Muscle loss ( atrophy ) in the forearm Weakness of the wrist and finger Wrist or ...

  6. Radial nerve dysfunction (image)

    MedlinePlus

    The radial nerve travels down the arm and supplies movement to the triceps muscle at the back of the upper arm. ... the wrist and hand. The usual causes of nerve dysfunction are direct trauma, prolonged pressure on the ...

  7. Radial heat flux transformer

    NASA Technical Reports Server (NTRS)

    Basiulis, A.; Buzzard, R. J.

    1971-01-01

    Unit moves heat radially from small diameter shell to larger diameter shell, or vice versa, with negligible temperature drop, making device useful wherever heating or cooling of concentrically arranged materials, substances, and structures is desired.

  8. Radial nerve dysfunction

    MedlinePlus

    ... nerve leads to problems with movement in the arm and wrist and with sensation in the back of the arm or hand. ... to the radial nerve, which travels down the arm and controls movement of the triceps muscle at ...

  9. Radial turbine cooling

    NASA Astrophysics Data System (ADS)

    Roelke, Richard J.

    The technology of high temperature cooled radial turbines is reviewed. Aerodynamic performance considerations are described. Heat transfer and structural analysis are addressed, and in doing so the following topics are covered: cooling considerations, hot side convection, coolant side convection, and rotor mechanical analysis. Cooled rotor concepts and fabrication are described, and the following are covered in this context: internally cooled rotor, hot isostatic pressure bonded rotor, laminated rotor, split blade rotor, and the NASA radial turbine program.

  10. Radial turbine cooling

    NASA Technical Reports Server (NTRS)

    Roelke, Richard J.

    1992-01-01

    The technology of high temperature cooled radial turbines is reviewed. Aerodynamic performance considerations are described. Heat transfer and structural analysis are addressed, and in doing so the following topics are covered: cooling considerations, hot side convection, coolant side convection, and rotor mechanical analysis. Cooled rotor concepts and fabrication are described, and the following are covered in this context: internally cooled rotor, hot isostatic pressure bonded rotor, laminated rotor, split blade rotor, and the NASA radial turbine program.

  11. Atomic electric dipole moment induced by the nuclear electric dipole moment: The magnetic moment effect

    SciTech Connect

    Porsev, S. G.; Ginges, J. S. M.; Flambaum, V. V.

    2011-04-15

    We have considered a mechanism for inducing a time-reversal violating electric dipole moment (EDM) in atoms through the interaction of a nuclear EDM d{sub N} with the hyperfine interaction, the ''magnetic moment effect''. We have derived the operator for this interaction and presented analytical formulas for the matrix elements between atomic states. Induced EDMs in the diamagnetic atoms {sup 129}Xe, {sup 171}Yb, {sup 199}Hg, {sup 211}Rn, and {sup 225}Ra have been calculated numerically. From the experimental limits on the atomic EDMs of {sup 129}Xe and {sup 199}Hg we have placed the following constraints on the nuclear EDMs, |d{sub N}({sup 129}Xe)|<1.1x10{sup -21}|e|cm and |d{sub N}({sup 199}Hg)|<2.8x10{sup -24}|e|cm.

  12. Neutrino magnetic moment

    SciTech Connect

    Chang, D. . Dept. of Physics and Astronomy Fermi National Accelerator Lab., Batavia, IL ); Senjanovic, G. . Dept. of Theoretical Physics)

    1990-01-01

    We review attempts to achieve a large neutrino magnetic moment ({mu}{sub {nu}} {le} 10{sup {minus}11}{mu}{sub B}), while keeping neutrino light or massless. The application to the solar neutrino puzzle is discussed. 24 refs.

  13. On the moment of inertia of a quantum harmonic oscillator

    SciTech Connect

    Khamzin, A. A. Sitdikov, A. S.; Nikitin, A. S.; Roganov, D. A.

    2013-04-15

    An original method for calculating the moment of inertia of the collective rotation of a nucleus on the basis of the cranking model with the harmonic-oscillator Hamiltonian at arbitrary frequencies of rotation and finite temperature is proposed. In the adiabatic limit, an oscillating chemical-potential dependence of the moment of inertia is obtained by means of analytic calculations. The oscillations of the moment of inertia become more pronounced as deformations approach the spherical limit and decrease exponentially with increasing temperature.

  14. A fully relativistic radial fall

    NASA Astrophysics Data System (ADS)

    Spallicci, Alessandro D. A. M.; Ritter, Patxi

    2014-10-01

    Radial fall has historically played a momentous role. It is one of the most classical problems, the solutions of which represent the level of understanding of gravitation in a given epoch. A gedankenexperiment in a modern frame is given by a small body, like a compact star or a solar mass black hole, captured by a supermassive black hole. The mass of the small body itself and the emission of gravitational radiation cause the departure from the geodesic path due to the back-action, that is the self-force. For radial fall, as any other non-adiabatic motion, the instantaneous identity of the radiated energy and the loss of orbital energy cannot be imposed and provide the perturbed trajectory. In the first part of this paper, we present the effects due to the self-force computed on the geodesic trajectory in the background field. Compared to the latter trajectory, in the Regge-Wheeler, harmonic and all others smoothly related gauges, a far observer concludes that the self-force pushes inward (not outward) the falling body, with a strength proportional to the mass of the small body for a given large mass; further, the same observer notes a higher value of the maximal coordinate velocity, this value being reached earlier during infall. In the second part of this paper, we implement a self-consistent approach for which the trajectory is iteratively corrected by the self-force, this time computed on osculating geodesics. Finally, we compare the motion driven by the self-force without and with self-consistent orbital evolution. Subtle differences are noticeable, even if self-force effects have hardly the time to accumulate in such a short orbit.

  15. [Approaches to radial shaft].

    PubMed

    Bartoníček, J; Naňka, O; Tuček, M

    2015-10-01

    In the clinical practice, radial shaft may be exposed via two approaches, namely the posterolateral Thompson and volar (anterior) Henry approaches. A feared complication of both of them is the injury to the deep branch of the radial nerve. No consensus has been reached, yet, as to which of the two approaches is more beneficial for the proximal half of radius. According to our anatomical studies and clinical experience, Thompson approach is safe only in fractures of the middle and distal thirds of the radial shaft, but highly risky in fractures of its proximal third. Henry approach may be used in any fracture of the radial shaft and provides a safe exposure of the entire lateral and anterior surfaces of the radius.The Henry approach has three phases. In the first phase, incision is made along the line connecting the biceps brachii tendon and the styloid process of radius. Care must be taken not to damage the lateral cutaneous nerve of forearm.In the second phase, fascia is incised and the brachioradialis identified by the typical transition from the muscle belly to tendon and the shape of the tendon. On the lateral side, the brachioradialis lines the space with the radial artery and veins and the superficial branch of the radial nerve running at its bottom. On the medial side, the space is defined by the pronator teres in the proximal part and the flexor carpi radialis in the distal part. The superficial branch of the radial nerve is retracted together with the brachioradialis laterally, and the radial artery medially.In the third phase, the attachment of the pronator teres is identified by its typical tendon in the middle of convexity of the lateral surface of the radial shaft. The proximal half of the radius must be exposed very carefully in order not to damage the deep branch of the radial nerve. Dissection starts at the insertion of the pronator teres and proceeds proximally along its lateral border in interval between this muscle and insertion of the supinator

  16. Table of nuclear electric quadrupole moments

    NASA Astrophysics Data System (ADS)

    Stone, N. J.

    2016-09-01

    This Table is a compilation of experimental measurements of static electric quadrupole moments of ground states and excited states of atomic nuclei throughout the periodic table. To aid identification of the states, their excitation energy, half-life, spin and parity are given, along with a brief indication of the method and any reference standard used in the particular measurement. Experimental data from all quadrupole moment measurements actually provide a value of the product of the moment and the electric field gradient [EFG] acting at the nucleus. Knowledge of the EFG is thus necessary to extract the quadrupole moment. A single recommended moment value is given for each state, based, for each element, wherever possible, upon a standard reference moment for a nuclear state of that element studied in a situation in which the electric field gradient has been well calculated. For several elements one or more subsidiary EFG/moment reference is required and their use is specified. The literature search covers the period to mid-2015.

  17. Theoretical study of the dipole moments of selected alkaline-earth halides

    NASA Technical Reports Server (NTRS)

    Langhoff, S. R.; Bauschlicher, C. W., Jr.; Partridge, H.; Ahlrichs, R.

    1986-01-01

    Ab initio calculations at the self-consistent-field (SCF), singles-plus-doubles configuration-interaction (SDCI), and coupled-pair functional (CPF) level, are reported for the dipole moments and dipole derivatives of the X2Sigma(+) ground states of BeF, BeCl, MgF, MgCl, CaF, CaCl, and SrF. For comparison, analogous calculations are performed for the X1Sigma(+) state of KCl. The CPF results are found to be in remarkably better agreement with experiment than are the SCF and SDCI results. Apparently higher excitations are required to properly describe the radial extent along the bond axis of the remaining valence electron on the alkaline-earth metal.

