Science.gov

Sample records for radiation carcinogenesis comprehensive

  1. Radiation carcinogenesis. Comprehensive final report, 16 May 1979-31 December 1980

    SciTech Connect

    Warren, S; Brown, C E; Gates, O

    1981-03-01

    This abstract covers three main areas of investigation: mesothelioma induction by asbestos, radiation tumorigenesis and transplantable tumors. Canadian and Rhodesian asbestos fibers have been administered under anesthesia to rats by intratracheal, intrapleural and intraperitoneal injection. Additional groups were given 3-methylcholanthrene or x-radiation along with asbestos. A large series of mice also treated as above have displayed mesotheliomas. In addition, glass fiber injections and feeding of asbestos were done and have produced negative results to date. The carcinogenic effect of whole-body radiation on hemi-irradiated parabiont partners exposed to a single 1000 R dose of x-ray was evidenced by a significant increase in the incidence of malignant tumors in only six tissues: skin, supporting soft tissue, kidney, bone, pancreatic islets and ovary. In the male adrenal medulla and in the female breast genetic and parabiotic hormonal factors were judged to exert a significant effect. The occurrence of incisional (anastomotic) sarcomas in significant numbers in hemi-irradiated and parabiont control pairs suggests the operation of mechanical factors complicating the healing process, only slightly enhanced by radiation. One of the very valuable but unanticipated developments of the rat radiation program was the isolation of two transplantable endocrine tumors with strong hormonal potentials: an insulinoma of the pancreas and a pheochromocytoma of the adrenal medulla.

  2. Radiation carcinogenesis: radioprotectors and photosensitizers

    SciTech Connect

    Fry, R.J.M.

    1982-01-01

    This paper outlines 1) some of the salient features of radiation carcinogenesis that are pertinent to the questions of how the carcinogenic effects might be influenced, 2) the effects of radioprotectors on ionizing radiation-induced cancer, and 3) the effect of photosensitizers on UVR-induced skin cancer.

  3. Radiation carcinogenesis: lessons from Chernobyl.

    PubMed

    Williams, D

    2008-12-01

    Radiation is a carcinogen, interacting with DNA to produce a range of mutations. Irradiated cells also show genomic instability, as do adjacent non-irradiated cells (the bystander effect); the importance to carcinogenesis remains to be established. Current knowledge of radiation effects is largely dependent on evidence from exposure to atomic bomb whole body radiation, leading to increases in a wide range of malignancies. In contrast, millions of people were exposed to radioactive isotopes in the fallout from the Chernobyl accident, within the first 20 years there was a large increase in thyroid carcinoma incidence and a possible radiation-related increase in breast cancer, but as yet there is no general increase in malignancies. The increase in thyroid carcinoma, attributable to the very large amounts of iodine 131 released, was first noticed in children with a strong relationship between young age at exposure and risk of developing papillary thyroid carcinoma (PTC). The extent of the increase, the reasons for the relationship to age at exposure, the reduction in attributable fraction with increasing latency and the role of environmental factors are discussed. The large number of radiation-induced PTCs has allowed new observations. The subtype and molecular findings change with latency; most early cases were solid PTCs with RET-PTC3 rearrangements, later cases were classical PTCs with RET-PTC1 rearrangements. Small numbers of many other RET rearrangements have occurred in 'Chernobyl' PTCs, and also rearrangement of BRAF. Five of the N-terminal genes found in papillary carcinoma rearrangements are also involved in rearrangements in hematological malignancies; three are putative tumor suppressor genes, and two are further genes fused to RET in PTCs. Radiation causes double-strand breaks; the rearrangements common in these radiation-induced tumors reflect their etiology. It is suggested that oncogenic rearrangements may commonly involve both a tumor-suppressor gene

  4. A Systems Approach to Radiation Carcinogenesis

    NASA Astrophysics Data System (ADS)

    Hlatky, Lynn

    Understanding carcinogenesis risk is complicated by a number of factors, among these the lack of a common platform to integrate and analyze the available data, and the inherently systemsbiologic nature of the problem. We have investigated mechanistic approaches to radiogenic risk estimation that draw on unifying biological principles and incorporate data from multiscale sources. The resultant modeling takes into account that carcinogenesis is a multi-scale phenomenon, critically influenced by determinants not only at the molecular level, but at the cell and tissue-levels as well. To account for cell-level carcinogenesis progression as influenced by inter-tissue signaling, we have developed a dynamic carrying capacity construct that couples the growth of a tumor with the degree of induced vascularization. We have also characterized the molecular responses to radiation incorporating tissue-level angiogenesis implications, and have found striking radiation-quality-dependent responses. The molecular-level events of initiation and promotion are considered in our Two-Stage Logistic model, while incorporating in a rudimentary way the larger-scale growth-limiting role of cell-cell interactions. These and other recent studies undertaken to elaborate radiation-induced carcinogenesis are discussed, in pursuit of a more complete paradigm for understanding radiation induction of cancer and the consequent risk.

  5. High-let radiation carcinogenesis

    SciTech Connect

    Fry, R.J.M.; Powers-Risius, P.; Alpen, E.L.; Ainsworth, E.J.; Ullrich, R.L.

    1982-01-01

    Recent results for neutron radiation-induced tumors are presented to illustrate the complexities of the dose-response curves for high-LET radiation. It is suggested that in order to derive an appropriate model for dose-response curves for the induction of tumors by high-LET radiation it is necessary to take into account dose distribution, cell killing and the susceptibility of the tissue under study. Preliminary results for the induction of Harderian gland tumors in mice exposed to various heavy ion beams are presented. The results suggest that the effectiveness of the heavy ion beams increases with increasing LET. The slopes of the dose-response curves for the different high-LET radiations decrease between 20 and 40 rads and therefore comparisons of the relative effectiveness should be made from data obtained at doses below about 20 to 30 rads.

  6. Study of chemical and radiation induced carcinogenesis

    SciTech Connect

    Chmura, A.

    1995-11-01

    The study of chemical and radiation induced carcinogenesis has up to now based many of its results on the detection of genetic aberrations using the fluorescent in situ hybridization (FISH) technique. FISH is time consuming and this tends to hinder its use for looking at large numbers of samples. We are currently developing new technological advances which will increase the speed, clarity and functionality of the FISH technique. These advances include multi-labeled probes, amplification techniques, and separation techniques.

  7. Gestational mutations in radiation carcinogenesis

    NASA Astrophysics Data System (ADS)

    Meza, R.; Luebeck, G.; Moolgavkar, S.

    Mutations in critical genes during gestation could increase substantially the risk of cancer. We examine the consequences of such mutations using the Luebeck-Moolgavkar model for colorectal cancer and the Lea-Coulson modification of the Luria-Delbruck model for the accumulation of mutations during gestation. When gestational mutation rates are high, such mutations make a significant contribution to cancer risk even for adult tumors. Furthermore, gestational mutations ocurring at distinct times during emryonic developmemt lead to substantially different numbers of mutated cells at birth, with early mutations leading to a large number (jackpots) of mutated cells at birth and mutation occurring late leading to only a few mutated cells. Thus gestational mutations could confer considerable heterogeneity of the risk of cancer. If the fetus is exposed to an environmental mutagen, such as ionizing radiation, the gestational mutation rate would be expected to increase. We examine the consequences of such exposures during gestation on the subsequent development of cancer.

  8. (Radiation carcinogenesis in the whole body system)

    SciTech Connect

    Fry, R.J.M.

    1990-12-14

    The objectives of the trip were: to take part in and to give the summary of a Symposium on Radiation Carcinogenesis at Tokyo, and to give a talk at the National Institute of Radiological Sciences at Chiba. The breadth of the aspects considered at the conference was about as broad as is possible, from effects at the molecular level to human epidemiology, from the effects of tritium to cancer induction by heavy ions. The events induced by cancer that lead to cancer and the events that are secondary are beginning to come into better focus but much is still not known. Interest in suppressor genes is increasing rapidly in the studies of human tumors and many would predict that the three or four suppressor genes associated with cancer are only the first sighting of a much larger number.

  9. The Dose Response Relationship for Radiation Carcinogenesis

    NASA Astrophysics Data System (ADS)

    Hall, Eric

    2008-03-01

    Recent surveys show that the collective population radiation dose from medical procedures in the U.S. has increased by 750% in the past two decades. It would be impossible to imagine the practice of medicine today without diagnostic and therapeutic radiology, but nevertheless the widespread and rapidly increasing use of a modality which is a known human carcinogen is a cause for concern. To assess the magnitude of the problem it is necessary to establish the shape of the dose response relationship for radiation carcinogenesis. Information on radiation carcinogenesis comes from the A-bomb survivors, from occupationally exposed individuals and from radiotherapy patients. The A-bomb survivor data indicates a linear relationship between dose and the risk of solid cancers up to a dose of about 2.5 Sv. The lowest dose at which there is a significant excess cancer risk is debatable, but it would appear to be between 40 and 100 mSv. Data from the occupation exposure of nuclear workers shows an excess cancer risk at an average dose of 19.4 mSv. At the other end of the dose scale, data on second cancers in radiotherapy patients indicates that cancer risk does not continue to rise as a linear function of dose, but tends towards a plateau of 40 to 60 Gy, delivered in a fractionated regime. These data can be used to estimate the impact of diagnostic radiology at the low dose end of the dose response relationship, and the impact of new radiotherapy modalities at the high end of the dose response relationship. In the case of diagnostic radiology about 90% of the collective population dose comes from procedures (principally CT scans) which involve doses at which there is credible evidence of an excess cancer incidence. While the risk to the individual is small and justified in a symptomatic patient, the same is not true of some screening procedures is asymptomatic individuals, and in any case the huge number of procedures must add up to a potential public health problem. In the

  10. Colorectal Carcinogenesis, Radiation Quality, and the Ubiquitin-Proteasome Pathway

    PubMed Central

    Datta, Kamal; Suman, Shubhankar; Kumar, Santosh; Fornace, Albert J

    2016-01-01

    Adult colorectal epithelium undergoes continuous renewal and maintains homeostatic balance through regulated cellular proliferation, differentiation, and migration. The canonical Wnt signaling pathway involving the transcriptional co-activator β-catenin is important for colorectal development and normal epithelial maintenance, and deregulated Wnt/β-catenin signaling has been implicated in colorectal carcinogenesis. Colorectal carcinogenesis has been linked to radiation exposure, and radiation has been demonstrated to alter Wnt/β-catenin signaling, as well as the proteasomal pathway involved in the degradation of the signaling components and thus regulation of β-catenin. The current review discusses recent progresses in our understanding of colorectal carcinogenesis in relation to different types of radiation and roles that radiation quality plays in deregulating β-catenin and ubiquitin-proteasome pathway (UPP) for colorectal cancer initiation and progression. PMID:26819641

  11. Experimental radiation carcinogenesis: what have we learned

    SciTech Connect

    Fry, R.J.M.

    1980-01-01

    The author reviews the need for animal experiments in development of a biological model for radioinduced carcinogenesis. He concludes they are vital for: (1) study of mechanisms; (2) establishment of generalizations; (3) elucidation of dose-response and time-dose relationships; and (4) determination of dose-distributions and their results, particularly for radionuclides. (PSB)

  12. Modification of radiation carcinogenesis by marihuana

    SciTech Connect

    Montour, J.L.; Dutz, W.; Harris, L.S.

    1981-03-15

    Male, female, and ovariectomized female Sprague-Dawley rats were irradiated with 400 rads, 150 rads, or 300 rads, respectively, of /sup 60/Co gamma rays when they were between 40 and 50 days of age. The animals were injected three times weekly with either marihuana extract or with alcohol-emulphor carrier. Comparable unirradiated groups were similarly injected. Mean survival time in males was significantly shorter in the 400 rad + marihuana group compared with the three other groups whose mean survival times did not differ. Through the 546 days that the males were observed, the total number of tumors other than fibrosarcomas was significantly greater following radiation and marihuana (22) than radiation alone (6). Fifteen of the tumors were of breast or endocrine tissues. No differences were seen in the unirradiated groups. In the females, which were observed for 635 days, the total number of breast tumors was greater with the combined treatment (38) compared with radiation alone (22). This was entirely due to a marked difference in the adenocarcinoma incidence, which was 21 (radiation + marihuana) compared with four (radiation alone). The number of adenofibromas was similar in the two groups. In the unirradiated female groups the breast adenocarcinoma incidence was eight in the marihuana group and two in the control group. Ovariectomy resulted in a lower breast tumor incidence in all groups. Nonbreast tumors were more frequent in the ovariectomized-irradiated groups. Radiation plus marihuana produced more nonbreast tumors (25) than radiation alone (17) in the ovariectomized females.

  13. Modification of radiation carcinogenesis by marijuana

    SciTech Connect

    Montour, J.L.; Dutz, W.; Harris, L.S.

    1981-03-15

    Male, female, and ovariectomized female Sprague-Dawley rats were irradiated with 400 rads, 150 rads, or 300 rads, respectively, of /sup 60/Co gamma rays when they were between 40 and 50 days of age. The animals were injected three times weekly with either marihuana extract or with alcohol-emulphor carrier. Comparable unirradiated groups were similarly injected. Mean survival time in males was significantly shorter in the 400 rad + marihuana group compared with the three other groups whose mean survival times did not differ. Through the 546 days that the males were observed, the total number of tumors other than fibrosarcomas was significantly greater following radiation and marihuana (22) than radiation alone (6). Fifteen of the tumors were of breast or endocrine tissues. No differences were seen in the unirradiated groups. In the females, which were observed for 635 days, the total number of breast tumors was greater with the combined treatment (38) compared with radiation alone (22). This was entirely due to a marked difference in the adenocarcinoma incidence, which was 21 (radiation + marihuana) compared with four (radiation alone). The number of adenofibromas was similar in the two groups. In the unirradiated female groups the breast adenocarcinoma incidence was eight in the marihuana group and two in the control group. Ovariectomy resulted in a lower breast tumor incidence in all groups. Nonbreast tumors were more frequent in the ovariectomized-irradiated groups. Radiation plus marihuana produced more nonbreast tumors (25) than radiation alone (17) in the ovariectomized females.

  14. Low-dose radiation exposure and carcinogenesis.

    PubMed

    Suzuki, Keiji; Yamashita, Shunichi

    2012-07-01

    Absorption of energy from ionizing radiation by the genetic material in the cell leads to damage to DNA, which in turn leads to cell death, chromosome aberrations and gene mutations. While early or deterministic effects result from organ and tissue damage caused by cell killing, latter two are considered to be involved in the initial events that lead to the development of cancer. Epidemiological studies have demonstrated the dose-response relationships for cancer induction and quantitative evaluations of cancer risk following exposure to moderate to high doses of low-linear energy transfer radiation. A linear, no-threshold model has been applied to assessment of the risks resulting from exposure to moderate and high doses of ionizing radiation; however, a statistically significant increase has hardly been described for radiation doses below 100 mSv. This review summarizes our current knowledge of the physical and biological features of low-dose radiation and discusses the possibilities of induction of cancer by low-dose radiation. PMID:22641644

  15. Evidence Report: Risk of Radiation Carcinogenesis

    NASA Technical Reports Server (NTRS)

    Huff, Janice; Carnell, Lisa; Blattnig, Steve; Chappell, Lori; Kerry, George; Lumpkins, Sarah; Simonsen, Lisa; Slaba, Tony; Werneth, Charles

    2016-01-01

    As noted by Durante and Cucinotta (2008), cancer risk caused by exposure to space radiation is now generally considered a main hindrance to interplanetary travel for the following reasons: large uncertainties are associated with the projected cancer risk estimates; no simple and effective countermeasures are available, and significant uncertainties prevent scientists from determining the effectiveness of countermeasures. Optimizing operational parameters such as the length of space missions, crew selection for age and sex, or applying mitigation measures such as radiation shielding or use of biological countermeasures can be used to reduce risk, but these procedures have inherent limitations and are clouded by uncertainties. Space radiation is comprised of high energy protons, neutrons and high charge (Z) and energy (E) nuclei (HZE). The ionization patterns and resulting biological insults of these particles in molecules, cells, and tissues are distinct from typical terrestrial radiation, which is largely X-rays and gamma-rays, and generally characterized as low linear energy transfer (LET) radiation. Galactic cosmic rays (GCR) are comprised mostly of highly energetic protons with a small component of high charge and energy (HZE) nuclei. Prominent HZE nuclei include He, C, O, Ne, Mg, Si, and Fe. GCR ions have median energies near 1 GeV/n, and energies as high as 10 GeV/n make important contributions to the total exposure. Ionizing radiation is a well known carcinogen on Earth (BEIR 2006). The risks of cancer from X-rays and gamma-rays have been established at doses above 50 mSv (5 rem), although there are important uncertainties and on-going scientific debate about cancer risk at lower doses and at low dose rates (<50 mSv/h). The relationship between the early biological effects of HZE nuclei and the probability of cancer in humans is poorly understood, and it is this missing knowledge that leads to significant uncertainties in projecting cancer risks during space

  16. RADIATION CARCINOGENESIS IN CONTEXT: HOW DO IRRADIATED TISSUES BECOME TUMORS?

    PubMed Central

    Barcellos-Hoff, Mary Helen; Nguyen, David H.

    2009-01-01

    It is clear from experimental studies that genotype is an important determinant of cancer susceptibility in general, and for radiation carcinogenesis specifically. It has become increasingly clear that genotype influences not only the ability to cope with DNA damage but also influences the cooperation of other tissues, like the vasculature and immune system, necessary for the establishment of cancer. Our experimental data and that of others suggest that the carcinogenic action of ionizing radiation (IR) can also be considered a two-compartment problem: while IR can alter genomic sequence as a result of DNA damage, it can also induce signals that alter multicellular interactions and phenotypes that underpin carcinogenesis. Rather than being accessory or secondary to genetic damage, we propose that such non-targeted radiation effects create the critical context that promotes cancer development. This review focuses on experimental studies that clearly define molecular mechanisms by which cell interactions contribute to cancer in different organs, and addresses how non-targeted radiation effects may similarly act though the microenvironment. The definition of non-targeted radiation effects and their dose dependence could modify the current paradigms for radiation risk assessment since radiation non-targeted effects, unlike DNA damage, are amenable to intervention. The implications of this perspective in terms of reducing cancer risk after exposure are discussed. PMID:19820454

  17. Studies on the multistage nature of radiation carcinogenesis

    SciTech Connect

    Fry, R.J.M.; Ley, R.D.; Grube, D.; Staffeldt, E.

    1980-01-01

    With low dose levels of ionizing or ultraviolet radiation, the number of initiation events exceeds the number of tumors that grow to a detectable size. Ionizing radiation, which is a complete carcinogen, appears to be a more effective initiator than an enhancer or promoter. However, the initiation and promotion aspects of ionizing radiation have been studied in very few organ systems. In the case of UVR, with or without photosensitizers such as psoralens, the requirement of a relatively large number of exposures for carcinogenesis suggests that the expression of the initiated cells as frank tumors requires a number of events spread out over the time of the development of the tumor. Both ionizing and ultraviolet radiation are, perhaps, underutilized as tools for probing the mechanism of both initiation and promotion.

  18. Smoking and Hormesis as Confounding Factors in Radiation Pulmonary Carcinogenesis

    PubMed Central

    Sanders, Charles L.; Scott, Bobby R.

    2008-01-01

    Confounding factors in radiation pulmonary carcinogenesis are passive and active cigarette smoke exposures and radiation hormesis. Significantly increased lung cancer risk from ionizing radiation at lung doses < 1 Gy is not observed in never smokers exposed to ionizing radiations. Residential radon is not a cause of lung cancer in never smokers and may protect against lung cancer in smokers. The risk of lung cancer found in many epi-demiological studies was less than the expected risk (hormetic effect) for nuclear weapons and power plant workers, shipyard workers, fluoroscopy patients, and inhabitants of high-dose background radiation. The protective effect was noted for low- and mixed high- and low-linear energy transfer (LET) radiations in both genders. Many studies showed a protection factor (PROFAC) > 0.40 (40% avoided) against the occurrence of lung cancer. The ubiquitous nature of the radiation hormesis response in cellular, animal, and epidemio-logical studies negates the healthy worker effect as an explanation for radiation hormesis. Low-dose radiation may stimulate DNA repair/apoptosis and immunity to suppress and eliminate cigarette-smoke-induced transformed cells in the lung, reducing lung cancer occurrence in smokers. PMID:18648572

  19. Epidemiological studies on radiation carcinogenesis in human populations following acute exposure: nuclear explosions and medical radiation

    SciTech Connect

    Fabrikant, J.I.

    1981-05-01

    The current knowledge of the carcinogenic effect of radiation in man is considered. The discussion is restricted to dose-incidence data in humans, particularly to certain of those epidemiological studies of human populations that are used most frequently for risk estimation for low-dose radiation carcinogenesis in man. Emphasis is placed solely on those surveys concerned with nuclear explosions and medical exposures. (ACR)

  20. Radiation-induced instability and its relation to radiation carcinogenesis

    NASA Technical Reports Server (NTRS)

    Ullrich, R. L.; Ponnaiya, B.

    1998-01-01

    PURPOSE: A model that identifies radiation-induced genetic instability as the earliest cellular event in the multi-step sequence leading to radiation-induced cancer was previously proposed. In this paper ongoing experiments are discussed which are designed to test this model and its predictions in mouse mammary epithelial cells. RESULTS: Several lines of evidence are presented that appear to support this model: first, the development of delayed mutations in p53 following irradiation in altered growth variants; secondly, the high frequencies for the induction of both instability and transformation following irradiation in mammary epithelial cells; and finally, the demonstration that susceptibility to the induction of cytogenetic instability is a heritable trait that correlates with susceptibility to transformation and radiation-induced mammary cancer. Mice resistant to transformation and mammary cancer development are also resistant to the development of instability after irradiation. In contrast, mice sensitive to transformation and cancer are also sensitive to the development of cytogenetic instability. CONCLUSIONS: Data from this laboratory and from the studies cited above suggest a specific, and perhaps unique, role for radiation-induced instability as a critical early event associated with initiation of the carcinogenic process.

  1. [Relationship to Carcinogenesis of Repetitive Low-Dose Radiation Exposure].

    PubMed

    Ootsuyama, Akira

    2016-06-01

    We studied the carcinogenic effects caused by repetitive irradiation at a low dose, which has received attention in recent years, and examined the experimental methods used to evaluate radiation-induced carcinogenesis. For this experiment, we selected a mouse with as few autochthonous cancers as possible. Skin cancer was selected as the target for analysis, because it is a rare cancer in mice. Beta-rays were selected as the radiation source. The advantage of using beta-rays is weaker penetration power into tissues, thus protecting organs, such as the digestive and hematogenous organs. The benefit of our experimental method is that only skin cancer requires monitoring, and it is possible to perform long-term experiments. The back skin of mice was exposed repetitively to beta-rays three times a week until the occurrence of cancer or death, and the dose per exposure ranged from 0.5 to 11.8 Gy. With the high-dose range (2.5-11.8 Gy), the latency period and carcinogenic rate were almost the same in each experimental group. When the dose was reduced to 1-1.5 Gy, the latency period increased, but the carcinogenic rate remained. When the dose was further reduced to 0.5 Gy, skin cancer never happened, even though we continued irradiation until death of the last mouse in this group. The lifespan of 0.5 Gy group mice was the same as that of the controls. We showed that the 0.5 Gy dose did not cause cancer, even in mice exposed repetitively throughout their life span, and thus refer to 0.5 Gy as the threshold-like dose. PMID:27302731

  2. Radiation signatures in childhood thyroid cancers after the Chernobyl accident: possible roles of radiation in carcinogenesis.

    PubMed

    Suzuki, Keiji; Mitsutake, Norisato; Saenko, Vladimir; Yamashita, Shunichi

    2015-02-01

    After the Tokyo Electric Power Company Fukushima Daiichi nuclear power plant accident, cancer risk from low-dose radiation exposure has been deeply concerning. The linear no-threshold model is applied for the purpose of radiation protection, but it is a model based on the concept that ionizing radiation induces stochastic oncogenic alterations in the target cells. As the elucidation of the mechanism of radiation-induced carcinogenesis is indispensable to justify the concept, studies aimed at the determination of molecular changes associated with thyroid cancers among children who suffered effects from the Chernobyl nuclear accident will be overviewed. We intend to discuss whether any radiation signatures are associated with radiation-induced childhood thyroid cancers. PMID:25483826

  3. Radiation signatures in childhood thyroid cancers after the Chernobyl accident: Possible roles of radiation in carcinogenesis

    PubMed Central

    Suzuki, Keiji; Mitsutake, Norisato; Saenko, Vladimir; Yamashita, Shunichi

    2015-01-01

    After the Tokyo Electric Power Company Fukushima Daiichi nuclear power plant accident, cancer risk from low-dose radiation exposure has been deeply concerning. The linear no-threshold model is applied for the purpose of radiation protection, but it is a model based on the concept that ionizing radiation induces stochastic oncogenic alterations in the target cells. As the elucidation of the mechanism of radiation-induced carcinogenesis is indispensable to justify the concept, studies aimed at the determination of molecular changes associated with thyroid cancers among children who suffered effects from the Chernobyl nuclear accident will be overviewed. We intend to discuss whether any radiation signatures are associated with radiation-induced childhood thyroid cancers. PMID:25483826

  4. Radiation-induced genomic instability and its implications for radiation carcinogenesis

    NASA Technical Reports Server (NTRS)

    Huang, Lei; Snyder, Andrew R.; Morgan, William F.

    2003-01-01

    Radiation-induced genomic instability is characterized by an increased rate of genetic alterations including cytogenetic rearrangements, mutations, gene amplifications, transformation and cell death in the progeny of irradiated cells multiple generations after the initial insult. Chromosomal rearrangements are the best-characterized end point of radiation-induced genomic instability, and many of the rearrangements described are similar to those found in human cancers. Chromosome breakage syndromes are defined by chromosome instability, and individuals with these diseases are cancer prone. Consequently, chromosomal instability as a phenotype may underlie some fraction of those changes leading to cancer. Here we attempt to relate current knowledge regarding radiation-induced chromosome instability with the emerging molecular information on the chromosome breakage syndromes. The goal is to understand how genetic and epigenetic factors might influence the onset of chromosome instability and the role of chromosomal instability in carcinogenesis.

  5. Important step in radiation carcinogenesis may be inactivation of cellular genes

    SciTech Connect

    Weichselbaum, R.R.; Beckett, M.A.; Diamond, A.A.

    1989-01-01

    The loss of genetic material may result in a predisposition to malignant disease. The best studied example is retinoblastoma where deletion or transcriptional inactivation of a specific gene is associated with the development of the tumor. When hereditary retinoblastoma patients are treated with radiation, the incidence of osteosarcoma within the treatment field is extremely high compared to other cancer patients treated with radiotherapy. These data, together with cytogenetic and molecular data on the development of acute non-lymphocytic leukemia secondary to radiotherapy and chemotherapy treatment suggest that radiation-induced deletions of critical DNA sequences may be an important event in radiation carcinogenesis. Therefore, we propose that radiation-induced tumors may result from deletion of tissue specific regulatory genes. Base alterations caused by radiation in dominantly transforming oncogenes may also contribute to radiation carcinogenesis.62 references.

  6. Health effects of low level radiation: carcinogenesis, teratogenesis, and mutagenesis

    SciTech Connect

    Ritenour, E.R.

    1986-04-01

    The carcinogenic effects of radiation have been demonstrated at high dose levels. At low dose levels, such as those encountered in medical diagnosis, the magnitude of the effect is more difficult to quantify. Three reasons for this difficulty are (1) the effects in human populations are small compared with the natural incidence of cancer in the populations; (2) it is difficult to transfer results obtained in animal studies to the human experience; and (3) the effects of latency period and plateau increase the complexity of population studies. In spite of these difficulties, epidemiologic studies of human populations exposed to low levels of radiation still play a valuable role in the determination of radiation carcinogenecity. They serve to provide upper estimates of risk and to rule out the appearance of new effects that may be masked by the effects of high doses. While there is evidence for mutagenic effects of radiation in experimental animals, no conclusive human data exist at the present. It is not possible to rule out the presence of genetic effects of radiation in humans, however, because many problems exist with regard to the epidemiologic detection of small effects when the natural incidence is relatively large. In animals, subtle effects (eg, a decrease in the probability of survival from egg to adult) may occur with greater frequency than more dramatic disorders in irradiated populations. However, these types of genetic abnormalities are difficult to quantitate. Current risk estimates are based primarily upon data pertaining to dominant mutations in rodents. Some specific locus studies also permit identification of recessive mutation rates. The embryo and fetus are considered to be at greater risk for adverse effects of radiation than is the adult.

  7. Ionizing radiation, inflammation, and their interactions in colon carcinogenesis in Mlh1-deficient mice

    PubMed Central

    Morioka, Takamitsu; Miyoshi-Imamura, Tomoko; Blyth, Benjamin J; Kaminishi, Mutsumi; Kokubo, Toshiaki; Nishimura, Mayumi; Kito, Seiji; Tokairin, Yutaka; Tani, Shusuke; Murakami-Murofushi, Kimiko; Yoshimi, Naoki; Shimada, Yoshiya; Kakinuma, Shizuko

    2015-01-01

    Genetic, physiological and environmental factors are implicated in colorectal carcinogenesis. Mutations in the mutL homolog 1 (MLH1) gene, one of the DNA mismatch repair genes, are a main cause of hereditary colon cancer syndromes such as Lynch syndrome. Long-term chronic inflammation is also a key risk factor, responsible for colitis-associated colorectal cancer; radiation exposure is also known to increase colorectal cancer risk. Here, we studied the effects of radiation exposure on inflammation-induced colon carcinogenesis in DNA mismatch repair-proficient and repair-deficient mice. Male and female Mlh1−/− and Mlh1+/+ mice were irradiated with 2 Gy X-rays when aged 2 weeks or 7 weeks and/or were treated with 1% dextran sodium sulfate (DSS) in drinking water for 7 days at 10 weeks old to induce mild inflammatory colitis. No colon tumors developed after X-rays and/or DSS treatment in Mlh1+/+ mice. Colon tumors developed after DSS treatment alone in Mlh1−/− mice, and exposure to radiation prior to DSS treatment increased the number of tumors. Histologically, colon tumors in the mice resembled the subtype of well-to-moderately differentiated adenocarcinomas with tumor-infiltrating lymphocytes of human Lynch syndrome. Immunohistochemistry revealed that expression of both p53 and β-catenin and loss of p21 and adenomatosis polyposis coli proteins were observed at the later stages of carcinogenesis, suggesting a course of molecular pathogenesis distinct from typical sporadic or colitis-associated colon cancer in humans. In conclusion, radiation exposure could further increase the risk of colorectal carcinogenesis induced by inflammation under the conditions of Mlh1 deficiency. PMID:25529563

  8. Age, sex and other factors in radiation carcinogenesis

    SciTech Connect

    Fry, R.J.M.; Carnes, B.A.

    1988-01-01

    It has been held for a long time that the young are more susceptible than adults to the induction of cancer by radiation. The data in support of that contention are accumulating especially from human studies. In an exposed population a significant fraction of the total population risk may be attributed to the risk associated with those who were young at the time of exposure. Since cancer may not appear for decades after exposure estimates of risk may require models for projecting the lifetime risk. Two such models, additive or absolute risk and multiplicative or relative risk have been used. The appropriateness of the latter model is supported by the finding in mice of a positive relationship between natural incidence and the susceptibility for induction by radiation of solid cancer. The choice of model for leukemias is not clear cut. The incidence of cancer increases with age, but the susceptibility for induction decreases. The incidence of cancers increases to a peak and then begins to decline at different ages, dependent on the type of cancer. Sex-dependent differences in both the natural incidence and the susceptibility for induction of cancer are not restricted to sex organs. For example, the susceptibility for the induction by radiation for myeloid leukemia is greater in males than females, whereas in the case of thymic lymphoma it is vice versa. 25 refs., 5 figs., 3 tabs.

  9. Experimental studies on lung carcinogenesis and their relationship to future research on radiation-induced lung cancer in humans

    SciTech Connect

    Cross, F.T.

    1991-03-01

    The usefulness of experimental systems for studying human lung carcinogenesis lies in the ease of studying components of a total problem. As an example, the main thrust of attack on possible synergistic interactions between radiation, cigarette smoke, and other irritants must be by means of research on animals. Because animals can be serially sacrificed, a systematic search can be made for progressive lung changes, thereby improving our understanding of carcinogenesis. The mechanisms of radiation-induced carcinogenesis have not yet been delineated, but modern concepts of molecular and cellular biology and of radiation dosimetry are being increasingly applied to both in vivo and in vitro exposure to determine the mechanisms of radiation-induced carcinogenesis, to elucidate human data, and to aid in extrapolating experimental animal data to human exposures. In addition, biologically based mathematical models of carcinogenesis are being developed to describe the nature of the events leading to malignancy; they are also an essential part of a rational approach to quantitative cancer risk assessment. This paper summarizes recent experimental and modeling data on radon-induced lung cancer and includes the confounding effects of cigarette-smoke exposures. The applicability of these data to understanding human exposures is emphasized, and areas of future research on human radiation-induced carcinogenesis are discussed. 7 refs., 2 figs., 3 tabs.

  10. Does Imaging Technology Cause Cancer? Debunking the Linear No-Threshold Model of Radiation Carcinogenesis.

    PubMed

    Siegel, Jeffry A; Welsh, James S

    2016-04-01

    In the past several years, there has been a great deal of attention from the popular media focusing on the alleged carcinogenicity of low-dose radiation exposures received by patients undergoing medical imaging studies such as X-rays, computed tomography scans, and nuclear medicine scintigraphy. The media has based its reporting on the plethora of articles published in the scientific literature that claim that there is "no safe dose" of ionizing radiation, while essentially ignoring all the literature demonstrating the opposite point of view. But this reported "scientific" literature in turn bases its estimates of cancer induction on the linear no-threshold hypothesis of radiation carcinogenesis. The use of the linear no-threshold model has yielded hundreds of articles, all of which predict a definite carcinogenic effect of any dose of radiation, regardless of how small. Therefore, hospitals and professional societies have begun campaigns and policies aiming to reduce the use of certain medical imaging studies based on perceived risk:benefit ratio assumptions. However, as they are essentially all based on the linear no-threshold model of radiation carcinogenesis, the risk:benefit ratio models used to calculate the hazards of radiological imaging studies may be grossly inaccurate if the linear no-threshold hypothesis is wrong. Here, we review the myriad inadequacies of the linear no-threshold model and cast doubt on the various studies based on this overly simplistic model. PMID:25824269

  11. Crosstalk between telomere maintenance and radiation effects: A key player in the process of radiation-induced carcinogenesis

    PubMed Central

    Shim, Grace; Ricoul, Michelle; Hempel, William M.; Azzam, Edouard I.; Sabatier, Laure

    2014-01-01

    It is well established that ionizing radiation induces chromosomal damage, both following direct radiation exposure and via non-targeted (bystander) effects, activating DNA damage repair pathways, of which the proteins are closely linked to telomeric proteins and telomere maintenance. Long-term propagation of this radiation-induced chromosomal damage during cell proliferation results in chromosomal instability. Many studies have shown the link between radiation exposure and radiation-induced changes in oxidative stress and DNA damage repair in both targeted and non-targeted cells. However, the effect of these factors on telomeres, long established as guardians of the genome, still remains to be clarified. In this review, we will focus on what is known about how telomeres are affected by exposure to low- and high-LET ionizing radiation and during proliferation, and will discuss how telomeres may be a key player in the process of radiation-induced carcinogenesis. PMID:24486376

  12. Toxicogenomic Effects in Rat Blood Leukocytes and Chemoprophylaxis of Radiation-Induced Carcinogenesis.

    PubMed

    Ivanov, S D; Bespalov, V G; Semenov, A L; Kovan'ko, E G; Aleksandrov, V A

    2016-03-01

    Toxicogenomic parameters were studied in the blood of female rats after exposure to ionizing γ-radiation in a dose of 4 Gy and chemoprophylaxis with α-difluoromethylornithine, eleutherococcus or leuzea extracts, which were used in animals with morphological manifestations of tumor growth under conditions of radiation-induced carcinogenesis. Life-time evaluation of toxicogenomic effects was carried out by express method for measurements of blood nucleotid DNA - fluorescent indication. The level of hyperaneu/polyploidy increased in the blood leukocytes of control rats 30 days after radiation exposure. A significant decrease of genotoxicity as a result of drug treatment in comparison with the number and multiplicity of tumors in irradiated animals was found only in the endocrine and reproductive organs of rats treated by eleutherococcus extract. PMID:27021083

  13. HZE Radiation Non-Targeted Effects on the Microenvironment That Mediate Mammary Carcinogenesis.

    PubMed

    Barcellos-Hoff, Mary Helen; Mao, Jian-Hua

    2016-01-01

    Clear mechanistic understanding of the biological processes elicited by radiation that increase cancer risk can be used to inform prediction of health consequences of medical uses, such as radiotherapy, or occupational exposures, such as those of astronauts during deep space travel. Here, we review the current concepts of carcinogenesis as a multicellular process during which transformed cells escape normal tissue controls, including the immune system, and establish a tumor microenvironment. We discuss the contribution of two broad classes of radiation effects that may increase cancer: radiation targeted effects that occur as a result of direct energy deposition, e.g., DNA damage, and non-targeted effects (NTE) that result from changes in cell signaling, e.g., genomic instability. It is unknown whether the potentially greater carcinogenic effect of high Z and energy (HZE) particle radiation is a function of the relative contribution or extent of NTE or due to unique NTE. We addressed this problem using a radiation/genetic mammary chimera mouse model of breast cancer. Our experiments suggest that NTE promote more aggressive cancers, as evidenced by increased growth rate, transcriptomic signatures, and metastasis, and that HZE particle NTE are more effective than reference γ-radiation. Emerging evidence suggest that HZE irradiation dampens antitumor immunity. These studies raise concern that HZE radiation exposure not only increases the likelihood of developing cancer but also could promote progression to more aggressive cancer with a greater risk of mortality. PMID:27014632

  14. HZE Radiation Non-Targeted Effects on the Microenvironment That Mediate Mammary Carcinogenesis

    PubMed Central

    Barcellos-Hoff, Mary Helen; Mao, Jian-Hua

    2016-01-01

    Clear mechanistic understanding of the biological processes elicited by radiation that increase cancer risk can be used to inform prediction of health consequences of medical uses, such as radiotherapy, or occupational exposures, such as those of astronauts during deep space travel. Here, we review the current concepts of carcinogenesis as a multicellular process during which transformed cells escape normal tissue controls, including the immune system, and establish a tumor microenvironment. We discuss the contribution of two broad classes of radiation effects that may increase cancer: radiation targeted effects that occur as a result of direct energy deposition, e.g., DNA damage, and non-targeted effects (NTE) that result from changes in cell signaling, e.g., genomic instability. It is unknown whether the potentially greater carcinogenic effect of high Z and energy (HZE) particle radiation is a function of the relative contribution or extent of NTE or due to unique NTE. We addressed this problem using a radiation/genetic mammary chimera mouse model of breast cancer. Our experiments suggest that NTE promote more aggressive cancers, as evidenced by increased growth rate, transcriptomic signatures, and metastasis, and that HZE particle NTE are more effective than reference γ-radiation. Emerging evidence suggest that HZE irradiation dampens antitumor immunity. These studies raise concern that HZE radiation exposure not only increases the likelihood of developing cancer but also could promote progression to more aggressive cancer with a greater risk of mortality. PMID:27014632

  15. NSBRI Radiation Effects: Carcinogenesis in Sprague-Dawley Rats Irradiated with Iron Ions, Protons, or Photons

    NASA Technical Reports Server (NTRS)

    Dicello, J. F.; Cucinotta, F. A.; Gridley, D. S.; Howard, S. P.; Novak, G. R.; Ricart-Arbona, R.; Strandberg, J. D.; Vazquez, M. E.; Williams, J. R.; Zhang, Y.; Zhou, H.; Huso, D. L.

    1999-01-01

    Our ability to confidently develop appropriate countermeasures for radiations in space in terms of shielding and design of a spacecraft, the mission scenario, or chemoprevention is severely limited by the uncertainties in both the risk itself and the change in that risk with intervention. Despite the fact that the risk of carcinogenesis from exposures of personnel to radiations on long-term missions is considered one of the worst hazards in space, only a limited amount of in-vivo data exist for tumor induction from exposures to protons or energetic heavy ions (HZEs) at lower doses. The most extensive work remains the landmark study. for tumor development in the harderian gland of the mouse. The objective of this study is to characterize the level of risk for tumor induction in another relevant animal model. Subsequent experiments are designed to test the hypothesis that the level of risk can be reduced by pharmaceutical intervention in the promoting and progressing stages of the disease rather than in the initiating stage. The work presented here results from a cooperative effort on the part of investigators from two projects of the Radiation-Effects Team of the National Space Biomedical Research Institute (NSBRI). The collaborating projects are the Core Project which is investigating the risk of carcinogenesis in Sprague-Dawley rats and the Chemoprevention Project which is investigating the ability of Tamoxifen to reduce the number of malignant tumors in the irradiated animals. Research at the cellular and subcellular levels is being conducted in two other projects of the Radiation-Effects Team, Cytogenetics with J. R. Williams as Principal Investigator and Mutations from Repeated DNA Sequences. Results for these other projects also are being presented at this Workshop.

  16. Stable loss of global DNA methylation in the radiation-target tissue-A possible mechanism contributing to radiation carcinogenesis?

