Science.gov

Sample records for radial slurry flow

  1. Turbulence in slurry pipe flow

    SciTech Connect

    Gore, R.A. ); Crowe, C.T. . Dept. of Mechanical and Materials Engineering)

    1990-01-01

    The present state of knowledge of liquid-solid flows (slurries) is far behind than that for single phase flows. Very few geometries have been examined with a slurry and only with a limited variation of system parameters i.e. fluid viscosity, particle diameter, etc. This paper presents the first part of a study which examines the effects of the addition of a solid to the flow through a confined coaxial jet. Presented here will be the initial conditions for the jet which correspond to fully developed pipe flow. 6 refs., 9 figs.

  2. Radial flow heat exchanger

    DOEpatents

    Valenzuela, Javier

    2001-01-01

    A radial flow heat exchanger (20) having a plurality of first passages (24) for transporting a first fluid (25) and a plurality of second passages (26) for transporting a second fluid (27). The first and second passages are arranged in stacked, alternating relationship, are separated from one another by relatively thin plates (30) and (32), and surround a central axis (22). The thickness of the first and second passages are selected so that the first and second fluids, respectively, are transported with laminar flow through the passages. To enhance thermal energy transfer between first and second passages, the latter are arranged so each first passage is in thermal communication with an associated second passage along substantially its entire length, and vice versa with respect to the second passages. The heat exchangers may be stacked to achieve a modular heat exchange assembly (300). Certain heat exchangers in the assembly may be designed slightly differently than other heat exchangers to address changes in fluid properties during transport through the heat exchanger, so as to enhance overall thermal effectiveness of the assembly.

  3. Radial flow pulse jet mixer

    DOEpatents

    VanOsdol, John G.

    2013-06-25

    The disclosure provides a pulse jet mixing vessel for mixing a plurality of solid particles. The pulse jet mixing vessel is comprised of a sludge basin, a flow surface surrounding the sludge basin, and a downcoming flow annulus between the flow surface and an inner shroud. The pulse jet mixing vessel is additionally comprised of an upper vessel pressurization volume in fluid communication with the downcoming flow annulus, and an inner shroud surge volume separated from the downcoming flow annulus by the inner shroud. When the solid particles are resting on the sludge basin and a fluid such as water is atop the particles and extending into the downcoming flow annulus and the inner shroud surge volume, mixing occurs by pressurization of the upper vessel pressurization volume, generating an inward radial flow over the flow surface and an upwash jet at the center of the sludge basin.

  4. Geotechnical properties of debris-flow sediments and slurries

    USGS Publications Warehouse

    Major, J.J.; Iverson, R.M.; McTigue, D.F.; Macias, S.; Fiedorowicz, B.K.

    1997-01-01

    Measurements of geotechnical properties of various poorly sorted debris-flow sediments and slurries (??? 32 mm diameter) emphasize their granular nature, and reveal that properties of slurries can differ significantly from those of compacted sediments. Measurements show that: (1) cohesion probably offers little resistance to shear in most debris flows under low confining stresses normally found in nature; (2) intrinsic hydraulic permeabilities of compacted debris-flow sediments vary from about 10-14-10-9 m2; permeabilities of 'typical' debris-flow slurries fall toward the low end of the range; (3) debris-flow slurries are characterized by very large values of 'elastic' compressibility (C approx. 10-2 kPa-1); and (4) hydraulic diffusivities of quasistatically consolidating slurries are approx. 10-4-10-7 m2/s. Low hydraulic diffusivity of debris slurries permits excess fluid pressure and low effective strength to persist during sediment transport and deposition.

  5. Solids flow rate measurement in dense slurries

    SciTech Connect

    Porges, K.G.; Doss, E.D.

    1993-09-01

    Accurate and rapid flow rate measurement of solids in dense slurries remains an unsolved technical problem, with important industrial applications in chemical processing plants and long-distance solids conveyance. In a hostile two-phase medium, such a measurement calls for two independent parameter determinations, both by non-intrusive means. Typically, dense slurries tend to flow in laminar, non-Newtonian mode, eliminating most conventional means that usually rely on calibration (which becomes more difficult and costly for high pressure and temperature media). These issues are reviewed, and specific solutions are recommended in this report. Detailed calculations that lead to improved measuring device designs are presented for both bulk density and average velocity measurements. Cross-correlation, chosen here for the latter task, has long been too inaccurate for practical applications. The cause and the cure of this deficiency are discussed using theory-supported modeling. Fluid Mechanics are used to develop the velocity profiles of laminar non-Newtonian flow in a rectangular duct. This geometry uniquely allows the design of highly accurate `capacitive` devices and also lends itself to gamma transmission densitometry on an absolute basis. An absolute readout, though of less accuracy, is also available from a capacitive densitometer and a pair of capacitive sensors yields signals suitable for cross-correlation velocity measurement.

  6. Slurry fired heater cold-flow modelling

    SciTech Connect

    Moujaes, S.F.

    1983-07-01

    This report summarizes the experimental and theoretical work leading to the scale-up of the SRC-I Demonstration Plant slurry fired heater. The scale-up involved a theoretical model using empirical relations in the derivation, and employed variables such as flow conditions, liquid viscosity, and slug frequency. Such variables have been shown to affect the heat transfer characteristics ofthe system. The model assumes that, if all other variables remain constant, the heat transfer coefficient can be scaled up proportional to D/sup -2/3/ (D = inside diameter of the fired heater tube). All flow conditions, liquid viscosities, and pipe inclinations relevant to the demonstration plant have indicated a slug flow regime in the slurry fired heater. The annular and stratified flow regimes should be avoided to minimize the potential for excessive pipe erosion and to decrease temperature gradients along the pipe cross section leading to coking and thermal stresses, respectively. Cold-flow studies in 3- and 6.75-in.-inside-diameter (ID) pipes were conducted to determine the effect of scale-up on flow regime, slug frequency, and slug dimensions. The developed model assumes that conduction heat transfer occurs through the liquid film surrounding the gas slug and laminar convective heat transfer to the liquid slug. A weighted average of these two heat transfer mechanisms gives a value for the average pipe heat transfer coefficient. The cold-flow work showed a decrease in the observed slug frequency between the 3- and 6.75-ID pipes. Data on the ratio of gas to liquid slug length in the 6.75-in. pipe are not yet complete, but are expected to yield generally lower values than those obtained in the 3-in. pipe; this will probably affect the scale-up to demonstration plant conditions. 5 references, 15 figures, 7 tables.

  7. Fluid mechanics of slurry flow through the grinding media in ball mills

    SciTech Connect

    Songfack, P.K.; Rajamani, R.K.

    1995-12-31

    The slurry transport within the ball mill greatly influences the mill holdup, residence time, breakage rate, and hence the power draw and the particle size distribution of the mill product. However, residence-time distribution and holdup in industrial mills could not be predicted a priori. Indeed, it is impossible to determine the slurry loading in continuously operating mills by direct measurement, especially in industrial mills. In this paper, the slurry transport problem is solved using the principles of fluid mechanics. First, the motion of the ball charge and its expansion are predicted by a technique called discrete element method. Then the slurry flow through the porous ball charge is tackled with a fluid-flow technique called the marker and cell method. This may be the only numerical technique capable of tracking the slurry free surface as it fluctuates with the motion of the ball charge. The result is a prediction of the slurry profile in both the radial and axial directions. Hence, it leads to the detailed description of slurry mass and ball charge within the mill. The model predictions are verified with pilot-scale experimental work. This novel approach based on the physics of fluid flow is devoid of any empiricism. It is shown that the holdup of industrial mills at a given feed percent solids can be predicted successfully.

  8. Waste Slurry Particle Properties for Use in Slurry Flow Modeling

    SciTech Connect

    Jewett, J. R.; Conrads, T. J.; Julyk, L. J.; Reynolds, D. A.; Jensen, L.; Kirch, N. W.; Estey, S. D.; Bechtold, D. B.; Callaway III, W. S.; Cooke, G. A.; Herting, D. L.; Person, J. C.; Duncan, J. B.; Onishi, Y.; Tingey, J. M.

    2003-02-26

    Hanford's tank farm piping system must be substantially modified to deliver high-level wastes from the underground storage tanks to the Waste Treatment Plant now under construction. Improved knowledge of the physical properties of the solids was required to support the design of the modified system. To provide this additional knowledge, particle size distributions for composite samples from seven high-level waste feed tanks were measured using two different laser lightscattering particle size analyzers. These measurements were made under a variety of instrumental conditions, including various flow rates through the sample loop, various stirring rates in the sample reservoir, and before and after subjecting the particles to ultrasonic energy. A mean value over all the tanks of 4.2 {micro}m was obtained for the volume-based median particle size. Additional particle size information was obtained from sieving tests, settling tests and microscopic observations.

  9. Stirling Engine With Radial Flow Heat Exchangers

    NASA Technical Reports Server (NTRS)

    Vitale, N.; Yarr, George

    1993-01-01

    Conflict between thermodynamical and structural requirements resolved. In Stirling engine of new cylindrical configuration, regenerator and acceptor and rejector heat exchangers channel flow of working gas in radial direction. Isotherms in regenerator ideally concentric cylinders, and gradient of temperature across regenerator radial rather than axial. Acceptor and rejector heat exchangers located radially inward and outward of regenerator, respectively. Enables substantial increase in power of engine without corresponding increase in diameter of pressure vessel.

  10. Slurry

    NASA Astrophysics Data System (ADS)

    Jiang, Ting; Lei, Hong

    2014-11-01

    With magnetic heads operating closer to hard disks, the hard disks must be ultra-smooth. The abrasive-free polishing (AFP) performance of cumene hydroperoxide (CHP) as the initiator in H2O2-based slurry for hard disk substrate was investigated in our work, and the results showed that the slurry including CHP could improve the material removal rate (MRR) and also reduce surface roughness. Electron spin-resonance spectroscopy (EPR), electrochemical measurement and Auger electron spectroscopy (AES) were conducted to investigate the acting mechanism with CHP during the polishing process. Compared with the H2O2 slurry, the EPR analysis shows that the CHP-H2O2 slurry provides a higher concentration of the HOO free radical. In addition, the AES analysis shows the oxidization reaction occurs in the external layer of the substrate surface. Furthermore, electrochemical measurements reveal that CHP can promote the electrochemical effect in AFP and lead to the increase of MRR.

  11. Study of unsteady flow conditions for slurry fuels

    SciTech Connect

    Ekmann, J.M.; Wildman, D.J.; Klinzing, G.E.

    1985-01-01

    During the past three years, transport characteristics of coal-water mixtures (CWMs) have been studied at the Pittsburgh Energy Technology Center. The effort has concentrated predominantly on studying flow conditions in straight horizontal and vertical sections, and to a lesser extent on studying the flow patterns around elbows of a one-inch-diameter loop and a two-inch-diameter loop. Steady-state flow was characterized for in-house prepared slurries and commercially prepared slurries. For lower concentrated slurries (55 wt % to 60 wt %) and coarse particle size distributions (50% finer than 75 microns), nonhomogeneous flow conditions were encountered across horizontal test sections. Since nonhomogeneous conditions existed in straight sections during steady-state flow, it was decided to further investigate flow conditions during changes in velocity (magnitude and direction). This paper concentrates on nonuniform flow conditions of two types. The first nonuniform flow condition arises from sudden increases in the magnitude of the flow velocity. Pressure measurements recorded at a fixed position in the vertical section of the two-inch-diameter loop during sudden changes in velocity can be analyzed via classic control theory to evaluate the dynamic properties of the CWM. The second nonuniform flow condition occurs as the CWM passes through a bend. Both long-radius bends and 90-degree elbows made of glass and steel have been studied. Pressure-loss data around the long-radius bends and elbows were analyzed with a modified version of the model developed by Ito for single-phase flow around bends. Flow patterns around glass bends and elbows were observed for slurries prepared of vinyl coating powder and water. They are described in an effort to increase understanding of the pressure-loss data. 8 refs., 11 figs., 1 tab.

  12. Radial flow nuclear thermal rocket (RFNTR)

    DOEpatents

    Leyse, Carl F.

    1995-01-01

    A radial flow nuclear thermal rocket fuel assembly includes a substantially conical fuel element having an inlet side and an outlet side. An annular channel is disposed in the element for receiving a nuclear propellant, and a second, conical, channel is disposed in the element for discharging the propellant. The first channel is located radially outward from the second channel, and separated from the second channel by an annular fuel bed volume. This fuel bed volume can include a packed bed of loose fuel beads confined by a cold porous inlet frit and a hot porous exit frit. The loose fuel beads include ZrC coated ZrC-UC beads. In this manner, nuclear propellant enters the fuel assembly axially into the first channel at the inlet side of the element, flows axially across the fuel bed volume, and is discharged from the assembly by flowing radially outward from the second channel at the outlet side of the element.

  13. Radial flow nuclear thermal rocket (RFNTR)

    DOEpatents

    Leyse, Carl F.

    1995-11-07

    A radial flow nuclear thermal rocket fuel assembly includes a substantially conical fuel element having an inlet side and an outlet side. An annular channel is disposed in the element for receiving a nuclear propellant, and a second, conical, channel is disposed in the element for discharging the propellant. The first channel is located radially outward from the second channel, and separated from the second channel by an annular fuel bed volume. This fuel bed volume can include a packed bed of loose fuel beads confined by a cold porous inlet frit and a hot porous exit frit. The loose fuel beads include ZrC coated ZrC-UC beads. In this manner, nuclear propellant enters the fuel assembly axially into the first channel at the inlet side of the element, flows axially across the fuel bed volume, and is discharged from the assembly by flowing radially outward from the second channel at the outlet side of the element.

  14. Flow of Slurry in the Inclined Closed Channel

    NASA Astrophysics Data System (ADS)

    Ashrafi Khorasani, Nariman; Piroozram, Parastoo

    2015-11-01

    The flow of slurry in a closed inclined circular channel is examined. The viscoelastic fluid is modeled as a derivative of typical Oldroyd-B relation of stress and velocity gradient. First, gravity is considered as the driving force for the fluid flow to simulate the existing sewage system. The complete flow field is evaluated for this case. Next, a pressure gradient is introduced to observe its effects on the flow. Velocity profile as well as stress distributions are given for different scenarios of the nonlinear fluid flowing in a closed channel with and without pressure gradient.

  15. Flow resistance of ice slurry in bends and elbow pipes

    NASA Astrophysics Data System (ADS)

    Niezgoda-Żelasko, B.; Żelasko, J.

    2014-08-01

    The present paper covers the flow of ice slurry made of a 10.6% ethanol solution through small-radius bends and elbow pipes. The paper presents the results of experimental research on the flow resistances of Bingham-fluid ice slurry in bends and elbows. The research, performed for three pipe diameters and a relative bend radius of 1<=D/di<=2, has made it possible to take into consideration the influence of friction resistances as well the of the flow geometry on the total local resistance coefficients. The study attempts to make the local resistance coefficient dependent on the Dean number defined for a generalized Reynolds number according to Metzner-Reade

  16. Modeling flow and sedimention of slurries

    NASA Astrophysics Data System (ADS)

    Mondy, L.; Rao, R.; Altobelli, S.; Ingber, M.; Graham, A.

    2002-12-01

    Many natural processes involve flows of sediments at high particle concentrations. The equations describing such two-phase flows are highly nonlinear. We will give an overview of the performance of a continuum constitutive model of suspensions of particles in liquid for low Reynolds number flows. The diffusive flux model (Leighton and Acrivos, J. Fluid Mech., 1987, and Phillips et al., Phys. Fluids A, 1992) is implemented in a general purpose finite element computational program. This constitutive description couples a Newtonian stress/shear-rate relationship (where the local viscosity of the suspension is dependent on the local volume fraction of solids) with a shear-induced migration model of the suspended particles. The momentum transport, continuity, and diffusive flux equations are solved simultaneously. The formulation is fully three-dimensional and can be run on a parallel computer platform. Recent work introducing a flow-aligned tensor correction to this model has had success in representing the anisotropic force that is seen in curvilinear flows. Gravity effects are added in an approach similar to that of Zhang and Acrivos (Int. J. Multiphase Flow, 1994). The model results are compared with laboratory data obtained with Nuclear Magnetic Resonance (NMR) of evolving particle concentration profiles in complex flows, as well as in batch sedimentation. Interesting secondary flows appear both in the experiment and model. Overall, good agreement is found between the experiments and the simulations. This work was supported by the United States Department of Energy under Contract DE-AC04- 94AL85000. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy. The authors would like to acknowledge support for this work by the U.S. Department of Energy, Division of Engineering and Geosciences, Office of Basic Energy Sciences.

  17. Fast radial flows in transition disk holes

    SciTech Connect

    Rosenfeld, Katherine A.; Andrews, Sean M.; Chiang, Eugene

    2014-02-20

    Protoplanetary 'transition' disks have large, mass-depleted central cavities, yet also deliver gas onto their host stars at rates comparable to disks without holes. The paradox of simultaneous transparency and accretion can be explained if gas flows inward at much higher radial speeds inside the cavity than outside the cavity, since surface density (and by extension optical depth) varies inversely with inflow velocity at fixed accretion rate. Radial speeds within the cavity might even have to approach free-fall values to explain the huge surface density contrasts inferred for transition disks. We identify observational diagnostics of fast radial inflow in channel maps made in optically thick spectral lines. Signatures include (1) twisted isophotes in maps made at low systemic velocities and (2) rotation of structures observed between maps made in high-velocity line wings. As a test case, we apply our new diagnostic tools to archival Atacama Large Millimeter Array data on the transition disk HD 142527 and uncover evidence for free-fall radial velocities inside its cavity. Although the observed kinematics are also consistent with a disk warp, the radial inflow scenario is preferred because it predicts low surface densities that appear consistent with recent observations of optically thin CO isotopologues in this disk. How material in the disk cavity sheds its angular momentum wholesale to fall freely onto the star is an unsolved problem; gravitational torques exerted by giant planets or brown dwarfs are briefly discussed as a candidate mechanism.

  18. Technical Report on NETL's Non Newtonian Multiphase Slurry Workshop: A path forward to understanding non-Newtonian multiphase slurry flows

    SciTech Connect

    Edited by Guenther, Chris; Garg, Rahul

    2013-08-19

    The Department of Energy’s (DOE) National Energy Technology Laboratory (NETL) sponsored a workshop on non-Newtonian multiphase slurry at NETL’s Morgantown campus August 19 and 20, 2013. The objective of this special two-day meeting of 20-30 invited experts from industry, National Labs and academia was to identify and address technical issues associated with handling non-Newtonian multiphase slurries across various facilities managed by DOE. Particular emphasis during this workshop was placed on applications managed by the Office of Environmental Management (EM). The workshop was preceded by two webinars wherein personnel from ORP and NETL provided background information on the Hanford WTP project and discussed the critical design challenges facing this project. In non-Newtonian fluids, viscosity is not constant and exhibits a complex dependence on applied shear stress or deformation. Many applications under EM’s tank farm mission involve non-Newtonian slurries that are multiphase in nature; tank farm storage and handling, slurry transport, and mixing all involve multiphase flow dynamics, which require an improved understanding of the mechanisms responsible for rheological changes in non-Newtonian multiphase slurries (NNMS). To discuss the issues in predicting the behavior of NNMS, the workshop focused on two topic areas: (1) State-of-the-art in non-Newtonian Multiphase Slurry Flow, and (2) Scaling up with Confidence and Ensuring Safe and Reliable Long-Term Operation.

  19. Radial slot flows in solid rocket motors

    NASA Astrophysics Data System (ADS)

    Hilbing, J. H.; Heister, S. D.

    1993-06-01

    A series of parametric numerical solutions have been generated to characterize the two-dimensional flowfield due to the presence of a radial slot in a solid rocket propellant grain. Results have been parameterized in terms of upstream core Mach number, slot contraction ratio, and slot-to-core mass flow and momentum ratios. Numerical solutions of the axisymmetric Euler equations have been obtained on a 'generic' slot geometry using a cell-centered, finite volume scheme. Results indicate that both the stagnation pressure loss and grain suction force on the propellant segment downstream of the slot correlate well with slot-to-core momentum ratio; a parameter which has not been used in previous studies. Significant differences (in stagnation pressure losses) have been identified between the 2-D numerical results and the 1-D methods applied in current state-of-the-art ballistics codes. We anticipate that the correlations derived through this parametric study can be used in preliminary performance and grain stress analyses performed during the motor development process.

  20. Flow velocity analysis for avoidance of solids deposition during transport of Hanford tank waste slurries

    SciTech Connect

    ESTEY, S.D.

    1999-02-25

    This engineering analysis calculates minimum slurry transport velocities intended to maintain suspensions of solid particulate in slurries. This transport velocity is also known as the slurry flow critical velocity. It is not universally recognized that a transfer line flow velocity in excess of the slurry critical velocity is a requirement to prevent solids deposition and possible line plugging. However, slurry critical velocity seems to be the most prevalent objective measure to prevent solids deposition in transfer lines. The following critical velocity correlations from the literature are investigated: Durand (1953), Spells (1955), Sinclair (1962), Zandi and Gavatos (1967), Babcock (1968), Shook (1969), and Oroskar and Turian (1980). The advantage of these critical velocity correlations is that their use is not reliant upon any measure of bulk slurry viscosity. The input parameters are limited to slurry phase densities and mass fractions, pipe diameter, particle diameter, and viscosity of the pure liquid phase of the slurry. Consequently, the critical velocity calculation does not require determination of system pressure drops. Generalized slurry properties can, therefore, be recommended if the slurry can be adequately described by these variables and if the liquid phase viscosity is known. Analysis of these correlations are presented, indicating that the Oroskar and Turian (1980) models appear to be more conservative for smaller particulate sizes, typically those less than 100 microns diameter. This analysis suggests that the current Tank Farms waste compatibility program criteria may be insufficient to prevent particulate solids settling within slurry composition ranges currently allowed by the waste compatibility program. However, in order to relate a critical velocity associated with a certain slurry composition to a system limit, a means of relating the system capabilities to the slurry composition must be found. Generally, this means expressing the bulk

  1. Characterization of Flow Behavior of Semi-Solid Slurries with Low Solid Fractions

    NASA Astrophysics Data System (ADS)

    Chucheep, Thiensak; Wannasin, Jessada; Canyook, Rungsinee; Rattanochaikul, Tanate; Janudom, Somjai; Wisutmethangoon, Sirikul; Flemings, Merton C.

    2013-10-01

    Semi-solid slurry casting is a metal-forming process that involves transforming liquid metal into slurry having a low solid fraction and then forming the slurry into solid parts. To successfully apply this slurry-forming process, it is necessary to fully understand the flow behavior of semi-solid slurries. This present work applied the rapid quenching method and the modified gravity fluidity casting to investigate the flow behavior, which involves characterizations of the initial solid fraction, fluidity, and microstructure of semi-solid slurries. Three commercial aluminum alloys were used in this study: 383 (Al-Si11Cu), 356 (Al-Si7MgFe), and 7075 (Al-Zn6MgCu) alloys. The results show that the initial solid fractions can be controlled by varying the rheocasting time. The rapid quenching mold can be used to determine the initial solid fractions. In this method, it is important to apply the correcting procedure to account for growth during quenching and to include all the solid phases. Results from the fluidity study of semi-solid slurries show that the fluidity decreases as the initial solid fraction increases. The decrease is relatively rapid near the low end of the initial solid fraction curves, but is quite slow near the high end of the curves. All the three alloys follow this trend. The results also demonstrate that the slurries that contain high solid fractions of up to 30 pct can still flow well. The microstructure characterization results show that the solid particles in the slurries flow uniformly in the channel. A uniform and fine microstructure with limited phase segregation is observed in the slurry cast samples.

  2. Low cost, radial flow, solid oxide fuel cell

    SciTech Connect

    Petrik, M.A.

    1993-11-01

    The Interscience Radial Flow (IRF) SOFC is designed to minimize problems in high-temperature operation, and for low-cost fabrication. The cell has planar, non-sintered construction, uses particulate materials to form porous electrodes, and has internal radial flow. This phase was to demonstrate feasibility of multi-cell stack operation. Performance milestone was 15% DC HHV efficiency with hydrogen at > 50 mW/cm{sup 2} over 100 h.

  3. Radial flow afterburner for event generators and the baryon puzzle

    NASA Astrophysics Data System (ADS)

    Cuautle, E.; Paic, G.

    2008-07-01

    A simple afterburner to add radial flow to the randomized transverse momentum obtained from event generators, PYTHIA and HIJING, has been implemented to calculate the p/π ratios and compare them with available data. A coherent trend of qualitative agreement has been obtained in pp and Au+Au collisions for various centralities. These results indicate that the radial flow does play an important role in the so-called baryon puzzle anomaly.

  4. Dynamics of a vortex pair in radial flow

    SciTech Connect

    Bannikova, E. Yu. Kontorovich, V. M. Reznik, G. M.

    2007-10-15

    The problem of vortex pair motion in two-dimensional radial flow is solved. Under certain conditions for flow parameters, the vortex pair can reverse its motion within a bounded region. The vortex-pair translational velocity decreases or increases after passing through the source/sink region, depending on whether the flow is diverging or converging, respectively. The rotational motion of a corotating vortex pair in a quiescent environment transforms into motion along a logarithmic spiral in radial flow. The problem may have applications in astrophysics and geophysics.

  5. The effect of particle-particle interaction forces on the flow properties of silica slurries

    SciTech Connect

    Harbottle, David; Fairweather, Michael; Biggs, Simon; Rhodes, Dominic

    2007-07-01

    Preliminary work has been completed to investigate the effect of particle-particle interaction forces on the flow properties of silica slurries. Classically hydro-transport studies have focused on the flow of coarse granular material in Newtonian fluids. However, with current economical and environmental pressures, the need to increase solid loadings in pipe flow has lead to studies that examine non-Newtonian fluid dynamics. The flow characteristics of non-Newtonian slurries can be greatly influenced through controlling the solution chemistry. Here we present data on an 'ideal' slurry where the particle size and shape is controlled together with the solution chemistry. We have investigated the effect of adsorbed cations on the stability of a suspension, the packing nature of a sediment and the frictional forces to be overcome during re-slurrying. A significant change in the criteria assessed was observed as the electrolyte concentration was increased from 0.1 mM to 1 M. In relation to industrial processes, such delicate control of the slurry chemistry can greatly influence the optimum operating conditions of non-Newtonian pipe flows. (authors)

  6. Effect of the radial buoyancy on a circular Couette flow

    NASA Astrophysics Data System (ADS)

    Meyer, Antoine; Yoshikawa, Harunori N.; Mutabazi, Innocent

    2015-11-01

    The effect of a radial temperature gradient on the stability of a circular Couette flow is investigated when the gravitational acceleration is neglected. The induced radial stratification of the fluid density coupled with the centrifugal acceleration generates radial buoyancy which is centrifugal for inward heating and centripetal for outward heating. This radial buoyancy modifies the Rayleigh discriminant and induces the asymmetry between inward heating and outward heating in flow behavior. The critical modes are axisymmetric and stationary for inward heating while for outward heating, they can be oscillatory axisymmetric or nonaxisymmetric depending on fluid diffusion properties, i.e., on the Prandtl number Pr. The dependence of the critical modes on Pr is explored for different values of the radius ratio of the annulus. The power input of the radial buoyancy is compared with other power terms. The critical frequency of the oscillatory axisymmetric modes is linked to the Brunt-Väisälä frequency due to the density stratification in the radial gravity field induced by the rotation. These modes are associated with inertial waves. The dispersion relation of the oscillatory axisymmetric modes is derived in the vicinity of the critical conditions. A weakly nonlinear amplitude equation with a forcing term is proposed to explain the domination of these axisymmetric oscillatory modes over the stationary centrifugal mode.

  7. Self-sustained radial oscillating flows between parallel disks

    NASA Astrophysics Data System (ADS)

    Mochizuki, S.; Yang, W.-J.

    1985-05-01

    It is pointed out that radial flow between parallel circular disks is of interest in a number of physical systems such as hydrostatic air bearings, radial diffusers, and VTOL aircraft with centrally located downward-positioned jets. The present investigation is concerned with the problem of instability in radial flow between parallel disks. A time-dependent numerical study and experiments are conducted. Both approaches reveal the nucleation, growth, migration, and decay of annular separation bubbles (i.e. vortex or recirculation zones) in the laminar-flow region. A finite-difference technique is utilized to solve the full unsteady vorticity transport equation in the theoretical procedure, while the flow patterns in the experiments are visualized with the aid of dye-injection, hydrogen-bubble, and paraffin-mist methods. It is found that the separation and reattachment of shear layers in the radial flow through parallel disks are unsteady phenomena. The sequence of nucleation, growth, migration, and decay of the vortices is self-sustained.

  8. Longitudinal Dispersivity in a Radial Diverging Flow Field

    NASA Astrophysics Data System (ADS)

    Seaman, J. C.; Wilson, M.; Bertsch, P. M.; Aburime, S. A.

    2005-12-01

    Hydrodynamic dispersion is an important factor controlling contaminant migration in the subsurface environment. However, few comprehensive data sets exist for evaluating the impact of travel distance and site heterogeneity on solute dispersion under non-uniform flow conditions. In addition, anionic tracers are often used to estimate physical transport parameters based on an erroneous assumption of conservative (i.e., non-reactive) behavior. Therefore, a series of field experiments using tritiated water and several other commonly used hydrologic tracers (Br, Cl, FBAs) were conducted in the water-table aquifer on the U.S. Department of Energy's Savannah River Site (Aiken, SC) to evaluate solute transport processes in a diverging radial flow field. For each experiment, tracer-free groundwater was injected for approximately 24 hours at a fixed rate of 56.7 L/min (15 gpm) to establish a forced radial gradient prior to the introduction of a tracer pulse. After the tracer pulse, the forced gradient was maintained throughout the experiment using non-labeled groundwater. Tracer migration was monitored using a set of six sampling wells radially spaced at approximate distances of 1.5, 3, and 4.5 meters from a central injection well. Each sampling well was further divided into three discrete sampling depths that were monitored continuously throughout the course of the tracer experiment. At various time intervals, discrete groundwater samples were collected from all 18 sampling ports for tritium analysis. Longitudinal dispersivity for tritium breakthrough at each sampling location was estimated using analytical approximations of the convection dispersion equation (CDE) for radial flow assuming an instantaneous Dirac pulse and a pulse of known duration. The results were also compared to dispersivity values derived from fitting the tracer data to analytical solutions derived from assuming uniform flow conditions. Tremendous variation in dispersivity values and tracer arrival

  9. Flow of Magnetohydrodynamic Micropolar Fluid Induced by Radially Stretching Sheets

    NASA Astrophysics Data System (ADS)

    Hayat, Tasawar; Nawaz, Muhammad; Hendi, Awatif A.

    2011-02-01

    We investigate the flow of a micropolar fluid between radial stretching sheets. The magnetohydrodynamic (MHD) nonlinear problem is treated using the homotopy analysis method (HAM) and the velocity profiles are predicted for the pertinent parameters. The values of skin friction and couple shear stress coefficients are obtained for various values of Reynolds number, Hartman number, and micropolar fluid parameter.

  10. Radial Plasma Flow Switch on GIT-12 Generator

    NASA Astrophysics Data System (ADS)

    Chaikovsky, S. A.; Kokshenev, V. A.; Rousskikh, A. G.; Shishlov, A. V.; Fedunin, A. V.; Labetsky, A. Yu.; Kurmaev, N. E.; Fursov, F. I.

    2006-01-01

    The preliminary experiments were performed on wire array implosion driven by a radial plasma flow switch on the GIT-12 generator operating in a microsecond mode. Imploding gas puff z-pinch plasma was used to provide fast switching of the current to an aluminum wire array. The experimental results are presented in the paper.

  11. Linear stability of radially-heated circular Couette flow with simulated radial gravity

    NASA Astrophysics Data System (ADS)

    Tagg, Randy; Weidman, Patrick D.

    2007-05-01

    The stability of circular Couette flow between vertical concentric cylinders in the presence of a radial temperature gradient is considered with an effective “radial gravity.” In addition to terrestrial buoyancy - ρg e z we include the term - ρg m f(r)e r where g m f(r) is the effective gravitational acceleration directed radially inward across the gap. Physically, this body force arises in experiments using ferrofluid in the annular gap of a Taylor Couette cell whose inner cylinder surrounds a vertical stack of equally spaced disk magnets. The radial dependence f(r) of this force is proportional to the modified Bessel function K 1(κr), where 2π/κ is the spatial period of the magnetic stack and r is the radial coordinate. Linear stability calculations made to compare with conditions reported by Ali and Weidman (J. Fluid Mech., 220, 1990) show strong destabilization effects, measured by the onset Rayleigh number R, when the inner wall is warmer, and strong stabilization effects when the outer wall is warmer, with increasing values of the dimensionless radial gravity γ = g m /g. Further calculations presented for the geometry and fluid properties of a terrestrial laboratory experiment reveal a hitherto unappreciated structure of the stability problem for differentially-heated cylinders: multiple wavenumber minima exist in the marginal stability curves. Transitions in global minima among these curves give rise to a competition between differing instabilities of the same spiral mode number, but widely separated axial wavenumbers.

  12. Experimental investigation of ice slurry flow pressure drop in horizontal tubes

    SciTech Connect

    Grozdek, Marino; Khodabandeh, Rahmatollah; Lundqvist, Per

    2009-01-15

    Pressure drop behaviour of ice slurry based on ethanol-water mixture in circular horizontal tubes has been experimentally investigated. The secondary fluid was prepared by mixing ethyl alcohol and water to obtain initial alcohol concentration of 10.3% (initial freezing temperature -4.4 C). The pressure drop tests were conducted to cover laminar and slightly turbulent flow with ice mass fraction varying from 0% to 30% depending on test conditions. Results from flow tests reveal much higher pressure drop for higher ice concentrations and higher velocities in comparison to the single phase flow. However for ice concentrations of 15% and higher, certain velocity exists at which ice slurry pressure drop is same or even lower than for single phase flow. It seems that higher ice concentration delay flow pattern transition moment (from laminar to turbulent) toward higher velocities. In addition experimental results for pressure drop were compared to the analytical results, based on Poiseulle and Buckingham-Reiner models for laminar flow, Blasius, Darby and Melson, Dodge and Metzner, Steffe and Tomita for turbulent region and general correlation of Kitanovski which is valid for both flow regimes. For laminar flow and low buoyancy numbers Buckingham-Reiner method gives good agreement with experimental results while for turbulent flow best fit is provided with Dodge-Metzner and Tomita methods. Furthermore, for transport purposes it has been shown that ice mass fraction of 20% offers best ratio of ice slurry transport capability and required pumping power. (author)

  13. Instrumentation to Monitor Transient Periodic Developing Flow in Non-Newtonian Slurries

    SciTech Connect

    Bamberger, Judith A.; Enderlin, Carl W.

