Science.gov

Sample records for radiation chemistry applications

  1. Survey of application of radiation to preparative chemistry

    NASA Technical Reports Server (NTRS)

    Philipp, W. H.

    1973-01-01

    The use of radiation for preparative chemistry in liquid solutions is investigated. General principles are presented and preparations involving reduction, oxidation, polymerization, and decomposition are given. The use of various solvents, water, other inorganic liquids and organic liquids for this purpose is discussed. Finally, a commentary is made on some specific applications where radiation chemistry as a preparative technique may be useful.

  2. Radiation Chemistry

    NASA Astrophysics Data System (ADS)

    Wojnárovits, L.

    Ionizing radiation causes chemical changes in the molecules of the interacting medium. The initial molecules change to new molecules, resulting in changes of the physical, chemical, and eventually biological properties of the material. For instance, water decomposes to its elements H2 and O2. In polymers, degradation and crosslinking take place. In biopolymers, e.g., DNS strand breaks and other alterations occur. Such changes are to be avoided in some cases (radiation protection), however, in other cases they are used for technological purposes (radiation processing). This chapter introduces radiation chemistry by discussing the sources of ionizing radiation (radionuclide sources, machine sources), absorption of radiation energy, techniques used in radiation chemistry research, and methods of absorbed energy (absorbed dose) measurements. Radiation chemistry of different classes of inorganic (water and aqueous solutions, inorganic solids, ionic liquids (ILs)) and organic substances (hydrocarbons, halogenated compounds, polymers, and biomolecules) is discussed in concise form together with theoretical and experimental backgrounds. An essential part of the chapter is the introduction of radiation processing technologies in the fields of polymer chemistry, food processing, and sterilization. The application of radiation chemistry to nuclear technology and to protection of environment (flue gas treatment, wastewater treatment) is also discussed.

  3. Chitosan and radiation chemistry

    NASA Astrophysics Data System (ADS)

    Chmielewski, Andrzej G.

    2010-03-01

    Chitosan as a raw material with special properties has drawn attention of scientists working in the field of radiation processing and natural polymer products development, and also of specialists working in the field of radiation protection and oncologists. Especially the applications concern reduced molecular weight chitosan which still retain its chemical structure; such form of the compound is fostering biological, physical and chemical reactivity of the product. Chitosan degrades into fragments under γ-ray or electron beam irradiation. Antibacterial properties of the product are applied in manufacturing hydrogel for wound dressing and additional healing properties can be achieved by incorporating in the hydrogel matrix chitosan bonded silver clusters. Another possible application of chitosan is in reducing radiation damage to the radiation workers or radiation cured patients. In the case of radioisotopes oral or respiratory chitosan-based materials can be applied as chelators. Applications of chitosan in oncology are also reported.

  4. Application of Radiation Chemistry to Some Selected Technological Issues Related to the Development of Nuclear Energy.

    PubMed

    Bobrowski, Krzysztof; Skotnicki, Konrad; Szreder, Tomasz

    2016-10-01

    The most important contributions of radiation chemistry to some selected technological issues related to water-cooled reactors, reprocessing of spent nuclear fuel and high-level radioactive wastes, and fuel evolution during final radioactive waste disposal are highlighted. Chemical reactions occurring at the operating temperatures and pressures of reactors and involving primary transients and stable products from water radiolysis are presented and discussed in terms of the kinetic parameters and radiation chemical yields. The knowledge of these parameters is essential since they serve as input data to the models of water radiolysis in the primary loop of light water reactors and super critical water reactors. Selected features of water radiolysis in heterogeneous systems, such as aqueous nanoparticle suspensions and slurries, ceramic oxides surfaces, nanoporous, and cement-based materials, are discussed. They are of particular concern in the primary cooling loops in nuclear reactors and long-term storage of nuclear waste in geological repositories. This also includes radiation-induced processes related to corrosion of cladding materials and copper-coated iron canisters, dissolution of spent nuclear fuel, and changes of bentonite clays properties. Radiation-induced processes affecting stability of solvents and solvent extraction ligands as well oxidation states of actinide metal ions during recycling of the spent nuclear fuel are also briefly summarized. PMID:27573502

  5. Radiation Chemistry in Organized Assemblies.

    ERIC Educational Resources Information Center

    Thomas, J. K.; Chen, T. S.

    1981-01-01

    Expands the basic concepts regarding the radiation chemistry of simple aqueous systems to more complex, but well defined, organized assemblies. Discusses the differences in behavior in comparison to simple systems. Reviews these techniques: pulse radiolysis, laser flash, photolysis, and steady state irradiation by gamma rays or light. (CS)

  6. Radiation chemistry research using PULAF

    NASA Astrophysics Data System (ADS)

    Gaikwad, Parimal; Priyadarsini, K. I.; Rao, B. S. M.

    2008-10-01

    The details of the recently installed 7 MeV Pune University LINAC Facility (PULAF) coupled with the optical absorption technique for pulse radiolysis studies at the National Centre for Free Radical Research, Department of Chemistry, University of Pune, Pune, India are described. The facility has a selection of electron pulse widths in the range 10 ns-3 μs with corresponding doses of about 5-144 Gy per pulse. The operation of the machine and the detection system are fully automated. Several researchers from various Indian universities and national laboratories use the PULAF and some of the projects that are currently undertaken by our group and others include the radiation chemistry of indole and chalcone derivatives, herbal antioxidants, structure-reactivity studies in cinnamates, redox chemistry of inorganic metal complexes, studies on oxidation of pyrimidine analogues and aromatic sulphur compounds. Some of them are briefly discussed here.

  7. Radiation chemistry of anionic disazo dyes in Cellophane films applications for high-dose dosimetry

    NASA Astrophysics Data System (ADS)

    McLaughlin, William L.

    2003-06-01

    Thin transparent Cellophane films containing anionic disazo "Direct" dyes, e.g. blue Cellophanes, have long been used as monitors of large absorbed doses of ionizing radiation (10-300 kGy) and especially for mapping electron-beam dose profiles. Examples of dyes for such purposes are variations on forms of the disazo dyes, Direct Orange, Direct Violet or Direct Blue. The films have a thickness of 25.6 μm (+0.1 μm) and are available in rolls of either 30 m×0.51 m or 60 m×0.76 m. Such dyed Cellophanes are typically lightfast but can readily be bleached irreversibly by ionizing radiation, as a means of dosimetry using spectrophotometry as the analytical tool. The radiation response is markedly dependent on temperature and relative humidity during irradiation. The reaction is initiated mainly by dehydrogenation and nitrosation upon electrophilic reductive attack on the dye molecule by the thermal electrons, at initial reaction rate constants in the range 10 5-10 6 s -1.

  8. Research needs and opportunities in radiation chemistry workshop

    SciTech Connect

    Barbara, Paul F

    1998-04-19

    heterogeneous systems. These various goals necessitate the development and application of complementary programs of experiment and theory, and will involve the use of nonconventional radiation sources and the study of novel homogeneous and heterogeneous chemical systems. There is also a need to upgrade other types of instrumentation used in radiation chemistry in the national laboratories, including high field electron paramagnetic resonance, and modern analytical tools. The development and enhancement of these various tools will allow for a much wider use of the national radiation chemistry facilities.

  9. Radiation Chemistry of Potential Europa Plumes

    NASA Astrophysics Data System (ADS)

    Gudipati, M. S.; Henderson, B. L.

    2014-12-01

    Recent detection of atomic hydrogen and atomic oxygen and their correlation to potential water plumes on Europa [Roth, Saur et al. 2014] invoked significant interest in further understanding of these potential/putative plumes on Europa. Unlike on Enceladus, Europa receives significant amount of electron and particle radiation. If the plumes come from trailing hemisphere and in the high radiation flux regions, then it is expected that the plume molecules be subjected to radiation processing. Our interest is to understand to what extent such radiation alterations occur and how they can be correlated to the plume original composition, whether organic or inorganic in nature. We will present laboratory studies [Henderson and Gudipati 2014] involving pulsed infrared laser ablation of ice that generates plumes similar to those observed on Enceladus [Hansen, Esposito et al. 2006; Hansen, Shemansky et al. 2011] and expected to be similar on Europa as a starting point; demonstrating the applicability of laser ablation to simulate plumes of Europa and Enceladus. We will present results from electron irradiation of these plumes to determine how organic and inorganic composition is altered due to radiation. Acknowledgments:This research was enabled through partial funding from NASA funding through Planetary Atmospheres, and the Europa Clipper Pre-Project. B.L.H. acknowledges funding from the NASA Postdoctoral Program for an NPP fellowship. Hansen, C. J., L. Esposito, et al. (2006). "Enceladus' water vapor plume." Science 311(5766): 1422-1425. Hansen, C. J., D. E. Shemansky, et al. (2011). "The composition and structure of the Enceladus plume." Geophysical Research Letters 38. Henderson, B. L. and M. S. Gudipati (2014). "Plume Composition and Evolution in Multicomponent Ices Using Resonant Two-Step Laser Ablation and Ionization Mass Spectrometry." The Journal of Physical Chemistry A 118(29): 5454-5463. Roth, L., J. Saur, et al. (2014). "Transient Water Vapor at Europa's South

  10. Radiation Chemistry and the Radiation Preservation of Food.

    ERIC Educational Resources Information Center

    Taub, Irwin A.

    1981-01-01

    Describes common features in the radiation chemistry of food components, and illustrates how product yields are predicted. Presents data that pertain to the radiolysis of the nitrate ion, metmyoglobin, myosin, and tripalmitin. (CS)

  11. Radiation chemistry of major food components

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This book chapter summarizes radiolysis of lipids, proteins, carbohydrates and vitamins. The major focuses of the chapter are on recent developments in radiation chemistry and the use of irradiation to reduce undesirable chemicals in foods. Specifically, formation of volatile sulfur compounds from...

  12. Extraterrestrial Radiation Chemistry and Molecular Astronomy

    NASA Technical Reports Server (NTRS)

    Hudson, Reggie L.; Moore, Marla H.

    2009-01-01

    Astronomical observations of both solar system and interstellar regions have revealed a rich chemical inventory that includes most classes of organic molecules and selected inorganics. For example, gas-phase ethylene glycol and SOz have been observed by astronomers, while solidphase detections include OCS, H2O2 , and the cyanate anion.' All of these are found in environments that are, by earthly standards, exceedingly hostile: temperatures of 10 - 100 K, miniscule densities, and near-ubiquitous ionizing-radiation fields. Beyond the simplest chemical species, these conditions have made it difficult-to-impassible to account for the observed molecular abundances using gas-phase chemistry, suggesting solid-phase reactions play an important role. In extraterrestrial environments, cosmic rays, UV photons, and magnetospheric radiation all drive chemical reactions, even at cryogenic temperatures. To study this chemistry, radiation astrochemists conduct experiments on icy materials, frozen under vacuum and exposed to sources such as keV electrons and MeV protons. Compositional changes usually are followed with IR spectroscopy and, in selected cases, more-sensitive mass-spectral techniques. This talk will review some recent results on known and suspected extraterrestrial molecules and ions. Spectra and reaction pathways will be presented, and predictions made for interstellar chemistry and the chemistry of selected solar system objects. Some past radiation-chemical contributions, and future needs, will be explored.

  13. Microcomputer Applications in Analytical Chemistry.

    ERIC Educational Resources Information Center

    Long, Joseph W.

    The first part of this paper addresses the following topics: (1) the usefulness of microcomputers; (2) applications for microcomputers in analytical chemistry; (3) costs; (4) major microcomputer systems and subsystems; and (5) which microcomputer to buy. Following these brief comments, the major focus of the paper is devoted to a discussion of…

  14. The radiation chemistry of polyetherimides

    NASA Astrophysics Data System (ADS)

    Basheer, Rafil; Dole, Malcolm

    G-values for crosslinking, G(X) and for chain scissions, G(S), have been determined for the electron beam irradiation at room temperature in vacuum of a polyetherimide called ULTEM by General Electric Co.. In addition, ESR studies of the free radicals produced in ULTEM by γ-irradiation in vacuum at 77K have also been carried out. In the electron beam irradiation experiments the very low G(X) and G(S) values, only 0.014 and 0.005 respectively, demonstrate the high radiation stability of this material. The decay at 70° and 160°C of the free radicals in the electron beam irradiated samples accurately followed the Waite equation. Also the solubility-dose data could be accurately interpreted in terms of the Charlesby-Pinner equation.

  15. Radiation chemistry of synthetic waste

    SciTech Connect

    Meisel, D.; Diamond, H.; Horwitz, E.P.; Jonah, C.D.; Matheson, M.S.; Sauer, M.C. Jr.; Sullivan, J.C.

    1991-11-01

    The yield of H{sub 2} from radiolysis of aqueous solutions is substantially reduced by the presence of nitrate and nitrite in the waste solutions. Nitrate is more efficient in scavenging the precursors to H{sub 2} than is nitrite, therefore, the latter should be maintained at higher levels if minimization of radiolytic gas production is required. Nitrate is the major scavenger for e{sub aq}{sup {minus}} and nitrite is the major scavenger for H atoms. At the concentration levels of the waste solutions some fraction of the radiation energy will be absorbed directly by the solutes, primarily the nitrate/nitrite components. Organic additive will increase the generation of H{sub 2} and mechanistic information is available to allow predictive modeling of trends in the rate of the generation. Physical parameters such as temperature, viscosity, and pressure will not significantly affect the gas generation relative to its generation under normal conditions. Radiolytic generation of N{sub 2}O is very inefficient in the absence of organic solutes. No mechanistic information is available on its generation in the presence of organic additives. At the concentration levels of the inorganic salts in the waste solutions, it will be very difficult to find a chemical additive that could efficiently reduce the yield of the generated H{sub 2}, except, perhaps, increasing the concentration of the nitrite/nitrate components.

  16. Radiative Transfer: Methods and Applications

    NASA Astrophysics Data System (ADS)

    Mayer, Bernhard; Emde, Claudia; Buras, Robert; Kylling, Arve

    Solar and terrestrial radiation is the driver of atmospheric dynamics and chemistry and can be exploited by remote sensing algorithms to determine atmospheric composition. For this purpose, accurate radiative transfer models are needed. Here, a modern radiative transfer tool developed over many years at the Institute of Atmospheric Physics is explained. As an application, the remote sensing of cloud microphysics using the angular distribution of reflected solar radiance in the rainbow and backscatter glory is shown, with special emphasis on the polarization of radiation.

  17. Radiation chemistry for modern nuclear energy development

    NASA Astrophysics Data System (ADS)

    Chmielewski, Andrzej G.; Szołucha, Monika M.

    2016-07-01

    Radiation chemistry plays a significant role in modern nuclear energy development. Pioneering research in nuclear science, for example the development of generation IV nuclear reactors, cannot be pursued without chemical solutions. Present issues related to light water reactors concern radiolysis of water in the primary circuit; long-term storage of spent nuclear fuel; radiation effects on cables and wire insulation, and on ion exchangers used for water purification; as well as the procedures of radioactive waste reprocessing and storage. Radiation effects on materials and enhanced corrosion are crucial in current (II/III/III+) and future (IV) generation reactors, and in waste management, deep geological disposal and spent fuel reprocessing. The new generation of reactors (III+ and IV) impose new challenges for radiation chemists due to their new conditions of operation and the usage of new types of coolant. In the case of the supercritical water-cooled reactor (SCWR), water chemistry control may be the key factor in preventing corrosion of reactor structural materials. This paper mainly focuses on radiation effects on long-term performance and safety in the development of nuclear power plants.

  18. Radiation Chemistry and Photochemistry of Ionic Liquids

    SciTech Connect

    Wishart, J.F.; Takahaski, K.

    2010-12-01

    As our understanding of ionic liquids and their tunable properties has grown, it is possible to see many opportunities for ionic liquids to contribute to the sustainable use of energy. The potential safety and environmental benefits of ionic liquids, as compared to conventional solvents, have attracted interest in their use as processing media for the nuclear fuel cycle. Therefore, an understanding of the interactions of ionizing radiation and photons with ionic liquids is strongly needed. However, the radiation chemistry of ionic liquids is still a relatively unexplored topic although there has been a significant increase in the number of researchers in the field recently. This article provides a brief introduction to ionic liquids and their interesting properties, and recent advances in the radiation chemistry and photochemistry of ionic liquids. In this article, we will mainly focus on excess electron dynamics and radical reaction dynamics. Because solvation dynamics processes in ionic liquids are much slower than in molecular solvents, one of the distinguishing characteristics is that pre-solvated electrons play an important role in ionic liquid radiolysis. It will be also shown that the reaction dynamics of radical ions is significantly different from that observed in molecular solvents because of the Coulombic screening effects and electrostatic interactions in ionic liquids.

  19. Use of radiation in preparative chemistry

    NASA Technical Reports Server (NTRS)

    Philipp, W. H.; Marksik, S. J.; May, C. E.; Lad, R. A.

    1971-01-01

    A summary and updating of previous work on the use of radiation chemistry for the preparation of pure materials are presented. Work was chiefly concerned with the reduction of metal salts in solution to the free metal using 2 MeV electrons. Metals deposited from aqueous solution are copper, silver, zinc, cadmium, thallium, tin, lead, antimony, iron, nickel, cobalt, and palladium. Dry organic solvents were evaluated for the deposition of metals based on a study involving deposition of antimony from soltions of antimony (III) chloride. The use of organic liquids for the preparation of anhydrous metal halides is also presented. Reaction mechanisms for both organic liquids and aqueous system are discussed.

  20. Radiation Chemistry of Advanced TALSPEAK Flowsheet

    SciTech Connect

    Mincher, Bruce; Peterman, Dean; Mcdowell, Rocklan; Olson, Lonnie; Lumetta, Gregg J.

    2013-08-28

    This report summarizes the results of initial experiments designed to understand the radiation chemistry of an Advanced TALSPEAK process for separating trivalent lanthanides form the actinides. Biphasic aerated samples were irradiated and then analyzed for post-irradiation constituent concentrations and solvent extraction distribution ratios. The effects of irradiation on the TALSPEAK and Advanced TALSPEAK solvents were similar, with very little degradation of the organic phase extractant. Decomposition products were detected, with a major product in common for both solvents. This product may be responsible for the slight increase in distribution ratios for Eu and Am with absorbed dose, however; separation factors were not greatly affected.

  1. Chemistry of MOS-LSI radiation hardening

    NASA Technical Reports Server (NTRS)

    Grunthaner, P.

    1985-01-01

    The objective of this task was to obtain chemical information on MOS test samples. Toward this end, high resolution X-ray photoemission spectroscopy (XPS) has been the primary techniques used to characterize the chemistry and structure of the SiO2/Si interface for a variety of MOS structures with differing degrees of susceptibility to damage by ionizing radiation. The major accomplishments of this program are: (1) the identification of a structurally distinct region of SiO2 in the near-interfacial region of thermal SiO2 on Si; (2) the identification in the near-interfacial region of SiO2 structural differences between radiation hard and soft gate oxides; (3) the direct observation of radiation-induced damage sites in thermal SiO2 with XPS using in situ electron stress; (4) the correlation of suboxide state distributions at the SiO2/Si interface with processing parameters and radiation susceptibility; (5) the development of a chemical mechanism for radiation-induced interface state generation in SiO2/Si structures; and (6) the development benign chemical profiling techniques which permit the investigation of oxide/semiconductor structures using surface sensitive electron spectroscopic techniques.

  2. The radiation chemistry of ionic liquids: A review

    SciTech Connect

    Mincher, Bruce J.; Wishart, James F.

    2014-07-03

    Ionic liquids have received increasing attention as media for radiochemical separations. Recent literature includes examinations of the efficiencies and mechanisms of the solvent extraction of lanthanides, actinides and fission products into ionic liquid solutions. For radiochemical applications, including as replacement solvents for nuclear fuel reprocessing, a thorough understanding of the radiation chemistry of ionic liquids will be required. Such an understanding can be achieved based on a combination of steady-state radiolysis experiments coupled with post-irradiation product identification and pulse-radiolysis experiments to acquire kinetic information. These techniques allow for the elucidation of radiolytic mechanisms. This contribution reviews the current ionic liquid radiation chemistry literature as it affects separations, with these considerations in mind.

  3. The radiation chemistry of ionic liquids: A review

    DOE PAGESBeta

    Mincher, Bruce J.; Wishart, James F.

    2014-07-03

    Ionic liquids have received increasing attention as media for radiochemical separations. Recent literature includes examinations of the efficiencies and mechanisms of the solvent extraction of lanthanides, actinides and fission products into ionic liquid solutions. For radiochemical applications, including as replacement solvents for nuclear fuel reprocessing, a thorough understanding of the radiation chemistry of ionic liquids will be required. Such an understanding can be achieved based on a combination of steady-state radiolysis experiments coupled with post-irradiation product identification and pulse-radiolysis experiments to acquire kinetic information. These techniques allow for the elucidation of radiolytic mechanisms. This contribution reviews the current ionic liquidmore » radiation chemistry literature as it affects separations, with these considerations in mind.« less

  4. Chemistry of radiation damage to wire chambers

    SciTech Connect

    Wise, J.

    1992-08-01

    Proportional counters are used to study aspects of radiation damage to wire chambers (wire aging). Principles of low-pressure, rf plasma chemistry are used to predict the plasma chemistry in electron avalanches (1 atm, dc). (1) Aging is studied in CF{sub 4}/iC{sub 4}H{sub 10} gas mixtures. Wire deposits are analyzed by Auger electron spectroscopy. An apparent cathode aging process resulting in loss of gain rather than in a self-sustained current is observed in CF{sub 4}-rich gases. A four-part model considering plasma polymerization of the hydrocarbon, etching of wire deposits by CF{sub 4}, acceleration of deposition processes in strongly etching environments, and reactivity of the wire surface is developed to understand anode wire aging in CF{sub 4}/iC{sub 4}H{sub 10} gases. Practical guidelines suggested by the model are discussed. (2) Data are presented to suggest that trace amounts of Freons do not affect aging rates in either dimethyl ether or Ar/C{sub 2}H{sub 6}. Apparent loss of gain is explained by attachment of primary electrons to a continuously increasing concentration of Freon 11 (CCl{sub 3}F) in the counter gas. An increase in the concentration of Freon 11 in dimethyl ether is caused by a distillation process in the gas supply bottle and is a natural consequence of the unequal volatilities of the two compounds.

  5. Plasma chemistry and its applications

    NASA Technical Reports Server (NTRS)

    Hozumi, K.

    1980-01-01

    The relationship between discharge phenomena and plasma chemistry, as well as the equipment and mechanisms of plasma chemical reactions are described. Various areas in which plasma chemistry is applied are surveyed, such as: manufacturing of semiconductor integrated circuits; synthetic fibers; high polymer materials for medical uses; optical lenses; and membrane filters (reverse penetration films).

  6. Radiation Chemistry 2008 Gordon Research Conference - July 6-11, 2008

    SciTech Connect

    David M. Bartels

    2009-05-15

    Radiation Chemistry is chemistry initiated by ionizing radiation: i.e. photons or particles with energy sufficient to create charge pairs and/or free radicals in a medium. The important transients include conduction band electrons and 'holes', excitons, ionic and neutral free radicals, highly excited states, and solvated electrons. Effects of radiation span timescales from the energy deposition in femtoseconds, through geminate recombination in picoseconds and nanoseconds, to fast radical chemistry in microseconds and milliseconds, and ultimately to processes like cancer occurring decades later. The radiation sources used to study these processes likewise run from femtosecond lasers to nanosecond accelerators to years of gamma irradiation. As a result the conference has a strong interdisciplinary flavor ranging from fundamental physics to clinical biology. While the conference focuses on fundamental science, application areas highlighted in the present conference will include nuclear power, polymer processing, and extraterrestrial chemistry.

  7. Contribution of radiation chemistry to the study of metal clusters.

    PubMed

    Belloni, J

    1998-11-01

    Radiation chemistry dates from the discovery of radioactivity one century ago by H. Becquerel and P. and M. Curie. The complex phenomena induced by ionizing radiation have been explained progressively. At present, the methodology of radiation chemistry, particularly in the pulsed mode, provides a powerful means to study not only the early processes after the energy absorption, but more generally a broad diversity of chemical and biochemical reaction mechanisms. Among them, the new area of metal cluster chemistry illustrates how radiation chemistry contributed to this field in suggesting fruitful original concepts, in guiding and controlling specific syntheses, and in the detailed elaboration of the mechanisms of complex and long-unsolved processes, such as the dynamics of nucleation, electron transfer catalysis and photographic development. PMID:9806605

  8. Nonequilibrium radiation and chemistry models for aerocapture vehicle flowfields

    NASA Technical Reports Server (NTRS)

    Carlson, Leland A.

    1990-01-01

    The continued development and improvement of the viscous shock layer (VSL) nonequilibrium chemistry blunt body engineering code, the incorporation in a coupled manner of radiation models into the VSL code, and the initial development of appropriate precursor models are presented.

  9. Combinatorial Chemistry for Optical Sensing Applications

    NASA Astrophysics Data System (ADS)

    Díaz-García, M. E.; Luis, G. Pina; Rivero-Espejel, I. A.

    The recent interest in combinatorial chemistry for the synthesis of selective recognition materials for optical sensing applications is presented. The preparation, screening, and applications of libraries of ligands and chemosensors against molecular species and metal ions are first considered. Included in this chapter are also the developments involving applications of combinatorial approaches to the discovery of sol-gel and acrylic-based imprinted materials for optical sensing of antibiotics and pesticides, as well as libraries of doped sol-gels for high-throughput optical sensing of oxygen. The potential of combinatorial chemistry applied to the discovery of new sensing materials is highlighted.

  10. Ionic Liquids: Radiation Chemistry, Solvation Dynamics and Reactivity Patterns

    SciTech Connect

    Wishart, J.F.

    2011-06-12

    Ionic liquids (ILs) are a rapidly expanding family of condensed-phase media with important applications in energy production, nuclear fuel and waste processing, improving the efficiency and safety of industrial chemical processes, and pollution prevention. ILs generally have low volatilities and are combustion-resistant, highly conductive, recyclable and capable of dissolving a wide variety of materials. They are finding new uses in chemical synthesis, catalysis, separations chemistry, electrochemistry and other areas. Ionic liquids have dramatically different properties compared to conventional molecular solvents, and they provide a new and unusual environment to test our theoretical understanding of primary radiation chemistry, charge transfer and other reactions. We are interested in how IL properties influence physical and dynamical processes that determine the stability and lifetimes of reactive intermediates and thereby affect the courses of reactions and product distributions. We study these issues by characterization of primary radiolysis products and measurements of their yields and reactivity, quantification of electron solvation dynamics and scavenging of electrons in different states of solvation. From this knowledge we wish to learn how to predict radiolytic mechanisms and control them or mitigate their effects on the properties of materials used in nuclear fuel processing, for example, and to apply IL radiation chemistry to answer questions about general chemical reactivity in ionic liquids that will aid in the development of applications listed above. Very early in our radiolysis studies it became evident that the slow solvation dynamics of the excess electron in ILs (which vary over a wide viscosity range) increase the importance of pre-solvated electron reactivity and consequently alter product distributions and subsequent chemistry. This difference from conventional solvents has profound effects on predicting and controlling radiolytic yields

  11. 2012 RADIATION CHEMISTRY GORDON RESEARCH CONFERENCE AND GORDON RESEARCH SEMINAR, JULY 28, - AUGUST 3, 2012

    SciTech Connect

    y LaVerne

    2012-08-03

    The overarching objective of this conference is to catalyze the interchange of new ideas and recent discoveries within the basic radiation sciences of physics, chemistry, and biology, and to facilitate translating this knowledge to applications in medicine and industry. The 9 topics for the GRC are: "œFrom Energy Absorption to Disease", "œBiodosimetry after a Radiological Incident," "œTrack Structure and Low Energy Electrons," "Free Radical Processes in DNA and Proteins," "Irradiated Polymers for Industrial/ Medical Applications," "Space Radiation Chemistry/Biology," "Nuclear Power and Waste Management," "Nanoparticles and Surface Interfaces", and the "Young Investigator" session.

  12. RADIATION CHEMISTRY 2010 GORDON RESEARCH CONFERENCE JULY 18-23

    SciTech Connect

    Thomas Orlando

    2010-07-23

    The 2010 Gordon Conference on Radiation Chemistry will present cutting edge research regarding the study of radiation-induced chemical transformations. Radiation Chemistry or 'high energy' chemistry is primarily initiated by ionizing radiation: i.e. photons or particles with energy sufficient to create conduction band electrons and 'holes', excitons, ionic and neutral free radicals, highly excited states, and solvated electrons. These transients often interact or 'react' to form products vastly different than those produced under thermal equilibrium conditions. The non-equilibrium, non-thermal conditions driving radiation chemistry exist in plasmas, star-forming regions, the outer solar system, nuclear reactors, nuclear waste repositories, radiation-based medical/clinical treatment centers and in radiation/materials processing facilities. The 2010 conference has a strong interdisciplinary flavor with focus areas spanning (1) the fundamental physics and chemistry involved in ultrafast (atto/femtosecond) energy deposition events, (2) radiation-induced processes in biology (particularly spatially resolved studies), (3) radiation-induced modification of materials at the nanoscale and cosmic ray/x-ray mediated processes in planetary science/astrochemistry. While the conference concentrates on fundamental science, topical applied areas covered will also include nuclear power, materials/polymer processing, and clinical/radiation treatment in medicine. The Conference will bring together investigators at the forefront of their field, and will provide opportunities for junior scientists and graduate students to present work in poster format or as contributors to the Young Investigator session. The program and format provides excellent avenues to promote cross-disciplinary collaborations.

  13. Principles and Techniques of Radiation Chemistry.

    ERIC Educational Resources Information Center

    Dorfman, Leon M.

    1981-01-01

    Discusses the physical processes involved in the deposition of energy from ionizing radiation in the absorber system. Identifies principles relevant to these processes which are responsible for ionization and excitation of the components of the absorber system. Briefly describes some experimental techniques in use in radiation chemical studies.…

  14. High fidelity chemistry and radiation modeling for oxy -- combustion scenarios

    NASA Astrophysics Data System (ADS)

    Abdul Sater, Hassan A.

    To account for the thermal and chemical effects associated with the high CO2 concentrations in an oxy-combustion atmosphere, several refined gas-phase chemistry and radiative property models have been formulated for laminar to highly turbulent systems. This thesis examines the accuracies of several chemistry and radiative property models employed in computational fluid dynamic (CFD) simulations of laminar to transitional oxy-methane diffusion flames by comparing their predictions against experimental data. Literature review about chemistry and radiation modeling in oxy-combustion atmospheres considered turbulent systems where the predictions are impacted by the interplay and accuracies of the turbulence, radiation and chemistry models. Thus, by considering a laminar system we minimize the impact of turbulence and the uncertainties associated with turbulence models. In the first section of this thesis, an assessment and validation of gray and non-gray formulations of a recently proposed weighted-sum-of-gray gas model in oxy-combustion scenarios was undertaken. Predictions of gas, wall temperatures and flame lengths were in good agreement with experimental measurements. The temperature and flame length predictions were not sensitive to the radiative property model employed. However, there were significant variations between the gray and non-gray model radiant fraction predictions with the variations in general increasing with decrease in Reynolds numbers possibly attributed to shorter flames and steeper temperature gradients. The results of this section confirm that non-gray model predictions of radiative heat fluxes are more accurate than gray model predictions especially at steeper temperature gradients. In the second section, the accuracies of three gas-phase chemistry models were assessed by comparing their predictions against experimental measurements of temperature, species concentrations and flame lengths. The chemistry was modeled employing the Eddy

  15. Phase chemistry, structure, and radiation effects in lunar samples.

    PubMed

    Arrhenius, G; Asunmaa, S; Drever, J I; Everson, J; Fitzgerald, R W; Frazer, J Z; Fujita, H; Hanor, J S; Lal, D; Liang, S S; Macdougall, D; Reid, A M; Sinkankas, J; Wilkening, L

    1970-01-30

    Phase chemistry, structure, and radiation effects were studied in rock, breccia, and soil samples. The regolith apparently developed in the final stages of accretion and was modified by later impact processes and radiation weathering. Exposure ages indicate transfer of buried igneous rock fragments to the near surface late in lunar history. With a few exceptions igneous rock fragments, soil, and breccia share the same distinctive chemistry, probably acquired before accretion of the moon. The igneous rocks texturally resemble basaltic achondrites, and the soil and breccias contain glassy spheres analogous to chondrules. PMID:17781535

  16. Ion-Molecule Reactions in Gas Phase Radiation Chemistry.

    ERIC Educational Resources Information Center

    Willis, Clive

    1981-01-01

    Discusses some aspects of the radiation chemistry of gases, focusing on the ion-molecule and charge neutralization reactions which set study of the gas phase apart. Uses three examples that illustrate radiolysis, describing the radiolysis of (1) oxygen, (2) carbon dioxide, and (3) acetylene. (CS)

  17. Ionic Liquids: Radiation Chemistry, Solvation Dynamics and Reactivity Patterns

    SciTech Connect

    Wishart,J.F.