    SciTech Connect

    Koturbash, Igor; Pogribny, Igor; Kovalchuk, Olga . E-mail: olga.kovalchuk@uleth.ca

    2005-11-18

    Radiation-induced lymphomagenesis and leukemogenesis are complex processes involving both genetic and epigenetic changes. Although genetic alterations during radiation-induced lymphoma- and leukemogenesis are fairly well studied, the role of epigenetic changes has been largely overlooked. Rodent models are valuable tools for identifying molecular mechanisms of lymphoma and leukemogenesis. A widely used mouse model of radiation-induced thymic lymphoma is characterized by a lengthy 'pre-lymphoma' period. Delineating molecular changes occurring during the pre-lymphoma period is crucial for understanding the mechanisms of radiation-induced leukemia/lymphoma development. In the present study, we investigated the role of radiation-induced DNA methylation changes in the radiation carcinogenesis target organ-thymus, and non-target organ-muscle. This study is the first report on the radiation-induced epigenetic changes in radiation-target murine thymus during the pre-lymphoma period. We have demonstrated that acute and fractionated whole-body irradiation significantly altered DNA methylation pattern in murine thymus leading to a massive loss of global DNA methylation. We have also observed that irradiation led to increased levels of DNA strand breaks 6 h following the initial exposure. The majority of radiation-induced DNA strand breaks were repaired 1 month after exposure. DNA methylation changes, though, were persistent and significant radiation-induced DNA hypomethylation was observed in thymus 1 month after exposure. In sharp contrast to thymus, no significant persistent changes were noted in the non-target muscle tissue. The presence of stable DNA hypomethylation in the radiation-target tissue, even though DNA damage resulting from initial genotoxic radiation insult was repaired, suggests of the importance of epigenetic mechanisms in the development of radiation-related pathologies. The possible role of radiation-induced DNA hypomethylation in radiation-induced genome

  17. Role of carcinogenesis related mechanisms in cataractogenesis and its implications for ionizing radiation cataractogenesis.

    PubMed

    Hamada, Nobuyuki; Fujimichi, Yuki

    2015-11-28

    Ionizing radiation is a proven human carcinogen and cataractogen. The crystalline lens of the eye is among the most radiosensitive tissues in the body. A clouding of the normally transparent lens (i.e., cataract) is very common. Conversely, the lens continues to grow throughout life without developing tumors, suggesting that the lens possesses strong anti-carcinogenesis mechanisms. There is mounting evidence that mutations of oncogenes, tumor suppressor genes, DNA repair genes involved in base excision repair, nucleotide excision repair, and DNA double-strand break repair, and genes involved in intercellular interactions (e.g., via connexin gap junctions), and inflammation affect cataract development. Associations of these factors with cancer have long been recognized, highlighting that cataractogenesis shares some common mechanisms with carcinogenesis. This paper briefly overviews the current knowledge on the potential involvement of tumor related factors, DNA repair factors, intercellular interactions and inflammation in spontaneous cataractogenesis, and discusses its implications for cataractogenesis induced by targeted and nontargeted effects of ionizing irradiation. PMID:25687882

  18. Ultraviolet radiation in skin ageing and carcinogenesis: the role of retinoids for treatment and prevention.

    PubMed

    Oikarinen, A; Peltonen, J; Kallioinen, M

    1991-01-01

    The mechanisms of UV-induced ageing and carcinogenesis of the skin have been elucidated in animals and humans, and both UVB and UVA radiation have been shown to have deleterious effects on the skin. Thus the use of solaria which deliver mostly UVA radiation is not safe. There is also an increased risk of ageing when using therapeutic UV sources. UV radiation is beneficial in many cases of skin disorders such as psoriasis, atopic eczema, acne and pruritus. Nevertheless by careful patient selection and follow-up the risks of UV can be minimised when treating patients with artificial UV radiation. During recent years there has been intensive research into the development of agents which prevent harmful effects of radiation. The retinoids are particularly interesting as they enhance skin repair after UV damage, have an anticarcinogenic effect and are effective for treating precancerous lesions such as solar keratosis and as adjuvant therapy for skin cancers. Topical retinoids are already used for the treatment of actinic skin damage, and systemic retinoids are also used in certain groups of patients who have an increased risk of contracting skin cancers such as xeroderma pigmentosum. PMID:1756019

  19. Suppression of the later stages of radiation-induced carcinogenesis by antioxidant dietary formulations.

    PubMed

    Kennedy, Ann R; Ware, Jeffrey H; Carlton, William; Davis, James G

    2011-07-01

    We have previously reported data from a long-term carcinogenesis study indicating that dietary antioxidant supplements can suppress radiation-induced malignant lymphoma and harderian gland tumors induced by space radiations (specifically, 1 GeV/n iron ions or protons) in CBA/J mice. Two different antioxidant dietary supplements were used in these studies: a supplement containing a mixture of antioxidant agents [l-selenomethionine (SeM), N-acetyl cysteine (NAC), ascorbic acid, co-enzyme Q10, α-lipoic acid and vitamin E succinate], termed the AOX supplement, and another supplement known as Bowman-Birk Inhibitor Concentrate (BBIC). In the present report, the results from the earlier analysis of the harderian gland data from the published long-term animal study have been combined with new data derived from the same long-term animal study. In the earlier analysis, harderian glands were removed from animals exhibiting abnormalities (e.g. visibly swollen areas) around the eyes at the time of euthanasia or death in the long-term animal study. Abnormalities around the eyes were usually due to the development of tumors in the harderian glands of these mice. The new data presented here focused on the histopathological results obtained from analyses of the harderian glands of mice that did not have visible abnormalities around the eyes at the time of necropsy in the long-term animal study. In this paper, the original published data and the new data have been combined to provide a more complete evaluation of the harderian glands from animals in the long-term carcinogenesis study, with all available harderian glands from the animals processed and prepared for histopathological evaluation. The results indicate that, although dietary antioxidant supplements suppressed harderian gland tumors in a statistically significant fashion when all glands were analyzed, the antioxidant diets were less effective at suppressing the incidence of all harderian gland tumors than they were at

  20. Report of National Cancer Institute symposium: comparison of mechanisms of carcinogenesis by radiation and chemical agents. I. Common molecular mechanisms

    SciTech Connect

    Borg, D.C.

    1984-01-01

    Some aspects of molecular mechanisms common to radiation and chemical carcinogenesis are discussed, particularly the DNA damage done by these agents. Emphasis is placed on epidemiological considerations and on dose-response models used in risk assessment to extrapolate from experimental data obtained at high doses to the effects from long-term, low-level exposures. 3 references, 6 figures. (ACR)

  1. Extension of a generalized state-vector model of radiation carcinogenesis to consideration of dose rate

    SciTech Connect

    Crawford-Brown, D.J. ); Hofmann, W. )

    1993-06-01

    Mathematical models for radiation carcinogenesis typically employ transition rates that either are a function of the dose to specific cells or are purely empirical constructs unrelated to biophysical theory. These functions either ignore or do not explicitly model interactions between the fates of cells in a community. This paper extends a model of mitosis, cell transformation, promotion, and progression to cases in which interacting cellular communities are irradiated at specified dose rates. The model predicts that lower dose rates are less effective at producing cancer when irradiation is by X- or gamma rays but are generally more effective in instances of irradiation by alpha particles up to a dose rate in excess of 0.01 Gy/day. The resulting predictions are compared with existing experimental data. 39 refs., 9 figs., 1 tab.

  2. Atomic Bomb Survivors Life-Span Study: Insufficient Statistical Power to Select Radiation Carcinogenesis Model.

    PubMed

    Socol, Yehoshua; Dobrzyński, Ludwik

    2015-01-01

    The atomic bomb survivors life-span study (LSS) is often claimed to support the linear no-threshold hypothesis (LNTH) of radiation carcinogenesis. This paper shows that this claim is baseless. The LSS data are equally or better described by an s-shaped dependence on radiation exposure with a threshold of about 0.3 Sievert (Sv) and saturation level at about 1.5 Sv. A Monte-Carlo simulation of possible LSS outcomes demonstrates that, given the weak statistical power, LSS cannot provide support for LNTH. Even if the LNTH is used at low dose and dose rates, its estimation of excess cancer mortality should be communicated as 2.5% per Sv, i.e., an increase of cancer mortality from about 20% spontaneous mortality to about 22.5% per Sv, which is about half of the usually cited value. The impact of the "neutron discrepancy problem" - the apparent difference between the calculated and measured values of neutron flux in Hiroshima - was studied and found to be marginal. Major revision of the radiation risk assessment paradigm is required. PMID:26673526

  3. Medical radiation exposure and human carcinogenesis-genetic and epigenetic mechanisms.

    PubMed

    Dincer, Yildiz; Sezgin, Zeynep

    2014-09-01

    Ionizing radiation (IR) is a potential carcinogen. Evidence for the carcinogenic effect of IR radiation has been shown after long-term animal investigations and observations on survivors of the atom bombs in Hiroshima and Nagasaki. However, IR has been widely used in a controlled manner in the medical imaging for diagnosis and monitoring of various diseases and also in cancer therapy. The collective radiation dose from medical imagings has increased six times in the last two decades, and grow continuously day to day. A large number of evidence has revealed the increased cancer risk in the people who had frequently exposed to x-rays, especially in childhood. It has also been shown that secondary malignancy may develop within the five years in cancer survivors who have received radiotherapy, because of IR-mediated damage to healthy cells. In this article, we review the current knowledge about the role of medical x-ray exposure in cancer development in humans, and recently recognized epigenetic mechanisms in IR-induced carcinogenesis. PMID:25256861

  4. Low-level X-radiation effects on functional vascular changes in Syrian hamster cheek pouch epithelium during hydrocarbon carcinogenesis

    SciTech Connect

    Lurie, A.G.; Coghill, J.E.; Rippey, R.M.

    1985-07-01

    Effects of repeated low-level X radiation on functional microvascular changes in hamster cheek pouch epithelium during and following carcinogenesis by 7,12-dimethylbenz(a)anthracene (DMBA) were studied. Hamsters were treated with either radiation, DMBA, radiation + DMBA, or no treatment. Animals were sacrificed at 3-week intervals from 0 to 39 weeks after treatments began. Pouch vascular volume and permeability changes were studied by fractional distributions of radiotracers and were analyzed by a variety of statistical methods which explored the vascular parameters, treatment types, elapsed time, presence of the carcinogen, and histopathologic changes. All treatments resulted in significant changes in vascular volume with time, while only DMBA treatments alone resulted in significant changes in vascular permeability with time. As in prior studies, there were significant vascular volume differences between DMBA and DMBA + radiation groups of tumor-bearing cheek pouches. Radiation significantly affected DMBA-associated vascular volume and permeability changes during carcinogenesis. Several possible explanations for the relationship of these changes to the enhancement of DMBA carcinogenesis are discussed.

  5. Evaluation of dose homogenization and radiation carcinogenesis risk in total body irradiation for bone marrow transplantation.

    PubMed

    Oysul, K; Dirican, B; Beyzadeoglu, M; Sürenkok, S; Arpaci, F; Pak, Y

    2003-01-01

    The purpose of this study is to report on the dose homogeneity in total body irradiated patients undergoing Bone Marrow Transplantation (BMT), and carcinogenic risk in surviving patients. Between 1987 and 2001, 105 patients received hyperfractionated (6 fractions in 3 days) 12 Gy Total Body Irradiation (TBI) in our institution with lateral opposed fields. All the patients had measurements with thermoluminiscence dosimetry (TLD100) placed on seven bilateral body sites in vivo, controlled by the randophantom measurements to verify reasonable dose homogeneity achievement. The comorbid effects in the whole TBI conditioning group with at least three months post BMT follow-up were noted and surviving patients who had a minimum 5-year and maximum 14-year follow-up (median 7.8 years) have been evaluated for carcinogenic radiation risk on the basis of tissue weighting factors as defined by ICRP 60. Reasonable dose homogeneity by lateral opposed beam TBI has been obtained in all 105 patients in whom lateral TLD100 measurement means were within +5% of the planned doses. Calculated carcinogenesis risk factor was 11.34% for males and 12.40% for females, and no second-cancer has been detected whilst radiation-induced 5 cataracts and 10 interstitial pneumonia comorbidities were noted. Dose homogenization can be well achieved for hyperfractionated lateral-beam TBI with acceptable comorbidities and estimated second-cancer risk is significant but relatively low compared to the risk from the clinical indications for TBI. PMID:14628091

  6. Influence of Ionizing Radiation on Stromal-Epithelial Intercellular Communication in Esophageal Carcinogenesis

    NASA Technical Reports Server (NTRS)

    Patel, Zarana S.; Kalabis, Jiri; Rustgi, Anil K.; Cucinotta, Francis A.; Huff, Janice L.

    2010-01-01

    Esophageal cancer is the 6th leading cause of cancer death worldwide. Its development is associated with a variety of risk factors including tobacco use, heavy alcohol consumption, human papilloma virus infection, and certain dietary factors such as trace mineral and vitamin deficiencies. An association with ionizing radiation exposure is revealed by the high excess relative risk for squamous cell carcinoma of the esophagus observed in the survivors of the atomic bomb detonations in Japan. It is also seen as a secondary malignancy in patients who received radiotherapy for breast and thoracic cancers; additionally, patients with head/neck and oral squamous cell cancers are at increased risk for metachronous esophageal squamous cell cancers. This malignancy is rapidly fatal, mainly because it remains asymptomatic until late, advanced stages when the disease is rarely curable. The stromal microenvironment plays an essential role in the maintenance and modulation of normal epithelial cell growth and differentiation and cross talk between the epithelial and stromal compartments can influence many aspects of malignant progression, including tumor cell proliferation, migration, invasion and recruitment of new blood vessels. To test the hypothesis that radiation exposure plays a role in esophageal carcinogenesis via non-targeted mechanisms involving stromal-epithelial cell communication, we are studying radiation effects on hTERT-immortalized human esophageal epithelial cells and genetic variants grown in co-culture with human esophageal stromal fibroblasts (Okawa et al., Genes & Dev. 2007. 21: 2788-2803). We examined how radiation treatment of stromal fibroblasts affected epithelial migration and invasion, behaviors associated with cancer promotion and progression. Chemotactic and haptotactic migration of epithelial cells stimulated by conditioned media from irradiated fibroblasts was measured using assays conducted in Transwell cell culture chambers. Our results using

  7. Influence of Ionizing Radiation on Stromal-Epithelial Communication in Esophageal Carcinogenesis

    NASA Astrophysics Data System (ADS)

    Huff, Janice; Patel, Zarana; Grugan, Katharine; Rustgi, Anil; Cucinotta, Francis A.

    Esophageal cancer is the 6th leading cause of cancer death worldwide and is associated with a variety of risk factors including tobacco use, heavy alcohol consumption, human papilloma virus infection, and certain dietary factors such as trace mineral and vitamin deficiencies. A connection with ionizing radiation exposure is revealed by the high excess relative risk for esophageal squamous cell carcinoma observed in the survivors of the atomic bomb detonations in Japan. Esophageal carcinomas are also seen as secondary malignancies in patients who received radiotherapy for breast and thoracic cancers; additionally, patients with head/neck and oral squamous cell cancers are at increased risk for metachronous esophageal squamous cell cancers. This malignancy is rapidly fatal, mainly because it remains asymptomatic until late, advanced stages when the disease is rarely responsive to treatment. In normal epithelium, the stromal microenvironment is essential for the maintenance and modulation of cell growth and differentiation. Cross talk between the epithelial and stromal compartments can influence many aspects of malignant progression, including tumor cell proliferation, migration, invasion and recruitment of new blood vessels. To test the hypothesis that radiation exposure plays a role in esophageal carcinogenesis via non-targeted mechanisms involving stromal-epithelial cell communication, we are studying radiation effects on hTERT-immortalized human esophageal epithelial cells and genetic variants grown in co-culture with human esophageal stromal fibrob-lasts (Okawa et al., Genes Dev. 2007. 21: 2788-2803). We examined how irradiation of stromal fibroblasts affected epithelial migration and invasion, behaviors associated with cancer promotion and progression. These assays were conducted in modified Boyden chambers using conditioned media from irradiated fibroblasts. Our results using low LET gamma radiation showed a dose-dependent increase in migration of epithelial

  8. Tumor suppressor function of Betaig-H3 gene in radiation carcinogenesis

    NASA Astrophysics Data System (ADS)

    Zhao, Y. L.; Piao, C. Q.; Hei, T. K.

    Interaction between cell and extracellular matrix (ECM) plays a crucial role in tumor invasiveness and metastasis. Using an immortalized human bronchial epithelial (BEP2D) cell model, we showed previously that expression of a list of genes including Betaig-h3 (induced by transforming growth factor-β) DCC (deleted in colorectal cancer), p21 cip1, c-fos , Heat shock protein (HSP27) and cytokeratin 14 were differentially expressed in several independently generated, radiation-induced tumor cell lines (TL1-TL5) relative to parental BEP2D cells. Our previous data further demonstrated that loss of tumor suppressor gene(s) as a likely mechanism of radiation carcinogenesis. In the present study, we chose Betaig-h3 and DCC that were downregulated in tumorigenic cells for further study. Restored expression of Betaig-h3 gene, not DCC gene, by transfecting cDNA into tumor cells resulted in a significant reduction in tumor growth. While integrin receptor α5β1 was overexpressed in tumor cells, its expression was corrected to the level found in control BEP2D cells after Betaig-h3 transfection. These data suggest that Betaig-h3 gene is involved in tumor progression by regulating integrin α5β1 receptor. Furthermore, exogenous TGF-β1 induced expression of Betaig-h3 gene and inhibited the growth of both control and tumorigenic BEP2D cells. Therefore, downregulation of Betaig-h3 gene may results from the decreased expression of upstream mediators such as TGF-β. The findings provide strong evidence that the Betaig-h3 gene has tumor suppressor function in radiation-induced tumorigenic human bronchial epithelial cells and suggest a potential target for interventional therapy.

  9. Carcinogenesis and aging

    SciTech Connect

    Anisimov, V.N.; Petrov, N.N.

    1987-01-01

    This 2-voluem set discusses the problem of inter-relation between carcinogenesis and aging, and the phenomenon of age-related increase in cancer incidence in animals and humans. Covered topics include current concepts in mechanisms of carcinogenesis and aging; data on chemical, radiation, ultraviolet-light, hormonal and viral carcinogenesis in aging; data on the role of age-related shifts in the activity of carcinogen-metabolizing enzymes; binding of carcinogens with macromolecules; DNA repair; tissue proliferation; and immunity and homono-metabolic patterns in realization of initiation and promotion of carcinogenesis.

  10. Epidemiological studies on radiation carcinogenesis in human populations following acute exposure: nuclear explosions and medical radiation

    SciTech Connect

    Fabrikant, J.I.

    1982-08-01

    The present review provides an understanding of our current knowledge of the carcinogenic effect of low-dose radiation in man, and surveys the epidemiological studies of human populations exposed to nuclear explosions and medical radiation. Discussion centers on the contributions of quantitative epidemiology to present knowledge, the reliability of the dose-incidence data, and those relevant epidemiological studies that provide the most useful information for risk estimation of cancer-induction in man. Reference is made to dose-incidence relationships from laboratory animal experiments where they may obtain for problems and difficulties in extrapolation from data obtained at high doses to low doses, and from animal data to the human situation. The paper describes the methods of application of such epidemiological data for estimation of excess risk of radiation-induced cancer in exposed human populations, and discusses the strengths and limitations of epidemiology in guiding radiation protection philosophy and public health policy.

  11. Carcinogenesis and low-level ionizing radiation with special reference to lung cancer and exposure to radon daughters

    SciTech Connect

    Fabrikant, J.I.

    1982-04-01

    Of the important health effects of ionizing radiation, three important late effects - carcinogenesis, teratogenesis and mutagenesis are of greatest concern. This is because any exposure, even at low levels, carries some risk of such deleterious effects. As the dose of radiation increases above very low levels, the risk of health effects increases. Cancer-induction is the most important late somatic effect of low-dose ionizing radiation. Solid cancers, rather than leukemia, are principal late effects in exposed individuals. Tissues vary greatly in their susceptibility to radiation carcinogenesis. The most frequently occurring radiation-induced cancers in man include, in decreasing order of susceptibility: the female breast, the thyroid gland, the blood-forming tissues, the lung, certain organs of the gastrointestinal tract, and the bones. A number of biological and physical factors affect the cancer risk, such as age, sex, life-style, LET, and RBE. Despite uncertainty about low-level radiation risks, regulatory and advisory bodies must set standards for exposure, and individuals need information to be able to make informed judgments for themselves. From the point of view of the policy maker, the overriding concern is the fact that small doses of radiation can cause people to have more cancers than would otherwise be expected. While concern for all radiation effects exists, our human experience is limited to cancer-induction in exposed populations. This discussion is limited to cancer risk estimation and decision-making in relation to the health effects on populations of exposure to low levels of ionizing radiation. Here, low-level radiation will refer to yearly whole-body doses up to 5 rems or 0.05 Sv, or to cumulative doses up to 50 rems or 0.5 Sv from low-LET radiation and from high-LET radiation. (ERB)

  12. Deficient expression of aldehyde dehydrogenase 1A1 is consistent with increased sensitivity of Gorlin syndrome patients to radiation carcinogenesis

    SciTech Connect

    Wright, Aaron T.; Magnaldo, Thierry; Sontag, Ryan L.; Anderson, Lindsey N.; Sadler, Natalie C.; Piehowski, Paul D.; Gache, Yannick; Weber, Thomas J.

    2013-11-27

    Human phenotypes that are highly susceptible to radiation carcinogenesis have been identified. Sensitive phenotypes often display robust regulation of molecular features that modify biological response, which can facilitate identification of relevant pathways/networks. Here we interrogate primary dermal fibroblasts isolated from Gorlin syndrome patients (GDFs), who display a pronounced tumorigenic response to radiation, in comparison to normal human dermal fibroblasts (NHDFs). Our approach exploits newly developed thiol-reactive probes with a flexible click chemistry functional group to define changes in protein thiol profiles in live cell studies, which minimizes artifacts associated with cell lysis. We observe qualitative differences in protein thiol profiles by SDS-PAGE analysis when detection by iodoacetamide vs maleimide probe chemistries are compared, and pretreatment of cells with hydrogen peroxide eliminates detection of the majority of SDS-PAGE bands. Redox probes revealed deficient expression of an apparent 55 kDa protein thiol in GDFs from independent donors, compared with NHDFs. Proteomics tentatively identified this protein as aldehyde dehydrogenase 1A1 (ALDH1A1), a key enzyme regulating retinoic acid synthesis, and this deficiency was confirmed by Western blot. Redox probes revealed additional protein thiol differences between GDFs and NHDFs, including radiation responsive annexin family members. Our results indicate a multifactorial basis for the unusual sensitivity of Gorlin syndrome to radiation carcinogenesis, and the pathways identified have plausible implications for radiation health effects.

  13. Deficient expression of aldehyde dehydrogenase 1A1 is consistent with increased sensitivity of Gorlin syndrome patients to radiation carcinogenesis

    DOE PAGESBeta

    Wright, Aaron T.; Magnaldo, Thierry; Sontag, Ryan L.; Anderson, Lindsey N.; Sadler, Natalie C.; Piehowski, Paul D.; Gache, Yannick; Weber, Thomas J.

    2013-11-27

    Human phenotypes that are highly susceptible to radiation carcinogenesis have been identified. Sensitive phenotypes often display robust regulation of molecular features that modify biological response, which can facilitate identification of relevant pathways/networks. Here we interrogate primary dermal fibroblasts isolated from Gorlin syndrome patients (GDFs), who display a pronounced tumorigenic response to radiation, in comparison to normal human dermal fibroblasts (NHDFs). Our approach exploits newly developed thiol-reactive probes with a flexible click chemistry functional group to define changes in protein thiol profiles in live cell studies, which minimizes artifacts associated with cell lysis. We observe qualitative differences in protein thiol profilesmore » by SDS-PAGE analysis when detection by iodoacetamide vs maleimide probe chemistries are compared, and pretreatment of cells with hydrogen peroxide eliminates detection of the majority of SDS-PAGE bands. Redox probes revealed deficient expression of an apparent 55 kDa protein thiol in GDFs from independent donors, compared with NHDFs. Proteomics tentatively identified this protein as aldehyde dehydrogenase 1A1 (ALDH1A1), a key enzyme regulating retinoic acid synthesis, and this deficiency was confirmed by Western blot. Redox probes revealed additional protein thiol differences between GDFs and NHDFs, including radiation responsive annexin family members. Our results indicate a multifactorial basis for the unusual sensitivity of Gorlin syndrome to radiation carcinogenesis, and the pathways identified have plausible implications for radiation health effects.« less

  14. Deficient Expression of Aldehyde Dehydrogenase 1A1 Is Consistent with Increased Sensitivity of Gorlin Syndrome Patients to Radiation Carcinogenesis

    SciTech Connect

    Wright, Aaron T.; Magnaldo, Thierry; Sontag, Ryan L.; Anderson, Lindsey N.; Sadler, Natalie C.; Piehowski, Paul D.; Gache, Yannick; Weber, Thomas J.

    2015-06-01

    Human phenotypes that are highly susceptible to radiation carcinogenesis have been identified. Sensitive phenotypes often display robust regulation of molecular features that modify biological response, which can facilitate identification of relevant pathways/networks. Here we interrogate primary dermal fibroblasts isolated from Gorlin syndrome patients (GDFs), who display a pronounced tumorigenic response to radiation, in comparison to normal human dermal fibroblasts (NHDFs). Our approach exploits newly developed thiol-reactive probes with a flexible click chemistry functional group to define changes in protein thiol profiles in live cell studies, which minimizes artifacts associated with cell lysis. We observe qualitative differences in protein thiol profiles by SDS-PAGE analysis when detection by iodoacetamide vs maleimide probe chemistries are compared, and pretreatment of cells with hydrogen peroxide eliminates detection of the majority of SDS-PAGE bands. Redox probes revealed deficient expression of an apparent 55 kDa protein thiol in GDFs from independent donors, compared with NHDFs. Proteomics tentatively identified this protein as aldehyde dehydrogenase 1A1 (ALDH1A1), a key enzyme regulating retinoic acid synthesis, and this deficiency was confirmed by Western blot. Redox probes revealed additional protein thiol differences between GDFs and NHDFs, including radiation responsive annexin family members. Our results indicate a multifactorial basis for the unusual sensitivity of Gorlin syndrome to radiation carcinogenesis, and the pathways identified have plausible implications for radiation health effects.

  15. Lack of effect of 94 GHz radio frequency radiation exposure in an animal model of skin carcinogenesis.

    PubMed

    Mason, P A; Walters, T J; DiGiovanni, J; Beason, C W; Jauchem, J R; Dick, E J; Mahajan, K; Dusch, S J; Shields, B A; Merritt, J H; Murphy, M R; Ryan, K L

    2001-10-01

    Although there is no evidence that electromagnetic energy in the radio frequency radiation (RFR) band is mutagenic, there have been suggestions that RFR energy might serve as either a promoter or co-promoter in some animal models of carcinogenesis. Recent developments in electromagnetic technology have resulted in the manufacture of RFR sources capable of generating frequencies in the millimeter wavelength (MMW) range (30-300 GHz). Because absorption of MMW energy occurs in the skin, it is to be expected that long-term detrimental health effects, if any, would most likely be manifest in the skin. In this study we investigated whether a single (1.0 W/cm(2) for 10 s) or repeated (2 exposures/week for 12 weeks, 333 mW/cm(2) for 10 s) exposure to 94 GHz RFR serves as a promoter or co-promoter in the 7,12-dimethylbenz[a]anthracene (DMBA)-induced SENCAR mouse model of skin carcinogenesis. Neither paradigm of MMW exposure significantly affected papilloma development, as evidenced by a lack of effect on tumor incidence and multiplicity. There was also no evidence that MMW exposure served as a co-promoter in DMBA-induced animals repeatedly treated with 12-O-tetradecanoylphorbol 13-acetate. Therefore, we conclude that exposure to 94 GHz RFR under these conditions does not promote or co-promote papilloma development in this animal model of skin carcinogenesis. PMID:11577012

  16. Radiation carcinogenesis and acute radiation mortality in the rat as produced by 2.2 GeV protons

    NASA Technical Reports Server (NTRS)

    Shellabarger, C. J.; Straub, R. F.; Jesseph, J. E.; Montour, J. L.

    1972-01-01

    Biological studies, proton carcinogenesis, the interaction of protons and gamma-rays on carcinogenesis, proton-induced acute mortality, and chemical protection against proton-induced acute mortality were studied in the rat and these proton-produced responses were compared to similar responses produced by gamma-rays or X-rays. Litter-mate mice were assigned to each experimental and control group so that approximately equal numbers of litter mates were placed in each group. Animals to be studied for mammary neoplasia were handled for 365 days post-exposure when all animals alive were killed. All animals were examined frequently for mammary tumors and as these were found, they were removed, sectioned and given a pathologic classification.

  17. Validation of comprehensive space radiation transport code

    SciTech Connect

    Shinn, J.L.; Simonsen, L.C.; Cucinotta, F.A.

    1998-12-01

    The HZETRN code has been developed over the past decade to evaluate the local radiation fields within sensitive materials on spacecraft in the space environment. Most of the more important nuclear and atomic processes are now modeled and evaluation within a complex spacecraft geometry with differing material components, including transition effects across boundaries of dissimilar materials, are included. The atomic/nuclear database and transport procedures have received limited validation in laboratory testing with high energy ion beams. The codes have been applied in design of the SAGE-III instrument resulting in material changes to control injurious neutron production, in the study of the Space Shuttle single event upsets, and in validation with space measurements (particle telescopes, tissue equivalent proportional counters, CR-39) on Shuttle and Mir. The present paper reviews the code development and presents recent results in laboratory and space flight validation.

  18. Test of the linear-NO threshold theory of radiation carcinogenesis for inhaled radon decay products

    SciTech Connect

    Cohen, B.L.

    1995-02-01

    Data on lung cancer mortality rates vs. average radon concentration in homes for 1,601 U.S. counties are used to test the linear-no threshold theory. The widely recognized problems with ecological studies, as applied to this work, are addressed extensively. With or without corrections for variations in smoking prevalence, there is a strong tendency for lung cancer rates to decrease with increasing radon exposure, in sharp contrast to the increase expected from the theory. The discrepancy in slope is about 20 standard deviations. It is shown that uncertainties in lung cancer rates, radon exposures, and smoking prevalence are not important and that confounding by 54 socioeconomic factors, by geography, and by altitude and climate can explain only a small fraction of the discrepancy. Effects of known radon-smoking prevalence correlations-rural people have higher radon levels and smoke less than urban people, and smokers are exposed to less radon than non-smokers-are calculated and found to be trivial. In spite of extensive efforts, no potential explanation for the discrepancy other than failure of the linear-no threshold theory for carcinogenesis from inhaled radon decay products could be found. 46 refs., 2 figs., 7 tabs.

  19. A Rat Model to Study the Effects of Diet-Induced Obesity on Radiation-Induced Mammary Carcinogenesis.

    PubMed

    Imaoka, Tatsuhiko; Nishimura, Mayumi; Daino, Kazuhiro; Morioka, Takamitsu; Nishimura, Yukiko; Uemura, Hiroji; Akimoto, Kenta; Furukawa, Yuki; Fukushi, Masahiro; Wakabayashi, Keiji; Mutoh, Michihiro; Shimada, Yoshiya

    2016-05-01

    A detailed understanding of the relationship between radiation-induced breast cancer and obesity is needed for appropriate risk management and to prevent the development of a secondary cancer in patients who have been treated with radiation. Our goal was to develop an animal model to study the relationship by combining two existing Sprague-Dawley rat models of radiation-induced mammary carcinogenesis and diet-induced obesity. Female rats were fed a high-fat diet for 4 weeks and categorized as obesity prone or obesity resistant based on their body weight at 7 weeks of age, at which time the rats were irradiated with 4 Gy. Control rats were fed a standard diet and irradiated at the same time and in the same manner. All rats were maintained on their initial diets and assessed for palpable mammary cancers once a week for the next 30 weeks. The obesity-prone rats were heavier than those in the other groups. The obesity-prone rats were also younger than the other animals at the first detection of mammary carcinomas and their carcinoma weights were greater. A tendency toward higher insulin and leptin blood levels were observed in the obesity-prone rats compared to the other two groups. Blood angiotensin II levels were elevated in the obesity-prone and obesity-resistant rats. Genes related to translation and oxidative phosphorylation were upregulated in the carcinomas of obesity-prone rats. Expression profiles from human breast cancers were used to validate this animal model. As angiotensin is potentially an important factor in obesity-related morbidities and breast cancer, a second set of rats was fed in a similar manner, irradiated and then treated with an angiotensin-receptor blocker, losartan and candesartan. Neither blocker altered mammary carcinogenesis; analyses of losartan-treated animals indicated that expression of renin in the renal cortex and of Agtr1a (angiotensin II receptor, type 1) in cancer tissue was significantly upregulated, suggesting the presence of

  20. Epigenetic Alterations in Ultraviolet Radiation-Induced Skin Carcinogenesis: Interaction of Bioactive Dietary Components on Epigenetic Targets†

    PubMed Central

    Katiyar, Santosh K.; Singh, Tripti; Prasad, Ram; Sun, Qian; Vaid, Mudit

    2011-01-01

    The importance of epigenetic alterations in the development of various diseases including the cancers has been realized. As epigenetic changes are reversible heritable changes, these can be utilized as an effective strategy for the prevention of cancers. DNA methylation is the most characterized epigenetic mechanism that can be inherited without changing the DNA sequence. Although limited, but available data suggest that silencing of tumor suppressor genes in ultraviolet (UV) radiation-exposed epidermis leads to photocarcinogenesis and is associated with a network of epigenetic modifications including alterations in DNA methylation, DNA methyltransferases and histone acetylations. Various bioactive dietary components have been shown to protect skin from UV radiation-induced skin tumors in animal models. The role of bioactive dietary components, such as, (−)-epicatechins from green tea and proanthocyanidins from grape seeds, has been assessed in chemoprevention of UV-induced skin carcinogenesis and underlying epigenetic mechanism in vitro and in vivo animal models. These bioactive components have the ability to block UV-induced DNA hypermethylation and histone modifications in the skin required for the silencing of tumor suppressor genes (e.g., Cip1/p21, p16INK4a). These information are of importance for understanding the role of epigenetic modulation in UV-induced skin tumor and the chemopreventive mechanism of bioactive dietary components. PMID:22017262

  1. Effects of Ionizing Radiation on Cellular Structures, Induced Instability, and Carcinogenesis

    SciTech Connect

    Resat, Marianne S.; Arthurs, Benjamin J.; Estes, Brian J.; Morgan, William F.

    2006-03-01

    According to the American Cancer Society, the United States can expect 1,368,030 new cases of cancer in 2004 [1]. Among the many carcinogens Americans are exposed to, ionizing radiation will contribute to this statistic. Humans live in a radiation environment. Ionizing radiation is in the air we breathe, the earth we live on, and the food we eat. Man-made radiation adds to this naturally occurring radiation level thereby increasing the chance for human exposure. For many decades the scientific community, governmental regulatory bodies, and concerned citizens have struggled to estimate health risks associated with radiation exposures, particularly at low doses. While cancer induction is the primary concern and the most important somatic effect of exposure to ionizing radiation, potential health risks do not involve neoplastic diseases exclusively but also include somatic mutations that might contribute to birth defects and ocular maladies, and heritable mutations that might impact on disease risks in future generations. Consequently it is important we understand the effect of ionizingradiation on cellular structures and the subsequent long-term health risks associated with exposure to ionizing radiation.

  2. Cell specific radiation dosimetry in skeleton from life-span carcinogenesis studies

    SciTech Connect

    Webster, S.S.J.

    1993-04-05

    The osteogenic sarcoma is the dominant life-threatening pathology in lifespan studies of beagles exposed to alpha-emitting bone-seeking radionuclides. It was deduced from these studies that certain skeletal sites are more prone to develop tumors. This project sought to determine the bone cells at risk and their cell-specific radiation dose. The cell-specific radiation dose values are related to loss and high Ra-226 and Pu-239 induced osteogenic sarcoma sites, to test different dose response hypothesis and predict the extent of effects in humans.

  3. Cell specific radiation dosimetry in skeleton from life-span carcinogenesis studies. Final report

    SciTech Connect

    Webster, S.S.J.

    1993-04-05

    The osteogenic sarcoma is the dominant life-threatening pathology in lifespan studies of beagles exposed to alpha-emitting bone-seeking radionuclides. It was deduced from these studies that certain skeletal sites are more prone to develop tumors. This project sought to determine the bone cells at risk and their cell-specific radiation dose. The cell-specific radiation dose values are related to loss and high Ra-226 and Pu-239 induced osteogenic sarcoma sites, to test different dose response hypothesis and predict the extent of effects in humans.

  4. Dietary feeding of Opuntia humifusa inhibits UVB radiation-induced carcinogenesis by reducing inflammation and proliferation in hairless mouse model.

    PubMed

    Lee, Jin-A; Jung, Bock-Gie; Kim, Tae-Hoon; Lee, Su-Gil; Park, Young-Seok; Lee, Bong-Joo

    2013-01-01

    It has been validated that ultraviolet B (UVB) irradiation induced both squamous and basal cell carcinomas, as a tumor initiator and promoter. Opuntia humifusa is a member of the Cactaceae family which has been demonstrated in our previous study to have a chemopreventive effect in 7, 12-dimethylbenz[a]anthracene and 12-O-tetradecanoylphorbol-13-acetate induced skin carcinogenesis models. Therefore, this study was designed to determine the protective effects of O. humifusa against photocarcinogenesis. O. humifusa was administrated to mice as a dietary feeding, following exposure to UVB radiation (180 mJ/cm(2)) twice a week of 30 weeks for skin tumor development in hairless mice. Dietary O. humifusa inhibited UVB-induced epidermal hyperplasia, infiltration of leukocytes, level of myeloperoxidase and the levels of proinflammatory cytokines, tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β) and interleukin-6 (IL-6), in UVB exposed skin. Also, O. humifusa significantly inhibited both protein and mRNA expression level of cyclooxygenase-2 (COX-2), nitric oxide synthase (iNOS), proliferating cell nuclear antigen (PCNA) and cyclin D1 compared to the non-O. humifusa treated group. Collectively, these results suggest that O. humifusa could inhibit photocarcinogenesis in mouse skin and that protective effect is associated with the inhibition of not only UVB-induced inflammatory responses involving COX-2, iNOS and proinflammatory cytokines, but also the down-regulation of UVB-induced cellular proliferation. PMID:23789636

  5. Carcinogenesis induced by UVA (365-nm) radiation: the dose-time dependence of tumor formation in hairless mice.

    PubMed

    de Laat, A; van der Leun, J C; de Gruijl, F R

    1997-05-01

    Although ultraviolet B (UVB wavelengths 280-315 nm) dominates the carcinogenic effect of sunlight, ultraviolet A (UVA 315-400 nm) is estimated to contribute 10-20% to the carcinogenic dose; a substantial background that is not affected by a depletion of the ozone layer. Furthermore, certain high-power modern tanning lamps emit mainly long wave UVA (UVA1; 340-400 nm). For a proper risk estimate of UVA exposure its carcinogenicity relative to that of UVB exposure needs to be determined more accurately. To this end we determined the dose-time relationship for skin tumor induction in hairless mice that were irradiated daily with custom-made Philips 365-nm sources. Irradiation of the group exposed to the highest of the four daily doses (430, 240, 140 and 75 kJ/m2) had to be discontinued because severe scratching set in after 3 months (no tumors). In the lower dose-groups the prevalence curves for skin carcinomas (percentage of tumor-bearing mice versus logarithm of time) ran virtually parallel, and were similar to those found with daily UVB exposure. However, the relationship between the daily dose (D) and the median tumor induction time (t50) appeared to differ: with UVB we found that t50 D(r) = constant, with r = 0.6, whereas with UVA1 we found r approximately 0.4. This would imply that 365-nm carcinogenesis shows less of a dose-dependency than UVB carcinogenesis, and that 365-nm radiation becomes more carcinogenic, relative to UVB, as the daily doses are lowered. This relative shift at low doses complicates extrapolation of UVB to UVA risks in humans. Based on the t50 from the lowest dose-group we found that the carcinogenicity at 365 nm (per J/m2) is 0.9 x 10(-4) times that at 293 nm, the wavelength of maximum carcinogenicity in hairless mice. This result for 365-nm carcinogenicity falls well within the margins of error of the wavelength dependency that was estimated earlier from experiments with broadband UV sources. PMID:9163689

  6. A Research Agenda for Radiation Oncology: Results of the Radiation Oncology Institute's Comprehensive Research Needs Assessment

    SciTech Connect

    Jagsi, Reshma; Bekelman, Justin E.; Brawley, Otis W.; Deasy, Joseph O.; Le, Quynh-Thu; Michalski, Jeff M.; Movsas, Benjamin; Thomas, Charles R.; Lawton, Colleen A.; Lawrence, Theodore S.; Hahn, Stephen M.