    2013-11-15

    Staff at Pacific Northwest National Laboratory have conducted mixing and mobilization experiments with non-Newtonian slurries that exhibit Bingham plastic and shear thinning behavior and shear strength. This paper describes measurement techniques applied to identify the interface between flowing and stationary regions of non-Newtonian slurries that are subjected to transient, periodic, developing flows. Techniques were developed to identify the boundary between the flowing and stationary regions, time to mix, characteristic velocities of the flow field produced by the symmetrically spaced nozzles, and the velocity of the upwell formed in the center of the tank by the intersection of flow from four symmetrically spaced nozzles that impinge upon the tank floor. Descriptions of the instruments and instrument performance are presented. These techniques were an effective approach to characterize mixing phenomena, determine mixing energy required to fully mobilize vessel contents and to determine mixing times for process evaluation.

  14. Analysis and performance of radial flow rotary dessicant dehumidifiers

    SciTech Connect

    Elsayed, M.M.; Chamkha, A.J.

    1997-02-01

    A model is developed to predict the steady periodic performance of a radial flow desiccant wheel. The model is expressed in terms of the same dimensionless parameters that are commonly used in modeling of the conventional axial flow desiccant wheel. In addition a dimensionless geometrical ratio of the volume of the matrix to the volume of the wheel core is found to affect the performance of the wheel. A finite difference technique on staggered grid is used to discretize the governing dimensionless equations. The discretized equations are solved to predict the performance of the desiccant wheel at given values of operation parameters. A sensitivity study is carried out to investigate the effect of changing any of these parameters on the performance of the wheel. The performance of the radial flow desiccant wheel having the same values of the operation parameters.

  15. Non-radial flow in the solar wind

    NASA Technical Reports Server (NTRS)

    Richardson, J. D.; Paularena, K. I.; Gazis, P. R.

    1995-01-01

    Although the radial component of the solar wind dominates the solar wind speed, significant non-radial velocity components are also present. These flows are more difficult to measure accurately, but we now have data sets including the east-west (tangential) and north-south (normal) flows from PVO at Venus, IMP 8 at Earth, and Voyagers 1 and 2 from 1 to 45 AU. We compare the non-radial flow observations from these spacecraft. One of the more interesting features is that the north-south flow angle observed at Earth and Venus oscillates with the period of a local (Earth or Venus) year. These oscillations occur throughout two solar cycles in the IMP 8 data set and are very apparent in the PVO data from 1978 to 1986 but less obvious after this. We will report on the origin of this feature. The tangential flow observed by both IMP 8 and Voyager is on average slightly positive (approximately 1.75 km/s). The magnitudes of the nonradial velocity components decrease with distance from the Sun.

  16. Transport of veterinary antibiotics in overland flow following the application of slurry to arable land.

    PubMed

    Kay, Paul; Blackwell, Paul A; Boxall, Alistair B A

    2005-05-01

    The environment may be exposed to veterinary medicines administered to livestock due to the application of organic fertilisers to land. Slurry is often spread on to fields following the harvest of the previous crop. Despite recommendations to do so, the slurry may not be ploughed into the soil for some time. If precipitation occurs before incorporation then it is likely that the slurry and any antibiotic residues in the slurry will be transported towards surface waters in overland flow. This phenomenon has been investigated in a plot study and transport via 'tramlines' has been compared to that through crop stubble. Three veterinary antibiotics, from the tetracycline, sulphonamide and macrolide groups, were applied to the plots in pig slurry. Twenty four hours after the application the plots were irrigated. Following this the plots received natural rainfall. Sulphachloropyridazine was detected in runoff from the tramline plot at a peak concentration of 703.2 microgl(-1) and oxytetracycline at 71.7 microgl(-1). Peak concentrations from the plot that did not contain a tramline were lower at 415.5 and 32 microgl(-1), respectively. In contrast, tylosin was not detected at all. Mass losses of the compounds were also greater from the tramline plot due to greater runoff generation. These did not exceed 0.42% for sulphachloropyridazine and 0.07% for oxytetracycline however. PMID:15823328

  17. FUEL SUBASSEMBLY CONSTRUCTION FOR RADIAL FLOW IN A NUCLEAR REACTOR

    DOEpatents

    Treshow, M.

    1962-12-25

    An assembly of fuel elements for a boiling water reactor arranged for radial flow of the coolant is described. The ingress for the coolant is through a central header tube, perforated with parallel circumferertial rows of openings each having a lip to direct the coolant flow downward. Around the central tube there are a number of equally spaced concentric trays, closely fitiing the central header tube. Cylindrical fuel elements are placed in a regular pattern around the central tube, piercing the trays. A larger tube encloses the arrangement, with space provided for upward flow of coolart beyond the edge of the trays. (AEC)

  18. Evaluation of Computational Method of High Reynolds Number Slurry Flow for Caverns Backfilling

    SciTech Connect

    Bettin, Giorgia

    2015-05-01

    The abandonment of salt caverns used for brining or product storage poses a significant environmental and economic risk. Risk mitigation can in part be address ed by the process of backfilling which can improve the cavern geomechanical stability and reduce the risk o f fluid loss to the environment. This study evaluate s a currently available computational tool , Barracuda, to simulate such process es as slurry flow at high Reynolds number with high particle loading . Using Barracuda software, a parametric sequence of simu lations evaluated slurry flow at Re ynolds number up to 15000 and loading up to 25%. Li mitations come into the long time required to run these simulation s due in particular to the mesh size requirement at the jet nozzle. This study has found that slurry - jet width and centerline velocities are functions of Re ynold s number and volume fractio n The solid phase was found to spread less than the water - phase with a spreading rate smaller than 1 , dependent on the volume fraction. Particle size distribution does seem to have a large influence on the jet flow development. This study constitutes a first step to understand the behavior of highly loaded slurries and their ultimate application to cavern backfilling.

  19. Measurements of pressure drop and heat transfer in turbulent pipe flows of particulate slurries

    NASA Astrophysics Data System (ADS)

    Liu, K. V.; Choi, U. S.; Kasza, K. E.

    1988-05-01

    Argonne National Laboratory (ANL), under sponsorhip of DOE, Office of Buildings and Community Systems, has been conducting a comprehensive, long-range program to develop high-performance advanced energy transmission fluids for use in district heating and cooling (DHC) systems. The current study focuses on the development of phase-change slurries as advanced energy transmission fluids. The objectives are: (1) to establish proof-of-concept of enhanced heat transfer by a slurry, with and without phase change, relative to heat transfer in a pure carrier liquid; (2) to investigate the effect of particle volumetric loading, size, and flow rate on the slurry pressure drip and heat transfer behavior with and without friction-reducing additives; and (3) to generate pressure drop and heat transfer data needed for the development and design of improved DHC systems. Two types of phase-change materials were used in the experiments: ice slush for cooling, and cross-linked, high- density polyethylene (X-HDPE) particles with diameters of 1/8 and 1/20 in. (3.2 and 1.3 mm) for heating. The friction-reducing additive used in the tests was Separan AP-272 at 65 wppm. This report describes the test facility, discusses the experimental procedures, and presents significant experimental results on flow and heat transfer characteristics of the non-melting slurry flows.

  20. Study of Cold Heat Energy Release Characteristics of Flowing Ice Water Slurry in a Pipe

    NASA Astrophysics Data System (ADS)

    Inaba, Hideo; Horibe, Akihiko; Ozaki, Koichi; Yokota, Maki

    This paper has dealt with melting heat transfer characteristics of ice water slurry in an inside tube of horizontal double tube heat exchanger in which a hot water circulated in an annular gap between the inside and outside tubes. Two kinds of heat exchangers were used; one is made of acrylic resin tube for flow visualization and the other is made of stainless steel tube for melting heat transfer measurement. The result of flow visualization revealed that ice particles flowed along the top of inside tube in the ranges of small ice packing factor and low ice water slurry velocity, while ice particles diffused into the whole of tube and flowed like a plug built up by ice particles for large ice packing factor and high velocity. Moreover, it was found that the flowing ice plug was separated into numbers of small ice clusters by melting phenomenon. Experiments of melting heat transfer were carried out under some parameters of ice packing factor, ice water slurry flow rate and hot water temperature. Consequently, the correlation equation of melting heat transfer was derived as a function of those experimental parameters.

  1. Confirmation test for gas/slurry flow in SRC-I coal liquefaction process. Internal R and D final report

    SciTech Connect

    Moujaes, S.F.

    1983-09-01

    The overall objective of program 12.11.1 was to provide data needed to confirm the design of the transport system, slurry heat exchangers, and slurry feed manifolds for the SRC-I Demonstration Plant. Because of lack of funds, the program was terminated before most of the work was completed. Two studies related to distribution of two-phase flow in the heat exchanger tubes were finished. A special system was designed to measure slurry concentration and flow rate in different tubes. Results showed that withdrawing slurry samples from the sides of the tubes gives a reasonably accurate measure of the concentration. Flow rate was measured indirectly with a photodiode/digital counter arrangement that measured velocity of a gas slug injected in the tube. A simple linear correlation was found to exist between the average slurry velocity and the gas-slug velocity. 1 reference, 25 figures.

  2. Radial flow permeability testing of an argillaceous limestone.

    PubMed

    Selvadurai, A P S; Jenner, L

    2013-01-01

    Argillaceous Lindsay limestone is the geologic storage formation that will be encountered at the site for the construction of a deep ground repository in Ontario, Canada, for the storage of low to intermediate level nuclear waste. The permeability of the Lindsay limestone is a key parameter that will influence the long-term movement of radionuclides from the repository to the geosphere. This paper describes the use of both steady-state and transient radial flow laboratory tests to determine the permeability of this argillaceous limestone. The interpretation of the tests is carried out using both analytical results and computational models of flow problems that exhibit radial symmetry. The results obtained from this research investigation are compared with the data available in the literature for similar argillaceous limestones mainly found in the Lindsay (Cobourg) formation. The experiments give permeabilities in the range of 1.0 × 10(-22) to 1.68 × 10(-19) m(2) for radial flows that are oriented along bedding planes under zero axial stress. The factors influencing transient pulse tests in particular and the interpretation of the results are discussed. PMID:22489872

  3. Macrodispersion by diverging radial flows in randomly heterogeneous porous media

    NASA Astrophysics Data System (ADS)

    Severino, Gerardo; Santini, Alessandro; Sommella, Angelo

    2011-04-01

    Radial flow takes place in a heterogeneous porous formation where the transmissivity T is modelled as a stationary random space function ( RSF). The steady flow is driven by a given rate, and the mean velocity is radial. A pulse-like of a tracer is injected in the porous formation, and the thin plume spreads due to the fluctuations of the velocity which results a RSF as well. Transport is characterized by the mean front, and by the second spatial moment of the plume. We are primarily interested in tracer macrodispersion modelling. With the neglect of pore-scale dispersion, macrodispersion coefficients are computed at the second order of approximation, without neglecting the head-gradient fluctuations. Although transport is non-ergodic at the source, it is shown that ergodicity is achieved at small distances from the source. This is due to the fact that close to the source local velocities are quite large, and therefore solute particles become uncorrelated very soon. Under ergodic conditions, we compare macrodispersion mechanism in radial flows with that occurring in mean uniform flows. At short distances the spreading effect is highly enhanced by the large variability of the flow field, whereas at large distances transport exhibits a lesser dispersion due to the reduction of velocities. This supports the explanation provided by Indelman and Dagan (1999) to justify why the macrodispersivity is found smaller than that pertaining to mean uniform flows. The model is tested against a tracer transport experiment (Fernàndez-Garcia et al., 2004) by comparing the theoretical and experimental breakthrough curves. The accordance with real data, that is achieved without any fitting to concentration values, strengthens the capability of the proposed model to grasp the main features of such an experiment, the approximations as well as experimental uncertainties notwithstanding.

  4. Gas/slurry flow in coal liquefaction processes (fluid dynamics in 3-phase flow columns)

    NASA Astrophysics Data System (ADS)

    Ying, D. H. S.; Sivasubramanian, R.; Givens, E. N.

    1981-02-01

    The need for additional data on behavior of three phase systems in large vessels was addressed. Parameters are investigated at conditions that relate directly to the projected demonstration plant operating conditions. Air/water/sand three phase flow system in both a 5 inch diameter and a 12 inch diameter column is used in this cold flow simulation program. The type of distributor used does not seem to affect the solids distribution profiles. The amount of solids retained in the column increases linearly with decreasing slurry velocity while changes in linear gas velocity does not affect the solids distribution profiles for the conditions studied. It is indicated that withdrawing solids from the bottom of the column results in a decreased amount of solids in the column and the solids concentration profile changes accordingly. It is shown that large particles were preferentially removed by virtue of their faster settling rate. The effects of settled particles and particle/particle interaction on solids accumulation were investigated. It it indicated that the presence of large particles does not influence the accumulation or distribution of fine particles. The column enclosure was completed and tested to identify the organic liquid/liquid which is to be used in the 12 inch diameter column.

  5. The stability of Taylor-Couette flow with radial heating

    NASA Astrophysics Data System (ADS)

    Ali, Mohamed El-Sayed

    The stability of circular Couette flow with radial heating across vertically oriented coaxial cylinders is investigated using linearized stability theory. The physical problem is governed by five parameters: the Taylor number Ta, the Groshof number G, the Prandtl number Pr, the cylinder aspect ration A, and the radius ratio eta. In the model infinite aspect ratio is assumed and critical stability boundaries are calculated for a conduction regime base flow. A rational analysis is made to derive the full governing perturbation equations and test flow stability subject to both axisymmetric and nonaxisymmetric disturbances. The flow may be driven to instability by competition between centrifugal, buoyancy, and shear force mechanisms. In spite of this complexity, the existence of solution symmetries of the perturbation equations with respect to the sense of radial heating and the sense of cylinder rotation are proven. The linear boundary-value problem defined by 16 first-order differential equations is solved using the software package SUPORT in combination with the nonlinear equation solver SNSQE. Critical stability boundaries at fixed Pr and eta were determined by searching for the minimum value of either Ta or G over all wavelengths K and mode numbers n.

  6. Radial accretion flows on static spherically symmetric black holes

    NASA Astrophysics Data System (ADS)

    Chaverra, Eliana; Sarbach, Olivier

    2015-08-01

    We analyze the steady radial accretion of matter into a nonrotating black hole. Neglecting the self-gravity of the accreting matter, we consider a rather general class of static, spherically symmetric and asymptotically flat background spacetimes with a regular horizon. In addition to the Schwarzschild metric, this class contains certain deformation of it, which could arise in alternative gravity theories or from solutions of the classical Einstein equations in the presence of external matter fields. Modeling the ambient matter surrounding the black hole by a relativistic perfect fluid, we reformulate the accretion problem as a dynamical system, and under rather general assumptions on the fluid equation of state, we determine the local and global qualitative behavior of its phase flow. Based on our analysis and generalizing previous work by Michel, we prove that for any given positive particle density number at infinity, there exists a unique radial, steady-state accretion flow which is regular at the horizon. We determine the physical parameters of the flow, including its accretion and compression rates, and discuss their dependency on the background metric.

  7. Onset of radial flow in p+p collisions

    DOE PAGESBeta

    Jiang, Kun; Zhu, Yinying; Liu, Weitao; Chen, Hongfang; Li, Cheng; Ruan, Lijuan; Tang, Zebo; Xu, Zhangbu

    2015-02-23

    It has been debated for decades whether hadrons emerging from p+p collisions exhibit collective expansion. The signal of the collective motion in p+p collisions is not as clear as in heavy-ion collisions because of the low multiplicity and large fluctuation in p+p collisions. Tsallis Blast-Wave (TBW) model is a thermodynamic approach, introduced to handle the overwhelming correlation and fluctuation in the hadronic processes. We have systematically studied the identified particle spectra in p+p collisions from RHIC to LHC using TBW and found no appreciable radial flow in p+p collisions below √s = 900 GeV. At LHC higher energy of 7more » TeV in p+p collisions, the radial flow velocity achieves an average of (β) = 0.320 ± 0.005. This flow velocity is comparable to that in peripheral (40-60%) Au+Au collisions at RHIC. In addition, breaking of the identified particle spectra mT scaling was also observed at LHC from a model independent test.« less

  8. Onset of radial flow in p +p collisions

    NASA Astrophysics Data System (ADS)

    Jiang, Kun; Zhu, Yinying; Liu, Weitao; Chen, Hongfang; Li, Cheng; Ruan, Lijuan; Tang, Zebo; Xu, Zhangbu

    2015-02-01

    It has been debated for decades whether hadrons emerging from p +p collisions exhibit collective expansion. The signal of the collective motion in p +p collisions is not as clear or as clean as in heavy-ion collisions because of the low multiplicity and large fluctuation in p +p collisions. The Tsallis blast-wave (TBW) model is a thermodynamic approach, introduced to handle the overwhelming correlation and fluctuation in the hadronic processes. We have systematically studied the identified particle spectra in p +p collisions from the BNL Relativistic Heavy Ion Collider (RHIC) to the CERN Large Hadron Collider (LHC) using TBW and have found no appreciable radial flow in p +p collisions below √{s }=900 GeV. At the LHC higher energy of 7 TeV in p +p collisions, the radial flow velocity achieves an average value of <β >=0.320 ±0.005 . This flow velocity is comparable to that in peripheral (40-60%) Au +Au collisions at the RHIC. Breaking of the identified particle spectra mT scaling was also observed at the LHC from a model-independent test.

  9. Exact Convex Relaxation of Optimal Power Flow in Radial Networks

    SciTech Connect

    Gan, LW; Li, N; Topcu, U; Low, SH

    2015-01-01

    The optimal power flow (OPF) problem determines a network operating point that minimizes a certain objective such as generation cost or power loss. It is nonconvex. We prove that a global optimum of OPF can be obtained by solving a second-order cone program, under a mild condition after shrinking the OPF feasible set slightly, for radial power networks. The condition can be checked a priori, and holds for the IEEE 13, 34, 37, 123-bus networks and two real-world networks.

  10. Rapid Analysis of Copper Ore in Pre-Smelter Head Flow Slurry by Portable X-ray Fluorescence.

    PubMed

    Burnett, Brandon J; Lawrence, Neil J; Abourahma, Jehad N; Walker, Edward B

    2016-05-01

    Copper laden ore is often concentrated using flotation. Before the head flow slurry can be smelted, it is important to know the concentration of copper and contaminants. The concentration of copper and other elements fluctuate significantly in the head flow, often requiring modification of the concentrations in the slurry prior to smelting. A rapid, real-time analytical method is needed to support on-site optimization of the smelter feedstock. A portable, handheld X-ray fluorescence spectrometer was utilized to determine the copper concentration in a head flow suspension at the slurry origin. The method requires only seconds and is reliable for copper concentrations of 2.0-25%, typically encountered in such slurries. PMID:27006021

  11. A visual study of radial inward choked flow of liquid nitrogen

    NASA Technical Reports Server (NTRS)

    Hendricks, R. C.; Simoneau, R. J.; Hsu, Y. Y.

    1973-01-01

    A visual study of the radial inward choked flow of liquid nitrogen was conducted. Data and high speed moving pictures were obtained. The study indicated the following: (1) steady radial inward choked flow seems equivalent to steady choked flow through axisymmetric nozzles, (2) transient choked flows through the radial gap are not uniform and the discharge pattern appears as nonuniform impinging jets, and (3) the critical mass flow rate data for the transient case appear different from those of the steady case.

  12. Linear and radial flow targets for characterizing downhole flow in perforations

    SciTech Connect

    Deo, M. ); Tariq, S.M. ); Halleck, P.M. )

    1989-08-01

    Two types of sandstone targets are commonly used to test flow efficiency of shaped-charge jet perforations: linear targets, in which flow enters only the unperforated end of the cylindrical sample, and radial targets, in which flow enters through the end and sides of the sample. To determine which of these targets best represents downhole conditions, the flow distribution along the length of a perforation has been studied by three-dimensional (3D) finite-element analyses. Linear and radial laboratory targets have been compared with downhole perforations under varying conditions. For ideal perforations, the low-shot-density (LSD) case is adequately represented by the radial target, while the high-shot-density (HSD) case falls between the two targets. With realistic crushed and damaged zones, the HSD closely matches the linear target, and the LSD case falls between the two targets.

  13. Connecting the Rheological Behavior of Clathrate Hydrate Slurries to Flow Performance

    NASA Astrophysics Data System (ADS)

    Geri, Michela; Venkatesan, Rama; McKinley, Gareth; MIT Team; Chevron ETC Team

    2014-11-01

    Clathrate hydrates represent a major flow assurance issue for deep water drilling operations. To develop a proper constitutive model, an extensive set of rheological measurements has been performed on a model hydrate forming emulsion. Upon hydrate formation a sharp increase in the fluid viscosity is observed (by a factor of 100 to 1000). Steady shear measurements show that the hydrate slurry has a shear thinning behavior as well as a yield stress on the order of 1-10 Pa which increases with aging of the fluid. Thixotropy becomes evident as a hysteretic behavior in the flow curve, even when no rheological aging has occurred. Creep tests also reveal that the fluid microstructure accumulates back stress. Oscillatory measurements show that in the linear viscoelastic region hydrate slurries develop viscoelastic gel-like behavior with the elastic modulus exceeding the viscous modulus. These characteristics guide the development of an elastoviscoplastic constitutive model that can capture the salient dynamic features in simple unidirectional flows (e.g. steady or transient Poiseuille) such as apparent wall slip, plug flow or excessive pressure drop in start-up flow.

  14. Improving Energy Efficiency Via Optimized Charge Motion and Slurry Flow in Plant Scale Sag Mills

    SciTech Connect

    Raj K. Rajamani; Jose Angel Delgadillo

    2006-07-21

    A research team from the University of Utah is working to make inroads into saving energy in these SAG mills. In 2003, Industries of the Future Program of the Department of Energy tasked the University of Utah team to build a partnership between the University and the mining industry for the specific purpose of reducing energy consumption in SAG mills. A partnership was formed with Cortez Gold Mines, Kennecott Utah Copper Corporation, Process Engineering Resources Inc. and Outokumpu Technology. In the current project, Cortez Gold Mines played a key role in facilitating the 26-ft SAG mill at Cortez as a test mill for this study. According to plant personnel, there were a number of unscheduled shut downs to repair broken liners and the mill throughput fluctuated depending on ore type. The University team had two softwares, Millsoft and FlowMod to tackle the problem. Millsoft is capable of simulating the motion of charge in the mill. FlowMod calculates the slurry flow through the grate and pulp lifters. Based on this data the two models were fine-tuned to fit the Cortez SAG will. In the summer of 2004 a new design of shell lifters were presented to Cortez and in September 2004 these lifters were installed in the SAG mill. By December 2004 Cortez Mines realized that the SAG mill is drawing approximately 236-kW less power than before while maintaining the same level of production. In the first month there was extreme cycling and operators had to learn more. Now the power consumption is 0.3-1.3 kWh/ton lower than before. The actual SAG mill power draw is 230-370 kW lower. Mill runs 1 rpm lesser in speed on the average. The recirculation to the cone crusher is reduced by 1-10%, which means more efficient grinding of critical size material is taking place in the mill. All of the savings have resulted in reduction of operating cost be about $0.023-$0.048/ ton. After completing the shell lifter design, the pulp lifter design was taken up. Through a series of mill surveys and

  15. Axial development and radial non-uniformity of flow in packed columns.

    PubMed

    Park, Jaekeun C; Raghavan, Karthik; Gibbs, Stephen J

    2002-02-01

    Flow inhomogeneity and axial development in low-pressure chromatographic columns have been studied by magnetic resonance imaging velocimetry. The columns studied included (a) an 11.7-mm I.D. column packed with either 50 microm diameter porous polyacrylamide, or 99 or 780 microm diameter impermeable polystyrene beads, and (b) a 5-mm I.D. column commercially packed with 10 microm polymeric beads. The packing methods included gravity settling, slurry packing, ultrasonication, and dry packing with vibration. The magnetic resonance method used averaged apparent fluid velocity over both column cross-sections and fluid displacements greater than one particle diameter and hence permits assessment of macroscopic flow non-uniformities. The results confirm that now non-uniformities induced by the conical distributor of the 11.7-mm I.D. column or the presence of voids at the column entrance relax on a length scale of the column radius. All of the 11.7-mm I.D. columns examined exhibit near wall channeling within a few particle diameters of the wall. The origins of this behavior are demonstrated by imaging of the radial dependence of the local porosity for a column packed with 780 microm beads. Columns packed with the 99-microm beads exhibit reduced flow in a region extending from ten to three-to-five particle diameters from the wall. This velocity reduction is consistent with a reduced porosity of 0.35 in this region as compared to approximately 0.43 in the bulk of the column. Ultrasonicated and dry-packed columns exhibit enhanced flow in a region located between approximately eight and 20 particle diameters from the wall. This enhancement maybe caused by packing density inhomogeneity and/or particle size segregation caused by vibration during the packing process. No significant non-uniformities on length scales of 20 microm or greater were observed in the commercially packed column packed with 10 microm particles. PMID:11860146

  16. Using the refractive index matched technique to study the flow properties of slurries

    SciTech Connect

    Wildman, D J; Ekmann, J M; Kadambi, J R; Chen, R C

    1991-01-01

    In this study, Laser Doppler Velocimetry (LDV) is used to measure liquid and solid axial velocity profiles for slurries with solids loadings as great as 25 volume percent. Axial velocity profiles were measured during flow through straight horizontal pipe and through concentric contractions. These results are presented and compared. These same solid-liquid mixtures have been rheologically characterized. Yield stresses and shear thinning behavior have been observed in mixtures with solids loadings of 15 volume percent or greater. The theoretical analyses of Hanks and Dadia and Hanks and Ricks were applied to the flow data though the constant-diameter pipe where appropriate. The effect of the rheological properties on the flow properties through horizontal, constant-diameter pipe and concentric contraction geometry are discussed.

  17. Boiling radial flow in fractures of varying wall porosity

    SciTech Connect

    Barnitt, Robb Allan

    2000-06-01

    The focus of this report is the coupling of conductive heat transfer and boiling convective heat transfer, with boiling flow in a rock fracture. A series of experiments observed differences in boiling regimes and behavior, and attempted to quantify a boiling convection coefficient. The experimental study involved boiling radial flow in a simulated fracture, bounded by a variety of materials. Nonporous and impermeable aluminum, highly porous and permeable Berea sandstone, and minimally porous and permeable graywacke from The Geysers geothermal field. On nonporous surfaces, the heat flux was not strongly coupled to injection rate into the fracture. However, for porous surfaces, heat flux, and associated values of excess temperature and a boiling convection coefficient exhibited variation with injection rate. Nucleation was shown to occur not upon the visible surface of porous materials, but a distance below the surface, within the matrix. The depth of boiling was a function of injection rate, thermal power supplied to the fracture, and the porosity and permeability of the rock. Although matrix boiling beyond fracture wall may apply only to a finite radius around the point of injection, higher values of heat flux and a boiling convection coefficient may be realized with boiling in a porous, rather than nonporous surface bounded fracture.

  18. An investigation of radial tracer flow in naturally fractured reservoirs

    SciTech Connect

    Jetzabeth, Ramirez-Sabag; Fernando, Samaniego V.; Jesus, Rivera R.; Fernando Rodriguez

    1991-01-01

    This study presents a general solution for the radial flow of tracers in naturally fractured reservoirs. Continuous and finite step injection of chemical and radioactive tracers are considered. The reservoir is treated as being composed of two regions: a mobile region where longitudinal dispersion and convection take place and a stagnant region where only diffusion and adsorption are allowed. Radioactive decay is considered in both regions. The model of this study is thoroughly compared to those previously presented in literature by Moench and Ogata, Tang et al., Chen et al., and Hsieh et al. The solution is numerically inverted by means of the Crump algorithm. A detailed validation of the model with respect to solutions previously presented and/or simplified physical conditions solutions (i.e., homogeneous case) or limit solutions (i.e., for short times) was carried out. The influence of various dimensionless parameters that enter into the solution was investigated. A discussion of results obtained through the Crump and Stehfest algorithm is presented, concluding that the Crump method provides more reliable tracer concentrations.

  19. Evaluation of the role of a cationic surfactant on the flow characteristics of fly ash slurry.

    PubMed

    Naik, H K; Mishra, M K; Rao Karanam, U M; Deb, D

    2009-09-30

    Transportation of fly ash is a major problem in its efficient disposal. The main problem associated with fly ash transportation is that the particles settle down sooner than desired. The primary objective of this research is that not only the fly ash particles should remain floated till it reaches the end but also settle down after that. In this investigation the role of a drag-reducing cationic surfactant and a counter-ion has been evaluated to achieve the objectives. The experimental results show encouraging trends of surfactant helping fly ash particles to remain water-borne. The material exhibited Newtonian behavior. This paper describes these in term of shear rates, shear stress, temperature, concentration and viscosity. Rheological tests were conducted using Advanced Computerized Rheometer. Zeta potential was measured to test the stability of the colloidal fly ash particles using Malvern Zeta Sizer instrument. Surface tension was also measured to know the drag reduction behavior of the fly ash slurry by using Surface Tensiometer. The test results and flow diagrams were generated using Rheoplus software and are presented in this paper. Surfactant concentration of 0%, 0.1%, 0.2%, 0.3%, 0.4% and 0.5% by weight was mixed with equal amount of counter-ion and the slurry was prepared by adding fly ash with ordinary tap water to achieve the desired solid concentration of 20% (by weight). PMID:19345482

  20. A visual study of radial inward choked flow of liquid nitrogen.

    NASA Technical Reports Server (NTRS)

    Hendricks, R. C.; Simoneau, R. J.; Hsu, Y. Y.

    1973-01-01

    Data and high speed movies were acquired on pressurized subcooled liquid nitrogen flowing radially inward through a 0.0076 cm gap. The stagnation pressure ranged from 0.7 to 4 MN/sq m. Steady radial inward choked flow appears equivalent to steady choked flow through axisymmetric nozzles. Transient choked flows through the radial gap are not uniform and the discharge pattern appears as nonuniform impinging jets. The critical mass flow rate data for the transient case appear different from those for the steady case. On the mass flow rate vs pressure map, the slope and separation of the isotherms appear to be less for transient than for steady radial choked flow.

  1. Computational investigations of axial and radial flow compressor aeromechanics

    NASA Astrophysics Data System (ADS)

    Ramakrishnan, Kishore

    The focus of this research is aeromechanics issues in advanced compressors of the type used in modern day high thrust-to-weight ratio aircraft gas turbine engines. The driving factor for the studies undertaken is the High Cycle Fatigue (HCF) failure of gas turbine blades. HCF is a key technology issue in the development and endurance of gas turbine engines that arises primarily due to resonant response of turbomachine blading to unsteady aerodynamic excitation. Because it is a truly coupled nonlinear fluid-structure problem, predicting HCF requires a unified approach to modeling both the fluid and the structure. Considering the serious nature of HCF and the inadequacy of lower order design systems to accurately predict blade vibratory stress, the need to develop advanced predictive tools is pressing. The first aspect of this research therefore addresses the development of a turbomachinery coupled fluid-structure interaction tool to predict flow-induced blade vibration. To this end, the TAM-ALE3D solver is further developed as a derivative of the ALE3D code of Lawrence Livermore National Laboratory. In the second aspect of this research, TAM-ALE3D is validated by predicting viscous blade row unsteady aerodynamics and the modal properties of the stator vane in the baseline configuration of the Purdue Transonic Compressor. It is then used to predict the vane vibratory response excited by rotor wakes at resonance, with the resulting stresses in the range expected. For radial flow compressors, a very limited knowledge base exists on the unsteady aerodynamic and aeroelastic mechanisms that result in HCF. The bulk of this research is thus directed at the understanding of these fundamental unsteady phenomena using TAM-ALE3D as an investigative tool. The energy transfer from the downstream diffuser generated forcing function to the impeller blading is addressed by means of unsteady aerodynamic and aeroelastic analyses. From these computational investigations, the details of

  2. Buoyancy-driven flow reversal phenomena in radially rotating serpentine ducts

    SciTech Connect

    Hwang, J.J.; Wang, W.J.; Chen, C.K.

    2000-02-01

    Convective characteristics are analyzed numerically in a rotating multipass square duct connecting with 180-deg sharp returns. Isoflux is applied to each duct wall and periodic conditions are used between the entrance and exit of a typical two-pass module. Emphasis is placed on the phenomenon of buoyancy-driven reversed flow in the serpentine duct. Predictions reveal that the radial distance from the rotational axis to the location of flow separation in the radial-outward duct decreases with increasing the Richardson number. In addition, the local buoyancy that is required to yield the radial flow reversal increases with increasing the rotation number. This buoyancy-driven reversed flow in the radial-outward duct always results in local hot spots in the cooling channels. The critical buoyancy for the initiation of flow reversal is therefore concluded for the design purpose.

  3. One-dimensional analysis of plane and radial thin film flows including solid-body rotation

    NASA Technical Reports Server (NTRS)

    Thomas, S.; Hankey, W.; Faghri, A.; Swanson, T.