    2008-09-29

    Ionic liquids (ILs) are a rapidly expanding family of condensed-phase media with important applications in energy production, nuclear fuel and waste processing, improving the efficiency and safety of industrial chemical processes, and pollution prevention. ILs are generally nonvolatile, noncombustible, highly conductive, recyclable and capable of dissolving a wide variety of materials. They are finding new uses in chemical synthesis, catalysis, separations chemistry, electrochemistry and other areas. Ionic liquids have dramatically different properties compared to conventional molecular solvents, and they provide a new and unusual environment to test our theoretical understanding of charge transfer and other reactions. We are interested in how IL properties influence physical and dynamical processes that determine the stability and lifetimes of reactive intermediates and thereby affect the courses of chemical reactions and product distributions. Successful use of ionic liquids in radiation-filled environments, where their safety advantages could be significant, requires an understanding of ionic liquid radiation chemistry. For example, characterizing the primary steps of IL radiolysis will reveal radiolytic degradation pathways and suggest ways to prevent them or mitigate their effects on the properties of the material. An understanding of ionic liquid radiation chemistry will also facilitate pulse radiolysis studies of general chemical reactivity in ILs, which will aid in the development of applications listed above. Very early in our radiolysis studies it became evident that slow solvation dynamics of the excess electron in ILs (which vary over a wide viscosity range) increases the importance of pre-solvated electron reactivity and consequently alters product distributions. Parallel studies of IL solvation phenomena using coumarin-153 dynamic Stokes shifts and polarization anisotropy decay rates are done to compare with electron solvation studies and to evaluate

  18. Terahertz Radiation Effects and Biological Applications

    NASA Astrophysics Data System (ADS)

    Ramundo Orlando, Alfonsina; Gallerano, Gian Piero

    2009-12-01

    We present a brief overview of the literature on biological applications and experimental data on the effects of THz radiation. The region of the electromagnetic spectrum from 0.1 to 10 THz is a frontier area for research in physics, chemistry, biology, materials science and medicine. This area has recently begun to be filled by a variety of sources of high quality radiation with a wide range of new technologies related to it. New sources have led to new science in many areas, as scientists begin to become aware of the opportunities for research progress in their fields using THz radiation. Therefore the opportunities for THz science in chemistry and biology are wide ranging. Some of them will extend the range of already established work, many others have not yet been realized but show great promise, and the rest fall somewhere in between.

  19. The Radiation Chemistry of Radiochemical Separations: A Review

    SciTech Connect

    Bruce J. Mincher; Stephen P. Mezyk

    2009-09-01

    Radiochemistry deals with the chemistry of the radioactive elements, especially with regard to separations, while radiation chemistry is concerned with the chemical effects of ionizing radiation. The most common types of radiation encountered by the radiochemist are low linear energy transfer (LET) ß- and ? radiation, and higher LET a radiation. These radiations can have profound and important effects on radiochemistry, including changes in metal oxidation states and degradation of the organic ligands designed to complex radioelements. This may occur by direct action of the incident radiation on compounds present with high abundance or by reaction with radiolytically produced reactive species for trace components, such as the complexing agents used in separations. This review examines the role of reactive species created in irradiated aqueous and organic solution and their effects on radiochemistry. Examples are provided related to solvent extraction from acidic solution, metal complexation in alkaline tank waste, and the corrosion of spent fuel stored in repository brine. Radiolytic actinide and fission product metal redox reactions are also discussed.

  20. Applications of physical chemistry to glass technology

    NASA Astrophysics Data System (ADS)

    Stewart, Ogie Gregory

    2001-07-01

    Industrial manufacturing of glass, called float glass, involves a process in which flat pieces of glass are produced by pouring molten glass on a bath of molten tin metal. The glass is then coated with thin film coatings for such applications as solar radiation control and "privacy" glass. In this thesis, principles of physical chemistry are applied to selected aspects of glass production and thin film coatings in an effort to better understand these processes with the hope of improving film and glass quality. The research described here consists of three major studies. Part 1 describes the production of thin films by Atmospheric Pressure Chemical Vapor Deposition (APCVD) and characterization of the films by various analytical techniques. Vanadium oxide films were produced from vanadium (IV) chloride and each of several alcohols to determine the feasibility of this method of deposition and to investigate its use in an electrochromic device. The focus here was to investigate the levels of carbon contamination in the films. It was found that the level of carbon present in the films depend on the type of amine used. Part 2 is an investigation of the flow dynamics that occur during the two thin film deposition processes. APCVD and Powder Spray Pyrolysis (PSP). Information regarding flow dynamics and particle distribution in the region above the films' substrates were obtained and related to film formation and quality. Part 3 is a kinetic study of the gas phase reactions that occur in the vapor region above the glass during float glass production. A kinetic model of the possible reactions was devised and integrated to predict the formation of these impurities with time. An experimental setup to test the model's predictions is also discussed. The research described in this thesis lays the groundwork for several possibilities for future work. Electrochromic films can be produced by APCVD to construct an all-solid-state device. Two dimensional imaging coupled with Laser

  1. Radiation chemistry in the Jovian stratosphere - Laboratory simulations

    NASA Technical Reports Server (NTRS)

    Mcdonald, Gene D.; Thompson, W. R.; Sagan, Carl

    1992-01-01

    The results of the present low-pressure/continuous-flow laboratory simulations of H2/He/CH4/NH3 atmospheres' plasma-induced chemistry indicate radiation yields of both hydrocarbon and N2-containing organic compounds which increase with decreasing pressure. On the basis of these findings, upper limits of 1 million-1 billion molecules/sq cm/sec are established for production rates of major auroral-chemistry species in the Jovian stratosphere. It is noted that auroral processes may account for 10-100 percent of the total abundances of most of the observed polar-region organic species.

  2. Radiation Chemistry of Simulated (99)Mo Product

    SciTech Connect

    Carson, S.D.; Garcia, M.J.; McDonald, M.J.; Simpson, R.L.; Tallant, D.R.

    1998-11-06

    PharrnaceuticaI houses that produce {sup 99}Tc/{sup 99}Tc generators have on occasion received {sup 99}Mo that contained a black precipitate. Addition of sodium hypochlorite to product bottles prior to shipment prevents precipitate formation, indicating the precipitate is a reduced form of Mo. The radiation effects of the dose from {sup 99}Mo on the product and product bottle have been determined by irradiating simulated {sup 99}Mo product solutions with the {sup 60}Co source at Sandia National Laboratories' Gamma Irradiation Facility (GE). The GIF experiment successfully generated a black precipitate in amounts sufficient for isolation and analysis by infrared and Rrunan spectroscopy. Changes in the pH of the basic {sup 99}Mo product solution during irradiation were monitored by titration. ResuIts of these analyses and the nature of the process that generates the precipitate, a mixture of molybdenum oxides that forms in plastic bottles, but not in glass containers, are discussed.

  3. IONIC LIQUIDS: RADIATION CHEMISTRY, SOLVATION DYNAMICS AND REACTIVITY PATTERNS.

    SciTech Connect

    WISHART,J.F.

    2007-10-01

    energy production, nuclear fuel and waste processing, improving the efficiency and safety of industrial chemical processes, and pollution prevention. ILs are generally nonvolatile, noncombustible, highly conductive, recyclable and capable of dissolving a wide variety of materials. They are finding new uses in chemical synthesis, catalysis, separations chemistry, electrochemistry and other areas. Ionic liquids have dramatically different properties compared to conventional molecular solvents, and they provide a new and unusual environment to test our theoretical understanding of charge transfer and other reactions. We are interested in how IL properties influence physical and dynamical processes that determine the stability and lifetimes of reactive intermediates and thereby affect the courses of chemical reactions and product distributions. Successful use of ionic liquids in radiation-filled environments, where their safety advantages could be significant, requires an understanding of ionic liquid radiation chemistry. For example, characterizing the primary steps of IL radiolysis will reveal radiolytic degradation pathways and suggest ways to prevent them or mitigate their effects on the properties of the material. An understanding of ionic liquid radiation chemistry will also facilitate pulse radiolysis studies of general chemical reactivity in ILs, which will aid in the development of applications listed above. Very early in our radiolysis studies it became evident that slow solvation dynamics of the excess electron in ILs (which vary over a wide viscosity range) increases the importance of pre-solvated electron reactivity and consequently alters product distributions. Parallel studies of IL solvation phenomena using coumarin-153 dynamic Stokes shifts and polarization anisotropy decay rates are done to compare with electron solvation studies and to evaluate the influence of ILs on charge transport processes. Methods. Picosecond pulse radiolysis studies at BNL

  4. Fast Chemistry Mechanisms for Climate Applications

    NASA Astrophysics Data System (ADS)

    Cameron-Smith, P. J.; Connell, P. S.; Bergmann, D. J.; Chuang, C. C.; Prather, M. J.; Lamarque, J.; Hess, P.; Vitt, F.

    2008-12-01

    When atmospheric chemistry is included in long climate and Earth system simulations, the completeness of the chemical mechanism must be balanced with the computational cost, and the scientific interests of the atmospheric chemist must be tempered by the chemical needs of other components of the climate model (e.g, greenhouse gas concentrations for radiative heating, and deposition rates for biosphere interactions). We have implemented two chemical mechanisms for use in long climate simulations. One uses 28 species to calculate ozone, OH, methane, N2O, and sulfate throughout troposphere and stratosphere. The other uses just 15 species to calculate ozone, OH, and sulfate, with the OH providing the means to back-out the lifetime of methane and other species of interest. We have compared the sensitivity of both mechanisms to emission perturbations against the response of a state-of-the-art full chemistry mechanism that uses 90 species. Both fast mechanisms compare well. Prepared by LLNL under Contract DE-AC52-07NA27344.

  5. Radiation chemistry in solvent etxraction: FY2011 research

    SciTech Connect

    Bruce J. Mincher; Stephen P. Mezyk; Leigh R. Martin

    2011-09-01

    This report summarizes work accomplished under the Fuel Cycle Research and Development (FCR&D) program in the area of radiation chemistry during FY 2011. The tasks assigned during FY 2011 included: (1) Continue measurements free radical reaction kinetics in the organic phase; (2) Continue development of an alpha-radiolysis program and compare alpha and gamma radiolysis for CMPO; (3) Initiate an effort to understand dose rate effects in radiation chemistry; and (4) Continued work to characterize TALSPEAK radiation chemistry, including the examination of metal complexed ligand kinetics. Progress made on each of these tasks is reported here. Briefly, the method developed to measure the kinetics of the reactions of the NO3 radical with solvent extraction ligands in organic solution during FY10 was extended here to a number of compounds to better understand the differences between radical reactions in the organic versus aqueous phases. The alpha-radiolysis program in FY11 included irradiations of CMPO solutions with 244Cm, 211At and the He ion beam, for comparison to gamma irradiations, and a comparison of the gamma irradiation results for CMPO at three different gamma dose rates. Finally, recent results for TALSPEAK radiolysis are reported, summarizing the latest in an effort to understand how metal complexation to ligands affects their reaction kinetics with free radicals.

  6. Radiation chemistry in solvent extraction: FY2010 Research

    SciTech Connect

    Bruce J. Mincher; Leigh R. Martin; Stephen P. Mezyk

    2010-09-01

    This report summarizes work accomplished under the Fuel Cycle Research and Development (FCR&D) program in the area of radiation chemistry during FY 2010. The tasks assigned during FY 2010 included: • Development of techniques to measure free radical reaction kinetics in the organic phase. • Initiation of an alpha-radiolysis program • Initiation of an effort to understand dose rate effects in radiation chemistry • Continued work to characterize TALSPEAK radiation chemistry Progress made on each of these tasks is reported here. Briefly, a method was developed and used to measure the kinetics of the reactions of the •NO3 radical with solvent extraction ligands in organic solution, and the method to measure •OH radical reactions under the same conditions has been designed. Rate constants for the CMPO and DMDOHEMA reaction with •NO3 radical in organic solution are reported. Alpha-radiolysis was initiated on samples of DMDOHEMA in alkane solution using He ion beam irradiation and 211At isotope irradiation. The samples are currently being analyzed for comparison to DMDOHEMA ?-irradiations using a custom-developed mass spectrometric method. Results are also reported for the radiolytic generation of nitrous acid, in ?-irradiated nitric acid. It is shown that the yield of nitrous acid is unaffected by an order-of-magnitude change in dose rate. Finally, recent results for TALSPEAK radiolysis are reported, summarizing the effects on solvent extraction efficiency due to HDEHP irradiation, and the stable products of lactic acid and DTPA irradiation. In addition, results representing increased scope are presented for the radiation chemistry program. These include an investigation of the effect of metal complexation on radical reaction kinetics using DTPA as an example, and the production of a manuscript reporting the mechanism of Cs-7SB radiolysis. The Cs-7SB work takes advantage of recent results from a current LDRD program to understand the fundamental chemistry

  7. Chemical applications of synchrotron radiation: Workshop report

    SciTech Connect

    Not Available

    1989-04-01

    The most recent in a series of topical meetings for Advanced Photon Source user subgroups, the Workshop on Chemical Applications of Synchrotron Radiation (held at Argonne National Laboratory, October 3-4, 1988) dealt with surfaces and kinetics, spectroscopy, small-angle scattering, diffraction, and topography and imaging. The primary objectives were to provide an educational resource for the chemistry community on the scientific research being conducted at existing synchrotron sources and to indicate some of the unique opportunities that will be made available with the Advanced Photon Source. The workshop organizers were also interested in gauging the interest of chemists in the field of synchrotron radiation. Interest expressed at the meeting has led to initial steps toward formation of a Chemistry Users Group at the APS. Individual projects are processed separately for the data bases.

  8. Chemistry for Student Nurses: Applications-Based Learning

    ERIC Educational Resources Information Center

    El-Farargy, Nancy

    2009-01-01

    New chemistry materials were devised for pre university National Certificate (NC) nursing students studying chemistry at a further education college. Previously, preliminary work showed that students felt that the chemistry taught to them was irrelevant, boring and difficult. It was hoped that through an applications-led style curriculum…

  9. Global simulation of chemistry and radiative forcing of mineral aerosols

    SciTech Connect

    Zhang, Yang; Easter, R.C.; Ghan, S.J.; Leung, L.R.

    1996-12-31

    Mineral aerosols are increasingly gaining attention because of their roles in atmospheric chemistry and climate system. A global three-dimensional aerosol/chemistry model (GChM) coupled with a general circulation model (GCM) is used to simulate the sources/sinks, chemistry and radiative forcing of mineral aerosols. Regional and seasonal variations in distribution of mineral aerosols are predicted based on vegetation types, threshold wind velocities and soil moisture data. The role of mineral aerosols as a reactive surface available for heterogeneous uptake of gas-phase species in the global atmosphere is investigated along with their impact on the tropospheric sulfur cycle and the photochemical oxidant cycle. In particular, the heterogeneous surface reactions of SO{sub 2}, H{sub 2}SO{sub 4}, NO{sub 3}, N{sub 2}O{sub 5}, HNO{sub 3}, O{sub 3}, OH, HO{sub 2}, H{sub 2}O{sub 2} and CH{sub 3}O{sub 2} on mineral aerosols are simulated. The direct radiative forcing by mineral aerosols and the indirect forcing through influencing droplet number concentration are further estimated. The model simulation results are analyzed and compared against the available observational data.

  10. US Reanalysis for Climate and Chemistry Applications

    NASA Technical Reports Server (NTRS)

    Rood, Richard B.; Atlas, Robert M. (Technical Monitor)

    2001-01-01

    The Data Assimilation Office will perform a short reanalysis with its next-generation data assimilation system. This reanalysis will start a few months prior to the eruption of El Chichon and continue to real time. It will cover the entire time span of the Upper Atmospheric Research Satellite mission, and it is expected to be used in chemistry and climate applications. The sorts of improvements that are expected with this system and the status will be presented. In addition there has been a call in the United States for a National Reanalysis Project. This is envisioned as a sustained multi-agency activity coordinated (staggered) with the ECMWF reanalysis. The plans for the National Reanalysis Project will be discussed.

  11. Nonequilibrium radiation and chemistry models for aerocapture vehicle flowfields

    NASA Technical Reports Server (NTRS)

    Carlson, Leland A.

    1990-01-01

    The primary tasks during January 1990 to June 1990 have been the development and evaluation of various electron and electron-electronic energy equation models, the continued development of improved nonequilibrium radiation models for molecules and atoms, and the continued development and investigation of precursor models and their effects. In addition, work was initiated to develop a vibrational model for the viscous shock layer (VSL) nonequilibrium chemistry blunt body engineering code. Also, an effort was started associated with the effects of including carbon species, say from an ablator, in the flowfield.

  12. Chemistry Teachers' Perceptions on Laboratory Applications: Izmir Sample

    ERIC Educational Resources Information Center

    Feyzioglu, Burak; Demirdag, Baris; Ates, Alev; Cobanoglu, Ilker; Altun, Eralp

    2011-01-01

    This study aims to reveal to what extent Turkish chemistry teachers use laboratories effectively and their perceptions on laboratory applications and the factors related to laboratory applications. In this cross-sectional survey, 408 chemistry teachers from the secondary schools in Izmir were given "Teacher Demographic form", "The Scale of…

  13. Strontium: Part II. Chemistry, Biological Aspects and Applications.

    ERIC Educational Resources Information Center

    Britton, G. C.; Johnson, C. H.

    1987-01-01

    Reviews basic information on the Chemistry of strontium and its compounds. Explains biological aspects of strontium and its pharmaceutical applications. Highlights industrial application of strontium and its components. (ML)

  14. Bibliographies on radiation chemistry: II. Studies of the chemistry of semiquinones

    NASA Astrophysics Data System (ADS)

    Swallow, A. John; Ross, Alberta B.; Helman, W. Phillip

    It has been known for half a century that the interconversion between quinones and hydroquinones is capable of proceeding through the formation of highly resonance-stabilized free radical intermediates called semiquinones. These semiquinones play a vital role in many processes including the biologically important processes of photosynthesis and mitochondrial electron transport. By the 1950s and 1960s, radiation chemistry and photochemistry had developed sufficiently for techniques such as pulse radiolysis and flash photolysis to be used to obtain reliable quantitative information about the chemistry of organic free radicals, and semiquinones were among the first to be studied. This bibliography (1) lists about 280 papers dealing with the formation, properties and reactions of free radicals containing the 1 ,2- or 1 ,4-benzosemiquinone moiety. Related species such as those prepared from camphorquinone, quinone methides and aromatic compounds like flavins and certain dyestuffs are excluded. The bibliography is almost completely confined to studies of semiquinones produced in irradiated systems. Chemical, biological and electrochemical generation of the intermediates are not covered. Papers on reduction of quinones or oxidation of hydroquinones containing no quantitative information on the semiquinone intermediates are likewise not included. The bibliography was prepared by a search of the Radiation Chemistry Data Center bibliographic data base using the keywords semiquinones, quinones, hydroquinones, pulse radiolysis and flash photolysis. The keywords gamma rays (radiolysis), photolysis and quinones also yielded some pertinent references, and inspection of several reviews and the cited references in a few papers revealed additional references. While earlier references known to the authors have been included, the bibliography mainly contains references since 1970 and coverage extends through August, 1980. The references are listed in approximately chronological order

  15. Radiation chemistry of salicylic and methyl substituted salicylic acids: Models for the radiation chemistry of pharmaceutical compounds

    NASA Astrophysics Data System (ADS)

    Ayatollahi, Shakiba; Kalnina, Daina; Song, Weihua; Turks, Maris; Cooper, William J.

    2013-11-01

    Salicylic acid and its derivatives are components of many medications and moieties found in numerous pharmaceutical compounds. They have been used as models for various pharmaceutical compounds in pharmacological studies, for the treatment of pharmaceuticals and personal care products (PPCPs), and, reactions with natural organic matter (NOM). In this study, the radiation chemistry of benzoic acid, salicylic acid and four methyl substituted salicylic acids (MSA) is reported. The absolute bimolecular reaction rate constants for hydroxyl radical reaction with benzoic and salicylic acids as well as 3-methyl-, 4-methyl-, 5-methyl-, and 6-methyl-salicylic acid were determined (5.86±0.54)×109, (1.07±0.07)×1010, (7.48±0.17)×109, (7.31±0.29)×109, (5.47±0.25)×109, (6.94±0.10)×109 (M-1 s-1), respectively. The hydrated electron reaction rate constants were measured (3.02±0.10)×109, (8.98±0.27)×109, (5.39±0.21)×109, (4.33±0.17)×109, (4.72±0.15)×109, (1.42±0.02)×109 (M-1 s-1), respectively. The transient absorption spectra for the six model compounds were examined and their role as model compounds for the radiation chemistry of pharmaceuticals investigated.

  16. Environmental Green Chemistry Applications of Nanoporous Carbons

    SciTech Connect

    Matos, J.; Garcia, A; Poon, P

    2010-01-01

    Influence of surface properties of nanoporous carbons on activity and selectivity during the photooxidation of 4-chlorophenol on UV-irradiated TiO{sub 2} was performed. Characterization by infrared spectroscopy, X-ray photoelectronic spectroscopy and X-ray absorption near edge structure spectroscopy confirm the presence of a contact interface between both solids and suggest the coordination of some functional organic groups of the carbon surface, mainly ethers and carboxylic acids, to metallic centre Ti{sup +4} in TiO{sub 2}. Changes in surface pH of carbons from basic to neutral or acid remarkably increase the production of 4-chlorocathecol by a factor of 22 on TiO{sub 2}-Carbon in comparison of TiO{sub 2} alone. A scheme of interaction between TiO{sub 2} and carbon is proposed to the increased photoactivity of TiO{sub 2} and a reaction mechanism for the different intermediate products detected is also proposed. Results showed that TiO{sub 2}-Carbon can be used as an alternative photocatalyst for environmental green chemistry and selective organic synthesis applications.

  17. Density Functionals with Broad Applicability in Chemistry

    SciTech Connect

    Zhao, Yan; Truhlar, Donald G.

    2008-02-01

    The research described in this product was performed in part in the Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory. Although density functional theory is widely used in the computational chemistry community, the most popular density functional, B3LYP, has some serious shortcomings: (i) it is better for main-group chemistry than for transition metals; (ii) it systematically underestimates reaction barrier heights; (iii) it is inaccurate for interactions dominated by mediumrange correlation energy, such as van der Waals attraction, aromatic-aromatic stacking, and alkane isomerization energies. We have developed a variety of databases for testing and designing new density functionals. We used these data to design new density functionals, called M06-class (and, earlier, M05-class) functionals, for which we enforced some fundamental exact constraints such as the uniform-electron-gas limit and the absence of self-correlation energy. Our M06-class functionals depend on spin-up and spin-down electron densities (i.e., spin densities), spin density gradients, spin kinetic energy densities, and, for nonlocal (also called hybrid) functionals, Hartree-Fock exchange. We have developed four new functionals that overcome the above-mentioned difficulties: (a) M06, a hybrid meta functional, is a functional with good accuracy “across-theboard” for transition metals, main group thermochemistry, medium-range correlation energy, and barrier heights; (b) M06- 2X, another hybrid meta functional, is not good for transition metals but has excellent performance for main group chemistry, predicts accurate valence and Rydberg electronic excitation energies, and is an excellent functional for aromatic-aromatic stacking interactions; (c) M06-L is not as accurate as M06 for barrier heights but is the most accurate

  18. Fluorine Compounds and Dental Health: Applications of General Chemistry Topics

    ERIC Educational Resources Information Center

    Pinto, Gabriel

    2009-01-01

    An example about the use of everyday phenomena in teaching general chemistry is given. Students have a greater appreciation of the principles of chemistry if they can see the relevance to their lives. Fluorine compounds in dental applications (as topical or as systemic use) provide an excellent context in which to review core content of general…

  19. Active Learning Applications in the History of Chemistry: Pre-Service Chemistry Teachers' Level of Knowledge and Views

    ERIC Educational Resources Information Center

    Sendur, Gülten; Polat, Merve; Toku, Abdullah; Kazanci, Coskun

    2014-01-01

    This study aims to investigate the effects of a History and Philosophy of Chemistry-I course based on active learning applications on the level of knowledge of pre-service chemistry teachers about the history of chemistry. The views of pre-service chemistry teachers about these activities were also investigated. The study was carried out with 38…

  20. Medical applications of synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Thomlinson, W.

    1992-08-01

    Ever since the first diagnostic X-ray was done in the United States on February 3, 1896, the application of ionizing radiation to the field of medicine has become increasingly important. Both in clinical medicine and basic research the use of X-rays for diagnostic imaging and radiotheraphy is now widespread. Radiography, angiography, CAT and PETT scanning, mammography, and nuclear medicine are all examples of technologies developed to image the human anatomy. In therapeutic applications, both external and internal sources of radiation are applied to the battle against cancer. The development of dedicated synchrotron radiation sources has allowed exciting advances to take place in many of these applications. The new sources provide tunable, high-intensity monochromatic beams over a wide range of energies which can be tailored to specific programmatc needs. This paper surveys those areas of medical research in which synchrotron radiation facilities are actively involved.

  1. Medical Applications of Synchrotron Radiation

    DOE R&D Accomplishments Database

    Thomlinson, W.

    1991-10-01

    Ever since the first diagnostic x-ray was done in the United States on February 3, 1896, the application of ionizing radiation to the field of medicine has become increasingly important. Both in clinical medicine and basic research the use of x-rays for diagnostic imaging and radiotherapy is now widespread. Radiography, angiography, CAT and PETT scanning, mammography, and nuclear medicine are all examples of technologies developed to image the human anatomy. In therapeutic applications, both external and internal sources of radiation are applied to the battle against cancer. The development of dedicated synchrotron radiation sources has allowed exciting advances to take place in many of these applications. The new sources provide tunable, high-intensity monochromatic beams over a wide range of energies which can be tailored to specific programmatic needs. This paper surveys those areas of medical research in which synchrotron radiation facilities are actively involved.

  2. Medical applications of synchrotron radiation

    SciTech Connect

    Thomlinson, W.

    1991-10-01

    Ever since the first diagnostic x-ray was done in the United States on February 3, 1896, the application of ionizing radiation to the field of medicine has become increasingly important. Both in clinical medicine and basic research the use of x-rays for diagnostic imaging and radiotherapy is now widespread. Radiography, angiography, CAT and PETT scanning, mammography, and nuclear medicine are all examples of technologies developed to image the human anatomy. In therapeutic applications, both external and internal sources of radiation are applied to the battle against cancer. The development of dedicated synchrotron radiation sources has allowed exciting advances to take place in many of these applications. The new sources provide tunable, high-intensity monochromatic beams over a wide range of energies which can be tailored to specific programmatic needs. This paper surveys those areas of medical research in which synchrotron radiation facilities are actively involved.

  3. Decoration of silk fibroin by click chemistry for biomedical application.

    PubMed

    Zhao, Hongshi; Heusler, Eva; Jones, Gabriel; Li, Linhao; Werner, Vera; Germershaus, Oliver; Ritzer, Jennifer; Luehmann, Tessa; Meinel, Lorenz

    2014-06-01

    Silkfibroin (SF) has an excellent biocompatibility and its remarkable structure translates into exciting mechanical properties rendering this biomaterial particularly fascinating for biomedical application. To further boost the material's biological/preclinical impact, SF is decorated with biologics, typically by carbodiimide/N-hydroxysuccinimide coupling (EDC/NHS). For biomedical application, this chemistry challenges the product risk profile due to the formation of covalent aggregates, particularly when decoration is with biologics occurring naturally in humans as these aggregates may prime for autoimmunity. Cu(I)-catalyzed azide-alkyne cycloaddition (CuAAC; click chemistry) provides the necessary specificity to avoid such intermolecular, covalent aggregates. We present a blueprint outlining the necessary chemistry rendering SF compatible with CuAAC and with a particular focus on structural consequences. For that, the number of SF carboxyl groups (carboxyl-SF; required for EDC/NHS chemistry) or azido groups (azido-SF; required for click chemistry) was tailored by means of diazonium coupling of the SF tyrosine residues. Structural impact on SF and decorated SF was characterized by Fourier transform infrared spectroscopy (FTIR). The click chemistry yielded a better controlled product as compared to the EDC/NHS chemistry with no formation of inter- and intramolecular crosslinks as demonstrated for SF decorated with fluorescent model compounds or a biologic, fibroblast growth factor 2 (FGF2), respectively. In conclusion, SF can readily be translated into a scaffold compatible with click chemistry yielding decorated products with a better risk profile for biomedical application. PMID:24576682

  4. The Application of Physical Organic Chemistry to Biochemical Problems.

    ERIC Educational Resources Information Center

    Westheimer, Frank

    1986-01-01

    Presents the synthesis of the science of enzymology from application of the concepts of physical organic chemistry from a historical perspective. Summarizes enzyme and coenzyme mechanisms elucidated prior to 1963. (JM)

  5. Radiation biodosimetry: Applications for spaceflight

    NASA Astrophysics Data System (ADS)

    Blakely, W. F.; Miller, A. C.; Grace, M. B.; McLeland, C. B.; Luo, L.; Muderhwa, J. M.; Miner, V. L.; Prasanna, P. G. S.

    The multiparametric dosimetry system that we are developing for medical radiological defense applications could be adapted for spaceflight environments. The system complements the internationally accepted personnel dosimeters and cytogenetic analysis of chromosome aberrations, considered the best means of documenting radiation doses for health records. Our system consists of a portable hematology analyzer, molecular biodosimetry using nucleic acid and antigen-based diagnostic equipment, and a dose assessment management software application. A dry-capillary tube reagent-based centrifuge blood cell counter (QBC Autoread Plus, Beckon Dickinson Bioscience) measures peripheral blood lymphocytes and monocytes, which could determine radiation dose based on the kinetics of blood cell depletion. Molecular biomarkers for ionizing radiation exposure (gene expression changes, blood proteins) can be measured in real time using such diagnostic detection technologies as miniaturized nucleic acid sequences and antigen-based biosensors, but they require validation of dose-dependent targets and development of optimized protocols and analysis systems. The Biodosimetry Assessment Tool, a software application, calculates radiation dose based on a patient's physical signs and symptoms and blood cell count analysis. It also annotates location of personnel dosimeters, displays a summary of a patient's dosimetric information to healthcare professionals, and archives the data for further use. These radiation assessment diagnostic technologies can have dual-use applications supporting general medical-related care.

  6. Radiation biodosimetry: applications for spaceflight

    NASA Astrophysics Data System (ADS)

    Blakely, W.; Miller, A.; Grace, M.; Prasanna, P.; Muderhwa, J.

    The multiparametric dosimetry system that we are developing for medical radiological defense applications could be adapted for spaceflight environments. The system complements the internationally accepted cytogenetic analysis of chromosome aberrations, considered the best means of documenting radiation doses for health records. Our system consists of a dose assessment software application, a portable blood cell counter, and molecular biodosimetry using miniaturized equipment. The Biodosimetry Assessment Tool (BAT) software application calculates radiation dose based on a patient's physical signs and symptoms and blood analysis, annotates location of personnel dosimeters, displays a summary of a patient's dosimetric information to healthcare professionals, and archives the data for further use. The dry reagent centrifuge-based blood cell counter (QBC Autoread Plus, Beckon Dickinson Bioscience) measures peripheral blood lymphocytes and monocytes, which could determine radiation dose based on the kinetics of blood cell depletion. Molecular biomarkers for ionizing radiation exposure (gene expression changes, blood proteins), once dose-dependent targets are identified, optimized, and validated, will make use of miniaturized diagnostic equipment for nucleic acid sequence and antigen-based biosensor detection technologies. These radiation assessment diagnostic technologies can have dual use for other medical related applications. [The Armed Forces Radiobiology Research Institute, under work unit AFRRI-01-3, and the Defense Threat Reduction Agency, under contract GG4661, supported this research.