  18. Radial turbine cooling

    NASA Technical Reports Server (NTRS)

    Roelke, Richard J.

    1992-01-01

    Radial turbines have been used extensively in many applications including small ground based electrical power generators, automotive engine turbochargers and aircraft auxiliary power units. In all of these applications the turbine inlet temperature is limited to a value commensurate with the material strength limitations and life requirements of uncooled metal rotors. To take advantage of all the benefits that higher temperatures offer, such as increased turbine specific power output or higher cycle thermal efficiency, requires improved high temperature materials and/or blade cooling. Extensive research is on-going to advance the material properties of high temperature superalloys as well as composite materials including ceramics. The use of ceramics with their high temperature potential and low cost is particularly appealing for radial turbines. However until these programs reach fruition the only way to make significant step increases beyond the present material temperature barriers is to cool the radial blading.

  19. Radial Nerve Tendon Transfers.

    PubMed

    Cheah, Andre Eu-Jin; Etcheson, Jennifer; Yao, Jeffrey

    2016-08-01

    Radial nerve palsy typically occurs as a result of trauma or iatrogenic injury and leads to the loss of wrist extension, finger extension, thumb extension, and a reduction in grip strength. In the absence of nerve recovery, reconstruction of motor function involves tendon transfer surgery. The most common donor tendons include the pronator teres, wrist flexors, and finger flexors. The type of tendon transfer is classified based on the donor for the extensor digitorum communis. Good outcomes have been reported for most methods of radial nerve tendon transfers as is typical for positional tendon transfers not requiring significant power. PMID:27387076

  20. Radially uniform electron source

    NASA Technical Reports Server (NTRS)

    Mccomas, D.; Bame, S. J.

    1982-01-01

    A thermionic electron source capable of producing uniform count rates in a number of channel electron multipliers simultaneously was required for conditioning multipliers for an extended space mission. It was found that a straight tungsten filament in the center of a cylindrically symmetric geometry surrounded by an array of multipliers emits a radially asymmetric distribution of electrons that changes with time. A source was developed which successfully produces a time-independent radially uniform distribution of electrons by moving the filament out of the direct line of sight and replacing it with a centrally located electron 'cloud.'

  1. Radial wedge flange clamp

    DOEpatents

    Smith, Karl H.

    2002-01-01

    A radial wedge flange clamp comprising a pair of flanges each comprising a plurality of peripheral flat wedge facets having flat wedge surfaces and opposed and mating flat surfaces attached to or otherwise engaged with two elements to be joined and including a series of generally U-shaped wedge clamps each having flat wedge interior surfaces and engaging one pair of said peripheral flat wedge facets. Each of said generally U-shaped wedge clamps has in its opposing extremities apertures for the tangential insertion of bolts to apply uniform radial force to said wedge clamps when assembled about said wedge segments.

  2. General form for obtaining unit disc-based generalized orthogonal moments.

    PubMed

    Zhu, Hongqing; Yang, Yan; Zhu, Xiaoli; Gui, Zhiguo; Shu, Huazhong

    2014-12-01

    The rotation invariance of the classical disc-based moments, such as Zernike moments (ZMs), pseudo-ZMs (PZMs), and orthogonal Fourier-Mellin moments (OFMMs), makes them attractive as descriptors for the purpose of recognition tasks. However, less work has been performed for the generalization of these moment functions. In this paper, four general forms are developed to obtain a class of disc-based generalized radial polynomials that are orthogonal over the unit circle. These radial polynomials are scaled to ensure numerical stability, and some useful properties are discussed for potential applications they could be used in. Then, these scaled radial polynomials are used as kernel functions to construct a series of unit discbased generalized orthogonal moments (DGMs). The variation of parameters in DGMs can form various types of orthogonal moments: 1) generalized ZMs; 2) generalized PZMs; and 3) generalized OFMMs. The classical ZMs, PZMs, and OFMMs correspond to a special case of these three generalized moments for which the free parameter α = 0. Each member of this family will share some excellent properties for image representation and recognition tasks, such as orthogonality and rotation invariance. In addition, we have also developed two algorithms, the so-called m-recursive and n-recursive methods for the computation of these proposed radial polynomials to improve the numerical stability. Experimental results show that the proposed methods are superior to the classical disc-based moments in terms of image representation capability and classification accuracy. PMID:25361505

  3. Temporal Moments in Hydrogeophysics

    NASA Astrophysics Data System (ADS)

    Pollock, D.; Cirpka, O. A.

    2007-12-01

    Electrical Resistivity Tomography (ERT) has been tested as monitoring tool for salt-tracer experiments by various authors. So far, the analysis of such experiments has been done by a two-step procedure [Kemna et al., 2002; Vanderborght et al., 2005; Singha and Gorelick, 2005]. In the first step, classical geophysical inversion methods have been used to infer the distribution of electrical conductivity, which is transferred to an estimated concentration distribution of the tracer. Subsequently, the inferred concentration images were analyzed to estimate hydraulic quantities such as the velocity distribution. This approach has two disadvantages: The concentration distribution is reconstructed with a high spatial resolution, but the estimate is uncertain, and the estimation uncertainty is spatially correlated. These correlated uncertainties should be accounted for in the estimation of hydraulic conductivity from concentration values. The latter, unfortunately, is not practical because the reconstructed data sets are very large. The geophysical inversion is not enforced to be in agreement with basic hydromechanical constraints. E.g., Singha and Gorelick [2005] observed an apparent loss of solute mass when using ERT as monitoring tool. We propose considering the temporal moments of potential-difference time series. These temporal moments depend on temporal moments of concentration, which have already been used in the inference of hydraulic- conductivity distributions (Cirpka and Kitanidis, 2000). In our contribution, we present the complete set of equations leading from hydraulic conductivity via hydraulic heads, velocities, temporal moments of concentrations to temporal moments of potential differences for given flow and transport boundary conditions and electrode configurations. We also present how the sensitivity of temporal moments of potential differences on the hydraulic conductivity field can be computed without the need of storing intermediate sensitivities

  4. Radial forces in a misaligned radial face seal

    NASA Technical Reports Server (NTRS)

    Etsion, I.

    1977-01-01

    Radial forces on the primary seal ring of a flat misaligned seal are analyzed, taking into account the radial variation in seal clearance. An analytical solution for both hydrostatic and hydrodynamic effects is presented that covers the whole range from zero to full angular misalignment. The net radial force on the primary seal ring is always directed so as to produce a radial eccentricity which generates inward pumping. Although the radial force is usually very small, in some cases it may be one of the reasons for excessive leakage through both the primary and secondary seals of a radial face seal.

  5. Radial forces in a misaligned radial face seal

    NASA Technical Reports Server (NTRS)

    Etsion, I.

    1978-01-01

    Radial forces on the primary seal ring of a flat misaligned seal are analyzed, taking into account the radial variation in seal clearance. An analytical solution for both hydrostatic and hydrodynamic effects is presented that covers the whole range from zero to full angular misalignment. The net radial force on the primary seal ring is always directed so as to produce a radial eccentricity which generates inward pumping. Although the radial force is usually very small, in some cases it may be one of the reasons for excessive leakage through both the primary and secondary seals of a radial face seal.

  6. Magnetic Moment Distribution in Layered Materials

    NASA Astrophysics Data System (ADS)

    Nicholson, D. M. C.; Zhang, X.-G.; Wang, Y.; Shelton, W. A.; Butler, W. H.; Stocks, G. M.; MacLaren, J. M.

    1996-03-01

    Thin layers of magnetic material surrounded by non-magnetic layers display a reduced moment per atom relative to the bulk magnetic material. Plots of sturation magnetization versus magnetic layer thickness can be explained in terms of magnetically dead layers at interfaces. First principles calculations indicate a more complex distribution of magnetic moments. Moment distributions calculated in the local density approximation restricted to colinear spins and with unrestricted spin orientations will be presented for Cu/Ni/Cu, Cu/permalloy/Cu, and Mo/Ni/Mo structures. Work supported by Division of Materials Science, the Mathematical Information and Computational Science Division of the Office of Computational Technology Research, and by the Assistant Secretary of Defence Programs, Technology Management Group, Technology Transfer Initiative, US DOE under subcontract DEAC05-84OR21400 with Martin-Marietta Energy Systems, Inc.

  7. The Teachable Moment.

    ERIC Educational Resources Information Center

    Goodrow, Mary Ellen

    2000-01-01

    Details how an unplanned activity involving spinning wool presented a teachable moment for children in a family child care setting. Notes how activities related to farming, spinning wool, and using wool cloth resulted from following the children's lead. Concludes that everyday activities provide opportunities to listen to children, learn about…

  8. Moments in Psychotherapy

    ERIC Educational Resources Information Center

    Terr, Lenore C.; McDermott, John F.; Benson, Ronald M.; Blos, Peter, Jr.; Deeney, John M.; Rogers, Rita R.; Zrull, Joel P.