    1989-01-01

    The flow of a thin liquid film with a free surface along a horizontal plate which emanates from a pressurized vessel is examined by integrating the equations of motion across the thin liquid layer and discretizing the integrated equations using finite difference techniques. The effects of 0-g and solid-body rotation will be discussed. The two cases of interest are plane flow and radial flow. In plane flow, the liquid is considered to be flowing along a channel with no change in the width of the channel, whereas in radial flow the liquid spreads out radially over a disk, so that the area changes along the radius. It is desired to determine the height of the liquid film at any location along the plate of disk, so that the heat transfer from the plate or disk can be found. The possibility that the flow could encounter a hydraulic jump is accounted for.

  4. Radial Motions in Disk Stars: Ellipticity or Secular Flows?

    NASA Astrophysics Data System (ADS)

    López-Corredoira, M.; González-Fernández, C.

    2016-06-01

    Average stellar orbits of the Galactic disk may have some small intrinsic ellipticity which breaks the exact axisymmetry and there may also be some migration of stars inwards or outwards. Both phenomena can be detected through kinematic analyses. We use the red clump stars selected spectroscopically from the APO Galactic Evolution Experiment, with known distances and radial velocities, to measure the radial component of the Galactocentric velocities within 5 kpc < R < 16 kpc, | b| \\lt 5^\\circ , and within 20° from the Sun–Galactic center line. The average Galactocentric radial velocity is VR = (1.48 ± 0.35)[R(kpc) ‑ (8.8 ± 2.7)] km s‑1 outwards in the explored range, with a higher contribution from stars below the Galactic plane. Two possible explanations can be given for this result: (i) the mean orbit of the disk stars is intrinsically elliptical with a Galactocentric radial gradient of eccentricity around 0.01 kpc‑1 or (ii) there is a net secular expansion of the disk, in which stars within R ≈ 9–11 kpc are migrating to the region R ≳ 11 kpc at the rate of ∼2 M⊙ yr‑1, and stars with R ≲ 9 kpc are falling toward the center of the Galaxy. This migration ratio would be unattainable for a long time and should decelerate, otherwise the Galaxy would fade away in around 1 Gyr. At present, both hypotheses are speculative and one would need data on the Galactocentric radial velocities for other azimuths different to the center or anticenter in order to confirm one of the scenarios.

  5. On the Problem of Theoretical Pressure of a Radial-Flow Pump Unit

    NASA Astrophysics Data System (ADS)

    Pavlechko, V. N.; Protasov, S. K.

    2014-11-01

    An analysis has been made of the velocity of motion of a medium in the wheel of a radial-flow pump unit under the action of a centrifugal force and overcoming the medium's inertial force with its blades. Relations for the pressure produced by the radial-flow pump unit as a function of the angle of inclination of its blades have been derived. The well-known Euler equation describing the dynamic pressure of the radial-flow pump unit has been supplemented to determine its static pressure. An analysis of the obtained results has shown that the pressure of the radial-flow pump unit is maximum at an angle of inclination of its blades of 110o and negative at 140o or larger angles.

  6. Computer program for the analysis of the cross flow in a radial inflow turbine scroll

    NASA Technical Reports Server (NTRS)

    Hamed, A.; Abdallah, S.; Tabakoff, W.

    1977-01-01

    A computer program was used to solve the governing of the potential flow in the cross sectional planes of a radial inflow turbine scroll. A list of the main program, the subroutines, and typical output example are included.

  7. A methodology to define the flow rate and pressure requirements for transfer of double-shell tank waste slurries. Strategy plan

    SciTech Connect

    Bamberger, J.A.; Liljegren, L.M.

    1993-04-01

    This document presents an analysis of the pressure drop and flow rate double-shell tank slurries. Experiments to requirements for transport of characterize the transport of double-shell tank slurries through piping networks and to resuspend materials that settle during pump outages are proposed. Reported values of physical properties of double-shell tank slurries were analyzed to evaluate the flow regimes that are likely to occur during transport. The results of these evaluations indicate that the slurry will be pseudohomogeneous during transport and that the slurry rheology is sufficiently non-Newtonian to affect both the pressure drop achieved during transport and the critical Reynolds number. The transport data collected in the non-Newtonian experiment will be used to determine whether a non-Newtonian correlation developed by Hanks (1978) adequately describes the experimental results.

  8. Radial and elliptic flow at RHIC: Further predictions

    SciTech Connect

    Huovinen, Pasi; Kolb, Peter F.; Heinz, Ulrich; Ruuskanen, P.V.; Voloshin, Sergei A.

    2001-01-30

    Using a hydrodynamic model, we predict the transverse momentum dependence of the spectra and the elliptic flow for different hadrons in Au+Au collisions at sqrt(s)=130 AGeV. The dependence of the differential and p{_}t-integrated elliptic flow on the hadron mass, equation of state and freeze-out temperature is studied both numerically and analytically.

  9. Slurry bubble column hydrodynamics

    NASA Astrophysics Data System (ADS)

    Rados, Novica

    Slurry bubble column reactors are presently used for a wide range of reactions in both chemical and biochemical industry. The successful design and scale up of slurry bubble column reactors require a complete understanding of multiphase fluid dynamics, i.e. phase mixing, heat and mass transport characteristics. The primary objective of this thesis is to improve presently limited understanding of the gas-liquid-solid slurry bubble column hydrodynamics. The effect of superficial gas velocity (8 to 45 cm/s), pressure (0.1 to 1.0 MPa) and solids loading (20 and 35 wt.%) on the time-averaged solids velocity and turbulent parameter profiles has been studied using Computer Automated Radioactive Particle Tracking (CARPT). To accomplish this, CARPT technique has been significantly improved for the measurements in highly attenuating systems, such as high pressure, high solids loading stainless steel slurry bubble column. At a similar set of operational conditions time-averaged gas and solids holdup profiles have been evaluated using the developed Computed Tomography (CT)/Overall gas holdup procedure. This procedure is based on the combination of the CT scans and the overall gas holdup measurements. The procedure assumes constant solids loading in the radial direction and axially invariant cross-sectionally averaged gas holdup. The obtained experimental holdup, velocity and turbulent parameters data are correlated and compared with the existing low superficial gas velocities and atmospheric pressure CARPT/CT gas-liquid and gas-liquid-solid slurry data. The obtained solids axial velocity radial profiles are compared with the predictions of the one dimensional (1-D) liquid/slurry recirculation phenomenological model. The obtained solids loading axial profiles are compared with the predictions of the Sedimentation and Dispersion Model (SDM). The overall gas holdup values, gas holdup radial profiles, solids loading axial profiles, solids axial velocity radial profiles and solids

  10. Transient radial flow to a well in an unconfined aquifer

    SciTech Connect

    Narasimhan, T.N.; Zhu, Ming.

    1991-08-01

    The analytic solutions of Boulton (1954) and Neuman (1972) for transient flow to a well in an unconfined aquifer are based on the assumption that the role of the unsaturated zone can be adequately accounted for by restricting attention to the release of water from the zone through which the water table moves. Both researchers mathematically treat this released water as a time-dependent source term. The differences between the models of Boulton and Neuman are that the former neglects vertical components of flow in the aquifer, but allows for an exponential process for the release of water as a function of time, whereas the latter assumes instantaneous release from storage, but accounts for vertical components of flow. Given this set of assumptions, we examine the applicability of these two methods using a general purpose numerical model through a process of verification extension and comparison. The issues addressed include: the role of well-bore storage in masking intermediate-time behavior, combined effects of exponential release as well as vertical flow, logic for vertical averaging of drawdowns, and the sensitivity of system response to the magnitude of specific yield. The issue of how good the assumptions of Boulton and Neuman are in the context of the general theory of unsaturated flow is addressed in part 2 of this two-part series of reports.

  11. IMPROVING ENERGY EFFICIENCY VIA OPTIMIZED CHARGE MOTION AND SLURRY FLOW IN PLANT SCALE SAG MILLS

    SciTech Connect

    Raj K. Rajamani; Sanjeeva Latchireddi; Sravan K. Prathy; Trilokyanath Patra

    2005-12-01

    The U.S. mining industry operates approximately 80 semi-autogenesis grinding mills (SAG) throughout the United States. Depending on the mill size the SAG mills draws between 2 MW and 17 MW. The product from the SAG mill is further reduced in size using pebble crushers and ball mills. Hence, typical gold or copper ore requires between 2.0 and 7.5 kWh per ton of energy to reduce the particle size. Considering a typical mining operation processes 10,000 to 100,000 tons per day the energy expenditure in grinding is 50 percent of the cost of production of the metal. A research team from the University of Utah is working to make inroads into saving energy in these SAG mills. In 2003, Industries of the Future Program of the Department of Energy tasked the University of Utah team to build a partnership between the University and the mining industry for the specific purpose of reducing energy consumption in SAG mills. A partnership was formed with Cortez Gold Mines, Kennecott Utah Copper Corporation, Process Engineering Resources Inc. and others. In the current project, Cortez Gold Mines played a key role in facilitating the 26-ft SAG mill at Cortez as a test mill for this study. According to plant personnel, there were a number of unscheduled shut downs to repair broken liners and the mill throughput fluctuated depending on ore type. The University team had two softwares, Millsoft and FlowMod to tackle the problem. Millsoft is capable of simulating the motion of charge in the mill. FlowMod calculates the slurry flow through the grate and pulp lifters. Based on this data the two models were fine-tuned to fit the Cortez SAG will. In the summer of 2004 a new design of shell lifters were presented to Cortez and in September 2004 these lifters were installed in the SAG mill. By December 2004 Cortez Mines realized that the SAG mill is drawing approximately 236-kW less power than before while maintaining the same level of production. In the first month there was extreme cycling

  12. Three Phase Probabilistic Load Flow in Radial Distribution Networks

    SciTech Connect

    Melhorn, Alexander C; Dimitrovski, Aleksandar D; Tomsovic, Kevin L

    2012-01-01

    Probabilistic load flow is a helpful tool in accounting for inconsistent or unknown loads and generation. This is especially true with the push for renewable generation and demand response. This paper proposes an improved version of the probabilistic load flow solution for balanced distribution systems and takes the next step by applying it to unbalanced three phase systems. It is validated by comparing the solutions to that obtained by Monte Carlo simulation. The proposed method provides an accurate and practical way for finding the solution to the stochastic problems occurring in power distribution system analysis today.

  13. Phase Change Effects on Immiscible Flow Displacements in Radial Injection

    NASA Astrophysics Data System (ADS)

    Ahmadlouydarab, Majid; Azaiez, Jalel; Chen, Zhangxin

    2014-11-01

    We report a systematic simulation of immiscible fluid-fluid displacements in radial injection in the presence of phase change. Due to the presence of two fluid-fluid interfaces in the system, a special treatment has been adopted. To track the leading interface position, two highly accurate methods including Level Set and Immersed Interface Method were used, while for locating the trailing interface an energy equation was adopted assuming the existence of a constant thin condensate layer. Dimensional analysis led to three important dimensionless groups including capillary number (Ca), Jacob number (Ja) and viscosity ratios (M) of the three fluids. Simulation results indicate significant influences of these parameters on the development of the instability and the interfacial morphology of fingers. Increasing Ca or M tends to amplify the interfacial instability, fingertip splitting, and results in longer fingers. In contrast, increasing Ja has stabilizing effects due to an increase of the thickness of the condensate layer. On the other hand at lower viscosity ratios as well as lower Ca, because of compensation effects of the phase change, both leading and trailing interfaces are found to be less unstable. Moreover accumulated condensate and oil saturation depletion curves show increasing and decreasing trends, respectively, when the Ca increases. Although viscosity ratio and Ja have similar effects on the accumulated condensate, they do not show any effect on the oil depletion saturation.

  14. Investigations on the Aerodynamic Characteristics and Blade Excitations of the Radial Turbine with Pulsating Inlet Flow

    NASA Astrophysics Data System (ADS)

    Liu, Yixiong; Yang, Ce; Yang, Dengfeng; Zhang, Rui

    2016-04-01

    The aerodynamic performance, detailed unsteady flow and time-based excitations acting on blade surfaces of a radial flow turbine have been investigated with pulsation flow condition. The results show that the turbine instantaneous performance under pulsation flow condition deviates from the quasi-steady value significantly and forms obvious hysteretic loops around the quasi-steady conditions. The detailed analysis of unsteady flow shows that the characteristic of pulsation flow field in radial turbine is highly influenced by the pulsation inlet condition. The blade torque, power and loading fluctuate with the inlet pulsation wave in a pulse period. For the blade excitations, the maximum and the minimum blade excitations conform to the wave crest and wave trough of the inlet pulsation, respectively, in time-based scale. And toward blade chord direction, the maximum loading distributes along the blade leading edge until 20% chord position and decreases from the leading to trailing edge.

  15. Flow behavior in inlet guide vanes of radial turbines

    NASA Technical Reports Server (NTRS)

    Sokhey, J.; Tabakoff, W.; Hosny, W. M.

    1975-01-01

    Scroll flow is discussed. Streamline pattern and velocity distribution in the guide vanes are calculated. The blade surface temperature distribution is also determined. The effects of the blade shapes and the nozzle channel width on the velocity profiles at inlet to the guide vanes are investigated.

  16. Fluctuations of harmonic and radial flow in heavy ion collisions with principal components

    NASA Astrophysics Data System (ADS)

    Mazeliauskas, Aleksas; Teaney, Derek

    2016-02-01

    We analyze the spectrum of harmonic flow, vn(pT) for n =0 -5 , in event-by-event hydrodynamic simulations of Pb+Pb collisions at the CERN Large Hadron Collider (√{sN N}=2.76 TeV ) with principal component analysis (PCA). The PCA procedure finds two dominant contributions to the two-particle correlation function. The leading component is identified with the event plane vn(pT) , while the subleading component is responsible for factorization breaking in hydrodynamics. For v0, v1, and v3 the subleading flow is a response to the radial excitation of the corresponding eccentricity. By contrast, for v2 the subleading flow in peripheral collisions is dominated by the nonlinear mixing between the leading elliptic flow and radial flow fluctuations. In the v2 case, the sub-sub-leading mode more closely reflects the response to the radial excitation of ɛ2. A consequence of this picture is that the elliptic flow fluctuations and factorization breaking change rapidly with centrality, and in central collisions (where the leading v2 is small and nonlinear effects can be neglected) the sub-sub-leading mode becomes important. Radial flow fluctuations and nonlinear mixing also play a significant role in the factorization breaking of v4 and v5. We construct good geometric predictors for the orientation and magnitudes of the leading and subleading flows based on a linear response to the geometry, and a quadratic mixing between the leading principal components. Finally, we suggest a set of measurements involving three point correlations which can experimentally corroborate the nonlinear mixing of radial and elliptic flow and its important contribution to factorization breaking as a function of centrality.

  17. Preprocessor and postprocessor computer programs for a radial-flow finite-element model

    USGS Publications Warehouse

    Pucci, A.A., Jr.; Pope, D.A.

    1987-01-01

    Preprocessing and postprocessing computer programs that enhance the utility of the U.S. Geological Survey radial-flow model have been developed. The preprocessor program: (1) generates a triangular finite element mesh from minimal data input, (2) produces graphical displays and tabulations of data for the mesh , and (3) prepares an input data file to use with the radial-flow model. The postprocessor program is a version of the radial-flow model, which was modified to (1) produce graphical output for simulation and field results, (2) generate a statistic for comparing the simulation results with observed data, and (3) allow hydrologic properties to vary in the simulated region. Examples of the use of the processor programs for a hypothetical aquifer test are presented. Instructions for the data files, format instructions, and a listing of the preprocessor and postprocessor source codes are given in the appendixes. (Author 's abstract)

  18. Travel time statistics under radially converging flow in single fractures

    NASA Astrophysics Data System (ADS)

    Gotovac, Hrvoje; Srzic, Veljko; Cvetkovic, Vladimir; Kekez, Toni; Malenica, Luka

    2015-04-01

    A stochastic methodology based on Adaptive Fup Monte Carlo Method is used to investigate transport of a conservative solute by steady flow to a single pumping well in two-dimensional randomly heterogeneous single fractures. The spatially variable hydraulic transmissivity is modeled as a stationary random function for three different correlation structures (multi-Gaussian, connected and disconnected fields with correlated mean, high and low lnT values, respectively, according to the Zinn and Harvey, 2003) and heterogeneity levels (lnT variance is 1 and 8). Initially, solute particles are injected at outer circle located at 32 correlation lengths from well according to the in flux and resident injection mode. Therefore, breakthrough curve (BTC) statistics in single well due to different spatial structures, heterogeneity levels, injection modes and dispersion influence is considered. For small heterogeneity, all considered effects have small influences on BTC and related moments. As expected in single fractures, high lnT variance is more usual case which considerably changes flow patterns including channelling effect and fact that only few narrow channels carry out most pumping flow rate. Channelling implies significant differences between different injection modes. Resident mode uniformly injects particles implying that most particles pass through "slower" zones that especially increase late arrivals and contribute to the non-Fickian behaviour of transport. Contrary, "in flux" mode drastically reduces first arrivals and mean values, especially for connected correlation fields. The results from two injection modes lie on different sides of homogeneous mean travel time solution and give complementary information for complete representation of conservative transport. For advection transport, correlation structure and especially lnT variance seems to have major influence on BTC characteristics. On the other side, influence of longitudinal and lateral local scale

  19. 3-D model of a radial flow sub-watt methanol fuel processor

    SciTech Connect

    Holladay, J. D.; Wang, Y.

    2015-10-01

    A 3-D model is presented for a novel sub-watt packed bed reactor. The reactor uses an annular inlet flow combined with a radial flow packed bed reactor. The baseline reactor is compared to a reactor with multiple outlets and a reactor with 3 internal fins. Increasing the outlets from 1 to 4 did improve the flow distribution, but did not increase the performance in the simulation. However, inserting fins allowed a decrease in temperature with same inlet flow of approximately 35K. Or the inlet flow rate could be increased by a factor of 2.8x while maintaining >99% conversion.

  20. EXPERIMENTAL CHARACTERIZATION OF COHERENT, RADIALLY-SHEARED ZONAL FLOWS IN THE DIII-D TOKAMAK

    SciTech Connect

    MCKEE,GR; FONCK,RJ; JAKUBOWSKI,M; BURRELL,KH; HALLATSCHEK,K; MOYER,RA; NEVINS,W; PORTER,GD; RUDAKOV,DL; XU,X

    2002-11-01

    A271 EXPERIMENTAL CHARACTERIZATION OF COHERENT, RADIALLY-SHEARED ZONAL FLOWS IN THE DIII-D TOKAMAK. Application of time-delay-estimation techniques to two-dimensional measurements of density fluctuations, obtained with beam emission spectroscopy in DIII-D plasmas, has provided temporally and spatially resolved measurements of the turbulence flow-field. Features that are characteristic of self-generated zonal flows are observed in the radial region near 0.85 {<=} r/a {<=} 1.0. These features include a coherent oscillation (approximately 15 kHz) in the poloidal flow of density fluctuations that has a long poloidal wavelength, possibly m = 0, narrow radial extent (k{sub r}{rho}{sub I} < 0.2), and whose frequency varies monotonically with the local temperature. The approximate effective shearing rate, dv{sub {theta}}/dr, of the flow is of the same order of magnitude as the measured nonlinear decorrelation rate of the turbulence, and the density fluctuation amplitude is modulated at the frequency of the observed flow oscillation. Some phase coherence is observed between the higher wavenumber density fluctuations and low frequency poloidal flow fluctuations, suggesting a Reynolds stress contribution. These characteristics are consistent with predicted features of zonal flows, specifically identified as geodesic acoustic modes, observed in 3-D Braginskii simulations of core/edge turbulence.

  1. Origin and stability of radial density stratification in vortical flow

    NASA Astrophysics Data System (ADS)

    Dixit, Harish; Govindarajan, Rama

    2009-11-01

    A density interface near a vortex winds into a spiral. In the absence of gravity we have shown numerically and through stability analysis that this leads to spiral Kelvin-Helmholtz and centrifugal Rayleigh-Taylor (CRT) instabilities, often reducing the life-time of the vortex dramatically. In this talk we focus on CRT instability, which is driven by centrifugal forces, so flows where the vortex core is heavier than the surroundings are expected to be unstable. Indeed, Sipp et al. (JFM, 2005) and Joly et al. (JFM, 2005), prescribing Gaussian vorticity and density profiles, find no instability in light-cored vortices. Surprisingly however, for some range of parameters, with a Rankine vortex and a step circular density jump we find that making the core lighter can lead to instability. The sharpness of the profiles are thus relevant. The mechanism for this instability, studied by constructing planar analogues in the form of stratified shear flows, bearing similarities with Craik & Adams (JFM, 1979), will be discussed. So will the nonlinear stages of these instabilities from our direct numerical simulations.

  2. Slurry flow and structures formation in a magma mush: the Basement Sill, McMurdo Dry Valleys, Antarctica

    NASA Astrophysics Data System (ADS)

    Petford, N.; Jerram, D.; Davidson, J.

    2005-12-01

    The McMurdo Dry Valleys magmatic system, Antarctica, forming part of the Ferrar dolerite Large Igneous Province, comprises a vertical stack of four interconnected sills linked to surface flows of the Kirkpatrick flood basalts1. The lowermost intrusion, the Basement Sill, offers unprecedented exposure through a magmatic slurry flow (congested melt-particle mixture), comprised of abundant Opx pheoncrysts (MgO up to 20%). The overall geometry of the axially confined slurry is tongue-like, with the sill margins relatively aphiric2. The 3D nature of the exposure (100%) permits petrographical and structural observations to be made in unprecedented detail. Key properties of the Opx tongue that have bearing upon emplacement and solidification include microscale matrix properties (grain size, roughness, porosity and permeability, packing density and fluctuations), and the assumed fluid properties (viscosity and density) of the intergranular melt phase. These and other structures related to transport phenomena and deformation of the slurry during flow constitute the initial conditions for sophisticated physics-based modeling of the magma emplacement process. Initial results of a 2D numerical model employing a generalised form of the Navier- Stokes equations will be presented. It is noteworthy that features long recognized in classical layered intrusions formed here on a timescale (short) governed by the local cooling rate of a c. 300 m thick sill. A distinction between structures formed during transport, where the shearing regime dominates, and post- emplacement features due to mechanical compaction of the mush, is required. Information on conditions under which the touching Opx framework may collapse to expel interstitial fluid is also under investigation. 1. Marsh, B. (2004), Eos, 85, 497-502, 2004. 2. Charrier, A & Marsh, B. (2004), Eos Trans AGU 85, v24A-03.

  3. Modelling of turbulent flow in a radial reactor with fixed bed

    NASA Astrophysics Data System (ADS)

    Zhapbasbayev, U. K.; Ramazanova, G. I.; Kenzhaliev, O. B.

    2015-03-01

    The data of the computation of turbulent flow in the CF- π and CP- π configurations of the radial reactor with a fixed bed are presented. The Reynolds motion equations have been solved jointly with the k- ɛ turbulence model. To couple the parameters of flows at the interface free part-fixed bed the classical continuity equations were used. The computational data are obtained for the averaged and turbulent characteristics, and it is shown that the flow in the fixed bed causes the generation of the turbulence kinetic energy and its dissipation rate; the flow in the CF- π configuration is distributed more uniformly as compared to the CP- π configuration of the radial reactor. Computed data are compared with the experimental ones.

  4. Prediction of heat transfer to a thin liquid film in plane and radially spreading flows

    NASA Technical Reports Server (NTRS)

    Rahman, M. M.; Faghri, A.; Hankey, W. L.; Swanson, T. D.

    1990-01-01

    The energy equation is incorporated in the solution algorithm of Rahman et al. (1990) to compute the heat transfer to a thin film in the presence or absence of gravity. For a plane flow under zero gravity, it is found that, for both isothermal and uniformly heated walls, the heat transfer coefficient gradually decreases downstream, with Nu-asterisk (the Nusselt number in terms of film height) remaining approximately constant except for regions very close to the entrance. In the case of radial flow under zero gravity, Nu-asterisk is found to decrease monotonically when the plane is uniformly heated. Two different flow regimes are identified in the presence of gravity for both plane and radial flows. The results of the study may be applicable to the design of space-based cooling systems.

  5. Solids removal from a coldwater recirculating system - comparison of swirl separator and radial-flow settlers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Solids removal across two settling devices, i.e., a swirl separator and a radial-flow settler, and across a microscreen drum filter was evaluated in a fully recirculating system containing a single 150 m3 'Cornell-type' dual-drain tank during the production of food-size Arctic char and rainbow trout...

  6. Radial Flow Fludized Filter Finds Niche as a Pretreatment System for Surface Water in Small Communities

    EPA Science Inventory

    An emerging technology called radial flow fluidized filter (R3f) has been developed as a low cost simplistic filtration technology for small communities of less than 10,000 people. Fouling is a major impediment to the sustainability of membrane technology particularly for small ...

  7. Mathematical modeling of three-phase slurry bubble column reactors

    SciTech Connect

    Gamwo, I.K.; Soong, Y.; Schehl, R.R.; Zarochak, M.F.

    1994-12-31

    The behavior of gas-solid-liquid flow in a slurry bubble column reactor was simulated using a well-posed hydrodynamic model. The three phases under study are nitrogen, 5-{mu}m iron oxide, and SASOL wax. The phases volume fractions at various axial and radial positions in the column were computed. Preliminary results of axial solid volume fractions are consistent with experimental observations and demonstrate the potential of this method for design of such reactors. The overall objective of this study is to develop experimentally verified hydrodynamic and Fisher-Tropsch reaction models for slurry bubble column reactors.

  8. Response of a radial-bladed centrifugal pump to sinusoidal disturbances for noncavitating flow

    NASA Technical Reports Server (NTRS)

    Anderson, D. A.; Blade, R. J.; Stevans, W.

    1971-01-01

    A radial-bladed centrifugal pump was run in water with sinusoidal fluctuations of pressure and flow rate imposed at the pump inlet. Since the flow was noncavitating, zero gain was assumed in computing pump impedance. The inertive reactance became greater than the resistance at relatively low frequencies. An electric circuit model was developed in order to explain the trends of inertance and resistance with frequency.

  9. Designing and updating the flow part of axial and radial-axial turbines through mathematical modeling

    NASA Astrophysics Data System (ADS)

    Rusanov, Andrey; Rusanov, Roman; Lampart, Piotr

    2015-10-01

    The paper describes an algorithm for the design of axial and radial-axial type turbines. The algorithm is based on using mathematical models of various levels of complexity - from 1D to 3D. Flow path geometry is described by means of analytical methods of profiling using a limited number of parameters. 3D turbulent flow model is realised in the program complex IPMFlow, developed based on the earlier codes FlowER and FlowER-U. Examples of developed or modernized turbines for differentpurpose power machines are presented. They are: an expansion turbine, ORC turbine and cogeneration mediumpressure turbine.

  10. Laminar flow between a stationary and a rotating disk with radial throughflow

    SciTech Connect

    Nesreddine, H.; Nguyen, C.T.; Vo-Ngoc, D.

    1995-05-01

    The problem of axisymmetric laminar flow of a viscous incompressible fluid that occurs between a stationary and a rotating disk subjected to a uniform radial throughflow has been numerically investigated for a large range of flow parameters. Results show that the basic flow structure is rather complex and depends strongly on both the rotational and the flow structure is rather complex and depends strongly on both the rotational and the throughflow Reynolds numbers. In general, the basic unicellular structure has been observed. With the increase of the throughflow Reynolds number, a multicellular flow structure may be found. The phenomenon of multiple solutions has been clearly observed for cases with sufficiently high rational Re and/or high throughflow Re. Among these solutions, stable as well as unstable solutions have been determined by applying Rayleigh`s stability criterion. The influence of the starting conditions on the stability of the flow has also been investigated for various ranges of flow parameters.

  11. A model of unsteady spatially inhomogeneous flow in a radial-axial blade machine

    NASA Astrophysics Data System (ADS)

    Ambrozhevich, A. V.; Munshtukov, D. A.

    A two-dimensional model of the gasdynamic process in a radial-axial blade machine is proposed which allows for the instantaneous local state of the field of flow parameters, changes in the set angles along the median profile line, profile losses, and centrifugal and Coriolis forces. The model also allows for the injection of cooling air and completion of fuel combustion in the flow. The model is equally applicable to turbines and compressors. The use of the method of singularities provides for a unified and relatively simple description of various factors affecting the flow and, therefore, for computational efficiency.

  12. Simulating MODFLOW-based reactive transport under radially symmetric flow conditions.

    PubMed

    Wallis, Ilka; Prommer, Henning; Post, Vincent; Vandenbohede, Alexander; Simmons, Craig T

    2013-01-01

    Radially symmetric flow and solute transport around point sources and sinks is an important specialized topic of groundwater hydraulics. Analysis of radial flow fields is routinely used to determine heads and flows in the vicinity of point sources or sinks. Increasingly, studies also consider solute transport, biogeochemical processes, and thermal changes that occur in the vicinity of point sources/sinks. Commonly, the analysis of hydraulic processes involves numerical or (semi-) analytical modeling methods. For the description of solute transport, analytical solutions are only available for the most basic transport phenomena. Solving advanced transport problems numerically is often associated with a significant computational burden. However, where axis-symmetry applies, computational cost can be decreased substantially in comparison with full three-dimensional (3D) solutions. In this study, we explore several techniques of simulating conservative and reactive transport within radial flow fields using MODFLOW as the flow simulator, based on its widespread use and ability to be coupled with multiple solute and reactive transport codes of different complexity. The selected transport simulators are MT3DMS and PHT3D. Computational efficiency and accuracy of the approaches are evaluated through comparisons with full 2D/3D model simulations, analytical solutions, and benchmark problems. We demonstrate that radial transport models are capable of accurately reproducing a wide variety of conservative and reactive transport problems provided that an adequate spatial discretization and advection scheme is selected. For the investigated test problems, the computational load was substantially reduced, with the improvement varying, depending on the complexity of the considered reaction network. PMID:22900478

  13. Full-scale cold-flow modelling of the SRC-I slurry fired heater at Creare, Inc

    SciTech Connect

    Mehta, D.C.

    1983-09-01

    The slurry fired heater is a crucial piece of equipment in the SRC-I Demonstration Plant. The design of the fired heater has not been tested in any other plant under a similar combination of operating severity and multiphase flow. The cold-flow modelling experiments were conducted to confirm the fired heater design and to develop acceptable boundaries of flow rates for proper operation of the fired heater. The primary objectives were to identify the flow regimes, estimate pressure drops and measure heat transfer coefficients at a variety of fired heater operating conditions. The results definitively confirm the presence of a slug flow regime in the fired heater at the full range of operating conditions. Slug flow is desirable to avoid coking and excessive temperature gradients in the heater pipes and because of its relatively low pressure drop. The gas holdup predictions by the Hughmark correlation were in good agreement with the experimental results. A simplified correlation was developed to calculate gas holdup in the SRC-I fired heater pipes. The pressure drop results also confirmed that the experimental values were less than the design values. The Hughmark correlation was able to predict the pressure drop for the viscous fluids within +-20% of the measured value. The heat transfer coefficients calculated from the experiments were almost twice as high as those used in the design of the fired heater. The tests were successful based on the data developed, and the results confirm the fired heater design and indicate flexibilities in its operation.

  14. Stability results for multi-layer radial Hele-Shaw and porous media flows

    NASA Astrophysics Data System (ADS)

    Gin, Craig; Daripa, Prabir

    2015-01-01

    Motivated by stability problems arising in the context of chemical enhanced oil recovery, we perform linear stability analysis of Hele-Shaw and porous media flows in radial geometry involving an arbitrary number of immiscible fluids. Key stability results obtained and their relevance to the stabilization of fingering instability are discussed. Some of the key results, among many others, are (i) absolute upper bounds on the growth rate in terms of the problem data; (ii) validation of these upper bound results against exact computation for the case of three-layer flows; (iii) stability enhancing injection policies; (iv) asymptotic limits that reduce these radial flow results to similar results for rectilinear flows; and (v) the stabilizing effect of curvature of the interfaces. Multi-layer radial flows have been found to have the following additional distinguishing features in comparison to rectilinear flows: (i) very long waves, some of which can be physically meaningful, are stable; and (ii) eigenvalues can be complex for some waves depending on the problem data, implying that the dispersion curves for one or more waves can contact each other. Similar to the rectilinear case, these results can be useful in providing insight into the interfacial instability transfer mechanism as the problem data are varied. Moreover, these can be useful in devising smart injection policies as well as controlling the complexity of the long-term dynamics when drops of various immiscible fluids intersperse among each other. As an application of the upper bound results, we provide stabilization criteria and design an almost stable multi-layer system by adding many layers of fluid with small positive jumps in viscosity in the direction of the basic flow.

  15. Lapping slurry

    DOEpatents

    Simandl, R.F.; Upchurch, V.S.; Leitten, M.E.

    1999-01-05

    Improved lapping slurries provide for easier and more thorough cleaning of alumina work pieces, as well as inhibit corrosion of the lapping table and provide for easier cleaning of the lapping equipment. The unthickened lapping slurry comprises abrasive grains such as diamond abrasive dispersed in a carrier comprising water, glycerine, and triethanolamine. The thickened lapping slurry comprises abrasive grains such as diamond abrasive dispersed in a carrier comprising water, glycerine, triethanolamine, a water soluble silicate, and acid. 1 fig.

  16. Lapping slurry

    DOEpatents

    Simandl, Ronald F.; Upchurch, Victor S.; Leitten, Michael E.

    1999-01-01

    Improved lapping slurries provide for easier and more thorough cleaning of alumina workpieces, as well as inhibit corrosion of the lapping table and provide for easier cleaning of the lapping equipment. The unthickened lapping slurry comprises abrasive grains such as diamond abrasive dispersed in a carrier comprising water, glycerine, and triethanolamine. The thickened lapping slurry comprises abrasive grains such as diamond abrasive dispersed in a carrier comprising water, glycerine, triethanolamine, a water soluble silicate, and acid.

  17. Slurry pipelines

    SciTech Connect

    Wasp, E.J.