    2012-10-01

    Purpose: To promote the rational use of scarce research funding, scholars have developed methods for the systematic identification and prioritization of health research needs. The Radiation Oncology Institute commissioned an independent, comprehensive assessment of research needs for the advancement of radiation oncology care. Methods and Materials: The research needs assessment used a mixed-method, qualitative and quantitative social scientific approach, including structured interviews with diverse stakeholders, focus groups, surveys of American Society for Radiation Oncology (ASTRO) members, and a prioritization exercise using a modified Delphi technique. Results: Six co-equal priorities were identified: (1) Identify and develop communication strategies to help patients and others better understand radiation therapy; (2) Establish a set of quality indicators for major radiation oncology procedures and evaluate their use in radiation oncology delivery; (3) Identify best practices for the management of radiation toxicity and issues in cancer survivorship; (4) Conduct comparative effectiveness studies related to radiation therapy that consider clinical benefit, toxicity (including quality of life), and other outcomes; (5) Assess the value of radiation therapy; and (6) Develop a radiation oncology registry. Conclusions: To our knowledge, this prioritization exercise is the only comprehensive and methodologically rigorous assessment of research needs in the field of radiation oncology. Broad dissemination of these findings is critical to maximally leverage the impact of this work, particularly because grant funding decisions are often made by committees on which highly specialized disciplines such as radiation oncology are not well represented.

  7. Telomeres and Telomerase in the Radiation Response: Implications for Instability, Reprograming, and Carcinogenesis

    PubMed Central

    Sishc, Brock J.; Nelson, Christopher B.; McKenna, Miles J.; Battaglia, Christine L. R.; Herndon, Andrea; Idate, Rupa; Liber, Howard L.; Bailey, Susan M.

    2015-01-01

    Telomeres are nucleoprotein complexes comprised of tandem arrays of repetitive DNA sequence that serve to protect chromosomal termini from inappropriate degradation, as well as to prevent these natural DNA ends from being recognized as broken DNA (double-strand breaks) and triggering of inappropriate DNA damage responses. Preservation of telomere length requires telomerase, the specialized reverse transcriptase capable of maintaining telomere length via template-mediated addition of telomeric repeats onto the ends of newly synthesized chromosomes. Loss of either end-capping function or telomere length maintenance has been associated with genomic instability or senescence in a variety of settings; therefore, telomeres and telomerase have well-established connections to cancer and aging. It has long been recognized that oxidative stress promotes shortening of telomeres, and that telomerase activity is a radiation-inducible function. However, the effects of ionizing radiation (IR) exposure on telomeres per se are much less well understood and appreciated. To gain a deeper understanding of the roles, telomeres and telomerase play in the response of human cells to IRs of different qualities, we tracked changes in telomeric end-capping function, telomere length, and telomerase activity in panels of mammary epithelial and hematopoietic cell lines exposed to low linear energy transfer (LET) gamma(γ)-rays or high LET, high charge, high energy (HZE) particles, delivered either acutely or at low dose rates. In addition to demonstrating that dysfunctional telomeres contribute to IR-induced mutation frequencies and genome instability, we reveal non-canonical roles for telomerase, in that telomerase activity was required for IR-induced enrichment of mammary epithelial putative stem/progenitor cell populations, a finding also suggestive of cellular reprograming. Taken together, the results reported here establish the critical importance of telomeres and telomerase in the

  8. Telomeres and Telomerase in the Radiation Response: Implications for Instability, Reprograming, and Carcinogenesis.

    PubMed

    Sishc, Brock J; Nelson, Christopher B; McKenna, Miles J; Battaglia, Christine L R; Herndon, Andrea; Idate, Rupa; Liber, Howard L; Bailey, Susan M

    2015-01-01

    Telomeres are nucleoprotein complexes comprised of tandem arrays of repetitive DNA sequence that serve to protect chromosomal termini from inappropriate degradation, as well as to prevent these natural DNA ends from being recognized as broken DNA (double-strand breaks) and triggering of inappropriate DNA damage responses. Preservation of telomere length requires telomerase, the specialized reverse transcriptase capable of maintaining telomere length via template-mediated addition of telomeric repeats onto the ends of newly synthesized chromosomes. Loss of either end-capping function or telomere length maintenance has been associated with genomic instability or senescence in a variety of settings; therefore, telomeres and telomerase have well-established connections to cancer and aging. It has long been recognized that oxidative stress promotes shortening of telomeres, and that telomerase activity is a radiation-inducible function. However, the effects of ionizing radiation (IR) exposure on telomeres per se are much less well understood and appreciated. To gain a deeper understanding of the roles, telomeres and telomerase play in the response of human cells to IRs of different qualities, we tracked changes in telomeric end-capping function, telomere length, and telomerase activity in panels of mammary epithelial and hematopoietic cell lines exposed to low linear energy transfer (LET) gamma(γ)-rays or high LET, high charge, high energy (HZE) particles, delivered either acutely or at low dose rates. In addition to demonstrating that dysfunctional telomeres contribute to IR-induced mutation frequencies and genome instability, we reveal non-canonical roles for telomerase, in that telomerase activity was required for IR-induced enrichment of mammary epithelial putative stem/progenitor cell populations, a finding also suggestive of cellular reprograming. Taken together, the results reported here establish the critical importance of telomeres and telomerase in the

  9. Interactions between 7, 12-dimethylbenz(a)anthracene (DMBA) and repeated low-level X radiation in hamster cheek pouch carcinogenesis: dependence on the relative timing of DMBA and radiation treatments

    SciTech Connect

    Lurie, A.G.

    1982-04-01

    Low-level X radiation was shown to enhance Syrian hamster cheek pouch carcinogenesis by 7,12-dimethylbenz(a)anthracene (DMBA) when radiation was administered concurrently with and following DMBA applications. We studied the effects of altering the timing of radiation and DMBA applications on this enhancement. DMBA in mineral oil was applied twice weekly for 10 weeks and 20 R head and neck X radiation once weekly for 17 weeks. In duplicate studies, animals received radiation, DMBA, or DMBA plus X radiation. In the DMBA plus X-ray group, there were 9 weeks of preirradiation and 7 weeks of concurrent treatments. Radiation alone did not result in any histologically detectable changes. In one study, preirradiation may have reduced the carcinogenic activity of DMBA, while in the second study there were no significant differences in tumor incidences between X radiation plus DMBA and DMBA only groups. Thus, while repeated 20-R-X-ray exposures during the following DMBA applications enhance DMBA carcinogenesis, identical X-ray exposures prior to and during DMBA applications appear either to slightly inhibit or to have no appreciable effect on DMBA carcinogenesis.

  10. Tumor suppression function of the Big-h3 gene in radiation carcinogenesis

    NASA Astrophysics Data System (ADS)

    Zhao, Y.; Piao, C.; Hei, T.

    Interaction between cell and extracellular matrix (ECM) plays a crucial role in tumor invasiveness and metastasis. Using an immortalized human bronchial epithelial (BEP2D) cell model, we show here that expression of Big-h3 gene, a secreted adhesion molecule induced by transforming growth factor- beta (TGF-beta ), is markedly decreased in independently generated, high LET radiation-induced tumor cell lines (TL1-TL5) relative to parental BEP2D cells. Expression of this gene was restored to control level in fusion cell lines between the tumorigenic and parental BEP2D cells that were no longer tumorigenic in nude mice. Transfection of Big-h3 gene into tumor cells resulted in a significant reduction of tumor growth. While integrin receptor alpha 5/beta 1 was overexpressed in tumor cells, its expression was corrected to the level of control BEP2D cells after Big-h3 transfection. These data suggest that Big-h3 is involved in tumor progression by regulating integrin receptor alpha 5/beta 1. . WWee We further show that down regulation of Big-h3 results from loss of expression of TGFbeta1 in tumor cells. The findings provide strong evidence that the Big-h3 gene has tumor suppressor function in radiation induced tumorigenic human bronchial epithelial cells and suggest a potential target for interventional therapy.

  11. Pathophysiology of cell phone radiation: oxidative stress and carcinogenesis with focus on male reproductive system

    PubMed Central

    Desai, Nisarg R; Kesari, Kavindra K; Agarwal, Ashok

    2009-01-01

    Hazardous health effects stemming from exposure to radiofrequency electromagnetic waves (RF-EMW) emitted from cell phones have been reported in the literature. However, the cellular target of RF-EMW is still controversial. This review identifies the plasma membrane as a target of RF-EMW. In addition, the effects of RF-EMW on plasma membrane structures (i.e. NADH oxidase, phosphatidylserine, ornithine decarboxylase) and voltage-gated calcium channels are discussed. We explore the disturbance in reactive oxygen species (ROS) metabolism caused by RF-EMW and delineate NADH oxidase mediated ROS formation as playing a central role in oxidative stress (OS) due to cell phone radiation (with a focus on the male reproductive system). This review also addresses: 1) the controversial effects of RF-EMW on mammalian cells and sperm DNA as well as its effect on apoptosis, 2) epidemiological, in vivo animal and in vitro studies on the effect of RF-EMW on male reproductive system, and 3) finally, exposure assessment and dosimetry by computational biomodeling. PMID:19849853

  12. Arsenic-induced enhancement of ultraviolet radiation carcinogenesis in mouse skin: a dose-response study.

    PubMed Central

    Burns, Fredric J; Uddin, Ahmed N; Wu, Feng; Nádas, Arthur; Rossman, Toby G

    2004-01-01

    The present study was designed to establish the form of the dose-response relationship for dietary sodium arsenite as a co-carcinogen with ultraviolet radiation (UVR) in a mouse skin model. Hairless mice (strain Skh1) were fed sodium arsenite continuously in drinking water starting at 21 days of age at concentrations of 0.0, 1.25, 2.5, 5.0, and 10 mg/L. At 42 days of age, solar spectrum UVR exposures were applied three times weekly to the dorsal skin at 1.0 kJ/m2 per exposure until the experiment ended at 182 days. Untreated mice and mice fed only arsenite developed no tumors. In the remaining groups a total of 322 locally invasive squamous carcinomas occurred. The carcinoma yield in mice exposed only to UVR was 2.4 +/- 0.5 cancers/mouse at 182 days. Dietary arsenite markedly enhanced the UVR-induced cancer yield in a pattern consistent with linearity up to a peak of 11.1 +/- 1.0 cancers/mouse at 5.0 mg/L arsenite, representing a peak enhancement ratio of 4.63 +/- 1.05. A decline occurred to 6.8 +/- 0.8 cancers/mouse at 10.0 mg/L arsenite. New cancer rates exhibited a consistent-with-linear dependence on time beginning after initial cancer-free intervals ranging between 88 and 95 days. Epidermal hyperplasia was elevated by arsenite alone and UVR alone and was greater than additive for the combined exposures as were growth rates of the cancers. These results demonstrate the usefulness of a new animal model for studying the carcinogenic action of dietary arsenite on skin exposed to UVR and should contribute to understanding how to make use of animal data for assessment of human cancer risks in tissues exposed to mixtures of carcinogens and cancer-enhancing agents. PMID:15064167

  13. Comprehensive Craniospinal Radiation for Controlling Central Nervous System Leukemia

    SciTech Connect

    Walker, Gary V.; Shihadeh, Ferial; Kantarjian, Hagop; Allen, Pamela; Rondon, Gabriela; Kebriaei, Partow; O'Brien, Susan; Kedir, Aziza; Said, Mustefa; Grant, Jonathan D.; Thomas, Deborah A.; Gidley, Paul W.; Arzu, Isidora; Pinnix, Chelsea; Reed, Valerie; Dabaja, Bouthaina S.

    2014-12-01

    Purpose: To determine the benefit of radiation therapy (RT) in resolution of neurologic symptoms and deficits and whether the type of RT fields influences central nervous system (CNS) control in adults with CNS leukemia. Methods and Materials: A total of 163 adults from 1996 to 2012 were retrospectively analyzed. Potential associations between use of radiation and outcome were investigated by univariate and multivariate analysis. Results: The median survival time was 3.8 months after RT. Common presenting symptoms were headache in 79 patients (49%), cranial nerve VII deficit in 46 (28%), and cranial nerve II deficit in 44 (27%). RT was delivered to the base of skull in 48 patients (29%), to the whole brain (WB) in 67 (41%), and to the craniospinal axis (CS) in 48 (29%). Among 149 patients with a total of 233 deficits, resolution was observed in 34 deficits (15%), improvement in 126 deficits (54%), stability in 34 deficits (15%), and progression in 39 deficits (17%). The 12-month CNS progression-free survival was 77% among those receiving CS/WB and 51% among those receiving base of skull RT (P=.02). On multivariate analysis, patients who did not undergo stem cell transplantation after RT and base of skull RT were associated with worse CNS progression-free survival. Conclusions: Improvement or resolution of symptoms occurred in two thirds of deficits after RT. Comprehensive radiation to the WB or CS seems to offer a better outcome, especially in isolated CNS involvement.

  14. Comprehensive Craniospinal Radiation for Controlling Central Nervous System Leukemia

    PubMed Central

    Walker, Gary V.; Shihadeh, Ferial; Kantarjian, Hagop; Allen, Pamela; Rondon, Gabriela; Kebriaei, Partow; O’Brien, Susan; Kedir, Aziza; Said, Mustefa; Grant, Jonathan D.; Thomas, Deborah A.; Gidley, Paul W.; Arzu, Isidora; Pinnix, Chelsea; Reed, Valerie; Dabaja, Bouthaina S.

    2016-01-01

    Purpose To determine the benefit of radiation therapy (RT) in resolution of neurologic symptoms and deficits and whether the type of RT fields influences central nervous system (CNS) control in adults with CNS leukemia. Methods and Materials A total of 163 adults from 1996 to 2012 were retrospectively analyzed. Potential associations between use of radiation and outcome were investigated by univariate and multivariate analysis. Results The median survival time was 3.8 months after RT. Common presenting symptoms were headache in 79 patients (49%), cranial nerve VII deficit in 46 (28%), and cranial nerve II deficit in 44 (27%). RT was delivered to the base of skull in 48 patients (29%), to the whole brain (WB) in 67 (41%), and to the craniospinal axis (CS) in 48 (29%). Among 149 patients with a total of 233 deficits, resolution was observed in 34 deficits (15%), improvement in 126 deficits (54%), stability in 34 deficits (15%), and progression in 39 deficits (17%). The 12-month CNS progression-free survival was 77% among those receiving CS/WB and 51% among those receiving base of skull RT (P = .02). On multivariate analysis, patients who did not undergo stem cell transplantation after RT and base of skull RT were associated with worse CNS progression-free survival. Conclusions Improvement or resolution of symptoms occurred in two thirds of deficits after RT. Comprehensive radiation to the WB or CS seems to offer a better outcome, especially in isolated CNS involvement. PMID:25539370

  15. Modeling intercellular interactions during carcinogenesis.

    PubMed

    Sachs, Rainer K; Chan, Michael; Hlatky, Lynn; Hahnfeldt, Philip

    2005-09-01

    By modulating the microenvironment of malignant or premalignant cells, inhibitory or stimulatory signals from nearby cells can play a key role in carcinogenesis. However, current commonly used quantitative models for induction of cancers by ionizing radiation focus on single cells and their progeny. Intercellular interactions are neglected or assumed to be confined to unidirectional radiation bystander effect signals from cells of the same tissue type. We here formulate a parsimoniously parameterized two-stage logistic (TSL) carcinogenesis model that incorporates some effects of intercellular interactions during the growth of premalignant cells. We show that for baseline tumor rates, involving no radiation apart from background radiation, this TSL model gives acceptable fits to a number of data sets. Specifically, it gives the same baseline hazard function, using the same number of adjustable parameters, as does the commonly used two-stage clonal expansion (TSCE) model, so it is automatically applicable to the many data sets on baseline cancer that have been analyzed using the TSCE model. For perturbations of baseline rates due to radiation, the models differ. We argue from epidemiological and laboratory evidence, especially results for the atomic bomb survivors, that for radiation carcinogenesis the TSL model gives results at least as realistic as the TSCE or similar models, despite involving fewer adjustable parameters in many cases. PMID:16137206

  16. Combined therapeutic efficacy of carvacrol and X-radiation against 1,2-dimethyl hydrazine-induced experimental rat colon carcinogenesis.

    PubMed

    Arivalagan, Sivaranjani; Thomas, Nisha Susan; Chandrasekaran, Balaji; Mani, Vijay; Siddique, Aktarul Islam; Kuppsamy, Thayalan; Namasivayam, Nalini

    2015-12-01

    Colon cancer is one of the most commonly diagnosed cancers, and is a major cause of cancer morbidity and mortality worldwide. The objective of the present study is to evaluate the combined therapeutic efficacy of carvacrol (CVC) and X-radiation against 1,2-dimethylhydrazine-induced colon cancer. Male albino Wistar rats were randomly divided into six groups. Group 1 served as control; group 2 received 40 mg/kg b.wt of CVC orally everyday throughout the experimental period (32 weeks); groups 3-6 received subcutaneous injections of DMH (20 mg/kg b.wt), once a week for the first 15 weeks; group 4 received a single dose of X-radiation at the 31st week; group 5 received CVC (40 mg/kg b.wt) two days after the last injection of DMH and continued everyday till the end of the experimental period; group 6 received CVC as in group 5 and radiation as in group 4. DMH-treated rats showed increased incidence of aberrant crypt foci (ACF), dysplastic aberrant crypt foci (DACF), mast cell number, argyrophilic nucleolar organizer regions; elevated activities of phase I enzymes, decreased activities of phase II enzymes, decreased mucin content and altered colonic and liver histology as compared to control rats. Though the individual treatments with CVC and X-radiation to DMH-treated rats reversed the above changes, the combined treatment with both CVC and X-radiation showed a marked effect. Our findings emphasize the potential role of combined therapeutic effect of CVC and X-radiation against DMH-induced colon carcinogenesis. PMID:26264073

  17. Radiogenic cell transformation and carcinogenesis

    NASA Technical Reports Server (NTRS)

    Yang, T. C.; Georgy, K. A.; Mei, M.; Durante, M.; Craise, L. M.

    1995-01-01

    Radiation carcinogenesis is one of the major biological effects considered important in the risk assessment for space travel. Various biological model systems, including both cultured cells and animals, have been found useful for studying the carcinogenic effects of space radiations, which consist of energetic electrons, protons and heavy ions. The development of techniques for studying neoplastic cell transformation in culture has made it possible to examine the cellular and molecular mechanisms of radiation carcinogenesis. Cultured cell systems are thus complementary to animal models. Many investigators have determined the oncogenic effects of ionizing and nonionizing radiation in cultured mammalian cells. One of the cell systems used most often for radiation transformation studies is mouse embryonic cells (C3H10T1/2), which are easy to culture and give good quantitative dose-response curves. Relative biological effectiveness (RBE) for heavy ions with various energies and linear energy transfer (LET) have been obtained with this cell system. Similar RBE and LET relationship was observed by investigators for other cell systems. In addition to RBE measurements, fundamental questions on repair of sub- and potential oncogenic lesions, direct and indirect effect, primary target and lesion, the importance of cell-cell interaction and the role of oncogenes and tumor suppressor genes in radiogenic carcinogenesis have been studied, and interesting results have been found. Recently several human epithelial cell systems have been developed, and ionizing radiation have been shown to transform these cells. Oncogenic transformation of these cells, however, requires a long expression time and/or multiple radiation exposures. Limited experimental data indicate high-LET heavy ions can be more effective than low-LET radiation in inducing cell transformation. Cytogenetic and molecular analyses can be performed with cloned transformants to provide insights into basic genetic

  18. Carcinogenesis and low-level ionizing radiation with special reference to lung cancer and exposure to radon daughters

    SciTech Connect

    Fabrikant, J.I.

    1982-06-01

    The quantitative estimation of the carcinogenic risk of low-dose, high-LET radiation in the case of exposure to radon daughters and lung-cancer is subject to numerous uncertainties. The greatest of these concerns the parametric values of the dose-response curve. We lack knowledge and an understanding of the dosimetry and the distribution of aggregates of radioactivity that remain localized as hot spots in specific regions of the lungs and the influence on greater or lesser risk of lung cancer per average lung dose than uniformly deposited radiation (NRC76). We have only a limited understanding of the response to exposure to high-LET radiations, such as alpha particles, for which linear risk estimates for low doses are less likely to overestimate the risk, and may, in fact, underestimate the risk (BEIR80). Other uncertainties include the length of the latency period, the RBE for alpha radiation relative to gamma radiation, the period during which the radiation risk is expressed, the risk projection model used - whether absolute or relative - for projecting risk beyond the period of observation, the effect of dose rate and protraction of dose, and the influence of differences in the natural incidence of lung cancer in different populations. In addition, uncertainties are introduced by the biological and life-style risk characteristics of humans, for example, the effect of sex, the effect of age at the time of irradiation and at the time of appearance of the cancer, the influence of length of observation or follow-up of the study populations, and the influence of perhaps the most important confounding bias, cigarette-smoking. The collective influence of these uncertainties is such as to deny great credibility to any estimate of human lung cancer risk and other cancer risk that can be made for low-dose, high-LET radon daughter radiation exposure.

  19. Comprehension.

    ERIC Educational Resources Information Center

    Bollenbach, Carolyn

    1986-01-01

    Teaching comprehension skills requires teaching to intuition with activities such as presenting puzzling situations to introduce a topic, using art to elicit latent feelings, using imagery and improvisations to enhance visualization, and using music and dance to encourage nonverbal expressions. (DB)

  20. Report on NCI symposium: comparison of mechanisms of carcinogenesis by radiation and chemical agents. II. Cellular and animal models

    SciTech Connect

    Fry, R.J.M.

    1984-01-01

    The point at which the common final pathway for induction of cancer by chemical carcinogens and ionizing radiation has not been identified. Although common molecular targets are suggested by recent findings about the role of oncogenes, the mechanism by which the deposition of radiation energy and the formation of adducts or other DNA lesions induced by chemicals affects the changes in the relevant targets may be quite different. The damage to DNA that plays no part in the transformation events, but that influences the stability of the genome, and therefore, the probability of subsequent changes that influence tumorigenesis may be more readily induced by some agents than others. Similarly, the degree of cytotoxic effects that disrupt tissue integrity and increase the probability of expression of initiated cells may be dependent on the type of carcinogen. Also, evidence was presented that repair of the initial lesions could be demonstrated after exposure to low-LET radiation but not after exposure to chemical carcinogens.

  1. Use of a State-Vector Model of Radiation Carcinogenesis to Integrate Information from in vitro, in vivo, Epidemiological and Physiological Studies

    SciTech Connect

    Doug Crawford-Brown; Marc Serre

    2006-06-01

    This project focused on extension of a generalized state-vector model developed by Crawford-Brown and Hofmann (1-4). The model incorporates phenomena such as DNA damage and repair, intercellular communication mechanisms, both spontaneous and radiation-induced cell death and cell division, to predict cellular transformation following exposure to ionizing radiation. Additionally, this model may be simulated over time periods that correspond to the temporal scale of biological mechanisms. The state-vector model has been shown to generally reproduce transformation frequency patterns for in vitro studies (2), but still significantly underpredicted in vivo cancer incidence data at the higher doses for high-LET radiations when biologically realistic rate constants for cell killing are included (1). Mebust et al. (1) claimed that one reason for this underprediction might be that the model's ability to fit the in vitro data is due in part to compensating errors that only reveal themselves when the more complex in vivo and epidemiological data are considered. This implies that the original in vitro model may be based on incomplete assumptions regarding the underlying biological mechanisms. The present research considered this explanation for the case of low LET radiation. An extension of the in vitro state-vector model was tested that includes additional biological mechanisms in order to improve model predictions with respect to dose-response data on in vitro oncogenic transformation of C3H10T1/2 mouse fibroblast cells exposed to acute doses of X-radiation (5). These data display a plateau of transformation frequency per surviving cell in the X-ray dose range of 0.1 to 1 Gy, with an increase in transformation frequency at higher acute doses. To reproduce these trends in the data, additional biological processes were formulated mathematically and incorporated into the existing model as parameters whose values could be adjusted and tested by an optimization method (genetic

  2. Somatic cell mutations at the glycophorin A locus in erythrocytes of atomic bomb survivors: Implications for radiation carcinogenesis

    SciTech Connect

    Kyoizumi, Seishi; Akiyama, Mitoshi; Tanabe, Kazumi; Hirai, Yuko; Kusunoki, Yoichiro; Umeki, Shigeko

    1996-07-01

    To clarify the relationship between somatic cell mutations and radiation exposure, the frequency of hemizygous mutant erythrocytes at the glycophorin A (GPA) locus was measured by flow cytometry for 1,226 heterozygous atomic bomb (A-bomb) survivors in HIroshima and Nagasaki. For statistical analysis, both GPA mutant frequency and radiation dose were log-transformed to normalize skewed distributions of these variables. The GPA mutant frequency increased slightly but significantly with age at testing and with the number of cigarettes smoked. Also, mutant frequency was significantly higher in males than in females even with adjustment for smoking and was higher to Hiroshima than in Nagasaki. These characteristics of background GPA mutant frequency are qualitatively similar to those of background solid cancer incidence or mortality obtained from previous epidemiological studies of survivors. An analysis of the mutant frequency dose response using a descriptive model showed that the doubling dose is about 1.20 Sv [95% confidence interval (CI): 0.95-1.56], whereas the minimum dose for detecting a significant increase in mutant frequency is about 0.24 Sv (95% CI: 0.041-0.51). No significant effects of sex, city or age at the time of exposure on the dose response were detected. Interestingly, the doubling dose of the GPA mutant frequency was similar to that of solid cancer incidence in A-bomb survivors. This observation is in line with the hypothesis that radiation-induced somatic cell mutations are the major cause of excess cancer risk after radiation. 49 refs., 6 figs., 2 tabs.

  3. Probability of Causation for Space Radiation Carcinogenesis Following International Space Station, Near Earth Asteroid, and Mars Missions

    NASA Technical Reports Server (NTRS)

    Cucinotta, Francis A.; Kim, Myung-Hee Y.; Chappell, Lori J.

    2012-01-01

    Cancer risk is an important concern for International Space Station (ISS) missions and future exploration missions. An important question concerns the likelihood of a causal association between a crew members radiation exposure and the occurrence of cancer. The probability of causation (PC), also denoted as attributable risk, is used to make such an estimate. This report summarizes the NASA model of space radiation cancer risks and uncertainties, including improvements to represent uncertainties in tissue-specific cancer incidence models for never-smokers and the U.S. average population. We report on tissue-specific cancer incidence estimates and PC for different post-mission times for ISS and exploration missions. An important conclusion from our analysis is that the NASA policy to limit the risk of exposure-induced death to 3% at the 95% confidence level largely ensures that estimates of the PC for most cancer types would not reach a level of significance. Reducing uncertainties through radiobiological research remains the most efficient method to extend mission length and establish effective mitigators for cancer risks. Efforts to establish biomarkers of space radiation-induced tumors and to estimate PC for rarer tumor types are briefly discussed.

  4. Validation of a comprehensive space radiation transport code.

    PubMed

    Shinn, J L; Cucinotta, F A; Simonsen, L C; Wilson, J W; Badavi, F F; Badhwar, G D; Miller, J; Zeitlin, C; Heilbronn, L; Tripathi, R K; Clowdsley, M S; Heinbockel, J H; Xapsos, M A

    1998-12-01

    The HZETRN code has been developed over the past decade to evaluate the local radiation fields within sensitive materials on spacecraft in the space environment. Most of the more important nuclear and atomic processes are now modeled and evaluation within a complex spacecraft geometry with differing material components, including transition effects across boundaries of dissimilar materials, are included. The atomic/nuclear database and transport procedures have received limited validation in laboratory testing with high energy ion beams. The codes have been applied in design of the SAGE-III instrument resulting in material changes to control injurious neutron production, in the study of the Space Shuttle single event upsets, and in validation with space measurements (particle telescopes, tissue equivalent proportional counters, CR-39) on Shuttle and Mir. The present paper reviews the code development and presents recent results in laboratory and space flight validation. PMID:11542474

  5. Carcinogenesis From Inhaled (PuO2)-Pu-239 in Beagles: Evidence for Radiation Homeostasis at Low Doses?

    SciTech Connect

    Fisher, Darrell R.; Weller, Richard E.

    2010-09-01

    From the early 1970s to the late 1980s, Pacific Northwest National Laboratory conducted life-span studies in beagle dogs on the biological effects of inhaled plutonium (239PuO2, 238PuO2, and 239Pu[NO3]4) to help predict risks associated with accidental intakes in workers. Years later, the purpose of the present follow-up study is to reassess the dose-response relationship for lung cancer induction in the 239PuO2 dogs compared to controls, with particular focus on the dose-response at low lung doses. A 239PuO2 aerosol (2.3 μm AMAD, 1.9 μm GSD) was administered to six groups of 20 young (18-month old) beagle dogs (10 males and 10 females) by inhalation at six different activity levels, as previously described in Laboratory reports. Control dogs were sham-exposed. In dose level 1, initial pulmonary lung depositions were 130 ± 48 Bq (3.5 ± 1.3 nCi), corresponding to 1 Bq g-1 lung tissue (0.029 ± 0.001 nCi g-1. Groups 2 through 6 received initial lung depositions (mean values) of 760, 2724, 10345, 37900, and 200000 Bq (22, 79, 300, 1100, and 5800 nCi) 239PuO2, respectively. For each dog, the absorbed dose to lungs was calculated from the initial lung burden and the final lung burden at time of death and lung mass, assuming a single, long-term retention function. Insoluble plutonium oxide exhibited long retention times in the lungs. Increased dose-dependent mortality due to lung cancer (bronchiolar-alveolar carcinoma, adenocarcinoma, epidermoid carcinoma) and radiation pneumonitis (highest exposures group) was observed in dogs exposed to 239PuO2. Calculated lung doses ranged from a few cGy in early-sacrificed dogs to 7764 cGy in dogs that experienced early deaths from radiation pneumonitis. Data were regrouped by lifetime lung dose and plotted as a function of lung tumor incidence. Lung tumor incidence in controls and zero-dose exposed dogs was 18% (5/28). However, no lung tumors were observed in 16 dogs with the lowest lung doses (8 to 22 cGy, mean 14.4 ± 7.6 c

  6. Dietary feeding of silibinin prevents early biomarkers of UVB radiation-induced carcinogenesis in SKH-1 hairless mouse epidermis.

    PubMed

    Gu, Mallikarjuna; Dhanalakshmi, Sivanandhan; Singh, Rana P; Agarwal, Rajesh

    2005-05-01

    Solar radiation is the causal etiologic factor in the development of nonmelanoma skin cancer (NMSC). Depletion of the stratospheric ozone layer leads to an increase in ambient UV radiation loads, which are expected to further raise skin cancer incidence in many temperate parts of the world, including the United States, suggesting that skin cancer chemopreventive approaches via biomarker efficacy studies or vice versa are highly warranted. Based on our recent study reporting strong efficacy of silibinin against photocarcinogenesis, we assessed here the protective effects of its dietary feeding on UVB-induced biomarkers involved in NMSC providing a mechanistic rationale for an early-on silibinin efficacy in skin cancer prevention. Dietary feeding of silibinin at 1% dose (w/w) to SKH-1 hairless mice for 2 weeks before a single UVB irradiation at 180 mJ/cm(2) dose resulted in a strong and significant (P < 0.001) decrease in UVB-induced thymine dimer-positive cells and proliferating cell nuclear antigen, terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling, and apoptotic sunburn cells together with an increase (P < 0.001) in p53 and p21/cip1-positive cell population in epidermis. These findings suggest that dietary feeding of silibinin affords strong protection against UVB-induced damages in skin epidermis by (a) either preventing DNA damage or enhancing repair, (b) reducing UVB-induced hyperproliferative response, and (c) inhibiting UVB-caused apoptosis and sunburn cell formation, possibly via silibinin-caused up-regulation of p53 and p21/cip1 as major UVB-damage control sensors. PMID:15894701

  7. 2013 Space Radiation Standing Review Panel Status Review for: The Risk of Acute and Late Central Nervous System Effects from Radiation Exposure, The Risk of Acute Radiation Syndromes Due to Solar Particle Events (SPEs), The Risk Of Degenerative Tissue Or Other Health Effects From Radiation Exposure, and The Risk of Radiation Carcinogenesis

    NASA Technical Reports Server (NTRS)

    2014-01-01

    The Space Radiation Standing Review Panel (from here on referred to as the SRP) was impressed with the strong research program presented by the scientists and staff associated with NASA's Space Radiation Program Element and National Space Biomedical Research Institute (NSBRI). The presentations given on-site and the reports of ongoing research that were provided in advance indicated the potential Risk of Acute and Late Central Nervous System Effects from Radiation Exposure (CNS) and were extensively discussed by the SRP. This new data leads the SRP to recommend that a higher priority should be placed on research designed to identify and understand these risks at the mechanistic level. To support this effort the SRP feels that a shift of emphasis from Acute Radiation Syndromes (ARS) and carcinogenesis to CNS-related endpoints is justified at this point. However, these research efforts need to focus on mechanisms, should follow pace with advances in the field of CNS in general and should consider the specific comments and suggestions made by the SRP as outlined below. The SRP further recommends that the Space Radiation Program Element continue with its efforts to fill the vacant positions (Element Scientist, CNS Risk Discipline Lead) as soon as possible. The SRP also strongly recommends that NASA should continue the NASA Space Radiation Summer School. In addition to these broad recommendations, there are specific comments/recommendations noted for each risk, described in detail below.

  8. RAPID BODY WEIGHT GAIN INCREASES THE RISK OF ULTRAVIOLET RADIATION-INDUCED SKIN CARCINOGENESIS IN SKH-1 HAIRLESS MICE

    PubMed Central

    Dinkova-Kostova, Albena T.; Fahey, Jed W.; Jenkins, Stephanie N.; Wehage, Scott L.; Talalay, Paul

    2008-01-01

    Although it is well known that caloric restriction reduces the risk of chronic diseases including cancer, the role of weight gain in the development of ultraviolet light-induced tumors has not, to our knowledge, been investigated. In view of the increase in obesity worldwide, we asked the question whether there is any relationship between body weight gain and skin tumor development. We subjected three groups, each comprising 30 SKH-1 hairless female mice, to UV radiation (30 mJ/cm2 twice weekly for 17 weeks) and observed tumor formation over the ensuing 8–13 weeks: Group 1 received pelleted diet; Group 2 received pellets during the irradiation period and was then switched to powder; and, Group 3 received powder exclusively. At the end of the experiment, the mean body weight of Group 1 was 32.1 ± 0.5 g, whereas that of Groups 2 and 3 was 39.0 ± 1.5 g and 39.5 ± 1.4 g, respectively. Tumor incidence reached 90% at 8 weeks after completion of irradiation for the animals in Group 3 and at 13 weeks for the animals in Group 2. Similarly, at 8 weeks after irradiation when all animals of Group 3 were euthanized, tumor multiplicity was 0.8, 1.2, and 3.2 for Groups 1, 2, and 3, respectively. Thus, in comparison with the mice consuming pellets, the powder-fed mice gained weight more rapidly, and developed tumors much faster. Considering the escalating numbers of individuals worldwide who are overweight or obese, our findings provide further impetus for advocating healthier diets and maintenance of constant body weight in adults. PMID:19083457

  9. Comprehensive microRNA profiling of prostate cancer cells after ionizing radiation treatment.

    PubMed

    Leung, Chung-Man; Li, Sung-Chou; Chen, Ting-Wen; Ho, Meng-Ru; Hu, Ling-Yueh; Liu, Wen-Shan; Wu, Tony T; Hsu, Ping-Chi; Chang, Hong-Tai; Tsai, Kuo-Wang

    2014-03-01

    MicroRNAs (miRNAs) are small, non-coding RNAs that negatively regulate gene expression and have emerged as potential biomarkers in radiation response to human cancer. Only a few miRNAs have been identified in radiation response to prostate cancer and the involvement of the radiation-associated miRNA machinery in the response of prostate cancer cells to radiation is not thoroughly understood. Therefore, the purpose of the present study was to comprehensively investigate the expression levels, arm selection preference and isomiRs of radiation-response miRNAs in radiation-treated PC3 cells using a next-generation sequencing (NGS) approach. Our data revealed that the arm selection preference and 3' modification of miRNAs may be altered in prostate cancer after radiation exposure. In addition, the proportion of AA dinucleotide modifications at the end of the read gradually increased in a time-dependent manner after PC3 radiation treatment. We also identified 6 miRNAs whose expression increased and 16 miRNAs whose expression decreased after exposure to 10 Gy of radiation. A pathway enrichment analysis revealed that the target genes of these radiation-induced miRNAs significantly co-modulated the radiation response pathway, including the mitogen-activated protein kinase (MAPK), Wnt, transforming growth factor-β (TGF-β) and ErbB signaling pathways. Furthermore, analysis of The Cancer Genome Atlas (TCGA) database revealed that the expression of these radiation-induced miRNAs was frequently dysregulated in prostate cancer. Our study identified radiation-induced miRNA candidates which may contribute to radiosensitivity and can be used as biomarkers for radiotherapy. PMID:24452514

  10. Radiation carcinogenesis in man: influence of dose-response models and risk projection models in the estimation of risk coefficients following exposure to low-level radiation

    SciTech Connect

    Fabrikant, J.I.

    1982-02-01

    The somatic effects of concern in human populations exposed to low doses and low dose rates of ionizing radiations are those that may be induced by mutation in individual cells, singly or in small numbers. The most important of these is considered to be cancer induction. Current knowledge of the carcinogenic effect of radiation in man has been reviewed in two recent reports: the 1977 UNSCEAR Report; and the 1980 BEIR-III Report. Both reports emphasize that cancers of the breast, thyroid, hematopoietic tissues, lung, and bone can be induced by radiation. Other cancers, including the stomach, pancreas, pharynx, lymphatic, and perhaps all tissues of the body, may also be induced by radiation. Both reports calculate risk estimates in absolute and relative terms for low-dose, low-LET whole-body exposure, and for leukemia, breast cancer, thyroid cancer, lung cancer, and other cancers. These estimates derive from exposure and cancer incidence data at high doses and at high dose rates. There are no compelling scientific reasons to apply these values of risk to the very low doses and low dose rates of concern in human radiation protection. In the absence of reliable human data for calculating risk estimates, dose-response models have been constructed from extrapolations of animal data and high-dose-rate human data for projection of estimated risks at low doses and low dose rates. (ERB)

  11. Threshold models in radiation carcinogenesis

    SciTech Connect

    Hoel, D.G.; Li, P.

    1998-09-01

    Cancer incidence and mortality data from the atomic bomb survivors cohort has been analyzed to allow for the possibility of a threshold dose response. The same dose-response models as used in the original papers were fit to the data. The estimated cancer incidence from the fitted models over-predicted the observed cancer incidence in the lowest exposure group. This is consistent with a threshold or nonlinear dose-response at low-doses. Thresholds were added to the dose-response models and the range of possible thresholds is shown for both solid tumor cancers as well as the different leukemia types. This analysis suggests that the A-bomb cancer incidence data agree more with a threshold or nonlinear dose-response model than a purely linear model although the linear model is statistically equivalent. This observation is not found with the mortality data. For both the incidence data and the mortality data the addition of a threshold term significantly improves the fit to the linear or linear-quadratic dose response for both total leukemias and also for the leukemia subtypes of ALL, AML, and CML.

  12. Wound-healing error model for radon carcinogenesis

    SciTech Connect

    Kondo, Sohei

    1995-12-31

    Epidemiological studies of lung cancer in uranium miners exposed to radon suggest that radon is a tumor promoter. I will refine this notion by applying the wound-healing error model proposed for radiation carcinogenesis in general.

  13. Carcinogenesis and aging

    SciTech Connect

    Anisimov, V.N.

    1983-01-01

    A suggested mechanism of carcinogenesis is presented. This scheme takes into account the effect of carcinogens at different integration levels: subcellular, tissue, and organism. Any of these levels may be age dependent. Age-associated changes in the activity of enzymes responsible for activation and inactivation of carcinogens, and variations in concentrations of lipids and proteins contributing to the transport of carcinogenic agents into cells, may play an important role in the modifying effect of age on carcinogenesis. The effects of age-associated changes in DNA repair need clarification. However, they are thought to exert a permissive influence on the age-associated rise in tumor incidence. It seems that proliferative activity of target tissues is the important modifying factor of carcinogenesis. Age-related changes of regulation at tissue and organism levels are also powerful factors in carcinogenesis modification. Age-dependent changes in the neuroendocrine system provide conditions for metabolic immunodepression and promotion of carcinogenesis. On the other hand, carcinogens per se (especially chemical and radiological) may intensify aging processes in the organism. Normalization, by drugs, of age-associated shifts requiring synthetic and energetic changes of a transformed tumor cells, and of immunological shifts, may exert both antitumor and geroprotective effects.

  14. A Comparison of Out-of-Field Dose and Its Constituent Components for Intensity-Modulated Radiation Therapy Versus Conformal Radiation Therapy: Implications for Carcinogenesis

    SciTech Connect

    Ruben, Jeremy D.; Lancaster, Craig M.; Jones, Phillip; Smith, Ryan L.

    2011-12-01

    Purpose: To investigate differences in scatter and leakage between 6-MV intensity-modulated radiation therapy (IMRT) and three-dimensional conformal radiation therapy (3DCRT); to describe the relative contributions of internal patient scatter, collimator scatter, and head leakage; and to discuss implications for second cancer induction. Methods and Materials: Dose was measured at increasing distances from the field edge in a water bath with a sloping wall (1) under full scatter conditions, (2) with the field edge abutting but outside the bath to prevent internal (water) scatter, and (3) with the beam aperture plugged to reflect leakage only. Results: Internal patient scatter from IMRT is 11% lower than 3DCRT, but collimator scatter and head leakage are five and three times higher, respectively. Ultimately, total scattered dose is 80% higher with IMRT; however this difference is small in absolute terms, being 0.14% of prescribed dose. Secondary dose from 3DCRT is mostly due to internal patient scatter, which contributes 70% of the total and predominates until 25 cm from the field edge. For IMRT, however, machine scatter/leakage is the dominant source, contributing 65% of the secondary dose. Internal scatter predominates for just the first 10 cm from field edge, collimator scatter for the next 10 cm, and head leakage thereafter. Conclusions: Out-of-field dose is 80% higher with IMRT, but differences are tiny in absolute terms. Reductions in internal patient scatter with IMRT are outweighed by increased machine scatter and leakage, at least for small fields. Reductions from IMRT in dose to tissues within the portals and in internal scatter, which predominates close to the field edge, means that calculations based solely on dose to distant tissues may overestimate carcinogenic risks.