    2005-01-01

    In the summer of 2004, a number of psychotherapists with old ties to the University of Michigan or UCLA decided to write 500-word vignettes that attempted to capture a turning point in one of their child patient's psychotherapies. What did the child and adolescent psychiatrist do to elicit such a moment? Upon receiving seven vignettes, one of us…

  9. Moments with Youth

    ERIC Educational Resources Information Center

    Child & Youth Services, 2004

    2004-01-01

    This chapter presents additional stories and interpretations by John Korsmo, Molly Weingrod, Joseph Stanley, Quinn Wilder, Amy Evans, Rick Flowers, Arcelia Martinez, and Pam Ramsey. The stories and interpretations are presented as teachable moments that are examples of how people are learning to understand youthwork and, as such, are open to…

  10. The Humanist Moment

    ERIC Educational Resources Information Center

    Higgins, Chris

    2014-01-01

    In "The Humanist Moment," Chris Higgins sets out to recover a tenable, living humanism, rejecting both the version vilified by the anti-humanists and the one sentimentalized by the reactionary nostalgists. Rescuing humanism from such polemics is only the first step, as we find at least nine rival, contemporary definitions of humanism.…

  11. Radial Halbach Magnetic Bearings

    NASA Technical Reports Server (NTRS)

    Eichenberg, Dennis J.; Gallo, Christopher A.; Thompson, William K.

    2009-01-01

    Radial Halbach magnetic bearings have been investigated as part of an effort to develop increasingly reliable noncontact bearings for future high-speed rotary machines that may be used in such applications as aircraft, industrial, and land-vehicle power systems and in some medical and scientific instrumentation systems. Radial Halbach magnetic bearings are based on the same principle as that of axial Halbach magnetic bearings, differing in geometry as the names of these two types of bearings suggest. Both radial and axial Halbach magnetic bearings are passive in the sense that unlike most other magnetic bearings that have been developed in recent years, they effect stable magnetic levitation without need for complex active control. Axial Halbach magnetic bearings were described in Axial Halbach Magnetic Bearings (LEW-18066-1), NASA Tech Briefs, Vol. 32, No. 7 (July 2008), page 85. In the remainder of this article, the description of the principle of operation from the cited prior article is recapitulated and updated to incorporate the present radial geometry. In simplest terms, the basic principle of levitation in an axial or radial Halbach magnetic bearing is that of the repulsive electromagnetic force between (1) a moving permanent magnet and (2) an electric current induced in a stationary electrical conductor by the motion of the magnetic field. An axial or radial Halbach bearing includes multiple permanent magnets arranged in a Halbach array ("Halbach array" is defined below) in a rotor and multiple conductors in the form of wire coils in a stator, all arranged so the rotary motion produces an axial or radial repulsion that is sufficient to levitate the rotor. A basic Halbach array (see Figure 1) consists of a row of permanent magnets, each oriented so that its magnetic field is at a right angle to that of the adjacent magnet, and the right-angle turns are sequenced so as to maximize the magnitude of the magnetic flux density on one side of the row while

  12. MARVELS Radial Velocity Solutions to Seven Kepler Eclipsing Binaries

    NASA Astrophysics Data System (ADS)

    Heslar, Michael Francis; Thomas, Neil B.; Ge, Jian; Ma, Bo; Herczeg, Alec; Reyes, Alan; SDSS-III MARVELS Team

    2016-01-01

    Eclipsing binaries serve momentous purposes to improve the basis of understanding aspects of stellar astrophysics, such as the accurate calculation of the physical parameters of stars and the enigmatic mass-radius relationship of M and K dwarfs. We report the investigation results of 7 eclipsing binary candidates, initially identified by the Kepler mission, overlapped with the radial velocity observations from the SDSS-III Multi-Object APO Radial-Velocity Exoplanet Large-Area Survey (MARVELS). The RV extractions and spectroscopic solutions of these eclipsing binaries were generated by the University of Florida's 1D data pipeline with a median RV precision of ~60-100 m/s, which was utilized for the DR12 data release. We performed the cross-reference fitting of the MARVELS RV data and the Kepler photometric fluxes obtained from the Kepler Eclipsing Binary Catalog (V2) and modelled the 7 eclipsing binaries in the BinaryMaker3 and PHOEBE programs. This analysis accurately determined the absolute physical and orbital parameters of each binary. Most of the companion stars were determined to have masses of K and M dwarf stars (0.3-0.8 M⊙), and allowed for an investigation into the mass-radius relationship of M and K dwarfs. Among the cases are KIC 9163796, a 122.2 day period "heartbeat star", a recently-discovered class of eccentric binaries known for tidal distortions and pulsations, with a high eccentricity (e~0.75) and KIC 11244501, a 0.29 day period, contact binary with a double-lined spectrum and mass ratio (q~0.45). We also report on the possible reclassification of 2 Kepler eclipsing binary candidates as background eclipsing binaries based on the analysis of the flux measurements, flux ratios of the spectroscopic and photometric solutions, the differences in the FOVs, the image processing of Kepler, and RV and spectral analysis of MARVELS.

  13. Revised FORTRAN program for calculating velocities and streamlines on the hub-shroud midchannel stream surface of an axial-, radial-, or mixed-flow turbomachine or annular duct. 2: Programmer's manual

    NASA Technical Reports Server (NTRS)

    Katsanis, T.; Mcnally, W. D.

    1977-01-01

    A FORTRAN IV computer program has been developed that obtains a detailed subsonic or shock free transonic flow solution on the hub-shroud midchannel stream surface of a turbomachine. The blade row may be fixed or rotating, and the blades may be twisted and leaned. Flow may be axial, mixed, or radial. Upstream and downstream flow variables may vary from hub to shroud, and provisions are made to correct for loss of stagnation pressure. The results include velocities, streamlines, and flow angles on the stream surface and approximate blade surface velocities.

  14. A confidence parameter for seismic moment tensors

    NASA Astrophysics Data System (ADS)

    Tape, Walter; Tape, Carl

    2016-05-01

    Given a moment tensor m inferred from seismic data for an earthquake, we define P(V) to be the probability that the true moment tensor for the earthquake lies in the neighbourhood of m that has fractional volume V. The average value of P(V) is then a measure of our confidence in m. The calculation of P(V) requires knowing both the probability hat{P}(ω) and the fractional volume hat{V}(ω) of the set of moment tensors within a given angular radius ω of m. We explain how to construct hat{P}(ω) from a misfit function derived from seismic data, and we show how to calculate hat{V}(ω), which depends on the set M of moment tensors under consideration. The two most important instances of M are where M is the set of all moment tensors of fixed norm, and where M is the set of all double couples of fixed norm.

  15. A confidence parameter for seismic moment tensors

    NASA Astrophysics Data System (ADS)

    Tape, Walter; Tape, Carl

    2016-02-01

    Given a moment tensor m inferred from seismic data for an earthquake, we define P(V) to be the probability that the true moment tensor for the earthquake lies in the neighborhood of m that has fractional volume V. The average value of P(V) is then a measure of our confidence in m. The calculation of P(V) requires knowing both the probability hat{P}(ω ) and the fractional volume hat{V}(ω ) of the set of moment tensors within a given angular radius ω of m. We explain how to construct hat{P}(ω ) from a misfit function derived from seismic data, and we show how to calculate hat{V}(ω ), which depends on the set M of moment tensors under consideration. The two most important instances of M are where M is the set of all moment tensors of fixed norm, and where M is the set of all double couples of fixed norm.

  16. Radial Inflow Turboexpander Redesign

    SciTech Connect

    William G. Price

    2001-09-24

    Steamboat Envirosystems, LLC (SELC) was awarded a grant in accordance with the DOE Enhanced Geothermal Systems Project Development. Atlas-Copco Rotoflow (ACR), a radial expansion turbine manufacturer, was responsible for the manufacturing of the turbine and the creation of the new computer program. SB Geo, Inc. (SBG), the facility operator, monitored and assisted ACR's activities as well as provided installation and startup assistance. The primary scope of the project is the redesign of an axial flow turbine to a radial inflow turboexpander to provide increased efficiency and reliability at an existing facility. In addition to the increased efficiency and reliability, the redesign includes an improved reduction gear design, and improved shaft seal design, and upgraded control system and a greater flexibility of application

  17. Variable stator radial turbine

    NASA Technical Reports Server (NTRS)

    Rogo, C.; Hajek, T.; Chen, A. G.

    1984-01-01

    A radial turbine stage with a variable area nozzle was investigated. A high work capacity turbine design with a known high performance base was modified to accept a fixed vane stagger angle moveable sidewall nozzle. The nozzle area was varied by moving the forward and rearward sidewalls. Diffusing and accelerating rotor inlet ramps were evaluated in combinations with hub and shroud rotor exit rings. Performance of contoured sidewalls and the location of the sidewall split line with respect to the rotor inlet was compared to the baseline. Performance and rotor exit survey data are presented for 31 different geometries. Detail survey data at the nozzle exit are given in contour plot format for five configurations. A data base is provided for a variable geometry concept that is a viable alternative to the more common pivoted vane variable geometry radial turbine.

  18. Radial pressure flange seal

    DOEpatents

    Batzer, T.H.; Call, W.R.