  7. Radiation chemistry of a multicomponent aqueous system relevant to chemistry of cometary nuclei.

    PubMed

    Draganić, Z D; Vujosević, S I; Negrón-Mendoza, A; Azamar, J A; Draganić, I G

    1985-01-01

    We have examined a water-dominated multicomponent system after irradiation in the multimegarad dose range with gamma rays from a 60Co source at both 77 and 310 K. The constituents were simple organic compounds in the proportions in which they appear in a dense interstellar cloud: HCN/CH3OH/CH3CN/C2H5CN/HCOOH = 1:0.6:0.2:0.1:0.05. The total amounts were adjusted to correspond to a carbon to nitrogen ratio of 1.8 and a water content of about 50% in a cometary nucleus where the dust to volatiles ratio is 1; the total amount of CN-bearing compounds was taken to correspond to 0.4% of the cometary mass. In experiments at 310 K about 40 radiolytic products are identified, among them aldehydes and amino and carboxylic acids. Abundant polymeric material (Mw up to 80,000 daltons) is formed. The basic aspects of radiolysis of the liquid system are present also at 77 K, although at radiation-chemical yields that are lower by one to two orders of magnitude. We have considered the relevance of the present findings to the chemistry of a liquid-water core and the icy layers of a cometary nucleus. PMID:3934396

  8. Phase effects in the radiation chemistry of dl-camphor. [Gamma radiation

    SciTech Connect

    Klingen, T.J.; Sherman, L.R.; McCormick, D.G.

    1980-12-11

    The effect of mesomorphism on the radiation chemistry of the solid state is examined for the system dl-camphor, which has only a small entropy difference between the ..cap alpha.. and ..beta.. mesophases. The results of the radiolysis of these phases gave rise to the same products in both mesophases but with differences in the product G values in the two mesophases. These results are discussed in terms of the effect of phase on the overall mechanism for the formation of the observed products, which can be attributed to efficient abstraction reactions operative in the ..beta.. phase but not the ..cap alpha.. phase.

  9. Chemistry Teachers' Knowledge and Application of Models

    ERIC Educational Resources Information Center

    Wang, Zuhao; Chi, Shaohui; Hu, Kaiyan; Chen, Wenting

    2014-01-01

    Teachers' knowledge and application of model play an important role in students' development of modeling ability and scientific literacy. In this study, we investigated Chinese chemistry teachers' knowledge and application of models. Data were collected through test questionnaire and analyzed quantitatively and qualitatively. The…

  10. Modeling Interactions Among Turbulence, Gas-Phase Chemistry, Soot and Radiation Using Transported PDF Methods

    NASA Astrophysics Data System (ADS)

    Haworth, Daniel

    2013-11-01

    The importance of explicitly accounting for the effects of unresolved turbulent fluctuations in Reynolds-averaged and large-eddy simulations of chemically reacting turbulent flows is increasingly recognized. Transported probability density function (PDF) methods have emerged as one of the most promising modeling approaches for this purpose. In particular, PDF methods provide an elegant and effective resolution to the closure problems that arise from averaging or filtering terms that correspond to nonlinear point processes, including chemical reaction source terms and radiative emission. PDF methods traditionally have been associated with studies of turbulence-chemistry interactions in laboratory-scale, atmospheric-pressure, nonluminous, statistically stationary nonpremixed turbulent flames; and Lagrangian particle-based Monte Carlo numerical algorithms have been the predominant method for solving modeled PDF transport equations. Recent advances and trends in PDF methods are reviewed and discussed. These include advances in particle-based algorithms, alternatives to particle-based algorithms (e.g., Eulerian field methods), treatment of combustion regimes beyond low-to-moderate-Damköhler-number nonpremixed systems (e.g., premixed flamelets), extensions to include radiation heat transfer and multiphase systems (e.g., soot and fuel sprays), and the use of PDF methods as the basis for subfilter-scale modeling in large-eddy simulation. Examples are provided that illustrate the utility and effectiveness of PDF methods for physics discovery and for applications to practical combustion systems. These include comparisons of results obtained using the PDF method with those from models that neglect unresolved turbulent fluctuations in composition and temperature in the averaged or filtered chemical source terms and/or the radiation heat transfer source terms. In this way, the effects of turbulence-chemistry-radiation interactions can be isolated and quantified.

  11. The G value in plasma and radiation chemistry

    NASA Technical Reports Server (NTRS)

    Baird, James K.; Miller, George P.; Li, Ning

    1990-01-01

    The application of the G-value concept to plasma chemistry is considered. A general formula which expresses the G value for a general reaction in terms of experimentally controllable parameters is derived by applying simple gas-dynamic theory to a plasma reactor with straight walls. The formula expresses the G value as a function of the electrical power absorbed, the fraction of molecules transformed, and the flow rate of the gas entering the reactor. The formula was applied to the ammonia plasma radio-frequency discharge data of d'Agostino et al. (1981); the results showed that the G(-NH3) value lies in the range of 6.0-20 molecules/100 eV, depending on the conditions. This similarity of the G(-NH3) value with Peterson's (1974) range 2.7-10 found for the gas-phase radiolysis of ammonia, suggests that there might be a common reaction mechanism initiated by inelastic electron-molecule collisions.

  12. Nonequilibrium radiation and chemistry models for aerocapture vehicle flowfields

    NASA Technical Reports Server (NTRS)

    Carlson, Leland A.

    1994-01-01

    wave precursor ahead of vehicles entering the Earth's atmosphere. (8) Since considerable data exists for radiating nonequilibrium flow behind normal shock waves, a normal shock wave version of the blunt body code was developed. (9) By comparing predictions from the models and codes with available normal shock data and the flight data of Fire II, it is believed that the developed flowfield and nonequilibrium radiation models have been essentially validated for engineering applications.

  13. Step-by-Step Simulation of Radiation of Radiation Chemistry Using Green Functions for Diffusion-Influenced Reactions

    NASA Technical Reports Server (NTRS)

    Plante, Ianik; Cucinotta, Francis A.

    2011-01-01

    The irradiation of biological systems leads to the formation of radiolytic species such as H(raised dot), (raised dot)OH, H2, H2O2, e(sup -)(sub aq), etc.[1]. These species react with neighboring molecules, which result in damage in biological molecules such as DNA. Radiation chemistry is there for every important to understand the radiobiological consequences of radiation[2]. In this work, we discuss an approach based on the exact Green Functions for diffusion-influenced reactions which may be used to simulate radiation chemistry and eventually extended to study more complex systems, including DNA.

  14. Scalable Computational Chemistry: New Developments and Applications

    SciTech Connect

    Yuri Alexeev

    2002-12-31

    The computational part of the thesis is the investigation of titanium chloride (II) as a potential catalyst for the bis-silylation reaction of ethylene with hexaclorodisilane at different levels of theory. Bis-silylation is an important reaction for producing bis(silyl) compounds and new C-Si bonds, which can serve as monomers for silicon containing polymers and silicon carbides. Ab initio calculations on the steps involved in a proposed mechanism are presented. This choice of reactants allows them to study this reaction at reliable levels of theory without compromising accuracy. The calculations indicate that this is a highly exothermic barrierless reaction. The TiCl{sub 2} catalyst removes a 50 kcal/mol activation energy barrier required for the reaction without the catalyst. The first step is interaction of TiCl{sub 2} with ethylene to form an intermediate that is 60 kcal/mol below the energy of the reactants. This is the driving force for the entire reaction. Dynamic correlation plays a significant role because RHF calculations indicate that the net barrier for the catalyzed reaction is 50 kcal/mol. They conclude that divalent Ti has the potential to become an important industrial catalyst for silylation reactions. In the programming part of the thesis, parallelization of different quantum chemistry methods is presented. The parallelization of code is becoming important aspects of quantum chemistry code development. Two trends contribute to it: the overall desire to study large chemical systems and the desire to employ highly correlated methods which are usually computationally and memory expensive. In the presented distributed data algorithms computation is parallelized and the largest arrays are evenly distributed among CPUs. First, the parallelization of the Hartree-Fock self-consistent field (SCF) method is considered. SCF method is the most common starting point for more accurate calculations. The Fock build (sub step of SCF) from AO integrals is also

  15. Development and application of bond cleavage reactions in bioorthogonal chemistry.

    PubMed

    Li, Jie; Chen, Peng R

    2016-03-01

    Bioorthogonal chemical reactions are a thriving area of chemical research in recent years as an unprecedented technique to dissect native biological processes through chemistry-enabled strategies. However, current concepts of bioorthogonal chemistry have largely centered on 'bond formation' reactions between two mutually reactive bioorthogonal handles. Recently, in a reverse strategy, a collection of 'bond cleavage' reactions has emerged with excellent biocompatibility. These reactions have expanded our bioorthogonal chemistry repertoire, enabling an array of exciting new biological applications that range from the chemically controlled spatial and temporal activation of intracellular proteins and small-molecule drugs to the direct manipulation of intact cells under physiological conditions. Here we highlight the development and applications of these bioorthogonal cleavage reactions. Furthermore, we lay out challenges and propose future directions along this appealing avenue of research. PMID:26881764

  16. Applications of Fluorine in Medicinal Chemistry.

    PubMed

    Gillis, Eric P; Eastman, Kyle J; Hill, Matthew D; Donnelly, David J; Meanwell, Nicholas A

    2015-11-12

    The role of fluorine in drug design and development is expanding rapidly as we learn more about the unique properties associated with this unusual element and how to deploy it with greater sophistication. The judicious introduction of fluorine into a molecule can productively influence conformation, pKa, intrinsic potency, membrane permeability, metabolic pathways, and pharmacokinetic properties. In addition, (18)F has been established as a useful positron emitting isotope for use with in vivo imaging technology that potentially has extensive application in drug discovery and development, often limited only by convenient synthetic accessibility to labeled compounds. The wide ranging applications of fluorine in drug design are providing a strong stimulus for the development of new synthetic methodologies that allow more facile access to a wide range of fluorinated compounds. In this review, we provide an update on the effects of the strategic incorporation of fluorine in drug molecules and applications in positron emission tomography. PMID:26200936

  17. Applications of Computers and Computer Software in Teaching Analytical Chemistry.

    ERIC Educational Resources Information Center

    O'Haver, T. C.

    1991-01-01

    Some commercially available software tools that have potential applications in the analytical chemistry curriculum are surveyed and evaluated. Tools for instruction, analysis and research, and courseware development are described. A list of the software packages, the compatible hardware, and the vendor's address is included. (KR)

  18. Ab initio quantum chemistry: Methodology and applications

    PubMed Central

    Friesner, Richard A.

    2005-01-01

    This Perspective provides an overview of state-of-the-art ab initio quantum chemical methodology and applications. The methods that are discussed include coupled cluster theory, localized second-order Moller–Plesset perturbation theory, multireference perturbation approaches, and density functional theory. The accuracy of each approach for key chemical properties is summarized, and the computational performance is analyzed, emphasizing significant advances in algorithms and implementation over the past decade. Incorporation of a condensed-phase environment by means of mixed quantum mechanical/molecular mechanics or self-consistent reaction field techniques, is presented. A wide range of illustrative applications, focusing on materials science and biology, are discussed briefly. PMID:15870212

  19. Fire risk, atmospheric chemistry and radiative forcing assessment of wildfires in eastern Mediterranean

    NASA Astrophysics Data System (ADS)

    Athanasopoulou, E.; Rieger, D.; Walter, C.; Vogel, H.; Karali, A.; Hatzaki, M.; Gerasopoulos, E.; Vogel, B.; Giannakopoulos, C.; Gratsea, M.; Roussos, A.

    2014-10-01

    The current research study aims at investigating the atmospheric implications of a major fire event in the Mediterranean area. For this purpose, a regional aerosol model coupled online with meteorology (COSMO-ART) is applied over Greece during late summer 2007. Fire risk model results proved to be adequate in reproducing the highly destructive event, which supports further applications for national meteorological forecasts and early warning systems for fire prevention. Columnar aerosol loading field predictions are consistent with satellite maps, which further allows for the correlation of this wildfire event to the atmospheric chemistry and the radiative forcing. Gaseous chemistry resembles that in urban environments and led to nitrogen dioxide and ozone exceedances in several cities in proximity to and downwind the fire spots, respectively. Influence in Athens is found significant from the Euboean plume (45% of total surface PM10) and small (5%) from the fires in Peloponnese. Fire events are indicated by sharp increases in organic to elemental carbon (6), together with sharp decreases in secondary to total organic components (0.1), in comparison to their values during the pre- and post-fire period over Athens (1 and 0.6, respectively). The change in the radiative budget induced by the fire plume is found negative (3-day-average value up to -10 W m-2). Direct heat input is found negligible, thus the net temperature effect is also negative over land (-0.5 K). Nevertheless, positive temperature changes are found overseas (hourly value up to +2 K), due to the amplified radiation absorption by aged soot, coupled to the intense stabilization of the atmosphere above the sea surface.

  20. The vertical distribution of ozone instantaneous radiative forcing from satellite and chemistry climate models

    NASA Astrophysics Data System (ADS)

    Aghedo, A. M.; Bowman, K. W.; Worden, H. M.; Kulawik, S. S.; Shindell, D. T.; Lamarque, J. F.; Faluvegi, G.; Parrington, M.; Jones, D. B. A.; Rast, S.

    2011-01-01

    We evaluate the instantaneous radiative forcing (IRF) of tropospheric ozone predicted by four state-of-the-art global chemistry climate models (AM2-Chem, CAM-Chem, ECHAM5-MOZ, and GISS-PUCCINI) against ozone distribution observed from the NASA Tropospheric Emission Spectrometer (TES) during August 2006. The IRF is computed through the application of an observationally constrained instantaneous radiative forcing kernels (IRFK) to the difference between TES and model-predicted ozone. The IRFK represent the sensitivity of outgoing longwave radiation to the vertical and spatial distribution of ozone under all-sky condition. Through this technique, we find total tropospheric IRF biases from -0.4 to + 0.7 W/m2 over large regions within the tropics and midlatitudes, due to ozone differences over the region in the lower and middle troposphere, enhanced by persistent bias in the upper troposphere-lower stratospheric region. The zonal mean biases also range from -30 to +50 mW/m2 for the models. However, the ensemble mean total tropospheric IRF bias is less than 0.2 W/m2 within the entire troposphere.

  1. Cephalopod Ink: Production, Chemistry, Functions and Applications

    PubMed Central

    Derby, Charles D.

    2014-01-01

    One of the most distinctive and defining features of coleoid cephalopods—squid, cuttlefish and octopus—is their inking behavior. Their ink, which is blackened by melanin, but also contains other constituents, has been used by humans in various ways for millennia. This review summarizes our current knowledge of cephalopod ink. Topics include: (1) the production of ink, including the functional organization of the ink sac and funnel organ that produce it; (2) the chemical components of ink, with a focus on the best known of these—melanin and the biochemical pathways involved in its production; (3) the neuroecology of the use of ink in predator-prey interactions by cephalopods in their natural environment; and (4) the use of cephalopod ink by humans, including in the development of drugs for biomedical applications and other chemicals for industrial and other commercial applications. As is hopefully evident from this review, much is known about cephalopod ink and inking, yet more striking is how little we know. Towards closing that gap, future directions in research on cephalopod inking are suggested. PMID:24824020

  2. Calibration services for medical applications of radiation

    SciTech Connect

    DeWerd, L.A.

    1993-12-31

    Calibration services for the medical community applications of radiation involve measuring radiation precisely and having traceability to the National Institute of Standards and Technology (NIST). Radiation therapy applications involve the use of ionization chambers and electrometers for external beams and well-type ionization chamber systems as well as radioactive sources for brachytherapy. Diagnostic x-ray applications involve ionization chamber systems and devices to measure other parameters of the x-ray machine, such as non-invasive kVp meters. Calibration laboratories have been established to provide radiation calibration services while maintaining traceability to NIST. New radiation applications of the medical community spur investigation to provide the future calibration needs.

  3. Miniature spectroscopic instrumentation: Applications to biology and chemistry

    NASA Astrophysics Data System (ADS)

    Bacon, Christina P.; Mattley, Yvette; DeFrece, Ronald

    2004-01-01

    Spectroscopy is a fundamental analytical tool utilized throughout all of the sciences. For chemistry and biology alone, there are thousands of applications. In the past two decades there have been monumental advances in the miniaturization of components used in spectrophotometric systems. The key components include detector arrays, laser diodes, and fiber optics. Currently, there are numerous commercially available miniature spectrometer systems as well as discrete components that are used by researchers in designing their own systems. A comprehensive summary of current instrumentation available for the design and development of miniaturized spectroscopy applications is described, including detectors, wavelength discriminating components, light sources, and sampling assemblies. Recommendations are made for designing spectrometer systems for specific applications. Current literature is reviewed for chemical and biological applications specifically using miniaturized spectrometer systems with the focus being on ultraviolet-visible-near-infrared spectrometers. The applications include laboratory applications, environmental sensing, on-site industrial analyses, botany and ecology applications, and finally clinical and biochemical studies. Additionally, microspectrometers, two-dimensional arrays, and photonics crystals are discussed in regards to their future role in chemistry and biology applications.

  4. Some applications of thermodynamics in crystal chemistry

    NASA Astrophysics Data System (ADS)

    Herbstein, Frank H.

    1996-01-01

    The integrated study of polymorphic phase changes in crystals by combining thermodynamic and crystallographic data is illustrated for four one-component systems — tin, carbon, adamantane and fullerene C 60 Ih — of increasing complexity. A brief review of the basic thermodynamics of the solid state (laws of thermodynamics, polymorphism, order of transitions) reminds the reader that enthalpy ( H) and entropy ( S) are experimental quantities derivable from the values of the heat capacity at constant pressure ( CP) measured as a function of temperature ( T). Combination of H and S through the Gibbs function gives the free energy as a function of T ( G = H - TS). For a one-component crystal with two polymorphic forms, the separate roles of the enthalpy and entropy differences between the polymorphs can be distinguished. This is illustrated in quantitative fashion for the two polymorphs of tin at atmospheric pressure, where there is a first-order phase transformation from grey (diamond) to white (metallic) at 286 K. Application of the Clausius-Clapeyron equation ( {dP }/{dT } = {ΔS}/{ΔV}) shows that metallic tin is the stable phase above ≈ 5 kbar at 0 K. This is entirely analogous to the treatment of the pressure dependence of the melting point of ice. In the next stage, pressure is added as a variable in order to treat the graphite-diamond polymorphism of carbon. Adamantane, for which calorimetric, phase-diagram and crystallographic data are available over a considerable range of temperature and pressure, is next reviewed in detail. The polymorphic change from tetragonal (stable below 208.6 K at atmospheric pressure) to cubic is almost, but not quite, first-order in character. A somewhat similar analysis is applied to available calorimetric and crystallographic data for fullerene C60 Ih, where the transition shows appreciable deviations from ideal first-order character. The next stage, not considered here, would be to proceed from the methods of

  5. The Chemistry and Applications of π-Gels

    NASA Astrophysics Data System (ADS)

    Ghosh, Samrat; Praveen, Vakayil K.; Ajayaghosh, Ayyappanpillai

    2016-07-01

    π-Gels are a promising class of functional soft materials formed out of short π-conjugated molecules. By utilizing the chemistry of noncovalent interactions, researchers have created a wide range of π-gels that are composed of supramolecular polymers. During the last two decades, supramolecular gel chemistry has been pursued with the hope of developing new materials for applications in, for example, organic electronics, energy harvesting, sensing, and imaging. The high expectations for π-gels were centered mainly around their electronic properties, such as tunable emission, energy transfer, electron transfer, charge transport, and electrical conductivity; such properties are amenable to modulation through size and shape control of molecular assemblies. Although a large number of exciting publications have appeared, a major technological breakthrough is yet to be realized. In this review, we analyze the recent advancements in the area of functional π-gels and their scope in future applications.

  6. Volumetric and selective heating in agriculture and chemistry applications

    NASA Astrophysics Data System (ADS)

    Raghavan, Vijaya G.; Dai, Jianming; Sunjka, Predrag S.

    2004-04-01

    Microwaves of 2450 MHz have been attracting attention from researchers of various fields. The most distinguished characteristics of microwave from conventional heating are volumetric and selectivity. Due to these characteristics, when combined with convective air, microwave-assisted drying can greatly reduce drying time and energy usage to achieve certain moisture content. These characteristics also make it possible to combine this highly efficient heating method with vacuum drying by passing the energy through a microwave-transparent vacuum chamber. Microwaves also have various applications in chemistry such as extraction of natural products from plant materials and microwave-assisted synthesis. In this paper, the work conducted in our lab on the applications of microwave energy in agriculture and chemistry is briefly reviewed.

  7. Rotating bubble membrane radiator for space applications

    NASA Technical Reports Server (NTRS)

    Webb, Brent J.

    1986-01-01

    An advanced radiator concept for heat rejection in space is described which uses a two-phase working fluid to radiate waste heat. The development of advanced materials and the large surface area per mass makes the Bubble Membrane Radiator an attractive alternative to both conventional heat pipes and liquid droplet radiators for mid to high temperature applications. A system description, a discussion of design requirements, and a mass comparison with heat pipes and liquid droplet radiators are provided.

  8. Application of Multidimensional Spectrum Analysis for Analytical Chemistry

    SciTech Connect

    Hatsukawa, Yuichi; Hayakawa, Takehito; Toh, Yosuke; Shinohara, Nobuo; Oshima, Masumi

    1999-12-31

    Feasibility of application of the multidimensional {gamma} ray spectroscopy for analytical chemistry was examined. Two reference igneous rock (JP-1, JB-1a) samples issued by the Geological Survey of Japan (GSJ) were irradiated at a research reactor with thermal neutrons, and {gamma} rays from the radioisotopes produced by neutron capture reactions were measured using a {gamma}-ray detector array. Simultaneously 27 elements were observed with no chemical separation.

  9. Satellite observational constraints on ozone radiative forcing in chemistry-climate models

    NASA Astrophysics Data System (ADS)

    Bowman, K. W.; Aghedo, A. M.; Worden, H. M.; Kulawik, S. S.; Shindell, D. T.; Lamarque, J.; Faluvegi, G.; Parrington, M.; Jones, D. B.; Rast, S.; Naik, V.; Horowitz, L. W.

    2010-12-01

    Tropospheric ozone radiative forcing is primarily driven by longwave absorption, and its accurate estimation is contingent on the ability of models to simulate the spatial and vertical distribution of ozone within the entire troposphere. Based on model calculations, the fourth assessment report of the Intergovernmental Panel on Climate Change (IPCC AR4) estimated tropospheric ozone radiative forcing as 0.35 Wm-2 (with a multi-model spread of 0.25 - 0.65 Wm-2), making the greenhouse effect of tropospheric ozone the third largest following carbon dioxide and methane. However since the IPCC second assessment report, the estimate has not changed substantially and the uncertainties have slightly increased. We demonstrate the application of Tropospheric Emission Spectrometer (TES) all-sky instantaneous radiative forcing (IRF) kernels as a new and unique way for an observationally constrained evaluation of ozone calculated by models. These IRF kernels are the changes in the top-of-the-atmosphere radiative flux due to vertical and spatial distribution of ozone. The discrepancies between TES and five state-of-the-art chemistry climate models, which are AM2-Chem, AM3-Chem, CAM-Chem, ECHAM5-MOZ and GISS-PUCCINI in August 2006 resulted in tropospheric IRF biases from -0.4 to +0.7 W/m2 over large regions within the tropics and mid-latitudes, due to ozone differences over the region in the lower and middle troposphere, enhanced by persistent bias in the upper- troposphere lower-stratospheric region. The zonal mean IRF biases also range from -30 to +40 milli-Watts/m2 for the models with an ensemble mean total tropospheric IRF bias of less than 0.2 W/m2 within the entire troposphere.

  10. 103Rh NMR spectroscopy and its application to rhodium chemistry.

    PubMed

    Ernsting, Jan Meine; Gaemers, Sander; Elsevier, Cornelis J

    2004-09-01

    Rhodium is used for a number of large processes that rely on homogeneous rhodium-catalyzed reactions, for instance rhodium-catalyzed hydroformylation of alkenes, carbonylation of methanol to acetic acid and hydrodesulfurization of thiophene derivatives (in crude oil). Many laboratory applications in organometallic chemistry and catalysis involve organorhodium chemistry and a wealth of rhodium coordination compounds is known. For these and other areas, 103Rh NMR spectroscopy appears to be a very useful analytical tool. In this review, most of the literature concerning 103Rh NMR spectroscopy published from 1989 up to and including 2003 has been covered. After an introduction to several experimental methods for the detection of the insensitive 103Rh nucleus, a discussion of factors affecting the transition metal chemical shift is given. Computational aspects and calculations of chemical shifts are also briefly addressed. Next, the application of 103Rh NMR in coordination and organometallic chemistry is elaborated in more detail by highlighting recent developments in measurement and interpretation of 103Rh NMR data, in relation to rhodium-assisted reactions and homogeneous catalysis. The dependence of the 103Rh chemical shift on the ligands at rhodium in the first coordination sphere, on the complex geometry, oxidation state, temperature, solvent and concentration is treated. Several classes of compounds and special cases such as chiral rhodium compounds are reviewed. Finally, a section on scalar coupling to rhodium is provided. PMID:15307053

  11. Production of metals and compounds by radiation chemistry

    NASA Technical Reports Server (NTRS)

    Marsik, S. J.; Philipp, W. H.

    1969-01-01

    Preparation of metals and compounds by radiation induced chemical reactions involves irradiation of metal salt solutions with high energy electrons. This technique offers a method for the preparation of high purity metals with minimum contamination from the container material or the cover gas.

  12. Step-by-Step Simulation of Radiation Chemistry Using Green Functions for Diffusion-Influenced Reactions

    NASA Technical Reports Server (NTRS)

    Plante, Ianik; Cucinotta, Francis A.

    2011-01-01

    Radiolytic species are formed approximately 1 ps after the passage of ionizing radiation through matter. After their formation, they diffuse and chemically react with other radiolytic species and neighboring biological molecules, leading to various oxidative damage. Therefore, the simulation of radiation chemistry is of considerable importance to understand how radiolytic species damage biological molecules [1]. The step-by-step simulation of chemical reactions is difficult, because the radiolytic species are distributed non-homogeneously in the medium. Consequently, computational approaches based on Green functions for diffusion-influenced reactions should be used [2]. Recently, Green functions for more complex type of reactions have been published [3-4]. We have developed exact random variate generators of these Green functions [5], which will allow us to use them in radiation chemistry codes. Moreover, simulating chemistry using the Green functions is which is computationally very demanding, because the probabilities of reactions between each pair of particles should be evaluated at each timestep [2]. This kind of problem is well adapted for General Purpose Graphic Processing Units (GPGPU), which can handle a large number of similar calculations simultaneously. These new developments will allow us to include more complex reactions in chemistry codes, and to improve the calculation time. This code should be of importance to link radiation track structure simulations and DNA damage models.

  13. Solid state radiation chemistry of the DNA backbone

    SciTech Connect

    Bernhard, W.A.

    1989-09-01

    The long term goal of this program is to determine the fundamental rules needed to predict the type and yield of damage produced in DNA due to direct effects of ionizing radiation. The focus is on damage to the sugar-phosphate backbone, damage that would lead to strand breaks. Model systems have been chosen that permit various aspects of this problem to be investigated. The emphasis will be on single crystals of monosaccharides, nucleosides, and nucleotides but will also include some powder work on polynucleotides. In these model systems, free radical products and reactions are observed by electron spin resonance (ESR) and electron nuclear double resonance (ENDOR) techniques. The information thus gained is used in constructing rules that predict what primary free radicals are formed in single crystals of model compounds and the reactions stemming from the primary radicals. The formulation of a set of rules that work in model systems will represent a major advance toward formulating a set of rules that predict the direct damage in DNA itself. In a broader context this program is part of the effort to understand and predict the effects of exposure to ionizing radiation received at low dose rates over long periods of time. Assessment of low dose effects requires a basic understanding of the action of radiation at the molecular level. By contributing to that basic understanding, this program will help solve the problems of risk assessment under low dose conditions. 5 refs., 3 figs.

  14. Fullerenes: Synthesis, separation, characterization, reaction chemistry, and applications -- A review

    SciTech Connect

    Singh, H.; Srivastava, M.

    1995-11-01

    The recently discovered third allotrope of carbon, the fullerenes, area subject of very active research, particularly for chemists. They have a closed-cage structure, made by interlocking pentagonal and hexagonal panels, and are the only soluble form of carbon. In this review an attempt has been made to summarize ongoing fullerene research. The review covers methods of fullerene production and separation, mechanisms leading to closed-cage structure formation, structural characterization, reaction chemistry, and applications of this novel material. The emerging directions of research are also discussed.

  15. Observations of radiation fog chemistry in the Eastern United States

    NASA Astrophysics Data System (ADS)

    Straub, D.; Hutchings, J.; Herckes, P.

    2010-07-01

    The chemical composition of radiation fog in the Mid-Atlantic region of the United States has been the focus of an ongoing field campaign based in Selinsgrove, PA. This field study was established to provide a long term record that can be used to identify the effects of meteorology and air mass source regions on fog composition and to shed light on the role that fog can play in the production of secondary inorganic and organic aerosol mass. In the United States, studies that focus on radiation fog have been relatively rare. For the most part, they have been limited geographically to the Central Valley of California, though individual studies have also been conducted in the Central United States and along the Texas-Louisiana Gulf Coast. Sample collection for the current study began during the fall of 2007. Through 2009, samples from 25 radiation fog events have been obtained. A Caltech Heated Rod Cloudwater Collector (CHRCC) having a Dp50 of approximately 8 microns was used to collect one fog sample per event. Samples were typically collected between 2:00 AM and 7:00 AM under conditions of light winds, clear skies, and recent rainfall. Sample volumes ranged from 2.9 ml to 150 ml. Following collection, samples were analyzed for pH and then one of the following: major inorganic ions, dissolved total organic carbon, N-nitrosodimethylamine (NDMA), metals, or organic speciation. Through 2009, sample pH varied between 4.28 and 6.86 and averaged 5.03 based on H+ concentration. Ammonium and sulfate were found to be the most abundant ionic species in the fog samples. Sufficient ammonium was detected in nearly every sample to fully neutralize nitrate and sulfate. The concentrations of sulfate, nitrate, and ammonium observed in this study were lower than values reported in the literature for most other cloud and fog studies conducted in the US. Due to significant ammonium input, pH in the current study was higher than most other studies. Concentrations of total organic carbon

  16. Nonequilibrium radiation and chemistry models for aerocapture vehicle flowfields

    NASA Technical Reports Server (NTRS)

    Carlson, Leland A.

    1993-01-01

    The period from Jan. 1993 thru Aug. 1993 is covered. The primary tasks during this period were the development of a single and multi-vibrational temperature preferential vibration-dissociation coupling model, the development of a normal shock nonequilibrium radiation-gasdynamic coupling model based upon the blunt body model, and the comparison of results obtained with these models with experimental data. In addition, an extensive series of computations were conducted using the blunt body model to develop a set of reference results covering a wide range of vehicle sizes, altitudes, and entry velocities.

  17. Radiation Chemistry of Acetohydroxamic Acid in the UREX Process

    SciTech Connect

    Karraker, D.G.

    2002-07-31

    The UREX process is being developed to process irradiated power reactor elements by dissolution in nitric acid and solvent extraction by a variation of the PUREX process.1 Rather than recovering both U and Pu, as in Purex, only U will be recovered by solvent extraction, hence the name ''UREX.'' A complexing agent, acetohydroxamic acid (AHA), will be added to the scrub stream to prevent the extraction of Pu(IV) and Np(VI). AHA (CH3C=ONHOH) is decomposed to gaseous products in waste evaporation, so no solid waste is generated by its addition. AHA is hydrolyzed in acid solution to acetic acid and hydroxylamine at a rate dependent on the acid concentration.2-4 The fuel to be processed is ca 40 years cooled, 30,000-50,000 MWD/MT material; although only a few fission products remain, the Pu isotopes and 241Am generate a radiation field estimated to be 2.6E+02R during processing. (see Appendix for calculation.) This study was conducted to determine the effect of this level of radiation on the stability of AHA during processing.

  18. Therapeutic Applications of Ionizing Radiations

    NASA Astrophysics Data System (ADS)

    Sánchez-Santos, María Elena

    The aim of radiation therapy is to deliver a precisely measured dose of radiation to a defined tumour volume with minimal damage to the surrounding healthy tissue, resulting in the eradication of the tumour, a higher quality of life with palliation of symptoms of the disease, and the prolongation of survival at competitive cost. Together with surgery and pharmacology, radiotherapy is presently one of the most important therapeutical weapons against cancer. This chapter provides an overview of the clinical use of radiation, with emphasis on the optimisation of treatment planning and delivery, and a top level summary of state-of-the-art techniques in radiation therapy.