  15. Comprehensive assessment of radiation dose estimates for the CORE320 study.

    PubMed

    Rybicki, Frank J; Mather, Richard T; Kumamaru, Kanako K; Brinker, Jeffrey; Chen, Marcus Y; Cox, Christopher; Matheson, Matthew B; Dewey, Marc; DiCarli, Marcelo F; Miller, Julie M; Geleijns, Jacob; George, Richard T; Paul, Narinder; Texter, John; Vavere, Andrea; Yaw, Tan Swee; Lima, Joao A C; Clouse, Melvin E

    2015-01-01

    OBJECTIVE. The purpose of this study was to comprehensively study estimated radiation doses for subjects included in the main analysis of the Combined Non-invasive Coronary Angiography and Myocardial Perfusion Imaging Using 320 Detector Computed Tomography (CORE320) study ( ClinicalTrials.gov identifier NCT00934037), a clinical trial comparing combined CT angiography (CTA) and perfusion CT with the reference standard catheter angiography plus myocardial perfusion SPECT. SUBJECTS AND METHODS. Prospectively acquired data on 381 CORE320 subjects were analyzed in four groups of testing related to radiation exposure. Radiation dose estimates were compared between modalities for combined CTA and perfusion CT with respect to covariates known to influence radiation exposure and for the main clinical outcomes defined by the trial. The final analysis assessed variations in radiation dose with respect to several factors inherent to the trial. RESULTS. The mean radiation dose estimate for the combined CTA and perfusion CT protocol (8.63 mSv) was significantly (p < 0.0001 for both) less than the average dose delivered from SPECT (10.48 mSv) and the average dose from diagnostic catheter angiography (11.63 mSv). There was no significant difference in estimated CTA-perfusion CT radiation dose for subjects who had false-positive or false-negative results in the CORE320 main analyses in a comparison with subjects for whom the CTA-perfusion CT findings were in accordance with the reference standard SPECT plus catheter angiographic findings. CONCLUSION. Radiation dose estimates from CORE320 support clinical implementation of a combined CT protocol for assessing coronary anatomy and myocardial perfusion. PMID:25539270

  16. Global fine-mode aerosol radiative effect, as constrained by comprehensive observations

    NASA Astrophysics Data System (ADS)

    Chung, Chul E.; Chu, Jung-Eun; Lee, Yunha; van Noije, Twan; Jeoung, Hwayoung; Ha, Kyung-Ja; Marks, Marguerite

    2016-07-01

    Aerosols directly affect the radiative balance of the Earth through the absorption and scattering of solar radiation. Although the contributions of absorption (heating) and scattering (cooling) of sunlight have proved difficult to quantify, the consensus is that anthropogenic aerosols cool the climate, partially offsetting the warming by rising greenhouse gas concentrations. Recent estimates of global direct anthropogenic aerosol radiative forcing (i.e., global radiative forcing due to aerosol-radiation interactions) are -0.35 ± 0.5 W m-2, and these estimates depend heavily on aerosol simulation. Here, we integrate a comprehensive suite of satellite and ground-based observations to constrain total aerosol optical depth (AOD), its fine-mode fraction, the vertical distribution of aerosols and clouds, and the collocation of clouds and overlying aerosols. We find that the direct fine-mode aerosol radiative effect is -0.46 W m-2 (-0.54 to -0.39 W m-2). Fine-mode aerosols include sea salt and dust aerosols, and we find that these natural aerosols result in a very large cooling (-0.44 to -0.26 W m-2) when constrained by observations. When the contribution of these natural aerosols is subtracted from the fine-mode radiative effect, the net becomes -0.11 (-0.28 to +0.05) W m-2. This net arises from total (natural + anthropogenic) carbonaceous, sulfate and nitrate aerosols, which suggests that global direct anthropogenic aerosol radiative forcing is less negative than -0.35 W m-2.

  17. Effect of LET and microdistribution of radiation on the transformation in vitro and in vivo. Comprehensive progress report

    SciTech Connect

    Little, J.B.

    1983-09-01

    Work has involved the following three areas: (1) an investigation of the mechanisms of radiation carcinogenesis by studying the events involved in the process of malignant transformation of mouse 10 T-1/2 cells; (2) an investigation of the effects of promoting agents on radiation-induced transformation in vitro; and (3) an investigation of the induction of transformation by internally emitting radionuclides incorporated into cellular DNA. The latter area has been extended to include studies of mutagenesis by these radionuclides in human lymphoblasts, and molecular measurements of DNA strand breaks. During the past year, research has focused on the first area, as well as on studies of the mutagenic effects of incorporated radionuclides.

  18. Comprehensive quality assurance phantom for the small animal radiation research platform (SARRP)

    PubMed Central

    Jermoumi, M.; Korideck, H.; Bhagwat, M.; Zygmanski, P.; Makrigiogos, G.M.; Berbeco, R.I.; Cormack, R.C.; Ngwa, W.

    2016-01-01

    Purpose To develop and test the suitability and performance of a comprehensive quality assurance (QA) phantom for the Small Animal Radiation Research Platform (SARRP). Methods and materials A QA phantom was developed for carrying out daily, monthly and annual QA tasks including: imaging, dosimetry and treatment planning system (TPS) performance evaluation of the SARRP. The QA phantom consists of 15 (60 × 60 × 5 mm3) kV-energy tissue equivalent solid water slabs. The phantom can incorporate optically stimulated luminescence dosimeters (OSLD), Mosfet or film. One slab, with inserts and another slab with hole patterns are particularly designed for image QA. Results Output constancy measurement results showed daily variations within 3%. Using the Mosfet in phantom as target, results showed that the difference between TPS calculations and measurements was within 5%. Annual QA results for the Percentage depth dose (PDD) curves, lateral beam profiles, beam flatness and beam profile symmetry were found consistent with results obtained at commissioning. PDD curves obtained using film and OSLDs showed good agreement. Image QA was performed monthly, with image-quality parameters assessed in terms of CBCT image geometric accuracy, CT number accuracy, image spatial resolution, noise and image uniformity. Conclusions The results show that the developed QA phantom can be employed as a tool for comprehensive performance evaluation of the SARRP. The study provides a useful reference for development of a comprehensive quality assurance program for the SARRP and other similar small animal irradiators, with proposed tolerances and frequency of required tests. PMID:25964129

  19. Hormones and endometrial carcinogenesis.

    PubMed

    Kamal, Areege; Tempest, Nicola; Parkes, Christina; Alnafakh, Rafah; Makrydima, Sofia; Adishesh, Meera; Hapangama, Dharani K

    2016-02-01

    Endometrial cancer (EC) is the commonest gynaecological cancer in the Western World with an alarmingly increasing incidence related to longevity and obesity. Ovarian hormones regulate normal human endometrial cell proliferation, regeneration and function therefore are implicated in endometrial carcinogenesis directly or via influencing other hormones and metabolic pathways. Although the role of unopposed oestrogen in the pathogenesis of EC has received considerable attention, the emerging role of other hormones in this process, such as androgens and gonadotropin-releasing hormones (GnRH) is less well recognised. This review aims to consolidate the current knowledge of the involvement of the three main endogenous ovarian hormones (oestrogens, progesterone and androgens) as well as the other hormones in endometrial carcinogenesis, to identify important avenues for future research. PMID:26966933

  20. SU-E-T-89: Comprehensive Quality Assurance Phantom for the Small Animal Radiation Research Platform

    SciTech Connect

    Jermoumi, M; Ngwa, W; Korideck, H; Zygmanski, P; Berbeco, R; Makrigiorgos, G; Cormack, R

    2014-06-01

    Purpose: Use of Small Animal Radiation Research Platform (SARRP) systems for conducting state-of-the-art image guided radiotherapy (IGRT) research on small animals has become more common over the past years. The purpose of this work is to develop and test the suitability and performance of a comprehensive quality assurance (QA) phantom for the SARRP. Methods: A QA phantom was developed for carrying out daily, monthly and annual QA tasks including imaging, dosimetry and treatment planning system (TPS) performance evaluation of the SARRP. The QA phantom consists of nine (60×60×5 mm3) KV-energy tissue equivalent solid water slabs that can be employed for annual dosimetry QA with film. Three of the top slabs are replaceable with ones incorporating Mosfets or OSLDs arranged in a quincunx pattern, or a slab drilled to accommodate an ion chamber insert. These top slabs are designed to facilitate routine daily and monthly QA tasks such as output constancy, isocenter congruency test, treatment planning system (TPS) QA, etc. One slab is designed with inserts for image QA. A prototype of the phantom was applied to test the performance of the imaging, planning and treatment delivery systems. Results: Output constancy test results showed daily variations within 3%. For isocenter congruency test, the phantom could be used to detect 0.3 mm deviations of the CBCT isocenter from the radiation isocenter. Using the Mosfet in phantom as target, the difference between TPS calculations and measurements was within 5%. Image-quality parameters could also be assessed in terms of geometric accuracy, CT number accuracy, linearity, noise and image uniformity, etc. Conclusion: The developed phantom can be employed as a simple tool for comprehensive performance evaluation of the SARRP. The study provides a reference for development of a comprehensive quality assurance program for the SARRP, with proposed tolerances and frequency of required tests.

  1. Cadmium carcinogenesis in review.

    PubMed

    Waalkes, M P

    2000-04-01

    Cadmium is an inorganic toxicant of great environmental and occupational concern which was classified as a human carcinogen in 1993. Occupational cadmium exposure is associated with lung cancer in humans. Cadmium exposure has also, on occasion, been linked to human prostate cancer. The epidemiological data linking cadmium and pulmonary cancer are much stronger than for prostatic cancer. Other target sites for cadmium carcinogenesis in humans (liver, kidney, stomach) are considered equivocal. In rodents, cadmium causes tumors at several sites and by various routes. Cadmium inhalation in rats results in pulmonary adenocarcinomas, supporting a role in human lung cancer. Prostate tumors and preneoplastic proliferative lesions can be induced in rats after cadmium ingestion or injection. Prostatic carcinogenesis in rats occurs only at cadmium doses below those that induce chronic degeneration and dysfunction of the testes, a well-known effect of cadmium, confirming the androgen dependency of prostate tumors. Other targets of cadmium in rodents include the testes, adrenals, injection sites, and hematopoietic system. Various treatments can modify cadmium carcinogenesis including supplemental zinc, which prevents cadmium-induced injection site and testicular tumors while facilitating prostatic tumors. Cadmium is poorly mutagenic and probably acts through indirect mechanisms, although the precise mechanisms remain unknown. PMID:10830873

  2. Dietary modifiers of carcinogenesis.

    PubMed Central

    Kohlmeier, L; Simonsen, N; Mottus, K

    1995-01-01

    Dietary components express a wide range of activities that can affect carcinogenesis. Naturally occurring substances in foods have been shown in laboratory experiments to serve as dietary antimutagens, either as bioantimutagens or as desmutagens. Dietary desmutagens may function as chemical inactivaters, enzymatic inducers, scavengers, or antioxidants. Dietary components may also act later in the carcinogenic process as tumor growth suppressors. Examples of dietary factors acting in each of these stages of carcinogenesis are presented, and potential anticarcinogens such as the carotenoids, tocopherols, phenolic compounds, glucosinolates, metal-binding proteins, phytoestrogens, and conjugated linoleic acid are discussed. Individual foods typically contain multiple potential anticarcinogens. Many of these substances can influence carcinogenesis through more than one mechanism. Some substances exhibit both anticarcinogenic and carcinogenic activity in vitro, depending on conditions. Epidemiologic research indicates that high fruit and vegetable consumption is associated with lower cancer risk. Little research has focused on the effects of single substances or single foods in man. Realization of the potential of foodborne substances to reduce the human burden of cancer will only be achieved with better measurement of dietary exposures and funding of multidisciplinary research in this area commensurate with its importance. PMID:8741780

  3. Redefining the roles of apoptotic factors in carcinogenesis

    PubMed Central

    Liu, Xinjian; He, Yujun; Li, Fang; Huang, Qian; Kato, Takamitsu A.; Hall, Russell P.; Li, Chuan-Yuan

    2016-01-01

    ABSTRACT In a recent study we reported that mammalian cells exposed to stress such as ionizing radiation can survive with activation of caspase-3 or caspase-7. We found that sublethal activation of the executioner caspases promotes chemical- and radiation-induced genetic instability and carcinogenesis, in contrast to their perceived roles as tumor suppressors. PMID:27314073

  4. Endothelins and carcinogenesis.

    PubMed

    Olender, Jacek; Nowakowska-Zajdel, Ewa; Walkiewicz, Katarzyna; Muc-Wierzgoń, Małgorzata

    2016-01-01

    Endothelins are a family of four endogenous peptides (ET-1, ET-2, ET-3, ET-4) secreted primarily in an inactive form by the endothelium. They are activated with the participation of converting enzyme. Numerous studies have described their pleiotropic biological activity. These peptides are involved, inter alia, in the regulation of processes such as cell proliferation, migration, angiogenesis and apoptosis. Their important role in the regulation of blood pressure, tissue perfusion (especially in the central nervous system), and myocardial systolic function is also known. Moreover, changes in transcriptional activity of endothelin and its receptors may be involved, with the participation of a number of signaling pathways, in carcinogenesis, and the pathogenesis of numerous diseases (heart, kidney, lung and skin disorders, especially with the component of fibrosis). Their role has been documented in the development of breast, prostatic, colorectal, ovarian, lung, kidney, and endometrial cancer, and in melanoma. In this article we present a brief description of the endothelin group and the participation of them and their receptors in carcinogenesis. We also try to show their role as prognostic and predictive factors in human malignant tumors. The article also refers to clinical trials on the use of preparations of endothelin receptor antagonists in the design of molecular therapeutic strategies in human malignancies. PMID:27594562

  5. Sawmill chemicals and carcinogenesis.

    PubMed Central

    Huff, J

    2001-01-01

    Workers in wood industries are exposed to variable medleys of chemicals, both natural and synthetic. Additional exposures include fungi, bacteria, bark and wood dusts, solvents, paints, and various other wood coatings. These individual and conglomerate exposures have been associated with diverse occupational illnesses and hazards, including cancers. In this commentary, I summarize both experimental and epidemiologic carcinogenesis results for several chemicals used in the wood industry, as well as for wood dust. Working in the wood industries entails excess risks of cancers, among other diseases and workplace injuries. A key to preventing occupationally and environmentally associated cancers, as in the wood industries, is avoiding exposures to chemicals and wood dusts and, in particular, chemicals known to cause cancer in animals or/and humans. PMID:11333179

  6. FXR and liver carcinogenesis

    PubMed Central

    Huang, Xiong-fei; Zhao, Wei-yu; Huang, Wen-dong

    2015-01-01

    Farnesoid X receptor (FXR) is a member of the nuclear receptor family and a ligand-modulated transcription factor. In the liver, FXR has been considered a multi-functional cell protector and a tumor suppressor. FXR can suppress liver carcinogenesis via different mechanisms: 1) FXR maintains the normal liver metabolism of bile acids, glucose and lipids; 2) FXR promotes liver regeneration and repair after injury; 3) FXR protects liver cells from death and enhances cell survival; 4) FXR suppresses hepatic inflammation, thereby preventing inflammatory damage; and 5) FXR can directly increase the expression of some tumor-suppressor genes and repress the transcription of several oncogenes. However, inflammation and epigenetic silencing are known to decrease FXR expression during tumorigenesis. The reactivation of FXR function in the liver may be a potential therapeutic approach for patients with liver cancer. PMID:25500874

  7. [Iron function and carcinogenesis].

    PubMed

    Akatsuka, Shinya; Toyokuni, Shinya

    2016-07-01

    Though iron is an essential micronutrient for humans, the excess state is acknowledged to be associated with oncogenesis. For example, iron overload in the liver of the patients with hereditary hemocromatosis highly increases the risk of hepatocellular carcinoma. Also, as to asbestos-related mesothelioma, such kinds of asbestos with a higher iron content are considered to be more carcinogenic. Iron is a useful element, which enables fundamental functions for life such as oxygen carrying and electron transport. However, in the situation where organisms are unable to have good control of it, iron turns into a dangerous element which catalyzes generation of reactive oxygen. In this review, I first outline the relationships between iron and cancer in general, then give an explanation about iron-related animal carcinogenesis models. PMID:27455808

  8. Nutritional factors in carcinogenesis.

    PubMed

    Wahlqvist, M L

    1993-09-01

    There have been varying estimates of the role of nutritional as opposed to other contributors to carcinogenesis. Several considerations probably account for the different estimates: (1) genetic overestimates because of foetal and early life rearing practices and the nutritional modulation of genetic expression (2) errors in food intake methodology (3) the limitations of nutrient carcinogenesis hypotheses, ie models which are too naive and do not allow for non-nutrients in food, food patterns and the overall package which is food culture (4) indirect pathways connecting nutrition and cancer such as that via immunosurveillance. Examples of cancers where rapid change in nutritional thinking is underway are breast, prostatic, colorectal and pancreatic. With breast cancer, weakly oestrogenic compounds from foods may be comparable to tamoxifen. Changing food culture away from that rich in phyto-oestrogens may increase the risk of prostatic cancer in men as well. Colorectal cancer incidence has continued at high rates in urbanized society despite an awareness of dietary contribution comparable to the knowledge of diet and coronary heart disease is the analysis sufficiently stratified for large bowel site or nutritionally sophisticated enough to allow for aggregate food pattern effects? Pancreatic cancer on the rise presents questions about unidentified changes continuing in the diets of industrialized societies, possibly from an early age, and even during infant feeding. Nutritional surveillance with mathematical modelling of food intake at a more sophisticated level will be required to understand present food-cancer relationships, and those which may emerge with newer food technologies, especially those related to designer foods. PMID:24352145

  9. A comprehensive spectrometry study of a stray neutron radiation field in scanning proton therapy.

    PubMed

    Mares, Vladimir; Romero-Expósito, Maite; Farah, Jad; Trinkl, Sebastian; Domingo, Carles; Dommert, Martin; Stolarczyk, Liliana; Van Ryckeghem, Laurent; Wielunski, Marek; Olko, Pawel; Harrison, Roger M

    2016-06-01

    thermal, epithermal, evaporation and intra-nuclear cascade neutrons. This comprehensive spectrometry analysis can also help in understanding the tremendous literature data based rem-counters while also being of great value for general neutron shielding and radiation safety studies. PMID:27171358

  10. A comprehensive spectrometry study of a stray neutron radiation field in scanning proton therapy

    NASA Astrophysics Data System (ADS)

    Mares, Vladimir; Romero-Expósito, Maite; Farah, Jad; Trinkl, Sebastian; Domingo, Carles; Dommert, Martin; Stolarczyk, Liliana; Van Ryckeghem, Laurent; Wielunski, Marek; Olko, Pawel; Harrison, Roger M.

    2016-06-01

    , epithermal, evaporation and intra-nuclear cascade neutrons. This comprehensive spectrometry analysis can also help in understanding the tremendous literature data based rem-counters while also being of great value for general neutron shielding and radiation safety studies.

  11. Hypermutability in carcinogenesis.

    PubMed Central

    Strauss, B S

    1998-01-01

    The presence of numerous chromosomal changes and point mutations in tumors is well established. At least some of these changes play a role in the development of the tumors. It has been suggested that the number of these genetic changes requires that tumorigenesis involves an increase in mutation rate. However, the presence of numerous changes can also be accounted for by efficient selection. What is required to settle the issue is some measure of nonselected mutations in tumors. In order to determine whether the tumor suppressor TP53 (coding for the protein p53) is hypermutable at some stage of carcinogenesis, the frequency of silent and multiple mutations in this gene has been examined. Silent mutations make up approximately 3% of the total recorded but constitute 9.5% of the mutations found in tumors with multiple mutations. Multiple closely linked mutations are also observed. Such multiple mutations suggest the operation of an error-prone replication process in a subclass of cells. The published data indicate that TP53 is hypermutable at some stage of tumor development. It is not yet clear whether TP53 is unique or whether other genes display a similar pattern of silent and multiple mutations. PMID:9560381

  12. Helicobacter pylori in gastric carcinogenesis

    PubMed Central

    Ahn, Hyo Jun; Lee, Dong Soo

    2015-01-01

    Gastric cancer still is a major concern as the third most common cancer worldwide, despite declining rates of incidence in many Western countries. Helicobacter pylori (H. pylori) is the major cause of gastric carcinogenesis, and its infection insults gastric mucosa leading to the occurrence of atrophic gastritis which progress to intestinal metaplasia, dysplasia, early gastric cancer, and advanced gastric cancer consequently. This review focuses on multiple factors including microbial virulence factors, host genetic factors, and environmental factors, which can heighten the chance of occurrence of gastric adenocarcinoma due to H. pylori infection. Bacterial virulence factors are key components in controlling the immune response associated with the induction of carcinogenesis, and cagA and vacA are the most well-known pathogenic factors. Host genetic polymorphisms contribute to regulating the inflammatory response to H. pylori and will become increasingly important with advancing techniques. Environmental factors such as high salt and smoking may also play a role in gastric carcinogenesis. It is important to understand the virulence factors, host genetic factors, and environmental factors interacting in the multistep process of gastric carcinogenesis. To conclude, prevention via H. pylori eradication and controlling environmental factors such as diet, smoking, and alcohol is an important strategy to avoid H. pylori-associated gastric carcinogenesis. PMID:26690981

  13. Helicobacter pylori in gastric carcinogenesis.

    PubMed

    Ahn, Hyo Jun; Lee, Dong Soo

    2015-12-15

    Gastric cancer still is a major concern as the third most common cancer worldwide, despite declining rates of incidence in many Western countries. Helicobacter pylori (H. pylori) is the major cause of gastric carcinogenesis, and its infection insults gastric mucosa leading to the occurrence of atrophic gastritis which progress to intestinal metaplasia, dysplasia, early gastric cancer, and advanced gastric cancer consequently. This review focuses on multiple factors including microbial virulence factors, host genetic factors, and environmental factors, which can heighten the chance of occurrence of gastric adenocarcinoma due to H. pylori infection. Bacterial virulence factors are key components in controlling the immune response associated with the induction of carcinogenesis, and cagA and vacA are the most well-known pathogenic factors. Host genetic polymorphisms contribute to regulating the inflammatory response to H. pylori and will become increasingly important with advancing techniques. Environmental factors such as high salt and smoking may also play a role in gastric carcinogenesis. It is important to understand the virulence factors, host genetic factors, and environmental factors interacting in the multistep process of gastric carcinogenesis. To conclude, prevention via H. pylori eradication and controlling environmental factors such as diet, smoking, and alcohol is an important strategy to avoid H. pylori-associated gastric carcinogenesis. PMID:26690981

  14. Historical origins of current concepts of carcinogenesis.

    PubMed

    Lawley, P D

    1994-01-01

    The first attempts to understand the causes of cancer were based on generalizations of what might now be termed a "holistic" nature, and hereditary influences were recognized at an early stage; these views survive principally through a supposed positive connection between psychological factors such as stress and diminished ability to combat the progressive development of tumors through some form of immunologically mediated rejection of potentially cancerous cells. While evidence for immunosurveillance is generally accepted, it is now widely regarded as almost wholly confined to instances where tumor viruses are involved as causative agents. The earliest theorists drew an analogy between the processes of carcinogenesis and of evolution; the cancer cells acquired the ability to outstrip their normal counterparts in their capacity for proliferation. This was even before evolution had been interpreted as involving a continuous succession of mutations. Evidence was already to hand before the end of the 18th century that exogenous agents, notably soot, a product of the "industrial revolution," could cause skin cancer. Somewhat over 100 years later, another industrial innovation, the manufacture of synthetic dyestuffs, implicated specific chemical compounds that could act systemically to cause bladder cancer. Meanwhile, the 19th century saw the establishment of the fundamentals of modern medical science; of particular relevance to cancer was the demonstration that it involved abnormalities in the process of cell division. The commencement of the 20th century was marked by a rediscovery of the concept of mutation; and it was proposed that cancer originated through uncontrolled division of somatically mutated cells. At around this time, two further important exogenous causative agents were discovered: X-rays and tumor viruses. In the late 1920s, x-radiation became the first established exogenous cause of mutagenesis. The discoverer of this phenomenon, H. J. Muller

  15. Carcinogenesis studies with benzoyl peroxide (Panoxyl gel 5%)

    SciTech Connect

    Iversen, O.H.

    1986-04-01

    Several groups of hairless mice were given UV radiation with and without pretreatment with 7,12-dimethylbenz(a)anthracene (DMBA), 5% benzoyl peroxide in a gel (Panoxyl), and gel alone, in various combinations, with appropriate control groups included, in order to see whether benzoyl peroxide, which is known to enhance chemical skin carcinogenesis after a single, small dose of DMBA, also enhances UV carcinogenesis. The mice were observed for skin tumors, and all skin lesions were histologically investigated. The percentage of tumor-bearing animals with time is called the tumor rate, the total number of tumors occurring is called the tumor yield. Continual treatment with 5% benzoyl peroxide in gel twice a week, with or without a short pretreatment period of UV radiation resulted in only 2 skin carcinomas, which is remarkable, but not significant. Both Panoxyl and gel alone enhanced tumorigenicity significantly in animals pretreated with a single dose of 51.2 micrograms DMBA. There was no difference between the enhancement caused by Panoxyl and the gel as regards the tumor rate, but when measured as final tumor yield, Panoxyl was slightly more tumor-enhancing than gel alone. However, both Panoxyl and gel protected significantly against UV tumorigenesis (all tumors). There was no difference between the protective effect of the 2 types of treatment. Neither Panoxyl nor gel alone influenced significantly UV skin carcinogenesis (malignant tumors). It is concluded that under these experimental conditions both Panoxyl and gel alone tend to protect against the tumorigenicity and do not enhance the carcinogenicity of UV radiation in hairless mice, whereas both gel and Panoxyl enhance chemical carcinogenesis. The carcinogenic mechanisms may be different for UV and chemical carcinogenesis, respectively.

  16. Modeling Multiple Causes of Carcinogenesis

    SciTech Connect

    Jones, T D

    1999-01-24

    An array of epidemiological results and databases on test animal indicate that risk of cancer and atherosclerosis can be up- or down-regulated by diet through a range of 200%. Other factors contribute incrementally and include the natural terrestrial environment and various human activities that jointly produce complex exposures to endotoxin-producing microorganisms, ionizing radiations, and chemicals. Ordinary personal habits and simple physical irritants have been demonstrated to affect the immune response and risk of disease. There tends to be poor statistical correlation of long-term risk with single agent exposures incurred throughout working careers. However, Agency recommendations for control of hazardous exposures to humans has been substance-specific instead of contextually realistic even though there is consistent evidence for common mechanisms of toxicological and carcinogenic action. That behavior seems to be best explained by molecular stresses from cellular oxygen metabolism and phagocytosis of antigenic invasion as well as breakdown of normal metabolic compounds associated with homeostatic- and injury-related renewal of cells. There is continually mounting evidence that marrow stroma, comprised largely of monocyte-macrophages and fibroblasts, is important to phagocytic and cytokinetic response, but the complex action of the immune process is difficult to infer from first-principle logic or biomarkers of toxic injury. The many diverse database studies all seem to implicate two important processes, i.e., the univalent reduction of molecular oxygen and breakdown of aginuine, an amino acid, by hydrolysis or digestion of protein which is attendant to normal antigen-antibody action. This behavior indicates that protection guidelines and risk coefficients should be context dependent to include reference considerations of the composite action of parameters that mediate oxygen metabolism. A logic of this type permits the realistic common-scale modeling of

  17. Comprehensive Assessment of Host Responses to Ionizing Radiation by Nuclear Factor-κB Bioluminescence Imaging-Guided Transcriptomic Analysis

    PubMed Central

    Chang, Chung-Ta; Lin, Ho; Ho, Tin-Yun; Li, Chia-Cheng; Lo, Hsin-Yi; Wu, Shih-Lu; Huang, Yi-Fang

    2011-01-01

    The aim of this study was to analyze the host responses to ionizing radiation by nuclear factor-κB (NF-κB) bioluminescence imaging-guided transcriptomic tool. Transgenic mice carrying the NF-κB-driven luciferase gene were exposed to a single dose of 8.5 Gy total-body irradiation. In vivo imaging showed that a maximal NF-κB-dependent bioluminescent intensity was observed at 3 h after irradiation and ex vivo imaging showed that liver, intestine, and brain displayed strong NF-κB activations. Microarray analysis of these organs showed that irradiation altered gene expression signatures in an organ-specific manner and several pathways associated with metabolism and immune system were significantly altered. Additionally, the upregulation of fatty acid binding protein 4, serum amyloid A2, and serum amyloid A3 genes, which participate in both inflammation and lipid metabolism, suggested that irradiation might affect the cross pathways of metabolism and inflammation. Moreover, the alteration of chemokine (CC-motif) ligand 5, chemokine (CC-motif) ligand 20, and Jagged 1 genes, which are involved in the inflammation and enterocyte proliferation, suggested that these genes might be involved in the radiation enteropathy. In conclusion, this report describes the comprehensive evaluation of host responses to ionizing radiation. Our findings provide the fundamental information about the in vivo NF-κB activity and transcriptomic pattern after irradiation. Moreover, novel targets involved in radiation injury are also suggested. PMID:21887294

  18. Comprehensive 2D measurements of radiative divertor plasmas in DIII-D

    SciTech Connect

    Fenstermacher, M.E.; Wood, R.D.; Allen, S.L.; Hill, D.N.

    1997-07-01

    This paper presents a comparison of the total radiated power profile and impurity line emission distributions in the SOL and divertor of DIII-D. This is done for ELMing H-mode plasmas with heavy deuterium injection (Partially Detached Divertor operation, PDD) and those without deuterium puffing. Results are described from a series of dedicated experiments performed on DIII-D to systematically measure the 2-D (R,Z) structure of the divertor plasma. The discharges were designed to optimize measurements with new divertor diagnostics including a divertor Thomson scattering system. Discharge sequences were designed to produce optimized data sets against which SOL and divertor theories and simulation codes could be benchmarked. During PDD operation the regions of significant radiated power shift from the inner divertor leg and SOL to the outer leg and X-point regions. D{alpha} emission shifts from the inner strikepoint to the outer strikepoint. Carbon emissions (visible CII and CIII) shift from the inner SOL near the X-point to a distributed region from the X-point to partially down the outer leg during moderate D2 puffing. In heavy puffing discharges the carbon emission coalesces on the outer separatrix near the X-point and for very heavy puffing it appears inside the last closed flux surface above the X-point. Calibrated spectroscopic measurements indicate that hydrogenic and carbon radiation can account for all of the radiated power. L{alpha} and CIV radiation are comparable and when combined account for as much as 90% of the total radiated power along chords viewing the significant radiating regions of the outer leg.

  19. Comprehensive MRI simulation methodology using a dedicated MRI scanner in radiation oncology for external beam radiation treatment planning

    SciTech Connect

    Paulson, Eric S.; Erickson, Beth; Schultz, Chris; Allen Li, X.

    2015-01-15

    Purpose: The use of magnetic resonance imaging (MRI) in radiation oncology is expanding rapidly, and more clinics are integrating MRI into their radiation therapy workflows. However, radiation therapy presents a new set of challenges and places additional constraints on MRI compared to diagnostic radiology that, if not properly addressed, can undermine the advantages MRI offers for radiation treatment planning (RTP). The authors introduce here strategies to manage several challenges of using MRI for virtual simulation in external beam RTP. Methods: A total of 810 clinical MRI simulation exams were performed using a dedicated MRI scanner for external beam RTP of brain, breast, cervix, head and neck, liver, pancreas, prostate, and sarcoma cancers. Patients were imaged in treatment position using MRI-optimal immobilization devices. Radiofrequency (RF) coil configurations and scan protocols were optimized based on RTP constraints. Off-resonance and gradient nonlinearity-induced geometric distortions were minimized or corrected prior to using images for RTP. A multidisciplinary MRI simulation guide, along with window width and level presets, was created to standardize use of MR images during RTP. A quality assurance program was implemented to maintain accuracy and repeatability of MRI simulation exams. Results: The combination of a large bore scanner, high field strength, and circumferentially wrapped, flexible phased array RF receive coils permitted acquisition of thin slice images with high contrast-to-noise ratio (CNR) and image intensity uniformity, while simultaneously accommodating patient setup and immobilization devices. Postprocessing corrections and alternative acquisition methods were required to reduce or correct off-resonance and gradient nonlinearity induced geometric distortions. Conclusions: The methodology described herein contains practical strategies the authors have implemented through lessons learned performing clinical MRI simulation exams. In

  20. Comprehensive Review of Ultraviolet Radiation and the Current Status on Sunscreens

    PubMed Central

    Moon, Summer; Armstrong, Frank

    2012-01-01

    In the past, manufacturers’ labeling of sunscreen varied greatly, confusing the consumers regarding efficacy and the appropriate photoprotection provided by their products. Therefore, in June 2011, the United States Food and Drug Administration issued new guidelines for sunscreen labeling. Sunscreen products are over-the-counter drugs; therefore, they are regulated by the United States Food and Drug Administration to determine safety, efficacy, and labeling. This article discusses ultraviolet radiation and the positive and negative effects of ultraviolet radiation, provides a review of sunscreens, and discusses the new United States Food and Drug Administration regulations for sunscreens. PMID:23050030

  1. A comprehensive system for dosimetric commissioning and Monte Carlo validation for the small animal radiation research platform

    PubMed Central

    Tryggestad, E; Armour, M; Iordachita, I; Verhaegen, F; Wong, J W

    2011-01-01

    Our group has constructed the small animal radiation research platform (SARRP) for delivering focal, kilo-voltage radiation to targets in small animals under robotic control using cone-beam CT guidance. The present work was undertaken to support the SARRP’s treatment planning capabilities. We have devised a comprehensive system for characterizing the radiation dosimetry in water for the SARRP and have developed a Monte Carlo dose engine with the intent of reproducing these measured results. We find that the SARRP provides sufficient therapeutic dose rates ranging from 102 to 228 cGy min−1 at 1 cm depth for the available set of high-precision beams ranging from 0.5 to 5 mm in size. In terms of depth–dose, the mean of the absolute percentage differences between the Monte Carlo calculations and measurement is 3.4% over the full range of sampled depths spanning 0.5–7.2 cm for the 3 and 5 mm beams. The measured and computed profiles for these beams agree well overall; of note, good agreement is observed in the profile tails. Especially for the smallest 0.5 and 1 mm beams, including a more realistic description of the effective x-ray source into the Monte Carlo model may be important. PMID:19687532

  2. CT Radiation Dose Management: A Comprehensive Optimization Process for Improving Patient Safety.

    PubMed

    Parakh, Anushri; Kortesniemi, Mika; Schindera, Sebastian T

    2016-09-01

    Rising concerns of radiation exposure from computed tomography have caused various advances in dose reduction technologies. While proper justification and optimization of scans has been the main focus to address increasing doses, the value of dose management has been largely overlooked. The purpose of this article is to explain the importance of dose management, provide an overview of the available options for dose tracking, and discuss the importance of a dedicated dose team. The authors also describe how a digital radiation tracking software can be used for analyzing the big data on doses for auditing patient safety, scanner utilization, and productivity, all of which have enormous personal and institutional implications. (©) RSNA, 2016. PMID:27533027

  3. Radiation induced oxidation of sulphydryl molecules in aqueous solutions. A comprehensive review

    NASA Astrophysics Data System (ADS)

    Lal, Manohar

    1994-06-01

    Radiation degradation studies of thiols in aqueous solutions under variety of conditions during the past more than three decades are reviewed. Radiolytic mechanism of γ-irradiated air free, air and N 2O-saturated solutions of cysteine, cysteamine, dithiothreitol, mercaptoethanol, glutathione and papain are high lighted. A large variety of thiols repair organic radicals by H atom transfer from SH group. The repair rate constants are found to be between 5 × 10 6M -1s -1 to 4.0 × 10 8M -1s -1. The data are tabulated. The rate constants of e -aq and ȮH radicals with variety of thiols evaluated by pulse radioanalysis and flash photolysis are found to be very high and are computed. Sulphur centered radicals e.g. RṠ;, RSSR ⨪ generated in the pulse radioanalysis of thiols are very important species. Their reactions with oxygen and other compounds are of relevance to radiation biology. The results, reaction mechanism, the repair rate constant, the rate constants of e -aq and ȮH radicals with thiols and the rate constants of sulphur centered radicals with oxygen and other compounds of biological interest can be of great use in the interpretation of the mechanism of the protection of cells, animals, DNA and other biological molecules and may well provide basic essential information for the understanding of radiation biology. The protection of biological target at chemical level is generally understood in terms of protecting compounds participating directly in the radiochemical event and reducing the damage to biological target. The damage to the biological target is repaired by the hydrogen transfer from the thiol. Biochemical and metabolic mechanisms are quite complex. There is no single mechanism which explains all the experimental observations on the metabolism of thiols. More work needs to be done in order to understand the metabolic aspect of the protection mechanism.

  4. Towards a comprehensive CT image segmentation for thoracic organ radiation dose estimation and reporting

    NASA Astrophysics Data System (ADS)

    Lorenz, Cristian; Ruppertshofen, Heike; Vik, Torbjörn; Prinsen, Peter; Wiegert, Jens

    2014-03-01

    Administered dose of ionizing radiation during medical imaging is an issue of increasing concern for the patient, for the clinical community, and for respective regulatory bodies. CT radiation dose is currently estimated based on a set of very simplifying assumptions which do not take the actual body geometry and organ specific doses into account. This makes it very difficult to accurately report imaging related administered dose and to track it for different organs over the life of the patient. In this paper this deficit is addressed in a two-fold way. In a first step, the absorbed radiation dose in each image voxel is estimated based on a Monte-Carlo simulation of X-ray absorption and scattering. In a second step, the image is segmented into tissue types with different radio sensitivity. In combination this allows to calculate the effective dose as a weighted sum of the individual organ doses. The main purpose of this paper is to assess the feasibility of automatic organ specific dose estimation. With respect to a commercially applicable solution and respective robustness and efficiency requirements, we investigated the effect of dose sampling rather than integration over the organ volume. We focused on the thoracic anatomy as the exemplary body region, imaged frequently by CT. For image segmentation we applied a set of available approaches which allowed us to cover the main thoracic radio-sensitive tissue types. We applied the dose estimation approach to 10 thoracic CT datasets and evaluated segmentation accuracy and administered dose and could show that organ specific dose estimation can be achieved.