    1989-01-24

    This invention provides an all metal seal for vacuum or pressure vessels or systems. This invention does not use gaskets. The invention uses a flange which fits into a matching groove. Fluid pressure is applied in a chamber in the flange causing at least one of the flange walls to radially press against a side of the groove creating the seal between the flange wall and the groove side. 5 figs.

  19. Radial pressure flange seal

    DOEpatents

    Batzer, Thomas H.; Call, Wayne R.

    1989-01-01

    This invention provides an all metal seal for vacuum or pressure vessels or systems. This invention does not use gaskets. The invention uses a flange which fits into a matching groove. Fluid pressure is applied in a chamber in the flange causing at least one of the flange walls to radially press against a side of the groove creating the seal between the flange wall and the groove side.

  20. Multilayer theory for delamination analysis of a composite curved bar subjected to end forces and end moments

    NASA Technical Reports Server (NTRS)

    Ko, William L.; Jackson, Raymond H.

    1989-01-01

    A composite test specimen in the shape of a semicircular curved bar subjected to bending offers an excellent stress field for studying the open-mode delamination behavior of laminated composite materials. This is because the open-mode delamination nucleates at the midspan of the curved bar. The classical anisotropic elasticity theory was used to construct a multilayer theory for the calculations of the stress and deformation fields induced in the multilayered composite semicircular curved bar subjected to end forces and end moments. The radial location and intensity of the open-mode delamination stress were calculated and were compared with the results obtained from the anisotropic continuum theory and from the finite element method. The multilayer theory gave more accurate predictions of the location and the intensity of the open-mode delamination stress than those calculated from the anisotropic continuum theory.

  1. Radial Field Piezoelectric Diaphragms

    NASA Technical Reports Server (NTRS)

    Bryant, R. G.; Effinger, R. T., IV; Copeland, B. M., Jr.

    2002-01-01

    A series of active piezoelectric diaphragms were fabricated and patterned with several geometrically defined Inter-Circulating Electrodes "ICE" and Interdigitated Ring Electrodes "ICE". When a voltage potential is applied to the electrodes, the result is a radially distributed electric field that mechanically strains the piezoceramic along the Z-axis (perpendicular to the applied electric field). Unlike other piezoelectric bender actuators, these Radial Field Diaphragms (RFDs) strain concentrically yet afford high displacements (several times that of the equivalent Unimorph) while maintaining a constant circumference. One of the more intriguing aspects is that the radial strain field reverses itself along the radius of the RFD while the tangential strain remains relatively constant. The result is a Z-deflection that has a conical profile. This paper covers the fabrication and characterization of the 5 cm. (2 in.) diaphragms as a function of poling field strength, ceramic thickness, electrode type and line spacing, as well as the surface topography, the resulting strain field and displacement as a function of applied voltage at low frequencies. The unique features of these RFDs include the ability to be clamped about their perimeter with little or no change in displacement, the environmentally insulated packaging, and a highly repeatable fabrication process that uses commodity materials.

  2. Radially inhomogeneous bounded plasmas

    NASA Astrophysics Data System (ADS)

    Zakeri-Khatir, H.; Aghamir, F. M.

    2016-07-01

    On the basis of kinetic theory along with self-consistent field equations, the expressions for dielectric tensor of radially inhomogeneous magnetized plasma columns are obtained. The study of dielectric tensor characteristics allows the accurate analysis of the inhomogeneous properties, beyond limitations that exist in the conventional method. Through the Bessel–Fourier transformation, the localized form of material equations in a radially inhomogeneous medium are obtained. In order to verify the integrity of the model and reveal the effect of inhomogeneity, a special case of a cylindrical plasma waveguide completely filled with inhomogeneous magnetized cold plasma was considered. The dispersion relation curves for four families of electromagnetic (EH and HE) and electrostatic (SC and C) modes are obtained and compared with the findings of the conventional model. The numerical analysis indicates that the inhomogeneity effect leads to coupling of electromagnetic and electrostatic modes each having different radial eigen numbers. The study also reveals that the electrostatic modes are more sensitive to inhomogeneous effects than the electromagnetic modes.

  3. Magnetic moments of light nuclei from lattice quantum chromodynamics

    DOE PAGESBeta

    Beane, S.  R.; Chang, E.; Cohen, S.; Detmold, W.; Lin, H.  W.; Orginos, K.; Parreño, A.; Savage, M.  J.; Tiburzi, B.  C.

    2014-12-16

    We present the results of lattice QCD calculations of the magnetic moments of the lightest nuclei, the deuteron, the triton and 3He, along with those of the neutron and proton. These calculations, performed at quark masses corresponding to mπ ~ 800 MeV, reveal that the structure of these nuclei at unphysically heavy quark masses closely resembles that at the physical quark masses. We find that the magnetic moment of 3He differs only slightly from that of a free neutron, as is the case in nature, indicating that the shell-model configuration of two spin-paired protons and a valence neutron captures itsmore » dominant structure. Similarly a shell-model-like moment is found for the triton, μ3H ~ μp. The deuteron magnetic moment is found to be equal to the nucleon isoscalar moment within the uncertainties of the calculations.« less

  4. Antiproton compression and radial measurements

    SciTech Connect

    Andresen, G. B.; Bowe, P. D.; Hangst, J. S.; Bertsche, W.; Butler, E.; Charlton, M.; Humphries, A. J.; Jenkins, M. J.; Joergensen, L. V.; Madsen, N.; Werf, D. P. van der; Bray, C. C.; Chapman, S.; Fajans, J.; Povilus, A.; Wurtele, J. S.; Cesar, C. L.; Lambo, R.; Silveira, D. M.; Fujiwara, M. C.

    2008-08-08

    Control of the radial profile of trapped antiproton clouds is critical to trapping antihydrogen. We report detailed measurements of the radial manipulation of antiproton clouds, including areal density compressions by factors as large as ten, achieved by manipulating spatially overlapped electron plasmas. We show detailed measurements of the near-axis antiproton radial profile, and its relation to that of the electron plasma. We also measure the outer radial profile by ejecting antiprotons to the trap wall using an octupole magnet.

  5. Legendre modified moments for Euler's constant

    NASA Astrophysics Data System (ADS)

    Prévost, Marc

    2008-10-01

    Polynomial moments are often used for the computation of Gauss quadrature to stabilize the numerical calculation of the orthogonal polynomials, see [W. Gautschi, Computational aspects of orthogonal polynomials, in: P. Nevai (Ed.), Orthogonal Polynomials-Theory and Practice, NATO ASI Series, Series C: Mathematical and Physical Sciences, vol. 294. Kluwer, Dordrecht, 1990, pp. 181-216 [6]; W. Gautschi, On the sensitivity of orthogonal polynomials to perturbations in the moments, Numer. Math. 48(4) (1986) 369-382 [5]; W. Gautschi, On generating orthogonal polynomials, SIAM J. Sci. Statist. Comput. 3(3) (1982) 289-317 [4

  6. First moments of nucleon generalized parton distributions

    DOE PAGESBeta

    Wang, P.; Thomas, A. W.

    2010-06-01

    We extrapolate the first moments of the generalized parton distributions using heavy baryon chiral perturbation theory. The calculation is based on the one loop level with the finite range regularization. The description of the lattice data is satisfactory, and the extrapolated moments at physical pion mass are consistent with the results obtained with dimensional regularization, although the extrapolation in the momentum transfer to t=0 does show sensitivity to form factor effects, which lie outside the realm of chiral perturbation theory. We discuss the significance of the results in the light of modern experiments as well as QCD inspired models.

  7. The forces and moments on airplane engine mounts

    NASA Technical Reports Server (NTRS)

    Donely, Philip

    1936-01-01

    A resume of the equations and formulas for the forces and moments on an aircraft-engine mount is presented. In addition, available experimental data have been included to permit the computation of these forces and moments. A sample calculation is made and compared with present design conditions for engine mounts.

  8. Duality and Electric Dipole Moment of Magnetic Monopole

    NASA Astrophysics Data System (ADS)

    Kobayashi, M.

    After a few personal recollections on Professor Shoichi Sakata and thetheory group of Nagoya Univiersity, the electric dipole moment of magnetic monopoles is discussed. In the N = 2 supersymmetric gauge model, the explicit calculation shows that the fraction of the fermion contribution to the moment is given by a curious number.

  9. The evaluation of the rolling moments induced by wraparound fins

    NASA Technical Reports Server (NTRS)

    Seginer, A.; Bar-Haim, B.

    1983-01-01

    A possible reason is suggested for the induced rolling moments occurring on wraparound-fin configurations in subsonic flight at zero angle of attack. The subsonic potential flow over the configuration at zero incidence is solved numerically. The body is simulated by a distribution of sources along its axis, and the fins are described by a vortex-lattice method. It is shown that rolling moments can be induced on the antisymmetric fins by the radial flow generated at the base of the configuration, either over the converging separated wake, or over the diverging plume of a rocket motor.