  19. Synchrotron radiation applications in medical research

    SciTech Connect

    Thomlinson, W.

    1997-08-01

    Over the past two decades there has been a phenomenal growth in the number of dedicated synchrotron radiation facilities and a corresponding growth in the number of applications in both basic and applied sciences. The high flux and brightness, tunable beams, time structure and polarization of synchrotron radiation provide an ideal x- ray source for many applications in the medical sciences. There is a dual aspect to the field of medical applications of synchrotron radiation. First there are the important in-vitro programs such as structural biology, x-ray microscopy, and radiation cell biology. Second there are the programs that are ultimately targeted at in-vivo applications. The present status of synchrotron coronary angiography, bronchography, multiple energy computed tomography, mammography and radiation therapy programs at laboratories around the world is reviewed.

  20. Applications of Optical Microcavity Resonators in Analytical Chemistry

    NASA Astrophysics Data System (ADS)

    Wade, James H.; Bailey, Ryan C.

    2016-06-01

    Optical resonator sensors are an emerging class of analytical technologies that use recirculating light confined within a microcavity to sensitively measure the surrounding environment. Bolstered by advances in microfabrication, these devices can be configured for a wide variety of chemical or biomolecular sensing applications. We begin with a brief description of optical resonator sensor operation, followed by discussions regarding sensor design, including different geometries, choices of material systems, methods of sensor interrogation, and new approaches to sensor operation. Throughout, key developments are highlighted, including advancements in biosensing and other applications of optical sensors. We discuss the potential of alternative sensing mechanisms and hybrid sensing devices for more sensitive and rapid analyses. We conclude with our perspective on the future of optical microcavity sensors and their promise as versatile detection elements within analytical chemistry.

  1. Tunable lasers and their application in analytical chemistry

    NASA Technical Reports Server (NTRS)

    Steinfeld, J. I.

    1975-01-01

    The impact that laser techniques might have in chemical analysis is examined. Absorption, scattering, and heterodyne detection is considered. Particular emphasis is placed on the advantages of using frequency-tunable sources, and dye solution lasers are regarded as the outstanding example of this type of laser. Types of spectroscopy that can be carried out with lasers are discussed along with the ultimate sensitivity or minimum detectable concentration of molecules that can be achieved with each method. Analytical applications include laser microprobe analysis, remote sensing and instrumental methods such as laser-Raman spectroscopy, atomic absorption/fluorescence spectrometry, fluorescence assay techniques, optoacoustic spectroscopy, and polarization measurements. The application of lasers to spectroscopic methods of analysis would seem to be a rewarding field both for research in analytical chemistry and for investments in instrument manufacturing.

  2. Recent Advances in Glycerol Polymers: Chemistry and Biomedical Applications

    PubMed Central

    Zhang, Heng

    2015-01-01

    Glycerol polymers are attracting increased attention due to the diversity of polymer compositions and architectures available. This article provides a brief chronological review on the current status of these polymers along with representative examples of their use for biomedical applications. First, we describe the underlying chemistry of glycerol, which provides access to a range of monomers for subsequent polymerizations. We then review the various synthetic methodologies to prepare glycerol-based polymers including polyethers, polycarbonates, polyesters, and so forth. Next, we describe several biomedical applications where glycerol polymers are being investigated including carriers for drug delivery, sealants or coatings for tissue repair, and agents possessing antibacterial activity. Fourth, we describe the growing market opportunity for the use of polymers in medicine. Finally we conclude and summarize the findings, as well as discuss potential opportunities for continued research efforts. PMID:25308354

  3. Applications of radiation belt research

    NASA Astrophysics Data System (ADS)

    Lanzerotti, Louis J.

    2011-10-01

    When Arthur Clark and John Pierce proposed geosynchronous and low-Earth-orbiting (GEO and LEO) communications satellites, respectively, they did not envision that the environment in which their concepts would fly would be anything but benign. Discovery of the Van Allen radiation belts in 1958 fundamentally altered understanding of Earth's near-space environment and its impacts on technologies. Indeed, the first commercial telecommunications satellite, Telstar 1, in LEO, failed some 6 months after launch (10 July 1962) due to trapped radiation that had been enhanced from the Starfish Prime high-altitude nuclear test on the day prior to launch. Today radiation trapped in the geomagnetic field, as well as solar energetic particles that can access the magnetosphere, forms critical constraints on the design and operations of satellite systems. These considerations were important factors in the planning of the AGU Chapman Conference on radiation belts that was hosted in July 2011 by the Memorial University of Newfoundland in St. John's, Canada (see "Chapman Conference on Radiation Belts and the Inner Magnetosphere," page 4). The conference presentations, discussions, and hallway conversations illuminated current understanding of Earth's radiation belts and critical issues remaining. Certainly, fundamental understanding of radiation belt origins remains elusive. The relative roles of adiabatic processes, geomagnetic storm injections, and wave heating, among other considerations, are central topics of intense debate and of competing modeling regimes by numerous active groups.

  4. Radiation chemistry of salt-mine brines and hydrates. [Gamma radiation

    SciTech Connect

    Jenks, G.H.; Walton, J.R.; Bronstein, H.R.; Baes, C.F. Jr.

    1981-07-01

    Certain aspects of the radiation chemistry of NaCl-saturated MgCl/sub 2/ solutions and MgCl/sub 2/ hydrates at temperatures in the range of 30 to 180/sup 0/C were investigated through experiments. A principal objective was to establish the values for the yields of H/sub 2/ (G(H/sub 2/)) and accompanying oxidants in the gamma-ray radiolysis of concentrated brines that might occur in waste repositories in salt. We concluded that G(H/sub 2/) from gamma-irradiated brine solution into a simultaneously irradiated, deaerated atmosphere above the solution is between 0.48 and 0.49 over most of the range 30 to 143/sup 0/C. The yield is probably somewhat lower at the lower end of this range, averaging 0.44 at 30 to 45/sup 0/C. Changes in the relative amounts of MgCl/sub 2/ and NaCl in the NaCl-saturated solutions have negligible effects on the yield. The yield of O/sub 2/ into the same atmosphere averages 0.13, independent of the temperature and brine composition, showing that only about 50% of the radiolytic oxidant that was formed along with the H/sub 2/ was present as O/sub 2/. We did not identify the species that compose the remainder of the oxidant. We concluded that the yield of H/sub 2/ from a gamma-irradiated brine solution into a simultaneously irradiated atmosphere containing 5 to 8% air in He may be greater than the yield in deaerated systems by amounts ranging from 0% for temperatures of 73 to 85/sup 0/C, to about 30 and 40% for temperatures in the ranges 100 to 143/sup 0/C and 30 to 45/sup 0/C, respectively. We did not establish the mechanism whereby the air affected the yields of H/sub 2/ and O/sub 2/. The values found in this work for G(H/sub 2/) in deaerated systems are in approximate agreement with the value of 0.44 for the gamma-irradiation yield of H/sub 2/ in pure H/sub 2/O at room temperature. They are also in agreement with the values predicted by extrapolation from the findings of previous researchers for the value for G(H/sub 2/) in 2 M NaCl solutions

  5. The Effect of Web-Based Project Applications on Students' Attitudes towards Chemistry

    ERIC Educational Resources Information Center

    Morgil, Inci; Gungor Seyhan, Hatice; Ural Alsan, Evrim; Temel, Senar

    2008-01-01

    Students perform intensive web-based applications during their education. One of these is project-based application. In this study, the effect of web based project applications on students' attitudes towards chemistry has been investigated. 42 students attending Hacettepe University, Faculty of Education, and Department of Chemistry Education have…

  6. Radiation physics and applications in therapeutic medicine

    NASA Astrophysics Data System (ADS)

    Oldham, Mark

    2001-11-01

    Radiation therapy is an example of the successful application of advanced physics to the treatment of human disease leading to improved quality of life and even cure for many patients. The German physicist William Roentgen (1845-1923), who discovered x-rays in 1895 and pioneered early x-ray applications, would likely be astonished if he could see the breadth and depth of their application in the modern hospital setting. This article gives an overview of some modern applications of high energy radiation beams in therapeutic medicine and the underlying physics which forms the basis of their curative effects.

  7. Medical Applications of Synchrotron Radiation

    NASA Astrophysics Data System (ADS)

    Prezado, Yolanda; Martínez-Rovira, Immaculada

    This chapter describes the state-of-art of synchrotron radiation therapies in the treatment of radioresistant tumors. The tolerance of the surrounding healthy tissue severely limits the achievement of a curative treatment for some brain tumors, like gliomas. This restriction is especially important in children, due to the high risk of complications in the development of the central nervous system. In addition, the treatment of tumors close to an organ at risk, like the spinal cord, is also restrained. One possible solution is the development of new radiotherapy techniques would exploit radically different irradiation modes, as it is the case of synchrotron radiotherapies. Their distinct features allow to modify the biological equivalent doses. In this chapter the three new approaches under development at the European Synchrotron Radiation Facility (ESRF), in Grenoble (France), will be described, namely: stereotactic synchrotron radiation therapy, microbeam radiation therapy and minibeam radiation therapy. The promising results obtained in the treatment of high grade brain tumors in preclinical studies have paved the way to the forthcoming clinical trials, currently in preparation.

  8. Stratospheric Heterogeneous Chemistry and Microphysics: Model Development, Validation and Applications

    NASA Technical Reports Server (NTRS)

    Turco, Richard P.

    1996-01-01

    being systematically evaluated to identify the principal relationships between ozone loss and aerosol state. Under this project, we formulated a detailed quantitative model that predicts the multicomponent composition of sulfate aerosols under stratospheric conditions, including sulfuric, nitric, hydrochloric, hydrofluoric and hydrobromic acids. This work defined for the first time the behavior of liquid ternary-system type-1b PSCS. The model also allows the compositions and reactivities of sulfate aerosols to be calculated over the entire range of environmental conditions encountered in the stratosphere (and has been incorporated into a trajectory/microphysics model-see above). Important conclusions that derived from this work over the last few years include the following: the HNO3 content of liquid-state aerosols dominate PSCs below about 195 K; the freezing of nitric acid ice from sulfate aerosol solutions is likely to occur within a few degrees K of the water vapor frost point; the uptake and reactions of HCl in liquid aerosols is a critical component of PSC heterogeneous chemistry. In a related application of this work, the inefficiency of chlorine injection into the stratosphere during major volcanic eruptions was explained on the basis of nucleation of sulfuric acid aerosols in rising volcanic plumes leading to the formation of supercooled water droplets on these aerosols, which efficiently scavenges HCl via precipitation.

  9. Application of catalytic ozone chemistry for improving biodiesel product performance.

    PubMed

    Baber, Tylisha M; Graiver, Daniel; Lira, Carl T; Narayan, Ramani

    2005-01-01

    Ozonolysis of methyl soyate (biodiesel) was conducted in the presence of methanol, dichloromethane (solvent), and triethylamine (catalyst) at -75 degrees C. Structural analysis, including FTIR, GC, and GC-MS, showed that the total amount of double bonds in the mixture was reduced by more than 90% after 2 h of ozonolysis. All of the esters predicted by this novel application of ozone reaction chemistry were successfully produced. Other major components were identified by GC-MS. Thermogravimetric analysis showed a dramatic decrease in the onset volatilization temperature from 135 to 73 degrees C, making ozonated biodiesel fuel comparable to diesel fuel (76 degrees C). Differential scanning calorimetric studies showed that the cooling curves for both methyl soyate and ozonated methyl soyate displayed two exothermic regions. The onset freezing temperature of ozonated methyl soyate in the "colder" region was significantly reduced from -63 to -86 degrees C. Furthermore, the degree of crystallinity in the "hotter" region was also reduced. PMID:15877350

  10. Recent applications of carbon nanotube sorbents in analytical chemistry.

    PubMed

    Socas-Rodríguez, Bárbara; Herrera-Herrera, Antonio V; Asensio-Ramos, María; Hernández-Borges, Javier

    2014-08-29

    Carbon nanotubes (CNTs) are still awakening scientists' interest because of their inherent properties as well as their applications in a wide variety of fields. Regarding Analytical Chemistry, and although they have also been used as stationary phases in chromatography or pseudostationary phases in capillary electrophoresis, they have also found a particular place in sorbent-based extraction techniques. In fact, they are currently used as sorbents in solid-phase extraction, solid-phase microextraction, stir-bar sorptive extraction and matrix solid-phase dispersion, for analyte enrichment or storage, sample fractionation or clean-up as well as support for derivatization reactions. CNT surface is tuneable and, as a result, they can be suitably functionalized, aggregated or linked to other supports which increase their potential use as sorbents. They can also be arranged under different formats (cartridges, fibers, stir bars, disks, etc.) or even combined with magnetic nanoparticles, which clearly enlarge their applications. This review article overviews the most recent applications of CNTs as sorbent materials, covering the period from 2010 to early 2014. PMID:24913369

  11. Computational methods for industrial radiation measurement applications

    SciTech Connect

    Gardner, R.P.; Guo, P.; Ao, Q.

    1996-12-31

    Computational methods have been used with considerable success to complement radiation measurements in solving a wide range of industrial problems. The almost exponential growth of computer capability and applications in the last few years leads to a {open_quotes}black box{close_quotes} mentality for radiation measurement applications. If a black box is defined as any radiation measurement device that is capable of measuring the parameters of interest when a wide range of operating and sample conditions may occur, then the development of computational methods for industrial radiation measurement applications should now be focused on the black box approach and the deduction of properties of interest from the response with acceptable accuracy and reasonable efficiency. Nowadays, increasingly better understanding of radiation physical processes, more accurate and complete fundamental physical data, and more advanced modeling and software/hardware techniques have made it possible to make giant strides in that direction with new ideas implemented with computer software. The Center for Engineering Applications of Radioisotopes (CEAR) at North Carolina State University has been working on a variety of projects in the area of radiation analyzers and gauges for accomplishing this for quite some time, and they are discussed here with emphasis on current accomplishments.

  12. Measurement and Applications of Radiation Pressure

    NASA Astrophysics Data System (ADS)

    Ma, Dakang; Garrett, Joseph; Murray, Joseph; Munday, Jeremy; Munday Lab Team

    Light reflected off a material or absorbed within it exerts radiation pressure through the transfer of momentum. Measuring and utilizing radiation pressure have aroused growing interest in a wide spectrum of research fields. Micromechanical transducers and oscillators are good candidates for measuring radiation pressure, but accompanying photothermal effects often obscure the measurement. In this work, we investigate the accurate measurement of the radiation force on microcantilevers in ambient conditions and ways to separate radiation pressure and photothermal effects. Further, we investigate an optically broadband switchable device based on polymer dispersed liquid crystal which has potential applications in solar sails and maneuvering spacecraft without moving parts. The authors would like to thank NASA Early Career Faculty Award and NASA Smallsat Technology Partnership Award for their funding support.

  13. New trends of radiation processing applications

    NASA Astrophysics Data System (ADS)

    Machi, Sueo

    1996-03-01

    Major fields of radiation processing applications are: polymeric materials, food processing, sterilization of medical products and environmental conservation. There are about 200 60Co gamma irradiation facilities and 700 electron beam accelerators, mainly for commercial purposes, throughout the world. Radiation cross-linking and grafting techniques of polymeric materials have been providing many unique products including heat materials, heat shrinkable materials, curing of coatings and battery separators. Extensive studies have been devoted to the development of bio-medical materials using radiation processing to prepare bio-compatible materials and controlled release of drugs. New wound dressings have been successfully developed in Poland and Israel for commercial clinical use.

  14. Discrete Space Theory of Radiative Transfer: Application

    NASA Astrophysics Data System (ADS)

    Rao, M. Srinivasa

    2010-06-01

    The method of obtaining the solution of radiative transfer equation using discrete space theory (DST) is described with (1) interaction principle for different geometries (2) star product (3) calculation of radiation field at internal points. Some of the important steps to obtain the solution of radiative transfer equation in spherical symmetry are also mentioned. Applications of DST are discussed with their results in two cases (a) study of reflection effect in close binary systems and (b) to compute KI 769.9 nm emission line profiles from N-type stars.

  15. Discrete Space Theory of Radiative Transfer: Application

    NASA Astrophysics Data System (ADS)

    Rao, M. Srinivasa

    The method of obtaining the solution of radiative transfer equation using discrete space theory (DST) is described with (1) interaction principle for different geometries (2) star product (3) calculation of radiation field at internal points. Some of the important steps to obtain the solution of radiative transfer equation in spherical symmetry are also mentioned. Applications of DST are discussed with their results in two cases (a) study of reflection effect in close binary systems and (b) to compute KI 769.9 nm emission line profiles from N-type stars.

  16. CHEMISTRY OF A PROTOPLANETARY DISK WITH GRAIN SETTLING AND Ly{alpha} RADIATION

    SciTech Connect

    Fogel, Jeffrey K. J.; Bethell, Thomas J.; Bergin, Edwin A.; Calvet, Nuria; Semenov, Dmitry E-mail: tbethell@umich.edu E-mail: ncalvet@umich.edu

    2011-01-01

    We present results from a model of the chemical evolution of protoplanetary disks. In our models, we directly calculate the changing propagation and penetration of a high energy radiation field with Ly{alpha} radiation included. We also explore the effect on our models of including dust grain settling. We find that, in agreement with earlier studies, the evolution of dust grains plays a large role in determining how deep the UV radiation penetrates into the disk. Significant grain settling at the midplane leads to much smaller freeze-out regions and a correspondingly larger molecular layer, which leads to an increase in column density for molecular species such as CO, CN, and SO. The inclusion of Ly{alpha} radiation impacts the disk chemistry through specific species that have large photodissociation cross sections at 1216 A. These include HCN, NH{sub 3}, and CH{sub 4}, for which the column densities are decreased by an order of magnitude or more due to the presence of Ly{alpha} radiation in the UV spectrum. A few species, such as CO{sub 2} and SO, are enhanced by the presence of Ly{alpha} radiation, but rarely by more than a factor of a few.

  17. Chemistry of a Protoplanetary Disk with Grain Settling and Lyα Radiation

    NASA Astrophysics Data System (ADS)

    Fogel, Jeffrey K. J.; Bethell, Thomas J.; Bergin, Edwin A.; Calvet, Nuria; Semenov, Dmitry

    2011-01-01

    We present results from a model of the chemical evolution of protoplanetary disks. In our models, we directly calculate the changing propagation and penetration of a high energy radiation field with Lyα radiation included. We also explore the effect on our models of including dust grain settling. We find that, in agreement with earlier studies, the evolution of dust grains plays a large role in determining how deep the UV radiation penetrates into the disk. Significant grain settling at the midplane leads to much smaller freeze-out regions and a correspondingly larger molecular layer, which leads to an increase in column density for molecular species such as CO, CN, and SO. The inclusion of Lyα radiation impacts the disk chemistry through specific species that have large photodissociation cross sections at 1216 Å. These include HCN, NH3, and CH4, for which the column densities are decreased by an order of magnitude or more due to the presence of Lyα radiation in the UV spectrum. A few species, such as CO2 and SO, are enhanced by the presence of Lyα radiation, but rarely by more than a factor of a few.

  18. Synthesis of Glycine and Other Prebiotic Compounds in the Interstellar Medium - An Example of Radiation Chemistry.

    NASA Astrophysics Data System (ADS)

    Mason, N. J.; Sivaraman, B.; Jeetha, S.; Dawes, A.; Hunniford, A.; McCullough, R. W.

    2007-08-01

    To understand how life can begin on a habitable planet such as the Earth, it is essential to know what organic compounds were likely to have been available, and how they interacted with the planetary environment. Therefore an understanding of the mechanisms by which organic chemical compounds are formed (so called /prebiotic chemistry/) is essential. Recent data from space based telescopes are revealing the interstellar medium as a rich 'chemical factory' in which many hydrocarbon speices are present (e.g. formic and acetic acid, alcohols and esters). Whether larger more complex species such as amino acids can form remains unknown since they can not, at present, be detected. However laboratory experiments that recreate the conditions of the ISM and the conditions under which stars and planets evolve have recently shown that such 'prebiotic compounds' may be formed through radiation induced chemistry. Details of these experiments will be discussed with the example of glycine formation used as an exemplar for such molecular synthesis.

  19. Chemical Kinetics and Properties from the Radiation Chemistry Data Center (RCDC)

    DOE Data Explorer

    The Radiation Chemistry Data Center (RCDC) is a focal point for the compilation and evaluation of kinetic, spectroscopic and thermodynamic data for processes in solution involving reactive intermediates, including free radicals and excited states. These data are primarily derived from the published literature on radiation chemistry and quantitative aspects of photochemistry. The compilations are presented as individual groups of pages corresponding to each published work. Each compilation consists of an introductory article, describing the scope of the compilation, with the considerations and criteria for data evaluation discussed. Nomenclature for the compilation is also described here. For several compilations the introduction is followed by one or more pages of links organized as an index or table of contents to the individual pages of the compilation. These links allow the browsing of the data by species name. Each page tabulates the reaction of a transient species with a particular reactant. RCDC was established at the Notre Dame Radiation Laboratory in 1965, as part of the National Standard Reference Data System.

  20. Radiation chemistry of amino acids, peptides and proteins in relation to the radiation sterilization of high-protein foods

    SciTech Connect

    Garrison, W. M.

    1981-12-01

    An important source of information on the question of whether or not toxic or other deleterious substances are formed in the radiation sterilization of foods is the chemical study of reaction products and reaction mechanisms in the radiolysis of individual food components. The present evaluation of the radiation chemistry of amino acids, peptides, and proteins outlines the various radiation-induced processes which lead to amino acid degradation and to the synthesis of amino acid derivatives of higher molecular weight. Among the latter are the ..cap alpha..,..cap alpha..'-diamino dicarboxylic acids which are formed as major products in the radiolysis of peptides both in aqueous solution and in the solid state. The ..cap alpha..,..cap alpha..'-diamino acids are of particular interest as irradiation products because they represent a class of compounds not normally encountered in plant and animal protein sources. Such compounds have, however, been isolated from certain types of bacteria and bacterial products. All of the available data strongly suggest that the ..cap alpha..,..cap alpha..'-diamino acids are produced in significant yield in the radiation sterilization of high protein foods. The importance of initiating extensive chemical and biological studies of these and of other high molecular weight products in irradiated food is emphasized.

  1. Molecular potential energy surfaces for interstellar chemistry and fusion applications

    NASA Astrophysics Data System (ADS)

    Braams, Bastiaan J.; Huang, Xinchuan; Jin, Zhong; Xie, Zhen; Zhang, Xiubin; Bowman, Joel M.; Sharma, Amit Raj; Scheider, Ralf

    2006-04-01

    In the Born-Oppenheimer approximation the electronic Schr"odinger equation is solved given the nuclear positions as parameters, and this defines the potential energy surface. We have used computational invariant theory and the MAGMA computer algebra system as an aid to develop representations for the potential energy and dipole moment surfaces that are fully invariant under permutations of like nuclei, extending an approach that for 3-body and 4-body systems has a long history, e.g. [J. N. Murrell et al. Molecular Potential Energy Functions, Wiley, 1984]. A many-body (cluster) expansion is used to describe reaction complexes. The methods have been applied in an almost routine way for systems of up to 7 nuclei, including several molecules that are of interest for interstellar chemistry and for the issue of hydrocarbon breakdown in fusion edge plasma: H5^+, CH5, CH5^+, C2H3^+, and their fragments, with C2H5^+ on the way. The mathematical and computional methods and the hydrocarbon applications will be presented.

  2. Radiation Detection for Homeland Security Applications

    NASA Astrophysics Data System (ADS)

    Ely, James

    2008-05-01

    In the past twenty years or so, there have been significant changes in the strategy and applications for homeland security. Recently there have been significant at deterring and interdicting terrorists and associated organizations. This is a shift in the normal paradigm of deterrence and surveillance of a nation and the `conventional' methods of warfare to the `unconventional' means that terrorist organizations resort to. With that shift comes the responsibility to monitor international borders for weapons of mass destruction, including radiological weapons. As a result, countries around the world are deploying radiation detection instrumentation to interdict the illegal shipment of radioactive material crossing international borders. These efforts include deployments at land, rail, air, and sea ports of entry in the US and in European and Asian countries. Radioactive signatures of concern include radiation dispersal devices (RDD), nuclear warheads, and special nuclear material (SNM). Radiation portal monitors (RPMs) are used as the main screening tool for vehicles and cargo at borders, supplemented by handheld detectors, personal radiation detectors, and x-ray imaging systems. This talk will present an overview of radiation detection equipment with emphasis on radiation portal monitors. In the US, the deployment of radiation detection equipment is being coordinated by the Domestic Nuclear Detection Office within the Department of Homeland Security, and a brief summary of the program will be covered. Challenges with current generation systems will be discussed as well as areas of investigation and opportunities for improvements. The next generation of radiation portal monitors is being produced under the Advanced Spectroscopic Portal program and will be available for deployment in the near future. Additional technologies, from commercially available to experimental, that provide additional information for radiation screening, such as density imaging equipment, will

  3. Emerging applications of radiation-modified carrageenans

    NASA Astrophysics Data System (ADS)

    Abad, Lucille V.; Aranilla, Charito T.; Relleve, Lorna S.; Dela Rosa, Alumanda M.

    2014-10-01

    The Philippines supplies almost half of the world's processed carrageenan as ingredient for different applications. In order to maintain the country's competitive advantage, R&D on radiation processed carrageenan with various potential applications had been undertaken. PVP-carrageenan hydrogels for wound dressing had been developed. A carrageenan-based radiation dose indicator can detect radiation dose of as low as 5 kGy. Irradiated carrageenan has also been tested as plant growth promoter. Irradiated carrageenans have been found have been found to contain some antioxidant properties which increase with increasing dose and concentration. Carboxymethyl carrageenans had also been developed that shows promising effect as super water absorbent for soil conditioner in plants.

  4. Preparedness for Tertiary Chemistry: Multiple Applications of the Chemistry Competence Test for Diagnostic and Prediction Purposes

    ERIC Educational Resources Information Center

    Potgieter, Marietjie; Davidowitz, Bette

    2011-01-01

    The development of the Chemistry Competence Test was prompted by the extensive curriculum changes in the South African school system after democracy was established in 1994. As chemists, we were concerned that there might be a lack of articulation between secondary and tertiary levels, since we anticipated that curriculum changes would have an…

  5. EFFECT OF BIOSOLIDS APPLICATION ON SOIL METAL CHEMISTRY AND PHYTOAVAILABILITY

    EPA Science Inventory

    Addition of biosolids to soils increases the environmental loading of toxic metals (Cd, Zn, Cu, Ni, Pb, etc.) and alters the chemistry and phytoavailability of these metals. This alteration in phytoavailability associated with biosolids amended soil was recognized and utilized ...

  6. Chemistry for Health-Science Students: What Is an Appropriate Balance between Basic Chemical Concepts and Health-Related Applications?

    ERIC Educational Resources Information Center

    Genyea, Julien; Callewaert, Denis M.

    1983-01-01

    Suggests general chemistry, organic chemistry, and biochemistry content for a two-semester, health-related, chemistry course sequence. Indicates that basic principles should be emphasized and that (when appropriate) these principles should be discussed with applications to health care. Other issues related to chemistry for health-related programs…

  7. Rotating bubble membrane radiator for space applications

    SciTech Connect

    Webb, B.J.; Antoniak, Z.I.

    1986-05-01

    An advanced radiator concept for heat rejection in space is described which uses a two-phase working fluid to radiate waste heat. The development of new advanced materials and the large surface area per mass makes the Bubble Membrane Radiator an attractive alternative to both conventional heat pipes and liquid droplet radiators for mid-to-high-temperature applications. A system description, a discussion of design requirements, and a mass comparison with heat pipes and liquid droplet radiators is provided. To meet the increased demand for power, solar dynamic and nuclear power systems, which operate on a closed heat engine cycle or use direct conversion of thermal to electric power, are being investigated for their significant reduction in size and mass over comparable photovoltaic systems. This reduction in mass and size may translate into reduced initial and life cycle costs as well as improved orbital operations in the areas of stability, control, and maintenance. For any space-based activity, waste heat must ultimately be radiated to space. Spacecraft system studies by NASA and industry have shown that heat rejection radiator systems are a major weight and volume contributor to any power or thermal management system. The optimal design and development of future power or thermal management systems will require advanced heat rejection concepts utilizing new and innovative approaches to reduce overall system mass and size, while increasing system efficiency and thermodynamic performance. These advanced heat rejection systems will be required to withstand the detrimental effects of meteoroid and space debris impact, radiation, and ionizing atoms, in addition to addressing such pertinent mission requirements as reliability and maintainability, operation and control, system integration, and life cycle cost. 5 refs., 1 fig., 3 tabs.

  8. Synchrotron radiation - Applications in the earth sciences

    NASA Technical Reports Server (NTRS)

    Bassett, W. A.; Brown, G. E., Jr.

    1990-01-01

    Synchrotron-radiation sources and their characteristics are overviewed along with recent synchrotron-based research on earth materials and future earth-science applications utilizing the next generation of synchrotron-radiation sources presently under construction. Focus is placed on X-ray scattering studies of earth materials (crystalline and noncrystalline) under ambient conditions, diffraction studies of earth materials at high pressures and/or temperatures, spectroscopic studies, primarily X-ray absorption spectroscopy, and spatially resolved X-ray fluorescence studies of compositional variations in earth materials. It is noted that other synchrotron-based methods, such as X-ray tomography and topography may become important in characterizing earth materials, while soft X-ray/vacuum ultraviolet radiation from synchrotron sources can be applied to problems involving the structural environments of low-atomic-number elements and the characterization of surface reactions of minerals with liquids and gases.

  9. Synchrotron radiation - Applications in the earth sciences

    NASA Astrophysics Data System (ADS)

    Bassett, W. A.; Brown, G. E., Jr.

    Synchrotron-radiation sources and their characteristics are overviewed along with recent synchrotron-based research on earth materials and future earth-science applications utilizing the next generation of synchrotron-radiation sources presently under construction. Focus is placed on X-ray scattering studies of earth materials (crystalline and noncrystalline) under ambient conditions, diffraction studies of earth materials at high pressures and/or temperatures, spectroscopic studies, primarily X-ray absorption spectroscopy, and spatially resolved X-ray fluorescence studies of compositional variations in earth materials. It is noted that other synchrotron-based methods, such as X-ray tomography and topography may become important in characterizing earth materials, while soft X-ray/vacuum ultraviolet radiation from synchrotron sources can be applied to problems involving the structural environments of low-atomic-number elements and the characterization of surface reactions of minerals with liquids and gases.

  10. Applications of synchrotron radiation to Chemical Engineering Science: Workshop report

    SciTech Connect

    Not Available

    1991-07-01

    This report contains extended abstracts that summarize presentations made at the Workshop on Applications of Synchrotron Radiation to Chemical Engineering Science held at Argonne National Laboratory (ANL), Argonne, IL, on April 22--23, 1991. The talks emphasized the application of techniques involving absorption fluorescence, diffraction, and reflection of synchrotron x-rays, with a focus on problems in applied chemistry and chemical engineering, as well as on the use of x-rays in topographic, tomographic, and lithographic procedures. The attendees at the workshop included experts in the field of synchrotron science, scientists and engineers from ANL, other national laboratories, industry, and universities; and graduate and undergraduate students who were enrolled in ANL educational programs at the time of the workshop. Talks in the Plenary and Overview Session described the status of and special capabilities to be offered by the Advanced Photon Source (APS), as well as strategies and opportunities for utilization of synchrotron radiation to solve science and engineering problems. Invited talks given in subsequent sessions covered the use of intense infrared, ultraviolet, and x-ray photon beams (as provided by synchrotrons) in traditional and nontraditional areas of chemical engineering research related to electrochemical and corrosion science, catalyst development and characterization, lithography and imaging techniques, and microanalysis.

  11. Radiation synthesis and fabrication for biomedical applications

    NASA Astrophysics Data System (ADS)

    Kaetsu, Isao

    1995-09-01

    Radiation synthesis and fabrication techniques can make various specific forms and structures of materials enhancedly which are useful for biomedical applications. Those materials are a porous gel and membrane, an interpenetrating networked(IPN) hydrogel, a heterogeneous surface phase membrane, an ultra-thin membrane, a biofunctional laminate and an ultra-fine particle. Radiation techniques can attach various biofunctionalities to those materials effectively by means of immobilization of biofunctional components such as enzymes, proteins, hormones, drugs, microbial cells and tissue cells. It is convenient that the immobilization can be finished at the same time as the synthesis and fabrication in many cases. The applications to bioreactors, biosensors, artificial organs, drug delivery systems and recently to signal responsive chemical delivery systems, have been studied and developed based on those techniques.