  5. A comprehensive dose reconstruction methodology for former rocketdyne/atomics international radiation workers.

    PubMed

    Boice, John D; Leggett, Richard W; Ellis, Elizabeth Dupree; Wallace, Phillip W; Mumma, Michael; Cohen, Sarah S; Brill, A Bertrand; Chadda, Bandana; Boecker, Bruce B; Yoder, R Craig; Eckerman, Keith F

    2006-05-01

    Incomplete radiation exposure histories, inadequate treatment of internally deposited radionuclides, and failure to account for neutron exposures can be important uncertainties in epidemiologic studies of radiation workers. Organ-specific doses from lifetime occupational exposures and radionuclide intakes were estimated for an epidemiologic study of 5,801 Rocketdyne/Atomics International (AI) radiation workers engaged in nuclear technologies between 1948 and 1999. The entire workforce of 46,970 Rocketdyne/AI employees was identified from 35,042 Kardex work histories cards, 26,136 electronic personnel listings, and 14,189 radiation folders containing individual exposure histories. To obtain prior and subsequent occupational exposure information, the roster of all workers was matched against nationwide dosimetry files from the Department of Energy, the Nuclear Regulatory Commission, the Landauer dosimetry company, the U.S. Army, and the U.S. Air Force. Dosimetry files of other worker studies were also accessed. Computation of organ doses from radionuclide intakes was complicated by the diversity of bioassay data collected over a 40-y period (urine and fecal samples, lung counts, whole-body counts, nasal smears, and wound and incident reports) and the variety of radionuclides with documented intake including isotopes of uranium, plutonium, americium, calcium, cesium, cerium, zirconium, thorium, polonium, promethium, iodine, zinc, strontium, and hydrogen (tritium). Over 30,000 individual bioassay measurements, recorded on 11 different bioassay forms, were abstracted. The bioassay data were evaluated using ICRP biokinetic models recommended in current or upcoming ICRP documents (modified for one inhaled material to reflect site-specific information) to estimate annual doses for 16 organs or tissues taking into account time of exposure, type of radionuclide, and excretion patterns. Detailed internal exposure scenarios were developed and annual internal doses were derived

  6. A microenvironmental model of carcinogenesis.

    PubMed

    Gatenby, Robert A; Gillies, Robert J

    2008-01-01

    We propose that carcinogenesis requires tumour populations to surmount six distinct microenvironmental proliferation barriers that arise in the adaptive landscapes of normal and premalignant populations growing from epithelial surfaces. Somatic evolution of invasive cancer can then be viewed as a sequence of phenotypical adaptations to these barriers. The genotypical and phenotypical heterogeneity of cancer populations is explained by an equivalence principle in which multiple strategies can successfully adapt to the same barrier. This model provides a theoretical framework in which the diverse cancer genotypes and phenotypes can be understood according to their roles as adaptive strategies to overcome specific microenvironmental growth constraints. PMID:18059462

  7. Comprehensive radiative forcing assesment highlights trade-offs in climate mitigation potential of managed boreal forests

    NASA Astrophysics Data System (ADS)

    Kalliokoski, Tuomo; Berninger, Frank; Bäck, Jaana; Boy, Michael; Kuusinen, Nea; Mäkelä, Annikki; Matthies, Brent; Minkkinen, Kari; Mogensen, Ditte; Peltoniemi, Mikko; Sievänen, Risto; Zhou, Luxi; Vanhatalo, Anni; Valsta, Lauri; Nikinmaa, Eero

    2016-04-01

    Boreal forests have an important role in the mitigation of climate change. In this study we evaluated four key climate impacts of forest management: (1) carbon sequestration (in forest ecosystems and wood products), (2) surface albedo of forest area, (3) forest originating Secondary Organic Aerosols (SOA) and (4) avoided CO2-emissions from wood energy and product substitution. We calculated their net effect at both a single stand and regional level using Finland as a case study. We made analyses both in current climate up to a year 2050 and in the projected climate of year 2050. At the stand level, the carbon sequestration effect and avoided CO2 emissions due to substituted materials dominated in net RF in current climate. The warming effect of surface albedo of forest cover was lower or of same magnitude than cooling effect of SOAs. Together, the rarely considered SOAs and product substitution corresponded over 70% of the total cooling effect of forest cover. The cooling effect of net radiative forcing increased along the increasing site fertility. Although the carbon stocks of broadleaved trees were smaller than that of conifers their total radiative cooling effect was larger due to the integrated albedo and aerosol effects. In the projected climate of 2050, the radiative cooling of aerosols approached the level of forest carbon fixation. These results emphasize the need for holistic evaluation of climate impacts over simple carbon sequestration analysis to understand the role of forest management in climate change mitigation. Landscape level analyses emphasized the broad range of options to reach the cooling effect. The lowest harvest regime, 50% of current annual increment (CAI), yielded the largest cooling effect. Yet, harvests up to CAI produced only slightly less cooling RF if avoided emissions were considered. This result was highly sensitive to used substitution factors. Our result highlights that the combination of intensive harvests and the use of wood

  8. Toward a comprehensive theory for the sweeping of trapped radiation by inert orbiting matter

    NASA Technical Reports Server (NTRS)

    Fillius, Walker

    1988-01-01

    There is a need to calculate loss rates when trapped Van Allen radiation encounters inert orbiting material such as planetary rings and satellites. An analytic expression for the probability of a hit in a bounce encounter is available for all cases where the absorber is spherical and the particles are gyrotropically distributed on a cylindrical flux tube. The hit probability is a function of the particle's pitch angle, the size of the absorber, and the distance between flux tube and absorber, when distances are scaled to the gyroradius of a particle moving perpendicular to the magnetic field. Using this expression, hit probabilities have been computed in drift encounters for all regimes of particle energies and absorber sizes. This technique generalizes the approach to sweeping lifetimes, and is particularly suitable for attacking the inverse problem, where one is given a sweeping signature and wants to deduce the properties of the absorber(s).

  9. Comprehensive analysis of radiative properties of brass and Al arranged in nested cylindrical wire arrays.

    SciTech Connect

    Stafford, A.; Keim, S. F.; Osborne, Glenn C.; Esaulov, Andrey A.; Shrestha, I.; Kantsyrev, Victor Leonidovich; Shlyaptseva, V.; Coverdale, Christine Anne; Williamson, K. M.; Ouart, Nicholas D.; Safronova, Alla S.; Weller, M. E.

    2010-11-01

    Experimental results of nested cylindrical wire arrays (NCWA) consisting of brass (70% Cu and 30% Zn) wires on one array and Al (5056, 5% Mg) wires on the other array performed on the UNR Zebra generator at 1.0 MA current are compared and analyzed. Specifically, radiative properties of K-shell Al and Mg ions and L-shell Cu and Zn ions are compared as functions of the placements of the brass and Al wires on the inner and outer arrays. A full diagnostic set which included more than ten different beam-lines was implemented. Identical loads were fielded to allow the timing of time-gated pinhole and x-ray spectrometers to be shifted to get a more complete understanding of the evolution of plasma parameters over the x-ray pulse. The importance of the study of NCWAs with different wire materials is discussed.

  10. Comprehensive Radiation-Hydrodynamic Models for Wolf-Rayet Galaxy Spectra

    NASA Astrophysics Data System (ADS)

    Leitherer, Claus

    2012-10-01

    We propose to compute a grid of radiation-hydrodynamic models of Wolf-Rayet star spectra for implementation in population synthesis models. Guided by stellar evolutionary tracks, we will calculate the wind density structure and iteratively solve the radiative transfer using a modified version of the CMFGEN code. The deliverables are stellar spectra at 0.5 A resolution covering 912 to 3000 A for super-solar to near-zero metallicity. The models will be tested by comparison with ultraviolet archival data. By virtue of their luminosities, strong mass loss and peculiar chemical abundances, Wolf-Rayet stars can make a significant - sometimes the dominant - contribution to the line spectra of star-forming galaxies, in particular in the ultraviolet. The new models will provide synthetic ultraviolet spectra of these stars, with parameters optimized for the population synthesis code Starburst99. The parameter range will cover that encountered in local Wolf-Rayet galaxies, in Lyman-break galaxies at redshift 3 - 5, and in primeval galaxies expected to be observed with JWST. Since Wolf-Rayet stars are related to the most massive stars, calibrating and understanding their tell-tale spectral features is a prerequsite for using them as population probes.Our suite of models will allow us and the astronomical community to tackle a diverse set of astrophysical issues: How do the final stages of massive-star evolution differ in different environments? How important are WR stars for the ionization of the ISM and the primordial IGM? Does the anomalous strength of He II 1640 indicate an IMF enriched in massive stars? Are galaxies with WR features preferred hosts of Type Ib SNe and long GRBs?

  11. A Comprehensive Quality Assurance Program for Personnel and Procedures in Radiation Oncology: Value of Voluntary Error Reporting and Checklists

    SciTech Connect

    Kalapurakal, John A.; Zafirovski, Aleksandar; Smith, Jeffery; Fisher, Paul; Sathiaseelan, Vythialingam; Barnard, Cynthia; Rademaker, Alfred W.; Rave, Nick; Mittal, Bharat B.

    2013-06-01

    Purpose: This report describes the value of a voluntary error reporting system and the impact of a series of quality assurance (QA) measures including checklists and timeouts on reported error rates in patients receiving radiation therapy. Methods and Materials: A voluntary error reporting system was instituted with the goal of recording errors, analyzing their clinical impact, and guiding the implementation of targeted QA measures. In response to errors committed in relation to treatment of the wrong patient, wrong treatment site, and wrong dose, a novel initiative involving the use of checklists and timeouts for all staff was implemented. The impact of these and other QA initiatives was analyzed. Results: From 2001 to 2011, a total of 256 errors in 139 patients after 284,810 external radiation treatments (0.09% per treatment) were recorded in our voluntary error database. The incidence of errors related to patient/tumor site, treatment planning/data transfer, and patient setup/treatment delivery was 9%, 40.2%, and 50.8%, respectively. The compliance rate for the checklists and timeouts initiative was 97% (P<.001). These and other QA measures resulted in a significant reduction in many categories of errors. The introduction of checklists and timeouts has been successful in eliminating errors related to wrong patient, wrong site, and wrong dose. Conclusions: A comprehensive QA program that regularly monitors staff compliance together with a robust voluntary error reporting system can reduce or eliminate errors that could result in serious patient injury. We recommend the adoption of these relatively simple QA initiatives including the use of checklists and timeouts for all staff to improve the safety of patients undergoing radiation therapy in the modern era.

  12. Molecular mechanism of cholangiocarcinoma carcinogenesis.

    PubMed

    Maemura, Kosei; Natsugoe, Shoji; Takao, Sonshin

    2014-10-01

    Cholangiocarcinoma (CCA) is a highly malignant cancer of the biliary tract with a poor prognosis, which often arises from conditions causing long-term inflammation, injury, and reparative biliary epithelial cell proliferation. Several conditions are known to be major risk factors for cancer in the biliary tract or gallbladder, including primary sclerosing cholangitis, liver fluke infection, pancreaticobiliary maljunction, and chemical exposure in proof-printing workers. Abnormalities in various signaling cascades, molecules, and genetic mutations are involved in the pathogenesis of CCA. CCA is characterized by a series of highly recurrent mutations in genes, including KRAS, BRF, TP53, Smad, and p16(INK4a) . Cytokines that are affected by inflammatory environmental conditions, such as interleukin-6 (IL-6), transforming growth factor-β (TGF-β), tumor necrosis factor-α (TNF-α), and platelet-derived growth factor (PDGF), play an important role in cancer pathogenesis. Prominent signaling pathways important in carcinogenesis include TGF-β/Smad, IL-6/STAT-3, PI3K/AKT, Wnt, RAF/MEK/MAPK, and Notch. Additionally, some microRNAs regulate targets in critical pathways of CCA development and progression. This review article provides the understanding of the genetic and epigenetic mechanism(s) of carcinogenesis in CCA, which leads to the development of new therapeutic targets for the prevention and treatment of this devastating cancer. PMID:24895231

  13. Pancreatic carcinogenesis: apoptosis and angiogenesis.

    PubMed

    Onizuka, Shinya; Kawakami, Shunsuke; Taniguchi, Ken; Fujioka, Hikaru; Miyashita, Kosei

    2004-04-01

    Apoptosis and angiogenesis are critical biologic processes that are altered during carcinogenesis. Both apoptosis and angiogenesis may play an important role in pancreatic carcinogenesis. Despite numerous advances in the diagnosis and treatment of pancreatic cancer, its prognosis remains dismal and a new therapeutic approach is much needed. Recent research has revealed that apoptosis and angiogenesis are closely interrelated. Several reports show that a tumor suppresser gene that is expressed in pancreatic carcinoma and related to malignant potential can induce apoptosis and also inhibit angiogenesis. At present, it is generally accepted that tumor growth in cancers, including pancreatic cancer, depends on angiogenesis. We have identified 2 new angiogenesis inhibitors from a conditioned medium of human pancreatic carcinoma cell line (BxPC-3): antiangiogenic antithrombin III (aaAT-III) and vitamin D binding protein-macrophage activating factor (DBP-maf). These molecules were able to regress tumors in severe combined immunodeficiency disease (SCID) mice, demonstrating potent inhibition of endothelial cell proliferation. Moreover, the angiogenesis inhibitors induced tumor dormancy in the animal model. These results suggest that antiangiogenic therapy using angiogenesis inhibitors may become a new strategy for treatment of pancreatic cancer in the near future. PMID:15084979

  14. Comprehensive Analysis of Radiative Properties of Brass and Al Arranged in Nested Cylindrical Wire Arrays*

    NASA Astrophysics Data System (ADS)

    Weller, M. E.; Ouart, N. D.; Safronova, A. S.; Kantsyrev, V. L.; Esaulov, A. A.; Williamson, K. M.; Shrestha, I.; Osborne, G. C.; Shlyaptseva, V.; Keim, S. F.; Stafford, A.; Coverdale, C. A.

    2010-11-01

    Experimental results of nested cylindrical wire arrays (NCWA) consisting of brass (70% Cu and 30% Zn) wires on one array and Al (5056, 5% Mg) wires on the other array performed on the UNR Zebra generator at 1.0 MA current are compared and analyzed. Specifically, radiative properties of K-shell Al and Mg ions and L-shell Cu and Zn ions are compared as functions of the placements of the brass and Al wires on the inner and outer arrays. A full diagnostic set which included more than ten different beam-lines was implemented. Identical loads were fielded to allow the timing of time-gated pinhole and x-ray spectrometers to be shifted to get a more complete understanding of the evolution of plasma parameters over the x-ray pulse. The importance of the study of NCWAs with different wire materials is discussed. *This work was supported by NNSA under DOE Cooperative Agreements DE-FC52-06NA27588, DE-FC52-06NA27586, and in part by DE-FC52-06NA27616. Sandia is a multi-program laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under Contract DE-AC04-94AL85000.

  15. Comprehensive vacuum ultraviolet photoionization study of the CF3• trifluoromethyl radical using synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Dossmann (Soldi-Lose), Héloïse; Garcia, Gustavo A.; Nahon, Laurent; de Miranda, Barbara K. C.; Alcaraz, Christian

    2012-05-01

    The trifluoromethyl radical, CF3•, is studied for the first time by means of threshold photoelectron spectroscopy (TPES). The radical is produced in the gas phase using the flash-pyrolysis technique from hexafluoroethane as a precursor. CF3+ total ion yield and mass-selected TPES of the radical are recorded using a spectrometer based upon velocity map imaging and Wiley-McLaren time-of-flight coupled to the synchrotron radiation. The high resolution of the instrument and of the photons allows the observation of rich vibrational progressions in the TPES of CF3•. By using Franck-Condon factors computed by Bowman and coworkers, we have been able to simulate the TPES. The initial vibrational temperature of the radical beam has been evaluated at 350 ± 70 K. The structures have been identified as transitions between (n1,n2) and (n1+,n2+) vibrational levels of CF3 and CF3+ with small excitation of the breathing mode, ν1+, and large excitation (n2+ = 10-26) of the umbrella mode, ν2+, in the cation. From the energy separation between the two resolved peaks of each band, a value of 994 ± 16 cm-1 has been derived for the ν1+ breathing frequency of CF3+. For the high-lying n2+ levels, the apparent ν2+ umbrella spacing, 820 ± 14 cm-1, is fairly constant. Taking into account the ν2+ anharmonicity calculated by Bowman and coworkers, we have deduced ν2+ = 809 ± 14 cm-1, and semi-empirical estimations of the adiabatic ionization energy IEad.(CF3•) are proposed in good agreement with most of previous works. A value of the vertical ionization potential, IEvert.(CF3•) = 11.02 eV, has been derived from the observation of a photoelectron spectrum recorded at a fixed photon energy of 12 eV.

  16. Constituent Components of Out-of-Field Scatter Dose for 18-MV Intensity Modulated Radiation Therapy Versus 3-Dimensional Conformal Radiation Therapy: A Comparison With 6-MV and Implications for Carcinogenesis

    SciTech Connect

    Ruben, Jeremy D.; Smith, Ryan; Lancaster, Craig M.; Haynes, Matthew; Jones, Phillip; Panettieri, Vanessa

    2014-11-01

    Purpose: To characterize and compare the components of out-of-field dose for 18-MV intensity modulated radiation therapy (IMRT) versus 3-dimensional conformal radiation therapy (3D-CRT) and their 6-MV counterparts and consider implications for second cancer induction. Methods and Materials: Comparable plans for each technique/energy were delivered to a water phantom with a sloping wall; under full scatter conditions; with field edge abutting but outside the bath to prevent internal/phantom scatter; and with shielding below the linear accelerator head to attenuate head leakage. Neutron measurements were obtained from published studies. Results: Eighteen-megavolt IMRT produces 1.7 times more out-of-field scatter than 18-MV 3D-CRT. In absolute terms, however, differences are just approximately 0.1% of central axis dose. Eighteen-megavolt IMRT reduces internal/patient scatter by 13%, but collimator scatter (C) is 2.6 times greater than 18-MV 3D-CRT. Head leakage (L) is minimal. Increased out-of-field photon scatter from 18-MV IMRT carries out-of-field second cancer risks of approximately 0.2% over and above the 0.4% from 18-MV 3D-CRT. Greater photoneutron dose from 18-MV IMRT may result in further maximal, absolute increased risk to peripheral tissue of approximately 1.2% over 18-MV 3D-CRT. Out-of-field photon scatter remains comparable for the same modality irrespective of beam energy. Machine scatter (C+L) from 18 versus 6 MV is 1.2 times higher for IMRT and 1.8 times for 3D-CRT. It is 4 times higher for 6-MV IMRT versus 3D-CRT. Reduction in internal scatter with 18 MV versus 6 MV is 27% for 3D-CRT and 29% for IMRT. Compared with 6-MV 3D-CRT, 18-MV IMRT increases out-of-field second cancer risk by 0.2% from photons and adds 0.28-2.2% from neutrons. Conclusions: Out-of-field photon dose seems to be independent of beam energy for both techniques. Eighteen-megavolt IMRT increases out-of-field scatter 1.7-fold over 3D-CRT because of greater collimator scatter despite

  17. Molecular mechanisms of pancreatic carcinogenesis.

    PubMed

    Furukawa, Toru; Sunamura, Makoto; Horii, Akira

    2006-01-01

    Pancreatic ductal adenocarcinoma is one of the most fatal malignancies. Intensive investigation of molecular pathogenesis might lead to identifying useful molecules for diagnosis and treatment of the disease. Pancreatic ductal adenocarcinoma harbors complicated aberrations of alleles including losses of 1p, 6q, 9p, 12q, 17p, 18q, and 21q, and gains of 8q and 20q. Pancreatic cancer is usually initiated by mutation of KRAS and aberrant expression of SHH. Overexpression of AURKA mapping on 20q13.2 may significantly enhance overt tumorigenesity. Aberrations of tumor suppressor genes synergistically accelerate progression of the carcinogenic pathway through pancreatic intraepithelial neoplasia (PanIN) to invasive ductal adenocarcinoma. Abrogation of CDKN2A occurs in low-grade/early PanIN, whereas aberrations of TP53 and SMAD4 occur in high-grade/late PanIN. SMAD4 may play suppressive roles in tumorigenesis by inhibition of angiogenesis. Loss of 18q precedes SMAD4 inactivation, and restoration of chromosome 18 in pancreatic cancer cells results in tumor suppressive phenotypes regardless of SMAD4 status, indicating the possible existence of a tumor suppressor gene(s) other than SMAD4 on 18q. DUSP6 at 12q21-q22 is frequently abrogated by loss of expression in invasive ductal adenocarcinomas despite fairly preserved expression in PanIN, which suggests that DUSP6 works as a tumor suppressor in pancreatic carcinogenesis. Restoration of chromosome 12 also suppresses growths of pancreatic cancer cells despite the recovery of expression of DUSP6; the existence of yet another tumor suppressor gene on 12q is strongly suggested. Understanding the molecular mechanisms of pancreatic carcinogenesis will likely provide novel clues for preventing, detecting, and ultimately curing this life-threatening disease. PMID:16367914

  18. Development and Implementation of a Comprehensive Radiometric Validation Protocol for the CERES Earth Radiation Budget Climate Record Sensors

    NASA Technical Reports Server (NTRS)

    Priestley, K. J.; Matthews, G.; Thomas, S.

    2006-01-01

    The CERES Flight Models 1 through 4 instruments were launched aboard NASA's Earth Observing System (EOS) Terra and Aqua Spacecraft into 705 Km sun-synchronous orbits with 10:30 a.m. and 1:30 p.m. equatorial crossing times. These instruments supplement measurements made by the CERES Proto Flight Model (PFM) instrument launched aboard NASA's Tropical Rainfall Measuring Mission (TRMM) into a 350 Km, 38-degree mid-inclined orbit. CERES Climate Data Records consist of geolocated and calibrated instantaneous filtered and unfiltered radiances through temporally and spatially averaged TOA, Surface and Atmospheric fluxes. CERES filtered radiance measurements cover three spectral bands including shortwave (0.3 to 5 microns), total (0.3 to 100 microns) and an atmospheric window channel (8 to 12 microns). The CERES Earth Radiation Budget measurements represent a new era in radiation climate data, realizing a factor of 2 to 4 improvement in calibration accuracy and stability over the previous ERBE climate records, while striving for the next goal of 0.3-percent per decade absolute stability. The current improvement is derived from two sources: the incorporation of lessons learned from the ERBE mission in the design of the CERES instruments and the development of a rigorous and comprehensive radiometric validation protocol consisting of individual studies covering different spatial, spectral and temporal time scales on data collected both pre and post launch. Once this ensemble of individual perspectives is collected and organized, a cohesive and highly rigorous picture of the overall end-to-end performance of the CERES instrument's and data processing algorithms may be clearly established. This approach has resulted in unprecedented levels of accuracy for radiation budget instruments and data products with calibration stability of better than 0.2-percent and calibration traceability from ground to flight of 0.25-percent. The current work summarizes the development, philosophy

  19. From exposure to effect: a comparison of modeling approaches to chemical carcinogenesis.

    PubMed

    van Leeuwen, I M; Zonneveld, C

    2001-10-01

    Standardized long-term carcinogenicity tests aim to reveal the relationship between exposure to a chemical and occurrence of a carcinogenic response. The analysis of such tests may be facilitated by the use of mathematical models. To what extent current models actually achieve this purpose is difficult to evaluate. Various aspects of chemically induced carcinogenesis are treated by different modeling approaches, which proceed very much in isolation of each other. With this paper we aim to provide for the non-mathematician a comprehensive and critical overview of models dealing with processes involved in chemical carcinogenesis. We cover the entire process of carcinogenesis, from exposure to effect. We succinctly summarize the biology underlying the models and emphasize the relationship between model assumptions and model formulations. The use of mathematics is restricted as far as possible with some additional information relegated to boxes. PMID:11673088

  20. Bony abnormalities of the hip joint: a new comprehensive, reliable and radiation-free measurement method using magnetic resonance imaging

    PubMed Central

    Harris-Hayes, Marcie; Commean, Paul K.; Patterson, Jacqueline D.; Clohisy, John C.; Hillen, Travis J.

    2014-01-01

    The objective of this study was to develop comprehensive and reliable radiation-free methods to quantify femoral and acetabular morphology using magnetic resonance imaging (MRI). Thirty-two hips [16 subjects, 6 with intra-articular hip disorder (IAHD); 10 controls] were included. A 1.5-T magnetic resonance system was used to obtain three-dimensional fat-suppressed gradient-echo images at the pelvis and distal femora. After acquisition, pelvic images were post-processed to correct for coronal, axial and sagittal rotation. Measurements performed included acetabular version (AV), femoral version (FV), lateral center-edge angle (LCEA), femoral neck angle (FNA) and alpha angle (AA) at 3, 2, 1 and 12 a.m. Two experienced raters, a musculoskeletal radiologist and an orthopedic physical therapist, and a novice rater, a research assistant, completed reliability testing. Raters measured all hips twice with minimum 2 weeks between sessions. Intra-class Correlation Coefficients (ICCs) were used to determine rater reliability; standard error of measurements was reported to estimate the reasonable limits of the expected error in the different raters’ scores. Inter-rater reliability was good to excellent for all raters for AV, FV, FNA and LCEA (ICCs: 0.82–0.98); good to excellent between experienced raters (ICCs: 0.78–0.86) and poor to good between novice and experienced raters (ICCs: 0.23–0.78) for AA. Intra-rater reliability was good to excellent for all raters for AV, FV and FNA (ICCs: 0.93–0.99); for one experienced and novice rater for LCEA (ICCs: 0.84–0.89); moderate to excellent for the experienced raters for AA (ICCs: 0.72-0.89). Intra-rater reliability was poor for the second experienced rater for LCEA (ICC: 0.56), due to a single measurement error and for the novice rater for AA (ICCs: 0.17–0.38). We described MRI methods to comprehensively assess femoral and acetabular morphology. Measurements such as AV, FV and FNA and the LCEA can be made reliably by

  1. Systems biology perspectives on the carcinogenic potential of radiation

    PubMed Central

    Barcellos-Hoff, Mary Helen; Adams, Cassandra; Balmain, Allan; Costes, Sylvain V.; Demaria, Sandra; Illa-Bochaca, Irineu; Mao, Jian Hua; Ouyang, Haoxu; Sebastiano, Christopher; Tang, Jonathan

    2014-01-01

    This review focuses on recent experimental and modeling studies that attempt to define the physiological context in which high linear energy transfer (LET) radiation increases epithelial cancer risk and the efficiency with which it does so. Radiation carcinogenesis is a two-compartment problem: ionizing radiation can alter genomic sequence as a result of damage due to targeted effects (TE) from the interaction of energy and DNA; it can also alter phenotype and multicellular interactions that contribute to cancer by poorly understood non-targeted effects (NTE). Rather than being secondary to DNA damage and mutations that can initiate cancer, radiation NTE create the critical context in which to promote cancer. Systems biology modeling using comprehensive experimental data that integrates different levels of biological organization and time-scales is a means of identifying the key processes underlying the carcinogenic potential of high-LET radiation. We hypothesize that inflammation is a key process, and thus cancer susceptibility will depend on specific genetic predisposition to the type and duration of this response. Systems genetics using novel mouse models can be used to identify such determinants of susceptibility to cancer in radiation sensitive tissues following high-LET radiation. Improved understanding of radiation carcinogenesis achieved by defining the relative contribution of NTE carcinogenic effects and identifying the genetic determinants of the high-LET cancer susceptibility will help reduce uncertainties in radiation risk assessment.

  2. Mechanisms of non-genotoxic carcinogenesis.

    PubMed

    Shaw, I C; Jones, H B

    1994-03-01

    Until recently, the mechanism of carcinogenesis has been regarded as a two-stage phenomenon involving damage to the genetic material, which initiates the process, followed by a cell-division stimulus, which promotes the development of the tumour. However, exposure to some chemicals has been shown to result in carcinogenesis without involvement of the initiation step. The mechanism of non-genotoxic carcinogenesis is not fully understood, but is believed to involve stimulation of cell division with a consequent increased probability of a mutation occurring spontaneously. In this article, Ian Shaw and Huw Jones review the theories of non-genotoxic carcinogenesis with reference to specific examples of known non-genotoxic carcinogens. PMID:8184492

  3. Easy Aerosol - Robust and non-robust circulation responses to aerosol radiative forcing in comprehensive atmosphere models

    NASA Astrophysics Data System (ADS)

    Voigt, Aiko; Bony, Sandrine; Stevens, Bjorn; Boucher, Olivier; Medeiros, Brian; Pincus, Robert; Wang, Zhili; Zhang, Kai; Lewinschal, Anna; Bellouin, Nicolas; Yang, Young-Min

    2015-04-01

    A number of recent studies illustrated the potential of aerosols to change the large-scale atmospheric circulation and precipitation patterns. It remains unclear, however, to what extent the proposed aerosol-induced changes reflect robust model behavior or are affected by uncertainties in the models' treatment of parametrized physical processes, such as those related to clouds. "Easy Aerosol", a model-intercomparison project organized within the Grand Challenge on Clouds, Circulation and Climate Sensitivity of the World Climate Research Programme, addresses this question by subjecting a suite of comprehensive atmosphere general circulation models with prescribed sea-surface temperatures (SSTs) to the same set of idealized "easy" aerosol perturbations. This contribution discusses the aerosol perturbations as well as their impact on the model's precipitation and surface winds. The aerosol perturbations are designed based on a global aerosol climatology and mimic the gravest mode of the anthropogenic aerosol. Specifically, the meridional and zonal distributions of total aerosol optical depth are approximated by a superposition of Gaussian plumes; the vertical distribution is taken as constant within the lowest 1250m of the atmosphere followed by an exponential decay with height above. The aerosol both scatters and absorbs shortwave radiation, but in order to focus on direct radiative effects aerosol-cloud interactions are omitted. Each model contributes seven simulations. A clean control case with no aerosol-radiative effects at all is compared to six perturbed simulations with differing aerosol loading, zonal aerosol distributions, and SSTs. To estimate the role of natural variability, one of the models, MPI-ESM, contributes a 5-member ensemble for each simulation. If the observed SSTs from years 1979-2005 are prescribed, the aerosol leads to a local depression of precipitation at the Northern Hemisphere center of the aerosol and a northward shift of the

  4. Ultrastructural alterations in field carcinogenesis measured by enhanced backscattering spectroscopy

    PubMed Central

    Mutyal, Nikhil N.; Yi, Ji; Stypula-Cyrus, Yolanda; Rogers, Jeremy D.; Goldberg, Michael J.; Bianchi, Laura K.; Bajaj, Shailesh; Roy, Hemant K.; Backman, Vadim

    2013-01-01

    Abstract. Optical characterization of biological tissue in field carcinogenesis offers a method with which to study the mechanisms behind early cancer development and the potential to perform clinical diagnosis. Previously, low-coherence enhanced backscattering spectroscopy (LEBS) has demonstrated the ability to discriminate between normal and diseased organs based on measurements of histologically normal-appearing tissue in the field of colorectal (CRC) and pancreatic (PC) cancers. Here, we implement the more comprehensive enhanced backscattering (EBS) spectroscopy to better understand the structural and optical changes which lead to the previous findings. EBS provides high-resolution measurement of the spatial reflectance profile P(rs) between 30 microns and 2.7 mm, where information about nanoscale mass density fluctuations in the mucosa can be quantified. A demonstration of the length-scales at which P(rs) is optimally altered in CRC and PC field carcinogenesis is given and subsequently these changes are related to the tissue’s structural composition. Three main conclusions are made. First, the most significant changes in P(rs) occur at short length-scales corresponding to the superficial mucosal layer. Second, these changes are predominantly attributable to a reduction in the presence of subdiffractional structures. Third, similar trends are seen for both cancer types, suggesting a common progression of structural alterations in each. PMID:24008865

  5. A comprehensive study of the radiative decays of J/ψ and ψ(2S) to pseudoscalar meson pairs, and search for glueballs

    NASA Astrophysics Data System (ADS)

    Dobbs, Sean; Tomaradze, A.; Xiao, T.; Seth, Kamal K.

    2016-05-01

    Using 53 pb-1 of e+e- annihilation data taken at the ψ(2S) resonance, a comprehensive study has been made of the radiative decays of samples of 5.1 million J/ψ and 24.5 million ψ(25) into pairs of pseudoscalar mesons, π+π-, π0π0, K+ K-, KS0KS0 and ηη. Product branching fractions for the radiative decays of J/ψ and ψ(2S) to scalar and tensor resonances have been determined, and are discussed in relation to predicted glueballs. For ψ(25) radiative decays, the search for glueballs has been extended to masses between 2.5 GeV and 3.3 GeV.

  6. Transplacental arsenic carcinogenesis in mice

    SciTech Connect

    Waalkes, Michael P. Liu, Jie; Diwan, Bhalchandra A.

    2007-08-01

    Our work has focused on the carcinogenic effects of in utero arsenic exposure in mice. Our data show that a short period of maternal exposure to inorganic arsenic in the drinking water is an effective, multi-tissue carcinogen in the adult offspring. These studies have been reproduced in three temporally separate studies using two different mouse strains. In these studies pregnant mice were treated with drinking water containing sodium arsenite at up to 85 ppm arsenic from days 8 to 18 of gestation, and the offspring were observed for up to 2 years. The doses used in all these studies were well tolerated by both the dam and offspring. In C3H mice, two separate studies show male offspring exposed to arsenic in utero developed liver carcinoma and adrenal cortical adenoma in a dose-related fashion during adulthood. Prenatally exposed female C3H offspring show dose-related increases in ovarian tumors and lung carcinoma and in proliferative lesions (tumors plus preneoplastic hyperplasia) of the uterus and oviduct. In addition, prenatal arsenic plus postnatal exposure to the tumor promoter, 12-O-tetradecanoyl phorbol-13-acetate (TPA) in C3H mice produces excess lung tumors in both sexes and liver tumors in females. Male CD1 mice treated with arsenic in utero develop tumors of the liver and adrenal and renal hyperplasia while females develop tumors of urogenital system, ovary, uterus and adrenal and hyperplasia of the oviduct. Additional postnatal treatment with diethylstilbestrol or tamoxifen after prenatal arsenic in CD1 mice induces urinary bladder transitional cell proliferative lesions, including carcinoma and papilloma, and enhances the carcinogenic response in the liver of both sexes. Overall this model has provided convincing evidence that arsenic is a transplacental carcinogen in mice with the ability to target tissues of potential human relevance, such as the urinary bladder, lung and liver. Transplacental carcinogenesis clearly occurs with other agents in humans

  7. Decorin deficiency promotes hepatic carcinogenesis

    PubMed Central

    Horváth, Zsolt; Kovalszky, Ilona; Fullár, Alexandra; Kiss, Katalin; Schaff, Zsuzsa; Iozzo, Renato V.; Baghy, Kornélia

    2014-01-01

    experimental carcinogenesis by providing an environment devoid of this potent pan-RTK inhibitor. Thus, our results support future utilization of decorin as an antitumor agent in liver cancer. PMID:24361483

  8. Anticancer Effect of Lycopene in Gastric Carcinogenesis

    PubMed Central

    Kim, Mi Jung; Kim, Hyeyoung

    2015-01-01

    Gastric cancer ranks as the most common cancer and the second leading cause of cancer-related death in the world. Risk factors of gastric carcinogenesis include oxidative stress, DNA damage, Helicobacter pylori infection, bad eating habits, and smoking. Since oxidative stress is related to DNA damage, smoking, and H. pylori infection, scavenging of reactive oxygen species may be beneficial for prevention of gastric carcinogenesis. Lycopene, one of the naturally occurring carotenoids, has unique structural and chemical features that contributes to a potent antioxidant activity. It shows a potential anticancer activity and reduces gastric cancer incidence. This review will summarize anticancer effect and mechanism of lycopene on gastric carcinogenesis based on the recent experimental and clinical studies. PMID:26151041

  9. Anticancer Effect of Lycopene in Gastric Carcinogenesis.

    PubMed

    Kim, Mi Jung; Kim, Hyeyoung

    2015-06-01

    Gastric cancer ranks as the most common cancer and the second leading cause of cancer-related death in the world. Risk factors of gastric carcinogenesis include oxidative stress, DNA damage, Helicobacter pylori infection, bad eating habits, and smoking. Since oxidative stress is related to DNA damage, smoking, and H. pylori infection, scavenging of reactive oxygen species may be beneficial for prevention of gastric carcinogenesis. Lycopene, one of the naturally occurring carotenoids, has unique structural and chemical features that contributes to a potent antioxidant activity. It shows a potential anticancer activity and reduces gastric cancer incidence. This review will summarize anticancer effect and mechanism of lycopene on gastric carcinogenesis based on the recent experimental and clinical studies. PMID:26151041

  10. Dietary fibres may protect or enhance carcinogenesis.

    PubMed

    Harris, P J; Ferguson, L R

    1999-07-15

    Dietary fibre (DF) is widely considered to protect against cancer, especially colorectal cancer. However, a large prospective epidemiological study has shown no apparent effect of DF intake on the development of colorectal cancer. We suggest that this may be because the term DF represents a wide range of materials, some able to protect, but some able to enhance carcinogenesis. This is consistent with data from animal carcinogenesis experiments. Most of the DF in western diets is in the form of plant cell walls, but these vary in their composition and it is unlikely that all types are protective. The few data available indicate that plant cell walls containing suberin or lignin may be the most protective, although they are present in only small amounts in food plants. DFs are also added to foods. These include components obtained from plant cell walls, such as pectins, as well as soluble DFs from other sources. In general, animal carcinogenesis experiments indicate that soluble DFs do not protect and some may enhance carcinogenesis. Few human intervention studies have been done on DF or sources of DF, with the exception of wheat bran, a good source of DF, which has been shown to protect. Possible mechanisms whereby DF may enhance carcinogenesis are discussed. In addition to DFs, resistant starches and non-digestible oligosaccharides are added to foods; these, like DF, escape digestion in the small intestine. However, so far only a few animal carcinogenesis experiments have been reported using these materials, and no human intervention studies. We believe caution should be exercised in the addition of such materials to food. PMID:10415434

  11. ORGAN AND SPECIES SPECIFICITY IN CHEMICAL CARCINOGENESIS

    EPA Science Inventory

    The focus of the Symposium and this volume is the relative susceptibility of specific animal species strains and organs to various carcinogens. For the first time, investigators in chemical carcinogenesis are able to pool their discoveries in this area. Once analyzed, this data c...

  12. Cell Surface Human Airway Trypsin-Like Protease Is Lost During Squamous Cell Carcinogenesis.

    PubMed

    Duhaime, Michael J; Page, Khaliph O; Varela, Fausto A; Murray, Andrew S; Silverman, Michael E; Zoratti, Gina L; List, Karin

    2016-07-01

    Cancer progression is accompanied by increased levels of extracellular proteases that are capable of remodeling the extracellular matrix, as well as cleaving and activating growth factors and receptors that are involved in pro-cancerous signaling pathways. Several members of the type II transmembrane serine protease (TTSP) family have been shown to play critical roles in cancer progression, however, the expression or function of the TTSP Human Airway Trypsin-like protease (HAT) in carcinogenesis has not been examined. In the present study we aimed to determine the expression of HAT during squamous cell carcinogenesis. HAT transcript is present in several tissues containing stratified squamous epithelium and decreased expression is observed in carcinomas. We determined that HAT protein is consistently expressed on the cell surface in suprabasal/apical layers of squamous cells in healthy cervical and esophageal epithelia. To assess whether HAT protein is differentially expressed in normal tissue versus tissue in different stages of carcinogenesis, we performed a comprehensive immunohistochemical analysis of HAT protein expression levels and localization in arrays of paraffin embedded human cervical and esophageal carcinomas compared to the corresponding normal tissue. We found that HAT protein is expressed in the non-proliferating, differentiated cellular strata and is lost during the dedifferentiation of epithelial cells, a hallmark of squamous cell carcinogenesis. Thus, HAT expression may potentially be useful as a marker for clinical grading and assessment of patient prognosis in squamous cell carcinomas. PMID:26297835

  13. Cell Surface Human Airway Trypsin-Like Protease Is Lost During Squamous Cell Carcinogenesis

    PubMed Central

    DUHAIME, MICHAEL J.; PAGE, KHALIPH O.; VARELA, FAUSTO A.; MURRAY, ANDREW S.; SILVERMAN, MICHAEL E.; ZORATTI, GINA L.; LIST, KARIN

    2016-01-01

    Cancer progression is accompanied by increased levels of extracellular proteases that are capable of remodeling the extracellular matrix, as well as cleaving and activating growth factors and receptors that are involved in pro-cancerous signaling pathways. Several members of the type II transmembrane serine protease (TTSP) family have been shown to play critical roles in cancer progression, however, the expression or function of the TTSP Human Airway Trypsin-like protease (HAT) in carcinogenesis has not been examined. In the present study we aimed to determine the expression of HAT during squamous cell carcinogenesis. HAT transcript is present in several tissues containing stratified squamous epithelium and decreased expression is observed in carcinomas. We determined that HAT protein is consistently expressed on the cell surface in suprabasal/apical layers of squamous cells in healthy cervical and esophageal epithelia. To assess whether HAT protein is differentially expressed in normal tissue versus tissue in different stages of carcinogenesis, we performed a comprehensive immunohistochemical analysis of HAT protein expression levels and localization in arrays of paraffin embedded human cervical and esophageal carcinomas compared to the corresponding normal tissue. We found that HAT protein is expressed in the non-proliferating, differentiated cellular strata and is lost during the dedifferentiation of epithelial cells, a hallmark of squamous cell carcinogenesis. Thus, HAT expression may potentially be useful as a marker for clinical grading and assessment of patient prognosis in squamous cell carcinomas. PMID:26297835

  14. Comprehensive tool for calculation of radiative fluxes: illustration of shortwave aerosol radiative effect sensitivities to the details in aerosol and underlying surface characteristics

    NASA Astrophysics Data System (ADS)

    Derimian, Yevgeny; Dubovik, Oleg; Huang, Xin; Lapyonok, Tatyana; Litvinov, Pavel; Kostinski, Alex B.; Dubuisson, Philippe; Ducos, Fabrice

    2016-05-01

    The evaluation of aerosol radiative effect on broadband hemispherical solar flux is often performed using simplified spectral and directional scattering characteristics of atmospheric aerosol and underlying surface reflectance. In this study we present a rigorous yet fast computational tool that accurately accounts for detailed variability of both spectral and angular scattering properties of aerosol and surface reflectance in calculation of direct aerosol radiative effect. The tool is developed as part of the GRASP (Generalized Retrieval of Aerosol and Surface Properties) project. We use the tool to evaluate instantaneous and daily average radiative efficiencies (radiative effect per unit aerosol optical thickness) of several key atmospheric aerosol models over different surface types. We then examine the differences due to neglect of surface reflectance anisotropy, nonsphericity of aerosol particle shape and accounting only for aerosol angular scattering asymmetry instead of using full phase function. For example, it is shown that neglecting aerosol particle nonsphericity causes mainly overestimation of the aerosol cooling effect and that magnitude of this overestimate changes significantly as a function of solar zenith angle (SZA) if the asymmetry parameter is used instead of detailed phase function. It was also found that the nonspherical-spherical differences in the calculated aerosol radiative effect are not modified significantly if detailed BRDF (bidirectional reflectance distribution function) is used instead of Lambertian approximation of surface reflectance. Additionally, calculations show that usage of only angular scattering asymmetry, even for the case of spherical aerosols, modifies the dependence of instantaneous aerosol radiative effect on SZA. This effect can be canceled for daily average values, but only if sun reaches the zenith; otherwise a systematic bias remains. Since the daily average radiative effect is obtained by integration over a range

  15. A comprehensive dosimetric study of pancreatic cancer treatment using three-dimensional conformal radiation therapy (3DCRT), intensity-modulated radiation therapy (IMRT), volumetric-modulated radiation therapy (VMAT), and passive-scattering and modulated-scanning proton therapy (PT)

    SciTech Connect

    Ding, Xuanfeng; Dionisi, Francesco; Tang, Shikui; Ingram, Mark; Hung, Chun-Yu; Prionas, Evangelos; Lichtenwalner, Phil; Butterwick, Ian; Zhai, Huifang; Yin, Lingshu; Lin, Haibo; Kassaee, Alireza; Avery, Stephen

    2014-07-01

    With traditional photon therapy to treat large postoperative pancreatic target volume, it often leads to poor tolerance of the therapy delivered and may contribute to interrupted treatment course. This study was performed to evaluate the potential advantage of using passive-scattering (PS) and modulated-scanning (MS) proton therapy (PT) to reduce normal tissue exposure in postoperative pancreatic cancer treatment. A total of 11 patients with postoperative pancreatic cancer who had been previously treated with PS PT in University of Pennsylvania Roberts Proton Therapy Center from 2010 to 2013 were identified. The clinical target volume (CTV) includes the pancreatic tumor bed as well as the adjacent high-risk nodal areas. Internal (iCTV) was generated from 4-dimensional (4D) computed tomography (CT), taking into account target motion from breathing cycle. Three-field and 4-field 3D conformal radiation therapy (3DCRT), 5-field intensity-modulated radiation therapy, 2-arc volumetric-modulated radiation therapy, and 2-field PS and MS PT were created on the patients’ average CT. All the plans delivered 50.4 Gy to the planning target volume (PTV). Overall, 98% of PTV was covered by 95% of the prescription dose and 99% of iCTV received 98% prescription dose. The results show that all the proton plans offer significant lower doses to the left kidney (mean and V{sub 18} {sub Gy}), stomach (mean and V{sub 20} {sub Gy}), and cord (maximum dose) compared with all the photon plans, except 3-field 3DCRT in cord maximum dose. In addition, MS PT also provides lower doses to the right kidney (mean and V{sub 18} {sub Gy}), liver (mean dose), total bowel (V{sub 20} {sub Gy} and mean dose), and small bowel (V{sub 15} {sub Gy} absolute volume ratio) compared with all the photon plans and PS PT. The dosimetric advantage of PT points to the possibility of treating tumor bed and comprehensive nodal areas while providing a more tolerable treatment course that could be used for dose

  16. Lesser-Known Molecules in Ovarian Carcinogenesis

    PubMed Central

    Lozneanu, Ludmila; Cojocaru, Elena; Giuşcă, Simona Eliza; Cărăuleanu, Alexandru; Căruntu, Irina-Draga

    2015-01-01

    Currently, the deciphering of the signaling pathways brings about new advances in the understanding of the pathogenic mechanism of ovarian carcinogenesis, which is based on the interaction of several molecules with different biochemical structure that, consequently, intervene in cell metabolism, through their role as regulators in proliferation, differentiation, and cell death. Given that the ensemble of biomarkers in OC includes more than 50 molecules the interest of the researchers focuses on the possible validation of each one's potential as prognosis markers and/or therapeutic targets. Within this framework, this review presents three protein molecules: ALCAM, c-FLIP, and caveolin, motivated by the perspectives provided through the current limited knowledge on their role in ovarian carcinogenesis and on their potential as prognosis factors. Their structural stability, once altered, triggers the initiation of the sequences characteristic for ovarian carcinogenesis, through their role as modulators for several signaling pathways, contributing to the disruption of cellular junctions, disturbance of pro-/antiapoptotic equilibrium, and alteration of transmission of the signals specific for the molecular pathways. For each molecule, the text is built as follows: (i) general remarks, (ii) structural details, and (iii) particularities in expression, from different tumors to landmarks in ovarian carcinoma. PMID:26339605

  17. Comprehensive Evaluation of Personal, Clinical, and Radiation Dosimetric Parameters for Acute Skin Reaction during Whole Breast Radiotherapy

    PubMed Central

    Yang, Dae Sik; Lee, Jung Ae; Lee, Nam Kwon; Park, Young Je; Lee, Suk; Kim, Chul Yong; Son, Gil Soo

    2016-01-01

    Skin reaction is major problem during whole breast radiotherapy. To identify factors related to skin reactions during whole breast radiotherapy, various personal, clinical, and radiation dosimetric parameters were evaluated. From January 2012 to December 2013, a total of 125 patients who underwent breast conserving surgery and adjuvant whole breast irradiation were retrospectively reviewed. All patients had both whole breast irradiation and boost to the tumour bed. Skin reaction was measured on the first day of boost therapy based on photography of the radiation field and medical records. For each area of axilla and inferior fold, the intensity score of erythema (score 1 to 5) and extent (score 0 to 1) were summed. The relationship of various parameters to skin reaction was evaluated using chi-square and linear regression tests. The V100 (volume receiving 100% of prescribed radiation dose, p < 0.001, both axilla and inferior fold) and age (p = 0.039 for axilla and 0.026 for inferior fold) were significant parameters in multivariate analyses. The calculated axilla dose (p = 0.003) and breast separation (p = 0.036) were also risk factors for axilla and inferior fold, respectively. Young age and large V100 are significant factors for acute skin reaction that can be simply and cost-effectively measured. PMID:27579310

  18. Comprehensive Evaluation of Personal, Clinical, and Radiation Dosimetric Parameters for Acute Skin Reaction during Whole Breast Radiotherapy.