    1983-11-01

    Slurry pipelines are now transporting metal ores and coal/water suspensions. Their greatest potential is for transporting coal from Western states to power stations in other parts of the country. The physics of slurry transport encompases the principles of fluid dynamics and hydrostatics that were studied by Archimedes, but commercial slurry systems date only since World War II. An overview of their development covers policy debates and technological problems associated with existing and proposed pipeline projects. The author examines the tradeoffs of low sulfur content versus longer distances for transport, and describes the process of preparing coal slurries. 7 figures.

  18. Radial artery cannulation--the influence of method on blood flow after decannulation.

    PubMed

    Cronin, K D; Davies, M J; Domaingue, C M; Worner, M J; Koumoundouros, E

    1986-11-01

    A prospective randomised study of two hundred patients undergoing open-heart surgery was carried out to determine if the method of radial artery cannulation (direct threading or transfixion) had any influence on the incidence of abnormal flow after decannulation. A standard 20-gauge non-tapered teflon-coated cannula was used and the groups were well matched for age, sex, wrist circumference, duration of cannulation and haematoma formation, all of which have been postulated to influence thrombosis rate. We were unable to demonstrate a statistically significant difference between the two methods of cannulation. The overall abnormal flow rate at five days assessed by Doppler ultrasound was low at 5%. PMID:2952029

  19. Laser velocimeter measurements in shrouded and unshrouded radial flow pump impellers

    NASA Technical Reports Server (NTRS)

    Hamkins, C. P.; Flack, R. D.

    1986-01-01

    Shrouded and unshrouded versions of a four-vaned radial flow impeller with a design flow coefficient of 0.063 were tested in a volute pump using a two-component frequency-shifted laser velocimeter. Velocity profiles were measured at six flow rates and at four radial and six circumferential positions in the volute. The variations of the velocity from blade to blade and in the axial direction were measured and are presented. A passage vortex caused by tip leakage and relative casing wall velocity was found in the unshrouded impeller. The tip leakage did not accumulate in the suction wake region; the suction wake region was only 30 to 50 percent as large in the unshrouded impeller as compared to the shrouded impeller. The slip was 30 percent higher in the unshrouded impeller and the variation of slip with flow rate is presented. At no measured position in the impellers did the slip factor reach unity; the closest approach was 0.90. Reverse loadings of the vanes at outer radii were found for flow rates below the impeller/volute matching point for both impellers.

  20. DEVELOPMENT OF A COMPUTATIONAL MULTIPHASE FLOW MODEL FOR FISCHER TROPSCH SYNTHESIS IN A SLURRY BUBBLE COLUMN REACTOR

    SciTech Connect

    Donna Post Guillen; Tami Grimmett; Anastasia M. Gribik; Steven P. Antal

    2010-09-01

    The Hybrid Energy Systems Testing (HYTEST) Laboratory is being established at the Idaho National Laboratory to develop and test hybrid energy systems with the principal objective to safeguard U.S. Energy Security by reducing dependence on foreign petroleum. A central component of the HYTEST is the slurry bubble column reactor (SBCR) in which the gas-to-liquid reactions will be performed to synthesize transportation fuels using the Fischer Tropsch (FT) process. SBCRs are cylindrical vessels in which gaseous reactants (for example, synthesis gas or syngas) is sparged into a slurry of liquid reaction products and finely dispersed catalyst particles. The catalyst particles are suspended in the slurry by the rising gas bubbles and serve to promote the chemical reaction that converts syngas to a spectrum of longer chain hydrocarbon products, which can be upgraded to gasoline, diesel or jet fuel. These SBCRs operate in the churn-turbulent flow regime which is characterized by complex hydrodynamics, coupled with reacting flow chemistry and heat transfer, that effect reactor performance. The purpose of this work is to develop a computational multiphase fluid dynamic (CMFD) model to aid in understanding the physico-chemical processes occurring in the SBCR. Our team is developing a robust methodology to couple reaction kinetics and mass transfer into a four-field model (consisting of the bulk liquid, small bubbles, large bubbles and solid catalyst particles) that includes twelve species: (1) CO reactant, (2) H2 reactant, (3) hydrocarbon product, and (4) H2O product in small bubbles, large bubbles, and the bulk fluid. Properties of the hydrocarbon product were specified by vapor liquid equilibrium calculations. The absorption and kinetic models, specifically changes in species concentrations, have been incorporated into the mass continuity equation. The reaction rate is determined based on the macrokinetic model for a cobalt catalyst developed by Yates and Satterfield [1]. The

  1. Comparison of the flows and radial electric field in the HSX stellarator to neoclassical calculations

    NASA Astrophysics Data System (ADS)

    Briesemeister, A.; Zhai, K.; Anderson, D. T.; Anderson, F. S. B.; Talmadge, J. N.

    2013-01-01

    Intrinsic flow velocities of up to ˜20 km s-1 have been measured using charge exchange recombination spectroscopy (CHERS) in the quasi-helically symmetric HSX stellarator and are compared with the neoclassical values calculated using an updated version (Lore 2010 Measurement and Transport Modeling with Momentum Conservation of an Electron Internal Transport Barrier in HSX (Madison, WI: University of Wisconsin); Lore et al 2010 Phys. Plasmas 17 056101) of the PENTA code (Spong 2005 Phys. Plasmas. 12 056114). PENTA uses the monoenergetic transport coefficients calculated by the drift kinetic equation solver code (Hirshman et al 1986 Phys. Fluids 29 2951; van Rij and Hirshman 1989 Phys. Fluids B 1 563), but corrects for momentum conservation. In the outer half of the plasma good agreement is seen between the measured parallel flow profile and the calculated neoclassical values when momentum correction is included. The flow velocity in HSX is underpredicted by an order of magnitude when this momentum correction is not applied. The parallel flow is calculated to be approximately equal for the majority hydrogen ions and the C6+ ions used for the CHERS measurements. The pressure gradient of the protons is the primary drive of the calculated parallel flow for a significant portion of the outer half of the plasma. The values of the radial electric field calculated with and without momentum correction were similar, but both were smaller than the measured values in the outer half of the plasma. Differences between the measured and predicted radial electric field are possibly a result of uncertainty in the composition of the ion population and sensitivity of the ion flux calculation to resonances in the radial electric field.

  2. An analysis of the viscous flow through a compact radial turbine by the average passage approach

    NASA Technical Reports Server (NTRS)

    Heidmann, James D.; Beach, Timothy A.

    1990-01-01

    A steady, three-dimensional viscous average passage computer code is used to analyze the flow through a compact radial turbine rotor. The code models the flow as spatially periodic from blade passage to blade passage. Results from the code using varying computational models are compared with each other and with experimental data. These results include blade surface velocities and pressures, exit vorticity and entropy contour plots, shroud pressures, and spanwise exit total temperature, total pressure, and swirl distributions. The three computational models used are inviscid, viscous with no blade clearance, and viscous with blade clearance. It is found that modeling viscous effects improves correlation with experimental data, while modeling hub and tip clearances further improves some comparisons. Experimental results such as a local maximum of exit swirl, reduced exit total pressures at the walls, and exit total temperature magnitudes are explained by interpretation of the flow physics and computed secondary flows. Trends in the computed blade loading diagrams are similarly explained.

  3. Design and flow field calculations for transonic and supersonic radial inflow turbine guide vanes

    SciTech Connect

    Reichert, A.W.; Simon, H.

    1997-01-01

    The design of radial inflow turbine guide vanes depends very much on the discharge conditions desired, especially if the choking mass flow is reached. Because of the choking mass flow condition and supersonic discharge Mach numbers, an inverse design procedure based on the method of characteristics is presented. Various designs corresponding to different discharge Mach numbers are shown. Viscous and inviscid flow field calculations for varying discharge conditions show the properties of the guide vanes at design and off-design conditions. In a previous paper (Reichert and Simon, 1994), an optimized design for transonic discharge conditions has been published. In the present paper, additional results concerning the optimum design are presented. For this optimum design an advantageous adjusting mechanism for a variable geometry guide vane has been developed. The effect of guide vane adjustment on the discharge conditions has been investigated using viscous flow field calculations.

  4. Technique to Measure the Coronal Electron Temperature and Radial Flow Speed

    NASA Astrophysics Data System (ADS)

    Reginald, N. L.; Davila, J. M.; St Cyr, O. C.

    2011-12-01

    During the March 2006 total solar eclipse we conducted an imaging experiment using the Imaging Spectrograph of Coronal Electrons (ISCORE) to determine the coronal electron temperature and its radial flow speed in the low solar corona. This technique required taking images of the solar eclipse through four broadband filters centered at 385.0, 398.7, 410.0 and 423.3 nm. The K-coronal temperature is determined from intensity ratios from the 385.0 and 410.0 nm filters, and the K-coronal radial flow speed is determined from intensity ratios from the 398.7 and 423.3 nm filters. The theoretical model for this technique assumes a symmetric corona devoid of any features like streamers that might alter the coronal symmetry. The model also requires an isothermal temperature and a uniform outflow speed all along the line of sight. We will call this the Constant Parameter Thomson Scattering Model (CPTSM). The latter assumption may sound unreasonable but in the symmetric corona with rapid fall of the electron density with height in the solar corona, the major contributions to the K-coronal intensity along a given line of sight comes from the plasma properties in the vicinity of the plane of the sky. But the pressing question is how is the derived plasma properties by ISCORE compare with the nature of the true corona. For this we turn to the CORHEL model by Predictive Science Inc. which used magnetogram data to create a realistic model of the solar corona that are made available through the Community Coordinated Modeling Center (CCMC) at GSFC. That team has consistently produced the expected coronal image days prior to many total eclipses where the major coronal features from their model matched actual coronal image on the day of the eclipse. Using the CORHEL model data we have calculated the K-coronal intensities at 385.0, 398.7, 410.0 and 423.3 nm using the electron density, plasma temperature (assumed to be electron temperature) and the flow speeds of the plasma along the line

  5. Cyclic and radial variation of ultrasonic backscatter from flowing porcine blood

    NASA Astrophysics Data System (ADS)

    Paeng, Dong-Guk

    The ultrasonic backscattering from flowing blood was investigated using several hemodynamic parameters and a physiological parameter. Acceleration was hypothesized to enhance the aggregation of red blood cells (RBCs), and this is the first time that acceleration is suggested and experimentally verified as having an effect on aggregation of RBC. Two interesting phenomena, the 'Black Hole (BH)' phenomenon and the 'Bright Collapsing Ring (BCR)' phenomenon, were observed under pulsatile flow in B-mode cross sectional images. The BH phenomenon describes a dark hypoechoic hole at the center of the tube surrounded by a bright hyperechoic zone in B-mode cross sectional images, and the BCR phenomenon describes the appearance of a bright hyperechoic ring at the periphery of the tube at early systole and its convergence from the periphery to the center of the tube, finally collapsing as flow develops. Doppler power variation was observed only from porcine whole blood, which led to a conclusion that the ultrasonic backscattering was mainly dependent on the RBC aggregation under steady and pulsatile flow. The pattern of the cyclic variation of the Doppler power to have a maximum power at peak systole was mainly due to the enhanced rouleaux formation by acceleration. The BCR phenomenon was observed from the cyclic variation pattern of the Doppler power at different radial positions; the Doppler power peak was observed at early systole at the periphery of the tube and lagged the flow as close from the periphery to the center of the tube. The BCR phenomenon from porcine whole blood in a mock flow loop was further examined in real time in B-mode images under pulsatile flow. At low hematocrit of 12%, no BCR phenomenon was discernable although it was observed at higher hematocrits. The pattern of the nonlinear relationship between echogenicity and hematocrit varied with radial positions. The BH phenomenon was also observed under certain hemodynamic conditions and varied over a

  6. On the nature of radial transport across sheared zonal flows in electrostatic ion-temperature-gradient gyrokinetic tokamak turbulence

    SciTech Connect

    Sanchez, Raul; Newman, David E; Leboeuf, Jean-Noel; Carreras, Benjamin A; Decyk, Viktor

    2009-01-01

    It is argued that the usual understanding of the suppression of radial turbulent transport across a sheared zonal flow based on a reduction in effective transport coefficients is, by itself, incomplete. By means of toroidal gyrokinetic simulations of electrostatic, ion-temperature-gradient turbulence, it is found instead that the character of the radial transport is altered fundamentally by the presence of a sheared zonal flow, changing from diffusive to anticorrelated and subdiffusive. Furthermore, if the flows are self-consistently driven by the turbulence via the Reynolds stresses (in contrast to being induced externally), radial transport becomes non-Gaussian as well. These results warrant a reevaluation of the traditional description of radial transport across sheared flows in tokamaks via effective transport coefficients, suggesting that such description is oversimplified and poorly captures the underlying dynamics, which may in turn compromise its predictive capabilities.

  7. On the nature of radial transport across sheared zonal flows in electrostatic ion-temperature-gradient gyrokinetic tokamak plasma turbulence

    SciTech Connect

    Sanchez, R.; Newman, D. E.; Leboeuf, J.-N.; Carreras, B. A.; Decyk, V. K.

    2009-05-15

    It is argued that the usual understanding of the suppression of radial turbulent transport across a sheared zonal flow based on a reduction in effective transport coefficients is, by itself, incomplete. By means of toroidal gyrokinetic simulations of electrostatic, ion-temperature-gradient turbulence, it is found instead that the character of the radial transport is altered fundamentally by the presence of a sheared zonal flow, changing from diffusive to anticorrelated and subdiffusive. Furthermore, if the flows are self-consistently driven by the turbulence via the Reynolds stresses (in contrast to being induced externally), radial transport becomes non-Gaussian as well. These results warrant a reevaluation of the traditional description of radial transport across sheared flows in tokamaks via effective transport coefficients, suggesting that such description is oversimplified and poorly captures the underlying dynamics, which may in turn compromise its predictive capabilities.

  8. Direct numerical simulation of Taylor-Couette flow subjected to a radial temperature gradient

    NASA Astrophysics Data System (ADS)

    Teng, Hao; Liu, Nansheng; Lu, Xiyun; Khomami, Bamin

    2015-12-01

    Direct numerical simulations have been performed to study the Taylor-Couette (TC) flow between two rotating, coaxial cylinders in the presence of a radial temperature gradient. Specifically, the influence of the buoyant force and the outer cylinder rotation on the turbulent TC flow system with the radius ratio η = 0.912 was examined. For the co-rotating TC flows with Rei (inner cylinder) =1000 and Reo (outer cylinder) =100, a transition pathway to highly turbulent flows is realized by increasing σ, a parameter signifying the ratio of buoyant to inertial force. This nonlinear flow transition involves four intriguing states that emerge in sequence as chaotic wavy vortex flow for σ = 0, wavy interpenetrating spiral flows for σ = 0.02 and 0.05, intermittent turbulent spirals for σ = 0.1 and 0.2, and turbulent spirals for σ = 0.4. Overall, the fluid motion changes from a centrifugally driven flow regime characterized by large-scale wavy Taylor vortices (TVs) to a buoyancy-dominated flow regime characterized by small-scale turbulent vortices. Commensurate changes in turbulence statistics and heat transfer are seen as a result of the weakening of large-scale TV circulations and enhancement of turbulent motions. Additionally, the influence of variation of the outer cylinder rotation, -500 < Reo < 500 in presence of buoyancy (σ = 0.1) with Rei = 1000, has been considered. Specifically, it is demonstrated that this variation strongly influences the azimuthal and axial mean flows with a weaker influence on the fluctuating fluid motions. Of special interest, here are the turbulent dynamics near the outer wall where a marked decrease of turbulence intensity and a sign inversion of the Reynolds stress Rrz are observed for the strongly counter-rotating regimes (Reo = - 300 and -500). To this end, it has been shown that the underlying flow physics for this drastic modification are associated with the modification of the correlation between the radial and axial fluctuating

  9. Direct numerical simulation of Taylor-Couette flow subjected to a radial temperature gradient

    SciTech Connect

    Teng, Hao; Liu, Nansheng Lu, Xiyun; Khomami, Bamin

    2015-12-15

    Direct numerical simulations have been performed to study the Taylor-Couette (TC) flow between two rotating, coaxial cylinders in the presence of a radial temperature gradient. Specifically, the influence of the buoyant force and the outer cylinder rotation on the turbulent TC flow system with the radius ratio η = 0.912 was examined. For the co-rotating TC flows with Re{sub i} (inner cylinder) =1000 and Re{sub o} (outer cylinder) =100, a transition pathway to highly turbulent flows is realized by increasing σ, a parameter signifying the ratio of buoyant to inertial force. This nonlinear flow transition involves four intriguing states that emerge in sequence as chaotic wavy vortex flow for σ = 0, wavy interpenetrating spiral flows for σ = 0.02 and 0.05, intermittent turbulent spirals for σ = 0.1 and 0.2, and turbulent spirals for σ = 0.4. Overall, the fluid motion changes from a centrifugally driven flow regime characterized by large-scale wavy Taylor vortices (TVs) to a buoyancy-dominated flow regime characterized by small-scale turbulent vortices. Commensurate changes in turbulence statistics and heat transfer are seen as a result of the weakening of large-scale TV circulations and enhancement of turbulent motions. Additionally, the influence of variation of the outer cylinder rotation, −500 < Re{sub o} < 500 in presence of buoyancy (σ = 0.1) with Re{sub i} = 1000, has been considered. Specifically, it is demonstrated that this variation strongly influences the azimuthal and axial mean flows with a weaker influence on the fluctuating fluid motions. Of special interest, here are the turbulent dynamics near the outer wall where a marked decrease of turbulence intensity and a sign inversion of the Reynolds stress R{sub rz} are observed for the strongly counter-rotating regimes (Re{sub o} = − 300 and −500). To this end, it has been shown that the underlying flow physics for this drastic modification are associated with the modification of the correlation

  10. Application of radial-equilibrium condition to axial-flow compressor and turbine design

    NASA Technical Reports Server (NTRS)

    Wu, Chung-Hua; Wolfenstein, Lincoln

    1950-01-01

    Basic general equations governing the three-dimensional compressible flow of gas through a compressor or turbine are given in terms of total enthalpy, entropy, and velocity components of the gas. Two methods of solution are obtained for the simplified, steady axially symmetric flow; one involves the use of a number of successive planes normal to the axis of the machine and short distances apart, and the other involves only three stations for a stage in which an appropriate radial-flow path is used. Methods of calculation for the limiting cases of zero and infinite blade aspect ratios and an approximate method of calculation for finite blade aspect ratio are also given. In these methods, the blade loading and the shape of the annular passage wall may be arbitrarily specified.

  11. Intrapericardial denervation - Radial artery blood flow and heart rate responses to LBNP

    NASA Technical Reports Server (NTRS)

    Mckeever, Kenneth H.; Skidmore, Michael G.; Keil, Lanny C.; Sandler, Harold

    1990-01-01

    The effects of intrapericardial denervation on the radial artery blood flow velocity (RABFV) and heart rate (HR) responses to LBNP in rhesus monkeys were investigated by measuring the RABFV transcutaneously by a continuous-wave Doppler ultrasonic flowmeter in order to derive an index of forearm blood flow response to low (0 to -20 mm Hg) and high (0 to -60 mm Hg) ramp exposures during supine LBNP. Four of the eight subjects were subjected to efferent and afferent cardiac denervation. It was found that, during low levels of LBNP, monkeys with cardiac denervation exhibited no cardiopulmonary baroreceptor-mediated change in the RABFV or HR, unlike the intact animals, which showed steady decreases in RABFV during both high- and low-pressure protocols. It is suggested that forearm blood flow and HR responses to low-level LBNP, along with pharmacological challenge, are viable physiological tests for verifying the completeness of atrial and cardiopulmonary baroreceptor denervation.

  12. An analytical solution for transient radial flow through unsaturated fractured porous media

    SciTech Connect

    Wu, Yu-Shu; Pan, Lehua

    2004-02-13

    This paper presents analytical solutions for one-dimensional radial transient flow through horizontal, unsaturated fractured rock formation. In these solutions, unsaturated flow through fractured media is described by a linearized Richards' equation, while fracture-matrix interaction is handled using the dual-continuum concept. Although linearizing Richards' equation requires a specially correlated relationship between relative permeability and capillary pressure functions for both fractures and matrix, these specially formed relative permeability and capillary pressure functions are still physically meaningful. These analytical solutions can thus be used to describe the transient behavior of unsaturated flow in fractured media under the described model conditions. They can also be useful in verifying numerical simulation results, which, as demonstrated in this paper, are otherwise difficult to validate.

  13. Estimating vertical velocity and radial flow from Doppler radar observations of tropical cyclones

    NASA Astrophysics Data System (ADS)

    Lee, J. L.; Lee, W. C.; MacDonald, A. E.

    2006-01-01

    The mesoscale vorticity method (MVM) is used in conjunction with the ground-based velocity track display (GBVTD) to derive the inner-core vertical velocity from Doppler radar observations of tropical cyclone (TC) Danny (1997). MVM derives the vertical velocity from vorticity variations in space and in time based on the mesoscale vorticity equation. The use of MVM and GBVTD allows us to derive good correlations among the eye-wall maximum wind, bow-shaped updraught and echo east of the eye-wall in Danny. Furthermore, we demonstrate the dynamically consistent radial flow can be derived from the vertical velocity obtained from MVM using the wind decomposition technique that solves the Poisson equations over a limited-area domain. With the wind decomposition, we combine the rotational wind which is obtained from Doppler radar wind observations and the divergent wind which is inferred dynamically from the rotational wind to form the balanced horizontal wind in TC inner cores, where rotational wind dominates the divergent wind. In this study, we show a realistic horizontal and vertical structure of the vertical velocity and the induced radial flow in Danny's inner core. In the horizontal, the main eye-wall updraught draws in significant surrounding air, converging at the strongest echo where the maximum updraught is located. In the vertical, the main updraught tilts vertically outwards, corresponding very well with the outward-tilting eye-wall. The maximum updraught is located at the inner edge of the eye-wall clouds, while downward motions are found at the outer edge. This study demonstrates that the mesoscale vorticity method can use high-temporal-resolution data observed by Doppler radars to derive realistic vertical velocity and the radial flow of TCs. The vorticity temporal variations crucial to the accuracy of the vorticity method have to be derived from a high-temporal-frequency observing system such as state-of-the-art Doppler radars.

  14. Coal slurry fuel supply and purge system

    DOEpatents

    McDowell, Robert E.; Basic, Steven L.; Smith, Russel M.

    1994-01-01

    A coal slurry fuel supply and purge system for a locomotive engines is disclosed which includes a slurry recirculation path, a stand-by path for circulating slurry during idle or states of the engine when slurry fuel in not required by the engine, and an engine header fluid path connected to the stand-by path, for supplying and purging slurry fuel to and from fuel injectors. A controller controls the actuation of valves to facilitate supply and purge of slurry to and from the fuel injectors. A method for supplying and purging coal slurry in a compression ignition engine is disclosed which includes controlling fluid flow devices and valves in a plurality of fluid paths to facilitate continuous slurry recirculation and supply and purge of or slurry based on the operating state of the engine.

  15. Why is the radial flow in central pA collisions stronger than in AA?

    NASA Astrophysics Data System (ADS)

    Kalaydzhyan, Tigran; Shuryak, Edward

    2014-11-01

    Both the transverse size and entropy density per area in central pA collisions is smaller than in central AA, and yet the radial flow is stronger. We propose an explanation to this puzzle. Using a weak attraction between strings through the σ-meson exchange, fitted to the lattice data, we find collective implosion of the "spaghetti" multi-string state. Collectivization of the sigma field of the strings is the QCD analog of the black hole formation occurring in holographic models.

  16. Radial flow fuel nozzle for a combustor of a gas turbine

    DOEpatents

    Means, Gregory Scott; Boardman, Gregory Allen; Berry, Jonathan Dwight

    2016-07-05

    A combustor for a gas turbine generally includes a radial flow fuel nozzle having a fuel distribution manifold, and a fuel injection manifold axially separated from the fuel distribution manifold. The fuel injection manifold generally includes an inner side portion, an outer side portion, and a plurality of circumferentially spaced fuel ports that extend through the outer side portion. A plurality of tubes provides axial separation between the fuel distribution manifold and the fuel injection manifold. Each tube defines a fluid communication path between the fuel distribution manifold and the fuel injection manifold.

  17. Proton/pion ratios and radial flow in pp and peripheral heavy ion collisions

    NASA Astrophysics Data System (ADS)

    Cuautle, E.; Paić, G.

    2006-09-01

    The production of baryon and mesons in the RHIC heavy-ion experiments has received a lot of attention lately. Although not widely known, the pp data measured concurrently with heavy ion collisions do not find a convincing explanation in terms of simple models. We present the results of an afterburner to Pythia and Hijing event generators, simulating radial flow which seems to qualitatively explain the experimental results when applied to the pp collision data from RHIC at 200 GeV center-of-mass energy.

  18. Proton/pion ratios and radial flow in pp and peripheral heavy ion collisions

    SciTech Connect

    Cuautle, E.; Paic, G.

    2006-09-25

    The production of baryon and mesons in the RHIC heavy-ion experiments has received a lot of attention lately. Although not widely known, the pp data measured concurrently with heavy ion collisions do not find a convincing explanation in terms of simple models. We present the results of an afterburner to Pythia and Hijing event generators, simulating radial flow which seems to qualitatively explain the experimental results when applied to the pp collision data from RHIC at 200 GeV center-of-mass energy.

  19. Single stage high pressure centrifugal slurry pump

    DOEpatents

    Meyer, John W.; Bonin, John H.; Daniel, Arnold D.

    1984-03-27

    Apparatus is shown for feeding a slurry to a pressurized housing. An impeller that includes radial passages is mounted in the loose fitting housing. The impeller hub is connected to a drive means and a slurry supply means which extends through the housing. Pressured gas is fed into the housing for substantially enveloping the impeller in a bubble of gas.

  20. Flow mechanism of Forchheimer's cubic equation in high-velocity radial gas flow through porous media

    SciTech Connect

    Ezeudembah, A.S.; Dranchuk, P.M.

    1982-01-01

    Formal derivation of Forchheimer's cubic equation is made by considering the kinetic energy equation of mean flow and dimensional relations for one-dimensional, linear, incompressible fluid flow. By the addition of the cubic term, this equation is regarded as a modified Forchheimer's quadratic equation which accounts for the flow rates obtained beyond the laminar flow condition. The cubic equation spans a wide range of flow rates and regimes. For suitable use in gas flow studies, this equation has been adapted, modified, and corrected for the gas slippage effect. The physical basis of the cubic term has been established by using boundary layer theory to explain the high-velocity, high-pressure flow behavior through a porous path. Gamma, the main parameter in the cubic term, is related directly to a characteristic, dimensionless shape factor which is significant at higher flow rates. It is inversely related to viscosity, but has no dependence on the gas slippage coefficient in the higher flow regime. 25 references.

  1. Eigenmodes of Ducted Flows With Radially-Dependent Axial and Swirl Velocity Components

    NASA Technical Reports Server (NTRS)

    Kousen, Kenneth A.

    1999-01-01

    This report characterizes the sets of small disturbances possible in cylindrical and annular ducts with mean flow whose axial and tangential components vary arbitrarily with radius. The linearized equations of motion are presented and discussed, and then exponential forms for the axial, circumferential, and time dependencies of any unsteady disturbances are assumed. The resultant equations form a generalized eigenvalue problem, the solution of which yields the axial wavenumbers and radial mode shapes of the unsteady disturbances. Two numerical discretizations are applied to the system of equations: (1) a spectral collocation technique based on Chebyshev polynomial expansions on the Gauss-Lobatto points, and (2) second and fourth order finite differences on uniform grids. The discretized equations are solved using a standard eigensystem package employing the QR algorithm. The eigenvalues fall into two primary categories: a discrete set (analogous to the acoustic modes found in uniform mean flows) and a continuous band (analogous to convected disturbances in uniform mean flows) where the phase velocities of the disturbances correspond to the local mean flow velocities. Sample mode shapes and eigensystem distributions are presented for both sheared axial and swirling flows. The physics of swirling flows is examined with reference to hydrodynamic stability and completeness of the eigensystem expansions. The effect of assuming exponential dependence in the axial direction is discussed.

  2. Effect of Radial Density Configuration on Wave Field and Energy Flow in Axially Uniform Helicon Plasma

    NASA Astrophysics Data System (ADS)

    Chang, Lei; Li, Qingchong; Zhang, Huijie; Li, Yinghong; Wu, Yun; Zhang, Bailing; Zhuang, Zhong

    2016-08-01

    The effect of the radial density configuration in terms of width, edge gradient and volume gradient on the wave field and energy flow in an axially uniform helicon plasma is studied in detail. A three-parameter function is employed to describe the density, covering uniform, parabolic, linear and Gaussian profiles. It finds that the fraction of power deposition near the plasma edge increases with density width and edge gradient, and decays in exponential and “bump-on-tail” profiles, respectively, away from the surface. The existence of a positive second-order derivative in the volume density configuration promotes the power deposition near the plasma core, which to our best knowledge has not been pointed out before. The transverse structures of wave field and current density remain almost the same during the variation of density width and gradient, confirming the robustness of the m=1 mode observed previously. However, the structure of the electric wave field changes significantly from a uniform density configuration, for which the coupling between the Trivelpiece-Gould (TG) mode and the helicon mode is very strong, to non-uniform ones. The energy flow in the cross section of helicon plasma is presented for the first time, and behaves sensitive to the density width and edge gradient but insensitive to the volume gradient. Interestingly, the radial distribution of power deposition resembles the radial profile of the axial component of current density, suggesting the control of the power deposition profile in the experiment by particularly designing the antenna geometry to excite a required axial current distribution. supported by National Natural Science Foundation of China (No. 11405271)

  3. A PC-based inverse design method for radial and mixed flow turbomachinery

    NASA Technical Reports Server (NTRS)

    Skoe, Ivar Helge

    1991-01-01

    An Inverse Design Method suitable for radial and mixed flow turbomachinery is presented. The codes are based on the streamline curvature concept; therefore, it is applicable for current personal computers from the 286/287 range. In addition to the imposed aerodynamic constraints, mechanical constraints are imposed during the design process to ensure that the resulting geometry satisfies production consideration and that structural considerations are taken into account. By the use of Bezier Curves in the geometric modeling, the same subroutine is used to prepare input for both aero and structural files since it is important to ensure that the geometric data is identical to both structural analysis and production. To illustrate the method, a mixed flow turbine design is shown.

  4. Evidence for Radial Flow of Thermal Dileptons in High-Energy Nuclear Collisions

    SciTech Connect

    Arnaldi, R.; Colla, A.; Cortese, P.; Ferretti, A.; Oppedisano, C.; Scomparin, E.; Banicz, K.; Damjanovic, S.; Castor, J.; Devaux, A.; Fargeix, J.; Force, P.; Manso, F.; Chaurand, B.; Cicalo, C.; Falco, A. de; Floris, M.; Masoni, A.; Puddu, G.; Serci, S.

    2008-01-18

    The NA60 experiment at the CERN SPS has studied low-mass dimuon production in 158A GeV In-In collisions. An excess of pairs above the known meson decays has been reported before. We now present precision results on the associated transverse momentum spectra. The slope parameter T{sub eff} extracted from the spectra rises with dimuon mass up to the {rho}, followed by a sudden decline above. While the initial rise is consistent with the expectations for radial flow of a hadronic decay source, the decline signals a transition to an emission source with much smaller flow. This may well represent the first direct evidence for thermal radiation of partonic origin in nuclear collisions.

  5. Radially dependent large-scale dynamos in global cylindrical shear flows and the local cartesian limit

    NASA Astrophysics Data System (ADS)

    Ebrahimi, F.; Blackman, E. G.

    2016-06-01

    For cylindrical differentially rotating plasmas, we study large-scale magnetic field generation from finite amplitude non-axisymmetric perturbations by comparing numerical simulations with quasi-linear analytic theory. When initiated with a vertical magnetic field of either zero or finite net flux, our global cylindrical simulations exhibit the magnetorotational instability (MRI) and large-scale dynamo growth of radially alternating mean fields, averaged over height and azimuth. This dynamo growth is explained by our analytic calculations of a non-axisymmetric fluctuation-induced electromotive force that is sustained by azimuthal shear of the fluctuating fields. The standard `Ω effect' (shear of the mean field by differential rotation) is unimportant. For the MRI case, we express the large-scale dynamo field as a function of differential rotation. The resulting radially alternating large-scale fields may have implications for angular momentum transport in discs and corona. To connect with previous work on large-scale dynamos with local linear shear and identify the minimum conditions needed for large-scale field growth, we also solve our equations in local Cartesian coordinates. We find that large-scale dynamo growth in a linear shear flow without rotation can be sustained by shear plus non-axisymmetric fluctuations - even if not helical, a seemingly previously unidentified distinction. The linear shear flow dynamo emerges as a more restricted version of our more general new global cylindrical calculations.

  6. Flow regimes in a vertical Taylor-Couette system with a radial thermal gradient

    NASA Astrophysics Data System (ADS)

    Guillerm, R.; Kang, C.; Savaro, C.; Lepiller, V.; Prigent, A.; Yang, K.-S.; Mutabazi, I.

    2015-09-01

    A rich variety of flow regimes in a Newtonian fluid inside a vertical large-aspect ratio and a wide-gap Taylor-Couette system with a radial temperature gradient has been determined in experiments and in direct numerical simulations (DNSs). Compared to previous experiments and numerical studies, a wider range of temperature differences (i.e., of the Grashof number Gr) and of the rotation rate (the Taylor number Ta) has been covered. The combined effect of rotation and of the radial temperature gradient is the occurrence of helicoidal vortices or modulated waves at the onset. Stationary axisymmetric vortices are found for very weak temperature differences. A good agreement was found for critical states between results from experiments, linear stability analysis, and DNS. Higher instability modes have been determined for a wide range of parameters and a state diagram of observable flow regimes has been established in the plane spanned by Gr and Ta. Some higher states observed in experiments were retrieved in DNS.

  7. NMR imaging and hydrodynamic analysis of neutrally buoyant non-Newtonian slurry flows

    SciTech Connect

    Bouillard, J.X.; Sinton, S.W.