  12. Laser-induced chemistry-basic nonlinear processes and applications

    NASA Astrophysics Data System (ADS)

    Letokhov, V. S.

    1988-07-01

    Many methods and achievements in chemistry are based on using the interactive of light with atoms and molecules. It is sufficient to mention photochemistry, flashphotolysis, spectrochemistry and others. The advent of laser amplified the connection between chemistry and light. Today laser light has become a very versatile and effective tool, first, to study the dynamics of chemical reactions, secondly, to stimulate chemical reactions and finally, to analyze substance. The unique properties of laser light (high power, monochromaticity, short duration, directivity and temporal coherence) provide quite new instrumental possibilities in all these problems.

  13. Applications of carbon nanotubes in bioanalytical chemistry research

    NASA Astrophysics Data System (ADS)

    Koehne, Jessica E.

    This dissertation focuses on the interface and study of carbon nanotubes (CNTs) and carbon nanofibers (CNFs) with biology. The goal was to take advantage of the nanostructure of CNTs and CNFs for unconventional biomolecular studies requiring ultrahigh sensitivity, resolution, high-degree of miniaturization, and selective biofunctionalization. In this dissertation, CNFs were utilized as ultramicroelectrodes for novel biomolecule sensing and cell penetrating platforms, CNTs were utilized as high resolution atomic force microscopy (AFM) imaging probes for cell morphology investigations and CNTs were utilized to generate a platform by which to evaluate nanomaterial phytotoxicity. CNF arrays were utilized for ultrahigh sensitivity sensing and cell penetration platforms. Arrays of CNFs harness the advantages of an individual CNF as well the collective property of assemblies, which made them promising materials in biosensing and tissue engineering or implantation. Two CNF platforms were demonstrated. One platform exploited the CNF's nanoscale and strong conductance as ultramicroelectrodes for biomolecule sensing applications. The other platform made use of CNF's high aspect ratio structure to be an array of needle-like electrodes that support PC-12 cell growth and penetrated through the cell membrane. The goal was to take advantage of the nanostructure of CNFs for biomolecule detection and cell interfacing studies. CNT AFM probes were utilized for morphological characterization of fixed rat basophilic lymphocyte (RBL) cells. CNT AFM probes offer advantages in the visualization of cellular membrane morphology. Due to the inherent high aspect ratio geometry, CNT AFM probes were able to resolve unique membrane features, such as lamelopodia, filopodia and microvilli, of a spreading RBL cell where standard silicon probes could not. The structures resolved by the CNT probes are crucial to characterize cellular events such as spreading, locomotion, activation and differentiation

  14. A Radiation Chemistry Code Based on the Greens Functions of the Diffusion Equation

    NASA Technical Reports Server (NTRS)

    Plante, Ianik; Wu, Honglu

    2014-01-01

    Ionizing radiation produces several radiolytic species such as.OH, e-aq, and H. when interacting with biological matter. Following their creation, radiolytic species diffuse and chemically react with biological molecules such as DNA. Despite years of research, many questions on the DNA damage by ionizing radiation remains, notably on the indirect effect, i.e. the damage resulting from the reactions of the radiolytic species with DNA. To simulate DNA damage by ionizing radiation, we are developing a step-by-step radiation chemistry code that is based on the Green's functions of the diffusion equation (GFDE), which is able to follow the trajectories of all particles and their reactions with time. In the recent years, simulations based on the GFDE have been used extensively in biochemistry, notably to simulate biochemical networks in time and space and are often used as the "gold standard" to validate diffusion-reaction theories. The exact GFDE for partially diffusion-controlled reactions is difficult to use because of its complex form. Therefore, the radial Green's function, which is much simpler, is often used. Hence, much effort has been devoted to the sampling of the radial Green's functions, for which we have developed a sampling algorithm This algorithm only yields the inter-particle distance vector length after a time step; the sampling of the deviation angle of the inter-particle vector is not taken into consideration. In this work, we show that the radial distribution is predicted by the exact radial Green's function. We also use a technique developed by Clifford et al. to generate the inter-particle vector deviation angles, knowing the inter-particle vector length before and after a time step. The results are compared with those predicted by the exact GFDE and by the analytical angular functions for free diffusion. This first step in the creation of the radiation chemistry code should help the understanding of the contribution of the indirect effect in the

  15. Stratospheric sulfur and its implications for radiative forcing simulated by the chemistry climate model EMAC

    PubMed Central

    Brühl, C; Lelieveld, J; Tost, H; Höpfner, M; Glatthor, N

    2015-01-01

    Multiyear simulations with the atmospheric chemistry general circulation model EMAC with a microphysical modal aerosol module at high vertical resolution demonstrate that the sulfur gases COS and SO2, the latter from low-latitude and midlatitude volcanic eruptions, predominantly control the formation of stratospheric aerosol. Marine dimethyl sulfide (DMS) and other SO2 sources, including strong anthropogenic emissions in China, are found to play a minor role except in the lowermost stratosphere. Estimates of volcanic SO2 emissions are based on satellite observations using Total Ozone Mapping Spectrometer and Ozone Monitoring Instrument for total injected mass and Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) on Envisat or Stratospheric Aerosol and Gases Experiment for the spatial distribution. The 10 year SO2 and COS data set of MIPAS is also used for model evaluation. The calculated radiative forcing of stratospheric background aerosol including sulfate from COS and small contributions by DMS oxidation, and organic aerosol from biomass burning, is about 0.07W/m2. For stratospheric sulfate aerosol from medium and small volcanic eruptions between 2005 and 2011 a global radiative forcing up to 0.2W/m2 is calculated, moderating climate warming, while for the major Pinatubo eruption the simulated forcing reaches 5W/m2, leading to temporary climate cooling. The Pinatubo simulation demonstrates the importance of radiative feedback on dynamics, e.g., enhanced tropical upwelling, for large volcanic eruptions. PMID:25932352

  16. Nuclear analytical chemistry

    SciTech Connect

    Brune, D.; Forkman, B.; Persson, B.

    1984-01-01

    This book covers the general theories and techniques of nuclear chemical analysis, directed at applications in analytical chemistry, nuclear medicine, radiophysics, agriculture, environmental sciences, geological exploration, industrial process control, etc. The main principles of nuclear physics and nuclear detection on which the analysis is based are briefly outlined. An attempt is made to emphasise the fundamentals of activation analysis, detection and activation methods, as well as their applications. The book provides guidance in analytical chemistry, agriculture, environmental and biomedical sciences, etc. The contents include: the nuclear periodic system; nuclear decay; nuclear reactions; nuclear radiation sources; interaction of radiation with matter; principles of radiation detectors; nuclear electronics; statistical methods and spectral analysis; methods of radiation detection; neutron activation analysis; charged particle activation analysis; photon activation analysis; sample preparation and chemical separation; nuclear chemical analysis in biological and medical research; the use of nuclear chemical analysis in the field of criminology; nuclear chemical analysis in environmental sciences, geology and mineral exploration; and radiation protection.

  17. Patterns in Organometallic Chemistry with Application in Organic Synthesis.

    ERIC Educational Resources Information Center

    Schwartz, Jeffrey; Labinger, Jay A.

    1980-01-01

    Of interest in this discussion of organometallic complexes are stoichiometric or catalytic reagents for organic synthesis in the complex transformations observed during synthesis for transition metal organometallic complexes. Detailed are general reaction types from which the chemistry or many transition metal organometallic complexes can be…

  18. Prediction of Log "P": ALOGPS Application in Medicinal Chemistry Education

    ERIC Educational Resources Information Center

    Kujawski, Jacek; Bernard, Marek K.; Janusz, Anna; Kuzma, Weronika

    2012-01-01

    Molecular hydrophobicity (lipophilicity), usually quantified as log "P" where "P" is the partition coefficient, is an important molecular characteristic in medicinal chemistry and drug design. The log "P" coefficient is one of the principal parameters for the estimation of lipophilicity of chemical compounds and pharmacokinetic properties. The…

  19. The Application of Chemistry to Conserve Cultural Heritage

    ERIC Educational Resources Information Center

    MacLeod, Ian D.

    2015-01-01

    During the past 50 years the amount of chemistry applied to the preservation of all sorts of materials, from wood, to ceramics, glass and metallic objects has increased dramatically as materials conservation laboratories became established around the world. In Australia, the finding of a series of historic shipwrecks of ships from the Dutch…

  20. Intense terahertz radiation and their applications

    NASA Astrophysics Data System (ADS)

    Hafez, H. A.; Chai, X.; Ibrahim, A.; Mondal, S.; Férachou, D.; Ropagnol, X.; Ozaki, T.

    2016-09-01

    In this paper, we will review both past and recent progresses in the generation, detection and application of intense terahertz (THz) radiation. We will restrict the review to laser based intense few-cycle THz sources, and thus will not include sources such as synchrotron-based or narrowband sources. We will first review the various methods used for generating intense THz radiation, including photoconductive antennas (PCAs), optical rectification sources (especially the tilted-pulse-front lithium niobate source and the DAST source, but also those using other crystals), air plasma THz sources and relativistic laser–plasma sources. Next, we will give a brief introduction on the common methods for coherent THz detection techniques (namely the PCA technique and the electro-optic sampling), and point out the limitations of these techniques for measuring intense THz radiation. We will then review three techniques that are highly suited for detecting intense THz radiation, namely the air breakdown coherent detection technique, various single-shot THz detection techniques, and the spectral-domain interferometry technique. Finally, we will give an overview of the various applications that have been made possible with such intense THz sources, including nonlinear THz spectroscopy of condensed matter (optical-pump/THz-probe, THz-pump/THz-probe, THz-pump/optical-probe), nonlinear THz optics, resonant and non-resonant control of material (such as switching of superconductivity, magnetic and polarization switching) and controlling the nonlinear response of metamaterials. We will also provide a short perspective on the future of intense THz sources and their applications.

  1. The application of green chemistry methods in organophosphorus synthesis

    NASA Astrophysics Data System (ADS)

    Odinets, Irina L.; Matveeva, E. V.

    2012-03-01

    Data concerning the synthesis of organophosphorus compounds in ionic liquids, in water and under solvent-free conditions are considered and summarized. It is shown that this strategy, which complies with the definition of green chemistry, has advantages in terms of the rate of the process and the yields of target products as compared with syntheses in common organic solvents. The Wittig, Horner-Wadsworth-Emmons, Kabachnik-Fields, Arbuzov and Michaelis reactions are considered as examples. The bibliography includes 178 references.

  2. Comparative Experimental Investigation of Titan's Atmospheric Chemistry Driven by Solar EUV Radiation and Energetic Electron Precipitation

    NASA Astrophysics Data System (ADS)

    Imanaka, Hiroshi; Lavvas, P.; Yelle, R. V.; Smith, M. A.

    2010-10-01

    The observations by the Cassini Ion Neutral Mass Spectrometer (INMS) and the Cassini Plasma Spectrometer (CAPS) clearly demonstrate the importance of complex organic chemistry in the upper atmosphere of Titan; a complex coupling of neutral and ion chemistry for organic aerosol generation induced by EUV photons and Saturn's magnetospheric charged particles. To understand the dominant energy source for aerosol formation and its formation chemistry, we comparatively investigate the chemical mechanism in N2/CH4 gas mixtures resulting from EUV-VUV synchrotron radiation (50-150 nm) and tunable mono-energetic electron beam irradiation (5 eV - 2000 eV). These excitation energy sources cover the dominant energy source available in Titan's upper atmosphere. Our previous study of the EUV-VUV photolysis of N2/CH4 gas mixtures revealed the unique role of nitrogen photoionization in the catalytic formation of complex hydrocarbons and in the major nitrogen fixation process in Titan's upper atmosphere (Imanaka and Smith, 2007, 2009, 2010). However, relative roles of ion-molecule reactions and radical/neutral reactions in such complex chemistry remain to be determined. We characterized the electron energy distribution by conducting the Langmuir probe measurements. Degradation of the primary photoelectron from N2 photoionization at 20.6 eV photons is clearly observed, and the electron density rapidly decreases down to 109-10 cm-3, which suggests the complex coupling of ion-molecular reactions and dissociative ion-electron recombination reactions for the observed development of complex organic molecules. The electron beam irradiation experiments at energy larger than 200 eV shows distinct gaseous product distribution with nitrogenated gaseous species from those with EUV irradiation products. The generation of secondary electrons and multiple inelastic collisions of fast electrons might increases the nitrogen fixation efficiency. The much less stringent spin selection rules could

  3. Spectroscopically Accurate Line Lists for Application in Sulphur Chemistry

    NASA Astrophysics Data System (ADS)

    Underwood, D. S.; Azzam, A. A. A.; Yurchenko, S. N.; Tennyson, J.

    2013-09-01

    Monitoring sulphur chemistry is thought to be of great importance for exoplanets. Doing this requires detailed knowledge of the spectroscopic properties of sulphur containing molecules such as hydrogen sulphide (H2S) [1], sulphur dioxide (SO2), and sulphur trioxide (SO3). Each of these molecules can be found in terrestrial environments, produced in volcano emissions on Earth, and analysis of their spectroscopic data can prove useful to the characterisation of exoplanets, as well as the study of planets in our own solar system, with both having a possible presence on Venus. A complete, high temperature list of line positions and intensities for H32 2 S is presented. The DVR3D program suite is used to calculate the bound ro-vibration energy levels, wavefunctions, and dipole transition intensities using Radau coordinates. The calculations are based on a newly determined, spectroscopically refined potential energy surface (PES) and a new, high accuracy, ab initio dipole moment surface (DMS). Tests show that the PES enables us to calculate the line positions accurately and the DMS gives satisfactory results for line intensities. Comparisons with experiment as well as with previous theoretical spectra will be presented. The results of this study will form an important addition to the databases which are considered as sources of information for space applications; especially, in analysing the spectra of extrasolar planets, and remote sensing studies for Venus and Earth, as well as laboratory investigations and pollution studies. An ab initio line list for SO3 was previously computed using the variational nuclear motion program TROVE [2], and was suitable for modelling room temperature SO3 spectra. The calculations considered transitions in the region of 0-4000 cm-1 with rotational states up to J = 85, and includes 174,674,257 transitions. A list of 10,878 experimental transitions had relative intensities placed on an absolute scale, and were provided in a form suitable

  4. Can a coupled meteorology–chemistry model reproduce the historical trend in aerosol direct radiative effects over the Northern Hemisphere?

    EPA Science Inventory

    The ability of a coupled meteorology–chemistry model, i.e., Weather Research and Forecast and Community Multiscale Air Quality (WRF-CMAQ), to reproduce the historical trend in aerosol optical depth (AOD) and clear-sky shortwave radiation (SWR) over the Northern Hemisphere h...

  5. Review Article: The Effects of Radiation Chemistry on Solvent Extraction 3: A Review of Actinide and Lanthanide Extraction

    SciTech Connect

    Bruce J. Mincher; Giuseppe Modolo; Stephen P. Mezyk

    2009-12-01

    The partitioning of the long-lived ?-emitters and the high-yield fission products from dissolved nuclear fuel is a key component of processes envisioned for the safe recycling of nuclear fuel and the disposition of high-level waste. These future processes will likely be based on aqueous solvent extraction technologies for light water reactor fuel and consist of four main components for the sequential separation of uranium, fission products, group trivalent actinides and lanthanides, and then trivalent actinides from lanthanides. Since the solvent systems will be in contact with highly radioactive solutions, they must be robust toward radiolytic degradation in an irradiated mixed organic, aqueous acidic environment. Therefore, an understanding of their radiation chemistry is important to the design of a practical system. In the first paper in this series we reviewed the radiation chemistry of irradiated aqueous nitric acid and the tributyl phosphate ligand for uranium extraction in the first step of these extractions. In the second, we reviewed the radiation chemistry of the ligands proposed for use in the extraction of cesium and strontium fission products. Here, we review the radiation chemistry of the ligands that might be used in the third step in the series of separations, for the group extraction of the lanthanides and actinides. This includes traditional organophosphorous reagents such as CMPO and HDEHP, as well as novel reagents such as the amides and diamides currently being investigated.

  6. Pulse radiolysis of nucleic acids and their base constituents: Bibliographies on radiation chemistry. XI

    NASA Astrophysics Data System (ADS)

    von Sonntag, Clemens; Ross, Alberta B.

    In the elucidation of the primary processes involved in the free-radical-induced damage to DNA and its subunits, pulse radiolysis proves to be one of the most powerful tools. The first studies data back to 1964. The updating review (C. v. Sonntag, Radiat. Phys. Chem. 1987, 30, 313) which precedes this compilation has placed the emphasis on the more recent developments. It has been felt that a bibliography including the earlier literature on this subject might be helpful for further reading. For this compilation the data stored by the Radiation Chemistry Data Center bibliographic database (1) through 1986 were processed using the SELECT keywords: purines, pyrimidines, nucleotides, nucleosides, nucleic acids and pulse radiolysis. The number of citations found was reduced by about one-third by eliminating privately published symposia papers, theses and papers not strictly relevant to this topic, e.g. on flavins, NADH, one-electron reduction of nitrouracil or the redox potential of isobarbituric acid. On the other hand, a few more papers known to us but not revealed by the keywords were added. The bibliography is arranged in approximately chronological order, references grouped by year of publication. Reviews are collected at the end of the bibliography in a separate section.

  7. Applications of microwave radiation environmental remediation technologies

    SciTech Connect

    Krause, T.R.; Helt, J.E.

    1993-01-01

    A growing number of environmental remediation technologies (e.g., drying, melting, or sintering) utilize microwave radiation as an integral part of the process. An increasing number of novel applications, such as sustaining low-temperature plasmas or enhancing chemical reactivity, are also being developed. An overview of such technologies being developed by the Department of Energy is presented. A specific example being developed at Argonne National Laboratory, microwave-induced plasma reactors for the destruction of volatile organic compounds, is discussed in more detail.

  8. Applications of microwave radiation environmental remediation technologies

    SciTech Connect

    Krause, T.R.; Helt, J.E.

    1993-05-01

    A growing number of environmental remediation technologies (e.g., drying, melting, or sintering) utilize microwave radiation as an integral part of the process. An increasing number of novel applications, such as sustaining low-temperature plasmas or enhancing chemical reactivity, are also being developed. An overview of such technologies being developed by the Department of Energy is presented. A specific example being developed at Argonne National Laboratory, microwave-induced plasma reactors for the destruction of volatile organic compounds, is discussed in more detail.

  9. Radiation design criteria handbook. [design criteria for electronic parts applications

    NASA Technical Reports Server (NTRS)

    Stanley, A. G.; Martin, K. E.; Douglas, S.

    1976-01-01

    Radiation design criteria for electronic parts applications in space environments are provided. The data were compiled from the Mariner/Jupiter Saturn 1977 electronic parts radiation test program. Radiation sensitive device types were exposed to radiation environments compatible with the MJS'77 requirements under suitable bias conditions. A total of 189 integrated circuits, transistors, and other semiconductor device types were tested.

  10. A gist of comprehensive review of hadronic chemistry and its applications

    SciTech Connect

    Tangde, Vijay M.

    2015-03-10

    20{sup th} century theories of Quantum Mechanics and Quantum Chemistry are exactly valid only when considered to represent the atomic structures. While considering the more general aspects of atomic combinations these theories fail to explain all the related experimental data from first unadulterated axiomatic principles. According to Quantum Chemistry two valence electrons should repel each other and as such there is no mathematical representation of a strong attractive forces between such valence electrons. In view of these and other insufficiencies of Quantum Chemistry, an Italian-American Scientist Professor Ruggero Maria Santilli during his more than five decades of dedicated and sustained research has denounced the fact that quantum chemistry is mostly based on mere nomenclatures. Professor R M Santilli first formulated the iso-, geno- and hyper- mathematics [1, 2, 3, 4] that helped in understanding numerous diversified problems and removing inadequacies in most of the established and celebrated theories of 20th century physics and chemistry. This involves the isotopic, genotopic, etc. lifting of Lie algebra that generated Lie admissible mathematics to properly describe irreversible processes. The studies on Hadronic Mechanics in general and chemistry in particular based on Santilli’s mathematics[3, 4, 5] for the first time has removed the very fundamental limitations of quantum chemistry [2, 6, 7, 8]. In the present discussion, a comprehensive review of Hadronic Chemistry is presented that imparts the completeness to the Quantum Chemistry via an addition of effects at distances of the order of 1 fm (only) which are assumed to be Non-linear, Non-local, Non-potential, Non-hamiltonian and thus Non-unitary, stepwise successes of Hadronic Chemistry and its application in development of a new chemical species called Magnecules.

  11. Finite-rate chemistry effects upon convective and radiative heating of an atmospheric entry vehicle. [reentry aerothermochemistry

    NASA Technical Reports Server (NTRS)

    Guillermo, P.

    1975-01-01

    A mathematical model of the aerothermochemical environment along the stagnation line of a planetary return spacecraft using an ablative thermal protection system was developed and solved for conditions typical of atmospheric entry from planetary missions. The model, implemented as a FORTRAN 4 computer program, was designed to predict viscous, reactive and radiative coupled shock layer structure and the resulting body heating rates. The analysis includes flow field coupling with the ablator surface, binary diffusion, coupled line and continuum radiative and equilibrium or finite rate chemistry effects. The gas model used includes thermodynamic, transport, kinetic and radiative properties of air and ablation product species, including 19 chemical species and 16 chemical reactions. Specifically, the impact of nonequilibrium chemistry effects upon stagnation line shock layer structure and body heating rates was investigated.

  12. Applications of Quantum Chemistry to the Study of Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Jaffe, Richard L.

    2005-01-01

    For several years, scientists at NASA Ames have been studying the properties of carbon nanotubes using various experimental and computational methods. In this talk, I will compare different strategies for using quantum chemistry calculations to describe the electronic structure, deformation and chemical functionalization of single wall carbon nanotubes (SWNT) and the physisorption of small molecules on nanotube surfaces. The SWNT can be treated as an infinite (periodic) or finite length carbon cylinder or as a polycyclic aromatic hydrocarbon (PAH) molecule with an imposed curvature maintained by external constraints (as if it were cut out of the SWNT surface). Calculations are carried out using DFT and MP2 methods and a variety of atomic orbital basis sets from minimal (STO-3G) to valence triple zeta. The optimal approach is based on the particular SWNT property of interest. Examples to be discussed include: nanotube fluorination and other functionalization reactions; coating of nanotubes by water vapor and low-molecular weight organic molecules; and the nature of the interface between SWNT and liquids such as water and amines. In many cases, the quantum chemistry calculations are used to parameterize or validate force fields for molecular dynamics simulations. The results of these calculations have helped explain experimental data and contributed to the design of novel materials and sensors based on carbon nanotubes. Some of this research is described in the following papers:

  13. Chemistry Notes

    ERIC Educational Resources Information Center

    School Science Review, 1976

    1976-01-01

    Described are eight chemistry experiments and demonstrations applicable to introductory chemistry courses. Activities include: measure of lattice enthalpy, Le Chatelier's principle, decarboxylation of soap, use of pocket calculators in pH measurement, and making nylon. (SL)

  14. Polymer recycling: potential application of radiation technology

    NASA Astrophysics Data System (ADS)

    Burillo, Guillermina; Clough, Roger L.; Czvikovszky, Tibor; Guven, Olgun; Le Moel, Alain; Liu, Weiwei; Singh, Ajit; Yang, Jingtian; Zaharescu, Traian

    2002-04-01

    Management of solid waste is an important problem, which is becoming progressively worse as a byproduct of continuing economic growth and development. Polymeric materials (plastics and rubbers) comprise a steadily increasing proportion of the municipal and industrial waste going into landfill. Development of technologies for reducing polymeric waste, which are acceptable from the environmental standpoint, and which are cost-effective, has proven to be a difficult challenge due to complexities inherent in the reuse of polymers. Establishing optimal processes for the reuse/recycling of polymeric materials thus remains a worldwide challenge as we enter the new century. Due to the ability of ionizing radiation to alter the structure and properties of bulk polymeric materials, and the fact that it is applicable to essentially all polymer types, irradiation holds promise for impacting the polymer waste problem. The three main possibilities for use of radiation in this application are: (1) enhancing the mechanical properties and performance of recovered materials or material blends, principally through crosslinking, or through surface modification of different phases being combined; (2) treatment causing or enhancing the decomposition of polymers, particularly through chain scission, leading to recovery of either low molecular weight mixtures, or powders, for use as chemical feedstocks or additives; (3) production of advanced polymeric materials designed for environmental compatibility. This paper provides an overview of the polymer recycling problem, describes the major technological obstacles to the implementation of recycling technologies, and outlines some of the approaches being taken. A review of radiation-based recycling research is then provided, followed by a discussion of future directions where irradiation may be relevant to the problems currently inhibiting the widespread recycling of polymeric materials.

  15. Electron beam chemistry produces high purity metals

    NASA Technical Reports Server (NTRS)

    Philipp, W. H.; May, C. E.; Marsik, S. J.; Lad, R. A.

    1972-01-01

    Application of radiation chemistry for deposition of metals by irradiation of aqueous solutions with high energy electrons is presented. Design of reaction vessel for irradiation of solution is illustrated. Features of radiochemical technique and procedures followed are described.

  16. Computational chemistry

    NASA Technical Reports Server (NTRS)

    Arnold, J. O.

    1987-01-01

    With the advent of supercomputers, modern computational chemistry algorithms and codes, a powerful tool was created to help fill NASA's continuing need for information on the properties of matter in hostile or unusual environments. Computational resources provided under the National Aerodynamics Simulator (NAS) program were a cornerstone for recent advancements in this field. Properties of gases, materials, and their interactions can be determined from solutions of the governing equations. In the case of gases, for example, radiative transition probabilites per particle, bond-dissociation energies, and rates of simple chemical reactions can be determined computationally as reliably as from experiment. The data are proving to be quite valuable in providing inputs to real-gas flow simulation codes used to compute aerothermodynamic loads on NASA's aeroassist orbital transfer vehicles and a host of problems related to the National Aerospace Plane Program. Although more approximate, similar solutions can be obtained for ensembles of atoms simulating small particles of materials with and without the presence of gases. Computational chemistry has application in studying catalysis, properties of polymers, all of interest to various NASA missions, including those previously mentioned. In addition to discussing these applications of computational chemistry within NASA, the governing equations and the need for supercomputers for their solution is outlined.

  17. Application of Ion Mobility Spectrometry (IMS) in forensic chemistry and toxicology with focus on biological matrices

    NASA Technical Reports Server (NTRS)

    Bernhard, Werner; Keller, Thomas; Regenscheit, Priska

    1995-01-01

    The IMS (Ion Mobility Spectroscopy) instrument 'Ionscan' takes advantage of the fact that trace quantities of illicit drugs are adsorbed on dust particles on clothes, in cars and on other items of evidence. The dust particles are collected on a membrane filter by a special attachment on a vacuum cleaner. The sample is then directly inserted into the spectrometer and can be analyzed immediately. We show casework applications of a forensic chemistry and toxicology laboratory. One new application of IMS in forensic chemistry is the detection of psilocybin in dried mushrooms without any further sample preparation.

  18. Introduction to Chemistry and Applications in Nature of Mass Independent Isotope Effects Special Feature

    PubMed Central

    Thiemens, Mark H.

    2013-01-01

    Stable isotope ratio variations are regulated by physical and chemical laws. These rules depend on a relation with mass differences between isotopes. New classes of isotope variation effects that deviate from mass dependent laws, termed mass independent isotope effects, were discovered in 1983 and have a wide range of applications in basic chemistry and nature. In this special edition, new applications of these effects to physical chemistry, solar system origin models, terrestrial atmospheric and biogenic evolution, polar paleo climatology, snowball earth geology, and present day atmospheric sciences are presented. PMID:24167299

  19. Introduction to chemistry and applications in nature of mass independent isotope effects special feature.

    PubMed

    Thiemens, Mark H

    2013-10-29

    Stable isotope ratio variations are regulated by physical and chemical laws. These rules depend on a relation with mass differences between isotopes. New classes of isotope variation effects that deviate from mass dependent laws, termed mass independent isotope effects, were discovered in 1983 and have a wide range of applications in basic chemistry and nature. In this special edition, new applications of these effects to physical chemistry, solar system origin models, terrestrial atmospheric and biogenic evolution, polar paleo climatology, snowball earth geology, and present day atmospheric sciences are presented. PMID:24167299

  20. Modeling aqueous perchlorate chemistries with applications to Mars

    NASA Astrophysics Data System (ADS)

    Marion, G. M.; Catling, D. C.; Zahnle, K. J.; Claire, M. W.

    2010-06-01

    NASA's Phoenix lander identified perchlorate and carbonate salts on Mars. Perchlorates are rare on Earth, and carbonates have largely been ignored on Mars following the discovery by NASA's Mars Exploration Rovers of acidic precipitated minerals such as jarosite. In light of the Phoenix results, we updated the aqueous thermodynamic model FREZCHEM to include perchlorate chemistry. FREZCHEM models the Na-K-Mg-Ca-Fe(II)-Fe(III)-Al-H-Cl-Br-SO 4-NO 3-OH-HCO 3-CO 3-CO 2-O 2-CH 4-Si-H 2O system, with 95 solid phases. We added six perchlorate salts: NaClO 4·H 2O, NaClO 4·2H 2O, KClO 4, Mg(ClO 4) 2·6H 2O, Mg(ClO 4) 2·8H 2O, and Ca(ClO 4) 2·6H 2O. Modeled eutectic temperatures for Na, Mg, and Ca perchlorates ranged from 199 K (-74 °C) to 239 K (-34 °C) in agreement with experimental data. We applied FREZCHEM to the average solution chemistry measured by the Wet Chemistry Laboratory (WCL) experiment at the Phoenix site when soil was added to water. FREZCHEM was used to estimate SO42- and alkalinity concentrations that were missing from the WCL data. The amount of SO42- is low compared to estimates from elemental abundance made by other studies on Mars. In the charge-balanced solution, the dominant cations were Mg 2+ and Na + and the dominant anions were ClO4-,SO42-, and alkalinity. The abundance of calcite measured at the Phoenix site has been used to infer that the soil may have been subject to liquid water in the past, albeit not necessarily locally; so we used FREZCHEM to evaporate (at 280.65 K) and freeze (from 280.65 to 213.15 K) the WCL-measured solution to provide insight into salts that may have been in the soil. Salts that precipitated under both evaporation and freezing were calcite, hydromagnesite, gypsum, KClO 4, and Mg(ClO 4) 2·8H 2O. Epsomite (MgSO 4·7H 2O) and NaClO 4·H 2O were favored by evaporation at temperatures >0 °C, while meridianite (MgSO 4·11H 2O), MgCl 2·12H 2O, and NaClO 4·2H 2O were favored at subzero temperatures. Incongruent melting

  1. Modeling hot spring chemistries with applications to martian silica formation

    USGS Publications Warehouse

    Marion, G.M.; Catling, D.C.; Crowley, J.K.; Kargel, J.S.

    2011-01-01

    Many recent studies have implicated hydrothermal systems as the origin of martian minerals across a wide range of martian sites. Particular support for hydrothermal systems include silica (SiO2) deposits, in some cases >90% silica, in the Gusev Crater region, especially in the Columbia Hills and at Home Plate. We have developed a model called CHEMCHAU that can be used up to 100??C to simulate hot springs associated with hydrothermal systems. The model was partially derived from FREZCHEM, which is a colder temperature model parameterized for broad ranges of temperature (<-70 to 25??C), pressure (1-1000 bars), and chemical composition. We demonstrate the validity of Pitzer parameters, volumetric parameters, and equilibrium constants in the CHEMCHAU model for the Na-K-Mg-Ca-H-Cl-ClO4-SO4-OH-HCO3-CO3-CO2-O2-CH4-Si-H2O system up to 100??C and apply the model to hot springs and silica deposits.A theoretical simulation of silica and calcite equilibrium shows how calcite is least soluble with high pH and high temperatures, while silica behaves oppositely. Such influences imply that differences in temperature and pH on Mars could lead to very distinct mineral assemblages. Using measured solution chemistries of Yellowstone hot springs and Icelandic hot springs, we simulate salts formed during the evaporation of two low pH cases (high and low temperatures) and a high temperature, alkaline (high pH) sodic water. Simulation of an acid-sulfate case leads to precipitation of Fe and Al minerals along with silica. Consistency with martian mineral assemblages suggests that hot, acidic sulfate solutions are plausibility progenitors of minerals in the past on Mars. In the alkaline pH (8.45) simulation, formation of silica at high temperatures (355K) led to precipitation of anhydrous minerals (CaSO4, Na2SO4) that was also the case for the high temperature (353K) low pH case where anhydrous minerals (NaCl, CaSO4) also precipitated. Thus we predict that secondary minerals associated with

  2. Synchrotron radiation applications in medical research

    SciTech Connect

    Thomlinson, W.