  10. Revised FORTRAN program for calculating velocities and streamlines on the hub-shroud midchannel stream surface of an axial-, radial-, or mixed-flow turbomachine or annular duct. 1: User's manual

    NASA Technical Reports Server (NTRS)

    Katsanis, T.; Mcnally, W. D.

    1977-01-01

    A FORTRAN 4 computer program was developed that obtains a detailed subsonic or shock-free transonic flow solution on the hub-shroud midchannel stream surface of a turbomachine. The blade row may be fixed or rotating, and the blades may be twisted and leaned. Flow may be axial, mixed, or radial. Upstream and downstream flow variables may vary from hub to shroud, and provision is made to correct for loss of stagnation pressure. The results include velocities, streamlines, and flow angles on the stream surface as well as approximate blade surface velocities. Subsonic solutions are obtained by a finite-difference, stream-function solution. Transonic solutions are obtained by a velocity-gradient method that uses information from a finite-difference, stream-function solution at a reduced mass flow.

  11. Radial vibrations of a sodium ion inside icosahedral C60

    NASA Technical Reports Server (NTRS)

    Ballester, J. L.; Dunlap, B. I.

    1992-01-01

    The very high symmetry of icosahedral C60 suggests that, as a first approximation, an atom trapped inside C60 would be subject to a potential that is radially symmetric about the center. All-electron local-density-functional calculations of the total energy of a sodium ion as a function of radial displacement from the center along the fivefold axis of C60 serve to refine such a radial potential. In particular, the calculations suggest studying potentials that have minima displaced from the center. An analytic functional form for a radial potential having a positive cusp at the origin is proposed, and the s-wave radial solutions of the corresponding Schroedinger equation are examined.

  12. Radial reflection diffraction tomography

    DOEpatents

    Lehman, Sean K.

    2012-12-18

    A wave-based tomographic imaging method and apparatus based upon one or more rotating radially outward oriented transmitting and receiving elements have been developed for non-destructive evaluation. At successive angular locations at a fixed radius, a predetermined transmitting element can launch a primary field and one or more predetermined receiving elements can collect the backscattered field in a "pitch/catch" operation. A Hilbert space inverse wave (HSIW) algorithm can construct images of the received scattered energy waves using operating modes chosen for a particular application. Applications include, improved intravascular imaging, bore hole tomography, and non-destructive evaluation (NDE) of parts having existing access holes.

  13. Radial Reflection diffraction tomorgraphy

    DOEpatents

    Lehman, Sean K

    2013-11-19

    A wave-based tomographic imaging method and apparatus based upon one or more rotating radially outward oriented transmitting and receiving elements have been developed for non-destructive evaluation. At successive angular locations at a fixed radius, a predetermined transmitting element can launch a primary field and one or more predetermined receiving elements can collect the backscattered field in a "pitch/catch" operation. A Hilbert space inverse wave (HSIW) algorithm can construct images of the received scattered energy waves using operating modes chosen for a particular application. Applications include, improved intravascular imaging, bore hole tomography, and non-destructive evaluation (NDE) of parts having existing access holes.

  14. Underground radial pipe network

    SciTech Connect

    Peterson, D.L.

    1984-04-24

    The network, useful in conducting fluids to underground sites, is an assembly of flexible pipes or tubes, suspended from and connected to a drill pipe. The flexible pipes, assembled in a bundle, are spring biased to flare outwardly in an arcuate manner when a releasable cap on the distal end of the bundle is removed. The assembled bundle is inserted into and lowered down a bore hole. When the cap is released, the pipes flare radially and outwardly. Fluid, pumped into and through the assembly, can be directed into the underground formation for various purposes.

  15. Radial Rydberg wavepacket maps

    NASA Astrophysics Data System (ADS)

    Zeibel, J. G.; Jones, R. R.

    2001-04-01

    Picosecond laser pulses have been used to excite radial Rydberg wavepackets in Ca. Time-delayed, unipolar, `half-cycle' electric field pulses are used to probe the evolution of the wavepackets as a continuous function of binding energy. The data provide three-dimensional maps of wavepacket recurrence probability versus binding energy versus time. A rescaling of the energy and time coordinate axes allows the visualization of the distinct difference between the initial oscillations of the wavepacket and those that occur at integer and fractional revivals.

  16. Radial cutting torch

    SciTech Connect

    Robertson, M.C.

    1997-01-08

    The project`s aim is to complete development of the Radial Cutting Torch, a pyrotechnic cutter, for use in all downhole tubular cutting operations in the petroleum industry. Project objectives are to redesign and pressure test nozzle seals to increase product quality, reliability, and manufacturability; improve the mechanical anchor to increase its temperature tolerance and its ability to function in a wider variety of wellbore fluids; and redesign and pressure test the RCT nozzle for operation at pressures from 10 to 20 ksi. The proposal work statement is included in the statement of work for the grant via this reference.

  17. Nuclear moment of inertia and spin distribution of nuclear levels

    SciTech Connect

    Alhassid, Y.; Fang, L.; Liu, S.; Bertsch, G.F.

    2005-12-15

    We introduce a simple model to calculate the nuclear moment of inertia at finite temperature. This moment of inertia describes the spin distribution of nuclear levels in the framework of the spin-cutoff model. Our model is based on a deformed single-particle Hamiltonian with pairing interaction and takes into account fluctuations in the pairing gap. We derive a formula for the moment of inertia at finite temperature that generalizes the Belyaev formula for zero temperature. We show that a number-parity projection explains the strong odd-even effects observed in shell model Monte Carlo studies of the nuclear moment of inertia in the iron region.

  18. New Measurements of Radial Mode Eigenfrequencies

    NASA Astrophysics Data System (ADS)

    Laske, G.; Masters, G.; Dziewonski, A. M.

    2001-12-01

    Radial mode eigenfrequencies are commonly thought to be measured with great ease and precision. The reason for this is that these modes have no geographic pattern so one should be able to measure frequencies from a spectrum observed at any station in the world. Yet, radial modes often seem inconsistent with spherical Earth models that fit all other mode frequencies. It turns out that radial modes are sometimes strongly coupled. The strongest coupling is predicted to be with l=2 modes which is caused by the Earth's hydrostatic ellipticity and aspherical structure of harmonic degree 2. In such cases, mode-coupling due to ellipticity alone can cause a frequency shift for the radial modes by more than 4 microHz. Given that mode frequencies can be measured to within 0.1 microHz, this shift is significant, and some singlets of l=2 modes have indeed been misidentified as the radial mode in the past. Including the spectra of the June 23, 2001 Southern Peru Earthquake we have re-analyzed radial mode eigenfrequencies and present a mode dataset that is internally more consistent than previous ones. We construct spherical Earth models that are consistent with our new data, the Earth's mass and moment of inertia and the current best estimates of ``Reference Normal Mode Data'' (available on the Reference Earth Model web site: //mahi.ucsd.edu/Gabi/rem.html). We seek the smallest perturbation to PREM but update the Q-structure as well as the depths of the upper mantle discontinuities (418~km and 660~km as first order discontinuities; 520~km as change in gradient). The best fitting 1D model is transversely isotropic but we also show isotropic models that fit the data to within their errors. We show that the 220~km discontinuity is not required in the isotropic model but that there exists a trade-off between high shear-velocities in the lid and a low-density zone beneath it. We also investigate ways of truncating transverse isotropy without the 220.

  19. Radar Wind Profiler Radial Velocity: A Comparison with Doppler Lidar.

    NASA Astrophysics Data System (ADS)

    Cohn, Stephen A.; Goodrich, R. Kent

    2002-12-01

    The accuracy of the radial wind velocity measured with a radar wind profiler will depend on turbulent variability and instrumental noise. Radial velocity estimates of a boundary layer wind profiler are compared with those estimated by a Doppler lidar over 2.3 h. The lidar resolution volume was much narrower than the profiler volume, but the samples were well matched in range and time. The wind profiler radial velocity was computed using two common algorithms [profiler online program (POP) and National Center for Atmospheric Research improved moments algorithm (NIMA)]. The squared correlation between radial velocities measured with the two instruments was R2 = 0.99, and the standard deviation of the difference was about r = 0.20-0.23 m s1 for radial velocities of greater than 1 m s1 and r = 0.16-0.35 m s1 for radial velocities of less than 1 m s1. Small radial velocities may be treated differently in radar wind profiler processing because of ground-clutter mitigation strategies. A standard deviation of r = 0.23 m s1 implies an error in horizontal winds from turbulence and noise of less than 1 m s1 for a single cycle through the profiler beam directions and of less than 0.11-0.27 m s1 for a 30-min average measurement, depending on the beam pointing sequence. The accuracy of a wind profiler horizontal wind measurement will also depend on assumptions of spatial and temporal inhomogeneity of the atmosphere, which are not considered in this comparison. The wind profiler radial velocities from the POP and NIMA are in good agreement. However, the analysis does show the need for improvements in wind profiler processing when radial velocity is close to zero.

  20. Analytic solution of the wave equation for an electron in the field of a molecule with an electric dipole moment

    SciTech Connect

    Alhaidari, A.D.