    1995-02-01

    The flow of solids loaded suspension in cylindrical pipes has been the object of intense experimental and theoretical investigations in recent years. These types of flows are of great interest in chemical engineering because of their important use in many industrial manufacturing processes. Such flows are for example encountered in the manufacture of solid-rocket propellants, advanced ceramics, reinforced polymer composites, in heterogenous catalytic reactors, and in the pipeline transport of liquid-solids suspensions. In most cases, the suspension microstructure and the degree of solids dispersion greatly affect the final performance of the manufactured product. For example, solid propellant pellets need to be extremely-well dispersed in gel matrices for use as rocket engine solid fuels. The homogeneity of pellet dispersion is critical to allow good uniformity of the burn rate, which in turn affects the final mechanical performance of the engine. Today`s manufacturing of such fuels uses continuous flow processes rather than batch processes. Unfortunately, the hydrodynamics of such flow processes is poorly understood and is difficult to assess because it requires the simultaneous measurements of liquid/solids phase velocities and volume fractions. Due to the recent development in pulsed Fourier Transform NMR imaging, NMR imaging is now becoming a powerful technique for the non intrusive investigation of multi-phase flows. This paper reports and exposes a state-of-the-art experimental and theoretical methodology that can be used to study such flows. The hydrodynamic model developed for this study is a two-phase flow shear thinning model with standard constitutive fluid/solids interphase drag and solids compaction stresses. this model shows good agreement with experimental data and the limitations of this model are discussed.

  8. DEVELOPMENT OF A COMPUTATIONAL MULTIPHASE FLOW MODEL FOR FISCHER TROPSCH SYNTHESIS IN A SLURRY BUBBLE COLUMN REACTOR

    SciTech Connect

    Donna Post Guillen; Tami Grimmett; Anastasia M. Gribik; Steven P. Antal

    2011-12-01

    The Hybrid Energy Systems Testing (HYTEST) Laboratory at the Idaho National Laboratory was established to develop and test hybrid energy systems with the principal objective of reducing dependence on imported fossil fuels. A central component of the HYTEST is the slurry bubble column reactor (SBCR) in which the gas-to-liquid reactions are performed to synthesize transportation fuels using the Fischer Tropsch (FT) process. These SBCRs operate in the churn-turbulent flow regime, which is characterized by complex hydrodynamics, coupled with reacting flow chemistry and heat transfer. Our team is developing a research tool to aid in understanding the physicochemical processes occurring in the SBCR. A robust methodology to couple reaction kinetics and mass transfer into a four-field model (consisting of the bulk liquid, small bubbles, large bubbles and solid catalyst particles) consisting of thirteen species, which are CO reactant, H2 reactant, hydrocarbon product, and H2O product in small bubbles, large bubbles, and the bulk fluid plus catalyst is outlined. Mechanistic submodels for interfacial momentum transfer in the churn-turbulent flow regime are incorporated, along with bubble breakup/coalescence and two-phase turbulence submodels. The absorption and kinetic models, specifically changes in species concentrations, have been incorporated into the mass continuity equation. The reaction rate is based on the macrokinetic model for a cobalt catalyst developed by Yates and Satterfield. The model includes heat generation produced by the exothermic chemical reaction, as well as heat removal from a constant temperature heat exchanger. A property method approach is employed to incorporate vapor-liquid equilibrium (VLE) in a robust manner. Physical and thermodynamic properties as functions of changes in both pressure and temperature are obtained from VLE calculations performed external to the CMFD solver. The novelty of this approach is in its simplicity, as well as its

  9. Width and rugosity of the topological plasma flow structures and their relation to the radial flights of particle tracers

    NASA Astrophysics Data System (ADS)

    García, L.; Llerena Rodríguez, I.; Carreras, B. A.

    2015-09-01

    An analysis of the distributions of the width and rugosity of topological plasma flow structures is presented for some resistive pressure-gradient-driven turbulence results. The distributions of the radial excursions of particle tracers during trappings are compared with those of the width and rugosity of the flow structures.

  10. Investigation of two-phase flow processes in coal slurry/hydrogen heaters. Final report

    SciTech Connect

    Sam, R.G.; Crowley, C.J.

    1986-08-01

    Experimental and analytical results are presented for two-phase slug flow in a horizontal, transparent pipe at large diameter (6.75 in.) at high gas density (20 times the density of air at atmospheric pressure) and at liquid viscosities ranging from 1 to 1000 centipoise. The test section replicates 1 1/2 rectangular coils (40 ft by 10 ft) of a fired heater in a coal liquefaction plant. Regime transtion, pressure drop, void fraction, and slug characteristic data have been obtained for liquid superficial velocities ranging from 0.2 to 6 ft/s and gas superficial velocities ranging from 0.2 to 12 ft/s. Regime transition results have been compared with the Taitel-Dukler analytical flow regime map. The transition from stratified to slug flow, which is underpredicted by the original analysis, has been studied in particular. Comparison with the dimensionless transition criterion (gas Froude number) shows that increased liquid viscosity increases the liquid level at which the transition occurs. Pressure drop data at the transition have been used to evaluate the interfacial shear and to show that it is greater than is assumed in the Taitel-Dukler analysis. Sensitivity studies for the transition criterion and interfacial shear illustrate exactly why the transition is underpredicted on the flow regime map and how the predictions can be improved. Photos of the flow patterns illustrate the mechanism of slug formation at high viscosity compared with low viscosity. Pressure drop, void fraction, and slug characteristic results are compared with an analysis for pressure drop in slug flow, demonstrating better predictive capability of this model at large pipe size, high gas density, and high viscosity, compared with correlations from the literature. The pressure drop model is also shown to be in excellent agreement with coal liquefaction pilot plant data. 34 refs.

  11. Red blood cells radial dispersion in blood flowing through microchannels: The role of temperature.

    PubMed

    Pinho, Diana; Rodrigues, Raquel O; Faustino, Vera; Yaginuma, Tomoko; Exposto, José; Lima, Rui

    2016-07-26

    The behavior of suspensions of individual blood cells, such as red blood cells (RBCs), flowing through microvessels and microfluidic systems depend strongly on the hematocrit (Hct), microvessel topology and cell properties. Although it is well known that blood rheological properties are temperature dependent, to the best of our knowledge no work has studied the role of the temperature on the RBCs dispersion. A powerful way to investigate this latter effect is through a high-speed video microscopy system, which provides detailed flow measurements of each individual RBC. Hence, the effect of temperature on the RBCs dispersion flowing through a 100μm glass capillary was examined by means of a confocal micro-PTV system. Hundreds of labeled RBCs were tracked at moderate Hct (12%) and at four different temperatures, i.e., 25°C, 32°C, 37°C and 42°C. The results yielded an enhancement of the RBCs diffusion as the temperature increases. Hence, our findings show that RBCs radial dispersion is temperature dependent and as a result the temperature should not be ignored in future blood flow studies. We believe that this finding is important for a better understanding of blood mass transport mechanisms under both physiological and pathological conditions. PMID:26671221

  12. An interactive grid generation procedure for axial and radial flow turbomachinery

    NASA Astrophysics Data System (ADS)

    Beach, T. A.

    1990-01-01

    A combination algebraic/elliptic technique is presented for the generation of three dimensional grids about turbo-machinery blade rows for both axial and radial flow machinery. The technique is built around use of an advanced engineering workstation to construct several two dimensional grids interactively on predetermined blade-to-blade surfaces. A three dimensional grid is generated by interpolating these surface grids onto an axisymmetric grid. On each blade-to-blade surface, a grid is created using algebraic techniques near the blade to control orthogonality within the boundary layer region and elliptic techniques in the mid-passage to achieve smoothness. The interactive definition of bezier curves as internal boundaries is the key to simple construction. This procedure lends itself well to zonal grid construction, an important example being the tip clearance region. Calculations done to date include a space shuttle main engine turbopump blade, a radial inflow turbine blade, and the first stator of the United Technologies Research Center large scale rotating rig. A finite Navier-Stokes solver was used in each case.

  13. An interactive grid generation procedure for axial and radial flow turbomachinery

    NASA Technical Reports Server (NTRS)

    Beach, Timothy A.

    1989-01-01

    A combination algebraic/elliptic technique is presented for the generation of three dimensional grids about turbo-machinery blade rows for both axial and radial flow machinery. The technique is built around use of an advanced engineering workstation to construct several two dimensional grids interactively on predetermined blade-to-blade surfaces. A three dimensional grid is generated by interpolating these surface grids onto an axisymmetric grid. On each blade-to-blade surface, a grid is created using algebraic techniques near the blade to control orthogonality within the boundary layer region and elliptic techniques in the mid-passage to achieve smoothness. The interactive definition of bezier curves as internal boundaries is the key to simple construction. This procedure lends itself well to zonal grid construction, an important example being the tip clearance region. Calculations done to date include a space shuttle main engine turbopump blade, a radial inflow turbine blade, and the first stator of the United Technologies Research Center large scale rotating rig. A finite Navier-Stokes solver was used in each case.

  14. Radial-radial single rotor turbine

    DOEpatents

    Platts, David A.

    2006-05-16

    A rotor for use in turbine applications has a radial compressor/pump having radially disposed spaced apart fins forming passages and a radial turbine having hollow turbine blades interleaved with the fins and through which fluid from the radial compressor/pump flows. The rotor can, in some applications, be used to produce electrical power.

  15. Three-dimensional flow in radial turbomachinery and its impact on design

    NASA Technical Reports Server (NTRS)

    Tan, Choon S.; Hawthorne, William

    1993-01-01

    In the two papers on the 'Theory of Blade Design for Large Deflections' published in 1984, a new inverse design technique was presented for designing the shape of turbomachinery blades in three-dimensional flow. The technique involves the determination of the blade profile from the specification of a distribution of the product of the radius and the pitched averaged tangential velocity (i.e., r bar-V(sub theta), the mean swirl schedule) within the bladed region. This is in contrast to the conventional inverse design technique for turbomachinery blading in two dimensional flow in which the blade surface pressure or velocity distribution is specified and the blade profile determined as a result; this is feasible in two-dimensional flow because the streamlines along the blade surfaces are known a priori. However, in three-dimensional flow, the stream surface is free to deform within the blade passage so that the streamlines on the blade surfaces are not known a priori; thus it is difficult and not so useful to prescribe the blade surface pressure or velocity distribution and determine the resulting blade profile. It therefore seems logical to prescribe the swirl schedule within the bladed region for designing a turbomachinery blade profile in three-dimensional flow. Furthermore, specifying r bar-V(sub theta) has the following advantages: (1) it is related to the circulation around the blade (i.e., it is an aerodynamic quantity); (2) the work done or extracted is approximately proportional to the overall change in r bar-V(sub theta) across a given blade row (Euler turbine equation); and (3) the rate of change of r bar-V(sub theta) along the mean streamline at the blade is related to the pressure jump across the blade and therefore the blade loading. Since the publications of those two papers, the technique has been applied to the design of a low speed as well as a high speed radial inflow turbine (for turbocharger applications) both of which showed definite

  16. Comparisons between seismic Earth structures and mantle flow models based on radial correlation functions.

    PubMed

    Jordan, T H; Puster, P; Glatzmaier, G A; Tackley, P J

    1993-09-10

    Three-dimensional numerical simulations were conducted of mantle convection in which flow through the transition zone is impeded by either a strong chemical change or an endothermic phase change. The temperature fields obtained from these models display a well-defined minimum in the vertical correlation length at or near the radius where the barrier is imposed, even when the fields were filtered to low angular and radial resolutions. However, evidence for such a feature is lacking in the shear-velocity models derived by seismic tomography. This comparison suggests that any stratification induced by phase or chemical changes across the mid-mantle transition zone has a relatively small effect on the large-scale circulation of mantle material. PMID:17745353

  17. Accurate evaluation of viscoelasticity of radial artery wall during flow-mediated dilation in ultrasound measurement

    NASA Astrophysics Data System (ADS)

    Sakai, Yasumasa; Taki, Hirofumi; Kanai, Hiroshi

    2016-07-01

    In our previous study, the viscoelasticity of the radial artery wall was estimated to diagnose endothelial dysfunction using a high-frequency (22 MHz) ultrasound device. In the present study, we employed a commercial ultrasound device (7.5 MHz) and estimated the viscoelasticity using arterial pressure and diameter, both of which were measured at the same position. In a phantom experiment, the proposed method successfully estimated the elasticity and viscosity of the phantom with errors of 1.8 and 30.3%, respectively. In an in vivo measurement, the transient change in the viscoelasticity was measured for three healthy subjects during flow-mediated dilation (FMD). The proposed method revealed the softening of the arterial wall originating from the FMD reaction within 100 s after avascularization. These results indicate the high performance of the proposed method in evaluating vascular endothelial function just after avascularization, where the function is difficult to be estimated by a conventional FMD measurement.

  18. Estimated Performance of Radial-Flow Exit Nozzles for Air in Chemical Equilibrium

    NASA Technical Reports Server (NTRS)

    Englert, Gerald W.; Kochendorfer, Fred D.

    1959-01-01

    The thrust, boundary-layer, and heat-transfer characteristics were computed for nozzles having radial flow in the divergent part. The working medium was air in chemical equilibrium, and the boundary layer was assumed to be all turbulent. Stagnation pressure was varied from 1 to 32 atmospheres, stagnation temperature from 1000 to 6000 R, and wall temperature from 1000 to 3000 R. Design pressure ratio was varied from 5 to 320, and operating pressure ratio was varied from 0.25 to 8 times the design pressure ratio. Results were generalized independent of divergence angle and were also generalized independent of stagnation pressure in the temperature range of 1000 to 3000 R. A means of determining the aerodynamically optimum wall angle is provided.

  19. Evaluating the Uncertainty of Regional Flow by Using Radial Basis Function Network and Bootstrap Methods

    NASA Astrophysics Data System (ADS)

    Kan, P.

    2011-12-01

    This study employs radial basis function network (RBFNN) to simulate regional runoff in the future climate condition in Taiwan and bootstrap sampling technique to evaluate uncertainties of RBFNN. The hydrological and meteorological data (such as rainfall, river flow) in northern area of Taiwan during 1981 to 1999 are adopted as the training dataset to RBFNN, in which the parameters of RBFNN are optimized with genetic algorithm (GA). Meanwhile, the bootstrap sampling technique is applied for uncertainty analysis of RBFNN. The simulated results show that RBFNN with GA simulating the regional runoff reveals good performance and corresponding uncertainty can be evaluated by the bootstrap sampling technique. The results also illustrate that selecting training datasets randomly and repeatedly can reduce the possibility of model over-fitting of RBFNN. The regional runoff in the future can be estimated into an interval representing the possibility of the runoff by the proposed approach.

  20. Experiments on Thermal Convection in Rotating Spherical Shells With Radial Gravity: The Geophysical Fluid Flow Cell

    NASA Technical Reports Server (NTRS)

    Hart, John E.

    1996-01-01

    Experiments designed to study the fluid dynamics of buoyancy driven circulations in rotating spherical shells were conducted on the United States Microgravity Laboratory 2 spacelab mission. These experiments address several aspects of prototypical global convection relevant to large scale motions on the Sun, Earth, and on the giant planets. The key feature is the consistent modeling of radially directed gravity in spherical geometry by using dielectric polarization forces. Imagery of the planforms of thermally driven flows for rapidly-rotating regimes shows an initial separation and eventual merger of equatorial and polar convection as the heating (i.e. the Rayleigh number) is increased. At low rotation rates, multiple-states of motion for the same external parameters were observed.

  1. Performance back-deduction from a loading to flow coefficient map: Application to radial turbine

    NASA Astrophysics Data System (ADS)

    Carbonneau, Xavier; Binder, Nicolas

    2012-12-01

    Radial turbine stages are often used for applications requiring off-design operation, as turbocharging for instance. The off-design ability of such stages is commonly analyzed through the traditional turbine map, plotting the reduced mass-flow against the pressure-ratio, for reduced-speed lines. However, some alternatives are possible, such as the flow-coefficient ( Ψ) to loading-coefficient ( φ) diagram where the pressure-ratio lines are actually straight lines, very convenient property to perform prediction. A robust method re-creating this map from a predicted Ψ-φ diagram is needed. Recent work has shown that this back-deduction quality, without the use of any loss models, depends on the knowledge of an intermediate pressure-ratio. A modelization of this parameter is then proposed. The comparison with both experimental and CFD results is presented, with quite good agreement for mass flow rate and rotational speed, and for the intermediate pressure ratio. The last part of the paper is dedicated to the application of the intermediate pressure-ratio knowledge to the improvement of the deduction of the pressure ratio lines in the Ψ-φ diagram. Beside this improvement, the back-deduction method of the classical map is structured, applied and evaluated.

  2. Aerodynamic design of turbomachinery blading in three-dimensional flow - An application to radial inflow turbines

    NASA Technical Reports Server (NTRS)

    Yang, Y. L.; Tan, C. S.; Hawthorne, W. R.

    1992-01-01

    A computational method, based on a theory for turbomachinery blading design in three-dimensional inviscid flow, is applied to a parametric design study of a radial inflow turbine wheel. As the method requires the specification of swirl distribution, a technique for its smooth generation within the blade region is proposed. Excellent agreements have been obtained between the computed results from this design method and those from direct Euler computations, demonstrating the correspondence and consistency between the two. The computed results indicate the sensitivity of the pressure distribution to a lean in the stacking axis and a minor alteration in the hub/shroud profiles. Analysis based on Navier-Stokes solver shows no breakdown of flow within the designed blade passage and agreement with that from design calculation; thus the flow in the designed turbine rotor closely approximates that of an inviscid one. These calculations illustrate the use of a design method coupled to an analysis tool for establishing guidelines and criteria for designing turbomachinery blading.

  3. Flow patterns in a slurry-bubble-column reactor under reaction conditions

    SciTech Connect

    Toselane, B.A.; Brown, D.M.; Zou, B.S.; Dudukovic, M.P.

    1995-12-31

    The gas and liquid radioactive tracer response curves obtained in an industrial bubble column reactor of height to diameter ratio of 10 are analyzed and the suitability of the axial dispersion model for interpretation of the results is discussed. The relationship between the tracer concentration distribution and measured detector response of the soluble gas tracer (Ar-41) is possibly dominated by the dissolved gas. The one dimensional axial dispersion model cannot match all the experimental observations well and the flow pattern of the undissolved gas cannot be determined with certainty.

  4. PIV investigation of the flow induced by a passive surge control method in a radial compressor

    NASA Astrophysics Data System (ADS)

    Guillou, Erwann; Gancedo, Matthieu; Gutmark, Ephraim; Mohamed, Ashraf

    2012-09-01

    Due to recent emission regulations, the use of turbochargers for force induction of internal combustion engines has increased. Actually, the trend in diesel engines is to downsize the engine by use of turbochargers that operate at higher pressure ratios. Unfortunately, increasing the impeller rotational speed of turbocharger radial compressors tends to reduce their range of operation, which is limited at low mass flow rate by the occurrence of surge. In order to extend the operability of turbochargers, compressor housings can be equipped with a passive surge control device such as a "ported shroud." This specific casing treatment has been demonstrated to enhance the surge margin with minor negative impact on the compressor efficiency. However, the actual working mechanisms of the system remain not well understood. Hence, in order to optimize the design of the ported shroud, it is crucial to identify the dynamic flow changes induced by the implementation of the device to control instabilities. From the full dynamic survey of the compressor performance characteristics obtained with and without ported shroud, specific points of operation were selected to carry out planar flow visualization. At normal working, both standard and stereoscopic particle imaging velocimetry (PIV) measurements were performed to evaluate instantaneous and mean velocity flow fields at the inlet of the compressor. At incipient and full surge, phase-locked PIV measurements were added. As a result, satisfying characterization of the compressor instabilities was provided at different operational speeds. Combining transient pressure data and PIV measurements, the time evolution of the complex flow patterns occurring at surge was reconstructed and a better insight into the bypass mechanism was achieved.

  5. Travel time approach to kinetically sorbing solute by diverging radial flows through heterogeneous porous formations

    NASA Astrophysics Data System (ADS)

    Severino, Gerardo; de Bartolo, Samuele; Toraldo, Gerardo; Srinivasan, Gowri; Viswanathan, Hari

    2012-12-01

    Diverging radial flow takes place in a heterogeneous porous medium where the log conductivity Y = ln K is modeled as a stationary random space function (RSF). The flow is steady, and is generated by a fully penetrating well. A linearly sorbing solute is injected through the well envelope, and we aim at computing the average flux concentration (breakthrough curve). A relatively simple solution for this difficult problem is achieved by adopting, similar to Indelman and Dagan (1999), a few simplifying assumptions: (i) a thick aquifer of large horizontal extent, (ii) mildly heterogeneous medium, (iii) strongly anisotropic formation, and (iv) large Peclet number. By introducing an appropriate Lagrangian framework, three-dimensional transport is mapped onto a one-dimensional domain (τ, t) where τ and t represent the fluid travel and current time, respectively. Central for this approach is the probability density function of the RSF τthat is derived consistently with the adopted assumptions stated above. Based on this, it is shown that the travel time can be regarded as a Gaussian random variable only in the far field. The breakthrough curves are analyzed to assess the impact of the hydraulic as well as reactive parameters. Finally, the travel time approach is tested against a forced-gradient transport experiment and shows good agreement.

  6. The Potential Effects of a Biofeedback Writing Exercise on Radial Artery Blood Flow and Neck Mobility

    PubMed Central

    Krullaards, Rob L.; Pel, Johan J. M.; Snijders, Chris J.; Kleinrensink, Gert-Jan

    2009-01-01

    Background: It has been suggested that sustained contraction of the deep neck muscles may reduce axial cervical range of motion (CROM) and radial artery blood flow velocity (vrad.art.mean). No studies have reported both phenomena in relation to acute hand, shoulder or neck trauma. Procedures: The CROM and vrad.art.mean were measured in 20 police officers prior to and immediately after a 2-hours drive on a motorcycle and immediately after a 1-minute writing exercise using biofeedback. The CROM was measured using separate inclinometers and the vrad.art.mean was measured in both arms just proximal to the wrist using echo-Doppler. Findings: During the study, one officer had a motorcycle accident resulting in acute symptoms of neck trauma. His vrad.art.mean was acutely reduced by 73% (right arm) and 45% (left arm). Writing with biofeedback increased his vrad.art.mean by 150% (right arm) and 80% (left arm). In the remaining 19 officers, the CROM to the right was significantly increased after the 2-hours driving task (p<0.05; paired subject t-test). Writing with biofeedback increased their CROM in both directions and vrad.art.mean in both arms (p<001). Conclusions: A 2-hours drive showed modest physical changes in the upper extremities. Biofeedback in writing tasks might relate to the influence of relaxation and diverting attention for neck mobility and arterial blood flow improvement. PMID:23675136

  7. Flow-Mediated Change in Viscoelastic Property of Radial Arterial Wall Measured by 22 MHz Ultrasound

    NASA Astrophysics Data System (ADS)

    Ikeshita, Kazuki; Hasegawa, Hideyuki; Kanai, Hiroshi

    2009-07-01

    The endothelial dysfunction is considered to be an initial step in atherosclerosis. Additionally, it was reported that the smooth muscle, which constructs the media of the artery, changes its characteristics owing to atherosclerosis. Therefore, it is essential to develop a method of assessing the regional endothelial function and mechanical properties of the arterial wall. To evaluate the endothelial function, a conventional technique of measuring the transient change in the diameter of the brachial artery caused by flow-mediated dilation (FMD) after the release of avascularization is used. However, this method can not evaluate the mechanical properties of the wall. We previously developed a method for the simultaneous measurements of waveforms of radial strain and blood pressure in the radial artery. In this study, the viscoelasticity of the arterial wall was estimated from the measured stress-strain relationship using the least-squares method and the transient changes in the mechanical properties of the arterial wall ware revealed. From in vivo experimental results, the stress-strain relationship showed a hysteresis loop and viscoelasticity was estimated by the proposed method. The slope of the loop decreased owing to FMD, which resulted in the decrease in estimated elastic modulus. The increase in the area of the loop occurred after recirculation, which corresponds to the increase in the ratio of the loss modulus (depends on viscosity) to the elastic modulus when the Voigt model is assumed. In this study, the variance in estimates was evaluated by in vivo measurement for 10 min. The temporal decrease in static elasticity after recirculation due to FMD was much larger than the evaluated variance. These results show a potential of the proposed method for the thorough analysis of the transient change in viscoelasticity due to FMD.

  8. Tribological Properties Of Coal Slurries

    NASA Technical Reports Server (NTRS)

    Fusaro, Robert L.; Schrubens, Dale L.

    1988-01-01

    Report describes study of tribological properties of coal/methanol slurries with pin-on-disk tribometer. Coefficients of friction, rates of wear of steel pin, and morphological studies of worn surfaces conducted on pins and disks of AISI 440C HT stainless steel and M-50 tool steel, both used as bearing steels. Coal slurries considered as replacement fuels in terrestrial oil-burning facilities and possible fuels for future aircraft turbine engines. Rates of wear of metallic components through which slurries flow limit such practical applications.

  9. Study of Radially Varying Magnetic Field on Blood Flow through Catheterized Tapered Elastic Artery with Overlapping Stenosis

    NASA Astrophysics Data System (ADS)

    Nadeem, S.; Ijaz, S.

    2015-11-01

    A precise model has been developed for studying the influence of metallic nanoparticles on blood flow through catheterized tapered elastic arteries with radially varying magnetic field. The model is solved under the mild stenosis approximation by considering blood as viscous fluid. The influence of different flow parameters associated with this problem such as Hartmann number, nanoparticle volume fraction, Grashof number and heat source or sink parameter is analyzed by plotting the graphs of the wall shear stress, resistance impedance to blood flow and stream lines. The influence of the radially varying magnetic field on resistance impedance to flow is analyzed and it is observed that the significantly strong magnetic force tends to increase in resistance.

  10. Evaluation of Radial Flow Fluidized Filter (R3F) Followed by Microfiltration and Ultrafiltration Systems in Calimesa, California

    EPA Science Inventory

    U.S. EPA coordinated a field study with South Mesa Water Utility to look for treatment alternatives for California State Project Water in the small community of Calimesa, California. EPA evaluated the performance of a system comprised of Radial Flow Fluidized Filtration (R3f) fo...

  11. 1r2dinv: A finite-difference model for inverse analysis of two dimensional linear or radial groundwater flow

    USGS Publications Warehouse

    Bohling, G.C.; Butler, J.J., Jr.

    2001-01-01

    We have developed a program for inverse analysis of two-dimensional linear or radial groundwater flow problems. The program, 1r2dinv, uses standard finite difference techniques to solve the groundwater flow equation for a horizontal or vertical plane with heterogeneous properties. In radial mode, the program simulates flow to a well in a vertical plane, transforming the radial flow equation into an equivalent problem in Cartesian coordinates. The physical parameters in the model are horizontal or x-direction hydraulic conductivity, anisotropy ratio (vertical to horizontal conductivity in a vertical model, y-direction to x-direction in a horizontal model), and specific storage. The program allows the user to specify arbitrary and independent zonations of these three parameters and also to specify which zonal parameter values are known and which are unknown. The Levenberg-Marquardt algorithm is used to estimate parameters from observed head values. Particularly powerful features of the program are the ability to perform simultaneous analysis of heads from different tests and the inclusion of the wellbore in the radial mode. These capabilities allow the program to be used for analysis of suites of well tests, such as multilevel slug tests or pumping tests in a tomographic format. The combination of information from tests stressing different vertical levels in an aquifer provides the means for accurately estimating vertical variations in conductivity, a factor profoundly influencing contaminant transport in the subsurface. ?? 2001 Elsevier Science Ltd. All rights reserved.

  12. Experimental evaluation of connectivity influence on dispersivity under confined and unconfined radial convergent flow conditions

    NASA Astrophysics Data System (ADS)

    Guzzi, Silvia; Molinari, Antonio; Fallico, Carmine; Pedretti, Daniele

    2014-05-01

    Heterogeneity and connectivity have a significant impact on the fate and transport of contaminants due to the occurrence of formations with largest permeability than the surrounding geological materials, which can originate preferential pathways in groundwater system. These issues are usually addressed by tracer tests and a radial convergent (RC) flow setting is typically selected for convenience but more complicated for model interpretation than uniform flow transport. An experimental investigation was performed using RC tracer tests in a 3D intermediate scale physical model to illustrate the role of connected features on the estimation of dispersivity using the classical Sauty solution and the method of moments, under confined and unconfined aquifer conditions. The physical model consists of 26 piezometers located at difference distances from a constant-discharge central pumping well. The box is filled with gravel channels embedded in a sandy matrix and organized in different layers. Materials have been well characterized before and after the test. For the confined configuration, a silt layer was placed above the previous layers. Tracer tests were performed using potassium iodide solutions with concentration of 3•10-3 M and under a constant pumping flow rate of 0.05 L/s. To mimic a pulse injection in each piezometer we used syringes and pipes, whereas a probe allowed continuous measuring of tracer concentration. Average velocity and longitudinal dispersion coefficient were defined from the first and second central moment of the observed breakthrough curves for each piezometer (integrated over the outflow boundary of the domain) and using the classical curve matching from the Sauty's solution at different Péclet numbers. Results reveal in some cases that estimates of hydrodynamic parameters from the Sauty solution and the method of moments seem to be different. This is related to the different basic assumptions of the two methods applied, and especially because

  13. Flow Characterization and Dynamic Analysis of a Radial Compressor with Passive Method of Surge Control

    NASA Astrophysics Data System (ADS)

    Guillou, Erwann

    Due to recent emission regulations, the use of turbochargers for force induction of internal combustion engines has increased. Actually, the trend in diesel engines is to downsize the engine by use of turbochargers that operate at higher pressure ratio. Unfortunately, increasing the rotational speed tends to reduce the turbocharger radial compressor range of operation which is limited at low mass flow rate by the occurrence of surge. In order to extent the operability of turbochargers, compressor housings can be equipped with a passive surge control device also known as ported shroud. This specific casing treatment has been demonstrated to enhance surge margin with minor negative impact on the compressor efficiency. However, the actual working mechanisms of the bypass system remain not well understood. In order to optimize the design of the ported shroud, it is then crucial to identify the dynamic flow changes induced by the implementation of the device to control instabilities. Experimental methods were used to assess the development of instabilities from stable, stall and eventually surge regimes of a ported shroud centrifugal compressor. Systematic comparison was conducted with the same compressor design without ported shroud. Hence, the full pressure dynamic survey of both compressors' performance characteristics converged toward two different and probably interrelated driving mechanisms to the development and/or propagation of unsteadiness within each compressor. One related the pressure disturbances at the compressor inlet, and notably the more apparent development of perturbations in the non-ported compressor impeller, whereas the other was attributed to the pressure distortions induced by the presence of the tongue in the asymmetric design of the compressor volute. Specific points of operation were selected to carry out planar flow measurements. At normal working, both standard and stereoscopic particle imaging velocimetry (PIV) measurements were performed

  14. Slurry sampling flow injection chemical vapor generation inductively coupled plasma mass spectrometry for the determination of As, Cd, and Hg in cereals.

    PubMed

    Chen, Feng-Yi; Jiang, Shiuh-Jen

    2009-08-12

    A slurry sampling inductively coupled plasma mass spectrometry (ICP-MS) method has been developed for the determination of As, Cd, and Hg in cereals using flow injection chemical vapor generation (VG) as the sample introduction system. A slurry containing 6% m/v flour, 0.7% m/v thiourea, 0.4 microg mL(-1) Co(II), and 2.5% v/v HCl was injected into a VG-ICP-MS system for the determination of As, Cd, and Hg without dissolution and mineralization. Because the sensitivities of the elements studied in the slurry and that of aqueous solution were quite different, a standard addition method and an isotope dilution method were used for the determination of As, Cd, and Hg in selected cereal samples. The influences of vapor generation conditions and slurry preparation on the ion signals were reported. The effectiveness of the vapor generation sample introduction technique in alleviating various spectral interferences in ICP-MS analysis has been demonstrated. This method has been applied for the determination of As, Cd, and Hg in NIST SRM 1567a Wheat Flour reference material, NIST SRM 1568a Rice Flour reference material, and cereal samples obtained from local market. The As, Cd, and Hg analysis results of the reference materials agreed with the certified values. The method detection limits estimated from standard addition curves were about 0.10, 0.16, and 0.07 ng g(-1) for As, Cd, and Hg, respectively, in the original cereal samples. PMID:19606866

  15. Theoretical analysis of inertially irrotational and solenoidal flow in two-dimensional radial-flow pump and turbine impellers with equiangular blades

    NASA Astrophysics Data System (ADS)

    Visser, F. C.; Brouwers, J. J. H.; Badie, R.

    1994-06-01

    Using the theory of functions of a complex variable, in particular the method of conformal mapping, the irrotational and solenoidal flow in two-dimensional radial-flow pump and turbine impellers fitted with equiangular blades is analyzed. Exact solutions are given for the fluid velocity along straight radial pump and turbine impeller blades, while for logarithmic spiral pump impeller blades solutions are given which hold asymptotically as (r(sub 1)/r(sub 2))(exp n) approaches 0, in which r(sub 1) is impeller inner radius, r(sub 2) is impeller outer radius, and n is the number of blades. Both solutions are given in terms of a Fourier series, with the Fourier coefficients being given by the (Gauss) hypergeometric function and the beta function respectively. The solutions are used to derive analytical expressions for a number of parameters which are important for practical design of radial turbomachinery, and which reflect the two-dimensional nature of the flow field. Parameters include rotational slip of the flow leaving radial impellers, conditions to avoid reverse flow between impeller blades, and conditions for shockless flow at impeller entry, with the number of blades and blade curvature as variables. Furthermore, analytical extensions to classical one-dimensional Eulerian-based expressions for developed head of pumps and delivered work of turbines are given.

  16. A Miniature Radial-Flow Wind Turbine Using Piezoelectric Transducers and Magnetic Excitation

    NASA Astrophysics Data System (ADS)

    Fu, H.; Yeatman, E. M.