    1995-12-31

    The medical projects employing synchrotron radiation as discussed in this paper are, for the most part, still in their infancies and no one can predict the direction in which they will develop. Both the basic research and applied medical programs are sure to be advanced at the new facilities coming on line, especially the ESRF and Spring- 8. However, success is not guaranteed. There is a lot of competition from advances in conventional imaging with the development of digital angiography, computed tomography, functional magnetic resonance imaging and ultrasound. The synchrotron programs will have to provide significant advantages over these modalities in order to be accepted by the medical profession. Advances in image processing and potentially the development of compact sources will be required in order to move the synchrotron developed imaging technologies into the clinical world. In any event, it can be expected that the images produced by the synchrotron technologies will establish ``gold standards`` to be targeted by conventional modalities. A lot more work needs to be done in order to bring synchrotron radiation therapy and surgery to the level of human studies and, subsequently, to clinical applications.

  3. Nuclear Cross Sections for Space Radiation Applications

    NASA Technical Reports Server (NTRS)

    Werneth, C. M.; Maung, K. M.; Ford, W. P.; Norbury, J. W.; Vera, M. D.

    2015-01-01

    The eikonal, partial wave (PW) Lippmann-Schwinger, and three-dimensional Lippmann-Schwinger (LS3D) methods are compared for nuclear reactions that are relevant for space radiation applications. Numerical convergence of the eikonal method is readily achieved when exact formulas of the optical potential are used for light nuclei (A = 16) and the momentum-space optical potential is used for heavier nuclei. The PW solution method is known to be numerically unstable for systems that require a large number of partial waves, and, as a result, the LS3D method is employed. The effect of relativistic kinematics is studied with the PW and LS3D methods and is compared to eikonal results. It is recommended that the LS3D method be used for high energy nucleon-nucleus reactions and nucleus-nucleus reactions at all energies because of its rapid numerical convergence and stability for both non-relativistic and relativistic kinematics.

  4. Novel applications of light hydrocarbons chemistry in petroleum exploration

    SciTech Connect

    Mango, F.D. )

    1991-03-01

    The light hydrocarbons in petroleum are products of a kerogen-specific catalytic process. The catalysts are believed to be the transition metals entrained in kerogen. The process is controlled by the metals in the active sites and the kerogenous organic structures surrounding the active sites. Different catalytic sites are suggested to yield distinct distributions of light hydrocarbons. The author recognizes three dominant (primary) distributions, with all other distributions adequately represented by some linear combination of the three primary distributions. Three catalytic sites, therefore, can be associated with the generation of light hydrocarbons. He introduces a simple and inexpensive procedure using cross plots of various product ratios to correlate oils and source rocks. It has proven to be a remarkably articulate and powerful tool for deconvoluting diverse oils into genetic groups. The light hydrocarbons are also indicators of oil-generation temperature and other physical parameters associated with oil generation. The analysis of light hydrocarbons from this perspective is new. It provides the exploration geochemist with a novel technique for gaining insight into the fundamental chemistry of petroleum generation.

  5. Application of ILDM for Simplifying Complex Plasma Chemistry

    NASA Astrophysics Data System (ADS)

    Rehman, Tafizur; Peerenboom, Kim; Kemaneci, Efe; Graef, Wouter; van Dijk, Jan

    2015-09-01

    Numerical simulation of plasma models involving large numbers of species and reactions is computationally very expensive. One of the solutions to overcome the problem due to complex chemistry is to employ Chemical Reduction Techniques(CRT) used in combustion research. The CRT we apply here is ILDM (Intrinsic Low Dimensional Manifold). ILDM simply uses the fact that, due to wildly varying time scales, the reaction system is not evenly sensitive to all the reactions but some reactions are very fast and attain steady state in a very short interval of time. Based on this information ILDM method finds the lower dimensional space (manifold) inside a complete state-space such that after a short interval of time the fast time scales of the system will quickly move onto this low dimensional manifold and the full system description can be given by this lower dimensional manifold. By constructing the low dimensional manifold the reaction space is described in terms of only a few parameters and it becomes possible to tabulate the results in terms of those few parameters. By generating the look-up table, for given values of controlling parameters the remaining parameters are found explicitly. In this work we apply the ILDM method for the reduced simulation of an argon plasma.

  6. Time-resolved CIDNP: applications to radical and biradical chemistry

    SciTech Connect

    Closs, G.L.; Miller, R.J.; Redwine, O.D.

    1985-07-01

    Nuclear magnetic resonance has long been one of the most useful tools for investigating reaction kinetics. The direct method follows resonance intensities as a function of time and correlates them with reactant or product concentrations. This approach can be applied only to slow reactions, although flow and stopped-flow techniques can reduce the time scale to approximately 10/sup -2/s. With use of line-shape analysis, kinetic measurements can be carried out under dynamic equilibrium conditions. With modern high-field spectrometers rates up to 10/sup 4/ s/sup -1/ can be measured in diamagnetic molecules. The fundamental limit for the time resolution is imposed by the weakness of the interactions of the nuclear spins with the molecular environment or the lattice. In systems containing unpaired electrons the strong hyperfine (hf) interactions allow measurements of diamagnetic-paramagnetic exchange rates up to 10/sup 10/ s/sup -1/. In this Account a new NMR method for measuring rates of irreversible reactions with a time resolution approaching 10/sup -8/ s is reviewed. This extends the previous limit for irreversible reactions by 5-6 orders of magnitude. The method is an extension of chemically induced dynamic nuclear polarization (CI-DNP) originating from radical pair chemistry via the hyperfine interaction. 25 references, 8 figures, 1 table.

  7. Biochar application during reforestation alters species present and soil chemistry.

    PubMed

    Drake, J A; Carrucan, A; Jackson, W R; Cavagnaro, T R; Patti, A F

    2015-05-01

    Reforestation of landscapes is being used as a method for tackling climate change through carbon sequestration and land restoration, as well as increasing biodiversity and improving the provision of ecosystem services. The success of reforestation activities can be reduced by adverse field conditions, including those that reduce germination and survival of plants. One method for improving success is biochar addition to soil, which is not only known to improve soil carbon sequestration, but is also known to improve growth, health, germination and survival of plants. In this study, biochar was applied to soil at rates of 0, 1, 3 and 6 t ha(-1) along with a direct-seed forest species mix at three sites in western Victoria, Australia. Changes in soil chemistry, including total carbon, and germination and survival of species were measured over an 18 month period. Biochar was found to significantly increase total carbon by up to 15.6% on soils low in carbon, as well as alter electrical conductivity, Colwell phosphorous and nitrate- and ammonium-nitrogen. Biochar also increased the number of species present, and stem counts of Eucalyptus species whilst decreasing stem counts of Acacia species. Biochar has the potential to positively benefit reforestation activities, but site specific and plant-soil-biochar responses require targeted research. PMID:25679816

  8. Effect of gamma radiation on groundwater chemistry and glass leaching as related to the NNWSI repository site

    SciTech Connect

    Abrajano, T.; Bates, J.; Ebert, W.; Gerding, T.

    1986-05-01

    To address the effect of ionizing radiation on groundwater chemistry and waste form durability, NNWSI is performing an extensive set of experiments as a function of dose rate (2 x 10{sup 5}, 1 x 10{sup 4}, 1 x 10{sup 3}, and 0 rad/h). The results of the tests done at 2 x 10{sup 5} rad/h have been reported, while the 1 x 10{sup 3} and 0 rad/h tests are in progress. This paper presents an overview of the results of the tests done at 1 x 10{sup 4} rad/h and discusses the relevance of these tests to repository conditions. An interpretation of the results relating to the manner by which the glass waste form corrodes is presented elsewhere. A complete discussion of the effect of gamma radiation on groundwater chemistry and waste form durability will be presented when the series of experiments are complete.

  9. Click Chemistry Mediated Functionalization of Vertical Nanowires for Biological Applications.

    PubMed

    Vutti, Surendra; Schoffelen, Sanne; Bolinsson, Jessica; Buch-Månson, Nina; Bovet, Nicolas; Nygård, Jesper; Martinez, Karen L; Meldal, Morten

    2016-01-11

    Semiconductor nanowires (NWs) are gaining significant importance in various biological applications, such as biosensing and drug delivery. Efficient and controlled immobilization of biomolecules on the NW surface is crucial for many of these applications. Here, we present for the first time the use of the Cu(I) -catalyzed alkyne-azide cycloaddition and its strain-promoted variant for the covalent functionalization of vertical NWs with peptides and proteins. The potential of the approach was demonstrated in two complementary applications of measuring enzyme activity and protein binding, which is of general interest for biological studies. The attachment of a peptide substrate provided NW arrays for the detection of protease activity. In addition, green fluorescent protein was immobilized in a site-specific manner and recognized by antibody binding to demonstrate the proof-of-concept for the use of covalently modified NWs for diagnostic purposes using minute amounts of material. PMID:26601641

  10. Uniqueness of Zinc as a Bioelement: Principles and Applications in Bioinorganic Chemistry--III.

    ERIC Educational Resources Information Center

    Ochiai, Ei-Ichiro

    1988-01-01

    Attempts to delineate certain basic principles and applications of bioinorganic chemistry to oxidation-reduction reactions. Examines why zinc(II) is so uniquely suited to enzymated reactions of the acid-base type. Suggests the answer may be in the natural abundance and the basic physicochemical properties of zinc(II). (MVL)

  11. Computer-Assisted Instruction in Undergraduate Organic Chemistry: Design, Application, and Evaluation. Technical Report 10.

    ERIC Educational Resources Information Center

    Culp, George

    The computer-assisted instruction (CAI) program in undergraduate organic chemistry at the University of Texas was evaluated by an experimental design in 1969 and found to be successful. This report discusses in detail the formation of the design, its application, and the method of evaluation. The program itself included 15 teaching modules that…

  12. RESEARCH STRATEGIES FOR THE APPLICATION OF THE TECHNIQUES OF COMPUTATIONAL BIOLOGICAL CHEMISTRY TO ENVIRONMENTAL PROBLEMS

    EPA Science Inventory

    On October 25 and 26, 1984, the U.S. EPA sponsored a workshop to consider the potential applications of the techniques of computational biological chemistry to problems in environmental health. Eleven extramural scientists from the various related disciplines and a similar number...

  13. Molecular radiation - Its application in physical measurements and analyses

    NASA Technical Reports Server (NTRS)

    1969-01-01

    Specialists Conference held at Marshall Space Flight Center reviewed work in molecular radiation to evaluate research possibilities in this field. Topics included spectral-line studies in the labortory, application to practical heat transfer calculations of radiative transfer models, and use of measured radiation properties of gases.

  14. Polyglycerol dendrimers immobilized on radiation grafted poly-HEMA hydrogels: Surface chemistry characterization and cell adhesion

    NASA Astrophysics Data System (ADS)

    Higa, Olga Z.; Faria, Henrique Antonio Mendonça; de Queiroz, Alvaro A. A.

    2014-05-01

    Radiation induced grafting of poly(2-hydroxyethylmethacrylate) (PHEMA) on low density polyethylene (LDPE) films and subsequent immobilization of poly(glycerol) dendrimer (PGLD) has been performed with the aim to improve cell adhesion and proliferation on the surface of the polymer, in order to enhance their properties for bone tissue engineering scaffolding applications. Radiation grafting of PHEMA onto LDPE was promoted by γ-ray radiation. The covalent immobilization of PGLD on LDPE-g-PHEMA surface was performed by using a dicyclohexyl carbodiimide (DCC)/N,N-dimethylaminopyridine (DMAP) method. The occurrence of grafting polymerization of PHEMA and further immobilization of PGLD was quantitatively confirmed by photoelectron spectroscopy (XPS) and fluorescence, respectively. The LDPE-g-PHEMA surface topography after PGLD coupling was studied by atomic force microscopy (AFM). The hydrophilicity of the LDPE-g-PHEMA film was remarkably improved compared to that of the ungrafted LDPE. The core level XPS ESCA spectrum of PHEMA-grafted LDPE showed two strong peaks at 286.6 eV (from hydroxyl groups and ester groups) and 289.1 eV (from ester groups) due to PHEMA brushes grafted onto LDPE surfaces. The results from the cell adhesion studies show that MCT3-E1 cells tended to spread more slowly on the LDPE-g-PHEMA than on the LDPE-g-PHEMA-i-PGLD.

  15. Aerosols, Chemistry, and Radiative Forcing: A 3-D Model Analysis of Satellite and ACE-Asia data (ACMAP)

    NASA Technical Reports Server (NTRS)

    Chin, Mian; Ginoux, Paul; Torres, Omar; Zhao, Xue-Peng

    2005-01-01

    We propose a research project to incorporate a global 3-D model and satellite data into the multi-national Aerosol Characterization Experiment-Asia (ACE-Asia) mission. Our objectives are (1) to understand the physical, chemical, and optical properties of aerosols and the processes that control those properties over the Asian-Pacific region, (2) to investigate the interaction between aerosols and tropospheric chemistry, and (3) to determine the aerosol radiative forcing over the Asia-Pacific region. We will use the Georgia TecWGoddard Global Ozone Chemistry Aerosol Radiation and Transport (GOCART) model to link satellite observations and the ACE-Asia measurements. First, we will use the GOCART model to simulate aerosols and related species, and evaluate the model with satellite and in-situ observations. Second, the model generated aerosol vertical profiles and compositions will be used to validate the satellite products; and the satellite data will be used for during- and post- mission analysis. Third, we will use the model to analyze and interpret both satellite and ACE- Asia field campaign data and investigate the aerosol-chemistry interactions. Finally, we will calculate aerosol radiative forcing over the Asian-Pacific region, and assess the influence of Asian pollution in the global atmosphere. We propose a research project to incorporate a global 3-D model and satellite data into

  16. Analytical Applications of NMR: Summer Symposium on Analytical Chemistry.

    ERIC Educational Resources Information Center

    Borman, Stuart A.

    1982-01-01

    Highlights a symposium on analytical applications of nuclear magnetic resonance spectroscopy (NMR), discussing pulse Fourier transformation technique, two-dimensional NMR, solid state NMR, and multinuclear NMR. Includes description of ORACLE, an NMR data processing system at Syracuse University using real-time color graphics, and algorithms for…

  17. See the Light! A Nice Application of Calculus to Chemistry

    ERIC Educational Resources Information Center

    Boersma, Stuart; McGowan, Garrett

    2007-01-01

    Some simple modeling with Riemann sums can be used to develop Beer's Law, which describes the relationship between the absorbance of light and the concentration of the solution which the light is penetrating. A further application of the usefulness of Beer's Law in creating calibration curves is also presented. (Contains 3 figures.)

  18. Anisotropic conducting films for electromagnetic radiation applications

    DOEpatents

    Cavallo, Francesca; Lagally, Max G.; Rojas-Delgado, Richard

    2015-06-16

    Electronic devices for the generation of electromagnetic radiation are provided. Also provided are methods for using the devices to generate electromagnetic radiation. The radiation sources include an anisotropic electrically conducting thin film that is characterized by a periodically varying charge carrier mobility in the plane of the film. The periodic variation in carrier mobility gives rise to a spatially varying electric field, which produces electromagnetic radiation as charged particles pass through the film.

  19. Recent applications of carbon-based nanomaterials in analytical chemistry: critical review.

    PubMed

    Scida, Karen; Stege, Patricia W; Haby, Gabrielle; Messina, Germán A; García, Carlos D

    2011-04-01

    The objective of this review is to provide a broad overview of the advantages and limitations of carbon-based nanomaterials with respect to analytical chemistry. Aiming to illustrate the impact of nanomaterials on the development of novel analytical applications, developments reported in the 2005-2010 period have been included and divided into sample preparation, separation, and detection. Within each section, fullerenes, carbon nanotubes, graphene, and composite materials will be addressed specifically. Although only briefly discussed, included is a section highlighting nanomaterials with interesting catalytic properties that can be used in the design of future devices for analytical chemistry. PMID:21458626

  20. Recent Applications of Carbon-Based Nanomaterials in Analytical Chemistry: Critical Review

    PubMed Central

    Scida, Karen; Stege, Patricia W.; Haby, Gabrielle; Messina, Germán A.; García, Carlos D.

    2011-01-01

    The objective of this review is to provide a broad overview of the advantages and limitations of carbon-based nanomaterials with respect to analytical chemistry. Aiming to illustrate the impact of nanomaterials on the development of novel analytical applications, developments reported in the 2005–2010 period have been included and divided into sample preparation, separation, and detection. Within each section, fullerenes, carbon nanotubes, graphene, and composite materials will be addressed specifically. Although only briefly discussed, included is a section highlighting nanomaterials with interesting catalytic properties that can be used in the design of future devices for analytical chemistry. PMID:21458626

  1. Amphiphile nanoarchitectonics: from basic physical chemistry to advanced applications.

    PubMed

    Ramanathan, Muruganathan; Shrestha, Lok Kumar; Mori, Taizo; Ji, Qingmin; Hill, Jonathan P; Ariga, Katsuhiko

    2013-07-14

    Amphiphiles, either synthetic or natural, are structurally simple molecules with the unprecedented capacity to self-assemble into complex, hierarchical geometries in nanospace. Effective self-assembly processes of amphiphiles are often used to mimic biological systems, such as assembly of lipids and proteins, which has paved a way for bottom-up nanotechnology with bio-like advanced functions. Recent developments in nanostructure formation combine simple processes of assembly with the more advanced concept of nanoarchitectonics. In this perspective, we summarize research on self-assembly of amphiphilic molecules such as lipids, surfactants or block copolymers that are a focus of interest for many colloid, polymer, and materials scientists and which have become increasingly important in emerging nanotechnology and practical applications, latter of which are often accomplished by amphiphile-like polymers. Because the fundamental science of amphiphiles was initially developed for their solution assembly then transferred to assemblies on surfaces as a development of nanotechnological techniques, this perspective attempts to mirror this development by introducing solution systems and progressing to interfacial systems, which are roughly categorized as (i) basic properties of amphiphiles, (ii) self-assembly of amphiphiles in bulk phases, (iii) assembly on static surfaces, (iv) assembly at dynamic interfaces, and (v) advanced topics from simulation to application. This progression also represents the evolution of amphiphile science and technology from simple assemblies to advanced assemblies to nanoarchitectonics. PMID:23639971

  2. Comparison of satellite-based instantaneous radiative forcing of tropospheric ozone to four global chemistry climate models

    NASA Astrophysics Data System (ADS)

    Aghedo, A. M.; Bowman, K. W.; Worden, H. M.; Shindell, D. T.; Faluvegi, G.; Lamarque, J.; Kulawik, S. S.; Parrington, M.; Horowitz, L. W.; Jones, D. B.; Rast, S.; Schultz, M. G.; Pozzoli, L.

    2009-12-01

    Radiative forcing is the perturbation to the Earth's radiation balance from changes in an atmospheric constituent. Ozone is a radiatively significant atmospheric species through its absorption of both shortwave and longwave radiation. Driven primarily by longwave absorption in the troposphere, ozone exerts the third largest positive radiative forcing, following carbon dioxide and methane, with an estimate of 0.35 W/m2 (0.25 - 0.65 W/m2) according to the fourth assessment report of the Intergovernmental Panel on Climate Change (IPCC AR4), Climate Change 2007. We use the spectrally resolved outgoing longwave radiation sensitivity to tropospheric ozone from the Tropospheric Emissions Spectrometer (TES) measurements to calculate the three-dimensional instantaneous radiative forcing (IRF) kernel under all-sky conditions in August 2006. These kernels were applied to ozone concentration calculated by four different state-of-the-art global chemistry-climate models, which are AM2-Chem, CAM-Chem, ECHAM5-MOZ and G-PUCCINI, to provide an observation-based estimate of model IRF. Primary differences in IRF are due to varying estimate of sub-tropical and upper tropospheric ozone concentration, leading to model tropospheric IRF bias of between -0.4 to +0.7 W/m2. We show that the multi-model ensemble average IRF values are closest to TES estimate.

  3. RITRACKS: A Software for Simulation of Stochastic Radiation Track Structure, Micro and Nanodosimetry, Radiation Chemistry and DNA Damage for Heavy Ions

    NASA Technical Reports Server (NTRS)

    Plante, I; Wu, H

    2014-01-01

    The code RITRACKS (Relativistic Ion Tracks) has been developed over the last few years at the NASA Johnson Space Center to simulate the effects of ionizing radiations at the microscopic scale, to understand the effects of space radiation at the biological level. The fundamental part of this code is the stochastic simulation of radiation track structure of heavy ions, an important component of space radiations. The code can calculate many relevant quantities such as the radial dose, voxel dose, and may also be used to calculate the dose in spherical and cylindrical targets of various sizes. Recently, we have incorporated DNA structure and damage simulations at the molecular scale in RITRACKS. The direct effect of radiations is simulated by introducing a slight modification of the existing particle transport algorithms, using the Binary-Encounter-Bethe model of ionization cross sections for each molecular orbitals of DNA. The simulation of radiation chemistry is done by a step-by-step diffusion-reaction program based on the Green's functions of the diffusion equation]. This approach is also used to simulate the indirect effect of ionizing radiation on DNA. The software can be installed independently on PC and tablets using the Windows operating system and does not require any coding from the user. It includes a Graphic User Interface (GUI) and a 3D OpenGL visualization interface. The calculations are executed simultaneously (in parallel) on multiple CPUs. The main features of the software will be presented.

  4. Computational chemistry for graphene-based energy applications: progress and challenges

    NASA Astrophysics Data System (ADS)

    Hughes, Zak E.; Walsh, Tiffany R.

    2015-04-01

    Research in graphene-based energy materials is a rapidly growing area. Many graphene-based energy applications involve interfacial processes. To enable advances in the design of these energy materials, such that their operation, economy, efficiency and durability is at least comparable with fossil-fuel based alternatives, connections between the molecular-scale structure and function of these interfaces are needed. While it is experimentally challenging to resolve this interfacial structure, molecular simulation and computational chemistry can help bridge these gaps. In this Review, we summarise recent progress in the application of computational chemistry to graphene-based materials for fuel cells, batteries, photovoltaics and supercapacitors. We also outline both the bright prospects and emerging challenges these techniques face for application to graphene-based energy materials in future.

  5. Azadipyrromethenes: from traditional dye chemistry to leading edge applications.

    PubMed

    Ge, Yuan; O'Shea, Donal F

    2016-07-21

    Azadipyrromethenes were first described over 70 years ago as blue pigments, but now are rapidly emerging as a compound class with highly desirable near infrared photophysical properties. Since the turn of the century several routes to azadipyrromethenes have been developed and numerous post-synthesis derivatizations have allowed for their exploitation in both biological and material sciences. The relative ease of access to specifically designed derivatives is now allowing their use in multiple technological formats from real-time fluorescence imaging, to solar energy materials, to optoelectronic devices and many more. In this review we have highlighted the synthetic component of this story as it is the ability to generate the designer azadipyrromethene that opens the door to exciting applications. PMID:27181703

  6. Application of the organic on water reactions to prebiotic chemistry

    NASA Astrophysics Data System (ADS)

    Kolb, Vera M.

    2012-10-01

    The old view that prebiotic reactions in water are hampered by the low solubility of the organic compounds in water is now being revised due to the discoveries of the reactions "on water". These reactions occur in the heterogeneous system comprising of the organic compounds and water. Unexpectedly, such reactions are extremely efficient; they often give quantitative yields, and are accelerated in the presence of water as compared to the organic solvents. These "on water" reactions are not the same as the "in water" reactions, which occur in solution, and are thus homogenous. Examples of the "on water" reactions include Diels-Alder, Claisen, Passerini and Ugi reactions, among many others. Some of these reactions are multicomponent, but give a single product. We survey a selected number of the "on water" reactions, which have a potential prebiotic applications.

  7. he Impact of Primary Marine Aerosol on Atmospheric Chemistry, Radiation and Climate: A CCSM Model Development Study

    SciTech Connect

    Keene, William C.; Long, Michael S.

    2013-05-20

    This project examined the potential large-scale influence of marine aerosol cycling on atmospheric chemistry, physics and radiative transfer. Measurements indicate that the size-dependent generation of marine aerosols by wind waves at the ocean surface and the subsequent production and cycling of halogen-radicals are important but poorly constrained processes that influence climate regionally and globally. A reliable capacity to examine the role of marine aerosol in the global-scale atmospheric system requires that the important size-resolved chemical processes be treated explicitly. But the treatment of multiphase chemistry across the breadth of chemical scenarios encountered throughout the atmosphere is sensitive to the initial conditions and the precision of the solution method. This study examined this sensitivity, constrained it using high-resolution laboratory and field measurements, and deployed it in a coupled chemical-microphysical 3-D atmosphere model. First, laboratory measurements of fresh, unreacted marine aerosol were used to formulate a sea-state based marine aerosol source parameterization that captured the initial organic, inorganic, and physical conditions of the aerosol population. Second, a multiphase chemical mechanism, solved using the Max Planck Institute for Chemistry's MECCA (Module Efficiently Calculating the Chemistry of the Atmosphere) system, was benchmarked across a broad set of observed chemical and physical conditions in the marine atmosphere. Using these results, the mechanism was systematically reduced to maximize computational speed. Finally, the mechanism was coupled to the 3-mode modal aerosol version of the NCAR Community Atmosphere Model (CAM v3.6.33). Decadal-scale simulations with CAM v.3.6.33, were run both with and without reactive-halogen chemistry and with and without explicit treatment of particulate organic carbon in the marine aerosol source function. Simulated results were interpreted (1) to evaluate influences of

  8. Amphiphile nanoarchitectonics: from basic physical chemistry to advanced applications

    SciTech Connect

    Ramanathan, Nathan Muruganathan; Shrestha, Lok Kumar; Mori, Taizo; Ji, Dr. Qingmin; Hill, Dr. Jonathan P; Ariga, Katsuhiko

    2013-01-01

    Amphiphiles, either synthetic or natural, are structurally simple molecules with the unprecedented capacity to self-assemble into complex, hierarchical geometries in nanospace. Effective self-assembly processes of amphiphiles are often used to mimic biological systems, such as, assembly of lipids and proteins, which has paved a way for bottom-up nanotechnology with bio-like advanced functions. Recent developments on nanostructure formation combine simple processes of assembly with the more advanced concept of nanoarchitectonics. In this pespective, we summarize research on self-assembly of amphiphilic molecules such as lipids, surfactants or block copolymers that are a focus of interest for many colloid, polymer, and materials scientists and which have become increasingly important in emerging nanotechnology. Because the fundamental science of amphiphiles was initially developed for their solution assembly then transferred to assemblies on surfaces as a development of nanotechnological technique, this perspective attempts to mirro this development by introducing solution systems and progressing to interfacial systems, which are roughly categorized as (i) basic properties of amphiphiles, (ii) self-assembly of amphiphiles in bulk phases, (iii) assembly on static surfaces, (iv) assembly at dynamic interfaces, and (v) advanced topics from simulation to application. This progression also represents the evolution of amphiphile science and technology from simple assemblies to advanced assemblies to nanoarchitectonics.

  9. The role of IAEA in coordinating research and transferring technology in radiation chemistry and processing of polymers

    NASA Astrophysics Data System (ADS)

    Haji-Saeid, M.; Sampa, M. H.; Ramamoorthy, N.; Güven, O.; Chmielewski, A. G.

    2007-12-01

    The IAEA has been playing a significant role in fostering developments in radiation technology in general and radiation processing of polymers in particular, among its Member States (MS) and facilitate know-how/technology transfer to developing MS. The former is usually achieved through coordinated research projects (CRP) and thematic technical meetings, while the latter is mainly accomplished through technical cooperation (TC) projects. Coordinated research projects encourage research on, and development and practical application of, radiation technology to foster exchange of scientific and technical information. The technical cooperation (TC) programme helps Member States to realize their development priorities through the application of appropriate radiation technology. The IAEA has implemented several coordinated research projects (CRP) recently, including one on-going project, in the field of radiation processing of polymeric materials. The CRPs facilitated the acquisition and dissemination of know-how and technology for controlling of degradation effects in radiation processing of polymers, radiation synthesis of stimuli-responsive membranes, hydrogels and absorbents for separation purposes and the use of radiation processing to prepare biomaterials for applications in medicine. The IAEA extends cooperation to well-known international conferences dealing with radiation technology to facilitate participation of talented scientists from developing MS and building collaborations. The IAEA published technical documents, covering the findings of thematic technical meetings (TM) and coordinated research projects have been an important source of valuable practical information.

  10. Production of superparamagnetic nanobiocatalysts for green chemistry applications.

    PubMed

    Gasser, Christoph A; Ammann, Erik M; Schäffer, Andreas; Shahgaldian, Patrick; Corvini, Philippe F-X

    2016-08-01

    Immobilization of enzymes on solid supports is a convenient method for increasing enzymatic stability and enabling enzyme reuse. In the present work, a sorption-assisted surface conjugation method was developed and optimized to immobilize enzymes on the surface of superparamagnetic nanoparticles. An oxidative enzyme, i.e., laccase from Trametes versicolor was used as model enzyme. The immobilization method consists of the production of superparamagnetic nanoparticles by co-precipitation of FeCl2 and FeCl3. Subsequently, the particle surface is modified with an organosilane containing an amino group. Next, the enzymes are adsorbed on the particle surface before a cross-linking agent, i.e., glutaraldehyde is added which links the amino groups on the particle surface with the amino groups of the enzymes and leads to internal cross-linking of the enzymes as well. The method was optimized using response surface methodology regarding optimal enzyme and glutaraldehyde amounts, pH, and reaction times. Results allowed formulation of biocatalysts having high specific enzymatic activity and improved stability. The biocatalysts showed considerably higher stability compared with the dissolved enzymes over a pH range from 3 to 9 and in the presence of several chemical denaturants. To demonstrate the reusability of the immobilized enzymes, they were applied as catalysts for the production of a phenoxazinone dye. Virtually, 100 % of the precursor was transformed to the dye in each of the ten conducted reaction cycles while on average 84.5 % of the enzymatic activity present at the beginning of a reaction cycle was retained after each cycle highlighting the considerable potential of superparamagnetic biocatalysts for application in industrial processes. PMID:27106914

  11. Introducing chemical biology applications to introductory organic chemistry students using series of weekly assignments.

    PubMed

    Kanin, Maralee R; Pontrello, Jason K

    2016-01-01

    Calls to bring interdisciplinary content and examples into introductory science courses have increased, yet strategies that involve course restructuring often suffer from the need for a significant faculty commitment to motivate change. Minimizing the need for dramatic course reorganization, the structure, reactivity, and chemical biology applications of classes of biological monomers and polymers have been integrated into introductory organic chemistry courses through three series of semester-long weekly assignments that explored (a) Carbohydrates and Oligosaccharides, (b) Amino Acids, Peptides, and Proteins, and (c) Nucleosides, Nucleotides, and Nucleic Acids. Comparisons of unannounced pre- and post tests revealed improved understanding of a reaction introduced in the assignments, and course examinations evaluated cumulative assignment topics. Course surveys revealed that demonstrating biologically relevant applications consistently throughout the semesters enhanced student interest in the connection between basic organic chemistry content and its application to new and unfamiliar bio-related examples. Covering basic material related to these classes of molecules outside of the classroom opened lecture time to allow the instructor to further build on information developed through the weekly assignments, teaching advanced topics and applications typically not covered in an introductory organic chemistry lecture course. Assignments were implemented as homework, either with or without accompanying discussion, in both laboratory and lecture organic courses within the context of the existing course structures. PMID:26560414

  12. The Lampedusa supersite of ChArMex: observing aerosol-radiation interactions and gas phase chemistry in the Mediterranean

    NASA Astrophysics Data System (ADS)

    Formenti, Paola; di Sarra, Alcide Giorgio

    2014-05-01

    Within the frame of the ADRIMED (Aerosol Direct Radiative Impact in the regional climate in the MEDiterranean region) project of the Chemistry-Aerosol Mediterranean experiment (ChArMex), the ENEA Laboratory for Climate Study "Roberto Sarao" (WMO/GAW/NDACC) on the Island of Lampedusa (35°31'N, 12°37°E) has been augmented to one of the supersites of the first phase of the Special Observing Period 1 by the measurements of the in situ properties of aerosols and trace gases by the of the PortablE Gas and Aerosol Sampling Units (PEGASUS) mobile station. The ground-based measurements have been completed by several coordinated overpasses of the ATR-42 and the F20 of SAFIRE. In this paper we present the first highlights of operations, which took place between June 6 and July 8 2013. Insights on the data provide with an unprecedented characterisation of the physico-chemical and properties aerosols and gas phase chemistry on air masses of various origins (pollution, marine, mineral dust, …..). The effect of aerosols on radiation fields is ascertained by coupling ground-based and aircraft measurements during dedicated overpasses providing with measurements of upwelling and downwelling shortwave and longwave radiation fluxes together with the properties of the aerosol load resolved on the column. Coordination with CALIPSO overpasses will also be explored.