    PubMed

    Yang, Dae Sik; Lee, Jung Ae; Yoon, Won Sup; Lee, Nam Kwon; Park, Young Je; Lee, Suk; Kim, Chul Yong; Son, Gil Soo

    2016-01-01

    Skin reaction is major problem during whole breast radiotherapy. To identify factors related to skin reactions during whole breast radiotherapy, various personal, clinical, and radiation dosimetric parameters were evaluated. From January 2012 to December 2013, a total of 125 patients who underwent breast conserving surgery and adjuvant whole breast irradiation were retrospectively reviewed. All patients had both whole breast irradiation and boost to the tumour bed. Skin reaction was measured on the first day of boost therapy based on photography of the radiation field and medical records. For each area of axilla and inferior fold, the intensity score of erythema (score 1 to 5) and extent (score 0 to 1) were summed. The relationship of various parameters to skin reaction was evaluated using chi-square and linear regression tests. The V 100 (volume receiving 100% of prescribed radiation dose, p < 0.001, both axilla and inferior fold) and age (p = 0.039 for axilla and 0.026 for inferior fold) were significant parameters in multivariate analyses. The calculated axilla dose (p = 0.003) and breast separation (p = 0.036) were also risk factors for axilla and inferior fold, respectively. Young age and large V 100 are significant factors for acute skin reaction that can be simply and cost-effectively measured. PMID:27579310

  19. LIDORT V2PLUS: a comprehensive radiative transfer package for UV/VIS/NIR nadir remote sensing

    NASA Astrophysics Data System (ADS)

    Spurr, Robert J. D.

    2004-02-01

    The LIDPORT V2PLUS radiative transfer package is designed for simulation and retrieval applications for nadir viewing remote sensing instruments such as GOME, GOME-2, SCIAMACHY, OMI and MODIS. The package is based on the LIDORT family of linearized discrete ordinate models, and it will deliver earthshine radiances, analytic profile, total column and surface property Jacobians. LIDORT V2PLUS includes a quasi-exact single scatter computation for all solar beams and the line of sight direction in a curved spherical-shell refracting atmosphere, and a full treatment of the diffuse radiation field in the pseudo-spherical approximation at all points along the line-of-sight. We give examples of radiances and O3 air mass factors at 325 nm, and Jacobians for O3 total column and profiles and for surface albedos, with particular emphasis on the wide-angle spherically-corrected viewing mode. We also look at the effect of horizontal inhomogeneity caused by varying surface properties along the line of sight.

  20. Predicting cancer rates in astronauts from animal carcinogenesis studies and cellular markers

    NASA Technical Reports Server (NTRS)

    Williams, J. R.; Zhang, Y.; Zhou, H.; Osman, M.; Cha, D.; Kavet, R.; Cuccinotta, F.; Dicello, J. F.; Dillehay, L. E.

    1999-01-01

    The radiation space environment includes particles such as protons and multiple species of heavy ions, with much of the exposure to these radiations occurring at extremely low average dose-rates. Limitations in databases needed to predict cancer hazards in human beings from such radiations are significant and currently do not provide confidence that such predictions are acceptably precise or accurate. In this article, we outline the need for animal carcinogenesis data based on a more sophisticated understanding of the dose-response relationship for induction of cancer and correlative cellular endpoints by representative space radiations. We stress the need for a model that can interrelate human and animal carcinogenesis data with cellular mechanisms. Using a broad model for dose-response patterns which we term the "subalpha-alpha-omega (SAO) model", we explore examples in the literature for radiation-induced cancer and for radiation-induced cellular events to illustrate the need for data that define the dose-response patterns more precisely over specific dose ranges, with special attention to low dose, low dose-rate exposure. We present data for multiple endpoints in cells, which vary in their radiosensitivity, that also support the proposed model. We have measured induction of complex chromosome aberrations in multiple cell types by two space radiations, Fe-ions and protons, and compared these to photons delivered at high dose-rate or low dose-rate. Our data demonstrate that at least three factors modulate the relative efficacy of Fe-ions compared to photons: (i) intrinsic radiosensitivity of irradiated cells; (ii) dose-rate; and (iii) another unspecified effect perhaps related to reparability of DNA lesions. These factors can produce respectively up to at least 7-, 6- and 3-fold variability. These data demonstrate the need to understand better the role of intrinsic radiosensitivity and dose-rate effects in mammalian cell response to ionizing radiation. Such

  1. Oxidative stress in prostate hyperplasia and carcinogenesis.

    PubMed

    Udensi, Udensi K; Tchounwou, Paul B

    2016-01-01

    Prostatic hyperplasia (PH) is a common urologic disease that affects mostly elderly men. PH can be classified as benign prostatic hyperplasia (BPH), or prostate cancer (PCa) based on its severity. Oxidative stress (OS) is known to influence the activities of inflammatory mediators and other cellular processes involved in the initiation, promotion and progression of human neoplasms including prostate cancer. Scientific evidence also suggests that micronutrient supplementation may restore the antioxidant status and hence improve the clinical outcomes for patients with BPH and PCa. This review highlights the recent studies on prostate hyperplasia and carcinogenesis, and examines the role of OS on the molecular pathology of prostate cancer progression and treatment. PMID:27609145

  2. [Radiosurgery and brain radio-induced carcinogenesis: update].

    PubMed

    Muracciole, X; Cowen, D; Régis, J

    2004-06-01

    The use of radiosurgery Gamma-knife for many benign tumors and diseases has increased significantly over the last two decades. The long-term potential carcinogenic risk has not been evaluated until recently. The definition of radio-induced tumors was based on Cahan's criteria: it must occur in the previously irradiated field, with a sufficiently long interval from irradiation, it must be pathologically different from the primary tumor, not be present at time of irradiation and no genetic predisposition for second tumor. The brain is one of most sensitive tIssues and no minimal dose has been established. Even doses as low as 1 Gy have been associated with second tumor formation and relative risk between 1.57 and 8.75. This relative risk increases to 18.4 for an interval time between 20 and 25 Years. Many publications emphaze the risks after larger-field, fractionated radiotherapy with low non-cell-killing dose delivered to central nervous system. Furthermore, therapeutic radiation doses for benign tumors associated with a long life (parasellar tumors, meningioma) were implicated in carcinogenesis. Incidence of radiation-associated tumors is linked to different factors such as age and individual genetic susceptibility. At this time and to our knowledge, 3 radiation-associated gliomas and 5 malignant acoustic neurinomas have been reported in the literature. Moreover, these second tumors met some but not all Cahan criteria. We also report 2 cases from our radiosurgical experience and discuss these points. Long time follow-up is needed to observe the crude incidence of radiation-induced tumors at 5 to 30 Years. The relative risk is estimated less than 1 and must be announced to each patient before the radiosurgical procedure and counterbalanced wit the 1% annual risk of mortality from bleeding of untreated MAV or the 1% mortality rate of benign tumors after surgery alone. PMID:15179297

  3. Dynamic changes in the gene expression profile during rat oral carcinogenesis induced by 4-nitroquinoline 1-oxide

    PubMed Central

    GE, SHUYUN; ZHANG, JI; DU, YANZHI; HU, BIN; ZHOU, ZENGTONG; LOU, JIANING

    2016-01-01

    The typical progression of oral cancer is from hyperplastic epithelial lesions through dysplasia to invasive carcinoma. It is important to investigate malignant oral cancer progression and development in order to determine useful approaches of prevention of dysplastic lesions. The present study aimed to gain insights into the underlying molecular mechanism of oral carcinogenesis by establishing a rat model of oral carcinogenesis using 4-nitroquino-line 1-oxide. Subsequently, transcription profile analysis using an integrating microarray was performed. The dynamic gene expression changes of the six stages of rat oral carcinogenesis (normal, mild epithelial dysplasia, moderate dysplasia, severe dysplasia, carcinoma in situ and oral squamous cell carcinomas) were analyzed using component plane presentations (CPP)-self-organizing map (SOM). Six genes were verified by quantitative polymerase chain reaction, immunohistochemistry and succinate dehydrogenase (SDH) activity assay kit. Numerous differentially expressed genes (DEGs) were identified during rat oral carcinogenesis. CPP-SOM determined that these DEGs were primarily enriched during cell cycle, apoptosis, inflammatory response and tricarboxylic acid cycle, indicating the coordinated regulation of molecular networks. In addition, the expression of specific DEGs, such as janus kinase 3, cyclin-dependent kinase A-1, B-cell chronic lymphocytic leukaemia/lymphoma 2-like 2, nuclear factor-κB, tumor necrosis factor receptor superfamily member 1A, cyclin D1 and SDH were identified to have high concordance with the results from microarray data. The current study demonstrated that oral carcinogenesis is a multi-step and multi-gene process, with a distinct pattern alteration along a continuum of malignant transformation. In addition, this comprehensive investigation provided a theoretical basis for the understanding of the molecular alterations associated with oral carcinogenesis. PMID:26860129

  4. Colonic perianastomotic carcinogenesis in an experimental model

    PubMed Central

    Pérez-Holanda, Sergio; Rodrigo, Luis; Pinyol-Felis, Carme; Vinyas-Salas, Joan

    2008-01-01

    Background To examine the effect of anastomosis on experimental carcinogenesis in the colon of rats. Methods Forty-three 10-week-old male and female Sprague-Dawley rats were operated on by performing an end-to-side ileorectostomy. Group A:16 rats received no treatment. Group B: 27 rats received 18 subcutaneous injections weekly at a dose of 21 mg/kg wt of 1–2 dimethylhydrazine (DMH), from the eighth day after the intervention. Animals were sacrificed between 25–27 weeks. The number of tumours, their localization, size and microscopic characteristics were recorded. A paired chi-squared analysis was performed comparing tumoral induction in the perianastomotic zone with the rest of colon with faeces. Results No tumours appeared in the dimethylhydrazine-free group. The percentage tumoral area was greater in the perianastomotic zone compared to tumours which had developed in the rest of colon with faeces (p = 0.014). Conclusion We found a cocarcinogenic effect due to the creation of an anastomosis, when using an experimental model of colonic carcinogenesis induced by DMH in rats. PMID:18667092

  5. Multistage carcinogenesis in the urinary bladder.

    PubMed Central

    Cohen, S M; Greenfield, R E; Ellwein, L B

    1983-01-01

    The induction of cancer of the urinary bladder is a multi-stage process involving multiple exogenous and endogenous factors. Based on the classical initiation-promotion model, we have used N-[4-(5-nitro-2-furyl)-2-thiazolyl]formamide (FANFT) as initiator and sodium saccharin (SAC) or tryptophan as promoters. These latter chemicals have the properties expected of promoters: induction of hyperplasia, reversibility and nonmutagenicity. Also, tumors were induced whether the promoter was administered immediately after FANFT or beginning 6 weeks after FANFT was discontinued, but no tumors resulted if either promoter was given without initiation with FANFT. Factor(s) present in normal urine also are involved in the promotion process, in addition to the role of urine as a carrier of carcinogens. However, administration of SAC to animals with a rapidly proliferating bladder mucosa, induced by ulceration, pellet insertion, or in utero, resulted in bladder tumor induction, even without prior initiation with FANFT. To better understand the complex interaction of the multiple variables in bladder carcinogenesis, a stochastic computer model has been formulated based on long-term carcinogenicity and tissue kinetic studies in vivo. This model indicates the importance of cell proliferation and the development of hyperplasia in carcinogenesis. PMID:6832093

  6. Carcinogenesis--a new point of view.

    PubMed

    Gevorkyan, L; Gambashidze, K

    2014-04-01

    Presented article suggests the novel hypothesis of carcinogenesis, where the key moment for all types (biological, physical, chemical) of carcinogenesis has been discussed. For confirmation of the hypothesis thorough theoretical analysis of the mechanisms of malignant transformation of cells after influence of any type of carcinogens and results of experiments have been presented. Hypothesis highlights are formulated as follows: 1) Covalent bond disorders between S+-methionine and Fe3+ atoms in cytochrome; 2) Electron transport chain blockade with certain ligand after its penetration in cytochrome pocket with further formation of 6th coordination bond between ligand and Fe atom (in one case increase in mitochondrial pH precede-, and in other, it follows electron transport chain blockade in cytochromes); 3) Fe3+ reduction up to Fe2+ leading to blockade of aerobic glycolysis; 4) Decrease in enzyme (Е1-TDP, oxidases etc.) activity due to mitochondrial pH alterations; 5) Production of S-adenosylmethionine owing to lipoic acid amide leading to accumulation of homocysteine in cytoplasm with further penetration in cell nucleus producing DNA mutations; 6) Fe2+ wash-out from cytochrome and its deposition in ferritin. PMID:24850610

  7. Evaluation of Four Techniques Using Intensity-Modulated Radiation Therapy for Comprehensive Locoregional Irradiation of Breast Cancer

    SciTech Connect

    Jagsi, Reshma; Moran, Jean; Marsh, Robin; Masi, Kathryn; Griffith, Kent A.; Pierce, Lori J.

    2010-12-01

    Purpose: To establish optimal intensity-modulated radiation therapy (IMRT) techniques for treating the left breast and regional nodes, using moderate deep-inspiration breath hold. Methods and Materials: We developed four IMRT plans of differing complexity for each of 10 patients following lumpectomy for left breast cancer. A dose of 60 Gy was prescribed to the boost planning target volume (PTV) and 52.2 Gy to the breast and supraclavicular, infraclavicular, and internal mammary nodes. Two plans used inverse-planned beamlet techniques: a 9-field technique, with nine equispaced axial beams, and a tangential beamlet technique, with three to five ipsilateral beams. The third plan (a segmental technique) used a forward-planned multisegment technique, and the fourth plan (a segmental blocked technique) was identical but included a block to limit heart dose. Dose--volume histograms were generated, and metrics chosen for comparison were analyzed using the paired t test. Results: Mean heart and left anterior descending coronary artery doses were similar with the tangential beamlet and segmental blocked techniques but higher with the segmental and 9-field techniques (mean paired difference of 15.1 Gy between segmental and tangential beamlet techniques, p < 0.001). Substantial volumes of contralateral tissue received dose with the 9-field technique (mean right breast V2, 58.9%; mean right lung V2, 75.3%). Minimum dose to {>=}95% of breast PTV was, on average, 45.9 Gy with tangential beamlet, 45.0 Gy with segmental blocked, 51.4 Gy with segmental, and 50.2 Gy with 9-field techniques. Coverage of the internal mammary region was substantially better with the two beamlet techniques than with the segmental blocked technique. Conclusions: Compared to the 9-field beamlet and segmental techniques, a tangential beamlet IMRT technique reduced exposure to normal tissues and maintained reasonable target coverage.

  8. THE REACTIVE OXYGEN SPECIES (ROS) THEORY OF ARSENIC CARCINOGENESIS

    EPA Science Inventory

    At this time, there is not a scientific consensus on the mechanisms/modes of action for arsenic carcinogenesis. Proposed mechanisms/modes of action for arsenic carcinogenesis include but are not limited to clastogenic effects, mutation, oxidative stress (via ROS and other chemic...

  9. THE REACTIVE OXYGEN SPECIES (ROS) THEORY OF ARSENIC CARCINOGENESIS

    EPA Science Inventory



    Arsenic is a human carcinogen in skin, lung, liver, urinary bladder
    and kidney. At this time, there is not a scientific consensus on the
    mechanisms/modes of action for arsenic carcinogenesis. Proposed
    mechanisms/modes of action for arsenic carcinogenesi...

  10. Metal interactions in carcinogenesis: enhancement, inhibition

    PubMed Central

    Nordberg, Gunnar F.; Andersen, Ole

    1981-01-01

    Metals constitute a fundamentally important part of the total human environment. Since human exposure often involves complex mixtures of metal compounds and, possibly, organic compounds which may be carcinogenic per se, interactions between these compounds may add significantly to human cancer risk. Our present knowledge about these kinds of interactions is very limited. The best investigated area is benzo(a)pyrene (BP)-metal oxide particle interactions in respiratory carcinogenesis in the hamster. Metal oxide particles were also shown to modify the carcinogenic effect of nitrosamines. Several reports describe experiments in which selenium compounds exerted a generally anticarcinogenic and antimutagenic activity. Inorganic arsenic compounds, which are accepted to be carcinogenic in man, have so far been negative in animal experiments except for one recent suggested report. Several authors have, however, suggested that these compounds may act as cocarcinogens due to their inhibition of DNA repair, although animal experiments to demonstrate a cocarcinogenic effect of arsenic compounds have been negative so far, except for one preliminary report. The concentration of zinc in the diet seemed to influence both transplanted tumor growth and the carcinogenicity of several organic compounds, and the possibility of a correlation between dietary zinc and certain cancer forms in man has been suggested. Protection against development of Leydigiomas usually induced by cadmium injection was afforded by simultaneous injection of zinc salts. Nickel carcinogenesis has been reported to be antagonized by manganese, and synergism between Ni and organic carcinogens, e.g. BP, has been demonstrated. There is no firm evidence that lead may be a cocarcinogen, although some limited experimental evidence is available. Oxidizing agents have been demonstrated to increase, and reducing agents to antagonize, the mutagenic effect of chromium compounds in vitro. The content of carcinogenic and

  11. [Recent advances in bladder urothelial carcinogenesis].

    PubMed

    Pignot, Géraldine; le Goux, Constance; Bieche, Ivan

    2015-12-01

    Bladder cancer is the sixth cause of cancer mortality in France and prognosis of muscle-invasive tumors remains poor due to lack of effective treatments. Recent advances in molecular biology applied to tumors and results of recent genome-wide studies have brought a important impact on the understanding of bladder carcinogenesis. Main molecular alterations concern FGFR3, TP53 and HER2, and it is now possible to distinguish three subgroups of tumors according to molecular profile. This paper proposes a review of different genetic and epigenetic alterations in bladder cancer, their potential role as theranostic markers in clinical oncology and new targeted therapies according to the concept of personalized medicine. PMID:26617115

  12. The Tumor Microenvironment in Colorectal Carcinogenesis

    PubMed Central

    Peddareddigari, Vijay G.; Wang, Dingzhi

    2010-01-01

    Colorectal cancer is the second leading cause of cancer-related mortality in the United States. Therapeutic developments in the past decade have extended life expectancy in patients with metastatic disease. However, metastatic colorectal cancers remain incurable. Numerous agents that were demonstrated to have significant antitumor activity in experimental models translated into disappointing results in extending patient survival. This has resulted in more attention being focused on the contribution of tumor microenvironment to the progression of a number of solid tumors including colorectal cancer. A more complete understanding of interactions between tumor epithelial cells and their stromal elements will enhance therapeutic options and improve clinical outcome. Here we will review the role of various stromal components in colorectal carcinogenesis and discuss the potential of targeting these components for the development of future therapeutic agents. PMID:21209781

  13. Chemical basis of inflammation-induced carcinogenesis.

    PubMed

    Ohshima, Hiroshi; Tatemichi, Masayuki; Sawa, Tomohiro

    2003-09-01

    Chronic inflammation induced by biological, chemical, and physical factors has been associated with increased risk of human cancer at various sites. Inflammation activates a variety of inflammatory cells, which induce and activate several oxidant-generating enzymes such as NADPH oxidase, inducible nitric oxide synthase, myeloperoxidase, and eosinophil peroxidase. These enzymes produce high concentrations of diverse free radicals and oxidants including superoxide anion, nitric oxide, nitroxyl, nitrogen dioxide, hydrogen peroxide, hypochlorous acid, and hypobromous acid, which react with each other to generate other more potent reactive oxygen and nitrogen species such as peroxynitrite. These species can damage DNA, RNA, lipids, and proteins by nitration, oxidation, chlorination, and bromination reactions, leading to increased mutations and altered functions of enzymes and proteins (e.g., activation of oncogene products and/or inhibition of tumor-suppressor proteins) and thus contributing to the multistage carcinogenesis process. Appropriate treatment of inflammation should be explored further for chemoprevention of human cancers. PMID:12921773

  14. Development and Characterization of a Novel in vitro Progression Model for UVB-Induced Skin Carcinogenesis

    PubMed Central

    Tyagi, Nikhil; Bhardwaj, Arun; Srivastava, Sanjeev K.; Arora, Sumit; Marimuthu, Saravanakumar; Deshmukh, Sachin K.; Singh, Ajay P.; Carter, James E.; Singh, Seema

    2015-01-01

    Epidemiological studies suggest ultraviolet B (UVB) component (290–320 nm) of sun light is the most prevalent etiologic factor for skin carcinogenesis- a disease accounting for more than two million new cases each year in the USA alone. Development of UVB-induced skin carcinoma is a multistep and complex process. The molecular events that occur during UVB-induced skin carcinogenesis are poorly understood largely due to the lack of an appropriate cellular model system. Therefore, to make a progress in this area, we have developed an in vitro model for UVB-induced skin cancer using immortalized human epidermal keratinocyte (HaCaT) cells through repetitive exposure to UVB radiation. We demonstrate that UVB-transformed HaCaT cells gain enhanced proliferation rate, apoptosis-resistance, and colony- and sphere-forming abilities in a progressive manner. Moreover, these cells exhibit increased aggressiveness with enhanced migration and invasive potential and mesenchymal phenotypes. Furthermore, these derived cells are able to form aggressive squamous cell carcinoma upon inoculation into the nude mice, while parental HaCaT cells remain non-tumorigenic. Together, these novel, UVB-transformed progression model cell lines can be very helpful in gaining valuable mechanistic insight into UVB-induced skin carcinogenesis, identification of novel molecular targets of diagnostic and therapeutic significance, and in vitro screening for novel preventive and therapeutic agents. PMID:26349906

  15. Correlation of chromosome patterns in human leukemic cells with exposure to chemicals and/or radiation. Comprehensive progress report, July 1991--June 1994

    SciTech Connect

    Rowley, J.D.

    1994-06-01

    This comprehensive progress report provides a synopsis of major research accomplishments during the years of 1991-1994, including the technical aspects of the project. The objectives and accomplishments are as follows: 1. Defining the chromosome segments associated with radiation and chemically-induced leukemogenesis (treatment-related acute myeloid leukemia, t-AML); A. Continued genetic analysis of chromosomes 5 and 7, B. Correlation of treatment with balanced and unbalanced translocations. 2. Cloning the breakpoints in balanced translocations in t-AML; A. Clone the t(9;11) and t(11;19) breakpoints, B. Clone the t(3,21)(q26,q22) breakpoint, C. Determine the relationship of these translocations to prior exposure to topoisomerase II inhibitors. 3. Compare the breakpoint junctions in patients who have the same translocations in t-AML and AML de novo. 4. Map the scaffold attachment regions in the genes that are involved in balanced translocations in t-AML. Plans for the continuation of present objectives and possible new objectives in consideration of past results are also provided.

  16. Mechanism of carcinogenesis in familial tumors.

    PubMed

    Tamura, Kazuo; Utsunomiya, Joji; Iwama, Takeo; Furuyama, Jun-ichi; Takagawa, Tetsuya; Takeda, Naohisa; Fukuda, Yoshihiro; Matsumoto, Takayuki; Nishigami, Takashi; Kusuhara, Kiyoshi; Sagayama, Ken; Nakagawa, Kazuhiko; Yamamura, Takehira

    2004-08-01

    It is thought that malignant tumors occur through interactions of multiple environmental factors and a personal genetic factor. A normal somatic cell having an intrinsic function is able to acquire the characteristics of a malignant cell under the influence of many factors. A small percentage of all tumors have obvious familial aggregation. These entities are called familial cancer. The familial cancer syndrome is well defined for colorectal cancer, breast cancer, endocrine neoplasia, and so on. Traits of familial tumors are sequentially inherited by offspring through gametes in a Mendelian fashion, most commonly in an autosomal-dominant manner. Carcinogenesis requires multiple genetic events. A patient with a familial tumor is ahead of an individual without any germline mutation in the carcinogenesis process. In such a situation, patients frequently suffer from multiple malignant tumors at a young age. It is well known that three major genes are closely related to the cell cycle and tumorigenesis. These gene types are protooncogenes, tumor suppressor genes, and DNA mismatch repair genes. Proto-oncogenes function to accelerate cells during the G1 or growth phase of the cell cycle. Tumor suppressor genes act as blocks against cell growth and proliferation. Inactivation of tumor suppressor genes requires alterations in both alleles. These phenomena are known as Knudson's two-hits theory. However, DNA mismatch repair genes are known as caretaker genes and correct mismatch pair generation during DNA replication. Germline mutation of DNA mismatch repair genes causes hereditary nonpolyposis colorectal cancer. The tumor phenotype from patients with hereditary nonpolyposis colorectal cancer is demonstrated to be microsatellite instability positive. PMID:15375699

  17. Oxidative DNA damage accumulation in gastric carcinogenesis

    PubMed Central

    Farinati, F; Cardin, R; Degan, P; Rugge, M; Di, M; Bonvicini, P; Naccarato, R

    1998-01-01

    Background—Gastric carcinogenesis is a multifactorial, multistep process, in which chronic inflammation plays a major role. 
Aims—In order to ascertain whether free radical mediated oxidative DNA damage is involved in such a process, concentrations of 8-hydroxydeoxyguanosine (8OHdG), a mutagenic/carcinogenic adduct, and thiobarbituric acid reactive substances (TBARS), as an indirect measure of free radical mediated damage, were determined in biopsy specimens from patients undergoing endoscopy. 
Patients—Eighty eight patients were divided into histological subgroups as follows: 27 with chronic non-atrophic gastritis, 41 with atrophic gastritis, six with gastric cancer, and 14 unaffected controls. 
Methods—Intestinal metaplasia, Helicobacter pylori infection, and disease activity were semiquantitatively scored. 8OHdG concentrations were assessed by HPLC with electrochemical detection, and TBARS concentrations were fluorimetrically assayed. 
Results—8OHdG concentrations (mean number of adducts/105 dG residues) were significantly higher in chronic atrophic gastritis (p=0.0009). Significantly higher concentrations were also detected in the presence of severe disease activity (p=0.02), intestinal metaplasia (p=0.035), and H pylori infection (p=0.001). TBARS concentrations were also higher in atrophic gastritis, though not significantly so. In a multiple logistic regression analysis, 8OHdG concentrations correlated best with the presence and severity of H pylori infection (r=0.53, p=0.002). 
Conclusions—Chronic gastritis is characterised by the accumulation of oxidative DNA damage with mutagenic and carcinogenic potential. H pylori infection is the major determinant for DNA adduct formation. 

 Keywords: free radicals; oxidative DNA damage; gastric carcinogenesis; precancerous changes; peroxidative damage PMID:9577340

  18. Risk of second cancers in the era of modern radiation therapy: does the risk/benefit analysis overcome theoretical models?

    PubMed

    Chargari, Cyrus; Goodman, Karyn A; Diallo, Ibrahima; Guy, Jean-Baptiste; Rancoule, Chloe; Cosset, Jean-Marc; Deutsch, Eric; Magne, Nicolas

    2016-06-01

    In the era of modern radiation therapy, the compromise between the reductions in deterministic radiation-induced toxicities through highly conformal devices may be impacting the stochastic risk of second malignancies. We reviewed the clinical literature and evolving theoretical models evaluating the impact of intensity-modulated radiation therapy (IMRT) on the risk of second cancers, as a consequence of the increase in volumes of normal tissues receiving low doses. The risk increase (if any) is not as high as theoretical models have predicted in adults. Moreover, the increase in out-of-field radiation doses with IMRT could be counterbalanced by the decrease in volumes receiving high doses. Clinical studies with short follow-up have not corroborated the hypothesis that IMRT would drastically increase the incidence of second cancers. In children, the risk of radiation-induced carcinogenesis increases from low doses and consequently the relative risk of second cancers after IMRT could be higher than in adults, justifying current developments of proton therapy with priority given to this population. Although only longer follow-up will allow a true assessment of the real impact of these modern techniques on radiation-induced carcinogenesis, a comprehensive risk-adapted strategy will help minimize the probability of second cancers. PMID:26970966

  19. Comprehensive Planning.

    ERIC Educational Resources Information Center

    Pavlenko, Victor V.

    Comprehensive planning, defined as the work of those who engage in efforts, within a delimited geographic area, to identify and order the physical, social, and economic relationships of that area, is discussed in the four sections of this paper. Section I, Introduction, describes what "planning" and "comprehensive planning" are. In Section II, Why…

  20. Thyroid cancer. Reevaluation of an experimental model for radiogenic endocrine carcinogenesis

    SciTech Connect

    Clifton, K.H.

    1984-11-01

    The status of experimental studies of radiogenic thyroid cancer is appraised, and some older data are reinterpreted in the light of more recent findings. Problems of thyroid dosimetry, particularly the dosimetry of internal radioiodides, are discussed. The steps in radiation carcinogenesis during the acute phase, the latent phase, and the phase of tumor growth are discussed in terms of thyroid epithelial cell population changes. The roles of three cell populations (undamaged or completely repaired epithelial cells, oncogenically initiated cells, and terminally damaged but functionally competent cells) in neoplasia are described. Finally, the implications for man of these experimental results and conclusions are discussed. 89 refs., 4 figs.

  1. Residual-QSAR. Implications for genotoxic carcinogenesis

    PubMed Central

    2011-01-01

    Introduction Both main types of carcinogenesis, genotoxic and epigenetic, were examined in the context of non-congenericity and similarity, respectively, for the structure of ligand molecules, emphasizing the role of quantitative structure-activity relationship ((Q)SAR) studies in accordance with OECD (Organization for Economic and Cooperation Development) regulations. The main purpose of this report involves electrophilic theory and the need for meaningful physicochemical parameters to describe genotoxicity by a general mechanism. Residual-QSAR Method The double or looping multiple linear correlation was examined by comparing the direct and residual structural information against the observed activity. A self-consistent equation of observed-computed activity was assumed to give maximum correlation efficiency for those situations in which the direct correlations gave non-significant statistical information. Alternatively, it was also suited to describe slow and apparently non-noticeable cancer phenomenology, with special application to non-congeneric molecules involved in genotoxic carcinogenesis. Application and Discussions The QSAR principles were systematically applied to a given pool of molecules with genotoxic activity in rats to elucidate their carcinogenic mechanisms. Once defined, the endpoint associated with ligand-DNA interaction was used to select variables that retained the main Hansch physicochemical parameters of hydrophobicity, polarizability and stericity, computed by the custom PM3 semiempirical quantum method. The trial and test sets of working molecules were established by implementing the normal Gaussian principle of activities that applies when the applicability domain is not restrained to the congeneric compounds, as in the present study. The application of the residual, self-consistent QSAR method and the factor (or average) method yielded results characterized by extremely high and low correlations, respectively, with the latter resembling

  2. Diet-related DNA adduct formation in relation to carcinogenesis.

    PubMed

    Hemeryck, Lieselot Y; Vanhaecke, Lynn

    2016-08-01

    The human diet contributes significantly to the initiation and promotion of carcinogenesis. It has become clear that the human diet contains several groups of natural foodborne chemicals that are at least in part responsible for the genotoxic, mutagenic, and carcinogenic potential of certain foodstuffs. Electrophilic chemicals are prone to attack nucleophilic sites in DNA, resulting in the formation of altered nucleobases, also known as DNA adducts. Since DNA adduct formation is believed to signal the onset of chemically induced carcinogenesis, the DNA adduct-inducing potential of certain foodstuffs has been investigated to gain more insight into diet-related pathways of carcinogenesis. Many studies have investigated diet-related DNA adduct formation. This review summarizes work on known or suspected dietary carcinogens and the role of DNA adduct formation in hypothesized carcinogenesis pathways. PMID:27330144

  3. Comfrey (Symphytum Officinale. l.) and Experimental Hepatic Carcinogenesis: A Short-term Carcinogenesis Model Study

    PubMed Central

    Gomes, Maria Fernanda Pereira Lavieri; de Oliveira Massoco, Cristina; Xavier, José Guilherme

    2010-01-01

    Comfrey or Symphytum officinale (L.) (Boraginaceae) is a very popular plant used for therapeutic purposes. Since the 1980s, its effects have been studied in long-term carcinogenesis studies, in which Comfrey extract is administered at high doses during several months and the neoplastic hepatic lesions are evaluated. However, the literature on this topic is very poor considering the studies performed under short-term carcinogenesis protocols, such as the ‘resistant hepatocyte model’ (RHM). In these studies, it is possible to observe easily the phenomena related to the early phases of tumor development, since pre-neoplastic lesions (PNLs) rise in about 1–2 months of chemical induction. Herein, the effects of chronic oral treatment of rats with 10% Comfrey ethanolic extract were evaluated in a RHM. Wistar rats were sequentially treated with N-nitrosodiethylamine (ip) and 2-acetilaminofluorene (po), and submitted to hepatectomy to induce carcinogenesis promotion. Macroscopic/microscopic quantitative analysis of PNL was performed. Non-parametric statistical tests (Mann–Whitney and χ2) were used, and the level of significance was set at P ≤ 0.05. Comfrey treatment reduced the number of pre-neoplastic macroscopic lesions up to 1 mm (P ≤ 0.05), the percentage of oval cells (P = 0.0001) and mitotic figures (P = 0.007), as well as the number of Proliferating Cell Nuclear Antigen (PCNA) positive cells (P = 0.0001) and acidophilic pre-neoplastic nodules (P = 0.05). On the other hand, the percentage of cells presenting megalocytosis (P = 0.0001) and vacuolar degeneration (P = 0.0001) was increased. Scores of fibrosis, glycogen stores and the number of nucleolus organizing regions were not altered. The study indicated that oral treatment of rats with 10% Comfrey alcoholic extract reduced cell proliferation in this model. PMID:18955295

  4. Comprehensive Care

    MedlinePlus

    ... Text Larger Text Print In this article A complex disease requires a comprehensive approach Today multiple sclerosis ( ... Your Whole Health, Your Whole Team: Managing Your Complex MS Symptoms Webinar/telelearning presented by Roz Kalb, ...

  5. Role of RUNX2 in Breast Carcinogenesis

    PubMed Central

    Wysokinski, Daniel; Blasiak, Janusz; Pawlowska, Elzbieta

    2015-01-01

    RUNX2 is a transcription factor playing the major role in osteogenesis, but it can be involved in DNA damage response, which is crucial for cancer transformation. RUNX2 can interact with cell cycle regulators: cyclin-dependent kinases, pRB and p21Cip1 proteins, as well as the master regulator of the cell cycle, the p53 tumor suppressor. RUNX2 is involved in many signaling pathways, including those important for estrogen signaling, which, in turn, are significant for breast carcinogenesis. RUNX2 can promote breast cancer development through Wnt and Tgfβ signaling pathways, especially in estrogen receptor (ER)-negative cases. ERα interacts directly with RUNX2 and regulates its activity. Moreover, the ERα gene has a RUNX2 binding site within its promoter. RUNX2 stimulates the expression of aromatase, an estrogen producing enzyme, increasing the level of estrogens, which in turn stimulate cell proliferation and replication errors, which can be turned into carcinogenic mutations. Exploring the role of RUNX2 in the pathogenesis of breast cancer can lead to revealing new therapeutic targets. PMID:26404249

  6. Carcinogenesis of Pancreatic Adenocarcinoma: Precursor Lesions

    PubMed Central

    Gnoni, Antonio; Licchetta, Antonella; Scarpa, Aldo; Azzariti, Amalia; Brunetti, Anna Elisabetta; Simone, Gianni; Nardulli, Patrizia; Santini, Daniele; Aieta, Michele; Delcuratolo, Sabina; Silvestris, Nicola

    2013-01-01

    Pancreatic adenocarcinoma displays a variety of molecular changes that evolve exponentially with time and lead cancer cells not only to survive, but also to invade the surrounding tissues and metastasise to distant sites. These changes include: genetic alterations in oncogenes and cancer suppressor genes; changes in the cell cycle and pathways leading to apoptosis; and also changes in epithelial to mesenchymal transition. The most common alterations involve the epidermal growth factor receptor (EGFR) gene, the HER2 gene, and the K-ras gene. In particular, the loss of function of tumor-suppressor genes has been documented in this tumor, especially in CDKN2a, p53, DPC4 and BRCA2 genes. However, other molecular events involved in pancreatic adenocarcinoma pathogenesis contribute to its development and maintenance, specifically epigenetic events. In fact, key tumor suppressors that are well established to play a role in pancreatic adenocarcinoma may be altered through hypermethylation, and oncogenes can be upregulated secondary to permissive histone modifications. Indeed, factors involved in tumor invasiveness can be aberrantly expressed through dysregulated microRNAs. This review summarizes current knowledge of pancreatic carcinogenesis from its initiation within a normal cell until the time that it has disseminated to distant organs. In this scenario, highlighting these molecular alterations could provide new clinical tools for early diagnosis and new effective therapies for this malignancy. PMID:24084722

  7. Impaired glucose metabolism treatment and carcinogenesis

    PubMed Central

    MATYSZEWSKI, ARTUR; CZARNECKA, ANNA; KAWECKI, MACIEJ; KORZEŃ, PIOTR; SAFIR, ILAN J.; KUKWA, WOJCIECH; SZCZYLIK, CEZARY

    2015-01-01

    Carbohydrate metabolism disorders increase the risk of carcinogenesis. Diabetes mellitus alters numerous physiological processes that may encourage cancer growth. However, treating impaired glucose homeostasis may actually promote neoplasia; maintaining proper glucose plasma concentrations reduces metabolic stresses, however, certain medications may themselves result in oncogenic effects. A number of previous studies have demonstrated that metformin reduces the cancer risk. However, the use of sulfonylurea derivatives correlates with an increased risk of developing a malignancy. Another form of treatment, insulin therapy, involves using various forms of insulin that differ in pharmacodynamics, pharmacokinetics and efficacy. Previous studies have indicated that certain insulin variants also affect the cancer risk. The results from analyses that address the safety of long-lasting insulin types raise the most concern regarding the increased risk of malignancy. Rapid development of novel diabetic medications and their widespread use carries the risk of potentially increased rates of cancer, unnoticeable in limited, randomized, controlled trials. In the present review, the results of clinical and epidemiological studies are evaluated to assess the safety of anti-hyperglycemic medications and their effect on cancer risk and outcomes. PMID:26622538

  8. Chemical carcinogenesis studies in nonhuman primates

    PubMed Central

    Takayama, Shozo; Thorgeirsson, Unnur P.; Adamson, Richard H.