    2008-07-15

    We relax the usual diagonal constraint on the matrix representation of the eigenvalue wave equation by allowing it to be tridiagonal. This results in a larger representation space that incorporates an analytic solution for the non-central electric dipole potential cos{theta}/r{sup 2}, which was believed not to belong to the class of exactly solvable potentials. Therefore, we were able to obtain a closed form solution of the three-dimensional time-independent Schroedinger equation for a charged particle in the field of a point electric dipole that could carry a nonzero net charge. This problem models the interaction of an electron with a molecule (neutral or ionized) that has a permanent electric dipole moment. The solution is written as a series in a basis composed of special functions that support a tridiagonal matrix representation for the angular and radial components of the wave operator. Moreover, this solution is for all energies, the discrete (for bound states) as well as the continuous (for scattering states). The expansion coefficients of the radial and angular components of the wavefunction are written in terms of orthogonal polynomials satisfying three-term recursion relations. For the Coulomb-free case, where the molecule is neutral, we calculate critical values for its dipole moment below which no electron capture is allowed. These critical values are obtained not only for the ground state, where it agrees with already known results, but also for excited states as well.

  1. Radial cold trap

    DOEpatents

    Grundy, Brian R.

    1981-01-01

    The radial cold trap comprises a housing having a plurality of mesh bands disposed therein. The mesh bands comprise concentrically arranged bands of mesh with the mesh specific surface area of each band increasing from the outermost mesh band to the innermost mesh band. An inlet nozzle is attached to the outside section of the housing while an outlet nozzle is attached to the inner portion of the housing so as to be concentrically connected to the innermost mesh band. An inlet baffle having orifices therein may be disposed around the outermost mesh band and within the housing for directing the flow of the fluid from the inlet nozzle to the outermost mesh band in a uniform manner. The flow of fluid passes through each consecutive mesh band and into the outlet nozzle. The circular pattern of the symmetrically arranged mesh packing allows for better utilization of the entire cold trap volume.

  2. Radial cold trap

    DOEpatents

    Grundy, B.R.

    1981-09-29

    The radial cold trap comprises a housing having a plurality of mesh bands disposed therein. The mesh bands comprise concentrically arranged bands of mesh with the mesh specific surface area of each band increasing from the outermost mesh band to the innermost mesh band. An inlet nozzle is attached to the outside section of the housing while an outlet nozzle is attached to the inner portion of the housing so as to be concentrically connected to the innermost mesh band. An inlet baffle having orifices therein may be disposed around the outermost mesh band and within the housing for directing the flow of the fluid from the inlet nozzle to the outermost mesh band in a uniform manner. The flow of fluid passes through each consecutive mesh band and into the outlet nozzle. The circular pattern of the symmetrically arranged mesh packing allows for better utilization of the entire cold trap volume. 2 figs.

  3. Radial rib antenna surface deviation analysis program

    NASA Technical Reports Server (NTRS)

    Coyner, J. V., Jr.

    1971-01-01

    A digital computer program was developed which analyzes any radial rib antenna with ribs radiating from a central hub. The program has the capability for calculating the antenna surface contour (reversed pillowing effect), the optimum rib shape for minimizing the rms surface error, and the actual rms surface error. Rib deflection due to mesh tension and catenary cable tension can also be compensated for, and the pattern from which the mesh gores are cut can be determined.

  4. ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS: Analytical Solutions of Electromagnetic Fields from Current Dipole Moment on Spherical Conductor in a Low-Frequency Approximation

    NASA Astrophysics Data System (ADS)

    Okita, Taishi; Takagi, Toshiyuki

    2010-01-01

    We analytically derive the solutions for electromagnetic fields of electric current dipole moment, which is placed in the exterior of the spherical homogeneous conductor, and is pointed along the radial direction. The dipole moment is driven in the low frequency f = 1 kHz and high frequency f = 1 GHz regimes. The electrical properties of the conductor are appropriately chosen in each frequency. Electromagnetic fields are rigorously formulated at an arbitrary point in a spherical geometry, in which the magnetic vector potential is straightforwardly given by the Biot-Savart formula, and the scalar potential is expanded with the Legendre polynomials, taking into account the appropriate boundary conditions at the spherical surface of the conductor. The induced electric fields are numerically calculated along the several paths in the low and high frequeny excitation. The self-consistent solutions obtained in this work will be of much importance in a wide region of electromagnetic induction problems.

  5. Radial gate hoist mechanisms mounted above radial gates, view to ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Radial gate hoist mechanisms mounted above radial gates, view to the east - Wellton-Mohawk Irrigation System, Wasteway No. 1, Wellton-Mohawk Canal, North side of Wellton-Mohawk Canal, bounded by Gila River to North & the Union Pacific Railroad & Gila Mountains to south, Wellton, Yuma County, AZ

  6. Centroid and moments of an area using a digitizer

    NASA Technical Reports Server (NTRS)

    Patch, R. W.

    1976-01-01

    The centroid and moments of an area program provides the centroid, moments of inertia, product of inertia, radii of gyration, and area of any closed planar geometric figure. The figure must be available in graphic form and is digitized once with chart digitizer (graphic tablet). The digitizer origin may be set anywhere on the digitizer table. After digitizing, fifteen quantities are calculated and displayed: (1) area (2) moment of inertia of area with respect to digitizer x-axis, (3) moment of inertia of area with respect to digitizer y-axis, (4) product of inertia of area with respect to digitizer axes, (5) first moment of x for digitizer axes, (6) first moment of y for digitizer axes, (7) x coordinate of centroid, (8) y coordinate of centroid, (9) moment of area inertia of with respect to x axis through centroid, (10) moment of inertia of area with respect to y axis through centroid, (11) product inertia of area with respect to x and y axes through centroid, (12) polar moment of inertia of area around centroid, (13) radius of gyration about digitizer x axis, (14) radius of gyration about digitizer y-axis; and (15) variance in the x-direction.

  7. Radially composite piezoelectric ceramic tubular transducer in radial vibration.

    PubMed

    Shuyu, Lin; Shuaijun, Wang

    2011-11-01

    The radially composite piezoelectric tubular transducer is studied. It is composed of radially poled piezoelectric and a long metal tube. The electro-mechanical equivalent circuit of the radially poled piezoelectric and metal tube in radial vibration is obtained. Based on the force and velocity boundary conditions, the six-port electro-mechanical equivalent circuit for the composite tubular transducer is given and the resonance/anti-resonance frequency equations are obtained. The relationship between the resonance frequency and the dimensions is analyzed. Numerically simulated results obtained by the finite element method are compared with those from the analytical method. Composite piezoelectric tubular transducers are designed and manufactured. The resonance/anti-resonance frequencies are measured, and it is shown that the theoretical results are in good agreement with the simulated and experimental results. It is expected that radially composite piezoelectric tubular transducers can be used as high-power ultrasonic radiators in ultrasonic applications, such as ultrasonic liquid processing. PMID:22083782

  8. Use of protein database for the computation of the dipole moments of normal and abnormal hemoglobins.

    PubMed Central

    Takashima, S

    1993-01-01

    Previously, we discussed the calculation of the dipole moments of small proteins using the three-dimensional protein data-base. Our results demonstrate that the calculated dipole moments are in acceptable agreement with measured values. We, however, noted the difficulty of the calculation with larger proteins, in particular those consisting of several subunits. Hemoglobin (Hb) is a protein having a molecular weight of 64,000 that consists of four subunits, a typical case where the computation was found to be difficult. To circumvent the difficulties, we calculated the dipole moment of each subunit separately. The dipole moment of the whole protein was calculated by the vectorial summation of subunit moments. With this method, the calculated net dipole moment is in good agreement with the experimental value. Our calculation shows that the dipole moment vectors of subunits are, by and large, antiparallel in tetramers causing partial cancellation of the net dipole moment. In addition to normal HbA, the dipole moment of abnormal HbS was calculated using an approximate computational technique. Because of the loss of two negative changes as a result of the replacement of glutamic acid with valine in beta-chains, the dipole moment of HbS was found, experimentally and theoretically, to be significantly smaller than that of HbA. PMID:8324190

  9. Combinatorial theory of the semiclassical evaluation of transport moments II: Algorithmic approach for moment generating functions

    SciTech Connect

    Berkolaiko, G.; Kuipers, J.

    2013-12-15

    Electronic transport through chaotic quantum dots exhibits universal behaviour which can be understood through the semiclassical approximation. Within the approximation, calculation of transport moments reduces to codifying classical correlations between scattering trajectories. These can be represented as ribbon graphs and we develop an algorithmic combinatorial method to generate all such graphs with a given genus. This provides an expansion of the linear transport moments for systems both with and without time reversal symmetry. The computational implementation is then able to progress several orders further than previous semiclassical formulae as well as those derived from an asymptotic expansion of random matrix results. The patterns observed also suggest a general form for the higher orders.