  13. [Applications of electromagnetic radiation in medicine].

    PubMed

    Miłowska, Katarzyna; Grabowska, Katarzyna; Gabryelak, Teresa

    2014-01-01

    Recent decades have been devoted to the intense search for the response to questions related to the impact of radiation on the human body. Due to the growing fashion for a healthy lifestyle, increasing numbers of works about the alleged dangers of electromagnetic waves and diseases that they cause appeared. However, the discoveries of 20th century, and knowledge of the properties of electromagnetic radiation have allowed to broaden the horizons of the use of artificial sources of radiation in many fields of science and especially in medicine. The aim of this paper is to show that although excessive radiation or high doses are dangerous to the human body, its careful and controlled use, does not pose a threat, and it is often necessary in therapy. The possibility of using ionizing radiation in radiotherapy, isotope diagnostics or medical imaging, and non-ionizing radiation in the treatment for dermatological disorders and cancers will be presented. The unique properties of synchrotron radiation result in using it on a large scale in the diagnosis of pathological states by imaging methods. PMID:24864099

  14. Biomedical applications of radiation technology in Mexico

    NASA Astrophysics Data System (ADS)

    Martínez-Pardo, Ma. Esther; Vera-Graziano, R.; Ramos-Durón, L. E.

    1998-06-01

    Mexican Health Institutions continuously require suitable medical grade prosthetic materials for reconstructive and plastic surgery. In particular, the requirements of polydimethylsiloxane, PDMS, for soft tissue replacements are rapidly growing. In addition to molecular weight, the properties of PDMS in biomedicine strongly depend on its purity, formulation and processing. High energy radiation has been used for both the synthesis of highly pure PDMS, free of catalyst and chemicals, and for sterilization of biomedical products. Here, are discussed the gamma radiation polymerization of different siloxane precursors to obtain PDMS with specific functionality and molecular structure as well as the radiation sterilization of amniotic membranes used as wound dressing.

  15. 25th anniversary article: progress in chemistry and applications of functional indigos for organic electronics.

    PubMed

    Głowacki, Eric Daniel; Voss, Gundula; Sariciftci, Niyazi Serdar

    2013-12-17

    Indigo and its derivatives are dyes and pigments with a long and distinguished history in organic chemistry. Recently, applications of this 'old' structure as a functional organic building block for organic electronics applications have renewed interest in these molecules and their remarkable chemical and physical properties. Natural-origin indigos have been processed in fully bio-compatible field effect transistors, operating with ambipolar mobilities up to 0.5 cm(2) /Vs and air-stability. The synthetic derivative isoindigo has emerged as one of the most successful building-blocks for semiconducting polymers for plastic solar cells with efficiencies > 5%. Another isomer of indigo, epindolidione, has also been shown to be one of the best reported organic transistor materials in terms of mobility (∼2 cm(2) /Vs) and stability. This progress report aims to review very recent applications of indigoids in organic electronics, but especially to logically bridge together the hereto independent research directions on indigo, isoindigo, and other materials inspired by historical dye chemistry: a field which was the root of the development of modern chemistry in the first place. PMID:24151199

  16. Usage and applications of Semantic Web techniques and technologies to support chemistry research

    PubMed Central

    2014-01-01

    Background The drug discovery process is now highly dependent on the management, curation and integration of large amounts of potentially useful data. Semantics are necessary in order to interpret the information and derive knowledge. Advances in recent years have mitigated concerns that the lack of robust, usable tools has inhibited the adoption of methodologies based on semantics. Results This paper presents three examples of how Semantic Web techniques and technologies can be used in order to support chemistry research: a controlled vocabulary for quantities, units and symbols in physical chemistry; a controlled vocabulary for the classification and labelling of chemical substances and mixtures; and, a database of chemical identifiers. This paper also presents a Web-based service that uses the datasets in order to assist with the completion of risk assessment forms, along with a discussion of the legal implications and value-proposition for the use of such a service. Conclusions We have introduced the Semantic Web concepts, technologies, and methodologies that can be used to support chemistry research, and have demonstrated the application of those techniques in three areas very relevant to modern chemistry research, generating three new datasets that we offer as exemplars of an extensible portfolio of advanced data integration facilities. We have thereby established the importance of Semantic Web techniques and technologies for meeting Wild’s fourth “grand challenge”. PMID:24855494

  17. Surface radiation budget for climate applications

    NASA Technical Reports Server (NTRS)

    Suttles, J. T. (Editor); Ohring, G. (Editor)

    1986-01-01

    The Surface Radiation Budget (SRB) consists of the upwelling and downwelling radiation fluxes at the surface, separately determined for the broadband shortwave (SW) (0 to 5 micron) and longwave (LW) (greater than 5 microns) spectral regions plus certain key parameters that control these fluxes, specifically, SW albedo, LW emissivity, and surface temperature. The uses and requirements for SRB data, critical assessment of current capabilities for producing these data, and directions for future research are presented.

  18. Practical Applications as a Source of Credibility: A Comparison of Three Fields of Dutch Academic Chemistry.

    PubMed

    Hessels, Laurens K; van Lente, Harro

    2011-06-01

    In many Western science systems, funding structures increasingly stimulate academic research to contribute to practical applications, but at the same time the rise of bibliometric performance assessments have strengthened the pressure on academics to conduct excellent basic research that can be published in scholarly literature. We analyze the interplay between these two developments in a set of three case studies of fields of chemistry in the Netherlands. First, we describe how the conditions under which academic chemists work have changed since 1975. Second, we investigate whether practical applications have become a source of credibility for individual researchers. Indeed, this turns out to be the case in catalysis, where connecting with industrial applications helps in many steps of the credibility cycle. Practical applications yield much less credibility in environmental chemistry, where application-oriented research agendas help to acquire funding, but not to publish prestigious papers or to earn peer recognition. In biochemistry practical applications hardly help in gaining credibility, as this field is still strongly oriented at fundamental questions. The differences between the fields can be explained by the presence or absence of powerful upstream end-users, who can afford to invest in academic research with promising long term benefits. PMID:21765554

  19. Effects of enhanced UV-B radiation on plant chemistry: nutritional consequences for a specialist and generalist lagomorph.

    PubMed

    Thines, Nicole J; Shipley, Lisa A; Bassman, John H; Fellman, John K; Mattison, D Scott; Slusser, James R; Gao, Wei

    2007-05-01

    Ultraviolet-B (UV-B) radiation has been increasing in temperate latitudes in recent decades and is expected to continue rising for some time. Enhanced UV-B radiation can change plant chemistry, yet the effects of these changes on mammalian herbivores are unknown. To examine the influence of enhanced UV-B radiation on nutrition of a specialist and generalist hindgut fermenter, we measured nutritional and chemical constituents of three common North American range plants, big sagebrush (Artemisia tridentata), yarrow (Achillea millefolium), and bluebunch wheatgrass (Pseudoregneria spicata), and how these changes influenced in vitro dry matter digestibility and in vivo digestibility by pygmy rabbits (Brachylagus idahoensis) and eastern cottontails (Sylvilagus floridanus). Forages were irradiated for 3 mo with ambient (1x) or supplemental (1.6x) UV-B radiation representing a 15% ozone depletion for Pullman, WA, USA. Enhanced UV-B radiation had minimal effects on the nutritional content and the tannin-binding capacity of forages. Similarly, the terpene concentration in sagebrush and yarrow was not affected by higher UV-B irradiances. Flavonoid compounds increased in sagebrush but decreased in yarrow. Rabbit preference and intake was not affected by treatment levels for any forage species and no differences were found between treatments for dry matter, fiber, protein digestibility, and apparent digestible energy. PMID:17406969

  20. Applications of nuclear data in human radiation dosimetry

    SciTech Connect

    Kerr, G.D.; Eckerman, K.F. )

    1991-01-01

    Individuals are exposed to ionizing radiations in two ways: from radiation sources external to the body or from internal sources. In either case, the magnitude of the radiation dose to the sensitive tissues of the body is of primary concern. Radiation dose (or absorbed dose) is a physical quantity defined as the amount of ionizing energy absorbed per unit mass of material. For radiation protection purposes, however, it is also necessary to use the dose equivalent, which includes modifiers of absorbed dose to more fully reflect the biological considerations associated with different ionizing radiations. A research group at Oak Ridge National Laboratory has focused on defining the exposure-dose relationship (i.e., the relationship between radiation exposure from internal or external sources and the radiation dose received by tissues of the body). Although radiation can be readily detected and measured, it is not feasible to make direct measurements of the dose within the organs and tissues of the body. Nuclear data have been extensively used in these studies but improvements are needed in the current nuclear data base. Examples of these applications include studies dealing with (a) the application of the recommendations of Publication 26 of the International Committee on Radiological Protection in the dosimetry of internally deposited radionuclides and (b) the reassessment of radiation dosimetry for the atomic bombs in Hiroshima and Nagasaki.

  1. Radiation transport Part B: Applications with examples

    SciTech Connect

    Beutler, D.E.

    1997-06-01

    In the previous sections Len Lorence has described the need, theory, and types of radiation codes that can be applied to model the results of radiation effects tests or working environments for electronics. For the rest of this segment, the author will concentrate on the specific ways the codes can be used to predict device response or analyze radiation test results. Regardless of whether one is predicting responses in a working or test environment, the procedures are virtually the same. The same can be said for the use of 1-, 2-, or 3-dimensional codes and Monte Carlo or discrete ordinates codes. No attempt is made to instruct the student on the specifics of the code. For example, the author will not discuss the details, such as the number of meshes, energy groups, etc. that are appropriate for a discrete ordinates code. For the sake of simplicity, he will restrict himself to the 1-dimensional code CEPXS/ONELD. This code along with a wide variety of other radiation codes can be obtained form the Radiation Safety Information Computational Center (RSICC) for a nominal handling fee.

  2. Hydrothermal carbonization of biomass residuals: A comparative review of the chemistry, processes and applications of wet and dry pyrolysis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This paper reviews chemistry, processes and application of hydrothermcally carbonized biomass wastes. Potential feedstock for the hydrothermal carbonization (HTC) includes variety of the non-traditional renewable wet agricultural and municipal waste streams. Pyrolysis and HTC show a comparable calor...

  3. A two-dimensional atmospheric chemistry modeling investigation of Earth's Phanerozoic O3 and near-surface ultraviolet radiation history

    NASA Astrophysics Data System (ADS)

    Harfoot, Michael B. J.; Beerling, David J.; Lomax, Barry H.; Pyle, John A.

    2007-04-01

    We use the Cambridge two-dimensional (2-D) chemistry-radiation transport model to investigate the implications for column O3 and near-surface ultraviolet radiation (UV), of variations in atmospheric O2 content over the Phanerozoic (last 540 Myr). Model results confirm some earlier 1-D model investigations showing that global annual mean O3 column increases monotonically with atmospheric O2. Sensitivity studies indicate that changes in temperature and N2O exert a minor influence on O3 relative to O2. We reconstructed Earth's O3 history by interpolating the modeled relationship between O3 and O2 onto two Phanerozoic O2 histories. Our results indicate that the largest variation in Phanerozoic column O3 occurred between 400 and 200 Myr ago, corresponding to a rise in atmospheric O2 to ˜1.5 times the present atmospheric level (PAL) and subsequent fall to ˜0.5 PAL. The O3 response to this O2 decline shows latitudinal differences, thinning most at high latitudes (30-40 Dobson units (1 DU = 0.001 atm cm) at 66°N) and least at low latitudes (5-10 DU at 9°N) where a "self-healing" effect is evident. This O3 depletion coincides with significant increases in the near-surface biologically active UV radiation at high latitudes, +28% as weighted by the Thimijan spectral weighting function. O3 and UV changes were exacerbated when we incorporated a direct feedback of the terrestrial biosphere on atmospheric chemistry, through enhanced N2O production as the climate switched from an icehouse to a greenhouse mode. On the basis of a summary of field and laboratory experimental evidence, we suggest that these UV radiation increases may have exerted subtle rather than catastrophic effects on ecosystem processes.

  4. The effects of metallicity, UV radiation and non-equilibrium chemistry in high-resolution simulations of galaxies

    NASA Astrophysics Data System (ADS)

    Richings, A. J.; Schaye, Joop

    2016-05-01

    We present a series of hydrodynamic simulations of isolated galaxies with stellar mass of 109 M⊙. The models use a resolution of 750 M⊙ per particle and include a treatment for the full non-equilibrium chemical evolution of ions and molecules (157 species in total), along with gas cooling rates computed self-consistently using the non-equilibrium abundances. We compare these to simulations evolved using cooling rates calculated assuming chemical (including ionization) equilibrium, and we consider a wide range of metallicities and UV radiation fields, including a local prescription for self-shielding by gas and dust. We find higher star formation rates and stronger outflows at higher metallicity and for weaker radiation fields, as gas can more easily cool to a cold (few hundred Kelvin) star-forming phase under such conditions. Contrary to variations in the metallicity and the radiation field, non-equilibrium chemistry generally has no strong effect on the total star formation rates or outflow properties. However, it is important for modelling molecular outflows. For example, the mass of H2 outflowing with velocities {>}50 {km} {s}^{-1} is enhanced by a factor ˜20 in non-equilibrium. We also compute the observable line emission from C II and CO. Both are stronger at higher metallicity, while C II and CO emission are higher for stronger and weaker radiation fields, respectively. We find that C II is generally unaffected by non-equilibrium chemistry. However, emission from CO varies by a factor of ˜2-4. This has implications for the mean XCO conversion factor between CO emission and H2 column density, which we find is lowered by up to a factor ˜2.3 in non-equilibrium, and for the fraction of CO-dark molecular gas.

  5. Solid State Radiation Dosimeters for Space and Medical Applications

    NASA Technical Reports Server (NTRS)

    Buehler, Martin G. (Editor)

    1996-01-01

    This report describes the development of two radiation monitors (RADMON's) for use in detecting total radiation dose and high-energy particles. These radiation detectors are chip-size devices fabricated in 1.2 micrometer CMOS and have flown in space on both experimental and commercial spacecraft. They have been used to characterize protons and electrons in the Earth's radiation belts, particles from the Sun, and protons used for medical therapy. Having proven useful in a variety of applications, the detector is now being readied for commercialization.

  6. The application of click chemistry in the synthesis of agents with anticancer activity

    PubMed Central

    Ma, Nan; Wang, Ying; Zhao, Bing-Xin; Ye, Wen-Cai; Jiang, Sheng

    2015-01-01

    The copper(I)-catalyzed 1,3-dipolar cycloaddition between alkynes and azides (click chemistry) to form 1,2,3-triazoles is the most popular reaction due to its reliability, specificity, and biocompatibility. This reaction has the potential to shorten procedures, and render more efficient lead identification and optimization procedures in medicinal chemistry, which is a powerful modular synthetic approach toward the assembly of new molecular entities and has been applied in anticancer drugs discovery increasingly. The present review focuses mainly on the applications of this reaction in the field of synthesis of agents with anticancer activity, which are divided into four groups: topoisomerase II inhibitors, histone deacetylase inhibitors, protein tyrosine kinase inhibitors, and antimicrotubule agents. PMID:25792812

  7. Application of Improved Radiation Modeling to General Circulation Models

    SciTech Connect

    Michael J Iacono

    2011-04-07

    This research has accomplished its primary objectives of developing accurate and efficient radiation codes, validating them with measurements and higher resolution models, and providing these advancements to the global modeling community to enhance the treatment of cloud and radiative processes in weather and climate prediction models. A critical component of this research has been the development of the longwave and shortwave broadband radiative transfer code for general circulation model (GCM) applications, RRTMG, which is based on the single-column reference code, RRTM, also developed at AER. RRTMG is a rigorously tested radiation model that retains a considerable level of accuracy relative to higher resolution models and measurements despite the performance enhancements that have made it possible to apply this radiation code successfully to global dynamical models. This model includes the radiative effects of all significant atmospheric gases, and it treats the absorption and scattering from liquid and ice clouds and aerosols. RRTMG also includes a statistical technique for representing small-scale cloud variability, such as cloud fraction and the vertical overlap of clouds, which has been shown to improve cloud radiative forcing in global models. This development approach has provided a direct link from observations to the enhanced radiative transfer provided by RRTMG for application to GCMs. Recent comparison of existing climate model radiation codes with high resolution models has documented the improved radiative forcing capability provided by RRTMG, especially at the surface, relative to other GCM radiation models. Due to its high accuracy, its connection to observations, and its computational efficiency, RRTMG has been implemented operationally in many national and international dynamical models to provide validated radiative transfer for improving weather forecasts and enhancing the prediction of global climate change.

  8. Impact of Climate Change on Soil and Groundwater Chemistry Subject to Process Waste Land Application

    NASA Astrophysics Data System (ADS)

    McNab, W. W.

    2013-12-01

    Nonhazardous aqueous process waste streams from food and beverage industry operations are often discharged via managed land application in a manner designed to minimize impacts to underlying groundwater. Process waste streams are typically characterized by elevated concentrations of solutes such as ammonium, organic nitrogen, potassium, sodium, and organic acids. Land application involves the mixing of process waste streams with irrigation water which is subsequently applied to crops. The combination of evapotranspiration and crop salt uptake reduces the downward mass fluxes of percolation water and salts. By carefully managing application schedules in the context of annual climatological cycles, growing seasons, and process requirements, potential adverse environmental impacts to groundwater can be mitigated. However, climate change poses challenges to future process waste land application efforts because the key factors that determine loading rates - temperature, evapotranspiration, seasonal changes in the quality and quantity of applied water, and various crop factors - are all likely to deviate from current averages. To assess the potential impact of future climate change on the practice of land application, coupled process modeling entailing transient unsaturated fluid flow, evapotranspiration, crop salt uptake, and multispecies reactive chemical transport was used to predict changes in salt loading if current practices are maintained in a warmer, drier setting. As a first step, a coupled process model (Hydrus-1D, combined with PHREEQC) was calibrated to existing data sets which summarize land application loading rates, soil water chemistry, and crop salt uptake for land disposal of process wastes from a food industry facility in the northern San Joaquin Valley of California. Model results quantify, for example, the impacts of evapotranspiration on both fluid flow and soil water chemistry at shallow depths, with secondary effects including carbonate mineral

  9. Nonequilibrium radiation and chemistry models for aerocapture vehicle flowfields, volume 1

    NASA Technical Reports Server (NTRS)

    Carlson, Leland A.

    1991-01-01

    The following subject areas are covered: the development of detailed nonequilibrium radiation models for molecules along with appropriate models for atoms; the inclusion of nongray radiation gasdynamic coupling in the VSL (Viscous Shock Layer) code; the development and evaluation of various electron-electronic energy models; and an examination of the effects of shock slip.

  10. Specialty fiber optic applications for harsh and high radiation environments

    NASA Astrophysics Data System (ADS)

    Risch, Brian G.

    2015-05-01

    Since the first commercial introduction in the 1980s, optical fiber technology has undergone an almost exponential growth. Currently over 2 billion fiber kilometers are deployed globally with 2014 global optical fiber production exceeding 300 million fiber kilometers. 1 Along with the staggering growth in optical fiber production and deployment, an increase in optical fiber technologies and applications has also followed. Although the main use of optical fibers by far has been for traditional data transmission and communications, numerous new applications are introduced each year. Initially the practical application of optical fibers was limited by cost and sensitivity of the optical fibers to stress, radiation, and other environmental factors. Tremendous advances have taken place in optical fiber design and materials allowing optical fibers to be deployed in increasingly harsh environments with exposure to increased mechanical and environmental stresses while maintaining high reliability. With the increased reliability, lower cost, and greatly expanded range of optical fiber types now available, new optical fiber deployments in harsh and high radiation environments is seeing a tremendous increase for data, communications, and sensing applications. An overview of key optical fiber applications in data, communications, and sensing for harsh environments in industrial, energy exploration, energy generation, energy transmission, and high radiation applications will be presented. Specific recent advances in new radiation resistant optical fiber types, other specialty optical fibers, optical fiber coatings, and optical fiber cable materials will be discussed to illustrate long term reliability for deployment of optical fibers in harsh and high radiation environments.

  11. A steerable radiator for spacecraft application

    NASA Technical Reports Server (NTRS)

    Heizer, B. L.; Goo, S. D.; Rhodes, G. D.; Thoreson, D. W.; Parish, R. C.

    1986-01-01

    Future large space structures such as the Space Station will have high dissipation and long life requirements which dictate the requirements for steerable radiators. Several rotary coupling concepts were considered to accomplish heat transport across the steerable radiator system's rotating interface. Rotary fluid couplings were chosen over rotary contact couplings or flexible lines because of low temperature gradients and operational flexibility. A rotary fluid coupling has been designed for use on initial operating capability (IOC) and growth Space Station. Its internal seals have been demonstrated to a 10 year life with minimal (0.055 lbm NH3/year) leakage between internal passages. Materials compatibility tests have been conducted to demonstrate compatibility with ammonia. A seal leakage management system has been designed to: (1) monitor pressures between the internal seals, (2) remove leakage, and (3) store the leakage fluid in a reservoir.

  12. Uncertainties in water chemistry in disks: An application to TW Hydrae

    NASA Astrophysics Data System (ADS)

    Kamp, I.; Thi, W.-F.; Meeus, G.; Woitke, P.; Pinte, C.; Meijerink, R.; Spaans, M.; Pascucci, I.; Aresu, G.; Dent, W. R. F.

    2013-11-01

    Context. This paper discusses the sensitivity of water lines to chemical processes and radiative transfer for the protoplanetary disk around TW Hya. The study focuses on the Herschel spectral range in the context of new line detections with the PACS instrument from the Gas in Protoplanetary Systems project (GASPS). Aims: The paper presents an overview of the chemistry in the main water reservoirs in the disk around TW Hya. It discusses the limitations in the interpretation of observed water line fluxes. Methods: We use a previously published thermo-chemical Protoplanetary Disk Model (ProDiMo) of the disk around TW Hya and study a range of chemical modeling uncertainties: metallicity, C/O ratio, and reaction pathways and rates leading to the formation of water. We provide results for the simplified assumption of Tgas = Tdust to quantify uncertainties arising for the complex heating/cooling processes of the gas and elaborate on limitations due to water line radiative transfer. Results: We report new line detections of p-H2O (322-211) at 89.99 μm and CO J = 18-17 at 144.78 μm for the disk around TW Hya. Disk modeling shows that the far-IR fine structure lines ([O i], [C ii]) and molecular submm lines are very robust to uncertainties in the chemistry, while the water line fluxes can change by factors of a few. The water lines are optically thick, sub-thermally excited and can couple to the background continuum radiation field. The low-excitation water lines are also sensitive to uncertainties in the collision rates, e.g. with neutral hydrogen. The gas temperature plays an important role for the [O i] fine structure line fluxes, the water line fluxes originating from the inner disk as well as the high excitation CO, CH+ and OH lines. Conclusions: Due to their sensitivity on chemical input data and radiative transfer, water lines have to be used cautiously for understanding details of the disk structure. Water lines covering a wide range of excitation energies provide

  13. Application of radiation technology in vaccines development

    PubMed Central

    2015-01-01

    One of the earliest methods used in the manufacture of stable and safe vaccines is the use of chemical and physical treatments to produce inactivated forms of pathogens. Although these types of vaccines have been successful in eliciting specific humoral immune responses to pathogen-associated immunogens, there is a large demand for the development of fast, safe, and effective vaccine manufacturing strategies. Radiation sterilization has been used to develop a variety of vaccine types, because it can eradicate chemical contaminants and penetrate pathogens to destroy nucleic acids without damaging the pathogen surface antigens. Nevertheless, irradiated vaccines have not widely been used at an industrial level because of difficulties obtaining the necessary equipment. Recent successful clinical trials of irradiated vaccines against pathogens and tumors have led to a reevaluation of radiation technology as an alternative method to produce vaccines. In the present article, we review the challenges associated with creating irradiated vaccines and discuss potential strategies for developing vaccines using radiation technology. PMID:26273573

  14. Using Mathematical Software to Introduce Fourier Transforms in Physical Chemistry to Develop Improved Understanding of Their Applications in Analytical Chemistry

    ERIC Educational Resources Information Center

    Miller, Tierney C.; Richardson, John N.; Kegerreis, Jeb S.

    2016-01-01

    This manuscript presents an exercise that utilizes mathematical software to explore Fourier transforms in the context of model quantum mechanical systems, thus providing a deeper mathematical understanding of relevant information often introduced and treated as a "black-box" in analytical chemistry courses. The exercise is given to…

  15. Technetium chemistry

    SciTech Connect

    Burns, C.; Bryan, J.; Cotton, F.; Ott, K.; Kubas, G.; Haefner, S.; Barrera, J.; Hall, K.; Burrell, A.

    1996-04-01

    Technetium chemistry is a young and developing field. Despite the limited knowledge of its chemistry, technetium is the workhorse for nuclear medicine. Technetium is also a significant environmental concern because it is formed as a byproduct of nuclear weapons production and fission-power generators. Development of new technetium radio-pharmaceuticals and effective environmental control depends strongly upon knowledge of basic technetium chemistry. The authors performed research into the basic coordination and organometallic chemistry of technetium and used this knowledge to address nuclear medicine and environmental applications. This is the final report of a three-year Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL).

  16. Physico-chemical aspects of the drugs radiation sterilization in commercial packing (applied scientific problems of radiation pharmaceutical chemistry)

    SciTech Connect

    Safarov, S.A.

    1993-12-31

    The results of studies on the simultaneous radiosterilization of direct and bifurcational trachea prostheses made of silicon-organic rubber of soft elastic consistency, with polyethylenterephthalate and polyamid cuffs, and radiation chemical grafting of polymeric layer and linking with functional groups of the graft sulfanilamide and antibiotics layer are discussed. Radiopharmaceuticals are also described.

  17. Applications of Click Chemistry Reactions to the Synthesis of Functional Materials

    NASA Astrophysics Data System (ADS)

    Accurso, Adrian A.

    This body of work focuses on the production of functional materials using the most reliable carbon-hetoratom bond-forming processes available, which are widely termed "click chemistry" reactions in the literature. This focus on function is enabled by a basis in synthetic chemistry, and where appropriate, brings in techniques from the related fields of materials science and biology to address current needs in those areas. Chapter 1 concerns the in situ production of azide and alkyne-based click chemistry adhesive polymers. Screening of a library of multivalent azides and alkynes was accomplished on a custom-built highthroughput instrument and followed up on a lap-shear testing apparatus. The conductivity of composites made of the adhesive was also explored according to standard methods. The second and third chapters explore the synthesis and function of a family of related [3.3.1]-bicyclononane dichlorides, which we have termed "WCL" electrophiles, and their potential applications for surface functionalization, the synthesis of polycations, and candidate membrane disruptive compounds. The rates of consumption of dichlorides and hydrolysis of model compounds were also explored using NMR, GC-MS, and HPLC-based methods.

  18. Effect of Space Radiation Processing on Lunar Soil Surface Chemistry: X-Ray Photoelectron Spectroscopy Studies

    NASA Technical Reports Server (NTRS)

    Dukes, C.; Loeffler, M.J.; Baragiola, R.; Christoffersen, R.; Keller, J.

    2009-01-01

    Current understanding of the chemistry and microstructure of the surfaces of lunar soil grains is dominated by a reference frame derived mainly from electron microscopy observations [e.g. 1,2]. These studies have shown that the outermost 10-100 nm of grain surfaces in mature lunar soil finest fractions have been modified by the combined effects of solar wind exposure, surface deposition of vapors and accretion of impact melt products [1,2]. These processes produce surface-correlated nanophase Feo, host grain amorphization, formation of surface patinas and other complex changes [1,2]. What is less well understood is how these changes are reflected directly at the surface, defined as the outermost 1-5 atomic monolayers, a region not easily chemically characterized by TEM. We are currently employing X-ray Photoelectron Spectroscopy (XPS) to study the surface chemistry of lunar soil samples that have been previously studied by TEM. This work includes modification of the grain surfaces by in situ irradiation with ions at solar wind energies to better understand how irradiated surfaces in lunar grains change their chemistry once exposed to ambient conditions on earth.

  19. Graphene-based materials: fabrication and application for adsorption in analytical chemistry.

    PubMed

    Wang, Xin; Liu, Bo; Lu, Qipeng; Qu, Qishu

    2014-10-01

    Graphene, a single layer of carbon atoms densely packed into a honeycomb crystal lattice with unique electronic, chemical, and mechanical properties, is the 2D allotrope of carbon. Owing to the remarkable properties, graphene and graphene-based materials are likely to find potential applications as a sorbent in analytical chemistry. The current review focuses predominantly on the recent development of graphene-based materials and demonstrates their enhanced performance in adsorption of organic compounds, metal ions, and solid phase extraction as well as in separation science since mostly 2012. PMID:25160951

  20. On the Green's function of the partially diffusion-controlled reversible ABCD reaction for radiation chemistry codes

    NASA Astrophysics Data System (ADS)

    Plante, Ianik; Devroye, Luc

    2015-09-01

    Several computer codes simulating chemical reactions in particles systems are based on the Green's functions of the diffusion equation (GFDE). Indeed, many types of chemical systems have been simulated using the exact GFDE, which has also become the gold standard for validating other theoretical models. In this work, a simulation algorithm is presented to sample the interparticle distance for partially diffusion-controlled reversible ABCD reaction. This algorithm is considered exact for 2-particles systems, is faster than conventional look-up tables and uses only a few kilobytes of memory. The simulation results obtained with this method are compared with those obtained with the independent reaction times (IRT) method. This work is part of our effort in developing models to understand the role of chemical reactions in the radiation effects on cells and tissues and may eventually be included in event-based models of space radiation risks. However, as many reactions are of this type in biological systems, this algorithm might play a pivotal role in future simulation programs not only in radiation chemistry, but also in the simulation of biochemical networks in time and space as well.

  1. On the Green's function of the partially diffusion-controlled reversible ABCD reaction for radiation chemistry codes

    SciTech Connect

    Plante, Ianik; Devroye, Luc

    2015-09-15

    Several computer codes simulating chemical reactions in particles systems are based on the Green's functions of the diffusion equation (GFDE). Indeed, many types of chemical systems have been simulated using the exact GFDE, which has also become the gold standard for validating other theoretical models. In this work, a simulation algorithm is presented to sample the interparticle distance for partially diffusion-controlled reversible ABCD reaction. This algorithm is considered exact for 2-particles systems, is faster than conventional look-up tables and uses only a few kilobytes of memory. The simulation results obtained with this method are compared with those obtained with the independent reaction times (IRT) method. This work is part of our effort in developing models to understand the role of chemical reactions in the radiation effects on cells and tissues and may eventually be included in event-based models of space radiation risks. However, as many reactions are of this type in biological systems, this algorithm might play a pivotal role in future simulation programs not only in radiation chemistry, but also in the simulation of biochemical networks in time and space as well.

  2. Review of information on the radiation chemistry of materials around waste canisters in salt and assessment of the need for additional experimental information

    SciTech Connect

    Jenks, G.H.; Baes, C.F. Jr.

    1980-03-01

    The brines, vapors, and salts precipitated from the brines will be exposed to gamma rays and to elevated temperatures in the regions close to a waste package in the salt. Accordingly, they will be subject to changes in composition brought about by reactions induced by the radiations and heat. This report reviews the status of information on the radiation chemistry of brines, gases, and solids which might be present around a waste package in salt and to assess the need for additional laboratory investigations on the radiation chemistry of these materials. The basic aspects of the radiation chemistry of water and aqueous solutions, including concentrated salt solutions, were reviewed briefly and found to be substantially unchanged from those presented in Jenks's 1972 review of radiolysis and hydrolysis in salt-mine brines. Some additional information pertaining to the radiolytic yields and reactions in brine solutions has become available since the previous review, and this information will be useful in the eventual, complete elucidation of the radiation chemistry of the salt-mine brines. 53 references.