    2008-01-01

    This review covers chemical carcinogenesis studies in nonhuman primates performed by the National Cancer Institute, USA, to provide hitherto unavailable information on their susceptibility to compounds producing carcinogenic effects in rodents. From autopsy records of 401 breeders and untreated controls, incidences of spontaneous malignant tumors were found to be relatively low in cynomolgus (1.9%) and rhesus monkeys (3.8%), but higher in African green monkeys (8%). Various chemical compounds, and in particular 6 antineoplastic agents, 13 food-related compounds including additives and contaminants, 1 pesticide, 5 N-nitroso compounds, 3 heterocyclic amines, and 7 “classical” rodent carcinogens, were tested during the 34 years period, generally at doses 10∼40 times the estimated human exposure. Results were inconclusive in many cases but unequivocal carcinogenicity was demonstrated for IQ, procarbazine, methylnitrosourea and diethylnitrosamine. Furthermore, negative findings for saccharine and cyclamate were in line with results in other species. Thus susceptibility to carcinogens is at least partly shared by nonhuman primates and rodents. PMID:18941297

  9. An Overview of Ultraviolet B Radiation-Induced Skin Cancer Chemoprevention by Silibinin

    PubMed Central

    Kumar, Rahul; Deep, Gagan; Agarwal, Rajesh

    2015-01-01

    Skin cancer incidences are rising worldwide, and one of the major causative factors is excessive exposure to solar ultraviolet radiation (UVR). Annually, ~5 million skin cancer patients are treated in United States, mostly with nonmelanoma skin cancer (NMSC), which is also frequent in other Western countries. As sunscreens do not provide adequate protection against deleterious effects of UVR, additional and alternative chemoprevention strategies are urgently needed to reduce skin cancer burden. Over the last couple of decades, extensive research has been conducted to understand the molecular basis of skin carcinogenesis, and to identifying novel agents which could be useful in the chemoprevention of skin cancer. In this regard, several natural non-toxic compounds have shown promising efficacy in preventing skin carcinogenesis at initiation, promotion and progression stages, and are considered important in better management of skin cancer. Consistent with this, we and others have studied and established the notable efficacy of natural flavonolignan silibinin against UVB-induced skin carcinogenesis. Extensive pre-clinical animal and cell culture studies report strong anti-inflammatory, anti-oxidant, DNA damage repair, immune-modulatory and anti-proliferative properties of silibinin. Molecular studies have identified that silibinin targets pleotropic signaling pathways including mitogenic, cell cycle, apoptosis, autophagy, p53, NF-κB, etc. Overall, the skin cancer chemopreventive potential of silibinin is well supported by comprehensive mechanistic studies, suggesting its greater use against UV-induced cellular damages and photocarcinogenesis. PMID:26097804

  10. Insights into endometrial serous carcinogenesis and progression.

    PubMed

    Fadare, Oluwole; Zheng, Wenxin

    2009-01-01

    Endometrial serous carcinomas (ESC) constitute only approximately 10% of endometrial cancers, but have a substantially higher case-fatality rate than their more common endometrioid counterparts. The precise composite of factors driving endometrial serous carcinogenesis and progression remain largely unknown, but we attempt to review the current state of knowledge in this report. ESC probably do not evolve through a single pathway, and their underlying molecular events probably occur early in their evolution. TP53 gene mutations occur in 22.7 to 96% of cases, and p53 protein overexpression is seen in approximately 76%. By gene expression profiling, p16 is upregulated in ESC significantly above both normal endometrial cells and endometrioid carcinomas, and 92-100% of cases display diffuse expression of the p16 protein by immunohistochemistry (IHC). Together, these findings suggest dysregulation of both the p16(INKA)/Cyclin D-CDK/pRb-E2F and the ARF-MDM2-p53 cell cycle pathways in ESC. By IHC, HER2/neu is overexpressed (2+ or 3+) in approximately 32.1% of ESC, and approximately 54.5% of cases scored as 2+ or 3+ by IHC display c-erbB2 gene amplification as assessed by fluorescent in situ hybridization. Genetic instability, typically manifested as loss of heterozygosity in multiple chromosomes, is a common feature of ESC, and one study found loss of heterozygosity at 1p32-33 in 63% of cases. A subset of ESC display protein expression patterns that are characteristic of high grade endometrial carcinomas, including loss of the metastasis suppressor CD82 (KAI-1) and epithelial-to-mesenchymal transformation, the latter manifested as E-cadherin downregulation, P-cadherin upregulation, and expression of epithelial-to-mesenchymal transformation-related molecules such as zinc-finger E-box-binding homeobox 1 (ZEB1) and focal adhesion kinase. Preliminary data suggests differential patterns of expression in ESC of some isoforms of claudins, proteases, the tumor invasiveness and

  11. Catecholestrogen sulfation: possible role in carcinogenesis.

    PubMed

    Adjei, Araba A; Weinshilboum, Richard M

    2002-03-29

    A growing body of evidence supports the hypothesis that estrogens can be carcinogens as a result of their conversion to genotoxins after biotransformation to form the catecholestrogens (CEs) 2-hydroxyestrone (2-OHE1), 2-hydroxyestradiol (2-OHE2), 4-hydroxyestrone (4-OHE1) and 4-hydroxyestradiol (4-OHE2). CEs can then undergo further metabolism to form quinones that interact with DNA to form either stable or depurinating adducts. These events could potentially be interrupted by the sulfate conjugation of both the parent estrogens and/or the CEs. We set out to determine whether CEs can serve as substrates for sulfate conjugation, and-if so-which of the growing family of human sulfotransferase (SULT) isoforms are capable of catalyzing those reactions. We determined apparent K(m) values for 10 recombinant human SULT isoforms, as well as the three most common allozymes for SULT1A1 and SULT1A2, with 2-OHE1, 2-OHE2, 4-OHE1, and 4-OHE2, and with the endogenous estrogens, estrone (E1) and 17beta-estradiol (E2), as substrates. With the exception of SULT1B1, SULT1C1, and SULT4A1, all of the human SULTs studied catalyzed the sulfate conjugation of CEs. SULT1E1 had the lowest apparent K(m) values, 0.31, 0.18, 0.27, and 0.22 microM for 4-OHE1, 4-OHE2, 2-OHE1, and 2-OHE2, respectively. These results demonstrate that SULTs can catalyze the sulfate conjugation of CEs, and they raise the possibility that individual variation in this pathway for estrogen and CE metabolism as a result of common genetic polymorphisms could represent a risk factor for estrogen-dependent carcinogenesis. PMID:11906176

  12. MUSTARD GAS EXPOSURE AND CARCINOGENESIS OF LUNG

    PubMed Central

    Hosseini-khalili, Alireza; Haines, David D; Modirian, Ehsan; Soroush, Mohammadreza; Khateri, Shahriar; Joshi, Rashmi; Zendehdel, Kazem; Ghanei, Mostafa; Giardina, Charles

    2009-01-01

    Sulfur mustard (SM), also known as mustard gas, is an alkylating compound used as a chemical weapon in World War I and by Iraqi forces against Iranians and indigenous Iraqi Kurds during the Iran-Iraq War of the 1980s. Although SM is a proven carcinogen there are conflicting views regarding the carcinogenicity of a single exposure. The present study characterizes lung cancers formed in mustard gas victims from the Iran-Iraq War. Methods and Materials Demographic information and tumor specimens were collected from 20 Iranian male lung cancer patients with single high-dose SM exposures during the Iran-Iraq war. Formalin fixed, paraffin-embedded lung cancers were analyzed by immunohistochemistry for p53 protein. In addition, DNA was extracted from the tissues, PCR amplified and sequenced to identify mutations in the p53 and KRAS genes associated with SM exposure. Results A relatively early age of lung cancer onset (ranging from 28 to 73 with a mean of 48) in mustard gas victims, particularly those in the non-smoking population (mean age of 40.7), may be an indication of a unique etiology for these cancers. Seven of the 20 patients developed lung cancer before the age of 40. Five of 16 cancers from which DNA sequence data was obtainable provided information on eight p53 mutations (within exons 5–8). These mutations were predominately G to A transitions; a mutation consistent with the DNA lesion caused by SM. Two of the lung cancers had multiple p53 point mutations, similar to results obtained from factory workers chronically exposed to mustard agent. No mutations were detected in the KRAS gene. Discussion The distinguishing characteristics of lung carcinogenesis in these mustard gas victims suggest that a single exposure may increase the risk of lung cancer development in some individuals. PMID:19559099

  13. Heavy Ion Carcinogenesis and Human Space Exploration

    NASA Technical Reports Server (NTRS)

    Cucinotta, Francis A.; Durante, Marco

    2008-01-01

    Prior to the human exploration of Mars or long duration stays on the Earth s moon, the risk of cancer and other diseases from space radiation must be accurately estimated and mitigated. Space radiation, comprised of energetic protons and heavy nuclei, has been show to produce distinct biological damage compared to radiation on Earth, leading to large uncertainties in the projection of cancer and other health risks, while obscuring evaluation of the effectiveness of possible countermeasures. Here, we describe how research in cancer radiobiology can support human missions to Mars and other planets.

  14. Pulmonary carcinogenesis from plutonium-containing particles

    SciTech Connect

    Thomas, R.G.; Smith, D.M.; Anderson, E.C.

    1980-01-01

    Plutonium administered as an alpha radiation source to the respiratory tracts of Syrian hamsters has resulted in various incidences of neoplasia. Adenomas are the primary lung tumor observed, but adenocarcinomas are also prevalent.

  15. Radiation

    NASA Video Gallery

    Outside the protective cocoon of Earth's atmosphere, the universe is full of harmful radiation. Astronauts who live and work in space are exposed not only to ultraviolet rays but also to space radi...

  16. [Radiation Anticarcinogenesis by Thiazolidine Pro-drug

    NASA Technical Reports Server (NTRS)

    Warters, Raymond L.; Roberts, Jeanette C.; Fain, Heidi

    1999-01-01

    The original goal of this work was to determine the capacity of selected aminothiols to modulate radiation induced cytotoxicity, mutagenesis and carcinogenesis in a human mammary epithelial cell line. The conclusions from this work are that WR-1065 is the "gold standard" for protection against radiation induced cytotoxicity, mutagenesis and carcinogenesis. While a potent radiation protector, WR-1065 is cytotoxic in vitro and in vivo. Our rationale for a study of the thiazolidine pro-drugs was that these compounds are neither toxic in vitro or in vivo. The results obtained during this funding period indicate that the thiazolidine pro-drugs are as potent as WR-1065 as protectors against radiation induced mutation induction, and thus presumably against radiation induced carcinogenesis. Our results indicate that the thiazolidine prodrugs are excellent candidates to test as non-toxic anticarcinogens for protecting astronauts from cancer induction during space travel.

  17. Experimental, statistical, and biological models of radon carcinogenesis

    SciTech Connect

    Cross, F.T.

    1991-09-01

    Risk models developed for underground miners have not been consistently validated in studies of populations exposed to indoor radon. Imprecision in risk estimates results principally from differences between exposures in mines as compared to domestic environments and from uncertainties about the interaction between cigarette-smoking and exposure to radon decay products. Uncertainties in extrapolating miner data to domestic exposures can be reduced by means of a broad-based health effects research program that addresses the interrelated issues of exposure, respiratory tract dose, carcinogenesis (molecular/cellular and animal studies, plus developing biological and statistical models), and the relationship of radon to smoking and other copollutant exposures. This article reviews experimental animal data on radon carcinogenesis observed primarily in rats at Pacific Northwest Laboratory. Recent experimental and mechanistic carcinogenesis models of exposures to radon, uranium ore dust, and cigarette smoke are presented with statistical analyses of animal data. 20 refs., 1 fig.

  18. Dynamic changes in the gene expression profile during rat oral carcinogenesis induced by 4‑nitroquinoline 1‑oxide.

    PubMed

    Ge, Shuyun; Zhang, Ji; Du, Yanzhi; Hu, Bin; Zhou, Zengtong; Lou, Jianing

    2016-03-01

    The typical progression of oral cancer is from hyperplastic epithelial lesions through dysplasia to invasive carcinoma. It is important to investigate malignant oral cancer progression and development in order to determine useful approaches of prevention of dysplastic lesions. The present study aimed to gain insights into the underlying molecular mechanism of oral carcinogenesis by establishing a rat model of oral carcinogenesis using 4‑nitroquinoline 1‑oxide. Subsequently, transcription profile analysis using an integrating microarray was performed. The dynamic gene expression changes of the six stages of rat oral carcinogenesis (normal, mild epithelial dysplasia, moderate dysplasia, severe dysplasia, carcinoma in situ and oral squamous cell carcinomas) were analyzed using component plane presentations (CPP)‑self‑organizing map (SOM). Six genes were verified by quantitative polymerase chain reaction, immunohistochemistry and succinate dehydrogenase (SDH) activity assay kit. Numerous differentially expressed genes (DEGs) were identified during rat oral carcinogenesis. CPP‑SOM determined that these DEGs were primarily enriched during cell cycle, apoptosis, inflammatory response and tricarboxylic acid cycle, indicating the coordinated regulation of molecular networks. In addition, the expression of specific DEGs, such as janus kinase 3, cyclin‑dependent kinase A‑1, B‑cell chronic lymphocytic leukaemia/lymphoma 2‑like 2, nuclear factor‑κB, tumor necrosis factor receptor superfamily member 1A, cyclin D1 and SDH were identified to have high concordance with the results from microarray data. The current study demonstrated that oral carcinogenesis is a multi‑step and multi‑gene process, with a distinct pattern alteration along a continuum of malignant transformation. In addition, this comprehensive investigation provided a theoretical basis for the understanding of the molecular alterations associated with oral carcinogenesis. PMID:26860129

  19. Chronic ultraviolet exposure-induced p53 gene alterations in sencar mouse skin carcinogenesis model

    SciTech Connect

    Tong, Ying; Smith, M.A.; Tucker, S.B.

    1997-06-27

    Alterations of the tumor suppressor gene p53 have been found in ultraviolet radiation (UVR) related human skin cancers and in UVR-induced murine skin tumors. However, links between p53 gene alterations and the stages of carcinogenesis induced by UVR have not been clearly defined. We established a chronic UVR exposure-induced Sencar mouse skin carcinogenesis model to determine the frequency of p53 gene alterations in different stages of carcinogenesis, including UV-exposed skin, papillomas, squamous-cell carcinomas (SCCs), and malignant spindle-cell tumors (SCTs). A high incidence of SCCs and SCTs were found in this model. Positive p53 nuclear staining was found in 10137 (27%) of SCCs and 12124 (50%) of SCTs, but was not detected in normal skin or papillomas. DNA was isolated from 40 paraffin-embedded normal skin, UV-exposed skin, and tumor sections. The p53 gene (exons 5 and 6) was amplified from the sections by using nested polymerase chain reaction (PCR). Subsequent single-strand conformation polymorphism (SSCP) assay and sequencing analysis revealed one point mutation in exon 6 (coden 193, C {r_arrow} A transition) from a UV-exposed skin sample, and seven point mutations in exon 5 (codens 146, 158, 150, 165, and 161, three C {r_arrow} T, two C {r_arrow} A, one C {r_arrow} G, and one A {r_arrow} T transition, respectively) from four SCTs, two SCCs and one UV-exposed skin sample. These experimental results demonstrate that alterations in the p53 gene are frequent events in chronic UV exposure-induced SCCs and later stage SCTs in Sencar mouse skin. 40 refs., 5 figs., 1 tab.

  20. Epigenetic regulation of LSD1 during mammary carcinogenesis

    PubMed Central

    Wu, Yadi; Zhou, Binhua P

    2014-01-01

    Inheritable epigenetic regulation is integral to the dynamic control of gene expression under different stimuli for cellular homeostasis and disease progression. Histone methylation is a common and important type of chromatin modification. LSD1, the first known histone lysine-specific demethylase, operates as a key component of several corepressor complexes during development and in disease states. In this review, we focus on the regulation of LSD1 in mammary carcinogenesis. LSD1 plays a role in promoting mammary tumor metastasis and proliferation and in maintaining mammary cancer stem cells. Therefore, LSD1 represents a viable therapeutic target for effective treatment of mammary carcinogenesis. PMID:27308339

  1. The Hamster Buccal Pouch Model of Oral Carcinogenesis.

    PubMed

    Nagini, Siddavaram; Kowshik, Jaganathan

    2016-01-01

    The hamster buccal pouch (HBP) carcinogenesis model is one of the most well-characterized animal tumor models used as a prelude to investigate multistage oral carcinogenesis and to assess the efficacy of chemointervention. Hamster buccal pouch carcinomas induced by 7,12-dimethylbenz[a]anthracene (DMBA) show extensive similarities to human oral squamous cell carcinomas. The HBP model offers a number of advantages including a simple and predictable tumor induction procedure, easy accessibility for examination and follow-up of lesions, and reproducibility. This model can be used to test both chemopreventive and chemotherapeutic agents. PMID:27246045

  2. THE ROLE OF PROTEIN BINDING OF TRIVALENT ARSENICALS IN ARSENIC CARCINOGENESIS AND TOXICITY

    EPA Science Inventory

    Three of the most plausible biological theories of arsenic carcinogenesis are protein binding, oxidative stress and altered DNA methylation. This review presents the role of trivalent arsenicals binding to proteins in arsenic carcinogenesis. Using vacuum filtration based receptor...

  3. Host cell reactivation studies with epidermal cells of mice sensitive and resistant to carcinogenesis

    SciTech Connect

    Strickland, J.E.; Strickland, A.G.

    1984-03-01

    Primary epidermal cells from AKR, BALB/c, CD-1, and SENCAR mice, listed in order of least to most sensitive to epidermal carcinogenesis by initiation and promotion protocols, were found to be equally competent to ''reactivate'' herpes simplex virus type 1 irradiated by germicidal ultraviolet radiation. Nontumorigenic BALB/c epidermal cell lines selected in vitro for resistance to terminal differentiation after in vivo or in vitro treatment with initiating doses of carcinogens showed virus survival curves similar to those of primary cells. Similarly, primary cultures which were allowed to grow to confluency following a single treatment with the tumor promoter 12-O-tetradecanoylphorbol-13-acetate (100 ng/ml) retained normal host cell reactivation. Host cell reactivation studies with mouse dermal fibroblasts could not be done because of the failure of the herpes simplex virus to infect these cells and produce plaques. These results demonstrate that survival of ultraviolet light-damaged virus in primary epidermal cells in culture is unrelated to whether the cells are derived from mice sensitive or resistant to epidermal carcinogenesis. Furthermore, virus survival is not changed by tumor promoter treatment or by treatment with initiating doses of carcinogens which results in differentiation-resistant cells.

  4. ICRP Publication 131: Stem cell biology with respect to carcinogenesis aspects of radiological protection.

    PubMed

    Hendry, J H; Niwa, O; Barcellos-Hoff, M H; Globus, R K; Harrison, J D; Martin, M T; Seed, T M; Shay, J W; Story, M D; Suzuki, K; Yamashita, S

    2016-06-01

    Current knowledge of stem cell characteristics, maintenance and renewal, evolution with age, location in 'niches', and radiosensitivity to acute and protracted exposures is reviewed regarding haematopoietic tissue, mammary gland, thyroid, digestive tract, lung, skin, and bone. The identity of the target cells for carcinogenesis continues to point to the more primitive and mostly quiescent stem cell population (able to accumulate the protracted sequence of mutations necessary to result in malignancy), and, in a few tissues, to daughter progenitor cells. Several biological processes could contribute to the protection of stem cells from mutation accumulation: (1) accurate DNA repair; (2) rapid induced death of injured stem cells; (3) retention of the intact parental strand during divisions in some tissues so that mutations are passed to the daughter differentiating cells; and (4) stem cell competition, whereby undamaged stem cells outcompete damaged stem cells for residence in the vital niche. DNA repair mainly operates within a few days of irradiation, while stem cell replications and competition require weeks or many months depending on the tissue type. This foundation is used to provide a biological insight to protection issues including the linear-non-threshold and relative risk models, differences in cancer risk between tissues, dose-rate effects, and changes in the risk of radiation carcinogenesis by age at exposure and attained age. PMID:26956677

  5. OXIDATIVE STRESS AS A POSSIBLE MODE OF ACTION FOR ARSENIC CARCINOGENESIS

    EPA Science Inventory

    Abstract

    Many modes of action for arsenic carcinogenesis have been proposed, but few theories have a substantial mass of supporting data. Three stronger theories of arsenic carcinogenesis are production of chromosomal abnormalities, promotion of carcinogenesis and oxidati...

  6. Neutron carcinogenesis: past, present, and future.

    PubMed

    Hill, C K; Williams-Hill, D

    1999-12-01

    An interest in the possible cancer causing ability of neutrons began soon after their discovery. Early use of neutrons from radioactive sources and from cyclotrons led to a need to define risk for such exposures. This need was soon followed by a more tangible need to define risk to the general population of high LET radiation from nuclear fall out and use of the Atomic bomb and possible use of the H-bomb. Neutrons were soon found to be very effective cell killing agents compared to conventional ionizing radiation. However High LET radiation sources and neutrons in particular, come in many different energies and from many types of sources. I will survey the differences between different energy neutrons and conventional types of radiation, particularly with respect to the dose rate of exposures and the influence of repair or lack thereof and more recently the effect of cell cycle distribution on the carcinogenic outcome. I will illustrate these ideas with examples of carcinogenicity studies and mutation studies from my own laboratory and in some cases from the work of others. Lastly I will introduce some possible avenues for molecular studies of neutron effects that might answer such vexing questions as the real risk at very low doses, is repair error free or error prone, do neutrons cause genetic instability for many cell generations after exposure, and others? There remain many questions about the biology of neutron action that require answers if we are to protect the ever increasing number of people exposed to them because of their growing use in medicine, in the military and in commercial industry. PMID:10805000

  7. PROPICONAZOLE-INDUCED CARCINOGENESIS: ROLE OF OXIDATIVE STRESS

    EPA Science Inventory

    Propiconazole is a systemic foliar fungicide with a broad range of activity. Rodents fed with propiconazole at high dose resulted in diminished body weight, increased liver weight of adults and pups, and eventually liver carcinogenesis. In order to unravel the toxic processes inv...

  8. The genetic/metabolic transformation concept of carcinogenesis

    PubMed Central

    Franklin, Renty B.

    2014-01-01

    The carcinogenesis process is poorly understood and subject to varying concepts and views. A rejuvenated interest has arisen regarding the role of altered cellular intermediary metabolism in the development and progression of cancer. As a result, differing views of the implications of altered metabolism in the development of cancer exist. None of the concepts recognize and incorporate the principles of cell metabolism to cell activity, which are applicable to all cells including the carcinogenesis process. This presentation incorporates a novel concept of carcinogenesis that includes a “genetic/metabolic” transformation that encompasses these principles of cell metabolism to cell activity. The intermediary metabolism transformation is essential to provide the bioenergetic/ synthetic, growth/proliferation, and migration/invasive events of malignancy. The concept invokes an “oncogenetic transformation” for the development of neoplastic cells from their precursor normal cells; and a required “genetic/metabolic” transformation for facilitation of the development of the neoplastic cells to malignant cells with the manifestation of the malignant process. Such a concept reveals stages and events of carcinogenesis that provide approaches for the identification of biomarkers and for development of therapeutic agents. The presentation discusses the contemporary application of genetics and proteomics to altered cellular metabolism in cancer; and underscores the importance of proper integration of genetics and proteomics with biochemical and metabolic studies, and the consequences of inappropriate studies. PMID:22109079

  9. Biomarkers and chemopreventives in oral carcinogenesis and its prevention

    PubMed Central

    Shah, Sonalee; Kaur, Manpreet

    2014-01-01

    Squamous cell carcinoma is the predominant type of oral malignancy and is a result of oral carcinogenesis. Oral carcinogenesis is a mutifactorial and complex process related to the sequential occurrence of alterations in genetic structures, promoting inhibitory or excitatory effects of the tumor oncogenes and gene suppressors, compromising the histophysiology of the division, differentiation and cell death; and therefore, methods to prevent, detect, or treat it in the best way is constantly being searched for. Biomarkers reveal the genetic and molecular changes related to early, intermediate and late endpoints in the process of oral carcinogenesis. Thereby, they are likely to not only refine our ability to predict the biologic course of oral cancer and distinguish individuals at high and/or low risk of oral cancer development; but, also they will also reveal the genetic and molecular changes related to various endpoints of oral carcinogenesis. Chemopreventives are chemicals of natural or synthetic origin, which reduce the incidence of fatal diseases such as cancer before clinical symptoms occur. Chemopreventives are agents whose curative capacity is defined with help of biomarkers, as the later determine the effectiveness and safety of chemopreventives. PMID:24959040

  10. STUDIES INTO THE MECHANISMS OF POTASSIUM BROMATE INDUCED THYROID CARCINOGENESIS

    EPA Science Inventory

    Studies into the Mechanisms of Potassium Bromate Induced Thyroid Carcinogenesis.

    Potassium bromate (KBrO3) occurs in finished drinking water as a by-product of the ozonation disinfection process and has been found to induce thyroid follicular cell tumors in the rat after ...

  11. An evolutionary model for initiation, promotion, and progression in carcinogenesis.

    PubMed

    Vincent, T L; Gatenby, R A

    2008-04-01

    Human carcinogenesis is a multistep process in which epithelial cells progress through a series of premalignant phenotypes until an invasive cancer emerges. Extensive experimental observations in carcinogenesis have demonstrated this process can be divided into three general eras: initiation, promotion, and progression. However, this empirically derived, tissue-level explanation of carcinogenesis has not been reconciled with the step-wise genotypic and phenotypic changes encompassed in evolutionary paradigms such as the Feoron-Vogelstein diagram. Here, we analyze an evolutionary model of cellular dynamics that defines mutual interactions of cellular and subcellular events and tissue level changes in tumor growth and morphology. Results are expressed using an adaptive landscape that illustrates the evolutionary potential of cells that allow them to adapt to specific microenvironmental selection forces. It is shown that normal epithelial cells have a novel adaptive landscape that permits coexistence of normal cellular populations but also allows invasion by mutant phenotypes. Subsequent cancer evolution is possible due to a relaxation of tissue growth constraints (as mediated by cell-cell and cell-extracellular matrix interactions) and adaptations in response to perturbations in microenvironmental substrate concentrations (due to separation of evolving tumor cells from their blood supply by an intact basement membrane). Simulations, based on the dynamic model, produce three distinct stages of carcinogenesis that are consistent with the initiation, promotion, and progression stages observed experimentally. The simulations provide insight into the underlying cellular and microenvironmental dynamics that govern these empirical observations and suggest novel prevention strategies that may be tested experimentally. PMID:18360700

  12. Dysregulation of host cellular genes targeted by human papillomavirus (HPV) integration contributes to HPV-related cervical carcinogenesis.

    PubMed

    Zhang, Ruiyang; Shen, Congle; Zhao, Lijun; Wang, Jianliu; McCrae, Malcolm; Chen, Xiangmei; Lu, Fengmin

    2016-03-01

    Integration of human papillomavirus (HPV) viral DNA into the human genome has been postulated as an important etiological event during cervical carcinogenesis. Several recent reports suggested a possible role for such integration-targeted cellular genes (ITGs) in cervical carcinogenesis. Therefore, a comprehensive analysis of HPV integration events was undertaken using data collected from 14 publications, with 499 integration loci on human chromosomes included. It revealed that HPV DNA preferred to integrate into intragenic regions and gene-dense regions of human chromosomes. Intriguingly, the host cellular genes nearby the integration sites were found to be more transcriptionally active compared with control. Furthermore, analysis of the integration sites in the human genome revealed that there were several integration hotspots although all chromosomes were represented. The ITGs identified were found to be enriched in tumor-related terms and pathways using gene ontology and KEGG analysis. In line with this, three of six ITGs tested were found aberrantly expressed in cervical cancer tissues. Among them, it was demonstrated for the first time that MPPED2 could induce HeLa cell and SiHa cell G1/S transition block and cell proliferation retardation. Moreover, "knocking out" the integrated HPV fragment in HeLa cell line decreased expression of MYC located ∼500 kb downstream of the integration site, which provided the first experimental evidence supporting the hypothesis that integrated HPV fragment influence MYC expression via long distance chromatin interaction. Overall, the results of this comprehensive analysis implicated that dysregulation of ITGs caused by viral integration as possibly having an etiological involvement in cervical carcinogenesis. PMID:26417997

  13. A comprehensive evaluation of different radiation models in a gas turbine combustor under conditions of oxy-fuel combustion with dry recycle

    NASA Astrophysics Data System (ADS)

    Kez, V.; Liu, F.; Consalvi, J. L.; Ströhle, J.; Epple, B.

    2016-03-01

    The oxy-fuel combustion is a promising CO2 capture technology from combustion systems. This process is characterized by much higher CO2 concentrations in the combustion system compared to that of the conventional air-fuel combustion. To accurately predict the enhanced thermal radiation in oxy-fuel combustion, it is essential to take into account the non-gray nature of gas radiation. In this study, radiation heat transfer in a 3D model gas turbine combustor under two test cases at 20 atm total pressure was calculated by various non-gray gas radiation models, including the statistical narrow-band (SNB) model, the statistical narrow-band correlated-k (SNBCK) model, the wide-band correlated-k (WBCK) model, the full spectrum correlated-k (FSCK) model, and several weighted sum of gray gases (WSGG) models. Calculations of SNB, SNBCK, and FSCK were conducted using the updated EM2C SNB model parameters. Results of the SNB model are considered as the benchmark solution to evaluate the accuracy of the other models considered. Results of SNBCK and FSCK are in good agreement with the benchmark solution. The WBCK model is less accurate than SNBCK or FSCK. Considering the three formulations of the WBCK model, the multiple gases formulation is the best choice regarding the accuracy and computational cost. The WSGG model with the parameters of Bordbar et al. (2014) [20] is the most accurate of the three investigated WSGG models. Use of the gray WSSG formulation leads to significant deviations from the benchmark data and should not be applied to predict radiation heat transfer in oxy-fuel combustion systems. A best practice to incorporate the state-of-the-art gas radiation models for high accuracy of radiation heat transfer calculations at minimal increase in computational cost in CFD simulation of oxy-fuel combustion systems for pressure path lengths up to about 10 bar m is suggested.

  14. Carcinogenesis related to intense pulsed light and UV exposure: an experimental animal study.

    PubMed

    Hedelund, L; Lerche, C; Wulf, H C; Haedersdal, M

    2006-12-01

    This study examines whether intense pulsed light (IPL) treatment has a carcinogenic potential itself or may influence ultraviolet (UV)-induced carcinogenesis. Secondly, it evaluates whether UV exposure may influence IPL-induced side effects. Hairless, lightly pigmented mice (n=144) received three IPL treatments at 2-week intervals. Simulated solar radiation was administered preoperatively [six standard erythema doses (SED) four times weekly for 11 weeks] as well as pre- and postoperatively (six SED four times weekly up to 26 weeks). Skin tumors were assessed weekly during a 12-month observation period. Side effects were evaluated clinically. No tumors appeared in untreated control mice or in just IPL-treated mice. Skin tumors developed in UV-exposed mice independently of IPL treatments. The time it took for 50% of the mice to first develop skin tumor ranged from 47 to 49 weeks in preoperative UV-exposed mice (p=0.94) and from 22 to 23 weeks in pre- and postoperative UV-exposed mice (p=0.11). IPL rejuvenation of lightly pigmented skin did not induce pigmentary changes (p=1.00). IPL rejuvenation of UV-pigmented skin resulted in an immediate increased skin pigmentation and a subsequent short-term reduced skin pigmentation (p<0.002). Postoperative UV radiation resulted in re-pigmentation of IPL-induced pigment reduction (p=0.12). No texture changes were observed. Postoperative edema and erythema were increased by preoperative UV exposure (p<0.002). IPL rejuvenation has no carcinogenic potential itself and does not influence UV-induced carcinogenesis. UV exposure influences the occurrence of side effects after IPL rejuvenation in an animal model. PMID:16964439

  15. Enhanced UV-Induced Skin Carcinogenesis in Transgenic Mice Overexpressing Proprotein Convertases1

    PubMed Central

    Fu, Jian; Bassi, Daniel E; Zhang, Jirong; Li, Tianyu; Cai, Kathy Q; Testa, Courtney Lyons; Nicolas, Emmanuelle; Klein-Szanto, Andres J

    2013-01-01

    The proprotein convertases (PCs) furin and PACE4 process numerous substrates involved in tumor growth, invasion, and metastasis. We have previously shown that PCs increase the susceptibility to chemical skin carcinogenesis. Because of the human relevancy of UV radiation in the etiopathogenesis of human skin cancer, we investigated whether or not transgenic mice overexpressing either furin alone or both furin and PACE4 show increased susceptibility to UV carcinogenesis. After backcrossing our previously described furin and PACE4 transgenic lines, targeted to the epidermis, into a SKH-1 background, we exposed both single and double transgenic mice to UV radiation for 34 weeks. The results showed an increase in squamous cell carcinoma (SCC) multiplicity of approximately 70% in the single furin transgenic mouse line SF47 (P < .002) and a 30% increase in the other single transgenic line SF49 when compared to wild-type (WT) SKH-1 mice. Interestingly, there was also an increase in the percentage of high histologic grade SCCs in the transgenic lines compared to the WT mice, i.e., WT = 9%, SF47 = 15%, and SF49 = 26% (P < .02). Targeting both furin and PACE4 to the epidermis in double transgenic mice did not have an additive effect on tumor incidence/multiplicity but did enhance the tumor histopathologic grade, i.e., a significant increase in higher grade SCCs was seen in the bigenic mouse line SPF47 (P < .02). Thus, we observed an increased susceptibility to UV in single furin transgenic mice that was not substantially enhanced in the double furin/PACE4 transgenic mice. PMID:23441131

  16. AHNS Series: Do you know your guidelines?Principles of radiation therapy for head and neck cancer: A review of the National Comprehensive Cancer Network guidelines.

    PubMed

    Gooi, Zhen; Fakhry, Carole; Goldenberg, David; Richmon, Jeremy; Kiess, Ana P

    2016-07-01

    This article is a continuation of the "Do You Know Your Guidelines" series, an initiative of the American Head and Neck Society's Education Committee to increase awareness of current best practices pertaining to head and neck cancer. The National Comprehensive Cancer Network guidelines for radiotherapy in the treatment for head and neck cancers are reviewed here in a systematic fashion according to site and stage. These guidelines outline indications for primary and adjuvant treatment, as well as general principles of radiotherapy. © 2016 Wiley Periodicals, Inc. Head Neck 38: 987-992, 2016. PMID:27015108

  17. Raman spectroscopy detects biomolecular changes associated with nanoencapsulated hesperetin treatment in experimental oral carcinogenesis

    NASA Astrophysics Data System (ADS)

    Gurushankar, K.; Gohulkumar, M.; Kumar, Piyush; Krishna, C. Murali; Krishnakumar, N.

    2016-03-01

    Recently it has been shown that Raman spectroscopy possesses great potential in the investigation of biomolecular changes of tumor tissues with therapeutic drug response in a non-invasive and label-free manner. The present study is designed to investigate the antitumor effect of hespertin-loaded nanoparticles (HETNPs) relative to the efficacy of native hesperetin (HET) in modifying the biomolecular changes during 7,12-dimethyl benz(a)anthracene (DMBA)-induced oral carcinogenesis using a Raman spectroscopic technique. Significant differences in the intensity and shape of the Raman spectra between the control and the experimental tissues at 1800-500 cm-1 were observed. Tumor tissues are characterized by an increase in the relative amount of proteins, nucleic acids, tryptophan and phenylalanine and a decrease in the percentage of lipids when compared to the control tissues. Further, oral administration of HET and its nanoparticulates restored the status of the lipids and significantly decreased the levels of protein and nucleic acid content. Treatment with HETNPs showed a more potent antitumor effect than treatment with native HET, which resulted in an overall reduction in the intensity of several biochemical Raman bands in DMBA-induced oral carcinogenesis being observed. Principal component and linear discriminant analysis (PC-LDA), together with leave-one-out cross validation (LOOCV) on Raman spectra yielded diagnostic sensitivities of 100%, 80%, 91.6% and 65% and specificities of 100%, 65%, 60% and 55% for classification of control versus DMBA, DMBA versus DMBA  +  HET, DMBA versus DMBA  +  HETNPs and DMBA  +  HET versus DMBA  +  HETNPs treated tissue groups, respectively. These results further demonstrate that Raman spectroscopy associated with multivariate statistical algorithms could be a valuable tool for developing a comprehensive understanding of the process of biomolecular changes, and could reveal the signatures of the

  18. Fifty years of tobacco carcinogenesis research: from mechanisms to early detection and prevention of lung cancer.

    PubMed

    Hecht, Stephen S; Szabo, Eva

    2014-01-01

    The recognition of the link between cigarette smoking and lung cancer in the 1964 Surgeon General's Report initiated definitive and comprehensive research on the identification of carcinogens in tobacco products and the relevant mechanisms of carcinogenesis. The resultant comprehensive data clearly illustrate established pathways of cancer induction involving carcinogen exposure, metabolic activation, DNA adduct formation, and consequent mutation of critical genes along with the exacerbating influences of inflammation, cocarcinogenesis, and tumor promotion. This mechanistic understanding has provided a framework for the regulation of tobacco products and for the development of relevant tobacco carcinogen and toxicant biomarkers that can be applied in cancer prevention. Simultaneously, the recognition of the link between smoking and lung cancer paved the way for two additional critical approaches to cancer prevention that are discussed here: detection of lung cancer at an early, curable stage, and chemoprevention of lung cancer. Recent successes in more precisely identifying at-risk populations and in decreasing lung cancer mortality with helical computed tomography screening are notable, and progress in chemoprevention continues, although challenges with respect to bringing these approaches to the general population exist. Collectively, research performed since the 1964 Report demonstrates unequivocally that the majority of deaths from lung cancer are preventable. PMID:24403288

  19. Basic concepts of inflammation and its role in carcinogenesis.

    PubMed

    Maher, Stephen G; Reynolds, John V

    2011-01-01

    While the normal inflammatory cascade is self-limiting and crucial for host protection against invading pathogens and in the repair of damaged tissue, a wealth of evidence suggests that chronic inflammation is the engine driving carcinogenesis. Over a period of almost 150 years the link between inflammation and cancer development has been well established. In this chapter we discuss the fundamental concepts and mechanisms behind normal inflammation as it pertains to wound healing. We further discuss the association of inflammation and its role in carcinogenesis, highlighting the different stages of cancer development, namely tumour initiation, promotion and progression. With both the innate and adaptive arms of the immune system being central to the inflammatory process, we examine the role of a number of immune effectors in contributing to the carcinogenic process. In addition, we highlight the influences of host genetics in altering cancer risk. PMID:21822817

  20. Inflammation-driven carcinogenesis is mediated through STING

    PubMed Central

    Ahn, Jeonghyun; Xia, Tianli; Konno, Hiroyasu; Konno, Keiko; Ruiz, Phillip; Barber, Glen N.