  10. Radial flow heat exchanger

    DOEpatents

    Valenzuela, Javier

    2001-01-01

    A radial flow heat exchanger (20) having a plurality of first passages (24) for transporting a first fluid (25) and a plurality of second passages (26) for transporting a second fluid (27). The first and second passages are arranged in stacked, alternating relationship, are separated from one another by relatively thin plates (30) and (32), and surround a central axis (22). The thickness of the first and second passages are selected so that the first and second fluids, respectively, are transported with laminar flow through the passages. To enhance thermal energy transfer between first and second passages, the latter are arranged so each first passage is in thermal communication with an associated second passage along substantially its entire length, and vice versa with respect to the second passages. The heat exchangers may be stacked to achieve a modular heat exchange assembly (300). Certain heat exchangers in the assembly may be designed slightly differently than other heat exchangers to address changes in fluid properties during transport through the heat exchanger, so as to enhance overall thermal effectiveness of the assembly.

  11. Inquiry-Based Science: Turning Teachable Moments into Learnable Moments

    ERIC Educational Resources Information Center

    Haug, Berit S.

    2014-01-01

    This study examines how an inquiry-based approach to teaching and learning creates teachable moments that can foster conceptual understanding in students, and how teachers capitalize upon these moments. Six elementary school teachers were videotaped as they implemented an integrated inquiry-based science and literacy curriculum in their…

  12. Effects of scopolamine on repeated acquisition of radial-arm maze performance by rats.

    PubMed Central

    Peele, D B; Baron, S P

    1988-01-01

    Rats repeatedly acquired the performance of selecting only the four baited arms in an automated eight-arm radial maze, with the arms containing food pellets randomly assigned prior to each session. During each 14-trial (trial: obtain all four pellets) daily session, the number of errors (selecting nonbaited arms or repeating arm selections) showed a within-session decline, and choice accuracy for the first four arm selections showed a positive acceleration across trials for all rats. An index-of-curvature statistic, calculated for total errors, was used to quantify both the within- and between-session improvement of performance. Scopolamine (0.03 to 0.3 mg/kg, ip), but not methylscopolamine (0.3 mg/kg), reduced the accuracy of the first four selections of each trial and increased total within-session errors for all rats. Session times also were increased by scopolamine. An examination of within-session accuracy showed only slight signs of improvement at the higher dosages of scopolamine. The results indicate that behavior in transition states maintained by reinforcement contingencies in the radial maze is similar to that maintained by extended chained schedules, despite the fact that some of the stimuli controlling behavior in the maze are absent at the moment behavior is emitted. PMID:3361268

  13. Linear stability of radially-heated circular Couette flow with simulated radial gravity

    NASA Astrophysics Data System (ADS)

    Tagg, Randy; Weidman, Patrick D.

    2007-05-01

    The stability of circular Couette flow between vertical concentric cylinders in the presence of a radial temperature gradient is considered with an effective “radial gravity.” In addition to terrestrial buoyancy - ρg e z we include the term - ρg m f(r)e r where g m f(r) is the effective gravitational acceleration directed radially inward across the gap. Physically, this body force arises in experiments using ferrofluid in the annular gap of a Taylor Couette cell whose inner cylinder surrounds a vertical stack of equally spaced disk magnets. The radial dependence f(r) of this force is proportional to the modified Bessel function K 1(κr), where 2π/κ is the spatial period of the magnetic stack and r is the radial coordinate. Linear stability calculations made to compare with conditions reported by Ali and Weidman (J. Fluid Mech., 220, 1990) show strong destabilization effects, measured by the onset Rayleigh number R, when the inner wall is warmer, and strong stabilization effects when the outer wall is warmer, with increasing values of the dimensionless radial gravity γ = g m /g. Further calculations presented for the geometry and fluid properties of a terrestrial laboratory experiment reveal a hitherto unappreciated structure of the stability problem for differentially-heated cylinders: multiple wavenumber minima exist in the marginal stability curves. Transitions in global minima among these curves give rise to a competition between differing instabilities of the same spiral mode number, but widely separated axial wavenumbers.

  14. The nuclear electric quadrupole moment of copper.

    PubMed

    Santiago, Régis Tadeu; Teodoro, Tiago Quevedo; Haiduke, Roberto Luiz Andrade

    2014-06-21

    The nuclear electric quadrupole moment (NQM) of the (63)Cu nucleus was determined from an indirect approach by combining accurate experimental nuclear quadrupole coupling constants (NQCCs) with relativistic Dirac-Coulomb coupled cluster calculations of the electric field gradient (EFG). The data obtained at the highest level of calculation, DC-CCSD-T, from 14 linear molecules containing the copper atom give rise to an indicated NQM of -198(10) mbarn. Such result slightly deviates from the previously accepted standard value given by the muonic method, -220(15) mbarn, although the error bars are superimposed. PMID:24806277

  15. Radial systems of dark globules

    SciTech Connect

    Gyul'budagyn, A.L.

    1986-03-01

    The author gives examples of radial systems consisting of dark globules and ''elephant trunks''. Besides already known systems, which contain hot stars at their center, data are given on three radial systems of a new kind, at the center of which there are stars of spectral types later than B. Data are given on 32 globules of radial systems of the association Cep OB2. On the basis of the observational data, it is concluded that at least some of the isolated Bok globules derive from elephant trunks and dark globules forming radial systems around hot stars. It is also suggested that the two molecular clouds situated near the Rosette nebula and possessing velocities differing by ca 20 km/sec from the velocity of the nebula could have been ejected in opposite directions from the center of the nebula. One of these clouds consists of dark globules forming the radial system of the Rosette nebula.

  16. Intrinsic radial sensitivity of nucleon inelastic scattering

    NASA Astrophysics Data System (ADS)

    Kelly, J. J.

    1988-02-01

    A linear expansion analysis of the folding model transition amplitude is used to study the intrinsic sensitivity of the inelastic scattering of intermediate energy nucleons to the radial form of the neutron transition density, given known proton transition densities from electron scattering. Realistic density-dependent effective interactions are used to construct pseudodata. These pseudodata are then reanalyzed and the error matrix is used to calculate an error band for the radial transition density. This approach reveals the sensitivity of the extracted transition density to absorption, medium modifications of the interaction, and the extent and quality of the data in a manner that is largely free of the residual inaccuracies in reaction theory that complicate the analysis of real data. We find that the intrinsic radial sensitivity of nucleon inelastic scattering is best for projectile energies between 200 and 500 MeV, but is adequate to resolve the radial dependence of neutron transition densities even in the interior of heavy nuclei throughout the energy regime 100-800 MeV. We have also compared our method with scale-factor analyses which assume proportionality between neutron and proton densities. For states whose transition densities are similar in the surface, we find scaling to be accurate at the 20% level. However, for light nuclei substantial deviations beyond the first peak of the differential cross section reveal sensitivity to shape differences. This sensitivity is reduced for heavy nuclei. The model dependence of radial densities is also studied. A high-q constraint is used to analyze the contribution of incompleteness error to the deduced error bands and to reduce the model dependence.

  17. Heavy quark-antiquark systems from exponential moments in QCD

    NASA Astrophysics Data System (ADS)

    Bertlmann, R. A.

    1982-09-01

    We present a detailed analysis for heavy QQ¯ systems, of how they emerge from the moment procedure of Shifman, Vainshtein and Zakharov. We work with exponential moments which we calculate as limits of power moments presented by Reinders, Rubinstein and Yazaki. Application to charmonium reproduces the results of these authors very well. We are able to treat bottonium states too, and predict the centre-of-mass of the p-states at 9.80 GeV with a bottom on-shell quark mass of m¯b = 4.71 GeV. Finally, we show that non-relativistic approximations to the moments, which provide extremely simple formulae, yield results very close to the relativistic moments, for both s- and p-waves.

  18. Radial flow afterburner for event generators and the baryon puzzle

    NASA Astrophysics Data System (ADS)

    Cuautle, E.; Paic, G.

    2008-07-01

    A simple afterburner to add radial flow to the randomized transverse momentum obtained from event generators, PYTHIA and HIJING, has been implemented to calculate the p/π ratios and compare them with available data. A coherent trend of qualitative agreement has been obtained in pp and Au+Au collisions for various centralities. These results indicate that the radial flow does play an important role in the so-called baryon puzzle anomaly.

  19. Analysis on Origin of Oscillation of H Moment in High-Energy hh Collision

    NASA Astrophysics Data System (ADS)

    Wu, Tao; Zhou, Dai-Cui

    2000-11-01

    Multiplicity distributions of negative binomial distribution (NBD) and modified NBD are obtained from a birth process model with an immigration. The ratio of factorial cumulant moment to factorial moment, i.e., H moment is calculated from different multiplicity distributions of NBD, modified NBD and the three fireball model, which shows an oscillatory behavior when there is a truncation of multiplicity. The oscillation of H moment is related to the common character of the truncated multiplicity distributions.