    2015-12-01

    This paper presents a miniature radial-flow piezoelectric wind turbine for harvesting airflow energy. The turbine's transduction is achieved by magnetic “plucking”of a piezoelectric beam by the passing rotor. The magnetic coupling is formed by two magnets on the beam's free end and on the rotor plate. Frequency up-conversion is realized by the magnetic excitation, allowing the rotor to rotate at any low frequency while the beam can vibrate at its resonant frequency after each plucking. The operating range of the device is, therefore, expanded by this mechanism. Two arrangements of magnetic orientation have been investigated, showing that the repulsive arrangement has higher output power. The influence of the vertical gap between magnets was also examined, providing guidance for the final design. A prototype was built and tested in a wind tunnel. A peak power output of 159 μW was obtained with a 270 kΩ load at 2.7 m/s airflow speed. The device started working at 3.5 m/s and kept operating when the airflow speed fell to 1.84 m/s.

  17. Linear stability of a circular Couette flow under a radial thermoelectric body force

    NASA Astrophysics Data System (ADS)

    Yoshikawa, H. N.; Meyer, A.; Crumeyrolle, O.; Mutabazi, I.

    2015-03-01

    The stability of the circular Couette flow of a dielectric fluid is analyzed by a linear perturbation theory. The fluid is confined between two concentric cylindrical electrodes of infinite length with only the inner one rotating. A temperature difference and an alternating electric tension are applied to the electrodes to produce a radial dielectrophoretic body force that can induce convection in the fluid. We examine the effects of superposition of this thermoelectric force with the centrifugal force including its thermal variation. The Earth's gravity is neglected to focus on the situations of a vanishing Grashof number such as microgravity conditions. Depending on the electric field strength and of the temperature difference, critical modes are either axisymmetric or nonaxisymmetric, occurring in either stationary or oscillatory states. An energetic analysis is performed to determine the dominant destabilizing mechanism. When the inner cylinder is hotter than the outer one, the circular Couette flow is destabilized by the centrifugal force for weak and moderate electric fields. The critical mode is steady axisymmetric, except for weak fields within a certain range of the Prandtl number and of the radius ratio of the cylinders, where the mode is oscillatory and axisymmetric. The frequency of this oscillatory mode is correlated with a Brunt-Väisälä frequency due to the stratification of both the density and the electric permittivity of the fluid. Under strong electric fields, the destabilization by the dielectrophoretic force is dominant, leading to oscillatory nonaxisymmetric critical modes with a frequency scaled by the frequency of the inner-cylinder rotation. When the outer cylinder is hotter than the inner one, the instability is again driven by the centrifugal force. The critical mode is axisymmetric and either steady under weak electric fields or oscillatory under strong electric fields. The frequency of the oscillatory mode is also correlated with the

  18. Approximate theory for radial filtration/consolidation

    SciTech Connect

    Tiller, F.M.; Kirby, J.M.; Nguyen, H.L.

    1996-10-01

    Approximate solutions are developed for filtration and subsequent consolidation of compactible cakes on a cylindrical filter element. Darcy`s flow equation is coupled with equations for equilibrium stress under the conditions of plane strain and axial symmetry for radial flow inwards. The solutions are based on power function forms involving the relationships of the solidosity {epsilon}{sub s} (volume fraction of solids) and the permeability K to the solids effective stress p{sub s}. The solutions allow determination of the various parameters in the power functions and the ratio k{sub 0} of the lateral to radial effective stress (earth stress ratio). Measurements were made of liquid and effective pressures, flow rates, and cake thickness versus time. Experimental data are presented for a series of tests in a radial filtration cell with a central filter element. Slurries prepared from two materials (Microwate, which is mainly SrSO{sub 4}, and kaolin) were used in the experiments. Transient deposition of filter cakes was followed by static (i.e., no flow) conditions in the cake. The no-flow condition was accomplished by introducing bentonite which produced a nearly impermeable layer with negligible flow. Measurement of the pressure at the cake surface and the transmitted pressure on the central element permitted calculation of k{sub 0}.

  19. The origins of radial fracture systems and associated large lava flows on Venus

    NASA Technical Reports Server (NTRS)

    Parfitt, Elisabeth A.; Wilson, Lionel; Head, James W., III

    1992-01-01

    Magellan images have revealed the existence of systems of radial fractures on venus that are very similar in form to terrestrial dike swarms such as the Mackenzie swarm in Northern Canada. The association of many of the fracture systems with lava flows, calderas, and volcanic edifices further support the idea of a dike emplacement origin. A global survey of the Magellan images has allowed the location of 300 such fracture systems. Two types of fracture systems are defined. A series of models were developed to simulate the emplacement of dikes on Venus. Observations of fracture lengths and widths were then used to constrain the emplacement conditions. The model results show that the great length and relatively large width of the fractures can only be explained if the dikes that produce them were emplaced in high driving pressure (pressure buffered) conditions. Such conditions imply high rates of melt production, which is consistent with the melt being derived directly from a plume head. We have recently modeled the vertical emplacement of a dike from the top of a mantle plume and calculated the eruption rates such a dike would produce on reaching the surface. This modeling shows that eruption rates of approximately 0.1 cu km/hr can readily be generated by such a dike, consistent with the above results. However, the sensitivity of the model to dike width and therefore driving pressure means that eruption rates from dikes emplaced from the base of the crust or the head of a mantle plume could be orders of magnitude higher than this. Clearly, therefore, the model needs to be refined in order to better constrain eruption conditions. However, it is worth noting here that the initial results do show that even for moderate dike widths, eruption rates could be at least on the order of those estimated for terrestrial flood basalts.

  20. Investigations of Particle Velocities in a Slurry Pump Using PIV. Part 1; The Tongue and Adjacent Channel Flow

    NASA Technical Reports Server (NTRS)

    Kadambi, Jaikrishnan R.; Charoenngam, Pathom; Subramanian, Amirthaganesh; Wernet, Mark P.; Sankovic, John M.; Addie, Graeme; Courtwright, Robert

    2004-01-01

    Transport of solid-liquid slurries in pipeline transport over short and medium distances is very important in many industries, including mining related processes. The particle image velocimetry technique was successfully utilized to investigate the velocities and kinetic energy fluctuations of slurry particles at the tongue region of an optically-clear centrifugal pump. The experiments were conducted using 500 micron glass beads at volumetric Concentrations of 2.5% and 5% and at pump speeds of 725 rpm and 1000 rpm. The fluctuation kinetic energy increased approximately 200% to 500% as the pump speed was increased from 725 rpm to IO00 rpm. The directional impingement mechanism is more significant at the pressure side of the blade, tongue and the casing. This mechanism becomes more important as the speed increases. This suggests that the impeller; tongue and the casing of the slurry pump can wear out quickly, especially with an increase in speed. In this paper the emphasis is on the tongue region. The random impingement mechanism caused by the fluctuation kinetic energy of the solids can play an important role on the erosion of the tongue area.

  1. Self-Organization in Granular Slurries

    NASA Astrophysics Data System (ADS)

    Ottino, Julio M.; Jain, Nitin; Lueptow, Richard M.; Khakhar, Devang V.

    2000-11-01

    Mixtures of tumbled granular materials under flow exhibit various intriguing types of un-mixing or self-organization. Small differences in particles' density, size or shape may trigger the effect. Nearly all studies to date have addressed the case of dry granular media, where the interparticle fluid is typically air. Here we report the existence of self-organization in wet granular media or slurries, mixtures of particles of different sizes dispersed in a lower density liquid. Technological examples appear in cement, ceramics, fine chemicals, and in the food industry; examples in nature appear in evolution of landslides and transport in river sediments. In spite of significantly different physics at the particle level, both axial banding (alternating bands rich in small and large particles in a long rotating cylinder) and radial segregation (in quasi 2D containers) are observed in slurries. However, axial segregation is significantly faster and the spectrum of outcomes is richer. Moreover, experiments with suitable fluids, reveal, for the first time, the internal structure of axially segregated systems, something that up to now has been accessible only via magnetic resonance imaging (MRI) experimentation.

  2. Aerothermal investigations of mixing flow phenomena in case of radially inclined ejection holes at the leading edge

    SciTech Connect

    Bohn, D.E.; Kusterer, K.A.

    2000-04-01

    A leading edge cooling configuration is investigated numerically by application of a three-dimensional conjugate fluid flow and heat transfer solver, CHT-flow. The code has been developed at the Institute of Steam and Gas Turbines, Aachen University of Technology. It works on the basis of an implicit finite volume method combined with a multi-block technique. The cooling configuration is an axial turbine blade cascade with leading edge ejection through two rows of cooling holes. The rows are located in the vicinity of the stagnation line, one row on the suction side, the other row is on the pressure side. the cooling holes have a radial ejection angle of 45 degrees. This configuration has been investigated experimentally by other authors and the results have been documented as a test case for numerical calculations of ejection flow phenomena. The numerical investigations focus on the aerothermal mixing process in the cooling jets and the impact on the temperature distribution on the blade surface. The radial ejection angles lead to a fully three-dimensional and asymmetric jet flow field. Within a secondary flow analysis, the cooling fluid jets are investigated in detail. The secondary flow fields include asymmetric kidney vortex systems with one dominating vortex on the back side of the jets. The numerical and experimental data show a respectable agreement concerning the vortex development.

  3. Characterization of azimuthal and radial velocity fields induced by rotors in flows with a low Reynolds number

    NASA Astrophysics Data System (ADS)

    Köhler, J.; Friedrich, J.; Ostendorf, A.; Gurevich, E. L.

    2016-02-01

    We theoretically and experimentally investigate the flow field that emerges from a rodlike microrotor rotating about its center in a nonaxisymmetric manner. A simple theoretical model is proposed that uses a superposition of two rotlets as a fundamental solution to the Stokes equation. The predictions of this model are compared to measurements of the azimuthal and radial microfluidic velocity field components that are induced by a rotor composed of fused microscopic spheres. The rotor is driven magnetically and the fluid flow is measured with the help of a probe particle fixed by an optical tweezer. We find considerable deviations of the mere azimuthal flow pattern induced by a single rotating sphere as it has been reported by Di Leonardo et al. [Phys. Rev. Lett. 96, 134502 (2006), 10.1103/PhysRevLett.96.134502]. Notably, the presence of a radial velocity component that manifests itself by an oscillation of the probe particle with twice the rotor frequency is observed. These findings open up a way to discuss possible radial transport in microfluidic devices.

  4. Characterization of azimuthal and radial velocity fields induced by rotors in flows with a low Reynolds number.

    PubMed

    Köhler, J; Friedrich, J; Ostendorf, A; Gurevich, E L

    2016-02-01

    We theoretically and experimentally investigate the flow field that emerges from a rodlike microrotor rotating about its center in a nonaxisymmetric manner. A simple theoretical model is proposed that uses a superposition of two rotlets as a fundamental solution to the Stokes equation. The predictions of this model are compared to measurements of the azimuthal and radial microfluidic velocity field components that are induced by a rotor composed of fused microscopic spheres. The rotor is driven magnetically and the fluid flow is measured with the help of a probe particle fixed by an optical tweezer. We find considerable deviations of the mere azimuthal flow pattern induced by a single rotating sphere as it has been reported by Di Leonardo et al. [Phys. Rev. Lett. 96, 134502 (2006)]. Notably, the presence of a radial velocity component that manifests itself by an oscillation of the probe particle with twice the rotor frequency is observed. These findings open up a way to discuss possible radial transport in microfluidic devices. PMID:26986414

  5. Slurry sampling flow injection chemical vapor generation inductively coupled plasma mass spectrometry for the determination of trace Ge, As, Cd, Sb, Hg and Bi in cosmetic lotions.

    PubMed

    Chen, Wei-Ni; Jiang, Shiuh-Jen; Chen, Yen-Ling; Sahayam, A C

    2015-02-20

    A slurry sampling inductively coupled plasma mass spectrometry (ICP-MS) method has been developed for the determination of Ge, As, Cd, Sb, Hg and Bi in cosmetic lotions using flow injection (FI) vapor generation (VG) as the sample introduction system. A slurry containing 2% m/v lotion, 2% m/v thiourea, 0.05% m/v L-cysteine, 0.5 μg mL(-1) Co(II), 0.1% m/v Triton X-100 and 1.2% v/v HCl was injected into a VG-ICP-MS system for the determination of Ge, As, Cd, Sb, Hg and Bi without dissolution and mineralization. Because the sensitivities of the analytes in the slurry and that of aqueous solution were quite different, an isotope dilution method and a standard addition method were used for the determination. This method has been validated by the determination of Ge, As, Cd, Sb, Hg and Bi in GBW09305 Cosmetic (Cream) reference material. The method was also applied for the determination of Ge, As, Cd, Sb, Hg and Bi in three cosmetic lotion samples obtained locally. The analysis results of the reference material agreed with the certified value and/or ETV-ICP-MS results. The detection limit estimated from the standard addition curve was 0.025, 0.1, 0.2, 0.1, 0.15, and 0.03 ng g(-1) for Ge, As, Cd, Sb, Hg and Bi, respectively, in original cosmetic lotion sample. PMID:25682241

  6. Process for heating coal-oil slurries

    DOEpatents

    Braunlin, W.A.; Gorski, A.; Jaehnig, L.J.; Moskal, C.J.; Naylor, J.D.; Parimi, K.; Ward, J.V.

    1984-01-03

    Controlling gas to slurry volume ratio to achieve a gas holdup of about 0.4 when heating a flowing coal-oil slurry and a hydrogen containing gas stream allows operation with virtually any coal to solvent ratio and permits operation with efficient heat transfer and satisfactory pressure drops. The critical minimum gas flow rate for any given coal-oil slurry will depend on numerous factors such as coal concentration, coal particle size distribution, composition of the solvent (including recycle slurries), and type of coal. Further system efficiency can be achieved by operating with multiple heating zones to provide a high heat flux when the apparent viscosity of the gas saturated slurry is highest. Operation with gas flow rates below the critical minimum results in system instability indicated by temperature excursions in the fluid and at the tube wall, by a rapid increase and then decrease in overall pressure drop with decreasing gas flow rate, and by increased temperature differences between the temperature of the bulk fluid and the tube wall. At the temperatures and pressures used in coal liquefaction preheaters the coal-oil slurry and hydrogen containing gas stream behaves essentially as a Newtonian fluid at shear rates in excess of 150 sec[sup [minus]1]. The gas to slurry volume ratio should also be controlled to assure that the flow regime does not shift from homogeneous flow to non-homogeneous flow. Stable operations have been observed with a maximum gas holdup as high as 0.72. 29 figs.

  7. Process for heating coal-oil slurries

    DOEpatents

    Braunlin, Walter A.; Gorski, Alan; Jaehnig, Leo J.; Moskal, Clifford J.; Naylor, Joseph D.; Parimi, Krishnia; Ward, John V.

    1984-01-03

    Controlling gas to slurry volume ratio to achieve a gas holdup of about 0.4 when heating a flowing coal-oil slurry and a hydrogen containing gas stream allows operation with virtually any coal to solvent ratio and permits operation with efficient heat transfer and satisfactory pressure drops. The critical minimum gas flow rate for any given coal-oil slurry will depend on numerous factors such as coal concentration, coal particle size distribution, composition of the solvent (including recycle slurries), and type of coal. Further system efficiency can be achieved by operating with multiple heating zones to provide a high heat flux when the apparent viscosity of the gas saturated slurry is highest. Operation with gas flow rates below the critical minimum results in system instability indicated by temperature excursions in the fluid and at the tube wall, by a rapid increase and then decrease in overall pressure drop with decreasing gas flow rate, and by increased temperature differences between the temperature of the bulk fluid and the tube wall. At the temperatures and pressures used in coal liquefaction preheaters the coal-oil slurry and hydrogen containing gas stream behaves essentially as a Newtonian fluid at shear rates in excess of 150 sec.sup. -1. The gas to slurry volume ratio should also be controlled to assure that the flow regime does not shift from homogeneous flow to non-homogeneous flow. Stable operations have been observed with a maximum gas holdup as high as 0.72.

  8. Filtering reprecipitated slurry

    SciTech Connect

    Morrissey, M.F.

    1992-12-31

    As part of the Late Washing Demonstration at Savannah River Technology Center, Interim Waste Technology has filtered reprecipitated and non reprecipitated slurry with the Experimental Laboratory Filter (ELF) at TNX. Reprecipitated slurry generates higher permeate fluxes than non reprecipitated slurry. Washing reprecipitated slurry may require a defoamer because reprecipitation encourages foaming.

  9. Filtering reprecipitated slurry

    SciTech Connect

    Morrissey, M.F.

    1992-01-01

    As part of the Late Washing Demonstration at Savannah River Technology Center, Interim Waste Technology has filtered reprecipitated and non reprecipitated slurry with the Experimental Laboratory Filter (ELF) at TNX. Reprecipitated slurry generates higher permeate fluxes than non reprecipitated slurry. Washing reprecipitated slurry may require a defoamer because reprecipitation encourages foaming.

  10. Results from Evaluation of Representative ASME AG-1 Section FK Radial Flow Dimple Pleated HEPA Filters Under Elevated Conditions - 12002

    SciTech Connect

    Giffin, Paxton K.; Parsons, Michael S.; Rickert, Jaime G.; Waggoner, Charles A.

    2012-07-01

    The American Society of Mechanical Engineers (ASME) has recently added Section FK establishing requirements for radial flow HEPA filters to the Code on Nuclear Air and Gas Treatment (AG-1). Section FK filters are expected to be a major element in the HEPA filtration systems across the US Department of Energy (DOE) complex. Radial flow filters have been used in Europe for some time, however a limited amount of performance evaluation data exists with respect to these new AG-1 Section FK units. In consultation with a technical working group, the Institute for Clean Energy Technology (ICET) at Mississippi State University (MSU)has evaluated a series of representative AG-1 Section FK dimple pleated radial flow HEPA filters. The effects of elevated relative humidity and temperature conditions on these filters are particularly concerning. Results from the evaluation of Section FK filters under ambient conditions have been presented at the 2011 waste management conference. Additions to the previous test stand to enable high temperature and high humidity testing, a review of the equipment used, the steps taken to characterize the new additions, and the filter test results are presented in this study. Test filters were evaluated at a volumetric flow rate of 56.6 m{sup 3}/min (2000 cfm) and were challenged under ambient conditions with Alumina, Al(OH){sub 3}, until reaching a differential pressure of 1 kPa (4 in. w.c.), at which time the filters were tested, unchallenged with aerosol, at 54 deg. C (130 deg. F) for approximately 1 hour. At the end of that hour water was sprayed near the heat source to maximize vaporization exposing the filter to an elevated relative humidity up to 95%. Collected data include differential pressure, temperature, relative humidity, and volumetric flow rate versus time. (authors)

  11. Determination of As, Hg and Pb in herbs using slurry sampling flow injection chemical vapor generation inductively coupled plasma mass spectrometry.

    PubMed

    Tai, Chia-Yi; Jiang, Shiuh-Jen; Sahayam, A C

    2016-02-01

    Analysis of herbs for As, Hg and Pb has been carried out using slurry sampling inductively coupled plasma mass spectrometry (ICP-MS) with flow injection vapor generation. Slurry containing 0.5% m/v herbal powder, 0.1% m/v citric acid and 2% v/v HCl was injected into the VG-ICP-MS system for the determination of As, Hg and Pb that obviate dissolution and mineralization. Standard addition and isotope dilution methods were used for quantifications in selected herbal powders. This method has been validated by the determination of As, Hg and Pb in NIST standard reference materials SRM 1547 Peach Leaves and SRM 1573a Tomato Leaves. The As, Hg and Pb analysis results of the reference materials agreed with the certified values. The precision obtained by the reported procedure was better than 7% for all determinations. The detection limit estimated from standard addition curve was 0.008, 0.003, and 0.007 ng mL(-1) for As, Hg and Pb, respectively. PMID:26304347

  12. A comparison of the calculated and experimental off-design performance of a radial flow turbine

    NASA Technical Reports Server (NTRS)

    Tirres, Lizet

    1992-01-01

    Off design aerodynamic performance of the solid version of a cooled radial inflow turbine is analyzed. Rotor surface static pressure data and other performance parameters were obtained experimentally. Overall stage performance and turbine blade surface static to inlet total pressure ratios were calculated by using a quasi-three dimensional inviscid code. The off design prediction capability of this code for radial inflow turbines shows accurate static pressure prediction. Solutions show a difference of 3 to 5 points between the experimentally obtained efficiencies and the calculated values.

  13. A comparison of the calculated and experimental off-design performance of a radial flow turbine

    NASA Technical Reports Server (NTRS)

    Tirres, Lizet

    1991-01-01

    Off design aerodynamic performance of the solid version of a cooled radial inflow turbine is analyzed. Rotor surface static pressure data and other performance parameters were obtained experimentally. Overall stage performance and turbine blade surface static to inlet total pressure ratios were calculated by using a quasi-three dimensional inviscid code. The off design prediction capability of this code for radial inflow turbines shows accurate static pressure prediction. Solutions show a difference of 3 to 5 points between the experimentally obtained efficiencies and the calculated values.

  14. Multi-stage slurry system used for grinding and polishing materials

    DOEpatents

    Hed, P. Paul; Fuchs, Baruch A.

    2001-01-01

    A slurry system draws slurry from a slurry tank via one of several intake pipes, where each pipe has an intake opening at a different depth in the slurry. The slurry is returned to the slurry tank via a bypass pipe in order to continue the agitation of the slurry. The slurry is then diverted to a delivery pipe, which supplies slurry to a polisher. The flow of slurry in the bypass pipe is stopped in order for the slurry in the slurry tank to begin to settle. As the polishing continues, slurry is removed from shallower depths in order to pull finer grit from the slurry. When the polishing is complete, the flow in the delivery pipe is ceased. The flow of slurry in the bypass pipe is resumed to start agitating the slurry. In another embodiment, the multiple intake pipes are replaced by a single adjustable pipe. As the slurry is settling, the pipe is moved upward to remove the finer grit near the top of the slurry tank as the polishing process continues.

  15. A Galerkin finite-element flow model to predict the transient response of a radially symmetric aquifer

    USGS Publications Warehouse

    Reilly, Thomas E.

    1984-01-01

    A computer program developed to evaluate radial flow of ground water, such as at a pumping well, recharge basin, or injection well, is capable of simulating anisotropic, inhomogenous, confined, or pseudo-unconfined (constant saturated thickness) conditions. Results compare well with those calculated from published analytical and model solutions. The program is based on the Galerkin finite-element technique. A sample model run is presented to illustrate the use of the program; supplementary material provides the program listing as well as a sample problem data set and output. From the text and other material presented, one can use the program to predict drawdowns from pumping and ground-water buildups from recharge in a radially symmetric ground-water system.

  16. Full-scale cold-flow modelling of the SRC-I slurry fired heater at Creare, Inc. mixing and 1/sup 0/ downslope studies

    SciTech Connect

    Mehta, D.C.

    1984-05-01

    One of the major pieces of equipment in the SRC-I Demonstration Plant is the slurry fired heater. Because of the absence of any plant data at comparable combinations of operating severity, a cold-flow modelling experimental program was initiated at Creare, Inc. The first phase of the test program confirmed the fired heater design and established reliable boundaries of flow rates for proper operation of the fired heater. An experimental setup was designed and built at Creare to duplicate the piping arrangement and flow conditions of the fired heater. The pipe dimensions, flow rates, and fluid properties were selected to minimize areas of scale-up and extrapolation. This follow-up test program was developed to resolve concerns raised from the observations made in the first phase. Tests were conducted to establish the extent of mixing between the liquid carpet and the fast-moving liquid slugs above it. The other segment of the test program was designed to develop the flow regime and pressure drop data in the 1/sup 0/ downslope configuration. The results demonstrated a significant amount of mixing between the liquid carpet and the liquid slugs for water and the 400-cP fluid at the design flow conditions. The extent of mixing improved with increasing liquid and gas velocities and decreasing liquid viscosities. Adequate mixing was observed at liquid flow rates as low as 50% of the design flow conditions. Slug flow was observed at design conditions in the 1/sup 0/ downslope configuration. Although adequate mixing is expected in heater pipes, different techniques should be investigated to improve the extent of mixing, especially near the transition boundary. 4 references, 5 figures, 8 tables.

  17. A design methodology for a magnetorheological fluid damper based on a multi-stage radial flow mode

    NASA Astrophysics Data System (ADS)

    Liao, C. R.; Zhao, D. X.; Xie, L.; Liu, Q.

    2012-08-01

    In this paper, a magnetorheological (MR) fluid damper based on a multi-stage radial flow mode is put forward, compared with traditional ones with annular damping channel which are of low magnetic field utilization and high energy consumption. The equivalent magnetic circuit model is derived, along with the relation between the magnetic induction at the working gap and the exciting current in the field coils. The finite-element software ANYSY is used to analyze the distribution of the magnetic field in the MR valve. The flow differential equation for a MR fluid in radial flow is theoretically set up, and the numerical solution is validated by means of the Herschel-Bulkley constitutive model. A MR damper was designed and fabricated in Chongqing University in accordance with the technical requirements of a railway vehicle anti-yaw damper, and the force-displacement characteristic of the damper was tested with J95-I type shock absorber test-bed. The results show that the experimental damping forces are in good agreement with the analytical ones, and the methodology is believed to help predict the damping force of a MR damper.

  18. Onset of radial flow in p+p collisions

    SciTech Connect

    Jiang, Kun; Zhu, Yinying; Liu, Weitao; Chen, Hongfang; Li, Cheng; Ruan, Lijuan; Tang, Zebo; Xu, Zhangbu

    2015-02-23

    It has been debated for decades whether hadrons emerging from p+p collisions exhibit collective expansion. The signal of the collective motion in p+p collisions is not as clear as in heavy-ion collisions because of the low multiplicity and large fluctuation in p+p collisions. Tsallis Blast-Wave (TBW) model is a thermodynamic approach, introduced to handle the overwhelming correlation and fluctuation in the hadronic processes. We have systematically studied the identified particle spectra in p+p collisions from RHIC to LHC using TBW and found no appreciable radial flow in p+p collisions below √s = 900 GeV. At LHC higher energy of 7 TeV in p+p collisions, the radial flow velocity achieves an average of (β) = 0.320 ± 0.005. This flow velocity is comparable to that in peripheral (40-60%) Au+Au collisions at RHIC. In addition, breaking of the identified particle spectra mT scaling was also observed at LHC from a model independent test.

  19. Thermal stresses due to a uniform heat flow past a circular hole with a radial edge crack

    SciTech Connect

    Edmonds, G.F.

    1987-01-01

    The problem solved here is that of finding the stresses in an isotropic, linear, thermoelastic solid when a uniform heat flow is disturbed by the presence of an insulated circular hole with a radial edge crack. By superimposing a Mellin-transform solution of the equations of thermoelasticity on a Michell series solution the author reduces the problem to a pair of singular integral equations which are then solved numerically. The stress-intensity factors and crack-formation energies, quantities of interest to workers in fracture mechanics, are then calculated.

  20. Multi-stage slurry system used for grinding and polishing materials

    SciTech Connect

    Hed, P. Paul; Fuchs, Baruch A.

    2000-03-01

    A slurry system draws slurry from a slurry tank via one of several intake pipes, where each pipe has an intake opening at a different depth in the slurry. The slurry is returned to the slurry tank via a bypass pipe in order to continue the agitation of the slurry. The slurry is then diverted to a delivery pipe, which supplies slurry to a polisher. The flow of shiny in the bypass pipe is stopped in order for the slurry in the slurry tank to begin to settle. As the polishing continues, slurry is removed from shallower depths in order to pull finer grit from the slurry. When the polishing is complete, the flow in the delivery pipe is ceased. The flow of slurry in the bypass pipe is resumed to start agitating the slurry. In another embodiment, the multiple intake pipes are replaced by a single adjustable pipe. As the slurry is settling, the pipe is moved upward to remove the finer grit near the top of the slurry tank as the polishing process continues.

  1. Final Technical Report: Numerical and Experimental Investigation of Turbulent Transport Control via Shaping of Radial Plasma Flow Profiles

    SciTech Connect

    Schuster, Eugenio

    2014-05-02

    The strong coupling between the different physical variables involved in the plasma transport phenomenon and the high complexity of its dynamics call for a model-based, multivariable approach to profile control where those predictive models could be exploited. The overall objective of this project has been to extend the existing body of work by investigating numerically and experimentally active control of unstable fluctuations, including fully developed turbulence and the associated cross-field particle transport, via manipulation of flow profiles in a magnetized laboratory plasma device. Fluctuations and particle transport can be monitored by an array of electrostatic probes, and Ex B flow profiles can be controlled via a set of biased concentric ring electrodes that terminate the plasma column. The goals of the proposed research have been threefold: i- to develop a predictive code to simulate plasma transport in the linear HELCAT (HELicon-CAThode) plasma device at the University of New Mexico (UNM), where the experimental component of the proposed research has been carried out; ii- to establish the feasibility of using advanced model-based control algorithms to control cross-field turbulence-driven particle transport through appropriate manipulation of radial plasma flow profiles, iii- to investigate the fundamental nonlinear dynamics of turbulence and transport physics. Lehigh University (LU), including Prof. Eugenio Schuster and one full-time graduate student, has been primarily responsible for control-oriented modeling and model-based control design. Undergraduate students have also participated in this project through the National Science Foundation Research Experience for Undergraduate (REU) program. The main goal of the LU Plasma Control Group has been to study the feasibility of controlling turbulence-driven transport by shaping the radial poloidal flow profile (i.e., by controlling flow shear) via biased concentric ring electrodes.

  2. Experimental consideration of capillary chromatography based on tube radial distribution of ternary mixture carrier solvents under laminar flow conditions.

    PubMed

    Jinno, Naoya; Hashimoto, Masahiko; Tsukagoshi, Kazuhiko

    2011-01-01

    A capillary chromatography system has been developed based on the tube radial distribution of the carrier solvents using an open capillary tube and a water-acetonitrile-ethyl acetate mixture carrier solution. This tube radial distribution chromatography (TRDC) system works under laminar flow conditions. In this study, a phase diagram for the ternary mixture carrier solvents of water, acetonitrile, and ethyl acetate was constructed. The phase diagram that included a boundary curve between homogeneous and heterogeneous solutions was considered together with the component ratios of the solvents in the homogeneous carrier solutions required for the TRDC system. It was found that the TRDC system performed well with homogeneous solutions having component ratios of the solvents that were positioned near the homogeneous-heterogeneous solution boundary of the phase diagram. For preparing the carrier solutions of water-hydrophilic/hydrophobic organic solvents for the TRDC system, we used for the first time methanol, ethanol, 1,4-dioxane, and 1-propanol, instead of acetonitrile (hydrophilic organic solvent), as well as chloroform and 1-butanol, instead of ethyl acetate (hydrophobic organic solvent). The homogeneous ternary mixture carrier solutions were prepared near the homogeneous-heterogeneous solution boundary. Analyte mixtures of 2,6-naphthalenedisulfonic acid and 1-naphthol were separated with the TRDC system using these homogeneous ternary mixture carrier solutions. The pressure change in the capillary tube under laminar flow conditions might alter the carrier solution from homogeneous in the batch vessel to heterogeneous, thus affecting the tube radial distribution of the solvents in the capillary tube. PMID:21415507

  3. A radial flow microfluidic device for ultra-high-throughput affinity-based isolation of circulating tumor cells.

    PubMed

    Murlidhar, Vasudha; Zeinali, Mina; Grabauskiene, Svetlana; Ghannad-Rezaie, Mostafa; Wicha, Max S; Simeone, Diane M; Ramnath, Nithya; Reddy, Rishindra M; Nagrath, Sunitha

    2014-12-10

    Circulating tumor cells (CTCs) are believed to play an important role in metastasis, a process responsible for the majority of cancer-related deaths. But their rarity in the bloodstream makes microfluidic isolation complex and time-consuming. Additionally the low processing speeds can be a hindrance to obtaining higher yields of CTCs, limiting their potential use as biomarkers for early diagnosis. Here, a high throughput microfluidic technology, the OncoBean Chip, is reported. It employs radial flow that introduces a varying shear profile across the device, enabling efficient cell capture by affinity at high flow rates. The recovery from whole blood is validated with cancer cell lines H1650 and MCF7, achieving a mean efficiency >80% at a throughput of 10 mL h(-1) in contrast to a flow rate of 1 mL h(-1) standardly reported with other microfluidic devices. Cells are recovered with a viability rate of 93% at these high speeds, increasing the ability to use captured CTCs for downstream analysis. Broad clinical application is demonstrated using comparable flow rates from blood specimens obtained from breast, pancreatic, and lung cancer patients. Comparable CTC numbers are recovered in all the samples at the two flow rates, demonstrating the ability of the technology to perform at high throughputs. PMID:25074448

  4. Viscoelastic flow-focusing in microchannels: scaling properties of the particle radial distributions.

    PubMed

    Romeo, Giovanni; D'Avino, Gaetano; Greco, Francesco; Netti, Paolo A; Maffettone, Pier Luca

    2013-07-21

    Particles suspended in non-Newtonian liquids flowing in channels may migrate transversally to the main flow direction as a result of normal stress gradients. Viscoelasticity-induced migration has proven to be an efficient mechanism to promote 3D flow-focusing in cylindrical microchannels, avoiding the need for complex and expensive apparati. In this work, we demonstrate the existence of a single dimensionless number (Θ) that governs the migration dynamics of particles in viscoelastic liquids flowing in micropipes at low Deborah numbers (Deborah number is the ratio of fluid and flow characteristic times). The definition of Θ in terms of the relevant fluid, flow and geometrical quantities is obtained by generalizing the particle migration velocity expression given in previous asymptotic analytical theories through numerical simulations. An extensive experimental investigation quantitatively confirms the novel predictions: the experimental particle distributions along the channel axial direction collapse on a single curve when rescaled in terms of the proposed dimensionless number. The results reported in this work give a simple and general way to define the flow-focusing conditions promoted by viscoelastic effects. PMID:23670133

  5. Universality Results for Multi-layer Radial Hele-Shaw Flows

    NASA Astrophysics Data System (ADS)

    Daripa, Prabir; Gin, Craig; Daripa Research Team

    2014-03-01

    Saffman-Taylor instability is a well known viscosity driven instability of an interface separating two immiscible fluids. We study linear stability of this displacement process in multi-layer radial Hele-Shaw geometry involving an arbitrary number of immiscible fluid phases. Universal stability results have been obtained and applied to design displacement processes that are considerably less unstable than the pure Saffman-Taylor case. In particular, we derive universal formula which gives specific values of the viscosities of the fluid layers corresponding to smallest unstable band. Other similar universal results will also be presented. The talk is based on ongoing work. Supported by an NPRP Grant # 08-777-1-141 from the Qatar National Research Fund (a member of the Qatar Foundation). The statements made herein are solely the responsibility of the authors.