    2016-01-01

    Chronic stimulation of innate immune pathways by microbial agents or damaged tissue is known to promote inflammation-driven tumorigenesis by mechanisms that are not well understood. Here we demonstrate that mutagenic 7,12-dimethylbenz(a)anthracene (DMBA), cisplatin and etoposide induce nuclear DNA leakage into the cytosol that intrinsically activates stimulator of interferon genes (STING)-dependent cytokine production. Inflammatory cytokine levels are subsequently augmented in a STING-dependent extrinsic manner by infiltrating phagocytes purging dying cells. Consequently, STING−/− mice, or wild-type mice adoptively transferred with STING−/− bone marrow, are almost completely resistant to DMBA-induced skin carcinogenesis compared with their wild-type counterparts. Our data establish a role for STING in the control of cancer, shed significant insight into the causes of inflammation-driven carcinogenesis and may provide a basis for therapeutic strategies to help prevent malignant disease. PMID:25300616

  1. European Community research on environmental mutagenesis and carcinogenesis.

    PubMed Central

    Sors, A I

    1993-01-01

    Within the 12 Member States of the European Community (EC), environmental policy is now formulated primarily at Community level. As a result, the EC has important regulatory responsibilities for the protection of workers, consumers, and the general public from risks that may arise from environmental chemicals, foremost among them potential carcinogens and mutagens. An important part of EC environmental research and development is intended to provide a scientific basis for these regulations as well as increasing understanding of the basic mechanisms involved in environmental carcinogenesis and mutagenesis. This paper contains a brief introduction to EC environment policy and research, followed by an overview of EC chemicals control activities that are of particular relevance to the research and development program. Community-level research on environmental mutagenesis and carcinogenesis is then reviewed in some detail, including the achievements of recent projects, the scientific content of the current program, and perspectives for the future. PMID:8143645

  2. Inflammatory microenvironment and human papillomavirus-induced carcinogenesis.

    PubMed

    Mangino, Giorgio; Chiantore, Maria Vincenza; Iuliano, Marco; Fiorucci, Gianna; Romeo, Giovanna

    2016-08-01

    More than 15% of the global cancer burden is attributable to infectious agents. Pathogens that cause persistent infections are strongly associated with cancer, inflammation being a major component of the chronic infections as revealed by basic, clinical and epidemiological studies. Persistent infection and viral oncoproteins induce specific cellular pathways modifications that promote tumorigenesis. Deregulated and continuous immune response leads to severe tissue and systemic damage, impaired tumor surveillance and consequent carcinogenesis promotion by selecting for metastatic and therapeutically resistant tumor phenotypes. In this review, the role of inflammatory microenvironment in the HPV-induced carcinogenesis is addressed, with a specific focus on the involvement of the immune molecules and microRNAs as well as their delivery through the microvesicle cargo. PMID:27021827

  3. Human somatic mutation assays as biomarkers of carcinogenesis

    SciTech Connect

    Compton, P.J.E.; Smith, M.T. ); Hooper, K. )

    1991-08-01

    This paper describes four assays that detect somatic gene mutations in humans: the hypoxanthine-guanine phosphoribosyl transferase assay, the glycophorin A assay, the HLA-A assay, and the sickle cell hemoglobin assay. Somatic gene mutations can be considered a biomarker of carcinogenesis, and assays for somatic mutation may assist epidemiologists in studies that attempt to identify factors associated with increased risks of cancer. Practical aspects of the use of these assays are discussed.

  4. Experimental Gastric Carcinogenesis in Cebus apella Nonhuman Primates

    PubMed Central

    Silva, Tanielly Cristina Raiol; Andrade Junior, Edilson Ferreira; Rezende, Alexandre Pingarilho; Carneiro Muniz, José Augusto Pereira; Lacreta Junior, Antonio Carlos Cunha; Assumpção, Paulo Pimentel; Calcagno, Danielle Queiroz; Demachki, Samia; Rabenhorst, Silvia Helena Barem; Smith, Marília de Arruda Cardoso; Burbano, Rommel Rodriguez

    2011-01-01

    The evolution of gastric carcinogenesis remains largely unknown. We established two gastric carcinogenesis models in New-World nonhuman primates. In the first model, ACP03 gastric cancer cell line was inoculated in 18 animals. In the second model, we treated 6 animals with N-methyl-nitrosourea (MNU). Animals with gastric cancer were also treated with Canova immunomodulator. Clinical, hematologic, and biochemical, including C-reactive protein, folic acid, and homocysteine, analyses were performed in this study. MYC expression and copy number was also evaluated. We observed that all animals inoculated with ACP03 developed gastric cancer on the 9th day though on the 14th day presented total tumor remission. In the second model, all animals developed pre-neoplastic lesions and five died of drug intoxication before the development of cancer. The last surviving MNU-treated animal developed intestinal-type gastric adenocarcinoma observed by endoscopy on the 940th day. The level of C-reactive protein level and homocysteine concentration increased while the level of folic acid decreased with the presence of tumors in ACP03-inoculated animals and MNU treatment. ACP03 inoculation also led to anemia and leukocytosis. The hematologic and biochemical results corroborate those observed in patients with gastric cancer, supporting that our in vivo models are potentially useful to study this neoplasia. In cell line inoculated animals, we detected MYC immunoreactivity, mRNA overexpression, and amplification, as previously observed in vitro. In MNU-treated animals, mRNA expression and MYC copy number increased during the sequential steps of intestinal-type gastric carcinogenesis and immunoreactivity was only observed in intestinal metaplasia and gastric cancer. Thus, MYC deregulation supports the gastric carcinogenesis process. Canova immunomodulator restored several hematologic measurements and therefore, can be applied during/after chemotherapy to increase the tolerability and

  5. 4-nitroquinoline-1-oxide induced experimental oral carcinogenesis.

    PubMed

    Kanojia, Deepak; Vaidya, Milind M

    2006-08-01

    Human oral cancer is the sixth largest group of malignancies worldwide and single largest group of malignancies in the Indian subcontinent. Seventy percent of premalignant cancers appear from premalignant lesions. Only 8-10% of these lesions finally turn into malignancy. The appearance of these premalignant lesions is one distinct feature of human oral cancer. At present there is dearth of biomarkers to identify which of these lesions will turn into malignancy. Regional lymph node metastasis and locoregional recurrence are the major factors responsible for the limited survival of patients with oral cancer. Paucity of early diagnostic and prognostic markers is one of the contributory factors for higher mortality rates. Cancer is a multistep process and because of constrain in availability of human tissues from multiple stages of oral carcinogenesis including normal tissues, animal models are being widely used, aiming for the development of diagnostic and prognostic markers. A number of chemical carcinogens like coal tar, 20 methyl cholanthrene (20MC), 9,10-dimethyl-1,2-benzanthracene (DMBA) and 4-nitroquinoline-1-oxide (4NQO) have been used in experimental oral carcinogenesis. However, 4NQO is the preferred carcinogen apart from DMBA in the development of experimental oral carcinogenesis. 4NQO is a water soluble carcinogen, which induces tumors predominantly in the oral cavity. It produces all the stages of oral carcinogenesis and several lines of evidences suggest that similar histological as well as molecular changes are observed in the human system. In the present review an attempt has been made to collate the information available on mechanisms of action of 4NQO, studies carried out for the development of biomarkers and chemopreventives agents using 4NQO animal models. PMID:16448841

  6. Mobile Technology and Social Media in the Clinical Practice of Young Radiation Oncologists: Results of a Comprehensive Nationwide Cross-sectional Study

    SciTech Connect

    Bibault, Jean-Emmanuel; Leroy, Thomas; Blanchard, Pierre; Biau, Julian; Cervellera, Mathilde; Diaz, Olivia; Faivre, Jean Christophe; and others

    2014-09-01

    Purpose: Social media and mobile technology are transforming the way in which young physicians are learning and practicing medicine. The true impact of such technologies has yet to be evaluated. Methods and Materials: We performed a nationwide cross-sectional survey to better assess how young radiation oncologists used these technologies. An online survey was sent out between April 24, 2013, and June 1, 2013. All residents attending the 2013 radiation oncology French summer course were invited to complete the survey. Logistic regressions were performed to assess predictors of use of these tools in the hospital on various clinical endpoints. Results: In all, 131 of 140 (93.6%) French young radiation oncologists answered the survey. Of these individuals, 93% owned a smartphone and 32.8% owned a tablet. The majority (78.6%) of the residents owning a smartphone used it to work in their department. A total of 33.5% had more than 5 medical applications installed. Only 60.3% of the residents verified the validity of the apps that they used. In all, 82.9% of the residents had a social network account. Conclusions: Most of the residents in radiation oncology use their smartphone to work in their department for a wide variety of tasks. However, the residents do not consistently check the validity of the apps that they use. Residents also use social networks, with only a limited impact on their relationship with their patients. Overall, this study highlights the irruption and the risks of new technologies in the clinical practice and raises the question of a possible regulation of their use in the hospital.

  7. Effects of Bowman-Birk inhibitor on rat colon carcinogenesis.

    PubMed

    Kennedy, Ann R; Billings, Paul C; Wan, X Steven; Newberne, Paul M

    2002-01-01

    The present study was undertaken to determine whether the Bowman-Birk inhibitor (BBI) could prevent colon carcinogenesis in rats treated with dimethylhydrazine (DMH) and whether there were adverse side effects associated with treatment with BBI for cancer prevention. BBI was evaluated in the forms of purified BBI (PBBI) or an extract of soybeans enriched in BBI, termed BBI concentrate (BBIC). The results demonstrate that PBBI and BBIC reduced the incidence and frequency of tumors in DMH-treated rats compared with animals treated with DMH alone. Autoclaved BBIC, in which the protease inhibitor activity of BBI was destroyed, had a weak and statistically insignificant, suppressive effect on DMH-induced colon carcinogenesis in rats, suggesting that the protease inhibitor activity of BBI is likely to be responsible for the anticarcinogenic activity of BBIC. Soy molasses, which contains soy isoflavones, did not have an effect on colon cancer carcinogenesis in DMH-treated rats. Similar to results from previous studies (Nauss et al. JNCI 73, 915-924, 1984), the most aggressive, malignant colon adenocarcinomas developed within or in association with gut-associated lymphoid tissue aggregates. No adverse side effects on the pancreas or animal growth were observed in rats treated with PBBI or BBIC. These results demonstrate that PBBI and BBIC may be used to prevent colon cancer without significant adverse side effects. PMID:12588698

  8. [Molecular markers of carcinogenesis in the diagnostics of cervical cancer].

    PubMed

    Bedkowska, Grazyna Ewa; Ławicki, Sławomir; Szmitkowski, Maciej

    2009-01-01

    Cervical carcinoma is the most frequent disease of the reproductive organ and is the second most common cancer in women after breast cancer. As it is characterized by high mortality, new diagnostic methods are needed, for example tumor markers, enabling earlier diagnosis and rapid detection of recurrence after therapy. Different tumor markers may be useful in the diagnostics of cervical cancer, for example squamous cell carcinoma antigen (SCC-Ag), tissue polypeptide antigen (TPA), and CYFRA 21-1, as well as some cytokines such as vascular endothelial growth factor (VEGF), granulocyte colony-stimulating factor, and macrophage colony-stimulating factor (M-CSF). About 150 genes connected with the carcinogenesis of cervical carcinoma have been identified. This paper is devoted to evaluating the diagnostic usefulness of molecular markers of carcinogenesis, especially P53, Bcl-2, Brn-3a, and MCM, and comparing the results with those of typical tumor markers or cytokines useful in diagnosing this type of cancer. It was shown that telomerase and Brn-3a proteins demonstrate usefulness in screening examination, P53 in monitoring the effectiveness of therapy, and Bcl-2 as a survival prognostic factor. In summary, it is evident that molecular makers of carcinogenesis are helpful in the diagnostics of cervical cancer, but further investigation and confirmation by a prospective study is necessary. PMID:19252468

  9. Alterations of Histone H1 Phosphorylation During Bladder Carcinogenesis

    PubMed Central

    Telu, Kelly H.; Abbaoui, Besma; Thomas-Ahner, Jennifer M.; Zynger, Debra L.; Clinton, Steven K.

    2013-01-01

    There is a crucial need for development of prognostic and predictive biomarkers in human bladder carcinogenesis in order to personalize preventive and therapeutic strategies and improve outcomes. Epigenetic alterations, such as histone modifications, are implicated in the genetic dysregulation that is fundamental to carcinogenesis. Here we focus on profiling the histone modifications during the progression of bladder cancer. Histones were extracted from normal human bladder epithelial cells, an immortalized human bladder epithelial cell line (hTERT), and four human bladder cancer cell lines (RT4, J82, T24, and UMUC3) ranging from superficial low-grade to invasive high-grade cancers. Liquid Chromatography-Mass Spectrometry (LC-MS) profiling revealed a statistically significant increase in phosphorylation of H1 linker histones from normal human bladder epithelial cells to low-grade superficial to high-grade invasive bladder cancer cells. This finding was further validated by immunohistochemical staining of the normal epithelium and transitional cell cancer from human bladders. Cell cycle analysis of histone H1 phosphorylation by western blotting showed an increase of phosphorylation from G0/G1 phase to M phase, again supporting this as a proliferative marker. Changes in histone H1 phosphorylation status may further clarify epigenetic changes during bladder carcinogenesis and provide diagnostic and prognostic biomarkers or targets for future therapeutic interventions. PMID:23675690

  10. Loss of SPARC in bladder cancer enhances carcinogenesis and progression

    PubMed Central

    Said, Neveen; Frierson, Henry F.; Sanchez-Carbayo, Marta; Brekken, Rolf A.; Theodorescu, Dan

    2013-01-01

    Secreted protein acidic and rich in cysteine (SPARC) has been implicated in multiple aspects of human cancer. However, its role in bladder carcinogenesis and metastasis are unclear,with some studies suggesting it may be a promoter and others arguing the opposite. Using a chemical carcinogenesis model in Sparc-deficient mice and their wild-type littermates, we found that loss of SPARC accelerated the development of urothelial preneoplasia (atypia and dysplasia), neoplasia, and metastasis and was associated with decreased survival. SPARC reduced carcinogen-induced inflammation and accumulation of reactive oxygen species as well as urothelial cell proliferation. Loss of SPARC was associated with an inflammatory phenotype of tumor-associated macrophages and fibroblasts, with concomitant increased activation of urothelial and stromal NF-κB and AP1 in vivo and in vitro. Syngeneic spontaneous and experimental metastasis models revealed that tumor- and stroma-derived SPARC reduced tumor growth and metastasis through inhibition of cancer-associated inflammation and lung colonization. In human bladder tumor tissues, the frequency and intensity of SPARC expression were inversely correlated with disease-specific survival. These results indicate that SPARC is produced by benign and malignant compartments of bladder carcinomas where it functions to suppress bladder carcinogenesis, progression, and metastasis. PMID:23321672

  11. Wnt Lipidation and Modifiers in Intestinal Carcinogenesis and Cancer.

    PubMed

    Kaemmerer, Elke; Gassler, Nikolaus

    2016-01-01

    The wingless (Wnt) signaling is suggested as a fundamental hierarchical pathway in regulation of proliferation and differentiation of cells. The Wnt ligands are small proteins of about 40 kDa essentially for regulation and initiation of the Wnt activity. They are secreted proteins requiring acylation for activity in the Wnt signaling cascade and for functional interactivity with transmembrane proteins. Dual lipidation is important for posttranslational activation of the overwhelming number of Wnt proteins and is probably involved in their spatial distribution. The intestinal mucosa, where Wnt signaling is essential in configuration and maintenance, is an established model to study Wnt proteins and their role in carcinogenesis and cancer. The intestinal crypt-villus/crypt-plateau axis, a cellular system with self-renewal, proliferation, and differentiation, is tightly coordinated by a Wnt gradient. In the review, some attention is given to Wnt3, Wnt3A, and Wnt2B as important members of the Wnt family to address the role of lipidation and modifiers of Wnt proteins in intestinal carcinogenesis. Wnt3 is an important player in establishing the Wnt gradient in intestinal crypts and is mainly produced by Paneth cells. Wnt2B is characterized as a mitochondrial protein and shuttles between mitochondria and the nucleus. Porcupine and ACSL5, a long-chain fatty acid activating enzyme, are introduced as modifiers of Wnts and as interesting strategy to targeting Wnt-driven carcinogenesis. PMID:27438855

  12. Shikonin Suppresses Skin Carcinogenesis via Inhibiting Cell Proliferation.

    PubMed

    Li, Wenjuan; Zhang, Chunjing; Ren, Amy; Li, Teena; Jin, Rong; Li, Guohong; Gu, Xin; Shi, Runhua; Zhao, Yunfeng

    2015-01-01

    The M2 isoform of pyruvate kinase M2 (PKM2) has been shown to be up-regulated in human skin cancers. To test whether PKM2 may be a target for chemoprevention, shikonin, a natural product from the root of Lithospermum erythrorhizon and a specific inhibitor of PKM2, was used in a chemically-induced mouse skin carcinogenesis study. The results revealed that shikonin treatment suppressed skin tumor formation. Morphological examinations and immunohistochemical staining of the skin epidermal tissues suggested that shikonin inhibited cell proliferation without inducing apoptosis. Although shikonin alone suppressed PKM2 activity, it did not suppress tumor promoter-induced PKM2 activation in the skin epidermal tissues at the end of the skin carcinogenesis study. To reveal the potential chemopreventive mechanism of shikonin, an antibody microarray analysis was performed, and the results showed that the transcription factor ATF2 and its downstream target Cdk4 were up-regulated by chemical carcinogen treatment; whereas these up-regulations were suppressed by shikonin. In a promotable skin cell model, the nuclear levels of ATF2 were increased during tumor promotion, whereas this increase was inhibited by shikonin. Furthermore, knockdown of ATF2 decreased the expression levels of Cdk4 and Fra-1 (a key subunit of the activator protein 1. In summary, these results suggest that shikonin, rather than inhibiting PKM2 in vivo, suppresses the ATF2 pathway in skin carcinogenesis. PMID:25961580

  13. Mechanisms of Chemical Cooperative Carcinogenesis by Epidermal Langerhans Cells

    PubMed Central

    Lewis, Julia M.; Bürgler, Christina D.; Fraser, Juliet A.; Liao, Haihui; Golubets, Kseniya; Kucher, Cynthia L.; Zhao, Peter Y.; Filler, Renata B.; Tigelaar, Robert E.; Girardi, Michael

    2014-01-01

    Cutaneous squamous cell carcinoma (SCC) is the most prevalent invasive malignancy with metastatic potential. The epidermis is exposed to a variety of environmental DNA-damaging chemicals, principal among which are polyaromatic hydrocarbons (PAH) ubiquitous in the environment, tobacco smoke, and broiled meats. Langerhans cells (LC) comprise a network of dendritic cells situated adjacent to basal, suprabasal, and follicular infundibular keratinocytes that when mutated can give rise to SCC, and LC-intact mice are markedly more susceptible than LC-deficient mice to chemical carcinogenesis provoked by initiation with the model PAH, 7,12-dimethylbenz[a]anthracene (DMBA). LC rapidly internalize and depot DMBA as numerous membrane-independent cytoplasmic foci. Repopulation of LC-deficient mice using fetal liver LC-precursors restores DMBA-induced tumor susceptibility. LC expression of p450 enzyme CYP1B1 is required for maximal rapid induction of DNA-damage within adjacent keratinocytes and their efficient neoplastic transformation; however, effects of tumor progression also attributable to the presence of LC were revealed as CYP1B1-independent. Thus, LC make multifaceted contributions to cutaneous carcinogenesis, including via the handling and metabolism of chemical mutagens. Such findings suggest a cooperative carcinogenesis role for myeloid-derived cells resident within cancer susceptible epithelial tissues principally by influencing early events in malignant transformation. PMID:25233073

  14. Wnt Lipidation and Modifiers in Intestinal Carcinogenesis and Cancer

    PubMed Central

    Kaemmerer, Elke; Gassler, Nikolaus

    2016-01-01

    The wingless (Wnt) signaling is suggested as a fundamental hierarchical pathway in regulation of proliferation and differentiation of cells. The Wnt ligands are small proteins of about 40 kDa essentially for regulation and initiation of the Wnt activity. They are secreted proteins requiring acylation for activity in the Wnt signaling cascade and for functional interactivity with transmembrane proteins. Dual lipidation is important for posttranslational activation of the overwhelming number of Wnt proteins and is probably involved in their spatial distribution. The intestinal mucosa, where Wnt signaling is essential in configuration and maintenance, is an established model to study Wnt proteins and their role in carcinogenesis and cancer. The intestinal crypt-villus/crypt-plateau axis, a cellular system with self-renewal, proliferation, and differentiation, is tightly coordinated by a Wnt gradient. In the review, some attention is given to Wnt3, Wnt3A, and Wnt2B as important members of the Wnt family to address the role of lipidation and modifiers of Wnt proteins in intestinal carcinogenesis. Wnt3 is an important player in establishing the Wnt gradient in intestinal crypts and is mainly produced by Paneth cells. Wnt2B is characterized as a mitochondrial protein and shuttles between mitochondria and the nucleus. Porcupine and ACSL5, a long-chain fatty acid activating enzyme, are introduced as modifiers of Wnts and as interesting strategy to targeting Wnt-driven carcinogenesis. PMID:27438855

  15. Carcinogenesis and Inflammatory Effects of Plutonium-Nitrate Retention in an Exposed Nuclear Worker and Beagle Dogs.

    SciTech Connect

    Nielsen, Christopher E.; Wang, Xihai; Robinson, Robert J.; Brooks, Antone L.; Lovaglio, Jamie A.; Patton, Kristin M.; McComish, Stacey; Tolmachev, Sergei Y.; Morgan, William F.

    2014-01-01

    The genetic and inflammatory response pathways elicited following plutonium exposure in archival lung tissue of an occupationally exposed human and experimentally exposed beagle dogs were investigated. These pathways include: tissue injury, apoptosis and gene expression modifications related to carcinogenesis and inflammation. In order to determine which pathways are involved, multiple lung samples from a plutonium exposed worker (Case 0269), a human control (Case 0385), and plutonium exposed beagle dogs were examined using histological staining and immunohistochemistry. Examinations were performed to identify target tissues at risk of radiation-induced fibrosis, inflammation, and carcinogenesis. Case 0269 showed interstitial fibrosis in peripheral and subpleural regions of the lung, but no pulmonary tumors. In contrast, the dogs with similar and higher doses showed pulmonary tumors primarily in brochiolo-alveolar, peripheral and subpleural alveolar regions. The TUNEL assay showed slight elevation of apoptosis in tracheal mucosa, tumor cells, and nuclear debris was present in the inflammatory regions of alveoli and lymph nodes of both the human and the dogs. The expression of apoptosis and a number of chemokine/cytokine genes was slightly but not significantly elevated in protein or gene levels compared to that of the control samples. In the beagles, mucous production was increased in the airway epithelial goblet cells and glands of trachea, and a number of chemokine/cytokine genes showed positive immunoreactivity. This analysis of archival tissue from an accidentally exposed worker and in a large animal model provides valuable information on the effects of long-term retention of plutonium in the respiratory tract and the histological evaluation study may impact mechanistic studies of radiation carcinogenesis.

  16. Critique of the literature on bioeffects of radio-frequency radiation. A comprehensive review pertinent to Air Force operations. Final report, June 1982-October 1986

    SciTech Connect

    Heynick, L.N.

    1987-06-01

    This report analyzes research results and other pertinent information on the biological effects of radiofrequency radiation (RFR). The frequency range of primary interest is 10 kHz to 300 GHz. The main purpose of this report is to serve as a basic reference for other documents dealing with the environmental impact of proposed or currently operating USAF emitter systems with regards to health and safety aspects of exposure to RFR. The report is divided into 7 sections with various aspects of the present knowledge regarding biological effects of RFR. More than 600 references from the world's literature are cited.

  17. EFFECT OF ARSENICALS ON ULTRAVIOLET-RADIATION-INDUCED GROWTH ARREST AND RELATED SIGNALING EVENTS IN HUMAN KERATINOCYTES

    EPA Science Inventory

    The molecular mechanisms mediating arsenic-induced carcinogenesis are not well understood. The role of confounding factors such as ultraviolet radiation (UV), add another level of complexity to the study of arsenic carcinogenesis and the cancer risk assessment to humans. We hypot...

  18. Attribution of different volcano eruptions to injected SO2 from satellite data and implications for radiative forcing calculated by a comprehensive CCM

    NASA Astrophysics Data System (ADS)

    Schallock, Jennifer; Brühl, Christoph; Lelieveld, Jos; Bingen, Christine; Höpfner, Michael

    2016-04-01

    Volcanic eruptions have important radiative effects on climate through impacts on the stratospheric aerosol layer. They have been estimated by analyzing satellite data for anomalies in stratospheric SO2 concentration and aerosol extinction. For this work we used the data of different satellites: MIPAS, GOMOS, OMI and TOMS to cover the time period 2002-2012. It is important to use multiple satellite data sources to compensate for data gaps of individual sensors. The result is a list of about 150 volcanic eruptions (small to medium) that reach the stratosphere directly or by transport from the upper troposphere. Some eruptions have only a regional effect while other SO2 plumes are transported globally. This depends on injection height, latitude, season and circulation patterns (e.g. monsoon). Because of dispersion and advection it is difficult to identify single eruptions in a 2D data field with monthly zonal means, therefore, it is important to use 3D data fields. We find that a temporal resolution of about 5 days and a spatial resolution of 60 degrees longitude and 10 degrees latitude is a good compromise to have sufficient coverage. The volcanic SO2 data in different complexity were used in transient simulations with the atmospheric chemistry circulation model EMAC. It is demonstrated that the neglect of smaller eruptions or the application of only the MIPAS data set significantly underestimates volcanic radiative forcing.

  19. Molecular Genetic Changes Associated With Colorectal Carcinogenesis Are Not Prognostic for Tumor Regression Following Preoperative Chemoradiation of Rectal Carcinoma

    SciTech Connect

    Zauber, N. Peter Marotta, Steven P.; Berman, Errol; Grann, Alison; Rao, Maithili; Komati, Naga; Ribiero, Kezia; Bishop, D. Timothy

    2009-06-01

    Purpose: Preoperative chemotherapy and radiation has become the standard of care for many patients with rectal cancer. The therapy may have toxicity and delays definitive surgery. It would therefore be desirable to identify those cancers that will not regress with preoperative therapy. We assessed a series of rectal cancers for the molecular changes of loss of heterozygosity of the APC and DCC genes, K-ras mutations, and microsatellite instability, changes that have clearly been associated with rectal carcinogenesis. Methods and Materials: Diagnostic colonoscopic biopsies from 53 patients who received preoperative chemotherapy and radiation were assayed using polymerase chain reaction techniques followed by single-stranded conformation polymorphism and DNA sequencing. Regression of the primary tumor was evaluated using the surgically removed specimen. Results: Twenty-three lesions (45%) were found to have a high degree of regression. None of the molecular changes were useful as indicators of regression. Conclusions: Recognized molecular changes critical for rectal carcinogenesis including APC and DCC loss of heterozygosity, K-ras mutations, and microsatellite instability are not useful as indicators of tumor regression following chemoradiation for rectal carcinoma.

  20. Comprehensive evaluations of cone-beam CT dose in image-guided radiation therapy via GPU-based Monte Carlo simulations

    NASA Astrophysics Data System (ADS)

    Montanari, Davide; Scolari, Enrica; Silvestri, Chiara; Jiang Graves, Yan; Yan, Hao; Cervino, Laura; Rice, Roger; Jiang, Steve B.; Jia, Xun

    2014-03-01

    Cone beam CT (CBCT) has been widely used for patient setup in image-guided radiation therapy (IGRT). Radiation dose from CBCT scans has become a clinical concern. The purposes of this study are (1) to commission a graphics processing unit (GPU)-based Monte Carlo (MC) dose calculation package gCTD for Varian On-Board Imaging (OBI) system and test the calculation accuracy, and (2) to quantitatively evaluate CBCT dose from the OBI system in typical IGRT scan protocols. We first conducted dose measurements in a water phantom. X-ray source model parameters used in gCTD are obtained through a commissioning process. gCTD accuracy is demonstrated by comparing calculations with measurements in water and in CTDI phantoms. Twenty-five brain cancer patients are used to study dose in a standard-dose head protocol, and 25 prostate cancer patients are used to study dose in pelvis protocol and pelvis spotlight protocol. Mean dose to each organ is calculated. Mean dose to 2% voxels that have the highest dose is also computed to quantify the maximum dose. It is found that the mean dose value to an organ varies largely among patients. Moreover, dose distribution is highly non-homogeneous inside an organ. The maximum dose is found to be 1-3 times higher than the mean dose depending on the organ, and is up to eight times higher for the entire body due to the very high dose region in bony structures. High computational efficiency has also been observed in our studies, such that MC dose calculation time is less than 5 min for a typical case.

  1. SU-F-18C-01: Minimum Detectability Analysis for Comprehensive Sized Based Optimization of Image Quality and Radiation Dose Across CT Protocols

    SciTech Connect

    Smitherman, C; Chen, B; Samei, E

    2014-06-15

    Purpose: This work involved a comprehensive modeling of task-based performance of CT across a wide range of protocols. The approach was used for optimization and consistency of dose and image quality within a large multi-vendor clinical facility. Methods: 150 adult protocols from the Duke University Medical Center were grouped into sub-protocols with similar acquisition characteristics. A size based image quality phantom (Duke Mercury Phantom) was imaged using these sub-protocols for a range of clinically relevant doses on two CT manufacturer platforms (Siemens, GE). The images were analyzed to extract task-based image quality metrics such as the Task Transfer Function (TTF), Noise Power Spectrum, and Az based on designer nodule task functions. The data were analyzed in terms of the detectability of a lesion size/contrast as a function of dose, patient size, and protocol. A graphical user interface (GUI) was developed to predict image quality and dose to achieve a minimum level of detectability. Results: Image quality trends with variations in dose, patient size, and lesion contrast/size were evaluated and calculated data behaved as predicted. The GUI proved effective to predict the Az values representing radiologist confidence for a targeted lesion, patient size, and dose. As an example, an abdomen pelvis exam for the GE scanner, with a task size/contrast of 5-mm/50-HU, and an Az of 0.9 requires a dose of 4.0, 8.9, and 16.9 mGy for patient diameters of 25, 30, and 35 cm, respectively. For a constant patient diameter of 30 cm, the minimum detected lesion size at those dose levels would be 8.4, 5, and 3.9 mm, respectively. Conclusion: The designed CT protocol optimization platform can be used to evaluate minimum detectability across dose levels and patient diameters. The method can be used to improve individual protocols as well as to improve protocol consistency across CT scanners.

  2. Epithelial in vitro cell systems in carcinogenesis studies

    SciTech Connect

    Borek, C.

    1983-01-01

    The development of epithelial cells systems to study oncogenic transformation has presented a major challenge in the field of carcinogenesis. Because there exists in man a preponderance of carcinomas over sarcomas, the importance of studying oncogenic transformation in epithelial cells is of great relevance to human disease. The difficulty lies in the fact that different tissues contain epithelial cells with singular differentiated characteristics, which must be defined to assert the different nature of the cells being used. Liver cells in culture are a case in point. By careful maintenance and optimal culture conditions, one can maintain many of the differentiated characteristics of the cells for prolonged periods of time.

  3. Distinctive molecular responses to ultraviolet radiation between keratinocytes and melanocytes.

    PubMed

    Sun, Xiaoyun; Kim, Arianna; Nakatani, Masashi; Shen, Yao; Liu, Liang

    2016-09-01

    Solar ultraviolet radiation (UVR) is the major risk factor for skin carcinogenesis. To gain new insights into the molecular pathways mediating UVR effects in the skin, we performed comprehensive transcriptomic analyses to identify shared and distinctive molecular responses to UVR between human keratinocytes and melanocytes. Keratinocytes and melanocytes were irradiated with varying doses of UVB (10, 20 and 30 mJ/cm(2) ) then analysed by RNA-Seq at different time points post-UVB radiation (4, 24 and 72 h). Under basal conditions, keratinocytes and melanocytes expressed similar number of genes, although they each expressed a distinctive subset of genes pertaining to their specific cellular identity. Upon UVB radiation, keratinocytes displayed a clear pattern of time- and dose-dependent changes in gene expression that was different from melanocytes. The early UVB-responsive gene set (4 h post-UVR) differed significantly from delayed UVB-responsive gene sets (24 and 72 h). We also identified multiple novel UVB signature genes including PRSS23, SERPINH1, LCE3D and CNFN, which were conserved between melanocyte and keratinocyte lines from different individuals. Taken together, our findings elucidated both common and distinctive molecular features between melanocytes and keratinocytes and uncovered novel UVB signature genes that might be utilized to predict UVB photobiological effects on the skin. PMID:27119462

  4. Sewage sludge does not induce genotoxicity and carcinogenesis

    PubMed Central

    Silva, Paula Regina Pereira; Barbisan, Luis Fernando; Dagli, Maria Lúcia Zaidan; Saldiva, Paulo Hilário Nascimento

    2012-01-01

    Through a series of experiments, the genotoxic/mutagenic and carcinogenic potential of sewage sludge was assessed. Male Wistar rats were randomly assigned to four groups: Group 1 - negative control; Group 2 - liver carcinogenesis initiated by diethylnitrosamine (DEN; 200 mg/kg i.p.); Group 3 and G4-liver carcinogenesis initiated by DEN and fed 10,000 ppm or 50,000 ppm of sewage sludge. The animals were submitted to a 70% partial hepatectomy at the 3rd week. Livers were processed for routine histological analysis and immunohistochemistry, in order to detect glutathione S-transferase positive altered hepatocyte foci (GST-P+ AHF). Peripheral blood samples for the comet assay were obtained from the periorbital plexus immediately prior to sacrificing. Polychromatic erythrocytes (PCEs) were analyzed in femoral bone-marrow smears, and the frequencies of those micronucleated (MNPCEs) registered. There was no sewage-sludge-induced increase in frequency of either DNA damage in peripheral blood leucocytes, or MNPCEs in the femoral bone marrow. Also, there was no increase in the levels of DNA damage, in the frequency of MNPCEs, and in the development of GST-P AHF when compared with the respective control group. PMID:23055806

  5. Chemically induced skin carcinogenesis: Updates in experimental models (Review).

    PubMed

    Neagu, Monica; Caruntu, Constantin; Constantin, Carolina; Boda, Daniel; Zurac, Sabina; Spandidos, Demetrios A; Tsatsakis, Aristidis M

    2016-05-01

    Skin cancer is one of the most common malignancies affecting humans worldwide, and its incidence is rapidly increasing. The study of skin carcinogenesis is of major interest for both scientific research and clinical practice and the use of in vivo systems may facilitate the investigation of early alterations in the skin and of the mechanisms involved, and may also lead to the development of novel therapeutic strategies for skin cancer. This review outlines several aspects regarding the skin toxicity testing domain in mouse models of chemically induced skin carcinogenesis. There are important strain differences in view of the histological type, development and clinical evolution of the skin tumor, differences reported decades ago and confirmed by our hands‑on experience. Using mouse models in preclinical testing is important due to the fact that, at the molecular level, common mechanisms with human cutaneous tumorigenesis are depicted. These animal models resemble human skin cancer development, in that genetic changes caused by carcinogens and pro‑inflammatory cytokines, and simultaneous inflammation sustained by pro‑inflammatory cytokines and chemokines favor tumor progression. Drugs and environmental conditions can be tested using these animal models. keeping in mind the differences between human and rodent skin physiology. PMID:26986013

  6. What gastric cancer proteomic studies show about gastric carcinogenesis?

    PubMed

    Leal, Mariana Ferreira; Wisnieski, Fernanda; de Oliveira Gigek, Carolina; do Santos, Leonardo Caires; Calcagno, Danielle Queiroz; Burbano, Rommel Rodriguez; Smith, Marilia Cardoso

    2016-08-01

    Gastric cancer is a complex, heterogeneous, and multistep disease. Over the past decades, several studies have aimed to determine the molecular factors that lead to gastric cancer development and progression. After completing the human genome sequencing, proteomic technologies have presented rapid progress. Differently from the relative static state of genome, the cell proteome is dynamic and changes in pathologic conditions. Proteomic approaches have been used to determine proteome profiles and identify differentially expressed proteins between groups of samples, such as neoplastic and nonneoplastic samples or between samples of different cancer subtypes or stages. Therefore, proteomic technologies are a useful tool toward improving the knowledge of gastric cancer molecular pathogenesis and the understanding of tumor heterogeneity. This review aimed to summarize the proteins or protein families that are frequently identified by using high-throughput screening methods and which thus may have a key role in gastric carcinogenesis. The increased knowledge of gastric carcinogenesis will clearly help in the development of new anticancer treatments. Although the studies are still in their infancy, the reviewed proteins may be useful for gastric cancer diagnosis, prognosis, and patient management. PMID:27126070

  7. Enhancing effect of partial gastrectomy on pancreatic carcinogenesis.

    PubMed Central

    Watanapa, P.; Flaks, B.; Oztas, H.; Deprez, P. H.; Calam, J.; Williamson, R. C.

    1992-01-01

    The controversial issue of enhanced pancreatic carcinogenesis following partial gastrectomy has been explored in male Wistar rats (n = 40) weighing 250-300 g. Animals were randomised to receive either 60% distal gastrectomy with Roux-en-Y reconstruction or gastrotomy and resuture (control). Immediately after operation each group was further divided into two subgroups, receiving i.p. injections of either saline or azaserine (30 mg kg-1 wk-1 for 3 weeks). At 15 months blood was obtained at 0, 5, 15 and 30 min after a fatty meal for cholecystokinin (CCK) assay; rats were then killed. Pancreatic wet weight was measured, and histological sections were examined for atypical acinar cell foci (AACF), the putative precursor lesion of carcinoma. There were no significant differences in body weight or pancreatic weight between controls and rats with gastrectomy. Only azaserine-treated rats had acidophilic AACF. Partial gastrectomy substantially increased the number of acidophilic AACF per pancreas (median 26.05 vs 2.09; P less than 0.005), with a 9-fold increase in their volume (P less than 0.005). Basal and postprandial plasma CCK concentrations were higher after gastrectomy than in controls (P less than 0.05). Partial gastrectomy has an enhancing effect on azaserine-induced pancreatic carcinogenesis, probably by means of increased CCK release. PMID:1558791

  8. Langerhans Cells Facilitate UVB-induced Epidermal Carcinogenesis

    PubMed Central

    Lewis, Julia M.; Bürgler, Christina D.; Freudzon, Marianna; Golubets, Kseniya; Gibson, Juliet F.; Filler, Renata B.; Girardi, Michael

    2015-01-01

    Ultraviolet B (UVB) light is considered the major environmental inducer of human keratinocyte DNA mutations, including within the tumor-suppressor gene p53, and chronic exposure is associated with cutaneous squamous cell carcinoma (SCC) formation. Langerhans cells (LC) comprise a dendritic network within the suprabasilar epidermis, yet the role of LC in UVB-induced carcinogenesis is largely unknown. Herein, we show that LC-intact epidermis develops UVB-induced tumors more readily than LC-deficient epidermis. While levels of epidermal cyclopyrimidine dimers (CPD) following acute UVB exposure are equivalent in the presence or absence of LC, chronic UVB-induced p53 mutant clonal islands expand more readily in association with LC which remain largely intact and are preferentially found in proximity to the expanding mutant keratinocyte populations. The observed LC facilitation of mutant p53 clonal expansion is completely αβ and γδ T-cell independent, and is associated with increased intraepidermal expression of interleukin (IL)-22 and the presence of group 3 innate lymphoid cells (ILC3). These data demonstrate that LC play a key role in UVB-induced cutaneous carcinogenesis, and suggest that LC locally stimulate keratinocyte proliferation and innate immune cells that provoke tumor outgrowth. PMID:26053049

  9. Progress and Challenges in Selected Areas of Tobacco Carcinogenesis

    PubMed Central

    Hecht, Stephen S.

    2008-01-01

    Tobacco use continues to be a major cause of cancer in the developed world and, despite significant progress in this country in tobacco control which is driving a decrease in cancer mortality, there are still over one billion smokers in the world. This perspective discusses some selected issues in tobacco carcinogenesis focusing on progress during the 20 years of publication of Chemical Research in Toxicology. The topics covered include metabolism and DNA modification by tobacco-specific nitrosamines, tobacco carcinogen biomarkers, an unidentified DNA ethylating agent in cigarette smoke, mutations in the K-RAS and p53 gene in tobacco-induced lung cancer and their possible relationship to specific carcinogens, secondhand smoke and lung cancer, emerging issues in smokeless tobacco use, and a conceptual model for understanding tobacco carcinogenesis. It is hoped that a better understanding of mechanisms of tobacco-induced cancer will lead to new and useful approaches for prevention of lung cancer and other cancers caused by tobacco use. PMID:18052103

  10. Kif18A is involved in human breast carcinogenesis.

    PubMed

    Zhang, Chunpeng; Zhu, Changjun; Chen, Hongyan; Li, Linwei; Guo, Liping; Jiang, Wei; Lu, Shih Hsin

    2010-09-01

    Microtubule (MT) kinesin motor proteins orchestrate various cellular processes (e.g. mitosis, motility and organelle transportation) and have been implicated in human carcinogenesis. Kif18A, a plus-end directed MT depolymerase kinesin, regulates MT dynamics, chromosome congression and cell division. In this study, we report that Kif18A is overexpressed in human breast cancers and Kif18A overexpression is associated with tumor grade, metastasis and poor survival. Functional analyses reveal that ectopic overexpression of Kif18A results in cell multinucleation, whereas ablation of Kif18A expression significantly inhibits the proliferative capability of breast cancer cells in vitro and in vivo. Inhibition of Kif18A not only affects the critical mitotic function of Kif18A but also decreases cancer cell migration by stabilizing MTs at leading edges and ultimately induces anoikis of cells with inactivation of the phosphatidylinositol 3-kinase-Akt signaling pathway. Together, our results indicate that Kif18A is involved in human breast carcinogenesis and may serve as a potential therapeutic target for human breast cancer. PMID:20595236