  3. Radiation Issues and Applications of Floating Gate Memories

    NASA Technical Reports Server (NTRS)

    Scheick, L. Z.; Nguyen, D. N.

    2000-01-01

    The radiation effects that affect various systems that comprise floating gate memories are presented. The wear-out degradation results of unirradiated flash memories are compared to irradiated flash memories. The procedure analyzes the failure to write and erase caused by wear-out and degradation of internal charge pump circuits. A method is described for characterizing the radiation effects of the floating gate itself. The rate dependence, stopping power dependence, SEU susceptibility and applications of floating gate in radiation environment are presented. The ramifications for dosimetry and cell failure are discussed as well as for the long term use aspects of non-volatile memories.

  4. SP-100 advanced radiator designs for thermoelectric and Stirling applications

    NASA Technical Reports Server (NTRS)

    Moriarty, M. P.; Determan, W. R.

    1989-01-01

    Advanced radiator designs employing carbon-carbon liquid metal heat pipe technology, which significantly reduce the mass of the heat rejection subsystem for high temperature space technology systems such as the SP-100 are discussed. This technology is being developed to address the need for lightweight heat transfer components and structures for space applications. Heat pipe and subsystem designs were optimized for thermoelectric- and Stirling-engine-based SP-100 system designs. A multiple, deployed-petal radiator concept was selected for the heat rejection subsystem design as it provided minimum mass. Radiator stowage in the space transportation system cargo bay and deployment schemes were investigated for each of the optimized designs.

  5. Radiation dosimetry of a conformal heat-brachytherapy applicator.

    PubMed

    Taschereau, Richard; Stauffer, Paul R; Hsu, I-Chow; Schlorff, Jaime L; Milligan, Andrew J; Pouliot, Jean

    2004-08-01

    The purpose of this paper is to report the radiation dosimetric characteristics of a new combination applicator for delivering heat and radiation simultaneously to large area superficial disease <1.5 cm deep. The applicator combines an array of brachytherapy catheters (for radiation delivery) with a conformal printed circuit board microwave antenna array (for heat generation), and a body-conforming 5-10 mm thick temperature-controlled water bolus. The rationale for applying both modalities simultaneously includes the potential for significantly higher response rate due to enhanced synergism of modalities, and lower peak toxicity due to temporal extension of heat and radiation induced toxicities. Treatment plans and radiation dosimetry are calculated with IPSA (an optimization tool developed at UCSF) for 15 x 15 cm(2) and 35 x 24 cm(2) applicators, lesion thicknesses of 5 to 15 mm, flat and curved surfaces, and catheter separation of 5 and 10 mm. The effect on skin dose of bolus thickness and presence of thin copper antenna structures between radiation source and tissue are also evaluated. Results demonstrate the ability of the applicator to provide conformal radiation dose coverage for up to 15 mm deep target volumes under the applicator. For clinically acceptable plans, tumor coverage is > 98%, homogeneity index > 0.95 and the percentage of normal tissue irradiated is < 20%. The dose gradient at the skin surface varies from 3 to 5 cGy/mm depending on bolus thickness and lesion depth. Attenuation of the photon beam by the printed circuit antenna array is of the order 0.25% and secondary electron emissions are absorbed completely within 5 mm of water bolus and plastic layers. Both phenomena can then be neglected in dose calculations allowing commercial software to be used for treatment planning. This novel applicator should prove useful for the treatment of diffuse chestwall disease located over contoured anatomy that may be difficult to treat with single field

  6. Application of the complex step method to chemistry-transport modeling

    NASA Astrophysics Data System (ADS)

    Constantin, Bogdan V.; Barrett, Steven R. H.

    2014-12-01

    Sensitivity analysis in atmospheric chemistry-transport modeling is used to develop understanding of the mechanisms by which emissions affect atmospheric chemistry and composition, to quantify the marginal impact of emissions on air quality, and for other applications including improving estimates of emissions, developing fast first order air quality models, and validating adjoint models. Forward modeling sensitivities have predominantly been calculated using the finite difference approach, i.e. where the results of two separate simulations are subtracted. The finite difference approach incurs truncation and cancellation errors, which mean that exact sensitivities cannot be calculated and even approximate sensitivities cannot always be calculated for a sufficiently small perturbation (e.g. for emissions at a single location or time). Other sensitivity methods can provide exact sensitivities, but require the reformulation of non-linear steps (e.g. the decoupled direct method) or the development of adjoints of entire codes (partly automatically and partly manually). While the adjoint approach is widely applied and has significant utility in providing receptor-oriented information, in some applications the source-oriented information of forward approaches is needed. Here we apply an alternative method of calculating sensitivities that results in source-oriented information as with the finite difference approach, requires minimal reformulation of models, but enables near-exact computation of sensitivities. This approach - the complex step method - is applied for the first time to a complete atmospheric chemistry-transport model (GEOS-Chem). (The complex step method has been previously used in validating the adjoint of an aerosol thermodynamic equilibrium model.) We also introduce the idea of combining complex-step and adjoint sensitivity analysis (for the first time in any context to our knowledge) to enable the direct calculation of near-exact second order

  7. An exploratory study of proficient undergraduate Chemistry II students' application of Lewis's model

    NASA Astrophysics Data System (ADS)

    Lewis, Sumudu R.

    cases where the algorithm cannot be applied. Additionally, the proficient students' understanding (i.e., representation, explanation and application) of the Valence Shell Electron-Pair Repulsion theory was accurate and precise, and they used the key terms in the correct context when explaining their reasoning. The results of this study can be of great importance to general chemistry and organic chemistry courses' instructors. This study identified students' baseline academic skills and abilities that lead to conceptual understanding of the essential concepts of covalent bonding and molecule structure, which instructors could use as a guide for developing instruction. Furthermore knowing the effective methods of reasoning the students use while applying Lewis's model, the instructors may be better informed and be able to better facilitate students' learning of Lewis' model and its application. Finally, the ideas and methods used in this study can be of value to chemistry education researchers to learn more about developing proficiency through reasoning methods in other chemistry concepts.

  8. Silicon radiation detectors: materials and applications

    SciTech Connect

    Walton, J.T.; Haller, E.E.

    1982-10-01

    Silicon nuclear radiation detectors are available today in a large variety of sizes and types. This profusion has been made possible by the ever increasing quality and diameter silicon single crystals, new processing technologies and techniques, and innovative detector design. The salient characteristics of the four basic detector groups, diffused junction, ion implanted, surface barrier, and lithium drift are reviewed along with the silicon crystal requirements. Results of crystal imperfections detected by lithium ion compensation are presented. Processing technologies and techniques are described. Two recent novel position-sensitive detector designs are discussed - one in high-energy particle track reconstruction and the other in x-ray angiography. The unique experimental results obtained with these devices are presented.

  9. Infrared radiation industrial application and economic benefits.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    IR heating has been accepted to be one of the important means for cooking, drying, roasting, baking, blanching and pasteurization of food and agricultural products. This chapter reviews the scientific developments in IR applications, demonstrates the status of selected industrial and pilot scale IR ...

  10. Nonequilibrium radiation and chemistry models for aerocapture vehicle flowfields, volume 3

    NASA Technical Reports Server (NTRS)

    Carlson, Leland A.

    1991-01-01

    The computer programs developed to calculate the shock wave precursor and the method of using them are described. This method calculated the precursor flow field in a nitrogen gas including the effects of emission and absorption of radiation on the energy and composition of gas. The radiative transfer is calculated including the effects of absorption and emission through the line as well as the continuum process in the shock layer and through the continuum processes only in the precursor. The effects of local thermodynamic nonequilibrium in the shock layer and precursor regions are also included in the radiative transfer calculations. Three computer programs utilized by this computational scheme to calculate the precursor flow field solution for a given shock layer flow field are discussed.

  11. Simulating contemporary and preindustrial atmospheric chemistry and aerosol radiative forcing in the Southeast Pacific (Invited)

    NASA Astrophysics Data System (ADS)

    Spak, S.; Mena-Carrasco, M.; Carmichael, G. R.

    2010-12-01

    Accurately quantifying the aerosol burden and resultant radiative impacts over the Southeast Pacific presents a critical challenge in constraining the region's upper ocean heat budget and sea surface temperatures. Recent observations and preliminary modeling studies have found consistent aerosol transport above the region's extensive stratoculumus, indicating the need to consider aerosol composition and direct radiative effects in addition to indirect effects on clouds. We simulate regional chemical transport of aerosols and trace gases during VOCALS REx, identifying contributions from coastal anthropogenic emissions, biogenic emissions, biomass burning, and long-range transport to aerosol mass and composition. We evaluate a new emissions inventory through comparison with in-situ observations. Spatial and temporal variability in transport from these varied emissions sources provide insights into land-ocean-atmosphere coupling. We will compare aerosol radiative forcing under present day and preindustrial emissions rates.

  12. Semibullvalene and diazasemibullvalene: recent advances in the synthesis, reaction chemistry, and synthetic applications.

    PubMed

    Zhang, Shaoguang; Zhang, Wen-Xiong; Xi, Zhenfeng

    2015-07-21

    Semibullvalene (SBV) and its aza analogue 2,6-diazasemibullvalene (NSBV) are theoretically interesting and experimentally challenging organic molecules because of four unique features: highly strained ring systems, intramolecular skeletal rearrangement, extremely rapid degenerate (aza-)Cope rearrangement, and the predicted existence of neutral homoaromatic delocalized structures. SBV has received much attention in the past 50 years. In contrast, after NSBV was predicted in 1971 and the first in situ synthesis was realized in 1982, no progress on NSBV chemistry was made until our results in 2012. We have been interested in the reaction chemistry of 1,4-dilithio-1,3-butadienes (dilithio reagents for short), especially for their applications in the synthesis of SBV and NSBV, because (i) the cyclodimerization of dilithio reagents could provide the potential eight-carbon skeleton of SBV from four-carbon butadiene units and (ii) the insertion reaction of dilithio reagents with C≡N bonds of two nitriles could provide a 6C + 2N skeleton that might be a good precursor for the synthesis of NSBV. Therefore, we initiated a journey into the synthesis and reaction chemistry of SBV and NSBV starting from dilithio reagents that has been ongoing since 2006. In this Account, we outline mainly our recent achievements in the synthesis, structural characterization, reaction chemistry, synthetic application, and theoretical/computational analysis of NSBV. Two efficient strategies for the synthesis of NSBV from dilithio reagents and nitriles via oxidant-induced C-N bond formation are described. Structural investigations of NSBV, including X-ray crystal structure analysis, determination of the activation barrier for the aza-Cope rearrangement, and theoretical analysis, show that the localized structure of NSBV is the predominant form and that the homoaromatic delocalized structure exists as a minor component in the equilibrium. We also discuss the reaction chemistry and synthetic

  13. A Linguistic Comparison of Letters of Recommendation for Male and Female Chemistry and Biochemistry Job Applicants.

    PubMed

    Schmader, Toni; Whitehead, Jessica; Wysocki, Vicki H

    2007-01-01

    Letters of recommendation are central to the hiring process. However, gender stereotypes could bias how recommenders describe female compared to male applicants. In the current study, text analysis software was used to examine 886 letters of recommendation written on behalf of 235 male and 42 female applicants for either a chemistry or biochemistry faculty position at a large U.S. research university. Results revealed more similarities than differences in letters written for male and female candidates. However, recommenders used significantly more standout adjectives to describe male as compared to female candidates. Letters containing more standout words also included more ability words and fewer grindstone words. Research is needed to explore how differences in language use affect perceivers' evaluations of female candidates. PMID:18953419

  14. Nanoporous Anodic Alumina Platforms: Engineered Surface Chemistry and Structure for Optical Sensing Applications

    PubMed Central

    Kumeria, Tushar; Santos, Abel; Losic, Dusan

    2014-01-01

    Electrochemical anodization of pure aluminum enables the growth of highly ordered nanoporous anodic alumina (NAA) structures. This has made NAA one of the most popular nanomaterials with applications including molecular separation, catalysis, photonics, optoelectronics, sensing, drug delivery, and template synthesis. Over the past decades, the ability to engineer the structure and surface chemistry of NAA and its optical properties has led to the establishment of distinctive photonic structures that can be explored for developing low-cost, portable, rapid-response and highly sensitive sensing devices in combination with surface plasmon resonance (SPR) and reflective interference spectroscopy (RIfS) techniques. This review article highlights the recent advances on fabrication, surface modification and structural engineering of NAA and its application and performance as a platform for SPR- and RIfS-based sensing and biosensing devices. PMID:25004150

  15. The Radiative Decay of Green and Red Photoluminescent Phosphors: An Undergraduate Kinetics Experiment for Materials Chemistry

    ERIC Educational Resources Information Center

    Esposti, C. Degli; Bizzocchi, L.

    2008-01-01

    This article describes a laboratory experiment that allows the students to investigate the radiative properties of the green and red emitting phosphors that are employed in commercial fluorescent lamps. Making use of a spectrofluorometer, students first record the emission spectrum of a fluorescent lamp under normal operating conditions, and then…

  16. Theoretical investigation of non-equilibrium chemistry and optical radiation in hypersonic flow fields

    NASA Technical Reports Server (NTRS)

    Whiting, Ellis E.

    1990-01-01

    Future space vehicles returning from distant missions or high earth orbits may enter the upper regions of the atmosphere and use aerodynamic drag to reduce their velocity before they skip out of the atmosphere and enter low earth orbit. The Aeroassist Flight Experiment (AFE) is designed to explore the special problems encountered in such entries. A computer code was developed to calculate the radiative transport along line-or-sight in the general 3-D flow field about an arbitrary entry vehicle, if the temperatures and species concentrations along the line-of-sight are known. The radiative heating calculation at the stagnation point of the AFE vehicle along the entry trajectory was performed, including a detailed line-by-line accounting of the radiative transport in the vacuum ultraviolet (below 200 nm) by the atomic N and O lines. A method was developed for making measurements of the haze particles in the Titan atmosphere above 200 km altitude. Several other tasks of a continuing nature, to improve the technical ability to calculate the nonequilibrium gas dynamic flow field and radiative heating of entry vehicles, were completed or advanced.

  17. Tropospheric Ozone Changes, Radiative Forcing and Attribution to Emissions in the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP)

    NASA Technical Reports Server (NTRS)

    Stevenson, D.S.; Young, P.J.; Naik, V.; Lamarque, J.-F.; Shindell, D. T.; Voulgarakis, A.; Skeie, R. B.; Dalsoren, S. B.; Myhre, G.; Berntsen, T. K.; Folberth, G. A.; Rumbold, S. T.; Collins, W. J.; MacKenzie, I. A.; Doherty, R. M.; Zeng, G.; vanNoije, T. P. C.; Strunk, A.; Bergmann, D.; Cameron-Smith, P.; Plummer, D. A.; Strode, S. A.; Horowitz, L.; Lee, Y. H.; Szopa, S.; Sudo, K.; Nagashima, T.; Josse, B.; Cionni, I.; Righi, M.; Eyring, V.; Conley, A.; Bowman, K. W.; Wild, O.; Archibald, A.

    2013-01-01

    Ozone (O3) from 17 atmospheric chemistry models taking part in the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP) has been used to calculate tropospheric ozone radiative forcings (RFs). All models applied a common set of anthropogenic emissions, which are better constrained for the present-day than the past. Future anthropogenic emissions follow the four Representative Concentration Pathway (RCP) scenarios, which define a relatively narrow range of possible air pollution emissions. We calculate a value for the pre-industrial (1750) to present-day (2010) tropospheric ozone RF of 410 mW m-2. The model range of pre-industrial to present-day changes in O3 produces a spread (+/-1 standard deviation) in RFs of +/-17%. Three different radiation schemes were used - we find differences in RFs between schemes (for the same ozone fields) of +/-10 percent. Applying two different tropopause definitions gives differences in RFs of +/-3 percent. Given additional (unquantified) uncertainties associated with emissions, climate-chemistry interactions and land-use change, we estimate an overall uncertainty of +/-30 percent for the tropospheric ozone RF. Experiments carried out by a subset of six models attribute tropospheric ozone RF to increased emissions of methane (44+/-12 percent), nitrogen oxides (31 +/- 9 percent), carbon monoxide (15 +/- 3 percent) and non-methane volatile organic compounds (9 +/- 2 percent); earlier studies attributed more of the tropospheric ozone RF to methane and less to nitrogen oxides. Normalising RFs to changes in tropospheric column ozone, we find a global mean normalised RF of 42 mW m(-2) DU(-1), a value similar to previous work. Using normalised RFs and future tropospheric column ozone projections we calculate future tropospheric ozone RFs (mW m(-2); relative to 1750) for the four future scenarios (RCP2.6, RCP4.5, RCP6.0 and RCP8.5) of 350, 420, 370 and 460 (in 2030), and 200, 300, 280 and 600 (in 2100). Models show some

  18. Tropospheric ozone changes, radiative forcing and attribution to emissions in the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP)

    NASA Astrophysics Data System (ADS)

    Stevenson, D. S.; Young, P. J.; Naik, V.; Lamarque, J.-F.; Shindell, D. T.; Voulgarakis, A.; Skeie, R. B.; Dalsoren, S. B.; Myhre, G.; Berntsen, T. K.; Folberth, G. A.; Rumbold, S. T.; Collins, W. J.; MacKenzie, I. A.; Doherty, R. M.; Zeng, G.; van Noije, T. P. C.; Strunk, A.; Bergmann, D.; Cameron-Smith, P.; Plummer, D. A.; Strode, S. A.; Horowitz, L.; Lee, Y. H.; Szopa, S.; Sudo, K.; Nagashima, T.; Josse, B.; Cionni, I.; Righi, M.; Eyring, V.; Conley, A.; Bowman, K. W.; Wild, O.; Archibald, A.

    2013-03-01

    Ozone (O3) from 17 atmospheric chemistry models taking part in the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP) has been used to calculate tropospheric ozone radiative forcings (RFs). All models applied a common set of anthropogenic emissions, which are better constrained for the present-day than the past. Future anthropogenic emissions follow the four Representative Concentration Pathway (RCP) scenarios, which define a relatively narrow range of possible air pollution emissions. We calculate a value for the pre-industrial (1750) to present-day (2010) tropospheric ozone RF of 410 mW m-2. The model range of pre-industrial to present-day changes in O3 produces a spread (±1 standard deviation) in RFs of ±17%. Three different radiation schemes were used - we find differences in RFs between schemes (for the same ozone fields) of ±10%. Applying two different tropopause definitions gives differences in RFs of ±3%. Given additional (unquantified) uncertainties associated with emissions, climate-chemistry interactions and land-use change, we estimate an overall uncertainty of ±30% for the tropospheric ozone RF. Experiments carried out by a subset of six models attribute tropospheric ozone RF to increased emissions of methane (44±12%), nitrogen oxides (31 ± 9%), carbon monoxide (15 ± 3%) and non-methane volatile organic compounds (9 ± 2%); earlier studies attributed more of the tropospheric ozone RF to methane and less to nitrogen oxides. Normalising RFs to changes in tropospheric column ozone, we find a global mean normalised RF of 42 mW m-2 DU-1, a value similar to previous work. Using normalised RFs and future tropospheric column ozone projections we calculate future tropospheric ozone RFs (mW m-2; relative to 1750) for the four future scenarios (RCP2.6, RCP4.5, RCP6.0 and RCP8.5) of 350, 420, 370 and 460 (in 2030), and 200, 300, 280 and 600 (in 2100). Models show some coherent responses of ozone to climate change: decreases in the

  19. Radiation protection and dosimetry issues in the medical applications of ionizing radiation

    NASA Astrophysics Data System (ADS)

    Vaz, Pedro

    2014-11-01

    The technological advances that occurred during the last few decades paved the way to the dissemination of CT-based procedures in radiology, to an increasing number of procedures in interventional radiology and cardiology as well as to new techniques and hybrid modalities in nuclear medicine and in radiotherapy. These technological advances encompass the exposure of patients and medical staff to unprecedentedly high dose values that are a cause for concern due to the potential detrimental effects of ionizing radiation to the human health. As a consequence, new issues and challenges in radiological protection and dosimetry in the medical applications of ionizing radiation have emerged. The scientific knowledge of the radiosensitivity of individuals as a function of age, gender and other factors has also contributed to raising the awareness of scientists, medical staff, regulators, decision makers and other stakeholders (including the patients and the public) for the need to correctly and accurately assess the radiation induced long-term health effects after medical exposure. Pediatric exposures and their late effects became a cause of great concern. The scientific communities of experts involved in the study of the biological effects of ionizing radiation have made a strong case about the need to undertake low dose radiation research and the International System of Radiological Protection is being challenged to address and incorporate issues such as the individual sensitivities, the shape of dose-response relationship and tissue sensitivity for cancer and non-cancer effects. Some of the answers to the radiation protection and dosimetry issues and challenges in the medical applications of ionizing radiation lie in computational studies using Monte Carlo or hybrid methods to model and simulate particle transport in the organs and tissues of the human body. The development of sophisticated Monte Carlo computer programs and voxel phantoms paves the way to an accurate

  20. Effect of wood ash application on soil solution chemistry of tropical acid soils: incubation study.

    PubMed

    Nkana, J C Voundi; Demeyer, A; Verloo, M G

    2002-12-01

    The objective of this study was to determine the effect of wood ash application on soil solution composition of three tropical acid soils. Calcium carbonate was used as a reference amendment. Amended soils and control were incubated for 60 days. To assess soluble nutrients, saturation extracts were analysed at 15 days intervals. Wood ash application affects the soil solution chemistry in two ways, as a liming agent and as a supplier of nutrients. As a liming agent, wood ash application induced increases in soil solution pH, Ca, Mg, inorganic C, SO4 and DOC. As a supplier of elements, the increase in the soil solution pH was partly due to ligand exchange between wood ash SO4 and OH- ions. Large increases in concentrations of inorganic C, SO4, Ca and Mg with wood ash relative to lime and especially increases in K reflected the supply of these elements by wood ash. Wood ash application could represent increased availability of nutrients for the plant. However, large concentrations of basic cations, SO4 and NO3 obtained with higher application rates could be a concern because of potential solute transport to surface waters and groundwater. Wood ash must be applied at reasonable rates to avoid any risk for the environment. PMID:12365502

  1. Interfacial Chemistry and the Performance of Bromine-etched CdZnTe Radiation Detector Devices

    SciTech Connect

    Rouse, Ambrosio A.; Szeles, Csaba; Ndap, Jean-Oliver; Soldner, Steve; Parnham, K B.; Gaspar, Dan J.; Engelhard, Mark H.; Lea, Alan S.; Shutthanandan, V; Thevuthasan, Suntharampillai; Baer, Donald R.

    2002-08-01

    The interfacial chemistry and composition of Pt electrodes sputter deposited on bromine-etched CdZnTe surfaces was studied by XPS, SIMS, AES, NRA and RBS. The interfacial composition of a functioning and a non-functioning CdZnTe detector shows significant differences. The degree of cation out-diffusion into the Pt overlayer and the in-diffusion of Pt into the CdZnTe correlate with the degree of oxidation found at the metal-semiconductor interface. Practically all the oxide present at the interface was found to be TeO{sub 2}. The results suggest that the inter-diffusion of the atoms and associated charges contribute to stoichiometric variations at the metal-semiconductor interface and influence the electrical performance of the devices.

  2. Radiation Belt Environment Model: Application to Space Weather and Beyond

    NASA Technical Reports Server (NTRS)

    Fok, Mei-Ching H.

    2011-01-01

    Understanding the dynamics and variability of the radiation belts are of great scientific and space weather significance. A physics-based Radiation Belt Environment (RBE) model has been developed to simulate and predict the radiation particle intensities. The RBE model considers the influences from the solar wind, ring current and plasmasphere. It takes into account the particle drift in realistic, time-varying magnetic and electric field, and includes diffusive effects of wave-particle interactions with various wave modes in the magnetosphere. The RBE model has been used to perform event studies and real-time prediction of energetic electron fluxes. In this talk, we will describe the RBE model equation, inputs and capabilities. Recent advancement in space weather application and artificial radiation belt study will be discussed as well.

  3. Comparison of nine different real-time PCR chemistries for qualitative and quantitative applications in GMO detection.

    PubMed

    Buh Gasparic, Meti; Tengs, Torstein; La Paz, Jose Luis; Holst-Jensen, Arne; Pla, Maria; Esteve, Teresa; Zel, Jana; Gruden, Kristina

    2010-03-01

    Several techniques have been developed for detection and quantification of genetically modified organisms, but quantitative real-time PCR is by far the most popular approach. Among the most commonly used real-time PCR chemistries are TaqMan probes and SYBR green, but many other detection chemistries have also been developed. Because their performance has never been compared systematically, here we present an extensive evaluation of some promising chemistries: sequence-unspecific DNA labeling dyes (SYBR green), primer-based technologies (AmpliFluor, Plexor, Lux primers), and techniques involving double-labeled probes, comprising hybridization (molecular beacon) and hydrolysis (TaqMan, CPT, LNA, and MGB) probes, based on recently published experimental data. For each of the detection chemistries assays were included targeting selected loci. Real-time PCR chemistries were subsequently compared for their efficiency in PCR amplification and limits of detection and quantification. The overall applicability of the chemistries was evaluated, adding practicability and cost issues to the performance characteristics. None of the chemistries seemed to be significantly better than any other, but certain features favor LNA and MGB technology as good alternatives to TaqMan in quantification assays. SYBR green and molecular beacon assays can perform equally well but may need more optimization prior to use. PMID:20087729

  4. PMMA/MWCNT nanocomposite for proton radiation shielding applications.

    PubMed

    Li, Zhenhao; Chen, Siyuan; Nambiar, Shruti; Sun, Yonghai; Zhang, Mingyu; Zheng, Wanping; Yeow, John T W

    2016-06-10

    Radiation shielding in space missions is critical in order to protect astronauts, spacecraft and payloads from radiation damage. Low atomic-number materials are efficient in shielding particle-radiation, but they have relatively weak material properties compared to alloys that are widely used in space applications as structural materials. However, the issues related to weight and the secondary radiation generation make alloys not suitable for space radiation shielding. Polymers, on the other hand, can be filled with different filler materials for reinforcement of material properties, while at the same time provide sufficient radiation shielding function with lower weight and less secondary radiation generation. In this study, poly(methyl-methacrylate)/multi-walled carbon nanotube (PMMA/MWCNT) nanocomposite was fabricated. The role of MWCNTs embedded in PMMA matrix, in terms of radiation shielding effectiveness, was experimentally evaluated by comparing the proton transmission properties and secondary neutron generation of the PMMA/MWCNT nanocomposite with pure PMMA and aluminum. The results showed that the addition of MWCNTs in PMMA matrix can further reduce the secondary neutron generation of the pure polymer, while no obvious change was found in the proton transmission property. On the other hand, both the pure PMMA and the nanocomposite were 18%-19% lighter in weight than aluminum for stopping the protons with the same energy and generated up to 5% fewer secondary neutrons. Furthermore, the use of MWCNTs showed enhanced thermal stability over the pure polymer, and thus the overall reinforcement effects make MWCNT an effective filler material for applications in the space industry. PMID:27125319

  5. PMMA/MWCNT nanocomposite for proton radiation shielding applications

    NASA Astrophysics Data System (ADS)

    Li, Zhenhao; Chen, Siyuan; Nambiar, Shruti; Sun, Yonghai; Zhang, Mingyu; Zheng, Wanping; Yeow, John T. W.

    2016-06-01

    Radiation shielding in space missions is critical in order to protect astronauts, spacecraft and payloads from radiation damage. Low atomic-number materials are efficient in shielding particle-radiation, but they have relatively weak material properties compared to alloys that are widely used in space applications as structural materials. However, the issues related to weight and the secondary radiation generation make alloys not suitable for space radiation shielding. Polymers, on the other hand, can be filled with different filler materials for reinforcement of material properties, while at the same time provide sufficient radiation shielding function with lower weight and less secondary radiation generation. In this study, poly(methyl-methacrylate)/multi-walled carbon nanotube (PMMA/MWCNT) nanocomposite was fabricated. The role of MWCNTs embedded in PMMA matrix, in terms of radiation shielding effectiveness, was experimentally evaluated by comparing the proton transmission properties and secondary neutron generation of the PMMA/MWCNT nanocomposite with pure PMMA and aluminum. The results showed that the addition of MWCNTs in PMMA matrix can further reduce the secondary neutron generation of the pure polymer, while no obvious change was found in the proton transmission property. On the other hand, both the pure PMMA and the nanocomposite were 18%–19% lighter in weight than aluminum for stopping the protons with the same energy and generated up to 5% fewer secondary neutrons. Furthermore, the use of MWCNTs showed enhanced thermal stability over the pure polymer, and thus the overall reinforcement effects make MWCNT an effective filler material for applications in the space industry.

  6. Assessing application vulnerability to radiation-induced SEUs in memory

    NASA Technical Reports Server (NTRS)

    Springer, P. L.

    2001-01-01

    One of the goals of the Remote Exploration and Experimentation (REE) project at JPL is to determine how vulnerable applications are to single event upsets (SEUs) when run in low radiation space environments using commercial-off-the-shelf (COTS) components.

  7. A reinvestigation of the rate of the C/+/ + H2 radiative association reaction. [interstellar chemistry

    NASA Technical Reports Server (NTRS)

    Herbst, E.

    1982-01-01

    It is noted that new experimental results and statistical theories have prompted a reinvestigation of the rate coefficient of the interstellar reaction in which C(+) + H2 yields CH2(+) + h(nu) in the 10-100 K temperature range. The results presented here indicate a rate coefficient between 10 to the -16 and 10 to the -15 cu cm/s at all temperatures studied. In applying the modified thermal and phase space theories, it is expected that they will be as accurate as for radiative association as for three-body association, provided the ab initio value for the radiative decay rate is correct. It is expected that the calculated values of the rate coefficient will be accurate to within an order of magnitude and will have the correct temperature dependence.

  8. Nonequilibrium radiation and chemistry models for aerocapture vehicle flowfields, volume 2

    NASA Technical Reports Server (NTRS)

    Carlson, Leland A.

    1991-01-01

    A technique was developed for predicting the character and magnitude of the shock wave precursor ahead of an entry vehicle and the effect of this precursor on the vehicle flow field was ascertained. A computational method and program were developed to properly model this precursor. Expressions were developed for the mass production rates of each species due to photodissociation and photoionization reactions. Also, consideration was given to the absorption and emission of radiation and how it affects the energy in each of the energy modes of both the atomic and diatomic species. A series of parametric studies were conducted covering a range of entry conditions in order to predict the effects of the precursor on the shock layer and the radiative heat transfer to the body.

  9. Radiation chemistry in the reprocessing and recycling of spent nuclear fuels

    SciTech Connect

    Bruce J. Mincher

    2015-04-01

    The interaction of ionizing radiation with solvent extraction solutions results in the ionization, excitation, and decay to neutral radicals of mainly diluent molecules. These produced reactive species diffuse into the bulk solution to react with solvent extraction ligands. Ligand reactions often result in deleterious effects such as loss in ligand concentration or the production of decomposition products that may also be complexing agents. This often interferes with desired separations. The common radiolysis reactions and their potential effects on solvent extraction are reviewed here.

  10. Radiative shocks and nonequilibrium chemistry in the early universe - Galaxy and primordial star formation

    NASA Technical Reports Server (NTRS)

    Shapiro, Paul R.; Kang, Hyesung

    1990-01-01

    The nonequilibrium radiative cooling, recombination, and molecule formation behind steady-state shock waves in primordial composition gas is studied. The hydrodynamical conservation equations are solved as well as equations for nonequilibrium ionization, recombination, and molecule formation and the equation of radiative transfer. The shocked gas is found to cool faster than it can recombine; as a result it is able to form an H2 concentration as high as 0.001 or higher via the formation of H(-) and H2(+) intermediaries due to the enhanced nonequilibrium ionization at 10,000 K. With such an H2 concentration, the gas cools by rotational-vibrational line excitation of H2 molecules to well below the canonical final temperature of 10,000 K for a molecule-free gas without metals. It is shown that, as the level of external ionizing and dissociating radiation flux is increased, the formation of and cooling by H2 molecules can be inhibited and delayed.