  20. Local electric dipole moments: A generalized approach.

    PubMed

    Groß, Lynn; Herrmann, Carmen

    2016-09-30

    We present an approach for calculating local electric dipole moments for fragments of molecular or supramolecular systems. This is important for understanding chemical gating and solvent effects in nanoelectronics, atomic force microscopy, and intensities in infrared spectroscopy. Owing to the nonzero partial charge of most fragments, "naively" defined local dipole moments are origin-dependent. Inspired by previous work based on Bader's atoms-in-molecules (AIM) partitioning, we derive a definition of fragment dipole moments which achieves origin-independence by relying on internal reference points. Instead of bond critical points (BCPs) as in existing approaches, we use as few reference points as possible, which are located between the fragment and the remainder(s) of the system and may be chosen based on chemical intuition. This allows our approach to be used with AIM implementations that circumvent the calculation of critical points for reasons of computational efficiency, for cases where no BCPs are found due to large interfragment distances, and with local partitioning schemes other than AIM which do not provide BCPs. It is applicable to both covalently and noncovalently bound systems. © 2016 Wiley Periodicals, Inc. PMID:27520590

  1. Spin-dipole moment in low symmetry structures

    NASA Astrophysics Data System (ADS)

    Sanyal, Biplab; Bhandary, Sumanta; Haldar, Soumyajyoti; Eriksson, Olle

    2014-03-01

    The spin-dipole contribution (Tz) is usually neglected in x-ray magnetic circular dichroism measurements for bulk systems, as the value is negligible compared to the spin moment. However, in the last few years, it has been demonstrated quite clearly from experiments and theory that Tz can acquire relatively large values for systems with low dimensions, e.g., organometallic molecules like Fe porphyrine/phthalocyanine or small inorganic clusters. In some cases, the large Tz contribution can be opposite to the spin moment and hence, the effective moment (2S+7Tz) turns out to be very small. With the aid of first principles density functional calculations, the role of Tz will be demonstrated for organometallic molecules and magnetite nanoparticles. The calculated effective moments follow the same trend as experimental measurements. B.S. acknowledges Carl Tryggers Stiftelse and Swedish Research Links for financial support. Also, Swedish National Infrastructure for Computing is acknowledged for allocation of supercomputing time.

  2. Interpreting magnetic data by integral moments

    NASA Astrophysics Data System (ADS)

    Tontini, F. Caratori; Pedersen, L. B.

    2008-09-01

    The use of the integral moments for interpreting magnetic data is based on a very elegant property of potential fields, but in the past it has not been completely exploited due to problems concerning real data. We describe a new 3-D development of previous 2-D results aimed at determining the magnetization direction, extending the calculation to second-order moments to recover the centre of mass of the magnetization distribution. The method is enhanced to reduce the effects of the regional field that often alters the first-order solutions. Moreover, we introduce an iterative correction to properly assess the errors coming from finite-size surveys or interaction with neighbouring anomalies, which are the most important causes of the failing of the method for real data. We test the method on some synthetic examples, and finally, we show the results obtained by analysing the aeromagnetic anomaly of the Monte Vulture volcano in Southern Italy.

  3. Search for a Neutron Electric Dipole Moment

    PubMed Central

    Golub, R.; Huffman, P. R.

    2005-01-01

    The possible existence of a nonzero electric dipole moment (EDM) of the neutron is of great fundamental interest in itself and directly impacts our understanding of the nature of electro-weak and strong interactions. The experimental search for this moment has the potential to reveal new sources of T and CP violation and to challenge calculations that propose extensions to the Standard Model. The goal of the current experiment is to significantly improve the measurement sensitivity to the neutron EDM over what is reported in the literature. The experiment has the potential to either measure the magnitude of the neutron EDM or to lower the current experimental limit by two orders of magnitude. Achieving these objectives will have a major impact on our understanding of the physics of both weak and strong interactions. PMID:27308116

  4. Exact linearized Coulomb collision operator in the moment expansion

    DOE PAGESBeta

    Ji, Jeong -Young; Held, Eric D.

    2006-10-05

    In the moment expansion, the Rosenbluth potentials, the linearized Coulomb collision operators, and the moments of the collision operators are analytically calculated for any moment. The explicit calculation of Rosenbluth potentials converts the integro-differential form of the Coulomb collision operator into a differential operator, which enables one to express the collision operator in a simple closed form for any arbitrary mass and temperature ratios. In addition, it is shown that gyrophase averaging the collision operator acting on arbitrary distribution functions is the same as the collision operator acting on the corresponding gyrophase averaged distribution functions. The moments of the collisionmore » operator are linear combinations of the fluid moments with collision coefficients parametrized by mass and temperature ratios. Furthermore, useful forms involving the small mass-ratio approximation are easily found since the collision operators and their moments are expressed in terms of the mass ratio. As an application, the general moment equations are explicitly written and the higher order heat flux equation is derived.« less

  5. Layer-Resolved Magnetic Moments in Ni/Pt Multilayers

    NASA Astrophysics Data System (ADS)

    Wilhelm, F.; Poulopoulos, P.; Ceballos, G.; Wende, H.; Baberschke, K.; Srivastava, P.; Benea, D.; Ebert, H.; Angelakeris, M.; Flevaris, N. K.; Niarchos, D.; Rogalev, A.; Brookes, N. B.

    2000-07-01

    The magnetic moments in Ni/Pt multilayers are thoroughly studied by combining experimental and ab initio theoretical techniques. SQUID magnetometry probes the samples' magnetizations. X-ray magnetic circular dichroism separates the contribution of Ni and Pt and provides a layer-resolved magnetic moment profile for the whole system. The results are compared to band-structure calculations. Induced Pt magnetic moments localized mostly at the interface are revealed. No magnetically ``dead'' Ni layers are found. The magnetization per Ni volume is slightly enhanced compared to bulk NiPt alloys.

  6. Using scaling to compute moments of inertia of symmetric objects

    NASA Astrophysics Data System (ADS)

    Ricardo, Bernard

    2015-09-01

    Moment of inertia is a very important property in the study of rotational mechanics. The concept of moment of inertia is analogous to mass in the linear motion, and its calculation is routinely done through integration. This paper provides an alternative way to compute moments of inertia of rigid bodies of regular shape using their symmetrical property. This approach will be very useful and preferred for teaching rotational mechanics at the undergraduate level, as it does not require the knowledge or the application of calculus. The seven examples provided in this paper will help readers to understand clearly how to use the method.

  7. Cumulant moments in hadron-nucleus collisions and stochastic processes

    NASA Astrophysics Data System (ADS)

    Suzuki, N.; Biyajima, M.; Wilk, G.; Wlodarczyk, Z.

    1998-09-01

    Cumulant moments of negatively charged particles observed in hadron-nulceus collisions are analyzed by a leading particle cascade model. A modified negative binomial distribution (MNBD) or a negative binomial distribution (NBD) is used for multiplicity distribution from each participant hadron. If multiplicity distributions are truncated, both calculated results with the MNBD and the NBD can explain the oscillation of cumulant moments obtained from the data.

  8. Enhancement of the electron electric dipole moment in gadolinium garnets

    SciTech Connect

    Mukhamedjanov, T.N.; Dzuba, V.A.; Sushkov, O.P.

    2003-10-01

    Effects caused by the electron electric dipole moment (EDM) in gadolinium garnets are considered. Experimental studies of these effects could improve the current upper limit on the electron EDM by several orders of magnitude. We suggest a consistent theoretical model and perform calculations of observable effects in gadolinium gallium garnet and gadolinium iron garnet. Our calculation accounts for both direct and exchange diagrams.

  9. Moment of Inertia of a Ping-Pong Ball

    ERIC Educational Resources Information Center

    Cao, Xian-Sheng

    2012-01-01

    This note describes how to theoretically calculate and experimentally measure the moment of inertia of a Ping-Pong[R] ball. The theoretical calculation results are in good agreement with the experimental measurements that can be reproduced in an introductory physics laboratory.

  10. Using radial NMR profiles to characterize pore size distributions

    NASA Astrophysics Data System (ADS)

    Deriche, Rachid; Treilhard, John

    2012-02-01

    Extracting information about axon diameter distributions in the brain is a challenging task which provides useful information for medical purposes; for example, the ability to characterize and monitor axon diameters would be useful in diagnosing and investigating diseases like amyotrophic lateral sclerosis (ALS)1 or autism.2 Three families of operators are defined by Ozarslan,3 whose action upon an NMR attenuation signal extracts the moments of the pore size distribution of the ensemble under consideration; also a numerical method is proposed to continuously reconstruct a discretely sampled attenuation profile using the eigenfunctions of the simple harmonic oscillator Hamiltonian: the SHORE basis. The work presented here extends Ozarlan's method to other bases that can offer a better description of attenuation signal behaviour; in particular, we propose the use of the radial Spherical Polar Fourier (SPF) basis. Testing is performed to contrast the efficacy of the radial SPF basis and SHORE basis in practical attenuation signal reconstruction. The robustness of the method to additive noise is tested and analysed. We demonstrate that a low-order attenuation signal reconstruction outperforms a higher-order reconstruction in subsequent moment estimation under noisy conditions. We propose the simulated annealing algorithm for basis function scale parameter estimation. Finally, analytic expressions are derived and presented for the action of the operators on the radial SPF basis (obviating the need for numerical integration, thus avoiding a spectrum of possible sources of error).