  6. Radial Hele-Shaw flow with suction: Fully nonlinear pattern formation

    NASA Astrophysics Data System (ADS)

    Chen, Ching-Yao; Huang, Yu-Sheng; Miranda, José A.

    2014-05-01

    We study the development of intricate, fully nonlinear immiscible interfacial patterns in the suction-driven radial Hele-Shaw problem. The complex-shaped, contracting fluid-fluid interface arises when an initially circular blob of more viscous fluid, surrounded by less viscous one, is drawn into an eccentric point sink. We present sophisticated numerical simulations, based on a diffuse interface model, that capture the most prominent interfacial features revealed by existing experimental studies of the problem. The response of the system to changes in the capillary number is investigated, accurately revealing the occurrence of finger competition phenomena, and correctly describing the velocity behavior of both inward- and outward-pointing fingers. For the large-capillary-number regime, a set of complex interfacial features (finger merging, shielding, and pinch-off) whose experimental realization is still not available, are predicted.

  7. The investigation of flow instabilities on a rotating disk with curvature in the radial direction

    NASA Technical Reports Server (NTRS)

    Intemann, P. A.; Clarkson, M. H.

    1982-01-01

    The major objective is to explore any visible differences of the flow field with wall curvature of the test body, including possible interaction between Taylor-Gortler instabilities present along concave walls and the inflexional instabilities investigated here. An experimental study was conducted with emphasis placed on making visual observations and recording photographically the flow instabilities present under three different rotating bodies: a flat disk, a concave paraboloid, and a convex paraboloid. The data collected for the three test bodies lead to the conclusion that the wall curvature of the concave and convex paraboloids did not alter the observed flow field significantly from that observed on the flat disk.

  8. Simultaneous effects of radial magnetic field and wall properties on peristaltic flow of Carreau-Yasuda fluid in curved flow configuration

    NASA Astrophysics Data System (ADS)

    Hayat, T.; Tanveer, A.; Alsaadi, F.

    2015-12-01

    The objective of present article is to address the magnetohydrodynamic (MHD) peristaltic flow of Carreau-Yasuda fluid in a curved geometry. The channel boundaries satisfy wall slip and compliant properties. The fluid is electrically conducting through an applied magnetic field in the radial direction. Heat transfer is also studied. Governing equation comprised the viscous dissipation effects. The non-linear expressions are first obtained and then approximated using long wavelength and low Reynolds number considerations. The resulting systems are solved for the series solutions. The expressions of velocity, temperature, heat transfer coefficient and stream function are obtained and analyzed via graphical illustrations.

  9. Sizing pumps for slurries

    SciTech Connect

    Akhtar, S.Z.

    1996-11-01

    Slurry characteristics have a significant impact on centrifugal pump performance. For instance, as particle size increases or the percent solids concentration increases, pump head and efficiency decrease. Therefore, before a slurry pump is selected, it is important to define the slurry characteristics as accurately as possible. The effect of the slurry characteristics on the head and efficiency of the centrifugal pump will be emphasized (the effect on flowrate is less significant). The effect of slurry characteristics is more predominant in smaller pumps (with smaller diameter impellers) than in larger pumps. The data and relationship between the various slurry parameters have been developed from correlations and nomographs published by pump vendors from their field data and test results. The information helps to avoid specifying an undersized pump/motor assembly for slurry service.

  10. Influence of long-scale length radial electric field components on zonal flow-like structures in the TJ-II stellarator

    NASA Astrophysics Data System (ADS)

    Losada, U.; Alonso, A.; van Milligen, B. Ph; Hidalgo, C.; Liu, B.; Pedrosa, M. A.; Silva, C.; the TJ-II team

    2016-08-01

    The influence of long-scale length radial electric fields on zonal flows-like structures has been studied in the TJ-II stellarator. This relation has been investigated in the edge plasma using two electrical rake probes. The results presented here show an empirical correlation between the properties of long-range correlations (LRCs) with zonal flow-like structures and the magnitude of radial (neoclassical, NC) electric fields in TJ-II neutral beam heated plasmas. These experimental findings show that the enhancement of the NC radial electric field \\boldsymbol{E}{\\mathbf{r}} increases the magnitude of LRCs, considered as a proxy of zonal flows, while the radial correlation length of the plasma potential fluctuations was found to decrease by about 40%. A strong relation between the magnitude of electric field structures with long and short radial scales was found. The calculated \\boldsymbol{E}{\\mathbf{r}}× \\boldsymbol{B} shearing rate corresponding to the short scale length structures of the radial electric field may be sufficient to regulate turbulence.

  11. An experimental and computational investigation of flow in a radial inlet of an industrial pipeline centrifugal compressor

    SciTech Connect

    Flathers, M.B.; Bache, G.E.; Rainsberger, R.

    1996-04-01

    The flow field of a complex three-dimensional radial inlet for an industrial pipeline centrifugal compressor has been experimentally determined on a half-scale model. Based on the experimental results, inlet guide vanes have been designed to correct pressure and swirl angle distribution deficiencies. The unvaned and vaned inlets are analyzed with a commercially available fully three-dimensional viscous Navier-Stokes code. Since experimental results were available prior to the numerical study, the unvaned analysis is considered a postdiction while the vaned analysis is considered a prediction. The computational results of the unvaned inlet have been compared to the previously obtained experimental results. The experimental method utilized for the unvaned inlet is repeated for the vaned inlet and the data have been used to verify the computational results. The paper will discuss experimental, design, and computational procedures, grid generation, boundary conditions, and experimental versus computational methods. Agreement between experimental and computational results is very good, both in prediction and postdiction modes. The results of this investigation indicate that CFD offers a measurable advantage in design, schedule, and cost and can be applied to complex, three-dimensional radial inlets.

  12. Electron source of triode type with radial converging electron flow for irradiation of cylindrical targets

    SciTech Connect

    Engelko, V. I.; Kuznetsov, V. S.; Mueller, Georg

    2009-01-15

    Design of an electron source of triode type is described, which produces a radial converging electron beam employed for modification of the outer surface of fuel element claddings. Experimental investigations of the source showed that beam current magnitude, efficiency of beam focusing to the target, stability of source operation, and beam pulse duration become worse when the target diameter drops below certain values. A method for the calculation of the source operation was developed. Calculations showed that the reason of worse source operation is the initial angular spread of electrons when the target diameter is small. Because of the angular spread a part of electrons passes by the target and oscillates between the target and cathode. The space charge of the oscillating electrons lowers the emission current magnitude and leads to the formation of a virtual cathode in the grid-target gap despite the fact that the emission beam current is less than the limiting one. Formation of a virtual cathode is a reason for the unstable source operation and restriction of the beam pulse duration. Recommendations for the improvement of the source design are suggested.

  13. Distributed control of reactive power flow in a radial distribution circuit with high photovoltaic penetration

    SciTech Connect

    Chertkov, Michael; Turitsyn, Konstantin; Backhaus, Scott; Sule, Petr

    2009-01-01

    We show how distributed control of reactive power can serve to regulate voltage and minimize resistive losses in a distribution circuit that includes a significant level of photovoltaic (PV) generation. To demonstrate the technique, we consider a radial distribution circuit with a single branch consisting of sequentially-arranged residential-scale loads that consume both real and reactive power. In parallel, some loads also have PV generation capability. We postulate that the inverters associated with each PV system are also capable of limited reactive power generation or consumption, and we seek to find the optimal dispatch of each inverter's reactive power to both maintain the voltage within an acceptable range and minimize the resistive losses over the entire circuit. We assume the complex impedance of the distribution circuit links and the instantaneous load and PV generation at each load are known. We compare the results of the optimal dispatch with a suboptimal local scheme that does not require any communication. On our model distribution circuit, we illustrate the feasibility of high levels of PV penetration and a significant (20% or higher) reduction in losses.

  14. [Radial variation and time lag of sap flow of Populus gansuensis in Minqin Oasis, Northwest].

    PubMed

    Dang, Hong-Zhong; Yang, Wen-Bin; Li, Wei; Zhang, You-Yan; Li, Chang-Long

    2014-09-01

    Sap flow of tree trunk is very important to reflect the dynamics of physiological activities, as well as to estimate the water consumption of individual plant. In the present study, we used the thermal dissipation technique to monitor the sap flow velocity (J) at four depth loci (i. e. 2 cm, 3 cm, 5 cm, 8 cm) of three Populus gansuensis trees (30 year-old) in Minqin Oasis for two consecutive growing seasons. The results showed that there were significant differences among J values at four depth loci under tree trunk cambium. J value at the 3 cm depth locus (J3) of the tree trunk was the highest, and then in sequences, were 2 cm, 5 cm and 8 cm depth loci (J2, J5 and J8). J value (J3) on typical sunny days in June with the highest atmospheric potential evapotranspiration (ET0) was up to 28.53 g · cm(-2) · h(-1), which was 1.42, 2.74 and 4.4 times of J2, J5 and J8, respectively. In the process of diurnal variation of sap flow velocity, the peak value time of J at the four depth loci of the tree trunk was different, but the differences among them were within 20 min. Furthermore, the peak value time of sap flow velocity was very different to that of solar radiation (Rs) and air vapour pressure deficit (VPD). The time lag between J and Rs was from 55 to 88 min on typical sunny days during the main growing seasons (from June to August), and, positively related to the depth of the locus under tree trunk cambium, while the time lag between J and VPD reached 60-96 min, and was negatively related to the depth of the locus. The seasonal variation patterns of J were consistent with ET0. With the increase of tree physiological activities, there was a trend that the major water transportation layer extended to the interior sapwood. The most important meteorological factor was the solar radiation, which primarily drove sap flow at different depths of tree trunk. However, the secondary factor changed along with the depth, and VPD became increasingly important with increasing the

  15. Rotor cavity flow and heat transfer with inlet swirl and radial outflow of cooling air

    NASA Astrophysics Data System (ADS)

    Staub, F. W.

    1992-06-01

    To enhance the reliability of turbine disk life prediction, experimental verification is necessary for analytical tools which calculate the heat transfer and flow field coefficients in turbine-stator cavities. A full-scale model of the forward cavity of a typical aircraft gas turbine is utilized employing a high-molecular-weight gas (Refrigerant-12) at ambient temperature and pressure conditions to match the dimensionless parameters at engine conditions. A first-order comparison is given of the velocity distribution and disk heat transfer coefficients calculated by the measured values and a CFD code.

  16. Ultrasound Analysis Of Slurries

    DOEpatents

    Soong, Yee; Blackwell, Arthur G.

    2005-11-01

    An autoclave reactor allows for the ultrasonic analysis of slurry concentration and particle size distribution at elevated temperatures and pressures while maintaining the temperature- and pressure-sensitive ultrasonic transducers under ambient conditions. The reactor vessel is a hollow stainless steel cylinder containing the slurry which includes a stirrer and a N.sub.2 gas source for directing gas bubbles through the slurry. Input and output transducers are connected to opposed lateral portions of the hollow cylinder for respectively directing sound waves through the slurry and receiving these sound waves after transmission through the slurry, where changes in sound wave velocity and amplitude can be used to measure slurry parameters. Ultrasonic adapters connect the transducers to the reactor vessel in a sealed manner and isolate the transducers from the hostile conditions within the vessel without ultrasonic signal distortion or losses.

  17. Ultrasound Analysis of Slurries

    DOEpatents

    Soong, Yee and Blackwell, Arthur G.

    2005-11-01

    An autoclave reactor allows for the ultrasonic analysis of slurry concentration and particle size distribution at elevated temperatures and pressures while maintaining the temperature- and pressure-sensitive ultrasonic transducers under ambient conditions. The reactor vessel is a hollow stainless steel cylinder containing the slurry which includes a stirrer and a N, gas source for directing gas bubbles through the slurry. Input and output transducers are connected to opposed lateral portions of the hollow cylinder for respectively directing sound waves through the slurry and receiving these sound waves after transmission through the slurry, where changes in sound wave velocity and amplitude can be used to measure slurry parameters. Ultrasonic adapters connect the transducers to the reactor vessel in a sealed manner and isolate the transducers from the hostile conditions within the vessel without ultrasonic signal distortion or losses.

  18. Approximate analysis of three-dimensional groundwater flow toward a radial collector well in a finite-extent unconfined aquifer

    NASA Astrophysics Data System (ADS)

    Huang, C.-S.; Chen, J.-J.; Yeh, H.-D.

    2016-01-01

    This study develops a three-dimensional (3-D) mathematical model for describing transient hydraulic head distributions due to pumping at a radial collector well (RCW) in a rectangular confined or unconfined aquifer bounded by two parallel streams and no-flow boundaries. The streams with low-permeability streambeds fully penetrate the aquifer. The governing equation with a point-sink term is employed. A first-order free surface equation delineating the water table decline induced by the well is considered. Robin boundary conditions are adopted to describe fluxes across the streambeds. The head solution for the point sink is derived by applying the methods of finite integral transform and Laplace transform. The head solution for a RCW is obtained by integrating the point-sink solution along the laterals of the RCW and then dividing the integration result by the sum of lateral lengths. On the basis of Darcy's law and head distributions along the streams, the solution for the stream depletion rate (SDR) can also be developed. With the aid of the head and SDR solutions, the sensitivity analysis can then be performed to explore the response of the hydraulic head to the change in a specific parameter such as the horizontal and vertical hydraulic conductivities, streambed permeability, specific storage, specific yield, lateral length, and well depth. Spatial head distributions subject to the anisotropy of aquifer hydraulic conductivities are analyzed. A quantitative criterion is provided to identify whether groundwater flow at a specific region is 3-D or 2-D without the vertical component. In addition, another criterion is also given to allow for the neglect of vertical flow effect on SDR. Conventional 2-D flow models can be used to provide accurate head and SDR predictions if satisfying these two criteria.

  19. Analysis of three-dimensional groundwater flow toward a radial collector well in a finite-extent unconfined aquifer

    NASA Astrophysics Data System (ADS)

    Huang, C.-S.; Chen, J.-J.; Yeh, H.-D.

    2015-08-01

    This study develops a three-dimensional mathematical model for describing transient hydraulic head distributions due to pumping at a radial collector well (RCW) in a rectangular confined or unconfined aquifer bounded by two parallel streams and no-flow boundaries. The governing equation with a point-sink term is employed. A first-order free surface equation delineating the water table decline induced by the well is considered. The head solution for the point sink is derived by applying the methods of double-integral transform and Laplace transform. The head solution for a RCW is obtained by integrating the point-sink solution along the laterals of the RCW and then dividing the integration result by the sum of lateral lengths. On the basis of Darcy's law and head distributions along the streams, the solution for the stream depletion rate (SDR) can also be developed. With the aid of the head and SDR solutions, the sensitivity analysis can then be performed to explore the response of the hydraulic head to the change in a specific parameter such as the horizontal and vertical hydraulic conductivities, streambed permeability, specific storage, specific yield, lateral length and well depth. Spatial head distributions subject to the anisotropy of aquifer hydraulic conductivities are analyzed. A quantitative criterion is provided to identify whether groundwater flow at a specific region is 3-D or 2-D without the vertical component. In addition, another criterion is also given to allow the neglect of vertical flow effect on SDR. Conventional 2-D flow models can be used to provide accurate head and SDR predictions if satisfying these two criteria.

  20. Analytical and experimental study of flow through an axial turbine stage with a nonuniform inlet radial temperature profile

    NASA Technical Reports Server (NTRS)

    Schwab, J. R.; Stabe, R. G.; Whitney, W. J.

    1983-01-01

    Results are presented for a typical nonuniform inlet radial temperature profile through an advanced single-stage axial turbine and compared with the results obtained for a uniform profile. Gas temperature rises of 40 K to 95 K are predicted at the hub and tip corners at the trailing edges of the pressure surfaces in both the stator and rotor due to convection of hot fluid from the mean by the secondary flow. The inlet temperature profile is shown to be mixed out at the rotor exit survey plane (2.3 axial chords downstream of the rotor trailing edge) in both the analysis and the experiment. The experimental rotor exit angle profile for the nonuniform inlet temperature profile indicates underturning at the tip caused by increased clearance. Severe underturning also occurs at the mean, both with and without the nonuniform inlet temperature profile. The inviscid rotational flow code used in the analysis fails to predict the underturning at the mean, which may be caused by viscous effects. Previously announced in STAR as N83-27958

  1. Analytical and Experimental Study of Flow Through an Axial Turbine Stage with a Nonuniform Inlet Radial Temperature Profile

    NASA Technical Reports Server (NTRS)

    Schwab, J. R.; Stabe, R. G.; Whitney, W. J.

    1983-01-01

    Results are presented for a typical nonuniform inlet radial temperature profile through an advanced single-stage axial turbine and compared with the results obtained for a uniform profile. Gas temperature rises of 40 K to 95 K are predicted at the hub and tip corners at the trailing edges of the pressure surfaces in both the stator and rotor due to convection of hot fluid from the mean by the secondary flow. The inlet temperature profile is shown to be mixed out at the rotor exit survey plane (2.3 axial chords downstream of the rotor trailing edge) in both the analysis and the experiment. The experimental rotor exit angle profile for the nonuniform inlet temperature profile indicates underturning at the tip caused by increased clearance. Severe underturning also occurs at the mean, both with and without the nonuniform inlet temperature profile. The inviscid rotational flow code used in the analysis fails to predict the underturning at the mean, which may be caused by viscous effects.

  2. Optimal design of high damping force engine mount featuring MR valve structure with both annular and radial flow paths

    NASA Astrophysics Data System (ADS)

    Nguyen, Q. H.; Choi, S. B.; Lee, Y. S.; Han, M. S.

    2013-11-01

    This paper focuses on the optimal design of a compact and high damping force engine mount featuring magnetorheological fluid (MRF). In the mount, a MR valve structure with both annular and radial flows is employed to generate a high damping force. First, the configuration and working principle of the proposed MR mount is introduced. The MRF flows in the mount are then analyzed and the governing equations of the MR mount are derived based on the Bingham plastic behavior of the MRF. An optimal design of the MR mount is then performed to find the optimal structure of the MR valve to generate a maximum damping force with certain design constraints. In addition, the gap size of MRF ducts is empirically chosen considering the ‘lockup’ problem of the mount at high frequency. Performance of the optimized MR mount is then evaluated based on finite element analysis and discussions on performance results of the optimized MR mount are given. The effectiveness of the proposed MR engine mount is demonstrated via computer simulation by presenting damping force and power consumption.

  3. Weak Radial Artery Pulse

    PubMed Central

    Venugopalan, Poothirikovil; Sivakumar, Puthuval; Ardley, Robert G.; Oates, Crispian

    2012-01-01

    We present an 11year-old boy with a weak right radial pulse, and describe the successful application of vascular ultrasound to identify the ulnar artery dominance and a thin right radial artery with below normal Doppler flow velocity that could explain the discrepancy. The implications of identifying this anomaly are discussed. PMID:22375269

  4. Possible evidence for radial flow of heavy mesons in d + Au collisions

    NASA Astrophysics Data System (ADS)

    Sickles, Anne M.

    2014-04-01

    Recent measurements of particle correlations and the spectra of hadrons at both RHIC and the LHC are suggestive of hydrodynamic behavior in very small collision systems (p + Pb, d + Au and possibly high multiplicity p + p collisions at the LHC). The measurements in p + Pb and d + Au collisions are both qualitatively and quantitatively similar to what is seen in heavy ion collisions where low viscosity hot nuclear matter is formed. While light quarks and gluons are thought to make up the bulk matter, one of the most surprising results in heavy ion collisions is that charm quarks also have a large v2. Measurements of the transverse momentum spectra of electrons from the decay of D and B mesons in d + Au collisions show an enhancement in central collisions relative to p + p collisions. We employ the blast-wave model to determine if the flow of heavy quarks in d + Au and p + Pb collisions is able to explain the enhancement observed in the data. We find a reasonable description of the data with blast-wave parameters extracted from fits to the light hadron spectra, suggesting hydrodynamics as a possible explanation.

  5. Redundant vasodilator pathways underlying radial artery flow-mediated dilation are preserved in healthy aging.

    PubMed

    Ballard, Kevin D; Tschakovsky, Michael E; Zaleski, Amanda L; Polk, Donna M; Thompson, Paul D; Kiernan, Francis J; Parker, Beth A

    2014-01-01

    Background. Blocking nitric oxide (NO) and vasodilator prostanoids (PN) does not consistently reduce flow-mediated dilation (FMD) in young adults. The impact of aging on the contribution of NO and PG to FMD is unknown. Methods. FMD was measured in older adults (n = 10, 65 ± 3 y) after arterial infusion of saline, N(G)-monomethyl-L-arginine (L-NMMA), and ketorolac + L-NMMA. Data were compared to published data in young adults. Results. L-NMMA reduced FMD in older adults (8.9 ± 3.6 to 5.9 ± 3.7%) although this was not statistically significant (P = 0.08) and did not differ (P = 0.74) from the reduction observed in young adults (10.0 ± 3.8 to 7.6 ± 4.7%; P = 0.03). Blocking PN did not affect FMD in young or older adults. In older adults, L-NMMA reduced (n = 6; range = 36-123% decrease), augmented (n = 3; 10-122% increase), or did not change FMD (n = 1; 0.4% increase). After PN blockade, FMD responses were reduced (n = 2), augmented (n = 6), or unaffected (n = 1). Conclusions. NO or PN blockade did not consistently reduce FMD in healthy older adults, suggesting the existence of redundant vasodilator phenotypes as observed previously in young adults. PMID:24963406

  6. Redundant Vasodilator Pathways Underlying Radial Artery Flow-Mediated Dilation Are Preserved in Healthy Aging

    PubMed Central

    Ballard, Kevin D.; Tschakovsky, Michael E.; Zaleski, Amanda L.; Polk, Donna M.; Thompson, Paul D.; Kiernan, Francis J.; Parker, Beth A.

    2014-01-01

    Background. Blocking nitric oxide (NO) and vasodilator prostanoids (PN) does not consistently reduce flow-mediated dilation (FMD) in young adults. The impact of aging on the contribution of NO and PG to FMD is unknown. Methods. FMD was measured in older adults (n = 10, 65 ± 3 y) after arterial infusion of saline, N(G)-monomethyl-L-arginine (L-NMMA), and ketorolac + L-NMMA. Data were compared to published data in young adults. Results. L-NMMA reduced FMD in older adults (8.9 ± 3.6 to 5.9 ± 3.7%) although this was not statistically significant (P = 0.08) and did not differ (P = 0.74) from the reduction observed in young adults (10.0 ± 3.8 to 7.6 ± 4.7%; P = 0.03). Blocking PN did not affect FMD in young or older adults. In older adults, L-NMMA reduced (n = 6; range = 36–123% decrease), augmented (n = 3; 10–122% increase), or did not change FMD (n = 1; 0.4% increase). After PN blockade, FMD responses were reduced (n = 2), augmented (n = 6), or unaffected (n = 1). Conclusions. NO or PN blockade did not consistently reduce FMD in healthy older adults, suggesting the existence of redundant vasodilator phenotypes as observed previously in young adults. PMID:24963406

  7. Radial diffusion and penetration of gas molecules and aerosol particles through laminar flow reactors, denuders, and sampling tubes.

    PubMed

    Knopf, Daniel A; Pöschl, Ulrich; Shiraiwa, Manabu

    2015-04-01

    Flow reactors, denuders, and sampling tubes are essential tools for many applications in analytical and physical chemistry and engineering. We derive a new method for determining radial diffusion effects and the penetration or transmission of gas molecules and aerosol particles through cylindrical tubes under laminar flow conditions using explicit analytical equations. In contrast to the traditional Brown method [Brown, R. L. J. Res. Natl. Bur. Stand. (U. S.) 1978, 83, 1-8] and CKD method (Cooney, D. O.; Kim, S. S.; Davis, E. J. Chem. Eng. Sci. 1974, 29, 1731-1738), the new approximation developed in this study (known as the KPS method) does not require interpolation or numerical techniques. The KPS method agrees well with the CKD method under all experimental conditions and also with the Brown method at low Sherwood numbers. At high Sherwood numbers corresponding to high uptake on the wall, flow entry effects become relevant and are considered in the KPS and CKD methods but not in the Brown method. The practical applicability of the KPS method is demonstrated by analysis of measurement data from experimental studies of rapid OH, intermediate NO3, and slow O3 uptake on various organic substrates. The KPS method also allows determination of the penetration of aerosol particles through a tube, using a single equation to cover both the limiting cases of high and low deposition described by Gormley and Kennedy (Proc. R. Ir. Acad., Sect. A. 1949, 52A, 163-169). We demonstrate that the treatment of gas and particle diffusion converges in the KPS method, thus facilitating prediction of diffusional loss and penetration of gases and particles, analysis of chemical kinetics data, and design of fluid reactors, denuders, and sampling lines. PMID:25744622

  8. Methods to enhance the characteristics of hydrothermally prepared slurry fuels

    SciTech Connect

    Anderson, C.M.; Musich, M.A.; Mann, M.D.; DeWall, R.A.; Richter, J.J.; Potas, T.A.; Willson, W.G.

    2000-04-25

    Methods are disclosed for enhancing the flow behavior and stability of hydrothermally treated slurry fuels. A mechanical high-shear dispersion and homogenization device is used to shear the slurry fuel. Other improvements include blending the carbonaceous material with a form of coal to reduce or eliminate the flocculation of the slurry, and maintaining the temperature of the hydrothermal treatment between approximately 300 to 350 C.

  9. Methods to enhance the characteristics of hydrothermally prepared slurry fuels

    DOEpatents

    Anderson, Chris M.; Musich, Mark A.; Mann, Michael D.; DeWall, Raymond A.; Richter, John J.; Potas, Todd A.; Willson, Warrack G.

    2000-01-01

    Methods for enhancing the flow behavior and stability of hydrothermally treated slurry fuels. A mechanical high-shear dispersion and homogenization device is used to shear the slurry fuel. Other improvements include blending the carbonaceous material with a form of coal to reduce or eliminate the flocculation of the slurry, and maintaining the temperature of the hydrothermal treatment between approximately 300.degree. to 350.degree. C.

  10. CHARACTERIZING PULSATING MIXING OF SLURRIES

    SciTech Connect

    Bamberger, Judith A.; Meyer, Perry A.

    2007-12-01

    This paper describes the physical properties for defining the operation of a pulse jet mixing system. Pulse jet mixing operates with no moving parts located in the vessel to be mixed. Pulse tubes submerged in the vessel provide a pulsating flow due to a controlled combination of applied pressure to expel the fluid from the pulse tube nozzle followed by suction to refill the pulse tube through the same nozzle. For mixing slurries nondimensional parameters to define mixing operation include slurry properties, geometric properties and operational parameters. Primary parameters include jet Reynolds number and Froude number; alternate parameters may include particle Galileo number, particle Reynolds number, settling velocity ratio, and hindered settling velocity ratio. Rating metrics for system performance include just suspended velocity, concentration distribution as a function of elevation, and blend time.

  11. Mn2O3 Slurry Achieving Reduction of Slurry Waste

    NASA Astrophysics Data System (ADS)

    Kishii, Sadahiro; Nakamura, Ko; Hanawa, Kenzo; Watanabe, Satoru; Arimoto, Yoshihiro; Kurokawa, Syuhei; Doi, Toshiro K.

    2012-04-01

    Fumed silica is widely used for SiO2 chemical mechanical polishing (CMP). In semiconductor processes, only fresh slurry is used, the used slurry being disposed of. We have demonstrated that Mn2O3 abrasive slurry polishes dielectric SiO2 film, giving 4 times the removal rate of conventional fumed silica slurry. The higher removal rate reduces the total amount of slurry used, consequently reducing the amount of used slurry waste. The removal rate of Mn2O3 slurry remains constant for solid concentrations between l and 10 wt %, and stays constant without pad conditioning. These characteristics are very useful for slurry reuse. Remanufacture of Mn2O3 slurry from used slurry has been demonstrated, and the removal rates of the remanufactured and fresh slurries are the same. Reuse and remanufacturing drastically reduce the amount of waste.

  12. ICE SLURRY APPLICATIONS

    PubMed Central

    Kauffeld, M.; WANG, M. J.; Goldstein, V.; Kasza, K. E.

    2011-01-01

    The role of secondary refrigerants is expected to grow as the focus on the reduction of greenhouse gas emissions increases. The effectiveness of secondary refrigerants can be improved when phase changing media are introduced in place of single phase media. Operating at temperatures below the freezing point of water, ice slurry facilitates several efficiency improvements such as reductions in pumping energy consumption as well as lowering the required temperature difference in heat exchangers due to the beneficial thermo-physical properties of ice slurry. Research has shown that ice slurry can be engineered to have ideal ice particle characteristics so that it can be easily stored in tanks without agglomeration and then be extractable for pumping at very high ice fraction without plugging. In addition ice slurry can be used in many direct contact food and medical protective cooling applications. This paper provides an overview of the latest developments in ice slurry technology. PMID:21528014

  13. ICE SLURRY APPLICATIONS.

    PubMed

    Kauffeld, M; Wang, M J; Goldstein, V; Kasza, K E

    2010-12-01

    The role of secondary refrigerants is expected to grow as the focus on the reduction of greenhouse gas emissions increases. The effectiveness of secondary refrigerants can be improved when phase changing media are introduced in place of single phase media. Operating at temperatures below the freezing point of water, ice slurry facilitates several efficiency improvements such as reductions in pumping energy consumption as well as lowering the required temperature difference in heat exchangers due to the beneficial thermo-physical properties of ice slurry. Research has shown that ice slurry can be engineered to have ideal ice particle characteristics so that it can be easily stored in tanks without agglomeration and then be extractable for pumping at very high ice fraction without plugging. In addition ice slurry can be used in many direct contact food and medical protective cooling applications. This paper provides an overview of the latest developments in ice slurry technology. PMID:21528014

  14. Receptor-mediated cell attachment and detachment kinetics. II. Experimental model studies with the radial-flow detachment assay.

    PubMed Central

    Cozens-Roberts, C; Quinn, J A; Lauffenburger, D A

    1990-01-01

    Quantitative information regarding the kinetics of receptor-mediated cell adhesion to a ligand-coated surface are crucial for understanding the role of certain key parameters in many physiological and biotechnology-related processes. Here, we use the probabilistic attachment and detachment models developed in the preceding paper to interpret transient data from well-defined experiments. These data are obtained with a simple model cell system that consists of receptor-coated latex beads (prototype cells) and a Radial-Flow Detachment Assay (RFDA) using a ligand-coated glass disc. The receptors and ligands used in this work are complementary antibodies. The beads enable us to examine transient behavior with particles that possess fairly uniform properties that can be varied systematically, and the RFDA is designed for direct observation of adhesion to the ligand-coated glass surface over a range of shear stresses. Our experiments focus on the effects of surface shear stress, receptor density, and ligand density. These data provide a crucial test of the probabilistic framework. We show that these data can be explained with the probabilistic analyses, whereas they cannot be readily interpreted on the basis of a deterministic analysis. In addition, we examine transient data on cell adhesion reported from other assays, demonstrating the consistency of these data with the predictions of the probabilistic models. Images FIGURE 2 PMID:2174272

  15. The influence of additives on rheological properties of limestone slurry

    NASA Astrophysics Data System (ADS)

    Jaworska, B.; Bartosik, A.

    2014-08-01

    Limestone slurry appears in the lime production process as the result of rinsing the processed material. It consists of particles with diameter smaller than 2 mm and the water that is a carrier of solid fraction. Slurry is directed to the settling tank, where the solid phase sediments and the excess water through the transfer system is recovered for re-circulation. Collected at the bottom of the tank sludge is deposited in a landfill located on the premises. Rheological properties of limestone slurry hinder its further free transport in the pipeline due to generated flow resistance. To improve this state of affairs, chemical treatment of drilling fluid, could be applied, of which the main task is to give the slurry properties suitable for the conditions encountered in hydrotransport. This treatment consists of applying chemical additives to slurry in sufficient quantity. Such additives are called as deflocculants or thinners or dispersants, and are chemical compounds which added to aqueous solution are intended to push away suspended particles from each other. The paper presents the results of research allowing reduction of shear stress in limestone slurry. Results demonstrate rheological properties of limestone slurry with and without the addition of modified substances which causes decrease of slurry viscosity, and as a consequence slurry shear stress for adopted shear rate. Achieving the desired effects increases the degree of dispersion of the solid phase suspended in the carrier liquid and improving its ability to smooth flow with decreased friction.

  16. Spatial analysis of aquifer response times for radial flow processes: Nondimensional analysis and laboratory-scale tests

    NASA Astrophysics Data System (ADS)

    Jazaei, Farhad; Simpson, Matthew J.; Clement, T. Prabhakar

    2016-01-01

    A fundamental concept in groundwater hydrology is the notion of steady state, or equilibrium conditions. When a system at some initial steady state condition is perturbed by pumping, a transient cone of depression will develop and the system will approach a new steady state condition. Understanding the time scale required for the transient process to occur is of practical interest since it would help practitioners decide whether to use a steady state model or a more complicated transient model. Standard approaches to estimate the response time use simple scaling relationships which neglect spatial variations. Alternatively, others define the response time to be the amount of time taken for the difference between the transient and steady state solutions to fall below some arbitrary tolerance level. Here, we present a novel approach and use the concept of mean action time to predict aquifer response time scales in a two-dimensional radial geometry for pumping, injection and recovery processes. Our approach leads to relatively simple closed form expressions that explicitly show how the time scale depends on the hydraulic parameters and position. Furthermore, our dimensionless framework allows us to predict the response time scales for a range of applications including small scale laboratory problems and large scale field problems. Our analysis shows that the response time scales vary spatially, but are equivalent for pumping, injection and associated recovery processes. Furthermore, the time scale is independent of the pumping or injection flow rate. We test these predictions in a laboratory scale aquifer and find that our physical measurements corroborate the theoretical predictions.

  17. Slurry pumping techniques for feeding high-pressure coal gasification reactors

    NASA Technical Reports Server (NTRS)

    Bair, W. G.; Tarman, P. B.

    1977-01-01

    Operating experience in pumping coal and coal char slurries at pressures up to 1500 psig is discussed. The design specifications for the mixing tanks, pumps, piping, and slurry heaters are given along with pressure drop and minimum flow velocity data on water-lignite slurries.

  18. Pressurized Vessel Slurry Pumping

    SciTech Connect

    Pound, C.R.

    2001-09-17

    This report summarizes testing of an alternate ''pressurized vessel slurry pumping'' apparatus. The principle is similar to rural domestic water systems and ''acid eggs'' used in chemical laboratories in that material is extruded by displacement with compressed air.

  19. Impact of higher alginate expression on deposition of Pseudomonas aeruginosa in radial stagnation point flow and reverse osmosis systems.

    PubMed

    Herzberg, Moshe; Rezene, Tesfalem Zere; Ziemba, Christopher; Gillor, Osnat; Mathee, Kalai

    2009-10-01

    Extracellular polymeric substances (EPS) have major impact on biofouling of reverse osmosis (RO) membranes. On one hand, EPS can reduce membrane permeability and on the other, EPS production by the primary colonizers may influence their deposition and attachment rate and subsequently affect the biofouling propensity of the membrane. The role of bacterial exopolysaccharides in bacterial deposition followed by the biofouling potential of an RO membrane was evaluated using an alginate overproducing (mucoid) Pseudomonas aeruginosa. The mucoid P. aeruginosa PAOmucA22 was compared with its isogenic nonmucoid prototypic parent PAO1 microscopically in a radial stagnation point flow (RSPF) system for their bacterial deposition characteristics. Then, biofouling potential of PAO1 and PAOmucA22 was determined in a crossflow rectangular plate-and-frame membrane cell, in which the strains were cultivated on a thin-film composite, polyamide, flat RO membrane coupon (LFC-1) under laminar flow conditions. In the RSPF system, the observed deposition rate of the mucoid strain was between 5- and 10-fold lower than of the wild type using either synthetic wastewater medium (with ionic strength of 14.7 mM and pH 7.4) or 15 mM KCl solution (pH of 6.2). The slower deposition rate of the mucoid strain is explained by 5- to 25-fold increased hydrophilicity of the mucoid strain as compared to the isogenic wild type, PAO1. Corroborating with these results, a significant delay in the onset of biofouling of the RO membrane was observed when the mucoid strain was used as the membrane colonizer, in which the observed time for the induced permeate flux decline was delayed (ca. 2-fold). In conclusion, the lower initial cell attachment of the mucoid strain decelerated biofouling of the RO membrane. Bacterial deposition and attachment is a critical step in biofilm formation and governed by intimate interactions between outer membrane proteins of the bacteria and the surface. Shielding these

  20. Bubble column apparatus for separating wax from catalyst slurry

    SciTech Connect

    Neathery, James K.; Davis, Burtron H.

    2004-07-13

    Novel methods and devices for production of liquid hydrocarbon products from gaseous reactants are disclosed. In one aspect, a method for separating a liquid hydrocarbon, typically a wax, from a catalyst containing slurry is provided, comprising passing the slurry through at least one downcomer extending from an overhead separation chamber and discharging into the bottom of a slurry bubble column reactor. The downcomer includes a cross-flow filtration element for separating a substantially particle-free liquid hydrocarbon for downstream processing. In another aspect, a method for promoting plug-flow movement in a recirculating slurry bubble column reactor is provided, comprising discharging the recirculating slurry into the reactor through at least one downcomer which terminates near the bottom of the reactor. Devices for accomplishing the above methods are also provided.

  1. System for pressure letdown of abrasive slurries

    DOEpatents

    Kasper, Stanley

    1991-01-01

    A system and method for releasing erosive slurries from containment at high pressure without subjecting valves to highly erosive slurry flow. The system includes a pressure letdown tank disposed below the high-pressure tank, the two tanks being connected by a valved line communicating the gas phases and a line having a valve and choke for a transfer of liquid into the letdown tank. The letdown tank has a valved gas vent and a valved outlet line for release of liquid. In operation, the gas transfer line is opened to equalize pressure between tanks so that a low level of liquid flow occurs. The letdown tank is then vented, creating a high-pressure differential between the tanks. At this point, flow between tanks is controlled by the choke. High-velocity, erosive flow through a high-pressure outlet valve is prevented by equalizing the start up pressure and thereafter limiting flow with the choke.

  2. System for pressure letdown of abrasive slurries

    SciTech Connect

    Kasper, S.

    1991-10-01

    This patent describes a system and method for releasing erosive slurries from containment at high pressure without subjecting valves to highly erosive slurry flow. The system includes a pressure letdown tank disposed below the high-pressure tank, the two tanks being connected by a valved line communicating the gas phases and a line having a valve and choke for a transfer of liquid into the letdown tank. The letdown tank has a valved gas vent and a valved outlet line for release of liquid. In operation, the gas transfer line is opened to equalize pressure between tanks so that a low level of liquid flow occurs. The letdown tank is then vented, creating a high-pressure differential between the tanks. At this point, flow between tanks is controlled by the choke. High-velocity, erosive flow through a high-pressure outlet valve is prevented by equalizing the start up pressure and thereafter limiting flow with the choke.

  3. Reducing NO(x) emissions from a nitric acid plant of domestic petrochemical complex: enhanced conversion in conventional radial-flow reactor of selective catalytic reduction process.

    PubMed

    Abbasfard, Hamed; Hashemi, Seyed Hamid; Rahimpour, Mohammad Reza; Jokar, Seyyed Mohammad; Ghader, Sattar

    2013-01-01

    The nitric acid plant of a domestic petrochemical complex is designed to annually produce 56,400 metric tons (based on 100% nitric acid). In the present work, radial-flow spherical bed reactor (RFSBR) for selective catalytic reduction of nitric oxides (NO(x)) from the stack of this plant was modelled and compared with the conventional radial-flow reactor (CRFR). Moreover, the proficiency of a radial-flow (water or nitrogen) membrane reactor was also compared with the CRFR which was found to be inefficient at identical process conditions. In the RFSBR, the space between the two concentric spheres is filled by a catalyst. A mathematical model, including conservation of mass has been developed to investigate the performance of the configurations. The model was checked against the CRFR in a nitric acid plant located at the domestic petrochemical complex. A good agreement was observed between the modelling results and the plant data. The effects of some important parameters such as pressure and temperature on NO(x) conversion were analysed. Results show 14% decrease in NO(x) emission annually in RFSBR compared with the CRFR, which is beneficial for the prevention of NO(x) emission, global warming and acid rain. PMID:24527652

  4. The solution-adaptive numerical simulation of the 3D viscous flow in the serpentine coolant passage of a radial inflow turbine blade

    NASA Astrophysics Data System (ADS)

    Dawes, W. N.

    1992-06-01

    This paper describes the application of a solution-adaptive, three-dimensional Navier-Stokes solver to the problem of the flow in turbine internal coolant passages. First the variation of Nusselt number in a cylindrical, multi-ribbed duct is predicted and found to be in acceptable agreement with experimental data. Then the flow is computed in the serpentine coolant passage of a radial inflow turbine including modeling the internal baffles and pin fins. The aerodynamics of the passage, particularly that associated with the pin fins, is found to be complex. The predicted heat transfer coefficients allow zones of poor coolant penetration and potential hot spots to be identified.

  5. Rocketdyne's advanced coal slurry pumping program

    NASA Technical Reports Server (NTRS)

    Davis, D. E.; Wong, G. S.; Gilman, H. H.

    1977-01-01

    The Rocketdyne Division of Rockwell International Corporation is conducting a program for the engineering, fabrication, and testing of an experimental/prototype high-capacity, high-pressure centrifugal slurry feed pump for coal liquefaction purposes. The abrasion problems in a centrifugal slurry pump are primarily due to the manner in which the hard, solid particles contained in the slurry are transported through the hydraulic flow passages within the pump. The abrasive particles can create scraping, grinding, cutting, and sandblasting effects on the various exposed parts of the pump. These critical areas involving abrasion and impact erosion wear problems in a centrifugal pump are being addressed by Rocketdyne. The mechanisms of abrasion and erosion are being studied through hydrodynamic analysis, materials evaluation, and advanced design concepts.

  6. Differences in the Properties of the Radial Artery between Cun, Guan, Chi, and Nearby Segments Using Ultrasonographic Imaging: A Pilot Study on Arterial Depth, Diameter, and Blood Flow

    PubMed Central

    Kim, Jaeuk U.; Lee, Yu Jung; Kim, Jong Yeol

    2015-01-01

    Aim of the Study. The three conventional pulse-diagnostic palpation locations (PLs) on both wrists are Cun, Guan, and Chi, and each location reveals different clinical information. To identify anatomical or hemodynamic specificity, we used ultrasonographic imaging to determine the arterial diameter, radial artery depth, and arterial blood flow velocity at the three PLs and at nearby non-PL segments. Methods. We applied an ultrasound scanner to 44 subjects and studied the changes in the arterial diameter and depth as well as in the average/maximum blood flow velocities along the radial artery at three PLs and three non-PLs located more proximally than Chi. Results. All of the measurements at all of the PLs were significantly different (P < 0.01). Artery depth was significantly different among the non-PLs; however, this difference became insignificant after normalization to the arm circumference. Conclusions. Substantial changes in the hemodynamic and anatomical properties of the radial artery around the three PLs were insignificant at the nearby non-PLs segments. This finding may provide a partial explanation for the diagnostic use of “Cun, Guan, and Chi.” PMID:25763090

  7. Pipelining particulate solid material as stable foam slurry

    SciTech Connect

    Fitch, J.L.

    1980-04-29

    A method of transporting particulate solid material through a pipeline in the form of a stable foam slurry is described. A pumpable slurry is formed of the particulate solid material in a stable foam carrier medium and the slurry is flowed through the pipeline to a receiving point. A method of transporting particulate solid materials through a pipeline is described wherein a pumpable slurry is formed of the particulate solid material. The particulate material is present in the stable foam in an amount of at least 20% by volume based on the total volume of the stable foam slurry. The particulate solid material may be coal particles, other forms of particulate carbonaceous material, such as coke, lignite and pitch, ores, and still other particulate material which is insoluble in the stable foam. The foam may be formed from a liquid, usually water, gas, and a foam stabilizing agent, such as a soap or a surfactant. 4 claims.

  8. Fuel injection of coal slurry using vortex nozzles and valves

    DOEpatents

    Holmes, Allen B.

    1989-01-01

    Injection of atomized coal slurry fuel into an engine combustion chamber is achieved at relatively low pressures by means of a vortex swirl nozzle. The outlet opening of the vortex nozzle is considerably larger than conventional nozzle outlets, thereby eliminating major sources of failure due to clogging by contaminants in the fuel. Control fluid, such as air, may be used to impart vorticity to the slurry and/or purge the nozzle of contaminants during the times between measured slurry charges. The measured slurry charges may be produced by a diaphragm pump or by vortex valves controlled by a separate control fluid. Fluidic circuitry, employing vortex valves to alternatively block and pass cool slurry fuel flow, is disclosed.

  9. Flashing Slurry Releases

    SciTech Connect

    Schmitt, Bruce E.; Young, Jonathan

    2007-03-14

    The Hanford K Basin Closure Project involves the retrieval, transfer and processing of radioactive contaminated slurries containing partially corroded spent nuclear fuel from the K Basin spent fuel pools. The spent fuel is primarily metallic fuel from the operation of the Hanford reactors. The Sludge Treatment Project is being designed to treat and package this material in preparation for ultimate disposal. The processing of the contaminated slurries includes further corrosion of the remaining uncorroded uranium metal in a large heated vessel to form a more stable metal oxide for packaging and storage.

  10. New slurry pumps in China

    SciTech Connect

    Li, Z.; Wang, W.; Shi, Z.

    1998-07-01

    Wet parts of centrifugal slurry pumps are naturally subjected to wear, but local wear in pumps could be avoided, at least partly. Through studying the wear phenomenon of slurry pumps in industrial applications, a series of much more advanced slurry pumps was developed in China. Laboratory tests and industrial applications show that the new pumps are high in efficiency when transporting slurries, and uniform wear can be expected from them.

  11. New slurry pumps in China

    SciTech Connect

    Zhengwang Li; Wenlie Wang; Zhongyin Shi

    1998-04-01

    Wet parts of centrifugal slurry pumps are naturally subjected to wear, but local wear in pumps could be avoided, at least partly. Through studying the wear phenomenon of slurry pumps in industrial applications, a series of much more advanced slurry pumps was developed in China. Laboratory tests and industrial applications show that the new pumps are high in efficiency when transporting slurries, and uniform wear can be expected from them.

  12. Defluoridation of wastewaters using waste carbon slurry.

    PubMed

    Gupta, Vinod Kumar; Ali, Imran; Saini, Vipin Kumar

    2007-08-01

    Adsorption of fluoride on waste carbon slurry was investigated. Waste carbon slurry was obtained from fuel oil based generators of a fertilizer industry. The work involves batch experiments to investigate the effects of contact time, pH, temperature and adsorbent dose on the extent of adsorption by carbon slurry. The contact time and pH for maximum fluoride uptake were found 1h and 7.58, respectively. Maximum adsorption capacity (4.861 mg g(-1)) of fluoride on carbon slurry was observed at 15.00 mg L(-1) initial fluoride concentration using 1.0 g L(-1) adsorbent dose. Among four applied models, the experimental isotherm data were found to follow Langmuir equation more closely. Thermodynamically, adsorption was found endothermic with values 7.348 kJ mol(-1), -25.410 kJ mol(-1) and 0.109 kJ mol(-1)K(-1) for enthalpy, free energy and entropy, respectively showing the feasibility of adsorption process. From kinetic analysis, the adsorption was found to follow second-order mechanism with rate constant 49.637 gm g(-1)min(-1). The rate-controlling step of the adsorption was found pore diffusion controlled. In order to investigate the potential of this adsorbent on industrial scale, column and desorption experiments were carried out. The breakthrough capacity of column was calculated 4.155 mg g(-1) with at a flow rate of 1.5 mL min(-1). The proposed adsorbent has been used to remove fluoride from groundwater and wastewater. Desorption has been achieved under alkaline conditions (pH 11.6) from exhausted carbon slurry. The performance of carbon slurry was compared with many other reported adsorbent for fluoride removal and it was observed that proposed adsorbent is effective in terms of performance and cost especially. PMID:17583767

  13. Slurry reactor design studies

    SciTech Connect

    Fox, J.M.; Degen, B.D.; Cady, G.; Deslate, F.D.; Summers, R.L. ); Akgerman, A. ); Smith, J.M. )

    1990-06-01

    The objective of these studies was to perform a realistic evaluation of the relative costs of tublar-fixed-bed and slurry reactors for methanol, mixed alcohols and Fischer-Tropsch syntheses under conditions where they would realistically be expected to operate. The slurry Fischer-Tropsch reactor was, therefore, operated at low H{sub 2}/CO ratio on gas directly from a Shell gasifier. The fixed-bed reactor was operated on 2.0 H{sub 2}/CO ratio gas after adjustment by shift and CO{sub 2} removal. Every attempt was made to give each reactor the benefit of its optimum design condition and correlations were developed to extend the models beyond the range of the experimental pilot plant data. For the methanol design, comparisons were made for a recycle plant with high methanol yield, this being the standard design condition. It is recognized that this is not necessarily the optimum application for the slurry reactor, which is being proposed for a once-through operation, coproducing methanol and power. Consideration is also given to the applicability of the slurry reactor to mixed alcohols, based on conditions provided by Lurgi for an Octamix{trademark} plant using their standard tubular-fixed reactor technology. 7 figs., 26 tabs.

  14. Emplacement-related layering in magma slurries

    NASA Astrophysics Data System (ADS)

    Petford, N.

    2009-04-01

    Textures and structures such as layering, grading and foliations preserved in igneous rocks offer a glimpse into the magma emplacement process. However, despite recent advances, a full and proper understanding of the fluid dynamics of congested fluid-particle mixtures during shear remains elusive. This is a shame as without recourse to such fundamental understanding, the interpretation of structural field data in the context of magma flow remains problematic. One way to gain insight into the process is to treat flowing magma as a dynamic material with a rheology similar to sheared, congested slurries. The idea that dense magma equates to a high temperature slurry is an attractive one, and opens up a way to examine the emplacement process that does not rely on equilibrium thermodynamics as a final explanation for commonly observed igneous structures. Using the Basement Sill, Antarctica, as a world class example of a magmatic slurry, shearing at high Peclet (Pe) number where particle diffusion is negligible has the potential to impart a rich diversity of structures including layering, grading and flow segregation. Work to model numerically the flow of the Basement Sill slurry using a range of theoretical and experimentally-derived non-Newtonian magma rheologies will be presented and assessed. A key impilcation is that in addition to more classical explanations such as compaction and gravitational settling, igneous layering can also arise spontaneously during shear associated with the ascent and emplacement of congested magma. A final aspect of the emplacement model considers the irregular geometry of the Basement Sill boundaries. Movement of magma along these boundaries results in the formation of local eddies and fluid swirl/back-flow that add additional complexity to macroscopic flow field.

  15. Critical parameters for coarse coal underground slurry haulage systems

    SciTech Connect

    Maynard, D.P.

    1981-02-15

    This report describes the basic parameters which directly influence the behavior of a coal slurry pipeline transportation system and determine the limitations of the system performance. The purpose of this technology assessment is to provide an identification and understanding of the critical factors which must be given consideration in the design and evaluation of such a slurry haulage system intended for use in an underground coal mine. The slurry haulage system will be utilized to satisfy the transportation requirements of conveying, in a pipeline, the coal mined by a continuous mining machine to a storage location near the mine entrance or to a coal preparation plant located on the surface. Coal-water slurries, particularly those consisting of homogeneous suspensions of small particles, frequently behave as non-Newtonian, Bingham-plastic fluids. For successful operation, slurry transport systems should be designed to operate in the turbulent flow regime and at a flow rate at least 30% greater than the deposition velocity. The deposition velocity is defined as the slurry flow rate at which the solid particles tend to settle in the pipe. Due to the importance of accurately determining the deposition velocity and the uncertainties of current methods for predicting the deposition velocity of coarse particle slurries, it is recommended that experimental efforts be performed as a part of the system design. The capacity of the haulage system should be compatible with the mine's projected coal output in order to avoid operational delays and the necessity for in-mine coal storage. The slurry pumps must generate sufficient discharge pressure to overcome the resultant friction losses in horizontal and vertical pipe sections and to satisfy the slurry hoisting requirements.

  16. High pressure slurry pump. Sand slurry test loop design and results. Wear parts lifetime analysis

    SciTech Connect

    Fongaro, S.; Severini, P.; Vinciguerra, G.

    2000-07-01

    This paper shows the experimental phase, following previous work presented at the Sixth International Conference on ``Multiphase Flow in Industrial Plants'', Milan, September 98. A Sand Water Slurry Test Loop has been tested using different sand percentages for a total power of 680 HP with a flow-rate of 35,000 [gpm] and pressure of 2300 [psig]. Its design considered, carefully, the particles build-up effect respecting flow velocity and dead space along the loop and into the hydraulics. The test pump is a TRIPLEX SINGLE ACTING that is one third of the COAL SLURRY SEPTUPLEX PUMP designed for a CHINA PROJECT. Wear rate on the main parts of an high pressure slurry pump have been analyzed running at 145 rpm (piston mean speed of 3.3 [ft/s]) with a net flow of 33,290 [gpm] and pressures between 1216 and 1575 [psig]. Tests gave indications of a damaging process on valves, piston seals and the relative weight on the overall damages. Design changes of piston-seal and its material have been done, results being a longer parts lifetime. The authors compared the results with literature on coal slurry and other sand tests. The pump speed, i.e., valve cycle, isn't the main wear factor, while the fluid speed under the valve is. Their goals are to improve the wear parts lifetime and define functions to relate the wear to operating parameters, design choice, and materials used.

  17. Influence of heat and mass transfer, initial stress and radially varying magnetic field on the peristaltic flow in an annulus with gravity field

    NASA Astrophysics Data System (ADS)

    Abd-Alla, A. M.; Abo-Dahab, S. M.; El-Shahrany, H. D.

    2014-08-01

    In this paper, the effects of both initial stress, radially varying and gravity field on the peristaltic flow of an incompressible MHD Newtonian fluid in a vertical annulus have been studied under the assumption of long wavelength and low-Reynolds number. The analytical solution has been derived for the temperature, concentration and velocity. The results for velocity, concentration and temperature obtained in the analytical form have been evaluated numerically and discussed briefly. The effect of the non-dimensional wave amplitude, the coefficient of viscosity, Sort number, Schmidt number, initial stress, gravitational field and the dimensionless time-mean flow in the wave frame are analyzed theoretically and computed numerically. The expressions for pressure rise, temperature, concentration field, velocity and pressure gradient are sketched for various embedded parameters and interpreted. Numerical results are given and illustrated graphically in each case considered. Comparison was made with the results obtained in the presence and absence of initial stress and gravitational field.

  18. Application of a quasi-3D inviscid flow and boundary layer analysis to the hub-shroud contouring of a radial turbine

    NASA Technical Reports Server (NTRS)

    Civinskas, K. C.; Povinelli, L. A.

    1984-01-01

    Application of a quasi-3D approach to the aerodynamic analysis of several radial turbine configurations is described. The objective was to improve the rotor aerodynamic characteristics by hub-shroud contouring. The approach relies on available 2D inviscid methods coupled with boundary layer analysis to calculate profile, mixing, and endwall losses. Windage, tip clearance, incidence, and secondary flow losses are estimated from correlations. To eliminate separation along the hub and blade suction surfaces of a baseline rotor, the analysis was also applied to three alternate hub-shroud geometries. Emphasis was on elimination an inducer velocity overshoot as well as increasing hub velocities. While separation was never eliminated, the extent of the separated area was progressively reduced. Results are presented in terms of mid-channel and blade surface velocities; kinetic energy loss coefficients; and efficiency. The calculation demonstrates a first step for a systematic approach to radial turbine design that can be used to identify and control aerodynamic characteristics that ultimately determine heat transfer and component life. Experimentation will be required to assess the extent to which flow and boundary layer behavior were predicted correctly.

  19. The coal slime slurry combustion technology

    SciTech Connect

    Li, Y.; Xu, Z.

    1997-12-31

    This paper presents the coal slime slurry combustion technology in circulating fluidized bed (CFB) boilers. The technique is that the slurry-based flow from the concentrator in the coal washery plant directly feeds into the fluidized bed by pump for combustion after a simple filtration and enrichment to an approximate concentration of 50% of coal. The coal slime slurry can burn in a CFB boiler alone or jointly with coal refuse. The technique has been used in a 35 t/h (6MWe) CFB for power generation. The result shows that the combustion efficiency is over 96% and boiler thermal efficiency is over 77%. As compared with burning coal refuse alone, the thermal efficiency was improved by 3--4 percent. This technology is simple, easy to operate and reliable. It is an effective way to utilize coal slime slurry. It has a practical significance for saving coal resources and reducing environmental pollution near coal mine areas. As a clean coal technology, it will result in great social, environmental and economic benefits.

  20. Slurry atomizer for a coal-feeder and dryer used to provide coal at gasifier pressure

    DOEpatents

    Loth, John L.; Smith, William C.; Friggens, Gary R.

    1982-01-01

    The present invention is directed to a coal-water slurry atomizer for use a high-pressure dryer employed in a pumping system utilized to feed coal into a pressurized coal gasifier. The slurry atomizer is provided with a venturi, constant area slurry injection conduit, and a plurality of tangentially disposed steam injection ports. Superheated steam is injected into the atomizer through these ports to provide a vortical flow of the steam, which, in turn, shears slurry emerging from the slurry injection conduit. The droplets of slurry are rapidly dispersed in the dryer through the venturi where the water is vaporized from the slurry by the steam prior to deleterious heating of the coal.

  1. System and method for slurry handling

    SciTech Connect

    Steele, Raymond Douglas; Oppenheim, Judith Pauline

    2015-12-29

    A system includes a slurry depressurizing system that includes a liquid expansion system configured to continuously receive a slurry at a first pressure and continuously discharge the slurry at a second pressure. For example, the slurry depressurizing system may include an expansion turbine to expand the slurry from the first pressure to the second pressure.

  2. Slurry burner for mixture of carbonaceous material and water

    DOEpatents

    Nodd, Dennis G.; Walker, Richard J.

    1987-01-01

    A carbonaceous material-water slurry burner includes a high pressure tip-emulsion atomizer for directing a carbonaceous material-water slurry into a combustion chamber for burning therein without requiring a support fuel or oxygen enrichment of the combustion air. Introduction of the carbonaceous material-water slurry under pressure forces it through a fixed atomizer wherein the slurry is reduced to small droplets by mixing with an atomizing air flow and directed into the combustion chamber. The atomizer includes a swirler located immediately adjacent to where the fuel slurry is introduced into the combustion chamber and which has a single center channel through which the carbonaceous material-water slurry flows into a plurality of diverging channels continuous with the center channel from which the slurry exits the swirler immediately adjacent to an aperture in the combustion chamber. The swirler includes a plurality of slots around its periphery extending the length thereof through which the atomizing air flows and by means of which the atomizing air is deflected so as to exert a maximum shear force upon the carbonaceous material-water slurry as it exits the swirler and enters the combustion chamber. A circulating coolant system or boiler feed water is provided around the periphery of the burner along the length thereof to regulate burner operating temperature, eliminate atomizer plugging, and inhibit the generation of sparklers, thus increasing combustion efficiency. A secondary air source directs heated air into the combustion chamber to promote recirculation of the hot combustion gases within the combustion chamber.

  3. Transient radial flow to a well in an unconfined aquifer. Part 1, An evaluation of some conceptual methods

    SciTech Connect

    Narasimhan, T.N.; Zhu, Ming

    1991-08-01

    The analytic solutions of Boulton (1954) and Neuman (1972) for transient flow to a well in an unconfined aquifer are based on the assumption that the role of the unsaturated zone can be adequately accounted for by restricting attention to the release of water from the zone through which the water table moves. Both researchers mathematically treat this released water as a time-dependent source term. The differences between the models of Boulton and Neuman are that the former neglects vertical components of flow in the aquifer, but allows for an exponential process for the release of water as a function of time, whereas the latter assumes instantaneous release from storage, but accounts for vertical components of flow. Given this set of assumptions, we examine the applicability of these two methods using a general purpose numerical model through a process of verification extension and comparison. The issues addressed include: the role of well-bore storage in masking intermediate-time behavior, combined effects of exponential release as well as vertical flow, logic for vertical averaging of drawdowns, and the sensitivity of system response to the magnitude of specific yield. The issue of how good the assumptions of Boulton and Neuman are in the context of the general theory of unsaturated flow is addressed in part 2 of this two-part series of reports.

  4. MHD flow and heat transfer of a viscous fluid over a radially stretching power-law sheet with suction/injection in a porous medium

    NASA Astrophysics Data System (ADS)

    Khan, M.; Munir, A.; Shahzad, A.; Shah, A.

    2015-03-01

    A steady boundary layer flow and heat transfer over a radially stretching isothermal porous sheet is analyzed. Stretching is assumed to follow a radial power law, and the fluid is electrically conducting in the presence of a transverse magnetic field with a very small magnetic Reynolds number. The governing nonlinear partial differential equations are reduced to a system of nonlinear ordinary differential equations by using appropriate similarity transformations, which are solved analytically by the homotopy analysis method (HAM) and numerically by employing the shooting method with the adaptive Runge-Kutta method and Broyden's method in the domain [0,∞). Analytical expressions for the velocity and temperature fields are derived. The influence of pertinent parameters on the velocity and temperature profiles is discussed in detail. The skin friction coefficient and the local Nusselt number are calculated as functions of several influential parameters. The results predicted by both methods are demonstrated to be in excellent agreement. Moreover, HAM results for a particular problem are also compared with exact solutions.

  5. Improvement in Accuracy of Ultrasonic Measurement of Transient Change in Viscoelasticity of Radial Arterial Wall Due to Flow-Mediated Dilation by Adaptive Low-Pass Filtering

    NASA Astrophysics Data System (ADS)

    Ikeshita, Kazuki; Hasegawa, Hideyuki; Kanai, Hiroshi

    2012-07-01

    In our previous study, the stress-strain relationship of the radial arterial wall was measured and the viscoelasticity of the intima-media region was estimated from the stress-strain relationship. Furthermore, the transient change in viscoelasticity due to flow-mediated dilation (FMD) was estimated by the automated detection of wall boundaries. In the present study, the strain rate was adaptively filtered to improve the accuracy of viscoelasticity estimation by decreasing the high-frequency noise. Additionally, in a basic experiment, this method was validated using a silicone tube (simulating artery). In the basic experiment, the elasticity was estimated with a mean error of 1.2%. The elasticity measured at each beam position was highly reproducible among measurements, whereas there was a slight variation in measured elasticity among beams. Consequently, in in vivo measurements, the normalized mean square error (MSE) was clearly decreased. Additionally, the stress-strain relationship of the radial arterial wall was obtained and the viscoelasticity was estimated accurately. The inner small loop, which corresponds to the negative pressure wave caused by the closure of the aortic valve, can be observed using the adaptive low-pass filtering (LPF). Moreover, the transient changes in these parameters were similar to those in the previous study. These results show the potential of the proposed method for the thorough analysis of the transient change in viscoelasticity due to FMD.

  6. Radial lean direct injection burner

    DOEpatents

    Khan, Abdul Rafey; Kraemer, Gilbert Otto; Stevenson, Christian Xavier

    2012-09-04

    A burner for use in a gas turbine engine includes a burner tube having an inlet end and an outlet end; a plurality of air passages extending axially in the burner tube configured to convey air flows from the inlet end to the outlet end; a plurality of fuel passages extending axially along the burner tube and spaced around the plurality of air passage configured to convey fuel from the inlet end to the outlet end; and a radial air swirler provided at the outlet end configured to direct the air flows radially toward the outlet end and impart swirl to the air flows. The radial air swirler includes a plurality of vanes to direct and swirl the air flows and an end plate. The end plate includes a plurality of fuel injection holes to inject the fuel radially into the swirling air flows. A method of mixing air and fuel in a burner of a gas turbine is also provided. The burner includes a burner tube including an inlet end, an outlet end, a plurality of axial air passages, and a plurality of axial fuel passages. The method includes introducing an air flow into the air passages at the inlet end; introducing a fuel into fuel passages; swirling the air flow at the outlet end; and radially injecting the fuel into the swirling air flow.

  7. Suspended-slurry reactor

    DOEpatents

    None

    2016-03-22

    An apparatus for generating a large volume of gas from a liquid stream is disclosed. The apparatus includes a first channel through which the liquid stream passes. The apparatus also includes a layer of catalyst particles suspended in a solid slurry for generating gas from the liquid stream. The apparatus further includes a second channel through which a mixture of converted liquid and generated gas passes. A heat exchange channel heats the liquid stream. A wicking structure located in the second channel separates the gas generated from the converted liquid.

  8. Batch gravitational sedimentation of slurries.

    PubMed

    Chu, C P; Ju, S P; Lee, D J; Mohanty, K K

    2002-01-01

    We investigated the batch settling behavior of the kaolin slurry and the UK ball clay slurry at various initial solids fractions (phi(0)s) using a computerized axial tomography scanner (CATSCAN). The spatio-temporal evolutions of solids fractions in the consolidating sediments were continuously monitored. Since the interface between the sediment and the supernatant of the investigated slurries was blurred, an averaging procedure was employed to estimate their null-stress solids fractions (phi(g)s). Besides the rather slow settling for the high-phi(0) slurries, the basic settling characteristics resemble each other regardless of whether phi(0)>phi(g) or vice versa. The above-mentioned experimental data reveal that the investigated slurries are neither purely elastic nor purely plastic in rheological behavior. On contrary to most model works a blurred supernatant-sediment interface makes difficulty in the gel point determination. During initial settling the high-phi(0) slurries clearly exhibit a finite yield stress to resist deformation. That is, the slurries are plastic fluids. However, the network structure in the slurries deteriorates gradually in the subsequent settling stage while the final, equilibrated sediment reveals a continuous distribution in solids fraction. Restated, the final sediment possesses as a purely elastic characteristic. The model parameters of theory by Buscall and White were regressed by the dynamic consolidating sediment data, while those by Tiller and Leu were obtained using the final equilibrated sediment data. Calculations from both models reveal that ball clay slurry is more compressible than is the kaolin slurry. The high-phi(S0) slurry would yield the less compressible sediment. PMID:16290348

  9. Waste slurry particle properties for use in slurry flow modeling

    SciTech Connect

    JEWETT, J.R.

    2003-01-01

    The Department of Energy's River Protection Project is building a Waste Treatment Plant to convert the nuclear waste stored in the Hanford Site's underground storage tank system into final waste forms

  10. ANALYTICAL APPROXIMATION OF THE BIODEGRADATION RATE FOR IN SITU BIOREMEDIATION OF GROUNDWATER UNDER IDEAL RADIAL FLOW CONDITIONS. (R824785)

    EPA Science Inventory

    We derive the long-term biodegradation rate of an organic contaminant (substrate) for an in situ bioremediation model with axisymmetric flow conditions. The model presumes that a nonsorbing electron acceptor is injected into a saturated homogeneous porous medium which initially c...